
Big Earth Data 
in Support of 
the Sustainable 
Development Goals 
(2022)—The Belt 
and Road

Huadong Guo

Connecting the Goals



Sustainable Development Goals Series



The Sustainable Development Goals Series is Springer Nature’s inaugu-
ral cross-imprint book series that addresses and supports the United Nations’ 
seventeen Sustainable Development Goals. The series fosters comprehensive 
research focused on these global targets and endeavours to address some of 
society’s greatest grand challenges. The SDGs are inherently multidisci-
plinary, and they bring people working across different fields together and 
working towards a common goal. In this spirit, the Sustainable Development 
Goals series is the first at Springer Nature to publish books under both the 
Springer and Palgrave Macmillan imprints, bringing the strengths of our 
imprints together.

The Sustainable Development Goals Series is organized into eighteen 
subseries: one subseries based around each of the seventeen respective 
Sustainable Development Goals, and an eighteenth subseries, “Connecting 
the Goals”, which serves as a home for volumes addressing multiple goals 
or studying the SDGs as a whole. Each subseries is guided by an expert 
Subseries Advisor with years or decades of experience studying and 
addressing core components of their respective Goal.

The SDG Series has a remit as broad as the SDGs themselves, and 
contributions are welcome from scientists, academics, policymakers, and 
researchers working in fields related to any of the seventeen goals. If you are 
interested in contributing a monograph or curated volume to the series, please 
contact the Publishers: Zachary Romano [Springer; zachary.romano@springer. 
com] and Rachael Ballard [Palgrave Macmillan; rachael.ballard@palgrave.com].



Huadong Guo

Big Earth Data  
in Support  
of the Sustainable 
Development Goals 
(2022)—The Belt 
and Road



ISSN 2523-3084                              ISSN 2523-3092  (electronic)
Sustainable Development Goals Series 
ISBN 978-981-97-3277-7 	 ISBN 978-981-97-3278-4  (eBook)
https://doi.org/10.1007/978-981-97-3278-4

Jointly published with Science Press
The print edition is not for sale in China mainland. Customers from China mainland please order 
the print book from: Science Press.
ISBN of the Co-Publisher’s edition: 978-7-03-074646-7

Color wheel and icons: From https://www.un.org/sustainabledevelopment/, Copyright © 2020 
United Nations. Used with the permission of the United Nations.

The content of this publication has not been approved by the United Nations and does not reflect 
the views of the United Nations or its officials or Member States.

This project is co-published with Science Press, Beijing, China

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed 
material. You do not have permission under this license to share adapted material derived from 
this book or parts of it.
The images or other third party material in this book are included in the book’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the book’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder.
This work is subject to copyright. All commercial rights are reserved by the author(s), whether 
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed. Regarding these 
commercial rights a non-exclusive license has been granted to the publisher.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are 
exempt from the relevant protective laws and regulations and therefore free for general use.
The publishers, the authors, and the editors are safe to assume that the advice and information in 
this book are believed to be true and accurate at the date of publication. Neither the publishers 
nor the authors or the editors give a warranty, express or implied, with respect to the material 
contained herein or for any errors or omissions that may have been made. The publishers remain 
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. 
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 
189721, Singapore

If disposing of this product, please recycle the paper.

Huadong Guo
International Research Center  
of Big Data for Sustainable 
Development Goals (CBAS)
Aerospace Information Research Institute 
Chinese Academy of Sciences 
Beijing, China

https://doi.org/10.1007/978-981-97-3278-4
https://www.un.org/sustainabledevelopment/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


v

Editorial Board

Editor-in-Chief

Huadong Guo

Associate Editors-in-Chief

Fang Chen Yu Chen Jinwei Dong Qunli Han

Chunlin Huang Lei Huang Gensuo Jia Li Jia

Xiaosong Li Dong Liang Jie Liu Shanlong Lu

Zheng Niu Zhongchang Sun Futao Wang Bingfang Wu

Mingquan Wu Rencheng Yu Lijun Zuo

Editorial Board

Jie Bai Fulong Chen JinSong Chen Yaning Chen

Zuoqi Chen Lijing Cheng Yun Cheng Yingying Dong

Shihong Du Hongtao Duan Yaya Feng Danmin Fu

Feng Gao Xumiao Gao Haifeng Gu Jiapaer Guli

Bing He Yanfang Hou Kailong Hu Yonghong Hu

Ni Huang Wenjiang Huang Liangliang Jiang Junsheng Li

Sijia Li Xuecao Li Xuegang Li Zhi Li

Po Teen Lim Liangyun Liu Ronggao Liu Saimiao Liu

Shaochuang Liu Yang Liu Yupeng Liu Lei Luo

Jinge Ma Shengya Ou JunQiang Qiao Jingxiu Qin

Xingli Qin Liping Shang Hua Su Liqun Sun

Shilin Tang Yunwei Tang Changjian Wang Li Wang

Meng Wang Shenglei Wang Xuanxuan Wang Yagang Wang

Xianhu Wei Xuexin Wei Lili Xia Yihan Xie

Dongmei Yan Nana Yan Ruixia Yang Bailang Yu

Hongwei Zeng Bing Zhang Miao Zhang Xiao Zhang

Yuanling Zhang Chang Zhao Longlong Zhao Zhijia Zheng

Guorong Zhong Jinfeng Zhu Weiwei Zhu



vi Editorial Board

Principle Authors

Jie Bai Fulong Chen Yaning Chen Jinsong Chen

Zuoqi Chen Yu Chen Lijing Cheng Yingying Dong

Shihong Du Hongtao Duan Xumiao Gao Feng Gao

Haifeng Gu Huadong Guo Bing He Yanfang Hou

Yonghong Hu Wenjiang Huang Lei Huang Ni Huang

Gensuo Jia Liangliang Jiang Guli Jiapaer Xuegang Li

Zhi Li Xiaosong Li Sijia Li Xuecao Li

Dong Liang Liangyun Liu Shaochuang Liu Ronggao Liu

Saimiao Liu Yang Liu Shanlong Lu Lei Luo

Jinge Ma Jingxiu Qin Xingli Qin Hua Su

Zhongchang Sun Liqun Sun Shilin Tang Yunwei Tang

Futao Wang Shenglei Wang Yagang Wang Li Wang

Xuexin Wei Mingquan Wu Bingfang Wu Yihan Xie

Nana Yan Ruixia Yang Bailang Yu Hongwei Zeng

Bing Zhang Xiao Zhang Miao Zhang Chang Zhao

Longlong Zhao Zhijia Zheng Guorong Zhong Weiwei Zhu

Jinfeng Zhu Lijun Zuo



vii

Foreword

The United Nations (UN) 2030 Agenda for Sustainable Development (2030 
Agenda) draws a grand blueprint for global sustainable development from 
the three dimensions of the economy, society, and environment. However, 
a lack of data, unbalanced development, mutual constraints between goals, 
and other challenges pose major obstacles to the implementation of the UN 
Sustainable Development Goals (SDGs) defined in the 2030 Agenda. At 
the same time, the impact of climate change has intensified, the COVID-
19 pandemic has been repeatedly prolonged, and regional tensions have 
intensified, greatly increasing the difficulty of implementing and realizing 
the 2030 Agenda. In 2021, President Xi Jinping proposed a global develop-
ment initiative at the 76th session of the UN General Assembly to accelerate 
the implementation of the 2030 Agenda and promote stronger, greener, and 
healthier development.

Also in 2021, the UN Sustainable Development Goals Report clearly 
pointed out that data is a resource for rebuilding and accelerating the reali-
zation of the SDGs, and it is more important than ever to obtain and master 
timely, high-quality data. To this end, the UN Secretary-General proposed 
a data strategy to promote the acquisition of more relevant, disaggregated, 
timely data to track, predict, and accelerate the implementation of the SDGs 
so that we can transform data and information into insight, and in turn, opti-
mize the decision-making process.

International comparability and availability of data have improved 
as digitization has accelerated across the globe, but gaps remain in geo-
graphic coverage and timeliness of SDG data across sectors, and innova-
tive approaches are urgently needed to fill these gaps. One such innovation 
is Big Earth Data, a field integrating technologies and methods from Earth 
science, information science, and space science. Big Earth Data has macro-
scopic, dynamic monitoring capabilities and can greatly improve data acqui-
sition, providing important support for the realization of the SDGs.

On September 22, 2020, President Xi Jinping announced at the 75th 
session of the UN General Assembly that China would establish the 
International Research Center of Big Data for Sustainable Development 
Goals (CBAS). On September 6, 2021, CBAS was officially established 
as the world’s first international scientific research institution dedicated to 
using big data to serve the 2030 Agenda. Since its establishment, the center 
has provided SDG indicators for the world by researching and building a 
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big data platform for the SDGs, launching and operating a sustainable 
development science satellite (SDGSAT-1), and carrying out research on 
technical methods of Big Earth Data for SDG monitoring and evaluation to 
actively contribute to the implementation of the 2030 Agenda.

From 2019 to 2021, the Chinese Academy of Sciences (CAS) took the 
lead in compiling the annual “Report on Big Earth Data in Support of the 
Sustainable Development Goals” for three consecutive years, cumulatively 
contributing 207 case studies on monitoring and evaluating the SDGs, 
including 178 data products, 103 methods and models, and 154 decision 
support guidelines, showing China’s exploration and practice of Big Earth 
Data technology to support global and regional sustainable development.

This year’s report, Big Earth Data in Support of the Sustainable 
Development Goals (2022)—The Belt and Road, continues to focus on 
seven SDGs and the multi-indicator intersections of Zero Hunger, Clean 
Water and Sanitation, Sustainable Cities and Communities, Climate Action, 
Life Below Water, and Life on Land. This report presents in-depth research 
on interrelationships, trade-offs, and coordination roles for measuring SDG 
indicators, including the prospect of expanding the goal of Affordable and 
Clean Energy (SDG 7) and comprehensive regional research on the SDGs 
according to regional characteristics. On the basis of the numerous stud-
ies presented here, this report concludes with recommendations to heed the 
changes in the ecological environment, integrate, and innovate on the basis 
of four-year case results, conduct a comprehensive assessment of 56 envi-
ronmental indicators, and continue using Big Earth Data to monitor the pro-
gress of SDGs.

This report organizes more than 170 scientific research personnel from 
more than 40 units in scientific research institutes and universities. It brings 
together the latest research results in the field of big data for sustainable 
development. The leaders and agencies of CAS have given great support, 
and the comrades on the writing team have worked hard. I would like to 
express my heartfelt thanks.

Huadong Guo (Beijing, China)

Director-General of the International  
Research Center of Big Data  

for Sustainable Development Goals

Member of the 10-Member group  
of the United Nations Sustainable  

Development Goals Technology Facilitation Mechanism
(2018–2021)



Executive Summary

This report presents 31 case studies where Big Earth Data was used to 
monitor and evaluate 18 targets under seven SDGs—SDG 2 (Zero Hunger), 
SDG 6 (Clean Water and Sanitation), SDG 7 (Affordable and Clean 
Energy), SDG 11 (Sustainable Cities and Communities), SDG 13 (Climate 
Action), SDG 14 (Life Below Water), and SDG 15 (Life on Land)—as well 
as a discussion of the interactions among SDG indicators. These cases dem-
onstrate SDG monitoring and assessment outcomes in representative regions 
involved in China’s Belt and Road (BAR) initiative from three aspects: data 
products, methods and models, and decision support. They can inform deci-
sions and represent innovative practices using big data to advance the imple-
mentation of the SDGs.

Regarding SDG 2, Zero Hunger, the case studies in this report focus on 
SDG 2.3.1 (production per labor unit) and SDG 2.4.1 (proportion of produc-
tive and sustainable agricultural areas), addressing both cropping systems 
and livestock systems. Seven models were proposed from the aspects of 
cropland area and cropping intensity (CI), the estimation of production and 
its impact factors, and grassland carrying capacity (GCC). Datasets include 
global cropland changes from 1985 to 2020, global CI in 2020, GCC in five 
Central Asian countries and Mongolia, gridded crop production in Africa, 
desert locusts in Asia and Africa, and drought distribution in the Mekong 
River Basin (MRB) of the Indochina Peninsula. Support for decision-mak-
ing was provided for the development of cropping systems and livestock 
systems in different regions.

For Clean Water and Sanitation (SDG 6), this report focuses on improv-
ing water quality (SDG 6.3) and integrated water resources manage-
ment (SDG 6.5). The case studies demonstrate research at the global and 
regional (Central Asia) scales using Big Earth Data. Models were developed 
for global-scale lake algal bloom extraction and large-scale lake transpar-
ency inversion. Datasets were generated for typical global lake algal bloom 
outbreaks and lake transparency from 2000 to 2021, and decision support 
guidelines were formed for cooperation-related water events in transbound-
ary rivers in Central Asia. This report exemplifies the feasibility of using 
water quality indicators obtained by satellite remote sensing to reflect the 
distribution of water bodies around the world with good water quality, inte-
grating datasets from different sources to solve the problem of data gaps.

ix
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In terms of SDG 7, Affordable and Clean Energy, this report utilizes Big 
Earth Data technology to conduct case studies and generate datasets on the 
global status of providing electricity, China’s international energy coopera-
tion projects (CIECPs), and China’s international training on solar energy 
utilization. These case studies reflect the global energy supply situation and 
the effectiveness of China’s international energy cooperation in recent years 
from different perspectives.

In the context of SDG 11, Sustainable Cities and Communities, this 
report details efforts concerning monitoring and evaluating the urbanization 
process, World Heritage protection, and urban green space. The data prod-
ucts developed by the case studies include, at the global scale, a dataset on 
the world’s major urban built-up area (UBA), a global “NPP-VIIRS-like” 
nighttime light annual composited dataset, a dataset on global urban land 
use extents under various shared socioeconomic pathways (SSPs), vec-
tor data on World Heritage boundaries, and a dataset on the trend of global 
greenness. Based on the analysis of the above datasets, the case studies 
found that global urbanization developed in a more balanced way from 2000 
to 2020; the land cover change in World Cultural Heritage sites was gener-
ally less than 1% and overall protection was good from 2015 to 2020; China 
accounts for 19% of the world’s UBA, but 28% of the world’s significant 
greening urban areas; and the Chinese population benefiting from signifi-
cant greening in urban areas accounts for about 47% of the global benefi-
ciary population.

In terms of SDG 13, Climate Action, focusing on the three themes of dis-
aster monitoring and reduction, climate change early warning, and global 
land/marine carbon sink estimation, the case studies developed a high-tem-
perature heat wave distribution dataset, an ocean heat/salinity dataset, and a 
series of global land/ocean carbon sink data products. Based on data anal-
ysis, it was found that global land continues to heat up, with an increase 
in the frequency and intensity of heat waves. From 2011 to 2020, the fre-
quency of heat waves in approximately 55% of the global land area showed 
an upward trend, and the global ocean heat content (OHC) showed a signifi-
cant increase from 1955 to 2021 at a rate of 5.7 × 1022 J/10a. The warm-
ing of the ocean significantly accelerated after the 1990s, and the salinity of 
the ocean showed a “salty to saltier, light to lighter” change pattern. From 
2000 to 2020, the global total terrestrial net ecosystem productivity (NEP) 
showed a significant increasing trend (0.05 Pg C/a, p < 0.05). Overall, the 
ocean is a strong sink of atmospheric CO2, especially since 2008, and the 
intensity of oceanic carbon sequestration has shown a continuous strength-
ening trend.

Regarding SDG 14, Life Below Water, this report focuses on reducing 
marine pollution (SDG 14.1) and protecting marine and coastal ecosys-
tems (SDG 14.2). Three case studies were carried out to produce datasets 
on the spatial distribution characteristics of harmful algal bloom species in 
the South China Sea and surrounding waters, monitoring and early warn-
ing of the thermal environments of coral reef bleaching in China-ASEAN 
seas, and dynamic changes in phytoplankton size class (PSC) in the North 
Indian Ocean (NIDO). Corresponding monitoring and analytical methods, 
models, and decision support guidelines were also produced for supporting 
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applications. These research results reflect the effectiveness of the imple-
mentation of sustainable management of the oceans and seas in recent years 
from different perspectives.

Regarding SDG 15, Life on Land, the case studies focus on three indi-
cators: specific indicators such as the sustainable management of all types 
of forests (SDG 15.2), land degradation neutrality (SDG 15.3), and habitat 
protection of endangered species (SDG 15.5). In the context of the Belt and 
Road initiative, this report has developed indicator evaluation models and 
methods supported by Big Earth data. Demonstrative applications have been 
conducted, resulting in consistent and continuous forest cover data from 
2000 to 2020, global 30 m sand dune/land datasets for the years 2000, 2010, 
and 2020, and spatial distribution products of suitable habitats for wild cam-
els in the years 2050 and 2070 under current and future climate change con-
ditions. This report has also identified key regions of human-induced land 
degradation in Central Asia, providing robust support for the dynamic moni-
toring and assessment of SDG 15 indicators.

Regarding interactions among SDGs and integrated evaluations, the sus-
tainable development of the water-energy-food-ecology (WEFE) system 
in Central Asia was taken as an example. The pressures and transmission 
processes of water, energy, food, and ecosystems in the five Central Asian 
countries were studied, and a framework for resolving conflicts between 
water and energy was proposed. Two mitigation strategies, “same effect 
trade agreement” (to replace “equivalent trade agreement”) and “power 
transmission from east to west” (i.e., importing power from China), were 
put forward to promote the sustainable development of Central Asian 
countries.
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Introduction

The 17 SDGs adopted by the UN as part of the 
2030 Agenda constitute a global framework for 
achieving sustainable development. They have 
become a strategic priority and focus of action 
for countries worldwide. However, almost half-
way into the 2030 Agenda process, its imple-
mentation has been seriously hindered by 
climate change and the COVID-19 pandemic, 
with global progress in individual goals even 
facing setbacks. The goals will not be achieved 
by 2030 unless implementation is accelerated. 
In 2021, about one-tenth of the world’s popula-
tion went hungry; more than three billion peo-
ple were at health risk due to scarce data on 
the water quality of rivers, lakes, and ground-
water; globally, 733 million people still lacked 
access to electricity; cities were hard hit by the 
COVID-19 pandemic; four key climate change 
indicators—global greenhouse gas concentra-
tion, sea-level rise, ocean heat, and ocean acidi-
fication—hit record highs; increasing ocean 
acidification, eutrophication, and plastic pollu-
tion put the livelihoods of billions of people at 
risk; and continued global deforestation, land 
and ecosystem degradation, and loss of biodi-
versity posed major threats to human survival 
and sustainable development (UN 2022; Sachs 
et al. 2022).

Science, technology, and innovation can help 
address these major challenges, primarily to sup-
port assessments at national and local scales and 
inform policy-making by enhancing data capac-
ity for SDG monitoring and evaluation. The UN 
Sustainable Development Goals Report 2022 
pointed out that the pandemic has delayed the 
development of new national statistical plans 
worldwide, and there are still considerable gaps 
in the geographical coverage and timeliness of 
global data on indicators (UN 2022). Meanwhile, 
the current indicator data are primarily of coarse-
grained statistical values, with the time resolution 
mostly being “annual” and the spatial resolution 
mostly “national,” incapable of disaggregation 
by geographical locations, population distribu-
tions, and environmental differences, which are 
crucial to thoroughly assessing regional differ-
ences in SDG progress and identifying those 
lagging behind. Thus, there is not enough data 
to effectively inform sub-national governments’ 
decision-making. According to estimates from 
the Organisation for Economic Co-operation and 
Development (OECD), 105 out of the 169 SDG 
targets will be challenging to achieve without 
sufficiently engaging sub-national governments 
(OECD 2020). Many are environmental targets 
sensitive to spatial and temporal changes.

© The Editor(s) (if applicable) and The Author(s) 2024 
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2 1 Introduction

as long-term time-series data products on global 
land use classification. In terms of methods and 
models, the reports offer new ways for more 
timely and detailed assessment and prediction of 
SDG indicators, such as a high-precision inver-
sion model of global crop intensity and rapid 
extraction method of global urban impervious 
surfaces. The reports also present scientific evi-
dence for decision support, including the track-
ing and assessment of China’s land degradation 
neutrality (LDN) and its contribution to the 
world, and the assessment of dynamic changes 
of water bodies in Ramsar sites, which can 
inform policy-making on improving the global 
synergy and comparability of indicators and 
addressing cross-border sustainable develop-
ment issues. In 2022, in the context of climate 
change, the report added a chapter that looks at 
SDG 7 and its monitoring and evaluation based 
on Big Earth Data and explored the interac-
tions between climate change and food systems, 
the carbon sequestration effect of desertifica-
tion control, and changes in the physical marine 
environment under global warming.

Based on the datasets from the 2019–2022 
reports, and with reference to the explicit thresh-
olds in SDGs and targets, and quantitative tar-
gets defined by UN agencies and international 
organizations, the 2022 report assesses China’s 
progress on 56 environmental SDG indicators 
between 2010 and 2021 (UNEP 2021). Some 
quantitative findings on the progress include 
the exploratory results of applying critical big 
data processing, analytics, and other innovative 
methods.

The BAR is an abbreviation of the “Silk 
Road Economic Belt” and the “21st Century 
Maritime Silk Road,” or the Belt and Road. The 
regions along the BAR are the most obvious 
areas with unbalanced and inadequate develop-
ment and are crucial to the implementation of 
the 2030 Agenda. The 2022 report focuses on 
updates and extensions, new methodologies and 
indicators, the tracking and evaluation of SDG 
implementation, the study of interactions among 
multiple SDGs, and coordinated development 
in light of those interactions. It presents 47 case 
studies on 19 targets relevant to countries and 

As the core of digital technology, big data 
has become an important engine of digital trans-
formation across societies. Big Earth Data, a 
key part of big data, mainly composed of Earth 
observation and geospatial data, has the advan-
tages of easy acquisition, timely updates, objec-
tive results, and higher resolution. Moreover, it 
covers different spatial scales and geographical 
locations free from administrative fragmenta-
tion, allowing a more accurate assessment of 
SDG indicator progress and prompt detection 
of problems. Its role in analyzing the complex 
interactions and co-evolution between nature 
and social systems will contribute to the overall 
understanding and realization of the SDGs.

The seven SDGs of Zero Hunger (SDG 2), 
Clean Water and Sanitation (SDG 6), Affordable 
and Clean Energy (SDG 7), Sustainable Cities 
and Communities (SDG 11), Climate Action 
(SDG 14), Life Below Water (SDG 14), and Life 
on Land (SDG 15) are closely related to Earth's 
surface environment and human activity and can 
be directly measured and evaluated using Big 
Earth Data. The Chinese Academy of Sciences 
(CAS) has used its interdisciplinary strengths to 
gather a wide variety of Big Earth Data, includ-
ing satellite remote sensing images, geospatial 
data, social media data, and statistical data, for 
these seven SDGs. CAS has developed innova-
tive technologies and methods for big data pro-
cessing and analysis based on cloud computing, 
such as the production of global public data 
products, the monitoring and evaluation of SDG 
indicators at multiple scales, and multi-indicator 
trade-off-and-synergy analysis, to provide data, 
methods, and information for SDG-related pro-
gress assessments, multi-disciplinary research, 
and multi-level decision-making (Fig. 1.1).

The reports on Big Earth Data in Support of 
the Sustainable Development Goals have been 
released annually since 2019. In terms of filling 
the data gaps, the reports provide high-quality 
data products previously lacking for monitoring 
SDG indicators, such as the dataset on the prev-
alence of stunting among children under five in 
China. They also provide additional background 
and analytical data for a deeper understanding 
of the progress and drivers of indicators, such 
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enough indicator monitoring data, properly add-
ing easily accessible and internationally compa-
rable big data indicators will effectively improve 
the existing condition of SDG monitoring and 
evaluation, and effectively support decision-
making for sustainable development both glob-
ally and along the Belt and Road.

The book is divided into chapters. This chap-
ter has introduced the topics of the case stud-
ies and the purpose of compiling them in this 
report. Chapters 2–8 provide examples of using 
Big Earth Data to measure and monitor the pro-
gress of seven SDGs. Chapter 9 provides new 
insights into the interactions among the SDGs 
and integrated evaluations. Chapter 10 summa-
rizes the studies and reflects on future prospects.
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regions involved in the BAR initiative. The 2022 
report showcases the results of research, moni-
toring, and evaluation of SDGs and their indi-
cators at four scales—local, national, regional, 
and global—totaling 31 data products, 21 
methods and models, and 33 decision-support 
recommendations.

With a deep commitment to sustainable 
development and experience-sharing, China has 
been promoting a balanced, coordinated, open, 
and inclusive new stage of global development. 
In September 2021, President Xi Jinping pro-
posed a Global Development Initiative, call-
ing for all-round cooperation in priority areas, 
including poverty alleviation, food security, cli-
mate change, green development, and connectiv-
ity, to ensure that no one is left behind in these 
areas aligned with the 2030 Agenda. According 
to the list of deliverables attached to the Chair’s 
Statement of the High-level Dialogue on Global 
Development held in June 2022, China will 
launch a Sustainable Development Satellite 
Constellation Plan, and develop and share data 
and information for SDG monitoring, which will 
be an important contribution to advancing global 
SDG cooperation in coordinated Earth observa-
tion, data sharing and application, and accelerat-
ing the implementation of the 2030 Agenda.

As the mid-term evaluation of the 2030 
Agenda approaches, the UN will comprehen-
sively review and adjust its SDG indicator 
framework globally. In the context of lacking 
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SDG 2, Zero Hunger

2.1	� Background

As we approach the midpoint in the imple-
mentation of the 2030 Agenda, the achieve-
ment of Zero Hunger remains a challenge. In 
2021, nearly one-third of the global population 
(approximately 2.3 billion people) were moder-
ately or severely food insecure, with an increase 
of nearly 350 million in just one year (FAO, 
IFAD et al. 2022). Sub-Saharan Africa and 
South Asia, where small-scale peasant house-
holds are predominant, have seen the largest 
increase in food-insecure people. The outbreak 
of wars in the Russia–Ukraine region—the 
source of 30% of global exports of wheat, 20% 
of maize and 80% of sunflower seed products—
has added to global food insecurity. This, along 
with climate change, extreme weather, conflicts, 
economic shocks, and rising inequalities, has 
steered the world away from the goal of achiev-
ing Zero Hunger by 2030 (UN 2022).

There is a global consensus on initiating and 
accelerating the transformation of the agro-
food system. In 2021, the UN convened a Food 
Systems Summit that highlighted how the trans-
formation of food systems would help achieve 
the SDGs by promoting human health and 
improving the planet’s environment. However, 

data, a key driver of the agro-food system and 
related trends, are far from complete for moni-
toring progress toward the goal of Zero Hunger, 
with large deficiencies in geographic coverage, 
timeliness, and level of classification. More than 
half of the countries or regions in the world do 
not have access to valid data for monitoring 
progress toward Zero Hunger. Big Earth Data 
with macro-level, dynamic, and rapid monitor-
ing capabilities, can enable regional assessments 
of food production, environmental changes, 
and more, realizing a holistic understanding of 
macro-scale progress and a detailed grasp of 
regional differences. The effective combination 
of Big Earth Data and statistical data can greatly 
improve the current situation of measuring SDG 
indicators where only assessment methods but 
no data are available, and can provide new impe-
tus for monitoring the implementation of the 
SDGs.

Based on our reports over the past three 
years, we have laid emphasis on SDG 2.3 and 
SDG 2.4. Focusing on the plant industry in the 
agricultural production system, we carried out 
a series of studies ranging from cropland extent 
distribution, cropping pattern monitoring, and 
desert locust plague assessment to cropland 
productivity monitoring, productivity potential 
assessment, and food security early warning. 

© The Editor(s) (if applicable) and The Author(s) 2024 
H. Guo, Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road,  
Sustainable Development Goals Series, https://doi.org/10.1007/978-981-97-3278-4_2

2
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cropland area and the amount of food are fac-
ing great challenges. According to statistics of 
the Food and Agriculture Organization of the 
UN (FAO), the total number of hungry people in 
the world showed an improving trend of gradual 
reduction in the early twenty-first century, but 
this trend has reversed in recent years, and the 
number of hungry people increased from 604 
million in 2014 to 768 million in 2020 (FAO 
2020). In order to cope with global food insecu-
rity, the global cropland area is showing a signif-
icant increase. Specifically, since the beginning 
of the twenty-first century, the increase in agri-
cultural cropland area accounted for about 9% 
of the total cropland area in 2000 (Potapov et al. 
2022). Thus, the use of remote sensing data to 
monitor the change in cropland area is of great 
significance for assessing global food security.

2.3.1.2 � Data

•	 All available Landsat observations over the 
globe from 1985 to 2020.

•	 Three global 30 m land-cover products, 
including global land-cover with fine clas-
sification at 30 m in 2020 (GLC_FCS30-
2020), GlobaLand30 in 2020 from the 
National Geomatics Center of China, and 
the Global Food Security Analysis Data at 
30 m (GFSAD30) cropland product from the 
United States Geological Survey.

•	 Global and national population statistics from 
1985 to 2020 from the Population Division 
of the Department of Economic and Social 
Affairs of the UN.

2.3.1.3 � Methods
With time-series cropland dynamic monitor-
ing, the traditional supervised classification 
strategy usually causes great uncertainties due 
to the transmission and accumulation of classi-
fication errors. In this case, based on full time-
series remote sensing observations, we first used 
the continuous change detection model to fit the 
time-series reflectance spectra (ρ∗

i,t). Then, the 
change time and change frequency were cap-
tured according to the difference (�ρ) between 

In the 2022 report, we will further strengthen 
the research and development of global pub-
lic data products that support the monitoring of 
progress toward Zero Hunger, while continuing 
to explore the possibilities of using Big Earth 
Data to monitor sustainable agricultural devel-
opment in food security hotspots and sensitive 
regions, with a view to providing support in 
terms of data, technology, and decision-making 
for global food security and regional sustainable 
agricultural development.

2.2	� Main Contributions

This chapter illustrates seven case studies that 
monitored and evaluated indicators of pro-
gress toward SDG 2 based on two specific tar-
gets, demonstrating China’s contributions to the 
global monitoring of SDG 2 indicators in three 
aspects; that is, data products, methods and 
models, and decision support (Table 2.1).

2.3	� Case Studies

2.3.1	� Dynamic Global Cropland 
Analysis, 1985–2020

Target: SDG 2.3: By 2030, double the agricul-
tural productivity and incomes of small-scale 
food producers, in particular women, indigenous 
peoples, family farmers, pastoralists and fish-
ers, including through secure and equal access 
to land, other productive resources and inputs, 
knowledge, financial services, markets, and 
opportunities for value addition and non-farm 
employment.

2.3.1.1 � Background
SDG 2.4.1, “proportion of agricultural area 
under productive and sustainable agriculture”, 
is an important indicator directly related to 
global food security and sustainable develop-
ment. In recent decades, with the rapid growth 
of the global population and the acceleration of 
industrialization and urbanization, the per capita 
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that the cropland dynamics show great differen-
tiation at the national scale. For example, in the 
populous countries represented by China and 
India, due to economic growth and urban devel-
opment needs from 1985 to 2020, some crop-
lands were transformed into impervious surfaces. 
Correspondingly, due to further development of 
the agricultural economy in some South American 
and Southeast Asian countries represented by 
Brazil, Argentina, and Indonesia, some forests 
have been reclaimed as newly added croplands. 
Among them, the increased croplands in Brazil 
reached about 134,800 km2 from 1985 to 2020.

Figure 2.2 illustrates the quantitative statis-
tics of the changed cropland areas over the six 
continents from 1985 to 2020 (5-year interval). 
The results indicate that the global total crop-
land area shows a steady increase over time, 
with a total increase of about 4.23 × 105 km2. 
Specifically, the increased croplands are mainly 
concentrated in Africa and South America, 
because a large amount of wasteland in Africa 
has been reclaimed as croplands in recent dec-
ades, while some forests in South America have 
been logged and then transformed into crop-
lands, which has led to the growth of croplands 
in Africa and South America with 454,900 and 
266,300 km2, respectively.

In addition, we combined the dynamic global 
cropland data and population statistics to ana-
lyze the per capita cropland of the top 20 coun-
tries in the world from 1985 to 2020, as shown 
in Fig. 2.3. The results indicate that there is a 
significant phenomenon of more people and 
less land in Asian countries (such as Japan, 
Bangladesh, India, and China, where the per 
capita cropland is less than 2.00 km2 per thou-
sand people), especially the per capita cropland 
in Japan at about 0.438 km2 per thousand peo-
ple, and with the increasing population, the per 
capita cropland in Asian countries is showing 
an increasingly tense trend. Relatively speaking, 
countries such as the United States, Russia, and 
Brazil have high proportions of per capita crop-
land. Although the population has increased. 
Significantly increased from 1985 to 2020, the 
proportion of per capita cropland is still signifi-
cantly higher than that of Asian countries.

the model fitting value and the real observation 
value (ρi,t):

where a0,i denotes the mean value of the fitted 
model at the ith band, ak,i and bk,i are the regres-
sion coefficients of cosine and sine terms, the c0,i 
represents the slope of the trend change of the 
model under full time-series observations, t is 
the tth Julian day, and n and T are the order and 
period of the Fourier terms in the fitted model.

On this basis, in order to clarify the dynamic 
changes of croplands from the full-time satel-
lite observations, this case study first extracted 
high-confidence, stable time-series cropland 
samples from three sets of global 30 m land-
cover products. Then, combining multi-tempo-
ral phenological characteristics and the locally 
adaptive random forest classification model, we 
updated cropland-related land-cover changes in 
real time to achieve the dynamic monitoring tar-
get of global 30 m cropland from 1985 to 2020. 
Lastly, we further combined the statistics of the 
global population and grain production to quan-
titatively analyze the per capita cropland at the 
national scale, which provides scientific under-
standing and data support for the assessment of 
food security in various countries.

2.3.1.4 � Results and Analysis
Figure 2.1 illustrates the spatial distribution 
intensity of global 30 m cropland dynamics 
from 1985 to 2020. In terms of the overall spa-
tial distribution pattern, global croplands are 
mainly concentrated in areas with flat terrain and 
relatively abundant rainfall, such as South Asia, 
Europe, the Great Plains of North America, and 
the La Plata Plain in South America.

Using eight periods of the global 30 m crop-
land dynamic monitoring dataset from 1985 to 
2020, we quantified the cropland change areas 
in various countries, and the results indicate 

ρ∗

i,t = a0,i +

n
∑

k=1

(

ak,i cos

(

2π t

kT

)

+bk,i sin

(

2π t

kT

))

+ c0,i × t

�ρ = ρ∗

i,t − ρi,t ,
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2.3.2	� Spatial Pattern of Cropping 
Intensity and H Gaps at the 
Global Scale

Target: SDG 2.3: By 2030, double the agricul-
tural productivity and incomes of small-scale 
food producers, in particular women, indigenous 
peoples, family farmers, pastoralists and fish-
ers, including through secure and equal access 
to land, other productive resources and inputs, 
knowledge, financial services, markets, and 
opportunities for value addition and non-farm 
employment.

2.3.2.1 � Background
Cropland provides food that supports the very 
existence and development of humans. Its sus-
tainable use plays an important role in achiev-
ing the goal of Zero Hunger. China is a largely 
agricultural country, but it has a low level of per 
capita cropland and faces pressure on its food 
production system brought by industrialization 
and urbanization (Zuo et al. 2018). Cropping 
Intensity (CI), defined as the number of crop 
planting and harvesting cycle(s) within a full 
year (Liu et al. 2020), is an important indica-
tor that offers a measure of cropland utilization 
and has profound implications for closing food 
production gaps and agricultural intensifica-
tion (Zhang et al. 2021). Its sustained stability 
is directly linked to the national food security 
strategy.

Due to diverse cropping practices and vari-
ous agricultural landscapes across the globe, 
the retrieval of CI at high resolution with satis-
factory accuracy is a great challenge. Previous 
studies have mainly focused on investigat-
ing the spatiotemporal patterns of CI ranging 
from regions to the entire globe with the use of 
coarse-resolution data, which are inadequate for 
characterizing farming practices within hetero-
geneous landscapes. Thanks to more advanced 
remote sensing technology, the popularization of 
high spatiotemporal resolution data has greatly 
contributed to the accuracy of CI mapping. 

2.3.1.5 � Highlights

•	 A novel global 30 m cropland dynamic 
monitoring dataset from 1985 to 2020 was 
developed.

•	 The total area of cropland has shown a steady 
growth trend over the globe from 1985 to 
2020, and the net increase of global cropland 
from 1985 to 2020 was 4.23 × 105 km2.

•	 The cropland dynamics show great differ-
entiation at the national scale. For exam-
ple, some tropical countries such as Brazil 
and Indonesia have experienced significant 
deforestation and reclamation, while devel-
oping countries such as China and India 
have shown the obvious phenomenon of 
transforming croplands into impervious 
surfaces.

2.3.1.6 � Discussion and Outlook
In this case study, based on the long-term 
Landsat satellite remote sensing data from 
1985 to 2020, a cropland dynamic monitoring 
model coupled with continuous change detec-
tion and a dynamic updating method was pro-
posed, which can improve the continuity and 
reliability of dynamic cropland monitoring 
spatially and temporally. Then, we used time-
series observations and the proposed methods 
to develop a global 30 m dynamic cropland 
monitoring product from 1985 to 2020. Next, 
we analyzed the gain and loss of cropland on 
the national and continental scales, and further 
combined global demographic data to reveal 
that the global per capita cropland is show-
ing an increasingly tense trend. In future, the 
monitoring model will be further optimized 
to realize dynamic cropland monitoring that 
can distinguish major crop types, and quanti-
tatively analyze global and national food secu-
rity in combination with multi-source statistical 
data such as global grain production, so as to 
provide a more scientific understanding for the 
realization of sustainable development and 
accurate data support.

2.3  Case Studies
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composition method. In order to ensure data 
continuity, this study used MODIS NDVI data 
at 250 m to fill temporal gaps with the follow-
ing steps. First, the MODIS NDVI data at 250 
m were re-sized to 30 m using the bicubic algo-
rithm. Second, the Whittaker smoothing algo-
rithm was applied to the gap filled with the 
NDVI time series to smooth the NDVI time 
series. We included two phenology metrics, 
mid-greenup and mid-greendown, which were 
derived as the day of year (DOY) at the transi-
tion points in the greenup and greendown peri-
ods when the smoothed NDVI time series passes 
50% of the NDVI amplitude. An interval starting 
from mid-greenup and ending at mid-greendown 
was defined as a growing phenophase, and an 
interval moving from mid-greendown to mid-
greenup was defined as a non-growing pheno-
phase (Liu et al. 2020; Zhang et al. 2021). We 
set a lower limit of the growing-harvesting cycle 
length to 48 days for removing the false cycles. 
Finally, global CI was mapped at 30 m resolu-
tion for 2020. The results were validated based 
on a large number of ground-based samples 
obtained worldwide.

Based on the zonal statistical method, the 
average of CI for each country and the AEZs 
were calculated and compared with the potential 
multiple-cropping zones to analyze and identify 
the CI gaps.

2.3.2.4 � Results and Analysis
According to the global CI map at 30 m reso-
lution, the CI index averaged 115% globally in 
2020, with 85.2% of cropland in single crop-
ping, 14.4% in double cropping, mainly in East 
Asia, Southeast Asia, South Asia, and South 
America (Fig. 2.4). Globally, only 0.4% of the 
cropland presents triple cropping or above, scat-
tered in tropical and subtropical regions. The 
cropping pattern is closely related to the water 
and heat conditions required for crop develop-
ment. The high average annual temperature and 
abundant precipitation in the tropical climate 
zone can meet the heat and water demands of 
crops with multiple-cropping patterns. The pro-
portion of cropland with multiple-cropping pat-
terns to the total cropland area in regions such 

This study integrated multi-source remote sens-
ing data and cloud computing technology, to 
map and analyze CI at the global scale in 2020. 
Cropping intensity gaps were also analyzed and 
compared between China and other major agri-
cultural countries.

2.3.2.2 � Data

•	 Satellite Data: Sentinel-2, Landsat-5, 
Landsat-7, Landsat-8, and Gaofen-1 data 
from 2019 to 2021; moderate resolution 
imaging spectroradiometer (MODIS) normal-
ized difference vegetation index (NDVI) data 
at 250 m resolution from 2019 to 2021.

•	 Global cropland and CI products at 30 
m resolution from 2016 to 2018 (Zhang 
et al. 2021), cropland layer (2017) from 
ChinaCover 30 m resolution land-cover data, 
GFSAD30 cropland dataset from the United 
States Geological Survey, and global crop-
land dynamics 2000–2019 at 30 m resolution 
(Potapov et al. 2022).

•	 Auxiliary Data: global agro-ecological 
zones (AEZs) (Gommes et al. 2016), poten-
tial multiple-cropping zones from Global 
Agro-Ecological Zones V4 (GAEZ4.0), and 
ground-based CI samples.

2.3.2.3 � Methods
Globally, 110 AEZs were identified, taking into 
account differences in climatic zones, topo-
graphic conditions, cropping systems, and 
cropland distributions. According to the phe-
nological information of the AEZs, the start-
ing dates and ending dates of monitoring were 
determined based on time series MODIS NDVI 
data at 250 m. The mode of the vegetation index 
through time for each ecological zone was cal-
culated within the cropland mask area and was 
used as the start time for monitoring CI for each 
zone. Within each monitoring unit, all available 
images of top-of-atmosphere (TOA) reflectance 
from Landsat, Sentinel-2 (global), and GaoFen 
(GF-1, China) satellites during the monitor-
ing period were used for CI mapping. These 
images were used to compose the 16-day TOA 
reflectance time series based on the maximum 
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Fig. 2.5   Proportions of 
multiple-cropping land to the 
global multiple-cropping land 
area for six continents
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(Fig. 2.5). South America accounts for 7.1% of 
the world’s cropland area, but its multiple-crop-
ping cropland accounts for a significant propor-
tion of 16.1% of the world’s multiple-cropping 
cropland. Africa’s multiple-cropping cropland 
accounts for 11.6% of the global share, which is 
lower than its proportion of cropland area in the 
world. However, considering its lagging agricul-
tural infrastructure, resources, and investments, 
Africa already has a commendable achievement 
in its more than 10% of cropland with multiple-
cropping patterns. In contrast, the proportion 
of cropland with multiple-cropping patterns in 
Europe, North America, and Oceania is signifi-
cantly smaller than their proportion of cropland 
areas.

The regions with great potential for increas-
ing CI are mainly concentrated in countries of 
Southeast Asia, central South America, southern 
North America, and central Africa. The climate 
conditions are favorable to multiple cropping in 
Central America, Southeast Asia and Africa’s 
equatorial region, where the CI gaps are larger 
than those in other regions. The CI gaps of most 
countries in the above-mentioned regions exceed 
0.75 when climate conditions are fully utilized. 
Actual CI in South Asian and Arabian Peninsula 
countries, Egypt, and some countries in Central 
Asia has surpassed its potential levels under 
rain-fed conditions. This is mainly due to invest-
ment in infrastructure and management, such as 
irrigation activities in dry seasons or prolonged 

as the Amazon, Gulf of Guinea in West Africa 
and Congo Basin exceeds 30%. Regions such 
as the Indo-Gangetic Plain, Huang-Huai-Hai 
Plain, and the Nile River Delta are benefiting 
from agricultural infrastructure inputs, where 
CI is higher than that in other areas at the same 
latitude. Southern Africa and Australia have 
high irregularity in precipitation and less irriga-
tion infrastructure as well. Agricultural practices 
mostly happen in the rainy season, with limited 
cropland in multiple-cropping patterns. Regions 
from southeastern Brazil to the Argentine 
Pampas in the Southern Hemisphere at the same 
latitude have a predominantly subtropical mon-
soon climate with mild temperature and high 
precipitation. The proportion of the multiple-
cropping patterns in regions from southeastern 
Brazil to the Argentine Pampas is greatly higher 
than that of Southern Africa and Australia. There 
are significant differences in CI among con-
tinents, with the highest average CI in South 
America at 134%. The average CI in Asia is 
121%, slightly lower than that in South America. 
Europe and Africa were observed with an aver-
age CI of 110%, higher than those in North 
America and Oceania, which have the lowest CI 
at 105% and 103%, respectively.

The global distribution of multiple-cropping 
cropland is uneven across different continents. 
Asia accounts for 38.0% of the world’s cropland 
area, but its share of multiple-cropping crop-
land to the global share is much higher at 54.2% 
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Fig. 2.6   CI gaps at the sub-national scale

environmental factors such as radiation, tem-
perature, water, and soil, and showed an over-
all latitudinal distribution. Multiple-cropping 
patterns are mainly concentrated in the Indo-
Gangetic Plain, Huang-Huai-Hai Plain, and 
Nile River Delta.

•	 There is still huge untapped potential for 
multiple cropping in Central America, 
Africa’s equatorial region, and Southeast 
Asia, where natural agricultural resources 
are not fully exploited. The average poten-
tial for multiple cropping in these regions 
is greater than 0.75. In China, the potential 
mainly exists in the southern areas of the 
Yangtze River. Crop production is expected 
to increase by 230 million tons, or 6.4% of 
the current global production, if the CI gaps 
at rain-fed conditions are achieved.

2.3.2.6 � Discussion and Outlook
GCI30_2020 can provide scientific data sup-
port for the quantitative analysis of intensity and 
the sustainability of cropland use. GCI30_2020 
quantitatively reflects the spatial differences 

drought periods (Fig. 2.6). In China, larger CI 
gaps are observed in the southern Yangtze River 
areas, where economic development is robust 
and there is significant labor migration from 
rural to urban areas. Land use intensification can 
be further improved in the south through better 
coordination between economic and agricultural 
development and through innovation and tech-
nology. Globally, grain production is expected 
to increase by 230 million tons, or 6.4% of the 
current global total grain production, by closing 
the CI gaps.

2.3.2.5 � Highlights

•	 Based on Big Earth Data and cloud comput-
ing techniques, this study produced global 30 
m cropping intensity in 2020 (GCI30_2020), 
providing a quantitative assessment of the 
current state and potential for the improve-
ment of multiple cropping worldwide.

•	 In 2020, about 85.2% of global cropland 
was in the single cropping pattern, and 
multiple cropping was limited by various 

2.3  Case Studies
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and scattered breeding. Meat and dairy prod-
ucts account for a high proportion of local peo-
ple’s diets. Recently, overgrazing and drought 
have resulted in serious degradation of desert/
semi-desert grassland in Central Asia. This has 
a huge impact on the local livestock industry, 
so the proportion of meat imports has soared. 
Therefore, it is essential to divide the type com-
position, distributions, and area changes of the 
main grassland resources, identify the temporal 
and spatial characteristics of grassland degrada-
tion, and quantify GCC in the five Central Asian 
countries. This can provide a scientific reference 
for the sustainable development of livestock, 
and also provide technical support for China-led 
solutions to eliminate Zero Hunger in Central 
Asia.

In previous studies, the main research objects 
of GCC have been grasslands (meadows) in 
mountains or the river valleys, but rarely have 
they included sparse vegetation areas such as 
deserts and shrubland. In the central and south-
ern parts of the five Central Asian countries, 
the vast desert areas with an average vegetation 
fraction of 30% are winter pasture and camel 
breeding areas, so they are also an important 
component of the assessment of GCC. The 
vegetation of the desert/semi-desert of Central 
Asia is sparse and unevenly distributed. At 
present, many large-scale and long-term time-
series remote sensing vegetation products have 
missing values and also lack ground observa-
tion data (such as forage yield, AGB, and veg-
etation coverage) in this region. The assessment 
of GCC mainly focuses on the calculation of 
AGB or forage yield in domestic and foreign 
research. However, the ecological environ-
ment in the desert/semi-desert of Central Asia 
is extremely fragile, and it is difficult to recover 
in a short time once damaged. Therefore, the 
ecological protection objectives (such as grass-
land, soil, and water) should also be considered 
in the assessment of GCC to ensure the sustain-
able development of animal husbandry. This 
case focuses on desert/semi-desert grassland, 
identifies the classification of grassland types 
(including desert and shrubland), establishes an 
assessment method of GCC based on ecological 

in actual CI in different countries and regions 
around the world. It was found that the greatest 
potential for improving CI is in tropical regions. 
These areas could further improve their CI to 
fully utilize their natural conditions, such as 
radiation, temperature, and available water, to 
make greater contributions to the achievement 
of Zero Hunger. The potential to increase CI in 
southern China is significantly higher than that 
in the north. In future, regional economic sus-
tainable development and high-standard farm-
land construction could be considered, and the 
utilization of regional agricultural resources 
could be strengthened to stabilize the regional 
food production level.

However, the uncertainty of the CI map in 
tropical regions or other cloud-prone regions is 
higher than that in other regions due to the data 
quality of optical remote sensing data, which 
are commonly used currently. In future, syn-
thetic aperture radar (SAR) data can be used to 
tackle the difficulty in obtaining optical images 
in frequently cloudy and rainy regions, and 
to improve the accuracy and reliability of CI 
products.

2.3.3	� Assessment of Grassland 
Carrying Capacity in Five 
Central Asian Countries

Target: SDG 2.3: By 2030, double the agricul-
tural productivity and incomes of small-scale 
food producers, in particular women, indigenous 
peoples, family farmers, pastoralists and fish-
ers, including through secure and equal access 
to land, other productive resources and inputs, 
knowledge, financial services, markets, and 
opportunities for value addition and non-farm 
employment.

2.3.3.1 � Background
Doubling the income of pastoralists in particular 
is one of the key objectives of SDG 2.3, and car-
rying out research on livestock carrying capacity 
is one of the ways to objectively assess the pro-
duction and income of herdsmen. The dominant 
methods of breeding are family, small-scale, 
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on the NPP simulated by the boreal ecosys-
tem productivity simulator (BEPS) model, the 
method of AGB allocation proposed by Hui 
and Jackson (2006) was used to calculate the 
AGB of grassland. Combined with the observed 
AGB of grassland in 2018 and 2019, the forage 
yield in Central Asia was estimated and veri-
fied. A comprehensive evaluation system was 
established to calculate a reasonable GCC from 
four factors: ecology, topography, human activ-
ity, and soil and water. Then, the spatiotem-
poral change analysis of GCC was carried out 
for Central Asia based on ecological protection 
objectives. Finally, the grassland capacity bal-
ance index (GCBI) was used to evaluate the 
grassland development potential and grassland 
overgrazing:

where Ca is the actual GCC, and Cr is the rea-
sonable GCC. The actual GCC came from the 
statistics of livestock production published by 
FAOSTAT, and the reasonable GCC was esti-
mated by the above evaluation system of GCC. 
If the value of GCBI is positive, it means that 
the actual grazing quantity of grassland is 
greater than the reasonable GCC, that is, over-
grazing exists. If the value of GCBI is negative, 
it indicates that the actual grazing quantity of 
grassland is less than the reasonable GCC, that 
is, it has grazing potential and can accommodate 
a certain amount of livestock grazing.

2.3.3.4 � Results and Analysis
The types and distributions of grassland in 
the five Central Asian countries are shown in 
Fig. 2.7. According to the statistical analy-
sis, the grassland area in the five Central Asian 
countries was 252.48 × 104–251.98 × 104 km2 
during 2010–2020. Desert grassland accounted 
for 44.63% of the grassland area, which was 
mainly distributed in Turkmenistan, Uzbekistan, 
and southern Kazakhstan, while 33.38% of the 
grassland area was semi-desert grassland, which 
was mainly distributed in central Kazakhstan, 
and 14.83% of that was Kazakh steppe, which 
was in northern Kazakhstan. The grassland 

GCBI =
Ca − Cr

Cr

× 100%,

protection objectives, and evaluates the develop-
ment potential of grassland in the five Central 
Asian countries.

2.3.3.2 � Data

•	 Raster datasets of land use/land cover 
(LULC), fraction of vegetation coverage 
(FVC) and net primary productivity (NPP) 
from the CAS “Big Earth Data Science 
Engineering Project” (CASEarth) in 2010, 
2015, and 2020 with a spatial resolution of 
500 m.

•	 Raster datasets of livestock production from 
the Gridded Livestock of the World database 
(GLW 3) (Gilbert et al. 2018) in 2010 with a 
spatial resolution of 0.083333º.

•	 Monthly raster datasets for temperature and 
precipitation from the University of East 
Anglia’s Climatic Research Unit gridded 
Time Series (CRU TS 4.0) during 2010–2020 
with a spatial resolution of 0.5º.

•	 Main livestock production statistics of the 
five Central Asian countries in 2010, 2015, 
and 2020 from the Food and Agriculture 
Organization Statistics (FAOSTAT) Database.

•	 Observed data of grassland AGB in the five 
Central Asian countries in 2018 and 2019 
(CAS Research Center for Ecology and 
Environment of Central Asia).

•	 Other Data: vector dataset of terrestrial ecore-
gions of the world (TEOW) (Olson et al. 
2001), Harmonized World Soil Database 
Version 1.2 (Nachtergaele et al. 2012), and 
Shuttle Radar Topography Mission (SRTM) 
digital elevation model (DEM).

2.3.3.3 � Methods
This case identifies the distribution and extent 
of grassland (including desert and shrubland) 
using LULC and GLW datasets. Grassland 
types were distinguished by the comprehensive 
index method based on terrain, climate, soil, 
and TEOW data. Vegetation growth and veg-
etation coverage were used with the entropy 
weight method (EWM) to evaluate the spa-
tiotemporal variations of grassland degrada-
tion in the five Central Asian countries. Based 
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Fig. 2.7   Grassland types in the five Central Asian countries (2020)

alpine desert grassland in the Pamir Mountains, 
accounting for 37%–45% of the areas of these 
two grassland types. Temperate grassland and 
alpine meadow grassland had mainly no deg-
radation and light degradation. Especially in 
alpine meadow grassland, the undegraded area 
accounted for 55% of the grassland type. The 
spatiotemporal changes of grassland degradation 
in the five Central Asian countries from 2010 
to 2020 showed that grassland degradation first 
decreased and then increased. The proportion of 
severe and moderate degradation of grassland 
areas decreased from 76.36% in 2010 to 65.79% 
in 2015, and then increased to 76.85% in 2020. 
Grassland degradation was concentrated in 
the western coastal lowlands of the Caspian 
Sea, near the Aral Sea, the western Tianshan 
Mountains, and eastern Kazakhstan. The grass-
land restoration area was distributed discon-
tinuously in semi-desert grassland in southern 
Kazakhstan, central Kazakh steppe, and desert 
grassland in central Turkmenistan.

The available forage yield in the five Central 
Asian countries (Fig. 2.9) is related to grassland 
types. In 2020, alpine meadow grassland and 
temperate grassland had the highest yield (2531 

areas of temperate grassland and alpine meadow 
grassland were relatively small, accounting 
for 4.07% and 2.24% of the grassland area, 
respectively. They were mainly distributed in 
Kyrgyzstan, Tajikistan, and mountainous eastern 
areas of Kazakhstan. The smallest area of alpine 
desert grassland (0.85%) was concentrated in 
the Pamir Mountains of Tajikistan. Kazakhstan 
had the largest grassland area (70%), followed 
by Turkmenistan and Uzbekistan (13.92% and 
10.34%, respectively), and the mountainous 
countries of Kyrgyzstan and Tajikistan had the 
smallest grassland areas (9.14% and 4.93%, 
respectively).

The grassland in the five Central Asian 
countries was mainly moderately degraded, 
accounting for 47.92% of the total grassland 
area (Fig. 2.8). The moderate degradation 
of grassland was mainly distributed in semi-
desert grassland in southern Kazakhstan and 
the Kazakh steppe in northern Kazakhstan, 
accounting for 53%–58% of the areas of these 
two grassland types. The proportion of severe 
degradation of the grassland area was 22.99%, 
which was concentrated in the desert grass-
land of Uzbekistan and Turkmenistan, and the 



19

N N

N

Severe degradation

Moderate degradation

Legend Light degradation

No degradation

Water

Changes in grassland degradation

0 1,500 3,000 km750

< 0.41

0.41- 0.21

0.20- 0.11

0.10- 0.06

0.05-0

0.01-0.09

0.10-0.19

0.20-0.39

0.40-1.12

2010

2020

2015

2010-2015

Fig. 2.8   Distribution and variation of grassland degradation in the five Central Asian countries

SU/hm2) (Fig. 2.10). From 2010 to 2020, the 
reduction of GCC was mainly distributed in the 
desert grassland in central Turkmenistan and 
Uzbekistan, the alpine meadow grassland in 
eastern Kazakhstan, and the alpine desert grass-
land in the Pamir Mountains. The increased 
GCC was found in the middle areas of semi-
desert grassland, Kazakh steppe, and partial 
temperate grassland.

Kazakhstan had great potential for live-
stock development (Fig. 2.11) with the value 
of GCBI being -158%–190%, and it was 
mainly located in the country’s southcentral 
semi-desert grassland and the northern Kazakh 
steppe. The GCBI of grassland in Kyrgyzstan 
increased from -8.19% in 2010 to 19.64% in 
2020, indicating that the development potential 
of grassland was gradually decreasing and the 
development of animal husbandry was becom-
ing saturated. The grassland in Uzbekistan had 

kg/hm2 and 2406 kg/hm2). It was followed by 
Kazakh steppe and semi-desert grassland (2247 
kg/hm2 and 1372 kg/hm2), while desert grass-
land and alpine desert grassland had the lowest 
yield (484 kg/hm2 and 512 kg/hm2). The forage 
yield in Kyrgyzstan and Tajikistan was the high-
est, while that in Uzbekistan and Turkmenistan 
was the lowest. From 2010 to 2020, the forage 
yield of Kazakh steppe and semi-desert grass-
land in Kazakhstan increased significantly, 
while that of the desert grassland of the Aral Sea 
Basin, eastern alpine meadow and alpine desert 
grasslands obviously decreased in Turkmenistan 
and Uzbekistan.

In 2020, desert grassland and alpine desert 
grassland had the lowest carrying capacity (10–
15 SU/hm2), semi-desert grassland and Kazakh 
steppe had a medium carrying capacity (30–60 
SU/hm2), while temperate grassland and alpine 
meadow grassland had the highest (120–300 
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Fig. 2.9   Distribution and variation of available forage yield in the five Central Asian countries (2010, 2015, 2020)

the most overgrazing with the value of GCBI 
being 88.22%. Next came Turkmenistan and 
Tajikistan, with a GCBI of 67.13% and 59.19%, 
respectively.

2.3.3.5 � Highlights

•	 A scheme was proposed for grassland classi-
fication types including desert grassland and 
semi-desert grassland in arid areas of Central 
Asia, establishing an assessment method 
of GCC for ecological protection, and also 
a new dataset for an SDG 2.3 index in arid 
regions.

•	 Desert grassland and semi-desert grass-
land, which are the main grassland types, 
were moderately degraded during the study 
period, while temperate grassland and 
alpine meadow grassland, accounting for a 
few areas, were lightly degraded in the five 
Central Asian countries.

•	 Among the five Central Asian countries, 
Kazakhstan has the greatest development 
potential for grassland. The development 
potential of grassland in Kyrgyzstan gradu-
ally decreased and tended toward saturation. 
Meanwhile, the grassland of Uzbekistan 
was heavily overgrazed, followed by 
Turkmenistan and Tajikistan.

2.3.3.6 � Discussion and Outlook
Based on new technologies and products of 
Big Earth Data, combined with internationally 
shared datasets, grassland characteristics, field 
observations and expert knowledge in Central 
Asia, an evaluation index system of GCC 
was constructed, including sparse desert veg-
etation that can meet the ecological conserva-
tion objectives in arid areas. On this basis, an 
assessment of GCC was carried out in the five 
Central Asian countries, and spatial distribu-
tion maps of different GCC in Central Asia 
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factors affecting GCC should be considered, 
and the evaluation system should be gradually 
improved to enhance the accuracy and applica-
bility of evaluations.

were produced, which could provide informa-
tion support for an SDG 2.3 index—evalu-
ation of herdsmen’s productive capacity in 
typical arid areas. In future, other biological 
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driving factors has important research implica-
tions and applications for the sustainable devel-
opment of grassland ecosystems and livestock 
husbandry, as well as for the livelihoods of 
herdsmen.

“Volume of production per labor unit by 
classes of farming/pastoral/forestry enterprise 
size” is an important indicator of SDG 2.3. 
However, the monitoring of this indicator is still 
at the stage of no data and no methodology. A 
dilemma is also faced by Mongolia when the 
evaluation indicators are applied to animal hus-
bandry management. Therefore, this study com-
bines remote sensing, ground observations and 
survey statistics to carry out the monitoring of 
AGB changes in Mongolian grasslands from 
2010 to 2020, investigating the characteristics of 
spatial and temporal changes in AGB for grass-
lands, and quantitatively analyzing the spatial 
and temporal variability in GCC. This study will 
help to understand the impacts of livestock pro-
duction activities on grassland ecosystems and 
provide support for research and management of 
sustainable development of livestock farming in 
Mongolia. It also provides a technical approach 
and information reference for the application 
of Earth observation technology in grassland 
and livestock farming to achieve SDG 2.3 in 
Mongolia.

2.3.4.2 � Data
MODIS Terra Surface Reflectance Daily Global 
250 m (MOD09GQ) and MODIS Terra Surface 
Reflectance Daily Global 500 m (MOD09GA) 
datasets from 2010 to 2020 from the Land 
Processes Distributed Active Archive Center 
(LP DAAC) of NASA. Band reflectance data at 
a spatial resolution of 250 m for the former and 
500 m for the latter were selected.

Solar radiation dataset from 2010 to 2020 
from the National Centers for Environmental 
Prediction (NCEP) Climate Forecast System 
(CFS) at 250 m and 500 m spatial resolution.

Statistical data for livestock populations from 
2010 to 2020 from the Mongolian Statistical 
Yearbook.

Mongolian grassland type data, province 
boundary, and ground-based AGB observation 

Desert and semi-desert grassland areas in 
Central Asia account for 78% of the grassland 
area, most of which are seriously degraded. 
Meanwhile, disorderly and excessive grazing 
activities aggravate grassland degradation here. 
Moreover, scattered and small-scale livestock 
farming, which is dominated by families, can-
not resist the losses caused by natural disasters. 
All of these issues intensify the challenges to 
eliminating local Zero Hunger. In future, it is 
suggested to pay more attention to grassland 
resource restoration and protection under harsh 
conditions in desert and semi-desert grassland 
areas, and also strengthen the construction of 
modern centralized animal husbandry bases, so 
as to ensure the efficient and sustainable devel-
opment of animal husbandry in Central Asia.

2.3.4	� Spatial and Temporal 
Variation in Grassland 
Carrying Capacity in Mongolia 
and Its Causes

Target: SDG 2.3: By 2030, double the agricul-
tural productivity and incomes of small-scale 
food producers, in particular women, indigenous 
peoples, family farmers, pastoralists and fish-
ers, including through secure and equal access 
to land, other productive resources and inputs, 
knowledge, financial services, markets, and 
opportunities for value addition and non-farm 
employment.

2.3.4.1 � Background
Grasslands in Mongolia cover more than 80% of 
the country’s land area, and are the most domi-
nant ecosystem type in the country. Livestock 
farming is the basis of Mongolia’s national 
economy and the livelihoods of local herdsmen 
(Angerer et al. 2008). Grassland ecosystems are 
one of the most sensitive systems to global cli-
mate change, and the degradation of grasslands 
in Mongolia is becoming increasingly signifi-
cant due to climate change and human activity. 
With varying extents of desertification occurring 
in some areas, concerns have been raised about 
grassland ecology. The study of GCC and its 
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2.3.4.4 � Results and Analysis

1.	 Spatial and Temporal Variation in 
Grassland AGB

The model was validated using ground-based 
AGB observation data. The data estimated by 
the model was in good agreement with the 
observed data, with R2 varying between 0.59 and 
0.79 and root mean square error (RMSE) rang-
ing from 13.91 g/m2 to 26.57 g/m2, which can 
meet the analysis of grassland AGB and carrying 
capacity at a large scale. The spatial distribution 
map of the multi-year average AGB of Mongolia 
grasslands showed a general decreasing trend 
from north to south (Fig. 2.12), with the high-
est AGB in the forest steppe region at 160.0 g/
m2 and the lowest AGB in the desert steppe 
region at 12.2 g/m2. The inter-annual variation 
in the average AGB of Mongolian grasslands 
from 2010 to 2020 was not significant, with a 
general trend of fluctuation and decline. AGB 
in typical steppe regions decreased at an annual 
rate of 0.077 g/m2, while AGB of forest steppe 
and desert steppe regions increased at an annual 
rate of 0.158 g/m2 and 0.160 g/m2, respec-
tively. Since typical steppe regions occupy half 
of the total grassland area, the decreasing trend 
of AGB in typical steppe regions also led to a 
decreasing trend in the whole grassland region.

2.	 Spatial and Temporal Variation in GCC

The average GCC for the period 2010–2020 
was 99,883 × 103 SU. The highest GCC value 
of 14,262 × 103 SU was recorded in Khövsgöl 
Province, while the lowest GCC value of 
108 × 103 SU was recorded in Orkhon Province. 
Due to the direct influence of AGB, the aver-
age GCC value in the whole grassland region 
decreased by 185.5 × 103 SU per year between 
2010 and 2020 (Fig. 2.13). The downward 
trends in GCC values occurred mainly in most 
of the central and eastern provinces. Some west-
ern provinces (e.g., Uvs, Bayan-Ölgii, Khovd, 
Usu, and Zavkhan) showed an increasing trend 
in GCC values.

According to the stock and slaughter data 
for five livestock species (sheep, goats, cattle, 

data during 2016–2019 from the National 
Remote Sensing Centre, Information and 
Research Institute of Meteorology, Hydrology 
and Environment, Mongolia.

2.3.4.3 � Methods
Grassland AGB is a key indicator in the calcula-
tion of GCC. In this study, a combination of the 
Carnegie–Ames–Stanford Approach (CASA) 
model and root–shoot ratio method was used 
to estimate grassland AGB during the growing 
season (April–October), and validated using 
ground-based observations. The CASA model 
was used to estimate the NPP of grassland dur-
ing the growing season (Field et al. 1995; Bao 
et al. 2019); the root–shoot ratio method pro-
posed by Gill et al. (2002) was used to esti-
mate AGB combined with the root–shoot ratio 
coefficients of the three main grassland types 
in Mongolia (forest steppe, typical steppe, and 
desert steppe).

GCC refers to the capacity of a unit area of 
grassland resource to sustainably carry livestock 
(Roe 1997; Hobbs and Swift 1985). According 
to the actual situation in Mongolia, grassland 
AGB during the growing season by remote sens-
ing data, the daily intake of one standard sheep 
unit in Mongolia, grazing days, and grassland 
utilization levels for different grassland types 
were used to calculate GCC (Nandintsetseg 
et al. 2018). The grassland carrying status index 
(GCSI), proposed based on the balance of sup-
ply and consumption, is calculated by the ratio 
of the actual livestock data to GCC. This index 
can directly reflect the status of GCC. A GCSI 
value greater than 1.0 indicates that the actual 
amount of grassland grazing exceeds the carry-
ing capacity, implying overload. A GCSI value 
less than 1.0 indicates that grassland resources 
are sustainable and have the potential to carry 
more livestock.

Based on the ABG and GCSI monitoring data 
from 2010 to 2020, a linear trend analysis was 
used to analyze their change trends, and a lin-
ear regression model was used to determine the 
main influencing factors.

2.3  Case Studies
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Fig. 2.12   Multi-year average AGB of Mongolian grasslands during the growing season from 2010 to 2020

numbers slowed down and decreased by approx-
imately 40.7%.

The average GCSI for Mongolia as a whole 
for the period 2010–2020 was 0.92. This indi-
cated that the livestock carrying conditions 
were close to equilibrium. The average GCSI 
for Mongolia increased significantly from 2010 
to 2020, with an annual rate of change of 0.08 
(Fig. 2.13). The average GCSI value increased 

horses, and camels) in Mongolia, there was an 
overall significant increasing trend in the num-
ber of major livestock in Mongolia from 2010 to 
2020, with an annual growth rate of 8182 × 103 
SU. The total number of livestock in 2020 was 
2.27 times higher than that in 2010. The rapid 
growth period occurred in the period of 2010–
2016 with an annual growth rate of 9311 × 103 
SU, after which the growth rate of livestock 
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Fig. 2.14   Average GSCI of provinces in Mongolia during two periods, 2000–2016 and 2017–2020

and Dornod, the average GCSI values were 
below 1.0 for the two periods, implying that 
there is still room for grasslands to carry more 
livestock. In Uvs Province, Akhangai Province, 
Orkhon Province, Darkhan-Uul Province, 
and Ulaanbaatar City, grasslands were over-
grazed in both periods. The GCC situation 
was more severe in 2017–2020 than that in 
2010–2016. The grasslands in Töv Province 
and Sükhbaatar Province became overgrazed 
in 2017–2020. It is important to keep track 
of the provinces where overgrazing occurred 
for the purpose of livestock management. The 
increases in GCSI in these regions will have a 
significant negative effect on ecology and will 
threaten the sustainability of grassland ecosys-
tems (Fig. 2.14).

2.3.4.5 � Highlights

•	 Based on remote sensing, ground observa-
tions and survey statistics, a method for mon-
itoring and evaluating the carrying capacity 
of Mongolian grasslands was constructed by 
combining the CASA model, root–shoot ratio 
method, grassland availability, and livestock 
information. It provides a new way to moni-
tor the grassland productivity and evaluate 
the grassland utilization in Mongolia, and 
serves the sustainable development of live-
stock farming.

from 0.55 in 2010 to 0.86 in 2016, and sharply 
increased to 1.19 in 2017, then gradually 
increased until 2020. Although the GCSI value 
in 2020 increased by 1.4 times since 2010, a 
clear phase change was shown in two periods, 
2010–2016 and 2017–2020. From 2017 to 2020, 
the GCSI values were all greater than 1.0 due to 
a significant increase in the number of livestock, 
indicating a significant overgrazing condition of 
Mongolian grasslands in general. The multiple 
regression analysis between the impact factors 
(precipitation, temperature, AGB, and livestock 
numbers) and GCSI was made for the years 
2010–2020. The results show that the changes in 
livestock numbers were the main impact factor 
to the changes in GCSI, with a contribution of 
89.2%.

The average GCSI values varied consider-
ably among provinces during the periods of 
2010–2016 and 2017–2020. The provinces in 
the southern region, extending from Khovd 
Province eastwards to Dormogovi Province, 
showed a significant overgrazing status in the 
two periods. As desert steppe covers more than 
60% of the total grassland area, the eight prov-
inces (Khovd, Govi-Altai, Bayankhongor, 
Ömnögovi, Orkhon, Dundgobi, Govisümber, 
and Dornogovi) were more vulnerable to envi-
ronmental and climate change impacts.

In the northern provinces of Bayan-Ölgii, 
Zavkhan, Khövsgöl, Bulgan, Selenge, Khentii, 
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steppe, and desert steppe do not fully take into 
account the effects of factors such as grassland 
palatability, grassland nutrients, water sources, 
and topographic conditions, and the effects of 
human activity such as fodder supplementation 
and nomadic grazing on the regional GCC are 
not taken into account in the evaluation of the 
state of GCC. These factors need to be further 
explored in subsequent studies.

2.3.5	� Identification of Areas 
of Stability and Vulnerability 
in Crop Production in Africa

Target: SDG 2.3: By 2030, double the agricul-
tural productivity and incomes of small-scale 
food producers, in particular women, indigenous 
peoples, family farmers, pastoralists and fish-
ers, including through secure and equal access 
to land, other productive resources and inputs, 
knowledge, financial services, markets, and 
opportunities for value addition and non-farm 
employment.

2.3.5.1 � Background
The African continent, particularly sub-Saharan 
Africa, faces the greatest challenge in achiev-
ing Zero Hunger. According to the UN FAO 
SDG indicators Data Portal, Africa is the conti-
nent with the highest proportion of moderate or 
severe food insecurity and severely food-inse-
cure people. According to the Sustainable 
Development Goals Report 2021 (UN 2021), 
even after the introduction of the SDGs in 
2015, the proportion of people suffering from 
food insecurity in Africa will remain high, and 
the goal of Zero Hunger will remain difficult to 
achieve.

2.3.5.2 � Data

•	 UN FAO statistics on crop production quanti-
ties and harvested areas of maize, rice, wheat, 
and soybean for the period 2010–2020 (FAO 
2024).

•	 Precipitation, temperature, radiation, and 
potential biomass data from the CropWatch 

•	 The situation of the carrying capacity of 
Mongolian grasslands deteriorated over the 
period 2010–2020, especially from 2017 to 
2020, with a significant imbalance in grass-
land supply and consumption. The grasslands 
in more than half of the country’s provinces 
were overgrazed. The significant increase in 
the number of livestock is the main impact 
factor to explain the grassland overgrazing.

2.3.4.6 � Discussion and Outlook
The analysis and evaluation of GCC in 
Mongolia has long relied on extensive ground-
based biomass observations, especially in years 
of droughts and snowstorms, which directly 
result in livestock losses and threaten the liveli-
hoods of herdsmen. Effective and timely analy-
sis and evaluation of GCC are essential for the 
orderly management of livestock grazing and the 
sustainable development of livestock farming. 
This study presents a method to monitor AGB 
and evaluate GCC in Mongolia using Big Earth 
Data to support the evaluation of SDG 2.3.1.

From the perspective of grassland supply and 
consumption, the CASA model and root–shoot 
ratio method were integrated to better estimate 
the AGB and GCSI of Mongolian grasslands 
by fully using the Big Earth Data products. 
The current situation of Mongolian grassland 
productivity was investigated by using AGB 
data during 2010–2020. By using the informa-
tion on the grassland utilization level, intake, 
and actual livestock, the carrying capacity was 
analyzed, and the state of GCC was evaluated. 
It was found that the GCSI index of Mongolian 
grasslands showed a significant increase in gen-
eral, among which the increase in livestock was 
the main impact factor with a contribution rate 
of 89.2%. The state of GCC varied significantly 
across the country, especially in the eight prov-
inces in the south and five central provinces. The 
grassland in these provinces has generally been 
overgrazed, especially in the years from 2017 to 
2020. Therefore, effective measures are urgently 
needed to mitigate the impacts on grassland 
ecosystems. Additionally, it is noticeable that 
the empirical coefficients of grassland availabil-
ity used in this study for forest steppe, typical 
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2.3.5.4 � Results and Analysis

1.	 Trends in gross crop production and per 
capita crop production by countries in 
Africa from 2010 to 2020

Crop production in West Africa, East Africa, 
and Central Africa showed a steady growth 
trend from 2010 to 2020, with trend annual 
growth rates of 4.0%, 4.8%, and 5.3%, respec-
tively. Many countries in West Africa, Central 
Africa and East Africa showed an upward trend 
in crop production from 2010 to 2020, while a 
few countries showed a downward trend, such 
as Libya, Madagascar and Central African 
Republic (Fig. 2.15a). Many countries in West 
Africa, as well as the Democratic Republic of 
the Congo and Ethiopia, showed significant 
growth in annual per capita crop production, 
while some countries show a downward trend, 
such as Libya, Madagascar, Mozambique, and 
Uganda (Fig. 2.15b). Regionally, the trend 
annual growth rate in annual per capita crop 
production for West African countries from 
2010 to 2020 is 1.2%. Both East Africa and 
Central Africa have experienced rapid growth in 

global agricultural monitoring platform 
(accessed: cloud.cropwatch.com.cn).

•	 MODIS vegetation NPP (Running and Zhao 
2021) and leaf area index (LAI) (Myneni 
et al. 2021).

2.3.5.3 � Methods
This study identified the spatial and tempo-
ral patterns of crop production in Africa from 
2010 to 2020 at both national and pixel levels. 
At the national level, linear trend fitting was 
used to analyze the trends in gross crop produc-
tion and per capita crop production in African 
countries and to quantify the spatial distribution 
of increasing, decreasing, and unchanged areas. 
At the pixel level, a data-driven model of grid-
ded crop production for maize, rice, wheat, and 
soybean from 2010 to 2020 was developed using 
the random forest by analyzing the linkage of 
the gross production of maize, rice, wheat, and 
soybean with the NPP, LAI, and CropWatch 
agro-climatic data. The change trend of the 
gridded production of maize, rice, wheat, and 
soybean in Africa from 2010 to 2020 was deter-
mined using a linear trend fitting grid by grid.

2.3  Case Studies
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Fig. 2.16   Per capita crop production and food security situation in African countries in 2020

FAO statistical production of maize, wheat, rice, 
and soybean for African countries from 2010 to 
2020. On this basis, spatial statistics and trend 
analysis were used to quantify the distributions 
(Fig. 2.17) and trends (Fig. 2.18) of the gross 
production of maize, wheat, rice, and soybean 
in Africa. African maize, wheat, rice, and soy-
bean production were classified into 12 classes 
(Fig. 2.19) based on the percentiles (25%, 50%, 
75%) and trends (decline, flat, rise) of crop 
production.

The production of maize, wheat, rice, and 
soybean varies widely due to differences in 
geography, climate, irrigation, nutrition, and 
management. South Africa, the Lake Victoria 
region, the Nile Delta, the Lake Malawi region, 
and some areas of West Africa are major maize-
producing areas. The Nile River Delta, Nigeria, 
Tanzania, and Madagascar are major rice-pro-
ducing areas. The coastal areas of North Africa 
and central Ethiopia are major producers of 
wheat, and South Africa and Nigeria are major 
producers of soybean.

Linear analysis was used to determine trends 
in maize, wheat, rice, and soybean production 
from 2010 to 2020 at the pixel level, with 50.0% 

annual per capita crop production, with annual 
growth rates of 2.0% and 2.1%, respectively. In 
Southern Africa, annual per capita crop produc-
tion has declined significantly, with an annual 
growth rate of − 2.0%.

By 2020, annual per capita crop produc-
tion in Africa was still not promising, with 
most countries still producing less than the crop 
security baseline of 400 kg per capita per year 
(Fig. 2.16a). In West Africa, annual per capita 
crop production remained above 300 kg from 
2015 to 2020, while in East, Central, Southern, 
and North Africa, it was still below 300 kg per 
capita per year. The combination of per capita 
crop production and its trend indicated that most 
African countries are still far from achieving the 
goal of Zero Hunger (Fig. 2.16b).

2.	 Changing spatial and temporal patterns 
of gross crop production from 2010 to 
2020

Coupling the agro-climatic and agronomic 
information from CropWatch with the LAI and 
NPP data from global land surface satellite 
(GLASS), a data-driven gridded crop produc-
tion model was constructed to generate gridded 
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Fig. 2.17   Spatial distribution of gross production of maize, wheat, rice, and soybean in Africa

and 4.14% of the maize, wheat, rice, and soy-
bean areas respectively were highly productive 
areas based on the 25% production percentile, 
while 49.10%, 58.08%, 63.43%, and 65.83% of 
the maize, wheat, rice, and soybean areas were 
low-productivity and vulnerable areas, but with 
a clear upward trend of improvement.

of maize, 61.5% of rice, and 60.2% of soybean 
areas showing significant increasing trends, and 
28.6% of wheat areas showing a significant 
increasing trend.

Combining the spatial distributions and 
changing trends of maize, wheat, rice, and soy-
bean production, 15.57%, 13.90%, 11.89%, 

2.3  Case Studies
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Fig. 2.18   Trends in the gross production of maize, wheat, rice, and soybean in Africa

significantly in West Africa, Central Africa, 
and East Africa. However, there is still a long 
way to go to achieve food self-sufficiency 
and Zero Hunger.

•	 A data-driven gridded crop production model 
was designed to generate gridded production 
of maize, wheat, rice, and soybean across 
African countries for the period 2010–2020. 
The results show that the South Africa, Lake 

2.3.5.5 � Highlights

•	 The spatial and temporal patterns of Africa’s 
crop production between 2010 and 2020 were 
analyzed, and trends in gross crop produc-
tion and per capita crop production in Africa 
between 2010 and 2020 were identified. The 
results show that gross crop production and 
per capita crop production have increased 



31

Maize Wheat

Rice Soybean

NN

NN

0 1,460 km 0 1,460 km

0 1,460 km0 1,460 km

Low, decline

Low, flat

Low, rise

Medium-low,decline

Medium-low, flat

Medium-low, rise

Medimum-high, decline

Medimum-high, flat

Medimum-high, rise

High, decline

High, flat

High, rise

Low, decline

Low, flat

Low, rise

Medium-low,decline

Medium-low, flat

Medium-low, rise

Medimum-high, decline

Medimum-high, flat

Medimum-high, rise

High, decline

High, flat

High, rise

Low, decline

Low, flat

Low, rise

Medium-low,decline

Medium-low, flat

Medium-low, rise

Medimum-high, decline

Medimum-high, flat

Medimum-high, rise

High, decline

High, flat 

High, rise

Low, decline

Low, flat

Low, rise

Medium-low,decline

Medium-low, flat

Medium-low, rise

Medimum-high, decline

Medimum-high, flat

Medimum-high, rise

High, decline

High, flat

High, rise

Fig. 2.19   Patterns of maize, wheat, rice, and soybean production in Africa

2.3.5.6 � Discussion and Outlook
This study quantifies the spatial and tempo-
ral trends of crop production in Africa from 
2010 to 2020 at the national and pixel levels. A 
data-driven gridded crop production model was 
developed to generate gridded data of maize, 
wheat, rice, and soybean production in Africa 
from 2010 to 2020, providing key scientific 

Victoria, Nile River Delta, and Lake Malawi 
regions were the most productive growing 
areas for maize in Africa; the North African 
coastal region was a high and stable produc-
tive area for wheat in Africa; Nigeria and 
South Africa were highly productive and sta-
ble for rice in Africa; and South Africa was 
highly productive for soybean in Africa.

2.3  Case Studies
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strategic significance for reducing the applica-
tion of chemical pesticides, ensuring food secu-
rity and ecological security, and establishing a 
sustainable food production system.

In 2018, heavy rainfall in the southern Arabian 
Peninsula provided favorable conditions for the 
breeding and multiplication of desert locusts, 
leading to their continuous multiplication and 
gradual sweeping of the Horn of Africa and 
countries in Southwest Asia. In 2020, desert 
locusts continued to multiply and spread in the 
Horn of Africa, the southern Arabian Peninsula, 
and the coasts of the Red Sea. The desert locust 
infestations in Somalia, Ethiopia, and Kenya 
were still serious, and many areas became new 
breeding areas of desert locusts. As of 2021, 
although the insect swarms declined, they were 
still active in the Horn of Africa, and some 
spread to northeastern Tanzania. In 2022, the 
scale and number of swarms in Asia and Africa 
significantly decreased, but they were still pre-
sent in some areas. As desert locust outbreaks 
can cause serious damage, there is a continuing 
need for dynamic monitoring and early warning, 
prevention, and control of locust disasters. FAO 
has issued an early warning to the world, hop-
ing that countries will be highly alert to locust 
plagues and adopt multi-country joint prevention 
and control measures to prevent pests from invad-
ing countries and creating serious food crises. 
Traditional visual hand-check single-point moni-
toring methods and limited-site meteorological 
prediction methods can only obtain information 
on the occurrence and development of pests at 
“points” and cannot meet the needs of large-area 
“surface” monitoring for the timely prevention 
and control of pests. Remote sensing, as a tech-
nology that can quickly obtain continuous surface 
information, provides a possibility for monitor-
ing the occurrence and development of pests on a 
large scale. Scientific prevention and control and 
ensuring food security are of great significance. 
In addition, continuously updated encrypted 
meteorological station data and regional meteor-
ological parameter products formed by the cou-
pling of remote sensing and meteorological data 
provide a source of information for the dynamic 
monitoring of locust occurrences.

data to support the identification of vulnerable, 
stable, and highly productive areas of maize, 
wheat, rice, and soybean in Africa, as well as the 
analysis of drivers affecting the spatial distribu-
tions of production.

This study found that: (1) Africa’s gross crop 
production and annual per capita crop produc-
tion show significant regional disparities, with 
West Africa, East Africa, and Central Africa 
showing significantly increasing trends in crop 
production from 2010 to 2020, while Southern 
Africa and North Africa are in a state of stagna-
tion. (2) Africa’s annual per capita crop produc-
tion is far below the international food security 
benchmark, and there is increasing pressure to 
meet the goal of SDG 2, Zero Hunger. (3) While 
wheat production on the continent is stagnating, 
Africa’s maize, rice, and soybean production 
as a whole shows significant increasing trends, 
though nearly 50% of maize, wheat, rice, and 
soybean cropland is in vulnerable, low-produc-
tivity areas.

2.3.6	� Monitoring Desert Locusts 
in Asia and Africa

Target: SDG 2.4: By 2030, ensure sustainable 
food production systems and implement resilient 
agricultural practices that increase productivity 
and production, that help maintain ecosystems, 
that strengthen capacity for adaptation to climate 
change, extreme weather, drought, flooding, and 
other disasters and that progressively improve 
land and soil quality.

2.3.6.1 � Background
Food security is the cornerstone of human sur-
vival, social stability, and global sustainable 
development. In the context of climate change, 
the scope and prevalence of pests have obvi-
ously expanded and increased. Among them, 
the desert locust is one of the most destruc-
tive migratory pests in the world, and it is also 
a major agricultural pest. It has a strong flight 
capability and large food intake, and can gather 
to form huge swarms and migrate long dis-
tances. Monitoring desert locusts is of great 
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(ECMWF) climate assimilation data for 
Asia–Africa (https://www.ecmwf.int/en/
forecasts/datasets).

•	 Basic Geographic Information: global land 
use data (resolution: 10 m and 30 m) (https://
www.geodata.cn), global DEM data, main 
crop planting areas in Asia and Africa (wheat, 
rice, maize, etc.) (https://ipad.fas.usda.gov/
ogamaps/cropcalendar.aspx), and administra-
tive division data (https://www.tianditu.cn/).

•	 Other Data: ground survey data released by 
FAO (https://locust-hub-hqfao.hub.arcgis.com/).

2.3.6.3 � Methods
This case study takes desert locusts as the 
research object. First, the habitat factors affect-
ing the reproduction and development of desert 
locusts were extracted, and the time lag pat-
tern of the long-term time-series habitat fac-
tors was analyzed. Locust breeding areas were 
monitored at a large scale with the assistance 
of spatial analysis, geostatistics, spatiotemporal 
data fusion, and other techniques of geographic 
information systems (GIS). Second, graph con-
volutional neural networks were introduced to 
represent the migration of desert locusts, achiev-
ing spatial correlation analysis of desert locusts’ 
breeding areas. The long short-term memory 
(LSTM) network was used to analyze the link-
age in the time series. The forecasting of the 
migratory paths of desert locusts was achieved 
by multiple spatiotemporal module operations. 
Third, combined with the locust monitoring 
model, the vegetation growth curve was ana-
lyzed for each key damaged country from 2018 
to 2022, and the information on the locust dam-
age was extracted to delineate the spatial range 
and area of the locust plague. Fourth, fine-scale 
remote sensing monitoring was carried out for 
the hotspot countries and regions with locust 
damage, including damaged vegetation types 
(cropland, grassland, and shrubland), the spatial 
distribution of damage, and total damage areas.

2.3.6.4 � Results and Analysis
In 2022, due to the influence of drought and 
control measures, the scale and number of locust 
swarms in Asia and Africa were significantly 

This case study used multi-source data, 
combined with meteorological data, basic geo-
graphic data, ecological data, ground survey 
data, plant protection information, and the bio-
logical characteristics, migration, and diffusion 
conditions of desert locusts to build a pest moni-
toring and forecasting model. Big data analy-
sis and processing on the Digital Earth Science 
Platform were carried out for the temporal and 
spatial distribution of desert locust reproduction 
and migration in the Horn of Africa and coun-
tries in Southwest Asia and locust plague moni-
toring in key countries. Intercontinental locust 
plague monitoring and risk prediction were car-
ried out, and the relevant results were provided 
to FAO to support joint prevention and control in 
multiple countries and ensure the safety of agri-
cultural production in invaded countries.

2.3.6.2 � Data

•	 Remote sensing Data: MODIS data in Asia 
and Africa from 2018 to 2022 (resolution: 
500 m, https://ladsweb.modaps.eosdis.nasa.
gov/search/), Landsat data (resolution: 30 m, 
https:// earthexplorer.usgs.gov/), Sentinel data 
(resolution: 10 m, https://scihub.copernicus.
eu/), Planet data (resolution: 3 m) in a rep-
resentative area of key countries, Worldview 
data (resolution: 0.5 m), SMAP soil mois-
ture data from 2018 to 2020 (resolution: 
0.25°, https://earthdata.nasa.gov/), G-Portal 
soil moisture data from 2021 to 2022 (reso-
lution: 50 km, https://gportal.jaxa.jp/gpr/), 
greenness data from 2018 to 2020 (http://
iridl.ldeo.columbia.edu/maproom/Food_
Security/Locusts/Regional/greenness.html) 
and GSMap rainfall data from 2018 to 2022 
(https://sharaku.eorc.jaxa.jp/GSMaP).

•	 Meteorological Data: complete long-term 
time-series meteorological data of interna-
tional meteorological stations from 2018 
to 2022, tropical cyclone data and numeri-
cal meteorological forecast products for the 
Indian Ocean and Arabian Sea region from 
2018 to 2022 (http://www.nmc.cn/publish/
typhoon/totalcyclone.htm), and European 
Centre for Medium-Range Weather Forecasts 
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grassland, and 3029.0 thousand hm2 of shrub-
land, accounting for 1.8%, 3.0% and 4.1% of 
the total areas of cropland, grassland, and shrub-
land, respectively. The areas along the Great Rift 
Valley in East Africa and its northern region suf-
fered the most severe damage. The vegetation in 
the areas along the eastern border with Somalia 
and the southern border with Somalia and Kenya 
was also significantly affected. The area of vege-
tation loss in Somalia was approximately 1.4754 
million hm2, accounting for 3.0% of the total 
vegetation area, including 0.6 thousand hm2 of 
cropland, 94.6 thousand hm2 of grassland, and 
1,380.2 thousand hm2 of shrubland, account-
ing for 0.6%, 2.4% and 3.1% of the total areas 
of cropland, grassland, and shrubland, respec-
tively. The affected area was mainly located in 
the northern desert region bordering Ethiopia, 
where desert locusts have undergone multi-
generational breeding. Iran and Pakistan were 
also affected by locust infestations. The area of 
vegetation loss in Pakistan was approximately 
1,966.26 hm2, mainly in southern and southeast-
ern Pakistan. The area of vegetation loss in Iran 
was approximately 632.88 hm2, mainly in south-
ern Iran (Fig. 2.21).

2.3.6.5 � Highlights

•	 From June 2021 to June 2022, the area of 
vegetation loss in Ethiopia was approxi-
mately 3.98 million hm2, accounting for 
3.5% of the total vegetation area; the area of 
vegetation loss in Somalia was approximately 
1.47 million hm2, accounting for 3.0% of 
the total vegetation area; and the areas of 
vegetation loss in Pakistan and Iran were 
approximately 1966.26 hm2 and 632.88 hm2, 
respectively.

•	 The desert locust monitoring products have 
been integrated into the FAO HIH platform 
and have been adopted by international 
organizations such as the Global Biodiversity 
Information Facility (GBIF) and Group on 
Earth Observations (GEO), supporting col-
laborative pest control efforts among multiple 
countries and ensuring food security and sus-
tainable development.

reduced compared with the previous two years. 
Desert locusts were mainly distributed in 
southeastern Egypt, Sudan, Yemen, Somalia, 
Ethiopia, southeastern Iran, and southwestern 
Pakistan. From January to February, the vegeta-
tion in Somalia and Ethiopia gradually dried up 
due to insufficient precipitation, affecting locust 
breeding, while in southeastern Egypt, the Red 
Sea coast of Sudan, and Yemen, the soil mois-
ture and vegetation conditions were favorable 
for the breeding and maturation of locusts. In 
Iran and Pakistan, vegetation greened up gradu-
ally after precipitation, providing suitable con-
ditions for the reproduction of local locusts. In 
March, locusts continued to breed and mature 
in southeastern Iran and southwestern Pakistan, 
while in southeastern Egypt, the Red Sea coast 
of Sudan, and Yemen, locust breeding was lim-
ited due to gradually drying weather. In April, 
due to the drought climate along the Red Sea 
coast of Yemen being unfavorable for desert 
locust breeding, locusts migrated northeast to 
the central Arabian Peninsula, where condi-
tions were suitable for reproduction. From 
April to June, as temperatures continued to rise, 
locusts bred and matured in the central Arabian 
Peninsula, and migrated eastward along the 
southern border of Iran to the Iran-Pakistan 
border and southwestern Pakistan. A small 
number of adults and locusts were present near 
Jiwani, along the southern coast of Baluchistān 
Province, Pakistan. In addition, during this 
period, as temperatures increased in southeast-
ern Iran and southwestern Pakistan, local locusts 
continued to mature and reproduce, combined 
with the arrival of migrating locusts, which fur-
ther migrated to the summer breeding areas in 
southeastern Pakistan. The meteorological con-
ditions of drought in June 2022 would, to some 
extent, limit the large-scale reproduction of 
locusts (Fig. 2.20).

Since June 2021, Ethiopia and Somalia in 
the Horn of Africa have been severely affected 
by locust plagues. As of June 2022, the area of 
vegetation loss in Ethiopia was approximately 
3.9858 million hm2, accounting for 3.5% of 
the total vegetation area, including 433.7 thou-
sand hm2 of cropland, 523.1 thousand hm2 of 
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Fig. 2.20   Core breeding areas and migratory paths of desert locusts from October 2021 to July 2022

protection of agricultural production and food 
security, and provide important information sup-
port for locust plague emergency response.

In terms of application and promotion, FAO 
and GBIF adopted the monitoring results on 
the core breeding areas and migratory paths of 
desert locusts in Asia and Africa from 2021 to 
2022, as well as the locust monitoring results in 
key countries (Ethiopia, Somalia, Pakistan, and 
Iran). The products of this case study provide 
information support for multi-country joint pre-
vention and control of pests to ensure agricul-
tural production.

2.3.6.6 � Discussion and Outlook
In terms of technological innovation, this case 
study used international shared remote sens-
ing data to conduct systematic research on the 
extraction of large-scale desert locust breeding 
areas, long-term time-series quantitative moni-
toring of locust migration paths, and quantita-
tive monitoring of locust plagues through big 
data analysis and processing on the Digital Earth 
Science Platform. The desert locust plagues 
in Asia and Africa were monitored by remote 
sensing to gather updates on damage dynam-
ics. The research results could contribute to the 

2.3  Case Studies
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Fig. 2.21   Desert locust plague monitoring in Somalia 
and Ethiopia from June 2021 to June 2022

crops worldwide, and the Mekong River Basin 
(MRB) in Southeast Asia is a significant global 
producer of rice. Each country in the Basin 
plays a crucial role in global rice production and 
exports. However, the region is characterized by 
distinct dry and rainy seasons, and is sensitive 
to climate change. The increasing frequency of 
extreme weather events has further intensified 
the region’s drought risks, posing a severe threat 
to rice yields and quality (Ho and Shimada 
2021).

This case focuses on SDG 2.4, which aims 
to establish sustainable food production sys-
tems to strengthen the ability to cope with cli-
mate change, extreme weather, droughts, floods, 
and other disasters. Using the MRB, a typical 
area vulnerable to stable food production, as the 
study area, this case monitored and analyzed the 
spatiotemporal distribution patterns of mete-
orological and agricultural droughts, and clari-
fied the impacts of meteorological droughts on 
agricultural production in different regions. 
The results can provide references for drought 
prevention and response to food crises in areas 
vulnerable to food production under extreme cli-
mate conditions, thereby facilitating the achieve-
ment of SDG 2, Zero Hunger.

2.3.7.2 � Data

•	 1982–2020 global daily precipitation data 
from the Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS) 
provided by the Climate Hazards Center of 
the University of California, Santa Barbara 
(UCSB/CHC) at a resolution of 5566 m.

•	 1982–2020 global monthly potential evapo-
transpiration (PET) data averaged by hour of 
day provided by the ECMWF at a resolution 
of 11,132 m.

•	 2010–2020 global land-cover products 
provided by the European Space Agency 
Climate Change Initiative (ESA CCI) at a 
resolution of 300 m.

•	 2010–2020 MODIS surface reflectance prod-
ucts (MOD09), one scene per day, at a reso-
lution of 250 m.

2.3.7	� Impacts of Extreme Drought 
on Agricultural Production 
in the Mekong River Basin 
of the Indochina Peninsula

Target: SDG 2.4: By 2030, ensure sustainable 
food production systems and implement resilient 
agricultural practices that increase productivity 
and production, that help maintain ecosystems, 
that strengthen capacity for adaptation to climate 
change, extreme weather, drought, flooding, and 
other disasters and that progressively improve 
land and soil quality.

2.3.7.1 � Background
Due to climate change and global warming, 
extreme weather events are becoming more fre-
quent, intensifying the impacts of drought in 
some areas of the world. Droughts are expand-
ing in scope, severity, and duration, while the 
fragility of agricultural ecosystems continues 
to increase. As a result, global food security is 
facing a severe challenge (Allen and Ingram 
2002; Alexander et al. 2006; Baudoin et al. 
2017). Rice is one of the three principal cereal 



37

•	 Administrative division data of countries 
in the Indochina Peninsula and vector data 
of the MRB provided by the Mekong River 
Commission (MRC).

2.3.7.3 � Methods

1.	 Method for Meteorological Drought 
Monitoring

The standardized precipitation evapotranspiration 
index (SPEI) (Vicente-Serrano et al. 2010) is a 
method for monitoring meteorological droughts. 
It considers the combined impacts of precipita-
tion and evapotranspiration. It has the advantages 
of monitoring multiple time scales and long-term 
spatial comparisons, making it particularly suit-
able for analyzing meteorological droughts in 
the context of global warming. A smaller SPEI 
value indicates more severe droughts, while a 
larger value indicates more humid conditions. In 
this case study, the Google Earth Engine cloud 
platform was used to calculate the total monthly 
precipitation and evapotranspiration from 1982 
to 2020 in the study area. Based on this, the 
monthly SPEI was calculated at scales from 
1 to 12 months from 2010 to 2020. SPEI at the 
3-month scale in May (for the dry season) and at 
the 4-month scale in October (for the rainy sea-
son) were respectively selected to represent the 
meteorological drought conditions during each 
season, considering the impacts of the wet and 
dry season climate characteristics on rice crop-
ping systems and rice growth cycles (rain-fed 
croplands are typically single-season rice, usually 
planted during the rainy season; irrigated crop-
lands are typically multi-season rice, planted dur-
ing both the wet and dry seasons). Furthermore, 
considering the significant variation in terrain 
features from north to south in the MRB, the 
study area was divided into five regions based 
on administrative division and topographical 
characteristics: Laos, Thailand, Cambodia, the 
Mekong Delta, and the Vietnam Central High 
Plain (VCHP). The spatial and temporal distri-
bution patterns of meteorological droughts were 

analyzed for each region. The standard for dry 
and wet grades of meteorological droughts can 
be found in the monitoring results.

2.	 Method for Agricultural Drought 
Monitoring

The wide north–south span and variation in ter-
rain features in the study area make rice plant-
ing periods complex. The difference between 
the maximum NDVI values for droughts and 
normal years during a growth cycle was calcu-
lated to monitor agricultural drought conditions. 
Since rice is only planted in irrigated croplands 
during the dry season, irrigated fields were 
selected while monitoring agricultural drought 
in the dry season, whereas all croplands were 
selected during monitoring in the rainy season. 
Cropland data were obtained from the ESA CCI 
land-cover products. Based on the results of 
meteorological drought monitoring, drought and 
non-drought years during the dry and rainy sea-
sons from 2010 to 2020 were determined, and 
agricultural droughts during drought years in the 
dry and rainy seasons were monitored to con-
struct an agriculture drought index (ADI), using 
the following formula:

where NDVImax·year represents the maximum 
NDVI value during a rice growth cycle in a 
given year under meteorological drought condi-
tions, while NDVImax·mean represents the mean 
value of maximum NDVI values for correspond-
ing planting seasons during non-meteorolog-
ical drought years. In this case, the occurrence 
month of NDVImax for rice in the dry season 
was restricted to occur between January and 
June, while that for rice in the rainy season 
was limited to July to December. Based on the 
ADI, the agricultural droughts were classified 
into five categories: extreme drought, severe 
drought, moderate drought, slight drought,  
and near normal, corresponding to ADI values 
of � − 0.20, (− 0.20, − 0.15], (− 0.15, − 0.10], 
(− 0.10, − 0.05], and >− 0.05, respectively.

ADI = NDVImax·year − NDVImax·mean

2.3  Case Studies
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2.3.7.4 � Results and Analysis

1.	 Spatiotemporal distribution patterns of 
meteorological droughts in MRB from 
2010 to 2020

This case study found that the lower reaches 
of the MRB experienced a weak drying trend 
from 2010 to 2020. The climate conditions in 
the Basin were notably wet in 2011–2012 and 
2017–2018, and dry in 2010, 2015–2016, and 
2019–2020 (Fig. 2.22). Through the monitoring 
of meteorological droughts during the dry and 
rainy seasons on an annual basis (Fig. 2.23), it 
was found that the dry seasons in 2011, 2012, 
and 2017 and the rainy seasons in 2011, 2013, 
and 2017 had significantly wet conditions, 
while the dry seasons in 2010, 2015, 2016, 
2019, and 2020 and the rainy seasons in 2012, 
2015, 2018, and 2019 were under significantly 
dry conditions. However, due to uneven rainfall 
distribution, there were significant differences 
in the drought and wetness distribution patterns 
among different regions at different time peri-
ods and spatial scales. Laos experienced vary-
ing degrees of extreme droughts during the dry 
seasons in 2015, 2016, and 2019, and during 
the rainy season in 2019; Thailand experienced 
similar conditions during the dry and rainy sea-
sons in 2019; Cambodia experienced severe 
droughts during the dry season in 2016 and the 
rainy seasons in 2015 and 2019; the Mekong 
Delta experienced extreme droughts during the 
rainy seasons in 2015 and 2019 and the dry 
season in 2016; and the VCHP experienced 
extreme droughts during the rainy seasons in 
2015 and 2019. Cambodia, the Mekong Delta, 
and the VCHP experienced continuous severe 
droughts from the dry season in 2015 to the dry 
season in 2016. Laos suffered from extensive 
extreme droughts during both the dry and rainy 
seasons in 2019 (34.40% and 24.46% of the 
total area of Laos, respectively). Additionally, 
Cambodia and the Mekong Delta went through 
moderate to extreme meteorological droughts 
from the rainy season in 2019 to the dry season 
in 2020.

2.	 Spatiotemporal distribution patterns of 
agricultural droughts and their causes

This case study found that although the MRB 
experienced varying degrees of meteorological 
droughts during both the dry and rainy seasons, 
the occurrence and proportion of agricultural 
droughts during the dry season were higher over-
all than those during the rainy season (Fig. 2.24). 
Due to consecutive years of meteorological 
droughts in 2015–2016 and 2019–2020, a sig-
nificant agricultural extreme drought occurred in 
various regions during the dry seasons of 2016 
and 2020 compared to other years. Agricultural 
droughts during the rainy seasons were gener-
ally weaker, mostly slight drought, with only a 
small proportion of regions in the Mekong Delta 
experiencing extreme droughts. These results 
indicate that meteorological droughts during the 
rainy seasons have less impact on agricultural 
production in the upstream countries. However, 
due to the combined impacts of meteorological 
droughts and the considerable river water con-
sumption by the upstream countries, agricultural 
production in the downstream Mekong Delta 
region was significantly impacted even dur-
ing the rainy seasons in severe meteorological 
drought years. Therefore, it can be seen that the 
Mekong Delta is sensitive to climate change and 
is a typical fragile area for stabilizing agricultural 
production.

To further explore the impacts of meteoro-
logical droughts during the dry season on the 
distribution patterns of agricultural droughts, 
we analyzed severe agricultural drought years, 
2016 and 2020, at a provincial level (Fig. 2.25). 
In general, regions with significant differences 
in terrain, such as northern Laos and the VCHP, 
have a stronger agricultural production adap-
tation to meteorological droughts compared 
to flat areas such as Thailand and Cambodia. 
Conversely, the flat and low-lying coastal areas 
of the Mekong Delta, which are susceptible 
to multiple impacts from meteorological and 
hydrological droughts and seawater intrusion, 
have weaker adaptation abilities. In both years, 
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Fig. 2.22   Dry/wet change trends in the MRB at different time scales from 2010 to 2020. Note The SPEI value is the 
average value of the entire study area and reflects overall dry/wet conditions. The blue areas represent positive values 
of SPEI, indicating wet conditions; while the red areas represent negative values of SPEI, indicating dry conditions

each region had a similar distribution pattern 
of agricultural droughts. The severity of agri-
cultural droughts in northern Laos was gener-
ally lower than that in the southern provinces, 
mainly due to the larger terrain differences in 
the north, where low-lying croplands received 
irrigation water from upstream rivers and saw 
a convergence of rainwater from higher eleva-
tions. In contrast, the south had lower terrain 
differences and suffered from reduced river flow 
caused by meteorological droughts. Agricultural 
droughts in Thailand showed a clear trend of 
decreasing severity from northwest to southeast 
due to severe meteorological droughts and the 
northwest’s higher elevation, leading to higher 
river flow downstream. Cambodia exhibited a 
characteristic where the severity of agricultural 
droughts was higher in the north than that in 
the south. The northern region’s higher eleva-
tion leads to water convergence in the south 
from both the Mekong River and Tonle Sap 
Lake for irrigation purposes. However, in the 
Mekong Delta region, a significant loss in agri-
cultural production occurred in coastal prov-
inces due to extremely low river flow at the river 
mouth caused by meteorological droughts and 
upstream water consumption, combined with 

seawater intrusion. These resulted in higher agri-
cultural drought severity in the southern areas 
compared to the northern areas.

2.3.7.5 � Highlights

•	 Datasets of meteorological drought monitor-
ing for the MRB from 2010 to 2020 were 
obtained at a spatial resolution of 5566 m.

•	 From 2010 to 2020, the MRB showed a weak 
trend toward increased aridity. Severe mete-
orological droughts occurred in 2010, 2015–
2016, and 2019–2020. Cambodia and the 
Mekong Delta experienced severe droughts in 
2015–2016, while Laos and Cambodia expe-
rienced severe droughts in 2019–2020, with 
some areas reaching extreme droughts.

•	 The impacts of meteorological droughts on 
agricultural production during the dry season 
are more severe than those during the rainy 
season. The Mekong Delta is a typical area vul-
nerable to stable food production. Influenced 
by meteorology, hydrology, and topography, 
the severity of agricultural droughts during 
the dry season in the Basin is characterized 
by southern Laos being higher than northern 
Laos, northwestern Thailand being higher than 

2.3  Case Studies
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Fig. 2.23   Spatial and temporal distribution patterns of 
meteorological droughts during the dry season (a) and 
the rainy season (b) in the MRB from 2010 to 2020. 
Note for this and subsequent figures: EXD: extreme 
drought. SED: severe drought. MOD: moderate drought. 

SLD: slight drought. NN: near normal. SLW: slightly 
wet. MOW: moderate wet. VEW: very wet. EXW: 
extremely wet. The number ranges in the legend are 
the SPEI ranges corresponding to different wet and dry 
grades

southeastern Thailand, northern Cambodia 
being higher than southern Cambodia, and 
the southern part of the Mekong Delta being 
higher than the northern part.

2.3.7.6 � Discussion and Outlook
Based on Big Earth Data such as meteorologi-
cal and multi-source remote sensing, this case 
monitored meteorological droughts in the MRB 
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Fig. 2.23  (continued)

from 2010 to 2020, and explored the spatiotem-
poral distribution patterns of meteorological 
droughts during the dry and rainy seasons in five 
regions, including Laos, Thailand, Cambodia, 
the Mekong Delta, and the VCHP. Agricultural 
droughts during meteorological drought years 
in the dry and rainy seasons were monitored, 
and the adaptability of different regions in the 
MRB to meteorological droughts was analyzed 

to identify areas vulnerable to stable food pro-
duction. Based on the distribution patterns of 
agricultural droughts in each province, the dis-
tribution characteristics and causes of agricul-
tural drought severity in different regions were 
analyzed. The research results can provide a 
theoretical basis for identifying areas vulnerable 
to stable food production and a decision-making 
reference to management authorities for disaster 

2.3  Case Studies



42 2  SDG 2, Zero Hunger

108°E104°E100°E 108°E104°E100°E 108°E104°E100°E 108°E104°E100°E 108°E104°E100°E
2
2
°N

1
8
°N

1
4
°N

1
0
°N

2
2
°N

1
8
°N

1
4
°N

1
0
°N

2
2
°N

1
8
°N

1
4
°N

1
0
°N

Legend

2010 2015 2016 20202019

2012 2015 2018 2019

(a) Drought years in dry seasons

(b) Drought years in rainy seasons

Area/104 km2

0.5

2.0

1.0

4.0

6.0

0 500 1,000 km250

EXD

SED

MOD

SLD

NN

Laos

Thailand

Cambodia

VCHP

Mckong Delta

MRB

Fig. 2.24   Areas and proportion of agricultural droughts 
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corresponding region during dry and rainy seasons, with 
the irrigated cropland for the dry season and all crop-
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prevention and mitigation in response to poten-
tial food crises.

Meteorological droughts are just one mani-
festation of drought risk, presenting climate risk 
events that exist under the background of global 
climate change. However, agricultural produc-
tion involves highly participatory socioeconomic 
activities that are subject to human intervention. 
Adequate human intervention, such as timely 
water conservation measures, can alleviate agri-
cultural droughts and prevent them from devel-
oping into actual droughts. As a result, the future 
plan is to integrate the monitoring of meteoro-
logical, hydrological, and soil conditions for 
comprehensive agricultural drought monitoring 
based on the methods and analysis approaches 
proposed in this case study. In addition, the 
study area will expand to conduct larger-scale 
monitoring of meteorological and agricultural 
droughts, providing scientific guidance to deci-
sion-making authorities to enhance the ability of 

regions vulnerable to stable food production to 
adapt to extreme weather and drought disasters.

2.4	� Summary

On the global scale and regional scale (coun-
tries of the BAR initiative), we developed and 
analyzed public datasets that support indicator 
monitoring for SDG 2.3.1 (“volume of produc-
tion per labor unit by classes of farming/pas-
toral/forestry enterprise size”) and SDG 2.4.1 
(“proportion of agricultural area under produc-
tive and sustainable agriculture”), and released 
a dynamic monitoring dataset for global 30 m 
cropland from 1985 to 2020 and global 30 m 
resolution CI spatial distribution for 2020, 
which provided the basis for carrying out global 
food production monitoring. At the same time, 
we analyzed key issues in hotspot regions to 
provide decision support for the sustainable 
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development of regional agriculture and the real-
ization of Zero Hunger. The main research find-
ings are as follows.

(1)	 From 1985 to 2020, the total area of crop-
land in the world showed steady growth, 
which was mainly attributed to significant 
deforestation and land reclamation in tropi-
cal countries such as Brazil and Indonesia. 
In 2020, about 14.8% of global cropland 
experienced multiple cropping, with Indo-
Gangetic Plain, Huang-Huai-Hai Plain, and 
Nile River Delta being the regions with the 
highest concentrations of multiple-cropping 
in the world. If the actual level of multiple 
cropping can be improved to the potential 
level under rain-fed conditions on a global 
scale, it is expected to increase grain yield 

by 230 million tons, equivalent to 6.4% of 
the current global grain yield.

(2)	 In the five Central Asian countries where 
animal husbandry is relatively predomi-
nant, the grassland is mainly desert and 
semi-desert, and is moderately degraded in 
general. Grassland overgrazing is serious in 
Uzbekistan, Turkmenistan, and Tajikistan, 
and GCC is tending to decrease.

(3)	 Africa is a food security-sensitive region. 
The gross crop production and per capita 
crop production in West Africa, Central 
Africa, and East Africa increased signifi-
cantly from 2010 to 2020, but are still far 
from the goal of food self-sufficiency. The 
desert locust plague that has ravaged Asia 
and Africa since 2018 is still spreading, 
with some 3–3.5% of the total vegetation 

2.4  Summary
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area lost in Somalia and Ethiopia between 
June 2021 and April 2022. The MRB in 
Southeast Asia showed a weak drying trend 
from 2010 to 2020 and the impact of mete-
orological drought on agricultural produc-
tion in the dry season was more serious than 
that in the rainy season.
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SDG 6, Clean Water 
and Sanitation

3.1	� Background

According to the comprehensive assessment 
report issued in 2021 by UN-Water, the world 
was already off track on SDG 6 even before 
the outbreak of the COVID-19 pandemic 
(UN-Water 2021). There are still 2 billion peo-
ple worldwide without access to safely man-
aged drinking water and 3.6 billion without safe 
sanitation facilities. In addition, 2.3 billion peo-
ple lack soap and basic hand-washing facilities 
at home. Most wastewater is untreated before 
being discharged. One-fifth of the world’s river 
basins are experiencing rapid changes. In the 
next nine years, we need to move four times 
faster in some fields to meet SDG 6 on time 
(Harlin et al. 2021).

Rivers, lakes, and groundwater are the main 
sources of freshwater and are therefore closely 
linked to the health and safety of life on Earth. 
Globally, however, polluted rivers, lakes, and 
groundwater are endangering the health of vital 
freshwater ecosystems. Accurate monitoring and 
assessment of the water quality in these bod-
ies will help detect problems in time and take 
effective countermeasures to solve them. SDG 
6.3.2 measures the proportion of bodies of water 
with good ambient water quality. It is an impor-
tant indicator reflecting the health of freshwa-
ter ecosystems and relies mainly on the water 

quality data of rivers, lakes, and groundwater 
obtained from field measurements and labora-
tory tests. At present, many developed countries 
have established long-term water quality-mon-
itoring projects, but most countries still have 
not formed a regular water quality data moni-
toring network (WHO and UN-Habitat 2018), 
which affects regular monitoring and evalua-
tion at the national scale, and new technologies 
are urgently needed to solve this problem. Most 
of the global freshwater ecosystems consist-
ing of rivers, lakes, and groundwater are shared 
by different countries. Globally, 153 countries 
share transboundary basins, which account for 
more than 60% of the world’s freshwater flows 
(UN and UNESCO 2021), so cooperation in 
these transboundary basins is crucial for equi-
table sharing and sustainable water manage-
ment. SDG 6.5.2 reflects the “proportion of 
transboundary basin area with an operational 
arrangement for water cooperation”, and its 
evaluation depends entirely on the statistical 
data reported by UN member states. Affected 
by national economic development and interna-
tional political situations and events, the global 
monitoring and evaluation of this indicator at a 
national resolution are not sufficient.

This chapter exemplifies the feasibility of 
using water quality indicators obtained from 
satellite remote sensing to reflect the global 
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Table 3.1   Cases and their main contributions

Indicators Cases Contributions

SDG 6.3.2 Proportion of 
bodies of water with good 
ambient water quality

Global spatial and temporal 
distribution of algal blooms 
in representative lakes

Method and model: Global algal bloom extraction 
method for representative lakes based on Google Earth 
Engine and MODIS data
Data product: Dataset of algal bloom outbreaks in repre-
sentative lakes around the world, 2000–2020

Global temporal and spatial 
changes in water transpa-
rency in large lakes

Method: Global transparency inversion model for large 
lakes based on satellite remote sensing
Data product: Dataset of the spatial distribution of water 
transparency in large lakes around the world, 2000–2021

SDG 6.5.2 Proportion of 
transboundary basin area 
with an operational arrange-
ment for water cooperation

Dynamic changes in water 
events in transboundary 
rivers in Central Asia

Data product: Dataset of water conflict/cooperation 
events in transboundary rivers of Central Asia, 1951–
2021
Decision support: Data for Central Asian countries to 
carry out transboundary cooperation

and materials, halving the proportion of 
untreated wastewater and substantially increas-
ing recycling and safe reuse globally.

Indicator: SDG 6.3.2: Proportion of bodies of 
water with good ambient water quality.

3.3.1.1 � Background
Lakes are an important component of the terres-
trial water cycle, but the eutrophication of lakes 
is deepening, leading to the massive growth of 
algae and the appearance of algal blooms, which 
seriously threaten the sustainable development 
of both the lake ecosystem and human soci-
ety (Hou et al. 2022; Paerl and Huisman 2008). 
Under sustained global warming and escalating 
human activity, it is expected that the intensity 
of algal blooms will increase globally in the 
coming decades (Paerl et al. 2016). In order to 
achieve the SDGs and formulate effective man-
agement measures to respond to future threats 
from algal blooms, it is necessary to under-
stand their spatial and temporal distribution. 
Therefore, based on MODIS images, we pro-
pose to construct a framework of algal blooms 
in lakes through remote sensing methods. The 
algal bloom dataset for representative lakes 
globally, from 2000 to 2020, was retrieved on 
Google Earth Engine. Based on the classifica-
tion of temporal patterns of algal blooms, the 
spatiotemporal patterns and historical trends of 
algal blooms in a sample of representative lakes 

progress of SDG 6.3.2 through two global-scale 
cases. In addition, the case of assessing the pro-
gress of SDG 6.5.2 on transboundary rivers in 
Central Asia demonstrates the feasibility of inte-
grating datasets from different sources to solve 
the problem of missing data.

3.2	� Main Contributions

The main contributions of the three cases in this 
chapter include global-scale lake algal bloom 
extraction and large-scale lake and reservoir 
transparency inversion models, worldwide algal 
bloom outbreaks in a sample of representative 
lakes and lake and reservoir transparency data-
sets from 2000 to 2021, and water cooperation 
decision-making support for transboundary riv-
ers in Central Asia (Table 3.1).

3.3	� Case Studies

3.3.1	� Global Spatial 
and Temporal Distribution 
of Algal Blooms 
in Representative Lakes

Target: SDG 6.3: By 2030, improve water qual-
ity by reducing pollution, eliminating dumping 
and minimizing release of hazardous chemicals 
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were analyzed. Finally, the driving forces of 
algal blooms were revealed, promoting the pro-
gress of SDG 6.3.2, and providing decision sup-
port for the scientific assessment of lake water 
quality and management.

3.3.1.2 � Data

•	 Satellite Data: MOD09GQ (daily/250 m) 
and MOD09GA (daily/500 m resampled to 
250 m) reflectance products from 2000 to 
2020, MOD11A1 (daily, 1000 m resampled 
to 250 m) land surface temperature (LST) 
product, and MOD10A1 (daily, 1000 m resa-
mpled to 250 m) normalized difference snow 
index (NDSI) product.

•	 Global Lake Boundary Dataset: 
HydroLAKES dataset (Messager et al. 2016).

•	 Climate Zone Data: Köppen climate zone 
(Rubel and Kottek 2010).

•	 Meteorological Data: ERA5-Land (2000–
2020) (Muñoz-Sabater et al. 2019).

•	 Land Use Data: MCD12Q1 (2000–2020) 
(Friedl and Sulla-Menashe 2019).

•	 Population Density Data: LandScan (2000–
2020) (Dobson et al. 2000).

•	 Human footprint data (2000–2018) (Mu et al. 
2022).

•	 Nighttime light (NTL) intensity data (2000–
2020) (Chen et al. 2021).

3.3.1.3 � Methods
In this case study, MODIS images were used 
to extract the algal bloom area using the float-
ing algae index (FAI) and maximum gradient 
method. The MODIS NDSI (MOD10A1) and 
LST (MOD11A1) were used to eliminate the 
influence of non-algal bloom pixels. The FAI is 
an index based on MODIS Rrc data (reflectance 
after removing Rayleigh scattering) and is calcu-
lated using three bands: red (645 nm), near-infra-
red (NIR) (859 nm), and short-wave infrared 
(SWIR) (1240 nm) to extract algal blooms (Hu 
2009). The calculation formula is as follows:

where RNIR is the baseline reflectance at the NIR 
band, and RRed, RNIR, and RSWIR are the reflec-
tance in the red, NIR, and SWIR bands, respec-
tively. In this case, the NDSI, turbid water index 
(TWI), and the cyanobacteria and macrophytes 
index (CMI) were used to remove the effects of 
ice, turbid water areas, and aquatic vegetation 
areas (Liang et al. 2017), respectively.

Based on the literature review, 20 lakes with 
algal blooms in North America, Africa, and 
Asia were selected as the objects for thresh-
old statistics. In order to cover more types of 
lakes, these lakes are located on four continents 
in three climatic zones, and the land use types 
of their basins vary from urban, forest, grass-
land, and cropland. The corresponding gradi-
ent image was calculated, and a histogram of 
the remaining pixels was constructed. Notably, 
the histogram was constructed based on the FAI 
gradient values to locate pixels at the maximum 
gradient value, and the average FAI value cor-
responding to these pixels with the maximum 
gradient was used as the threshold for differ-
entiating algal bloom-infested and algae-free 
waters. The threshold values for all images 
were statistically analyzed together to ensure a 
consistent threshold for all data over the whole 
period (Hu et al. 2010; Ma et al. 2020), while 
the total FAI accumulation value of each FAI 
image of each lake was counted to eliminate the 
interference of the images without algal blooms 
on the threshold determination (the first 50% 
of the FAI images were used to determine the 
initial threshold). Then the initial threshold was 
used to extract the algal bloom coverage, and 
the pixels with a bloom coverage greater than 
10% were re-calculated by the maximum gra-
dient method to obtain a new threshold. After 
the loop iteration, the threshold stabilized to the 
final threshold.

FAI = RNIR − R
′
NIR

R
′
NIR = RRED + [RSWIR − RRED]

× [(�NIR − �RED)/(�SWIR − �RED)],

3.3  Case Studies
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(N = 14 lakes, 58% of African lakes). Only four 
lakes in South America and two in Oceania were 
recorded with algal blooms (Fig. 3.1).

There were 22 representative lakes world-
wide that experienced significant algal blooms 
(i.e., a surface extension of algal blooms greater 
than 25% of the lake was observed from 2000 to 
2020). These lakes are distributed in Asia, North 
America, Europe, and Africa. Asia has nine 
lakes with significant algal blooms, including 
China’s Taihu Lake, Chaohu Lake, and Hulun 
Lake; Buir Lake on the China–Mongolia bor-
der; Xingkai Lake on the China–Russia border; 
Zaysan Lake in Kazakhstan; Lake Beysehir in 
Turkey; Lake Sevan in Armenia; and Lake Bay 
in the Philippines. North America has seven 
lakes with significant algal blooms, includ-
ing Lake Churchill, Lake Winnipeg, Lake 
Dauphin, Lake Peter Pond, and Lake Lesser 
Slave in Canada and Lake Winnebago and Lake 
Okeechobee in the United States. Europe and 
Africa each have three lakes with significant 
algal blooms, including Lake Beloye and Lake 
Ilmen in Russia, Lake Peipsi shared by Russia 
and Estonia, Lake Manyara in Tanzania, Lake 
Chilwa on the Malawi-Mozambique border, 
and Lake Toshka in Egypt. Among these lakes, 
Lake Manyara in Tanzania and Taihu Lake and 
Chaohu Lake in China were observed to experi-
ence the most significant algal blooms and most 
severe algal phenomena.

2.	 Temporal Patterns of Algal Blooms

According to the temporal patterns of algal 
blooms, the lakes were classified into lakes 
without algal blooms, lakes with sporadic 
blooms (no more than three consecutive years of 
algal blooms), lakes with seasonal blooms (no 
more than one season of algal blooms per year), 
and lakes with perennial blooms (multi-seasonal 
blooms over many years).

There are five lakes with perennial blooms, 
seven with seasonal blooms, 58 with spo-
radic blooms, and 91 with no bloom world-
wide (Fig. 3.2). Lakes with perennial blooms 
were concentrated in the tropical and subtropi-
cal regions of Asia and Africa, namely: Lake 

This case study selected background data in 
four aspects of the lake: (1) background factors, 
including average lake depth, surface area, and 
dynamic sediment ratio [DSR, calculated by 
the surface area and lake depth to estimate the 
sensitivity of the lake to sediment resuspension 
caused by wind-driven waves (Håkanson and 
Jansson 1983)]; (2) climatic factors, including 
annual mean temperature, annual mean winter 
temperature (Northern Hemisphere: the aver-
age temperature of December of the previous 
year to February of the current year; Southern 
Hemisphere: the average temperature of June 
to August), annual mean precipitation, annual 
mean air pressure, and annual mean wind speed; 
(3) human activity factors, including population 
density, NTL intensity, human footprint; and 
(4) land use, including the calculated proportion 
of urban land, cropland, forest, grassland, and 
permanent wetland in the watershed. The data 
statistics were determined per lake basin using 
the basin boundary data from HydroBASINS 
(Lehner and Grill 2014). The correlations 
between bloom parameters and bloom-driv-
ing factors at the global scale were calculated. 
Random forest regression was used to calculate 
the contribution of each driving factor to the 
spatial distribution of algal blooms (Leach et al. 
2018). For parameters that remained unchanged 
during the study period, such as lake area, lake 
depth, and DSR, the contribution was calculated 
using the mean value of the algal bloom param-
eters within the time range.

3.3.1.4 � Results and Analysis

1.	 Spatial Distribution of Algal Blooms

Of the 161 large lakes studied, 70 were identi-
fied as having algal blooms (including 20 lakes 
for FAI threshold statistics), accounting for 43% 
of those studied (Fig. 3.1). North America had 
the highest number of lakes with algal blooms 
(N = 21 lakes, 38% of North American lakes 
studied), followed by Asia (N = 19 lakes, 34% 
of Asian lakes). The highest percentages of lakes 
with algal blooms occurred in Europe (N = 10 
lakes, 71% of European lakes) and Africa 
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Tropical region Warm temperate region

Cold temperate region Polar region

Fig. 3.1   Classification and distribution of large lakes with algal blooms worldwide from 2000 to 2020. Note The size 
of the dots is the max percent of algal blooms from 2000 to 2020

0 5,000 10,000 km2,500Arid region
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No bloom Sporadic bloom Seasonal bloom Perennial bloom

Tropical region Warm temperate region

Cold temperate region Polar region

Fig. 3.2   Classification and distribution of lakes with algal blooms from 2000 to 2020. Note The lakes that recorded 
the existence of algal blooms from the literature review were also identified as lakes with sporadic blooms

Europe, and North America, including Lake 
Hulun in China; Lake Zaysan in Kazakhstan; 
Lake Beloye in Russia; Lake Lesser Slave, Peter 

Taihu, Lake Chaohu, and Lake Bay in Asia and 
Lake Chilwa and Lake Manyara in Africa. Lakes 
with seasonal blooms were concentrated in Asia, 

3.3  Case Studies
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Fig. 3.3   Algal blooms in different climate zones

only in tropical and warm temperate lakes, sea-
sonal blooms occurred only in cold temperate 
lakes, and arid lakes were characterized by spo-
radic blooms.

4.	 Global Driving Factors of Algal Blooms 
in Lakes

Climate factors contributed the most 
(Contribution: 44%, similarly hereinafter) to the 
initial bloom time, followed by human activity 
factors (33%) (Table 3.2). Winter temperature 
(27%) was negatively correlated with the ini-
tial bloom time (r = − 0.68, p < 0.01) (Fig. 3.4). 
The duration of algal blooms (49%) and their 
frequency (46%) were mainly dominated by 
human activity factors. The dominant fac-
tors of the duration of algal blooms were NTL 
intensity (17%), lake depth (15%), and winter 
temperature (10%). The primary factors affect-
ing the algal bloom frequency were lake depth 
(15%), NTL intensity (15%), winter temperature 
(12%), and wind speed (10%). Human activ-
ity factors were the dominant factors for both 
the max bloom area (53%) and the mean bloom 
area (45%). The analysis showed that the con-
tributions of factors affecting the max bloom 
area were dispersed, with the proportion of 
grassland in the basins contributing the most, 
accounting for only 10%, and the contributions 

Pond Lake, and Lake Winnipeg in Canada; 
and Lake Winnipeg and Lake Winnebago in 
the United States. The 58 lakes with sporadic 
blooms were distributed worldwide, includ-
ing 12 in Africa, 14 in Asia, 9 in Europe, 17 in 
North America, 4 in South America, and 2 in 
Oceania. Overall, 9% of lakes in Asia were char-
acterized as lakes with perennial and seasonal 
blooms, which showed the highest proportion. 
Lakes in South America and Oceania experi-
enced only sporadic blooms.

3.	 Characteristics Across Climate Zones

The patterns of algal blooms in lakes vary sig-
nificantly in different climate zones (Fig. 3.3), 
based on the Köppen climate classification sys-
tem (Rubel and Kottek 2010). The proportion 
of lakes with algal blooms in warm temper-
ate and tropic zones exceeded 50%, with warm 
temperate lakes having the highest proportion 
(59%). The proportion of lakes experiencing 
algal blooms was lower in cold temperate and 
arid zones, with the lowest proportion (12%) in 
arid zones. The highest proportion of lakes with 
significant algal blooms was in cold temperate 
zones, followed by warm temperate, tropical, 
and arid zones. In terms of seasonal characteris-
tics of algal blooms, perennial blooms occurred 
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Table 3.2   Contribution ratio of each algal bloom parameter to spatial variations of driving factors (N = 14) after 
excluding urban coverage and annual temperature in lakes with significant blooms (N = 22) from a random forest 
regression model (Unit: %)

Driving factors Initial bloom  
time

Duration  
time

Max bloom  
percent

Mean bloom  
percent

Bloom  
frequency

Climate factors 43.55 29.55 29.94 30.97 32.87

Winter temperature 26.74 10.27 5.07 12.96 12.45

Wind speed 7.75 8.27 8.35 6.91 10.48

Air pressure 4.52 5.69 9.21 7.44 6.41

Precipitation 4.54 5.33 7.31 3.67 3.53

Lake morphological factors 23.73 21.54 17.06 23.89 20.68

Lake depth 16.28 15.05 6.10 14.21 15.12

Surface area 3.55 3.04 6.73 6.74 2.79

DSR 3.91 3.45 4.23 2.93 2.77

Human activity factors 32.73 48.90 53.00 45.14 46.46

Human activity 
indicators

NTL intensity 8.83 17.25 8.12 16.62 14.81

Population density 5.95 8.13 6.79 6.58 8.86

Human footprint 2.90 6.68 6.50 5.14 6.46

Land use indicators Grassland coverage 3.24 7.19 10.47 7.70 6.20

Forest coverage 4.90 4.01 7.68 3.06 3.80

Wetland coverage 2.63 2.93 7.43 3.27 3.28

Cropland coverage 4.28 2.71 6.01 2.77 3.05

3.3.1.6 � Discussion and Outlook
This case built a global analysis framework for 
algal blooms in lakes based on MODIS images, 
presented the spatiotemporal distributions and 
driving forces of algal blooms in lakes from 
2000 to 2020, and provided important scientific 
data for the assessment of SDG 6.3.2 on the 
global scale.

This case found that: (1) North America with 
a developed economy (21 lakes, accounting for 
38.8% of the lakes studied in the continent) and 
Asia with a dense population and rapid economic 
development (19 lakes, accounting for 33.9% of 
the lakes studied in the continent) had the largest 
number of lakes with algal blooms, and it is nec-
essary to reasonably control the discharge of pol-
lutants into lakes, and strengthen the management 
of the water environment. (2) Lakes in warm tem-
perate and tropical regions with suitable tempera-
ture conditions had the highest proportion of algal 
blooms (59%–66%). (3) Global warming leads 

of other factors being minor. The dominant fac-
tors affecting the mean bloom area were NTL 
intensity (17%), lake depth (14%), and winter 
temperature (13%). Overall, climate warm-
ing caused algal blooms to occur earlier, while 
human activity increased the frequency and area 
of algal blooms.

3.3.1.5 � Highlights

•	 A global algal bloom extraction process for 
lakes was constructed using Google Earth 
Engine and MODIS images.

•	 Classification results for algal blooms were 
presented based on the time series of algal 
bloom areas in lakes around the world.

•	 Spatiotemporal patterns and driving mecha-
nisms were analyzed for algal blooms in 
lakes globally, which provides decision sup-
port for evaluating the water quality and eco-
logical status of lakes.

3.3  Case Studies
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Fig. 3.4   Heat map showing the relationships between 
algal bloom parameters and driving factors for the lakes 
with significant algal blooms (N = 22) worldwide. Note 
The numbers in the boxes are Pearson correlation coef-
ficients. The labels on the x-axis represent specific driv-
ing factors, which are WS for wind speed, Prec for 

precipitation, WT for winter temperature, AP for air pres-
sure, Pop for population density, HF for human footprint, 
NL for NTL intensity, Forest for forest coverage, Crop for 
cropland coverage, Wet for wetland coverage, Grass for 
grassland coverage, Depth for lake depth, and Area for 
surface area. * represents p < 0.05, ** represents p < 0.01

Indicator: SDG 6.3.2: Proportion of bodies of 
water with good ambient water quality time.

3.3.2.1 � Background
Water transparency, also known as Secchi disk 
depth (ZSD), refers to the depth at which light 
penetrates through the water column, which 
directly affects the trophic status and pri-
mary productivity of the water body, and is an 
important remote sensing optical index indicat-
ing the water turbidity (Lee et al. 2015). The 
field measurement of water transparency is 
simple and economical. Generally, the Secchi 
disk (SD) is gradually sunk into the water on 
the water surface until it disappears out of the 
observer’s sight, and the vertical distance from 
the water surface to the submerged SD is called 
water transparency or ZSD. Water transparency 
is jointly affected by the three major water color 
constituents: suspended sediment, phytoplank-
ton pigments, and colored dissolved organic 
matter. Compared with other optical water qual-
ity parameters, water transparency reflects the 
comprehensive water quality status of the water 
body to a certain extent. Due to the abovemen-
tioned two points, water transparency is listed as 
one of the most basic water parameters by water 
environment monitoring and management sec-
tors. There is also a long history and extensive 

to earlier algal bloom time and increased human 
activity leads to higher algal bloom frequency and 
area. (4) This case only analyzed the spatiotem-
poral distributions and driving forces of lakes at 
the global scale. Further analysis is needed for 
specific regions to provide water environment 
management recommendations for policymakers 
in regions with special environment and develop-
ment patterns. The results indicate that the eco-
environmental status of lakes worldwide is not 
optimistic. Global climate change and human 
social development have already impacted the 
ecological environment of lakes, posing threats 
to ecosystems and the sustainable development 
of human society, and bringing great challenges 
to the achievement of SDGs. (Modified from  
Ma et al. 2023).

3.3.2	� Global Temporal and Spatial 
Changes in Water 
Transparency in Large Lakes

Target: SDG 6.3: By 2030, improve water qual-
ity by reducing pollution, eliminating dumping 
and minimizing release of hazardous chemi-
cals and materials, halving the proportion of 
untreated wastewater and substantially increas-
ing recycling and safe reuse globally.
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•	 In Situ Data: Measured water transparency 
dataset of surface water bodies in China; 
measured water transparency dataset from the 
National Earth System Science Data Center; 
European Multi Lake Survey (EMLS) shared 
dataset in Europe; and AquaSat shared data-
set in the United States.

3.3.2.3 � Methods
This case study used MODIS surface reflec-
tance products as the main data source, and con-
structed a water transparency estimation model 
based on the Forel-Ule index (FUI) and hue 
angle α (Wang et al. 2020). In the model, when 
the FUI value is small (FUI < 8), the relation-
ship between the hue angle α and water trans-
parency is better; when the FUI value is large 
(FUI � 8), the relationship between the FUI and 
water transparency is better. Therefore, the water 
transparency estimation model takes the form of 
a hybrid model:

In the ZSD estimation model, in order to ensure 
a smooth transformation of the segmented 
model, the empirical parameters of the model 
for FUI < 8 were obtained by fitting the data 
where α < 195° (that is, FUI < 11). In the model 
validation, in addition to the model verification 
based on domestic lake data, the ZSD estimation 
model was evaluated with the measured dataset 
of representative surface water bodies around 
the world.

In the data processing, a simple correction 
method based on the NIR and SWIR bands 
was used to correct the potential noise in the 
MOD09A1 data with band subtraction, and 
then the surface reflectance was converted to the 
water-leaving reflectance (Wang et al. 2016). In 
the automatic extraction of water bodies based 
on the MOD09A1 data, we used a modified his-
togram bimodal method to extract large inland 
water areas (> 25 km2) automatically based on 
the reflectance of the 1,640 nm band. Then, 
during the automatic selection of the threshold 

FUI < 8 : ZSD = 3415.63 ∗ α
−1.49

.

FUI � 8 : ZSD = 284.70 ∗ FUI
−2.67

record of water transparency compared to other 
parameters in lakes and oceans worldwide.

In situ sampling methods for collecting 
water quality parameters can no longer meet 
the needs of the current global dynamic survey 
of water quality. The water quality data of lakes 
on a global scale are seriously lacking, and the 
temporal and spatial changes of water quality 
in lakes and the assessment and management 
of sustainable development have always been 
important issues to be solved (Kavvada et al. 
2020; Spyrakos et al. 2020; Tyler et al. 2016). 
The UN-Water Annual Report 2018 pointed 
out that for SDG 6, only 52 of the 193 mem-
ber states in the world have submitted surface 
water quality monitoring data, and the monitor-
ing data in some of these countries only include 
a small number of stations (UN-Water 2018). 
With the development of satellite remote sensing 
technology and the advancement of water color 
remote sensing modeling, research on optical 
remote sensing of inland water bodies has made 
rapid progress in recent years (Duan et al. 2022; 
Zhang et al. 2021). Satellite remote sensing 
data are becoming the most important, low-cost 
source of surface water quality monitoring data. 
Its advantages in large-scale, long-term time-
series dynamic monitoring provide an effective 
way to fill data gaps, monitor water quality in 
lakes, and track the spatial and temporal patterns 
of water quality in a long-term time series.

This case study relies on Earth observation 
big data technology, takes water transparency as 
the indicator of lake water quality, and analyzes 
the temporal and spatial changes of water trans-
parency in large lakes with surface area larger 
than 25 km2 from 2000 to 2021 based on global 
satellite remote sensing. It provides a new global 
remote sensing monitoring dataset of water 
transparency for the global evaluation of SDG 6.

3.3.2.2 � Data

•	 Satellite Remote Sensing Data: Terra 
MODIS surface reflectance data with 500 m 
resolution globally from 2000 to 2021 
(MOD09A1).

3.3  Case Studies
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Fig. 3.5   Climatological water transparency map in large lakes around the world from 2000 to 2021

with MODIS data. Based on this product, when 
the pixel count of the summer mean image of 
the lake was not less than 30% of the pixel count 
of the standard mask of the specific lake, the 
summer mean value of the water transparency of 
this lake would be calculated.

3.3.2.4 � Results and Analysis

1.	 Global Spatial Pattern Analysis of Water 
Transparency in Large Lakes from 2000 
to 2021

The climatological lake transparency map from 
2000 to 2021 is shown in Fig. 3.5, and the dis-
tribution patterns among continents and differ-
ent climate zones are shown in Fig. 3.6. It can 
be seen from Fig. 3.5 that the climatological 
water transparency distribution of large lakes 
varied greatly among regions, and the overall 
distribution was exhibited in a concave profile in 
the latitudinal direction. That is, the water trans-
parency of lakes in high-latitude areas near the 
North and South Poles was relatively high, with 
an average transparency of around 4 m, while 
the water transparency of lakes in low-latitude 

value, a buffer zone was created around each 
connected water area with an area 1.5 times the 
initial water area. Based upon the expanded area 
including the initial water area and buffer zone, 
a histogram of the 1640 nm reflectance was pro-
duced for the whole expanded area where water 
and other land-cover types would be distrib-
uted separately in the histogram within the two 
modes. Finally, the threshold value for this water 
body area was recognized as the valley value 
within a specific threshold range in the histo-
gram. Moreover, in order to avoid the land adja-
cent pixel effect, the water body area was eroded 
inward by one pixel. In addition, this case study 
used the Global Lakes and Wetlands Database 
(GLWD) to calibrate the extracted water bodies 
to avoid the influence of optically shallow water 
on the subsequent transparency estimation.

In the statistics of water transparency prod-
ucts, for large lakes with an area > 25 km2, sum-
mer images from June to September were used 
to calculate the average water transparency in 
summer for every year, and a summer mean 
water transparency product was produced for 
large lakes around the world from 2000 to 2021 
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Fig. 3.6   Comparison of the average transparency and number of water bodies of large lakes in different continents 
and different climate zones from 2000 to 2021

while there were more large lakes in the cold 
temperate and arid regions and fewer large lakes 
in polar regions.

2.	 Analysis of the Global Long-Term Time-
Series Change in Transparency of Large 
Lakes from 2000 to 2021

The annual change rate of water transparency 
in large lakes during 2000–2021 is depicted 
in Fig. 3.7. The global change rate of water 
transparency in large lakes showed an obvious 
regional distribution, with significant differences 
in regions and climate zones, though overall an 

areas within 20° North and South latitudes was 
relatively low, with an average transparency of 
less than 1 m. From Fig. 3.6, it can be concluded 
that in terms of the average water transparency 
of the continents, the transparency of lakes in 
Asia and Europe was higher, and the water 
transparency of lakes in Africa was the lowest. 
While there were more large lakes in Asia and 
North America, Oceania had the fewest. In terms 
of climate zones around the world, the water 
transparency of lakes in polar and cold temper-
ate regions was higher, and the water transpar-
ency of lakes in tropical regions was lower; 

3.3  Case Studies
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Fig. 3.7   Global annual change rate of water transparency in large lakes during 2000–2021

3.3.2.5 � Highlights

•	 This case study proposed and validated a 
water transparency estimation model based 
on satellite remote sensing data, and pro-
duced a global spatial distribution product of 
water transparency in large lakes from 2000 
to 2021.

•	 Global temporal and spatial change infor-
mation for water transparency in large lakes 
were provided to report SDG 6.3.2. It was 
found that the transparency of water bod-
ies of large lakes around the world showed 
an overall upward trend from 2000 to 2021. 
Among them, the water transparency of lakes 
in cold regions increased significantly, and 
the water transparency of turbid lakes located 
in warm temperate regions showed a down-
ward trend.

3.3.2.6 � Discussion and Outlook
This case study proposed and validated a water 
transparency estimation model based on satel-
lite remote sensing data, and produced a remote 
sensing product for water transparency glob-
ally for large lakes from 2000 to 2021. Then 

upward trend of water transparency is obvious. 
The water transparency of 44.2% of large lakes 
showed a significant upward trend (p < 0.05), 
and only 10.6% of large lakes showed a sig-
nificant downward trend in water transparency 
(p < 0.05). From the statistics of all continents, 
the average annual change rates of water trans-
parency in lakes across the six continents were 
all positive, as shown in Fig. 3.8. Among them, 
the average water transparency of large lakes in 
Asia and Africa changed slowly, with average 
annual change rates of 1.4 cm/a and 1.5 cm/a, 
respectively. The average water transparency 
of large lakes in Europe increased significantly, 
with an average annual change rate of 9.0 cm/a. 
From the perspective of different climate zones 
(Figs. 3.9 and 3.10), the water transparency 
of lakes in the cold temperate region increased 
most obviously, with an average annual change 
rate of 6.8 cm/a, and the water transparency of 
polar lakes increased significantly, with an aver-
age annual change rate of 3.5 cm/a. The increase 
in water transparency in tropical and arid 
regions was weak, and the water transparency of 
turbid lakes (ZSD < 0.5 m) in the warm temperate 
region showed a downward trend.
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Fig. 3.8   Average water transparency changes of the six continents during 2000–2021
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Fig. 3.9   Comparison of average water transparency and the annual change rate of large lakes in climatic zones

sources will be utilized to improve the reliabil-
ity of remote sensing monitoring of spatial and 
temporal changes in water quality, and increase 
the monitoring of small lakes and rivers to better 
serve the evaluation of SDG 6.

3.3.3	� Dynamic Changes in Water 
Events in Transboundary 
Rivers in Central Asia

Target: SDG 6.5: By 2030, implement inte-
grated water resources management at all levels, 
including through transboundary cooperation as 
appropriate.

Indicator: SDG 6.5.2: Proportion of trans-
boundary basin area with an operational 
arrangement for water cooperation.

3.3.3.1 � Background
Global climate change has increased the vulner-
ability and complexity of water resource man-
agement. As freshwater becomes increasingly 
scarce, the issue of water distribution and secu-
rity in transboundary rivers has become a flash-
point for disputes between different countries 
and regions. The issue is especially contentious 
in arid regions where water resources are scarce, 
and the competitive utilization and fragmented 

water transparency was used to indicate the 
water quality of surface water bodies for the 
global evaluation of SDG 6.3.2. The analysis 
was conducted using continents and global cli-
mate zones as geographical units, and pointed 
out the differences in lake transparency and the 
changes among continents and climate zones. 
It was found that the water transparency of 
large lakes around the world showed an overall 
upward trend from 2000 to 2021. Among them, 
the water transparency of lakes in cold regions 
increased significantly, and the water transpar-
ency of turbid lakes located in warm temperate 
regions showed a downward trend. This case 
provides important spatial and temporal water 
quality change data and pattern analysis support 
to evaluate SDG 6.3.2 and further the achieve-
ment of SDG 6.

It should be noted that the surface water 
quality parameters monitored by remote sens-
ing methods are still mainly optical parameters, 
such as water transparency monitoring in this 
case. In future work, first we will further explore 
the inner relationship between optical water 
quality parameters, and the “water quality” and 
“water ecology” in SDG 6 indicators, so that the 
remote sensing monitoring of lake water quality 
and SDG 6 indicators can be more closely inte-
grated. Second, multiple remote sensing data 
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Fig. 3.10   Distribution of water transparency and the annual change rate of large lakes in different climatic zones

et al. 2021). There are frequent water disputes 
and conflicts, making them a key factor affect-
ing the security and stability of the Central 
Asian region (Chen et al. 2018). Water conflic-
tive and cooperative events are key variables that 
characterize the regional water security situation 
(Gleick 2003; Eidem et al. 2012; Madani et al. 
2014; Lu et al. 2021). Studying the evolution 
trend of water conflictive and cooperative events 
in Central Asia can provide important data sup-
port and a theoretical basis for transboundary 
water cooperation (Gunasekara et al. 2014).

Researchers at Oregon State University estab-
lished the Transboundary Freshwater Dispute 

management of transboundary water resources 
have increased the difficulty of managing trans-
boundary water security risks (McCracken 
and Wolf 2019; Yan et al. 2019; Bernauer and 
Böhmelt 2020). Central Asia is located in an 
arid region of Eurasia, with numerous trans-
boundary rivers and an extremely uneven dis-
tribution of water resources among countries 
(Wang et al. 2021). The upstream countries are 
the main water-producing countries with abun-
dant water resources and scarce land resources. 
The downstream countries are the main water 
consumption countries due to abundant land 
resources and severe water shortage (Nobakht 

3.3  Case Studies
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Database (TFDD) to characterize regional water 
security. The database records conflictive and 
cooperative events on water in transboundary 
rivers around the world, which can effectively 
reflect the complexity and spatial variability of 
water-related events and their scales (Schlüeter 
et al. 2013; Wei et al. 2021). However, the trans-
boundary water events recorded in the database 
all occurred prior to 2008, and the latest features 
of water conflictive and cooperative events need 
to be combined with other supplementary data 
(Rai et al. 2014). This case study combines the 
TFDD with the Pacific Institute’s Water Conflict 
Chronology and the Interstate Commission for 
Water Coordination of Central Asia to coalesce 
into a new dataset of transboundary river water 
conflictive and cooperative events in Central Asia 
from 1951 to 2021. The new dataset includes 
information on transboundary water events 
across the five nations on a year-by-year basis 
and at a basin scale. Further, this case compre-
hensively analyzes the dynamic changes of water 
conflictive and cooperative events in the region’s 
transboundary rivers and establishes a water con-
flict and cooperation network. This case study 
can provide a scientific reference and technical 
support for strengthening transboundary water 
cooperation in Central Asia, and has important 
theoretical and practical significance for the real-
ization of SDG 6.5 in Central Asia, negotiating 
water distribution of transboundary rivers, and 
formulating scientific transboundary river man-
agement policies in Central Asian countries.

3.3.3.2 � Data
•	 Self-produced data on water conflictive and 

cooperative events in transboundary rivers 
in Central Asia (1951–2021). Time scale of 
data: year (a total of 71 phases). Spatial scale: 
basin. Included elements: occurrence time 
of water events, involved countries, involved 
basins, intensity levels, types, and detailed 
description of the events.

3.3.3.3 � Methods
Social network analysis (SNA) is an effec-
tive method for describing the morphology, 

characteristics and structure of a network 
(Tsekeris and Geroliminis 2013; Yuan et al. 
2018). It employs graph theory and alge-
braic models to express various relational 
patterns and analyze the impacts of these 
patterns on the members of a network and 
the entire network. The SNA method has 
been widely applied in sociology, geogra-
phy, information science, and other areas. 
We use SNA, in combination with the com-
mon metrics of network density and degree 
centrality, to identify the characteristics 
of water-related conflictive and coopera-
tive networks in Central Asia. The network 
comprises all the countries involved in water 
political events in the region’s transbound-
ary rivers.

The network density quantifies the degree 
of connection between each node, with val-
ues ranging between 0 and 1. A higher number 
of contacts indicates a higher network density 
value. The network density is calculated as 
follows:

where D is the network density, k is the number 
of nodes (here, the number of countries), and d 
(ni, nj) represents the relational quantity between 
nodes ni and nj.

The degree centrality of a node meas-
ures how central this node is to the network. 
The higher the degree centrality of a node, the 
stronger its direct interconnection with other 
nodes, and its position within the network will 
be more significant (central). The degree central-
ity is calculated as follows:

where CD(ni) denotes the degree centrality of the 
node ni, n represents the number of nodes, and 
Xji represents the connection between the nodes 
ni and nj. If a connection exists between the two 
nodes, Xji = 1; otherwise, Xji = 0.

D =

∑k
i=1

∑k
j=1

d
(

ni, nj
)

k(k − 1)
,

CD(ni) =

n
∑

j=1

Xji,
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Fig. 3.11   Changing trends in water conflictive events, water cooperative events, and water events in Central Asia 
from 1951 to 2021. Note P1—stable period; P2—rapid increasing and decreasing period; P3—stable period

declined. Specifically, from 1992 to 1997, 
events increased dramatically, reaching their 
highest number (77) in 1997. This was mainly 
because the disintegration of the Soviet Union 
made most of the rivers in Central Asia become 
transboundary rivers, and the old water resource 
allocation system was no longer applicable. 
Therefore, countries were eager to explore water 
resource management and allocation policies 
suitable for the new situation. Because of this 
exploration, cooperation between the countries 
was occasionally marred by short-term conflicts 
(Wang et al. 2021). From 2002 to 2021 (P3), the 
changes in transboundary water events gradually 
stabilized, with only five transboundary water 
events occurring annually.

There were prominent differences in water 
events across the various transboundary river 
basins of Central Asia (Fig. 3.12). As a hyd-
ropolitically active region, the Aral Sea Basin 
had the largest number of events (268), account-
ing for 44.37% of all water-related political 
events in Central Asia during the 1951–2021 
period. The Aral Sea Basin was also the site of 
the most water conflictive events (25 events). 

3.3.3.4 � Results and Analysis

1.	 Changing Trends in Water Conflictive 
and Cooperative events

From 1951 to 2021, 604 transboundary water 
political events occurred in the transbound-
ary river basins of Central Asia, including 60 
conflictive events, 534 cooperative events, and 
10 neutral events (Fig. 3.11). The number of 
cooperative events accounted for 88.41% of 
all water-related political events, which far 
exceeded the number of conflictive events, 
indicating that cooperation occurred more fre-
quently than conflict. The number of water 
events shows three main stages. From 1951 
to 1991 (P1: the Soviet Union), the events 
decreased slightly, and their fluctuation range 
was stable. During this period, water resources 
were uniformly managed and allocated by the 
Central Government of Moscow, and the prin-
ciple of division of labor was established to 
achieve maximum economic output. Then, 
in the first decade after the collapse of the 
Soviet Union (P2: 1992–2001), events caused 
by water politics increased rapidly and then 
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Fig. 3.12   Spatial distribution of water political events in transboundary river basins in and around Central Asia from 
1951 to 2021

River Basin between southern Turkmenistan and 
northeastern Iran. A total of seven transbound-
ary water events occurred in the transboundary 
Harirud River Basin between Afghanistan, Iran 
and Turkmenistan, and five transboundary water 
events occurred in the Volga River Basin (Wang 
et al. 2021). Finally, only three water political 
events were recorded in the Ural River Basin, 
which flows through Russia and Kazakhstan to 
the Caspian Sea.

2.	 Water Conflictive and Cooperative 
Networks

During the age of the Soviet Union, water con-
flictive events spilled into neighboring coun-
tries, with the Soviet Union at its core, and the 
network density was 0.20. The disintegration of 
the Soviet Union had a substantial impact on the 
hydropolitical structure in Central Asia, where 
water problems had long been out of control 
(Wang et al. 2021). From 1992 to 2021, the water 
conflictive network in Central Asia was mainly 
distributed in five countries in a crisscross pat-
tern (Fig. 3.13a). From 1992 to 2021, the net-
work density increased to 0.38, indicating an 
increase in conflict intensity. In terms of degree 
centrality (Table 3.3), Uzbekistan, with a degree 

Water conflictive events in the Aral Sea Basin 
are mainly due to the allocation and manage-
ment of water resources in the Amu Darya and 
Syr Darya rivers by upstream and downstream 
countries, as well as the complex dams, reser-
voirs, and irrigation canals (Wang et al. 2021). 
The upstream countries have great potential for 
hydropower. In order to ensure the use of elec-
tricity in winter, large quantities of water are 
stored in reservoirs in summer and released 
downstream in winter. This can lead to insuf-
ficient irrigation water downstream to meet 
the water consumption needs of crops during 
the growing season (when crops need the most 
water), resulting in lower crop yields and less 
arable land, while flooding in winter due to large 
amounts of upstream water (Han et al. 2022). 
There were 18 water political events in the Ob 
River Basin, which is shared by Kazakhstan, 
Russia, and China. The main themes underly-
ing these events were water quantity and hydro-
power. In the Ili River Basin, which flows from 
the Khan Tengri Peak in the Tianshan Mountains 
through China and Kazakhstan and into Lake 
Balkhash, 13 water political events occurred, 
of which 12 were cooperative, mainly focused 
on water allocation and shipping. In addition, 
a total of 11 water events occurred in the Atrak 
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Fig. 3.13   Water conflictive and cooperative networks between Central Asian countries and other countries in the 
world

border each other and share the Syr Darya and 
Amu Darya Rivers, and their arable land is 
poorly matched to water resources, thus increas-
ing competition for water resources.

Water cooperative event networks were more 
complex than water conflictive event networks. 

centrality of 6, was at the core of the water con-
flictive network, followed by Kazakhstan and 
Tajikistan, with a degree centrality of 5 and 4, 
respectively. The most frequent water conflictive 
events were between Kyrgyzstan and Uzbekistan 
(10 conflictive events). These two countries 
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Table 3.3   Degree centrality of water conflictive and 
cooperative networks for the five Central Asian countries 
after the disintegration of the Soviet Union (1992–2021)

Water conflictive  
networks

Water cooperative  
networks

Countries Degree 
centrality

Countries Degree  
centrality

Uzbekistan 6 Kazakhstan 15

Kazakhstan 5 Kyrgyzstan 14

Tajikistan 4 Tajikistan 14

Kyrgyzstan 3 Turkmenistan 12

Turkmenistan 3 Uzbekistan 12

events (152 events, accounting for 28.46% of 
all cooperative events) occurred at level 4 (non-
military economic, technological or industrial 
agreement). Level 5 had the lowest number 
of events (6 events). In general, a low level of 
water cooperation was predominant in Central 
Asia, with less frequent cooperation at higher 
levels. Water conflictive events occurred at all 
levels except levels − 7 and − 6. Most conflic-
tive events (17 events) were level − 3 (diplo-
matic-economic hostile actions).

In water conflictive events, water quan-
tity was the most common theme, account-
ing for 45.61% of all water conflictive events 
(Fig. 3.15a). The second most dominant theme 
of water conflictive events was infrastructure/
development (24.56% of all water conflictive 
events), which included infrastructure construc-
tion and the development of projects. The water 
conflictive events also differed according to the 
time of year, with a clear seasonal distribution 
pattern emerging (Fig. 3.14b). The frequency 
of water conflictive events was the highest in 
January and July (9 cases each month), with the 
overall event frequency being highest in summer 
(35.00%) and winter (23.33%). These two sea-
sons have the highest water demand for irriga-
tion and power generation, leaving the upstream 
and downstream countries more prone to water 
conflict (Wang et al. 2021). Joint management 
was the largest theme in water cooperation 
(Fig. 3.15b), accounting for 30.74% of all coop-
erative events. This is because Central Asian 
countries have developed a number of joint 
transboundary river management measures as an 
effective means for resolving their water conflic-
tive events.

3.3.3.5 � Highlights

•	 A dataset was produced showing water con-
flictive and cooperative events in transbound-
ary rivers in Central Asia from 1951 to 2021.

•	 Overall, 604 water-related political events 
occurred in Central Asia, including 60 water 
conflictive events, 534 water cooperative 
events and 10 neutral events. With the col-
lapse of the Soviet Union, the number of 

From 1951 to 1991, the scope of water coop-
eration in Central Asia was extensive, with all 
networks centered on the Soviet Union and radi-
ating outward, which relates to 12 countries. 
Of the water cooperative events that occurred, 
32 were with Iran, 22 with China, and a few 
with other countries. From 1992 to 2021, the 
scope of water cooperation became more con-
centrated (Fig. 3.13b), while the cooperation 
intensity greatly increased, and the networks 
grew denser (up to 0.42). Overall, Kazakhstan 
showed the highest degree centrality (15), indi-
cating that it played the most prominent role in 
the cooperation network and had the most fre-
quent water cooperation with other countries. 
Both Turkmenistan and Uzbekistan cooperated 
less frequently with other countries (a degree 
centrality of 12). Cooperation was mainly dis-
tributed among the five Central Asian countries, 
with most of the water cooperative events occur-
ring between Kazakhstan and Kyrgyzstan (286 
events).

3.	 Intensity and Themes of Water Conflictive 
and Cooperative Events

Figure 3.14a depicts the number of water events 
in Central Asia according to intensity. The green 
bars indicate cooperative events (graded from 
level 1 to 7), the orange bars indicate conflic-
tive events (graded from level − 1 to − 7), and 
the white bar indicates neutral events (level 0). 
Water cooperative events occurred at all levels 
except level 7. Most of the water cooperative 
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Fig. 3.14   Graph showing the number of water events in Central Asia according to intensity and the monthly distribu-
tion of water conflictive events

•	 In terms of the themes and levels of 
transboundary water events, joint man-
agement was the largest theme in water 
cooperation, accounting for 30.74% of all 

transboundary water events has increased 
rapidly since 1991, peaking in 1997 and 
returning to a relatively stable state between 
2002 and 2021.

3.3  Case Studies
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Fig. 3.15   Percentage of water conflictive and cooperative events in Central Asia according to themes

events in the Basin). Although water cooperation 
has an absolute advantage, it is mainly based 
on low-level cooperation, so the effect of coop-
eration is not ideal. In addition, affected by cli-
mate change, population growth, water and soil 
resource degradation and other factors, the spa-
tiotemporal matching of water and soil resources 
in Central Asia is more uneven, which will fur-
ther intensify water resource competition among 
Central Asian countries (Li et al. 2020; Wang 
et al. 2021). Recommendations: (1) countries 
in Central Asia should focus on the core issues 
of bilateral or regional water resource manage-
ment, such as the impacts of climate change on 
Central Asian rivers, inter-governmental infor-
mation sharing on water resource management, 
and how to enhance the effectiveness of regional 
water resource cooperation platforms; (2) in the 
growing season of crops, the upstream countries 
should appropriately increase the water resource 
allocation for the downstream countries, and the 
downstream countries provide energy and indus-
trial and agricultural products for the upstream 
countries, which means the upstream and down-
stream countries maintain a balance of interests 
through water and energy trading; (3) countries 
in Central Asia should build more channels for 
democratic consultation by the interventional 
governance of international multilateral devel-
opment institutions; (4) from the perspective 
of strategic and institutional building, countries 
along the basins should effectively cooperate on 
production capacity, transboundary economy, 

cooperative events. Water conflictive effects 
mainly occurred in summer and winter, and 
water quantity was the most important theme, 
accounting for 45.61% of all water conflict 
topics. The second was the infrastructure/ 
development.

3.3.3.6 � Discussion and Outlook
This case combined the TFDD with the Pacific 
Institute’s Water Conflict Chronology and the 
Interstate Commission for Water Coordination 
of Central Asia database to form a new dataset 
of water conflict/cooperation events in Central 
Asian transboundary rivers from 1951 to 2021. 
We analyzed the dynamic changes in trans-
boundary water events in the transboundary riv-
ers of the studied region. This case found that 
from 1951 to 2021, 604 water-related political 
events occurred in Central Asia’s transboundary 
river basins, among which water conflictive and 
cooperative events accounted for 88.41% and 
9.93%, respectively. The number of transbound-
ary water events showed three distinct stages, 
namely, a stable period (1951–1991), a rapidly 
increasing and decreasing period (1992–2001), 
and another stable period (2002–2021). Water 
conflictive events took place mainly in sum-
mer and winter, with the Aral Sea Basin expe-
riencing the most water conflictive events (due 
to the competitive use of water resources from 
the Syr Darya and Amu Darya rivers), while the 
Ili River Basin was dominated by cooperation 
(accounting for 92.00% of transboundary water 
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databases collected by different institutions 
around the world are effective for con-
ducting research on transboundary water 
cooperation.
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SDG 7, Affordable and Clean 
Energy

4.1	� Background

Anthropogenic carbon emissions from the use 
of fossil fuels are a major cause of global warm-
ing. The transformation from fossil fuels to 
green, low-carbon energy has become a glob-
ally shared vision in response to climate change. 
SDG 7, Affordable and Clean Energy, one of 
the 17 goals on the 2030 Agenda adopted by the 
UN, aims to drive global energy transformation. 
Under it are six targets in four areas—energy 
access, renewable energy, energy efficiency, 
and international energy cooperation—to ensure 
access to affordable, reliable, sustainable, and 
modern energy for all by 2030.

The Paris Climate Agreement requires coun-
tries to update their nationally determined con-
tribution (NDC) emission reduction plans every 
five years. To date, 58% of the 191 signatories 
have submitted new NDCs and around two-
thirds of the global economy has committed to 
a net zero emissions target by around mid-cen-
tury. The European Union, the United States, 
Canada, Japan, and other countries plan to 
achieve net zero by 2050.

Renewable energy sources such as solar and 
wind power, are key to achieving the global 
energy transition. From 2012 to 2022, solar and 
wind energy technologies developed rapidly, and 

the cost of electricity from solar and wind energy 
has reached or is close to the cost of coal power, 
achieving a historic leap forward. In some coun-
tries, such as China, solar power has been brought 
online at parity. However, the world’s solar and 
wind power plants are mainly concentrated in 
countries and regions such as China, the European 
Union, and the United States. Developing coun-
tries in general, and the BAR countries in par-
ticular, are not only facing energy shortages, but 
also facing technical and financial pressures in 
the energy transition. Developing countries will 
present the most difficult challenge to achieving a 
global energy transition and SDG 7.

This chapter aims to improve the global SDG 
7 monitoring and evaluation methodology by 
using remote sensing, GIS, and other geodata 
technologies to assess the progress of global 
SDG 7 indicators. It provides scientific data to 
support the worldwide achievement of SDG 7 
targets, especially in developing BAR countries.

4.2	� Main Contributions

This chapter evaluates the progress of SDG 7.1, 
SDG 7.2, SDG 7.a, and SDG 7.b in China and 
globally through three case studies. The main 
contributions are as follows (Table 4.1).

© The Editor(s) (if applicable) and The Author(s) 2024 
H. Guo, Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road,  
Sustainable Development Goals Series, https://doi.org/10.1007/978-981-97-3278-4_4
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4.3	� Case Studies

4.3.1	� Global Electrification 
of Built-Up Areas

Target: SDG 7.1: By 2030, ensure univer-
sal access to affordable, reliable, and modern 
energy services.

4.3.1.1 � Background
Electricity shortage is the primary energy chal-
lenge faced by developing countries, with about 
733 million people worldwide still lacking access 
to electricity in 2020. Access to electricity is an 
indicator of SDG 7 reflecting electricity penetra-
tion, and timely, accurate data are of practical 
importance to its universal achievement. At pre-
sent, global access to electricity data is mainly 
obtained using statistical surveys, which suffer 
from untimely data updates, uneven data quality 
levels, poor data comparability between differ-
ent countries, uneven quality levels, non-spatial-
ized data, and missing data in some developing 
countries. In response to these issues, this study 
developed a 500 m resolution dataset of electri-
fication conditions in BUAs around the world 
in 2014 and 2020. A new method is proposed 
for the remote sensing monitoring of electrifi-
cation in BUAs. The study analyzed the global 
spatial distribution and change of electrifica-
tion to address the problems of missing data and 
untimely updates of existing electrification rates 
in some countries. The study improves the global 
monitoring capacity of electrification conditions 
in BUAs and provides data to inform the formu-
lation of targeted power supply strategies.

4.3.1.2 � Data

•	 European Union Global Human Settlement 
Layer (GHSL) datasets. https://ghsl.jrc.
ec.europa.eu/download.php?ds=bu

•	 NPP-VIIRS night images of the year. https://
eogdata.mines.edu/nighttime_light/annual/
v20/.

•	 World Bank data on access to electricity by 
country. https://data.worldbank.org/indicator.

4.3.1.3 � Methods
This study presents a new method for remote 
sensing monitoring of the electrification status 
of BUAs. The method is based on the signifi-
cant difference in night light brightness values 
between electrified and unelectrified BUAs, 
using European Union global built-up data 
(Corbane et al. 2018), randomly selecting image 
elements from non-BUAs as samples from une-
lectrified areas, and randomly selecting image 
elements from BUAs as samples from electrified 
areas from countries with 100% electrification, 
to construct a sample library, all of which are 
verified by all samples visually verified by high-
resolution remote sensing images. Two-thirds of 
the samples were randomly selected from the 
sample pool and classified using the threshold 
method based on the night light histograms of 
the samples (Elvidge et al. 2021). The threshold 
value at which the classification accuracy of the 
electrified and unelectrified samples was highest 
was selected as the classification threshold, and 
the percentage of unelectrified BUAs was cal-
culated for each country worldwide. Finally, the 
classification results were validated for accuracy 
using the remaining one-third of the samples in 
the sample pool (Gao et al. 2022a). More than 
10,000 samples were involved in the accuracy 
validation, and the quality of the product was 
checked based on the judgment accuracy of the 
random samples. In this study, the method was 
used to produce a global dataset of the remote 
sensing monitoring of electricity access in BUAs 
for 2014 and 2020.

4.3.1.4 � Results and Analysis
Based on global 500 m resolution NTL remote 
sensing data, a remote sensing monitoring 
method was proposed (Gao et al. 2022a), by 
which the electrification of global build-up 
areas in 2014 and 2020 was monitored. Based 
on a global test of over 10,000 random sample 
points, the product has an accuracy of 98.10%. 
The areas where errors arise are mainly located 
in rural areas with small floor areas, mainly due 
to the low resolution of the remote sensing data. 
Their spatial distribution and temporal variation 
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Fig. 4.1   Percentage of global unelectrified BUAs in 2020
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Fig. 4.2   Changes in the percentage of global electrified BUAs in 2020 compared to 2014

Africa. Therefore, achieving SDG 7 globally 
will require additional and greater international 
support for developing countries.

Global-electrified BUAs increased nota-
bly from 2014 to 2020, from 96.95 to 98.68%, 
by 29,108.62 km2 (Fig. 4.2). According to the 

patterns were analyzed for the purpose of glob-
ally measuring SDG 7.1.1, access to electricity.

The world’s unelectrified BUAs were mainly 
found in Africa and Asia in 2020 (Fig. 4.1), with 
76% of the 20 countries having the largest share 
of unelectrified BUAs located in Sub-Saharan 
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status of BUAs and improve the monitoring 
capability of the degree of global electrifica-
tion, and can support policymaking related to 
electrification.

Developing countries may address their 
energy shortages by building new power plants, 
and renewable energy should be the focus of this 
endeavor. Most of the unelectrified BUAs in the 
world are found in developing countries, though 
117 countries/regions have seen a reduction in 
unelectrified buildings due to the construction 
of power plants. Developing countries are sug-
gested to vigorously develop renewable energy, 
such as solar and wind energy, because those 
renewable energies are widely available and 
easy to develop and use.

Further improvement in the capacity of 
Big Earth Data to support SDG 7 progress is 
needed, and more big data infrastructure for 
SDGs should be constructed. Big Earth Data 
technology has the potential of global appli-
cation for monitoring SDG 7.1, in support of 
achieving SDG 7 worldwide. However, due to 
the limited spatial resolution of satellite remote 
sensing data, there is still room for improvement 
in some of the assessment results. In future, a 
constellation of satellites for sustainable devel-
opment should be developed to further enhance 
the supporting capacity of Big Earth Data for 
SDGs.

4.3.2	� China’s International Energy 
Cooperation Projects

Target: SDG 7.1: By 2030, ensure universal 
access to affordable, reliable and modern energy 
services.

SDG 7.2: By 2030, increase substantially the 
share of renewable energy in the global energy 
mix.

SDG 7.a: By 2030, enhance international 
cooperation to facilitate access to clean energy 
research and technology, including renewable 
energy, energy efficiency and advanced and 
cleaner fossil-fuel technology, and promote 
investment in energy infrastructure and clean 
energy technology.

Global Power Plant Database of the World 
Resources Institute, in this period, the share of 
unelectrified BUAs decreased in 117 countries 
or regions thanks to the construction of 415 
power stations. In contrast, only 17 power sta-
tions were constructed in the 18 countries with 
the largest increase in the share of unelectrified 
BUAs.

More than half of the countries/regions 
where unelectrified BUAs increased notably 
are in fragile and conflictive environments: 32 
countries/regions saw their unelectrified BUAs 
increase—by more than 0.1% in 18 of them. 
Six of these 18 countries were in medium- to 
high-intensity conflict (World Bank 2022), one 
had a fragile social environment, three experi-
enced armed conflicts (riots), and five were in 
economic recession due to the COVID-19 pan-
demic. Thus, political unrest, armed conflict, 
and economic recession are among the main rea-
sons behind the increases in unelectrified BUAs.

4.3.1.5 � Highlights

•	 A global remote sensing monitoring method 
for buildings and a global remote sensing 
dataset for 2014 and 2020 were provided to 
support global electrification policies and 
investment decisions.

•	 Electrified BUAs increased significantly 
around the world, and 29,108.62 km2 of such 
areas were added globally in 2020 compared 
to 2014, raising their share by 1.73 percent-
age points, while 117 countries/regions expe-
rienced substantial increases in electrified 
BUAs, and more than half of the countries/
regions experiencing decline were in fragile 
and conflictive environments.

4.3.1.6 � Discussion and Outlook
This study focuses on SDG 7.1, energy sup-
ply, and proposes a remote sensing monitoring 
method for the global electrification status of 
BUAs based on remote sensing data of NTLs, 
creating a global 500 m resolution remote sens-
ing monitoring dataset of building electrifica-
tion status for 2014 and 2020, which can quickly 
and accurately monitor the global electrification 
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•	 Global Power Plant Database. Source: World 
Resources Institute (http://datasets.wri.org/
dataset/globalpowerplantdatabase).

•	 China Overseas Energy Finance Database. 
Source: Global Development Policy Center. 
(https://www.bu.edu/cgef/#/all/Country).

•	 Dataset of CIECPs. Source: Aerospace 
Information Research Institute, CAS.

4.3.2.3 � Methods
China has made significant achievements in 
the construction of international cooperation 
projects in clean energy, and has contributed 
significantly to the achievement of SDG 7 in 
developing countries, mainly in SDG 7.1, SDG 
7.2, SDG 7.a.1, SDG 7.b.1. The CIECPs dataset 
shows that China has participated in 437 power 
projects, such as hydro, thermal, wind, photo-
voltaic, and nuclear power plants, and power 
transmission and distribution projects. Based on 
the CIECPs dataset, the main indicators used to 
describe China’s contributions to the construc-
tion of international projects in clean energy are 
the total installed capacity ratio, per capita new 
electricity consumption, and new power gen-
eration/new electricity demand from CIECPs. 
The total installed capacity ratio is the ratio of 
the total installed capacity of CIECPs in each 
country to its total existing installed capacity. 
Per capita new electricity consumption is the 
ratio of new electricity generation to popula-
tion in CIECPs. The new power generation from 
CIECPs has been estimated (Gao et al. 2022b), 
and the new electricity demand is the incremen-
tal electricity consumption of each country. The 
impacts of CIECPs on SDG 7.1, energy sup-
ply, in 80 countries were evaluated using three 
parameters, including the ratio of the number of 
renewable energy plants, the ratio of installed 
capacity, and the change in the share of elec-
tricity generated by renewable energy plants in 
CIECPs. The impacts of CIECPs on SDG 7.a.1 
and SDG 7.b.1 in 80 countries were evaluated 
by calculating the amount of investment in wind 
power, photovoltaic, and other renewable energy 
power plant projects and their share, as well as 
the installed capacity of per capita renewable 

SDG 7.b: By 2030, expand infrastructure 
and upgrade technology for supplying modern 
and sustainable energy services for all in devel-
oping countries, in particular least developed 
countries, small island developing States, and 
landlocked developing countries, in accordance 
with their respective programs of support.

4.3.2.1 � Background
Developing countries face widespread shortages 
in energy, finance, and technology on their paths 
to energy self-sufficiency and transformation. 
In order to achieve SDG 7, the goal of ensur-
ing universal access to affordable, reliable and 
modern energy services, the key lies in helping 
developing countries address energy shortages 
and energy transformation. To this end, under 
SDG 7, there are two targets—SDG 7.a and 
SDG 7.b—to promote developing countries’ 
green and low-carbon energy transformation 
through international cooperation. China has 
actively implemented the international coopera-
tion targets under SDG 7 in the 2030 Agenda 
by helping developing countries develop clean 
energy and promoting green and low-carbon 
energy transformation globally under the frame-
work of the Global Development Initiative and 
South–South Cooperation. Clean energy has 
always been a focus of China’s international 
cooperation projects. China has provided fund-
ing and technologies to energy projects in 
developing countries through investment, con-
struction, and equipment supply to help them 
achieve SDG 7.

This study produces a dataset and methodol-
ogy for measuring the impacts of China’s inter-
national energy cooperation projects (CIECPs) 
on SDG 7 in developing countries.

4.3.2.2 � Data

•	 National data on access to electricity, popula-
tion data, per capita electricity consumption, 
share of renewable energy generation, and 
list of fragile and conflict-affected countries. 
Source: World Bank (https://data.worldbank.
org.cn/indicator).

http://datasets.wri.org/dataset/globalpowerplantdatabase
http://datasets.wri.org/dataset/globalpowerplantdatabase
https://www.bu.edu/cgef/%23/all/Country
https://data.worldbank.org.cn/indicator
https://data.worldbank.org.cn/indicator
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Fig. 4.3   Contribution of CIECPs to the achievement of SDG 7 in 80 countries in 2015 and 2020

and Zambia (Fig. 4.4). These projects can meet 
the demands for additional electricity in 32 
countries, including Ethiopia and Pakistan, and 
help solve their electricity shortage problems. 
They have increased the per capita electricity 
consumption in 80 countries, in 10 of which the 
increase is more than 400 kW·h.

Renewable energy as a share of total electric-
ity increased in 44 host developing countries, 
promoting a global transformation toward green 
and low-carbon energy. Over half of the projects 
were renewable energy power plants (51.26%), 
with installed capacity making up 41.35% of 
the total. They have raised the share of renew-
able energy electricity generation in 44 countries 
by an average rate of 3.70% and filled the gap of 
renewable energy power plants in five countries, 
including Saudi Arabia. In 2020, the installed 
capacity of CIECPs renewable energy power 
plants was 1.37 times that of 2015.

Chinese energy funding for developing 
countries mainly goes into renewable energy 
to support their development and use of clean 
energy. According to China’s Global Energy 
Finance Database of the Global Development 
Policy Center, from 2000 to 2020, the China 
Development Bank and the Export–Import 
Bank of China provided USD 234.6 billion in 
overseas energy investment, of which 42.75% 
went into renewable energy as direct invest-
ment. Power stations received USD 80.3 

energy power plants. These indicators were cal-
culated for 2015, 2020, and all years of com-
pletion of CIECPs to evaluate the impacts of 
CIECPs on clean energy in each country.

4.3.2.4 � Results and Analysis
This study assesses the impacts of CIECPs on 
the achievement of SDG 7 in developing coun-
tries using spatial statistics and analysis of Big 
Earth Data, including the World Bank’s global 
population and per capita electricity consump-
tion, World Resources Institute’s Global Power 
Plant Database, and an independently devel-
oped CIECP dataset. China has been involved 
in 437 energy projects in 80 countries through 
investment, construction, or equipment supply 
(Gao et al. 2022b), making a notable contribu-
tion to those countries’ implementation of SDG 
7 (Fig. 4.3). Specifically, CIECPs have increased 
the installed capacity ratio and per capita elec-
tricity consumption and the ratios of those from 
renewal sources in the host developing coun-
tries. China’s investment in renewable energy 
in developing countries from 2000 to 2020 
exceeded USD 100 billion.

Assistance to developing countries in 
addressing electricity shortages has improved 
global access to electricity. CIECPs account for 
more than 50% of the total installed capacity in 
13 countries, including Angola and Guinea, and 
20–50% in 20 countries, including Myanmar 
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Fig. 4.4   Percentage of the installed capacity of CIECPs to total installed capacity in host developing countries during 
2000–2019

increased per capita electricity consumption 
in 80 countries, raising the share of renew-
able energy power generation in 44 countries 
and the per capita renewable energy installed 
capacity in 49 developing countries.

4.3.2.6 � Discussion and Outlook
This study produced a methodology and data-
set for assessing the impacts of CIECPs on the 
achievement of SDG 7 targets in developing 
countries for SDG 7.1, SDG 7.2, SDG 7.a and 
SDG 7.b. The dataset can be used to support 
decision-making on the achievement of SDG 7 
targets and energy transformation in developing 
countries, especially international cooperation 
on clean energy projects.

CIECPs have contributed significantly to 
the achievement of SDG 7 targets in develop-
ing countries, but there is still a long way to 
go before SDG 7 is achieved globally. A global 
partnership for development is crucial for devel-
oping countries to achieve SDG 7. The inter-
national community should give even more 
support to developing countries, which generally 
lack the financial resources and technologies to 
develop renewable energy. Future studies should 

billion in direct investment, including 38.73% 
in renewable energy. In 2021, President Xi 
Jinping announced that China would no longer 
build new coal-fired power projects abroad 
and that renewable energy would become the 
main destination of Chinese overseas energy 
investment.

CIECPs have substantially increased per 
capita renewable energy installed capacity in 49 
developing countries, in support of their energy 
transformation. The total renewable energy 
installed capacity of CIECPs amounts to 85.42 
million kW, or 26.90 W per capita. Renewable 
CIECPs are located in 55 countries, 49 of which 
are developing countries. Thanks to them, 12 
host developing countries have seen an increase 
of more than 50 W in their per capita renewable 
energy installed capacity, with the maximum 
increase being 189.78 W.

4.3.2.5 � Highlights
•	 China engages in international energy coop-

eration (2000–2019) to help achieve SDG 
7 in developing countries, where China 
has invested more than USD 100 billion in 
renewable energy. China’s CIECPs have 
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participants’ abilities, boosting the development 
of the solar industry, and strengthening bilateral 
and multilateral cooperation and exchange, so as 
to provide decision support for the development 
of foreign aid training on solar energy utiliza-
tion, thus continuously improving the training 
program and promoting international coopera-
tion for the realization of the 2030 Agenda.

4.3.3.2 � Data

•	 Statistical data on recipient countries and 
participants under China’s foreign aid train-
ing programs on solar energy utilization from 
1991 to 2021.

•	 Statistical data from the International Energy 
Agency (IEA), International Renewable 
Energy Agency (IRENA), and General 
Administration of Customs of the People’s 
Republic of China from 2012 to 2020.

4.3.3.3 � Methods

(1)	 Perform statistical analysis on the number 
of countries and trainees under China’s for-
eign aid training programs on solar energy 
utilization from 1991 to 2021 to find the 
spatial and temporal distribution and then 
analyze the characteristics of the program.

(2)	Analyze the impacts of foreign aid training, 
through illustrative examples, on interna-
tional exchange, cooperation, and technology 
promotion and transfer.

4.3.3.4 � Results and Analysis

(1)	 China has been adhering to the framework 
of South–South Cooperation on foreign aid 
training, reflecting the cooperative devel-
opment relationship of mutual support and 
assistance between China and other devel-
oping countries.

As shown in Fig. 4.5, the countries and regions 
benefiting from China’s foreign aid training pro-
grams on solar energy utilization spread across 
five continents, involving 133 countries, of 
which 124 are developing countries, accounting 

assess the impacts of CIECPs on the achieve-
ment of SDG 7 targets in developing countries 
in key regions such as Sub-Saharan Africa and 
Southeast Asia.

4.3.3	� China’s International Training 
on Solar Energy Utilization

Target: SDG 7.2: By 2030, increase substan-
tially the share of renewable energy in the global 
energy mix.

SDG 7.a: By 2030, enhance international 
cooperation to facilitate access to clean energy 
research and technology, including renewable 
energy, energy efficiency and advanced and 
cleaner fossil-fuel technology, and promote 
investment in energy infrastructure and clean 
energy technology.

4.3.3.1 � Background
China has been implementing human resource 
development and cooperation projects since the 
early 1950s, and foreign aid human resources 
training is one of the main patterns, referred to 
as foreign aid training (An 2013). SDG 7.2 and 
SDG 7.a set out specific objectives for renewa-
ble energy, and solar energy, as a key renewable 
source, plays a crucial role in energy accessi-
bility and transition for all countries. From 
1991 to 2021, China has conducted hundreds 
of international training courses and seminars 
on solar energy utilization, sponsored by the 
Ministry of Foreign Affairs, Ministry of Science 
and Technology, and Ministry of Commerce of 
the People’s Republic of China, most of which 
lasted from 15 to 60 days, with the working lan-
guages of English, French, Russian, and Arabic. 
The training programs helped recipient countries 
cultivate their own managers and technicians in 
the areas of planning, policy formulation, pro-
ject implementation, skill improvement, and 
international cooperation (The Administrative 
Center for China’s Agenda 21 2020). The case 
study, in terms of characteristics of China’s 
foreign aid training, analyzed the role of inter-
national training programs in enhancing the 
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Fig. 4.5   Distribution of participants under China’s foreign aid training programs on solar energy utilization 
(1991–2021)
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Fig. 4.6   Number of trainees and countries under China’s foreign aid training programs on solar energy utilization 
(1991–2021). Note No data available for 1992 and 2020

a maximum of 180 trainees in 2015 and 2019. 
The number of trainees and countries has been 
increasing year on year, and the scale has been 
expanding, especially after 2013 when the aver-
age annual growth rate of participants climbed 
to 12.93%. This indicates that since China 
proposed the BAR initiative in 2013, it has 
increased its training efforts in BAR countries.

for 93.23%. Through foreign aid training, China 
has effectively implemented global development 
cooperation and jointly promoted the implemen-
tation of the SDGs.

Figure 4.6 shows the data of trainees and 
countries under China’s foreign aid training pro-
grams from 1991 to 2021. By the end of 2021, 
about 2,000 participants had been trained, with 
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Fig. 4.7   Continental share under China’s foreign aid 
training programs on solar energy utilization (1991–2021)

39.02%

1.93%
6.35%

49.70%

3.00%

Asia
Europe
America
Africa
Oceania

2012
0

100

200

300

400

500

600

2013 2014 2015 2016 2017 2018 2019 2020

Years

N
u

m
b

er
 o

f 
em

p
lo

y
ed

 p
eo

p
le

 i
n

 t
h
e

g
lo

b
al

 s
o

la
r 

in
d

u
st

ry
/1

0
,0

0
0

 p
er

so
n
s

Solar thermal Photovoltaics

Fig. 4.8   Number of employed people in the global solar 
industry (2012–2020)

the number of trainees under the programs has 
increased rapidly, by an average of 10.76% 
annually. The growing number of employed 
people in the solar industry has led to a greater 
demand for professional training in this area. 
China, as the largest country in solar energy 
utilization, has strengthened cooperation with 
developing countries and shared its experience to 
enhance the capability of those employed people 
in recipient countries. For example, Mr. Koblan 
Aluko Narcisse from the Ministry of Mines, 
Petroleum and Energy of Côte d'Ivoire, became 
a project manager promoting solar products 
after attending the training course back in his 
home country; Mr. Mukesh from the Alternative 
Energy Promotion Centre in Nepal and Mr. 
Komal from the Nepal Electricity Authority were 
both promoted and appointed to key positions 
shortly after their training in China.

(3)	 Adhering to the principle of “mutual benefit”, 
under foreign aid training programs, China 
has promoted economic and trade coopera-
tion and facilitated the development of solar 
energy utilization in developing countries.

The foreign aid training programs help to bridge 
the information gap between China’s solar enter-
prises and various countries, facilitating better 
international business for Chinese enterprises 
and enabling more technologies and products 
to reach the international market. Figure 4.9 
shows that from 2014 to 2020, China’s solar 
cell exports grew from 691 million to 2,722 
million, with the export value increasing from 
CNY 75.757 billion to CNY 137.005 billion. In 
the face of declining prices, both China’s export 
volume and export value of solar cells grew 
by an average of 31.55% and 12.58% annu-
ally. China is the world’s largest producer of 
solar products. During the training course, par-
ticipants were arranged to visit Chinese com-
panies for on-site teaching, while with the help 
of such platforms, companies also made efforts 
to showcase their advantages. By visiting enter-
prises, participants were able to directly learn 
about technology and product information from 
China, plan cooperation, and actively promote 
the implementation of cooperation projects after 

Figure 4.7 demonstrates that 95.07% of par-
ticipants under China’s foreign aid training are 
from the Asian, African, and American regions, 
with Africa accounting for 49.70% of the total. 
This reflects that China’s assistance to develop-
ing countries is mainly based on the framework 
of South–South Cooperation.

(2)	 In line with the concept of “teaching people 
how to fish”, under the foreign aid train-
ing programs, China has provided human 
resource support in enhancing the capacity 
of developing countries to develop on their 
own.

With the increased use of solar energy through-
out the world, more people are needed in this 
field. Figure 4.8 reflects the number of employed 
people in the global solar industry from 2012 
to 2020, with the population increasing from 
2.25 million to 4.8 million, reaching an aver-
age annual growth rate of 9.93%. Since 2012, 

4.3  Case Studies
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Fig. 4.9   Global installed capacity of photovoltaics and China’s export volume of solar cells (2014–2020)

achievements of UNIDO at its 50th anniver-
sary (UNIDO 2016). Professor Johannes A. van 
Ginkel, former Under-Secretary-General of the 
UN, delivered a special report on “Prospects for 
sustainable energy development in low-lying 
countries”, introducing to the participants the 
current status and future of solar energy utiliza-
tion in developed countries, which can be a good 
reference for developing countries.

4.3.3.5 � Highlights

•	 From 1991 to 2021, developing countries 
accounted for 93.23% of trainees receiving 
foreign training on solar energy utilization 
in China, while countries in Asia, Africa, and 
America accounted for 95.07% of the total 
number of trainees. Among them, African 
trainees accounted for 49.70% of the total, 
indicating that China’s foreign training on 
solar energy utilization in developing coun-
tries is mainly based on the framework of 
South–South Cooperation. Since 2013, the 
number of training countries and trainees 
has increased rapidly, with an average annual 
growth of 12.93%, which indicates that China 
has continuously increased its cooperation 
with countries under the BAR Agreement and 
deepened South–South Cooperation.

•	 From 2012 to 2020, the average annual 
growth rate of global solar energy utilization 

returning to their homeland, thereby increasing 
the export volume of Chinese solar products.

(4)	 China has been adhering to the princi-
ple of openness on foreign aid training, 
strengthening cooperation with international 
organizations, and facilitating technology 
promotion and transfer for the realization of 
the SDGs.

By the end of 2021, China has enhanced multi-
lateral cooperation with more than 10 interna-
tional organizations and institutions, including 
the United Nations Development Programme 
(UNDP) and the United Nations Industrial 
Development Organization (UNIDO). So far, 
the training programs have supported more than 
240 officials and experts from international agen-
cies to come to China to give lectures or conduct 
technical exchanges. More than 3200 foreign 
leaders, envoys, and experts from 120 coun-
tries visited the training institutions in China, 
and cooperation agreements between China 
and more than 50 of those countries have been 
reached. Under the training programs, interna-
tional organizations have strengthened exchange 
and propelled the transfer of advanced and appli-
cable solar technologies worldwide to develop-
ing countries. The “International Solar Energy 
Center for Technology Promotion and Transfer” 
project, carried out by the Chinese government 
and UNIDO, was rated as one of the six major 
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demonstrations, product applications, and 
services, so as to promote the transfer of 
more solar technologies and products to 
developing countries.

(4)	 Foreign aid training is an important part of 
international cooperation. Under the Global 
Development Initiative, more efforts should 
be made to continuously strengthen foreign 
aid training programs on solar energy utili-
zation, make the programs more targeted 
and effective, and help recipient coun-
tries enhance their capacity for independ-
ent development and jointly implement the 
SDGs.

4.4	� Summary

This chapter examines methodologies for moni-
toring and analyzing progress in SDG 7 based 
on Big Earth Data, centering on two themes 
under SDG 7: access to electricity and interna-
tional energy cooperation. The results show that 
notable progress on SDG 7 has been made glob-
ally and in China in recent years. To facilitate 
the global realization of SDG 7, we offer the fol-
lowing recommendations.

(1)	 Further improvement in the capacity of 
Big Earth Data to support SDG 7 is needed 
and more big data infrastructure for SDGs 
should be constructed. Big Earth Data tech-
nology has the potential for global monitor-
ing of SDG 7.1. Due to the limited spatial 
resolution of satellite remote sensing data, 
however, there is still room for improve-
ment in some of the assessment results. In 
future, a constellation of satellites for sus-
tainable development should be developed 
to further enhance the supporting capacity 
of Big Earth Data for the SDGs.

(2)	 Developing countries may address their 
energy shortages by building new power 
plants, and renewable energy should be 
the focus of this endeavor. Most of the 
unelectrified BUAs in the world are found 

practitioners was 9.93%, increasing the 
demand for technical training and exchange. 
China’s training not only enhances trainees’ 
personal abilities and shares China’s devel-
opment experience, but also brings together 
multiple international institutions, strength-
ens multilateral cooperation, and promotes 
global solar energy technology transfer. From 
2014 to 2020, the average annual growth rate 
of China’s export volume and export value of 
solar cells was 31.55% and 12.58%, respec-
tively. Chinese enterprises established com-
munication and information bridges through 
foreign aid training, expanded international 
business, and increased export volume.

4.3.3.6 � Discussion and Outlook

(1)	 About 733 million people around the world 
still lack access to electricity, and hence it 
is urgent to accelerate energy accessibil-
ity. Foreign aid training programs are a less 
expensive and more effective way to realize 
their energy goals. In particular, the train-
ing programs for the least developed coun-
tries can improve the policy and skill level 
of employed people in the solar industry, 
further promote the use of solar energy, and 
ultimately improve energy utilization in 
recipient countries.

(2)	 Solar energy plays a vital role in achieving 
the goal of significantly increasing the pro-
portion of renewable energy in the global 
energy mix. Foreign aid training programs 
enable developing countries to learn from 
China’s experience in solar energy utiliza-
tion and provide them with assistance in 
policy formulation, energy transition, and 
planning to increase the share of renewable 
energy.

(3)	 Through foreign aid training, China 
will further expand international coop-
eration, jointly carry out international 
scientific and technological cooperation 
projects with developing countries, and 
provide them with technical advice and 

4.4  Summary



86 4  SDG 7, Affordable and Clean Energy

References

An Y (2013) Analysis on the history and problems of 
China's foreign aid training. Beijing, Master's Thesis 
of China Foreign Affairs University (in Chinese)

Corbane C, Florczyk A, Pesaresi M, et al. (2018) GHS 
built-up grid, derived from Landsat, multitempo-
ral (1975–1990–2000–2014), R2018A. https://doi.
org/10.2905/jrc-ghsl-10007

Elvidge C, Zhizhin M, Ghosh T et al (2021) Annual time 
series of global VIIRS nighttime lights derived from 
monthly averages: 2012 to 2019. Remote Sens 13:922

Gao XM, Wu MQ, Li C et al (2022a) Influence of 
China’s overseas power stations on the electric-
ity status of their host countries. Int J Digital Earth 
15(1):416–436

Gao XM, Wu MQ, Niu Z et al (2022b) Global identifica-
tion of unelectrified built-up areas by remote sensing. 
Remote Sensing 14(8):1941

The Administrative Center for China’s Agenda 
21, Ministry of Science and Technology of the 
People’s Republic of China & Center for South-
South Cooperation in Technology Transfer (2020) 
Exploration of renewable energy technology transfer 
model in South-South cooperation. Beijing, Science 
Press (in Chinese)

The United Nations Industrial Development 
Organization, The Ministry of Commerce, China 
(2016) Marking the 50th Anniversary of UNIDO 
UNIDO-China Cooperation

World Bank (2022) FY22 List of fragile and con-
flict-affected situations. The World Bank Group. 
https://thedocs.worldbank.org/en/doc/bb52765f38
156924d682486726f422d4-0090082021/original/
FCSList-FY22.pdf

in developing countries, but 117 countries 
have seen a reduction in unelectrified build-
ings due to the construction of power plants. 
Developing countries are suggested to vig-
orously develop renewable energy, such as 
wind and solar, because these renewable 
energy sources are widely available and 
easy to develop and use.

(3)	 A global partnership for development is cru-
cial for developing countries to achieve SDG 
7. The international community should give 
even more support to developing countries, 
which generally lack the financial resources 
and technologies to develop renewable 
energy. CIECPs play an important role in 
helping developing countries achieve the 
targets of SDG 7 globally, which requires 
greater attention and support from the inter-
national community to developing countries.

The costs of new energy sources, such as wind 
power and photovoltaic power generation, are 
already comparable to those of traditional fos-
sil energy sources. In future, new energy sources 
will gradually become the mainstay of the energy 
systems of countries around the world, signifi-
cantly reducing the carbon emissions of the global 
energy system and enhancing the energy auton-
omy of countries.
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SDG 11, Sustainable Cities 
and Communities

5.1	� Background

Cities are the engine of economic growth, con-
tributing about 60% of the global gross domes-
tic product (GDP). At the same time, they are 
the main battleground in our fight against cli-
mate change. Cities generate about 70% of the 
global carbon emissions and use more than 60% 
of all resources. SDG 11 aims to make cities 
and human settlements “inclusive, safe, resil-
ient, and sustainable,” which means, among 
other problems, overcoming the challenges of 
congestion, lack of funds, and infrastructure 
damage in ways that allow them to continue 
to thrive and grow, improve resource use, and 
reduce pollution and poverty. However, the 
average worldwide urban solid waste collection 
rate was 82% by 2022, and the rate under man-
agement in controlled urban facilities was 55%. 
Only 3% of the 6475 cities in 117 countries 
and regions around the world do not exceed the 
threshold of air quality guidelines of the World 
Health Organization (WHO).

With the development and progress of Earth 
observation and big data technology, Big Earth 
Data methods that pull together remote sensing, 

statistics, and geographic information play an 
important role in the monitoring and evaluation of 
SDG 11 indicators and are becoming widely used 
in evaluating sustainability, such as the evaluation 
of the urban atmospheric environment, sustain-
able land use, and social and economic develop-
ment. In the process of advancing the SDGs, the 
focus of research has been shifting from the con-
struction of SDG indicator systems to the moni-
toring and evaluation of SDG progress.

Centering on three themes—monitoring 
and evaluating the urbanization process, World 
Heritage protection, and urban green space for 
SDG 11 at a community scale—this chapter 
draws on the research from the previous three 
editions of the report and uses Big Earth Data 
to monitor and evaluate individual and multiple 
SDG 11 targets at the global scale.

5.2	� Main Contributions

This chapter evaluates the progress of SDG 
11.3, SDG 11.4, and SDG 11.7 through six case 
studies at the global scale. The main contribu-
tions are as follows: (Table 5.1).

© The Editor(s) (if applicable) and The Author(s) 2024 
H. Guo, Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road,  
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5.3	� Case Studies

5.3.1	� Comprehensive 
Assessment of Global 
Urban Land Use Efficiency, 
2000–2020

Target: SDG 11.3: By 2030, enhance inclusive 
and sustainable urbanization and capacity for 
participatory, integrated, and sustainable human 
settlement planning and management in all 
countries.

5.3.1.1 � Background
Since the beginning of the twenty-first century, 
cities have increasingly become the center of the 
global discussion on sustainable development, 
and urbanization has become a key agenda in 
international development policies. SDG 11.3.1 
is the ratio of land consumption rate to popu-
lation growth rate (LCRPGR). The LCRPGR 
indicator aims to determine urban land use effi-
ciency, providing an important tool for monitor-
ing and evaluating the sustainable development 
of cities. However, SDG 11.3.1 is a Tier II indi-
cator, meaning it must urgently address the issue 
of missing data. Therefore, this case discusses 
the monitoring and assessment of urban land use 
efficiency at a global scale, the results of which 
can inform decisions on the sustainable develop-
ment of cities around the world.

5.3.1.2 � Data

•	 A dataset of 1702 urban built-up areas (popu-
lation > 300,000) from 2000 to 2020 accord-
ing to the database released by the UN World 
Urbanization Prospects 2018 (https://popula-
tion.un.org/wup/).

•	 This case study independently generated data 
products for a global 30 m urban impervious 
surface in five periods from 2000 to 2020.

5.3.1.3 � Methods
According to the National Geomatics Center 
of China’s minimum urban land mapping unit 
standard, an 8 × 8-pixel window was considered 
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Data pre-processing: Raster clip from GISA of 1,702 cities map and conversion to polygons in
vcctor format

Critcrion 1: Minimum urban
land arca and distance bctwccn

cities

Form a contiguous urban area (area > 200,000
m2 and distance between arca and urban land

 < 200 m)

Eliminate fine-grained pattern spots and fill holes
in the main urban area

Preserve functionally close
suburban areas

Data post-processing: Layer overlap for spatial accuracy and temporal consistency

Criterion 2: The smallest
cartographic unit of urban land

Artificially supplement open public permeable
surface areas, such as parks, green spaces. 

Criterion 3: The functional relationship
is closely related, and the impervious area
in the suburbs is regarded as a part of the

BUA

Criterion 4: The public permeable surface
area within the city is regarded as part of

the BUA

Fig. 5.1   Flowchart showing the process of converting the impervious surface area map to the UBA product

excluded from UBAs in earlier years. Our inde-
pendently generated global standardized UBA 
dataset not only includes the precise boundaries 
of impervious surfaces in cities, but also retains 
the continuous distribution pattern of UBAs, 
consistent with visual interpretation results based 
on high-resolution Google Earth imagery.

According to our independently generated 
data products and the population data released 
by the UN World Urbanization Prospects in 
2018, we used SDG 11.3.1 to calculate land 
use efficiency for cities with a population above 
300,000 around the world. The LCRPGR calcu-
lating procedures were written as the following 
equation:

where Urbt represents the total area of the city’s 
UBA in the year t, Urbt+n represents the total 
UBA of the city in the year t + n, n represents the 
year between the two periods, Popt is the total 
population in the year t, and Popt+n is the total 

LCRPGR =
LCR

PGR
=

ln(Urbt+n/Urbt)

ln
(

Popt+n/Popt
) ,

the optimal scale for remote sensing images 
with a spatial resolution of 30 m. Therefore, the 
area of the smallest plot was 57,600 m2 in the 
main urban area, connecting the gaps within the 
primary urban area, each with an area of 57,600 
m2, to create continuous zones. Meanwhile, 
all the patches with a distance of less than 200 
m were aggregated into one intact zone. The 
densely populated peripheral urban area was 
also regarded as an urban built-up area (UBA). 
In addition, public spaces were considered 
parts of UBA, such as man-made parks and 
green patches. After the spatial transformation 
of UBA, we performed an artificial check and 
calibration of the initial UBA products with the 
help of high-resolution Google Earth imagery. 
Finally, we obtained quality-controlled UBA 
products for 1702 cities. The details of the 
method are shown in Fig. 5.1.

In addition, this case used layer stacking tech-
niques for data post-processing to ensure that 
urban land identified as UBAs in earlier years 
remained unchanged, while non-urban land was 
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typical cities worldwide from 2000 to 2020 
reveal that the LCR was still faster than PGR 
between 2015 and 2020, but compared with 
the period between 2000 and 2005, the global 
urban land expansion and population growth 
were moving in a more balanced way. The pro-
portion of cities with LCRPGR larger than 1.0 
decreased from 65.10 to 63.57%; those with 
LCRPGR between 0.0 and 1.0 increased from 
28.91 to 30.91%; those with negative popula-
tion growth (with LCRPGR below 0) fell from 
6.00% to 5.52% (Fig. 5.4a). The change in 
LCRPGR in globally representative cities from 
2000 to 2020 showed a drop from 1.65 in the 
2000–2005 period to 1.31 in the 2015–2020 
period in the indicator of global urban land use 
efficiency, demonstrating a positive trend of bal-
anced development of global urbanization, but 
the speed of land urbanization still exceeded that 
of population urbanization (Fig. 5.4b).

Global urbanization shows significant 
regional differences, with land urbanization in 
Europe occurring faster than population urbani-
zation. The change in the LCRPGR indicator of 
typical cities across major continents from 2000 
to 2020 (as shown in Fig. 5.5) indicates that, at 
different times, except for Asia, the LCRPGR 
indicator has exhibited a decreasing trend on 
all continents. Taking the period from 2015 
to 2020 as an example, the results are ranked 
in the following order: Europe (2.76) > Asia 
(1.59) > North America (1.41) > Africa (1.13), 
South America (1.13), > Oceania (1.01), indi-
cating that the LCR in Europe is significantly 
higher than the PGR, mainly due to Europe’s 
slow or negative population growth.

5.3.1.5 � Highlights

•	 Independent production of a dataset of 1702 
UBAs (population > 300,000) from 2000 to 
2020.

•	 Global urbanization is generally develop-
ing in a more balanced way. The indicator 
of global land use efficiency decreased from 
1.65 in 2000–2005 to 1.31 in 2015–2020, but 

population in the year t + n. LCR and PGR rep-
resent the land consumption rate and population 
growth rate, respectively.

5.3.1.4 � Results and Analysis

1.	 Map of the global urban built-up area 
dataset (GUBAD)

The UN Human Settlements Programme (Atlas 
of Urban Expansion) (http://www.atlasofur-
banexpansion.org/) and the World Bank (https://
www.worldbank.org/en/home) also produced 
their own UBA datasets. The UN-Habitat data-
set provided UBA data only for 220 cities in 
2000 and 2015 (Angel et al. 2016), and the 
World Bank provided UBA data for about 1000 
Asian cities in 2000 and 2010. Our global urban 
built-up area dataset (GUBAD) products have 
more extensive coverage than other datasets. We 
chose 76 matching pairs of corresponding cit-
ies from GUBAD and the UN-Habitat dataset. 
The results show that GUBAD has higher cor-
relations with the UN-Habitat dataset (R2 = 0.70 
in 2000 and R2 = 0.83 in 2015) than the World 
Bank dataset (R2 = 0.60 in 2000 and R2 = 0.68 
in 2010), as shown in Fig. 5.2c and d. In total, 
our dataset has broader coverage and higher 
accuracy, and therefore, it has more potential for 
urban analysis.

This case study independently generated 
data products for a global 30 m urban impervi-
ous surface in five periods from 2000 to 2020. 
Using the definition of a UBA recommended 
by the UN-Habitat, we converted impervious 
surfaces into standardized UBA products (Jiang 
et al. 2021, 2022). Combining them with the 
population data of 1702 cities with a population 
above 300,000 provided by the 2018 Revision 
of World Urbanization Prospects, we calculated 
SDG 11.3.1 to comprehensively compare, ana-
lyze, and evaluate global urban land use effi-
ciency (Fig. 5.3).

While global urbanization has developed in a 
more balanced way, land urbanization still out-
paces population urbanization. The proportions 
of cities in different LCRPGR categories among 
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Fig. 5.2   Corresponding to the scatter plot of matching 
cities, each point represents a value of the UBA of the city. 
The plots show comparisons of: a UN-Habitat data with 

the global data in 2000, b UN-Habitat data with the global 
data in 2015, c World Bank data with the global data in 
2000, and d World Bank data with the global data in 2010

converted into standardized UBA products. The 
ratio of LCRPGR was used to analyze the spa-
tiotemporal differentiation patterns of global 
urbanization from the perspectives of land and 
population and evaluate the global urbaniza-
tion process. In the future, the plan is to achieve 
spatial coupling between population and eco-
nomic data within UBA, and improve the quan-
titative methods for coordinating the relationship 
between land, population, and economic urbani-
zation, in order to monitor and evaluate the 
urbanization process at a global scale.

the speed of land urbanization still exceeds 
that of population urbanization.

•	 There are obvious regional differences in 
global urbanization. In Europe, the speed of 
land urbanization is much faster than that of 
population urbanization.

5.3.1.6 � Discussion and Outlook
This case study independently generated a prod-
uct of 1702 UBA (population > 300,000) for 
a global 30 m urban impervious surface from 
2000 to 2020, and impervious surfaces were 
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Fig. 5.3   Change in the LCRPGR indicator of global cities from 2000 to 2020

functions usually require various spatial combi-
nations of land cover. Thus, the spatial combina-
tion of land cover should be taken into account 
when assessing land use efficiency aside from 
the traditional indicators of land cover (e.g., 
patch count and area).

5.3.2.2 � Data

•	 DMSP-OLS NTL annual composited data 
(2000–2013).

•	 NPP-VIIRS NTL monthly composited data 
(January 2012–December 2021).

•	 GlobeLand30 land cover dataset (2010 and 
2020).

5.3.2.3 � Methods

1.	 Construction of an extended time series 
(2000–2021) of global “NPP-VIIRS-like” 
NTL data

The median value of NPP-VIIRS NTL monthly 
composited data from 2012 to 2021 was calcu-
lated year by year to composite the NPP-VIIRS 
annual data. Based on DMSP-OLS NTL data 
and NPP-VIIRS NTL data from 2012 and 2013, 
the relationship between the two datasets was 

5.3.2	� Changes in Global Nighttime 
Light Intensity

Target: SDG 11.3: By 2030, enhance inclusive 
and sustainable urbanization and capacity for 
participatory, integrated, and sustainable human 
settlement planning and management in all 
countries.

5.3.2.1 � Background
Reasonable utilization of urban land resources 
supports the Urban Sustainable Development 
Goals (Wu et al. 2011) and affects biodiversity 
and ecosystem services (Estoque and Murayama 
2016; McDonald et al. 2020). The pre-con-
ditions of assessing land use efficiency are to 
measure the urbanization rate and quantify 
urban land use. Traditionally, most of the indi-
cators used to measure the urbanization rate are 
derived from statistical data, which always have 
a fixed spatiotemporal scale and low update fre-
quency. The DMSP-OLS and NPP-VIIRS NTL 
data have been an alternative proxy, but they are 
incomparable since their sensor designation and 
data quality are different. Consequently, they 
cannot be directly adopted to assess long-term 
land use efficiency. Moreover, diverse urban 

5.3  Case Studies
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Fig. 5.4   LCRPGR in the world from 2000 to 2020

including the area and number of land cover 
patches; and (2) the spatial combinations of land 
cover based on the adjacent times between any 
two land covers (Barnsley and Barr 1996).

3.	 Evaluation of Land Use Efficiency 
Considering the Combined Spatial 
Characteristics of Land Cover

Parcels in Fuzhou, China, were taken as research 
units. The total intensity of night light was 
counted parcel by parcel as an indicator reflect-
ing the urbanization level, that is, the depend-
ent variable. The area and number of land cover 
patches, as well as the spatial combination of 
land cover extracted parcel by parcel, were used 

simulated based on an improved auto-encoder 
model, and then the DMSP-OLS NTL data from 
2000 to 2012 were corrected into “NPP-VIIRS-
like” NTL data based on the simulated relation-
ship. Because 2000–2012 “NPP-VIIRS-like” 
NTL data have the same quality as 2013–2021 
NPP-VIIRS NTL data, these two datasets can be 
directly combined into an extended time-series 
(2000–2021) NTL dataset (Chen et al. 2021).

2.	 Extraction of Land Cover Characteristic 
Information

Two types of land cover characteristic informa-
tion were set up in this case study, including (1) 
the traditional indicators of land cover, mainly 
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Fig. 5.5   Change in the LCRPGR indicator on each continent around the world from 2000 to 2020

The global economy showed an orderly 
growth amid a volatile trend during 2000–
2021 (Fig. 5.7). In the periods 2009–2011 and 
2020–2021, the global economy experienced 
temporary downturns due to the global Great 
Recession and the COVID-19 pandemic. At 
the national scale, China was affected by the 
global Great Recession but with low impacts, 
and is still in the stage of robust develop-
ment; the United States, Italy, Australia, and 
other countries were greatly affected, and the 
NTL intensity decreased significantly; Brazil, 
South Africa, and other countries were slightly 
affected by the crisis and entered a stage of rapid 
development afterward.

To quantify whether the spatial combination 
of land cover will affect land use efficiency, the 
above explanatory variables were combined into 
six variable sets in this case study, as shown in 
Table 5.2. The results show that the XGBoost 
model has the highest R2 in both 2010 and 2020, 
when the spatial combination of land cover was 
added, which proves that the spatial combination 
of land cover is an important factor for the eval-
uation of land use efficiency.

Based on the SHapley Additive exPlanations 
(SHAP) values in Fig. 5.8, we found that the 

as independent variables. The eXtreme Gradient 
Boosting (XGBoost) model was adopted to 
evaluate whether the spatial combination of land 
cover can better explain the urbanization level.

5.3.2.4 � Results and Analysis
The high NTL intensities were clustered in the 
region from 20°N to 45°N, while those with 
lower values were located in the Southern 
Hemisphere (Fig. 5.6). The region from 30°N 
to 45°N had no significant change in the NTL 
intensity during the 2000–2010 period, but saw 
a great enhancement after 2010. For the region 
from 15°N to 30°N, the NTL intensity increased 
from 2000 to 2015, which was mostly caused by 
China’s development. In the longitudinal direc-
tion, one of the NTL intensity peaks within the 
Western Hemisphere was mostly located in the 
United States (from 70°W to 100°W). In the 
Eastern Hemisphere, there were three significant 
peaks in Europe, the Middle East, and China 
(from west to east). In addition, on the urban 
scale, the extended time-series NTL dataset in 
this case can provide more detailed information 
for the assessment of urbanization, including the 
identification of road networks and urban spatial 
structures.

5.3  Case Studies
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Fig. 5.6   Distribution of the intensity of “NPP-VIIRS-like” NTL data

(CL-G) had the highest impacts on NTL inten-
sity in 2020. Generally, the spatial combination 
of land cover associated with artificial surfaces 
and non-artificial surfaces can differently affect 
the NTL intensity.

The spatial combination of land cover associ-
ated with an artificial surface is the largest con-
tributor to NTL intensity. For example, in 2020, 
the spatial combination between water bodies 
and artificial surfaces (WB-AS) had an increas-
ing contribution (Fig. 5.9). The Min River and 
Wulong River are the two most important water 
bodies in Fuzhou, with many settlements and 
commercial activities concentrated near the two 
rivers. Meanwhile, the contribution of the spatial 
combination between grassland and artificial sur-
faces (G-AS) in residential and industrial areas is 
positive, while in the mountainous and hilly areas, 
the contribution changes to negative (Fig. 5.9).

spatial combination of land cover had significant 
effects on NTL intensity, as well as the tradi-
tional indicators of land cover. In 2010, the area 
of artificial surface (AS-a), the area of cultivated 
land (CL-a), the spatial combination between 
artificial surface and bare land (AS-B), the area 
of forest (F-a), the area of bare land (B-a), the 
spatial combination between water body and 
artificial surface (WB-AS), the patch count of 
cultivated land (CL-c), the spatial combina-
tion between cultivated land and forest (CL-F), 
and the patch count of ice (I-c) had the highest 
impacts on NTL intensity, while As-a, CL-a, the 
area of water body (WB-a), the patch count of 
artificial surface (AS-c), F-a, WB-AS, the spatial 
combination between forest and bare land (F-B), 
the spatial combination between cultivated land 
and bare land (CL-AS), and the spatial combi-
nation between cultivated land and grassland 
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Fig. 5.7   Variation of the total NTL intensity globally and in six representative countries during 2000–2021

greening can improve air quality and living con-
ditions, more human activity will be attracted.

The spatial combination of land cover asso-
ciated with non-artificial surfaces has nega-
tive effects on the NTL intensity. For example, 
the spatial combination between cropland and 

The spatial combination between forests and 
artificial surfaces (F-AS) has a “U-shape” contri-
bution to NTL intensity (Fig. 5.10). The low con-
tributions were concentrated in rural areas, while 
the high contributions were mostly located in 
urban areas. These results imply that since urban 

5.3  Case Studies
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Table 5.2   Evaluation accuracy 
of land use efficiency

Note C represents the number of land cover patches in each parcel, A represents 
the area of land cover in each parcel, and SC represents the spatial combination of 
land cover in each parcel

Indicators Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Land cover C A SC C + SC A + SC C + A + SC

R2 (2010) (%) 63.4 69.1 67.0 74.9 77.5 82.4

R2 (2020) (%) 71.8 83.9 79.6 85.1 91.0 98.1

Fig. 5.8   SHAP value of Model 6 in 2010 and 2020

Fig. 5.9   SHAP value of WB-AS and G-AS in 2010 and 2020

the ten years, the population and urbanization 
rates in Fuzhou were increasing, as well as the 
interactions within Fuzhou City. Sequentially, 
the non-artificial surfaces became sensitive to 

grassland (CL-G) had low contributions to NTL 
intensity since its SHAP value was equal to 0 in 
2010. But in 2020, the SHAP value had a sharp 
decrease to a negative value (Fig. 5.11). During 
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Fig. 5.10   SHAP value of F-AS in 2010 and 2020

have an effect on the urbanization process 
and must be taken into account when measur-
ing land use efficiency.

5.3.2.6 � Discussion and Outlook
The global “NPP-VIIRS-like” NTL remote 
sensing datasets from 2000 to 2021 were gener-
ated based on the widely used DMSP-OLS and 
NPP-VIIRS NTL data. The new NTL dataset 
has a strong capacity to reveal economic change 
at different spatial scales. We proved that the 

NTL. In addition, a region with high CL-G 
means that there is dense vegetation, which 
means it is difficult to concentrate a human pop-
ulation in the region.

5.3.2.5 � Highlights

•	 A global “NPP-VIIRS-like” NTL annual 
composited dataset was produced.

•	 Expanding the perspective of SDG 11.3.1, 
the spatial combinations of land cover indeed 
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Fig. 5.11   SHAP value of CL-G in 2010 and 2020

the rapid expansion of global urban areas, lead-
ing to various ecological and environmental 
challenges for urban infrastructure, ecological 
environments, and energy and emissions. Hence, 
comprehending the regional discrepancies in 
urban land and population growth in the future 
holds great practical significance in evaluating 
potential risks faced by urbanization in different 
countries and regions and achieving sustainable 
urban development.

Predicting future urban land dynamics is 
predominantly implemented using the cellular 
automata (CA) models. However, existing stud-
ies have limitations in the temporal context of 
urban evolution, and the spatial resolution of 
global studies is relatively coarse. Consequently, 
significant uncertainties exist in future urban 
land projections concerning development 
trends and spatial details (Li and Gong 2016). 
Advancements in remote sensing technology 
enable the acquisition of long-term urban evolu-
tion information through Earth observation data, 
providing continuous observations for modeling 
future urban evolution, which is essential for 
accurately identifying hotspots in rapidly devel-
oping urban areas. This study aims to use global 
urban extent dynamics obtained from long-term 
remote sensing data to quantitatively assess 
the internal linkage between urban area expan-
sion and socioeconomic development, to model 
the global urban land use dynamics under five 
future SSPs, and further to support the analysis 
of changes in the growth rates of global urban 
land area and population.

5.3.3.2 � Data

•	 Global annual urban extent time-series data 
derived from NTL (1992–2013).

•	 Historical and future socioeconomic (i.e., 
population and GDP) time-series data derived 
from the World Bank Databases (http://data-
bank.worldbank.org/) and the International 
Institute for Applied Systems Analysis 
(IIASA) (https://tntcat.iiasa.ac.at/SspDb/), 
respectively.

•	 Global spatial proxies, including road net-
works, terrain, and land cover.

spatial combination of land cover can effectively 
improve the accuracy of evaluation in land use 
efficiency. In the future, to further support sus-
tainable urban development, we will explore and 
discuss the degree of contribution that different 
spatial combinations of land cover make to NTL 
intensity, so as to quantify land use efficiency.

5.3.3	� Ratio of Global Land 
Consumption and Population 
Growth Under Future 
Scenarios

Target: SDG 11.3: By 2030, enhance inclusive 
and sustainable urbanization and capacity for 
participatory, integrated, and sustainable human 
settlement planning and management in all 
countries.

5.3.3.1 � Background
According to the 2018 Revision of World 
Urbanization Prospects, the global urban popu-
lation has increased rapidly from 750 million 
in 1950 to 4.46 billion in 2021 (Lu et al. 2015; 
Sanchez Rodriguez et al. 2018). The world’s 
urban population is anticipated to reach approxi-
mately 7 billion by the mid-twenty-first century 
(2050), with developing countries in Africa and 
Southeast Asia as the main engines for future 
population growth (Burke et al. 2021). The swift 
increase in the urban population has resulted in 

http://databank.worldbank.org/
http://databank.worldbank.org/
https://tntcat.iiasa.ac.at/SspDb/
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more significant. They can be characterized by 
three primary trends: rapid urban area growth 
under the fossil-fueled development (SSP5) 
scenario, moderate urban area growth under 
the sustainability (SSP1) and the middle of the 
road (SSP2) scenarios, and slow urban area 
growth under the regional rivalry (SSP3) and 
the inequality (SSP4) scenarios (as illustrated in 
Fig. 5.12). Overall, the trends in our results are 
generally consistent with other relevant stud-
ies (Gao and O’Neill 2020; Chen et al. 2020). 
However, there are still some deviations in spe-
cific scenarios and regions. For instance, the 
study by Gao et al. (2020) did not consider the 
heterogeneous characteristics of urban growth 
rates at different stages due to the lack of long-
term temporal data on urban extent obtained 
from remote sensing data. Consequently, their 
results show relatively large urban growth incre-
ments that differ from observations obtained 
from satellite observations in some regions 
(such as the United States) under multiple SSPs. 
With the benefit of remotely derived long-term 
urban land use data, the differences and changes 
in urban sprawl rates at different stages in our 
results are more consistent with the historical 
temporal changes.

In this case, further comparative analysis 
focuses on SSP4, SSP2, and SSP5 scenarios. In 
the SSP4 scenario, the urban areas expand sig-
nificantly in regions such as India and Africa. In 
the SSP2 scenario, the trend of urban expansion 
in 2100 generally aligns with historical extrapola-
tion, with conventional urban increments in China, 
the United States, Europe, and Africa. Population 
and GDP will increase significantly in the rapidly 
developing SSP5 scenario, leading to much higher 
urban increments in developed countries by 2100. 
Additionally, regions with significant population 
growth, such as Nigeria, are characterized by sig-
nificant urban expansion. The spatial evolution of 
urban areas at a resolution of 0.5° in China shows 
that due to China’s population peak in 2030, the 
spatial distribution differences in urban areas in 
2100 are not very pronounced. The future scenario 
development in these typical regions is consist-
ent with the UN World Urbanization Prospects 

5.3.3.3 � Methods
In our study, we employed the sigmoid model 
to characterize the distinct spatial differences in 
per capita urban areas among various countries 
or regions driven by varying levels of socioeco-
nomic development. We projected future urban 
areas and analyzed spatial evolution in different 
countries and regions by combining population 
growth and GDP development projections (Li 
et al. 2019; Li et al. 2020). Population distribu-
tion data across different administrative units 
were obtained, and we calculated the global 
population growth rates for different SSPs at 
1 km resolution between 2020 and 2100. We 
modeled the global urban land use maps for dif-
ferent SSPs using the following equations. Next, 
we analyzed the rate difference between popula-
tion growth and urbanization, using quantitative 
land use efficiency in different regions under 
different scenarios. Thus, sensitive regions with 
allometric growth rates were identified in our 
study:

where PGn represents the population growth 
rate of the n-th country or region from 2020 to 
2100; UGn represents the urban land growth rate 
of the n-th country or region from 2020 to 2100; 
P2020 represents the population of the country or 
region in 2020; P2100 represents the population 
of the country or region in 2100; U2020 repre-
sents the urban area of the country or region in 
2020; and U2100 represents the urban area of the 
country or region in 2100.

5.3.3.4 � Results and Analysis

1.	 Global urban growth patterns under var-
ious future SSPs

From a global perspective, the differences in 
global urban areas under various scenarios 
before 2050 are insignificant. However, the dif-
ferences in global urban areas from 2050 to 
2100 under different scenarios gradually become 

PGn =
P2100 − P2020

P2020

UGn =
U2100 − U2020

U2020

,
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in urban area and population growth: China is 
expected to peak in 2030 and gradually decline, 
while urban areas show some increase due to 
an increase in per capita urban land with urban 
development. India’s population is expected to 
continue rising into the mid-twenty-first cen-
tury, with a relatively pronounced increase in 
the urban land increment (Fig. 5.14). Compared 
to population changes, estimates of urban land 
increment, which incorporate urban growth time-
series data, to some extent consider the stage 
characteristics of per capita urban land with soci-
oeconomic development (Li et al. 2019).

5.3.3.5 � Highlights

•	 We comprehensively explored the tempo-
ral contexts of long-term and annual urban 
extent dynamics, based on which the urban 
area growth model was developed, and the 
urban sprawl model was adopted. We also 
provided spatially explicit maps for global 
urban extent from 2020 to 2100 at 1 km reso-
lution, freely available for download.

•	 We analyzed the difference between the 
urbanization rate and population growth. 
Thus, sensitive areas with accelerated growth 
can be identified, which helps support future 
sustainable development and decision-making.

5.3.3.6 � Discussion and Outlook
This study highlights the importance of using 
remote sensing data to better understand urbani-
zation patterns and trends and the need for more 
accurate and reliable data to inform urban plan-
ning and policymaking. This study also empha-
sizes the importance of considering different 
scenarios and their potential impacts on urban 
growth, population growth, and land consump-
tion to better prepare for future challenges and 
opportunities. By incorporating a range of socio-
economic factors and spatially explicit data, this 
study provides valuable insights into the complex 
dynamics of urbanization and its impacts on soci-
ety, economy, and environment.

(UN 2019b). In other words, the primary engines 
of future urbanization are mainly concentrated in 
developing countries/regions in Asia, Africa, and 
South America.

2.	 Global land consumption and population 
growth rates in different regions under 
different SSPs

In 2100, global urban growth and population 
growth under different SSP scenarios exhibit 
significant spatial heterogeneity (Fig. 5.13). 
Considering that urban land is generally dif-
ficult to transform into non-urban land due 
to population or GDP decline, the global 
urban growth rate is generally non-negative. 
However, due to negative population growth 
expected in some regions in the future, global 
population growth shows pronounced regional 
disparities. Taking Europe and Africa as 
examples, urban and population growth vary 
significantly under different scenarios. In 
South-South countries, mainly India and those 
in Africa, urban land growth is significantly 
higher than population growth. Overall, at the 
global scale, the urbanization of land is much 
greater than population urbanization. This trend 
is also relatively consistent with high-resolu-
tion global urban dynamic data obtained from 
remote sensing (Liu et al. 2020), indicating the 
need for a more sustainable approach to global 
urban expansion.

3.	 Differences in global land consump-
tion and population growth in different 
regions under different SSPs

Overall, in 2100, urban growth rates under dif-
ferent SSP scenarios were higher than popu-
lation growth rates, with many countries 
experiencing negative population growth 
(Fig. 5.14). In the SSP4 scenario, urban land 
changes relatively little with changes in popula-
tion and GDP, resulting in smaller differences 
between urban and population growth rates than 
in other scenarios. Typical developing countries 
like China and India exhibit different trends 
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： ：

Fig. 5.14   Deviation of global land consumption and population growth under different SSPs

management and assessment are extremely 
important. SDG 11.4 belonged to Tier III when 
initially proposed, which means it had no sup-
porting indicators and corresponding evaluation 
methods. It now belongs to Tier II (i.e., insuffi-
cient data and imperfect methods) after re-evalu-
ation in 2019 (UN 2019a). From the survey data 
in 2020, less than 60% of all countries world-
wide were able to acquire relevant statistical indi-
cators (UN Statistics Division 2021). Only one 
indicator, 11.4.1, is related to SDG 11.4, which 
is over-simplified and not effective in achieving 

5.3.4	� Land Cover Change 
Monitoring of Global World 
Cultural Heritage Sites

Target: SDG 11.4: Strengthen efforts to protect 
and safeguard the world’s cultural and natural 
heritage.

5.3.4.1 � Background
World Cultural Heritage is commonly acknowl-
edged to be of great significance and outstand-
ing universal value, and therefore effective risk 

5.3  Case Studies
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heritage sites were manually drawn to produce 
the vector boundary data of World Cultural 
Heritage, with an overall error of less than 
15%. Based on high-resolution Google Earth 
images in 2015 and 2020, object-based analysis 
and the ResNet-50 deep learning method (He 
et al. 2016) were used to extract the land cover 
change within the protected areas. The extrac-
tion results were checked and corrected in high-
resolution images to ensure that the accuracy 
of the extracted changes was higher than 90%. 
The percentages of changed area in the heritage 
areas and buffer zones were calculated sepa-
rately and defined as the land cover change ratio. 
The causes and trends of land cover change at 
each heritage site were analyzed, with a positive 
or negative evaluation value assigned. Positive 
changes represent the changes that are condu-
cive to the development of heritage sites, such as 
the construction of heritage parks and museums, 
whereas negative changes represent changes that 
are unfavorable to the development of heritage 
sites, such as vegetation degradation, expansion 
of cultivated land, and urban development. The 
land cover change combined with the positive/
negative evaluation was standardized to obtain 
an SDG indicator to measure the sustainable 
development of heritage sites. The per capita 
GDP values of countries and regions contain-
ing heritage sites were analyzed to reveal the 
impacts of the level social development on the 
sustainable development of cultural heritage 
sites, so as to provide first-hand scientific data 
and technical support for the protection of cul-
tural heritage.

5.3.4.4 � Results and Analysis
According to UNESCO and the World Heritage 
Centre (World Heritage Centre 2009), herit-
age areas have a strict protection status, where 
human intervention must be kept to a mini-
mum. A buffer zone may set limits to protect 
heritage, but may also positively encourage 
the development of surrounding resources that 
would be beneficial to the site (UNESCO 2005). 
Therefore, the heritage area should include 
no change, and a low land cover change ratio 

the protection and evaluation of cultural heritage 
(Nocca 2017). Other quantitative indicators are 
urgently required to quantify the preservation sta-
tus of heritage sites (Tang et al. 2022).

In recent years, the fast development of cit-
ies, the rapid growth of population, and great 
changes in climate and environment have inter-
fered with cultural heritage sites (Ashrafi et al. 
2021). According to the principles of authentic-
ity and integrity for World Heritage protection, 
the impacts caused by both natural and anthro-
pogenic factors need to be quantitatively evalu-
ated for the timely discovery of potential threats 
to the sites. This case study proposed a method 
to monitor land cover change and an indicator 
to measure SDGs in the protected areas of cul-
tural heritage sites. A dataset of heritage bound-
ary and land cover change for global World 
Cultural Heritage from 2015 to 2020 was pro-
duced in this case study to provide first-hand 
scientific data for achieving SDG 11.4. The rela-
tionship between the SDG indicators related to 
land cover change and the per capita GDP of 
host countries was further studied to reveal the 
importance of capital investment reflected by 
social development to the sustainable develop-
ment of cultural heritage.

5.3.4.2 � Data

•	 The heritage boundary data of the global 
World Cultural Heritage sites at heritage 
areas and buffer zones.

•	 High-resolution Google Earth images with 
a sub-meter spatial resolution in 2015 and 
2020.

•	 Population and GDP data provided by 
Population Dynamics, Department of 
Economic and Social Affairs of the UN in 
2015 and 2020, which can be acquired from 
https://data.un.org/en/index.html.

5.3.4.3 � Methods
First, according to the map of the United 
Nations Educational, Scientific and Cultural 
Organization (UNESCO) World Heritage 
Centre, the heritage areas and buffer zones of 

https://data.un.org/en/index.html
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Fig. 5.15   Distribution of the land cover change ratios from 2015 to 2020 in the heritage areas and buffer zones of 
World Cultural Heritage sites

levels, in which China was at the intermediary 
level, and the Philippines showed a very high 
value due to the construction of buildings and 
roads. The changes in the buffer zones were 
significantly different. Due to the dual influ-
ence of natural disasters and human activity, 
the land cover changes in some countries (e.g., 
Nepal) were at a very high level. As for China, 
the land cover change in the buffer zones was at 
a high level (1.00–2.00%) due to environmen-
tal management. (3) The land cover changes of 
heritage areas in most American countries were 
mostly from very low to intermediary levels, 
whereas the United States showed high changes 
(1.00–2.00%) due to the construction of muse-
ums. The changes in the buffer zones in North 
America were at a low level, and a few high 
values existed in Central and South America. 
For example, due to newly built roads, the 
changes in Panama were very high for both 
heritage areas and buffer zones. (4) The land 
cover changes in African countries were gener-
ally low in the heritage areas, with a few high 

indicates good protection. The changes in the 
buffer zone should not be too much, and a high 
land cover change ratio means the site needs to 
be monitored and assessed in the long term.

Figure 5.15 shows the land cover change 
ratios in the heritage areas and buffer zones of 
the World Cultural Heritage sites for different 
countries, where the ratio is significantly higher 
in the buffer zone than that in the heritage area. 
The results are as follows. (1) In general, the 
land cover change in European countries was 
at very low (< 0.10%) and low levels (0.10%-
0.50%) in the heritage areas, with some occa-
sional uneven distribution. The land cover 
change in the buffer zones was generally below 
the intermediary level (0.50–1.00%), but a few 
countries showed a very high value (> 2.00%). 
Lithuania, for example, was affected by newly 
increased construction and the land cover 
change ratio in both heritage areas and buffer 
zones was at a very high level. (2) Most of the 
land cover changes in the heritage areas in Asian 
countries fell into very low to intermediary 
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Fig. 5.16   Relationship between the SDG indicator measurement of World cultural heritage sites in each country and 
per capita GDP growth from 2015 to 2020
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Fig. 5.17   Relationship between the SDG indicator measurement of World cultural heritage sites in each region of the 
world and per capita GDP growth from 2015 to 2020

World Cultural Heritage sites and per capita 
GDP growth in each country and region of the 
world, respectively, from 2015 to 2020. SDG 
indicator values close to 1 indicate that the 
land cover change is suitable for the protec-
tion of heritage sites, while those close to -1 
indicate otherwise. The results show that the 
SDG indicator measurements of most heritage 

values, while Angola showed a very high value 
due to increased developed land. The land 
cover changes in the buffer zones were gener-
ally lower than the intermediary level, while a 
few high and very high levels are shown in West 
African countries.

Figures 5.16 and 5.17 show the relation-
ship between SDG indicator measurement of 
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5.3.4.6 � Discussion and Outlook
The proposed land cover change extraction 
method based on high-resolution remote sens-
ing realized the elaborate monitoring of global 
World Cultural Heritage sites. SDG indicator 
measurement for cultural heritage can directly 
reflect the changes and trends of surface ele-
ments, thus providing data support from a single 
heritage site to the national level for achieving 
SDG 11.4. The efficient acquisition of Big Earth 
Data based on cloud platforms and intelligent 
deep learning technology provides feasible tech-
nical solutions to regularly monitor and quanti-
tatively evaluate global cultural heritage.

Benefits from the development of Earth 
observation technology for high spatiotemporal 
remote sensing, annual monitoring, and SDG 
indicator assessment are suggested to update the 
land cover change of World Cultural Heritage 
sites, according to the specific requirements 
of cultural heritage authorities. The proposed 
method has provided the potential for timely 
control of the situation and future development 
trends for cultural heritage protection using spa-
tial technology.

5.3.5	� Multiscale Monitoring 
and Evaluation of Global 
Natural and Mixed World 
Heritage Site Boundary Areas

Target: SDG 11.4: strengthen efforts to protect 
and safeguard the world’s cultural and natural 
heritage.

5.3.5.1 � Background
SDG 11.4 includes one indicator, SDG 11.4.1, 
“total per capita expenditure on the preserva-
tion, protection and conservation of all cultural 
and natural heritage, by source of funding (pub-
lic, private), type of heritage (cultural, natural) 
and level of government (national, regional, 
and local/municipal).” Prior to 2020, domes-
tic and foreign research based on this indica-
tor mostly remained at the theoretical stage and 
proposed various improvement methods. In the 

sites were near zero, indicating that most 
countries maintained the principle of keep-
ing human intervention to a minimum. In all 
these changes, the negative changes are more 
than the positive changes, indicating that con-
flict existed between the demands of construc-
tion and heritage protection. Countries with a 
negative SDG indicator measurement, most 
of which had slow or negative GDP growth, 
revealed the driving role of capital invest-
ment on the sustainable utilization of heritage. 
According to the SDG indicator measure-
ment at the regional scale, Central Asia was 
the only region showing a positive value. In 
developing countries represented by China, the 
changes in heritage sites were mainly positive 
such as vacating residential areas, as well as 
constructing service facilities and museums. 
Developed countries, such as those in North 
America, Europe, and Oceania, did not have 
many changes. Only Southeast Asia resulted in 
a large negative value. In less developed coun-
tries with slow economic development, such as 
Central America and North Africa, the changes 
were mainly caused by newly built roads and 
buildings. These activities gave priority to 
local economic development, which had a 
negative effect on the protection of cultural 
heritage.

5.3.4.5 � Highlights

•	 A new indicator was proposed to measure 
the sustainable development of cultural her-
itage. A dataset of heritage boundary and 
land cover change for global World Cultural 
Heritage from 2015 to 2020 was produced to 
solve the problems of insufficient data and 
imperfect indicators for SDG 11.4.

•	 The relationship between the land cover 
change of the World Cultural Heritage sites in 
each country and per capita GDP reveals that 
a correlation exists between the cultural herit-
age protection level and the social economic 
development level, and capital investment 
in the sites has promoted their sustainable 
utilization.

5.3  Case Studies
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SDG reports from 2020 (CBAS 2020) and 2021 
(CBAS 2021), our research team proposed the 
human intervention degree (HID) index based 
on land cover data and its measurement method, 
and conducted a global measurement of Natural 
World Heritage sites to test the global applica-
bility of the index, achieving global compa-
rability of measurement results. Based on the 
continuous accumulation and verification of 
research results in recent years, the internal state 
of natural and mixed World Heritage site core 
areas was generally stable, while human inter-
vention factors were mainly concentrated in 
the boundary areas. Therefore, in this case, we 
focused on the boundary areas within and out-
side the core areas of natural and mixed World 
Heritage sites, which are 2 km wide (a circular 
area with a width of 4 km), for multiscale and 
fine monitoring and evaluation.

5.3.5.2 � Data

•	 The 2021 version of the global natural and 
mixed World Heritage site boundary vector 
and attribute data was produced based on the 
World Database on Protected Areas (WDPA) 
dataset and the official website of UNESCO 
World Heritage Centre (http://whc.unesco.
org/) in the Big Earth Data Science Project.

•	 The GlobeLand30 dataset for global 
land cover in 2010 and 2020 was created 
and released by the Ministry of Natural 
Resources of the People’s Republic of China 
(http://www.globallandcover.com/).

•	 The land cover datasets for land cover clas-
sification in 2017 and 2021 from ESA were 
produced by Esri using a deep learning model 
and 10 m Sentinel-2 images.

•	 High-resolution historical image data was 
obtained from Google Earth.

5.3.5.3 � Methods
The monitoring, analysis, and evaluation of 
global natural and mixed World Heritage site 
boundary areas were conducted at three resolu-
tions: 30, 10 and 2m. The 30 m monitoring uti-
lized the GlobeLand30 land cover data, which 

covers 173 natural and mixed World Heritage 
sites worldwide, with a coverage rate of 71.8%.

First, the ratio of land cover change (LC) 
of the natural and mixed World Heritage site 
boundary areas was calculated, which can be 
expressed as:

where LUi is the area of land use type i at the 
beginning of the monitoring period and �LUi−j 
is the absolute value of the area where land use 
type i was converted to a non-i land use type 
during the monitoring period.

Second, based on the monitoring results of 
the natural and mixed World Heritage site land 
cover elements, the HID (Wang et al. 2022) 
and BA-HID of the natural and mixed World 
Heritage sites were calculated. The model for 
BA-HID can be expressed as:

where x is the sum of the boundary area of 
the core areas of the natural and mixed World 
Heritage site; xi is the area of the type i interven-
tion element within the boundary area; ai repre-
sents the weight of intervention elements such 
as cultivated land or artificial facilities on the 
degree of intervention in the natural and mixed 
World Heritage site (referred to as type weight), 
with the determined type weights for cultivated 
land and artificial facilities being 0.4 and 0.6, 
respectively, in this case.

Finally, based mainly on the LC in the 
boundary area, the results of HID in the natural 
and mixed World Heritage site and the boundary 
area (BA-HID) were comprehensively ranked, 
determining the natural and mixed World 
Heritage sites with significant changes in land 
cover in the boundary area for fine monitoring at 
scales of 10 and 2m.

For 10 m monitoring, Esri’s Land Cover 
datasets were utilized to calculate the ratio of 
land cover change of a certain type (LCx) in the 
boundary area of the natural and mixed World 
Heritage sites:

LC =

(
∑n

i=1 �LUi−j

2
∑n

i=1 LUi

)

× 100%,

BA - HID =
a1x1 + a2x2 + . . .+ aixi

x
× 100%,

http://whc.unesco.org/
http://whc.unesco.org/
http://www.globallandcover.com/
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where LU represents the total area of the natu-
ral and mixed World Heritage sites; and �LUx 
is the difference in area of a particular land 
use type between the end and beginning of the 
monitoring period. Based on the calculation 
results and high-resolution image data, natural 
and mixed World Heritage sites with relatively 
significant land cover changes were selected for 
fine characterization at a resolution of 2 m.

For 2 m monitoring, high-resolution historical 
image data from Google Earth was utilized, and 
the object-based image analysis (OBIA) method 
(Tang et al. 2022) was employed. First, an unsu-
pervised image segmentation method was used 
to extract potential change objects, and then a 
supervised machine learning method was used 
to refine the classification of the segmentation 
results among several models (random forest, 
decision tree, nearest neighbors, SVM classifier, 
XGBoost), choosing the most effective one to 
obtain information about land cover changes.

5.3.5.4 � Results and Analysis
The natural and mixed World Heritage sites 
were numbered according to the comprehen-
sive ranking results of LC in the boundary areas, 
HID, and the BA-HID in the dynamic change 
map from 2010 to 2020 (Fig. 5.18). The results 
show that the changes in the BA-HID values of 
natural and mixed World Heritage sites globally 
remained relatively stable from 2010 to 2020 
(maintained within ± 4%), and the trend of the 
three indicators remained consistent. However, 
BA-HID was generally higher than that of the 
overall natural and mixed World Heritage sites, 
indicating the need for targeted monitoring of 
the boundary area.

The BA-HID values of natural and mixed 
World Heritage sites were generally within 1%, 
and the LC values were generally within 10%, 
indicating an overall good condition. However, 
a small number of natural and mixed World 
Heritage sites were strongly affected by human 
intervention, and their land cover changes were 
also substantial. These natural and mixed World 

LCx =
�LUx

LU
× 100% ,

Heritage sites should be given extra attention in 
the future.

The top 20 natural and mixed World Heritage 
sites with the largest changes in their boundary 
areas were selected for land cover monitoring 
at 10m, and a land cover type change map from 
2017 to 2021 was produced (Fig. 5.19). The 
results show that the majority of artificial facility 
areas in the 20 natural and mixed World Heritage 
sites increased, and some natural and mixed 
World Heritage sites saw a significant increase in 
cropland area, while the corresponding reduction 
in forest and grassland areas reflects the conflicts 
and pressures between heritage conservation and 
local community development.

Further fine monitoring at 2m was carried 
out on the boundary areas of the natural and 
mixed World Heritage sites with significant 
changes, and multiscale monitoring results were 
obtained (Fig. 5.20). The results show that the 
LC value in the boundary area of Mount Taishan 
in China is about 8%, and the BA-HID value is 
about 1.9%; the LC value in Turkey’s Göreme 
National Park is about 5%, and the BA-HID 
value is about 1.4%. The artificial facility areas 
in both places continued to expand during 2010–
2020, indicating some impacts of human activity 
on the natural and mixed World Heritage sites. 
Previous studies have also shown that Mount 
Taishan, adjacent to urban areas, has always 
been one of the World Heritage sites under the 
greatest human pressure (Allan et al. 2017). 
With the development of the socio-economy, 
the artificial facility areas gradually replaced 
other land use types including cropland, result-
ing in significant impacts on the boundary areas 
of natural and mixed World Heritage sites. The 
main land use type in the boundary area of 
Turkey’s Göreme National Park is cropland, 
combined with multiple small towns. The eco-
logical environment is relatively fragile and eas-
ily disturbed. In recent years, due to increasing 
human intervention, the land cover of the park 
has changed to a certain extent. This also serves 
as a warning for more natural and mixed World 
Heritage sites facing similar situations, empha-
sizing the need to balance urban and agricultural 
development with heritage conservation.

5.3  Case Studies
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Fig. 5.18   Monitoring results of the boundary areas of natural and mixed World heritage sites from 2010 to 2020

5.3.5.5 � Highlights

•	 Based on Big Earth Data, a multiscale moni-
toring and evaluation method for natural and 
mixed World Heritage site boundary areas 

has been proposed. The monitoring results 
demonstrate that this method can reflect the 
protection levels of natural and mixed World 
Heritage site boundary areas and can bet-
ter evaluate the sustainable development 
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Fig. 5.19   Land cover type changes in the top 20 natural and mixed World Heritage sites from 2017 to 2021. Note 
Yellow represents a decrease in the area of the type, darker red represents a greater increase in the area of the type, 
gray represents no change in the area. Values are the rate of change (%)

capacity and status of natural and mixed 
World Heritage sites by focusing on the key 
elements of the boundary areas.

•	 From 2010 to 2020, the rate of land cover 
change in natural and mixed World Heritage 
site boundary areas was generally within 
10%, and HID was generally within 1%, indi-
cating an overall good condition. However, 
there are still natural and mixed World 
Heritage sites where the areas of artificial 
facilities and cultivated land have increased, 
reflecting conflicts and pressures between 
heritage conservation and local community 
development.

5.3.5.6 � Discussion and Outlook
By using multi-source data of global land cover 
and satellite imagery, this case presents a mul-
tiscale monitoring and evaluation method for 
natural and mixed World Heritage site bound-
ary areas, achieving effective monitoring results 
in boundary areas of some natural and mixed 
World Heritage sites worldwide. This provides 

an important reference for the overall protection 
and sustainable development issues faced by 
natural and mixed World Heritage sites globally.

The high-resolution data used in this case 
study mainly targeted the boundary areas of 
natural and mixed World Heritage sites with 
significant land use changes. In the future, the 
monitoring scope can be further expanded to 
meet the requirements of fine boundary moni-
toring and reasonable boundary evaluation. 
The method used in this case is an operable 
method that is applicable to a global scale and 
conforms to the SDG indicator system. The 
results are globally consistent and comparable. 
However, due to the differences between land 
cover data of different resolutions, the calcu-
lated results cannot fully represent the accurate 
numbers of specific indicators for each natural 
and mixed World Heritage site. Nevertheless, 
the results of this case study provide an impor-
tant reference for understanding the implemen-
tation process of SDG 11.4 at the national and 
regional scales.

5.3  Case Studies
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Fig. 5.20   Multiscale surface coverage monitoring results of typical heritage site boundary areas

5.3.6	� Global Change in Urban 
Greenness and Beneficiary 
Population in Large Cities

Target: SDG 11.7: By 2030, provide universal 
access to safe, inclusive and accessible, green 
and public spaces, in particular for women 
and children, older persons and persons with 
disabilities.

5.3.6.1 � Background
The UN reported that the total global popula-
tion is expected to reach 8.5 billion by 2030, of 
which 64% (5.4 billion) will live in cities (UN 

2019b). The sustainable development of cities is 
directly related to the future of humankind, but 
differences in socioeconomic development levels 
have led to an extremely uneven global urbani-
zation process (Sun et al. 2020). In developed 
countries, municipal green infrastructure is rela-
tively complete, and urban residents can enjoy 
good green space as public services. Relatively 
speaking, in many developing countries and 
underdeveloped countries, cities not only lack 
basic infrastructure (such as sanitary drinking 
water, reliable energy supply, health and educa-
tion resources) but also lack public green space. 
On a global scale, the continuous dynamic 
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monitoring of urban green spaces in time and 
space is critical to the achievement of SDG 11.

Since 2004, the National Afforestation 
Committee and the National Forestry and 
Grassland Administration have launched the 
“National Forest City” evaluation process. As of 
November 2022, China’s national forest cities 
had increased to 219, advancing the country’s 
goal of establishing an “ecological civilization” 
in urban areas. However, quantitative compara-
tive research has been insufficient for identify-
ing the most important aspects urban greenness 
in the construction of an urban ecological 
civilization.

5.3.6.2 � Data

•	 2020 MODIS land cover type data 
[MCD12Q1, International Geosphere-
Biosphere Programme (IGBP) classification] 
at a spatial resolution of 500 m.

•	 EVI data from the MODIS dataset 
(MOD13Q1) from 2001 to 2021, at a spatial 
resolution of 250 m and a temporal resolution 
of 16 days.

•	 Global gridded population data in 2020 from 
WorldPop, LandScan, Gridded Population of 
the World, v.4 (GPWv4) at a spatial resolu-
tion of 1000 m.

•	 Classification of country income levels (pub-
lished by the World Bank, 2020–2021).

5.3.6.3 � Methods
This study used the 2020 land cover type data 
(IGBP classification) in the MCD12Q1 data-
set to screen urban patches with a contiguous 
urban built-up area (UBA) larger than 50 km2 
(large cities, hereafter). There are 1783 such  
cities worldwide. Further, using EVI data with 
250 m spatial resolution as a greenness indica-
tor, we applied the Mann–Kendall method to 
evaluate the trend of the annual maximum EVI 
(Vmax) for each urban pixel of the 1,783 large 
cities from 2001 to 2021.

Then, we calculated the ratio (Rg) of the 
area of the pixels with a significantly increasing 
Vmax trend (P < 0.05) to the UBA in 2020 of the 

corresponding city. Using this method, we eval-
uated urban greening change from 2001 to 2021.

Urban greening is an important part of the 
urban ecosystem. It not only has many benefits 
such as regulating rainwater, reducing air pollu-
tion, and reducing the urban heat island effect, 
but also reduces violent crimes and has a posi-
tive effect on the physical and mental health 
of urban residents (Giles-Corti et al. 2016). 
Therefore, this study regards the residents liv-
ing in the UBA pixels with significant green-
ing trends as the direct beneficiary population. 
Through the spatial overlay analysis of sig-
nificant urban greening in UBAs and three sets 
of global gridded population data (WorldPop, 
LandScan, GPWv4), an average value can be 
estimated in each city for the population directly 
benefiting from urban greening.

5.3.6.4 � Results and Analysis

1.	 China has the largest urban area of sig-
nificant greening in the world

Figure 5.21 shows the spatial distribution of Rg 
and the beneficiary population in 1783 cities 
around the world from 2001 to 2021. Globally, 
the cities with large values of Rg (indicated by 
blue and green points on the map) are located 
mainly in East Asia, Europe, and the Eastern 
United States in North America, and sparsely in 
Africa, Oceania, and South America. The 316 
selected Chinese cities accounted for only 19% 
of the global UBAs, but contributed 28% of sig-
nificantly greening UBAs among the 1,783 cities 
in the world compared in this study.

2.	 Nearly half of the world’s population 
benefiting from significant urban green-
ing are in China

Globally, about 310 million urban dwell-
ers live in significant greening UBAs. The 
proportions of the beneficiary population 
by continent are as follows: Asia (70.6%), 
Europe (11.9%), North America (7.6%), South 
America (5.9%), Africa (3.4%), and Oceania 
(0.4%) (Fig. 5.22a). Approximately 147 mil-
lion of them, or 47% of the global beneficiary 

5.3  Case Studies
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Fig. 5.21   Distribution of Rg and the beneficiary population in 1783 cities

population, are in China. The top three cities 
with the largest beneficiary population in the 
world are the Pearl River Delta (17.92 million), 
the Yangtze River Delta (16.38 million), and 
Beijing (9.74 million).

3.	 The improvement in urban ecosystems is 
closely related to income level, with the 
most notable improvement seen in upper-
middle-income countries

The average values of Rg ranging from high to 
low for the income groups defined by the World 
Bank are 15.45% for upper-middle-income 
countries (UM), 14.00% for high-income coun-
tries (H), 11.78% for low-income countries (L), 
and 9.79% for lower-middle-income countries 
(LM) (Fig. 5.22b, bar graph]. Using the average 
value of annual maximum greenness from 2019 
to 2021 to represent the current environmental 
status of cities (EVIcity) (Fig. 5.22b, broken line 
graph], it was found that the EVIcity is the high-
est (0.40) in high-income countries, while it is 
0.353, 0.35, and 0.30 in upper-middle-income, 
lower-middle-income, and low-income countries 
respectively, suggesting the need for a major 
improvement in their urban environments.

5.3.6.5 � Highlights

•	 Based on global vegetation index data, land 
cover type data from MODIS satellite, and 
gridded population data, we screened 1,783 
cities or urban agglomerations around the 
world with a UBA of more than 50 km2. 
Then we evaluated the changes in greenness 
of UBAs and the direct beneficiary popula-
tion in these cities from 2001 to 2021.

•	 With only 19% of the world’s total UBAs, 
China accounted for 28% of the significant 
greening UBAs. Globally, 310 million people 
directly benefit from such UBAs, and about 
47% of them live in China.

•	 The Pearl River Delta, the Yangtze River 
Delta, and Beijing have the largest popula-
tions in the world benefiting from the signifi-
cant greening of cities.

5.3.6.6 � Discussion and Outlook
This study used the EVI of MOD13Q1 data, 
land cover change data, gridded population data, 
and national income level data to calculate the 
trends of annual maximum EVI and significance 
levels of UBAs in 1,783 cities around the world 
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Fig. 5.22   Distribution of the population living in green-
ing UBAs

from 2001 to 2021. This study further analyzed 
the different ratios of greening UBAs of cities 
at different income levels and then evaluated the 
distribution of the direct beneficiary population 
in 2020.

Compared with the traditional scheme of 
calculating the changes of urban green space 
areas, the method used in this study does not 
rely on high-resolution data, but also moni-
tors the overall greenness change of urban pix-
els at mesoscale resolution. The method detects 
changes in the greenness of urban pixels caused 
by newly added parks and green spaces on UBA 
pixels and even detects changes in greenness 
caused by the natural growth of trees on streets. 

In the context of global climate change, as a 
major contributor to urban carbon sinks, the sig-
nificant increase in urban greening in cities will 
help China achieve high-quality development. 
At the same time, for most developing countries, 
the results of this study can provide data sup-
port, improve urban governance for these coun-
tries, and provide low-cost solutions for urban 
sustainable development monitoring in develop-
ing countries.

5.4	� Summary

This chapter discusses progress in three themes: 
monitoring and evaluating the urbanization pro-
cess, World Heritage protection, and urban green 
space.

Based on the studies, we offer the following 
recommendations.

(1)	 In terms of future research directions, fur-
ther exploration and evaluation of the 
impacts of urbanization on the environ-
ment and ecology, such as air pollution 
and carbon emissions, will be valuable. 
Additionally, it is crucial to consider the 
impacts of climate change on urbanization 
patterns and to develop strategies for adapt-
ing to these changes. Future research direc-
tions include exploring the potential of smart 
urban development and the application of 
new technologies, such as artificial intel-
ligence, in order to optimize the location of 
urban land use and enhance urban sustain-
ability. Furthermore, integrating social and 
economic factors into urban modeling could 
provide a more comprehensive understand-
ing of the interactions between urbanization 
and sustainable development.

(2)	 According to World Heritage protection 
evaluated using SDG 11.4.1, the study 
found that the positive/negative effects 
of land cover change on cultural heritage 
protection are highly correlated with per 
capita GDP. It is suggested to strengthen 
the monitoring and evaluation of the World 
Heritage SDG indicators in accordance with 

5.4  Summary
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the Convention Concerning the Protection 
of the World Cultural and Natural Heritage 
and the Operational Guidelines for the 
Implementation of the World Heritage 
Convention, increase investment in heritage 
protection, and focus on properly resolving 
the conflicts between World Heritage pro-
tection and community development in the 
middle-income countries and regions of the 
world.

(3)	 Regarding SDG 11.7.1, urban open space, 
the study found that while China’s total 
BUAs are only 19% of the world’s total, 
China accounted for 28% of significant 
greening BUAs and 47% of the global 
population benefitting from such BUAs. 
Countries, especially developing ones, are 
advised to strengthen urban planning and 
invest more in green infrastructure amid 
rapid urbanization.

Future studies should help understand the 
transformation toward sustainable urbanization 
and continue to explore the capacity of digital 
technology, represented by Big Earth Data, in 
monitoring and evaluating sustainable cities and 
communities, so as to provide scientific solu-
tions for the realization of SDG 11 by filling 
data gaps, expanding the indicator system, and 
informing government decision-making.
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6.1	� Background

Climate change is triggering unpredictable 
responses from the land, ocean, and atmosphere, 
with lasting, far-reaching impacts on sustainable 
development and the ecological environment 
(World Meteorological Organization 2022). 
According to data released by the EM-DAT 
International Disaster Database, disasters and 
economic losses caused by extreme weather 
events across the world increased significantly 
from 2000 to 2022. The mitigation of climate 
change requires all countries to take the most 
urgent actions to reduce greenhouse gas emis-
sions and increase carbon sinks through forest 
protection, soil management, and carbon capture 
(IPCC 2022).

In order to cope with the threats of cli-
mate change to the sustainable development of 
humankind, SDG 13 was established to “take 
urgent action to combat climate change and its 
impacts” (hereinafter referred to as “Climate 
Action”). Targets under this goal include, among 
others, strengthening resilience to natural dis-
asters, reducing greenhouse gas emissions, and 
improving education and early warning. China 
has actively responded to the call for Climate 

Action by setting its carbon peaking and neutral-
ity targets and implementing disaster prevention 
and reduction strategies. Furthermore, in 2022, 
the Chinese government released the National 
Climate Change Adaptation Strategy 2035, 
which proposes to build a climate-resilient soci-
ety by 2035 by improving climate change moni-
toring, early warning, and response capabilities.

Currently, among all 17 SDGs, Climate 
Action suffers the most severe shortage of data 
(UN 2021). Therefore, this chapter focuses 
on the three themes of disaster monitoring and 
reduction, climate change early warning, and 
global land/marine carbon sink estimation and 
describes the use of Big Earth Data methods 
to generate data products to monitor Climate 
Action progress and conduct spatiotemporal 
analysis to support decision-making.

Compared with the reports of the previ-
ous three years, the big data in this report is of 
broader scope and spatial scale and with greater 
relevance to SDG indicators. The worldwide 
progress on measuring two indicators of SDG 
13 was assessed, and global-scale disaster and 
carbon sink data products were generated to 
make a greater contribution to climate change 
response and adaptation.

© The Editor(s) (if applicable) and The Author(s) 2024 
H. Guo, Big Earth Data in Support of the Sustainable Development Goals (2022)—The Belt and Road,  
Sustainable Development Goals Series, https://doi.org/10.1007/978-981-97-3278-4_6
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This study analyzed global heat wave 
changes and identified their impacts from 2011 
to 2020 using Big Earth Data from satellite 
detection and station observation and further 
assessed the impacts of heat waves on the global 
population using SDG indicators to serve disas-
ter monitoring or mitigation actions for global 
heat waves.

6.3.1.2 � Data

•	 Global station observation datasets from 
1979 to 2020 were collected from the Global 
Historical Climatology Network (GHCN).

•	 Global fusion data of LST from 1979 to 2009 
were collected from Princeton University 
(Coccia et al. 2015).

•	 Global daily LST data from 2003 to 2020 
were collected from the Terra/Aqua Project 
Team.

•	 Global population data from 2010, 2015 and 
2020 were collected from the GPWv4.

6.3.1.3 � Methods
A heat wave event is quantified by consecutive 
days hotter than normal in a collective period 
according to the relative threshold method 
(Perkins 2015). Each heat wave event has at 
least three consecutive days above the 90th per-
centile for maximum surface temperature. We 
conducted an empirical cumulative distribution 
function (CDF) for each pixel of surface temper-
ature sequences using a 15-day window. Then, 
the value of the 90th percentile from the CDF 
of each pixel was derived as the threshold for 
detecting hot days at the global scale. Each heat 
wave event was identified by more than three 
consecutive hot days, and the statistical informa-
tion of all heat wave events was aggregated to 
calculate heat wave indices.

Here, the frequency and duration of heat 
waves were used to analyze global heat wave 
changes from 2011 to 2020 and further identify 
hotspots of global heat wave occurrences. The 
extent of heat wave hazards that happened in a 
region was quantified according to the annual 
statistical results of the frequency of heat waves, 

6.2	� Main Contributions

This chapter evaluates the global progress of 
two targets, SDG13.1 and SDG13.2, through 
four cases. The main contributions are as fol-
lows (Table 6.1).

6.3	� Case Studies

6.3.1	� Global Heat Wave Disaster 
Changes and Their 
Impacts

Target: SDG 13.1: Strengthen resilience and 
adaptive capacity to climate-related hazards and 
natural disasters in all countries.

6.3.1.1 � Background
Heat waves are prolonged periods of abnor-
mally high temperatures that can cause harm to 
humans, animals, and plants due to their inabil-
ity to adjust to these extreme conditions (Qin 
2015). They have already become an important 
meteorological disaster for humans under global 
warming with an increase in the frequency, 
intensity, and duration of heat waves, and about 
30% of the global population is suffering from 
the impacts of more deadly 20-day duration heat 
waves per year (Mora et al. 2017). Currently, 
there are limitations to the quantification of heat 
wave occurrences on a large scale, especially 
how to provide consistent heat wave identifica-
tion under different temperature tolerances of 
local dwellers and ecosystems across climate 
zones. Therefore, threshold methods based on 
thermal infrared (TIR) remote-sensing datasets 
are proposed to derive relatively consistent heat 
wave distribution and analyze their spatial pat-
tern differences. Satellite-based datasets have 
advantages in analyzing land surface processes 
on a large scale due to their global coverage for 
surface parameters, and the multi-platform com-
bination of LST datasets will break the limita-
tion of single point observation of stations for 
deeply understanding spatial distribution, evolu-
tion, and impacts of heat waves.
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Fig. 6.1   Annual averaged probability of global heat wave occurrence from 2011 to 2020

occurrence of heat waves can reach 35. 
It was also found that there were obvious 
inter-annual changes in heat wave occur-
rences and their distribution in Southeast 
Asia and Northern Europe.

2.	 Trends and Hotspots of Global Heat 
Waves from 2011 to 2020

About 55% of the global land area experi-
enced an increase in heat wave frequency 
from 2011 to 2020, with significant spatial 
variations (Fig. 6.2). Australia was most 
heavily influenced by heat waves from 
2011 to 2020, with the regional average 
heat wave frequency increasing from 5 to 
11. South Africa and Namibia also signifi-
cantly experienced heat wave impacts, with 
their regional average heat wave frequencies 
increased by 50%. In East Asia, East China 
and the Russian Far East also experienced 
a rapid increase in heat wave occurrences, 
while more heat waves could be detected 
in the central and southern parts of Europe. 
It is worth noting that more extreme heat 
events (the most heat waves) appeared 
in Eurasia and northern North America 
near the Arctic in 2019. Extremely high 

such as general, strong, and severe heat waves 
with an annual frequency greater than 10, 15, 
and 20, respectively. Then, we classified annual 
heat waves in different regions and further 
examined how many people were influenced by 
different heat wave events using the indicator of 
SDG 13.1.1 (“number of deaths, missing per-
sons and directly affected persons attributed to 
disasters per 100,000 population”).

6.3.1.4 � Results and Analysis

1.	 Spatial Distribution of Global Heat Waves

Probability statistics of heat waves from 
2011 to 2020 found that 85% of the global 
land area was affected by extreme heat 
events in one-tenth of the days of the year, 
while 28% of the global land area was 
affected by heat waves in one-fourth of the 
days of the year (Fig. 6.1). There are simi-
larities and annual changes in the spatial 
distribution of global heat waves, mainly 
occurring in the mid-to-low latitudes 
around the 30° N and 30° S latitudes, such 
as southwestern North America, Southern 
Europe, North Africa, Southwest Asia, 
and Oceania, where the largest annual 
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Fig. 6.2   Trend of global heat wave frequency from 2011 to 2020

with approximately 85% of the land area 
being impacted by heat waves for more than 
36 days during 2011–2020.

•	 According to the assessment framework of 
SDG 13.1.1, about 6300 people per 100,000 
were affected by moderate-intensity heat 
waves each year, while around 1200 people 
per 100,000 were impacted by severe-inten-
sity heat waves annually over the course of 
the decade-long investigation.

6.3.1.6 � Discussion and Outlook
In order to provide a comprehensive evaluation 
for SDG 13.1.1, this study analyzed the impacts 
and changes of global heat waves from 2011 
to 2020 and qualitatively assessed the impacts 
of heat wave hazards on the global popula-
tion. The produced datasets can provide early 
warning or disaster mitigation actions for deal-
ing with heat wave disasters. Generally, global 
heat wave events increased from 2011 to 2020. 
Meanwhile, the intensity and expansion of their 
impacts increased, leading to many challenges 
for human health and environmental protec-
tion. The record-breaking heat events probably 
indicate the potential shifts of global climate 
change, which need to be further explored in 

temperatures have caused damage to the 
natural environment and economic develop-
ment, especially in developing countries.

3.	 People Influenced by Heat Waves at a 
Global Scale

Approximately 480 million people world-
wide are influenced by more than 10 heat 
waves every year, while 87.47 million and 
1.67 million people are affected by 15 or 
20 heat waves, respectively. According to 
the assessment framework of SDG 13.1.1, 
the severity of heat wave impacts can be 
quantified as the global population directly 
exposed to heat wave disasters during 
2011–2020. Approximately 6300 people per 
100,000 people suffered from heat waves at 
a general hazard level, while 1200 people 
per 100,000 people were directly affected 
by heat waves at a strong level.

6.3.1.5 � Highlights

•	 Big Earth Data and threshold methods were 
used to estimate the spatial distribution 
of regions affected by global heat waves, 

6.3  Case Studies
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effects over broad areas and indicate water 
cycle change and variability. The change of the 
water cycle leads to a pattern of change where 
“the fresh get fresher and the salty get saltier” 
in much of the ocean, which indicates a “dry 
get drier and wet get wetter” paradigm, which 
describes the amplification of the water cycle 
driven by global warming.

Temperature and salinity changes alter the 
ocean density and lead to changes in vertical 
stratification. Seawater generally forms strati-
fied layers with lighter waters near the surface 
and denser waters at greater depth, i.e., warmer 
waters are atop colder ones. This stable con-
figuration, named stratification, acts as a barrier 
to water mixing that impacts the efficiency of 
the vertical exchange of heat, carbon, oxygen, 
and other constituents. Therefore, stratification 
is a central element of the climate system, and 
understanding its change with global warm-
ing has great scientific, societal, and ecological 
consequences.

OHC, salinity, and stratification are impor-
tant as metrics for quantifying climate change, 
as well as through the influence of the ocean 
on weather, society, and SDGs (Abraham et al. 
2022). Ocean warming strengthens the tropi-
cal cycles, causes more extremes, and raises 
the global sea level, causing more risks to the 
low-lying and coastal regions (e.g., saltwater 
intrusion and land erosion). Ocean temperature 
and stratification increase, reduce the efficiency 
of ocean carbon uptake, leave more CO2 in the 
air, and exacerbate global warming. Moreover, 
stronger ocean vertical stratification prohib-
its the vertical exchange of oxygen, leading to 
ocean deoxygenation and threatening ocean life.

6.3.2.2 � Data

•	 Global ocean temperature, salinity, stratifica-
tion observational gridded dataset [Institute 
of Atmospheric Physics (IAP), CAS], 1955–
2021, with 1° × 1° horizontal resolution, 
monthly temporal resolution, and 0–2000 m 
coverage.

•	 In situ profile dataset from the World Ocean 
Database (WOD) from the National Centers 

future studies. With the accumulation of satellite 
data, accurate calibration technology, and data 
fusion, more consistent spatial datasets will be 
produced to contribute to the achievement of the 
2030 Agenda.

6.3.2	� Physical Environment 
Changes in Oceans Under 
Global Warming

Target: SDG 13.1: Strengthen resilience and 
adaptive capacity to climate-related hazards and 
natural disasters in all countries.

6.3.2.1 � Background
Oceans cover 71% of Earth’s surface and are a 
key component of the climate system and a key 
location of biodiversity. Under global climate 
change, the ocean environment has also changed 
pervasively, leading to more climate disasters 
that threaten human beings, ocean ecosystems, 
and the achievement of the SDGs.

The increased concentration of greenhouse 
gases in the atmosphere from human activ-
ity traps heat within the climate system and 
increases ocean heat content (OHC). Over 90% 
of Earth’s energy imbalance in the climate sys-
tem is stored in the ocean; thus, OHC is a cen-
tral indicator of climate change. As OHC is less 
impacted by internal climate variability [e.g., 
El Niño and Southern Oscillation (ENSO)], it 
is a particularly robust metric of global climate 
change.

Salinity is another key physical property 
of seawater, and together with temperature, it 
determines the water density, which is a vital 
driver of ocean circulation. The changes in 
ocean salinity reflect the global exchange of 
surface freshwater. Evaporation refers to the 
transfer of freshwater from a water body to the 
atmosphere, leaving behind liquid water that 
is higher in salinity. Precipitation injects fresh-
water into saline water, resulting in freshen-
ing. The salinity anomalies associated with 
surface freshwater exchange are then dispersed 
in the ocean through ocean circulation and mix-
ing. Consequently, salinity changes integrate 
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multi-level global ocean subsurface tempera-
ture remote-sensing dataset (DORS) was recon-
structed using the convolutional neural network 
long short-term memory (CNN-LSTM), which 
combined satellite remote-sensing observations 
(sea surface height, sea surface temperature, 
and sea surface wind) and Argo float observa-
tions (Su et al. 2021, 2022). The advantage of 
the DORS dataset is that it improves the estima-
tion accuracy of the 3D ocean thermal structure 
from remote-sensing observations, fills the gaps 
of float observation during the pre-Argo period, 
extends the length of the time-sequential float 
observation, and finally provides a new perspec-
tive and dataset for monitoring and analyzing 
the ocean thermal environment change based on 
satellite remote sensing.

Here, we combined the self-developed ocean 
data products (IAP and DORS) to analyze the 
impacts of climate change on the ocean’s physi-
cal environment.

6.3.2.4 � Results and Analysis
Figure 6.3a shows the changes of the global 
upper 2000 m OHC from 1955 to 2021, when 
the global upper 2000 m OHC experienced 
an unabated increase, with a linear rate of 
5.7 × 1022J/10a (Fig. 6.3a). The warming rate 
has increased since the 1990s. From 1991 to 
2021, the upper 2000 m ocean warming rate was 
9.5 × 1022 J/10a, four times the rate of 1955–
1990. When considered on an annual basis, 
2021 was the hottest year ever recorded in the 
world’s oceans. Its OHC exceeded that of 2020 
by 1.4 × 1022 J and exceeded that of the 1981–
2010 baseline by 23.5 × 1022 J. Collectively, 
2012–2021 were the hottest ten years in his-
tory. Five basins (the North Pacific, Atlantic, 
Mediterranean Sea, Indian Ocean, and Southern 
Ocean) recorded their highest OHC since the 
1950s. Ocean warming has consequences for 
humans and ecosystems. It raises the global 
sea level, reduces the efficiency of ocean car-
bon uptake, increases the frequency/intensity of 
marine heat waves, strengthens tropical cycles, 
and causes more extreme rainfall.

The existing salinity pattern has been ampli-
fied, showing “the fresh get fresher and the 

for Environmental Information (NCEI) 
at the National Oceanic and Atmospheric 
Administration (NOAA), 1955–2021.

•	 Global ocean temperature dataset from deep 
ocean remote sensing (DORS), 1993–2020 
(https://doi.org/10.57760/sciencedb.01918).

•	 Multi-source satellite observation data: sea 
surface height, sea surface temperature, 
and sea surface wind, with 1° × 1°spatial 
resolution, monthly temporal resolution, 
1993–2020.

•	 Array for Real-time Geostrophic Oceanography 
(Argo) gridded product includes in situ temper-
ature and salinity observation with global upper 
2000 m coverage, spatial resolution of 1° × 1°, 
and monthly temporal resolution, 2005–2021.

6.3.2.3 � Methods
This study applied data quality control, bias cor-
rection, and mapping techniques to the ocean 
in situ temperature and salinity observations 
to reconstruct global 1° × 1° horizontal resolu-
tion gridded temperature and salinity products 
(Cheng et al. 2022). OHC, salinity-contrast 
index, and stratification changes were then cal-
culated based on the derived gridded datasets. 
The data quality control (QC) system devel-
oped by CAS IAP and the CAS Institute of 
Oceanology was applied to remove erroneous 
measurements, which includes 13 modules (Tan 
et al. 2023). Expendable bathythermograph 
(XBT) biases have been corrected for CAS IAP 
by Cheng et al. (2014), and mechanical bath-
ythermographs (MBT) biases have been cor-
rected by Gouretski et al. (2022). After data QC 
and bias correction, a mapping technique was 
applied for spatial interpolation. The mapping 
is an ensemble optimal interpolation approach 
with a dynamical ensemble (Cheng and Zhu 
2016) and can unbiasedly reconstruct the tem-
porospatial variability of ocean changes. The 
“no data, no signal” biases have been reduced 
with this mapping and account for the aniso-
tropic feature of the ocean variability.

Moreover, the DORS techniques were devel-
oped for detecting the ocean’s interior infor-
mation based on remote-sensing big data and 
artificial intelligence. A new long-term and 
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Fig. 6.3   Changes in the physical environment of the ocean

water cycle, its changes have severe social and 
economic implications.

Within 1960–2021, global upper 2,000 m 
stratification increased by 5.3% (Fig. 6.3c), 
approximately 1% per decade. An even stronger 
ocean stratification increase, 5%–18%, has been 
observed for the upper 150 m. In the middle and 
high latitudes, significant increases in ocean 
stratification appear within 1,500–2,000 m, 
implying an impact on deep ocean stability by 
climate change. The increase in vertical stratifi-
cation is mainly caused by stronger upper ocean 
warming than the deep ocean, but the contribu-
tions of salinity changes are also crucial locally 
(Li et al. 2020). For example, the salinity change 
in the western tropical Pacific Ocean contrib-
utes to > 50% of the stratification increase; in 
the polar regions, the sea ice decline and ice 
sheet mass loss dominate the ocean stratification 
change.

salty get saltier” in much of the ocean. In order 
to quantify this pattern of change, the salin-
ity contrast (SC) index was used, which is 
defined as the difference between the salinity 
averaged over high-salinity and low-salinity 
regions (Fig. 6.3b). For the 1955–2021 period, 
the global upper 2000 m SC index increased 
by 1.6% (Cheng et al. 2020). In 2021, the SC 
index reached the second highest level since 
1955. The data show that most of the Pacific and 
East Indian Oceans, which are already relatively 
fresh climatologically, are currently undergoing 
freshening, while relatively saline areas such 
as the mid-latitude Atlantic Ocean are becom-
ing more saline. The salinity change is attrib-
uted to the global water cycle intensification, 
which has already been amplified by 2%-4%/℃ 
since 1960. Because the water-related extremes, 
including droughts, tropical cyclones, storms, 
ENSO, and snow, are all associated with the 
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Fig. 6.4   Trend of temperature anomaly in the global upper 2000 m ocean from 1993 to 2020 (baseline: 1993–2012)

6.3.2.5 � Highlights

•	 Based on the IAP global ocean-gridded obser-
vational dataset combined with the remote-
sensing reconstruction dataset (DORS), the 
ocean changes under global warming have been 
assessed, including global upper 2,000 m tem-
perature, salinity, and stratification in recent 
decades.

•	 From 1955 to 2021, the upper 2000 m of 
the global ocean has gotten warmer, and the 
warming has been accelerating. Ocean warm-
ing has consequences for human beings and 
ecosystems. It raises the global sea level, 
reduces the efficiency of ocean carbon 
uptake, increases the frequency/intensity 
of marine heat waves, strengthens tropical 
cycles, and causes more extreme rainfall.

•	 From 1955 to 2021, the existing salinity 
pattern has been amplified by 1.6%, with a 
“fresh get fresher and the salty get saltier” 
pattern in much of the ocean, indicating the 
“dry get drier and wet get wetter” paradigm 
of the amplification of the water cycle. This 

Furthermore, we adopted the DORS dataset 
to quantitatively analyze the spatial variation 
trend and vertical evolution characteristics of 
the global ocean subsurface temperature upper 
2,000 m from 1993 to 2020. The results indi-
cated that all ocean basins dramatically warmed 
under global warming from 1993 to 2020, and 
the global ocean warming had a certain degree 
of spatial heterogeneity (Fig. 6.4). The ocean 
warming signal exhibits a distinctive vertical 
evolution characteristic from the upper layer to 
the subsurface and deeper layers, indicating that 
more and more heat is sequestered and stored by 
the subsurface and deeper ocean (SDO), and the 
SDO is playing an increasingly important role 
in regulating the energy balance of Earth’s cli-
mate system (Fig. 6.5). Overall, the new DORS 
dataset revealed that the ocean warming from 
1993 to 2020 was worldwide and systematic. 
The global ocean is experiencing unprecedented 
warming during recent global climate change. 
The warming signal in the SDO is enhancing, 
and more and more heat is absorbed and stored 
in the SDO.

6.3  Case Studies
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Fig. 6.5   Long-term change in the global ocean temperature vertical profile from 1993 to 2020 (baseline: 1993–2012)

This study focused on the upper 2000 m 
ocean because the Argo network, the key com-
ponent of the global ocean observing system, 
mainly covers the upper 2000 m. Below 2000 
m, the data are sparse and insufficient to observe 
deep ocean changes, requiring further study. The 
data distributions are still sparse in the coastal 
regions, polar regions, Indonesian Through 
Flow, and major inner seas. More observations 
are needed in these regions to reduce the uncer-
tainty in climate monitoring. Furthermore, based 
on the perspective of satellite remote-sensing 
big data and artificial intelligence, the DORS 
retrieval and reconstruction technology can also 
provide important remote-sensing observation 
data support for the study of changes in the 3D 
physical environment of the global ocean, thus 
serving climate change action and the SDGs.

6.3.3	� Analysis of Temporal 
and Spatial Changes in Net 
Ecosystem Productivity 
of Global Terrestrial 
Ecosystems, 2000–2020

Target: SDG 13.2: Integrate climate change 
measures into national policies, strategies, and 
planning.

implies the intensification of water-associated 
extremes.

•	 Since 1960, global upper 2000 m stratifica-
tion has increased by 5.3%, reducing the 
efficiency of the vertical exchanges of heat, 
carbon, dissolved oxygen, and other constitu-
ents, increasing the surface warming level by 
reducing the ocean carbon uptake.

6.3.2.6 � Discussion and Outlook
This study used the IAP global ocean-grid-
ded observational dataset in combination with 
DORS remote-sensing reconstruction data 
products to assess the global changes of the 
key ocean physical parameters, including tem-
perature, salinity, and stratification, which sup-
ports the achievement of SDG 13.1 and SDG 
13.3. We want to stress that because of the slow 
response of the ocean to greenhouse gas emis-
sions, emerging changes such as ocean warming 
and stratification changes caused by past carbon 
emissions will be committed for hundreds of 
years. Thus, ocean-related Climate Actions are 
critical in achieving SDGs and combating cli-
mate change (Abraham et al. 2022). To this end, 
ocean environment changes should be integrated 
into climate risk assessments, and attention 
should be paid to the impacts of ocean warming 
and sea level rise on ecological challenges.
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including surface temperature at 1 km spatial 
resolution and LAI, evapotranspiration, surface 
reflectance, and land cover products at 500 m 
spatial resolution. Temporal resolution is 
monthly for all data products except land cover 
products, which are annual.

•	 Global climate zoning and ecological zoning 
datasets.

•	 Air temperature and precipitation data from 
the 2000–2020 ERA5-Land reanalysis cli-
mate dataset, Palmer drought severity index 
(PDSI) from the CRU climate dataset.

6.3.3.3 � Methods
In this study, the global terrestrial NEP was esti-
mated using a spatial big data-driven random 
forest model. There were three main processes. 
(1) The NEE (NEE = –NEP) observations at 
212 global flux sites were combined with data 
on environmental factors affecting the spatial 
and temporal variation of NEP. For this, we 
used a random forest model for the estimation 
of monthly NEE at the global flux site scale 
(Huang et al. 2021). (2) Using the random for-
est model constructed at the flux site scale 
combined with the spatially gridded predic-
tion variables, we estimated the monthly NEE 
at the global scale from 2000 to 2020 and used 
its negative number to obtain the global terres-
trial monthly NEP products from 2000 to 2020 
(with a spatial resolution of 1 km). (3) We accu-
mulated the monthly NEP products over years to 
obtain the global terrestrial annual NEP products 
and analyzed the spatial and temporal variations 
and driving mechanisms of global terrestrial 
NEP from 2000 to 2020. In addition, we com-
bined the Theil–Sen median trend analysis and 
Mann–Kendall trend test to estimate the tempo-
ral change trends of NEP at global and regional 
scales. A partial correlation analysis method 
was used to analyze the response of NEP to cli-
mate factors (air temperature, precipitation, and 
PDSI) and land cover factors (tree cover, short 
vegetation cover, and bare ground cover) at 
global and regional scales.

6.3.3.1 � Background
Terrestrial ecosystems play an important role 
in the global carbon cycle (Friedlingstein et al. 
2020). The net ecosystem production (NEP) of 
terrestrial ecosystems is the difference between 
the carbon fixed by ecosystem photosynthesis 
and the carbon lost by ecosystem respiration. It 
also represents the net carbon accumulation rate 
of the ecosystem (Woodwell et al. 1978). As an 
important index of the carbon balance of terres-
trial ecosystems, NEP is important for under-
standing the impacts of global climate change 
and achieving regional or global sustainable 
development. The accurate estimation of NEP is 
crucial for the scientific assessment of the car-
bon sequestration capacity of terrestrial ecosys-
tems and better formulation of climate change 
responses (Eshel et al. 2019; Jung et al. 2020). 
However, since NEP is a smaller difference 
between two larger carbon fluxes (i.e., gross pri-
mary productivity of vegetation and ecosystem 
respiration), its estimation is subject to signifi-
cant uncertainty.

In this study, based on the net ecosystem 
exchange (NEE) of CO2 between terrestrial 
ecosystems and the atmosphere (NEP = –NEE) 
observed by the global flux network and data 
on environmental factors affecting the spa-
tial and temporal variation of NEP, a random 
forest model driven mainly by multi-source 
remote-sensing data was constructed to estimate 
the global terrestrial NEP from 2000 to 2020. 
Through the quantitative analysis of the spatial 
and temporal changes of global terrestrial NEP 
and its response to climate and land cover fac-
tors in the last 20 years, we can comprehensively 
understand the spatial and temporal patterns of 
global terrestrial ecosystem carbon sinks and 
their response to global climate change.

6.3.3.2 � Data

•	 Global FLUXNET2015 Dataset (https://
fluxnet.org/data/fluxnet2015-dataset/).

•	 Terrestrial products of MODIS from 2000 to 
2020 (https://lpdaac.usgs.gov/product_search/), 
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Fig. 6.6   Spatial distribution pattern of the global terrestrial annual mean NEP from 2000 to 2020 (1 km × 1 km)

NEP showed a significantly increasing trend 
(0.016 Pg C/a, p < 0.05), followed by the 
arid (0.015 Pg C/a, p < 0.05), cold (0.014 Pg 
C/a, p < 0.05), and temperate zones (0.013 
Pg C/a, p < 0.05). The polar NEP showed a 
non-significant decreasing trend (Fig. 6.7a). 
From 2000 to 2020, the increasing area of 
global terrestrial NEP was larger than the 
decreasing area. The significantly increas-
ing area accounted for 22% of the total area, 
and the significantly decreasing area only 
accounted for 10%. The area percentage of 
different NEP change trends in all climate 
zones showed a similar pattern to the global 
scale, except for the polar zone (Fig. 6.7b). 
At the spatial scale, the increase in NEP 
was concentrated in the global forest ecore-
gions, including tropical moist forest, tropi-
cal dry forest, tropical mountain system, 
subtropical humid forest, subtropical dry 
forest, temperate continental forest, temper-
ate montane, and boreal coniferous forest, 
while the decrease was concentrated in the 
tropical rainforest, boreal mountain system, 
boreal tundra woodland, and polar ecore-
gions (Fig. 6.7c).

6.3.3.4 � Results and Analysis

1.	 Spatial Distribution Pattern of Global 
Terrestrial NEP

There are significant differences in the spa-
tial distribution pattern of the global terres-
trial annual mean NEP from 2000 to 2020 
(Fig. 6.6). Among them, the tropical NEP 
is the largest, accounting for 69.9% of the 
global total NEP, followed by temperate 
(20.6%), cold (7.8%), and polar (1.4%) 
zones, and the smallest is the arid zone 
(0.3%). Specifically, the high value areas of 
NEP are located in tropical, subtropical, and 
cold-temperate forests, and the low value 
areas are widely distributed in arid and 
semi-arid regions, including the mid-west-
ern USA, Kazakhstan, northern Mongolia, 
and Australia.

2.	 Temporal Change Trends in Global 
Terrestrial NEP

From 2000 to 2020, the total global terres-
trial NEP showed a significant increasing 
trend (0.05 Pg C/a, p < 0.05). The tropical 
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Fig. 6.7   Statistics of global temporal change trends in terrestrial NEP from 2000 to 2020

heterogeneity (Fig. 6.8). The comparative 
analysis of the partial correlation coefficients 
revealed that the changes in NEP in tropical 
and arid zones were more influenced by cli-
mate factors. However, the polar zone was 
more influenced by land cover factors, and 
the temperate zone was influenced by both 
climate and land cover factors.

The correlation between NEP and climate 
factors (air temperature, precipitation, and 
PDSI) is significantly stronger than that between 

3.	 Analysis of the Driving Factors of Spatial  
and Temporal Changes in Global Terres­
trial NEP

At the global scale, NEP showed a significant 
correlation with air temperature and forest 
cover (Fig. 6.8), indicating that the increase 
in global terrestrial NEP from 2000 to 2020 
was mainly due to the increase in global air 
temperature and forest cover. At the regional 
scale, the correlation between NEP and the 
driving factors showed significant spatial 

6.3  Case Studies
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Fig. 6.8   Partial correlation coefficients between terrestrial 
NEP and climate and land cover factors at the global scale 
and different climate zones. Note for this and subsequent 
figures: Climate factors include air temperature (TEM), 

precipitation (PRE), and PDSI. Land cover factors include 
tree cover (TC), short vegetation cover (SVC), and bare 
ground cover (BGC). * indicates that the partial correla-
tions between the two factors are significant at a p < 0.05

6.3.3.6 � Discussion and Outlook
Based on Earth observation big data technology, 
this study uses a data-driven approach to esti-
mate global terrestrial NEP from 2000 to 2020 
and analyzes its spatial and temporal changes 
and responses to climate and land cover fac-
tors. This study provides important data support 
for SDG 13.2 monitoring of global terrestrial 
carbon sources and sinks. It was found that 
the global terrestrial NEP showed a significant 
increasing trend from 2000 to 2020, and the 
increasing temperature and forest cover were 
the main factors for the increase in global ter-
restrial NEP. Our study is generally consistent 
with the results of previous studies on enhanced 
global terrestrial carbon sinks. In this study, 
observed data at global flux sites were used to 
construct a data-driven model. Since flux sites 
are usually set up in areas that do not contain 
the effects of disturbance factors, such as log-
ging and fire, the global terrestrial NEP esti-
mated by upward extrapolation of flux site data 
may be overestimated and will lead to uncer-
tainties in the analysis of spatial and temporal 
changes in NEP.

NEP and land cover factors (tree cover, short 
vegetation cover, and bare ground cover) in eco-
logically fragile regions, such as global desert 
regions, temperate grassland regions, and moun-
tainous regions in the north and tropics, where 
vegetation growth is more restricted by hydro-
thermal conditions (Fig. 6.9). This indicates that 
the changes in NEP in these ecoregions from 
2000 to 2020 were mainly influenced by cli-
mate change, while the changes in NEP in other 
ecoregions were influenced by both climate and 
land cover factors.

6.3.3.5 � Highlights

•	 From 2000 to 2020, the global terrestrial 
NEP was mainly distributed in the tropic 
(69.9% of the total global NEP), followed by  
the temperate (20.6%), cold (7.8%), and 
polar (1.4%) zones, and the smallest was the 
arid zone (0.3%).

•	 From 2000 to 2020, the total NEP of global 
terrestrial ecosystems showed a significant 
increasing trend, and the increase in temper-
ature and forest cover was the main reasons 
for the increase in global terrestrial NEP.
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Fig. 6.9   Partial correlations between terrestrial NEP and climate and land cover factors for different global 
ecoregions

6.3.4.1 � Background
Since the industrial revolution, increasing CO2 
emitted into the atmosphere by human activ-
ity has driven a rapid increase in atmospheric 
CO2 concentration, from preindustrial levels of 
280 ppm to the current levels of approximately 
420 ppm (https://gml.noaa.gov/ccgg/trends). As 
a result, a series of environmental issues, such 
as global warming, have arisen. The CO2 emit-
ted into the atmosphere has three destinations: a 
portion remains in the atmosphere, contributing 
to the continuous rise of atmospheric CO2 con-
centration; a portion is absorbed by terrestrial 
ecosystems, leading to a considerable increase 
in total global terrestrial NEP; and the remain-
ing portion with a significant amount of CO2 is 
taken up by the ocean. The ability of the global 
ocean to absorb CO2 is typically measured by 
the sea-air CO2 flux across the interface. When 
the sea-air CO2 flux is negative, the ocean 
absorbs atmospheric CO2 and is considered a 
carbon sink. Conversely, when the sea-air CO2 

The spatial and temporal changes of global 
terrestrial NEP can be influenced by various 
factors. In this study, only climate and land 
cover factors were analyzed, and factors such 
as atmospheric CO2 concentration and nitro-
gen deposition were not considered. Moreover, 
except for large-scale hydrothermal conditions 
and vegetation types, the influences of land use 
and land management on global terrestrial NEP 
are important in many human-intensive regions. 
Therefore, the influences of anthropogenic fac-
tors need to be considered when using global 
terrestrial NEP data to assess sustainable devel-
opment processes.

6.3.4	� Variability of Global Ocean 
Carbon Sink, 1992–2020

Target: SDG 13.2: Integrate climate change 
measures into national policies, strategies, and 
planning.

6.3  Case Studies
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flux is positive, the ocean releases CO2 into the 
atmosphere and is considered a carbon source. 
The ocean is acknowledged as one of Earth’s 
two primary carbon sinks, but there is consider-
able uncertainty in estimating the global air-sea 
CO2 flux. The limited and unevenly distributed 
measurement of surface ocean partial pressure 
of CO2 (pCO2) is a crucial parameter for flux 
calculation. Various artificial neural network 
methods have been applied to fit the relation-
ship between pCO2 and other environmental fac-
tors for constructing global ocean-gridded pCO2 
products. However, the resulting carbon budget 
has exhibited significant differences, with differ-
ences reaching as high as 0.6 PgC/a in specific 
years. Such uncertainty has far-reaching impacts 
on the scientific understanding and accurate 
assessment of the global ocean carbon budget, 
further affecting climate change mitigation strat-
egies. Therefore, it is imperative to improve the 
construction method of gridded pCO2 prod-
ucts, reduce the uncertainty of CO2 flux estima-
tion, and further clarify the evolution of global 
ocean CO2 uptakes. To this end, we designed a 
stepwise feedforward neural network (Stepwise 
FFNN) algorithm, constructed a global surface 
ocean-gridded pCO2 product from 1992 to 2020, 
and conducted research on the trends in global 
ocean carbon sink intensity in 2022.

6.3.4.2 � Data

•	 Global surface ocean pCO2 data during 
1992–2020 from the 1° Stepwise FFNN algo-
rithm product (Zhong et al. 2022).

•	 Dry air mixing ratio of atmospheric CO2 
(xCO2) data during 1992–2020 from the 1° 
NOAA Greenhouse Gas Marine Boundary 
Layer Reference product.

•	 Surface ocean temperature and salinity data 
during 1992–2020 from the 1° Estimating 
the Circulation and Climate of the Ocean 
(ECCO2) cube92 product.

•	 Sea ice coverage data during 1992–2020 
from the 1° ERA5 product.

•	 Wind speed data during 1992–2020 from the 
1° High-resolution Cross-Calibrated Multi-
Platform product.

6.3.4.3 � Methods
The estimation of global sea-air CO2 flux includes 
two main steps. First, the Stepwise FFNN algo-
rithm was formulated to construct the global sur-
face ocean pCO2 data. Specifically, the global 
ocean was divided into specific regions using 
the self-organizing map (SOM). Subsequently, 
in each region, optimal pCO2 predictors mini-
mizing the data construction error were selected 
by implementing the Stepwise FFNN algorithm 
from various environmental parameters, including 
temperature, salinity, dissolved oxygen, nitrate, 
phosphate, silicate, longitude, latitude, time 
series, year, month, mixed layer depth, sea surface 
height, the vertical velocity of ocean current, sea 
level pressure, atmospheric pressure, dry air mix-
ing ratio of atmospheric CO2 (xCO2), El Niño 
index, bathymetry, wind speed, and chlorophyll 
concentration. Using the selected pCO2 predic-
tors and the forward feedback neural network with 
refined neuron sizes, gridded surface ocean pCO2 
data were constructed step by step in each SOM-
divided region.

Second, the global sea-air CO2 flux across the 
interface was estimated. The monthly CO2 flux 
in each 1° grid was estimated using the formula:

where pCO2w represents the surface ocean 
pCO2, the atmospheric pCO2 (pCO2atm) is 
obtained from the xCO2 product, the gas trans-
fer velocity (k) is computed through wind speed, 
and the solubility of CO2 in seawater (a) is 
determined based on the temperature and salin-
ity. Subsequently, the total annual CO2 flux 
for each region was determined by integrat-
ing the products of monthly sea-air CO2 flux 
and surface ocean areas in all 1° grids. Based 
on this analysis, the variability of ocean carbon 
sink was evaluated on both global and regional 
scales, and the primary factors responsible for 
the change in the carbon sink intensity were 
explored during the past three decades.

6.3.4.4 � Results and Analysis
As suggested by the inter-annual variabil-
ity of surface ocean pCO2 from 1992 to 2020 
(Fig. 6.10), global surface ocean pCO2 increased 

F = k · a · (pCO2w − pCO2atm),
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Fig. 6.10   Variability of a global and b regional average 
surface ocean pCO2 in the past three decades
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(a) Global average surface ocean pCO
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(b) Regional average surface ocean pCO2 in the past three decades
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differences caused the different carbon sink 
capacities across the oceans.

The annual average global ocean carbon sink 
intensity from 1992 to 2020 was estimated to 
be 1.61 PgC/a, with the majority taking place 
in the temperate oceans and the subpolar North 
Atlantic Ocean, while the equatorial Pacific was 
the leading carbon source (Fig. 6.11). In addi-
tion, carbon sources appeared in the subpolar 
North Pacific, Northwest Indian Ocean, equato-
rial Atlantic, and the Southern Ocean south of 
50°S, contributing to the significant regional dif-
ference in global sea-air CO2 flux.

The variability of global sea-air CO2 flux 
during 1992–2020 can be divided into four 
periods based on the trend (Fig. 6.12): weak-
ening during 1992–2001 from − 1.77 PgC/a 
to − 1.19 PgC/a; rapid strengthening during 
2002–2003 until -1.59 PgC/a; another weak-
ening during 2004–2008 until 1.24 PgC/a; and 
continuous strengthening since 2008, reach-
ing 2.22 PgC/a until 2020. During the recent 
strengthening period from 2008 to 2020, the 
global ocean carbon sink increased by 0.98 
PgC/a, with an average strengthening trend 
of 0.08 PgC/a. On the regional scale, the vari-
ability of sea-air CO2 flux was mainly in the 
Pacific Ocean, followed by the Southern Ocean. 
The variability of the Pacific carbon sink was 
almost synchronous with the global ocean car-
bon sink. They were the results of El Niño and 
La Niña events on the equatorial Pacific carbon 
source. The enhanced upwelling in the eastern 
equatorial Pacific Ocean transported more deep 
waters with a high concentration of dissolved 
inorganic carbon (DIC) to the surface, leading 
to the enhancement of the carbon source there 
and the corresponding weakening of the global 
ocean carbon sink. The equatorial Pacific car-
bon source significantly weakened during the 
1997–1998 and 2015–2016 El Niño events 
and strengthened at the end of El Niño events 
and the beginning of La Niña events. Although 
tropical areas in other basins were also carbon 
sources, the influences of El Niño and La Niña 
events were insignificant. The fluctuating equa-
torial Pacific carbon source drives the short-
term variability of global ocean carbon sink. 

as the atmospheric CO2 rose, but in an asynchro-
nous manner. The decadal average growth rate 
of the atmospheric pCO2 was 1.6 µatm/a from 
1992 to 1999, 1.9 µatm/a from 2000 to 2009, 
and 2.4 µatm/a from 2010 to 2020, while the 
average growth rate of the surface ocean pCO2 
was 1.91 µatm/a, 1.77 µatm/a, and 2.08 µatm/a 
in the recent three decades, respectively. Since 
2000, the atmospheric pCO2 has increased 
more slowly than the surface ocean, leading to 
an increasing sea-air pCO2 difference across 
the interface. The surface ocean pCO2 and its 
growth rate varied significantly in different 
regions. On the basin scale, the average sur-
face ocean pCO2 was the highest in the Indian 
Ocean and the lowest in the Arctic Ocean, while 
the average growth rate was the highest in the 
Southern Ocean (1.87 µatm/a) and the low-
est in the Arctic Ocean (1.39 µatm/a). These 

6.3  Case Studies
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Fig. 6.11   Spatial distribution of average global sea-air CO2 flux during 1992–2020

substantial data support for the monitoring of 
CO2 in SDG 13.2.

The global ocean is overall a strong car-
bon sink for atmospheric CO2. Since 2008, 
the global ocean carbon sink has continuously 
strengthened, with significant short-term fluc-
tuations over the period 1992–2020. In addition 
to the atmospheric CO2 concentration, natural 
factors such as wind speed, temperature, phyto-
plankton, and upwelling affect the intensity of 
ocean carbon sinks. Any behavior or phenom-
enon that can cause changes in these factors 
may also affect the intensity of ocean carbon 
sinks, such as global warming, El Niño and La 
Niña events, and the reduction of anthropo-
genic carbon emissions. Theoretically, as long 
as atmospheric CO2 concentrations continue 
to increase, the intensity of ocean carbon sinks 
will also increase. However, under the sce-
nario of increasing terrestrial carbon sinks and 
potential future reductions in CO2 emissions, 
the increasing rate in the atmospheric CO2 con-
centration and the subsequent rise in ocean car-
bon sink intensity will be slower. Whether the 
global ocean will continue to absorb CO2 emit-
ted by human activity in the future is crucial 

Since 2008, the continuously strengthening car-
bon sinks in the Indian Ocean, Atlantic Ocean, 
and Southern Ocean have driven the expanded 
ocean carbon sink, substantially slowing the 
rise of atmospheric CO2.

6.3.4.5 � Highlights

•	 Based on the Stepwise FFNN algorithm, 
optimal pCO2 predictors were selected in 
different global ocean regions, reducing 
the construction error of gridded data and 
the uncertainty in global ocean carbon sink 
estimation.

•	 The global ocean is generally a strong sink 
of atmospheric CO2, and since 2008, it has 
strengthened continuously, but with major 
fluctuations due to El Niño and La Niña 
events during 1992–2020.

6.3.4.6 � Discussion and Outlook
In this case study, the monthly global 1° × 1° 
gridded pCO2 data were constructed using the 
Stepwise FFNN algorithm, based on which 
the global sea-air CO2 flux and its variability 
during 1992–2020 were estimated, providing 
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Fig. 6.12   Variability of a the 
global sea-air CO2 flux and b 
equatorial carbon sources
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6.4	� Summary

This chapter focuses on three specific goals of 
SDG 13, Climate Action: disaster monitoring 
and reduction, climate change early warning, 
and global land/marine carbon sink estimation. 

for formulating global climate change counter-
measures. Future research on ocean carbon sinks 
should concentrate on monitoring the time when 
the rate of atmospheric CO2 increase begins to 
decelerate, as well as the response of ocean car-
bon sinks, both globally and regionally.

6.3  Case Studies
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face temperature variations. J Clim 29:5393–5416
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Biogeosci 124(3):461–478
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Global carbon budget 2020. Earth Syst Sci Data 
12:3269–3340

Gouretski V, Cheng L, Boyer T (2022) On the consist-
ency of the bottle and CTD profile data. J Atmos 
Oceanic Tech 39:1869–1887. https://doi.org/10.1175/
JTECH-D-22-0004.1

Huang N, Wang L, Zhang YL et al (2021) Estimating the 
net ecosystem exchange at global FLUXNET sites 
using a random forest model. IEEE J Sel Top Appl 
Earth Observations Remote Sens 14:9826–9836

IPCC (2022) Climate change 2022: mitigation of cli-
mate change. In: Working group III contribution to 
the sixth assessment report of the intergovernmen-
tal panel on climate change. IPCC working group 
1992. The IPCC supplementary report. Cambridge 
University Press

Jung M, Schwalm C, Migliavacca M et al (2020) 
Scaling carbon fluxes from eddy covariance sites to 
globe: Synthesis and evaluation of the FLUXCOM 
approach. Biogeosciences 17(5):1343–1365

Li GC, Cheng LJ, Zhu J et al (2020) Increasing ocean 
stratification over the past half-century. Nat Clim 
Chang 10(12):1116–1123

Mora C, Dousset B, Caldwell I et al (2017) Global risk 
of deadly heat. Nat Clim Chang 7:501–506

Perkins SE (2015) A review on the scientific understand-
ing of heatwaves—their measurement, driving mech-
anisms, and changes at the global scale. Atmos Res 
164–165:242–267

Qin DH (2015) China National Assessment Report on 
risk management and adaptation of climate extremes 
and disasters (refined edition). Science Press, Beijing 
(in Chinese)

Su HA, Jiang JW, Wang A et al (2022) Subsurface tem-
perature reconstruction for the global ocean from 
1993 to 2020 using satellite observations and deep 
learning. Remote Sensing 14(13):3198

Su H, Zhang TY, Lin MJ et al (2021) Predicting subsur-
face thermohaline structure from remote sensing data 
based on long short-term memory neural networks. 
Remote Sens Environ 260:112465

Big Earth Data was used to successfully meas-
ure and monitor two indicators of SDG 13 (SDG 
13.1.1, losses from disasters, and SDG 13.2.2, 
greenhouse gas emissions). We have also devel-
oped global climate change and carbon balance 
data products to provide decision-making sup-
port for Climate Action.

Based on the research in this chapter, we note 
the following:

(1)	 Regarding SDG 13.1.1, research has shown 
an increase in the frequency and intensity of 
global heat waves and ocean warming, and 
therefore, it is still necessary to improve 
disaster resistance, increase technological 
means, and enhance our ability to withstand 
more extreme disasters.

(2)	 As global warming, forest coverage, and atmos-
pheric CO2 concentrations increase, the carbon 
sequestration capacity of the global land and 
oceans is also increasing. These changes reflect 
both the necessity of continuing to imple-
ment afforestation policies, and the risk that 
the increase in marine carbon sink may lead 
to ocean acidification. In the future, we need 
to pay attention to the systematic problems of 
changes in terrestrial and marine ecosystems.

Big Earth Data has shown significant advantages 
in monitoring the indicators of progress toward 
SDG 13. In the future, it is necessary to explore 
the monitoring of natural disasters and green-
house gas emissions.

References

Abraham J, Cheng LJ, Mann ME et al (2022) The ocean 
response to climate change guides both adapta-
tion and mitigation efforts. Atmos Oceanic Sci Lett 
15(4):100221

Cheng LJ, Abraham J, Trenberth KE et al (2022) 
Another record: ocean warming continues through 
2021 despite La Niña conditions. Adv Atmos Sci 
39(3):373–385

Cheng LJ, Trenberth KE, Gruber N et al (2020) 
Improved estimates of changes in upper ocean 
salinity and the hydrological cycle. J Clim 
33(23):10357–10381

http://dx.doi.org/10.1175/JTECH-D-22-0004.1
http://dx.doi.org/10.1175/JTECH-D-22-0004.1


141

biomass appears to be a net source of carbon dioxide 
for the atmosphere. Science 199(4325):141–146

World Meteorological Organization (2022) State of the 
global climate 2021. https://library.wmo.int/records/
item/56300-state-of-the-global-climate-2021

Zhong GR, Li XG, Song JM et al (2022) Reconstruction 
of global surface ocean pCO2 using region-specific 
predictors based on a stepwise FFNN regression 
algorithm. Biogeosciences 19(3):845–859

Tan ZL, Cheng V, Gouretski B et al (2023) A new auto-
matic quality control system for ocean profile obser-
vations and impact on ocean warming estimate. Deep 
Sea Res Part I 194:103961. https://doi.org/10.1016/j.
dsr.2022.103961

UN (2021) The sustainable development goals report 
2021. UN, New York

Woodwell GM, Whittaker RH, Reiners WA et al (1978) 
The biota and the world carbon budget: the terrestrial 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 
noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if you 
modified the licensed material. You do not have permission under this license to share adapted material derived from 
this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

References

https://library.wmo.int/records/item/56300-state-of-the-global-climate-2021
https://library.wmo.int/records/item/56300-state-of-the-global-climate-2021
http://dx.doi.org/10.1016/j.dsr.2022.103961
http://dx.doi.org/10.1016/j.dsr.2022.103961
http://creativecommons.org/licenses/by-nc-nd/4.0/


143

SDG 14, Life Below Water

7.1	� Background

Covering 71% of Earth’s surface, oceans are the 
largest ecosystem on Earth and home to more 
than 80% of the world’s life. SDG 14, as part 
of the 2030 Agenda and its 17 transformative 
goals, emphasizes the need to conserve and sus-
tainably use sea and marine resources. Globally, 
however, the implementation of most of the 
SDG 14 targets has been unsatisfactory. The 
UN’s Second World Ocean Assessment released 
in April 2021 reported that many pressures from 
human activity have continued to degrade the 
oceans since 2015, including important habitats 
such as mangroves and coral reefs (UN 2021). 
In July 2022, the UN Ocean Conference adopted 
the Lisbon Declaration, calling for increased sci-
ence and innovation-based action to address cur-
rent ocean emergencies.

Derived mainly from large-scale marine 
scientific experimental devices with spatial 
properties, detection equipment, remote sen-
sors, socioeconomic observations, and com-
puter simulation processes, Big Earth Data has 
become the “new key” to our understanding of 
the oceans and the “new engine” of knowledge 

discovery. In recent years, Chinese research 
institutions, universities, and government depart-
ments have made great efforts to explore Big 
Earth Data and its related technologies and 
methods to serve the implementation of SDG 14 
and have accumulated rich practical experience 
in the production of datasets and the construc-
tion of evaluation models. In this chapter, we 
focus on the two themes of reducing marine pol-
lution and protecting marine ecosystems, focus-
ing on the research results in the distribution of 
harmful red tide organisms, the monitoring of 
coral reef bleaching and the thermal environ-
ment, and the analysis of marine phytoplankton 
particle size structure, in order to better promote 
the realization of SDG 14.

7.2	� Main Contributions

The three case studies in this chapter demon-
strate the monitoring and evaluation of SDG 
14.1 and SDG 14.2 in China and its surround-
ing areas. The main contributions are as follows 
(Table 7.1).
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7.3	� Case Studies

7.3.1	� Spatial Distribution 
Characteristics of Harmful 
Algal Blooms Species 
in the South China Sea 
and Surrounding Waters

Target: SDG 14.1: By 2025, prevent and signifi-
cantly reduce marine pollution of all kinds, in 
particular from land-based activities, including 
marine debris and nutrient pollution.

7.3.1.1 � Background
According to the statistics of the Intergovern
mental Oceanographic Commission (IOC) of 
UNESCO, there are more than 200 marine harm-
ful algal bloom (HAB) species, of which dino-
flagellates account for more than 70%. Several 
diatoms (e.g., Pseudo-nitzschia pungens), raphi-
dophyte (e.g., Chattonella marina), and hapto-
phyte (e.g., Phaeocystis globosa) species also 
form HABs (Lundholm et al. 2022).

HABs devastate the marine environment, 
human health, and social economy. Some spe-
cies are able to produce hemolytic toxins, 
which will directly lead to the mortality of other 
marine organisms, especially cultured fish and 
shellfish. Other species produce toxins that will 
be further accumulated and transformed after 
feeding by fish or shellfish and endanger human 
health and even cause death through the food 
chain. According to the symptoms of poison-
ing due to human consumption of contaminated 
fish or shellfish, the toxins can be divided into 
paralytic shellfish poison (PSP), diarrhetic shell-
fish poison (DSP), neurotoxic shellfish poison 
(NSP), amnesic shellfish poison (ASP), and cig-
uatera fish poisoning (CFP).

According to a report issued by the FAO, the 
South China Sea is one of the most important 
mariculture areas in the world. China accounts 
for 57% of the world’s fish production. Grouper 
and other important economic fish are mainly 
cultivated in Hainan and Guangdong, and China 
ranks among the top ten countries in terms of 
shellfish production in the world (FAO 2020).

Southeast Asian countries had witnessed 333 
HABs by December 2019, and most food poi-
soning was caused by PSP-producing species 
(Hallegraeff 2021). Gymnodinium catenatum, 
Alexandrium tamiyavanichi, and Pyrodinium 
bahamense are the dominant PSP-producing 
species in the South China Sea. The first two 
species are widely distributed in the South 
China Sea, while the latter is only found in 
the Philippines and Indonesia (Yñiguez et al. 
2021; Gu et al. 2022). In addition, Alexandrium 
fragae, which was reported to produce PSP 
recently, was also detected in the Gulf of 
Thailand (Fu et al. 2021), but it is unclear 
whether it exists in the other parts of the South 
China Sea as well. Although few other poisons, 
such as DSP, have been reported in Southeast 
Asian countries, species producing such toxins 
also occur in this area. In the context of global 
change, HABs may increase in frequency and 
scale in the South China Sea, posing a serious 
threat to sustainable marine development.

Ichthyotoxic species including Chattonella 
marina, Karlodinium australe, and Margalefi
dinium polykrikoides, frequently broke out in 
the South China Sea and caused losses to marine 
aquaculture recently (Yñiguez et al. 2021). For 
example, Karlodinium australe blooms in Johor 
Strait caused the mortality of hundreds of tons of 
fish in 2014 (Lim et al. 2014).

The main goal of SDG 14.1 is to prevent and 
significantly reduce various types of marine pol-
lution, especially nutrient pollution from land-
based sources. Excessive nutrient emissions can 
induce changes in the community structure of 
phytoplankton, especially leading to the domi-
nance of HAB species. Many HAB species are 
usually difficult to preserve, and their morpho-
logical characteristics are subtle, so it is impor-
tant to rely on molecular characteristics for 
identification. Compared with the traditional 
morphological observation method, the meta-
barcoding method based on high-throughput 
sequencing technology can accurately and com-
prehensively reveal the diversity of HAB spe-
cies in water samples. On the basis of an earlier 
investigation in the Gulf of Thailand (Fu et al. 
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(Illumina) based on a paired-end strategy 
(2 × 250 bp). The reads obtained from HiSeq 
sequencing were analyzed using USEARCH 
v11.0.667 and VSEARCH v2.14.2. Reads were 
clustered to a zero-radius operational taxonomic 
unit (ZOTU) according to 97% similarity and 
the most abundant read was selected as the rep-
resentative read for each ZOTU. Finally, ZOTU 
annotation was conducted on the representative 
read of each ZOTU against the in-house curated 
ITS database, with the similarity at a cutoff level 
of 99%. CCA was used to investigate the rela-
tionship between the relative abundance of dom-
inant HABs species and environmental factors.

7.3.1.4 � Results and Analysis

1.	 Dinoflagellate Community Composition

In all, 416 ZOTUs were obtained by cluster-
ing based on the high-throughput sequencing 
results targeting ITS1. Among them, 84 species 
were annotated with 26 HAB species, includ-
ing six PSP-producing, five DSP-producing, 
and six ichthyotoxin species. This method can 
effectively obtain background data on HABs in 
the sea areas, thus strengthening the ability to 
resist HAB disasters and promoting sustainable 
management and protection of the marine and 
coastal ecosystems.

The similarity analysis results of dinoflagel-
late community composition showed that the 
differences within a sea area were smaller than 
those between areas, except for the large dif-
ferences between the Semerak (located in a 
nearshore lagoon) of the Malay Peninsula and 
its surrounding waters. Therefore, Semerak is 
listed separately, and the study area is divided 
into nine sea areas (Fig. 7.1).

The community composition of HAB species 
in the three areas of Malaysia (Semerak, Malay 
Peninsula, and Malacca Strait) was similar, and 
Alexandrium pseudogonyaulax and Karlodinium 
australe were the dominant species. In addi-
tion, there were abundant Dinophysis tripos 
in the Malacca Strait. Alexandrium pseudog-
onyaulax, Karlodinium austral, and Karenia 
papilionacea were abundant in Sichang Island, 

2021), this case expanded the research scope to 
other sea areas in the South China Sea, and the 
sampling was carried out nearly synchronously 
to fully understand the geographical distribution 
characteristics of HAB species in this region.

7.3.1.2 � Data
Supported by the China-ASEAN Maritime 
Cooperation Fund, Asia Regional Cooperation 
Special Fund, and the National Natural Science 
Foundation of China, the Third Institute of 
Oceanography of the Ministry of Natural 
Resources carried out surveys independently 
and with partners of ASEAN countries. A total 
of 130 stations were sampled in the Pearl River 
Estuary, East of Hainan Island, Beibu Gulf 
(Weizhou Island), Gulf of Thailand (Sichang 
Island), Malay Peninsula, Semerak, Johor Strait, 
Malacca Strait, and Lombok Island from August 
to November 2019 (Fig. 7.1). The HAB species 
data are originated from the high-throughput 
sequencing results of these samples. The envi-
ronmental data were collected from the field sur-
veys, and the inorganic nitrogen and inorganic 
phosphate data of some stations were obtained 
through satellite remote sensing inversion 
(http://marine.copernicus.eu/services-portfolio/
access-to-products). Data format includes spe-
cies name, abundance, station, longitude and 
latitude, inorganic nitrogen, inorganic phospho-
rus, silicate, temperature, salinity, and dissolved 
oxygen.

7.3.1.3 � Methods
A YSI multi-parameter water quality instrument 
was used to measure temperature, salinity, dis-
solved oxygen, chlorophyll a (Chla), and other 
environmental factors in situ. Nitrate, phos-
phate, and silicate were determined by the nutri-
ent automatic analyzer. One-liter surface water 
samples were collected and filtered on a poly-
carbonate membrane with 0.22 μm pore diam-
eter and stored at – 20 °C. The environmental 
deoxyribonucleic acid (DNA) was extracted and 
amplified with the primer targeting the internal 
transcribed spacer region (ITS1). The amplicons 
were sequenced using a HiSeq 2500 platform 

http://marine.copernicus.eu/services-portfolio/access-to-products
http://marine.copernicus.eu/services-portfolio/access-to-products
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Fig. 7.1   Sampling stations and sea area division

2.	 Distribution Characteristics of HAB 
Species

A total of six PSP-producing species have 
been found, among which Alexandrium fraga 
was distributed in the East of Hainan Island 
and Malacca Strait. Alexandrium minu-
tum ribotype C was distributed in Semerak 
and Weizhou Island in the Beibu Gulf, and 
Alexandrium ostenfeldii was distributed in 
the Pearl River Estuary, Sichang Island in 
the Gulf of Thailand, Malacca Strait, Malay 
Peninsula, and Lombok Island. Alexandrium 

Gulf of Thailand. The dominant species in the 
Johor Strait were Prorocentrum steidingerae and 
Dinophysis caudata. Prorocentrum steidingerae 
was also detected in the Pearl River Estuary, and 
additional Azadinium spinosum ribotype A and 
Prorocentrum obtusidens were also detected in 
the Pearl River Estuary and the East of Hainan 
Island. A large number of Alexandrium pseu-
dogonyaulax and Ostreopsis ovata were found 
in Weizhou Island in the Beibu Gulf. There 
were abundant Prorocentrum obtusidens and 
Alexandrium pseudogonyaulax in Lombok 
Island, Indonesia (Fig. 7.2).

7.3  Case Studies
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Fig. 7.2   Relative abundance of the main HAB species in nine sea areas

Karenia selliformis, and Karenia australe 
were distributed in all areas except the Johor 
Strait. Karlodinium digitatum appeared in all 
areas except the Johor Strait and Semerak, and 
Margalefidinium fulvescens appeared in the Pearl 
River Estuary, East of Hainan Island, Malay 
Peninsula, and Lombok Island (Fig. 7.3c).

3.	 Relationship Between the Abundance of 
HAB Species and Environment

The CCA analysis showed that the two axes 
explained 16.03% (P = 0.007) of the rela-
tionship between environmental factors and 
the relative abundance of the main HAB 
species, respectively (Fig. 7.4). The rela-
tive abundance of Dinophysis caudata was 
positively related to the concentration of 
phosphate and Chla, but it was negatively 
related to salinity and dissolved oxygen. 
The distribution of Dinophysis caudata was 
widespread, but the relative abundance was 
the highest in the Johor Strait, which may 

pacificum was distributed in the East of 
Hainan Island, Sichang Island in the Gulf of 
Thailand, and Lombok Island. Alexandrium 
tamiyavanichi was distributed in the Malay 
Peninsula, Johor Strait, Malacca Strait, and 
Sichang Island in the Gulf of Thailand. 
Centrodinium punctatum only appeared in 
the Pearl River Estuary (Fig. 7.3a).

Five DSP-producing species have been found. 
Among them, Dinophysis caudata and Dinophysis 
tripos were widely distributed in the South China 
Sea, but Dinophysis sacculus appeared in the 
Pearl River Estuary only. Prorocentrum lima was 
detected in Lombok Island, but Prorocentrum 
steidingerae was distributed in the Pearl River 
Estuary, Weizhou Island in the Beibu Gulf, Malay 
Peninsula, Johor Strait, Malacca Strait, and 
Lombok Island (Fig. 7.3b).

Six ichthyotoxin species were recorded. 
Among them, Karenia brevis was distrib-
uted in the Pearl River Estuary, East of Hainan 
Island, Weizhou Island in the Beibu Gulf, 
and Lombok Island, and Karenia mikimotoi, 
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Fig. 7.3   Distribution of HAB species producing PSP (a), DSP (b), and ichthyotoxin (c)

7.3  Case Studies
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metabarcoding method based on high-
throughput sequencing technology for the 
first time.

•	 The distribution of harmful algal bloom spe-
cies is controlled by the local marine envi-
ronment in the South China Sea and its 
surrounding waters.

•	 Seventeen harmful algal bloom species that 
produce PSP, DSP, and ichthyotoxins were 
found.

•	 New methods for monitoring harmful algal 
bloom species contribute to strengthening 
disaster resistance and achieving SDGs.

7.3.1.6 � Discussion and Outlook
Compared with the traditional research on HAB 
species by morphological observation, the meta-
barcoding method based on high-throughput 
sequencing technology has been applied widely, 
as it can accurately and comprehensively reveal 
the diversity of HAB species in water sam-
ples. Based on our initial attempt in the Gulf 
of Thailand (Fu et al. 2021), this case expands 
the study area to the South China Sea. Unlike 
the three areas in Malaysia where the composi-
tion of HAB species is similar, other areas show 
obvious regional characteristics that are related 

be related to the eutrophication and hypoxia 
caused by the river input in the Johor Strait. 
The relative abundances of Centrodinium 
punctatum, Karenia brevis, and Azadinium 
spinosum were positively related to salinity 
and dissolved oxygen, but they were nega-
tively related to silicate, temperature, and 
nitrate, indicating that these groups prefer 
high-salinity, low-temperature, and oligo-
trophic environments. They mainly inhabit 
the outer sea of the Pearl River Estuary and 
East of Hainan Island, where salinity and 
dissolved oxygen are high and water quality 
is relatively good. The relative abundances 
of Karenia selliformis and Alexandrium 
minutum ribotype C were positively related 
to silicate, temperature, and nitrate, but they 
were negatively related to salinity and dis-
solved oxygen. These groups are mainly 
distributed in the eutrophic, hypoxic, and 
brackish coastal Semerak lagoon.

7.3.1.5 � Highlights

•	 Harmful algal bloom species were inves-
tigated in nine areas of the South China 
Sea and its surrounding waters using the 
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traditional morphological observation method. 
In addition, the metabarcoding method based 
on high-throughput sequencing technology can 
only quantify the relative abundance of HAB 
species. In order to accurately quantify the 
abundance of HAB species, other molecular 
methods, such as quantitative PCR, are needed 
as beneficial supplements. The metabarcoding 
method based on high-throughput sequencing 
technology is helpful to strengthen the ability to 
mitigate HABs disasters, which can be spread 
to more sea areas and countries in the future. 
This case also provides methodological support 
for evaluating SDG 14.1 in preventing and sig-
nificantly reducing nutrient pollution from land-
based sources.

7.3.2	� Monitoring and Early Warning 
of Coral Reef Bleaching 
and the Thermal Environment 
in China-ASEAN Seas

Target: SDG 14.2: By 2020, sustainably man-
age and protect marine and coastal ecosystems 
to avoid significant adverse impacts, including 
by strengthening their resilience, and take action 
for their restoration in order to achieve healthy 
and productive oceans.

7.3.2.1 � Background
The coral reef ecosystem is one of the most 
important marine ecosystems in the world, 
supporting hundreds of thousands of marine 
species and providing food and income for hun-
dreds of millions of people (Burke et al. 2011). 
However, in the context of global warming and 
ocean acidification, extreme high-temperature 
events in the ocean have become more frequent 
and intense, resulting in the gradual intensifica-
tion of coral reef bleaching in the ocean. The 
process of coral reef bleaching is mainly due 
to the breakdown of the symbiotic relationship 
between the coral host and its endophytic algae, 
resulting in the process of bleaching itself. 
Coral bleaching is mainly due to the increase 
in sea temperature, which is also related to the 
influences caused by frequent human activity. 

to local environmental factors. For example, 
Semerak and the Johor Strait both show a trend 
of eutrophication, but their structures are com-
pletely different. Semerak mainly has a high 
concentration of nitrate, while the Johor Strait 
has a relatively high concentration of nitrate and 
phosphate. The dominant HAB species in these 
two areas are also different. The environmental 
factors collected in this case have a low degree 
of explanation for the relative abundance of spe-
cies, indicating that the process driving the rela-
tive abundance of species is complex and may 
be more affected by other environmental factors 
such as tidal currents.

Seventeen species producing PSP, DSP, 
and ichthyotoxins were found, some of which 
had never been reported before. For example, 
Alexandria minutum ribotype C was found for 
the first time in the Semerak of Malaysia and 
Weizhou Island in the Beibu Gulf, present-
ing a new toxic ribotype found only in the East 
China Sea. In addition to the other two ribotypes 
found in the South China Sea (Liu et al. 2022), 
our results show that there are at least three 
ribotypes of Alexandria minutum in this area. 
The occurrence of both toxic and non-toxic 
ribotypes adds difficulties to monitoring and 
highlights the necessity to develop rapid detec-
tion methods based on specific molecular mark-
ers. Centrodinium punctatum was only found in 
the waters of Mexico, the Republic of Korea and 
France before and strains from the East China 
Sea were able to produce PSP (Shin et al. 2020). 
This is the first record in the South China Sea. 
Karenia brevis often forms large-scale blooms in 
the Gulf of Mexico in the USA, leading to the 
mortality of thousands of tons of fish and marine 
animals, which is also the first recording in the 
South China Sea.

This case is based on the results of a single 
survey in various sea areas of the South China 
Sea. In order to fully reveal the diversity of 
HAB species, more intensive surveys in the 
South China Sea are needed in the future. The 
metabarcoding method based on high-through-
put sequencing technology has revealed many 
newly recorded HAB species in the South 
China Sea, but they need to be verified by the 

7.3  Case Studies



152 7  SDG 14, Life Below Water

finally, dataset analysis results were obtained 
for the environmental conditions of coral reef 
bleaching. This case will explore the construc-
tion of a real-time system for monitoring and 
early warning of coral reef bleaching and pro-
vide scientific and technological support for 
coral reef protection and restoration.

7.3.2.2 � Data
Ocean temperature data in the climatic state are 
the benchmark for calculating the environmental 
parameters of coral reef bleaching. In this case, 
the World Ocean Atlas (WOA) generated by the 
National Oceanographic Data Center (NODC) 
under NOAA was used, and satellite remote 
sensing sea surface temperature data were intro-
duced. Remote sensing data are a data product 
(optimum interpolation sea surface temperature, 
OISST) provided by the National Climate Data 
Center, NOAA, which is a fusion of advanced 
very high-resolution radiometer (AVHRR) 
and advanced microwave scanning radiometer 
(AMSR) observations, and the optimal interpo-
lation method was used to obtain the daily aver-
age sea surface temperature (SST) dataset with a 
resolution of 1/4° × 1/4° (Reynolds et al. 2007).

The Global Coral Bleaching Database 
(GCBD) was used, which comes from seven 
main sources, including 34,846 coral bleaching 
observations from 14,405 sites in 93 countries, 
with a time span of 40 years from 1980 to 2020. 
At the same time, the database also has other 
data parameters related to coral reef bleaching, 
namely: whether there is coral reef bleaching, 
the threshold of coral reef bleaching in a certain 
area, distance from land, average turbidity of 
the marine environment, and sea surface tem-
perature at the time of the observation. The data 
website is https://www.ncei.noaa.gov/access/
metadata/landing-page/bin/iso?id=gov.noaa.
nodc:0228498.

The numerical prediction results of the 
global ocean wave-tide-circulation coupled 
model developed by the First Institute of 
Oceanography, Ministry of Natural Resources, 
were introduced to calculate the thermal envi-
ronment of coral reef bleaching. This global 
high-resolution marine environment prediction 

The bleached coral will die quickly if it is left 
unprotected and managed. The problem of coral 
bleaching in the China-ASEAN seas is becom-
ing increasingly serious, especially in April and 
May every year, when the hot weather makes 
the surface temperature of seawater reach above 
30℃, and the seawater is maintained at a high 
temperature for a long time, which endangers 
the growth of coral. Under normal conditions, 
coral can recover about 3%–5% per year, but 
the recovery rate of coral in tourist areas and 
bleaching areas is only 1%. The bleaching of 
coral reefs will lead to the serious degradation 
of coral reef ecosystems, endangering the bal-
ance of marine ecosystems (Hughes et al. 2018; 
Skirving et al. 2019), and also lead to a sharp 
decline in biodiversity in coral reef areas, seri-
ously affecting fishery production and taking 
away a valuable biological gene pool, and at 
the same time aggravating the erosion of coastal 
waves. With the improvement of satellite remote 
sensing and monitoring means (Hedley et al. 
2016; Haya and Fujii 2017), large-scale coral 
reef growth monitoring has become possible, 
and combined with environmental monitoring 
data on coral bleaching, it is possible to study 
the overall status of coral reef bleaching and 
predict the future survival of coral reefs. Ocean 
temperature is the most critical environmen-
tal factor affecting the growth of coral reefs. 
Studies have found that the abnormal increase 
in ocean temperature is the main cause of large-
scale coral reef bleaching. After the accurate 
measurement of dead large coral reefs, it has 
been found historically that the year of coral reef 
death corresponds to the high-temperature year.

Based on the above requirements, this case 
study examines the coral reef bleaching environ-
ment in the South China Sea and its adjacent sea 
area of common concern to China and ASEAN. 
Through the analysis of the sea surface tempera-
ture data monitored by satellite remote sensing 
and the FIO-COM model reanalysis of ocean 
temperature data, a cognition of the coral reef 
bleaching environment in the studied waters was 
formed. In addition, a dataset of environmental 
parameters was generated for coral reef bleach-
ing in the study area from 2016 to 2021, and 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0228498
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0228498
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0228498


153

The global ocean wave-tide-circulation coupled forecast system (OFS) with

0.1° resolution

System data exchange

Global ocean wave-tide-circulation 

coupled ocean model

M
o
d
el

d
at

ab
as

e Restarts, 

model grid,

configuration 

files. etc.

Bv

Assimilated initial field

Wind

Wind, heat 

flux, 

precipitation, 

humidity, 

pressure

Ocean 

forecast

 data

System control (flow control, fault-tolerant)

Operational atmosphere forcing field (NCEP GFS)

Ensemble Adjusment Kalman filter

assimilation

O
p
er

at
io

n
al

o
b
se

rv
at

io
n
 

d
at

ab
as

e

SST, MADT, Argo Analysis 

product

Global high-res wave model

Wave

forecast 

data

Forecast

 product

Fig. 7.5   Framework of the global ocean wave-tide-circulation coupled forecast system (OFS) with 0.1° resolution

environment of coral reef bleaching, and a real-
time early warning system was developed for 
the study area based on the forecast data.

7.3.2.3 � Methods
Based on the various data collected, the calcu-
lation of the coral reef bleaching thermal envi-
ronment mainly includes two parameters: coral 
bleaching HotSpot and the high-temperature 
accumulation value experienced by the coral 
reef area over a period of time, which is called 
coral bleaching degree heating weeks (DHW).

1.	 Coral Bleaching HotSpot

Corals are prone to bleaching when the sea 
temperature exceeds that typically experi-
enced during the hottest months. This indi-
cator highlights the period when the local 
SST is higher than the monthly average SST 
of the highest climate. The HotSpot value 
was only positive, because only a tempera-
ture higher than the maximum would bring 
pressure to coral reef bleaching, and the 
HotSpot of 1.0°C was taken as the thermal 
stress threshold leading to coral bleaching.

system consists of several modules: the FIO-
COM numerical model, ensemble adjustment 
Kalman filter assimilation module, control 
scheduling module, operational observation 
database, numerical model database, and data 
post-processing module. Figure 7.5 shows the 
framework of the forecast system.

The global ocean wave-tide-circulation cou-
pled forecast system (OFS) with 0.1° resolution 
generates high-resolution global ocean forecast 
products. The required atmospheric driving field 
data come from the Global Forecast System 
(GFS) of NCEP, and the initial field comes from 
the assimilation module. The system starts to 
report at 12:00 (Universal Time) every day, and 
the forecast time is 120 h. The forecast variables 
include seawater temperature, salinity, horizon-
tal velocity, sea surface height, sea ice density, 
and sea ice thickness, with a horizontal resolu-
tion of 0.1. Three-dimensional variables were 
vertically divided into 54 layers. The minimum 
layer thickness of the surface layer was 2 m, and 
the time resolution of the forecast product was 
3 h. In this case, the data products generated by 
the system operation from 2016 to 2021 were 
mainly used to carry out research on the thermal 

7.3  Case Studies
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Table 7.2   Bleaching grading standard

Bleaching grades Grading standards

No bleaching pressure HotSpot � 0

Needs attention 0 < HotSpot < 1

Bleaching early warning 1 � HotSpot and 
0 < DHW < 4

Bleaching early warning Level 1 1 � HotSpot and 
4 � DHW < 8

Bleaching early warning Level 2 1 � HotSpot and 
8 � DHW

according to the measured data. The data come 
from open data online including a coral bleach-
ing dataset integrated with various global field 
observations, literature reports, field pictures, 
and satellite images. From the historical obser-
vation data, it can be seen that the coral reef 
bleaching status in this sea area is relatively 
serious, especially in the main tourist areas 
of ASEAN countries (Thailand, Malaysia, 
Cambodia, etc.), and a large part of the coral 
bleaching rate even exceeds 50%. Therefore, it 
is urgent to carry out research on the coral reef 
bleaching environment in this sea area and take 
relevant actions for coral reef protection and res-
toration according to the research records.

1.	 Historical Dataset of the Coral Reef 
Bleaching Environment in the China-
ASEAN Seas

This case study forms a complete set of his-
torical datasets on the coral reef bleaching 
environment in the study area from 2016 
to 2021 to better understand the phenom-
enon. We can see from the average coral reef 
heat from 2016 to 2021 that the coral reef 
bleaching pressure in this sea area is greater 
in spring and summer, and the relative pres-
sure is smaller in autumn and winter in the 
Northern Hemisphere. Moreover, during the 
study period, the bleaching pressure faced 
by coral reefs in this sea area showed a sig-
nificant inter-annual change. In 2016, 2017, 
and 2021, the bleaching pressure faced by 
coral reefs was greater, but in 2018–2020, 
the bleaching pressure faced by coral reefs 
was relatively light. This is closely related to 
the inter-annual variation of the marine envi-
ronment. The research shows that the occur-
rence of coral reef bleaching events is closely 
related to the extreme rise in ocean tempera-
ture (Sully et al. 2019). From the study period 
given by the dataset, extreme high-temper-
ature events in the sea area have become 
frequent, which brings great pressure to the 
bleaching of marine coral reefs in the region. 
The continuous study of global warming has 
shown that the extreme rise of sea surface 

2.	 DHW

Coral bleaching is a stress response caused 
by a prolonged increase in sea temperature, 
so satellite data and forecast data were used 
to determine the cumulative value of high-
temperature anomalies experienced by coral 
reef areas over 12 weeks.

DHW = A × sum of HotSpots in the previous 12 
weeks.

A = 1/7 (for calculating a HotSpot every day).
A = 1/2 (for two HotSpots per week).

3.	 Classification of Early Warning Levels

According to whitening level requirements 
and users’ actual demand for data warning, 
the bleaching thermal stress was classified 
according to Table 7.2, and the specific thresh-
old was set for visual display on the webpage 
display side of the visualization system.

7.3.2.4 � Results and Analysis
This case study mainly focuses on the 
South China Sea and its adjacent sea area 
(90° E–130° E, 20° S–25° N), which is the core 
area of coral reefs in the world and the sea area 
with the most abundant coral reef environments. 
The historical observation data showed that 
the coral reef bleaching situation in this area is 
very serious (Sully et al. 2019; van Woesik and 
Kratochwill 2022). Figure 7.6 shows the map 
of coral reef bleaching status in the study area 
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Fig. 7.6   Observed coral bleaching status in the study area. Note The value is the percentage of bleaching

system for marine environment numerical 
forecasting (http://144.123.38.62:2021/#/). 
The system can directly serve China and 
ASEAN countries (also known as the China-
ASEAN marine coral reef bleaching early 
warning system) and realize real-time assess-
ment and forecasting of coral reef bleaching 
in the China-ASEAN seas (Figs. 7.8 and 7.9). 
It provides a scientific basis for China and 
ASEAN countries to understand the bleach-
ing environment faced by coral reefs in the 
region and provides strong scientific and tech-
nological support for assessment, protection, 
and restoration policies based on the system 
sub-regions.

temperature will occur more frequently, 
which indicates that coral reef bleaching 
events will occur far into the future (Fig. 7.7).

2.	 Real-Time Early Warning System of the 
Thermal Environment of Coral Reef 
Bleaching in the China-ASEAN Seas

A real-time early warning system was estab-
lished for the thermal environment of coral 
reef bleaching in the South China Sea and 
its adjacent sea area using the above-men-
tioned calculation methods based on the real-
time acquisition of sea surface temperature 
(OISST) monitored by satellite and the global 
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14.2 for analyzing and evaluating the carry-
ing status and health level of offshore environ-
ments and ecosystems. The dataset was then 
analyzed to evaluate the coral reef bleaching sta-
tus in the South China Sea and its adjacent sea 
area from 2016 to 2021. With the support of this 
case study, a real-time coral reef bleaching early 
warning system has been formed. It has a real-
time display of the regional coral reef environ-
ment, which provides a scientific basis for China 
and ASEAN countries to understand the bleach-
ing and provides strong scientific and techno-
logical support for evaluation, protection, and 
restoration policies.

In the future, it is planned to use more abun-
dant international public data and unique reanal-
ysis datasets, reuse the assessment and forecast 
scheme of this case study, carry out the produc-
tion and analysis of global coral reef bleaching 
environment data, expand the access of real-time 
online coral reef on-site observation and moni-
toring equipment, and develop a more compre-
hensive and real-time online early warning 
system for global coral reef bleaching.

7.3.2.5 � Highlights

•	 Based on satellite observation data and a 
high-resolution marine reanalysis dataset, 
a dataset was generated for the coral reef 
bleaching environment in the South China 
Sea and its adjacent sea area during 2016–
2021, allowing a comprehensive evaluation 
of the status of the coral reef environment.

•	 Using satellite observation data and high-
resolution numerical forecast data, we estab-
lished a real-time early warning system for 
the coral reef bleaching environment in the 
South China Sea and its adjacent sea area, 
for the first time, to directly serve the China-
ASEAN seas and provide the possibility for 
a real-time grasp of the coral reef bleaching 
environment in the region.

7.3.2.6 � Discussion and Outlook
In this case, an internationally shared dataset 
was made by using the internationally common 
coral reef bleaching environment calculation 
scheme, which meets the requirements of SDG 

7.3  Case Studies
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7.3.3	� Dynamic Changes 
in Phytoplankton Size Class 
in the North Indian Ocean

Target: SDG 14.2: By 2020, sustainably man-
age and protect marine and coastal ecosystems 
to avoid significant adverse impacts, including 
by strengthening their resilience, and take action 
for their restoration in order to achieve healthy 
and productive oceans.

7.3.3.1 � Background
There is a strong correlation between phy-
toplankton size class (PSC) and its function 
type, which is an important characterization of 
the composition of phytoplankton communi-
ties. PSC largely determines the intensity of 
carbon fixation and output in the ocean and 
therefore plays a key role in the global carbon 
cycle (Alvain et al. 2008; Brewin et al. 2012). 
Phytoplankton is divided into three components 
according to their sizes: pico-phytoplankton 
(Cp) ([0.2, 2) μm), nano-phytoplankton (Cn) 
([2–20) μm), and micro-phytoplankton (Cm) 
([20–200) μm) (Sieburth et al. 1978). With 
the development of optical instruments and the 
launch of remote sensing satellites, new tech-
nologies and many bio-optical models for the 
long-term and large-scale monitoring of PSC 
have been released. Among all bio-optical mod-
els, the three-component model of phytoplank-
ton proposed by Brewin et al. (2012) is the most 
commonly used one as it only requires Chla 
concentration as an input parameter, and it is 
simple and efficient.

Covering the Arabian Sea and the Bay of 
Bengal, the North Indian Ocean (NIDO) is a key 
sea area of the BAR. There are many countries 
along this route, most of which are developing 
countries, and research on its marine ecological 
environment is relatively slow. The NIDO is fre-
quently affected by tropical cyclones (TC, about 
10 per year) and dust storms (especially in the 
northwestern Arabian Sea). Dynamic monitoring 
of the impacts of these disasters on the ecologi-
cal environment of the NIDO is a key step for 
countries along the BAR to sustainably man-
age and protect marine and coastal ecosystems. 

Studies have been carried out on the temporal 
and spatial distribution of total phytoplank-
ton biomass in the NIDO (Chen et al. 2013; 
do Rosário Gomes et al. 2016), the impacts of 
tropical cyclones on total phytoplankton bio-
mass (Vidya et al. 2017), and the impacts of 
dust storms on total phytoplankton biomass. 
However, due to the lack of data in the global 
pigment dataset in the Bay of Bengal, the appli-
cability of the three-component model in the 
NIDO still needs to be further verified (Brewin 
et al. 2012, 2014), making the large spatiotem-
poral distribution of PSC and the impacts of 
meteorological disasters (tropical cyclones and 
dust storms) on the temporal and spatial varia-
tion of PSC still unclear in the NIDO. Therefore, 
the understanding of the dynamic changes of 
PSC in the NIDO is still in the Tier II category 
(that is, indicators with clear methods but lack 
of relevant data). From the perspective of scien-
tific and technological innovation promoting the 
SDGs, the research on the dynamic distribution 
of PSC and its impacts on meteorological disas-
ters has scientific implications for understand-
ing the formation mechanism of algal blooms 
and the impacts of meteorological disasters 
on the marine ecological environment in the 
NIDO. It is in line with the goals of SDG 14.2 to 
strengthen disaster resilience and improve sus-
tainable ocean management and ecosystem pro-
tection and is of great significance to achieve the 
SDGs related to the ocean.

7.3.3.2 � Data

•	 L3 level Chla concentration data and pho-
tosynthetically active radiation (PAR) data 
fused by MODIS Aqua and Terra from 2003 
to 2022, with a temporal resolution of 1 day 
and spatial resolution of 4 km.

•	 Fluorescence of Chla data in the NIDO from 
2003 to 2022, obtained from the International 
Argo Program.

•	 Chla concentration from two cruise data in 
June 2017 and June 2019.

•	 Reanalysis data of dust concentration 
and dust movement from Modern-Era 
Retrospective analysis for Research and 
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where Fp, Fn, and Fm indicate the fraction of 
Cp, Cp, and Cp to the total Chla of phytoplankton, 
respectively.

2.	 Coordinate System of the Tropical 
Cyclone Center

With the central point of each tropi-
cal cyclone as the coordinate origin, the 
Cartesian coordinate system of each grid 
point was converted into polar coordinates, 
and all grid points within a radius of 2° 
were displayed. The advancing direction of 
the tropical cyclone at each central point 
was then unified to the north. Finally, the 
new polar coordinate values were converted 
back to the Cartesian coordinate system.

3.	 Pixel-By-Pixel Time-Series Correlation 
Analysis

By resampling the daily average data of 
each element to the spatial resolution of the 
daily averaged PSC, the correlation analy-
sis between each element and the PSC was 
carried out pixel by pixel, and the correla-
tion coefficient R was obtained. Finally, the 
spatial distribution results of the temporal 
correlation between each element with PSC 
were drawn.

7.3.3.4 � Results and Analysis
Figure 7.10 shows the variations of the daily aver-
aged climatology distribution of PSC caused by 
tropical cyclones in the NIDO during 2003–2022 
in the coordinate system of the tropical cyclone 
center. Before tropical cyclones arrived, phyto-
plankton biomass in the Arabian Sea was higher 
than that in the Bay of Bengal. Meanwhile, the 
pico-phytoplankton dominated the Bay of Bengal, 
while the nano-phytoplankton contributed more 
than pico-phytoplankton and dominated the 
Arabian Sea. During the first 1–2 weeks after the 
arrival of tropical cyclones, the biomass of pico-, 
nano-, and micro-phytoplankton all increased 
with larger dominated size of phytoplankton, and 
regional variations were as follows: PSC changed 

Applications from NASA (MERRA) 
in 2003–2022, with a temporal resolu-
tion of monthly and spatial resolution of 
0.625° × 0.5°.

•	 The center position and maximum sustained 
wind speed data of tropical cyclones every 
6 h from 2003 to 2022 are free to download 
from NCEI.

7.3.3.3 � Methods

1.	 Inversion Model of PSC and Its 
Calibration

The total Chla is the sum of the correspond-
ing Chla for Cp, Cn, and Cm (Brewin et al. 
2012, 2014):

where Cp, Cn, and Cm indicate the Chla for 
pico-phytoplankton, nano-phytoplankton, 
and micro-phytoplankton, respectively, and 
Cp,n indicates the sum of Chla for pico- and 
nano-phytoplankton. Cp,n and Cp can be cal-
culated as follows (Brewin et al. 2012, 2014):

where Cm
p,n is the asymptotic maximum of Cp,n; 

Cm
p  is the asymptotic maximum of Cp; Dp,n and 

Dp are the initial slope of Cp,n and Cp, respec-
tively; Cn (Chla for nano-phytoplankton) is the 
difference of Cp,n and Cp; and Cm is the differ-
ence between Chla and Cp,n.

The fraction of PSC can be calculated as 
follows:

Chla = Cp + Cn + Cm,

Cp,n = Cm
p,n

[

1− exp

(

−
Dp,n

Cm
p,n

Chla

)]

,

Cp = Cm
p

[

1− exp

(

−
Dp

Cm
p

Chla

)]

,

Fp =
Cp

Chla
,

Fn =
Cn

Chla
,

Fm =
Cm

Chla
,
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deposition and PAR reduction due to strong dust 
storms. In addition, the micro-phytoplankton 
was not in a state of light saturation (Fig. 7.11g), 
and the biomass of micro-phytoplankton was 
positively correlated with dust concentrations in 
the whole Northwestern Arabian Sea, implying 
that the influences of dust storm-induced atmos-
pheric nutrient deposition on the increment in 
the micro-phytoplankton were stronger than the 
influences of dust storm-induced PAR reduc-
tion on the decrease in the micro-phytoplankton. 
Therefore, in the NIDO, the dust storms affected 
the increment of micro-phytoplankton due to the 
atmospheric nutrient deposition and affected the 
growth of nano-phytoplankton under the united 
control of atmospheric nutrient deposition and 
PAR reduction. In short, the influences of dust 
storms in the NIDO on the biomass of micro- 
and nano-phytoplankton were stronger than 
those of pico-phytoplankton.

7.3.3.5 � Highlights

•	 The three-component model of PSC was 
adjusted regionally in the NIDO and 
applied to MODIS satellite remote sens-
ing chlorophyll products, providing method 
support for the dynamic monitoring of  
PSC on the surface of the NIDO, serving 
SDG 14.2.

•	 One to two weeks after the passage of tropi-
cal cyclones, the dominant size of phyto-
plankton in the Arabian Sea will change from 
nano-size to micro-size, while that in the 
Bay of Bengal will change from pico-size to 
nano-size. This will provide scientific support 
for understanding the formation of sea sur-
face algal blooms and the governance of the 
ecological impacts of tropical cyclones in the 
NIDO.

•	 The impacts of dust storms on the NIDO are 
mainly concentrated in the northwestern part 
of the Arabian Sea. The variation in larger-
sized phytoplankton is mainly controlled 
by the dust deposition, while the growth 
of smaller-sized phytoplankton is mainly 
affected by the deposition and light-blocked 
effect of dust. These results are helpful in 

from nano-phytoplankton-dominated into micro-
phytoplankton-dominated in the Arabian Sea, 
while PSC changed from pico-phytoplankton-
dominated into nano-phytoplankton-dominated 
in the Bay of Bengal. In the third week after the 
arrival of tropical cyclones, the biomass of all 
PSC was decreasing to the original magnitude 
before the arrival of tropical cyclones. In a word, 
tropical cyclones can induce an increase in the 
contribution of larger PSC, including fraction  
of micro-phytoplankton in the Arabian Sea, and 
fraction of nano-phytoplankton in the Bay of 
Bengal.

The invitation of dust storms can transport 
nutrients from the atmosphere to the ocean 
through the deposition of dust and reduce the 
PAR on the ocean surface (Sarangi et al. 2013). 
Figure 7.11a shows the spatial variations of 
regional climatology distribution of the concen-
trations and movements of dust in the NIDO 
during 2003–2022.

The dust storms mainly affected the north-
west of the Arabian Sea in the NIDO, and the 
movement of dust was from the northwest to 
the southeast. This suggests that the dust mostly 
came from land deserts in the Middle East. 
Figure 7.11b–d show the spatial correlation 
between monthly PSC and ocean-surface dust 
concentrations in the NIDO during 2003–2022. 
Figure 7.11e–g shows the spatial correlation 
between monthly PSC and ocean-surface PAR in 
the NIDO during 2003–2022. The Northwestern 
Arabian Sea was significantly affected by the 
dust storms, where the pico-phytoplankton was 
in a high degree of light saturation (Fig. 7.11e), 
and there was no relationship between the bio-
mass of pico-phytoplankton and dust concen-
trations [R: − 0.3 to 0.3] (Fig. 7.11b). This 
suggests that the influences of atmospheric 
nutrient deposition and PAR reduction due to 
dust storms on the biomass of pico-phytoplank-
ton were weak. Besides this, the nano-phyto-
plankton was in a low degree of light saturation 
(Fig. 7.11f), but most areas showed positive 
relationships between the biomass of nano-phy-
toplankton and dust concentrations. This sug-
gests that the growth of nano-phytoplankton 
was regulated by both atmospheric nutrient 
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Fig. 7.10   Variations in daily averaged climatology distribution of PSC caused by TC in the NIDO during 2003–2022 
in the coordinate system of the tropical cyclone center
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Fig. 7.11   Spatial variations in climatology distribution of dust concentration in the NIDO during 2003–2022, and the 
spatial correlation between monthly PSC with dust concentration and PAR, respectively

the cruise in 2017 and 2019. Then, the charac-
teristics of the climatology of the surface dis-
tribution of PSC in the NIDO were studied, the 
tropical cyclone-induced variation of surface 
PSC in the NIDO was analyzed, and the influ-
ences of dust storms on the variation of PSC in 
the NIDO were also discussed. Results show 
that in the NIDO: (1) tropical cyclones can 
modified the surface Arabian Sea from nano-
phytoplankton-dominated to micro-phytoplank-
ton-dominated and modified the surface Bay of 

providing scientific support for the ecological 
management of offshore dust storms in coun-
tries along the NIDO.

7.3.3.6 � Discussion and Outlook
In this case study, the three-component model 
for PSC estimations was reparametrized in the 
NIDO, based on the satellite remote sensing 
dataset of 2003–2022, the Biogeochemical-Argo 
(BGC-Argo) dataset and the MERRA dust rea-
nalysis dataset, as well as the field dataset of 
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7.4	� Summary

The Chinese government has always attached 
great importance to and supported the UN 
agenda for sustainable marine development 
and has actively carried out international coop-
eration on scientific marine research and sci-
entific surveys of the continental shelf. In 
addition, China and its neighboring countries 
have actively implemented the maritime SDGs 
through various multilateral mechanisms, 
including taking an active part in the actions 
under the Asia–Pacific regional Sustainable 
Development Framework within the UN sys-
tem, and strengthening cooperation with East 
and Southeast Asian countries in relevant sub-
regional cooperation mechanisms to narrow the 
regional development gap. In addition, by pro-
moting South-South Cooperation, North–South 
Cooperation, and tripartite cooperation, we have 
strengthened synergy with the 2030 Agenda and 
made much positive progress in marine ecologi-
cal protection and other fields. Worldwide, how-
ever, the crisis of marine ecosystem degradation 
is not abating, but is at risk of worsening. The 
case studies in this chapter carried out research 
on the progress of the protection and sustain-
able utilization of oceans and marine resources 
in representative areas around the globe to pro-
mote sustainable development; generated data-
sets on the spatial distribution of HAB species 
in the South China Sea and its surrounding sea 
area; produced monitoring and early warning 
datasets for the thermal environment of coral 
reef bleaching in the China-ASEAN seas; and 
created spatial datasets of PSC in the NIDO. In 
addition, the chapter presents a model for the 
relationship between the relative abundance of 
HAB species and environmental factors, a cal-
culation model for the thermal environment of 
coral reef bleaching, and analysis of the influ-
ence of tropical cyclones and dust storms on 
the grain size structure of phytoplankton in the 
NIDO. The chapter is a beneficial exploration of 
the use of Big Earth Data technology to support 
the realization of SDG 14.

Bengal from pico-phytoplankton-dominated to 
nano-phytoplankton-dominated; (2) the incre-
ment of micro-phytoplankton was affected by 
dust storm-induced atmospheric nutrient depo-
sition, and the growth of nano-phytoplankton 
was affected by both of dust storm-induced 
atmospheric nutrient deposition and PAR reduc-
tion. The methods in this case can provide 
important technical support for the monitor-
ing and prevention of phytoplankton blooms, 
as well as the sustainable development of fish-
eries. Furthermore, this case can also provide a 
decision-making basis and scientific services to 
strengthen the resistance capabilities of mete-
orological disasters and enhance the sustainable 
management and protection capabilities of the 
marine and coastal ecosystems in the countries 
along the BAR. Moreover, this case also pro-
vides important information support for ocean 
sustainable development and construction along 
the Maritime Silk Road that meets SDG 14.2.

A combination of the physical and biologi-
cal processes to further analyze the mechanism 
of variation of PSC induced by meteorologi-
cal disasters is an effective way for ecological 
impact assessment, the prevention and control 
of meteorological disasters, the prevention and 
control of phytoplankton blooms, and oceanic 
carbon sink, along the BAR. In the future, more 
ecological parameters and physical parameters 
can be included to develop more accurate PSC 
models and more comprehensive ecological 
impact assessment systems for meteorological 
disasters and can combine artificial intelligence 
to further realize the goal of big data mining and 
analysis on the dynamic monitoring of PSC and 
ecological impact assessment of meteorological 
disasters. Faced with international needs, this 
research can provide more comprehensive sup-
port for SDG 14.2, strengthen disaster resist-
ance for the China Association of Marine Affairs 
(CAMA), GEO, and other institutions, improve 
the ability of sustainable management and pro-
tection of marine and coastal ecosystems, and 
maintain data support and decision-making ser-
vices for marine health.

7.4  Summary
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Haya LOMY, Fujii M (2017) Mapping the change of 
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ments: a case study in Pangkajene and Kepulauan 
Regency, Spermonde Archipelago Indonesia. J 
Oceanogr 73(5):623–645

Hedley J, Roelfsema C, Chollett I et al (2016) Remote 
sensing of coral reefs for monitoring and manage-
ment: a review. Remote Sensing 8(2):118

Hughes TP, Anderson KD, Connolly SR et al (2018) 
Spatial and temporal patterns of mass bleaching of 
corals in the Anthropocene. Science 359(6371):80–83

Lim HC, Leaw CP, Tan TH et al (2014) A bloom of 
Karlodinium australe (Gymnodiniales, Dinophyceae) 
associated with mass mortality of cage-cultured 
fishes in West Johor Strait, Malaysia. Harmful Algae 
40:51–62

Liu ML, Krock B, Yu RC et al (2022) Co-occurrence of 
Alexandrium minutum (Dinophyceae) ribotypes from 
the Chinese and Malaysian coastal waters and their 
toxin production. Harmful Algae 115:102238

Lundholm N, Churro C, Fraga S et al (2022) IOC-
UNESCO taxonomic reference list of harmful micro 
algae. https://www.marinespecies.org/hab. 09 May 
2022

Reynolds JF, Smith DMS, Lambin EF et al (2007) 
Global desertification: building a science for dryland 
development. Science 316(5826):847–851

Sarangi RK (2013) Spatiotemporal variability of 
MODIS-Aqua-derived aerosol and its impact on sur-
face chlorophyll-a in the Indian coastal and offshore 
waters. J Appl Remote Sens 7(1):073501

Shin HH, Li Z, Réveillon D et al (2020) Centrodinium 
punctatum (Dinophyceae) produces significant lev-
els of saxitoxin and related analogs. Harmful Algae 
100:101923

Sieburth JM, Smetacek V, Lenz J (1978) Pelagic eco-
system structure: Heterotrophic compartments of the 
plankton and their relationship to plankton size frac-
tions. Limnol Oceanogr 23(6):1256–1263

Skirving WJ, Heron SF, Marsh BL et al (2019) The 
relentless march of mass coral bleaching: a global 
perspective of changing heat stress. Coral Reefs 
38(4):547–557

Sully S, Burkepile DE, Donovan MK et al (2019) A 
global analysis of coral bleaching over the past two 
decades. Nat Commun 10:1264

UN (2021) The second world ocean assessment 
(WOA II). UN, New York. https://www.un.org/
regularprocess/woa2

van Woesik R, Kratochwill C (2022) A global coral-
bleaching database, 1980–2020. Sci Data 9:20

Vidya PJ, Das S, Mani MR (2017) Contrasting Chl-a 
responses to the tropical cyclones Thane and Phailin 
in the Bay of Bengal. J Mar Syst 165:103–114

Yñiguez AT, Lim PT, Leaw CP et al (2021) Over 30 
years of HABs in the Philippines and Malaysia: what 
have we learned? Harmful Algae 102:101776

In the future, we will continue to improve the 
sharing and application capacity of Big Earth 
Data in the field of marine sustainable devel-
opment, promote the timely sharing and dis-
semination of data and knowledge by building 
data-sharing platforms, online computing plat-
forms, and data service platforms, enhance the 
development of the blue economy and the inno-
vation level of marine science and technology, 
and actively participate in the “United Nations 
Decade of Ocean Science for Sustainable 
Development (2021–2030)”, contributing to the 
understanding and protection of the ocean.
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8.1	� Background

SDG 15 focuses on sustainably managing for-
ests, combating desertification, halting and 
reversing land degradation, and halting biodi-
versity loss. Eight years after the adoption of the 
UN 2030 Agenda, we are still facing a critical 
situation, as the global forest area (SDG 15.1.1) 
continues to steadily decline (FAO 2020), and 
approximately 75% of the world’s land is still 
degrading (SDG 15.3.1) (IPBES 2019). The 
proportion of globally important protected bio-
diversity sites has increased (SDG 15.1.2, SDG 
15.4.1), but the Red List Index (SDG 15.5.1) 
continues to decline (UNEP 2021), and at the 
current rate, SDG 15 will be difficult to achieve 
by 2030 (UN 2019).

Assessing progress toward SDG 15 is key to 
identifying gaps and effective interventions. With 
improved data availability and technical meth-
odologies, eight of the fourteen indicators cov-
ered by SDG 15 are in Tier I (with methods and 
data). However, the methods for obtaining these 
indicators are mainly based on statistical instru-
ments, which lack scalability (global–regional–
national–local), and many countries with limited 
data availability are unable to provide data on a 
regular basis. Therefore, it is necessary to further 
develop multiscale and spatialized research on 

key technologies for monitoring the status and 
progress of SDG 15 indicators using cutting-edge 
technologies, such as Earth observation, artificial 
intelligence, and public science, to contribute 
from the perspectives of data, methods, tools, and 
decision-making recommendations, and thus pro-
vide scientific and technological support for the 
realization of SDG 15.

This chapter will focus on three directions: 
forest protection and restoration, land degrada-
tion and restoration, and biodiversity conserva-
tion. It focuses on specific objectives such as 
sustainable management of all types of forests 
(SDG 15.2), land degradation neutrality (SDG 
15.3), and habitat protection of endangered spe-
cies (SDG 15.5). The goal is to dynamically 
monitor and evaluate the sustainable develop-
ment process of terrestrial organisms through 
Big Earth Data technology in the entire area or 
typical areas of the BAR and provide scientific 
and technological support for the monitoring 
and evaluation of SDG 15 indicators.

8.2	� Main Contributions

To address the data gaps in the assessment 
of terrestrial biodiversity SDG progress, we 
produced forest cover data products, sand 
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interannual instability, discontinuous spatial 
distribution, and notable uncertainty in sparse 
forests (Hanan et al. 2014; Brandt et al. 2016; 
Yang and Crews 2019), which makes it hard to 
obtain a reliable change trend of forest cover 
(Masiliūnas et al. 2021).

We generated a new global fractional tree 
cover product, GLOBMAP Fractional Tree 
Cover, from the MODIS land surface reflec-
tance data. The fractional tree cover estimation 
was improved by extracting several phenological 
metrics with high separability for trees and near-
global sample training data. The interannual 
stability and spatial continuity were improved. 
This study assessed the interannual changes of 
tree cover around the world and in representative 
regions using the GLOBMAP Fractional Tree 
Cover dataset. This study can support SDG 15.2 
to monitor forest ecosystems and promote the 
implementation of the sustainable management 
of forests.

8.3.1.2 � Data
The GLOBMAP Fractional Tree Cover data-
set provides global annual fractional tree cover 
maps from 2000 to 2020 at the spatial resolution 
of 250 m. The data were generated from MODIS 
land surface reflectance products MOD09Q1 
and MOD09A1. Nine phenological metrics with 
high separability and global applicability were 
extracted as input features based on the distinc-
tive shape of seasonal greenness curves between 
trees and herbaceous vegetation. Then, approxi-
mately 1.01 million training sample points 
were generated by aggregating the global for-
est maps of GlobeLand30 and PALSAR Forest/
Non-Forest (FNF). A feedforward neural net-
work was trained and used to generate global 
fractional tree cover data. Compared with 1140 
reference sample points interpreted from very 
high-resolution imagery from Google Earth, 
the coefficient of determination (R2), RMSE, 
and mean absolute error (MAE) reached 0.93, 
11.78%, and 7.39%, respectively. Compared 
with the existing tree cover percentage products 
such as MODIS Vegetation Continuous Fields, 
the interannual stability, spatial continuity, and 
dense forest performance were improved, which 

distribution data products, land degradation data 
products for five Central Asian countries, and 
spatial distribution products of suitable habi-
tats for wild camels in China and Mongolia for 
current and future scenarios (2050 and 2070), 
which can provide important support for the 
assessment of terrestrial biodiversity SDGs at 
regional and global scales (Table 8.1).

8.3	� Case Studies

8.3.1	� Interannual Changes 
in Global Tree Cover

Target: SDG 15.2: By 2020, promote the imple-
mentation of sustainable management of all 
types of forests, halt deforestation, restore 
degraded forests, and substantially increase 
afforestation and reforestation globally.

8.3.1.1 � Background
Forests are one of the most important carbon 
sinks in terrestrial ecosystems and play a key 
role in preventing soil erosion, mitigating cli-
mate change, and sustaining biodiversity. The 
status of forest cover and its dynamics are sig-
nificant indicators to evaluate SDG 15.2, sus-
tainable management of all types of forests. 
Reliable long-term forest cover maps can help 
to assess the impacts of forest change on carbon 
and water cycles and ecosystem functions and 
provide data support for forest management.

Dynamic monitoring of forest cover can 
be achieved through satellite remote sensing 
technology. Categorical forest/non-forest data-
sets or land cover datasets provide the spatial 
extent of forest land, which can depict the land 
cover type alternation between forest and non-
forest. However, the categorical data cannot 
capture the variations of density within forests. 
Fractional tree cover data present the propor-
tion of areas covered by tree crowns to the total 
area in pixels, which can improve the charac-
terization of forest density and change. Several 
global fractional tree cover datasets have been 
made available. However, several disadvantages 
were reported for the existing datasets, such as 
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temperate forests of Eurasia and North America, 
and the northern high-latitude forest regions of 
the Northern Hemisphere. More forests are cov-
ered in the Northern Hemisphere than those in 
the Southern Hemisphere. The tropical rainfor-
ests and the southern part of the boreal forests 
show the highest tree cover, reaching over 90%. 
The tree cover in the forest area exhibits a pattern 
of latitude change. For example, the tree cover in 
the African forests decreases from the equator to 
the north and the south and that in the boreal for-
ests decreases with the increasing of latitude.

The global forest area increased at a rate of 
24,108,100 hm2/a (Fig. 8.2a), with the total area 
increasing by 6.73 × 109 hm2. A rapid increase 
rate was found from 2008 to 2015, and the 
rate gradually stabilized from 2015 to 2020. 
Regional discrepancies were observed in the 
changes of fractional tree cover, showing sig-
nificant gains in China, the northern parts of the 
boreal forests and the savannah areas of Africa, 
with the change trends of fractional tree cover 
mostly exceeding 2%/a, while losses in frac-
tional tree cover were found in rainforests of 
South America, Africa, and Southeast Asia, and 
the southern parts of the boreal forests.

The dynamics of forest areas in nine typi-
cal regions from the tropical, temperate, and 
northern high-latitude areas showed different 
change patterns during the period 2000–2020 
(Fig. 8.2b‒d). Forest changes in tropical regions 
were complex. The forest area fluctuated in the 
Amazon forests, with the fractional tree cover 
decreasing significantly for some regions, which 
may be related to forest fires, burning cultiva-
tion, and logging. The forest area in the Congo 
Basin showed a decreasing trend followed by 
an increasing trend. The woody plant area in 
the Sahel region of Africa also fluctuated obvi-
ously, which was probably related to the signifi-
cant impacts of precipitation on local vegetation 
growth. The total forest area (including trees 
and shrubs) exhibited a weak increasing trend, 
suggesting the expansion of woody vegetation 
in the Sahel region. Although the forest area of 
Southeast Asian tropical rainforests showed an 
upward trend over the study period, deforesta-
tion could be observed in several parts of the 

enables our dataset to be used to estimate grad-
ual forest changes.

8.3.1.3 � Methods
The interannual changes in tree cover were eval-
uated worldwide and in typical regions based 
on the GLOBMAP Fractional Tree Cover data-
set. The forest dynamics were evaluated using 
the linear trend of tree cover based on the least 
squares principle at the pixel scale. The t-test 
method was used to determine the significance 
of the linear trend, with p < 0.05 as the signifi-
cant trend. Referencing the forest definition by 
the FAO, we defined the lands with a fractional 
tree cover of less than 10% for more than ten 
years as non-forest and masked in the follow-
ing assessment. The forest area was calculated 
by multiplying the fractional tree cover with 
the area of a pixel. Then, the total forest area in 
typical regions was estimated as the sum of the 
areas for all forest pixels.

According to the distribution patterns of 
climate zones and forest regions, nine typical 
regions from tropical, temperate, and northern 
high-latitude areas were selected to evaluate the 
interannual dynamics in tree cover. Tropical typ-
ical regions include the Amazon (10°S–10°N, 
78°W–48°W), the Congo Basin (3.5°S–4.5°N, 
10°E–30°E), the Sahel region (12°N–22°N, 
18°W–43°E), and Southeast Asia (10°S–28.5°N, 
92°E–140°E). Temperate typical regions include 
North American temperate forests (32°N–45°N, 
128°W–64.5°W) and East Asia temperate for-
ests (23.5°N–54°N, 73°E–150°E). The north-
ern high-latitude areas are primarily covered by 
boreal forests, with typical regions including 
North America (45°N–72°N, 169°W–52°W), 
Europe (53°N–71°N, 0°E–74°E), and Russia 
(50°N–82°N, 82°E–179°E).

8.3.1.4 � Results and Analysis
The spatial distribution of global fractional tree 
cover in 2020 and the change trend from 2000 
to 2020 are shown in Fig. 8.1. Up to 2020, the 
total global forest area was 38.56 × 108 hm2, 
accounting for approximately 25.88% of the total 
land area. Forests are primarily distributed in 
the tropical rainforest regions of the equator, the 
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Fig. 8.1   Distribution and change trend of global frac-
tional tree cover

•	 Global forest area increased by 6.73 × 109 
hm2 from 2000 to 2020. Regional discrep-
ancies were observed in the changes of 
fractional tree cover. Forest gain was concen-
trated in the temperate forests of East Asia, 
the northern parts of the boreal forests, and 
the savannah areas of Africa. In comparison, 
forest loss was found in rainforests of South 
America, Africa, and Southeast Asia and the 
southern parts of boreal forests.

8.3.1.6 � Discussion and Outlook
This study assesses the interannual changes 
of fractional tree cover in global and typi-
cal regions using the GLOBMAP Fractional 
Tree Cover dataset. Trees are concentrated in 
the tropical rainforests, mid-latitude temperate 
forests in the Northern Hemisphere, and high-
latitude boreal forests. The highest forest den-
sity is distributed in the tropical rainforests and 
southern parts of boreal forests. During 2000–
2020, the global forest area showed a signifi-
cant increasing trend, with the rapid forest gain 
concentrated in the East Asian temperate for-
ests, the northern parts of boreal forests, and the 
savannah areas of Africa. The hotspots of for-
est loss were found in the rainforest regions and 
the southern parts of boreal forests. This study 
hopes to contribute to monitoring and evaluating 
sustainable forest management in SDG 15.2.

The fractional tree cover dataset used in this 
study can support the analysis of interannual 
dynamics of forests at a sub-pixel level and pro-
vide a data basis for forest change detection at 
the global scale. The fractional tree cover rep-
resents the proportion of vegetation that shows 
a greenness plateau of seasonal curves at the 
maturity stage, including trees, shrubs, bam-
boo, and palm trees. It should be noted that the 
increase in fractional tree cover cannot fully 
represent an improvement in forest quality. For 
example, natural tropical forests were replaced 
by cash crops like oil palm trees and coffee 
beans in Southeast Asia due to the development 
of plantation agriculture, and tropical forests 
in some regions have also been restored to sec-
ondary forests after logging. Although the for-
est area increased in Southeast Asia, the carbon 

region simultaneously. The expansion of the for-
est area may be caused by the development of 
plantations. The typical regions from the tem-
perate and boreal forests demonstrated increased 
trends in the forest area. The area of North 
American temperate forests showed a pattern of 
first increasing and then decreasing from 2000 to 
2010, followed by a fluctuating increasing trend 
from 2010 to 2020. The dynamics of forest areas 
in North American and European boreal forests 
were similar, showing fluctuating increasing pat-
terns. The forest areas of East Asian temperate 
forests and Russian boreal forests showed nota-
ble increasing trends, which may be related to 
effective forest protection policies and regional 
temperature and precipitation changes.

8.3.1.5 � Highlights

•	 The distributions and interannual changes 
of global fractional tree cover were assessed 
using the GLOBMAP Fractional Tree Cover 
dataset during 2000–2020.

8.3  Case Studies
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Fig. 8.2   Interannual changes in forest areas in global 
and representative regions from 2000 to 2020. Note 
Tropical regions include the Amazon, Congo Basin, 

Sahel region, and Southeast Asia; temperate regions 
include North America and East Asia; boreal forest 
regions include North America, Europe, and Russia

8.3.2.1 � Background
Sand dunes/lands cover a large area of deserts 
and are widely distributed in the inland and 
coastal areas of the global mid-latitude land 
(McKee 1979). Their distributions are easily 
influenced by climate change and human activ-
ity. Accurately identifying the different types 
of sand dunes/lands is essential to represent 
their areas, spatial distributions, and temporal 
changes, playing an important role in assessing a 
tendency toward aeolian desertification, and also 
contributing to assisting the evaluation of SDG 
15.3.1 (“proportion of land that is degraded 
over total land area”). Guided by the Law 
of the People’s Republic of China on Desert 

sequestration capacity may decline due to the 
destruction of the biodiversity in natural forests. 
The relationship between fractional tree cover 
changes and ecological functions should be con-
sidered in further research.

8.3.2	� Dynamic Monitoring of Global 
Sand Dunes/Lands

Target: SDG 15.3: By 2030, combat desertifica-
tion, restore degraded land and soil, including 
land affected by desertification, drought, and 
floods, and strive to achieve a land degradation-
neutral world.
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lands, and fixed sand dunes/lands and identi-
fies them from Landsat 30 m imagery and other 
datasets. First, multi-source and multi-temporal 
feature representations, including spectrum, 
spectral index, multi-temporal NDVI, texture, 
topography, and thematic mapping features, 
were extracted to address the issue caused by 
the spatiotemporal variety of global sand dunes/
lands. Second, considering that manual sample 
collection is labor-intensive and hardly prac-
tical for large-scale mapping, we propose a 
strategy to automatically obtain reliable global 
training samples of sand dunes/lands based on 
a prior sample set and a coarse-resolution land 
cover map. Third, due to the spatial heteroge-
neity of sand dunes/lands, it is difficult for a 
global classifier to learn the optimal param-
eters. Therefore, based on the multi-source and 
multi-temporal feature representations and the 
global training samples, a local random for-
est classifier was adopted to obtain the single-
temporal classification results of global sand 
dunes/lands. Finally, to make the automatically 
obtained samples applicable to multi-temporal 
classification, transfer learning was introduced 
to remove the changed samples, and the spati-
otemporal context of sand dunes/lands was mod-
eled to improve the multi-temporal classification 
results. Using the above method, we generated 
global 30 m sand dune/land datasets for 2000, 
2010, and 2020, with an overall accuracy higher 
than 80%.

8.3.2.4 � Results and Analysis

1.	 Spatial Distributions of Global Sand 
Dunes/Lands

The spatial distributions of global sand dunes/
lands in 2020 and changes in typical regions 
from 2000 to 2020 are shown in Fig. 8.3. The 
areas of global sand dunes/lands in 2000, 2010, 
and 2020 were 1.017 × 107 km2, 1.026 × 107 
km2, and 1.036 × 107 km2, accounting for 
6.83%–6.95% of the total land area. Shifting 
sand dunes/lands occupied the largest area, fol-
lowed by semi-fixed sand dunes/lands, while the 
area of fixed sand dunes/lands was the small-
est. Sand dunes/lands were mainly distributed 

Prevention and Transformation and the United 
Nations Convention to Combat Desertification 
(UNCCD), the National Forestry and Grassland 
Administration of China has carried out deserti-
fication and sandification monitoring every five 
years since 1994. However, existing research 
still focuses on national and regional scales, 
resulting in a lack of consistent, comparable, 
and high-resolution classification maps of global 
sand dunes/lands (Zheng et al. 2022).

Utilizing satellite remote sensing imagery, 
multi-source land surface mapping products, 
and land cover sample sets, this study proposes a 
method for mapping high-resolution and global-
scale sand dunes/lands and generated global 30 
m sand dune/land datasets. The areas and spatial 
distributions of three types of sand dunes/lands 
were analyzed, and their changes between 2000 
and 2020 were evaluated.

8.3.2.2 � Data

•	 Global Landsat imagery during the periods 
of 1999–2001, 2009–2011, and 2019–2021. 
The image compositing method was applied 
to the collected images to generate 30 m 
Landsat imagery for the nominal years of 
2000, 2010, and 2020.

•	 AW3D30 global digital surface model at a 
spatial resolution of 30 m.

•	 ASTER global emissivity dataset at a spatial 
resolution of 100 m.

•	 Global land cover mapping products, includ-
ing GlobeLand30 (30 m), FROM-GLC (30 
m), CGLS-LC100 (100 m), MCD12Q1.006 
(500 m), and GLC2000 (1,000 m).

•	 Global terrestrial ecoregion map (RESOLVE 
Ecoregions), in which 846 terrestrial ecore-
gions were interpreted by ecologists and clas-
sified into 14 biome types.

•	 FROM-GLC global land cover sample set, 
which was obtained by expert interpreta-
tion and verification on global Landsat TM/
ETM + imagery.

8.3.2.3 � Methods
This study divides sand dunes/lands into shift-
ing sand dunes/lands, semi-fixed sand dunes/

8.3  Case Studies
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Fig. 8.3   Spatial distributions of global sand dunes (lands) in 2020 and changes in typical regions from 2000 to 2020

km2–1.351 × 104 km2) and also accounted for 
the lowest proportion (0.11%–0.13%).

2.	 Temporal Change of Global Sand Dunes/
Lands During 2000–2020

The global-scale changes in the area of three 
sand dune/land types are shown in Fig. 8.4. 
The area of global sand dunes/lands remained 
stable from 2000 to 2020, with an increase less 
than 1%. The area of shifting sand dunes/lands 
fluctuated slightly, with an increase of 0.37% 
(2.166 × 104 km2) from 2000 to 2010 and a 
decrease of 0.63% (3.709 × 104 km2) from 2010 
to 2020; the area of semi-fixed sand dunes/
lands decreased by 2.16% (6.033 × 104 km2) 
and 1.70% (4.644 × 104 km2); and the area of 
fixed sand dunes/lands increased by 8.39% 
(1.243 × 105 km2) and 11.42% (1.834 × 105 

in 40N°–30°S, especially in 20°N–30°N and 
20°S–30°S, which were closely related to the 
mid-latitude Hadley circulation. In terms of lon-
gitude, sand dunes/lands were mainly distrib-
uted in the Eastern Hemisphere, especially in 
0°–60°E and 115°E–145°E, while their distribu-
tions in the Western Hemisphere were relatively 
scattered. Among the six continents (excluding 
Antarctica), Africa had the largest area of sand 
dunes/lands, amounting to 5.567 × 106 km2–
5.642 × 106 km2 and accounting for 18.42%–
18.67% of the total land in Africa. Shifting sand 
dunes/lands are the predominant type in Africa. 
Oceania ranked third in terms of the area of sand 
dunes/lands (1.776 × 106 km2–1.801 × 106 km2), 
but had the highest proportion of sand dunes/
lands, reaching 19.80%–20.09%. Europe had the 
smallest area of sand dunes/lands (1.078 × 104 
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8.3.2.6 � Discussion and Outlook
Using satellite remote sensing imagery, multi-
source land surface mapping products, and other 
data, this study proposed a method for mapping 
sand dunes at a high resolution and global scale, 
generating a global 30 m sand dune/land dataset 
with high accuracy. The areas, spatial distribu-
tions, and temporal changes of the three sand 
dune/land types were analyzed, which provide 
important support for the assessment of SDG 
15.3.1.

On the one hand, the expansion or shrinkage 
in the area of sand dunes/lands reflects whether 
the sand encroachment process accelerated or 
was controlled and reversed. Thus, the tempo-
ral changes in sand dunes/lands calculated from 
our datasets are an intuitive indicator for assess-
ing SDG 15.3.1. On the other hand, the degree 
of desertification is another important indica-
tor, which can be divided into extreme, severe, 
moderate, and low. Previous research has proved 
the effectiveness of determining the degree of 
desertification simply based on sand dune/land 
types. Therefore, our datasets also offer a way to 
extract and assess aeolian desertification degree 
at the global scale.

Further improvements are directed at devel-
oping sand dune/land datasets with a longer 

km2) in the two periods. The continental-scale 
analysis indicates that the area of shifting 
sand dunes/lands in each continent generally 
remained stable. Asia witnessed a significant 
decrease in the area of semi-fixed sand dunes/
lands, and the area of fixed sand dunes/lands 
in Africa and Asia increased significantly 
(Fig. 8.5).

8.3.2.5 � Highlights

•	 A method for high-resolution global-scale 
mapping of sand dunes was proposed to auto-
matically generate global 30 m sand dune/
land datasets for 2000, 2010, and 2020. The 
datasets include three types of sand dunes/
lands—shifting sand dunes/lands, semi-fixed 
sand dunes/lands, and fixed sand dunes/
lands—with an overall accuracy higher than 
80%.

•	 Between 2000 and 2020, the global area of 
sand dunes/lands remained stable, ranging 
from 1.017 × 107 km2 to 1.036 × 107 km2. 
Shifting sand dunes/lands initially increased 
and then decreased in area, semi-fixed 
sand dunes/lands continuously decreased, 
and fixed sand dunes/lands continuously 
increased in area.

8.3  Case Studies
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Fig. 8.5   Continental-scale 
changes in the area of three sand 
dune/land types
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issues of data deficiency and localizing assess-
ment methods for land degradation are crucial 
for effective monitoring in Central Asia. Land 
degradation is not only related to surface veg-
etation, but also closely linked to soil and arid 
conditions. Therefore, a multi-index compre-
hensive assessment method is more reason-
able for accurately monitoring land degradation 
in Central Asia (Guo 2021). The case study 
“Monitoring and assessing land degradation in 
five Central Asian countries” in the 2020 edition 
of this report proposed a new remote sensing 
method for measuring and monitoring the pro-
cess of land degradation in typical inland arid 
areas. However, the case study requires further 
in-depth research for the attribution analysis of 
land degradation. Based on the findings, recom-
mendations for controlling land degradation can 
be proposed to provide decision-making refer-
ences for implementing the initiative of zero net 
land degradation and recovery plans.

In order to achieve this, the present study uti-
lized a constrained optimal weight algorithm to 
determine the weights of different monitoring 
indicators while considering spatial differences. 
This enabled the calculation of the OLDI to be 
a continuous sequence (Jiang et al. 2021). The 
analysis was performed following the SDG 15.3 
calculation guidelines released by UNCCD and 
the recommended methods from Trends Earth. 
By combining data on land degradation and land 
use change, we identified land degradation areas 
in Central Asia (Sims et al. 2021). Furthermore, 
through the synergistic integration of climate data 
and human activity data, the present study was 
able to distinguish between areas affected by cli-
mate change and those affected by human-induced 
land degradation. Finally, the present study pro-
posed governance recommendations for the areas 
of human-induced land degradation, providing 
a decision-making reference for governments to 
implement the LDN initiative and recovery plans.

8.3.3.2 � Data

•	 Global land cover imagery from 2000 to 2020 
at a 300 m spatial resolution provided by the 
ESA CCI (https://www.esa-landcover-cci.org/).

temporal coverage and exploring the impacts 
of climate change and human activity on their 
distributions.

8.3.3	� Land Degradation Neutrality 
Process and its Attribution 
in Five Central Asian 
Countries

Target: SDG 15.3: By 2030, combat desertifica-
tion, restore degraded land and soil, including 
land affected by desertification, drought, and 
floods, and strive to achieve a land degradation-
neutral world.

8.3.3.1 � Background
Central Asia is one of the largest arid regions in 
the world, with an uneven temporal and spatial 
distribution of water resources and extremely 
fragile ecological environments. In recent 
years, dust and sandstorms have occurred fre-
quently in Central Asia, and land degradation 
has become the most significant environmen-
tal issue constraining regional socioeconomic 
development. The Aral Sea, formerly the fourth 
largest inland lake in the world, provided impor-
tant ecosystem services for the basin due to its 
rich biodiversity. However, large-scale water 
and land development activities in the Aral Sea 
Basin have led to the rapid shrinking of the sea, 
which has been recognized by the UN as one 
of the most serious ecological disasters of the 
twentieth century (Micklin et al. 2016). Central 
Asia is a region where land degradation serves 
as a typical representation of such environmen-
tal issues. Therefore, monitoring the process of 
achieving LDN and its attribution in five Central 
Asian countries is crucial. It can provide a valu-
able reference for implementing comprehensive 
measures to prevent and control land degrada-
tion in arid regions. It can also provide scientific 
support for achieving the goal of zero net land 
degradation by 2030 in Central Asia.

Currently, assessing land degradation in 
data-deficient regions of Central Asia using 
the recommended NPP vegetation index by the 
UN and UNCCD is inaccurate. Addressing the 

8.3  Case Studies
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The OLDI data were used to monitor land 
degradation in Central Asia, replacing the NPP 
indicator recommended by the UN. The land 
degradation was evaluated using the trends, per-
formances, and status methods proposed by the 
UNCCD, with the years 2000–2016 as the base-
line period and 2017–2020 as the change period.

Water is the most sensitive and restrictive fac-
tor in arid areas, and it can be said that “water 
is the lifeblood”. Unreasonable utilization of 
water resources is a key factor in the disaster 
of the shrinking Aral Sea. The residual analy-
sis method was used to identify the impacts of 
human activity and climate change on land deg-
radation. Then, the water stress index (WSI) 
was calculated to identify areas with sufficient 
or insufficient water supply in typical areas 
affected by human-induced land degradation. 
The WSI value ranges between 0 and 1. The 
higher the WSI is, the more severe the water 
stress is. The WSI can be defined using the fol-
lowing formula:

8.3.3.4 � Results and Analysis
Long-term stable native deserts such as the 
Kyzylkum Desert and the Karakum Desert in 
Central Asia should not be considered as areas 
for land degradation control and were excluded 
from the data analysis. The results indicate that 
overall land degradation has worsened, but there 
are spatial differences. Most of the land degra-
dation occurred in western Central Asia, while 
the areas of land improvement were sporadically 
distributed. Land degradation around the Aral 
Sea was more severe compared to other regions 
(Fig. 8.6), and land degradation in Western 
Kazakhstan and the Atyrau region of Central 
Asia should not be overlooked.

The proportion of land degradation in Central 
Asia as a percentage of the total area was 
15.65%, while the proportion of land improve-
ment was 6.83%. The proportion of land degra-
dation was higher than that of land improvement 
in all countries, with Kazakhstan and 
Uzbekistan having higher proportions of land 
degradation at 16.49% and 14.14%, respectively. 

WSI = 1−
Actual evapotranspiration

Potential evapotranspiration
.

•	 The US Department of Agriculture (USDA) 
soil classification data at a spatial resolution 
of 250 m (https://www.nrcs.usda.gov/).

•	 MODIS vegetation NPP data (MOD17 
A3HGF), NDVI data (MOD13A1), surface 
albedo data (MCD43A3) at a spatial resolu-
tion of 500 m; LST data (MOD11A2) at a 
spatial resolution of 1 km; and evapotranspi-
ration/latent heat flux data (MOD16A2) at a 
spatial resolution of 500 m are all available 
for the period 2000–2020 (https://ladsweb.
modaps.eosdis.nasa.gov/search/).

•	 The temperature vegetation dryness index 
(TVDI) data from 2000 to 2020 at a spatial res-
olution of 500 m were provided by a Big Earth 
Data project launched by CAS (CASEarth).

8.3.3.3 � Methods
In this case study, all the data products were 
resampled to a spatial resolution of 500 m. The 
constrained optimal weight algorithm was used 
to determine the weights of each monitoring 
indicator, and the OLDI was obtained based on 
the different combinations of weights, with a 
spatial resolution of 500 m. To obtain the opti-
mal weight allocation scheme, NPP was taken as 
the reference state, and the optimal weight allo-
cation combination for the OLDI was calculated 
through iterative calculations using the con-
strained optimal weigh algorithm. The formulas 
for the constrained optimal weight algorithm 
were calculated as follows:

where NPP refers to net primary productiv-
ity; OLDIt represents the OLDI value at time t; 
f(NPP, OLDIt) is the determining function based 
on the highest correlation coefficient between 
NPP and OLDI; NPP and OLDIt indicate the 
mean values of NPP and OLDIt, respectively; E 
refers to the expectation; δNPP and δOLDIt rep-
resent the standard deviation of NPP and OLDIt, 
respectively; NDVI, Albedo, LST, and TVDI are 
monitoring indicators; and α, β, γ, and λ refer 
to the weight of each indicator, respectively, 
between 0 and 1.

f (NPP, OLDIt) = max(
E[(NPP− NPP)× (OLDIt − OLDIt)]

δNPP× δOLDIt
),

OLDIt = α × NDVI+ β × Albedo+ γ × LST+ �× TVDI,

https://www.nrcs.usda.gov/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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and Chardara showed a significant increasing 
trend. The WSI was positively correlated with 
the land degradation index (OLDI) in most areas, 
especially in Karakalpakstan, Khorezm, and 
Chardara (Fig. 8.9b).

It is worth noting that a clear bound-
ary was found in the trend of WSI changes 
between the Karakalpakstan and Tashauz states. 
Karakalpakstan had higher WSI and land deg-
radation intensity compared to Tashauz, and 
the correlation between WSI and OLDI in 
Karakalpakstan was significantly stronger than 
that in Tashauz. This is because different coun-
tries adopt different irrigation methods based on 
their own irrigation infrastructure and agricul-
tural policies. On the one hand, there were sig-
nificant differences in planting patterns between 
the two regions (Jiang et al. 2020). The impacts 
of water scarcity on Tashauz were relatively low 
because the water demand for wheat is much 
lower than that for cotton, and an increase in 
the proportion of wheat can effectively allevi-
ate water scarcity in the downstream areas. On 
the other hand, Karakalpakstan is located in the 
most downstream area of the basin, and water 
scarcity has a more significant impact on agri-
cultural fields in this region. In addition, in order 
to transport more water to Tashauz, a new water 
supply canal was constructed to connect with 
the Malyab Canal, which has exacerbated water 
scarcity in Karakalpakstan (Jiang et al. 2020).

8.3.3.5 � Highlights

•	 A novel method was proposed for the accu-
rate evaluation of land degradation in inland 
arid regions. The establishment of OLDI can 
provide a new data source for the evaluation 
of SDG 15.3.1 in arid areas.

•	 Defining the years from 2000 to 2016 as the 
baseline period and from 2017 to 2020 as the 
change period, land degradation in Central 
Asia accounted for 15.65% of the total area, 
while land improvement accounted for 6.83% 
of the total area. Land degradation around 
the Aral Sea and Western Kazakhstan is par-
ticularly severe. The goal of zero net land 
degradation has not been achieved in most of 

Uzbekistan had a relatively high proportion of 
land improvement at 11.74%. Kyrgyzstan and 
Tajikistan had proportions of stable land com-
pared to the other three countries at 83.66% 
and 79.86%, respectively. At the state scale, 
15 regions had a larger area of land improve-
ment compared to land degradation, achiev-
ing the goal of zero net land degradation, while 
other regions had a larger area of land degrada-
tion compared to land improvement. Achieving 
SDG 15.3, zero net land degradation, in Central 
Asia by 2030, still faces significant challenges, 
and land degradation prevention and control in 
Central Asia are crucial for achieving the global 
goal of zero net land degradation (Fig. 8.7).

Human-induced land degradation areas were 
clearly clustered (shown in dark red) and mainly 
located around the Aral Sea and the Atyrau 
region in Western Kazakhstan. Climate-induced 
land degradation areas were scattered (shown 
in light red), mainly in the southeastern part of 
Kazakhstan. Human-induced land improvement 
areas (shown in dark green) were mainly dis-
tributed in central Kazakhstan and the delta of 
Lake Balkhash wetland, while climate-induced 
land improvement areas (shown in light green) 
were relatively concentrated in the northern 
part of Uzbekistan. The proportion of human-
induced land degradation and land improvement 
areas as a percentage of the total area in Central 
Asia was 7.25% and 5.37%, respectively, while 
the proportion of climate-induced land degrada-
tion and land improvement areas was 8.40% and 
1.46%, respectively. Among different countries, 
Kazakhstan and Uzbekistan had higher propor-
tions of human-induced land degradation at 
7.74% and 7.38%, respectively, and Uzbekistan 
had a higher proportion of human-induced land 
improvement at 6.52% (Fig. 8.8).

The Aral Sea Basin was selected as a typical 
area to further analyze the influences of WSI on 
land degradation. The Aral Sea Basin was divided 
into 13 sub-basins based on the boundaries of irri-
gation districts and state boundaries to investigate 
the spatial differences in the WSI in the region. 
The WSI declined in most areas, especially in 
the upstream areas (with an annual change rate of 
-0.008/a) (Fig. 8.9a). However, Karakalpakstan 
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Fig. 8.6   Spatial distribution of the annual average OLDI and land degradation from 2000 to 2020
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8.3.3.6 � Discussion and Outlook
Based on the proposed methods and models 
of Big Earth Data, this case optimized a novel 
method for accurately evaluating land degrada-
tion in inland arid areas, and it can provide a 
data source for the evaluation of SDG 15.3.1. 
Land degradation in Central Asia accounted for 
15.65% of the total area, while land improve-
ment accounted for 6.83% of the total area. 
Land degradation around the Aral Sea and 
Western Kazakhstan is particularly severe. 
Most regions in Central Asia had a larger area 
of land degradation compared to land improve-
ment and have not achieved the goal of zero net 

Central Asia, and the realization of SDG 15.3 
by 2030 still faces severe challenges.

•	 Land degradation caused by human activity 
is a significant issue in the lower reaches of 
the Aral Sea Basin and western Central Asia. 
Agricultural development in the Aral Sea 
Basin has led to water scarcity in the down-
stream areas (Karakalpakstan, Khorezm, and 
Chardara). It is recommended to improve 
irrigation infrastructure, enhance the legal 
framework for transboundary water manage-
ment, and promote pilot water rights trading 
to alleviate water resource pressures in the 
downstream areas of the Aral Sea Basin.
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In the future, it is suggested that the areas of 
human-induced land degradation can be identi-
fied as key targets for implementing restoration 
plans, providing a reference for governments to 
implement the goal of zero net land degradation.

Agricultural development in the Aral Sea 
Basin has led to water scarcity in the down-
stream areas (Karakalpakstan, Khorezm, and 
Chardara), resulting in severe land degradation 
and abandoned farmland in the areas surround-
ing the Aral Sea. It is recommended to improve 

land degradation. The prevention and control of 
land degradation in Central Asia are crucial to 
achieving the goal of zero net land degradation.

An attribution analysis of land degradation 
was conducted in this case study. The results 
show that human-induced land degradation was 
mainly concentrated in the downstream areas 
of the Aral Sea Basin and western Central Asia. 
Identifying areas for human-induced land degra-
dation can play a positive role in implementing 
the zero-growth initiative for land degradation. 
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irrigation infrastructure, enhance the legal 
framework for transboundary water manage-
ment, and promote pilot water rights trading to 
alleviate water resource pressure in the down-
stream areas of the Aral Sea Basin. In addition, 
the downstream areas can change the planting 
pattern and plant more low-water-consumption 
crops to alleviate water scarcity.

8.3.4	� Assessment of the Impacts 
of Climate Change 
and Human Activity on Wild 
Camels and Their Habitats

Target: SDG 15.5: Take urgent and significant 
action to reduce the degradation of natural habi-
tats, halt the loss of biodiversity, and by 2020, 
protect and prevent the extinction of threatened 
species.

8.3.4.1 � Background
The wild camel (Camelus ferus), also called 
the wild Bactrian camel but not descended 
from Bactrian camels, is a separate species liv-
ing in three discrete habitats in China and one 
in Mongolia. It is listed as critically endan-
gered (CR) and Class Ι endangered by the 
International Union for Conservation of Nature 
(IUCN) and the Convention on International 
Trade in Endangered Species of Wild Fauna and 
Flora (CITES), respectively. The wild camel has 
an extremely important position and research 
value in the protection of the world’s biodi-
versity due to its genetic characteristics. For 
instance, it can adapt to the extreme desert living 
environment and drink brackish water. It is esti-
mated that there are only about 1000 wild cam-
els surviving on the planet. Affected by factors 
such as climate change and human activity, wild 
camels have reached the brink of extinction.

The last 20 years’ rise in temperature is eight 
times more than that of the last 100 years, and 
the rate of climate change is very rapid for most 
species to adapt. The ability of wildlife to adapt 
to climate change depends critically on the rate 
of change (IPCC Working Group 1992). This 
increasing temperature not only causes a change 

in rainfall or precipitation, but also causes ani-
mals to move toward those places that are more 
suitable for them (Thornes 2002).

Human activity, including land use change, 
road traffic, and resource development, has a 
huge impact on animals and plants at the global 
and regional scales, resulting in changes in the 
distribution of animals and plants, and a decline 
in health status, or even extinction (Crooks et al. 
2017). Consequently, understanding the effects 
of human activity on wild camels and their habi-
tats, as well as devising strategies to cope with 
these effects, is an increasing challenge for sci-
entists and policymakers.

Based on the satellite tracking data of wild 
camels, this case combines satellite remote sens-
ing images and other types of data to evaluate 
the quality of suitable habitats for wild camels 
under current and future climate change condi-
tions. The results of this case study lay a founda-
tion for revealing the impacts of climate change 
and human activity on wild camels and their 
habitats, the estimation of the wild camel popu-
lation, the assessment of habitat carrying capac-
ity, and a scientific basis for the establishment 
of the China Wild Camel National Park and 
the China-Mongolia Cross-border Wild Camel 
Nature Reserve.

8.3.4.2 � Data

•	 From 2013 to 2016, data on 12 wild camels 
were obtained using satellite trackers, includ-
ing eight in China and four in Mongolia, with 
a total of 21,085 tracking points.

•	 Environmental data: physical environmen-
tal factors (DEM, slope, aspect), biological 
factors (water source, vegetation cover, veg-
etation type), human influence factors (roads, 
railways, human footprint index).

•	 The representative concentration pathway 
(RCP) 4.5 model was used with 19 current 
bioclimatic factors and 19 future bioclimatic 
factors.

8.3.4.3 � Methods
Using niche models to evaluate a species’ habi-
tat suitability, including predicting changes in 
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suitable habitats in the Qaidam Basin in the 
southern Altun Mountains, but mainly sub-suita-
ble habitats. The potentially suitable habitats for 
wild camels in Mongolia are mainly located in 
the Gobi Altai of Mongolia, and there are also a 
few sub-suitable habitats in the border region of 
China and Mongolia. The potential wild camel 
habitat patches in Mongolia have good integrity 
and a low degree of fragmentation, mainly with 
suitable habitats and less sub-suitable habitat 
area. There are two large patches mainly distrib-
uted in the Great Gobi A Strictly Protected Area, 
divided by a road.

At present, the total potential suitable habitat 
areas for wild camels are considerable, of which 
the suitable habitat area is 75,080 km2 and the 
sub-suitable habitat area is 114,991 km2. Among 
them, the suitable habitat area in China is 36,903 
km2, and the sub-suitable habitat area is 75,611 
km2. The suitable habitat area in Mongolia is 
38,177 km2, and the sub-suitable habitat area is 
39,380 km2.

Under the RCP 4.5 climate scenario, com-
pared with the current potential suitable habitats 
for wild camels (Fig. 8.10), the area of suit-
able habitats for wild camels in the future will 
greatly decrease (Figs. 8.11 and 8.12), and the 
spatial distribution pattern will also change. 
For the entire wild camel distribution area, both 
suitable and sub-suitable habitats show a down-
ward trend year after year. In 2050, the suitable 
habitat area will be 3519 km2, and the sub-suit-
able habitat area will be 67,542 km2, decreas-
ing 95.3% and 41.3%, respectively, compared 
with the current situation. In 2070, the suitable 
habitat area will be 1228 km2, and the sub-suit-
able habitat area will be 49,672 km2, decreasing 
65.1% and 26.5%, respectively, compared with 
2050.

8.3.4.5 � Highlights

•	 Suitable wild camel habitats were mapped 
under current climate conditions and future 
climate change scenarios in 2050 and 2070.

•	 The suitable habitat area for wild camels 
in China and Mongolia was 190,071 km2 in 
2016. Under the conditions of future climate 

suitable habitats under future climate change 
scenarios, is becoming a hotspot in research 
and applications. The maximum entropy model 
(MaxEnt) is an ecological niche model capable 
of accurate prediction. It takes into account the 
maximum entropy and the ecological niche, and 
it can construct a potential distribution model of 
animals based on the existing species distribu-
tion data and environmental variable data and 
infer the potential distribution of the population. 
The range and possible probability of occur-
rence are combined with future climate change 
data to predict the future distribution of the pop-
ulation. The model has been widely used in the 
assessment of habitat fragmentation, protection 
of endangered species, research on interspecific 
relationships, and prediction of the impact of cli-
mate change on species. The maximum entropy 
model estimates the distribution of species by 
finding the probability distribution of maximum 
entropy. The formula is as follows:

where λ is a vector of n real-valued coefficients 
or eigenweights, f is a vector of all environmen-
tal factors, and Z

λ
 is a normalization constant 

used to ensure that the sum of q values is 1.
The maximum entropy model reflects the 

habitat suitability of species through the habitat 
suitability index (HSI), which ranges from 0 to 
1, where 0 represents the least suitable habitat 
and 1 represents the most suitable. It is worth 
noting that the model species distribution locus 
data are not biased, and the environmental con-
ditions are uniformly sampled.

8.3.4.4 � Results and Analysis
The spatial distribution of current suitable habi-
tats for wild camels is shown in Fig. 8.10. In 
terms of the overall distribution, the potentially 
suitable habitats for wild camels mainly include 
two areas in China and Mongolia. Among them, 
the potentially suitable habitat in China is cen-
tered on the Kumtag Desert, including the area 
north of the Altun Mountains, the south of Aqike 
Valley, the east of Lop Nur, and the west of 
Dunhuang West Lake Wetland. There are also 

q�(x) = e�·f (x)

Z�
,
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Fig. 8.10   Spatial distribution of current suitable habitats for wild camels

hybridization of wild and domestic camels, and 
competition with domestic camels. In the future, 
in-depth research will be carried out on niche 
overlap or avoidance caused by predatory com-
petition, as well as diseases and genes of wild 
camels. These studies are important for a better 
understanding of wild camels and for more effec-
tive wild camel research and conservation.

8.4	� Summary

Currently, the 2030 Agenda is less than halfway 
to being achieved. Considering the long time it 
takes for ecosystems to recover and show the 
benefits of conservation, only urgent, concerted, 
and effective action to protect and restore eco-
systems will make it possible to fully achieve 
the terrestrial biodiversity that SDG 15 brings to 
the 2030 Agenda.

We still have a number of challenges 
in assessing the indicators of SDG 15. For 

change, the suitable habitat areas for wild 
camels in 2050 and 2070 will decrease to 
71,061 km2 and 50,900 km2, respectively, 
showing a rapid downward trend. In the 
future, the survival of wild camels will face 
severe challenges.

8.3.4.6 � Discussion and Outlook
In this case study, spatiotemporal big data was 
used to statistically analyze the distribution and 
changes in suitable habitats for wild camels under 
current conditions and future climate change sce-
narios. It is suggested that the wild camel protec-
tion strategy should be adjusted in time according 
to the changing trend of suitable habitats, and the 
China Wild Camel National Park and the China-
Mongolia Cross-border Wild Camel Nature 
Reserve should be established as soon as possible.

In addition to the impact of climate change 
and human activity, the survival of wild cam-
els is affected by other factors such as diseases, 
interspecific competition, predation relationships, 
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Fig. 8.11   Spatial distribution of suitable habitats for wild camels in 2050

Fig. 8.12   Spatial distribution of suitable habitats for wild camels in 2070
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tion of land that is degraded over total land area. 
Version 2.0. Bonn: UNCCD. https://www.unccd.int/
resources/manuals-and-guides/good-practice-guid-
ance-sdg-indicator-1531-proportion-land-degraded

Thornes JE (2002) IPCC, 2001: Climate change 2001: 
impacts, adaptation and vulnerability, contribution 
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UN (2019) The sustainable development goals report 
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report/2019/The-Sustainable-Development-Goals-
Report-2019.pdf

UNEP (2021) Measuring progress: environment and 
the SDGs. https://wedocs.unep.org/bitstream/han-
dle/20.500.11822/35968/SDGMP.pdf. (15 June 2022)

Yang XB, Crews K (2019) Applicability analysis of 
MODIS tree cover product in Texas savanna. Int 
J Appl Earth Obs Geoinf 81:186–194. https://doi.
org/10.1016/j.jag.2019.05.003

Zheng ZJ, Du SH, Taubenböck H et al (2022) Remote 
sensing techniques in the investigation of Aeolian 
sand dunes: a review of recent advances. Remote 
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example, biodiversity monitoring is still limited 
to ground survey/statistical means, and large-
scale monitoring of key biodiversity variables 
is a big challenge; the extent of protected areas 
is steadily increasing, but there are still short-
comings in the effectiveness of conservation, in 
setting conservation targets, and in their imple-
mentation; and land degradation assessment 
faces a series of difficulties such as complex 
concepts, unclear benchmarks, and a lack of 
monitoring methodologies.

In the future, facing the major needs of the 
“UN Decade on Ecosystem Restoration” and 
“Post-2020 Global Biodiversity Framework”, 
we should give full play to the great potential 
of Big Earth Data in SDG 15 monitoring and 
assessment and strengthen the SDGSAT-1 satel-
lite program and its applications, as well as other 
satellites from China and accompanying big data 
platforms for SDGs. This big data infrastructure 
can provide high-quality, easy-to-use data prod-
ucts, methods, models, and decision support 
tools to support the implementation of SDG 15.
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Interactions Among SDGs 
and Integrated Evaluations

9.1	� Background

The assessment of a single SDG indicator can 
track the progress of that indicator, but judging 
whether the development of a certain region is 
sustainable requires a comprehensive considera-
tion of the impact of different SDG indicators. 
Due to differences in natural resource endow-
ment, socio-economic development levels, and 
development paths in different regions, there 
are complex interactions among SDGs and 
related indicators. Research on the intersection 
of multiple SDG indicators involves the follow-
ing three aspects: (1) the synergy and trade-off 
relationships among multiple SDG indicators 
in the same time period and spatial range (the 
synergistic indicators promote one another, yet 
trade-offs emerge when achieving progress at 
the expense of others); (2) the spillover effects 
of multiple SDG indicators in different spa-
tial ranges but in the same time period; and (3) 
future scenario simulation of SDGs under the 
interaction of multiple indicators in the same 
spatial range. In addition, achieving SDGs 
requires the integration of multiple themes, such 
as SDGs for agriculture, ecological environ-
ment, water resources, and urban areas, striving 
for balanced and sustainable development across 
all 17 SDGs. Understanding the intersectional 

relationships between goals and indicators and 
conducting single-theme and regional compre-
hensive assessments of SDGs are of great sig-
nificance for achieving the 2030 Agenda and 
dynamically adjusting sustainable development 
paths.

Research on interactions among SDGs and 
integrated evaluations has been carried out by 
organizations and the academic community at 
different scales since the SDGs were proposed. 
In terms of SDG interactions, UN-Water ana-
lyzed the six targets of SDG 6 and other targets 
of SDGs with potential interconnected relation-
ships, finding 127 pairs with synergistic rela-
tionships and 29 pairs with potential trade-off 
relationships (UN-Water 2016). In 2021, the 
United Nations Environment Program (UNEP) 
conducted a progress report on the interaction 
of environmental indicators and other indica-
tors, analyzing the relationships among the 
near-nature action indicators, socio-economic 
development indicators, and natural state indi-
cators among the SDG indicators. Pradhan 
et al. (2017) used time-series data covering 122 
indicators in 227 countries worldwide to quan-
titatively analyze the synergistic and trade-off 
relationships within and between all SDG tar-
gets at the global and national scales from 1983 
to 2016. They concluded that at the global scale, 
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Table 9.1   Case and its main contributions

Targets Case Contributions

SDG 2.1, SDG 
6.4, SDG 7.2, 
SDG 15.3, SDG 
17.16

Integrated evaluation and 
sustainable development 
of water–energy–food–
ecology systems in 
Central Asia

Method and model: provide a detailed evaluation of the sustainable 
development of the WEFE system in Central Asia
Decision support: provide decision support for governments and 
propose two mitigation strategies, i.e., “same effect trade agreement” 
(to replace “equivalent trade agreement”) and “power transmission 
from east to west” (to import electric power from China), to adjust the 
energy, planting, and import and export trade structure, as well as rea-
lize the sustainable development of the WEFE system in Central Asia

are based on statistical data, lacking sufficient 
consideration of geographical spatiotemporal 
characteristics. The integration of Big Earth Data, 
which combines satellite observations, ground-
based observations, and ground surveys, has 
massive, multi-source, and multi-temporal char-
acteristics, providing essential data and technical 
support for SDG monitoring and evaluation. On 
the one hand, Earth observation data and geo-
graphic information data provide important sup-
plements or replacements for traditional official 
statistical data. Its continuous, timely spatial, and 
temporal coverage can capture changes in sur-
face features to monitor SDGs, overcoming the 
problems of inconsistent standards and quality of 
statistical data in different countries and regions. 
On the other hand, geographic information mod-
eling and simulation methods based on spatial 
analysis and other technologies can help sort out 
the interactions between targets, predict future 
development trends, carry out comprehensive 
evaluations, and provide a basis for the dynamic 
adjustment of policy recommendations.

9.2	� Main Contributions

Taking Central Asia as an example, this chapter 
explores the interactions and pressure transmis-
sion among water, energy, food, and ecologi-
cal systems based on Big Earth Data. The 
sub-indexes include ecological footprint, water 
footprint, WSI, and crop yields, which provide 
a detailed evaluation of the sustainable develop-
ment of the WEFE system in Central Asia and 
also offer decision-making support for local 
governments (Table 9.1).

most countries in the world exhibit more syner-
gistic relationships than trade-off relationships 
between SDG targets. Warchold et al. (2021) fur-
ther analyzed the linear or nonlinear synergistic 
and trade-off relationships within and between 
SDGs at the global and national levels, using 
updated and higher coverage data (covering 171 
indicators in 247 countries worldwide from 1991 
to 2019), and reached the same conclusion. This 
study also found that the synergistic and trade-
off relationships among SDG targets vary greatly 
among different populations, income groups, and 
regions. In terms of the comprehensive assess-
ment of SDG themes, the UN FAO evaluated 
21 indicators related to food security and found 
that progress in global food and agricultural pro-
duction is still insufficient, making it difficult to 
achieve the 2030 goals (FAO 2021). The latest 
report from UN-Water indicates that the targets 
of SDG 6 are currently difficult to achieve at the 
global level, with 10% of the world’s population 
still unable to access safe drinking water and 
sanitation facilities, and many water sources dry-
ing up or becoming more polluted (UN-Water 
2023). In terms of the regional integrated evalua-
tions of SDGs, the UN Sustainable Development 
Solutions Network (SDSN) and the Bertelsmann 
Foundation established an SDG index evaluation 
method and a set of SDG measurement stand-
ards for the national level, aiming to help each 
country identify priority issues, understand the 
challenges faced in the implementation process, 
clarify existing gaps, and support the achieve-
ment of the 2030 Agenda (Sachs et al. 2018, 
2020, 2021, 2022).

However, most of the current studies on inter-
actions among SDGs and integrated evaluations 
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9.3	� Case Study

9.3.1	� Integrated Evaluation 
and Sustainable 
Development of Water–
Energy–Food–Ecology 
Systems in Central Asia

Target: SDG 2.1: By 2030, end hunger and 
ensure access by all people, in particular the 
poor and people in vulnerable situations, includ-
ing infants, to safe, nutritious, and sufficient 
food all year round.

SDG 6.4: By 2030, substantially increase 
water-use efficiency across all sectors and 
ensure sustainable withdrawals and supply of 
freshwater to address water scarcity and sub-
stantially reduce the number of people suffering 
from water scarcity.

SDG 7.2: By 2030, increase substantially the 
share of renewable energy in the global energy 
mix.

SDG 15.3: By 2030, combat desertification, 
restore degraded land and soil, including land 
affected by desertification, drought, and floods, 
and strive to achieve a land degradation-neutral 
world.

SDG 17.16: Enhance the Global Partnership 
for Sustainable Development, complemented 
by multi-stakeholder partnerships that mobilize 
and share knowledge, expertise, technology, and 
financial resources to support the achievement 
of the Sustainable Development Goals in all 
countries, in particular developing countries.

9.3.1.1 � Background
SDG 2.1, SDG 6.4, SDG 7.2, and SDG 15.3 
respectively correspond to food, water, energy, 
and ecological securities. Water, energy, and food 
securities are the foundations to achieve national 
sustainable development, and ecological secu-
rity is the basic guarantee of water, energy, and 
food securities. Therefore, there are tight link-
ages between water, energy, food, and ecologi-
cal systems, and changes in one sector may have 
unintended consequences for others. Therefore, 
a comprehensive indicator is needed to evalu-
ate the overall condition of the sustainable 

development of the WEFE system, and meas-
ures to achieve SDGs are needed. In addition, the 
sharing of river basins, borders, or trade between 
countries will also lead to related impacts on the 
SDGs, which are manifested as spatial spillo-
ver. For example, the consumption of water and 
energy during the production of goods, along 
with the resulting pressure on the ecological 
environment, can significantly influence SDGs. 
Importing countries transmit the effects of these 
SDGs through trade to the exporting countries. 
According to the Sustainable Development 
Report 2023 (Sachs et al. 2023), GHG (green-
house gas) emissions due to the global final 
demand for textiles and clothing, 59% are emit-
ted along the supply chains of countries other 
than those where the final products are con-
sumed, while 41% are emitted in the countries in 
which the final products are consumed.

Central Asia is located in the hinterland of 
Eurasia, with scarce precipitation and an arid 
climate. As a community with a shared future, 
the sustainable development of Central Asian 
countries is quite important to China. However, 
due to arid climatic conditions, a rapidly 
increasing population, the fallout from the col-
lapse of the Soviet Union, and irrational human 
activity, the WEFE system of Central Asia has 
become very vulnerable. In addition, the col-
lapse of the Soviet Union broke the mechanism 
of complementary resource policies among 
countries, and the contradiction between irriga-
tion water in upstream areas and hydropower in 
downstream areas became prominent. Therefore, 
cooperation among countries and basins is cru-
cial to achieving WEFE system security in 
Central Asia, corresponding to SDG 17.16, 
which urgently requires a comprehensive sus-
tainable coordination mechanism.

At present, the pressure status of water, 
energy, food, and ecological systems in Central 
Asian countries is not clear, and the relationship 
between different sectors has not been revealed, 
especially whether there is pressure transmission 
between different sectors. Therefore, four stress 
indicators are constructed in this case study 
to reflect water, energy, food, and ecological 
stresses, respectively. Water stress is expressed 
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•	 Electricity production structure, source: 
https://data.worldbank.org/.

•	 Water production of major crops, source: 
http://wuemoca.net/app/.

•	 Agriculture irrigation efficiency, source: 
https://www.fao.org/aquastat/en/data-analysis/
irrig-water-use/irrig-water-withdrawal/.

9.3.1.3 � Methods

1.	 WEFE Stress

An integrated index was constructed to quanti-
tatively evaluate stress on the WEFE system. 
The integrated index has four components: the 
food stress index (FSI), energy stress index 
(EESI), WSI, and ecological stress index 
(ESI). We divided these four pressure indica-
tors (FSI, EESI, WSI, and ESI) into five levels 
referenced in previous research and the official 
classification standard (Table 9.2). In order to 
characterize the effects of different sectors on 
the comprehensive stress of the WEFE system, 
particle swarm optimization was adopted to 
establish the projection pursuit model and con-
struct the pressure index of the WEFE system.

2.	 Quantifying the Pressure on the WEFE 
System

The PSO-PEE is an emerging mathemati-
cal method for transforming high-dimensional 
nonlinear problems into one-dimensional ones 
by finding the best projection direction of the 
assessment indicator system. This model has 
been applied to the assessment of water secu-
rity, ecological security, and food security. This 
model was constructed in three steps: (1) nor-
malizing assessment indicators; (2) establishing 
the projection indicator function; and (3) opti-
mizing the projection indicator function via par-
ticle swarm optimization.

9.3.1.4 � Results and Analysis
From 1992 to 2020, the subsector of food, 
energy, and water experienced subtle change, 
while the ecological system changed greatly in 
Central Asian countries (Fig. 9.1). For the WSI, 
with the exception of Turkmenistan, the remain-
ing countries showed a slight downward trend 

as the ratio of total freshwater withdrawal to 
the total renewable freshwater resources after 
deducting the environmental flow. Energy stress 
is expressed as the ratio of the total primary 
energy consumption to the total primary energy 
production. The hunger index (combining four 
factors: child malnutrition, underweight, stunt-
ing, and child mortality) is used to reflect food 
stress in Central Asian countries because of the 
difficulty in obtaining data on food consumption 
and production. Ecological stress is reflected by 
the ratio of the total ecological footprint to eco-
logical biocapacity. These four indicators cor-
respond to SDG 6.4.2, SDG 7.2.1, SDG 2.1.1, 
and SDG 15.3.1, respectively. There are tight 
and complex links among these four indicators, 
so an integrated WEFE system stress indicator is 
needed to reflect the synthetic security status of 
the WEFE system in Central Asian countries.

This case comprehensively evaluated pres-
sure on the WEFE system through the projection 
pursuit model based on particle swarm optimiza-
tion (PSO-PEE) and analyzed the transmission 
of sectoral pressure. On this basis, a cooperation 
framework among Central Asian countries was 
put forward, which provides important scien-
tific and technological support for Central Asian 
countries to achieve the SDGs.

9.3.1.2 � Data

•	 Ecological footprint and biocapacity, source: 
https://data.footprintnetwork.org.

•	 Total primary energy consumption and pro-
duction, source: https://knoema.com/atlas/
ranks.

•	 Global hunger index, source: https://www.
globalhungerindex.org/.

•	 WSI, source: https://www.fao.org/sustain-
able-development-goals-data-portal/data/
indicators/642-water-stress/en.

•	 Crop acreage, yield, energy use structure in 
agriculture, and population, source: https://
www.fao.org/faostat/en/#data.

•	 Water footprint, source: https://waterfoot-
print.org/.

•	 Food trade, source: https://data.casearth.cn/
sdo/detail/5feae826819aec33049b7c57.

https://data.worldbank.org/
http://wuemoca.net/app/
https://www.fao.org/aquastat/en/data-analysis/irrig-water-use/irrig-water-withdrawal/.
https://www.fao.org/aquastat/en/data-analysis/irrig-water-use/irrig-water-withdrawal/.
https://data.footprintnetwork.org
https://knoema.com/atlas/ranks
https://knoema.com/atlas/ranks
https://www.globalhungerindex.org/
https://www.globalhungerindex.org/
https://www.fao.org/sustainable-development-goals-data-portal/data/indicators/642-water-stress/en
https://www.fao.org/sustainable-development-goals-data-portal/data/indicators/642-water-stress/en
https://www.fao.org/sustainable-development-goals-data-portal/data/indicators/642-water-stress/en
https://www.fao.org/faostat/en/%23data
https://www.fao.org/faostat/en/%23data
https://waterfootprint.org/
https://waterfootprint.org/
https://data.casearth.cn/sdo/detail/5feae826819aec33049b7c57
https://data.casearth.cn/sdo/detail/5feae826819aec33049b7c57
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Table 9.2   Classification of pressure on the WEFE system

Stress indexes Description Degree of pressure

No
pressure

Low pressure Medium  
pressure

High pressure Critical 
pressure

ESI The ratio of total ecologi-
cal footprint to ecological 
biocapacity (%)

0–0.80 0.81–1.00 1.01–1.5 1.51–2.00  > 2.00

EESI The ratio of the total pri-
mary energy consumption 
to the total primary energy 
production (%)

0–45 46–78 79–108 109–150  > 150

FSI Hunger index (%) 0–4.9 5.0–9.9 10.0–19.9 20.0–29.9  > 30.0

WSI The ratio of total fresh-
water withdrawal to the 
total renewable freshwater 
resources after deducting 
the environmental flow

0–25 26–50 51–75 76–100  > 100

Kyrgyzstan and Tajikistan, while Uzbekistan has 
the highest WEFE system pressure, followed 
by Turkmenistan. According to the results of 
the projection pursuit model, water stress plays 
a very critical role in the entire system pressure 
(weight 0.97), followed by energy stress (weight 
0.22). According to the pressure situation of 
each subsystem in Central Asian countries in 
Fig. 9.1, water stress in Kazakhstan is the low-
est, and energy stress has also been the lowest 
since 2014, which is the key factor leading to 
the lowest comprehensive pressure of the WEFE 
system in Kazakhstan.

The links between sectors are the prerequisite 
for the transmission of sectoral pressure, while 
pressure transmission requires a certain carrier. 
In Central Asia, virtual water trade appears to 
include only the transfer of physical products. 
This physical transfer results in simultaneous 
but indirect transfer among water, food, energy, 
and ecological pressures, which affect differ-
ent SDGs. The virtual water net exports of crop 
products in Uzbekistan reached 10.3 × 109 m3, 
second only to Kazakhstan (Figs. 9.3 and 9.4). 
The largest export crop is cotton (Fig. 9.5c), 
which accounts for 59% of crop exports from 
Central Asian countries (Fig. 9.5b). It is worth 
noting that Kazakhstan is the main importer of 
cotton, mainly from Uzbekistan (Fig. 9.5b). 

(Fig. 9.1a). For EESI, with the exception of 
Turkmenistan, the remaining countries showed 
an overall downward trend (Fig. 9.1c). For the 
FSI, with the exception of Turkmenistan and 
Kyrgyzstan, the remaining countries showed 
a slight upward trend. Moreover, the FSI of 
five countries showed obvious fluctuations 
after 2003, but the trend was not significant 
(Fig. 9.1b). For ESI, Tajikistan, Kazakhstan, 
and Kyrgyzstan showed a downward trend first 
in the period 1992–2000 and then an upward 
trend in 2000–2020 (Fig. 9.1d), while for 
Uzbekistan and Turkmenistan, ESI showed an 
upward trend, and the most significant upward 
trend was observed in Turkmenistan. From 
the trend of the comprehensive pressure of 
WEFE system change (Fig. 9.2), the pressure 
level of the WEFE system in Tajikistan and 
Kyrgyzstan presented a relatively significant 
upward trend, while that of Turkmenistan pre-
sented a downward trend and that of Kazakhstan 
was not obvious. The stress of the WEFE sys-
tem in Uzbekistan decreased first and then 
increased, which is consistent with the trend of 
WSI and ESI. From the ranking of the pressure 
of the WEFE system in Central Asian coun-
tries, the pressure of the WEFE system varies 
greatly among countries, with Kazakhstan hav-
ing the lowest integrated pressure, followed by 

9.3  Case Study
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Fig. 9.1   Temporal variation in the a water system, b 
food system, c energy system, and d ecological system 
stress indexes in Central Asia during 1992–2020. Note for 

this and subsequent figures: KAZ refers to Kazakhstan, 
TJK refers to Tajikistan, KGZ refers to Kyrgyzstan, TKM 
refers to Turkmenistan, UZB refers to Uzbekistan.

expanded from the water system to the energy 
and ecology systems through virtual water trade. 
Figure 9.1 shows that water, energy, and eco-
logical stresses in Uzbekistan are all under high 
pressure. In addition, another aspect of pressure 
transmission is between energy stress and water 
stress. Kyrgyzstan and Tajikistan mainly rely 
on hydropower, accounting for 84 and 98% of 
the total power generation, respectively, result-
ing in insufficient water for agricultural irriga-
tion in downstream countries. In other words, 
upstream countries pass water stress to down-
stream countries to alleviate energy stress. 
The dual water stress shift has caused the most 
severe water stress in downstream countries. 
Therefore, the water stress transmission starts 
from the upstream Tajikistan and Kyrgyzstan to 

The water footprint of cotton in Uzbekistan 
is the highest, with a blue water footprint of 
1.7 × 108 m3, constituting 63.5% of the total 
blue water footprint of cotton in Central Asian 
countries (Fig. 9.4). Although the amount of 
wheat exported from Kazakhstan to Uzbekistan 
is 1.8 × 1010 kg (Fig. 9.5e), the virtual water 
for wheat mainly comes from green water 
(Fig. 9.3), which may not consume a large num-
ber of surface water resources.

It can be seen that Kazakhstan has transferred 
water stress to Uzbekistan, while Uzbekistan 
has transferred food pressure to Kazakhstan. 
Not only that, in Uzbekistan, the electric power 
consumed in agriculture is 43,635 TJ, account-
ing for 48% of electricity consumption in 
agriculture in Central Asia. The pressure has 
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Fig. 9.2   Variations in the WEFE system pressure level (WEFE_SI_Level) in Central Asian countries during 1992–
2020. Note Higher pressure level values correspond to lower WEFE system pressure

Crop products Industrial products Animal products
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Fig. 9.3   Virtual water trade in crop, industrial, and animal products in Central Asian countries
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Fig. 9.4   Water footprint of the main crops in Central Asian countries

For example, based on the existing water stor-
age capacity of the three reservoirs, Tajikistan 
and Kyrgyzstan are suggested to reduce the 
water storage capacity by 5%–10% during the 
crop-growing season (May to July). This would 
increase water availability for agricultural irriga-
tion in downstream countries.

In winter, Kazakhstan, Turkmenistan, and 
Uzbekistan must compensate for the same 
amount of electricity lost (instead of the same 
amount of trade or money) in the upstream 
countries due to the reduction in water storage. 
This not only meets the power demands of the 
upstream countries in winter, but also reduces 
the pressure for agricultural irrigation water in 
the downstream countries. In addition, given the 
dominant role of water power in the upstream 
countries and the low irrigation efficiency, the 
introduction of solar and wind power technol-
ogy in the upstream countries and drip irriga-
tion technology in the downstream countries can 
greatly improve the sustainability of the WEFE 
system in Central Asian countries.

It is reported that from 2006 to 2018, China’s 
total installed capacity of wind power increased 
from 2.07 GW to 185 GW, and its total installed 

the downstream countries (Turkmenistan and 
Uzbekistan). The most important medium for 
pressure transmission is the virtual water trade 
of crop products, especially cotton and wheat.

Understanding the WEFE nexus in Central 
Asian countries is the prerequisite for achiev-
ing the sustainability of the WEFE system. The 
water–energy conflict between the upstream 
and downstream countries is the most critical. 
The Toktogul hydropower station in Kyrgyzstan 
and Kayrakum and Nurek hydroelectric power 
stations in Tajikistan are the three major hydro-
power stations that provide these countries 
with electricity and control downstream irri-
gation water. To meet the electricity demand 
in winter, the three hydropower stations usu-
ally begin to store water in summer. This leads 
to insufficient water for agricultural irrigation 
in downstream countries during the summer. 
Therefore, it is recommended that Kyrgyzstan 
establishes cross-basin cooperation agreements 
with Uzbekistan and Kazakhstan and reaches a 
“same effect trade agreement” of water–energy 
instead of an “equivalent trade agreement”. 
Additionally, Tajikistan should establish similar 
agreements with Uzbekistan and Turkmenistan. 
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Fig. 9.5   Trade volume of the main agricultural prod-
ucts from the perspective of import a‒f and export g‒l 
in Central Asian countries. Note: The main agricultural 

products are cereals (a, g), cotton (b, h), fruit (c, i), veg-
etables (d, j), wheat (e, k), and meat (f, l), respectively

9.3  Case Study
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•	 The pressure transmission mechanism 
among the WEFE system in Central Asia 
was revealed, and it was found that the pres-
sure was transmitted from the energy system 
of upstream Tajikistan and Kyrgyzstan to the 
water system of downstream Kazakhstan, 
Turkmenistan, and Uzbekistan, while pres-
sure was transmitted from the water system 
to the food, energy, and ecological systems in 
the downstream countries. Wheat and cotton 
are the main media of pressure transmission 
in water systems.

•	 The solution to the water–energy conflict 
between the upstream and downstream coun-
tries is the key to realizing the sustainability 
of the WEFE system in Central Asia. In order 
to alleviate the conflict and achieve sustain-
able development, two mitigation strate-
gies, i.e., “same effect trade agreement” (to 
replace “equivalent trade agreement”) and 
“power transmission from east to west” (that 
is, importing power from China), are put for-
ward. Other measures are also discussed, e.g., 
the adjustment of energy structure, planting 
structure, and import–export trade structure.

9.3.1.6 � Discussion and Outlook
This case study provided a synthetic understand-
ing of the WEFE system status in Central Asia. 
In addition, we revealed the pressure transmis-
sion among different sectors. Thereafter, we pro-
posed a top-down coordination mechanism to 
achieve the sustainability of the WEFE system 
and provided a framework for sustainable devel-
opment for stakeholders and decision-makers 
(Fig. 9.6). The main conclusions of this case are 
as follows.

(1)	 Kazakhstan has the lowest WEFE system  
pressure, followed by Kyrgyzstan and 
Tajikistan, whereas Uzbekistan and 
Turkmenistan have the highest pressure. 
The main reason behind this is the dominant 
role of water stress in the WEFE system.

(2)	 The pressure transmission originates from 
the upstream countries (Tajikistan and 
Kyrgyzstan), whereas the downstream coun-
tries (Turkmenistan and Uzbekistan) are 

capacity of solar photovoltaics increased from 
0.16 GW to 175 GW, ranking first in the world 
in total solar power generation. Northwest China 
(Xinjiang, Gansu, Qinghai, and Inner Mongolia) 
plays an important role in clean energy produc-
tion, accounting for 37.1% of the country’s total 
wind power generation and 64% of the total 
solar power generation. The total wind and solar 
power generation in Northwest China is about 
18 times that in Kyrgyzstan. Wind–solar tech-
nology could be improved or a power transmis-
sion network could be built from east (Northwest 
China) to the west (Central Asian countries). 
Although the current power generation costs are 
relatively high, solar and wind power generations 
can greatly alleviate the pressure of energy short-
ages in Central Asia, especially in Kyrgyzstan. It 
is also an essential step for Central Asian coun-
tries to achieve energy sustainability. In addition, 
to alleviate water shortages, improve the eco-
logical environment, and increase crop yields, 
Central Asian countries (especially Turkmenistan 
and Uzbekistan) can introduce drip irrigation 
technology with mulching film from China. It 
is estimated that this technology will save 50% 
of water and 30% of fertilizer and increase crop 
yields by 50% compared to traditional irrigation 
methods. In addition to improving irrigation tech-
nology, the crop planting structure should also be 
appropriately adjusted. For example, Tajikistan, 
the third largest cotton producer in Central Asia, 
faces the most severe food pressure. To allevi-
ate this situation, Tajikistan must make a trade-
off between increasing economic income and 
meeting food demand. This can be achieved by 
appropriately reducing the cotton planting area (a 
5%–10% reduction) and increasing the crop area 
(such as wheat, rice, and potatoes).

9.3.1.5 � Highlights

•	 The comprehensive pressure of the WEFE 
system in Central Asia during 1992–2020 
was analyzed. Kazakhstan had the low-
est comprehensive pressure, followed by 
Kyrgyzstan and Tajikistan, and Uzbekistan 
had the highest comprehensive pressure, fol-
lowed by Turkmenistan.
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as an example. The pressures and transmission 
processes of water, energy, food, and ecology 
systems in the five Central Asian countries were 
studied, and a framework for resolving conflicts 
between water and energy was proposed. Two 
mitigation strategies, the “same effect trade 
agreement” (to replace the “equivalent trade 
agreement”) and “power transmission from east 
to west” (that is, importing power from China), 
were put forward to promote the sustainable 
development of Central Asian countries.

In the future, we will explore more themes 
and pay more attention to case applications of 
Big Earth Data in the global and regional SDG 
multi-indicator interactions and integrated evalu-
ations at different scales. Specifically, we will 
use geographic information modeling and simu-
lation methods based on spatial analysis tech-
nology to identify the interactions among goals, 
predict future development scenarios, and con-
duct comprehensive assessments, providing a 
basis for dynamic policy adjustments.

References

FAO (2021) Tracking progress on food and agriculture-
related SDG indicators 2021. https://www.fao.org/
sdg-progress-report/2021/en/. (06 Mar 2023)

Pradhan P, Costa L, Rybski D et al (2017) A systematic 
study of sustainable development goal (SDG) interac-
tions. Earth’s Future 5(11):1169–1179

Sachs J, Schmidt-Traub G, Kroll C, et al. (2018) SDG 
index and dashboards report 2018. New York, 
Bertelsmann Stiftung and Sustainable Development 
Solutions Network (SDSN). https://www.sdgindex.
org/reports/sdg-index-and-dashboards-2018/

Sachs J, Schmidt-Traub G, Kroll C, et al. (2020) The 
sustainable development goals and COVID-19. 
Sustainable development report 2020. Cambridge, 
Cambridge University Press. https://www.sdgindex.
org/reports/sustainable-development-report-2020/

Sachs J, Kroll C, Lafortune G, et al. (2021) The dec-
ade of action for the sustainable development goals: 
sustainable development report 2021. Cambridge, 
Cambridge University Press. https://www.sdgindex.
org/reports/sustainable-development-report-2021/

Sachs JD, Lafortune G, Kroll C, et al. (2022) From crisis 
to sustainable development: the SDGs as roadmap to 
2030 and beyond. Sustainable Development Report 
2022. Cambridge, Cambridge University Press. 
https://www.sustainabledevelopment.report/reports/
sustainable-development-report-2022/

the main bearers and spreaders of the pres-
sure. The most important medium for pres-
sure transmission is the virtual water trade of 
crop products, especially cotton and wheat. 
Unreasonable sectoral structure (crop plant-
ing, power generation, and food import and 
export) and the spatial mismatch of resources 
and virtual water trade (especially for food 
trade) are important reasons for the pressure 
transmission within and across countries.

(3)	 The proposed coordination mechanism 
optimizes the system structure, makes 
trade-offs and synergies for the interests 
of the sectors, and is more targeted. The 
integration of policies and regions is key to 
ensuring the smooth operation of the mech-
anism. Furthermore, cross-border coopera-
tion, the adjustment of power generation, 
cotton planting, and food import and export 
trade structure are important measures to 
achieve the sustainable development of the 
WEFE system in Central Asia.

This case described the pressures on the 
WEFE system and their transmission processes 
in Central Asian countries and proposed a 
framework for resolving water–energy conflict, 
which provides basic data and theoretical sup-
port for SDG 2.1, SDG 6.4, SDG 7.2, SDG 15.3, 
and SDG 17.16 in Central Asia.

9.4	� Summary

This chapter introduces the research direction 
of Big Earth Data supporting SDG interaction 
and integrated evaluation research. It mainly 
includes three aspects: the analysis of syner-
gies and trade-offs, spatial spillover effects, and 
future scenario simulation. Based on these, SDG 
single-theme and regional integrated evaluations 
could be carried out to provide decision-making 
references for achieving the 2030 Agenda and 
dynamically adjusting the sustainable develop-
ment paths.

In the case study section, this chapter takes 
an integrated evaluation of the sustainable devel-
opment of the WEFE system in Central Asia 

https://www.fao.org/sdg-progress-report/2021/en/
https://www.fao.org/sdg-progress-report/2021/en/
https://www.sdgindex.org/reports/sdg-index-and-dashboards-2018/
https://www.sdgindex.org/reports/sdg-index-and-dashboards-2018/
https://www.sdgindex.org/reports/sustainable-development-report-2020/
https://www.sdgindex.org/reports/sustainable-development-report-2020/
https://www.sdgindex.org/reports/sustainable-development-report-2021/
https://www.sdgindex.org/reports/sustainable-development-report-2021/
https://www.sustainabledevelopment.report/reports/sustainable-development-report-2022/
https://www.sustainabledevelopment.report/reports/sustainable-development-report-2022/
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Summary and Prospects

10.1	� Summary

This report presents case studies demonstrat-
ing how Big Earth Data can support the evalu-
ation of indicators for seven SDGs (Zero 
Hunger, Clean Water and Sanitation, Affordable 
and Clean Energy, Sustainable Cities and 
Communities, Climate Action, Life Below 
Water, and Life on Land) and the interactions 
among SDGs. Most of the cases studied in this 
book have global applicability or focus on the 
regions involved in the Belt and Road. This is 
consistent with the initiative of jointly building 
high-quality development along the Belt and 
Road. To this end, experts, scholars, and deci-
sion-makers can reference the data products, 
methods, models, and decision support guide-
lines presented in this report.

Data products: Twenty-eight data products 
were developed at both global and Belt and 
Road scales. Some have narrowed the data gaps 
in SDG monitoring, including the dataset of 
global UBAs with a population above 300,000, 
boundary areas of World Heritage sites, global 
forest cover, global sand dune distribution on 
land, and the spatial distribution of the suitable 
habitats for wild camels. Some other products 
have improved the spatial precision of moni-
toring and evaluating SDG indicators, such as 
the global reforestation index at 30 m resolu-
tion, electrification status of BUAs at 500 m 
resolution, urban greenness at 250 m resolution 

worldwide, worldwide assessment of eutrophi-
cation in representative lakes, spatial distribution 
of water transparency in large lakes worldwide, 
and conflictive and cooperative events related to 
transboundary rivers in Central Asia.

Methods and models: Twenty-two methods 
and models have been developed based on Big 
Earth Data. Some methods and models have 
provided optimized solutions for SDG assess-
ment, such as a new index for the final land 
degradation index in arid areas, a global typical 
lake algae extraction method, a large-scale lake 
and reservoir transparency inversion model, and 
a global ocean carbon flux estimation method 
using SOMs and stepwise feedback neural 
networks.

Decision support: The spatial and temporal 
analysis of sustainable development indicators 
using the above data and methods has resulted 
in 24 decision support guidelines for sustain-
able development both in China and globally. 
Regarding SDG 2, decision support has been 
provided for regional food production and sta-
ble grassland utilization in Africa and Southeast 
Asia, as well as for the Central Asian region 
with a focus on animal husbandry. Regarding 
SDG 6, decision support has been provided 
for “cross-border cooperation” among Central 
Asian countries. Regarding SDG 7, decision 
support has been provided for policy formula-
tion and investment in electrification, interna-
tional energy cooperation, training, and more. 
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 November 5, 2021, China successfully launched 
SDGSAT-1, the world’s first sustainable devel-
opment science satellite, and committed to 
sharing its data with the world. In response to 
the “leaving no one behind” commitment of 
the 2030 Agenda, we propose to speed up the 
construction of a global collaborative observa-
tion network for the SDGs. This initiative aims 
to enhance the service capacity of space-based 
observations, develop a standardized interna-
tional space-based observation system, and pro-
vide joint data support to address unbalanced 
development and reduce the digital divide.

2.	 Improving the Spatiotemporal Dimen­
sions of SDG Progress Assessment

Statistical surveys are among the primary meth-
ods of obtaining global SDG monitoring and 
evaluation data. However, due to the differences 
in policy and ability in the development of sta-
tistical survey systems across the world, sur-
vey data often suffer from inconsistent quality, 
insufficient spatiotemporal scales, and a lack of 
data availability in some developing countries. 
We, therefore, propose to make full use of Big 
Earth Data and other technologies to increase 
data acquisition methods and obtain high-qual-
ity, spatiotemporally consistent global SDG 
data through open access to data computing and 
storage facilities and adoption of advanced data 
processing methods. The goal is to make SDG 
progress evaluation timely and accurate.

3.	 Sharing Public Data Products for SDG 
Monitoring

Due to the lack of consensus in the policies on 
data sharing and no unified technical standards 
in terms of data structure and security, many 
users have no access to the data owned by other 
institutions, or the data generated by specific sta-
tistical agencies are excluded from other users. 
We propose to improve the new information 
infrastructure that combines data applications 
and open services and provide real-time data 
access, on-demand pooling, integration, open 
sharing and analysis services, and public data 

For SDG 11, the decision support guidelines 
in this report can help improve urban land use 
efficiency, reduce urban disasters, and enhance 
urban green space. Related to SDG 13, guide-
lines have been provided to reduce losses caused 
by floods and build disaster reduction systems. 
Regarding SDG 14, decision support has been 
provided for the prevention and control of 
eutrophication in coastal waters, protection of 
the coral reef environment, and other related 
efforts. Finally for SDG 15, guidelines were 
given to improve forest protection and restora-
tion, monitoring and governance of land deg-
radation, and habitat protection for endangered 
species, among other contributions. In addition, 
the pressures and transmission processes of 
water, energy, food, and ecosystems in the five 
Central Asian countries were studied using a 
comprehensive evaluation of sustainable devel-
opment under the cross-cutting effects of WEFE 
multi-indicators. A framework for resolving 
conflicts between water and energy relationships 
was also proposed.

10.2	� Prospects

Over the past four years, CAS has conducted 
exploratory research on monitoring and evaluat-
ing SDG indicators and has pinpointed that Big 
Earth Data has high application potential and 
promotional value in supporting many SDGs 
(Guo 2020, 2021, 2022). However, numerous 
challenges still exist, including the scarcity of 
crucial spatiotemporal data essential for SDG 
assessments, disjointed standards for data shar-
ing, and inadequate safeguards for data security, 
especially prevalent in the regions involved in 
the Belt and Road. To facilitate the implementa-
tion of the 2030 Agenda, we recommend redou-
bling efforts in the following areas.

1.	 Building a Global Collaborative Obser­
vation Network for the SDGs

More and more satellites being launched into 
space have resulted in the rapid growth of 
the satellite industry and its applications. On 
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services and products to support SDG monitor-
ing and evaluation.

4.	 Promoting Exemplary Studies on Big 
Earth Data Supporting the SDGs

Due to differences in natural resources and 
socioeconomic development levels, vari-
ous regions face individual difficulties in their 
efforts toward sustainable development. Big 
Earth Data, featuring multiple spatial and tem-
poral scales, can provide important support for 
evaluating the implementation of the SDGs 
in different regions. We propose, therefore, to 
promote exemplary studies on Big Earth Data 
supporting the SDGs, to strive to build a sus-
tainable development indicator system with dif-
ferent spatial scales, and to develop innovative 
and comprehensive demonstration systems with 

regional features to inform efforts to achieve the 
SDGs around the world.
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