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Preface

This book is an introduction to the numerical modeling of effluent discharges using 
OpenFOAM. It introduces the relevant background knowledge and modeling tech-
niques of effluents in detail.

With the increase in population, the development of regional economy and the accel-
eration of industrialization, wastewater effluents are increasing, which puts forward 
higher requirements for effluent treatment and disposal capacity. The establishment 
of a water effluent model can play an important role in improving effluent treatment 
technologies and dealing with environmental pollution. Therefore, effluent modeling 
is very important. This book introduces computational fluid dynamics (CFD) models 
of effluent discharges on the basis of understanding the research progress of jets and 
plumes, analyzes the advantages and disadvantages of different modeling approaches, 
and puts forward a series of suggestions for future research work.

Although a great deal of research has been done on the mixing properties of waste-
water discharges over the past few decades, the simulation of wastewater discharges 
using modern mathematical and computational techniques is still in its infancy. The 
basic data problem and the uncertainty of model parameters in the process of model 
application pose challenges to the reliability of the model. The availability of open-
source CFD tools has opened the door to more realistic CFD modeling of effluent 
discharges. Although the numerical simulation technology has been significantly 
developed, the turbulence modeling problem of jet or plume has not been com-
pletely studied, and further research is needed. This book discusses these gaps in the 
literatures.

This book is mainly for the undergraduate and graduate students in hydraulics and 
hydrology, as well as for practitioners. The book begins with an introduction to outfall 
systems (Chapter 1) and introduces the reader to the application and different con-
figurations of outfalls, various types of effluents, and mixing zones. Chapter 2 intro-
duces the basic principles of numerical modeling. First, it introduces the governing 
equations, computational domain, boundary conditions, and initial conditions. Then, 
computational meshing is introduced, including mesh generation and determination 
of mesh resolution based on mesh sensitivity analysis. Then various methods in tur-
bulence modeling (RANS, LES, DES, DNS) are briefly discussed. The basic concepts 
are discussed, and the formulations of the selected methods are provided. Finally, the 
modification of turbulence terms for buoyant discharges is introduced. Chapter 3 is 
an introduction to OpenFOAM. OpenFOAM is a popular CFD tool for effluent dis-
charge modeling. It mainly introduces the OpenFOAM solvers and mesh generation 
and post-processing capabilities for effluent discharge modeling. Chapter 4 reviews 



Preface ix

past numerical studies in this field, points out future research directions, and puts 
forward suggestions for further improving effluent discharge modeling.

This book builds on past effluent discharge researches with further discussion on 
CFD modeling approaches and techniques, and it is hoped that these introductions 
and recommendations will be a useful reference for undergraduate and graduate stu-
dents in hydraulics and hydrology, as well as the practitioners.
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1.1 Identifying the problem

Discharges of industrial effluents into coastal and estuarine waters and the emissions 
of incinerated urban waste into the atmosphere provide two examples of environmen-
tal flows in which water and air quality, respectively, are determined by the behavior 
and structure of the particle-laden, turbulent, dense/buoyant jets, or plumes gener-
ated by discharges. Industrial power plants discharge residual byproducts into water 
bodies (Lattemann and Höpner, 2008), mostly as submerged jets due to their higher 
effectiveness.

Moreover, rising populations, shortages of clean and potable water, and advance-
ments in desalination plant technology have increased rapidly in recent decades. In 
arid and semi-arid countries, desalination plants are actively considered as the best 
alternative to respond to the high demand for drinkable water. Desalination plants 
remove the dissolved minerals from coastal water bodies and produce effluents with 
a high-salt concentration, called brines, that may also have an elevated temperature, 
especially for multistage flash (MSF) desalination plants. Disposal of these brines, 
which have higher density than the receiving water, causes many environmental 
impacts, especially in the near field of outfall systems, which is the natural habitat of 
marine species and fish cultures (Hashim and Hajjaj, 2005; Lattemann and Höpner, 
2008). Some areas such as the Red Sea, Persian Gulf, and generally low energy areas 
with shallow waters are very sensitive to effluent discharges.

The effluent discharge systems of industrial power plants have to be designed prop-
erly in order to minimize environmental impacts and financial costs. They also must 
satisfy the environmental criteria and standards (e.g., US-EPA and EU regulations). 
Nevertheless, ocean outfall systems are mostly not optimized, either regarding envi-
ronmental impacts or practical needs. In some cases, regulations also lack clear guide-
lines for ambient water or effluent standards (Jirka, 2004).

The density differences between the effluent and ambient water, represented by the 
buoyancy flux, result in various flow and mixing characteristics of the discharge. In 
the case of dense jets, especially brine from reverse osmosis (RO) desalination plants, 
the flow has the tendency to fall as negatively buoyant plumes. On the other hand, 
buoyant jets (e.g., effluents from MSF desalination plants) have lower density than 
ambient water which causes the plumes to rise.

Besides being designed to minimize environmental impacts and financial costs, dis-
charge outfalls must be in compliance with regulatory criteria. The first step before 
working on the discharge outfall design is to decrease the concentrations of the waste 
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2 Numerical Simulation of Effluent Discharges

source within the industrial plant (e.g., decreasing the additive usage, enhancing 
plant efficiency, pretreatment technologies, etc.). The second step is the application 
of improved mixing technologies, like submerged diffusers, and to discharge in less 
sensitive regions (offshore, deep waters).

Although experimental studies on scaled physical models have been primarily used 
to study the mixing problems in jets and plumes, this book only focuses on the numer-
ical aspects of such problems. Therefore, the problem at hand is clear: how numerical 
modeling can be of help to design effluent discharges in open waters more efficiently. 
This requires an understanding of the problem and knowledge of the tools needed to 
address the questions surrounding it.

The term “numerical modeling” is still a general term and vague to some extents. 
There are different numerical modeling techniques that try to solve the equations of 
transport for effluent discharges. These models may use either simplified or complex 
sets of partial differential equations (PDEs) such as mass conservation, momentum 
conservation, and transport equations. There are two main methods available in solv-
ing effluent discharge problems numerically that are briefly summarized below.

1.1.1 Integral models

Jet integral models, according to Robinson et al. (2015), solve mass and momentum 
conservation equations based on the assumptions that the velocity profiles of jets have 
no radial variation, and that the jet profile is axisymmetric and Gaussian. In other 
words, complex governing equations of flow hydrodynamics are integrated over the 
cross section, assuming a Gaussian cross-sectional distribution. These models sim-
plify the PDEs to ordinary differential equations (ODEs) that can be easily solved 
using numerical integration of differential equations such as explicit and implicit 
numerical methods. Explicit methods calculate the state of a system at a later time 
using the state of the system at the current time (S(t + Δt) = F(S(t)), while implicit 
methods use both current and future states of the system to find a solution (F(S(t),  
S(t + Δt)) = 0). In the 1950s and 1960s, first-order jet integral models were proposed by 
Morton et al. (1956) and Fan (1967) based on the jet entrainment closure approach and 
by Abraham (1963) and Turner (1969) based on the jet diffusion approach. Wang and 
Law (2002), Yannopoulos (2006), and Jirka (2004) developed second-order jet integral 
models. Since the turbulent mixing of effluent discharges are complex, as are their 
numerical solutions, integral models rely on experiments to derive the coefficients for 
their simplified analytical methods.

According to Robinson et al. (2015), the integral models are less reliable when there 
is any of the following: (i) the discharge’s initial momentum and buoyancy acting in 
opposite directions, resulting in instabilities on the edge, as observed in the inner half 
(lower half) of inclined dense jets; (ii) noticeable interaction between the mean flow 
and the jet, (iii) an unsteady mean ambient flow; (iv) a significant effect due to hori-
zontal or lateral boundaries; (v) an unstable near-field area, with a re-entrainment of 
concentrated effluent into the jet; or, (vi) a large re-entrainment of concentrated efflu-
ent from mid- and far-fields into the near-field jet due to tidal cycles.

The most popular integral models in effluent discharge modeling are: CORMIX, 
VISUAL PLUMES, and VISJET. These models have been reviewed by Palomar et al. 
(2012) in detail, and the following provides a summary of that study.
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CORMIX (Cornell Mixing Zone Expert System) software (Doneker and Jirka, 
2001) is a commercial model that was developed in the 1980s at Cornell University 
(USA) as a project funded by the Environmental Protection Agency (EPA). Supported 
by the EPA, it became one of the most popular programs for discharge modeling. 
CORMIX is an expert system for predicting the discharge trajectory and dilution into 
water bodies in steady-state without considering time series data. CORMIX can sim-
ulate the disposal of effluents with positive, negative, and neutral buoyancy under 
different discharge and ambient conditions. The subsystems CORMIX 1, 2, and 3 are 
based on dimensional analysis of the processes, while the CORJET model is based on 
the integration of differential equations.

VISUAL PLUMES by Frick (2004) is a free access software developed by the EPA, 
which includes several models to simulate positively, negatively, and neutrally buoy-
ant effluents discharged into receiving water bodies. VISUAL PLUMES considers the 
effluent properties, the discharge configuration, and the ambient conditions (temper-
ature, salinity, and currents whose intensity and direction can be variable through the 
water column). It is limited to near-field region modeling and does not simulate the 
interaction of the flow with boundaries. It can consider time series data, simulating 
discharges in scenarios which change over time.

VISJET (Innovative Modeling and Visualization Technology for Environmental 
Impact Assessment) software (Cheung et al., 2000) is a commercial model developed 
by the University of Hong Kong, which can simulate positively and negatively buoy-
ant discharges. VISJET considers the effluent properties, the discharge configuration, 
and the ambient conditions (temperature, salinity, and currents whose intensity and 
direction can be variable through the water column). It is limited to near-field region 
modeling and does not simulate the interaction of the flow with boundaries.

1.1.2 Computational fluid dynamics (CFD) models

Effluent discharge modeling by CFD tools is not perfect, but it is an improvement over 
the parameter-based jet integral models. Issues that remain with CFD tools include 
the following: (i) accuracy, (ii) stability, (iii) computational time, (iv) complicated 
codes that require expert knowledge to use them efficiently and accurately, and (v) 
simulations that need calibrating and validating.

Turbulent flow models are often resolved with a turbulence model to parameterize 
unresolved mixing and dispersion scales. One should apply turbulence models with 
caution, as they sometimes provide stable but unrealistic solutions, such as when they 
are applied to physical scenarios for which they have not been validated for.

When using a CFD model, it can be a challenge to create and resolve the mesh and 
to define appropriate boundary conditions (e.g., intensity and turbulence dissipation 
rate). A high-mesh resolution is often needed for a stable solution, even when the tur-
bulence model is a good match. This means that CFD modeling is computationally 
expensive. Even with current computing systems, accurate CFD models for near-field 
dispersion and mixing might need simulation times of several days or weeks. This is 
much more expensive compared to the integral models that can produce results on the 
order of minutes and seconds. There is a balance between model stability, numerical 
diffusion, mass and momentum conservation, boundedness, and computational cost. 
These choices can significantly influence the estimation of modeled concentration.



4 Numerical Simulation of Effluent Discharges

However, once built, calibrated, and validated, CFD models can produce high- 
resolution three-dimensional images of jet mixing and dynamics. CFD models are 
free from some of the assumptions that restrict integral models. Since CFD models 
do not require the assumption of a steady-state condition or self-similarity in the jet 
profile, they can include a variety of external effects such as the presence of surface 
waves and encompass a wide range of boundary conditions to allow users to directly 
simulate the boundary interaction.

CFD modeling of jet discharges has been approached in a variety of ways, including 
both hydrostatic and nonhydrostatic approaches to the Reynolds-averaged Navier-
Stokes (RANS) and the Large Eddy Simulations (LES) models. Both models have 
functioned well over the past decade to simulate effluent discharges. RANS models 
are based on a time-averaging method and result in a time-averaged mean velocity 
field, which is averaged over a longer time period than the time constant of the veloc-
ity fluctuations, and results in a constant mean velocity without fluctuation for time- 
dependent variations. LES is based on filtering instead of averaging. A filter size is 
identified, and flow scales equal to or larger than this size are calculated exactly, and 
scales smaller than the filter size are modeled. The smaller the filter size, the more con-
cise is the calculated time variation resolution of the velocity vectors. RANS models 
are more numerically efficient than LES models, while providing enough detail for 
engineering applications. Thus, they have become the most prevalent CFD models 
used for the design of outfall systems.

The Direct Numerical Simulation (DNS) method is less applicable to engineering 
problems, functioning more as a research tool. It is CPU-intensive, as it attempts 
to resolve Navier-Stokes equations with no approximation of the turbulence and 
requires a very fine numerical resolution to capture all the turbulence details. It basi-
cally resolves entire turbulence scales temporally and spatially. Mesh systems should 
be very fine to resolve all the spatial scales (Kolmogorov, 1941).

Table 1.1 (after Zhao, Chen and Lee, 2011) summarizes the existing modeling pack-
ages (commonly used in the academia and industry) for the simulation of jet and 
plume mixing.

1.2 Application of outfalls

Outfalls have been used for many years. Initially, they have been used as a means 
of transporting the effluents to the discharge point, in the absence of environmental 
regulations. In the modern era, outfalls are used in both inland and coastal waters 
more carefully, and as a system that increases the dilution of discharged effluents to 
meet the environmental regulations in both near-field and far-field mixing zones. In 
other words, outfalls are not simply a method of transport, they represent a sustain-
able technology to preserve the environment while meeting its main objectives. More 
restrictive regulations have been developed throughout the years and the design of 
outfall systems has become more complex.

It is noteworthy that stormwater outfalls that discharge non-impacted waters into 
river or marine environments are not part of what is discussed here. In this book, 
we primarily refer to the outfalls that transport and discharge effluents with elevated 
temperature, salinity, and other chemicals. For instance, outfalls used in desalination 
plants, nuclear power plants, and wastewater treatment plants are among those mostly 
studied with respect to mixing problems.
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Although outfalls are essential to human needs, they impact the environment they 
discharge into. The direct discharge of wastewater into lakes, rivers, and seas can 
increase turbidity and change the ambient temperature. Salinity is also a major public 
and scientific concern. Coastal waters receive concentrated salt brine as discharges 
from seawater desalination plants, chemical wastes from biofouling (e.g., chlorine), 
and fertilizers. The water bodies that receive the industrial discharges are often very 
sensitive environments, and designing outfalls to disperse effluent and reduce the con-
centration of effluents is essential in helping to protect the receiving water bodies.

Hopner and Windelberg (1996) noted that certain coastal ecological zones are par-
ticularly vulnerable to effluent discharges, including salt marshes, mangrove forests, 
coral reefs, and other low-energy intertidal areas. The Persian Gulf and the Red Sea 
are particularly sensitive to effluent due to their low hydro-dynamism. Local fisheries, 
tourism industries, and other economic concerns are affected by the health of coastal 
environments (Figure 1.1).

Table 1.1 Existing modeling packages for simulation of jet and plume mixing

Models

Mathematical 
approaches for  
jet/plume mixing Availability

Major functionalities  
and capabilities

CORMIX Empirical solutions; 
Eulerian jet integral 
method

Commercial package Prediction of jet and (or) 
plume geometry and 
dilution in the near 
field; single or multiple 
jets

VISJET Lagrangian jet integral 
method

Commercial package

Visual PLUMES Empirical solutions; 
Eulerian and Lagrangian 
jet integral methods

Free package

NRFIELD Empirical solutions Free package Prediction of jet and (or) 
plume geometry and 
dilution in the near field 
of multiport diffusers

Sophisticated Multidisciplinary Models
OpenFOAM FVM; RWPT method Free package Predictions of ocean 

hydrodynamics; 
pollutant fate and 
transport in the near 
and far fields; water 
quality; sediment 
processes

MIKE21/3 FVM; RWPT method Commercial package
Delft3D FDM; RWPT method Free package
ANSYS CFX FVM; RWPT method Commercial package
ANSYS Fluent FVM; RWPT method Commercial package
FLOW-3D FDM; RWPT method Commercial package
TELEMAC-2D/3D FEM; RWPT method Free package
EFDC FDM; RWPT method Commercial package Predictions of ocean 

hydrodynamics; 
Pollutant dispersion in 
the far field; Suspended 
sediment transport

HydroQual–ECOMSED FDM; RWPT method Free package Predictions of ocean 
hydrodynamics; 
Pollutant fate and 
transport in the far 
field; Sediment 
processes

Note: FVM: Finite Volume Method, FDM: Finite Difference Method, RWPT: Random Walk Particle Tracking.
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Based on the above paragraphs, it is clear that outfalls are not only a technical and 
economic concern. It goes beyond that as it affects the socio-environmental aspects 
of our lives. It is important that both designers and regulators pay attentions to each 
single outfall system being designed and constructed, as each outfall has its own chal-
lenges and unique characteristics.

A key item to note when reviewing the applications of outfalls for effluent discharges 
is the discharge objectives that would be the basis for the process leading to the water 
quality regulations, discharge limits, and design criteria. Figure 1.2 shows the general 
flowchart of environmental evaluations when designing the proper outfall system for 
a specific site.

The performance of an ocean or inland effluent discharge outfall is dependent on 
several factors such as the outfall configuration, topographic and bathymetric con-
ditions of the discharge area, receiving water hydrodynamics, etc. This is the main 
reason that each outfall should be looked at as a unique design with unique charac-
teristics. The following sections summarize key characteristics of effluent discharges.

1.3 Different outfall configurations

The effluents produced by industrial plants (e.g., brine produced by a desalination 
plant) can be disposed of in several ways such as discharge in inland open waters, 
injection into ground wells, discharge into a large evaporation pond, or discharge 
into coastal waters. There are two general methods of discharging effluents: surface 
discharge through open channels and submerged discharges through pipes extending 
into ambient waters. These two methods are illustrated in Figure 1.3. Both these types 
of discharges intend to increase the dilution and mitigate the environmental impacts.

The selection of the type of outfall is site specific and depends on several parameters 
such as desalination technology, plant operation and production rate, costs, and envi-
ronmental considerations. Moreover, the characteristics of discharge (such as density) 

Figure 1.1 An overview of the effluent discharge in a water balance concept.
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and receiving ambient waters (such as density, ambient currents, and buoyancy) influ-
ence the type of outfall to be selected.

Surface discharges through open channels are often the most economic options 
available due to easier construction and maintenance. They are still constructed and 
used, despite the fact that their efficiency is lower than submerged discharge outfalls in 
terms of mixing and entrainment (dilution). Surface discharges are excellent options 
for plants that discharge effluents at a high flow rate, where conveyance through long 
pipes is extremely difficult due to pipe size and head losses associated with the con-
duits. Figure 1.4 illustrates the various surface discharge configurations.

On the other hand, submerged discharges are very popular due to their higher efficiency 
in reaching the required dilution. Therefore, many industrial plants (e.g., mining) will 
consider the discharge requirements at the very initial stages of the design, and will thus 
use submerged outfalls in order to meet the regulatory requirements for their permitting 
purposes. Submerged outfalls often use a pipe near the seabed to discharge effluents. The 
submerged discharges have been well studied both experimentally and numerically in 
past decades and our understanding of their mechanisms is relatively well established. It  
is noteworthy that outfall often refers to the pipe that transports the effluents from 

Environmental Evaluation

Water Uses Concerns

Effluent Discharge Objectives:
• Upstream and Downstream

Concentrations
• Hydrodynamics

Important Parameters:
• Site Specific Water Quality

Regulation
• Biological Concerns

• Fish and Other Species Monitoring

Support Decision Making

Specific Water Quality
Parameter of Concern

General Water Quality
Concerns

Figure 1.2 Environmental evaluations to preserve aquatic environments from effluent discharge.
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upland into the water. At the discharge location, it can be discharged through the 
same pipe (i.e., one discharge nozzle) or through a series of nozzles (diffusers). If a 
single nozzle is used to discharge the effluent into the receiving water, it is called a 
“single-port diffuser.” However, in many cases, the series of nozzles are attached to 
the discharge point of the outfall, which is called a multiport diffuser (referring to 
several ports/nozzles to discharge effluents). In this case, the total discharge head 

Figure 1.3 Schematic representation of brine discharge systems.

Figure 1.4 Discharge configurations of surface channel relative to bank/shoreline.
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is distributed between the number of ports. The configuration of nozzles can vary 
depending on the ambient condition and design considerations. Figure 1.5 shows 
five different configurations of multiport diffusers that are commonly used. Another 
emerging multiport diffuser configuration is the rosette outfall configuration, as 
shown in Figure 1.6. Unlike the single-port discharges, multiport effluent discharges 
have been less studied, both experimentally and numerically.

Figure 1.5 Multiport diffusers: (a) Unidirectional diffusers with cross-flow; (b) Alternating diffuser.

Figure 1.6 Rosette jet, top view.
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