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Preface  
SARS-CoV-2 is a highly contagious RNA virus that was first identified in Wuhan, 
China. As of 8th March 2021, the COVID-19 epidemic has affected 219 countries 
worldwide, with a total of 117,446,648 infected individuals and 2,605,302 reported 
deaths throughout the globe. The World Health Organization (WHO) has declared 
COVID-19 a pandemic and at present several countries are going through a second 
wave. Since COVID-19 infection leads to symptoms ranging from mild to severe, 
and the transmission rate (R0) of the epidemic ranges from 1.5 to 3.5, this infection 
has a high impact on public health. Further, the incubation period of COVID-19 
infection falls between 2 to 14 days, during which the SARS-CoV-2 is contagious, 
but the infected individuals do not display any symptoms. Hence, it is highly 
important to offer timely research and information of various aspects of SARS- 
CoV-2 and the COVID-19 epidemic. This edited book is an effort to highlight the 
computational and mathematical tools for computer-assisted analysis of the SARS- 
CoV-2 infection. This book entitled “Computational Modelling and Imaging for 
SARS-CoV-2 and COVID-19” covers a variety of topics on the imaging aspects of 
COVID-19 detection and staging of the infection, and progression modelling of the 
epidemic using machine learning and analyzing the effect of interventions on the 
epidemic. 

This book is organized into eight chapters. The first chapter, entitled “Artificial- 
Intelligence-Based COVID-19 Detection using Medical-Imaging Methods: A Review”, 
authored by Murugappan et al., provides a general introduction to the COVID-19 
epidemic and offers several artificial-intelligence-based schemes for detection using 
radiographic images. The second chapter, entitled “Review of Imaging Features for 
COVID-19”, authored by Chitradevi and Prabha, presents a review of imaging features 
of different modalities, namely, Radiography, Positron Tomography, Ultrasonography, 
Magnetic Resonance Imaging and Computed Tomography, and their application in 
analysis of the SARS-CoV-2 infection. The third chapter, entitled “Investigation of 
COVID-19 Chest X-ray Images Using Texture Features – A Comprehensive approach”, 
authored by Thamil Selvi et al., presents an attempt to investigate normal and COVID- 
19-positive chest X-ray images using texture features. The fourth chapter, entitled 
“Efficient Diagnosis using Chest CT in COVID-19: A Review”, authored by Sivakama- 
sundari and Venkatesh, offers a review of the techniques for analysis of COVID-19 
infection in chest CT images, since they offer a better tool for analysing the 
complications of COVID-19 infection. 

Since it is well established that the use of surgical masks and N95 masks can slow 
down the transmission of the COVID-19 epidemic, the fifth chapter, entitled “Automatic 
Mask Detection and Social Distance Alerting Based on a Deep- Learning Computer- 
Vision Algorithm”, authored by Vinoth et al., presents an approach based on a deep- 
learning algorithm to detect people with and without a mask, along with the social 
distancing protocol in public places. 

The sixth chapter, entitled “Review of Effective Mathematical Modelling of Corona- 
virus Epidemic and the Effect of Drone Disinfection”, authored by Jayaprakash et al., 

ix 



analyses the effect of intervention strategies on the COVID-19 epidemic using a 
mathematical-modelling approach. The seventh chapter, entitled “ANFIS Algorithm- 
Based Modeling and Forecasting of the COVID-19 Epidemic: A Case Study in Tamil 
Nadu, India”, authored by Vijayakarthick et al., presents an ANFIS model for predic- 
ting the progression of the epidemic in terms of both active cases and deaths. The final 
chapter, entitled “Prediction and Analysis of SARS-CoV-2 (COVID-19) Epidemic in 
India using an LSTM Network”, authored by Ganesh Ram et al., proposes an LSTM 
network and moving average technique for predicting the confirmed, active and 
deceased cases in India. 

This book aims to offer timely literature on computational/imaging aspects of the 
SARS-CoV-2 infection. We thank Dr. Marc Gutierrez, Editor, and Dr. Nick Mould, 
Editorial Assistant, CRC press, for their continuous support from the initial stage to 
final publication. We hope that this book is interesting and informative to its users. 

S. Prabha 
P. Karthikeyan 

K. Kamalanand 
N. Selvaganesan 
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1 Artificial Intelligence 
Based COVID-19 
Detection using Medical 
Imaging Methods: 
A Review 

M Murugappan1*, Ali K Bourisly2,  
Palani Thanaraj Krishnan3,  
Vasanthan Maruthapillai4, and  
Hariharan Muthusamy5 

1Department of Electronics and Communication 
Engineering, Kuwait College of Science and Technology  
(A Private University), Block 4, Doha, Kuwait 
2Department of Physiology, Faculty of Medicine, Kuwait 
University, Kuwait 
3Department of Electronics and Instrumentation 
Engineering, St. Joseph’s College of Engineering, Anna 
University, Chennai, India 
4Faculty of Engineering and Information Technology, 
Southern University College, Johor Bharu, Malaysia 
5Department of Electronics Engineering, National Institute 
of Technology, Srinagar (Garhwal), Uttarakhand, India 
*Corresponding Author Email: m.murugappan@gmail.com, 
m.murugappan@kcst.edu.kw   

1.1 INTRODUCTION 

The novel coronavirus was first found in Wuhan, China, on Dec 2019, and was 
spread over 218 countries/territories by 26 October 2020, with nearly 43 million 
people infected and around 1 million deaths worldwide (Europa Data 2020). Now, 
the novel coronavirus infection is officially referred to as COVID-19 disease. The 
coronavirus that causes this disease is the Severe Acute Respiratory Syndrome 
(SARS-CoV-2), an RNA-type virus which is a challenge to the scientific commu
nity as it is difficult to characterize. COVID-19 is a deadly virus. It enters the 
human body through droplets and close contact, starts changing its genetic code and 
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rapidly spreads among organs, specifically the lungs, over a short period. Some of 
the most challenging factors behind COVID-19 are: (i) it does not have any stan
dard genetic code to describe its behaviour; (ii) symptoms of this virus differ from 
person to person based on their antibody behaviour; and (iii) symptoms and effects 
of this virus are not always immmediatly apparent. Because of the above char
acteristics, vaccine development for COVID-19 is more challenging. Researchers 
are developing several vaccines for testing. Furthermore, this virus spreads among 
humans through respiratory droplets and close contact; it stays alive in the air for 
more than 3 hours. COVID-19 is a lower-respiratory-tract infection which is dif
ferent from the common cold, an upper-respiratory-tract infection. Moreover, 
COVID-19 can cause severe breathing problems and pneumonia. 

1.1.1 STATISTICS 

The World Health Organization (WHO) declared the COVID-19 a pandemic 
disease in February 2020 (another name for COVID-19 is Severe Acute 
Respiratory Syndrome coronavirus-2 or SARS – CoV-2) (WHO-Coronavirus 
2020, Stoecklin et al. 2020). There are 218 countries/regions affected by 
COVID-19. According to recent statistics from Johns Hopkins University (JHU), 
there are 43,009,98 confirmed cases in the world and total mortalities due to 
COVID-19 increased to 1,153,861 as of 26 October 2020 (Europa Data 2020, 
Corona eGov Kuwait COVID-19 Updates 2020, COVID-19 Alibabacloud 2020). 
A statistical report states that nearly 95%of infected patients survive the disease, 
while 5% become seriously or critically ill (NGC-Coronavirus 2020). Countries 
like the USA, India, Brazil, Russia and Argentina have the most confirmed cases 
of COVID-19. Table 1.1 reports the top 5 worst-affected countries by number of 
confirmed cases, new cases and death reported in the last 24 hours and total deaths 
(NIH harnesses AI 2020). 

TABLE 1.1 
Top 5 worst-affected countries due to COVID-19*        

Country Confirmed 
Cases 

Cases Newly 
Reported in 
Last 24 hr 

Deaths Newly 
Reported in 
Last 24 hr 

Total 
Deaths 

Transmission 
Classification  

USA 8,403,121 82,630 943 222,507 Community 

India 7,864,811 50,129 578 118,534 Cluster of cases 

Brazil 5,353,656 30,026 571 156,471 Community 

Russia 1,513,877 16,710 229 26,050 Cluster of cases 

Argentina 1,069,368 15,718 381 28,338 Community 
transmission   

Notes:  

* https://covid19.who.int/ [Accessed on 26/10/2020]  
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Figure 1.1 shows the choropleth map of the world (confirmed cases of 
COVID-19 and total deaths) accessed on 26 October 2020. From Figure 1.1, it is 
observed how the novel coronavirus is spreading around the globe; more than 
218 countries or regions are affected by the deadly novel coronavirus (WHO 
Coronavirus Dashboard 2020). The USA, India, Brazil, Russia and Argentina 
have the most confirmed cases of COVID-19, represented in Figure.1.1 in dark 
blue. From Figure 1.2, it can be noted that the rapid spread of COVID-19 virus has 
resulted in a massive increase of deaths. A maximum number of deaths has been 
reported in the USA, Brazil, Argentina, Spain, the UK, Italy, Mexico and France 
due to COVID-19. 

1.1.2 CLINICAL SYMPTOMS, MANIFESTATIONS AND THEIR EFFECTS 

The COVID-19 virus has symptoms similar to other coronaviruses, such as Severe 
Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome 
(MERS) (WHO-Coronavirus 2020, Huang et al. 2020, Chowdary et al. 2020). 
Current clinical manifestations of COVID-19 can include: (i) fever; (ii) breathing 
trouble; (iii) pneumonia; (iv) reduced white blood cell count (WBC); (vi) rapid 
increase in erythrocyte sedimentation rate (ESR); and (vii) reduced lymphocyte 
count. Clinical symptoms of COVID-19 have been classified into four different 
stages: mild; moderate; severe; and critical (Worldmeters-Coronavirus 2020). 
According to a recent study, most COVID-19 patients have mild symptoms. The 
signs of a mild infection include fever, cough, dyspnea, respiratory symptoms 
(i.e., breathing difficulties or short breath), muscle ache, diarrhoea, and headache 
(WHO-Coronavirus 2020). The signs of moderate infection include high fever and 

FIGURE 1.1 Choropleth map of the world (total number of confirmed cases of COVID-19).  
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pneumonia symptoms. Respiratory distress (Respiration rate ≥ 30 times/min) and 
oxygen saturation ≤ 93% in a resting state are the most common signs of severe 
infection. However, respiratory failure, septic shock, multi-organ failure, Severe 
Acute Respiratory Syndrome (SARS), and death are signs of the critical stage 
(Mahase 2020, Wang et al. 2020b). 

The most common effects of COVID-19 are respiratory problems due to viral 
infection of the lungs. This virus goes inside the human body through the oral 
pathway, and starts changing its genetic code over the infection’s duration. It 
then creates ground-glass opacities (GGO), multiple ground-glass opacities 
(MGGO), and lesions, which infiltrate the lungs, and enlarge the lymph nodes 
(Guardian:COVID-19 2020, Itnonline:COVID-19 2020, European Lung 2020). 
The effects of COVID-19 are quite similar to other viruses, such as SARS 
and MERS, and it is highly challenging to differentiate pneumonia due to 
COVID-19. According to a recent report of researchers from China, those with 
A + blood and those older than 55 are profoundly affected by COVID-19 over 
the world. Besides, patients with a history of chronic disease are more easily 
affected by COVID-19, compared to healthy individuals. 

1.2 DIAGNOSIS METHODS AND NEED FOR AN AI-BASED 
SOLUTION 

Currently, COVID-19 has been conclusively diagnosed through molecular tests 
((polymerase chain reaction (PCR) and real-time reverse transcription-polymerase 
chain reaction test (RT-PCR)) with a high success rate. However, due to limited 
facilities to perform molecular or rapid antigen tests (RAT), most countries require 

FIGURE 1.2 Choropleth map of the world (total number of deaths of COVID-19).  
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more than 48 hours to disclose results of the COVID-19 diagnosis. The present 
clinical procedure to detect COVID-19 is minimally invasive at best, but requires 
more facilities, trained human resources (epidemiologist or virologist), and time. 

Diagnosis of COVID-19 relies on the following criteria: (a) clinical symptoms; 
(b) clinical imaging (i.e., Computed Tomography (CT) and general X-Ray 
images); (c) nucleic acid test/pathogenic testing; (d) close contact history; 
(e) contact history with patients with fever; (f) clustering occurrence; and 
(g) epidemiological history (Sana et al. 2020, Radiology assistant 2020). The 
standard test recommended by the WHO to diagnose COVID-19 is the Nucleic 
Acid Amplification Test (NAAT) and RT-PCR (Hao & Li 2020, EUA-COVID-19 
2020). Sudden increase in levels of C-reactive protein and ESR is used as an 
additional tool for diagnosing COVID-19. Significant limitations of RT-PCR 
testing are: (a) many countries do not have abundant access to sophisticated labs 
and appropriate laboratory tools to perform this test; (b) the test is supposed to be 
repeated 2 to 3 times to validate the accuracy of results; (c) limited access to 
virologists and epidemiologists in many countries slows down the diagnosis 
process; (d) turnaround time to get the results of RT-PCR can be up to 72 hours 
for one sample; (e) testing is expensive and could not be afforded by developing 
countries; and (f) finally, it is minimally invasive (Soon et al. 2020). The above 
limitations of RT-PCR are also valid for the NAAT test; however, if the viral load 
is low while testing, the NAAT test results will be negative (Ying et al. 2020). All 
the above issues significantly delay the diagnosis process. Early isolation stops the 
spread and allows treatment to start early. 

Because of the limitations of RT-PCR and NAAT mentioned above, clinical 
imaging methods also play a vital role in diagnosis in countries where conventional 
methods are inaccessible. As of early Feb 2020, many countries do not have the 
facilities to perform RT-PCR tests utilizing radio-imaging methods as first-line 
tools to diagnose COVID-19. Some of the most common clinical imaging tools 
used for COVID-19 diagnosis are ultrasound images, chest Computed Tomography 
(CT) scanning, and chest X-Ray (). These imaging methods are mostly found in 
hospitals, they are affordable, give accurate results as compared to RT-PCT in a 
short period. They also offer faster response time and are non-invasive. X-Ray 
images are mostly used for clinical diagnoses such as bone fractures, bone 
relocation, tumour identification, lung infections, and pneumonia. In the case of 
X-Ray imaging, the significant advantages are that it is convenient, economic and 
available in all hospitals and clinics. Several research works have used chest x-ray 
(CXR) images to develop an intelligent COVID-19 diagnosis system using AI 
methods (Feng et al. 2020, Ozturk et al. 2020, Abbas et al. 2020, Khan et al. 2020, 
Sethy et al. 2020, Mukherjee et al. 2020, Ucar et al. 2020, Kumar et al. 2020, Afshar 
et al. 2020, Farooq et al. 2020, Basu et al. 2020, Chowdhury et al. 2020, Li et al. 
2020a, Narin et al. 2020, Mahdy et al. 2020). However, X-Ray images are not 
suitable for analyzing ground-glass opacities, crazy paving patterns, or multiple 
ground-glass opacities due to its low image resolution. The above indications are 
more prevalent in COVID-19 pneumonia compared to other viral pneumonia. 
Hence, significant preprocessing methods are required to improve image contrast 
for better clinical diagnosis. Compared to X-Ray images, a CT scan is mostly used 
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for investigating the soft structure of the active body, and it gives clear, high- 
resolution images of soft tissues and organs (Li et al. 2020, Ho et al. 2020). Hence, 
most of the earlier works and physicians preferred to use CT scan images compared 
to X-Ray images in the clinical diagnosis of COVID-19 (Wei-cai et al. 2020, Shuai 
et al. 2020, Ran et al. 2020, Lu et al. 2020, Ophir et al. 2020, Lin et al. 2020, Wang 
et al. 2020, Singh et al. 2020, Abdullah et al. 2020, Li et al. 2020, Xu et al. 2020, 
Chen et al. 2020, Elghamrawy et al. 2020, Shan et al. 2020, He et al. 2020, Amyar 
et al. 2020). Collective findings from chest CT scan images are categorized into five 
different stages in COVID-19 detection: (i) Ultra-early (No pneumonia symptoms, 
CT scan images may show single or multiple GGO, air bronchogram after 1-2 
weeks of infection); (ii) Early (single or multiple GGO and interlobar septal 
thickening); (iii) Rapid progression (large, light consolidative opacities, and air 
bronchogram); (iv) Consolidation (reduction in density and size of consolidative 
opacities); and finally (v) Dissipation, with death resulting from organ failure (Ran 
et al. 2020). This classification is performed by investigating the morphological 
features of GGO and lesions, such as size, density, area, depth, and location in the 
lung region. It is also important to note that access to CT imaging may be a 
challenge compared to RT-PCR and NAAT, as it requires patients to enter a hos
pital, and these imaging modalities are also limited. It is more challenging to deploy 
on mobile bases. Hence, most investigators are interested in carrying out an in
vestigative study to develop an intelligent COVID-19 diagnosis system to aid in 
classification of COVID-19 patients. This is done by observing respiratory symp
toms, which may go unnoticed by fatigued radiologists. It also helps in automation 
so that clinicians can free up time to focus on other clinical issues and adminis
tration during COVID-19. 

To circumvent these issues of conventional COVID-19 detection methods, re
searchers started developing artificial-intelligence-based clinical diagnosis systems 
for speeding up the early detection of COVID-19. Perhaps imaging could aid in 
screening or accelerate the speed of diagnosis, especially with shortages of RT-PCR. 
Hence, most of the recent works in the literature aim to design and develop an AI- 
based algorithm using medical-imaging methods to detect COVID-19 in such a way 
to help doctors to diagnose COVID-19 patients. This will also help them decide what 
to do next, depending on the output of the algorithm, help automate the diagnosis/ 
prognosis of COVID-19 patients to help doctors determine the severity of COVID-19 
and tell them how to proceed for patients. Consequently, doctors’ time will be saved 
as the algorithm will automate a process that can be very time-consuming. 

1.3 ARTIFICIAL INTELLIGENCE METHODS 

Artificial-Intelligence-based (AI-based) clinical diagnosis systems are prevalent in 
many healthcare systems; they have resulted in paradigm shifts over recent years in 
healthcare delivery. The power of AI-based systems is that they produce accurate 
and reliable diagnosis results in a short period without fatigue. Also, AI systems are 
used to improve the workflow of a healthcare system by reducing the burden on 
human resources. In the case of COVID-19 detection, AI systems have been used to 
detect lesions and ground-glass opacities (GGO) in the CT scan images, which is 
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faster compared to a manual clinical specialist diagnosis, thereby saving time of 
clinical specialists/physicians and significantly aiding them in the sometimes 
lengthy process of manually reading images one by one to identify high-risk cases. 
It also may significantly reduce patient time in the hospital, which poses a severe 
risk of spreading the virus (McCall 2020, Ali et al. 2020). Figure 1.2 illustrates the 
methodologies developed for the diagnosis of COVID infection from radiographic 
images (CT/X-ray) using various machine-learning and deep- learning methods 
(Figure 1.3). 

Extracting COVID-19-related features from chest CT scan is highly complex, 
challenging, and time-consuming; a simple calculation may not work well with the 
CT scan image data and needs many repetitions for decision making. Therefore, 
machine-learning methods have been applied to COVID-19 detection using chest 
CT scan images (Shuai et al. 2020, Lu et al. 2020, Ophir et al. 2020, Lin et al. 
2020). Machine learning is a branch of artificial intelligence based on the idea that 
systems can learn from data, identify patterns, and make decisions with minimal 
human intervention; this method automates analytical model building. Machine 
learning has been used as a decision-making algorithm for unknown chest CT scan 
images based on a set of training data, and past studies have implemented machine 
learning on COVID-19 detection using chest CT scan images (Ali et al. 2020). In 
recent years, the revolution in neural networks, primarily Deep Learning (DL), has 
attracted several researchers in developing an intelligent clinical diagnosis system 
using medical images. Deep-learning architecture has several hidden layers, and 
each layer can extract information from input data to model the behaviour of the 
data. Graphical Processing Units (GPU) are used to implement the DL models to 
discover intricate patterns in the data, since the model needs to process a massive 
amount of data and demands more computational power for processing data in 
multiple levels (layers). Therefore, DNNs can extract features that generalize well 
for unseen scenarios and samples. Besides, DNNs offer a better temporal and spatial 
resolution to analyze signals compared to conventional machine-learning methods 
(lin et al. 2020). 

The performance of machine-learning and deep-learning algorithms pre
dominantly depends on network hyper-parameters. Because tuning of these network 
parameters helps the network better to understand the characteristics or patterns of 
input samples, some of the most common hyper-parameters used in DL models 
for possible tuning are: (i) a total number of hidden layers; (ii) a maximum number 
of fully connected layers; (iii) type of activation function in the output layer; (iv) 
number of training epochs; (v) type of optimization function; (vi) a maximum 
number of convolutional layers; (vii) batch size; (viii) dropout rate; and (ix) 
learning rate. These hyper-parameters learn in an iterative fashion using stochastic 
gradient descent and its variations. Deep-learning techniques, on the other hand, 
utilize multi-stage hierarchical techniques in which the features are learned directly 
from the raw signal values, then combined with those extracted from other layers 
and directly fed to the classifier. Therefore, in addition to providing an algorithm 
which can be trained directly from the chest CT scan images to labels (COVID-19 
or normal or other pneumonia), the features learned in the intermediate stages are 
designed specifically for the target task. 
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1.4 DATASETS 

Image data acquisition is an essential step to design and develop AI-based methods 
for COVID-19 detection. Lung infection or pneumonia is the most common com
plication of COVID-19. Chest X-ray and CT are widely-accepted imaging mod
alities for the diagnosis of lung diseases. Large public CT or X-ray datasets are 
available for lung diseases. However, the number of CT or X-ray datasets available 
for the development of AI methods for COVID-19 applications is minimal. Most of 
the published works so far have used medical images from different websites, and 
some of the works have used their self-collected images. Table 1.2 reports available 
datasets from different websites (normal, COVID-19 and other pneumonia) in 
terms of modality used, number of subjects available. its sources and existing deep- 
learning models available on websites. 

Several deep-learning architectures are deployed for the detection of COVID-19; 
some of those developed by researchers are listed in Table 1.2. Images used in many 
of the research works published in the literature were taken from the following 
two websites  

i. https://github.com/ieee8023/covid-chestxray-dataset (Chest X-ray images)  
ii. https://github.com/UCSD-AI4H/COVID-CT (Chest CT images) 

1.5 RELATED RESEARCH 

In recent days, researchers started focusing on developing clinical diagnostic tools 
for early detection of COVID-19 using pathogenic testing, clinical imaging 
methods, and artificial intelligence to combat the virus. The symptoms and causes 
of COVID-19 are highly similar to SARS and MERS. In a recent study (Melina 
et al. 2020), researchers investigated three different types of viruses (SARS, MERS, 
and COVID-19), their clinical symptoms, and their characteristics. Early detection 
of COVID-19 and quarantining of the suspects are the most critical actions against 
COVID-19 to stop spreading the virus and save millions of lives. To date, there is 
no vaccine or medication invented by scientists or researchers in the world. Due to 
the limitations of pathogenic testing, clinicians may prefer to detect COVID-19 
through clinical imaging methods as the first-line tool for diagnosis (Ho et al. 2020). 
Among clinical imaging methods, medical images are providing more meaningful 
information about virus infection and are used more frequently for analyzing dis
ease progression, compared to other imaging methods. Specifically, the perfor
mance of chest X-Rays and CT images-based COVID-19 detection system achieved 
higher sensitivity than RT-PCR tests (Ho et al. 2020). Thereby, medical images are 
considered promising, accurate, fast, and economical methods of screening and 
testing COVID-19. 

1.5.1 CT SCAN IMAGES BASED COVID-19 DETECTION USING AI METHODS 

Modified Inception Transfer Learning (MITL) was used to classify COVID-19 or 
other viral pneumonia using Region of Interest (ROI) features in (Shuai et al. 2020). 
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TABLE 1.2 
Datasets and deep-learning models available      

S.No Modality Number of Subjects/Images Reference  

1 Chest X-ray  • 219- COVID-19 positive images  
• 1341 normal images  
• 1345 viral pneumonia images 

https://www.kaggle.com/ 
tawsifurrahman/covid19- 
radiography-database 

2 Chest X-ray  • 115 – COVID-19 positive images https://www.sirm.org/category/senza- 
categoria/covid-19/ 

3 Chest X-ray  • 542-COVID-19 images from 262 
people from 26 countries 

https://github.com/ieee8023/covid- 
chestxray-dataset 

4 Chest X-ray  • 8066 normal images  
• 5538 non-COVID19 pneumonia 

images  
• 358 COVID19 images from 266 

COVID-19 patient 

https://github.com/lindawangg/ 
covid-net 

5 Chest X-ray CZI 1236 recordsPMC 
27337bioRxiv 566medRxiv 361 

https://www.kaggle.com/allen-institute- 
for-ai/CORD-19-research-challenge? 
select=metadata.readme 

6 Chest X-ray Testing:  
• 234 normal images  
• 390 pneumonia images 

Training:  
• 1341 normal images  
• 3875 pneumonia images 

Validation:  
• 8 normal images  
• 8 pneumonia images 

https://www.kaggle.com/ 
paultimothymooney/chest-xray- 
pneumonia? 

7 Chest X-ray  • 7470 – normal chest X-ray 
images 

https://medpix.nlm.nih.gov/home 

8 Chest CT  • 349 COVID-19 from 216 patients  
• 397 non-COVID19 images 

https://github.com/UCSD-AI4H/ 
COVID-CT 

9 Chest CT  • 50 lung CT images http://www.via.cornell.edu/databases/ 
lungdb.html 

Deep-learning models 

S.No Modality Name of the deep-learning models Reference 

1 Chest X-ray COVID-RENet, PyTorch based 
implementation (Custom VGG 
model) 

https://github.com/m-mohsin-zafar/ 

2 Chest X-ray DeTrac- Deep CNN approach, called 
Decompose, Transfer, and 
Compose. 

https://github.com/asmaa4may/DeTrac_ 
covid19 

3 Chest CT ConvNet-PyTorch based 
implementation 

https://github.com/bkong999/covnet 

4 Chest X-ray DarkCOVIDNet- Binary Class and 
Three class implementation 

https://github.com/muhammedtalo/ 
covid-19    
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Morphological features such as multiple ground-glass opacities, pseudo cavity, and 
enlarged lymph nodes from CT scan images are extracted using preprocessing and 
used as input for training the deep neural network. Maximum classification rates 
of 89.5% and 79.3%, sensitivity of 88%, and 83%, and specificity of 87%, and 67% 
are achieved on validation and external dataset, respectively. They used 1065 CT 
scan images from 219 subjects (COVID-19: 79, and other pneumonia: 180) for 
developing the deep-learning model for COVID-19 classification. 

CT scan images are handy to identify the progression of GGO and mGGO in 
COVID-19 suspects over a time. Thereby, it provides a way of identifying different 
stages of COVID-19. The different stages of COVID-19 infections are classified 
based on the level of severity in the CT scan images. The amount of severity is 
calculated based on the number of multiple ground-glass opacities in both lungs. 
These chest CT severity scores are beneficial for clinicians to discover the different 
stages of COVID-19, such as mild, moderate, severethan classifying COVID-19 or 
normal (Ran et al. 2020). The researchers used the transfer-learning property a in 
Convolutional Neural Network (CNN) to classify the input sample into two classes: 
COVID-19 positive and other viral pneumonia. They achieved a maximum accu
racy of 89.5%. The same algorithm gives 79.3% accuracy while testing with the 
external dataset. 

However, researchers have classified the stages of COVID-19 into four: mild; 
moderate; severe; and critical using serial chest CT scan images and deep-learning 
models to achieve a maximum mean classification rate of 84.81% in (Lu et al. 
2020). A Convolutional Neural Network (CNN) with U-Net architecture is used to 
differentiate among the four different stages of COVID-19 based on a percentage of 
opacification score from the segmented chest CT scan images. The two lung regions 
and five lobes of lung regions are extracted from 126 subjects’ CT scans and a 
group of radiologists. A Likert scale is used to derive the percentage of opacifi
cation and group the subjects according to stage. 

In another study, researchers utilized ultrasound to observe imaging manifesta
tions of COVID-19 (Yi et al. 2020). They investigated ultrasound images of 
20 patients who suffered from mild symptoms; results confirmed that ultrasound 
sound images captured from posterior and inferior areas of the lung indicate viral 
infection compared to normal lung images. However, this method may not be useful 
for diagnosing COVID-19 patients with moderate, severe, or critical symptoms 
(Lung ultrasound, 2020). 

RADLogics brand has developed an intelligent Artificial Intelligence 
Powered System for detecting COVID-19 using CT scan images; this achieved a 
maximum sensitivity of 98.2% and specificity of 92.2% when testing the system 
with 157 patients. This AI system is currently deployed in hospitals in China, 
Italy, and Russia for combating COVID-19 (Ophir et al. 2020). In Lin et al. 
(2020), researchers developed a deep-learning network called COVNet as a 
screening tool for COVID-19 detection. The network utilized visual features 
from chest CT scan images of COVID-19 pneumonia and non-pneumonia to 
develop a robust model. The model achieved a maximum sensitivity of 87% and 
90% for COVID-19 and other pneumonia detection, respectively. Using AI to 
develop a frontline tool to assist specialists in diagnosing COVID-19 could save 
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millions of lives. However, developing an intelligent AI-based system requires 
high-quality clinical data for accurate detection. To develop an intelligent 
system, the diagnosis system should be trained with a large number of input 
samples of different types to effectively model the system for better prediction or 
detection (McCall 2020). Alibaba Research Academy has developed its auto
mated clinical diagnosis system for COVID-19 using artificial intelligence 
methods, achieved a maximum accuracy of 96% and diagnosed more than 
30,000 cases in 26 hospitals in China (Ali et al. 2020). 

Wang et al. have developed a fully functional deep-learning model for COVID- 
19 detection using a large number of chest CT scan images collected from six 
regional cities in the Republic of China (Wang et al. 2020). A total of 5,372 sub
jects’ chest CT scan images (COVID-19: 1,266 subjects, CT-EGFR (epidermal 
growth factor receptor): 4106 subjects). Two deep-learning networks, namely, 
DenseNet-121 and COVID-19Net, are used for extracting the lung area from CT 
scan, and COVID diagnostics, respectively. Here, two transfer-learning algorithms 
are used to extract 64-dimensional deep-learning features from DenseNET and 
combined with clinical features (sex, age, and comorbidity) to develop a multi
variate Cox Proportional Hazard (CPH) model to predict chances of the patient 
needing a long hospital stay to recover. The performances of deep-neural networks 
are assessed through the Area Under Curve (AUC), and the maximum value of AUC 
achieved for training, and testing is 0.90, and 0.86, respectively. Besides, the re
searchers used deep-learning visualization algorithms to identify the most common 
lung region affected by COVID-19 patients. 

The first work on COVID-19 detection by using CNN and conventional machine- 
learning methods such as Artificial Neural Network (ANN) and Adaptive Neuro- 
Fuzzy Inference System (ANFIS) is reported in (Singh et al. 2020). The researchers 
used multiple objective differential evaluation (MODE) to tune the hyperparameters 
of CNN (batch size, kernel function, epoch, activation function, hidden neurons and 
convolution filter size and number). The proposed system can classify the severity of 
the COVID-19 suspects into four different levels: mild; moderate; severe; and cri
tical) and achieved a higher mean classification rate of 93.5% in MODE-CNN 
compared to conventional CNN (93%), ANFIS (92.1%), and ANN (90.2%). 

In Abdullah et al. (2020) the researchers used four image filtering methods such 
as MPEG7 Histogram filter, Gabor filter, Pyramid of Rotation-Invariant Local 
Binary Pattern Histograms Image Filter, Fuzzy 64-bin Histogram Image Filter to 
choose the most selective regions from chest CT scan images of COVID-19 and 
Severe Acute Respiratory Symptoms (SARS). The proposed work utilizes a limited 
number of samples (COVID-19: 51 images; SARS: 51 images) to differentiate 
between COVID-19 or SARS using conventional machine-learning and deep- 
learning methods. These features are fed into Genetic Algorithm (GA) to find an 
optimized feature and classified as COVID-19 or SARS using four classifiers: 
Support Vector Machine (SVM); Naïve Bayes (NB); CNN; and Random Forest 
(RF)). Maximum mean accuracy of 96.11% is achieved using the RF classifier 
compared to CNN (94.11%), SVM (86.27%), and NB (86.35%). 

Li et al. have used a large number of CT scan images of COVID-19 (n = 1296), 
Community-Acquired Pneumonia (n = 1735) and non-pneumonia (n = 1325) from 
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3,322 subjects (male: 1,838, female: 1,484) from six different cities in China to 
develop an intelligent COVID-19 detection system using a deep-neural network 
(Li et al. 2020). The U-Net segmentation method is used to preprocess and extract 
the lung region from the CT scan and to train the CNN. The proposed model 
achieved a maximum sensitivity of 90% and sensitivity of 96% in detecting 
COVID‐19 and 87% and 90% as sensitivity and specificity of Community Acquired 
Pneumonia (CAP). Though the system has been trained with larger data, still it 
does not utilize clinical features to improve robustness. 

In Xu (2020), using a 3D-CNN deep neural network, researchers put chest CT 
scan images into three classes: COVID-19; Influenza-A-viral pneumonia; and 
healthy. The 3D-CNN model was used to extract multiple cubes from two lung 
regions based on a location-attention mechanism. Finally, the Bayesian function 
is used to compute overall infection probability of the chest CT‐scan image. The 
V-Net backbone Inception ResNet (VNET-IR-RPN) model is used to segment the 
centre image from the input image; data expansion mechanisms (clipping, up-down 
flipping, and mirroring) are used to increase the larger number of samples of equal 
size for classification over three types. Finally, classification is performed by using 
two types of CNN models based on traditional ResNet network architecture, such as 
ResNet50 and ResNet with Location Attention Mechanism. Finally, the ResNet 
with location attention mechanism model outperformed the ResNet architecture, 
giving a maximum mean accuracy of 86.7% for three classes. 

In Chen et al. (2020), researchers developed an AI-based COVID-19 diagnosis 
tool using cloud-based open-access platforms, chest CT scan images and a deep- 
learning network. The model was developed in such a way that the input CT image 
is analyzed to find the activation map related to COVID-19 symptoms. It predicted 
the region in lungs, filtered out unnecessary fields from chest CT scan images, 
divided the image into four quadrants and analyzed the three consecutive CT 
images to find lesions. The model was developed and analyzed with retrospective 
and prospective COVID-19 subjects along with clinical features. The UNet ++ 
model was used for segmenting the infected region in the lungs by searching for 
ground-glass opacities, and diminutive nodules. 

An Artificial Intelligence-inspired Model for COVID-19 Diagnosis and 
Prediction for Patient Response to Treatment (AIMDP) is proposed in 
(Elghamrawy et al. 2020). The model has two essential modules; firstly, the di
agnosis module, which utilizes a CNN network to process chest CT scan images 
and diagnose COVID-19. Here, the whale optimization algorithm is used to select 
the most prominent features of chest CT scan images (such as ground-glass 
opacity and crazy paving patterns) then feed them into the CNN for COVID-19 
detection. The second is the prediction module; in this module, clinical features 
(sex, age, infection stage, respiratory failure, multi-organ failure and treatment 
regimens) predict patient response to the given treatment. The conventional ML 
algorithms such as Support Vector Machine (SVM), Naïve Bayes (NB) classifier, 
and Discriminant Analysis (DA) methods are used for COVID-19 classification. 
Noise is filtered from non-lung regions in CT scans and converted into grey-scale 
images, followed by normalization for reducing the computational complexity of 
the proposed diagnosis model. Finally, the SVM classifier outperforms NB and 
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DA classifiers by giving a maximum mean classification rate of 97.14%, 
compared to 95.99% and 94.71%, respectively. 

Researchers used 3-D CNN that combines V-Net architecture with a bottle-neck 
structure to enhance the quality of chest CT scan images for COVID-19 detection 
(Shan et al. 2020). Because the raw chest CT scan images usually have low contrast, 
it is challenging to locate the GGO or mGGO in the scan images. Besides, they used 
the human-in-the-loop strategy (HITL) to reduce the requirement of a radiologist in 
locating the infected regions in the lung CT scan images to train the proposed 
model. They divided the training images into a set of batches; the first batch gets 
feedback from the radiologist on locating the infected regions in the lung. After that, 
these images are used to train the model, which will automatically locate the in
fected regions in the second batch. Here, the radiologist corrects any mis
interpretations of the model. It is the first work in COVID-19 detection which 
utilizes HITL model to develop an intelligent system using chest CT scan images. 
Two performance measures such as dice- similarity coefficient (DSC), and Pearson 
correlation coefficient (PCC) are used to classify the COVID-19 subjects into three 
classes: mild; moderate; and severe. Here DSC is used to measure the percentage of 
different opinions in detecting infection regions identified by the radiologists and 
the automated method of detection using a deep-learning model. The POC is used to 
identify the percentage of lung region infected due to COVID-19, compared to 
normal lung region. The average value of DSC and POI over three cases are 91.6% 
and 86.7%, respectively. 

He et al. developed an intelligent COVID-19 detection tool using Self-Trans 
network and chest CT scan images (He et al. 2020). 397 chest CT scans of normal 
subjects and 349 of COVID-19 patients are used to train, validate and test the 
system using a transfer-learning approach in different deep-learning architectures, 
such as VGG16, ResNet18, ResNet50, DenseNet-121, DenseNEt-169, EfficientNet- 
b0, and EfficientNet-b1. The maximum mean accuracy, Area Under Curve (AUC) 
and Fl score, of 86%, 0.94 and 0.85, respectively, are achieved using a Self-Trans 
network with DenseNet-169. 

In Amyar et al. (2020), researchers employed Multi-Task Learning (MTL) in a 
deep-learning network for smaller size chest CT scan images to detect COVID-19. 
They performed the three tasks in MTL such as classification (COVID19 vs Non- 
COVID19), lesion segmentation using U-Net, and Image reconstruction. They 
utilized three international standard databases in their work. The system used for 
COVID-19 detection involves preprocessing (resize and intensity normalization), 
segmentation (lesion detection), and classification using a deep-learning network 
with MTL method. The proposed MTL work with an input image size of 256 × 256 
achieved a maximum mean accuracy of 86%, sensitivity of 94%, specificity of 79% 
and area under the curve (AUC) of 0.93. 

1.5.2 X-RAY IMAGES BASED COVID-19 DETECTION USING AI METHODS 

X-ray based COVID-19 detection systems are more popular compared to CT scan 
images due to cheaper cost, lower radiation, easier operation and less harm 
(www.siim.org). A group of researchers investigated three different types of deep- 
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