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Foreword 

PUBLIC HEALTH AGENCY OF CANADA (PHAC) 
As the Vice President of  the National Microbiology Laboratory (NML), PHAC, I am grateful for the 
engaged participation of  national and international experts in the preparation of  this book. 
I would particularly like to recognize our CSA colleagues for their past and future leadership and 
collaboration in this field and for their role as co-lead in the development of this book. 

PHAC is mandated to “promote and protect Canadians’ health by preventing and controlling 
chronic and infectious diseases and injuries as well as preparing for and responding to public 
health emergencies.” To accomplish this, our scientists engage in collaborative research and 
public health studies and use innovative methods and technologies to drive early detection and rapid 
response to public health threats. This includes leading studies on emerging and high-consequence 
infectious diseases such as Ebola, Zika, and novel respiratory pathogens like COVID-19. 

NML makes continuous innovation and scientific advancement a priority to better support pub-
lic health response. Initiatives range from developing new laboratory diagnostics and medical coun-
termeasures to implementing high-performance compute clusters and bioinformatic tools to analyze 
genomic and other -omics data. The innovative use of  space-based Earth Observation (EO) data to 
inform model-based risk assessments presents an exciting opportunity to further augment existing 
capabilities. 

This book represents a significant point of  departure for the future development of  EO to sup-
port public health applications. Implementing book recommendations will require a collaborative 
One Health approach, and NML looks forward to building upon the multidisciplinary partnerships 
developed through this process. 

My sincere thanks to all who participated in the development of  this book. 

Dr. P. Guillaume Poliquin, MD, PhD, FRCPC 
Vice President 

National Microbiology Laboratory 
Public Health Agency of  Canada 
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Foreword 

CANADIAN SPACE AGENCY 

On behalf  of  the Canadian Space Agency (CSA), I’m pleased to present this book on the contributions 
of Earth Observation (EO) to public health practices and on the challenges and opportunities of this 
multi-sector endeavor. I would like to recognize the leadership of  the experts from the National 
Microbiology Laboratory of  the Public Health Agency of  Canada (PHAC) in their role as co-lead in the 
development and coordination of  this manuscript on the emergence of  EO and public health 
applications. 

The mandate of  the CSA is to promote the peaceful use and development of  space, advance the 
knowledge of  space through science, and ensure that space science and technology provide social 
and economic benefits. The CSA is delivering on this mandate in collaboration with Canadian indus-
try, academia, Government of  Canada organizations such as PHAC, and other international space 
agencies and organizations. 

The CSA and several other space agencies have made important investments in infrastructure 
over the past decades in order to provide continuous observations of  the Earth from space. The smart 
use of  satellite data to develop solutions to key challenges on Earth and in our everyday lives is now 
being applied to multiple sectors. 

This book is a step forward in the development of  new solutions and applications in the public 
health sector and the investigation of  several priority themes to which EO and geomatics tools can 
make important contributions: mosquito-borne and tick-borne diseases; water-borne diseases; air 
quality and extreme heat effects; geospatial indicators of  vulnerable human populations; and 
pandemics. 

I trust that this book can be helpful to public health decision makers as well as to the general 
public by providing new opportunities and ideas to solve ongoing and future public health challenges 
using EO. 

I would like to express my deepest appreciation to all those who contributed to this book. 

Éric Laliberte 
Director General, Space Utilization 

Canadian Space Agency 
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Executive Summary 

This document is the result of  extensive information gathering on the potential for Earth Observa-
tion (EO) to contribute to public health practice. The information was primarily provided by remote 
sensing experts from the EO community together with epidemiologists, modeling experts, policy 
makers, managers, and public health researchers who gathered at the One Earth – One Health work-
shop held at the Canadian Earth Observation Summit in Montreal in 2017.1 At this event they 
shared how EO is being used to understand, track, predict, and manage infectious diseases and dis-
cussed the challenges and significant potential of  using and developing EO data for public health 
purposes. The information provided by these workshop participants, and beyond (2017–2021) 
along with other members of  the international community, has been compiled in this book to reach 
a greater number of  EO community members and public health professionals interested in develop-
ing and applying EO and other geospatial applications in the risk assessment and management of 
public health issues. 

The main objectives of  this book are to answer the questions: How does EO currently assist pub-
lic health activities? What are the challenges for operational use of  EO in public health? What oppor-
tunities are there to further develop EO for the future benefit of  public health? This book examines 
several priority themes to which EO and geomatics can make important contributions: mosquito-
borne and tick-borne diseases; water-borne diseases; air quality and extreme heat effects; geospatial 
indicators of  vulnerable human populations. The contributions and potential of  EO as a tool to ex-
plore indicators of  the COVID-19 pandemic, such as risk due to air quality and rapid environmental 
and socio-economic changes and impacts are also examined. 

As examples presented in this book reveal, the risk of  infectious disease emergence increases 
with a wide range of  conditions and variables, including those associated with humans, animals, 
climate, and the environment. The growing awareness of  complex but causal interactions among 
these realms has motivated professionals in a wide range of  sectors to adopt the One Health ap-
proach, which promotes inter-sectoral collaboration to address health issues at the human–animal– 
environment interface.2 In its 2030 Agenda for Sustainable Development, the United Nations specif-
ically identifies “strengthening the capacity of  all countries, in particular developing countries, for 
early warning, risk reduction and management of  national and global health risks” as part of  their 
Good Health and Well-being Sustainable Development Goal (SDG).3 In the context of  both the One 
Health concept and the SDG initiative, remote sensing can provide solutions to the priority of  assess-
ing and monitoring public health risks, and it can play an important role in supporting decision 
making to reduce health risks within our shared ecosystems. 
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xxvi Executive Summary 

Remote sensing provides the detailed EO data that are particularly useful for risk modeling and 
mapping projects, which in turn generate information on the occurrence and spatio-temporal trends 
in disease risk. EO data can be used in early warning systems to identify risk factors that can lead to 
the emergence of  a disease. Risk maps enable public health professionals to anticipate and prepare 
for health threats, and they can support responses to infectious disease epidemics or existing en-
demic conditions such as non-infectious chronic diseases. By identifying where disease risks are most 
likely occurring, risk maps help public health manage and mitigate threats to health. The maps may 
identify risks before they emerge, giving public health experts the time to develop policies to prepare, 
respond to, and build resilience to health threats. They can guide the design of  surveillance programs 
and help support decision making in outbreak situations, including implementation of  interventions 
for the prevention and control of  disease risks. 

While EO has generally proven itself  in identifying environmental determinants of  disease 
hazards, it also offers the potential to characterize and locate vulnerable populations. EO data and 
information products contain useful socio-economic indicators, such as the characterization of  built 
environments and human population density. Geospatial information on environmental hazards 
(i.e. the exposure of  the population to diseases) and human population vulnerability indicators 
(including sensitivity to disease and capacity to respond) can be combined to produce true risk maps 
that illustrate environmental hazards and population vulnerability. Thus, public health decisions 
and actions can be more efficiently targeted to specific populations – for example, the elderly or 
young children – in risk-prone environments. 

This book explores the use of  EO data using case studies that involve risk mapping for mosqui-
to-borne and tick-borne infectious diseases and monitoring for applications related to air quality and 
water quality. Practitioners point to the fact that collecting relevant EO data and generating thematic 
information products requires significant know-how, infrastructure, and partnerships for data man-
agement and process automation. The resulting products address the vital need for open access and 
up-to-date, accurate, and authoritative data for evidence-based decision making in public health. 
Local public health-related data and information requirements could also be supported by existing 
global EO data collection infrastructure, services and thematic products serving security, marine-
environmental, atmospheric, and land cover and land use applications. There is also a need for closer 
collaboration between space agencies, organizations responsible for EO data generation, acquisition, 
and distribution, and the public health community in order to obtain and utilize EO data that effect-
ively address health issues. Epidemiological data need to be collected and accessed to complement 
and verify public health-related geospatial data and information products, which are often obtained 
by the use of  surveillance data for calibration and validation of  predictive models. 

The public health community faces challenges using, accessing, and maintaining access to 
timely, reliable, and accurate EO data, while at the same time the need for high-volume health-related 
data on environmental, climatic, and socio-economic factors is increasing domestically and inter-
nationally. The availability of  the technical infrastructure to support the use of  EO data and its trans-
formation into products useful for public health-related analyses and decision making is an essential 
prerequisite. 

Appropriate EO tools and products, as well as interoperable EO-based products need to be devel-
oped, and spatial, analytical, and timely solutions need to be established in partnership with 
the public health community. Advances in artificial intelligence and big data management promise 
analysis-ready data for risk models to create timely risk maps. 

Ultimately, the usefulness of  EO satellites depends in large part on the ability of  users to access 
and apply the data and technology in practical settings in order to address pressing issues. More 
could be accomplished with the participation of  users and science teams with remote sensing expert-
ise from different sectors, including public health, in mission planning and establishing utilization 
cycles. In addition, a collaborative, multi-sector approach would be useful in identifying observation 
requirements, specifying technical needs, and designing new instruments to meet a wide range of 
requirements and EO data needs. Being able to influence missions and produce data and algorithms 
specific to monitoring and managing health issues would be another way for public health to benefit 



  

 

 

  

 

 

 

 

 

 

 

 

xxvii Executive Summary 

more fully from remote sensing. However, involvement in this type of mission development requires 
skilled human resources on multiple levels. 

The many needs, opportunities, and solutions described in this book would all benefit from a 
more extensive Community of Practice committed to using and improving how geospatial informa-
tion is adopted and managed for public health issues. And just as monitoring and managing our 
planet involve understanding the complex interactions of  natural forces, ecosystems, and anthropo-
genic activities around the world, so too must our responses to the challenges of  more effectively 
using EO in public health involve multi-sectoral, cross-border cooperation. Collaboration is at the 
foundation of  innovative action and the need for action on infectious and chronic diseases is only 
increasing with globalization, climate change, and natural and human-induced stresses on and in 
the environment. 

The following is a brief  description of  the six themes that are the focus of  this book. 

Mosquito-borne Diseases 

• Identifying and monitoring vector populations has been highlighted by the World Health 
Organization as an important component of  its global surveillance efforts. 

• Mosquitoes have a short life cycle (as short as a few weeks). Using a combination of  EO technol-
ogy approaches, EO could play a crucial role in identifying risk locations for mosquito-borne 
diseases locally and regionally on the basis of habitat and climate variables when these data 
have high to very high spatial and temporal resolution (Appendix B). 

• EO could support current research efforts to develop weather-based and environment-based 
statistical forecasting of  places and times at which risk (or hazard) of  mosquito-borne diseases 
(e.g. malaria and Rift Valley fever) is high. 

Tick-borne Diseases 

• Lyme disease is the most reported vector-borne disease in the northern temperate climatic zone, 
occurring in North America, Europe, and Asia. There is evidence that climate change is driving 
the spread of  ticks in Canada, and the geographic range of  endemic Lyme disease risk in Canada 
is expected to expand as the climate warms. 

• Ticks have multi-year life cycles, and EO can assist in the risk modeling of  occurrence of  ticks 
such as Ixodes scapularis – an important vector of  Lyme disease – because it can identify climate 
and woodland habitats that are suitable for ticks and their hosts. 

• Observations from EO can be used in various ways to contribute to risk assessments, especially 
when collected over areas where ground observations are limited, absent, or unavailable. Cur-
rently available EO, integrated to create maps of  land cover and used at 30 m spatial resolutions 
and fner, will allow Lyme disease risk areas to be identifed with more detail than previously 
possible. 

Air Quality and Heat 

• Epidemiological evidence suggests that air pollution has become the biggest environmental 
cause of  premature death, overtaking poor sanitation and a lack of  clean drinking water. Nine 
out of  10 people breathe air containing high levels of  pollutants; it is estimated that around 
seven million people die every year from exposure to fine particles in polluted air, which 



  

  

 

 

 

 

 

 

 

 

 

 

 

xxviii Executive Summary 

can cause stroke, heart disease, lung cancer, chronic obstructive pulmonary diseases, and 
respiratory infections, including pneumonia. 

• EO data routinely support monitoring of  heat and air quality by a variety of  measurement and 
mapping activities, including estimating emissions, tracking pollutant plumes, supporting air 
quality forecasting, detecting wildfres, providing evidence for exceptional event declarations, 
monitoring regional long-term trends, and evaluating air quality model outputs. 

• Operational products are now available in North America to forecast air quality, including when 
air quality issues are associated with wildfres. Effective risk models, critical support for oper-
ation, and signifcant infrastructure with high-performance computing systems are required to 
process EO data on a daily basis and to generate operational products. 

Water-borne Diseases 

• Non-cholera Vibrio (NCV) bacterial infections in humans can cause mild, self-limiting gastro-
enteritis, but they can also infect wounds, which can rapidly result in septicemia and necrotiz-
ing fasciitis with a high fatality rate. Climate change is expected to disproportionally affect NCV 
risk in coastal regions in northern and southern latitudes and is likely to greatly expand the 
geographic range of  NCV. 

• There is a lack of  data on the epidemiology of  NCV and a lack of  data on NCV in the environ-
ment with suffcient resolution in time and space that can be utilized for public health practice. 
Thus, EO services can be used as proxies for this data defcit and can monitor the environmental 
precursors of  this disease. 

• The active Vibrio Map Viewer developed by the European Centre for Disease Control (ECDC) 
shows that sea surface temperature forecasts from modeling using EO data can be used as cli-
matic indicators of Vibrio bacteria growth in coastal regions of  the Baltic Sea as part of  an early 
warning system for NCV. These types of  EO systems for coastal monitoring are intended to re-
duce the burden of  disease in human populations by providing timely warnings to public health 
organizations. 

Vulnerable Populations 

• Human vulnerability is defned by the complex interaction between the susceptibility of  an indi-
vidual, community, or population exposed to a threat and their capacity to reduce the risk or 
impact. Assessing human vulnerability to infectious disease is important in order to target 
populations most at risk and to reduce the burden of  illness. 

• EO can provide baseline information on habitable vs. non-habitable areas for a variety of  envir-
onments and on the location of  a population, including rural, urban, and even hard-to-reach 
“invisible” populations such as dislocated and migratory peoples. 

• Innovative methods have combined socio-economic and demographic EO data proxies to pro-
duce public health information, such as the example of  the malaria infection risk index. 

• A vulnerability index could be integrated into many health studies and models to identify popu-
lations at risk. 

Pandemics 

• The COVID-19 pandemic has stimulated innovative development. EO players, satellite oper-
ators, and the Group on Earth Observations community of  public health practice have been able 



  

 

 

 
 
 

 

 
 
 

xxix Executive Summary 

to rely on regular EO satellite operations and data delivery services that functioned nominally 
and were uninterrupted during the pandemic. 

• EO applications have proven their utility in: assessing critical environmental conditions (e.g. air 
quality, land use, weather); tracking compliance levels with regard to public health measures 
(e.g. mobility, activity levels day and night); monitoring and supporting certain COVID-19 inter-
ventions (e.g. lockdowns, vaccines); and providing data where civilian authorities need support 
to target vulnerable populations and estimate population density and mobility. 

• EO can deliver fast and detailed information about air quality that can provide important data 
for understanding respiratory pandemics like COVID-19 and forecasting severity of  symptoms 
in those infected. 

• Satellite imagery can help civilian authorities plan for pandemic response and recovery phases. 
Generating actionable knowledge and public information regarding the dynamics of  the 
COVID-19 pandemic will be an urgent task over the next few years. Research concerning key 
EO data collections and curatorial services will be essential for providing evidence-based data, 
information, and know-how for decision makers in the public health Community of  Practice. 

Notes 

1 https://crss-sct.ca/conferences/csrs2017/one-earth-one-health-workshop/ (accessed 6 January 2022). 
2 https://www.who.int/features/qa/one-health/en/ (accessed 6 January 2022). 
3 https://www.un.org/development/desa/disabilities/envision2030.html (accessed 6 January 2022). 

https://crss-sct.ca/conferences/csrs2017/one-earth-one-health-workshop/
https://www.who.int/features/qa/one-health/en/
https://www.un.org/development/desa/disabilities/envision2030.html
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 1 Introduction to Public Health and Earth 
Observation 

1.1 Public Health and Earth  
Observation 

Infectious and chronic diseases are issues of 
concern for public health on a global, regional, 
and local level. Key to managing these diseases 
and reducing their impact is having timely, 
evidence-based knowledge. Earth Observation 
(EO) provides data at multiple spatial scales and 
is becoming a vital tool in helping us under-
stand, track, and predict these diseases, allowing 
public health to proactively plan and implement 
informed interventions. This book will illustrate 
current and possible future contributions of  EO 
to public health practice. 

Most emerging infectious diseases of  sig-
nificance to public health originate in wildlife 
and then spill over into human populations. Re-
search has led to improved detection and control 
of  infectious diseases and has expanded our 
knowledge of  how these diseases emerge and 
re-emerge as driven by a combination of  factors 
that include genetic change in causal patho-
gens, climate and other environmental changes, 
and changing human behavior. Emerging infec-
tious diseases pose continuous challenges to 
public health preparedness and policies and to 
programs for surveillance, prevention, and con-
trol (Jones et al., 2008). 

The increasing risk of  disease emergence, 
epidemics, and pandemics has been documented, 

even before the COVID-19 pandemic swept across 
the globe. Worldwide, infectious diseases are re-
sponsible for 14 million deaths every year. More 
than 90% of  these deaths occur in low- and mid-
dle-income countries in the Global South, where 
infectious diseases account for 43% of  all causes 
of  death versus only 1% in high-income countries 
in the Global North (Sénat, 2012). However, the 
incidence of emerging diseases in high-income 
countries has risen from 10 to 20% over the first 
decade of  the 21st century, and a total of  335 
new infectious diseases were discovered between 
1940 and 2004. Infectious diseases create ser-
ious economic barriers to global development due 
in part to their association with increasing 
societal and financial costs (Sénat, 2012). Ap-
proximately two out of three human infectious 
diseases are zoonotic, meaning they are (or were 
originally) animal diseases that are transmitted to 
humans. In addition, at least three out of four 
emerging infectious diseases among the human 
population are or were zoonoses, and on average 
five new diseases appear every year (World Or-
ganisation for Animal Health [OIE], World Health 
Organization [WHO]).1 

Global environmental change and biodiver-
sity loss are exerting major pressure on human 
health (United Nations Environment Programme 
[UNEP] et al., 2015; UNEP, 2020). According 
to the WHO’s fact sheets2: rabies transmit-
ted by vampire bats to cattle and humans has 
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been linked to forest activities in South America; 
the spread of  Nipah virus has been linked to in-
tensification of pig farming and fruit production 
in Malaysia; the emergence of  Japanese enceph-
alitis virus has been linked to irrigated rice pro-
duction and pig farming; and the emergence of 
avian influenza has been linked to intensive 
poultry farming (WHO, 2018). The cholera bac-
teria transmitted in water and the dengue virus 
and malaria parasites transmitted by mosquitoes 
infect 3–4 billion people every year, and outbreaks 
of  disease associated with these pathogens are 
often driven by environmental factors (WHO, 
2021a, 2021b). 

Key drivers of infectious diseases  
and the One Health approach 

Infectious diseases emerge and re-emerge under 
the influence of key drivers. By understanding 
how these drivers affect diseases, we may be able 
to predict when, how, and where disease will 
emerge and to identify the populations that are 
most at risk. Examples of  drivers include envir-
onmental, climatic, demographic, socio-economic, 
or human behavioral changes. While “risk” is 
truly the combination of  rates of  exposure to a 
“hazard” (e.g. a vector-borne disease) and the 
“susceptibility/sensitivity” of  a population to that 
hazard, in this book, the term “risk” is some-
times used instead of “hazard” when this has 
been commonplace in the literature. 

The world’s human population – presently 
exceeding 7.5 billion people – is expected to 
reach 9.7 billion by 2050. Many people will con-
tinue to concentrate in megacities and large 
metropolitan areas, which facilitates human-to-
human disease transmission (Neiderud, 2015). 
Ecosystem changes in land use and agricultural 
practices, such as deforestation, intensive live-
stock farming, and the movement of  animals 
between forests and cities will likely increase 
people’s exposure to wildlife-borne diseases dir-
ectly or indirectly through infected livestock 
(Jones et al., 2013). 

Global environmental change, including 
climate change, is accelerating species loss, lead-
ing toward a biodiversity crisis, and this loss in 
biodiversity is associated with the emergence of 
infectious disease (Keesing et  al., 2010; Ostfeld 

and Keesing, 2012; Altizer et  al., 2013). Global 
increase of  trade in goods and animals can also 
contribute to the spread of  disease vectors (Tatem 
et al., 2006). Increased air transport accelerates 
the movement of people into and out of risk areas, 
and “naïve” populations in countries free from a 
particular disease are increasingly threatened by 
infected tourists and business people returning 
from countries where the disease is endemic 
(WHO3). Climate change is likely to change the 
geographic range where climate is favorable for 
multiplication of arthropod disease vectors, such 
as mosquitoes and ticks. Examples include the ob-
served expansion of Lyme disease in northern 
North America and the possible expansion of  risk 
from dengue and chikungunya into regions that 
were previously temperate (Ogden, 2017). Dis-
placement of  populations as a result of  natural 
disasters, scarcity of  water resources, famine, or 
wars is confronting us with new diseases as 
people move into new geographical areas (WHO, 
2006). Also, resistance to antibiotics and increase 
in virulence of  pathogens may drive disease emer-
gence (WHO4; Beceiro et al., 2013). 

Given the close and complex relationships 
between the environment, ecosystems, and the 
etiological agents of  disease in human and ani-
mal populations, integrated approaches follow-
ing the One Health approach5 are most likely to 
be successful as they take into consideration 
human, animal, and environmental health with 
interdisciplinary collaborations and communi-
cation in all aspects of  health. In this context, 
many parameters and geospatial characteristics 
relevant to the interconnected fields of  environ-
mental, human, and animal health can be assessed 
via proxy measurements from space. However, 
efficient methods and pertinent One Health part-
nerships need to be developed in order to adopt 
satellite-based remote sensing as a suitable tool 
for characterizing, mapping, and monitoring risk 
factors for infectious disease emergence and 
re-emergence. Partnerships between the EO 
community and the public health community 
would be a first step toward this goal. 

Use of EO data in public health practice 

EO data have proven to be a valuable source of 
geospatial information for public health, par-
ticularly in the realm of  “tele-epidemiology.” 
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Based on EO products adapted to the needs of 
health actors, tele-epidemiology studies the links 
between the environment, ecosystems, and etio-
logical agents responsible for diseases in human, 
animal, and plant populations. This approach 
combines the physical, biological, social sci-
ences, and humanities, and aims to understand 
the factors and mechanisms that affect the 
spread of  pathogens and diseases (Marechal 
et  al., 2008). Environmentally linked diseases, 
including vector-borne, water-borne, and air-
borne diseases, have geographic distributions at 
global, national, regional, local, and neighbor-
hood scales that are associated with the geo-
graphic distributions of  the climatic, habitat, 
and land use factors that determine their trans-
mission (Eisen et  al., 2015; Kilpatrick et  al., 
2017). Surveillance is the gold standard method 
of identifying disease risk (Ogden et  al., 2014; 
Bouchard et al., 2015), but the vastness of  the 
Earth renders surveillance at every location all 
but impossible. Consequently, for environmen-
tally linked diseases, point data obtained in sur-
veillance are increasingly being used to calibrate 
and validate models that identify associations 
between environmental variables and environ-
mentally linked disease occurrence. These 
associations can then be used to extrapolate 
occurrence of  risk onto surfaces to create risk 
maps (e.g. Soucy et al., 2018), provided the envir-
onmental variables are present as a continuous 
surface. The continuous surfaces of EO data 
proxies for environmental variables, which have 
the same precision across the globe, are a signifi-
cant reason why they are so useful for creating 
risk maps of  disease emergence and spread 
(Michel et al., 2011; Cheng et al., 2017). 

EO data furnish the development of  proxies 
for environmental drivers of  diseases, such as 
habitat (e.g. forest type and density, presence of 
wetlands), agricultural areas and types, surface 
temperature, soil moisture, and urban areas. 
With the recent improvement of satellite EO sys-
tems, it is now possible to increase observations 
and monitoring of land and water parameters 
(i.e. weather, climate, population distribution, 
animal habitat identification, etc.) in repeated, 
synoptic, low- to large-scale ways. These recent 
innovations increase spatio-temporal precision 
of EO data and offer the possibility of improved 
model-based identification of risk in public 
health research. Greater spatial precision allows 

more detailed risk maps to be produced, while 
greater temporal precision (i.e. near-real-time 
EO data) raises the possibility that EO data prox-
ies for weather may facilitate disease forecasting 
(e.g. Ogden et  al., 2019) and EO data may be 
used to assist on-the-ground activities in re-
sponse to outbreaks. As EO data can provide 
proxy measurements for socio-economic factors 
that may be determinants regarding the sensi-
tivity and adaptive response capacity of  the 
human population, EO data can in theory meas-
ure and communicate all aspects of  disease risk. 

Mandate and role of public health  
organizations and the importance  

of geospatial information 

In order to address public health issues with rele-
vant geospatial approaches, technology for de-
tailed data collection is an essential component 
of  fulfilling the mandate and role of  public health 
organizations. Public health encompasses the or-
ganized efforts of  society to keep people healthy 
and to prevent illness, injury, and premature 
death (Feinleib, 2001). In the Canadian context, 
the Public Health Agency of  Canada (PHAC), in 
collaboration with all three levels of  government, 
the private sector, non-governmental organiza-
tions, health professionals, and the public, con-
tributes to: the prevention of  disease and injury; 
the promotion of health; and sharing public 
health expertise across Canada and with inter-
national partners. Below is a summary of  related 
activities (from the PHAC mandate6 and roles; 
2021–2022 PHAC report on Departmental 
Plans7). PHAC has the responsibility to: 

• Contribute to the prevention of  disease and 
injury, and to the promotion of  health. 

• Strengthen intergovernmental collabor-
ation on public health and facilitate na-
tional approaches to public health policy 
and planning. 

• Provide federal leadership and accountabil-
ity in managing national public health 
events. 

• Enhance surveillance information and ex-
pand the knowledge of disease and injury 
in Canada. 

• Serve as a central point for sharing public 
health expertise across Canada and with 
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international partners, and to use this 
knowledge to inform and support Canada’s 
public health priorities. 

Through PHAC’s research, programs and 
services, its goals are to bring about healthier 
Canadians, reduced health disparities, and a 
stronger capacity to deliver on and support pub-
lic health activities.8 

PHAC promotes key initiatives and activities 
that provide Canadians and public health stake-
holders with the science, research, guidance, and 
resources to build public health capacity across 
Canada. To deliver its mandate, PHAC must be 
able to support a variety of  activities (from the 
PHAC Mandate and Role, Corporate Risk Profile 
and Departmental Plan) in order to: 

• Provide meaningful data and information 
with technology and experimentation, allow-
ing for more timely identification of  public 
health issues and the development of  novel, 
evidence-based solutions to address them. 

• Apply international research and develop-
ment to Canada’s public health programs, 
focusing on key initiatives and activities 
that provide Canadians and public health 
stakeholders with the science, research, 
guidance, and resources for infectious dis-
ease prevention, and increase awareness, 
while reducing harms. 

• Prepare for, and respond to public health 
emergencies, including infectious diseases, 
by predicting, detecting, assessing, and re-
sponding to outbreaks and new threats, 
and contribute to the prevention, control, 
and reduction of the spread of  infectious 
disease among Canadians. 

• Continue to focus on providing the latest 
data, evidence, and scientifc information 
required to respond to both ongoing infec-
tious diseases and new outbreaks. 

• Strengthen intergovernmental collabor-
ation on public health and facilitate na-
tional approaches to public health policy 
and planning. 

Within PHAC, the National Microbiology La-
boratory (NML) conducts research, laboratory 
diagnosis, risk assessments, and laboratory-
based surveillance for emerging infectious dis-
eases such as COVID-19, Lyme disease, West Nile 
virus, Zika virus, Ebola hemorrhagic fever etc.9 

The Public Health Risk Science division 
(PHRS) of the NML works to understand where 
and when risks from infectious diseases occur, 
and how best to prevent and control them. This 
includes diseases within the food chain and the 
environment and those that arise from contact 
between humans and animals. 

This division: 

• undertakes epidemiological studies to iden-
tify public health risk factors; 

• develops risk models and decision analysis 
tools to understand and reduce public 
health risks; and 

• develops public health geomatics (geograph-
ical information) tools and services to 
support decision making by emergency re-
sponse teams and surveillance programs. 

PHRS undertakes research to generate and dis-
seminate disease risk assessment, information, 
and tools for prevention and control. In devel-
oping risk assessments, the division takes a 
transdisciplinary One Health approach, using 
mathematical modeling, epidemiology, remote 
sensing, and geomatics, supported by knowledge 
synthesis capacity. These activities support pro-
grams in public health surveillance, research, 
and outbreak management.10 

PHAC supports surveillance and monitor-
ing of  infectious diseases, risk assessments, mod-
eling, and laboratory diagnostics. Now and in 
the future, PHRS aims to strengthen its ability to 
assess the risk of diseases and to improve detec-
tion, monitoring, and prediction of existing and 
emerging infectious disease threats through the 
continued implementation of  new technologies. 
EO satellite technologies are relatively new in the 
public health context so their development and 
application in public health have so far been 
done in close collaboration with their expert 
partners at the Canadian Space Agency (CSA).11 

Mandate and role of space agencies  
and the importance of EO 

National and international space agencies offer 
a range of  assets, programs, infrastructure, 
and expertise to improve surveillance, emer-
gency response and preparedness, and effective 
early-warning and information systems. EO 
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data and remote sensing know-how are key 
elements for public health agencies in their 
ef forts to detect environmental variables that 
influence the emergence and spread of  diseases. 
In Canada, the CSA and its EO application pro-
grams and activities facilitate the development 
of  innovative solutions and activities, including 
strengthening quick-response capacities to 
counter public health threats with EO. 

The CSA’s raison d’être is to lead the devel-
opment and application of  space knowledge for 
the benefit of  Canadians and for all of  human-
ity.12 Core responsibilities of  the CSA include the 
following: 

• Coordinating space policies and programs 
of  the government of  Canada. 

• Ensuring access to space data, information, 
and services for other government depart-
ments and agencies to deliver on their 
mandates. 

• Planning, directing, and managing pro-
jects related to scientifc or industrial space 
research and the development of space sci-
ence and technology. 

• Promoting the transfer and diffusion of 
space technology to and throughout Can-
adian industry. 

• Encouraging the commercial exploitation 
of space capabilities, technology, facilities, 
and systems. 

The CSA also aims to build Canada’s capacity to 
engage the next generation of  space scientists 
and engineers, and provide opportunities to in-
spire young people to develop the required skills 
and to pursue studies and careers in science, 
technology, engineering, and math.13 The man-
date of  the CSA is “to promote the peaceful use 
and development of space, to advance the know-
ledge of  space through science and to ensure 
that space science and technology provide social 
and economic benefits for Canadians. The CSA is 
delivering on its mandate in collaboration with 
Canadian industry, academia, Government of 
Canada organizations, and other international 
space agencies and organizations.”14 

Collaborative EO efforts are formalized 
under national and international partnership 
agreements, memorandums of  understanding 
(MOU), and contracts. CSA is focused on ensur-
ing that: (i) space research and development is 
advanced in terms of  science and technology; 

(ii) Canadians are engaged with space; (iii) space 
information and technologies improve the lives 
of  Canadians; and (iv) Canada’s investments in 
space benefit the Canadian economy.15 In the 
area of  EO, research and development funding 
support from CSA has helped other government 
departments to advance scientific research and 
reach out into operation domains. Much effort 
has been devoted to developing cost-effective use 
of  synthetic aperture radar satellite data. 

Following the success of  the RADARSAT-1 
and RADARSAT-2 satellite EO missions, the CSA 
launched the RADARSAT Constellation Mission 
(RCM) on 12 June 2019. The three identical radar 
satellites are operating independently of  weather 
and light conditions. They acquire detailed EO 
data in a coordinated way to address key Canad-
ian challenges, including public health-related 
issues. The RCM orbital configuration allows for 
daily revisits of  Canada’s vast territory and mari-
time approaches and exact revisits every 4 days, 
as well as access to 90% of  the world’s surface 
every day and the Arctic up to four times a day. 
Over a dozen Canadian federal government 
departments, including PHAC, already use RA-
DARSAT data to deliver important services to 
Canadians. RCM will ensure the ongoing avail-
ability of  these data so that the Government of 
Canada can continue to serve Canadians. RCM is 
designed to provide effective solutions in three 
main areas: maritime surveillance (ice, surface 
wind, oil pollution, ship monitoring); disaster 
management (mitigation, warning, response, re-
covery); and ecosystem monitoring (agriculture, 
wetlands, forestry, coastal change monitoring). 
Public health organizations and authorities will 
benefit from the new RCM data collection as well 
as the archival data sets. 

The CSA’s EO programs and activities include 
funding opportunities for academic research. 
They help to increase industry capabilities, and 
support research and development activities in 
government organizations. Benefits include: 

• Improvements in EO satellite data availability. 

• EO-derived information related to land 
cover and use, climate, population distribu-
tion, and identifcation of  habitats. 

• Advances in the spatial-temporal reso-
lution and quality of  geospatial data. 

• Integration of  EO-derived data sets and re-
lated geospatial information into predictive 

https://economy.15
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models, surveillance programs, and emer-
gency management activities with import-
ant domestic and international dimensions. 

Partnership of the PHAC and the CSA 

Over the past decade, the collaboration between 
PHAC and CSA has developed into a successful 
partnership to advance the application of  space 
technologies and geospatial data in public 
health. Both organizations have actively partici-
pated in international committees and a series 
of domestic research and development projects 
concerning the prevention and control of  infec-
tious diseases. 

Some examples of their successful joint ac-
tivities include the collaborative projects of 
PHAC, CSA, and other Canadian government 
departments on risk assessment for microbial 
contamination of  recreational waters using sat-
ellite imagery. Joint projects with industry part-
ners, in support of  One Health initiatives, used 
RADARSAT data to study water detection and to 
monitor wetlands and lake extent to support ef-
forts to identify water-borne and mosquito-
borne disease risks. There have also been joint 
activities with academia focused on health-
related projects in urban environments and re-
search into public health threats such as heat, 
air pollution, and mosquito-borne diseases that 
take into account the impact on vulnerable 
human populations. The projects were sup-
ported through the CSA Government Related 
Initiatives Program (GRIP), the Earth Obser-
vation Applications Development Program 
(EOADP), and the Science and Operational Ap-
plications Research (SOAR). 

At the international level, PHAC and CSA 
participated from 2006 to 2015 in the United 
Nations Convention on the Peaceful Use of  Outer 
Space (UN-COPUOS) Action Team 6 on Public 
Health. The mandate of  this Action Team in-
volved the implementation of  telehealth plans 
and activities to improve health services in de-
veloping countries by facilitating the application 
of  space technologies in early warning of  infec-
tious diseases. Since 2015, PHAC and CSA have 
been participating in the newly formed Expert 
Group on Space and Global Health. This group 
engages Member States and international govern-
mental and non-governmental organizations in 

collaborative projects and is tasked to propose 
tangible and long-lasting solutions regarding 
the contribution of  space to the global health 
agenda. PHAC and CSA contributions have been 
documented in part in several United Nations re-
ports. They include a Special Report of  the 
Inter-Agency Meeting on Outer Space Activities 
on the use of  space science and technology 
within the United Nations system for global 
health16; a Report on the Meeting on the Appli-
cations of  Space Science and Technology for 
Public Health organized by the World Health 
Organization and the Office for Outer Space 
Affairs17; and a Report on the United Nations 
Expert Meeting on the International Space Station 
Benefits for Health.18 The CSA has supported a 
special study on tele-epidemiology in close col-
laboration with PHAC to better understand this 
emerging EO sector. 

In addition to their contributions at the 
United Nations, PHAC and CSA have co-led 
international conference sessions and workshops 
(e.g. European Space Agency Living Planet Sym-
posium – Special Session on Tele-epidemiology, 
Prague 2016; EO Summit, One Earth – One 
Health, Montreal, 2017) supporting the applica-
tion of tele-epidemiology in the public health do-
main. One of  the main goals has been to develop 
and maintain a community of  practice with a 
focus on public health and EO through a num-
ber of  activities: 

• Convene leaders and experts in EO and pub-
lic health to explore, discuss, establish, or 
strengthen collaborations and partnerships 
on novel EO applications, products, and ser-
vices to support public health. 

• Better understand the links between envir-
onment, climate, society, and public health 
that can be elucidated using EO data. 

• Identify existing public health applications 
derived from EO data. 

• Identify existing or potential future EO data, 
indicators, methods, and technologies that 
may be developed to support public 
health. 

The One Earth – One Health workshop provided 
a forum for scenario-based discussion and dia-
logue among recognized experts and authorities 
on EO technology, applications, and methods 
that are relevant to application in public health. 
The main goal was – in alignment with the UN 

https://Health.18
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Sustainable Development Goals – to explore the 
use of  EO data to ensure healthy lives and to pro-
mote well-being for all ages.19 The scenario-
based discussions focused on how scientific and 
institutional cooperation with respect to prom-
ising EO applications can be developed or 
expanded to better serve and protect the public. 
The outcomes generated by this workshop form 
the basis of  this book. 

1.2 Work Program Organization  
and Management Approaches 

The practical benefits resulting from the use of 
EO data streams are evident. Major scientific 
breakthroughs and subsequent application de-
velopment work in particular have supported 
climate observation, resource assessments, 
and environmental monitoring. EO can also 
provide some of  the geospatial information 
required for public health research, risk as-
sessment, and application in programs and 
operations. In Canada, this has required the 
organization and management of  a joint work 
program by PHAC and CSA to obtain expert 
knowledge to guide further development of  EO 
applications for use in public health. The main 
elements of this work program are outlined in 
the following sections. 

Identifcation and elaboration  
of key themes 

At the outset, PHAC and CSA researchers and 
managers defined a number of  key themes in 
collaboration with subject experts who formed 
an organizing committee prior to an inter-
national workshop on the theme of  One Earth – 
One Health. The members of  this committee in-
cluded representatives from the Centre national 
d’étude spatial (CNES), the Institut de Recherche 
pour le Développement (IRD), Espace-Dev and 
VetAgro Sup Campus in France, the Université 
de Sherbrooke in Canada, the international 
Committee on Earth Observation Satellites 
(CEOS) Working Group on Capacity Building & 
Data Democracy (WGCapD), Ærde Environmen-
tal Research in Canada, and PHAC and CSA. The 
committee identified six themes that were to be 

explored in more detail during a workshop with 
international experts: 

• mosquito-borne diseases; 

• tick-borne diseases; 

• air quality and chronic diseases; 

• water-borne diseases; 

• vulnerable human populations; and 

• pandemics. 

There was no priority assigned to the themes: 
they all relate to significant public health issues 
to which EO data and derived information 
can potentially contribute useful information 
for public health actions. Detailed discussions 
of these six themes are described in Section 2 of 
this book. The description includes a review of 
relevant literature, a brief  overview of  recent 
projects, and a scenario-based framework of 
inquiry. Representatives of  national and inter-
national space- and public health-related organ-
izations contributed to the development of  each 
scenario. 

In the workshop, a series of  questions was 
posed to experts on each of  the six themes. The 
questions aimed to identify the scope and out-
come of  current work; challenges and issues to 
be addressed during research and application 
development; examples of  previous work; and to 
define potential future uses in public health. 

Expert consultation process 

The engagement of  national and international 
expertise was a central element in the PHAC/ 
CSA-led consultation process. Expert opinion 
was collected prior to and during the proceedings 
of the workshop. Important session outcomes 
and scenario-based discussions were synthesized 
for this book. Experts contributed examples and 
illustrations of  their work to the book and critic-
ally reviewed the synthesis of  workshop results 
and recommendations. 

Based on the results of  previous studies and 
expert consultations, CSA and PHAC assessed 
the research and development status and oper-
ational readiness levels of EO technology appli-
cations regarding key public health themes. The 
assessments emphasized the utility of  EO-derived 
information for public health, with a view to-
ward implementing EO data products in regular 
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surveillance, prevention, control, prediction/ 
risk assessment, disease forecasting, and public 
outreach. 

Identifcation of needs and opportunities 

The identification of EO and public health-related 
needs and opportunities resulted from an ana-
lysis of  the relevant scientific literature and sub-
ject-specific presentations of  the experts during 
the One Earth – One Health workshop. They re-
flect current activities and goals. The various 
needs and opportunities were subdivided into 
eight categories. Detailed in Section 3, these cat-
egories are: (i) aligning with and supporting UN 
Sustainable Development Goals; (ii) focusing 
on public health needs and key theme areas for 
further research; (iii) accessing and developing 
EO and geospatial evidence-based data/prod-
ucts leveraging public health capacities; (iv) de-
veloping a sustainable community of  practice; 
(v) developing knowledge and know-how; (vi) 
developing solutions: methods, tools, and sys-
tems; (vii) implementing technical infrastruc-
tures and technologies; and (viii) participating 
in EO satellite mission development for monitor-
ing disease risks. These categories serve as a 
guide for further action to achieve specific EO 

and public health-related objectives of  forming 
new partnerships and initiatives that can sup-
port public health from local to global levels. 

Objectives and book outline 

This book addresses three basic questions: How 
does, or can, the current capacities of  EO assist 
public health activities? What are the challenges 
for the operational use of  EO in public health? 
And what opportunities are there to further de-
velop EO to benefit public health in the future? 
To answer these questions, this book identifies 
key public health activities in which EO data are 
or can be used. This includes prediction of  dis-
ease emergence and spread and of  disease fore-
casting to support public health programs for 
disease surveillance, prevention, and control 
interventions. More specifically, the book aims 
to: (i) assess current research and identify and 
document key themes; (ii) collate expert advice 
from the Canadian and international EO and 
public health communities on specific themes; 
and (iii) present conclusions and opportunities. 
Our goal is to guide decision-making on further 
research and on the development of innovative 
EO applications and solutions in the public 
health sector. 

Notes 

1 https://www.oie.int/en/what-we-do/global-initiatives/one-health/ (accessed 22 December 2021), http:// 
www.emro.who.int/fr/about-who/rc61/zoonotic-diseases.html (accessed 22 December 2021). 
2 https://www.who.int/news-room/fact-sheets (accessed 22 December 2021). 
3 https://www.who.int/news-room/q-a-detail/health-risks-when-traveling (accessed 22 December 2021). 
4 https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed 22 December 2021). 
5 https://onehealthinitiative.com/about/ (accessed 22 December 2021). 
6 https://www.canada.ca/en/public-health/corporate/mandate/about-agency/mandate.html (accessed 
18 January 2022). 
7 https://www.canada.ca/en/public-health/corporate/transparency/corporate-management-reporting/ 
reports-plans-priorities/2020-2021-corporate-information.html (accessed 18 January 2022). 
8 https://www.canada.ca/en/public-health/corporate/mandate/about-agency/mandate.html (accessed 
18 January 2022). 
9 https://www.canada.ca/en/public-health/programs/national-microbiology-laboratory-for-professionals. 
html; West Nile, Lyme Disease Surveillance: https://www.canada.ca/en/public-health/services/surveillance. 
html#a17; COVID-19 surveillance: https://www.canada.ca/en/public-health/services/diseases/2019-novel- 
coronavirus-infection/health-professionals/interim-guidance-surveillance-human-infection.html (all accessed 
18 January 2022). 
10 https://www.canada.ca/en/public-health/programs/national-microbiology-laboratory-for-professionals. 
html (accessed 18 January 2022). 
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11 https://www.asc-csa.gc.ca/eng/satellites/everyday-lives/how-satellites-help-you-stay-healthy.asp (accessed 
18 January 2022). 
12 https://www.asc-csa.gc.ca/eng/publications/dp-raison-d-etre.asp (accessed 22 December 2021). 
13 https://www.asc-csa.gc.ca/eng/publications/dp-2019-2020.asp#results-core (accessed 22 December 2021). 
14 https://www.asc-csa.gc.ca/eng/publications/dp-raison-d-etre.asp (accessed 22 December 2021). 
15 https://www.asc-csa.gc.ca/eng/publications/dp-2019-2020.asp#results (accessed 22 December 2021). 
16 UN Document: A/AC.105/1091, 30 April 2015. 
17 UN Document: A/AC.105/1099, 29 October 2015. 
18 UN Document: A/AC.105/1069, 10 September 2014. 
19 https://sdgs.un.org/goals; http://www.earthobservations.org/sbas.php (accessed 22 December 2021). 
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2 Earth Observation and Public Health 
Priority: Applications and Research  

Areas by Theme 

This section presents six applications of  Earth the reader on the classes of  resolution used to 
Observation (EO) to public health issues. There categorize EO systems and on EO systems and 
are also two tables in Appendix B that can guide their spatial, spectral, and temporal resolution. 

2.1 Mosquito-borne Diseases 
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Context, state of knowledge, 
challenges, and responses 

The World Health Organization (WHO) has 
highlighted identification and monitoring of 
vector populations as an important component 
of  global vector-borne disease surveillance ef-
forts.1 (WHO, 2012, 2015) EO data could play a 
crucial role in identifying risk locations for mos-
quito-borne diseases globally on the basis of 
habitat and climate variables. Were EO data to 
have sufficiently high spatial and temporal reso-
lution, applied research could develop weath-
er-based and environment-based forecasting of 
high-risk locations and time periods for mosqui-
to-borne diseases using statistical models. Fur-
thermore, EO data may contribute to monitoring 
the evolution of risk. EO data are also useful for 
measuring or mapping a range of  environmen-
tal parameters that help determine mosquito 
vector occurrence and abundance and the rate 
of development of mosquito-borne parasites and 
pathogens in mosquito vectors. These param-
eters include rainfall, extent of  standing water, 
temperature, and land use and land cover. 

Examples of recent research 

For more than two decades, extensive research 
has been conducted into the use of  EO data as a 
tool to inform responses to mosquito-borne dis-
eases (Hay et  al., 1998a; Kalluri et  al., 2007; 
Kotchi et  al., 2019). Main objectives include 
identifying risk areas at various spatial scales 
(Rogers et  al., 2002), identifying seasonality in 
risk in different locations (Hay et  al., 1998b), 
and forecasting impending outbreaks or peaks 
in disease risk (Ceccato et  al., 2005). EO data 
have been used in a number of  ways for these 
purposes. In its simplest form, EO data analysis 
for identifying different habitats can consist of 
classifying imagery into relevant landscape clas-
ses. In a case study on dengue, Machault et  al. 
(2014) developed dynamic risk maps at the 
housing level on a daily basis for the vector mos-
quito Aedes aegypti in the French Antilles. The 
study identified EO data with very high spatial 
resolution of  0.5 m as a suitable source to pro-
duce land use classes for a spatio-temporal stat-
istical model. Catry et al. (2016) fused radar and 

optical satellite imagery and derived land cover 
classifications for studying the eco-epidemiology 
of  vector-borne diseases in tropical South Amer-
ica. Their study demonstrated that relevant land 
cover maps and wetland classifications could be 
generated on a weekly basis using multi-temporal 
cloud-penetrating C-band synthetic aperture 
radar (SAR) Sentinel-1A satellite data in com-
bination with optical Sentinel-2 data and L-band 
SAR Advanced Land Observing Satellite-1 
(ALOS) (Fig. 2.1.1). 

In many parts of  the world, there is insuffi-
cient ground-truthed information to reliably 
classify EO data as habitat that is either suitable 
or unsuitable for mosquito-borne disease trans-
mission. Climate and habitat conditions must be 
suitable year-round for mosquito populations 
and pathogen transmission cycles to persist. Fre-
quently used EO data processing techniques 
include ecological niche modeling, principal 
components analysis or Fourier processing, fol-
lowed by discriminant analysis; supplemented 
with human case surveillance data, these tech-
niques can be used to identify habitats that are 
predictive for mosquito-borne disease transmis-
sion (Rogers et al., 2002; Moua et al., 2021). 

High levels of  morbidity and mortality from 
mosquito-borne diseases, such as malaria, are 
often associated with areas where transmission 
of mosquito-borne diseases is unstable. This in-
cludes specific transition zones between regions 
where the pathogens are endemic and where 
environmental conditions preclude their trans-
mission (Ewing et  al., 2021). The underlying 
reason is mostly immunological: people in tran-
sition zones are less likely to have been infected 
and to be immune to new infections. In research-
ing these transition zones, EO data sets can be 
useful in several ways. First, they have sufficient 
resolution to identify these transition areas 
(Bejon et al., 2010). Second, EO data can identify 
land management practices, such as irrigation, 
that render conditions suitable for mosqui-
to-borne disease transmission in landscapes 
otherwise hostile to the vectors or transmission 
(Baeza et al., 2013). Third, detailed EO data can 
identify urban environments where disease 
transmission may be very different from trans-
missions occurring in rural areas (Tatem and 
Hay, 2004; Ferraguti et al., 2021). 

While much of  this research has taken place 
in an academic setting, there are increasing 
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Fig. 2.1.1. Example of a land cover map based on the analysis of multi-sensor satellite imagery for 
classifying wetland areas in a densely forested area at the border between French Guiana and Brazil, 
South America. Cloud-penetrating Sentinel-1A C-band SAR data were combined with Sentinel-2 optical 
data (both at 10 m resolution) to produce a general land cover map. A combination of C-band and ALOS 
L-band SAR data was then analyzed to discriminate and map wetlands, especially flooded vegetation 
areas. (From: Catry et al., 2016, 2018b.) 

efforts to transfer knowledge gained and to im-
plement successful EO utilization in operational 
mosquito-borne disease programs. An example is 
the MALAREO project, which has developed and 
implemented EO-based capabilities for national 
malaria control programs in the southern por-
tion of  Africa. High-resolution land cover and 
wetland maps were produced and integrated in a 
geographic information system (GIS) to identify 
potential vector habitats and risk associated with 
different human activities (Franke et al., 2015). 
The spatial detail of  the EO data has an intrinsic 
value for identifying and classifying habitat be-
cause ground-truthed information is rare and in-
consistent. Furthermore, repeat coverage can be 
utilized to detect important changes with regard 
to habitat, land use, and land cover (Lucas 
et al., 2015). While weather and climate may be 
among the most intensively measured environ-
mental variables, interpolation of  data points is a 
common practice in mosquito-borne disease 
suitability mapping. In some circumstances, EO 
data were found to outperform interpolated 

weather station data, especially in regions with a 
low-density network of  meteorological stations 
(Hay and Lennon, 1999). 

Recent studies have shown that SAR and 
optical EO data are strongly complementary in 
the assessment of  the relationships between en-
vironment components and mosquito-borne 
disease transmission (Machault et  al., 2011; Li 
et  al., 2016, 2017). EO by means of  radar re-
mote sensing has great potential to assist with 
the characterization of  vegetated wetlands 
(Catry et al., 2018a; see also Fig. 2.1.2). In practical 
and technical terms, radar capabilities are based 
in part on a large variety of  cloud-penetrating 
sensors that operate at different wavelengths, 
polarizations, and temporal and spatial resolu-
tions useful for wetland analyses. Furthermore, 
data access is facilitated by open data policies, 
such as those governing the use of  the European 
Copernicus Programme and Sentinel-1 data 
archives. These aspects are favorable for EO re-
search and applications regarding the epidemi-
ology of  mosquito-borne diseases like malaria. 
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Fig. 2.1.2. Framework of combining optical and SAR remotely sensed data for characterizing and 
mapping wetlands and accumulations of water. (From: Catry et al., 2018a.) 

For instance, Anopheles mosquitoes depend, to 
some degree, on the presence of  forested areas 
and strongly depend on the presence of  water for 
their survival and propagation. However, defor-
ested areas provide favorable conditions for mal-
aria vector breeding and feeding, and forest and 
secondary forest provide resting sites for adult 
mosquitoes after feeding (Yasuoka and Levins, 
2007; Vittor et  al., 2009; Hahn et  al., 2014; 
MacDonald and Mordecai, 2019). 

Challenges and questions 

The tasks of  identifying and quantifying environ-
mental determinants involved in the transmis-
sion of  mosquito-borne diseases are the main 
challenges and opportunities for the use of  EO 
data in public health. In addition, researchers 
need to gain a better understanding of  how these 
determinants relate to socio-economic, socio-
demographic, and human behavioral factors. 
Depending on scope and purpose, assessments of 
mosquito-borne disease risks require EO data at 
various levels of  detail, ranging from very high to 
moderate spatial resolution, and at various tem-
poral scales, involving seasonal to daily data ac-
quisition. Many environmental variables can be 

derived from EO data streams, including tempera-
ture, humidity, wind and wind speed, as well as 
land use and land cover information. For detailed 
geospatial mosquito habitat assessment, several 
thematic data sources need to be collated. These 
can be used to gauge the impact of  actual weather 
conditions, to map land use and land cover, and to 
relate the information to settlement locations, ex-
posure, built-up area configurations, and behav-
ioral patterns of  the local population. On one 
hand, previous studies have noted insufficient EO 
data for the composition of  coherent time series 
and the lack of accessible very-high-resolution 
data or SAR data (Herbreteau et  al., 2007; 
Machault et  al., 2011). The high cost for very 
high spatial resolution satellite data for producing 
adequate spatial coverage is a barrier for the R&D 
use of  such data and its application in public 
health programs. On the other hand, researchers 
and practitioners are faced with mounting data 
assimilation and processing demands and a 
dearth of  available processing capabilities. 

There are several questions and critical 
issues that need to be answered and resolved, 
including: 

• What EO data sets are most suitable, access-
ible, and practical for producing risk maps 
of  mosquito-borne disease transmission, 
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i.e. for identifying where mosquito-borne 
disease transmission can occur? 

• What EO data sets are most suitable, ac-
cessible, and practical for determining 
seasonal or weekly changes in risk associ-
ated with changes in mosquito density 
and infection, i.e. for forecasting risk on a 
weekly to monthly basis associated with 
rates of  mosquito reproduction and mor-
tality and development rates of  pathogens 
in mosquitoes? 

• What are the main constraints in terms of 
obtaining, maintaining, and delivering 
EO-derived products and services to re-
searchers, public health policy makers, and 
practitioners involved in mosquito-borne 
disease control programs? 

Responses and options 

Below are the comments and suggestions of  the 
experts consulted about critical issues and EO 
data requirements in the study and analysis of 
mosquito-borne diseases: 

• Objectives requiring timely geospatial infor-
mation on mosquito habitats can be 
achieved with EO-based land cover and 
land use mapping, with a focus on urban 
and agricultural areas. 

• Objectives based on information on mos-
quito abundance require timely EO-derived 
information on temperature, humidity, pre-
cipitation, and suitable environment, and 
require mosquito distribution maps at vari-
ous spatial resolutions. 

• In some instances, a combination of  optical, 
thermal, and SAR data may be needed. 

• The spatial and temporal resolution of EO 
data required to develop risk maps for pub-
lic health needs to match weather and en-
vironmental determinants that drive, in 
part, the transmission of  mosquito-borne 
diseases. There is a need to characterize and 
identify, at a local scale, areas of  high spa-
tial and temporal mosquito density; me-
dium to high spatial resolution is required 
for identifying mosquito habitat areas. 

• There is a need for multi-temporal EO 
data acquisitions, selection of comple-
mentary data sets, skillful application of 

image processing techniques, and alloca-
tion of  sufficient financial resources to 
accomplish the above. 

Modeling environment–human–vector 
interaction hazard using EO data and 

land cover maps in a local, 
cross-border setting between French 

Guiana and Brazil 

The prevention and control of mosquito-borne 
diseases are challenging public health issues. Dis-
ease transmission is a multi-scale process, strongly 
controlled by weather and environmental factors. 
Remote sensing data analyses are suitable for 
characterizing spatial and temporal dynamics 
of such diseases. Yet, despite the growing number 
of  EO data sources and various technical capaci-
ties currently available, the selection of  suitable 
EO data for the production of  hazard maps and 
exposure risk maps remains a challenging task. 
The crucial issue is the selection of  adequate EO-
derived geospatial time series that fit the temporal 
and spatial dynamics of  the studied disease. 

We present here as a case study the re-
search of  Li et al. (2016), in which the role of 
land cover classes involved in the life cycle of the 
malaria vector (Anopheles darlingi) in the Ama-
zon region was investigated. SPOT 5 (Satellite 
pour l’Observation de la Terre 5), optical satel-
lite imagery taken in 2012 at 10 m resolution 
was used to produce a land cover map from 
which landscape indicators were derived, in-
cluding forest fragmentation and density of 
boundaries between forested and non-forested 
areas (Fig. 2.1.3). 

The study relied on partial knowledge-based 
modeling of  malaria transmission risk for a 
500  km2 area in the Amazon region between 
French Guiana and Brazil, using a landscape-
based approach and review of  pertinent literature. 
A landscape model was obtained by generating 
land use and land cover (LULC) maps of  the 
area, followed by computing and combining 
landscape metrics to build a set of  normalized 
landscape-based hazard indices. The quantitative 
landscape characterization involved defining a 
spatial window for the metrics computation. 
The dimension of  this window corresponds to a 
zone where the landscape characteristics are 
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Fig. 2.1.3. Flow chart outlining vector-human interaction hazard mapping in the study of Malaria, with 
land cover classification derived from optical and SAR EO data for the Camopi area in the border region 
between French Guiana and Brazil in South America. (From: Li et al., 2016). 

most likely to influence the chance of  encounter 
between Anopheles mosquitoes and human be-
ings. A Normalized Landscape-based Hazard 
Index (NLHI) was selected in conjunction with 
the knowledge-based model and connection 
with incidence of malaria caused by Plasmodium 
falciparum (Li et al., 2016). 

Analysis results revealed that hazard-free 
areas (green color on index map in Fig. 2.1.3) 
around the village of  Camopi consist of  dense 
forest areas that are not affected by deforest-
ation and areas where the anthropogenic pres-
sure is high, for example at the confluence of 
two rivers. Conversely, high hazard areas (yel-
low and red colors) correspond to the areas 
where there is a high density of  forest edge and 
where the percentage of  forest is higher than in 
the zones with the highest anthropogenic pres-
sure. Li et  al. (2016) validated this approach 
with actual malaria incidence from the 
cross-border region between French Guiana 
and Brazil. This study confirms that EO data can 
be an efficient tool for identifying environmen-
tal features related to malaria transmission and 

that an NLHI of  malaria transmission can be de-
veloped using satellite imagery. 

However, the presence of clouds and cloud 
shadows in many tropical environments results 
in missing data on optical images. Likewise, 
many wetland areas that are obscured from 
view by vegetation canopies – and hence are not 
observable by optical remote sensing – can con-
ceivably contain breeding sites for malaria vec-
tors. Alternatively, SAR can be used or combined 
with optical imagery for extracting environmen-
tal information related to vector habitats, as SAR 
has proven itself  capable of  penetrating clouds 
and detecting water bodies reliably. Further re-
search should consider the temporal aspects of 
deforestation by producing a time series of  land 
cover maps and then studying the evolution of 
the NLHI associated with malaria in the Amazon 
region. Institutions in Brazil, such as the National 
Institute for Space Research (INPE), already 
produce such deforestation maps derived from 
satellite imagery under Project PRODES.2 Li et al. 
(2017) demonstrated that the NLHI calculation 
can be scaled up from a local scale to a regional 
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scale. The NLHI calculations for the Amazon re-
gion currently involve biomass map products3 of 
Landsat-based deforestation time series over the 
Brazilian territory. 

Expected outcomes and impacts 

This study establishes a malaria hazard index 
that is driven by spatial knowledge and landscape 
information using EO data as an important in-
put. The index can be produced on a regular 
basis in support of  malaria prediction, surveil-
lance, and control. The index is calculated using 
LULC maps as input in the geospatial model; the 
model output maps serve actors of  disease sur-
veillance and vector control (Fig. 2.1.3). These 
maps identify areas where interactions between 
malaria vectors and human populations are 
likely to occur, based on the spatial configur-
ation of landscape features. In essence, the maps 
provide information on locations where people 
are more likely to be exposed to mosquitoes and 
infected by malaria pathogens. This is a key ele-
ment to take into account when defining and op-
timizing vector control strategies for public 
health responses. 

The example presented here shows an ap-
plication of  EO data to health issues at a local 
scale. This approach was subsequently applied at 
a regional scale (Li et al., 2017) and is currently 
extended to include the entire Amazon region. 
Since this region covers more than 6.5 million km2 

and spans nine countries (Bolivia, Brazil, Colom-
bia, Ecuador, France/French Guiana, Guyana, 
Peru, Suriname, and Venezuela), working at this 
scale requires the use of EO data in order to pro-
duce the required geospatial information and 
address public health issues. It is extremely diffi-
cult to deal with the health problems of different 
countries when data sources are heterogeneous 
in terms of  content and quality. The example of 
the cross-border area between French Guiana 
and Brazil demonstrates that EO data analysis is 
an effective way to produce homogeneous and 
standardized information that overcomes this 
problem. Updates of  these maps are possible us-
ing multi-temporal EO data – weekly, monthly, 
or seasonal EO-based updates can be provided 

depending on the satellite and sensor system se-
lected. In fact, current SAR and optical imagery 
from the Sentinel Constellations and the Euro-
pean Space Agency’s (ESA) Copernicus Pro-
gramme provide weekly data free of  charge at a 
spatial resolution that is adequate for such 
large-scale cross-border applications of  EO for 
health issues. 

The end users for such maps are actors in 
the public health domain representing local, 
regional, and national institutions. More specif-
ically, the primary users of these maps are con-
cerned with the elaboration of  vector control 
strategies and activities in the field. EO data can 
potentially bridge part of  the information gap 
that confronts health surveillance communities. 
Yet, going beyond the scope and content of  the 
case studies presented here, the needs of  public 
health actors in terms of  various geospatial data 
and products are not always satisfied for two 
reasons. First, satellite sensors are not primarily 
designed for health applications, often rendering 
spatial, temporal, or spectral data properties in-
adequate for addressing public health issues. Se-
cond, the methodologies for the production of 
hazard and risk maps developed by researchers 
of  the EO community may not always be suitable 
or adequate in a public health context due to the 
complexity of  the methodologies, the cost of 
high-resolution data, and the lack of  computing 
resources. 

Technical considerations and  
perspectives for producing risk maps 

The production of  LULC maps and hazard maps 
like those shown in Fig. 2.1.1 and Fig. 2.1.2 
requires optical and SAR images at various 
spatial and temporal resolutions. In this case, 
environmental variables are extracted from 
three different sources. 

High-resolution EO products with high 
temporal resolution, including Sentinel-1 and 
ALOS SAR data and Sentinel-2 optical data, are 
the primary products needed for the generation 
of  these maps. Data access is free and data acqui-
sition can occur worldwide every 5–12 days. The 
high-resolution products can be complemented 
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with very-high-resolution imagery, albeit less 
frequently. For instance, optical sensors of  the 
French Pléiades satellite constellation can ac-
quire images at 50  cm resolution. Although 
extremely useful for detailed studies of  mosquito-
borne diseases within urban environments, in 
an operational context, the cost and volume of 
such data could prove prohibitive. Commercially 
available SAR data are also very expensive. 
Lower resolution images from the advanced very 
high resolution radiometer (AVHRR), Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
or Visible/Infrared Imager Radiometer Suite 
(VIIRS) sensors are a suitable source for identify-
ing microclimatic indicators related to variables 
like surface temperature, surface moisture, 
near-surface air temperature, and water stress; 
these data are acquired daily and can be ac-
cessed without charge. 

Frequent updates and cloud presence re-
quire the use of  a multi-temporal series of  optical 
EO data and the combination of  optical and SAR 
data. This necessitates considerable data storage 
resources for regular production of  land cover 
and risk maps, and for their use in an operational 
context. The addition of  sensors recently 
launched (such as the RADARSAT Constellation 
Mission), or future launches such as the Surface 
Water Ocean Topography (SWOT) satellite 
planned for 2022 and the BIOMASS for 2023, 
will increase the volume of  EO data utilization 
and attendant data storage issues. Future devel-
opments in EO big data storage and sharing will 
also have to take these aspects into account and 
possibly rely on cloud computing for data storage, 
processing, and analysis. Following the model 
currently proposed by “Google Earth Engine,” 
large volumes of  data could be remotely processed 
and analyzed without downloading the data. 

Using EO big data implies the development 
of  adapted computing methods such as artificial 
intelligence and machine learning algorithms. 
Together with storage capacities, computing 
resources will have to be customized for such ap-
plications. Automated and generic methods are 
preferred as they would facilitate the production 
of  EO-based products like land cover maps any-
where in the world. Likewise, the analysis of  im-
ages and the production of the risk maps require 
image processing software and a GIS capability. 
Expertise in EO image analysis, geo-informatics, 

and mapping is essential for the development of 
risk maps. Availability of  freeware and EO and 
GIS “toolboxes,” open access to EO data, as well 
as training programs strongly encourage the use 
of EO products by non-specialists, including 
those in the public health sector. Note that the 
Copernicus RUS (Research and User Support) 
service portal, managed by the ESA, offers assist-
ance to users. The portal promotes the uptake of 
Copernicus data and helps the scaling up of  R&D 
activities with its data. They also offer free access 
to computing resources, storage, and freeware 
for processing data and developing technical so-
lutions customized to users’ needs, they provide 
a dedicated helpdesk for assistance, and they or-
ganize regular training sessions.4 

Many new sensors are to be launched in 
the next few years, offering new possibilities in 
terms of  spatial and temporal resolutions, and 
technical capabilities. Together with the cur-
rently orbiting high- and moderate-resolution 
sensors, the RADARSAT Constellation Mission 
and the SWOT and BIOMASS missions, among 
others, will provide new EO data sources to pro-
duce more accurate land cover maps, time ser-
ies, and quality information for vector control 
and surveillance. While EO products and meth-
odologies will initially have to be custom de-
signed to better fit public health needs, proven 
methodologies need to be automated in the fu-
ture and be robust and user-friendly enough to 
be implemented by non-specialists. To do so, the 
remote sensing, entomology, epidemiology, and 
public health communities have to interact 
more efficiently. They need to form a commu-
nity of  practice, integrating data from a wide 
variety of  sources at various scales and qualities 
to help mitigate public health issues such as 
mosquito-borne diseases. 

Risk mapping of entomological Rift 
Valley fever in Senegal at high 

spatio-temporal resolution using 
remote sensing 

The emergence and re-emergence of  infectious 
diseases with high epidemic potential, such as 
Rift Valley fever (RVF), have caused public health 
actors to adapt their management strategies 
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concerning human and veterinary health. RVF 
is transmitted by mosquitoes and is naturally 
maintained by wildlife reservoir hosts. In out-
break situations, transmission cycles among 
wildlife spill over into livestock. Humans can ac-
quire infections from mosquitoes but also from 
infected livestock. This adaptation requires the 
development of  new means of  risk prediction. 
In this context, the study of  vector-borne infec-
tious diseases requires the knowledge of  factors 
conducive to the emergence and spread of  those 
diseases. 

The French space agency Centre national 
d’études spatiales (CNES) and its partners 
have applied the conceptual approach of  tele-
epidemiology to RVF (Fig. 2.1.4). Factors deter-
mining the occurrence and spread of pathogens 
can be environmental, climatic, demographic, 
socio-economic, and/or behavioral. Some can 
be identified by EO data analysis, which requires 
the development of  effective methods to use 
remote sensing for risk factor characterization, 
mapping, and monitoring. This methodological 
approach has been successfully applied to RVF 

in the Ferlo region of  Senegal, leading toward 
the development of  a dynamic mapping proced-
ure of  Zones Potentially Occupied by Mosquitoes 
(ZPOMs) (Lacaux et  al., 2007). RVF is a viral 
disease that occurs largely in Africa, causing 
very serious economic losses in livestock. 

The RVF project presented here depends 
on the cooperation of  French and Senegalese 
institutions, including the Centre de Suivi 
Ecologique, the Dakar Pasteur Institute, the Dir-
ection of  Veterinarian Services, Météo-France, 
and CNES (Lafaye et al., 2013). The project has 
developed a new decision support tool utilizing 
SPOT-5 satellite imagery with the objective to 
improve animal health management and sup-
port local users in the public health sector. 
Funding support was provided by the French 
Ministry of  Ecology. 

In the Ferlo region of  Senegal, the abun-
dance of the main RVF vectors (Aedes vexans 
and Culex poicilipes) is directly linked to the 
occurrence and extent of  surface water 
ponding, which is closely related to the 
spatio-temporal variability of rainfall events 

In situ data 

Hazard maps Vulnerability map 

Risk map 

Adaptive strategy 
for risk management 

Analyzing multidisciplinary in situ data sets to identify the 
main mechanisms at stake linking physical, biological and 
socio-economic parameters associated with the surge of 

an infectious disease 

Remote sensing monitoring of environment, linking 
epidemics with the environmental and/or climatic factors 

such as rainfall, vegetation, hydrology 

Identification of the confounding factors 

Dynamic potential presence 
of the pathogenic agent Host distribution 

Environmental 

(Demographic surveillance data, 
existing control measures...) 

risk of being exposed to the pathogenic agent 

Disease control response 

Obtaining adapted space products 

Remote sensing data 

Ancillary data 
Early Warning System 

Fig. 2.1.4. The conceptual approach of tele-epidemiology for vector-borne diseases. 



20 Chapter 2   

 
 
 
 

 

 

 
 
 
 

 
 
 
 
 
 

 
 

  
 
 
 
 

 
 
 
 
 

 

 
 

 

 

 
 

 

 

 
 
 
 

 
 
 

  

 

 

 

 
 

  

 
 

  
 

(Guilloteau et  al., 2014). Hence, rainfall dis-
tribution and its spatial heterogeneity is a key 
parameter for the emergence of  the main RVF 
vectors. The goal of  the project was to use GIS 
tools and EO data to detect ponds as potential 
breeding sites and evaluate the risk of  expos-
ure for cattle to vector bites. A risk model for 
the emergence of  mosquitoes has been devel-
oped and validated using field entomological 
surveillance (Bicout et  al., 2003, 2015; Por-
phyre et al. 2005). 

Three steps have been necessary to 
achieve the goal. As a first step, a procedure 
and index were established for detecting and 
mapping small and temporary ponds with 
high-resolution SPOT-5 imagery. Repeat satel-
lite data acquisitions provided synoptic views 
concerning the dynamics of  the approximately 
1300 ponds as potential vector breeding sites 
in the Barkédji area. A Normalized Difference 
Pond Index (NDPI) was obtained by combining 
data of  the green and short-wave infrared 
(SWIR) bands. 

The second step involved modeling ZPOMs 
by linking rainfall variability, pond dynamics, 
and density of  aggressive vectors. Spot-5 im-
ages and meteorological information from in 
situ data collection or data from five satellite-
based rainfall products – Tropical Rainfall 
Measuring Mission (TRMM), Global Satellite 
Mapping of  Precipitation (GSMaP), African 
rainfall estimate (RFE), Climate Prediction 
Center morphing method (CMORPH), and Pre-
cipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks 
(PERSIANN) – were used to fit a model with 
hydrological and entomological components. 
The modeling results consisted of  dynamic 
maps that were generated on a daily basis at a 
spatial resolution of  10 m to predict the ento-
mological risk for RVF in the Ferlo region of 
Senegal (Fig. 2.1.5). 

The third step consisted of  overlaying 
vector hazard information in the form of  the 
dynamic ZPOMs and host vulnerability infor-
mation in the form of  the location of  beef 
feedlot cattle grazing area to evaluate the en-
vironmental risk of  cattle exposure to vector 
bites. Integrating the dynamic model on mos-
quito proliferation and the position of  actual 
livestock grazing areas into a GIS allowed the 

Directorate of  Veterinary Services of  Senegal 
to issue, on a trial basis, weekly risk zone fore-
casting bulletins valid for the subsequent 
10 days. 

Expected outcomes and impacts 

The maps generated by this project indicate 
and outline the RVF risk areas associated with 
surface water ponding, mosquito breeding, 
and cattle grazing for a test area in Senegal. EO 
satellite data offered synoptic views and re-
peated measurements concerning the location 
and extent of  more than 1300 ponds. The 
scope and frequency of  this undertaking would 
not have been feasible by means of in situ data 
collection. 

The end user of  the RVF project products is 
the Directorate of  Veterinary Services of Sene-
gal, who can integrate this information into its 
adaptation strategy of  animal health manage-
ment. This strategy could include the following 
recommendations to effectively mitigate the 
exposure of  cattle to RVF, and thus to minimize 
infection risk for humans: 

• (Re-)locate livestock grazing areas away 
from risk zones, with warning signs in local 
languages posted near the ponds to inform 
breeders to keep their animals at least 
500 m away from the ponds. 

• Issue regular bulletins so the Pasteur Insti-
tute of Dakar can organize effcient larval 
and vector control actions. 

• Issue regular bulletins so the Directorate of 
Veterinary Services of  Senegal can organize 
and optimize vaccination campaigns in the 
riskiest zones. 

• Establish a joint communication strategy 
by integrating information of  the forecasted 
risk bulletins into the National Information 
System of  Surveillance of  Epidemics used 
by the Ministry of  Livestock in Senegal and 
the Headquarters of  the Directorate of  Vet-
erinary Services of  Senegal and its local 
representatives in rural districts. 

• Plan to broadcast RVF-related messages 
in local languages through local radio 
stations. 
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10 m 
Rain gauge, Rainfall SPOT 

Satellite products data image 4 spectral 
bands 

2003/08/26 
Pond detection Correction 

NDVI/NDPI 
© CNES 2003, distribution AIRBUS Defence & 

Space/Spot Image 

Corrected Pond location and 
rainfall data maximum surfaces 

Pond simple 
model 

Pond surface Pond modeled as a gaussian depression 
dynamic Aggressiveness 

(Number of bites of 
Entomological Aedis vexans per host, 

model per night) 
for July 2, 2003 

Vector 
aggressiveness, Aggressiveness 

risk maps 

© CNES/OMP product, CNES 2003 

Fig. 2.1.5. Flow chart outlining the RVF entomological risk modeling approach. 

Technical considerations and  
perspectives for producing risk maps 

The RVF maps have been built based on a value 
chain proposition that clearly identifies satellite 
data sources and data provider, the service pro-
vider, and the end user (Table 2.1.1). EO data 
analysis and the production of  the risk map re-
quire image processing GIS software packages. 
Expertise in EO image analysis, geo-informatics, 
and mapping is essential for the production of 
risk maps. 

In the absence of  SPOT-5, which ceased 
operation, the opportunity exists to access 
Sentinel-2 satellite data for mapping rain-fed 
ponds in the manner proposed by the RVF tool. 

The constellation of the Sentinel-2A and Senti-
nel-2B satellites could deliver images with ad-
equate spectral, spatial, and temporal resolution 
required to produce the risk maps at the scale 
that meets the needs of  the user. Future devel-
opment should consider the implementation of 
this tool through an open-source software. The 
following table lists examples of  EO-derived 
products that are potentially useful as geospa-
tial reference or background formation for pub-
lic health-related studies and applications. 
While these products have not been devised ini-
tially with public health applications in mind, 
they could provide important resources and in-
sights for the understanding of  mosquito-borne 
disease dynamics (Table 2.1.2). 

Notes 

1 http://www.who.int/campaigns/world-health-day/2014/global-brief/en/, see also World Meteorological 
Organization (WMO) 2014. 
2 http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed 31 December 2021). 
3 http://mapbiomas.org (accessed 31 December 2021). 
4 https://rus-copernicus.eu/portal/ (accessed 31 December 2021). 

http://www.who.int/campaigns/world-health-day/2014/global-brief/en/
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
http://mapbiomas.org
https://rus-copernicus.eu/portal/
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Table 2.1.1. The value chain of the RVF project. 

Satellites → Data provider → Service provider  → End user → Benefit 

Centre de Suivi 
Ecologique de 
Dakar 

Directorate of 
Veterinary 
services of 
Senegal 

Better 
management 
of animal 
health 

SPOT-5 === Optical image 
By Airbus Defense and 

Space 

Small and 
temporary pond 
mapping at 10 m 
resolution 

Dynamic high-
resolution maps 
(10 m spatial 
resolution, daily 
temporal 
resolution) 
predicting the 
entomological 
risk for Rift Valley 
fever (presence 
of mosquitoes) 

Forecasting 
bulletins of risk 
zones for cattle 
exposed to 
mosquito bites 

End user adapts 
and optimizes 
their strategy 
of animal 
health 
management 

TRMM ===
GPM-core 
GCOM-W-AMSR2 
DSMP-SSMI 
NOAA-AQUA 
NOAA-AMSU 
METOP-AMSU 
GOES-8 
GOES-10 
Meteosat-6 
Meteosat-7 

Satellite rainfall estimates 
TMPA (TRMM Multi-

satellite Precipitation 
Analysis) by NASA/JAXA 

GSMap (Global Satellite 
Mapping of Precipitation) 
products by JAXA-
CREST 

RFE (African Rainfall 
Estimation) by NOAA-
CPC 

PERSIANN (Precipitation 
Estimation from 
Remotely Sensed 
Information Using 
Artificial Neural 
Networks) by the CHRS, 
University of California 

CMORPH product from the 
DMSP, NOAA, Aqua, 
and TRMM satellites by 
NOAA-CPC 

Ground data  
Entomological data by the  

Dakar Pasteur Institute 

AMSU, Advanced Microwave Sounding Unit; AQUA, Aqua Earth-observing satellite mission; CHRS, Center for 
Hydrometeorology and Remote Sensing (University of California); NOAA CMORPH, Climate Prediction Center morphing 
method; CPC, Climate Prediction Center; DMSP, NOAA Defense meteorological satellite program; GCOM-W-AMSR2, 
Global Change Observation Mission – Water “Shizuku” – Advanced Microwave Scanning Radiometer 2; GOES, Geostationary 
Satellite Server; GPM, global precipitation measurement mission; JAXA, Japan Aerospace Exploration Agency; Metop, 
meteorological operational satellite; NOAA, National Oceanic and Atmospheric Administration; SPOT 5, Satellite pour 
l’Observation de la Terre 5; SSMI, special sensor microwave imager; TRMM, tropical rainfall measuring mission. 

Table 2.1.2. Examples of EO-derived products that are potentially useful as geospatial reference or 
background formation for public health-related studies and applications. 

Product type Application in public health 

Global land cover maps (e.g., MERIS GlobCover, 
PALSAR forest vs. non-forest maps, SAR global 
wetland maps) 

For coarse identification of environmental 
features and habitat suitability to vectors for 
targeted studies 

Vegetation indices (NDVI or EVI from MODIS or 
AVHRR) 

For showing the evolution of vegetation cover 
(deforestation) and its implications on the 
distribution of vectors 

Soil moisture (SMOS) For mapping potential breeding sites for some 
mosquito species 

Continued 
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Table 2.1.2. Continued. 

Product type Application in public health 

Continental water quality maps from MODIS For assessing the suitability of water and 
wetlands to the development of mosquito 
larvae (potential breeding sites) 

DEMs from SRTM or TandDEM-X For assessing the role of topography on water 
circulation and breeding site distributions 

Time series of EO products For assessing the dynamics of the relationships 
between environmental features and disease 
transmission 

Meteorological sensors For assessing the role of climate variables on 
disease transmission 

Climate models For providing scenarios and predicting disease 
distributions worldwide 

AVHRR, advanced very high-resolution radiometer; DEM, Digital Elevation Model; EO, Earth Observation; EVI, 
Enhanced Vegetation Index; MERIS GlobCover, Medium Resolution Imaging Spectrometer, Global land cover; 
MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI, Normalized Difference Vegetation Index; PALSAR, 
Phased Array L-band Synthetic Aperture Radar; SAR, synthetic aperture radar; SMOS, Soil Moisture Ocean 
Salinity; SRTM, Shuttle Radar Topography Mission; TandDEM-X, TerraSAR-X add-on for Digital Elevation 
Measurement. 

References 

Baeza, A., Bouma, M.J., Dhiman, R.C., Baskerville, E.B., Ceccato, P. et al. (2013) Long-lasting transition 
toward sustainable elimination of desert malaria under irrigation development. Proceedings of the 
National Academy of Science 110, 15157–15162. DOI: https://doi.org/10.1073/pnas.1305728110. 

Bejon, P., Williams, T.N., Liljander, A., Noor, A.M., Wambua, J. et al. (2010) Stable and unstable malaria 
hotspots in longitudinal cohort studies in Kenya. PLoS Medicine 7. DOI: https://doi.org/10.1371/ 
journal.pmed.1000304. 

Bicout, D.J., Porphyre, T., Ndione, J.-A., and Sabatier, P. (2003) Modelling abundance of Aedes and Culex 
spp. in rain fed ponds in Barkedji, Senegal. Proceedings of the 10th Symposium of the International 
Society for Veterinary Epidemiology and Economics/ISVEE 10, Vina del Mar, Chile, 84. http://www. 
sciquest.org.nz/node/63596 (accessed 14 June 2021). 

Bicout, D.J., Vautrin, M., Vignolles, C., and Sabatier, P. (2015) Modeling the dynamics of mosquito breed-
ing sites versus rainfall in Barkedji area, Senegal. Ecological Modelling 317, 41–49. DOI: https://doi. 
org/10.1016/j.ecolmodel.2015.08.027. 

Catry, T., Li, Z., Roux, E., Herbreteau, V., Dessay, N. et al. (2016) Fusion of SAR and optical imagery for 
studying the eco-epidemiology of vector-borne diseases in tropical countries. Proceedings of the ESA 
Living Planet Symposium, Prague, Czech Republic. Available at: https://hal.archives-ouvertes.fr/ 
hal-01490830 (accessed 14 June 2021). 

Catry, T., Li, Z., Roux, E., Herbreteau, V., Gurgel, H. et al. (2018a) Wetlands and malaria in the Amazon: 
Guidelines for the use of synthetic aperture radar remote sensing. International Journal of Environ-
mental Research and Public Health 15, 468. DOI: https://doi.org/10.3390/ijerph15030468. 

Catry, T., Pottier, A., and Marti, R. (2018b) Apports de la combinaison d’images satellites optique et 
RADAR dans l’étude des maladies à transmission vectorielle: cas du paludisme à la frontière 
Guyane française – Brésil. Confins 37. DOI: https://doi.org/10.4000/confins.15027. 

Ceccato, P., Connor, S.J., Jeanne, I., and Thomson, M.C. (2005) Application of geographical information 
systems and remote sensing technologies for assessing and monitoring malaria risk. Parassitologia 
47, 81–96. Available at: https://www.researchgate.net/publication/7700360_Application_of_Geograph-
ical_Information_Systems_and_Remote_Sensing_technologies_for_assessing_and_monitoring_ 
malaria_risk (accessed 5 August 2021). 

Ewing, D.A., Purse, B.V., Cobbold, C.A., and White, S.M. (2021) A novel approach for predicting risk of 
vector-borne disease establishment in marginal temperate environments under climate change: 

http://www.sciquest.org.nz/node/63596
http://www.sciquest.org.nz/node/63596
https://hal.archives-ouvertes.fr/hal-01490830
https://hal.archives-ouvertes.fr/hal-01490830
https://www.researchgate.net/publication/7700360_Application_of_Geographical_Information_Systems_and_Remote_Sensing_technologies_for_assessing_and_monitoring_malaria_risk
https://www.researchgate.net/publication/7700360_Application_of_Geographical_Information_Systems_and_Remote_Sensing_technologies_for_assessing_and_monitoring_malaria_risk
https://www.researchgate.net/publication/7700360_Application_of_Geographical_Information_Systems_and_Remote_Sensing_technologies_for_assessing_and_monitoring_malaria_risk
https://doi.org/10.4000/confins.15027
https://doi.org/10.3390/ijerph15030468
https://doi
https://doi.org/10.1371
https://doi.org/10.1073/pnas.1305728110


24 Chapter 2   

   

  

  

  
 

   

  

  

   
  

  

  

  

 

  

 
  

 
 

 
 

  

 
 

  

 

 
 

West Nile virus in the UK. Journal of the Royal Society Interface 18. DOI: https://doi.org/10.1098/rsif. 
2021.0049. 

Ferraguti, M., Martínez-de la Puente, J., and Figuerola, J. (2021) Ecological effects on the dynamics of 
West Nile virus and avian Plasmodium: The importance of mosquito communities and landscape. 
Viruses 13, 1208. DOI: https://doi.org/10.3390/v13071208. 

Franke, J., Gebreslasie, M., Bauwens, I., Deleu, J., and Siegert, F. (2015) Earth observation in support of 
malaria control and epidemiology: MALAREO monitoring approaches. Geospatial Health 10, 117–131. 
DOI: https://doi.org/10.4081/gh.2015.335. 

Guilloteau, C., Gosset, M., Cecile Vignolles, C., Alcoba, M., Tourrem Y.M. et  al. (2014) Impacts of 
satellite-based rainfall products on predicting spatial patterns of Rift Valley fever vectors. Journal of 
Hydrometeorology 15, 1624–1635. DOI: https://doi.org/10.1175/JHM-D-13-0134.1. 

Hahn, M.B., Gangnon, R.E., Barcellos, C., Asner, G.P., and Patz, J.A. (2014) Influence of deforestation, 
logging, and fire on malaria in the Brazilian Amazon. PLoS ONE 9. DOI: https://doi.org/10.1371/ 
journal.pone.0085725. 

Hay, S.I., Snow, R.W., and Rogers, D.J. (1998a) From predicting mosquito habitat to malaria seasons using 
remotely sensed data: practice, problems and perspectives. Parasitology Today 14, 306–313. DOI: 
https://doi.org/10.1016/s0169-4758(98)01285-x. 

Hay, S.I., Snow, R.W., and Rogers, D.J. (1998b) Predicting malaria seasons in Kenya using multitemporal 
meteorological satellite sensor data. Transactions of the Royal Society of Tropical Medicine and 
Hygiene 92, 12–20. DOI: https://doi.org/10.1016/s0035-9203(98)90936-1. 

Hay, S.I. and Lennon, J.J. (1999) Deriving meteorological variables across Africa for the study and control 
of vector-borne disease: A comparison of remote sensing and spatial interpolation of climate. Trop-
ical Medicine and International Health 4, 58–71. DOI: https://doi.org/10.1046/j.1365-3156.1999. 
00355.x. 

Herbreteau, V., Salem, G., Souris, M., Hugot, J.P., and Gonzalez, J.P. (2007) Thirty years of use and im-
provement of remote sensing applied to epidemiology: From early promises to lasting frustration. 
Health & Place 13, 400–403. DOI: https://doi.org/10.1016/j.healthplace.2006.03.003. 

Kalluri, S., Gilruth, P., Rogers, D., and Szczur, M. (2007) Surveillance of arthropod vector-borne infectious 
diseases using remote sensing techniques: A review. PLoS Pathogens 3, 1361–1371. DOI: https://doi. 
org/10.1371/journal.ppat.0030116. 

Kotchi, S.O., Bouchard, C., Ludwig, A., Rees, E.E., and Brazeau, S. (2019) Using Earth observation images 
to inform risk assessment and mapping of climate change-related infectious diseases. Canada Com-
municable Disease Report 45, 133–142. DOI: https://doi.org/10.14745/ccdr.v45i05a04. 

Lacaux, J.-P., Tourre, Y.M., Vignolles, C., Ndione, J.A., and Lafaye, M. (2007) Classification of ponds from 
high-spatial-resolution remote sensing: Application to Rift Valley fever epidemics in Senegal. Remote 
Sensing of Environment 106, 66–74. DOI: https://doi.org/10.1016/j.rse.2006.07.012. 

Lafaye, M., Sall, B., Ndiaye, Y., Vignolles, C., Tourre, Y.M. et al. (2013) Rift Valley fever dynamics in Sene-
gal: A project for pro-active adaptation and improvement of livestock raising management. Geospatial 
Health 8, 279–288. DOI: https://doi.org/10.4081/gh.2013.73. 

Li, Z., Roux, E., Dessay, N., Girod, R., Stefani, A. et al. (2016) Mapping a knowledge-based malaria hazard 
index related to landscape using remote sensing:Application to the cross-border area between French 
Guiana and Brazil. Remote Sensing 8, 319. DOI: https://doi.org/10.3390/rs8040319. 

Li, Z., Catry, T., Dessay, N., da Costa Gurgel, H., Aparecido de Almeida, C. et al. (2017) Regionalization of 
a landscape-based hazard index of malaria transmission: An example of the State of Amapá, Brazil. 
Data 2, 37. DOI: https://doi.org/10.3390/data2040037. 

Lucas, R., Blonda, P., Bunting, P., Jones, G., Inglada, J. et al. (2015) The Earth Observation Data for Habi-
tat Monitoring (EODHaM) system. International Journal of Applied Earth Observation and Geoinfor-
mation 37, 17–28. DOI: https://doi.org/10.1016/j.jag.2014.10.011. 

MacDonald, A.J and Mordecai E.A. (2019) Amazon deforestation drives malaria transmission, and malaria 
burden reduces forest clearing. Proceedings of the National Academy of Sciences 116, 22212–22218. 
DOI: https://doi.org/10.1073/pnas.1905315116. 

Machault, V., Vignolles, C., Borchi, F., Vounatsou, P., and Briolant, S. (2011) The use of remotely sensed 
environmental data in the study of malaria. Geospatial Health 5, 151–168. DOI: https://doi.org/10.4081/ 
gh.2011.167. 

Machault, V., Yébakima A., Etienne M., Vignolles C., Palany P. et al. (2014) Mapping entomological dengue 
risk levels in Martinique using high-resolution remote sensing environmental data. ISPRS: Inter-
national Journal of Geo-Information 3, 1352–1371. DOI: https://doi.org/10.3390/ijgi3041352. 

https://doi.org/10.3390/ijgi3041352
https://doi.org/10.4081
https://doi.org/10.1073/pnas.1905315116
https://doi.org/10.1016/j.jag.2014.10.011
https://doi.org/10.3390/data2040037
https://doi.org/10.3390/rs8040319
https://doi.org/10.4081/gh.2013.73
https://doi.org/10.1016/j.rse.2006.07.012
https://doi.org/10.14745/ccdr.v45i05a04
https://doi
https://doi.org/10.1016/j.healthplace.2006.03.003
https://doi.org/10.1046/j.1365-3156.1999
https://doi.org/10.1016/s0035-9203(98)90936-1
https://doi.org/10.1016/s0169-4758(98)01285-x
https://doi.org/10.1371
https://doi.org/10.1175/JHM-D-13-0134.1
https://doi.org/10.4081/gh.2015.335
https://doi.org/10.3390/v13071208
https://doi.org/10.1098/rsif


Earth Observation and Public Health Priority 25   

 

 
    

 
 

 

 

    
 
 

   

  
 

  

Moua, Y., Kotchi, S.O., Ludwig, A., and Brazeau, S. (2021) Mapping the habitat suitability of West Nile 
virus vectors in southern Quebec and eastern Ontario, Canada, with species distribution modeling 
and satellite earth observation data. Remote Sensing 13, 1637. DOI: https://doi.org/10.3390/ 
rs13091637. 

Porphyre, T., Bicout, D.J., and Sabatier, P. (2005) Modelling the abundance of mosquito vectors versus 
flooding dynamics. Ecological Modelling 183, 173–181. DOI: https://doi.org/10.1016/j.ecolmod-
el.2004.06.044. 

Rogers, D.L., Randolph, S.E., Snow, R.W., and Hay, S.I. (2002) Satellite imagery in the study and forecast 
of malaria. Nature 415, 710–715. DOI: https://doi.org/10.1038/415710a. 

Tatem, A.J. and Hay, S.I. (2004) Measuring urbanization pattern and extent for malaria research: A review 
of remote sensing approaches. Journal of Urban Health 81, 363–376. DOI: https://doi.org/10.1093/ 
jurban/jth124. 

Vittor, A.Y., Pan, W., Gilman, R.H., Tielsch, J., Glass, G. et al. (2009) Linking deforestation to malaria in 
the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles dar-
lingi. The American Journal of Tropical Medicine and Hygiene 81, 5–12. Available at: https://www. 
researchgate.net/publication/26320834_Linking_Deforestation_to_Malaria_in_the_Amazon_ 
Characterization_of_the_Breeding_Habitat_of_the_Principal_Malaria_Vector_Anopheles_darlingi 
(accessed 5 August 2021). 

World Health Organization (WHO) (2012) World malaria report 2012. Available at: https://www.who.int/ 
malaria/publications/world_malaria_report_2012/wmr2012_full_report.pdf (accessed 14 June 2021). 

World Health Organization (WHO) (2015) Global technical strategy for malaria 2016–2030. Available at: 
https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-
2016-2030.pdf?sfvrsn=c82afcc_0 (accessed 14 June 2021). 

Yasuoka, J. and Levins, R. (2007) Impact of deforestation and agricultural development on anopheline 
ecology and malaria epidemiology. The American Journal of Tropical Medicine and Hygiene 76, 450–460. 
DOI: https://doi.org/10.4269/ajtmh.2007.76.450. 

https://www.researchgate.net/publication/26320834_Linking_Deforestation_to_Malaria_in_the_Amazon_Characterization_of_the_Breeding_Habitat_of_the_Principal_Malaria_Vector_Anopheles_darlingi
https://www.researchgate.net/publication/26320834_Linking_Deforestation_to_Malaria_in_the_Amazon_Characterization_of_the_Breeding_Habitat_of_the_Principal_Malaria_Vector_Anopheles_darlingi
https://www.researchgate.net/publication/26320834_Linking_Deforestation_to_Malaria_in_the_Amazon_Characterization_of_the_Breeding_Habitat_of_the_Principal_Malaria_Vector_Anopheles_darlingi
https://www.who.int/malaria/publications/world_malaria_report_2012/wmr2012_full_report.pdf
https://www.who.int/malaria/publications/world_malaria_report_2012/wmr2012_full_report.pdf
https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf?sfvrsn=c82afcc_0
https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf?sfvrsn=c82afcc_0
https://doi.org/10.4269/ajtmh.2007.76.450
https://doi.org/10.1093
https://doi.org/10.1038/415710a
https://doi.org/10.1016/j.ecolmod
https://doi.org/10.3390


26 Chapter 2   

  

 

 

 

 

 

   
 

 

 

  

 

 

  

 
  

   
   

   

2.2 Tick-borne Diseases 

Nicholas H. Ogden1, Serge Olivier Kotchi1, Stéphanie Brazeau1, Catherine 
Bouchard1, Joanne C. White2a, Michael A. Wulder2a, Andrew Davidson3, André 

Beaudoin2b, and Dirk Werle4 

1Public Health Risk Sciences Division, National Microbiology Laboratory, Public 
Health Agency of Canada, Saint-Hyacinthe, Canada; 2aCanadian Forest Service, 
Natural Resources Canada,Victoria, Canada; 2bCanadian Forest Service, Natural 

Resources Canada, Québec, Canada; 3Science and Technology Branch, 
Agriculture and Agri-Food Canada, Ottawa, Canada; 4Ærde Environmental 

Research, Halifax, Canada 

Context, state of knowledge, 
challenges, and responses 

Lyme disease is the most commonly reported 
vector-borne disease in the northern temperate 
climatic zone and occurs in North America, Eur-
ope, and Asia. Lyme disease is an emerging in-
fectious disease in Canada due to the northward 
spread of  the geographic range of  the tick vector 
Ixodes scapularis from the USA. Lyme disease is 
an environmental health hazard that occurs 
where the environment, in terms of  climate and 
woodland habitat, is suitable for the ticks and the 
natural wildlife hosts of both the ticks and the 
causal bacterium Borrelia burgdorferi. Risk fac-
tors for Lyme disease are mostly behaviors and 
outdoor activities that increase the risk of expos-
ure to tick bites, such as people coming into the 
woodland environments where the ticks are 
found (Aenishaenslin et  al., 2017; Bouchard 
et  al., 2018). There is evidence that climate 
change is driving the spread of  these ticks in 
Canada, and the geographic range of  endemic 
Lyme disease risk in Canada is expected to in-
crease as the climate warms (Ogden et al., 2008, 
2014; Leighton et al., 2012; Clow et al., 2017). 
Several landscape, climatic, and environmental 
(habitat) conditions have to converge for the 
co-existence of  hosts, tick vectors, and transmis-
sion cycles of B. burgdorferi for significant Lyme 
disease risk to occur. Consequently, risk maps 

based on geospatial information on environmental 
conditions (particularly climate and habitat) 
and vector dispersion are being developed to 
assist public health in targeting surveillance 
efforts and developing prevention programs 
(Kotchi et al., 2021). 

Examples of recent research 

Studies in Canada and Europe have focused on 
mapping where tick vectors and risk to the pub-
lic occur. Ticks have long life cycles and, once 
they have become established, inter-annual vari-
ations in risk are small relative to those that can 
occur for mosquito-borne diseases. Consequently, 
understanding environmental drivers of  Lyme 
disease risk focuses more on predicting where 
risk is likely to be now or in the future, rather 
than on early warning forecasting to identify 
when outbreaks may occur, which is often a pub-
lic health objective in the context of mosquito-
borne diseases (Ogden and Lindsay, 2016). 
Bouchard et  al. (2015) reviewed Canadian 
studies that connect the spatio-temporal pattern 
of  Lyme disease emergence and expansion to a 
number of  key environmental drivers. These in-
clude climate, habitat, and wild animal host 
community conditions that determine environ-
mental suitability for vectors and pathogen 
transmission cycles, and patterns of  dispersion 
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of  ticks and pathogens by migratory birds and 
other animal hosts. 

Both ground-level and EO data proxies for 
these variables are sourced to explore the ecol-
ogy of  Lyme disease to improve predictions 
(Ogden et al., 2006a, 2010; Gabriele-Rivet et al., 
2015; Cheng et al., 2017), to interpret surveil-
lance data (Ogden et al., 2006b, 2010), and ul-
timately to develop risk maps. Forest landscape 
patterns (including connectivity and fragmenta-
tion) in Canada have been mapped using EO 
data at a range of spatial resolutions (Wulder 
et al., 2008; Pelletier et al., 2017). Tick survival 
varies among woodland types (Guerra et  al., 
2002; Ogden et al., 2006a) so these patterns may 
add value to the assessment of  the spatial distri-
bution of  Lyme disease risk. Assessments of 
Lyme disease risk across a range of geographic 
extents are needed to inform the different levels 
of  jurisdiction (from national to regional and 
local) and help drive the design of  their public 
health policies and programs. 

The detail of LULC maps now obtainable 
from high-spatial-resolution satellite imagery 
(Fig. 2.2.1) means that EO data can serve assess-
ment of  risk for all levels of  jurisdiction. Using 
spatial modeling techniques to produce maps of 
Lyme risk, the European LymeMAP project1 

combined data from a variety of  sources. These 
include EO satellite data, terrestrial observations, 
Lyme disease data on humans from diagnostic 
laboratories, data from general practitioners, 
and data from end users such as health care or-
ganizations and professionals, resident, and vis-
iting populations. Similar multi-data approaches 
are used to identify risk in Canada.2 

Challenges and questions 

There are two main challenges associated with 
the effective utilization of  EO data for Lyme dis-
ease research and risk mapping efforts. The first 
relates to the identification of  suitable EO-derived 
information sources that can help identify habi-
tats suitable for ticks and their hosts. While gen-
eralized identification of  woodland habitats may 
be adequate under some circumstances, more 
detailed assessment is needed by those respon-
sible for managing Lyme disease risk at a local 
level of  jurisdiction. This includes identification 

of  variations in different woodland types regard-
ing their suitability for ticks (Ogden et al., 2006b) 
and for different communities of  hosts, which 
may impact the abundance and the species and 
strains of  Lyme disease-causing bacteria (Kur-
tenbach et al., 2006; Mechai et al., 2016). Conse-
quently, EO data fine enough in spatial resolution 
and capacity to resolve different woodland types 
are needed. The second challenge relates to the 
selection and access to EO sources of  climate data 
that are useful for mapping the distributions of 
the vectors and hosts under current and future 
climate using climate model output. 

There are several questions and issues to be 
answered and resolved, including: 

• What EO data can be used as proxies for key 
habitat/environmental indicators for ticks, 
hosts, and pathogens at a range of  geographic 
scales from regional to local? 

• What EO data are appropriate climate indi-
cators at a range of  geographic scales from 
regional to local? 

• What EO data and products can be used to 
assist prediction of  the expansion of  Lyme 
disease risk areas? 

• What future EO instruments might be able 
to provide tools and geospatial data to bet-
ter understand the impacts of  habitat, bio-
diversity, and climate change on tick-borne 
diseases such as Lyme disease? 

Responses and options 

Below are responses of  the experts consulted re-
garding key issues and the data needed for public 
health responses to tick-borne diseases: 

• EO and geospatial data are needed at vari-
ous geographic scales depending on their 
use. The data required are environmental 
variables affecting distribution and activity 
of  vectors and pathogens, and include land 
cover, land use, forest fragmentation and 
type, temperature and precipitation, sur-
face, and soil moisture, and perhaps snow 
cover in some locations. 

• Suitable non-commercial EO data include 
those from Landsat, Sentinel, and RADAR-
SAT Constellation Mission (RCM) for land 
use and land cover variables (forest types, 
forest fragments, etc.) and those from 
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Fig. 2.2.1. (A) High-resolution satellite image suitable for extracting key land use information, e.g. 
woodlands and edges; (B) Map of tick habitats in a parkland area near Bristol, UK, used to analyze dog 
walking routes and tick exposure. (From: Jennett et al., 2013.) 
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VIIRS, MODIS, AVHRR, and 3B42/TMPA 
(TRMM continuity) for climatic and micro-
climatic variables (surface temperature, 
surface moisture, air temperature, air hu-
midity, precipitation, etc.). 

• Required EO data sets are generally available 
either online, or in the Canadian context, 
through various government departments. 

• Required spatial and temporal details of  EO 
data are generally in the order of a few tens 
or hundreds of  meters, whereas the revisit 
periods for mapping are in the order of  one 
to fve years. 

EO-based risk maps for Lyme disease 
in central and eastern Canada 

Data on risk factors used in risk assessment 
models of  Lyme disease focus on favorable cli-
matic conditions and suitable habitats. Model 
input is often based on coarse spatial resolution 
information. However, fine spatial resolution 
data are required to capture landscape and habi-
tat heterogeneity and microclimate variations 
for risk prediction for Lyme disease at local 
scales. Local-scale risk prediction is needed 
for local-level management, which includes 
implementation of  surveillance, prevention, and 
control measures such as warning signs and 
landscape management in parks and gardens 
(Stafford, 2007). To meet this need, local char-
acterization of  Lyme disease risk may be 
achieved by an indicator-based approach using 
high-spatial-resolution EO data. In contrast to 
mosquito-borne diseases, for which the time 
scale of  vector generation times and transmis-
sion cycles may be a few weeks, the time scale for 
risk maps based on EO data needed for tick-borne 
diseases is in the order of  2–3 years or more. This 
time frame corresponds to the lifecycle of  the 
tick over which environmental conditions must 
remain suitable for tick populations to survive. 

Risk maps for central and eastern Canada 
with high spatial resolution using EO data on 
occurrence of  suitable habitat and suitable cli-
mate have been developed (Kotchi et al., 2021). 
An example of  maps for possible occurrence of 
I. scapularis tick populations – and by inference, 
Lyme disease risk – were produced using EO 
data (Fig. 2.2.2). The map estimates risk using 

land cover and climate data from 2000 to 2015. 
The risk maps were validated with tick surveil-
lance data. 

Expected outcomes and impacts 

What does this map do? The I. scapularis risk map 
identifies areas where the environment is suit-
able for populations of  this tick to become estab-
lished in eastern Canada. In northeastern North 
America, including Canada, invasion of  this tick 
is accompanied by invasion of  the pathogens of 
zoonotic infections transmitted by the tick. 
Therefore, identifying where tick populations 
could be also identifies where there is risk of  ac-
quiring Lyme disease and other I. scapularis-
borne pathogens (Babesia microti, Anaplasma 
phagocytophilum, Borrelia miyamotoi, B. mayonii, 
Powassan and deer tick viruses). Knowing where 
this risk is at present or in the near future is im-
perative for public health responses. 

The first public health response that these 
maps would initiate is surveillance. The risk 
maps identify where risk might be, but surveil-
lance is needed to identify where risk actually is. 
At and ahead of the leading edge of tick popula-
tion spread, many environmentally suitable 
niches have not yet been filled by tick popula-
tions (Clow et  al., 2017; Gabriele-Rivet et  al., 
2017). Identifying emerging areas of  risk is a 
constant preoccupation of local public health 
organizations because identifying risk is the 
starting point for prevention initiatives.3 In areas 
known for recent and widespread in-migration 
of ticks, risk maps may well identify with suffi-
cient accuracy where current risks are, preclud-
ing the need for further surveillance. 

The risk map can be updated annually and 
show how risk may vary from one year to the 
next due to variations in ambient temperature 
over the 2–3-year lifecycle of  the tick. It is also 
possible to track changes in risk associated with 
a warming climate over time scales of  5–10 
years; and forecast each year whether risk is 
likely to be particularly high (or not) due to tem-
perature conditions over the preceding years. 

Why use EO data? By using EO data, risk can 
be identified anywhere in central and eastern 
Canada, including areas where ground-level 
data on environmental suitability are limited or 
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Fig. 2.2.2. Example of a risk map for Ixodes scapularis ticks (and by inference Lyme disease risk) in central and eastern Canada combining climatic and 
habitat suitability from 2000 to 2015. Color represents the levels of risk occurrence for ticks (RIS, risk of I. scapularis). Gray indicates areas with no 
ecological niches for I. scapularis ticks. (From: Kotchi et al., 2021.) 
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Table 2.2.1. Lyme risk map data needs and constraints related to their use. 

Data 
Type of geospatial 
data 

Spatial 
resolution (SR) 

Temporal 
resolution 
(TR) Data availability 

Complexity of  
EO data analysis 
(low/med/high) 

EO data cost 
(free, nominal, 
significant) Data source 

Land use and land 
cover (LULC) 

1. Product derived 
from Earth 
Observation (EO) 
images 

2. Classification of 
EO images 

1. SR ≤500 m 
2. SR ≤30 m 

1. Yearly 
2. Quarterly 

1. Available 
2. Not available for 

the combined 
expected spatial 
and temporal 
resolutions 

1. Low 
2. High 

Free 1 . MODIS, VIIRS 
2. Landsat-8, 

RapidEye, ACI, 
LCC 

Forest type (FT) Estimated from 
LULC images 

SR ≤30 m Quarterly Processing possible 
(data available) 

Medium Free Landsat-8, RapidEye, 
NFI, ACI, LCC 

Forest fragmentation
index (FFI) 

 Estimated from 
LULC images 

SR ≤30 m Quarterly Not available Medium Free Landsat-8, RapidEye, 
NFI, ACI, LCC 

Land surface 
temperature (LST) 

1. Product derived 
from EO images 

2. Estimated using 
products derived 
from EO images 
and downscaling 
algorithms 

As fine as 
possible: 

1. SR ≤1000 m 
2. SR ≤30 m 

Daily Available for option 1 
Not for option 2 with 

the expected TR 

1. Medium 
2. Medium 

Free 1 . MODIS, AVHRR 
2. MODIS & 

Landsat-8 

Accumulated surface 
degree-days 

Estimated using 
LST 

As fine as 
possible: 

1. SR ≤1000 m 
2. SR ≤30 m 

Daily Available for option 1 
Not for option 2 with 

the expected TR 

Medium Free 1 . MODIS, AVHRR 
2. MODIS & 

Landsat-8 

Surface/soil moisture Estimated using EO 
images 

As fine as 
possible: 

1. SR ≤1000 m 
2. SR ≤30 m 

Daily Available for option 1 
Not for option 2 with 

the expected TR 

High 1. Free 
2. Nominal 

1. SMAP 2 
RADARSAT-2 

For forests, it is often enough to identify seasonal variations in forest parameters (for classification of forest types) and identify where forests have been cut down. For temperature, it is 
often enough to be able to obtain proxies for annual cumulative degree-days. For soil moisture, at least seasonal variations are needed. 
ACI, Annual Crop Inventory (Agriculture and Agri-Food Canada); AVHRR, advanced very high-resolution radiometer; LCC, 2005–2010 20 m land cover of Canada (Natural Resources 
Canada); MODIS, Moderate Resolution Imaging Spectroradiometer; NFI, National Forest Inventory (Natural Resources Canada); SMAP 2, Soil Moisture Active Passive ; VIIRS, Visible/ 
Infrared Imager Radiometer Suite. 
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absent. Currently available EO data integrated 
into the map would allow Lyme risk areas to be 
identified at a much finer spatial resolution than 
maps developed previously. The spatial detail af-
forded by the user of  EO data would therefore 
serve the information needs of  multiple end 
users, as it can identify risk nationally and pro-
vincially, and at a scale useful for municipalities 
and the public. 

Who are the end users? Federal public health 
and health organizations need to identify at a na-
tional scale where risk is or may be occurring and 
where national surveillance prevention and con-
trol would be best targeted. The map may be used 
for national forecasting of  high-risk years. It 
identifies and practicably tracks impacts of  cli-
mate change on health in the context of  Lyme 
disease. Provincial public health organizations 
and municipalities can identify at practical scale 
levels where risk is or may be occurring, helping 
to identify where surveillance, prevention, and 
control efforts would be best targeted. The map 
may be used for provincial forecasting of  high-
risk years. In regions where the tick populations 
are known to have become established in most 
suitable environments, the map can be used 
(at higher magnification) to inform the public of 
where risk occurs and where personal protection 
and prevention should be undertaken. 

Technical considerations and  
perspectives for producing risk maps 

This section highlights the technical consider-
ations necessary for the use of  EO data in the 
production of  risk maps for tick-borne diseases. 

What EO data are needed? The production of 
risk maps of  the expansion of I. scapularis in cen-
tral and eastern Canada on an annual basis and 
at a spatial resolution of  500 m requires compu-
tation of  a risk model using surface temperature, 
surface reflectance, land use, and land cover 
products (Table 2.2.1). 

What resources are needed? Infrastructure for 
big data storage: Even though the lifecycle of  the 
tick is multiple years, production of  risk maps on 
an annual basis and at a spatial resolution of 
500  m requires the downloading of  many EO 
images because very-high-temporal-resolution 
images are needed to obtain meaningful aver-
ages for microclimatic conditions important for 

I. scapularis ticks (Kotchi et al., 2021). There is a 
requirement for higher spatial resolution 
(≤30 m) because Lyme disease risk can occur in 
small woodland patches (McClure and Diuk-
Wasser, 2018), which would significantly in-
crease the need for data storage. The processing 
of  these data and the calculation of  the variables 
needed to produce the risk map generates 
additional images, all of  which require big data 
storage and analysis. 

Infrastructure for big data processing: Image 
processing and analysis can be challenging. The 
number of  images to be processed and the number 
of  variables explored require the development of 
automated processes and related algorithms 
(Hermosilla et  al., 2016). Image analysis repre-
sents big data processing and requires high-
quality computing capacity and availability for 
many days to run the programs. 

Software and remote sensing skills: The ana-
lysis of  the images and the production of  the risk 
map require image processing software and a GIS. 
Expertise in EO image analysis, geo-informatics, 
and mapping is essential for the development of 
risk maps. 

What future developments are needed? Valid-
ation using surveillance data is needed to assess 
the performance of  the risk maps, and these sur-
veillance data may be used iteratively to improve 
the accuracy of the risk model by suggesting 
alterations to the algorithm. 

In order to support disease management at 
a local scale, it would be useful to produce risk 
maps at a higher spatial resolution (30 m). This 
would better assess risk at smaller spatial ex-
tents such as parks and woodlots within mixed 
environments such as urban agglomerations. 
Prevention and control actions at the local level 
may then better target these areas. Producing 
and archiving maps with high spatial reso-
lution (30  m) would require exceptional data 
storage capacity. 

What are the opportunities with EO 
products and data? 

The availability of EO images, products derived 
from these images, and other geospatial data 
from national geodatabases offers several oppor-
tunities for the development of  risk maps with 
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high spatial and temporal resolutions. Some op-
portunities can be considered: 

• Recent (e.g. Landsat-8, Sentinel-1, Senti-
nel-2, Spot-7, Sentinel-3) and future devel-
opments in EO systems with improved spa-
tial, temporal, and radiometric resolutions. 

• EO data and products covering national and 
global scales with a high update frequency are 
available from different geospatial databases 
(e.g. Canadian Forest Service of  Natural Re-
sources Canada, Annual Crop Inventory from 
Agriculture and Agri-food Canada, etc.) and 
data portals (e.g. USGS EarthExplorer, NASA 
Earth Observing System Data and Informa-
tion System, Google Earth Engine, etc.). 

• Downscaling approaches based on mul-
ti-sensor data integrating thermal images 
with very high temporal resolution (daily) 
and multispectral images with high spatial 
resolution would provide the opportunity 
to obtain surface temperature data with 
both high spatial and temporal resolutions. 

• Following investigation, data from new EO 
systems such as the RADARSAT Constella-
tion Mission may be used to directly esti-
mate microclimatic variables like soil and 
surface moisture both at very high spatial 
and temporal resolution. 

Current products and developments 
in EO that contribute to the public 

health sector 

The factors governing the establishment of  tick 
vector populations for Lyme disease are associ-
ated with their habitat (e.g. presence of  host 
animals and refuges to survive winter) and 
favorable climatic conditions over the length of 
the lifecycle. Tick habitat is mainly broadleaf  or 
mixed-wood forest that provides a leaf  litter layer 
sufficient to provide a refuge for ticks during 
adverse (cold, hot, or dry) weather. To identify 
suitable forests and forest fragments, the Canad-
ian Forest Service of  the Department of  Natural 
Resources Canada offers a multitude of  products 
with 30  m or 250  m resolution generated 
through ongoing research activities, as follows. 

Land cover and land cover change: This prod-
uct is a critical source of  information for forest 

habitat characterization and monitoring and 
biodiversity assessment. A time series-based, 
disturbance-informed, land cover mapping ap-
proach is demonstrated over the ~650 Mha of 
forested ecosystems in Canada (Hermosilla 
et  al., 2018). The production of  land cover is 
enabled by local high-performance computing 
for initial data preparation and access to a 
supercomputing environment for spectral clas-
sification, incorporation of  change, and succes-
sional logic, which results in an integrated 
28-year data cube of  land cover (Wulder et al., 
2018). The processing framework used to gen-
erate this product is called the Virtual Land 
Cover Engine, or VLCE, which can incorporate 
any training data and generate a national time 
series of  land cover according to a specified 
land cover legend. VLCE land cover products for 
Canada have subsequently been used to iden-
tify areas of  forest land use in keeping with 
national and international reporting require-
ments (Wulder et al., 2020a). 

Stand replacing forest disturbance: This prod-
uct is a national Landsat time series product 
characterizing forest disturbance (White et  al., 
2017). It incorporates a change hierarchy for 
stand replacing and non-stand replacing 
changes (Hermosilla et al., 2015b) and charac-
terizes multiple changes at the same location 
over time (Hermosilla et al., 2019). This product 
could provide valuable information about vector 
habitat disturbance. 

Forest structure: This product informs on 
forest structural attributes like canopy cover, 
height, volume, and total aboveground biomass 
(Zald et al., 2016; Matasci et al., 2018a). These 
attributes could be potential proxy variables to 
assess habitat suitability for vectors. The forest 
structure product is based on Landsat time series 
and national light detection and ranging 
(LiDAR) transect data. Three decades of  forest 
structure information for Canada’s forested eco-
systems (1985–2016) have been generated 
(Matasci et  al., 2018b) and have subsequently 
been used to characterize long-term trends in 
treed aboveground biomass dynamics (Wulder 
et al., 2020b). 

Best-available pixel composite: This is a prod-
uct that provides national, annual, cloud-free, 
surface reflectance image composites derived 
from Landsat data using the Composite to 
Change (C2C) protocol. These data products 
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provide opportunities to derive other informa-
tion products and Essential Climate Variables 
(ECVs) (e.g. vegetation indices) (White et  al., 
2014; Hermosilla et  al., 2015a, 2016). This 
product could be very useful not only for rapid 
assessment of  Lyme disease risk but also for 
many other vector-borne diseases including 
mosquito-borne diseases. 

Forest fragmentation time series: A product 
was developed for the ~650 million hectares of 
Canada’s forested ecosystems (Hermosilla et al., 
2018), building on work by Wulder et al. (2008, 
2011) and by Pelletier et al. (2017). These data 
could provide important information for the 
local characterization of  Lyme disease risk and 
could also support prediction of  the spread of 
tick and tick-borne pathogen populations from 
one location to another. 

Maps of  Canada’s forest attributes for 2001 
and 2011 at 250  m resolution: This Canadian 
Forest Service map product, based on Canada’s 
National Forest Inventory (Beaudoin et  al., 
2017), includes percentage forest species com-
position for 73 species as well as land cover and 
forest structural attributes. The species com-
position could again be useful in identifying 
habitats suitable for ticks and the pathogens 
they transmit.4 

In agricultural regions and urban agglom-
erations, forest fragments are part of  the land-
scape but are generally not well characterized by 
geospatial products from the forest sector. Agri-
culture and Agri-Food Canada (Davidson et al., 
2017) complements the data available by pro-
viding products in which these forest fragments 
and other environmental determinants are iden-
tified, as follows. 

Land use (LU) maps: These maps are dec-
adal products that cover all areas of  Canada 
south of  60°N at a spatial resolution of  30 m. 
Maps were released in 1990, 2000, 2005, 
2010, 2015, and pending 2020.5 LU classes in 
the maps are based on the Intergovernmental 
Panel on Climate Change legend and include 
forest, water, cropland, grassland, settlement, 
and “other,” which includes barren land, ice, 
rock, and unclassified land. Methods have been 
developed to harmonize land cover products, 
such as annual crop inventory (ACI) and VLCE, 
which could be very useful in generating 
wall-to-wall land cover products for Canada’s 
terrestrial area (Li et al., 2021). 

ACI maps: These maps have been available 
since 2009 for the Canadian prairies and 2011 
nationally. They are also a 30-m resolution prod-
uct that covers all the Canadian provinces. They 
are based on a decision tree model using optical 
(Advanced Wide Field Sensors [AWiFs], Land-
sat-5, 7, and 8, Sentinel-2, Gaofen-1) and SAR 
(Sentinel-1, RADARSAT-2) satellite images. The 
ACI land use and land cover classes include surface 
water, urban and developed areas, shrublands, 
wetlands, grasslands, agriculture (including a 
range of  crop varieties), and forest types (con-
iferous, broadleaf, mixed wood). 

The 2005–2010 20 m land cover of  Canada 
south of tree-line product from the Canada 
Centre for Mapping and Earth Observation, 
Natural Resources Canada, is another land use 
and land cover product that complements the 
ones above. It is based on satellite images from 
the Système Pour l’Observation de la Terre 
(SPOT-4 and SPOT-5) satellites. It consists of  16 
generic classes including more than five forest 
types (evergreen conifer forest, evergreen coni-
fer forest, deciduous forest, mixed forest, etc.), 
wetlands, and surface waters. 

Findings and opportunities  
for collaboration 

Emerging infectious diseases are a significant 
public health issue for Canada. Geospatial data 
that identify the drivers of  disease emergence or 
the factors that influence disease endemicity 
must be available to the public health commu-
nity. The example of  the I. scapularis risk map 
shows that geospatial data producers in the Can-
adian federal community provide reference data 
of  the quality and relevance needed to feed pre-
dictive models of  vector-borne disease and risk 
maps. These data have the potential to refine risk 
models by offering a more detailed assessment of 
their capacity to identify environmental suitabil-
ity for different tick species and tick-borne patho-
gens, and by providing a range of spatial and 
temporal resolutions that can help multiple jur-
isdictions in risk communication and disease 
management. 

The data offered by the different EO and 
geomatics sectors, together with the ongoing re-
search efforts of  public health scientists in the 
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field of tick-borne diseases, provide the basis for involved in EO and geomatics should serve as an 
a network for collaboration. Also, the infrastruc- example for the establishment of  an infrastruc-
ture, technologies, methods, and supercomput- ture framework to support the development of 
ing environment developed by departments geomatics in the public health sector. 

Notes 

1 https://business.esa.int/projects/lymemap (accessed 3 January 2022). 
2 https://www.canada.ca/en/public-health/services/diseases/lyme-disease/risk-lyme-disease.html (accessed 3 
January 2022). 
3 https://www.inspq.qc.ca/zoonoses/maladie-de-lyme (accessed 3 January 2022). 
4 https://open.canada.ca/data/en/dataset/ec9e2659-1c29-4ddb-87a2-6aced147a990 (accessed 3 January 2022). 
5 https://open.canada.ca/data/en/dataset/fa84a70f-03ad-4946-b0f8-a3b481dd5248 and https://open. 
canada.ca/data/en/dataset/fa84a70f-03ad-4946-b0f8-a3b481dd5248/resource/7575a7a5-4d28-478c-
b32f-e9ae7c15c622 (both accessed 19 January 2022). 
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2.3 Air Quality and Heat-related Health Issues 
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Context, state of knowledge, 
challenges, and responses 

Epidemiological evidence suggests that air pollu-
tion has become the biggest environmental 
cause of  premature death, overtaking poor sani-
tation and a lack of  clean drinking water (Or-
ganisation for Economic Co-operation and 
Development [OECD], 2014). Two additional 
seasonal environmental issues are of import-
ance globally, as well as in Canada: the effect of 
wildfire smoke plumes on air pollution (Sofowote 
and Dempsey, 2015; Le et al., 2014) and the ef-
fect of  urban heat islands on the health of  urban 
populations (Giguère, 2009). One of  the chal-
lenges for public health authorities is to mitigate 
the impact of  air pollution and urban heat is-
lands on vulnerable groups, such as the very 
young and the elderly. 

Environment and Climate Change Canada 
(ECCC) provides an air quality forecast service as 
part of its nationwide online weather informa-
tion network.1 The ECCC air quality forecast pro-
gram identifies three dominant indicators of 
summer and winter smog, which are ground-
level ozone (O3), nitrogen dioxide (NO2), and fine 
particulate matter (PM) that is 2.5 microns and 
less in diameter (PM2.5). They were selected 
based on the strength of  evidence of  their im-
pact on health, and their respective concentra-
tion–response ratios were statistically combined 
to produce the Air Quality Health Index (AQHI) 

(Stieb et al., 2008). A key supporting component 
of  the AQHI program is the Canadian surface 
measurement network, which continuously 
monitors ozone, PM

2.5, and NO2 data in popu-
lated areas. In the USA, the National Oceanic 
and Atmospheric Administration (NOAA) devel-
ops and implements operational air quality 
forecast guidance, and the Environmental Pro-
tection Agency (EPA) produces an air quality 
index (AQI) forecast based on pollutant stand-
ards they have set. The US AQI is a standards-
based worst-pollutant index that incorporates 
five major pollutants and is supported by a large 
monitoring network reporting under the AirNow 
data management and dissemination tool 
(e.i. AirNow example p.44). 

In recent years, measurements of  thermal 
conditions in urban areas have allowed for better 
characterization of  urban heat island effects. 
This has led to the modernization of  heat alert 
and response programs to counter the adverse 
heat and air quality impacts on human health, 
particularly among children, seniors, and people 
at greater risk of  cardiovascular and pulmonary 
disease (De Sario et al., 2013). 

In addition to complementing in situ air 
quality monitoring at the surface, space-based 
EO data are employed to routinely support a var-
iety of  related measurement and mapping activ-
ities. They include estimating emissions, tracking 
pollutant plumes, supporting air quality forecast-
ing activities, detecting wildland fires, providing 
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evidence for “exceptional event” declarations, 
monitoring regional long-term trends, and 
evaluating air quality model output (Duncan 
et  al., 2014). Specialized EO sensor systems in-
volve the Ozone Monitoring Instrument (OMI) 
on board NASA Aura satellite, the MODIS on 
board NASA’s Terra and Aqua, and the Tropo-
spheric Monitoring Instrument (TROPOMI). 
New satellite-based instruments are expected to 
be launched in the coming years, such as NASA’s 
Tropospheric Emissions: Monitoring of  Pollu-
tion (TEMPO) spectrometer onboard a geosta-
tionary satellite (planned for 2022).2 TEMPO 
will make accurate hourly daytime measure-
ments of  tropospheric ozone, nitrogen dioxide, 
and formaldehyde, with significantly improved 
spatial resolution over other sensors currently 
available. Together with the Korean Geostation-
ary Environment Monitoring Spectrometer 
(GEMS) and the ESA Copernicus Sentinal-4 mis-
sions, TEMPO will comprise the North American 
element of  a geostationary satellite constellation 
to monitor air quality (Chance et  al., 2013; 
Zoogman et al., 2017). 

Examples of recent research 

In general, air quality and weather forecast pro-
grams are large consumers of  EO data. There are 
several areas of  ongoing research with particu-
lar application in public health. They include the 
assimilation of real-time EO data into air quality 
forecast models; the use of  near-real-time wild-
land fire emission estimates in smoke forecasts; 
and pollutant emission inference and hybrid 
approaches to surface pollutant exposure map-
ping. In order to capture local thermal anomal-
ies, weather forecast modeling at the urban scale 
attempts to take advantage of  detailed land use 
maps for developing appropriate urban surface 
models and assimilation systems. 

One recent example of  public health-related 
EO data assimilation is the use of  real-time 
measurements for improving the Ultraviolet 
(UV) Index forecast. In the USA, an OMI surface 
UV irradiance product was spatially interpolated 
to the county level and matched with demo-
graphic and economic data available from the 
Centers for Disease Control and Prevention 
(CDC). This unique product provides a data 

source to map national distribution and long-
term trends in UV radiation for risk communica-
tion and health-related studies. The project was 
a partnership between NASA and the CDC.3 

Accurate characterization of the amount 
of  stratospheric ozone allows for the correct 
forecast of  the maximum amount of  UV rays 
that will reach the Earth’s surface. Overexposure 
to UV rays can cause a variety of  health con-
cerns ranging from sunburns to skin cancer. 
The UV Index forecasts serve as a guide to take 
protective steps for reducing or preventing over-
exposure to UV rays. The data assimilation sys-
tem for weather forecasting has been expanded 
to use constituent data with the addition of 
stratospheric ozone measurements from differ-
ent satellite instruments. These include the Glo-
bal Ozone Monitoring Experiment-2 instruments 
(GOME-2A and GOME-2B) on the MetOp-A and 
MetOp-B satellites, the total column ozone map-
ping instrument (OMPS-NM) of  the Ozone Map-
ping Profiler Suite on the NOAA-20 and Suomi 
National Polar-orbiting Partnership (NPP) satel-
lites, the OMI on the Aura research satellite, 
TROPOMI, partial column ozone profiles from 
the Solar Backscatter Ultraviolet Radiometer in-
strument (SBUV/2) on the NOAA-19 satellite 
and OMPS-NP on the Suomi NPP satellite, and 
ozone profiles of  the Microwave Limb Sounder 
(MLS) on the Aura satellite (e.g. Rochon et  al., 
2019). The resulting ozone layer forecasts are 
leading to enhanced UV Index products, includ-
ing tracking daytime changes and extending the 
forecast period (e.g. Tereszchuk et  al., 2018). 
Ozone data from other satellite instruments will 
be added over time as other sources become un-
available. These additional sources are expected 
to include TEMPO, as well as ozone-sensitive in-
frared spectral channels currently being investi-
gated for this purpose from measurements of  the 
Cross-track Infrared Sounders (CrIS) on Suomi 
NPP and NOAA-20, the Infrared Atmospheric 
Sounding Interferometer (IASI) on the MetOp 
satellite series, and the Atmospheric Infrared 
Sounder (AIRS) on the Aqua satellite. 

There is considerable potential to combine 
ground-based and satellite-based observations 
in data assimilation systems for improving air 
quality forecast. Meteorological organizations 
are investing efforts in this direction. Current air 
quality forecast systems are limited by their abil-
ity to accurately capture the initial distribution 



  

 
 

 

 
  

 

 
 
 
 

 

 
 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

  

 
 

 

 

  

 

 
 
 

  
 
 
 

 
 
 

  
 

 
 
 

 
 

40 Chapter 2 

of  pollutants and to correctly define pollutant 
emission sources. The most significant gain in 
air quality forecast modeling consists of  the in-
corporation of  a data assimilation cycle with 
source inversion, where EO data can provide in-
formation on initial conditions and adjust emis-
sion rates based on recent observations (Peng 
et al., 2017). 

During the summer months, air quality 
and visibility degradation as a result of wild-
land fire smoke are becoming major concerns 
in many cities, especially those in western Can-
ada and the USA. Wildland fires can contribute 
to large quantities of atmospheric pollutants 
and can increase the formation of  secondary 
pollutants such as O

3 and fine aerosols. Moder-
ate-resolution EO data from the polar-orbiting 
AVHRR, MODIS, and VIIRS satellite sensors are 
key components for identifying fire location 
and intensity in near real time, thus facilitating 
the quantification of  emissions. Using a top-
down approach with fire radiative power (FRP) 
as proxy for total fuel consumption, several glo-
bal biomass burning emissions inventories are 
now available with varying spatial resolution 
and temporal coverage, as listed in Table 2.3.1. 
Some of  these databases and inventories are 
being used in global chemical models (Euro-
pean Centre for Medium-Range Weather Fore-
casts – Monitoring Atmospheric Composition 
and Climate with the Global Fire Assimilation 
System [ECMWF-MACC with GFAS], NASA 
Goddard Chemistry Aerosol Radiation and 
Transport with Quick Fire Emissions Dataset 
[NASA-GOCART with QFED], National Center 
for Atmospheric Research – Whole Atmosphere 
Community Climate Model with Fire INventory 
from NCAR [NCAR-WACCM with FINN]) to 
simulate the long-range transport of  smoke 
across continents. 

The ECCC FireWork system utilizes near-
real-time EO data and a chemical transport 
model to provide 48-h forecasts of  air quality 
conditions across North America. FireWork is a 
valuable tool for regional air quality forecasters 
and emergency first responders for issuing 
health bulletins and evacuation warnings. 

Air quality-related EO data has been util-
ized for deriving so-called “top-down” emission 
estimates for CO, NOx, SO

2, and volatile organic 
compounds, with some progress made with re-
gard to PM2.5 (Levelt et al., 2018). The types of 

emissions captured by EO are varied and occur 
over different spatial and temporal scales; 
examples include natural forest fires, volcanic 
eruptions, and anthropogenic sources, as re-
viewed by Streets et  al. (2013). OMI data have 
been used to pinpoint locations of SO2 emissions 
and subsequently quantify their annual emis-
sions by combining OMI observations with wind 
hind-cast information. A summary of  over 500 
locations is shown in Fig. 2.3.1 (Fioletov et  al., 
2016); it includes several dozen locations of  an-
thropogenic and volcanic sources not included 
in any other emissions inventories (McLinden 
et al., 2016). This work resulted in an update 
to the Hemispheric Transport Air Pollutant 
(HTAP) SO

2 emissions inventory, referred to as 
OMI+HTAP, which led to improved prediction of 
SO2 concentrations compared with surface net-
works (Liu et al., 2018). 

Satellite observations have also been used 
to determine long-term trends in ambient pollu-
tant concentrations. Using OMI data, NASA es-
tablished NO2 emission trends for 195 cities 
worldwide.4 

The use of  EO data as a source of  informa-
tion concerning urban heat islands is well es-
tablished. More specifically, satellite thermal 
instruments are used to characterize the inten-
sity of surface urban heat islands, based on 
surface temperature as a proxy for air tempera-
ture. Recently, Chakraborty and Lee (2019) 
used the extensive archives of  the MODIS in-
struments to create a global comprehensive 
characterization of  surface urban heat islands 
(UHIs) across 9500 urban clusters using over 
15 years of data, allowing for a classification 
of  UHIs by climate zones and an estimation of 
trends. Canadian examples include the use of 
Landsat Thematic Mapper (TM) and Enhanced 
Thematic Mapper Plus (ETM+) to examine sur-
face intra-urban heat islands in Montreal, QC 
(Martin et al., 2015) (Fig. 2.3.2) and to study 
urban land surface temperature (LST) impacts 
in the city of Saskatoon, SK (Shen et al., 2014). 
While the use of  LST as a proxy for air surface 
temperature has some limitations, the ap-
proach offers the advantage of  providing fine, 
sub-kilometer spatial scales, as conventional 
numerical weather models are tied to coarser 
grid sizes. 

Recent weather forecast models have been 
adapted to spatial-temporal scales fine enough 
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Table 2.3.1. Major forest fire databases and inventories. 

Frequency Coverage Resolution Reference Name/organization 

GFED Monthly 1995–now 0.25° × 0.25° Randerson et al., 2012; Giglio 
et al., 201  3. http://www. 
globalfiredata.org 

Global Fire Emissions 
Database (UMD, NASA) 

GFAS Daily 2001–now 0.5° × 0.5° Kaiser et al., 201  2. https://apps. 
ecmwf.int/datasets/data/ 
cams-gfas/ 

Global Fire Assimilation 
System (ECMWF-MACC) 

FINN Daily 2001–now 1 km × 1 km Wiedinmyer et al., 2011 . https:// 
www.acom.ucar.edu/Data/fire/ 

Fire Inventory from NCAR 

FEER Daily 2003–now 1° × 1° Ichoku and Ellison, 201  4. https:// 
feer.gsfc.nasa.gov 

Fire Energetics and Emissions 
Research (NASA) 

QFED Daily Now (use in GOCART) 0.1° × 0.1° Darmenov and Da Silva, 201  5. 
https://gmao.gsfc.nasa.gov/ 
research/science_snapshots/ 
global_fire_emissions.php 

Quick Fire Emissions Dataset 
(NASA) 

GICC Decadal–monthly 1900–2005 1° × 1° Mieville et al., 201  0. http:// 
accent.aero.jussieu.fr/GICC_ 
metadata.php 

Global Inventory for 
Chemistry-Climate Studies 
(ACCENT) 

ACCENT, Atmospheric Composition Change, the European Network of Excellence; ECMWF, European Centre for Medium-Range Weather Forecasts; FEER, Fire Energetics and 
Emissions Research – NASA; FINN, Fire INventory from NCAR; GFAS, Global Fire Assimilation System; GFED, Global Fire Emissions Database; GICC, Global Inventory for  
Chemistry-Climate; MACC, Monitoring Atmospheric Composition and Climate; NCAR, National Center for Atmospheric Research; UMD, University of Maryland – Department of 
Atmospheric and Oceanic Science. 
All websites accessed 2 January 2022. 
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Fig. 2.3.1. Annual SO2 emissions from 2005 to 2015 derived from the Ozone Monitoring Instrument (OMI) 
for approximately 500 locations worldwide, according to four source types: smelters (S), oil and gas 
operations (OG), coal-fired power plants (PP), and volcanoes (V). Time series are shown for six different 
locations. (From: Fioletov et al., 2016.) 

to capture intra-urban thermal variabilities 
(Leroyer et al., 2014). This required the devel-
opment of  appropriate urban surface para-
metrizations, such as the Town Energy Balance 
(TEB) scheme (Masson, 2000). The TEB 
scheme adds proficiency to intermediate scale 
weather forecast systems such as the High-
Resolution Deterministic Prediction System of 
ECCC (Milbrandt et  al., 2018). The combin-
ation of urban schemes with land surface data 
assimilation systems can take further advan-
tage of  thermal imagery to drive land surface 
models coupled to atmospheric models, with 
expected gains in urban-scale weather forecast 
(Carrera et al., 2015). 

Challenges and questions 

There are opportunities and emerging operational 
capabilities for assimilating air quality-related 
EO observations over large areas into public 
health-related services. The North American 
FireWork system currently covers large areas of 
Canada and the USA on an operational basis 
(Pavlovic et al., 2016; Chen et al., 2019). One of 
its tasks consists of  incorporating more detailed 
spatio-temporal EO data into the existing forest 
fire smoke forecast systems (more details on Fire-
Work are provided on page 45). Another challenge 
is the assessment of EO capabilities with regard to 
linking source areas with vulnerable populations 
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Fig. 2.3.2. Example of Landsat-8 Thermal Infrared Sensor (TIRS) thermal band measurements, dated 20 
August 2013, superimposed on detailed satellite imagery of an urban area in Montreal, QC, showing the 
close relationship of land use categories and thermal conditions. Surface heat islands are depicted in red; 
cooler areas are represented in shades of green and blue. (From: Philippe Martin, ECCC.) 

and outlining areas exposed to long-range trans-
port of  harmful particle plumes. 

Challenges associated with the assessment 
and monitoring of  UHIs are similar in nature in 
that relatively low-resolution thermal data need to 
be linked to detailed land use information as well 
as information on population distribution and 
density. Mapping, monitoring, and assessing ac-
tual urban land use and thermal conditions are 
tasks that can involve satellite-based measure-
ments. The challenge is to determine spatio-
temporal data requirements in conjunction with 
sensor system capabilities at a local scale. 

Overall, for EO to support applied science re-
lated to public health concerns for air quality or 
heat, several questions and critical issues need to 
be addressed: 

• What are the critical EO and geospatial data 
requirements for addressing large-area 
PM2.5-related issues of air-borne diseases 
and chronic conditions, including remote 
human communities? 

• What are the critical EO and geospatial data 
requirements for addressing urban area 
PM2.5-related issues of air-borne diseases 

and chronic conditions, including densely 
populated areas? 

• More specifcally, what are the data defn-
ition and operational requirements that 
would optimize the value of  real-time or 
near-real-time EO data for data assimilation 
into air quality forecast systems and urban-
scale weather forecast systems? 

• What EO data sources would lend them-
selves to detailed mapping of LST and UHIs, 
associated land use information, and popu-
lation/built-up areas? 

• How and at what level of  spatial-temporal 
detail might these EO data sources and 
measurements be used for public health 
research? 

Responses and options 

Expert consultations yielded the following re-
sponses for potential options and actions regarding 
critical geospatial data requirements to address 
air-borne diseases and chronic conditions, with 
special reference to PM2.5: 
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• Critical EO and GIS data for large-area PM2.5 

are aerosol optical depth (AOD) data from 
MODIS, GOES-16, and VIIRS, for example, 
and land use and land cover (surface per-
meability) products from Landsat. 

• EO data sources for detailed LST and heat 
island maps include MODIS LST and Land-
sat thermal data, supplemented by air-
borne data. 

• Spatial and temporal resolutions are chal-
lenging; AOD data are not useful in high al-
bedo environments (e.g. snow-covered 
landscapes, desert areas); time of day of ob-
servation is an important factor. 

• Model estimates of  PM from AOD require 
validation using in situ PM2.5 data, as AOD is 
not equivalent to PM in the boundary layer. 

• Multiple thematic data sets are required, in-
cluding: census data; meteorological data 
and models; vegetation index data; and 
socio-economic data (e.g. traffc density). 

• Additional thematic data requirements for 
detailed urban PM2.5 analysis include those 
related to tree canopies, urban morphology, 
hospital admissions, social media (using 
hashtags), population mobility (relative to lo-
cation of  exposure), and emission inventories. 

• The usefulness of  EO-based thermal meas-
urements for public health research extends 
to short-term (daily) and long-term expos-
ure monitoring capabilities, with the ability 
to tie spatio-temporal measurements to the 
most vulnerable areas and populations. 

• The usefulness of  EO and PM measure-
ments could extend to measure diurnal 
variations and to improve national and pro-
vincial level emission inventories. 

The American AirNow AQI for decision 
support and future EO missions 

In the USA, the AQI offers daily reports on how 
clean or polluted the air is, and what associated 
health effects might be of  concern. The AQI is 
calculated from five major air pollutants: 
ground-level ozone, particle pollution or PM, 
carbon monoxide, sulfur dioxide, and nitrogen 
dioxide. Since 1997, the AirNow data manage-
ment and dissemination tool has provided 
up-to-date AQI information online for the USA 

and many parts of  the world utilizing both 
ground and remotely sensed MODIS observa-
tions, notably on PM

2.5 exposure. 
The AirNow software includes worldwide 

air quality mapping and multi-language capabil-
ities that can be implemented in cities and re-
gions around the globe. The system also allows 
decision makers to better communicate about air 
pollution, health, and sustainability goals, and to 
involve the public in efforts to improve air quality. 
MODIS sensor data help to fill many coverage 
gaps so that a large portion of the population and 
media outlets now have access to air quality in-
formation (Fig. 2.3.3). In the USA, federal, state, 
tribal, and local users, researchers, and air quality 
organizations provide data to and derive forecasts 
from the AirNow system. A group of  international 
organizations and agencies provides overall 
direction, standardization, and scientific under-
standing for the collection, sharing, and dissem-
inating of  air quality data and forecasts and pro-
moting AirNow development and growth in a 
self-supporting environment. 

AirNow map products include PM
2.5 ground 

data and MODIS data algorithms and modeling 
required for PM2.5 calibration. Time of  day of  ob-
servation is an important factor as there is a need 
to capture diurnal variations. The remote sensing 
data are not reliable for areas of  high albedo, such 
as desert landscapes and snow-covered terrain. 
The AirNow system requires “big data” infra-
structure for storage and processing, as well as 
skill and capacity among end users to utilize the 
final products knowledgably. It is a prime example 
of  interagency cooperation to create a new prod-
uct of  significant societal health benefit. 

There are several significant EO sensor de-
velopments underway in the USA, Europe, and 
Korea concerning pollution measurements. The 
TEMPO instrument represents the North Ameri-
can component of  a satellite constellation with 
eventual global coverage provided by the Coper-
nicus Sentinel-4 sensor system of the ESA and 
the Korean GEMS. TEMPO will make tropo-
spheric pollution observations (O

3, NO2, H2CO) 
every daylight hour at high spatial resolution 
from geostationary orbit. The instrument was 
delivered in 2018 and the launch is planned for 
2022. TEMPO data will be used to enhance pol-
lution emission inventories, record population 
exposure, and assess effective emission-control 
strategies.5 
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AIRNow Interpolated Ground 
Observations 

NASA Satellite-Derived PM2.5 
Estimates 

Satellite_for_20120627 

NASA data improve AIRNow maps 
in regions with few monitors (MT, WY, ND, 
SD NE, KS) 

PI: Phil Dickerson, US EPA 

Fig. 2.3.3. The AirNow operational concept of using satellite data to augment missing PM2.5 ground 
measurements in the USA. (From: https://www.airnowtech.org/index.cfm, accessed 3 January 2022.) 

As part of  its “Earth System Science Path-
finder” program, the NASA Jet Propulsion La-
boratory is currently developing the future MAIA 
(Multi-Angle Imager for Aerosols) instrument 
whose primary objective is to assess links be-
tween different air-borne PM types and adverse 
birth outcomes, cardiovascular and respiratory 
disease, and premature deaths. Air-borne PM is a 
well-known health threat, but the relative tox-
icity of  specific PM types is poorly understood. 
The sensor is a multi-angle spectro-polarimetric 
imaging instrument to be launched in 2022 for 
operation in a sun-synchronous Earth orbit to 
measure particle types, sizes, concentrations, 
and geolocation of  atmospheric aerosols. The 
MAIA EO data generated from these radiometric 
and polarimetric measurements will be used to 
integrate air quality observations and geostatisti-
cal models, surface PM monitors, health records, 
and epidemiology to better understand the links 
between these pollutants and aerosols and 
human health. MAIA stakeholders include the 
US EPA, the CDC, and NOAA. 

NOAA’s recently launched Geostationary 
Operational Environmental Satellites GOES-16 

Fusion_for_20120627 

and GOES-17 are both equipped with an Ad-
vanced Baseline Imager (ABI) for accurate quan-
tification of  AOD throughout the day over the 
USA and southern Canada. The increased num-
ber of  spectral bands of ABI compared with pre-
vious GOES satellites is expected to significantly 
improve AOD measurements over land areas. 

The Multi-Viewing Multi-Channel Multi-
Polarization Imager (3MI) is the ESA’s analogue 
to the American MAIA instrument. Both in-
struments are multi-angle imaging spectropo-
larimeters. However, 3MI has a much wider 
swath, a much longer mission lifetime of  7 years, 
and will consist of  a series of  three satellites that 
are expected to provide AOD measurements over 
a 20-year period from 2021 to 2042. 

The Canadian FireWork system for air 
quality forecast related to wildfre 

emission of pollutants 

Wildfire emissions are a growing concern for 
public safety in North America. Smoke plumes 

https://www.airnowtech.org/index.cfm


46 Chapter 2   

 

  

 

 

 
  

 
 

 
 
 
 

 

 

 

  
 
 
 
 
 
 
 

 
 

 
 
 

contain high concentrations of  primary PM2.5. 
Fire emissions also contribute to the formation 
of  ground-level ozone and secondary organic 
aerosols. They can be the dominant contributors 
to adverse air quality issues during the summer, 
with long transport impacting other parts of the 
continent and beyond. Large-scale fires such as 
those in western Canadian provinces and in 
California in recent years can produce signifi-
cantly more emissions than those from an-
thropogenic sources in the region. Furthermore, 
climate changes are expected to further increase 
the frequency, size, and duration of  wildland 
fires across North America (Wotton et al., 2017). 

Given the sporadic nature of  wildland fires 
and the complexity of  quantifying emissions, 
monitoring transport, and assessing the chem-
ical transformation of  smoke, it is difficult to 
forecast the impact and severity on air quality. 
ECCC developed a numerical air quality forecast 
system as a numerical guidance tool. The Fire-
Work smoke prediction system combines near-
real-time EO data and the core GEM-MACH 
chemical transport model, in effect simulating 
the transport and atmospheric loading of PM

2.5 

as a result of  wildland fires.6 

Expected outcomes and impacts 

The FireWork system has been operational since 
May of 2016 and generates daily forecasts dur-
ing the Canadian fire season from April to Octo-
ber. Twice a day (00z and 12z UTC), the system 
produces a North America-wide 48-h model 
forecast of  air pollution as PM2.5 surface and 
total column concentrations. In Canada, the 
simulation results provide numerical guidance 
on regional air quality conditions to forecasters 
in regional offices of the Meteorological Service 
of  Canada (MSC). They issue public air quality 
forecast in the form of  the AQHI (Stieb et  al., 
2008), as well as smoke-related special weather 
bulletins. 

FireWork is a collaborative product by Nat-
ural Resources Canada (Chen et  al., 2019). 
Near-real-time information on fire locations and 
estimated fuel consumptions across North 
America are obtained from the Canadian Wild-
land Fire Information System (CWFIS), which 
is operated by the Canadian Forest Service of 

Natural Resources Canada (Lee et  al., 2002). 
Fire locations, or hotspots, are retrieved from EO 
data originating from NASA’s MODIS and VIIRS 
satellite sensors or NOAA’s AVHRR. The near-
real-time EO data are processed with the Canadian 
Fire Emissions Prediction System (CFFEPS) and 
with hourly forecast weather conditions to esti-
mate fire behavior, fuel consumption, and fire 
emissions at hotspot locations for the upcoming 
72  h. Heat energy from hotspots is then esti-
mated to adjust fire plume injection heights that 
are critical in dispersion transport modeling. 
And finally, hourly fire emissions are incorpor-
ated together with anthropogenic emissions in-
ventory for GEM-MACH chemical transport 
model simulation. 

An excess of  pollution forecasted by Fire-
Work is considered to be the result of  direct fire 
emission. This excess is calculated by comparing 
with the MSC’s Regional Air Quality Deterministic 
Prediction System without biomass burning 
emissions. This simple – but computationally ex-
pensive – approach allows individual wildfire smoke 
plumes to be isolated, followed, and forecast. 

Behind the scenes, the FireWork system 
provides guidance to ECCC meteorologists issuing 
air quality forecasts and warnings. In addition, 
key operational model products from FireWork 
are available to the public as part of  Canada’s 
weather information website.7 Products include 
daily average or maximum forecast maps. Hourly 
animations are available to show the modeled 
trajectory of  smoke plume and concentration 
variability from identified fire activity across the 
model domain (Fig. 2.3.4). 

Near-real-time EO data constitute an es-
sential element of the FireWork system due to 
the large spatial extent of  the model domain 
across the North American continent. EO data 
are required for the identification of  the sporadic 
wildfire locations and the approximate timing 
and size of  the fire. This information is critical 
for quantifying fire emissions for model input. 
In addition, EO data provide timely updates that 
are often not available through surface observa-
tions, as well as a higher degree of  data uni-
formity that is often preferable to the varying 
methodologies and timeliness of  fire activity 
records from different provincial or state gov-
ernment entities. This combination of  EO and 
model data processing was demonstrated in a 
recent study that quantified carbon monoxide, 
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Fig. 2.3.4. Example of a FireWork smoke forecast product, showing the 24-h forecast of the contribution 
of wildland fires to surface PM2.5 concentrations, valid at 12:00 UTC on 20 July 2021. 

ammonia, and nitrogen dioxide emissions from 
the 2016 Horse River wildfire in the Fort Mc-
Murray area (Adams et al., 2019). EO data are 
also an important source of information for 
verification of  modeling parameterization such 
as plume injection height, which is an important 
parameter in atmospheric dispersion modeling 
(Griffin et al., 2020). 

The FireWork system has been demon-
strated to be a valuable tool in providing guid-
ance for regional air quality during smoke events 
from wildland fires across North America 
(McLean et  al., 2015; Yuchi et  al., 2016). Re-
gional forecasters, emergency first responders, 
and decision makers use FireWork results as 
guidance for assessing evacuation orders and is-
suing special health bulletins. The public uses 
FireWork to visualize the long-range transport 
of  wildland fire smoke plumes. In addition, the 
FireWork archive is utilized by scientists in 

Canada to study the potential exposure and 
associated health impact of  atmospheric 
pollutants from biomass burning activities 
(Munoz-Alpizar et al., 2017). 

Technical considerations and 
perspectives for system operation 

Technical considerations of  implementing and 
operating the FireWork system include the selec-
tion of  EO data, adoption of  prior technical pro-
grams, as well as computational requirements. 

The EO data needed for determining active 
fire locations, or hotspots, originate from re-
trievals from NASA MODIS and VIIRS, and 
NOAA AVHRR, with support from the University 
of  Maryland and the US Forest Service Remote 
Sensing Application Center. While the Fire-
Work system uses these fire detection products 
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combined with a “bottom-up” approach to fuel 
consumption based on a land-vegetation model, 
similar systems have used a “top-down” approach 
that relies on correlating remotely sensed FRP to 
fire energy and fuel consumption (Mota and 
Wooster, 2018). As the science evolves, forecast-
ing systems will adjust to the most appropriate 
scheme for their operations. 

The development of  the Canadian FireWork 
system is an extension of  existing programs in 
two federal departments, ECCC and Natural Re-
sources Canada. As a comprehensive numerical 
weather prediction system, FireWork requires a 
high-performance computing (HPC) environ-
ment with critical 24/7 support for its operation. 
In addition, the system relies on the operation of 
the fire behavior prediction system run by Nat-
ural Resources Canada’s CWFIS. System im-
provements require dedicated resources for model 
development, EO data processing, and model fore-
cast operations. Ultimately, the rationale for run-
ning and utilizing the FireWork system lies in its 
contribution to a comprehensive Canadian air 
quality forecast service that is delivered by ECCC. 
Its resources are dedicated to developing appro-
priate products for both the public and partners. 

Effective observation by air-borne and 
satellite-based optical sensors may at times be 
obscured by cloud and smoke, thus reducing the 
usefulness of  the product when the emissions 
from active fire locations are not registered. Im-
proving spatial resolution would be useful be-
cause it could allow for assigning fire detection 
to land fuel with higher accuracy. 

Currently there is no distinction in re-
trievals on fire activity between wildland forest 
fires, prescribed fires, and agriculture fires. 
These types are usually assigned post-retrieval 
based on input fuels maps, which can differ 
greatly across political boundaries. The distinc-
tion between fire types can be important for pro-
cess-based emission estimates (Liu et al., 2017). 

The timeliness of the EO data is also an im-
portant factor because the emissions data intro-
duced into the forecast model should be as re-
cent as possible. Using the current FireWork 
regime, several hours can pass before a detect-
able fire is captured by an EO sensor and related 
data are available to the forecast. 

Finally, a fair amount of  effort is currently 
invested in screening recurrent false detections. 
False detections are likely to increase as the 

spatial resolution of  the satellite sensor in-
creases. A comprehensive approach to solving 
this problem would be highly beneficial. 

From a technical point-of-view, there are 
opportunities to improve the FireWork products 
by way of  including additional EO data and fur-
ther R&D activities in the validation and model-
ing phases. There are EO sensors and products, 
e.g. the OMI8 aboard the Aura spacecraft and the 
European TROPOMI9 aboard the Sentinel-5 
spacecraft, that can detect fire-related pollutant 
concentrations of  CO, NO2, and HCHO. These 
can be used to infer fire emissions as an alterna-
tive to the fire radiative power-based approach. 

And finally, high-resolution EO products can 
help address uncertainty in active fire plume-
rise height estimates (Paugam et al., 2016). 

Findings, opportunities for  
collaboration, and conclusion 

This section examines several aspects of  the use 
of EO for applications related to air quality and 
weather extremes as they relate to public health 
issues. Air quality is a global public health issue. 
According to the WHO, 9 out of  10 people 
breathe air containing high levels of  pollutants; 
it is estimated that around 7 million people die 
every year from exposure to fine particles in pol-
luted air, which can lead to stroke, heart disease, 
lung cancer, chronic obstructive pulmonary dis-
eases, and respiratory infections, including 
pneumonia (WHO, 2018). Tools are needed to 
better assess and quantify the risks associated 
with poor air quality. These tools must be avail-
able for health administrations and be accessible 
to the public. It would be desirable to integrate 
existing and future systems with public health 
systems, tools, or services such as surveillance, 
emergency management, and prevention and 
response actions. It would also be an asset to bet-
ter communicate the level of  risk to medical staff 
in hospitals and clinics concerned with the pre-
vention, diagnosis, and treatment of  patients. 

The science is evolving from using EO to gen-
erate static or time-averaged information about 
surface pollutant concentrations or thermal 
anomalies, to integrating EO into more dynamic 
systems that support the generation of  real-time 
forecast products. This development is illustrated 
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by the emergence of air quality data assimilation 
capabilities for air quality forecast models, and 
land surface data assimilation systems that are 
coupled with urban-scale weather forecast models. 
This is also true regarding the growing demand for 
real-time air quality mapping data and the new 
requirement to systematically characterize air pol-
lutant emissions from wildfires for applications in 
air quality forecast and reporting. 

Current priorities in EO missions provide an 
appropriate first response to these needs, with 
upcoming missions adding valuable measure-
ments of  tropospheric pollutant concentrations 
at a finer spatial resolution (e.g. TROPOMI) and 
at a finer temporal resolution (e.g. TEMPO). 
These advances are complemented by increased 
access to AOD data (e.g. MODIS over the recent 
GOES-16 and GOES-17 satellites). Experts 
around the world are collaborating to advance 
the science for the valuation of  these EO data sets 
into air quality data assimilation systems, with 
the ultimate goal of  optimizing the representa-
tion of air quality at any time and any location, 
maximizing the benefits for air quality forecast 
and advancing air pollutant exposure studies. 

The detection and characterization of  wild-
land fires would largely benefit from better spa-
tially and temporally resolved remote sensing. 
New instruments aboard geostationary satellites, 

such as GOES, can deliver high-frequency meas-
urements, which are extremely useful for rate of 
spread calculations. However, they are limited in 
spatial resolution and only provide coverage 
over subpolar latitudes. One alternative would 
be a constellation of  polar-orbiting satellite in-
struments. This approach was selected by the 
Canadian Space Agency, Natural Resources 
Canada, and ECCC, who worked together to de-
velop the WildFireSat mission proposal (Van 
Mierlo, 2019). Commercial initiatives have also 
been put forward, such as the FireSat constella-
tion,10 which has proposed paid access to up to 
200 polar-orbiting thermal sensors. 

As air quality is a global issue, operators of 
relevant EO platforms are encouraged to collabor-
ate and facilitate access to their air quality-related 
EO data. This aligns with the principles of  data 
sharing stated in the Convention of  the WMO and 
the mission of  GEO. The WMO also offers a frame-
work to develop and implement appropriate 
standards for sharing air quality data that would 
optimize its use across meteorological centers. 

Over the coming decade, air quality and 
heat will continue to be a very dynamic area of 
research and science applications. It will rely 
heavily on EO data to successfully address the 
need to deliver timely and reliable information to 
decision makers and public health authorities. 

Notes 

1 https://www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-data/ 
canadian-air-precipitation.html and https://data.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-
naps-program/ (accessed 19 January 2022). 
2 https://directory.eoportal.org/web/eoportal/satellite-missions/t/tempo (accessed 3 January 2022). 
3 https://ephtracking.cdc.gov/showUVTracking (accessed 3 January 2022). 
4 https://airquality.gsfc.nasa.gov/ (accessed 3 January 2022). 
5 http://tempo.si.edu/overview.html (accessed 3 January 2022). 
6 https://weather.gc.ca/firework/ (accessed 3 January 2022). 
7 https://weather.gc.ca/firework (accessed 3 January 2022). 
8 https://aura.gsfc.nasa.gov/omi.html (accessed 3 January 2022). 
9 http://www.tropomi.eu/ (accessed 3 January 2022). 
10 FireSat – Global Fire Monitoring Center: http://gfmc.online/current/FIRESAT-Brochure-2017.pdf 
(accessed 3 January 2022). 
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Context, state of knowledge, 
challenges, and responses 

Infections caused by Vibrio species are a major 
concern for public health worldwide. It has been 
estimated that Vibrio cholerae infections cause 
2.9 million cases annually and 95,000 deaths in 
developing countries (Ali et al., 2015). In industrial-
ized nations, V. cholerae is much less of  a concern, 
but infections caused by non-cholera vibrios (NCV), 
such as Vibrio parahaemolyticus or Vibrio vulnificus, 
have increased and are expected to continue in-
creasing due to climate change (Baker-Austin et al., 
2013; Schijven et al., 2013; Semenza et al., 2012a, 
2012b, 2017; Taylor et al., 2018). 

Although a few European countries and the 
US CDC conduct NCV surveillance, there is a press-
ing need for improved global surveillance data on 
NCV infections and its presence and concentration 
in the environment over time and space. 

NCVs are widely distributed in aquatic en-
vironments, and environmental factors play an 
important role in their growth (Johnson, 2015). 
Because global climate changes are affecting 
variables such as sea surface temperature (SST) 
and sea surface salinity (SSS), areas previously 
unsuitable for the survival and growth of  NCV 

are opening up – making timely data acquisition 
even more critical (Baker-Austin et  al., 2010, 
2013, 2017; Semenza et  al., 2012). Unfortu-
nately, data acquisition using in situ sampling is 
both expensive and time-consuming, which is 
why EO technologies have become so useful in 
measuring environmental parameters that in-
fluence the growth of  NCV (Grimes et al., 2014). 
The combination of remote sensing data and 
models could provide an early warning system 
for human health risks associated with NCV 
(Baker-Austin et al., 2013; Konrad et al., 2017). 

This section presents the benefits and chal-
lenges of  using remote sensing data to predict 
human health risks associated with NCV, and it 
discusses the data and technological require-
ments for generating these data using the ECDC 
Vibrio Map Viewer developed by the ECDC as an 
example (Semenza et al., 2017). 

NCVs, environmental factors, 
and satellite-based monitoring 

capabilities 

NCV species can cause gastroenteritis through 
the consumption of  contaminated seafood or 
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the infection of  wounds due to direct exposure to 
the NCV present in marine water (Semenza et al., 
2012a). These wound infections are potentially 
serious and can result in septicemia and death. 
Among the 10 species of  NCV capable of  caus-
ing diseases in humans, V. parahaemolyticus (Vp), 
V. alginolyticus, and V. vulnificus (Vv) are the 
greatest concern given the number of  human 
cases reported and/or the relatively high rate of 
fatality (Janda et al., 1988; CDC, 2014; Govern-
ment of  Canada, 2015). 

NCVs have worldwide distribution (Cecca-
relli et al., 2013; Kokashvili et al., 2015). They 
are most frequently found either as free-living 
aquatic bacteria or associated with various 
aquatic substrates in brackish marine environ-
ments (Sarkar et al., 1985; Venkateswaran et al., 
1989; McCarter, 1999; Gonzalez et  al., 2014). 
The concentration of  NCV in sea water is an im-
portant factor driving the human risk of infec-
tion from both direct water contact and from 
seafood. Shellfish are often a source of  infection 
because many species obtain nutrients by filter-
ing water, which can accumulate and concen-
trate NCV bacteria in the shellfish (Hlady and 
Klontz, 1996). 

Although the ecology of  different NCV spe-
cies is still under investigation, there is a general 
consensus that an association between NCV con-
centrations and water temperature exists (Kane-
ko and Colwell, 1973; Williams and Larock 
1985; DePaola et al., 2003; Pfeffer et al., 2003; 
Thompson et  al., 2004; Semenza et  al., 2012a, 
2012b; Siboni et al., 2016). More specifically, it 
has been observed that once a temperature 
threshold for growth is reached, there is a posi-
tive correlation between increasing SST and NCV 
concentrations (Semenza et al., 2012a, 2012b). 
Several authors have reported that NCV species 
are most abundant in the warmest periods of  the 
year (Kelly and Stroh, 1988; DePaola et al., 2003; 
Nigro et  al., 2011; Urquhart et  al., 2016). This 
seasonality in NCV concentration has been ob-
served in shellfish, water, and sediments (John-
son et  al., 2010). Kaneko and Colwell (1973) 
found a threshold temperature of  14°C, above 
which Vp is activated in the environment, and 
Kelly and Stroh (1988) found little evidence for 
the presence of  Vp in the environment below 
17°C. In the colder months, NCV can still be iso-
lated, albeit in much smaller numbers, from sedi-
ments, shellfish, and other aquatic organisms, 

and a viable but non-culturable form has been 
described for many NCV species (Oliver et  al., 
1995; Thompson et al., 2004; Amel et al., 2008; 
Coutard et al., 2007; Zhong et al., 2009). 

Salinity is an environmental factor identi-
fied as a determinant of  the presence of  NCV (Se-
menza et al., 2012a, 2012b). NCV can be found 
in estuarine and coastal waters with low to mod-
erate salinity (Janda et  al., 1988), and differ-
ences in salinity affect the presence of  NCV. In 
one study, 64% of  the observed variation in Vp 
concentration in water and 76% in oysters was 
attributed to salinity differences (Zimmerman 
et  al., 2007). In another study, an upsurge in 
NCV densities was observed with increasing sal-
inity up to an optimum salinity point (e.g. for Vv: 
27 parts per trillion [ppt] NaCl), above which a 
decrease was observed with increased salinity 
(Johnson et  al., 2010). In yet another study, 
salinity was found to explain an additional 10% 
in the variability in Vv once temperature was 
already accounted for (Motes et  al., 1998). In 
contrast, some authors did not find a significant 
impact of  salt concentration either in oysters or 
in water (DePaola et  al., 2003; Nigro et  al., 
2011). Nevertheless, low to moderate salinity is 
necessary for the presence of  NCV and, as such, 
delineates the geographic distribution of  NCV in 
marine environments. 

The association between NCV and other 
environmental factors or indicators such as 
turbidity, plankton, chlorophyll, nutrients, and 
oxygen have been studied but the relationship 
was weaker than with temperature and salinity 
(Zimmerman et al., 2007; Johnson et al., 2010; 
Nigro et al., 2011; Johnson, 2015). 

Delineating the timing and geographic ex-
tent of  increased environmental suitability for 
elevated NCV concentration is important for de-
termining measures aimed at reducing the risk 
of  exposure to NCV and the associated disease 
burden. To address the challenges of  obtaining 
sufficient in situ environmental data in a timely 
manner, a significant amount of  work has been 
devoted to developing EO technologies that can 
provide the data required for the development of 
early warning systems (Paz et  al., 2007; Lobitz 
et  al., 2000; Martinez-Urtaza et  al., 2008; 
Semenza et al., 2017). 

SST and SSS as remote sensing proxies have 
been tested and appear most promising for esti-
mating or monitoring favorable environmental 
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conditions for NCV occurrence and density 
(Phillips et  al., 2007; Zimmerman et  al., 2007; 
Baker-Austin et al., 2010, 2013). These proxies 
have been used to estimate intra-seasonal vari-
ations in Vp density or abundance (Zimmerman 
et  al., 2007) as indicators of risk of  contamin-
ation of  water and shellfish (Phillips et al., 2007; 
Konrad et al., 2017), and as predictors of  infec-
tious disease risk (Baker-Austin et al., 2013). 

Challenges and questions 

Challenges associated with obtaining remote 
sensing data include: 

1. Complex system involving  
environmental factors at multiple scales 

Working at multiple spatial and temporal scales – 
like a small coastal bay and a significantly larger 
coastal area – in a constant manner over large 
areas and prolonged time periods can make as-
sessing the association of  NCV with environ-
mental factors a challenge. 

2. Potentially signifcant technical 
requirements 

The environmental factors identified in the pre-
vious section might necessitate the use of  differ-
ent sensors to obtain data with sufficient spatial, 
temporal, and spectral resolution. For example, 
a space-based open ocean salinity sensor cannot 
map closer than a few hundred kilometers from 
the coast and there are no immediate satellite 
sensor deployments for measuring coastal SSS. 
Similarly, satellite-based wind products are not 
reliable close to the coast, although high-to-
moderate-resolution satellite SAR images are 
being used on a regular basis. Few optical and 
radar satellite sensors can provide the high spa-
tial and temporal resolution data essential to 
study dynamic coastal and tidal regimes that 
change at hourly increments (Grimes et  al., 
2014). Heavy precipitation events can decrease 
the salinity in estuaries and coastal areas and re-
sult in NCV growth. For example, V. parahaemo-
lyticus increased at beaches subsequent to storm 

events by 155.7% at two distinct beaches in nor-
thern China (He et  al., 2019). However, such 
meteorological events are difficult to measure 
with remote sensing technology. 

3. Knowledge gaps 

Gaps in the understanding of  biological and 
physical relationships between NCV and the 
above-mentioned environmental factors may 
undermine prioritization of  data acquisition and 
interpretation. Moreover, NCV are not reportable 
in many parts of  the world, which makes valid-
ation of  these environmental factors difficult. 

Based on these challenges, the following 
questions on critical issues and geospatial data 
requirements were submitted to a panel of  ex-
perts during the One Earth – One Health Work-
shop on Contributions of  Earth Observation to 
Public Health Practices: 

• What EO and geospatial data are already 
available to detect and/or quantify the envir-
onmental factors that have a probable/pos-
sible influence on NCV in aquatic systems? 

• What EO technologies are already in place 
that could provide the necessary information? 

• What future optical and radar sensors 
might be able to provide the tools to collect 
EO and geospatial data for the purposes of 
better understanding the impacts of  cli-
mate change on NCV in aquatic systems? 

Responses and options 

Expert consultation on these questions gener-
ated the following responses and options: 

• Critical environmental factors measured by 
satellite sensors are SST and SSS; in situ 
data (e.g. from moorings, ships, buoys) can 
complement satellite data collection on 
these factors. 

• EO and geospatial data already available for 
coastal and open ocean areas require rela-
tively high and medium–low spatial reso-
lution, respectively. They are collected by 
the Department of  Fisheries and Oceans 
(DFO) in Canada and are also available pub-
licly (e.g. from NOAA/CoastWatch, NASA, 
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Operational Sea Surface Temperature and 
Sea Ice Analysis [OSTIA]). 

• Buoys offer data with high temporal reso-
lution, whereas the temporal resolution of 
data from satellite sensors is moderate; in 
both cases the data are free. 

• Signifcant EO systems and technologies, 
including radar, optical sensors, and infra-
red radiometers, are already in place for 
coastal and open ocean remote sensing of 
wind, waves and currents, ocean color, and 
SST, and for model development and adap-
tation (NOAA, E3). 

• New and upcoming sources include the 
European Sentinel systems (radar and 
multispectral imaging), NOAA/NASA Joint 
Polar Satellite System (JPSS) Series Satel-
lites, and the RADARSAT Constellation 
Mission, with high spatial and moderate 
temporal resolution and the prospect of less 
complex EO data analysis requirements. 

The example of  the ECDC Vibrio Map Viewer de-
veloped by ECDC is presented in the following 
sections to illustrate the benefits of using remote 
sensing data to predict human health risks asso-
ciated with NCV and to highlight technological 
requirements (Semenza et al., 2017). 

Application example: The ECDC 
Vibrio Map Viewer from the European 
Environment and Epidemiology (E3) 

Geoportal 

In and around the Baltic Sea and the eastern 
North Sea area from 1977–2010, a total of 
283 NCV cases were reported, with the major-
ity of these cases (234, or 85%) reported from 
1997 onwards (Baker-Austin et  al., 2013). 
Over this period, the number of  cases increased 
in correlation with temperature increases, 
with periods of  reported infections closely as-
sociated with areas of  maximum warming. 
Highly significant statistical association was 
found between the annual number of  human 
cases and mean summer SST increase (Semenza 
et al., 2017). 

A pilot suitability model based on Bak-
er-Austin et al.’s article (2013) on ocean warm-
ing and the risk of Vibrio was developed using 
salinity and SST to estimate the environmental 

suitability for NCV in coastal waters (Semenza 
et al., 2017). The output of the model delineates 
coastal areas with environmental conditions 
suitable for the occurrence of  human patho-
genic NCV species that can drive the emergence 
of  infections. The ECDC Vibrio Map Viewer is an 
EO early warning system for public health cre-
ated to help reduce human exposure to contam-
inated coastal waters and consequently reduce 
the disease burden of  NCV (Semenza et  al., 
2017). By using EO and SST records, the influ-
ence of  recent warming trends on the emer-
gence and dynamics of  vibriosis in the Baltic was 
assessed (Ebi et al., 2017; Semenza et al., 2017). 
The assessment analyzed epidemiological data 
together with long-term SST records and shorter-
term data from NOAA that integrates satellite 
SST retrievals. A satellite-independent data set 
was used to confirm the results from the long-
term SST records, especially those related to the 
strong summer warming trends detected in the 
Baltic Sea during the past three decades when 
remote sensing data became available (Baker-
Austin et al., 2013). 

The ECDC Vibrio Map Viewer from the 
European Environment and Epidemiology (E3) 
network has been providing NCV environmen-
tal suitability maps on their website through 
the E3 Geoportal since 2013.1 The ECDC Vibrio 
Map Viewer provides global environmental 
suitability maps for NCV that are based on a real-
time model that has been calibrated to the Baltic 
Region in Northern Europe (Semenza et  al., 
2017). It uses daily updated remote sensing 
data to provide information about environmen-
tally suitable conditions such as salinity and 
SST for Vibrio spp. The model can also be used 
and calibrated for any other region of the world 
(Fig. 2.4.1). 

Outcomes and benefts 

What does the ECDC Vibrio Map Viewer do? The 
ECDC Vibrio Map Viewer identifies environmen-
tal suitability for optimal growth conditions for 
NCV with a near-real-time model that uses daily 
updated information from EO data on water tem-
perature and salinity (Semenza et al., 2017). In 
light of  increasing SST in the Baltic Sea due to 
climate change, the environmental suitability 
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Fig. 2.4.1. Sample display of the daily NCV risk map viewer provided by the ECDC Vibrio Map Viewer 
from the E3 (ECDC18) network for the Baltic Sea on 31 July 2021. Areas depicted in dark orange indicate 
high to very high risk and areas in yellow indicate low to very low risk. 

has been projected forward in time to delineate 
coastal areas at risk for NCV growth in the 
future (Lindgren et al., 2012; Ebi et al., 2017; 
Semenza et al., 2017). 

The model generates a daily map and 5-day 
forecasts of  the environmental suitability of 
NCV. The map viewer categorizes the environ-
mental suitability for NCV growth, as low, very 
low, medium, high, and very high. 

How are the findings used? The epidemic in-
telligence team at ECDC monitors the Vibrio 
Map Viewer on a daily basis during the summer 
months in order to identify coastal areas with 
increased environmental suitability. The find-
ings are reported bi-weekly in the ECDC Com-
municable Disease Threats Report (CDTR), 
which is distributed to national state epidemi-
ologists in Europe (ECDC, 2019). The CDTR 
also discusses options for public health preven-
tion and control actions. For example, these 
might include beach closures, issuing alerts 
when the environmental suitability for NCV in-
fections is predicted to increase, notifying 
health care providers, and encouraging at-risk 
individuals (e.g. children, the elderly, cancer 
patients, and immune-compromised individ-
uals) to avoid recreational water use to limit ex-
posure to NCV. 

Delineating areas of  environmental suit-
ability for NCV in the near future can inform 
public health decision making. For example, in 
2018, the model detected a significant in-
crease in the geographic extent of environ-
mental suitability for NCV in coastal areas of 
the Baltic Sea and the Gulf  of  Bothnia, using 
both daily and forecasted values. This was 
linked to abnormally high temperatures and 
drought conditions in several countries around 
the Baltic Sea. At the beginning of  August 
2018, ECDC sent a notice to state epidemiolo-
gists around the Baltic Sea through the Epi-
demic Intelligence Information System for 
Food-and Waterborne Diseases and Zoonoses 
(EPIS FWD), alerting them to the possibility of 
an increase in NCV cases. 

Technical requirements 

What EO data are needed? 

• SSS and SST 

The ECDC Vibrio Map Viewer uses daily updated 
remotely sensed SST and SSS data, in situ data, 
and climatological data for coastal waters. For 
the Baltic Sea, SSS demarcates the regions suit-
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able for NC infections (Copernicus Marine Envir-
onment Monitoring Service, 2019) and SST 
serves as a risk predictor (Semenza et al., 2017). 
The estimates for SST and SSS were obtained 
from different satellites and models from the 
following sources: 

• (SST) US Department of  Commerce 
(USDOC); NOAA; National Environmental 
Satellite Data and Information Service 
(NESDIS); and Geo-Polar Blended Global 
SST Level (Imagers + AVHRR + VIIRS). 
These fields integrate data from US, Japan-
ese, and European geostationary infrared 
imagers and from polar infrared (US and 
European) SST sensors to produce a 
high-resolution 5-km product. 

• (SSS) NOAA/NCEP (National Centers for 
Environmental Prediction) Global Re-
al-Time Ocean Forecast System. 

• (SSS) Navy Coastal Ocean Model (NCOM) 
for the Gulf  of  Mexico, Caribbean, and US 
East Coast. 

• (SSS) Operational Mercator Global Ocean 
Analysis and Forecast System. 

• (SSS) Iberian Biscay Irish (IBI) Ocean Ana-
lysis and Forecasting System. 

• (SSS) Forecasting Ocean Assimilation Model 
(FOAM); 7 km Atlantic Margin model 
(AMM7). 

• (SSS) Baltic Sea Physical Analysis and Fore-
casting Product. 

• (SSS) Mediterranean Sea Physics Analysis 
and Forecast. 

• (SSS) Black Sea Physics Analysis and 
Forecast. 

The model’s SST estimates are used for the 
short-term forecast and are replaced by the sat-
ellite-based SST as they are available. They also 
serve as a backup in case of  (rare) delays in the 
primary SST data set. The daily map integrates 
all these data sets to obtain the environmental 
suitability index using threshold values of  18°C 
for SST and 28 Practical Salinity Units (psu) for 
SSS. The nominal spatial resolution of  the out-
put is 5 km. Future improvements will add more 
data sets to the process, especially in areas 
where global models do not produce accurate 
representation of  ocean dynamics (e.g. Gulf  of 
Guinea), and will include epidemiological data 
to refine the model and improve the overall 
quality of  the results. 

Cumulative felds 

Daily estimates provide inputs to compute 
weekly environmental suitability. This is used to 
generate the: 

• cumulative weekly index (mean value) using 
data from the past 7 days (“CWIMean”); and 

• cumulative weekly index (maximum value) 
using data from the past 7 days (“CWIMax”). 

The cumulative weekly index is generated on a 
daily basis, using the same inputs referenced 
above and the same procedures as those used to 
estimate daily risk. 

Short-term forecast 

The model can also generate short-term fore-
casts, which are created using the same algo-
rithms and data structures, and which can be 
used to inform planning and health impact as-
sessments. ECDC also conducts continuous 
evaluation of  the quality of  forecasts by compar-
ing them with observations and analyzed results. 

What resources are needed? During the past 
decade, GIS technology has been widely used for 
purposes ranging from natural resource protec-
tion to archeological research, from fish stock 
assessment to weather monitoring. The ECDC 
Vibrio Map Viewer uses a suite of  spatio-temporal 
products that, through interoperable techniques, 
can access and use remote layers via OGC Web 
Services (OWS).3 Using this approach, it is pos-
sible to combine local and remote raster and vec-
tor layers, change the projection, display and 
customize plots, retrieve data, and incorporate 
the desired layers within a specific GIS environ-
ment. Based on XML schema, our model facili-
tates the creation of  customized interfaces that 
adjust content to user needs. These interfaces 
can be easily deployed at minimum cost and can 
be used for coastal and meso- and large-scale 
applications. 

The ECDC Vibrio Map Viewer, which closely 
integrates with NOAA/CoastWatch’s Ocean-
Viewer system, generates a Vibrio Risk Index and 
the mechanisms to distribute fields with im-
proved data access and visualization and with 
the ability to share multiple data sets, to combine 
digital data from vector and raster sources, and 
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to serve both operational and non-operational 
objectives. Further advantages are that it is a 
modular, standard-driven approach that allows 
for further technological development, it uses ex-
isting infrastructure, it provides access to timely 
and accurate information, it implements online 
and individualized access to services and prod-
ucts, it serves as a model of  synergy between 
leading edge information technologies, and it 
benefits research and operational programs. 

The outputs of  the various procedures com-
prising the risk model are originally encoded in 
netCDF format. This open standard, intended to 
improve sharing of  scientific data and metadata, 
is currently a de facto standard that is widely used 
to store remote sensing and model data. It pro-
vides a complete API for software development 
and multiple features (e.g. chunking, deflation, 
machine independent, simple data model, user 
data types, unlimited dimensions), which can 
greatly improve read/write operations, overall 
performance, and interoperability. The files are 
made compatible with Climate and Forecast (CF) 
metadata convention, which provides an exten-
sible controlled vocabulary for many of  the scien-
tific parameters being used by the community. 
Our netCDF files are therefore self-describing, 
packing all data and metadata together. 

The distribution scheme uses various proto-
cols and services. Among them, OWS allow effi-
cient processing of  geospatial data and promote 
automatic exploitation. They provide simple inter-
faces for requesting georeferenced products that 
could be stored in different geospatial databases. 

The ECDC Vibrio Map Viewer uses two ser-
vices: Web Map Service (WMS) and Web Cover-
age Service (WCS).4 The ESRI Silverlight toolkit 
can display WMS GetMap requests and, conse-
quently, risk maps can be easily integrated into 
the E3 Geoportal I.2 viewer. ArcGIS, through 
ArcCatalog and ArcMap, can also act as a client 
for WCS servers, allowing geographical data re-
quests using platform-independent interfaces. 

WMS: This is a standard to produce georef-
erenced maps. Two WMS servers are available, 
one of  which has been implemented with add-
itional functions not included in the specifica-
tion (e.g. GetMetadata Method). It supports the 
following methods: 

• GetCapabilities (to obtain service metadata); 
• GetMap (to obtain a map); 

• GetFeatureInfo (information about query-
able features); 

• GetLegendGraphics (to acquire a legend); 
and 

• GetMetadata (to provide metadata not in-
cluded in the standard GetCapabilities 
document). 

WCS: This service serves gridded data in vari-
ous formats (GeoTIFF and netCDF4). There are 
three types of  requests: GetCapabilities (de-
livers service properties), DescribeCoverage 
(specific information about coverage offerings), 
and GetCoverage (to retrieve the data). An ex-
ample of  the GetCoverage request can be down-
loaded here.5 

Future perspectives 

What further developments are needed? Although 
the factors that most influence the occurrence 
and abundance of NCV in coastal waters are 
SST and SSS, NCV ecology and growth also de-
pend on other variables like marine nutrient 
concentrations, river discharge, and algae 
blooms (Julie et al., 2010; Johnson et al., 2012; 
Boer et al., 2013). Thus, the environmental suit-
ability shown by the ECDC Vibrio Map Viewer 
represents only an approximation of  actual 
suitability and local variation. Adding these 
other variables to the model might improve sen-
sitivity, specificity, and positive predictive value, 
although this would need to be confirmed by 
epidemiological data. 

The models used in the near future for in-
ferring/forecasting risk (rather than ecological 
suitability) will be based on artificial intelligence 
using an artificial neural network. These ap-
proaches allow for the integration of  data from 
disparate sources – environmental variables, 
epidemiological data, pathogen population dy-
namics, genomics, disease outcomes, and expos-
ure – in order to obtain more accurate proxies of 
environmental scenarios of  risk. As this meth-
odology incorporates a “training” process using 
real data, outcomes from the model can be tested 
based on real scenarios. However, access to such 
data might be difficult. For example, data on ex-
posure during recreational water use are often 
hard to come by but are available for certain 
coastal regions (Dwight et al., 2007). 
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Sensors such as VIIRS (on board JPSS satel-
lites) and Ocean and Land Colour Instrument 
(OLCI) (Sentinel-3) could provide high-quality 
estimates of  these parameters; for example, in-
formation on turbidity naturally present in 
coastal water or from other sources such as river 
discharge (e.g. suspended particulate matter 
[SPM], colored dissolved organic matter [CDOM]) 
and on algae or phytoplankton blooms (e.g. 
chlorophyll-a [Chla]). However, in situ ecological 
data such as from buoys are not always available 
and the cost and time associated with collecting 
ecological in situ data need to be considered. In 
view of  these potential limitations, it would be 
valuable to first assess the predictive value of 
data on these variables in the exposure response 
relationship. 

Obtaining SSS data can be a challenge in 
coastal areas that do not have a continuous op-
eration instrument for this type of  data. Cur-
rent remote sensing data that are able to esti-
mate surface salinity are not suitable for coastal 
systems since their spatial resolution is too 
coarse (>25 km), which generates spectral 
mixing between water and land. A sensor or 
methodology capable of  estimating the surface 
salinity of  coastal water on a daily basis would 
provide valuable data for future early warning 
systems for NCV. 

Better data are needed in Europe on the 
abundance and persistence of NCV in the envir-
onment and on the number of  cases of  infection. 
Although NCV infection can lead to serious 
health consequences, only a few countries in the 
region, such as Sweden, have national epidemio-
logical data. Analysis of  Swedish Vibrio cases in-
cludes information on county, statistical date, and 
onset of  disease, type of  infection, Vibrio spp., 
serotype, transmission pathway, sex, and age 
group of  the case. This could then be correlated 
with data on environmental suitability for NCV 
and help to calibrate the scale of  the ECDC Vibrio 
Map Viewer for a specific geographic region. 

Furthermore, it is not always possible to 
link human cases of  infection to national or 
international exposure, which introduces a 
certain level of exposure misclassification. More 
accurate documentation of  infection source, 
together with the collection of data on human 
cases, would greatly enhance the value of the 
Vibrio Map Viewer and efforts to prevent and 
control NCV infections. 

What other opportunities do EO 
technologies and data offer? 

Remote sensing of ocean biota is performed glo-
bally through passive (multispectral, hyperspec-
tral) or active (SAR, Radar) methods. Passive 
optical sensors capture the backscattered light 
from below the water surface. Infrared passive 
sensors detect thermal variations at the sea sur-
face (SST). Multispectral sensors could also pro-
vide the opportunity to estimate potential NCV 
proxies such as SPM, CDOM, and Chla as well as 
providing their inherent optical properties 
(Table 2.4.1). 

Hyperspectral remote sensing offers an 
effective approach for frequent, synoptic water 
quality measurements over a large spatial 
area. However, the optical complexity of 
coastal waters makes water quality monitor-
ing by remote sensing in estuarine and littoral 
waters a challenge. The use of  hyperspectral 
sensing for the diagnosis of  ecological issues is 
a tool that is widely used (Fan, 2014), and one 
of  the proven benefits of  this approach is the 
ability to detect early specific spectral changes. 
This attribute of  hyperspectral sensing helps 
to identify early optical changes in water con-
stituents such as harmful algal blooms and the 
possibility of  bacterial outbreaks. Satellites 
with hyperspectral detectors have 1  nm (or 
less) wide bands that usually span the spec-
trum from 400 to 700  nm to measure light 
emanating from the sea surface at these spe-
cific wavelengths. Algorithms could be devel-
oped to assess the relationships between the 
amount of  light at specific wavelengths and 
estimated concentrations of  the various con-
stituents such as chlorophyll, particles, CDOM, 
or potential indicators of  NCV presence and/ 
or abundance. 

Active sensors carry their own lighting 
source that is beamed down and the reflected 
beam carries information about the biogeo-
chemical state of  water. Active sensors work 
mainly within microwave spectra and can col-
lect valuable information on sea surface rough-
ness and winds and can detect and track oil spills 
and ice (Passive Active L- and S-band Sensor, 
PALS project, www.nasa.gov). They could also 
be used for gathering information on bacteria 
such as NCV. 

https://www.nasa.gov
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Table 2.4.1. Possibilities for EO technologies, satellite sensors, and potential proxies or indicators of 
Vibrio occurrence in coastal waters. 

Remote sensing 
technology Examples of satellite sensors 

Examples of proxies/ 
indicators References 

Multispectral  
and future 
hyperspectral 

MODIS 
VIIRS 
Landsat-8 
MSI (Sentinel-2) 
OLCI 
(Sentinel-3) 
SeaWiFS 
Future hyperspectral missions: 
PACE (NASA) 
WaterSat (CSA) 

Suspended particulate 
matter (SMP) 

Chlorophyll-a (Chla) 
Colored dissolved 

organic matter 
(CDOM) 

Coefficient of 
attenuation (Kd) 

Inherent optical 
properties 

Gilerson et al., 2010;  
Johnson et al., 2012;  
Escobar et al., 2015 

Thermal infrared AVHRR 
MODIS 
VIIRS 
Geostationary sensors: (ABI/ 

AHI/SEVERI) 
SLSTR (Sentinel-3) 

Sea surface 
temperature 

Lobitz et al., 2000;  
Martinez-Urtaza 
et al., 2012; Akbari 
et al., 2017 

Synthetic aperture 
radar (SAR) or 
scatterometer 

RADARSAT-2 
Sentinel-1 
TerraSAR-X 
QuickScat 
Future SAR mission 
RCM (CSA) 

Roughness of the sea 
Waves (wind speed) 

Lobitz et al., 2000 

Radar altimetry Jason-1/-2/-3 
Cryosat-2 
SARAL/AltiKa 
Sentinel-3 

Topography of sea 
Geostrophic currents 

Martin-Puig et al., 
2016 

ABI, Advanced Baseline Imager; AHI, Advanced Himawari Imager; AltiKa, high-resolution altimeter including bi-frequency 
radiometric function; AVHRR, advanced very high-resolution radiometer; CSA, Canadian Space Agency; SLSTR, Sea 
and Land Surface Temperature Radiometer; MODIS, Moderate Resolution Imaging Spectroradiometer; MSI, multispectral 
instrument; OLCI, Ocean and Land Colour Instrument; PACE, Plankton, Aerosol, Cloud, ocean Ecosystem; RCM, 
RADARSAT Constellation Mission; SARAL, Satellite with Argos and AltiKa; SeaWiFS, Sea-viewing Wide Field-of-view 
Sensor; SEVIRI, Spinning Enhanced Visible and Infrared Imager; VIIRS, Visible/Infrared Imager Radiometer Suite. 

Perspectives for the ECDC Vibrio  
Map Viewer 

Future studies should validate the ECDC Vibrio 
Map Viewer in different geographic settings with 
relevant epidemiologic data. Validation studies like 
these could also study the connection between 
SST/SSS EO data and the abundance and persist-
ence of  NVC in the environment. A technical chal-
lenge for EO are extreme precipitation events that 
can temporarily reduce SSS in estuaries and in-
crease the environmental suitability of  NVC 
growth (He et al., 2019). Detecting and predicting 
such events with EO would serve public health 
well. It would also be desirable to apply the concept 
of  the ECDC Vibrio Map Viewer to other health 

endpoints. However, this would require a better 
understanding of  the underlying drivers of  disease 
transmission. In many cases, there are multiple 
drivers of  transmission that are not dependent on a 
single environmental/climatic variable. For ex-
ample, Campylobacter is not capable of reproducing 
outside of  an animal host (e.g. poultry, pigs) and 
the seasonal incidence peak does not always occur 
during the hottest time of  the year, which indicates 
the importance of  other drivers of  transmission. 

Conclusion 

NCV infections in humans can cause mild, self-
limiting gastroenteritis but also wound infections 
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that can rapidly result in septicemia and necro-
tizing fasciitis with a high fatality rate. Climate 
change will disproportionally affect coastal re-
gions in northern and southern latitudes and is 
likely to greatly expand the geographic range of 
NCV. Indeed, the number of  wound infections 
from exposure to NCV during recreational water 
use observed in temperate zones has steadily in-
creased during the past few decades due to cli-
mate change. Similarly, shellfish-associated 
food-borne outbreaks due to NCV at high lati-
tudes have also increased due to warming. Since 
NCV thrive in warm and brackish marine envir-
onments these trends are projected to continue. 
However, there is little epidemiologic surveil-
lance of  infections due to NCV since they are not 
reportable in many countries. Thus, EO services 
can be used as proxies for the lack of  epidemio-
logic data and can monitor the environmental 
precursors of  this disease. 

We show that forecasts of  SST from EO can be 
used as climatic indicators of  future Vibrio growth 
in coastal regions of  the Baltic Sea, as part of  an 
early warning system. Early detection and re-
sponse to climate-sensitive pathogens can reduce 
the burden of  disease better than passive surveil-
lance systems (Morin et al., 2018). However, this 
system relies on EO monitoring of  SST and other 

environmental conditions (salinity) at scales use-
ful for implementation of  interventions and timely 
sharing of  the information with public health pro-
fessionals. Areas deemed suitable for NCV growth 
can then be identified and beaches can be closed 
and other measures taken to minimize human ex-
posure to NCV. Ultimately, these EO systems for 
coastal monitoring are intended to reduce the bur-
den of  disease in human populations. However, 
system performance needs continuous evaluation 
due to its interconnected nature in order to maxi-
mize efficiency and improve efficacy. 

The lack of  empirical NVC data, both epi-
demiologic and environmental, makes EO an 
attractive alternative to traditional methods that 
are not applicable at the same scale in time and 
space. Monthly projections predict that SST suit-
ability for Vibrio in the Baltic Sea will increase 
due to climate change. In particular, a marked 
upward trend is projected for SST during July, 
August, and September, but even more so during 
the months immediately before and after sum-
mer (June and October). This early warning sys-
tem based on EO can be regarded as a climate 
change adaptation in a warming climate. In fact, 
SST and vibriosis are currently being used as in-
dicators for the Lancet Countdown on health 
and climate change (Watts et al., 2018). 

Notes 

1 https://e3geoportal.ecdc.europa.eu/SitePages/Vibrio%20Map%20Viewer.aspx (accessed 4 January 2022). 
2 https://e3geoportal.ecdc.europa.eu/SitePages/Home.aspx (accessed 4 January 2022). 
3 https://www.opengeospatial.org/standards/owc (accessed 4 January 2022). 
4 For additional information, see http://www.opengeospatial.org/standards (accessed 4 January 2022). 
5 https://cwcgom.aoml.noaa.gov/thredds/wcs/VIBRIO_RISK/RISK.nc?service=WCS&version=1.0.0& 
request=GetCoverage&format=GeoTIFF&coverage=daily_vibrio_risk&TIME=2013-09-01T12:00:00. 
000Z&elevation=0&bbox=-20,20,60,65 (accessed 4 January 2022). 
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2.5 Vulnerable Populations 
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Context 

Human vulnerability to diseases is the key measure 
of  the potential impacts of  a given change on the 
well-being of  human populations. Human 
vulnerability is most often defined by the complex 
interaction between the susceptibility of  an indi-
vidual, community, or population, their exposure 
to a threat (i.e. the hazard), and their capacity 
for resilience (Turner, 2010). Exposure can be ex-
pressed by the presence or proximity of  and the 
potential contact between the hazard and sus-
ceptible populations (Blaikie et al., 1994; Cutter, 
1996). Susceptibility can include immune cap-
acity, behavior, or perception of  a person or a 
community facing a threat (Fritzsche et  al., 
2014). Coping capacity constitutes resilience, ex-
pressed in a public health context as the human 
ability to face a threat and develop coping skills 
to protect or to recover from diseases. These cap-
acities depend on many factors and dynamics 
(Gallopin, 2006), including socio-demographic 
and economic factors such as education, age, 
and income; institutional factors such as pre-
vention messages, access to clinics, and trained 
medical staff; and technological factors such as 
access to media and prevention tools and geospa-
tial analysis capabilities (Birkmann, 2006). Socio-
demographic data that could help identify the 
vulnerability of  human populations in spatial 
terms include elements such as: population dis-
tribution, density, age, and gender; education 
and income; and specific public health-related 

information that often varies from country to 
country. In some studies of  vector-borne dis-
eases that are transmitted human to human (as 
in the example of  malaria given below) the rela-
tionships of  risk, exposure, susceptibility, and 
resilience are somewhat changed so that risk 
comprises the mostly entomological component 
(exposure) as well as the human population 
components of  susceptibility and resilience 
combined together as vulnerability (Haines et al., 
2006). 

Examples of recent research 

Since vulnerability of  human populations to 
vector-borne disease is influenced by complex 
biophysical, social, and human behavioral fac-
tors, the assessment of  its spatial and temporal 
dynamics and associated environmental and an-
thropogenic patterns requires sophisticated 
mapping and modeling techniques. 

As an example of  empirical studies that 
offer options for mapping vulnerable popula-
tions, Cleckner and Allen (2014) demonstrated 
that a dasymetric mapping technique could be 
used successfully to map spatial patterns of  vul-
nerable human populations to mosquito vector 
exposure. They refined vulnerable population 
data available at the level of census districts to a 
finer spatial scale by using satellite imagery 
data, thus narrowing down the areas where re-
lief  programs needed to be focused. In the same 
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vein, Gadiaga et al. (2021) have developed an in-
tegrated housing quality-based typology of  the 
neighborhoods in Dakar, Senegal, by combining 
the 2013 census data with remotely sensed land 
cover and land use data at a very high reso-
lution. The derived housing quality indices ap-
pear to be relevant proxies of  spatial variations 
of  crude mortality rate and could therefore be 
considered as a guide for public health interven-
tions in cities where accurate and detailed health 
data remain limited. Van Wesenbeeck et  al. 
(2016) linked susceptibility survey data for 
human populations collected at the household 
level with agro-ecological data obtained from 
satellite image analysis at a large spatial scale for 
regions in East and West Africa. The satellite 
data analysis aimed at locating areas where eco-
system sensitivity to the effects of  climate 
change was the highest. Bantis et  al. (2017) 
mapped the spatio-temporal patterns of  disabled 
people during a major storm event in the UK in 
2013. They used the data of automatic trans-
portation fare collection to track the variation in 
time and space of  the human population that 
was using London’s transport network. This 
information included age categories of  people 
using the network, thus allowing for the deter-
mination of  movement – or lack thereof  – of  users 
more susceptible during emergency situations, 
such as the elderly, disabled people, and children. 

Many empirical studies exist on the relevance 
of  using EO data in characterizing populations 
and places most vulnerable to health risks (Weng 
et al., 2014). Recently, Parselia et al. (2019) pub-
lished a scoping review of  the use of  EO data in 
epidemiological modeling of  malaria, dengue, and 
West Nile virus. The review shows that EO data 
are rarely combined with demographic data and, 
when they are, it is often only to consider popula-
tion density. However, epidemiological models 
gain in accuracy if  they integrate information on 
the characteristics of  the populations exposed to 
the entomological threat. It is the vulnerability of 
these populations to this threat that determines 
the risk level of  a disease outbreak. 

Challenges and questions 

The spatio-temporal representation of  human 
vulnerability is a challenging task. At a technical 
level, the challenge is related to appropriately 

matching spatial detail of the different informa-
tion sources during risk map integration exercis-
es, as mismatches can cause inaccuracies and 
sometimes loss of  spatial cohesion. At a conceptual 
level and in terms of  data sourcing, the chal-
lenge lies in selecting and skillfully utilizing EO 
data to supplement or refine socio-demographic 
information that could be provided by census 
surveys or relevant individual and household 
surveys. Pertinent questions that address these 
challenges are: 

• To what extent are EO and geospatial data 
suitable for developing the relationship 
with physical-environmental features and 
human factors in addressing vulnerability 
issues? Which EO and other geospatial data 
sources can be advantageous for mapping 
or monitoring conditions, patterns, or dy-
namics of  susceptible population? 

• How can one improve the integration of 
different geospatial data layers extracted 
from EO or other sources to capture 
the spatial-temporal variation of  human 
vulnerability? 

Responses and options 

Below are key comments and suggestions from 
experts regarding critical geospatial data on vul-
nerable populations: 

• In general, EO can provide baseline infor-
mation on the location of  the population, 
including identifying rural and urban 
areas; detailed and up-to-date EO data can 
provide evidence of  hard-to-reach “invis-
ible” populations, such as those that are 
dislocated and/or migratory. 

• EO can provide frequent and detailed data 
to determine habitable vs. non-habitable 
areas in disaster situations for a variety of 
environments. 

• Risk and sensitivity maps of  communities 
and populations should incorporate public 
health-related elements that contextualize 
census data, EO data in combination with 
3D settlement data, and vegetation data (if 
relevant to the disease). 

• Multi-temporal EO analyses and change de-
tection methods should be used. 
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From Anopheles to humans: 
reconstructing the risk of malaria 

infection in Dakar, Senegal 

In this example, the definitions of  risk and vulner-
ability are those for a human-to-human transmitted 
vector-borne disease, i.e. risk comprises entomo-
logical hazard plus vulnerability as the human 
population aspects of  susceptibility and coping 
capacity. For malaria infection to occur, three 
components need to interact: the parasite, the 
vector, and the human host. The identification of 
areas where these three components can easily 
interact is essential in the fight against malaria 
and the improvement of  programs for the preven-
tion and control actions and to guide interven-
tions toward controlling the disease. 

Studying the risk of  malaria infection in 
urban spaces requires detailed and high-quality 
information on the presence of  vector-competent 
mosquitoes, on the individual behaviors of  the 
human hosts, and on the parasites. The provi-
sion and utilization of  such information comes 
at a significant cost. In resource-poor countries, 
researchers and public health practitioners 
often have limited resources and often inad-
equate data on prevalence and incidence of  the 
disease, including poor representation of  the ac-
tual population affected (Programme National 
de Lutte contre le Paludisme, 2008; Diallo et al., 
2012). In addition, relevant geospatial data are 
limited and often non-existent. 

With the development and more wide-
spread application of  GIS and satellite imagery, 
and more diversified sources of  ecosystem-related 
geospatial information ecosystems, it is feasible 
to extract key environmental variables related 
to mosquitoes and their breeding sites. The 
combination of such information with socio-
demographic census data or health surveys 
enables researchers to reconstruct and study 
the spatial variability of  malaria infection risk 
(Borderon, 2016). 

For the city of  Dakar, Senegal, multi-tem-
poral satellite imagery, census data, and results 
from social and health surveys have been inte-
grated into a GIS with the goal of  identifying po-
tential exposure of  urban neighborhoods and 
populations to epidemic risk of  malaria (Fig. 
2.5.1). Epidemic risk has been defined as the 
combination of two key indicators of malaria 

infection: the presence of  the Anopheles spp. vec-
tors, and social vulnerability of  individuals or 
populations regarding the exposure to these 
vectors. Prevalence data collected during Pro-
ject ACTUPALU were used to validate the risk 
model and produce a risk map (Borderon and 
Oliveau, 2017). 

Expected outcomes and impacts 

What does this map do? The risk map associates 
each district of  the city with a profile of  exposure 
to the disease, highlighting areas of  potential 
outbreaks. At an urban scale, the mapping re-
sults contribute to the identification of  areas of 
social-ecological vulnerability and reveal a 
possible risk pattern of  malaria transmission for 
different types of  sub-urban areas. 

This risk model was created from the 
combination of  three indicators: 

1. An estimate of  the human biting rate (HBR) 
of  mosquitoes. 
2. An estimate of  the precise population density 
and dilution effect on biting rates. 
3. An estimate of  the social vulnerability of  the 
population. 

These indicators have been produced and aggre-
gated at the Census District (CD) level according 
to a conceptual vulnerability and risk frame-
work adapted from Taubenböck et  al. (2008) 
(Fig. 2.5.2). The CD represents the smallest ad-
ministrative unit of  approximately 1000 inhab-
itants within the metropolitan area of  Dakar. 

The risk concept derives from two param-
eters: hazard and vulnerability. In the case of 
this study, the hazard is the HBR (bites/person/ 
night), representing the probability of being bitten 
by a mosquito vector. The notion of  exposure – 
often implicitly related to the studied hazard – 
has been added by taking into account the 
population density: the higher the density, the 
more the effects of  bites are theoretically shared 
among the population. The combination of 
these two parameters gives an approximation of 
the probability of  being bitten, all things being 
equal. However, the probability of  individuals or 
populations being bitten can vary dramatically 
according to education, resources, or demo-
graphic characteristics, among other factors. 
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 Fig. 2.5.1. Empirical risk model of malaria infection in Grand Dakar, Senegal. 
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In the multivariate map (Fig. 2.5.1), risk is 
represented as a linear combination or aggrega-
tion of  hazard and vulnerability. Nine different 
combinations of  risk have been developed. Indi-
vidual exposure (IE) to mosquitoes is divided into 
three categories: negligible, high, and very high. 
The social vulnerability ranking also entails 
three categories (low, medium, and high); it as-
sumes that the higher the social vulnerability is, 
the lower the protection against the bites will be 
and the lower the likelihood of  available health 
care service will be. 

The color intensity scheme of the map 
points to the potential hotspots of  malaria infec-
tion, thus identifying areas that deserve special 
attention during the rainy season, especially if 
there is little or no medical support for house-
holds by institutions or aid programs. 

Two weak points deserve to be considered 
regarding this mapping approach. One involves 
the selection of  thresholds for continuous vari-
ables and assumptions on mobility. The scientific 
literature on malaria infections contains little 
knowledge on the existence of thresholds 
whereby the probability of  being bitten varies as 
a function of  population density. The thresholds 
used are thus arbitrary detection thresholds. 
The second point involves the initial assumption 
that the hosts are bitten where they live and that 
the model is static, representing a general situ-
ation. This means two things: the mobility of 
people and periods spent outside the area are not 
considered, and the effects of  seasonal/environ-
mental conditions are not taken into account. 

Why use EO data? When working on dis-
eases such as malaria, researchers often face a 
lack of  quality data required for optimal target-
ing of the intervention and monitoring (Ceccato 
et al., 2017; Quattrochi et al., 2017). Data from 
satellite imagery with useful spatial and tem-
poral resolution can help fill the gap and are be-
coming more readily available. EO data can be 
particularly helpful for characterizing relevant 
landscape features or urban environments. Al-
though socio-economic or demographic data are 
rarely derived directly from EO, they can be com-
bined or extrapolated to produce useful informa-
tion, such as the malaria infection risk index in 
the above-mentioned work. 

Who are the end users? Ideally, malaria risk 
maps and their subcomponents – hazard and 
vulnerability maps – become valuable tools for 

practitioners and policy makers who wish to ob-
tain useful information on the potential hotspots 
of  risk of  malaria infection in urban environ-
ments. The information would allow them to 
identify vulnerable populations and address their 
needs, identify uneven capacity for preparedness 
and response, and reduce pre-existing risk. In the 
context of  vector-borne diseases in low- and mid-
dle-income countries (LMICs), this knowledge, 
combined with geospatial information products 
developed with the help of remotely sensed data 
and GIS, can enable decision makers to better al-
locate limited resources in the fight against epi-
demics. Since vector-borne diseases are linked to 
climate and environmental conditions as well as 
human and societal characteristics, the integra-
tion of  climate data and environmental informa-
tion combined with socio-demographic data sets 
becomes an essential task for governmental and 
intergovernmental institutions with responsibil-
ities for public health. 

Technical considerations for  
producing risk and vulnerability maps 

This section highlights the technical consider-
ations necessary for the production of  the differ-
ent subcomponents of  the risk map. 

What EO data are needed? Assessing the risk 
of  malaria infection requires a combination of 
data and skills and relies on interdisciplinary 
studies. Core aspects of  the work are illustrated 
in Fig. 2.5.3. The integrated assessment of  risk 
of  malaria infection in Dakar required several 
sources of  quantitative information, as listed in 
Table 2.5.1. A more detailed description of  EO 
data used for the HBR model is given below. EO 
data and derived information products are inte-
grated into hazard modeling of  HBR estimates 
and identification and characterization of  the 
human vulnerability to malaria infection. 

EO data for estimating the HBR 

A tele-epidemiology approach was used to esti-
mate the density of  the main mosquito vector of 
malaria in Dakar, Anopheles gambiae sl. The ap-
proach involved in the production of  the vulner-
ability map depicted in Fig. 2.5.4 followed three 
major steps: (i) intensive ground measurements 
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Fig. 2.5.3. The inherent interdisciplinarity of assessing risk and vulnerability. 

Table 2.5.1. Preliminary data sources for Dakar metropolitan area and census districts (CDs). 

Type Area coverage Time frame Source 

Socio-economic and 
demographic variables 

2000 CDs 2002 (published in 2006) Census ANSD 

Predicted HBR 1476 CDs 1994–1997–2008–2010 Laboratoire d’aérologie 
Prevalence (data used for 

risk model validation) 
112 CDs 2008 ANR ActuPalu 

Multi-temporal land use 
and land cover analysis 

Dakar metropolitan area 1988–2008 Centre de Suivi 
Ecologique (CSE) 

ANR, Agence Nationale de la Recherche; ANSD, Agence Nationale de Statistique et de la Démographie. 

(Anopheles larval habitats and HBR); (ii) selec-
tion of  satellite data for mapping and extracting 
environmental and meteorological information; 
and (iii) use of  statistical models taking into ac-
count the spatio-temporal variability of the data. 

The models were developed by a team of 
researchers at the Department of  Infectiologie 
de Terrain de l’Institut de Recherche Biomédi-
cale des Armées (IRBA) in Marseille (Machault 
et al., 2012). 

High-resolution SPOT-5 satellite images of 
Dakar and surroundings were acquired for 
the summer rainy season to coincide with the 
fieldwork during 26 September 2007, 24 Sep-
tember 2008, and 28 September 2009; a dry 
season image was captured on 11 May 2009. 

This multi-temporal, atmospherically corrected 
data set included three spectral bands at 2.5-m 
spatial resolution (green, red, and near infrared) 
and one short-wave infrared band at10-m spa-
tial resolution (Machault et al., 2012). A digital 
elevation model (DEM) at a spatial resolution of 
90 m was available from the Shuttle Radar Top-
ography Mission (SRTM 4.1). 

In order to characterize the hazard compo-
nent for a better HBR estimate one needs to con-
sider the net population density in the built-up 
areas of  a city. In Dakar, population densities are 
often calculated on the basis of  CD data. However, 
since CDs are not completely covered by built-up 
areas, a more realistic measure can be applied in 
the form of  dasymetric mapping. The principle of 
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 Fig. 2.5.4. Vulnerability of populations in terms of predicted Anopheles gambiae sl. number of bites per 
person per night for 22 September 2009. (From: Machault et al., 2012.) 

dasymetric mapping is to adjust human popula-
tion density exclusively to the space where people 
actually live (Mennis, 2003). Dasymetric map-
ping recalculates the actual – or net – population 
density by excluding areas of  vegetation, water, 
bare soil, and roads. Figure 2.5.5 shows the urban 
net density for Dakar (Borderon et al., 2014). 

EO data for estimating human vulnerability 
characteristics: The actual risk map (Fig. 2.5.1) 
reflects the interaction between hazard and vul-
nerability of the population. In the context of 
this study, social vulnerability has generally 
been defined as the set of  characteristics of  a 
group or individuals in terms of  their capacity to 
anticipate, cope with, and resist the impact of 
natural hazards like malaria infection. Follow-
ing the Social Vulnerability Index approach,1 a 
social vulnerability metric was implemented for 
mapping in the metropolitan area of  Dakar (Bor-
deron, 2016; Fig. 2.5.6). 

What resources are needed? Assessing com-
plex environmental and social phenomena asso-
ciated with the geospatial assessment of  malaria 
infection risk requires the integration of  EO data 
with demographic, socio-economic, and other 
data. It is recognized that the exposure to hazard 

alone is insufficient to predict impact, because 
the populations affected are heterogeneous and 
vulnerable to impact in different ways (De 
Sherbinin, 2017). Common issues often identi-
fied in the literature with respect to data integra-
tion revolve around data quality and scale. 

Data availability and the choice of  scale: Since 
vulnerability assessments rely on a variety of 
data sources, reliable access to these data sets is 
essential and policies for data sharing embedded 
in a spatial data infrastructure are required to 
provide reliable and consistent results. Once the 
database is built, one of the challenging issues is 
the choice of  a common scale for data integra-
tion. This choice should ideally be related to the 
“scale of  action” at which phenomena or fea-
tures of  interest can best be observed, rather 
than by the scale of available data. For instance, 
small-scale data sets can be resampled at higher 
resolution. Fritzsche et  al. (2014) and OECD 
(2008) discussed different aggregation methods 
in detail. Data integration also requires familiar-
ity with the science behind the data sets and 
their composition. As an example, many remote 
sensing data analyses involve highly refined 
methods for measuring and assessing the impact 
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 Fig. 2.5.5. The estimation of urban net density in Dakar. 

of  errors in their measurements through classi-
fication accuracies and standard errors, whereas 
most spatial socio-economic data do not come 
with corresponding error bars for the estimates 
contained in them. Hence, characterizing the 
validity and accuracy of  derived products can be 
challenging (De Sherbinin, 2017). 

Data management and analysis: Recently, com-
puter processing, data storage facilities, and ac-
cess to remotely sensed products have become 
more ubiquitous and user-friendly. Moderate- and 
high-resolution satellite imagery is often available 
free of  charge. However, there is still a significant 
need for assistance in the process of technology 
transfer. This applies especially for the public 
health sectors of  many countries that seek to em-
ploy effective geospatial assets against the threat 
of  malaria with the help of  EO data analysis. 

Perspectives 

What future developments are needed? Integra-
tive vulnerability assessments require some 

methodological advances. The difficulty of  coup-
ling the dynamic disease modeling approaches 
and their uncertainty to assess population vul-
nerability is often evident in projects modeling 
the risk of  malaria infection and transmission. 
More transparency is needed at each stage of  the 
decision process when it comes to combining 
modeling and visualizing the data. Systematic 
validation of  the produced model is another re-
quirement. In the context of  malaria, this could 
be achieved, in part, by the development of  new 
frameworks for modeling routine malaria sur-
veillance data and by the integration of  other 
malaria-related metrics. 

What are the opportunities for EO? EO data, 
products derived from them, and other geospa-
tial data from available databases and surveys 
offer several opportunities for the development 
of  risk and vulnerability maps with high spatial 
and temporal resolution: 

• To better understand the relationship between 
diseases and the environment and climate. 
Satellites provide raw data that are con-
tinuously archived and cover large areas 
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of  the Earth. Sources for satellite-generated 
climate or environmental data that can 
help assess the exposure of  population to a 
climate-related disease are varied and 
some are freely available online. A list of 
useful sources is included in Quattroci 
et al. (2017). 

• To assess precisely who is at risk and where. 
Population data sets from surveys or census 
data can be combined with EO data to pro-
duce dasymetric maps. Dasymetric map-
ping is a method to disaggregate census 
data to fner scales by integrating satellite-
based data and land cover data; the result 
provides a more realistic impression about 
the population distribution than using arbi-
trary administrative boundaries such as 
census tracts. 

• To better understand the relationship between 
diseases and demographic and socio-economic 
characteristics of  the population. Some pro-
grams combine EO data with population 
census data and surveys to provide high-
resolution multi-temporal population maps. 
These maps offer estimates of  population 
size and distribution as well as other related 
characteristics for data-limited environments. 
For instance, the WorldPop population map-
ping program is based on peer-reviewed 
methodologies and currently provides the 
spatial demographic data sets of  choice for 
over 100 government agencies in low-income 
and lower-middle-income countries in 
Africa and Asia. 

• To help measure the accessibility of  health care 
or the health situation of  some marginalized 
populations (not present in the classical data 
sets) or a population in a post-crisis situ-
ation where key baseline data are not avail-
able. Satellite-based information could help 
to establish baseline data for population 
surveys in the absence of  household lists or 
systematic civil registration. EO products 
can support selection of representative 
samples of  populations in the absence of 
census-type data on households (Kondo 
et al., 2014). 

Current EO product developments in the public 
health sector: The integrative assessment of  risk 
and vulnerability in the context of  public health 
has been applied and improved over the past 

30 years. Some examples of new products and 
approaches utilizing EO in the public health sec-
tors of  vulnerable countries reflect well on cur-
rent developments. 

Example of bottom-up population 
mapping from WorldPop 

Where census data are outdated or unreliable, 
WorldPop has been collaborating with the Bill 
and Melinda Gates Foundation and Oak Ridge 
National Laboratories to develop approaches to 
estimating population distributions at high 
spatial resolution through a combination of 
satellite-derived feature extractions and 
household surveys. Initial outputs are available 
on the WorldPop website with some outputs 
already available for Nigeria in their vaccination 
tracking system.2 

The Flowminder Foundation offers examples of 
the collection, aggregation, integration, and 
analysis of  anonymous mobile operator, satel-
lite, and household survey data.3 The following 
is an extract from the three applications of  their 
work related to public health: 

Disaster response “We pioneered the use of 
de-identified data from 
mobile operators to follow 
population displacement.  
With this data we support 
relief agencies in delivering 
the right supplies to the right 
people at the right time.” 

Socio-economic 
analysis 

“Traditional surveys in low- and 
middle-income countries 
produce estimates only for 
large areas. Using new 
statistical methods, satellite 
and mobile data we produce 
estimates of poverty and key 
social indicators at a 
resolution of 1km2.” 

Precision 
epidemiology 

“Most infectious diseases 
spread through human 
movements. We integrate 
large numbers of data 
sources, including data from 
mobile phone operators to 
model and predict spread of 
infectious diseases.” 
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Notes 

1 http://artsandsciences.sc.edu/geog/hvri/sovi (accessed 4 January 2022). 
2 https://www.worldpop.org/methods (accessed 4 January 2022). 
3 http://www.flowminder.org/ (accessed 4 January 2022). 
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2.6 EO and Geospatial Data Utilization During 
the COVID-19 Pandemic: A Preliminary Appraisal 

Dirk Werle1 and Guy Aubé2 

1Ærde Environmental Research, Halifax, Canada; 2Canadian Space Agency, 
Saint-Hubert, Québec, Canada 

Context 

Two decades into the third millennium, the 
2019 coronavirus disease (COVID-19) pan-
demic is affecting the human population in ways 
that present generations have not experienced. 
Not since the Spanish flu a century ago has it 
been more apparent that a public health crisis in 
one community can quickly become a crisis 
around the world. Travel has never been faster 
or more frequent, trade more global, and human 
populations so numerous. Institutions have 
been warning of  a potential pandemic for dec-
ades, citing climate change, rapid urbanization, 
and our increasing proximity to viral reservoirs 
like farm animals and wildlife (US Department 
of  Homeland Security, 2006; GHRF Commis-
sion, 2016; WHO, 2005, 2016). Many scien-
tists have posited that the source of  the virus 
(SARS-CoV-2) was direct contact with wildlife 
like bats and pangolins, which led to the hu-
man-to-human transmission of  COVID-19 (An-
dersen et al., 2020; Zhang et al., 2020). Piecing 
together what happened and how to address it 
has been the preoccupation of  a great many 
people working in diverse fields. Whether doing 
fieldwork, working in laboratories, rolling out 
public health measures, compiling spatial data, 
or studying satellite images from hundreds of 
kilometers above the Earth’s surface, scientists 

and practitioners are optimizing and capitalizing 
on each other’s knowledge and expertise 
(Franch-Pardo et  al., 2020). They are forming 
new One Health research collaborations to more 
fully appreciate the complex web of  natural and 
human-induced hazards that play roles in creat-
ing public health crises. 

This preliminary appraisal of  the utility of 
geospatial EO data in support of  public health 
and safety measures was undertaken during the 
COVID-19 pandemic. Prior to the outbreak, EO 
research and development efforts geared toward 
the pandemic thematic have been scarce (Timpka 
et  al., 2011; Jonas, 2013); in-depth risk-related 
assessments and a dedicated EO-related pandemic 
playbook are not available. Hence, this appraisal 
is confined to EO-based information and know-
ledge generation as it pertains to current envir-
onmental conditions and changes, public health, 
and public safety and surveillance-related issues. 
Further attention is directed at the contribution 
of  geospatial data in general and GIS technology 
in particular (Esri, 2011), as it has directly 
impacted and mediated situational reporting 
during the first half  of 2020 (Franch-Pardo et al., 
2020). It is anticipated that comprehensive as-
sessments and analytical evaluations of  EO and 
GIS contributions in support of  public health re-
sponses to the pandemic will be conducted in the 
post-COVID-19 era. 
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Collaboration and participation of the 
EO and geospatial community 

The rapid global emergence of  COVID-19 has 
made it obvious that the effects of  the pandemic 
are pervasive and that working together is in 
everyone’s best interest. The response has in-
spired a spirit of  collaboration among scientists, 
managers, administrators, doctors, researchers, 
engineers, and the public at large on a scale 
rarely before seen. Members of the geospatial 
and EO communities have maintained essential 
data collection and curatorial services and pro-
vided evidence-based data, information, and 
know-how to support decision makers at various 
institutional and political levels. The pandemic 
has certainly laid bare the importance of  open-
ness of  data, research outcomes, and research 
infrastructure (Kituyi, 2020), pointing toward 
the necessity of  establishing best practices for 
pandemic strategies (Gibney, 2020) through 
synthesizing evidence (Donnelly et al., 2018). 

The all-hands-on-deck outlook has also 
been adopted by the geospatial community, 
which has been actively and creatively searching 
for ways to directly or indirectly contribute to the 
needs of  public health. For example, the ESA 
held the Global Space and Economic Workshop 
in July 2020 to discuss the value of  EO data dur-
ing and after the COVID-19 crisis, how space 
data can help with monitoring the pandemic, 
and if  it could even assist with recovery in the 
post-COVID world.1 During the COVID-19 lock-
down period, the Secretariat of  the GEO initiated 
a series of  virtual meetings. They encouraged 
participants from many different countries to 
share information and invited them to present 
their ideas on how best to place EO at the service 
of  public health. They have been updating their 
website2 with their initiatives and those of  their 
members, participating organizations, and asso-
ciates on how EO has been supporting response 
and recovery actions related to the COVID-19 
pandemic. 

Following an ESA call for rapid action, ESA, 
NASA, and Japan Aerospace Exploration Agency 
(JAXA) implemented an open access COVID-19 
Earth Observation Dashboard3 as a joint space 
agency initiative. It demonstrated the capability 
of satellite sensors and highlighted dashboard 
visualization technology. EO image capture 

relevant to the pandemic situation and meas-
urements of  environmental conditions docu-
mented numerous changes as countries closed 
businesses, people deserted public spaces and 
avoided travel, and industries wound down pro-
duction. Ultimately, the EO dashboard initiative 
represented an important signal by the EO com-
munity and its leadership that there is a commit-
ment to act and participate in the response and 
recovery process. 

NASA devoted its 2020 Space App chal-
lenge4 to exploring fresh perspectives on how EO 
data might help confront the COVID-19 pan-
demic. The goal was to document observable 
changes and combine EO environmental data 
with epidemiological and demographic data to 
create new knowledge. During the 48-h event, 
more than 1400 projects were created by over 
15,000 participants and problem solvers from 
150 countries. They came together to form more 
than 2000 teams. Experts on the various subject 
matters came from space agencies in the USA, 
Canada, Europe, and Japan, and were available 
online to answer questions and stimulate discus-
sion on EO data fusion with socio-economic, en-
vironmental, demographic, and medical data. 

Near-real-time mapping and  
monitoring 

During the early phase of  the COVID-19 pan-
demic, the collection, visualization, and analysis 
of  geospatial data related to affected areas and 
near-real-time situational awareness played an 
important role in decision making and public re-
lations. Historically, tracing and mapping dis-
ease outbreaks has deep roots, largely born out 
of  the necessity of  finding a way to keep people 
living in populous cities healthy. From the bu-
bonic plague in the mid-14th century, to John 
Snow in the mid-19th century proving that 
cholera outbreaks in London were from contam-
inated communal wells, to the current day, disease 
mapping has provided us with vital information. 
Presently, big data and GIS, however, have 
brought the functionality and relevance of 
disease maps to a whole new level. There have 
been many websites and portals created by pub-
lic, private, educational, and other institutions 
(with some redundancy) to share resources 
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about the pandemic. The WHO’s Situation Dash-
board5 provides current numbers of infected 
people, deaths, affected countries, and other 
data regarding the pandemic. GIS software pro-
viders also engaged in tracking COVID-196 have 
provided similar statistics and offered story maps 
on mapping the outbreak on a daily basis,7 thus 
increasing accessibility to responders new to the 
sector and helping build engaged citizens. 

Among the maps of  disease spread created 
to date, none has been as popular as the dash-
board built by Johns Hopkins University’s (JHU) 
Center for Systems Science and Engineering. The 
developers used an online cloud-based mapping, 
analysis, and data storage system to create, 
share, and manage maps, image layers, apps, and 
other geographic content (Dong et al., 2020). At 
its core is the automated collection of  data from 
health officials around the world to generate a 
current situation map showing locations and 
numbers of  cases of  COVID-19. Their decision to 
make their map free to everyone and make their 
underlying data set available made it go viral; at 
its highest point the map was receiving more 
than a billion interactions a day by people visual-
izing the map and mining the underlying data.8 

The example set by the JHU-operated tool has 
since been emulated by numerous other institu-
tions mandated to provide pandemic and health 
information to the public. 

Thus far, near-real-time or archived EO 
data has not featured directly in these public 
health dashboards. However, GIS layers refer-
ring to meteorological and environmental infor-
mation often rely on analyses derived from EO 
satellites. Through media reports on COVID-19, 
the scientific value of  EO data and geographic-
ally linked information, together with the basic 
visual appeal of  satellite imagery, appears to 
have increased the attention of  the general 
public. This trend has in part been stipulated by 
initiatives of  the EO, GIS, and public health 
community of  practice. 

Public health situational awareness 
and related surveillance 

The pandemic has exponentially increased the 
demand for geographically correlated informa-
tion in support of  public health situational 
awareness and related surveillance activities. 

Situational awareness, as defined by the US De-
partment of  Health and Human Services in 
2015, results from the process of active informa-
tion gathering (both domestic and international) 
with appropriate analysis, integration, interpret-
ation, validation, and sharing of  information 
linked to health threats and the health of  the 
human population. Related to situational aware-
ness but not synonymous, surveillance is a key 
information-gathering activity that encompasses 
timely human disease surveillance, animal dis-
ease surveillance, environmental monitoring, 
and gathering of  intelligence and other informa-
tion for early warning. 

While gaining situational awareness and 
relying on surveillance by way of  satellite im-
agery has been a common practice in the mili-
tary intelligence communities for decades, there 
have been far fewer efforts of  similar scope with 
EO satellites in other sectors, including public 
health. The COVID-19 outbreak has altered this 
practice, with the same service providers offer-
ing to apply their high-resolution Earth Intelli-
gence satellite data acquisition capacity and 
analysis capability to the pandemic efforts. This 
offer was sustained by numerous and much-
publicized demonstrations of  imaging capabilities 
(Figs 2.6.1–2.6.4).9 Major satellite operators 
showed that EO data can be used to provide near-
real-time situational awareness for authorities 
regarding the effect of  public health, safety, and 
security measures enacted during the pandemic. 
Minetto et  al. (2020) measured human and 
economic activities from satellite imagery to 
support city-scale decision making. 

The capacity to map, analyze, assess, and 
project the state of  real-world problems has ex-
panded in the wake of  the Ebola crisis in West 
Africa between 2013 and 2016. EO and GIS 
were used to update and create maps to decide 
where to allocate treatment centers, how many 
beds to put in them, how to help patients get to 
the centers, and how to manage safe burials; it 
was arguably a turning point in the deployment 
of  satellite technology for managing epidemics 
(Peckham and Sinha, 2017). 

During the early stages of  the pandemic, a 
GIS industry leader produced a White Paper en-
titled Geographic Information Systems for Cor-
onavirus Planning and Response. It offered a 
timely overview for leaders and decision makers 
explaining how GIS systems can provide location 
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Fig. 2.6.1. High-resolution satellite imagery of public spaces showing density of human gatherings before 
and during pandemic-related restrictions exemplified by numbers of Muslim worshippers surrounding the 
Kaaba in Mecca, Saudi Arabia, on 14 February 2020 (left), 9 March 2020 (middle), and 3 April 2020 
(right). In early March, Saudi Arabia took the rare step of limiting access to the Grand Mosque in Mecca, 
affecting the Umrah pilgrimage of many worshippers from around the world. (From: WorldView-3 satellite 
images ©2020 Maxar Technologies, used with permission.) 

Fig. 2.6.2. High-resolution satellite imagery of construction activities at the Leishenshan hospital site in 
Wuhan, China on 3 August 2019 before the lockdown (left) and after completion on 4 March 2020 (right). 
A time series of the EO data provided evidence of immediate and significant efforts on the part of the 
authorities to increase medical care infrastructure in response to the COVID outbreak in that city. (From: 
WorldView-3 satellite images courtesy of Maxar Technologies, used with permission.) 

intelligence (Esri, 2020). For public health au-
thorities, geospatial information can help guide 
several activities, including making decisions 
about resource allocation, communicating more 
effectively with other agencies, and identifying 
vulnerable populations. 

Potential EO applications 

EO can contribute to assessing the risk of emer-
ging diseases, modeling, and tracking outbreaks. 
During the COVID-19 outbreak, EO satellites 
continued their routine operation, as they are 
considered an essential service. Their data 

collections over large areas allowed analysts to 
quantify change at various spatial and temporal 
scales over selected sites or regions, sometimes 
producing stunning visuals. EO has the capacity 
to support pandemic response in two different 
ways: for near-real-time situational awareness 
and up-to-date reference imagery; and as analy-
sis-ready data for ongoing risk mapping and 
modeling. Potential applications include the fol-
lowing: assessing population mobility, monitor-
ing of air quality, analyzing weather conditions, 
monitoring social-economic activities, and util-
izing up-to-date land use and land cover infor-
mation, in conjunction with mobility and 
socio-economic data, for risk area identification. 
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Fig. 2.6.3. High-resolution satellite imagery of the Phoenix Airport rental car center on 5 March 2020 (left) 
and again on 16 March 2020 (right) as fewer cars were being rented given increasing flight cancellations. 
(From: GeoEye satellite images ©2020 Maxar Technologies, used with permission.) 

Weather 

Although some respiratory viruses have distinct 
seasonal rhythms, whether there are seasonal 
factors effecting COVID-19 spread has yet to be 
determined definitively. Currently, many environ-
mental variables such as rainfall and temperature 
are being examined, and there is, for example, 
some evidence that the virus might not be able to 
transmit as efficiently within environments with 
higher humidity (National Academies of Sciences, 
2020; Ma et al., 2020, 2021; Kifer et al., 2021). 
However, the international virtual symposium on 
Climatological, Meteorological and Environmen-
tal (CME)10 factors hosted by the World Meteoro-
logical Organization in August of  2020, made note 
of two observations about the COVID-19 pandemic. 
First, peer-reviewed published studies of  SARS-
CoV-2 transmission, COVID-19 incidence, mor-
bidity, mortality, and recovery rates have failed to 
unequivocally show a robust and consistent 
response to temperature, humidity, wind, solar 

radiation, or other proposed meteorological drivers. 
This does not exclude the possibility of  an influ-
ence, now or later in the pandemic, but the evi-
dence presented is not sufficiently strong and the 
prevailing degree of uncertainty in existing studies 
renders the evidence unusable for further predict-
ive applications at this stage. More research is 
needed to better understand which variables are 
most critical for dynamical understanding and 
COVID-19 risk prediction. Second, there is strong-
er evidence that air pollution in the form of  fine 
PM affects the severity of  COVID-19 symptoms. 
This is supported by evidence from both COV-
ID-19 and other respiratory illness research that 
studies the impacts that chronic and acute PM

2.5 

exposure can have on symptom severity. Because 
satellites produce a steady stream of  weather-relat-
ed data on a global scale, EO is well positioned 
to contribute to this research and forecasting of 
infection increase by providing data on air quality 
and on weather if  and when these prove to be use-
ful in predicting COVID-19 transmission. 
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Fig. 2.6.4. High-resolution satellite image of mass-grounding of commercial aircraft at Panama City 
International Airport, 24 March 2020. This pictorial representation of travel bans during the COVID-19 
pandemic was a scene that repeated itself at many airports around the world. (From: WorldView-1 
satellite image courtesy of Maxar Technologies, used with permission.) 

Mobility 

A novel feature of  EO is its ability to pinpoint and 
visualize changes in levels of  light at night. 
Nighttime radiance can be used to track urban-
ization and socio-economic parameters (popula-
tion, GDP, etc.), evaluate disasters and armed 
conflicts, assess greenhouse gas emissions and 
energy use, and analyze light pollution and its ef-
fects on health. The global pandemic has offered 
scientists a unique opportunity to observe the 
sudden, mass changes in human behavior 
through the lens of  satellites, which can provide 
near-real-time situational awareness, indicate 
the socio-economic burden of  the disease, and 
monitor when normal activity has resumed. 

In the USA, researchers found that night-
time radiance declined in states with lockdown 
measures but did not substantially decline in the 
states that did not enforce stay-at-home orders, 
such as Florida and Arizona (Elvidge et  al., 
2020). This emphasizes that unless orders come 
from governing bodies, physical distancing will 
not occur on any significant level and high infec-
tion rates, like in Florida and Arizona, could be 
the result. Observations were made on other lo-
cations too: near Wuhan, where the virus first 
emerged, data showed that nighttime lights 
were brighter in residential areas around the 
city; dimmer nighttime lights were recorded in 
commercial inner-city areas during the lockdown 
(Fig. 2.6.5), suggesting that many people were 
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Fig. 2.6.5. Nighttime light conditions within the city of Wuhan, China, based on imagery collected on 19 
January 2020 and 4 February 2020 by the VIIRS on the NOAA–NASA Suomi NPP satellite. Significant 
lighting changes are noticeable in the commercial Jianghan District and nearby residential areas, likely 
attributable to activity restrictions invoked by local authorities during late January in response to the 
COVID-19 outbreak. (From: NASA Earth Observatory/NASA Goddard Space Flight Center, VIIRS 
day–night band data from the Suomi National Polar-orbiting Partnership.) 

staying home as requested (Liu et al., 2020); 
India was substantially dimmer; London had 
dimmed although many nearby cities did not; 
Paris had dimming near its core; dimming 
was patchy in Italy and Japan; and Brazil and 
Iraq largely lacked any dimming (Elvidge 
et  al., 2020). Ultimately, these data can do 
more than help track mobility, compliance, 
and impact; it can give planners an indica-
tion of  where (or whether) people might 
move, helping them prepare for subsequent 
lockdowns. 

Mobile device data 

Given the enormous accumulation of  mobility 
data by telecommunication providers, disease 
mappers are able to access global databases that 
can be combined with information like disease 
incidence, bat or insect reservoirs, and even 
the travel of  infected individuals. Mobility data 
can enhance the capacity of  GIS to elucidate 

transmission dynamics and to coordinate and 
direct response to outbreaks. This is especially 
true in more remote areas and jurisdictions lack-
ing electronic health records with up-to-date ad-
dresses. Technological GIS and telecommunica-
tions advances paired with the experience of 
fighting outbreaks of  Ebola and other infectious 
diseases like SARS, H5N1, and H1N1 have 
helped officials not only locate disease but com-
municate with the general public, target services, 
and conceive of  new ways to collect information 
that could directly contribute to expedient re-
sponses to outbreaks. 

In Asia and Europe, contact tracing apps for 
mobile phones have been tested, in part certified, 
and made available, increasing our collective 
ability to respond to an outbreak. Accurate in-
formation on population movements is valuable 
for monitoring the progression of  the outbreak 
and predicting its future spread, facilitating the 
prioritization of  interventions and designing 
surveillance and containment strategies. The 
emergence of  functioning contact tracing apps 
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within a few weeks of  conceptualization and 
testing is a vivid example of  how rapidly geospa-
tial and communication technologies can be 
paired, harnessed, and adapted to perform a crit-
ical task (Ferretti et  al., 2020), although there 
are considerable issues regarding privacy in 
some countries, which may limit the use of  mo-
bile device data (Lapolla and Lee, 2020). 

Air quality 

There has been much published on the link be-
tween human health and air quality with plenty 
of  evidence that air pollution can both exacer-
bate and cause respiratory and heart diseases. 
EO makes short work of assessing air quality, 
providing details on near-surface concentra-
tions of NO2, SO2, O3, NH3, volatile organic com-
pounds (VOCs), and aerosol properties. NASA is 
presently developing the MAIA mission in part-
nership with epidemiologists and health organ-
izations to use EO data to further study specific 
human health issues. MAIA will make radiomet-
ric and polarimetric measurements to charac-
terize the sizes, compositions, and quantities of 
PM in air pollution; researchers will combine 
MAIA measurements with population health 
records to better understand the connection 
between aerosol pollutants and health prob-
lems. In the context of  a respiratory pandemic, 
quick, detailed, and accurate information about 
air quality can provide important data in the 
push to understand the disease and forecast se-
verity of  symptoms of  the people infected by 
COVID-19. Another EO strength is the visual 
presentation of the data it collects. Striking im-
ages capturing air quality improvements during 
initial lockdowns have been widely disseminated 
(Figs 2.6.6 and 2.6.7) (Diffenbaugh et al. 2020). 

Mobility is intimately connected with air 
quality, since vehicle emissions are a major 
source of air pollution, especially in urban areas. 
During the lockdown, night light imagery re-
vealing darkened roads and satellite data record-
ing NO

2 emissions have dramatically illustrated 
the link between car traffic density, air pollution, 
and ultimately human health. In fact, human-
produced aerosol content in the air causes more 
light to be scattered, compounding light pollu-
tion at night; the reduced road and air traffic 

during lockdowns and the ensuing cleaner air 
contributed to decreasing artificial skyglow in 
many parts of  the world (Bustamante-Calabria 
et  al., 2020; Jechow and Hölker, 2020). Some 
research has already come out quantifying the 
effects of  air quality and disease severity (Wu 
et  al., 2020). One study compared air quality 
readings from 355 municipalities in the Nether-
lands, including data on nitrogen dioxide, sulfur 
dioxide, and fine PM. The team found that areas 
that had even slightly higher pollutant levels 
tended to have more cases, hospitalizations, and 
deaths (Cole et al., 2020). 

Air quality and the possible interactions be-
tween air pollution and the increasing risk of 
COVID-19 health impacts have garnered a lot of 
attention during the pandemic (Conticinia et al., 
2020; Travaglio et  al., 2020; Ogen, 2020). Be-
cause air quality is worse in cities, it is difficult to 
know if  or to what degree the high rates and se-
verity of  infections are due to things like high 
density living during a pandemic that can be 
spread through the air or if  it is also due to 
higher levels of  aerosols in that air. Studies need 
to correct for spatial spillover (Cole et al., 2020) 
and confounding factors like social deprivation, 
population density, ethnic composition, age, etc., 
but the connection is compelling. Conticinia 
et al. (2020) emphasize that prolonged exposure 
to air pollution leads to a chronic inflammatory 
stimulus and that northern Italy, with one of  the 
highest death rates of the virus, also has some of 
the highest levels of  air pollution in Europe (ESA, 
2020) (Fig. 2.6.8). 

Land use and land cover 

The data EO satellites collected during the initial 
shutdowns can be used to track any changes in 
natural and protected areas, for example, to see 
if reduced human traffic had an effect on ero-
sion, water quality, changes in wildlife behavior, 
or even invasive species. This can deepen our 
understanding of  human impact on the planet 
and the actions that might be required to ad-
dress issues like climate change. The pandemic 
did not just create an environmental reprieve, 
however. There has also been increasing animal 
poaching given food shortages and the collapse 
of  tourism, which increases potential contact 
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 Fig. 2.6.6. Distribution of pre-COVID-19 lockdown nitrogen dioxide (NO2) levels over eastern China 1–20 
January 2020 based on data collected by the Tropospheric Monitoring Instrument (TROPOMI) on the 
European Commission’s Copernicus Sentinel-5P satellite, and reduced NO2 levels 10–25 February 2020 
during the lockdown period, prior to lifting of quarantine restrictions and resumption of economic 
activities. (Image: ©NASA 2020.) 
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Fig. 2.6.7. NASA’s Aura satellite measurements revealing significant reductions in nitrogen dioxide (NO2) 
air pollution over the major metropolitan areas of the northeastern USA during the COVID-19 lockdown in 
March 2020 (bottom map) relative to the average concentrations during that month for the 2015–2019 
period (top map). (Image: ©NASA 2020.) 

between humans and zoonotic incubators, and 
a surge in agricultural expansion, logging, and 
illegal mining (United Nations Environment Pro-
gramme and International Livestock Research 
Institute [UNEP/ILRI], 2020). According to Bra-
zil’s National Institute of Space Research (INPE), 
satellite data showed that 2020 saw more land 

cleared than 2019, which was already the big-
gest year for deforestation in more than a decade 
in Brazil.11 More images are surfacing from 
agencies like ESA that show increased deforest-
ation in the region. Because clearing the forest 
for agriculture or ranching is often done with 
fire and because the fragmentation of  forested 
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 Fig. 2.6.8. Comparison maps of average nitrogen dioxide concentration over Italy as determined by 
European Copernicus Sentinel-5P satellite data analysis during the month of March 2019 (left) and during 
the period of 14–25 March 2020 (right) with marked reduction of concentration being attributed to reduced 
air pollution during COVID-19 lockdown measures. (Image: ©ESA, 2020. Contains modified Copernicus 
Sentinel data [2019–2020], processed by KNMI/ESA.) 

land cover causes drier conditions (Gross, 2017), 
the fire season is predicted to be even worse in 
the future. This spells trouble for the severity of 
the pandemic in these areas. Wu et  al. (2020) 
found that long-term average exposure to an in-
crease of  even 1 μg/m3 of  fine PM (PM2.5) is asso-
ciated with an 8% increase in the risk of  dying 
from COVID-19. Deforestation and this pan-
demic are intimately connected and reducing 
forest loss is clearly a public health matter, now 
more than ever. Contributions of  EO to issues of 
land cover and land use in South America in-
clude monitoring and assessing changes in for-
est cover, detecting negative changes in soil 
moisture for early warning of  fire risk, and 
tracking the movement of  smoke from wildfires 
for public health alerts. 

Vulnerable populations 

Given how accessible and reliable EO air pollu-
tion data are, it is tempting to see a large correl-
ation between pollution and poor outcomes. 
However, a heterogeneity of  risk across all indi-
viduals and community identities must be taken 
into account when predicting outcomes. Risk 
mapping is a common preparation and preven-
tion activity. When an outbreak occurs, map-
ping risk takes on an immediate value and an 
urgency to inform response to an infectious dis-
ease outbreak. But without thinking about risk 

and exposure in a specific, targeted way, our risk 
models could miss the mark. Much has been 
written in 2020 about the heterogeneities of 
COVID-19 risk, as they include factors connected 
with age, sex, comorbidities, employment, Indi-
genous and ethnic identities, and structural bar-
riers to health care (Mishra et al., 2020; Schwal-
be, 2020). India had one of  the most stringent 
lockdowns but ballooning infection rates within 
weeks of  reopening have to be accounted for by 
risk factors unique to the country or simply risk 
factors that are more prevalent or impactful. 
These may include willingness and ability to 
physically distance, population density, cultural 
beliefs, education, and of course the ability of 
the government and public health to respond to 
the crisis (Laxminarayan et al., 2020). With this 
newly gained understanding of  the heteroge-
neities of risk, EO could directly or indirectly 
address the following risk layers that impact 
vulnerable populations and the severity of out-
comes: environmental (e.g. air quality), seasonal 
(weather, temperature), locational (e.g. expos-
ure, access), mobility, and socio-economical 
(e.g. housing, density). 

Looking ahead toward the implementation 
of  COVID-19 related vaccination programs and 
measurements of  their effectiveness, especially 
with regard to vulnerable and mobile popula-
tions, there is application potential for EO as 
well. Recent immunization-related studies prior 
to the pandemic have focused on low-income 
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settings in Africa. Bharti et al. (2016) found that 
vaccination and immunization campaigns often 
did not reach their goal of obtaining accurate 
estimates of  target populations and achieve 
coverage because of  uncertainties concerning 
population size and distribution. Their research 
combined EO measurements of  fluctuations in 
population distribution with high-resolution 
disease outbreak reports to guide potential im-
provement in vaccination campaign coverage 
plans. Models involving the use of  satellite im-
agery demonstrated that retrospective estimates 
of  vaccination campaign impact and future 
campaign planning can be improved by syn-
chronizing interventions with predictable popu-
lation fluxes. Employing EO and GIS for rural 
settlement status assessments as a guide for 
polio immunization programs in Nigeria, Hig-
gins et al. (2019) presented strong evidence that 
this method has the potential to improve plan-
ning and implementation of  public vaccination 
initiatives for at-risk populations trapped in con-
flict-affected regions around the world. The United 
Nations International Children’s Emergency Fund 
(UNICEF) offered managerial considerations for 
in-country guidance on and strengthening of 
the use of  geospatial data and technologies in 
immunization programs (UNICEF, 2018). 

Conclusion 

The scope and extent of  the COVID-19 pandemic 
has challenged the capabilities of  EO technology 
and the abilities of  the EO community of  prac-
tice in an extraordinary way. EO applications 
have been studied and adopted for a number of 
public health themes in the recent past. How-
ever, researchers and practitioners alike have 
conferred little attention to potential applica-
tions of  EO in the case of  a pandemic. The 
COVID-19 outbreak provided the opportunity to 
appraise actual EO responses during the first 
half  of  2020. Although many of  these responses 
are still tentative, the near-instantaneous ap-
praisal from a public health perspective remains 
preliminary. While this review relies on both 
rapidly prepared, reviewed, and published papers 
and on authoritative online sources reporting on 
the utility of  EO during the COVID-19 pandemic, 
there is a need for a comprehensive scoping 

review and in-depth analysis. This appraisal has 
yielded a number of  preliminary conclusions, as 
follows. 

The pandemic has galvanized EO players, sat-
ellite operators, and the GEO community of  public 
health practice to provide geospatial information 
for the efforts to contain the virus and monitor 
socio-economic ramifications. The community 
was able to rely on regular EO satellite operations 
and data delivery services that functioned nomin-
ally and uninterrupted during the initial and 
widespread COVID-19 lockdown period. 

Several routine EO applications have proven 
useful: assessing environmental changes; tracking 
compliance levels to public health measures and 
best practices; monitoring before, during, and 
after certain COVID-19 interventions and their 
effects on the environment and the economy; 
and providing safety- and security-related sur-
veillance capabilities to public health-related GIS 
applications. 

EO data have gained prominence in carto-
graphic products and web-based dashboards de-
tailing disease spread and its effects around the 
world. EO imagery has offered compelling visual 
information to an expanding audience of  en-
gaged citizens. It has provided key information 
on air quality and changes in land use and wea-
ther to support research into the virus and pos-
sibly to provide early warnings of  increased risk 
of  spread and disease severity for preparedness 
and early interventions. 

EO data can contribute to assessing the risk 
of  emerging health threats, modeling and mapping 
outbreaks, and supporting situational awareness 
and surveillance. Furthermore, EO can rapidly 
update data on land use, weather, night lighting, 
mobility, and air quality, thus lending geospatial– 
temporal dimensions to the heterogeneities of 
risk, health data, economic data, environmental 
data, and population distribution. Initiated by the 
ESA and the European Commission, the online 
dashboard of  rapid EO action on COVID-19 repre-
sents a clear demonstration of  satellite imaging 
capabilities to monitor the environmental and 
socio-economic impacts of  the pandemic in spa-
tial as well as temporal detail. 

EO data can potentially support GIS appli-
cations during an epidemic or pandemic in 
LMICs where reliable, electronic health record 
systems, timely data for environmental monitor-
ing, and up-to-date base map information may 
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be intermittent or lacking. There is a general 
need to locate and support vulnerable popula-
tions; this may require data that GIS can quickly 
gather, analyse, and efficiently share. The effect-
iveness of  COVID-19-related vaccination pro-
grams could potentially be improved by applying 
up-to-date EO and GIS data to assist in locating 
and immunizing vulnerable populations. 

The cooperation of  space agencies, EO data 
and service providers, and civilian authorities 
and the ad hoc EO applications regarding COV-
ID-19 impacts have focused predominantly on 
environmental monitoring and public safety 
and security issues. In the absence of  an EO pan-
demic playbook, the activities and developments 
to date represent useful demonstrations of  EO 
capability rather than planned responses to 
specific geospatial requirements. 

Satellite imagery can help civilian author-
ities plan for pandemic responses and recovery 

phases. Generating actionable knowledge and 
public information regarding the dynamics of 
the COVID-19 pandemic will be an urgent 
matter over the next few years. Research con-
cerning key EO data collections and curatorial 
services will be essential for providing evidence-
based data, information, and know-how for 
decision makers in the public health commu-
nity of  practice. 
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8 https://nymag.com/intelligencer/2020/04/jhus-coronavirus-site-gets-1-2-billion-interactions-a-day. 
html (accessed 4 January 2022). 
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A Review by Experts 
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This section is an analysis of  the needs and op-
portunities arising from international experts 
and managers in the field of  Earth observation 
and publich health and the reference docu-
ments provided for this book. All the informa-
tion collected has been grouped together into 
eight categories: (i) aligning with and support-
ing UN Sustainable Development Goals; (ii) fo-
cusing on public health needs and key theme 
areas for further research; (iii) accessing and 

developing Earth Observation (EO) and geo-
spatial evidence-based data and products le-
veraging public health capacities; (iv) develop-
ing a sustainable community of practice; (v) 
developing knowledge and know-how; (vi) de-
veloping solutions: methods, tools, and sys-
tems; (vii) implementing technical infrastruc-
tures and technologies; and (viii) participating 
in EO satellite mission development for moni-
toring disease risks. 

©2022 CAB International. Earth Observation, Public Health and One Health: Activities, 
Challenges and Opportunities is licensed under a Creative Commons  
Attribution-NonCommercial-NoDerivatives 4.0 International License 
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Aligning with and Supporting UN 
Sustainable Development Goals 

On the international stage, the United Nations 
Member States have adopted an action plan 
called Agenda 2030 for Sustainable Development 
that focuses on improving the lives of  people and 
ending environmental degradation. The Agenda 
sets out 17 ambitious Sustainable Development 
Goals and 169 targets that integrate and pro-
mote transformative economic, social, and en-
vironmental activities of  critical importance for 
humanity and the planet over the coming years.2 

Using remote sensing to aid public health aligns 
well with Sustainable Development Goal 3 (SDG 
3), which aims to “ensure healthy lives and pro-
mote well-being for all at all ages.” More specific-
ally, EO and public health can offer promising 
support for Target 3D, which undertakes to 
“strengthen the capacity of  all countries, in par-
ticular developing countries, for early warning, 
risk reduction and management of  national and 
global health risks.” However, remote sensing 
can support the implementation of  a number of 
SDGs that are synergistic with SDG 3. For example, 
better biodiversity conservation efforts under 
SDG 15 will ensure sustainable provisioning ser-
vices for humans, ecosystems, and, therefore, 
the mitigation of  the risks of  zoonotic diseases, 
both of  which contribute to SDG 3. 

The Secretariat of  the international Group 
on Earth Observations (GEO) has developed an 
umbrella initiative to support the SDGs in a com-
prehensive way. The EO4SDG initiative identifies 
specific SDG targets for which EO can contribute 
development and progress indicators. The Secre-
tariat is also trying to better understand the 
interactions between different SDGs, to develop a 
focus on health, and to increase policy oppor-
tunities for geospatial data.3 Their EO toolkit for 
sustainable cities and human settlements (SDG 
1)4 is the first of  multiple toolkits planned for 
policy and decision makers, executive managers, 
and the interested public to encourage aware-
ness of  relevant EO applications and to facilitate 
collaboration with EO experts to meet Sustain-
able Development Goals and contribute to One 
Health solutions to public health concerns. The 
World Health Organization (WHO) promotes the 
development of  a supporting framework and 
seeks to optimize the combined use of  EO data, 
routine health information data, and other 

remote sensing data for advancing target-specific 
SDG 3 activities at national and subnational 
levels. However, national ownership, inter-
sectoral collaboration, and having the technical 
infrastructure, a competent workforce, and 
adequate finances are essential prerequisites for 
the framework to function effectively with EO 
and other geospatial data. 

Focusing on Public Health Needs  
and Key Theme Areas for Further 

Research 

The emergence of  diseases poses a great chal-
lenge for public health. An important element in 
facing this challenge is the necessity of  predict-
ing and targeting the location and time when 
the risk of  disease and the factors leading to it 
pose a threat to human populations and where 
and when it will spread. Research and develop-
ment, surveillance activities, and operational 
capabilities must constantly adapt and evolve in 
response to this growing threat, particularly 
regarding obtaining information on changes in 
climate, in the environment, and in human 
populations5 that drive disease emergence and 
pandemics. With greater knowledge of  drivers 
of  disease emergence, public health organiza-
tions can better predict, anticipate, and detect 
risks, thus allowing preparedness of  disease pre-
vention, prioritization of  surveillance efforts, 
and control actions to mitigate the risks of  dis-
ease exposure or transmission. Methods that 
provide information on disease risks are numer-
ous. Anticipatory methods include risk assess-
ment by predictive modeling and forecasting, 
while emerging diseases and pathogens are iden-
tified in laboratory or field surveillance, which 
may occur proactively or in the face of  out-
breaks. Field data, supported by accurate labora-
tory diagnosis, are critical for the calibration and 
validation of  models. This entails the collection 
of data on disease cases reported, socio-economic 
and demographic data, as well as environmental 
and climate data. In this context, EO data ana-
lysis becomes particularly useful as it supports 
the understanding and integration of  disease 
emergence drivers as part of  the modeling pro-
cess. For example, by improving our under-
standing of  wild animal vectors (such as bats) 
and their relationship with habitat features, we 
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can use EO to monitor and model various climate 
and development scenarios to predict future 
areas vulnerable to zoonotic disease outbreaks. 

Several research themes were identified as 
important for public health and where EO has the 
highest potential of  having its greatest effect. They 
include mosquito-borne diseases, tick-borne dis-
eases, air-borne diseases (pollution and extreme 
heat), water-borne diseases, vulnerable human 
populations, and pandemics and major outbreaks 
such as COVID-19. In North America and in Eur-
ope there are several organizations and programs 
that support R&D and offer specific theme-related 
solutions. Examples include the following: 

• In Canada, the National Microbiology La-
boratory, Public Health Risk Science Div-
ision of  Public Health Agency of  Canada 
(PHAC) provides EO solutions, R&D prod-
ucts from spatial modeling, surveillance 
products, services for the Canadian 
public health community, and support to 
public health emergency centers. 

• The Canadian Space Agency’s Space Util-
ization Grant and Contribution programs 
support the Canadian government prior-
ities by funding industry and academia for 
many thematic application areas, including 
public health. 

• In the USA, NOAA’s One Health program 
provides EO solutions to identify heat and 
health threats, air pollution, and other re-
lated topics. 

• NOAA’s International Research and Appli-
cations Project, IRAP, supports activities to 
link science and assessments to practical 
risk management challenges in regions 
where weather and climate affect US inter-
ests at home and abroad; IRAP priorities in 
2018 included “Decision Support Research 
on Climate-Sensitive Health Risks.” 

• NASA’s Health and Air Quality program 
supports the use of  EO in air quality man-
agement and public health, with emphasis 
on infectious diseases and environmental 
health issues. 

• In France, Centre National d’Études Spa-
tiales’ (CNES) programs support research la-
boratories in the feld of  tele-epidemiology. 

• EcoHealth Alliance, based in New York City, 
researches, monitors, and predicts the 
emergence of  new zoonotic diseases through 
in situ data collection and modeling of the 

relationships between habitat conversion, 
wildlife trade, human population patterns, 
and other key factors to predict and better 
understand the factors driving the emer-
gence of  pandemics. 

Accessing and Developing EO  
and Geospatial Evidence-based 

Data and Products Leveraging Public 
Health Capacities 

Access to timely and accurate geospatial data in 
support of  effective evidence-based decision 
making is one of  the challenges facing public 
health organizations. The emergence of  dis-
eases, which is influenced by drivers such as 
changes in human or animal behavior, the 
environment, or the climate, has significant 
geospatial dimensions (Fig. 3.1). Geospatial infor-
mation is needed for the development of indica-
tor and risk models related to: human ecology, 
including the distribution, abundance, vulner-
ability, and behavior of  humans; land use, land 
cover, and land degradation; human, animal, 
and arthropod vector habitats and biodiversity; 
the role of  certain animal species that can 
amplify the threat and spread of  disease; and 
mechanisms that interconnect all of the above. 
Geographic aspects are also important in that 
certain drivers have different impacts on and sig-
nificance for disease dynamics in different parts 
of  the world. Location-specific data, then, are 
vital in addressing risk, and EO is a meaningful 
source for these data for all regions of  the globe. 
Satellites provide data that are continuously ar-
chived and cover most of  the Earth, including 
remote and hard-to-access regions. Using multi-
temporal EO data makes it possible to update the 
information as needed. Depending on the satel-
lite and sensor system selected, daily, weekly, 
monthly, or seasonal EO-based updates can be 
provided. 

In order to meet their EO data requirements 
and utilize the data effectively, public health or-
ganizations need to collaborate with space agen-
cies and other organizations that provide access 
to EO missions and data streams. Several public 
and private organizations offer procedures for 
ordering new satellite imagery and retrieving 
archival data sets. Selection and access to data 
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 Fig. 3.1. EO and the multiple dimensions of health determinants. 

and capacity to develop thematic information 
generated from those data can meet a substan-
tial number of  geospatial information needs for 
public health research activities. Near-real-time 
satellite data streams for generating up-to-date 
geospatial information are critical in addressing 
health-related emergency/emerging situations. 
Examples of  high-resolution imagery for local 
and regional use include the Canadian RADAR-
SAT constellation and the European series of  
Sentinel satellites under the Copernicus Pro-
gramme; likewise, near real-time moderate- 
resolution data offered by US missions could  
satisfy information needs at the national or 
international scale. Additional EO data products 
(e.g. Global Forest Change data; Hansen et al., 
2013) can also prove useful for modeling disease 
emergence risk based on areas undergoing rapid 
land use change. 

Optical and synthetic aperture radar (SAR) 
sensors at very high resolution are very useful 
for studies such as those investigating mosqui-
to-borne diseases or COVID-19 disease within 
urban environments. In a research context, 

these types of  studies are feasible but in an oper-
ational context, the cost and volume of  such 
data could be prohibitive. Open access to EO data 
is critical. Sources for satellite-generated climate 
or environmental data that can be used to help 
assess the exposure of  populations to a disease 
with environment and/or climate drivers are 
varied, some of  which are freely available on-
line.6 A list of  EO sources is included in Quat-
trochi et al. (2017) and in-operation open access 
EO images relevant for health determinants as 
well as advantages and limitations of  the use of  
these images for health studies are included in 
Kotchi et al. (2019). Open data and data-sharing 
policies and promotion of  participatory ap-
proaches to generating and accessing geospatial 
information are important prerequisites, as is 
the collection of  health-related in situ data for 
producing spatial analyses. 

Health studies and risk assessments rely on 
a variety of  data sources (e.g. demographic, 
socio-economic, environmental) that must be 
integrated into models and health systems; 
providing reliable and consistent results remains 
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essential. When dealing with health problems 
in different locations around the world, data 
sources can be heterogeneous in terms of con-
tent and quality. However, EO data obtained and 
used with appropriate analysis methods produce 
effective, homogeneous, and standardized in-
formation. Expanding and improving the accur-
acy of  EO data will enhance model precision, 
sensitivity, and capacity to adapt to small changes 
in drivers that could influence the emergence of 
outbreaks. 

The type of  health issues and information 
needed will dictate public health decisions re-
garding the most appropriate resolution of 
EO images to use. Most mosquito-borne diseases 
require a high spatial resolution of  ≤30  m to 
identify variations in the environment and cli-
mate used to support public health decision 
making. In addition, the availability of  EO images 
makes it possible to develop risk and vulnerabil-
ity maps at fine spatial and temporal resolutions. 
Water-borne disease risk modeling such as for 
Vibrio infections depends on EO images that sup-
port the modeling of  sea surface temperature 
and sea surface salinity data. These data are 
available at low spatial resolution. The presence 
of Vibrio species in the water requires daily 
monitoring over time. EO data of  greater spatial 
resolution could help refine these types of 
models. Air quality and heat wave modeling also 
uses the low-spatial-resolution data that are 
currently available, but high spatial resolution 
with frequent revisits is needed to better charac-
terize urban pollution. COVID-19 has taught us 
how important data on inhabited environments 
are to assessing the effectiveness of  public health 
measures and policies such as lockdowns or the 
links between the severity of symptoms and air 
quality. The availability of  fine-resolution and 
timely images will also make it possible to make 
associations between the mobility of  people and 
places at risk. 

Local-scale risk prediction and surveillance 
are needed for differentiating objects or envir-
onmental changes in highly heterogeneous 
environments and for supporting local-level 
management. The timeliness of  EO data is also 
an important factor because using these data in 
rapid risk assessment models or forecast models 
requires them to be both as recent as possible 
and ready to use. Downscaling approaches could 
provide the opportunity to obtain data with both 

high spatial and temporal resolution. They could 
involve multi-sensor data sets that integrate im-
ages of  low spatial resolution and very high 
temporal resolution (daily) with multi-spectral 
images of  high spatial resolution. Effective ob-
servation by air-borne and satellite-based optical 
sensors may at times be affected by clouds, pollu-
tion, and smoke, thus generating missing data 
and reducing the usefulness of  EO products. 
Combining SAR and optical data offers some so-
lutions to missing EO data due to atmospheric 
conditions. 

Obtaining the desired data at all times and 
for all circumstances is often not possible. Al-
though EO technologies are evolving rapidly, 
data useful for assessing a health event may be 
missing or may be obtained at unhelpful spatial 
or temporal resolutions. In coastal areas and in 
estuaries, the complexity of  coastal waters 
makes it difficult to monitor water quality by EO 
satellite. This is the case for sea surface salinity 
data – currently available at a spatial resolution 
of  25  km – which affects coastal modeling of 
non-cholera Vibrio risk. Consequently, field in-
struments and modeling must make up for this 
lack of data. A multi-spectral or hyper-spectral 
sensor having the capacity to characterize sur-
face salinity and surface temperature on a fine 
scale in coastal environments would be ideal. 

In situ and epidemiological data 

When studying a disease, combining geospatial 
data with other types of  data such as in situ 
ecological, climate and weather, entomological, 
epidemiological, human demographic, socio-
economic, and behavioral data is often necessary 
to calibrate models and validate their predic-
tions. However, access to in situ data might be 
difficult because they are not always available, 
and the cost and time associated with collecting 
them is sometimes prohibitive. 

In general, the more the better when it 
comes to accurate data on human cases and on 
presence, abundance, and persistence of  mi-
crobes, arthropod vectors, relevant animal host 
populations, and human population character-
istics. In low-income countries, researchers and 
public health practitioners depend on limited re-
sources and often inadequate data on prevalence 
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and incidence of  the disease, including poor 
representation of  the actual affected popula-
tion (Programme National de Lutte contre le 
Paludisme, 2008; Diallo et al., 2012), as well as 
other ground-level relevant geospatial data 
(Section 2.5). 

Interdisciplinary and inter-sectoral collab-
oration is needed to identify and prepare relevant 
EO products for public health applications. Once 
such products and their specifications are identi-
fied in collaboration with experts in land use, 
land cover, or infrastructure assessments, fund-
ing agencies have the opportunity to support the 
development of  products related to the key public 
health themes outlined in this section and to fos-
ter collaboration among organizations. Now and 
in the future, EO technologies hold promise for 
detecting and capturing attributes of  the Earth at 
increasing detail, which will support the develop-
ment of  tools and models that will provide better 
information on health threats. 

Developing a Sustainable  
Community of Practice 

The development of  a strong and vibrant com-
munity of  practice concerned with the use of  EO 
for public health purposes is at the foundation 
for innovative action. This may take place 
domestically and internationally and result in 
improvements in how geospatial information is 
obtained, adopted, and managed for public 
health issues. Networking and collaboration 
also reinforce communication about health risks 
and vulnerability of populations, scientific dis-
coveries, and emerging technologies. The parti-
cipants in the One Earth – One Health workshop, 
held in Montreal in 2017, proposed several ap-
proaches to building and sustaining an active 
community of  practice: 

• Identify and articulate the needs of  public 
health stakeholders and end users. 

• Identify country-specifc health-related ac-
tivities that are addressed or could be ad-
dressed within the geospatial domain in the 
following dimensions: health technical 
areas, resource needs, and research agenda. 

• Encourage interdisciplinary and inter-
sectoral cooperation of  public health or-
ganizations, space agencies, academic 

institutions, and industry under the One 
Health approach. 

• Encourage international joint activities 
with GEO and WHO, encourage national 
space agency and public health institution 
initiatives and framework development, 
and address common public health needs. 

• Support, design, and implement public 
health-related outreach activities involving 
EO and other geospatial data. 

• Identify and implement national capacity-
building opportunities that can strengthen 
spatial and temporal coverage of in situ data 
(e.g. in collaboration with Group on Earth 
Observations Biodiversity Observation Net-
work [GEO BON]). 

• Support and participate in the Convention 
on Biological Diversity (CBD), particularly 
with regard to implementation of  the post-
2020 Global Biodiversity Framework. 

• Encourage formal cooperative agreements 
and activities among health and EO com-
munities within government organizations, 
academia, and industry at the international 
and national level. 

• Create opportunities for regular dialogue 
between EO experts and researchers, man-
agers, and practitioners in the feld, and en-
courage open access knowledge sharing; 
for example, the GEO Knowledge Hub is a 
cloud-based digital library (repository) that 
shows all the components of  a given EO ap-
plication required to reuse it.7 

• Form scientifc teams to study and report on 
specifc topics, such as the formal Health 
and Air Quality Applied Science Team 
(HAQAST) supported by NASA. 

• Support and participate in the volunteer 
effort of  the GEO Health Community of 
Practice (CoP).8 

Efficient interaction between the remote sens-
ing, entomology, ecology/biology, epidemiology, 
animal health, environmental science, climat-
ology/meteorology, social sciences, and public 
health communities is essential to informing a 
CoP that can integrate data from a wide variety 
of  sources and at various scales and qualities. 
The provision of  data and expertise by the large 
remote sensing community has the potential to 
provide data at a range of  spatial and temporal 
resolutions that can support public health 
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activities. EO products and methodologies will 
initially have to be custom designed to better fit 
public health needs, and proven methodologies 
need to be automated and more robust in the 
future – as well as user-friendly enough to be 
implemented by non-specialists. 

While the technology can be further im-
proved and more extensively employed, geospa-
tial data producers within the Canadian federal 
community are well networked and already pro-
ducing relevant information to inform public 
health mandates. For example, their Ixodes scap-
ularis risk map (Section 2.2) provides reference 
data of the quality and relevance needed to feed 
predictive models of  vector-borne disease and 
risk maps. Given globalization and the intercon-
nectedness of the planet, expanding this CoP 
will benefit public health initiatives both at home 
and around the world. 

Developing Knowledge  
and Know-how 

The multi-disciplinary approach promoted by 
the One Health concept will help increase the 
knowledge and know-how of  stakeholders to 
better identify and address the information re-
quirements for critical health issues. Chief  among 
them is a better understanding of  how climate, 
environment, biodiversity, and socio-economics – 
including human–animal–environment inter-
actions – affect the potential occurrence and 
emergence of  diseases at various scale levels. 
There is also the need to improve prediction of 
diseases, detect emerging hotspots, and build 
early warning systems. 

EO technologies and geomatics do, or could, 
satisfy many of  these information requirements, 
and building the capacity for skilled human re-
sources is essential for effectively utilizing EO 
data and deriving geospatial information from 
them. The following list includes proposed 
methods to stimulate the development of  know-
ledge and know-how in the inter-related fields of 
EO and public health: 

• Use government-assisted programs to de-
velop know-how for the acquisition of  EO 
data, the analysis of  EO-derived information, 
and the integration with other geospatial 
data to support priority areas of  research. 

• Strengthen arrangements between public 
health laboratories and academic institu-
tions focused on remote sensing, geomatics, 
geography, and other public health inter-
ests to develop highly qualifed personnel 
and to support future research. 

• Strengthen collaboration among space agen-
cies and EO organizations and national and 
international public health agencies to widely 
share EO knowledge and best practices. 

• Support the professional development and 
academic programs for a new generation of 
EO and health specialists (MSc, PhD) and 
R&D activities related to emerging felds 
such as big data analytics and deep and ma-
chine learning. 

• Offer training through applied remote sens-
ing training programs (e.g., NASA applied 
remote sensing training program [ARSET]), 
workshops that offer training on relevant 
EO and geomatics skills for end users, and 
long-term educational partnerships with 
communities and institutions in the public 
and private sectors. 

Expertise in EO image analysis, geo-informatics, 
and mapping are prerequisites for the develop-
ment of  risk information products such as maps. 
There is a significant demand for assistance in the 
process of  skills, knowledge, and technology 
transfer. This applies especially to the public health 
sectors of  many countries that seek to employ ef-
fective geospatial assets to counter the threat of 
infectious diseases with the help of  EO data ana-
lysis. Interagency cooperation to create new prod-
ucts that offer significant benefits to societal 
health is important. Health system improvements 
require dedicated resources for model develop-
ment, EO data processing, and model forecast op-
erations. In addition, skills and capacity among 
end users of  integrated health and geospatial 
products are required to maximize their use. 

Developing Solutions: Methods, 
Tools, and Systems 

Public health organizations have been using the 
best available evidence and tools to advise and 
support national and international stakeholders 
in their work to enhance the health of their respect-
ive communities. However, more innovative 
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scientific tools and methods need to be re-
searched and promising solutions need to be im-
plemented in public health programs to help 
combat increasing threats from infectious and 
chronic diseases. Hence, appropriate and inter-
operable EO-based products have to be specified, 
and spatial, analytical, and timely solutions 
need to be developed with the public health com-
munity. These could focus especially on epidemio-
logical analyses, risk modeling, surveillance and 
investigation, and emergency management. 

The EO-based information could support 
and improve public health decision making at 
many time scales, such as early warning 
forecasts for disease management of the most 
vulnerable areas and engaging in preparatory 
communications and planning for health ad-
ministrators. Using EO data and tools, it could be 
possible to shift the current focus on responding 
to outbreaks toward predicting and preventing 
diseases. 

Integrated health information systems offer 
solutions to address the current information gap 
between early warning and early action. The de-
velopment of  integrated methodological ap-
proaches from different fields of  expertise using 
a wide range of  relevant data to obtain public 
health risk maps serve to illustrate the complex-
ity of  public health issues. The French Space 
Agency (CNES) and its partners have developed 
a concept based on a deterministic/statistical 
approach of  the climate–environment–health 
relationships adapted to what the space sector 
can offer; the approach is multi-disciplinary in 
that the study of the key mechanisms favoring 
emergence and propagation of infectious diseases 
brings together disciplines like environmental 
studies, climate science, social sciences, micro-
biology, entomology, and veterinary sciences. 

In a similar way, GEO BON is fostering the 
development of  an interoperable biodiversity 
observation system at national, regional, and 
global scales, and across terrestrial, marine, and 
aquatic systems. It integrates in situ and re-
motely sensed monitoring systems that bring 
together biodiversity, ecosystem conditions, and 
wildlife-related health observations. This sys-
tem, in part, provides information on the 
change in biodiversity that could facilitate the 
emergence of  infectious diseases and the expos-
ure of  vulnerable populations. GEO BON is 
working with the Open Geospatial Consortium9 

on interoperability across analysis-ready data 
(ARD) tools and services. 

It is important to evaluate current systems 
that are intended to provide information about 
health risks in order to propose innovative ways 
to represent the level and spatial distribution of 
health risks. In this context, GEO’s analysis of 
the resilience of the systems in place to inform 
health stakeholders would enable health and EO 
specialists to assess the capacity of the systems 
to perform this task. This evaluation of  the sys-
tems would pinpoint both the weaknesses and 
the opportunities of the systems, both of which 
need to be considered when looking at how 
shocks and stresses affect systems and people. 
Depending on the solution, collaboration would 
help integration of  health and environment 
data, different metrics, and reporting systems. 
While there is obviously a cost to this endeavor, 
the cloud offers a lot of  opportunity around data 
infrastructure. In fact, GEO has 55 projects cur-
rently running with Amazon Web Services 
(AWS), Google Earth Engine, and Microsoft arti-
ficial intelligence (MS AI) for Earth. 

Important EO systems include those pro-
vided by Copernicus,10 Global Earth Observation 
System of  Systems (GEOSS),11 and Committee on 
Earth Observation Satellites (CEOS).12 These sys-
tems could be assessed to measure how they 
could provide information on health risks and 
how they could support the integration of  health 
systems. Health systems that could benefit from 
EO systems will have to be identified. 

Artifcial intelligence (AI) and Analyse 
ready data (ARD) solutions for  

complex issues 

In an ever more complex world, where many 
different factors intersect to play dynamic and 
complex roles that affect the health and well-
being of  people, the ability to observe, measure, 
understand, assess, and take action on these de-
terminants of  health is becoming exponentially 
more complex. The methodologies for the pro-
duction of  risk maps developed by researchers of 
the EO community are not always suitable or ad-
equate in a public health context for reasons that 
include the complexity of  the methodologies, the 
cost of  high-resolution data, and the lack of  com-
puting resources. Multi-temporal series of  optical 

https://CEOS).12


Needs, Challenges, and Opportunities 101   

   
   

 

  
   

 
 
 

 
  

 
 

 

  

 

 
   

 
 

 

 

 

 

 
  

 

   

EO data and the combination of  optical and SAR 
data necessitate large data storage and analytics 
resources for regular production of  risk maps. 
Also, the addition of  new sensors (e.g. RADAR-
SAT constellation, Surface Water Ocean Topog-
raphy [SWOT], Biomass) increases the volume 
of  EO data for their utilization while also com-
pounding a data storage challenge. The develop-
ment of  adapted computing methods such as 
Artificial intelligence (AI) and machine learning 
algorithms with storage capacities will provide 
solutions that will need to be customized for pub-
lic health purposes. The application of  AI and re-
lated big data technologies could play a critical 
role in the enhanced application of EO to all the 
health-related activities discussed in this book 
(i.e. COVID-19). The potential benefits of apply-
ing AI and big data technologies to issues that in-
fluence health, safety, and well-being are, at this 
time, focused on critical zones where health pri-
orities and this domain of innovative science and 
technology intersect. 

The health community has identified the 
priority of  increasing the capacity of  public 
health officers to conduct rapid public health 
mapping and spatial analysis. To reach this goal, 
EO data management, a data cube, and a system 
that can provide Analysis ready data (ARD) for 
rapid modeling and timely risk mapping must be 
further developed. For example, Digital Earth 
Africa13 offers continental water observations 
from space for free on an almost daily basis. 
Automated and generic methods are preferable 
to facilitate the production of  EO-based products 
like land cover maps anywhere in the world. A 
high-performance computing system and cloud 
capacity will have to be studied to identify the 
best solution for big data storage and analytics 
and the best approach to produce health-related 
results. A large volume of  data could be remotely 
processed and analyzed following the model pro-
posed by Google Earth Engine – that is, without 
downloading data. Health communities would 
benefit from health systems that can process 
data with a secure interface, allowing the devel-
opment of  a sensitive and protected product. 
Public health and EO communities need to sup-
port research that would provide them with AI 
tools for big data analysis tailored to their needs. 

Most EO data analysis and the production 
of risk maps require image processing time in ex-
pert software that can be done, in part, with 

geographic information system (GIS) software. 
Availability of  freeware with EO and GIS tools, 
open access to EO data, as well as training pro-
grams strongly encourage the use of  EO prod-
ucts. Future development should consider the 
implementation of  tools through open-source 
software available internationally. 

Implementing Technical 
Infrastructures and Technologies 

The technical infrastructure for using EO data is 
a precondition of  undertaking massive geospa-
tial analyses to support public health-related 
decision making. Countries without this infra-
structure depend on the infrastructure of  other 
organizations to obtain EO data sets and to sup-
port their massive analyses. In some countries, 
the infrastructure to support big data analytics 
simply does not exist, or no formal agreement is 
in place to use existing infrastructure for EO and 
public health matters. 

For those countries that currently have 
relevant infrastructure, the large volume of  EO 
data streams and the high rate at which these 
require updating for disease risk assessment 
could rapidly exceed existing information man-
agement and information technology capacities 
and technologies. Producing and archiving 
data, products, and maps with high spatial reso-
lution (≤30 m) for diseases that need this level of 
precision would require an exceptional data 
storage capacity. As the need for high-volume 
health-related data on environmental, climatic, 
and socio-economic factors has increased 
both domestically and internationally, the public 
health community is continuously challenged 
to maintain access to timely, reliable, and accur-
ate EO data. Many health-related systems that 
integrate geospatial data already need big data 
infrastructure for storage and processing and 
sometimes 24/7 support for its operation, as is 
the case for AIRNow, FireWork systems, and the 
Vibrio map viewer (Chapter 2). 

Updated and expanded IT infrastructure 
and software is a partial answer to the problems 
facing people responding to public health prior-
ities and crisis. More effective and accurate map-
ping capacities support a variety of  activities: 
risk assessments and decision making during 
health emergency events; risk communication 



102 Chapter 3   

 

  

 
 

  
 

  
  

 

 

 
  

 
 
 
 
 
 
 
 
 
 
  
 
 
 

via supplied images; and evaluation of  factors 
affecting health via risk modeling. There is also a 
need for enhanced on-site information and the 
development of  databases for the surveillance of 
diseases, so that greater effort can go toward the 
development of  efficient EO-based models and 
tools to inform decision makers. 

Participating in EO Satellite  
Mission Development for Monitoring 

Disease Risks 

There are currently hundreds of EO satellites 
orbiting in space, and new missions are continu-
ally being planned for deployment. The useful-
ness of  EO satellites depends in large part on the 
ability of  users to access and apply the data and 
technology in practical settings to address their 
pressing issues. Satellite sensors are not primar-
ily designed for health applications and often 
render spatial, temporal, or spectral data proper-
ties that are not of  use for addressing public 
health issues. In Canada, the Canadian Space 
Agency has been building teams of remote sens-
ing experts from different sectors, including 
public health. These users and science teams are 
integral parts of  mission planning and utiliza-
tion cycles, helping to identify observation 
requirements, specify technical needs, and 
develop instrument designs to meet a wide 
range of requirements and EO data needs. These 

teams can also participate in the calibration and 
validation of satellite data to ensure data quality. 

Some EO satellite systems offer ARD (i.e. 
pre-processed images) and related information 
products derived from the raw data stream gen-
erated by the satellite instruments and the use of 
algorithms. For example, the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) sen-
sors onboard the US Aqua and Terra satellites 
offer atmosphere, land, cryosphere, and ocean 
products that are used in several user communi-
ties.14 MODIS indicator data sets have been so 
successful that they do not require additional re-
mote sensing analysis; they can be used directly 
in predictive models. Some missions have been 
influenced to produce data and algorithms spe-
cific to monitoring and managing health issues; 
for example, the NASA Earth Venture Instru-
ment-3, which is a new Multi-Angle Imager for 
Aerosols (MAIA15). MAIA’s mission objective 
with regard to health is to assess links between 
different air-borne particulate matter types and 
adverse birth outcomes, cardiovascular and re-
spiratory disease, and premature deaths. Partici-
pation in mission development is an excellent 
networking and collaboration opportunity that 
will lead to important advancements in the field. 
One such advancement attributable to Landsat 
data is the ability to monitor changing patterns 
in forest cover loss and human encroachment 
on previously wild areas that allows for better 
prediction of  zoonotic disease emergence. 

Notes 

1 https://crss-sct.ca/conferences/csrs2017/one-earth-one-health-workshop/ (accessed 6 January 2022). 
2 https://sustainabledevelopment.un.org/sdgs; https://sustainabledevelopment.un.org/post2015/ 
transformingourworld (accessed 6 January 2022). 
3 http://eo4sdg.org/ (accessed 6 January 2022). 
4 https://eo-toolkit-guo-un-habitat.opendata.arcgis.com/ (accessed 6 January 2022). 
5 https://ghsl.jrc.ec.europa.eu/HPI.php (accessed 6 January 2022). 
6 https://earthobservations.org/open_eo_data.php (accessed 6 January 2022). 
7 https://earthobservations.org/gkh_webinars.php (accessed 6 January 2022). 
8 http://www.geohealthcop.org/ (accessed 6 January 2022). 
9 https://www.ogc.org/ (accessed 6 January 2022). 
10 https://www.copernicus.eu/en/about-copernicus (accessed 6 January 2022). 
11 https://www.earthobservations.org/geoss.php (accessed 6 January 2022). 
12 http://ceos.org/about-ceos/overview/; http://ceos.org/data-tools/; http://ceos.org/ard/ (accessed 6 January 2022). 
13 https://www.digitalearthafrica.org/why-digital-earth-africa/water-resources-and-flood-risks (accessed 
6 January 2022). 
14 https://modis.gsfc.nasa.gov/data/ (accessed 6 January 2022). 
15 https://maia.jpl.nasa.gov/ (accessed 6 January 2022). 

https://crss-sct.ca/conferences/csrs2017/one-earth-one-health-workshop/
https://sustainabledevelopment.un.org/sdgs
https://sustainabledevelopment.un.org/post2015/transformingourworld
https://sustainabledevelopment.un.org/post2015/transformingourworld
http://eo4sdg.org/
https://eo-toolkit-guo-un-habitat.opendata.arcgis.com/
https://ghsl.jrc.ec.europa.eu/HPI.php
https://earthobservations.org/open_eo_data.php
https://earthobservations.org/gkh_webinars.php
http://www.geohealthcop.org/
https://www.ogc.org/
https://www.copernicus.eu/en/about-copernicus
https://www.earthobservations.org/geoss.php
http://ceos.org/about-ceos/overview/
http://ceos.org/data-tools/
http://ceos.org/ard/
https://www.digitalearthafrica.org/why-digital-earth-africa/water-resources-and-flood-risks
https://modis.gsfc.nasa.gov/data/
https://maia.jpl.nasa.gov/


Needs, Challenges, and Opportunities 103   

 
   

 
  

  

 

References 

Diallo, A., Ndam, N.T., Moussiliou, A., Dos Santos, S., Ndonky, A. et al. (2012) Asymptomatic carriage of 
Plasmodium in urban Dakar: The risk of malaria should not be underestimated. PLoS ONE 7. 
DOI: https://doi.org/10.1016/j.gloenvcha.2010.07.003. 

Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A. et al. (2013) High-resolution global 
maps of 21st-century forest cover change. Science 342, 850–853. DOI: https://doi.org/10.1126/ 
science.1244693. 

Kotchi, S.O., Bouchard, C., Ludwig, A., Rees, E.E., and Brazeau, S. (2019) Using Earth observation images 
to inform risk assessment and mapping of climate change-related infectious diseases. Canada 
Communicable Disease Report 45, 133–142. DOI: https://doi.org/10.14745/ccdr.v45i05a04. 

Programme National de Lutte contre le Paludisme (PNLP) (2008) Morbidite et Mortalite Palustre au Sénégal 
en 2008: Synthèse donneés districts & hospitaux. PNLP, Dakar, Sénégal. 

Quattrochi, D.A., Wentz, E., Lam, N.S.-N., and Emerson, C.W. (eds) (2017) Integrating Scale in Remote 
Sensing and GIS. Routledge, New York. 

https://doi.org/10.14745/ccdr.v45i05a04
https://doi.org/10.1126
https://doi.org/10.1016/j.gloenvcha.2010.07.003


    
 

 

 

  

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 
 

  
   
   

  
 

 4 Conclusions and Opportunities 

This book compiles extensive information on the 
potential for Earth Observation (EO) to contrib-
ute to public health practice. Contributors include 
scientists, policy makers, and managers from 
both the EO and public health communities. This 
subsequent compilation of  expertise  along with 
contributions from the international commu-
nity, is primarily intended to help managers 
interested in developing geospatial applications 
in the area of  research, risk assessment, and 
early warning systems for public health. We 
hope that both communities find the book useful 
in deepening their commitment to working closely 
together. 

Infectious and chronic diseases, whether on 
a global, regional, or local level, are public health 
concerns that affect individuals but pose escalat-
ing threats to the larger population. Because 
generating evidence-based knowledge about 
these diseases is key to managing them and re-
ducing their impact, the capacity of  EO satellites 
to quickly and accurately collect extensive data 
sets on the changing drivers for disease occur-
rence and spread gives public health a tactical 
advantage in predicting disease risks. To con-
tinue improving this capacity and to expand 
public health applications of  EO technology to 
meet the information needs for a broader 
range of  health risks – including its potential to 

help combat endemic, epidemic, and pandemic 
infectious diseases – future satellite-based EO de-
rived products need to prioritize emerging public 
health needs. This would entail ensuring that 
public health information needs regarding cli-
mate, environmental, and human population 
changes are met. These data would also have 
multiple applications, with the ultimate goal of 
informing sustainable development and building 
human resiliency. 

As the interactions between humans, farm 
animals, and fauna intensify – due to increased 
trade in bushmeat and wild species, human en-
croachment on wild habitats, changes in land 
use practices, and climate, ecosystem, and socio-
economic changes – the risk of  emerging infec-
tious diseases also increases. The recognition of 
this has led to the widely adopted One Health 
approach, which promotes inter-sectoral collab-
oration to integrate human, animal, and envir-
onmental health. Interdisciplinary work and 
inter-sectoral collaboration are promising ways 
to facilitate data identification and encourage 
preparation of  relevant EO products that can ef-
fectively meet public health challenges. EO experts 
working together with experts from a variety of 
sectors can push innovation on how and what 
data are collected and how they are processed 
and applied to these complicated challenges. 

©2022 CAB International. Earth Observation, Public Health and One Health: Activities, 
Challenges and Opportunities is licensed under a Creative Commons 

Attribution-NonCommercial-NoDerivatives 4.0 International License 
DOI: 10.1079/9781800621183.0004 104 
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Remote sensing can afford us a unique per-
spective on the Earth, helping us build our scien-
tific understanding of  the planet as a system. 
When combined with other sources of  data like 
health, socio-economic, and demographic data, 
EO can be an effective tool in understanding, 
modeling, and forecasting public health threats. 

In its 2030 Agenda for Sustainable Devel-
opment, the United Nations (UN) identifies the 
Sustainable Development Goal (SDG) of  ensuring 
good health and well-being for people of  all ages 
by strengthening “the capacity of  all countries, 
in particular developing countries, for early 
warning, risk reduction and management of na-
tional and global health risks.” Remote sensing 
can play a well-defined role in working to meet 
the target objectives of  the UN’s SDG initiative. 
Major organizations like the World Health 
Organization (WHO) and the Group on Earth 
Observations (GEO) also point to the potential of 
collaboration between EO sectors and public 
health experts. With this in mind, this book 
addressed three basic questions: How does, or can, 
the current capacities of  EO assist public health 
activities? What are the challenges for operational 
use of  EO in public health? What opportunities 
are there to further develop EO to the future 
benefit of  public health? 

Priority themes for which EO appears prom-
ising have been identified in this book: 

1. For infectious diseases: major epidemics and 
pandemics such as COVID-19, vector-borne dis-
eases transmitted by mosquitoes and ticks, and 
water-borne diseases such as pathogenic Vibrio 
species. 
2. For chronic illnesses: impact of air pollutants 
and extreme heat. 
3. For all diseases: indicators of  human popula-
tions at risk could be developed to target the 
most vulnerable and areas at greatest risk for 
new disease emergence. 

The examples for each of  these priority themes 
in this book show the usefulness and benefit of 
EO data as a strategic tool for assessing and 
monitoring public health risks in an effective 
and continuous way. EO images have been able 
to help identify disease risk areas in endemic 
countries or in newly emerging areas because 
they are able to detect land use practices, land 
cover, climate information such as land or sea 
surface temperature, and qualities of  human 

urban, suburban, and rural environments. These 
examples demonstrate that EO data play an im-
portant role in developing risk models, which in 
turn are used to create program-ready risk com-
munication tools such as risk maps. Models and 
maps make it possible to generate information 
on the occurrence, importance, and future likely 
distribution and spatial spread trends of risk, as 
well as on risk factors that may explain the pres-
ence or emergence of  a disease. Ultimately, data 
and products derived from EO make it possible to 
identify and locate the risk factors in a given ter-
ritory that determine if  a disease or a vector is 
present or if  there is a current risk, given suitable 
environmental and climate conditions. 

Risk maps from EO images allow public 
health actors to anticipate and prepare for 
health threats because they can act as an early 
signal. Perhaps most significantly, because EO 
and risk maps can detect favorable conditions for 
a disease to appear, they could help us predict 
disease emergence and epidemics so that we can 
make informed decisions on early surveillance 
targets and intervention actions. Therefore, risk 
maps can support the planning, preparedness, 
and response to an epidemic or pandemic infec-
tious disease or to an existing condition (chronic 
disease or endemic infectious disease). Risk maps 
can also provide information for surveillance 
programs, outbreak investigations, emergency 
management, and prevention and control pro-
grams, thus supporting resiliency solutions to 
health threats. 

EO has proven its ability to detect risks of 
disease in the environment and the character-
ization and location of  vulnerable populations 
(Section 2.5). Vulnerability indicators and envir-
onmental hazard maps are combined to produce 
risk maps so that public health decisions and ac-
tions can be targeted to those who need it and in 
the most efficient way. 

The implementation of risk maps for risk 
monitoring on a continuous basis has been dem-
onstrated in this book for applications on air 
quality and water quality (Section 2.3 and 2.4). 
These products require significant infrastruc-
ture and partnerships for big data management 
and process automation. The products gener-
ated meet important needs for public health – 
access to timely, accurate, and authoritative data 
and IT infrastructure to support effective evi-
dence-based decision making. 
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To generate products effectively, public health 
organizations need to collaborate with space agen-
cies and other organizations that provide access to 
EO missions and data streams. Integrating a var-
iety of data sources (e.g. climate, socio-economic, 
environment) with these data streams for model-
ing and health systems to generate reliable and 
consistent results remains essential. Open data 
and data-sharing policies1 and promotion of  par-
ticipatory approaches to generate and access 
geospatial information are important prerequis-
ites, as is the collection of  health-related in situ 
data to produce validated spatial analyses. 

Spatial and analytical innovative solutions 
using EO in the domains of  epidemiological ana-
lyses, risk modeling, surveillance, outbreak in-
vestigation, and emergency management have 
the potential to influence public health reactions 
and shift the epidemic curve toward prediction 
and prevention of diseases. EO-based informa-
tion could support many time scales, such as 
daily and seasonal monitoring for early warning 
of  diseases by forecasting models. 

An increased capability of  public health to 
conduct mapping and spatial analysis rapidly for 
decision making depends on the existence of  the 
right combination of  open-access data, methods, 
open-source software or code, tools, technolo-
gies, and infrastructure. Solutions for big data 
storage and analytics from EO and the gener-
ation of  analysis-ready data to accelerate the 
computation of  risk models could be facilitated 
by science and technology innovations such as 
artificial intelligence, machine learning algo-
rithms, and data cubes. Infrastructures such as 
high-performance computing systems or cloud 
environments offer promising solutions that 

need to be explored. Although some satellites 
provide products that are ready for analysis and 
some EO satellite prototypes are designed to pro-
vide health data, the collaboration of  users and 
science teams working on EO satellite missions 
could influence the development of  innovative 
instruments that speak to public health needs. 

Building skilled human resources is essen-
tial for effectively using EO data and deriving 
geospatial information from them. Expertise in 
EO image analysis and geomatics is vital for the 
development of  risk maps. Methods to develop 
these skills are recommended for both commu-
nities to better collaborate, share knowledge and 
best practices, and support training and profes-
sional development in academia and govern-
ment organizations. Finally, the development of 
a strong Community of  Practice (CoP) with EO 
(remote sensing experts) and health (epidemiolo-
gists, modelers) and relevant sectors (entomology, 
biology, climatology, environmental sciences) is 
at the foundation of  innovative actions. We have 
recommended several approaches to identifying 
and addressing global and national needs re-
garding health issues, including through inter-
disciplinary cooperation and joint activities, 
formal cooperative agreements and dialogue 
between sectors, and participation in current 
CoP such as the GEOHealth CoP. 

In using this One Health framework to-
gether with EO data to examine real-time health 
challenges around the world, to support sus-
tainable development, and to build human re-
siliency, we can make important contributions 
toward understanding and ultimately improving 
the health of  not only humans but of  animals 
and environmental systems alike. 

Note 

1 http://www.earthobservations.org/open_eo_data.php (accessed 6 January 2022). 

http://www.earthobservations.org/open_eo_data.php
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 Appendix A Summary of Expert 
Presentations and Consultations 

The following presentations delivered at the 
One Earth – One Health Workshop in Montreal, 
20171 highlight the potential and value of  Earth 
Observation (EO) technology for surveillance, 
prevention, control, prediction and/or forecast-
ing, and public outreach activities. What became 
clear from these presentations was that there was 

a shared desire to help the United Nations (UN) 
meet their third Sustainable Development Goal – 
Good Health and Well-being (SDG 3), which en-
deavors to ensure healthy lives and promote 
well-being for all ages. The presenters focused on 
opportunities and challenges for development of 
applications and use of  EO data in public health. 
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Strengthening National Capacities for Utilizing 
Satellite-based Earth Observation Data to  

Advance National Health-related SDG 3 Targets: 
A Conceptual Framework 

Ramesha S. Krishnamurthy 
Health Systems and Innovation Cluster,World Health Organization (WHO), Geneva, 

Switzerland; United Nations Committee on the Peaceful Uses of Outer Space 
(UN-COPUOS) Expert Group on Space and Global Health 

Prevention, preparedness, response, and recov-
ery require data sets. Data for evidence-informed 
decision making come from a variety of  sources 
such as census, civil registration, vital event 
registry, surveys, health events and risks, indi-
vidual records, health service records, resource 
tracking, and also satellite imagery, geospatial 
data, and base maps. These data sets for analysis 
use rapidly collected, extremely large volumes of 
both structured and unstructured electronic 
data through multiple data sources to answer 
complex questions that ordinarily cannot be 
answered using single data sets. There is a need 
to simplify big data for science and data for deci-
sion making. These data sets require a set of 
complex subsystems for the completion of  a co-
herent health information system. 

To address this issue, WHO has suggested a 
national framework for optimizing the combined 
use of Earth Observation satellite (EOS) data, 
routine health information data, and other 
remote sensing (RS) data to advance specific tar-
gets in SDG 3 at the national and subnational 
levels. The framework will address the mapping 
of  country-specific health-related activities with 
EOS for the following: health technical areas, 
resource needs, and research agenda. The frame-
work will also address the collaborative oppor-
tunities for space agencies and public health 
institutions. For countries to utilize EOS and 
RS data and develop national ownership of  the 
framework, inter-sectoral collaboration, technical 
infrastructure, a competent workforce, and 
adequate finances are essential. 
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Group on Earth Observations (GEO) Activities 
and Health 

Steven Ramage 
GEO Secretariat 

The GEO Secretariat is an intergovernmental 
partnership working to improve the availability, 
access, and use of  EO for the benefit of  society. 
GEO works to actively improve and coordinate 
global EO systems and promote broad, open data 
sharing. Membership in GEO is open to all 
Member States of  the UN and to the European 
Commission. GEO has 113 Member Countries 
and 140 Participating Organizations (in 2022) 
that work to develop and implement projects 
and initiatives that solve global problems. 

In the context of One Health and SDGs, GEO 
wants to connect public health and EO commu-
nities through the initiatives and flagships that 
comprise the GEO Work Programme, which in-
cludes more than 50 activities planned for 2020– 
2022. In particular, GEO would like to encour-
age inter-sectoral dialogue and collaboration 
via their Earth Observations for Health (EO-
4HEALTH) initiative and other relevant activities 
to ensure the availability, open access, and reus-
ability of  EO data for public health purposes. 

The intent is also to understand the inter-
actions between different SDGs, expand the focus 
on health, and increase policy opportunities for 
geospatial data. To examine SDG interactions, 
GEO uses the International Council for Science 
report2 as a guide for targeting interactions, 
from science to implementation. From the re-
view of  SDG interactions and other analyses, 
GEO wants to apply resilience systems analysis 
with a health impact lens.3 A resilience systems 
analysis would provide key actors in the field 
with a shared view of  the risk landscape that 

people face. This includes an understanding of 
the broader system that people need for their 
all-around well-being and an analysis of  how 
the risk landscape affects the key components of 
this system. 

The analysis would identify which compo-
nents are resilient, which are not, and provide a 
shared understanding of  power dynamics and 
how the use or misuse of  power helps or hinders 
people’s access to the assets they need to cope 
with shock and setback. Based on all of  this, a 
shared vision of  what needs to be done to boost 
resilience in the system and how to integrate 
these aspects into policies, strategies, and devel-
opment efforts at every layer of  society is needed. 
According to GEO, it is critical to understand the 
cause and effect of  stresses and shocks in the 
past if  we are to properly understand and priori-
tize future risks. The risk landscape brings both 
risks and opportunities: both should be con-
sidered when looking at how shocks and stresses 
affect systems and people. 

To support SDGs, GEO put together the 
EO4SDG initiative, which helps identify which 
targets EO can help advance and what indicators 
are in development. This GEO initiative is in 
service of  the UN 2030 Agenda for Sustainable 
Development.4 It works closely with UN organ-
izations such as the UN Committee of  Experts on 
Global Geospatial Information Management 
(UN-GGIM) and is a partner in the Global Part-
nership for Sustainable Development Data 
(GPSDD) and the UN Sustainable Development 
Solutions Network’s (SDSN) Thematic Research 
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Network on Data and Statistics (TReNDS). 
Indicators developed through EO4SDG’s initia-
tive related to health are for the moment focused 
on the quality of  water-related ecosystems, land 
degradation, and climate change. 

Along with the 2030 Agenda, GEO also 
supports the development of  policy and the im-
plementation of  priorities related to the Paris 
Agreement for Climate Change and the Sendai 
Framework for Disaster Risk Reduction. Emer-
ging work is also underway with respect to 
urban resilience and the New Urban Agenda. 

The Global Earth Observation System of 
Systems (GEOSS) Platform5 is a discovery tool 

with more than 400 million open EO data and 
information resources. Work is now in progress 
on a GEO Knowledge Hub, which is a framework 
for evolving the global work of  GEO into a digi-
tal repository. The goal is to improve delivery of 
knowledge, services, and products. This frame-
work proposes ways in which advances in hard-
ware technologies, software tools, and cloud 
computing resources needed for handling, pro-
cessing, and delivering big data from EO systems 
may be maximized to support evidence-based 
decision making. This hub is being created 
according to the GEO principles of  supporting 
open data and open science. 
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CNES Activities in Tele-epidemiology: How Can 
Earth Observation Satellite Data Contribute? 

Cécile Vignolles 
Program Manager, Direction de l’Innovation, des Applications et de la Science/ 

Terre-Environnement-Climat, Centre National d’Etudes Spatiales, France (CNES); 
UN-COPUOS Expert Group on Space and Global Health 

Tele-epidemiology consists of  using space tech-
nology to study human and animal diseases that 
are closely linked to climate and the environ-
ment (i.e. transmitted by water, air, or vectors). 

To meet the needs expressed by health au-
thorities, the French Space Agency (CNES), in 
collaboration with its partners, has developed a 
deterministic/statistical approach to climate– 
environment–health relationships, producing 
EO products that are in line with the various 
spatio-temporal scales of  the factors involved in 
the emergence and spread of  infectious dis-
eases. This tele-epidemiology conceptual ap-
proach is based on the study of  key mechanisms 
favoring emergence and propagation of  infectious 
diseases through a multi-disciplinary lens that 
includes the fields of  environmental science, cli-
mate, social sciences, microbiology, entomol-
ogy, and veterinary science. Tele-epidemiology 
includes experimental design mainly associ-
ated with field studies in order to obtain in situ 

data sets and to provide diagnostics such as the 
main physical and biological mechanisms at 
stake. It also includes RS products to monitor 
the environment and link epidemics with con-
founding factors. The last component of  tele-
epidemiology is dedicated to modeling for risk 
mapping, which involves building predictive 
models by combining in situ data and RS prod-
ucts derived from EO satellites, geographic data, 
and meteorological data to produce dynamic 
high spatio-temporal resolution risk maps. This 
conceptual approach has been applied success-
fully to different infectious diseases such as Rift 
Valley fever (Senegal), malaria (Dakar, Burkina 
Faso, French Guyana, Madagascar), dengue 
(metropolitan France, Martinique, French Guy-
ana), and meningitis (Sahel region). CNES pro-
vides additional tools/services to public health 
actors to help them with disease surveillance 
and in the implementation of strategies for 
disease control. 



  

 

 

 
 

 

 
 

 

 

112 Appendix A – Summary of Expert Presentations and Consultations 

Getting Ahead of the Curve: Using Earth  
Observations to Predict Health Risks 

Juli M. Trtanj 
One Health Lead, Climate and Weather Extremes Integration Lead, National 
Oceanic and Atmospheric Administration (NOAA) Climate Program Office 

The NOAA One Health Group advances NOAA’s 
science and services to inform health decisions 
through improved understanding of  the links 
between environmental conditions and health 
outcomes and the delivery of  useful prediction 
products, data, and tools. Thematic areas in-
clude: wildlife and zoonotic disease, air quality, 
heat (thermal extremes), vector-borne disease, 
water-borne illness, natural products, safe food, 
and the Arctic. 

On the meteorological and climatological 
front, the National Integrated Heat Health Infor-
mation System (NIHHIS) integrates existing 
forecasting and prediction capabilities for ex-
treme heat at all time scales. The goal is seamless 
information that can inform decisions in many 
sectors at many time scales, such as early warn-
ing forecasts for emergency management that 
targets areas most vulnerable, and engaging in 
preparatory communications and planning for 
hospital administrators. 

An example of  NOAA’s efforts regarding 
drinking water, recreational waters, and food 
contamination involves using new RS technolo-
gies to detect and predict high Vibrio spp. dens-
ities in oysters and coastal waters that could 
pose a risk to people. This demonstrates the use 
of  EO to help create a real-time monitoring tool 
that involves public health, legislators, consumers, 

fishers, seafood processors, and aquariums. 
NOAA also provides tools for tracking and early 
warning systems for Vibrio from gene data to sat-
ellite and in situ data and is working on a cholera 
early warning system. 

The ultimate goal of  NOAA One Health is to 
contribute to changing the culture to prediction 
and prevention. The lead time provided by cli-
mate and ocean based predictive tools and infor-
mation, observations, and monitoring gives us 
the opportunity to change a current epidemic 
curve to shift the whole scenario forward. This 
allows us to anticipate or be better prepared 
for the first case and to detect and monitor. By 
shifting the process forward in time, the oppor-
tunity to control an epidemic starts much earl-
ier, allowing public health measures to reach a 
much greater number of  people in a more timely, 
efficient way. 

We benefit from integrated information 
systems for health, including the GEO Health 
Community of  Practice, the Global Heat 
Health Information Network (GHHIN), and the 
establishment of  regular dialogue between 
researchers, operations, and observers. These 
integrated information systems fix the gap in 
information and can help find solutions to public 
health issues, with early warnings that can lead 
to early actions. 
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Earth Observations for Health and Air Quality 

John A. Haynes 
Program Manager, Health and Air Quality,Applied Sciences Program, Earth Science 

Division, Science Mission Directorate, NASA,Washington, DC, USA 

The NASA Earth Science Division and Ap-
plied Sciences Program has the mission to 
discover and demonstrate the innovative and 
practical uses of  EO in the policy, business, and 
management decisions of an organization. The 
mission is expressed through: (i) applications to 
prove out, develop, and transition ideas into sus-
tained applications of  EO products in decision 
making; (ii) capacity building to build skills and 
capabilities in the USA and in developing coun-
tries so more countries can access and benefit 
from EO; (iii) mission planning to identify applica-
tions early in a mission’s life cycle and integrate 
end user needs in mission design and devel-
opment. The results of  NASA Earth science re-
search are in the areas of  technology, missions 
and observations, data and archives, models, 
and predictions. These results feed decision man-
agement, policy decisions, forecasting, response, 
and recovery. The application areas are in vari-
ous domains but include health and air quality. 
The objectives of  health and air quality are to 
support the use of  EO in air quality management 
and public health, particularly regarding infec-
tious disease and environmental health issues. 
The area addresses issues of  toxic and patho-
genic exposure and health-related hazards and 
their effects for risk characterization and mitiga-
tion. The area promotes uses of  EO data and 
models regarding implementation of  air quality 
standards, policy, and regulations for economic 
and human welfare. The area also addresses the 
effects of  climate change on public health and 

air quality to support managers and policy 
makers in their planning and preparations. 

The health and air quality program sup-
ports a variety of  different projects such as an 
early warning system for malaria risk in the 
Amazon and a prototype model for improved 
forecasts of  respiratory illness hazard from red 
tide in the Gulf of  Mexico. A formal health and 
air quality applied science team (HAQAST) de-
veloped studies on the impact of  cook stoves on 
health and air quality using NASA satellites. 
They also studied the complex regional trends 
(2005–2015) in nitrogen dioxide NO

2 and sulfur 
dioxide SO2 pollution from Aura’s ozone moni-
toring instrument (OMI). 

NASA also offers training through an applied 
remote sensing training program (ARSET) that 
provides end users with professional technical 
workshops and builds long-term partnerships 
with communities and institutions in the public 
and private sectors. 

NASA’s Earth Venture Instrument-3, a 
new multi-angle imager for aerosols, is targeted 
for launch in 2022. The mission objectives are 
to assess links between different air-borne par-
ticulate matter (PM) types and adverse birth 
outcomes, cardiovascular and respiratory dis-
ease, and premature deaths. The instrument is 
a multi-angle spectro-polarimetric imaging in-
strument for operation in a sun-synchronous 
Earth orbit to measure the particle types, sizes, 
concentrations, and geolocation of atmospheric 
aerosols. 
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Healthy Societies and Healthy Ecosystems: An 
Integrated Monitoring Approach for Biodiversity 

and Human Health 

Michael Gill 
Group on Earth Observations Biodiversity Observation Network (GEO BON) with 

the collaboration of EcoHealth Alliance 

GEO BON’s mission is to improve the acquisition, 
coordination, and delivery of  biodiversity obser-
vations and related services to users, including 
decision makers and the scientific commu-
nity. GEO BON’s vision is to be a global biodiver-
sity observation network that contributes to 
effective management policies for the world’s 
biodiversity and ecosystem services. Their roles 
are to: (i) advance biodiversity modeling and 
prediction capabilities (species population and 
distribution; ecosystem extent, structure, func-
tion, and degradation; community composition; 
genetic composition; species traits); (ii) de-
sign and develop an interoperable biodiversity 
observation system at national, regional, and 
global scales and across terrestrial, marine, and 
aquatic systems; (iii) deploy and promote har-
monized, state-of-the-art biodiversity observa-
tion tools and organizational partnerships with 
both space agencies and national, regional, and 
local in situ biodiversity observation networks. 

To address biodiversity, GEO BON recog-
nized a need for collaboration to: integrate 
health and environment data (different metrics 
and reporting systems); understand how bio-
diversity (including virus- and inter-species 
interactions) is affected by land use change for 
the purposes of  management and prediction; 
and better manage and conserve ecosystems 
to improve public health. The goal is to change 
the approach from reactive to proactive with 
a focus on prediction, early detection, and 
prevention targeting of  areas at greatest risk 

(e.g. areas of  rapid change and/or wildlife/ 
domestic animal chains). 

Through its modeling working group, GEO 
BON brings together existing and new biodiver-
sity observations to produce modeling tools that 
can infer and predict biodiversity change across 
time and space. 

An example of  collaboration between GEO 
BON and the EcoHealth Alliance, where health 
can be leveraged to address the underlying 
drivers of  environmental degradation, can be 
found on its website.6 

GEO BON and the EcoHealth Alliance are 
partnering to improve: (i) integrated in situ and 
remotely sensed monitoring systems that bring 
together biodiversity, ecosystem condition, and 
wildlife health observations; (ii) understanding 
of  the link between changing ecosystems, socio-
economic trajectories, and potential emergence 
of diseases; (iii) ability to predict (with improved 
and integrated models) potential emerging 
disease hotspots and to develop early warning 
systems; and (iv) policy guidance that results in 
positive outcomes for biodiversity, ecosystem 
services, and human health. 

Pilot collaborations include: co-monitoring 
(sub)tropical areas experiencing rapid land use 
change (Brazil and China) using both in situ and 
RS data; integrating and refining test models for 
species distribution of  known disease carriers with 
sociological data and wildlife origin/vector-borne 
infectious disease (e.g. making better predictive 
models for areas/conditions of  future outbreaks); 
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upscaling and deploying models and monitoring  
systems to priority regions (e.g. hotspots) using  
GEO BON/EcoHealth Alliance networks, Future  
Earth’s oneHEALTH project, and BON in a Box to  

reflect the joint program between the Convention 
on Biological Diversity and WHO; and integrating 
these methods in GEO BON national Biodiversity 
Observation Network frameworks and manuals. 
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One Health – Contribution of EO to Public  
Health Issues 

Nicholas H. Ogden 
Public Health Risk Sciences Division, National Microbiology Laboratory, Public 

Health Agency of Canada 

What does emerging and re-emerging diseases 
mean? The former are diseases that emerge by 
short- and long-distance geographic spread and 
by “adaptive” emergence, i.e. the evolution of  a 
microbe from one that is non-pathogenic for 
humans to one that is. Re-emergence is a state of 
increased risk from a pathogen due to environ-
mental or human population changes that increase 
rates of  contact between humans and patho-
gens. Most emerging infectious diseases (EIDs) 
are, or were originally, zoonoses, i.e. diseases of 
animals that are transmitted to humans. 

The drivers of disease emergence were de-
scribed – including changes to climate, habitat, 
and land use, biodiversity, and dispersion of 
pathogens locally and globally. Examples of  the 
use of  EO data in these fields were shown. 

The main public health responses to EIDs 
are: model-based assessments of  current and 
future risk; surveillance; and outbreak response. 
Examples of  these, and how EO data are used to 
support these activities, were shown. These 

examples included: the use of  EO data as cli-
mate, habitat, and socio-economic status proxies 
in predicting risk from emerging Lyme disease in 
Canada; the use in decision making for field sur-
veillance campaigns; and the use in support of 
outbreak responses in difficult/remote regions 
such as responses to Ebola in Africa. 

Future opportunities for applying EO data 
were described, including: use for enhanced 
assessments of  risk; use of  EO data to assist and 
eventually replace field surveillance; the use of 
high-spatio-temporal-resolution EO data in 
early warning/disease forecasting systems; and 
the integration of  the “big data” fields of  EO with 
modern genomics so that risk assessments target 
not just pathogen species but genotypes or par-
ticular genes. 

EO data are being used in day-to-day public 
health activities; however, their full potential re-
quires national and international collaborations 
in research, development, and implementation 
in public health. 
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Appendix B Spatial, Spectral, 
and Temporal Resolutions 

The following two tables refer to the dif-
ferent classes commonly used to categor-
ize the resolution  of  Earth Observation

(EO) systems (Table AB.1) and their spa-
tial, spectral, and temporal dimensions  
(Table AB.2).  

Table AB.1. Classes of resolutions. (From: Kotchi et al., 2015.) 

Resolution dimensions 

Class of resolution Spatial (m) Spectral Temporal (days) 

Very high VSR: pixel ≤5 VER: NoB >30 VTR: RT ≤1 
High HSR: 5 < pixel ≤ 30 HER: 5 < NoB ≤ 30 HTR: 1 < RT ≤ 3 
Medium MSR: 30 < pixel ≤ 500 MER: 3 < NoB ≤ 30 MTR: 3 < RT ≤ 16 
Low LSR: pixel >500 LER: NoB ≤5 LTR: RT >16 

VSR, very high spatial resolution; HSR, high spatial resolution; MSR, medium spatial resolution; LSR, low spatial 
resolution; VER, very high spectral resolution; HER, high spectral resolution; MER, medium spectral resolution; LER, low 
spectral resolution; VTR, very high temporal resolution; HTR, high temporal resolution; MTR, medium temporal 
resolution; LTR, low temporal resolution; NoB, number of bands; RT, revisit time. 

Table AB.2. Examples of EO satellite sensor systems and their spatial, spectral, and temporal  
resolutions. (From: Kotchi et al., 2015, with updates [http://database.eohandbook.com and https://space. 
oscar.wmo.int/spacecapabilities accessed 6 January 2022].) 

Satellite Sensor 
Optical 
or SAR Spatial (m) Spectral (NoB)  

Spectral range 
(nm) 

Temporal  
(TR in days)

Geoeye-1 GIS-1 Optical Pan 0.41 MS 1.64 5 in VIS/NIR 450–920 NAa 

Worldview-2 WV110 Optical Pan 0.46 MS 1.84 9 in VIS/NIR 400–1040 NAb 

SPOT-5 HRG Optical Pan 2.5 MS 10 5 in VIS/NIR/ 490–1750 26/3c 

SWIR 20 SWIR 
SPOT-6/7 NAOMI Optical Pan 2 5 in VIS/NIR 450–890 30/3 daysd 

MS 8 
Landsat-5 TM Optical MS 30 TIR 120 7 450–2350 16 

Continued 

http://database.eohandbook.com
https://space.oscar.wmo.int/spacecapabilities
https://space.oscar.wmo.int/spacecapabilities
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 Table AB.2. Continued. 

Optical Spectral range Temporal 
Satellite Sensor or SAR Spatial (m) Spectral (NoB) (nm) (TR in days) 

Landsat-7 ETM+ Optical MS 15 TIR 60 8 16 
Landsat-8 OLI Optical MS 15 TIR 100 11 16 
Terra-Aqua MODIS Optical 250 to 1000 36 459–2155 16 
Suomi NPP VIIRS Optical 750 22 VIS, NIR, SWIR, 1 

MWIR, LWIR 
Sentinel-5P TROPOMI Optical 7 km 4 UV, VIS, NIR, 1 

SWIR 
NOAA AVHRR Optical 1100 6 580–12,500 NA 
Sentinel-2A MSI Optical 10 to 60 13 in VIS/NIR/ 443–2190 5 to 10e 

and 2B SWIR 
Pléiades HiRI Optical PAN 0.7 MS 2.8 5 in VIS/NIR 450–900 26/2f 

Envisat ASAR SAR 300 1 C-band 35 
ALOS PALSAR SAR 6.25 to 100 1 L-band 14 
RADARSAT-2 SAR SAR 1 to 100 1 C-band 24 
TerraSAR-X SAR SAR 0.5 to 40 1 X-band 4 to 7 
CosmoSkyMed SAR SAR 1 to 100 1 C-band 16 
Sentinel-1A SAR SAR 5 to 20 1 C-band 12 to 5 

and -1B 
RCM SAR SAR 1.3 to 5000 1 C-band 1 

ALOS, Advanced Land Observing Satellite; ASAR, Advanced Synthetic Aperture Radar; AVHRR, Advanced very 
high-resolution radiometer; ETM+, Enhanced Thematic Mapper plus; GIS, geographic information system; HiRi, High 
Resolution Optical Imager; HRG, High Resolution Geometric; LWIR, long-wave infrared; MODIS, Moderate Resolution 
Imaging Spectroradiometer; MS, multispectral; MSI, multispectral instrument; NIR, near infrared; NPP, National 
Polar-orbiting Partnership; MWIR, mid-wave infrared; NA, not available; NAOMI, New AstroSat Optical Modular 
Instrument; NoB, number of spectral bands; OLI, Operational Land Imager; PAN, panchromatic; PALSAR, Phased Array 
L-band Synthetic Aperture Radar; RCM, RADARSAT Constellation Mission; SAR, synthetic aperture radar; SPOT, 
Système Pour l’Observation de la Terre; SWIR, short-wave infrared, TIR, thermal infrared; TM, Thematic Mapper; TR, 
temporal resolution; TROPOMI, Tropospheric Monitoring Instrument; UV, ultraviolet; VIIRS, Visible Infrared Imaging 
Radiometer Suite; VIS, visible. 
aGlobal coverage in 6 months, in daylight. One area can be observed in as few as 4 days with strategic pointing. 
bGlobal coverage in 6 months, in daylight. One area can be observed in as few as 3 days with strategic pointing. 
cGlobal coverage in 26 days, in daylight. One area can be observed every 3 days with strategic pointing. 
dGlobal coverage in 30 days. Minimum revisit time for a specific area is 3 days. 
eGlobal coverage in 10 days, in daylight with 1 satellite (or in as few as 5 days with the 2 satellites). 
fGlobal coverage in 26 days, in daylight. One area can be observed every 2 days with strategic pointing. 

Notes 

1 https://crss-sct.ca/conferences/csrs2017/one-earth-one-health-workshop/ (accessed 6 January 2022). 
2 https://www.icsu.org/publications/a-guide-to-sdg-interactions-from-science-to-implementation (accessed 
6 January 2022). 
3 https://www.oecd.org/dac/Resilience%20Systems%20Analysis%20FINAL.pdf (accessed 6 January 2022). 
4 https://www.earthobservations.org/documents/publications/201703_geo_eo_for_2030_agenda.pdf (accessed 
6 January 2022). 
5 www.geoportal.org (accessed 6 January 2022). 
6 https://www.ecohealthalliance.org/ (accessed 6 January 2022). 

https://www.icsu.org/publications/a-guide-to-sdg-interactions-from-science-to-implementation
https://www.icsu.org/publications/a-guide-to-sdg-interactions-from-science-to-implementation
https://www.oecd.org/dac/Resilience%20Systems%20Analysis%20FINAL.pdf
https://www.earthobservations.org/documents/publications/201703_geo_eo_for_2030_agenda.pdf
http://www.geoportal.org
https://www.ecohealthalliance.org/
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active sensors 60 
Advanced Baseline Imager (ABI) 45 
Advanced Land Observing Satellite-1 (ALOS) 12, 13 
advanced very high resolution radiometer (AVHRR) 18 
Aedes aegypti 12 
Aedes vexans 19 
aerosol optical depth (AOD) 44–45 
Africa 13, 19 
African rainfall estimate (RFE) 20 
Agenda 2030 for Sustainable Development 94 
agro-ecological data 67 
air-borne diseases 95 
AirNow data management and dissemination 

tool 38, 44–45, 45 
air pollution 38, 46 
air quality 85 

and heat-related health issues 38 
American AirNow AQI 44–45 
annual SO2 emissions, OMI 40, 42 
AQHI program 38 
Canadian FireWork system 45–49 
challenges and questions 42–43 
data assimilation systems 39–40 
ECCC FireWork system 40 
EO missions 49 
EO sensor systems 39 
forest fre databases and inventories 40, 41 
indicators, summer and winter smog 38 
LST 40, 43 
monitoring 38–39 
NO2 emission trends 40 
OMI data 40, 42 
overexposure, UV rays 39 
ozone layer forecasts 39 

polar-orbiting thermal sensors 49 
public health 39, 48 
responses and options 43–44 
stratospheric ozone measurements 39 
surface urban heat islands 40 
TEB scheme 42 
thermal conditions, urban areas 38 
US AQI 38 
weather forecast programs 39 
wildland fres 40, 49 

monitoring 81 
Air Quality Health Index (AQHI) 38 
algal blooms 60 
Amazon Web Services (AWS) 100 
ammonia emissions 47 
analysis-ready data (ARD) 100–101 
annual crop inventory (ACI) 34 
Anopheles darlingi 15 

see also malaria vector (Anopheles darlingi), 
Amazon region 

antibiotics, resistance to 2 
applied remote sensing training program  

(ARSET) 99, 113 
artifcial intelligence (AI) 100–101 
Atmospheric Infrared Sounder (AIRS) 39 
Aura research satellite 39, 48, 87, 113 
avian infuenza 2 

Baltic Region in Northern Europe 56 
Baltic Sea 56 
biodiversity 2, 94 
biomass monitoring mission for carbon assessment 

(BIOMASS) 18 
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Black Sea Physics Analysis and Forecast 58 
Brazil’s National Institute of  Space (INPE) 16 

Canadian Fire Emissions Prediction System (CFFEPS) 46 
Canadian Forest Service of  Natural Resources 

Canada 46 
Canadian RADARSAT constellation 96 
Canadian Space Agency (CSA) 4–7, 95, 102 
Canadian Wildland Fire Information System 

(CWFIS) 46 
carbon monoxide emissions 46 
Census District (CD) level 68 
Centre National d’Études Spatiales’ (CNES)  

programs 95 
chikungunya 2 
cholera bacteria 2 
chronic obstructive pulmonary diseases 48 
Climate and Forecast (CF) metadata convention 59 
Climate Prediction Center morphing method 

(CMORPH) 20 
Climatological, Meteorological and Environmental 

(CME) 82 
cloud computing 18 
CNES activities in tele-epidemiology 111 
colored dissolved organic matter (CDOM) 60 
color intensity scheme 70 
commercial aircraft, mass-grounding 83 
Committee on Earth Observation Satellites (CEOS) 

7, 100 
contact tracing apps 84–85 
Convention on Biological Diversity (CBD) 98 
Copernicus RUS (Research and User Support) service 

portal 18 
Copernicus Sentinel-4 sensor system 44 
coping capacity 66 
COVID-19 4, 80 

nitrogen dioxide (NO2) levels 86 
vaccination programs 88–89 

Cross-track Infrared Sounders (CrIS) 39 
CSA Government Related Initiatives Program 

(GRIP) 6 
Culex poicilipes 19 
cumulative weekly index 58 
CWIMax (cumulative weekly index maximum 

value) 58 
CWIMean (cumulative weekly index mean value) 58 

dasymetric mapping technique 66–67, 72 
deforestation 16, 88 
dengue virus 2, 12 
Department of  Fisheries and Oceans (DFO) 55–56 
Digital Earth Africa 101 
digital elevation model (DEM) 71 
Directorate of  Veterinary Services of  Senegal 20 
disease risks, monitoring 102 

Earth Intelligence satellite data acquisition capacity 80 
Earth Observation Applications Development 

Program (EOADP) 6 
Earth Observation Dashboard 79 
Earth Observation (EO) 

environmentally linked diseases 3 
environment-human-vector interaction  

hazard 15–18 
and geospatial data utilization 

air quality 85 
applications 81 
collaboration and participation 79 
commercial aircraft, mass-grounding 83 
evidence-based data and products  

leveraging public health  
capacities 95–97 

land use and land cover 85–88 
mobile device data 84–85 
mobility 83–84 
near-real-time mapping and monitoring 

79–80 
public health situational awareness and 

related surveillance 80–81 
solutions development 99–100 
vulnerable populations 88–89 
weather 82 

for health and air quality 113 
organization and management, PHAC and 

CSA 7–8 
risk maps 3 
satellite mission development 102 
satellite missions 5 
satellite sensor systems 117–118 
space agencies 4–6 
spatio-temporal precision 3 
technologies 60, 61, 75 
tele-epidemiology studies 2–3 
see also EO-based risk maps, Lyme disease 

Earth Observation satellite (EOS) data 108 
“Earth System Science Pathfnder” program 45 
Earth Venture Instrument-3 113 
Ebola hemorrhagic fever 4 
ECDC Vibrio Map Viewer 53, 56–57, 57, 59, 61 
EcoHealth Alliance 95, 114 
ecosystem changes 2 
emerging infectious diseases (EIDs) 116 
Enhanced Thematic Mapper Plus (ETM+) 40 
environmentally linked diseases 3 
Environmental Protection Agency (EPA) 38 
Environment and Climate Change Canada (ECCC) 38 
environment–human–vector interaction hazard 

15–16, 16, 17–18 
EO-based risk maps, Lyme disease 29, 32 

ACI maps 34 
best-available pixel composite 33–34 
collaboration 34–35 
end users 32 
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forest disturbance 33 
forest fragmentation time series 34 
forest structure 33 
Ixodes scapularis ticks 29, 30 
land cover and land cover change 33 
land use maps 34 
needs and constraints 31 
opportunities, products and data 32–33 
technical considerations 32 
tick habitat 33 

EO4SDG initiative 94 
Epidemic Intelligence Information System for 

Food-and Waterborne Diseases and Zoonoses 
(EPIS FWD) 57 

ESRI Silverlight toolkit 59 
European Copernicus Programme 13, 17–18 
European Environment and Epidemiology (E3) 56 
European LymeMAP project 27 
European Space Agency (ESA) 17 

FireWork system, air quality forecast 40 
daily forecasts, Canadian fre season 46 
EO data 46 
guidance, regional air quality 47 
near-real-time information 46 
public air quality forecast 46 
smoke forecast product 46, 47 
smoke plumes 45 
technical considerations 47–48 
wildfre emissions 45–46 

Flowminder Foundation 75 
food chain 4 
Forecasting Ocean Assimilation Model (FOAM) 58 
forest fre databases and inventories 40, 41 
Fourier processing 12 
French Space Agency (CNES) 100, 111 

gastroenteritis 53–54 
GEO BON 100, 114–115 
Geographic Information Systems (GIS) 13, 80, 101 
GEO Health Community of  Practice (CoP) 98 
Geo-Polar Blended Global SST Level (Imagers + 

AVHRR + VIIRS) 58 
geospatial information 95 

ecosystems 68 
NML 4 
PHAC 3–4 
PHRS 4 

Geostationary Operational Environmental Satellites 
(GOES) 45 

GetCapabilities 59 
GetFeatureInfo 59 
GetLegendGraphics 59 
GetMetadata Method 59 
GIS technology 58 

Global Earth Observation System of  Systems 
(GEOSS) 100, 110 

Global Heat Health Information Network (GHHIN) 112 
Global Ozone Monitoring Experiment-2 instruments 

(GOME-2A and GOME-2B) 39 
Global Partnership for Sustainable Development Data 

(GPSDD) 109–110 
Global Real-Time Ocean Forecast System 58 
Global Satellite Mapping of  Precipitation (GSMaP) 20 
Google Earth Engine 18, 100–101 
Group on Earth Observations (GEO) 94, 105, 109–110 

hazard and vulnerability 68 
Health and Air Quality Applied Science Team 

(HAQAST) 98, 113 
health determinants, EO and multiple dimensions 96 
health risks prediction 112 
healthy societies and healthy ecosystems 114–115 
heart disease 48 
heavy precipitation events 55 
Hemispheric Transport Air Pollutant (HTAP) SO2 

emissions inventory 40 
high-performance computing (HPC) environment 48 
high-resolution satellite imagery 81–83 
high-resolution SPOT-5 satellite images 71 
Horse River wildfre (2016), Fort Mc-Murray area 47 
human biting rate (HBR) 68 
human vulnerability 72 
hyperspectral remote sensing 60 

Iberian Biscay Irish (IBI) Ocean Analysis and 
Forecasting System 58 

immune capacity 66 
individual exposure (IE) 70 
Infectiologie de Terrain de l’Institut de Recherche 

Biomédicale des Armées (IRBA) 71 
Infrared Atmospheric Sounding Interferometer 

(IASI) 39 
in situ and epidemiological data 97–98 
in situ ecological data 60 
integrated health information systems 100 
Ixodes scapularis risk map 99 

Japan Aerospace Exploration Agency (JAXA) 79 
Japanese encephalitis virus 2 
Joint Polar Satellite System (JPSS) 56 

knowledge-based modeling 15 
knowledge development 99 

land cover mapping 33 
Landsat Thematic Mapper (TM) 40 
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land surface temperature (LST) 40 
land use and land cover (LULC) 15, 17, 27, 34, 

39, 85–88 
light detection and ranging (LiDAR) 33 
local-scale risk prediction and surveillance 97 
low- and middle-income countries (LMICs) 70 
lung cancer 48 
Lyme disease 2, 4, 26–27, 28 

see also tick-borne diseases 

MAIA mission 85 
MALAREO project 13 
malaria 2, 13–14 
malaria hazard index 17 
malaria vector (Anopheles darlingi), Amazon 

region 15–16, 16, 17–18 
Malaysia 2 
Mediterranean Sea Physics Analysis and Forecast 58 
Meteorological Service of  Canada (MSC) 46 
MetOp-A and MetOp-B satellites 39 
Microsoft artifcial intelligence (MS AI) for Earth 100 
mobile device data 84–85 
mobility 83–84 
Moderate Resolution Imaging Spectroradiometer 

(MODIS) 18, 40, 102 
monitoring social-economic activities 81 
mosquito-borne diseases (MBDs) 95, 97 

Anopheles mosquitoes 13 
challenges and questions 14–15 
deforested areas 14 
environmental parameters, vector occurrence 

and abundance 12 
environmental variables 14 
environment–human–vector interaction  

hazard 15–18 
EO data analysis 12 
geospatial information, habitat 15 
habitats, identifcation of 12, 14 
high-resolution land cover and wetland 

maps 13 
land cover maps and wetland classifcations 

12, 13 
MALAREO project 13 
multi-temporal EO data acquisitions 15 
radar remote sensing 13 
responses and options 15 
RVF project 18–23 
SAR and optical EO data 13, 14 
suitability mapping 13 
transition zones 12 
wetland analyses 13 
see also malaria vector (Anopheles darlingi) 

Multi-Angle Imager for Aerosols (MAIA) 45, 102 
multi-angle imaging spectropolarimeters 45 
multispectral sensors 60 
multi-temporal EO analyses and change 67 

NASA Jet Propulsion Laboratory 45 
NASA’s Aura satellite measurements 87 
National Center for Atmospheric Research – Whole 

Atmosphere Community Climate Model with 
Fire INventory (NCAR-WACCM with FINN) 40 

National Environmental Satellite Data and  
Information Service (NESDIS) 58 

National Health-related SDG 3 targets 108 
National Information System of  Surveillance of 

Epidemics 20 
National Institute for Space Research (INPE) 16 
National Integrated Heat Health Information System 

(NIHHIS) 112 
National Microbiology Laboratory (NML) 4 
National Oceanic and Atmospheric Administration 

(NOAA) 38–39, 45–47, 56, 58, 95, 112 
National Polar-orbiting Partnership (NPP)  

satellites 39 
Navy Coastal Ocean Model (NCOM) 58 
near-real-time mapping and monitoring 79–80 
near-real-time situational awareness 79, 81 
night-time radiance 83–84 
Nipah virus 2 
nitrogen dioxide 47, 88 
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