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Abstract: In this paper, a solution to the problem of following a curved path for underactuated
unmanned surface vehicles (USVs) with unknown sideslip angle and model uncertainties is studied.
A novel smooth sliding mode control (SSMC) based on a finite-time extended state observer (FTESO)
for heading control is proposed. Firstly, the model of a USV with rudderless double thrusters is
established. Secondly, the path-following error dynamics of a USV is established in a path-tangential
reference frame. Thirdly, a finite-time observer is introduced to estimate the unidentified sideslip
angle, and the line-of-sight (LOS) guidance law is applied to produce the desired heading angle.
Finally, an SSMC controller is proposed to force USV tracking at the desired heading angle and surge
speed, in which FTESO is used to estimate and compensate the unknown disturbance in sliding
mode dynamics. The theoretical analysis for FTESO-SSMC verifies that the controller can provide
finite-time convergence to and stability on the sliding surface. Simulation studies and contrast test
are conducted to demonstrate the robustness and rapidity of the proposed FTESO-SSMC controller.

Keywords: path following; LOS guidance; smooth sliding mode control; finite-time extended
state observer

1. Introduction

Unmanned surface vehicles (USVs) provide unique capabilities for military and secu-
rity applications, including harbor patrol, maritime interdiction, and riverine operations [1].
Therefore, motion control of such autonomous vehicles is considered an important area
within the marine control research community. The problems related to motion control of
USVs can be classified into three basic groups, such as objective tracking, path following,
and trajectory tracking. In the literature, among most of the scenarios including stabi-
lization, trajectory tracking, and path following, it is of practical importance to follow a
predefined path [2]. For the path-following problem, the vehicle needs to converge to and
follow a predefined path without any temporal constraints. Compared with the trajectory
tracking and target tracking, the path following controller can provide a smoother trajectory
for USVs to move to and follow the desired path so that it is generally not possible to
saturate the actuators of USVs [3]. Therefore, it is extremely important for a ship to perform
tasks at sea, such as maritime search, resource exploration, and nautical charting.

Conventional USVs are commonly equipped with one central propeller for surge
speed control and one rudder for heading control [4]. However, the mechanical structure of
a combination of thrusters and rudders is sophisticated, and the rudders can be damaged
easily due to frequent steering processes in curved path-following tasks [5]. To overcome
this problem, the structure of double propellers without a rudder is used. In this paper,
the curved path-following problem for an underactuated USV with rudderless double
thrusters is investigated. The model uncertainties and unknown exterior disturbance are
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also considered in this paper. The demand for underactuated USVs to move on a desired
path under severe unknown disturbances and model uncertainties creates heavy challenges
for robust controller design. For the path following, there are two main research direc-
tions: advanced guidance strategies and advanced control methods. They are introduced
as follows.

For the guidance system, a widely used method for path following is the line-of-sight
(LOS) approach. The main advantages of a LOS guidance law are simplicity and a small
computational footprint [4]. However, the conventional LOS guidance has limitations when
the vehicle is under the unknown drift forces that are generated by ocean waves, ocean
wind, ocean currents, or other exterior disturbances. In [6], the sideslip angle was measured
by accelerometers. However, the sensor is expensive and the measured data may be noisy
and distorted. Therefore, plenty of research work has been carried out to improve LOS. The
methods to improve LOS guidance can be divided into two types. The first type is based on
adaptive law to compensate unknown sideslip angle [7–12]. The second type is based on an
estimator to estimate and compensate the sideslip angle. A multifarious sideslip observer
was proposed to strengthen the robustness of the path-following controller in [13–19].
In [13], a predictor-based LOS (PLOS) was developed for the estimation of vehicle sideslip
under the assumption of small sideslip angle. In [14], the proposed observer could estimate
large sideslip angle, and its estimation error was asymptotically convergent. However, it
will be singular when the difference between heading angle and path tangential angle is
π/2. In [16], a finite-time predictor-based LOS (FPLOS) guidance law was presented for the
problem of path following. Compared to PLOS, the FPLOS can make sideslip estimation
error convergent to zeros in a finite time and speed up the convergence process. In [19], a
fixed-time predictor-based LOS (FTPLOS) was designed to ensure effective convergence of
tracking sideslip angle. In this paper, the FPLOS is introduced to estimate the unknown
sideslip angle and produce desired heading angle for the control system.

For the control system, lots of methods, such as PID with extended Kalman filtering
techniques [20,21], adaptive disturbance rejection control (ADRC) [22], model predictive
control (MPC) [23,24], deep reinforcement learning control [25,26], and sliding mode
control (SMC) [27–29], are used to force USVs to follow the desired heading angle produced
by the LOS guidance law. Compared to other control methods, SMC has attracted a
significant interest due to its simplicity, high robustness to external disturbances, and low
sensitivity to the system parameter variations [30]. In [26,27], a policy based on adaptive
sliding-mode control was proposed for the path-following control of USVs. In [28], sliding-
mode dynamic surface and adaptive techniques were employed to compensate for the
uncertainty from parameters varying and constant bias caused by the exterior disturbances.
In [29], a disturbance-observer-based sliding mode control was designed to reach good
tracking performance, where the observer was designed to estimate and compensate for
the modeling uncertainties and external disturbance. In the above SMC techniques, a high
frequent switch function is often used to obtain a high robustness. In [31,32], a finite-time
extended state observer (FTESO) is proposed to estimate system state and disturbances,
and FTESO is verified to be effective in disturbances estimation. Different from the above
methods, in this paper, the FTESO and SMC are combined to the design controller to
realize the heading and surge control, which is called the smooth sliding mode controller
(SSMC). The unknown term in the sliding manifold differential equation is taken as total
disturbance, and extended state observer (ESO) is applied to estimate and compensate
for the disturbance, then, a second-order control law is designed to satisfy the existence
condition of the sliding mode.

The main contributions of this paper are given as follows.

(1) In the kinematic task, FPLOS is introduced to calculate the desired heading angle
with sideslip angle compensation. Compared to the traditional LOS guidance law,
the FPLOS can improve the performance of path-following control of USVs under
the unknown ocean currents. The finite-time sideslip angle observer can make es-

2
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timation error of sideslip angle convergent to zeros in finite time and speed up the
convergence process.

(2) In the kinetic task, a novel smooth second-order control law is proposed to satisfy the
existence condition of the sliding mode. For the disturbance in sliding mode, FTESO
is applied to estimate and compensate for it instead of using a strong discontinuous
control signal, which will cause a strong chattering phenomenon.

The rest of this paper is organized as follows. Section 2 formulates preliminaries and
the path-following problem of an USV under unknown sideslip angle. Section 3 derives the
LOS guidance law based on sideslip angle observer. Then, the SSMC algorithm is designed
for surge and heading control in kinetics in Section 4. The theoretical analysis verifies that
the controller is semi-globally asymptotically stable in Section 5. Simulation studies are
conducted in Section 6. Section 7 concludes this paper.

2. Problem Formulation and Preliminaries

2.1. USV Model
2.1.1. USV Model

To describe the motion of the USV, the North-East-Down coordinate system {XI-OI-YI}
and body coordinate system {YB-OB-YB} are used in this paper, as shown in Figure 1.

XI
ψ

YI

U

u

v
cv

cV

cu

β

OI

Figure 1. Definition coordinate systems and the vehicle states.

In Figure 1, u and v are surge and yaw velocity, U is the total speed, β is the sideslip
angle, which is unknown, ψ is the heading angle of the USV, uc and vc are velocities of
ocean currents, and Vc is the total speed.

The vehicle’s model introduced in this subsection is similar to that given in [33].
This model can be used to describe an autonomous surface vehicle or an autonomous
underwater vehicle moving in the plane. Under the coordinated system coordinate system
{XI-OI-YI} and {XB-OB-YB}, the dynamics of the USV can be described as follows:

.
η = R(ψ)v

M
.
v = −C(v)vr − Dvr + Hτ + τw

(1)

where η = [x, y, ψ]T describes the position and the orientation of the vehicle with respect
to the inertial frame {I}, νr = [u − uc, v − vc, r]T contains the surge, the sway, and the yaw
velocities under current disturbance uc, vc, respectively (see Figure 1); M > 0 is the inertia
matrix, C(v) is the total Coriolis and centripetal acceleration matrix, D is the linear hydro-
dynamic damping matrix, τ = [τu, τn] is the control input produced by two propellers,
τw = [τw1, τw2, τw3] is environmental disturbance, and the matrix R(ψ), M, C(v), D, H is
given by:

3
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R(ψ) =

⎡⎣cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦, M =

⎡⎣m11 0 0
0 m22 m23
0 m32 m33

⎤⎦,

C(v) =

⎡⎣ 0 0 c13
0 0 c23

−c13 −c23 0

⎤⎦, D =

⎡⎣d11 0 0
0 d22 0
0 0 d33

⎤⎦, H =

⎡⎣1 0
0 0
0 1

⎤⎦
(2)

where m11 = m − X .
u, m22 = m − Y .

v, m23 = mxg − Y.
r, m32 = mxg − N .

v, m33 = m − N.
r,

c13 = −m22v − m23r, c23 = m11u. Here, m is total mass of the USV, X .
u, Y .

v, Y.
r, N .

v, N.
r are the

added masses due to hydrodynamics, and xg is the XB-coordinate of the vehicle center of
gravity. d11, d22, d33 denote the damping terms. It is worth noting that the linear damping
matrix in (2) is reasonable for low-speed motion. Furthermore, since τ ∈ R

2, namely, the
vehicle is underactuated in the workspace R

3.
The model uncertainties are expressed by ζ, i.e., ζ = −M−1[C(v)vr − Dvr + τw] =

[ζu, ζv, ζr]
T , then, (1) can be rewritten as:

.
v = ζ + M−1Hτ (3)

Substituting (2) into (1), the dynamic model (1) can be also expressed by component
style as follows:

.
x = ucos(ψ)− vsin(ψ)
.
y = usin(ψ) + vcos(ψ)

.
ψ = r

.
u = ζu +

τu
m11.

v = ζv.
r = ζr +

τn
Iz

(4)

where Iz =
m22

m22m33−m23m32
.

To facilitate the design and analysis of the control system, the following assumptions
are taken.

Assumption 1. The ocean current in the inertial frame Vc = [uc, vc]
T is constant, irrotational,

and bounded, and there exists a constant Vmax > 0 such that
√

u2
C + v2

c ≤ Vmax [34]. The

environmental disturbance τw and its derivative
.
τw are bounded.

Remark 1. Assumption 1 assures that the vehicle has enough thrust to resist the negative effect
from ocean currents and environmental disturbances.

Assumption 2. For the unknown term ζi, i = u, v, r are bounded and differentiable, i.e., there
exists a positive constant ζ∗i satisfying |ζ i

∣∣≤ ζ∗i ,
∣∣∣ .
ζ i

∣∣∣ ≤ .
ζ
∗

i.

Remark 2. Note that ζ = −M−1[C(v)vr − Dvr + τw], the velocity v, the derivative of v, and
control input τ are all bounded due to the physical limits, and, according to Assumption 1, vr and
τw are also bounded, so ζ and

.
ζ are also bounded.

2.1.2. Propeller Model

A catamaran USV is driven by two propellers with shaft speed n1 and n2 in rad/s.
The thrusters generate surge force τu and yaw moment τn given as follows [30].[

τu
τn

]
=

[
1 1
l1 −l1

][
T1
T2

]
(5)

4
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where l1 is the transverse distance from the center line of the USV to the center line of
each propeller and T1 and T2 are the thrust force produced by left and right propeller,
respectively. The relation between Ti and ni (i = 1, 2) can be written as follows

Ti = kposni|ni|, if ni ≥ 0
Ti = knegni|ni|, if ni < 0

(6)

where kpos and kneg represent the scale coefficient of thrust; ni (nmin ≤ ni ≤ nmax,
nmin < 0, nmax > 0) is the thrust shaft propeller revolving speed (rad/s).

2.2. Path-Following Problem

The curved path-following problem for an underactuated USV can be decomposed
into two parts as follows [35].

(1) Geometric Task: Force the vehicle position to converge to a desired path by appropriate
LOS guidance and path parameter update law. The LOS guidance law produces a
desired heading angle.

(2) Dynamic Task: Force the vehicle to track the desired heading angle and desired
forward speed by appropriate dynamic controller.

The above problems will be solved in Sections 3 and 4 separately. The following part
establishes the error dynamics of path following. The schematic diagram of curved path
following is shown in Figure 2.

p px yθ θ

b px

b py

P
XP

YP
x

XI

YI

y

OI

pψ

OP

Figure 2. Schematic diagram of curved path following.

As illustrated in Figure 2, the path P is parameterized with a path variable θ. Moreover,
for each virtual point on the given path,

(
xp(θ), yp(θ)

) ∈ P, a path tangential frame
{XP-OP-YP} is constructed to describe the position of the vessel, as illustrated in Figure 2.
Hence, the path-following errors can be expressed by the coordinates of the USV in the

frame {XP-OP-YP} denoted by Pb|p =
[

xb|p, yb|p
]T

, which are calculated by:[
xb|p
yb|p

]
=

[
cos
(
ψp
)

sin
(
ψp
)

− sin
(
ψp
)

cos
(
ψp
)][x − xp(θ)

y − yp(θ)

]
(7)

where ψp is the angle of the path at the point
(
xp(θ), yp(θ)

) ∈ P with respect to the inertial

XI-axis, ψp = arctan
(

y′p(θ)/x′p(θ)
)

. The error dynamic can be calculated by substituting
(4) in the derivative of (7), which is given by:

.
xb|p = ucos(ψe)− vsin(ψe) +

(
kcyb|p − 1

)
up

.
yb|p = usin(ψe) + vcos(ψe)− kcupxb|p

(8)

5
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To facilitate the guidance law and controller design, Equation (8) can be rewritten
as follows.

.
xb|p = Ucos(ψe)cos(β)− Usin(ψe)sin(β) +

(
kcyb|p − 1

)
up

.
yb|p = Usin(ψe)cos(β) + Ucos(ψe)sin(β)− kcupxb|p

(9)

where β = arctan(v/u) is sideslip angle; U =
√

u2 + v2 is course speed; kc is curvature of
the path at point

(
xp(θ), yp(θ)

)
; ψe = ψ − ψp; up is the speed of the virtual point on the

desired path, which is calculated as:

up =
.
θ

√(
x′p(θ)

)2
+
(

y′p(θ)
)2

(10)

2.3. Preliminaries

Lemma 1 ([36]). For(x, y) ∈ R2, the following Young’s inequality holds:

xy ≤ εp

p
|x|p + 1

pεq |y|q (11)

where ε is a positive constant. The constants p and q should satisfy the conditions as p > 1, q > 1,
and (p − 1)(q − 1) = 1.

Lemma 2 ([37]). For ∀xi ∈ R, i = 1, 2, . . . , n and 0 < q ≤ 1, then(
n

∑
i=1

|xi|
)q

≤
n

∑
i=1

|xi|q ≤ n1−q

(
n

∑
i=1

|xi|
)q

(12)

Lemma 3 ([38]). Consider the system of differential equations
.
x = f (x), f (0) = 0, x ∈ R

n,
where f (·) : R

n → R
n is a continuous function. Suppose that there exists a continuous function

V(x) : U → R such that the following conditions hold:
(i) V is positive definite.
(ii) There exist real numbers c > 0 and α ∈ (0, 1), and an open neighborhood U0 of the origin

such that: .
V(x) ≤ −c(V(x))α, x ε U0\{0} (13)

Then, the origin is a finite-time-stable equilibrium, and T is the settling-time function, then

T(x) ≤ 1
c(1 − α)

V(x)α (14)

Lemma 4 ([39]). Suppose that there is a positive definite continuous Lyapunov function V(x, t)
defined on U1 ⊂ R

n of the origin, and

V(x, t) ≤ −c1Vα(x, t) + c2V(x, t), ∀x ∈ U1{0} (15)

where c1, c2 > 0 and 0 < α < 1 . Thus, the origin of system
.
x = f (x) is locally finite-time stable.

The set U2 =
{

x
∣∣V1−α(x, t) ≤ c1/c2

}
is contained in the domain of attraction of the origin. The

settling time satisfies

T(x) ≤ ln(1 − (
c2

c1
)V1−α(x0, t0))/(c2α − c2) (16)

for the given initial condition x(t0) = {U1 ∩ U2}.

6
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3. Guidance System Design

The path-following control system can be divided into two parts: guidance system
and control system. In this section, the guidance system will be designed to produce the
desired heading angle to lead the USV to follow the desired path. To show the relation of
the guidance system and control system, the block diagram of the whole control system is
given as Figure 3.

LOS Guidance Law 
with Sideslip Observer

Heading 
Controller

Surge 
Controller

unknown disturbance

Thrusters

Parameterized 
Path

β

Gontrol System

dψ

β

du

ppx yθ θ pu

uτ

U

x y Uψ

n n

nτ

Guidance System

Figure 3. Block diagram of guidance and control system.

In Figure 3, the blue dashed box shows the guidance system and the red dashed box
shows the control system. For the guidance system, the LOS guidance law with sideslip
angle observer is designed to generate the desired heading angle for the USV and update
the law for the path parameter. In addition, the unknown sideslip angle is estimated by the
designed observer. For the control system, the heading controller and surge controller are
designed for the USV to track the desired heading angle and desired surge speed based on
SSMC and FTESO. The guidance system is designed in Section 3, and the control system
will be designed in Section 4. The guidance system will be designed in two steps. For
the first step, the sideslip angle observer is presented to estimate sideslip angle, and the
finite-time stability of the observer is analyzed, which is given in Section 3.1. For the second
step, the LOS guidance law is designed to produce the desired heading angle and the
desired update law based on the estimated sideslip angle, which is given in Section 3.2.

3.1. Sideslip Angle Observer

In practice, the sideslip angle of the USV is not more than 20◦ for a USV with double
thrusters. If the sideslip angle is small enough, then there are cos(β) ≈ 1 and sin(β) ≈ β.
In addition, according to [16], the derivative of sideslip angle equals to zero, i.e.,

.
β = 0.

Although the sideslip angle is relatively small (typically less than 20◦), it largely affects the
path-following properties of the vehicle, and if it is not properly compensated, this results
in significant deviations from the desired path. Therefore, a finite-time observer is given in
this subsection to estimate sideslip angle.

Due to the small sideslip angle, the tracking error dynamics (9) can be rewritten as
follows:

.
xb|p = Ucos(ψe)− Usin(ψe)β +

(
kcyb|p − 1

)
up

.
yb|p = Usin(ψe) + Ucos(ψe)β − kcupxb|p

(17)

Then, the sideslip angle observer can be designed as:

.
x̂b|p = Ucos(ψe)− Usin(ψe)β̂ +

(
kcŷb|p − 1

)
up − kx̂sigρ

(∼
xb|p
)

.
ŷb|p = Usin(ψe) + Ucos(ψe)β̂ − kcupx̂b|p−kŷsigρ

(∼
yb|p
)

.
β̂ = kβ

(
Usin(ψe)

∼
xb|p − Ucos(ψe)

∼
yb|p
) (18)

7
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where
∼
xb|p = x̂b|p − xb|p,

∼
yb|p = ŷb|p − yb|p, sigρ(∗) = |∗|ρsgn(∗), and sgn(∗) is the sign

function. Define the sideslip angle estimate error as
∼
β = β̂ − β, as mentioned above, there

is
.∼
β =

.
β̂, then the estimation error dynamics of (19) can be rewritten as:

.∼
xb|p = −Usin(ψe)

∼
β +

(
kcyb|p − 1

)
up − kx̂sigρ

(∼
xb|p
)

.∼
yb|p = Ucos(ψe)

∼
β − kcup

∼
xb|p−kŷsigρ

(∼
yb|p
)

.∼
β = kβ̂

(
Usin(ψe)

∼
xb|p − Ucos(ψe)

∼
yb|p
) (19)

where the variables have the constraints as Umin ≤ U ≤ Umax, |ψe|≤ π . Umin and Umax
are the speed limits of the ship. up is a designed virtual point of the path, which is
also bounded.

Theorem 1. Consider the sideslip angle observer (18), the unknown term β can be identified

very well, and the estimate error
∼
β,

∼
xb|p, and

∼
yb|p in (19) asymptotically converge to zeros within

finite time.

Proof. Consider the positive definite and radially unbounded Lyapunov function candidate

V1 =
1
2
∼
x

2
b|p +

1
2
∼
y

2
b|p +

1
2kβ̂

∼
β

2
(20)

According to error dynamics (19), the time differentiation of V1 can be obtained
as follows:

.
V1 = −kx̂

∣∣∣∼xb|p
∣∣∣ρ+1−kŷ

∣∣∣∼yb|p
∣∣∣ρ+1

(21)

The system described in Equation (19) is an autonomous system, so by applying the

LaSalle theory, the set
{
∼
xb|p,

∼
yb|p,

∼
β

∣∣∣∣V1 = 0
}

consists of the axis
∼
xb|p = 0,

∼
yb|p = 0, and

only the invariant set inside
∼
xb|p = 0,

∼
yb|p = 0 is the origin

∼
xb|p =

∼
yb|p =

∼
β = 0. Thus, the

asymptotic convergence of
∼
xb|p,

∼
yb|p,

∼
β to zero is assured, i.e., there is

∣∣∣∣∼β∣∣∣∣ ≤ εβ, εβ > 0.

Then, (21) can be rewritten as follows:

.
V1 = −kx̂

∣∣∣∼xb|p
∣∣∣ρ1+1−kŷ

∣∣∣∼yb|p
∣∣∣ρ1+1−

(
1
kβ̂

) ρ+1
2
∣∣∣∣∼β∣∣∣∣ρ+1

+

(
1
kβ̂

) ρ+1
2
∣∣∣∣∼β∣∣∣∣ρ+1

≤ −k1

⎛⎜⎜⎝
∣∣∣∼xb|p

∣∣∣ρ+1
+
∣∣∣∼yb|p

∣∣∣ρ+1

+

(
1
kβ̂

) ρ+1
2
∣∣∣∣∼β∣∣∣∣ρ+1

⎞⎟⎟⎠+ γ(
∼
β)

(22)

where k1 = min
(
kx̂, kŷ, 1

)
, γ

(∼
β

)
=

(
1
kβ̂

) ρ+1
2
∣∣∣∣∼β∣∣∣∣ρ+1

.

Using the inequality in Lemma 2,
.

V1 can be calculated as:

.
V1 ≤ −2

ρ+1
2 k1

(
1
2

∣∣∣∼xb|p
∣∣∣2 + 1

2

∣∣∣∼yb|p
∣∣∣2 + 1

2kβ̂

∣∣∣∣∼β∣∣∣∣2
) ρ+1

2

+ γ

(∼
β

)
≤ −k1V

ρ+1
2

1 + γ

(∼
β

) (23)

8
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According to Lemma 2, γ

(∼
β

)
has the relations as follows:

γ

(∼
β

)
≤
(

1
kβ̂

) ρ+1
2
∣∣∣∣∼β∣∣∣∣ρ1+1

+
∣∣∣∼xb|p

∣∣∣ρ+1
+
∣∣∣∼yb|p

∣∣∣ρ+1

≤ 3
1−ρ

2

(∣∣∣∼xb|p
∣∣∣2 + ∣∣∣∼yb|p

∣∣∣2 + 1
kβ̂

∣∣∣∣∼β∣∣∣∣2
) ρ+1

2

= 2
ρ+1

2 3
1−ρ

2

⎛⎜⎝ 1
2

∣∣∣∼xb|p
∣∣∣2 + 1

2

∣∣∣∼yb|p
∣∣∣2

+ 1
2kβ̂

∣∣∣∣∼β∣∣∣∣2
⎞⎟⎠

ρ+1
2

(24)

Combining (23) and (24), we can obtain

.
V1 ≤ −2

ρ+1
2

(
k1 − 3

1−ρ
2

)
V

ρ+1
2

1

= −c1Vα1
1

(25)

The term γ

(∼
β

)
will approach to zero asymptotically. According to Lemma 3, we

know the origin of observer error dynamics is locally finite-time stable. The settling time

satisfies T1 ≤ V
1−α1
0

c(1−α1)
, V0 = V

(
∼
xb|p(t0),

∼
yb|p(t0),

∼
β(t0), t0

)
.

The proof is concluded. �

3.2. LOS Guidance Law

To stabilize the tracking error xb|p, an update law is designed of the curved path
parameter as an extra degree of freedom in the controller design. The update law is
designed as follows:

up = Ucos(ψe)− Usin(ψe)β̂ − kxb|p xb|p (26)

where kxb|p > 0 is a positive constant.
To stabilize the tracking error yb|p, the LOS law is chosen as the heading guidance law,

and the form is as follows:

ψd = ψp − arctan(
yb|p + Δβ̂

Δ
) (27)

where Δ > 0.

Assumption 3. The heading autopilot tracks the desired heading angle perfectly such that ψ = ψd.

Theorem 2. The tracking error dynamics (18) can be stabilized by adaptive LOS law (28)
and the update law (27). Under Assumption 3, the origin (xe, ye) = (0, 0) is semi-globally
asymptotically stable.

Proof. Substitute guidance law (26) and (27) into (17), respectively, we can obtain

.
xb|p = Φ

(
t, yb|p, U

)(
yb|p + Δβ̂

)∼
β +

.
ψp − kxb|p xb|p

.
yb|p = −Φ

(
t, yb|p, U

)
yb|p − Φ

(
t, yb|p, U

)
Δ
∼
β − .

ψpyb|p
(28)

where Φ
(

t, yb|p, U
)
= u√

Δ2+(yb|p+Δβ̂)
2 > 0.

9
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Consider the positive definite and radially unbounded Lyapunov function candidate

V2 =
1
2

x2
b|p +

1
2

y2
b|p (29)

The derivative of V2 is

.
V2 = −kxex2

b|p − Φ
(

t, yb|p, U
)

y2
b|p − Φ

(
t, yb|p, U

)
Δ
∼
βyb|p − Φ

(
t, yb|p, U

)(
yb|p + Δβ̂

)∼
βxb|p

≤ −kxex2
b|p − Φ

(
t, yb|p, U

)
y2

b|p + Φ
(

t, yb|p, U
)

Δ

∣∣∣∣∼β∣∣∣∣∣∣∣yb|p
∣∣∣+ Φ

(
t, yb|p, U

)(∣∣∣yb|p
∣∣∣+ Δβ̂

)∣∣∣∣∼β∣∣∣∣∣∣∣∣xb|p
∣∣∣∣ (30)

Using the inequality in Lemma 1, the following equation can be obtained:∣∣∣xb|p
∣∣∣∣∣∣yb|p

∣∣∣ ≤ 1
2

∣∣∣xb|p
∣∣∣2 + 1

2

∣∣∣yb|p
∣∣∣2 (31)

Substitute (31) into (30), it can be calculated as:

.
V2 ≤ −

(
kxb|p − 1

2 Φ
(

t, yb|p, U
)∣∣∣∣∼β∣∣∣∣))x2

b|p − Φ
(

t, yb|p, U
)(

1 − 1
2

∣∣∣∣∼β∣∣∣∣)y2
b|p + γ

(
xb|p, yb|p,

∣∣∣∣∼β∣∣∣∣)
≤ −k2V2 + γ

(
xb|p, yb|p,

∣∣∣∣∼β∣∣∣∣) (32)

where γ

(
xb|p, yb|p,

∣∣∣∣∼β∣∣∣∣) = Φ
(

t, yb|p, U
)

Δ

∣∣∣∣∼β∣∣∣∣(β̂
∣∣∣xb|p

∣∣∣+ ∣∣∣yb|p
∣∣∣), and γ

(
xb|p, yb|p, 0

)
= 0,

k2 satisfies that k2 = 1
2 min

{
kxb|p − 1

2 Φ
(

t, yb|p, U
)∣∣∣∣∼β∣∣∣∣), Φ

(
t, yb|p, U

)(
1 − 1

2

∣∣∣∣∼β∣∣∣∣)y2
b|p
}

.

It can be noted that
∣∣∣∣∼β∣∣∣∣ will reach to zero in a finite time, therefore, γ

(
xb|p, yb|p,

∣∣∣∣∼β∣∣∣∣)
will reach to zero in a finite time. According to the Lyapunov theorem, it is obvious that the
equivalent point

(
xb|p, yb|p

)
= (0, 0) is semi-globally exponential stable.

The proof is concluded. �

4. Control System Design

Thanks to the LOS guidance system, the whole path-following control system for the
USV can be decoupled to two independent part to design: heading controller design and
surge controller design. The heading controller is designed to generate the desired yaw
moment to force the USV to track the desired heading angle given in Section 3.2. The surge
controller is designed to generate the desired longitudinal thrust to force the USV to follow
the desired surge speed, which is set manually. In the following, the heading controller
and surge controller will be designed in Sections 4.1 and 4.2 based on the SSMC and
FTESO techniques.

4.1. Heading Controller Design

The reference heading signal ψd is provided by the guidance system. The next step
is to design the heading controller with the SSMC technique. Define eψ = ψ − ψd, then,
the task of the SSMC controller includes the selection of sliding-mode surface and control
strategy to stabilize the tracking error eψ.

Step 1: Select the sliding manifold in system state space according to the relative
degree r.

Considering the USV dynamical model (4), let the second-order derivative of the plant
output be proportional to the heading control input τr,

..
ψ ∼ τr, so the relative degree is

r = 2, then, the sliding manifold can be chosen as

σ =
.
eψ + c1eψ (33)

10
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where c1 is a positive constant.
Step 2: Design a disturbance compensation observer. The derivative of σ can be

calculated as:
.
σ = ζr +

τn
Iz − ..

ψd + c1

(
r − .

ψd

)
= ζσ +

τn
Iz

(34)

where ζσ = ζr −
..
ψd + c1

(
r − .

ψd

)
is the total disturbance.

Define the estimation error
∼
σ = σ̂ − σ,

∼
ζ = ζ̂ − ζ. Then, the disturbance observer can

be designed as follows:

.
σ̂ = ζ̂ + τn

Iz − ko1sigρo1
(∼

σ
)
− Lo1sgn

(∼
σ
)

.
ζ̂ = −ko2sigρo2

(∼
σ
)
− Lo2sgn

(∼
σ
) (35)

Step 3: Design a heading controller to make the sliding surface hold that σ = 0.
According to Lemma 5, the heading control law can be chosen as follows:

τn = Iz

(
−ζ̂σ − kσ1sigρσ1 + w1 − Lσsgn

(∼
σ
))

.
w1 = −kσ2|σ|ρσ2sgn(σ)

(36)

where 0.5 < ρσ1 < 1; ρσ2 = 2ρσ1 − 1; kσ1 > 0 and kσ2 > 0 are constants.

Theorem 3. For the sliding mode dynamics (34) with the total unknown dynamic ζσ, the FTESO is
established in (35), which can estimate the unknown disturbance simultaneously, and the estimation
error can converge to a bounded domain of zero.

Proof. By combining with (34) and (35), the estimate error dynamics can be obtained
as follows: .∼

σ =
∼
ζ σ − ko1sigρo1

(∼
σ
)
− Lo1sgn

(∼
σ
)

.∼
ζ σ = −ko2sigρo2

(∼
σ
)
− Lo2sgn

(∼
σ
)
−

.
ζσ

(37)

Note that ζσ = ζr −
..
ψd + c1

(
r − .

ψd

)
and ψd is the expected heading angle, which is

third-order derivative bounded, and according to Assumption 2, the
.
ζr is also bounded.

Then, the total disturbance
.
ζσ is bounded, so there exists a positive constant l1 satisfying∣∣∣ .

ζσ

∣∣∣≤ l1 . First, the terms –Lo1sgn
(∼

σ
)

and –Lo2sgn
(∼

σ
)
−

.
ζσ are removed in Equation (38)

under the condition of Lo2 > l1, where l1 is a positive constant satisfying
∣∣∣ .
ζσ

∣∣∣≤ l1 . Then it
can be obtained: .∼

σ =
∼
ζ − ko1sigρo1

(∼
σ
)

.∼
ζ = −ko2sigρo2

(∼
σ
) (38)

Define fa as the vector filed of system (38), and fa is homogeneous of degree ρo1 − 1

with respect to the dilation, Δk

(
∼
σ,

∼
ζ

)
=

(
k
∼
σ, kρo1

∼
ζ

)
, where k > 0. The Lyapunov function

candidate is designed as follows:

V3 =
1
2

ZTZ (39)

where Z =

[
sig

1
r

(∼
σ
)

, sig
1

rρo1

(∼
ζ

)]T
, r = ρo1ρo2, and we define L f o1V3a as the Lie deriva-

tive of V3a along the fa. Then, V3a is homogeneous of degree 2
r , with respect to

11
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Δk

(
∼
σ,

∼
ζ

)
=

(
k
∼
σ, kρo1

∼
ζ

)
, and L f aV3 ≤ −c2Vα2

3 , where c2 = −max{(∼σ,
∼
ζ ):V3=1}L f aV3 ,

α2 = 1 + rρo1
2 − r

2 .
Then, take the time of derivative of (39) along (37),

.
V3 can be computed as

.
V3 = L fa V3 + ZT

⎡⎢⎣ − 1
2 sig

1
r −1
(∼

σ
)

Lo1sgn
(∼

σ
)

1
rρo1

sig
1

rρo1
−1
(∼

ζ

)(
−

.
ζ − Lo2sgn

(∼
σ
))
⎤⎥⎦

≤ −c2Vα2
3 + Lo1

r

∣∣∣∼σ∣∣∣ 2
r −1

+ Lo2+l1
rρo1

∣∣∣∣∼ζ ∣∣∣∣ 2
rρo1

−1
(40)

According to Lemma 2, the following relationship can be obtained as:

∣∣∣∼σ∣∣∣ 2
r −1 ≤

∣∣∣∼σ∣∣∣ 2
r (1− r

2 )
+

∣∣∣∣∼ζ ∣∣∣∣ 2
rρo1

(1− r
2 ) ≤ 2

r
2 21− r

2 V1− r
2

3∣∣∣∣∼ζ ∣∣∣∣ 2
rρo1

−1
≤
∣∣∣∼σ∣∣∣ 2

r (1−
rρo1

2 )
+

∣∣∣∣∼ζ ∣∣∣∣ 2
rρo1

(1− rρo1
2 )

≤ 21− rρo1
2 V

1− rρo1
2

3

(41)

Combining (40) and (41), the following inequality is given as:

.
V3≤ −c2Vα2

3 + c3Vα3
3 + c4Vα4

3 (42)

where c3 = 2 Lo1
r , c4 = 2 Lo2+l1

rρo1
, α3 = 1− r

2 , α4 = 1− rρo1
2 , and there is 0 < α3 < α4 < α2 < 1.

The stability of V3 can be divided into two parts [31,32]:
(1) If V3 ≥ 1,

.
V3≤ −c2Vα2

3 + c5V3, where c5 = c3 + c4, according to Lemma 5, and V3

will converges to 1 within finite time t1 ≤ ln
[
1 −
(

c5
c2

)
V3(t0)

]
/(c4α2 − c4).

(2) If V3 < 1,
.

V3 ≤ −c2Vα2
3 + c5Vα3

3 . Select c0, which satisfies 0 < c0 < 1 − c5/c2, then,
.

V3 ≤ −c2c0Vα2
3 −

[
c2(1 − c0)V

α2−α3
3 − c5

]
Vα3

3 . If Vα2−α3
3 satisfies Vα2−α3

3 > c5
c2(1−c0)

, then

there is
.

V3 ≤ −c2c0Vα2
3 ≤ 0. According to Lemma 4, V3 will converge into

Vα2−α3
3 < c5

c2(1−c0)
within finite time t2 ≤ V1−α2

3 (t1)
c2c0(1−α2)

.

Finally, V3 will converge into V3 ≤
(

c5
c2(1−c0)

) 1
α2−α3 within finite time T2 ≤ t1 + t2.

Then, the convergence domain of observer error can be obtained as follows:∥∥∥∥(∼
σ,

∼
ζ

)∥∥∥∥ ≤ √
2
(

c5

c2(1 − c0)

) 1
2(α2−α3)

(43)

Finally, the estimation error can converge into a compact set Ω = {
(
∼
σ,

∼
ζ

)∣∣∣∣||(∼
σ,

∼
ζ

)
||

≤ √
2
(

c5
c2(1−c0)

) 1
2(α2−α3) }.

The proof is concluded. �

Theorem 4. The control law (32) can make the sliding manifold σ in (38) approach zero within
finite time.

Proof. Substituting the control law (33) into (31), it can be calculated as:

.
σ = −

∼
ζ − kσ1sigρσ1 (σ) + w1 − Lσsgn(σ)

.
w1 = −kσ2sigρσ2 (σ)

(44)

12
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Consider the Lyapunov function candidate as follows:

V4 =
1
2

w2
1 + kσ2

∫ σ

0
sigρσ2(z)dz (45)

Combining Equation (45), the derivative of V4 in (46) can be written as follows:

.
V4 = w1

.
w1 + kσ2sigρσ2 (σ)

(
−

∼
ζ − kσ1sigρσ1 (σ)

+w1 − Lσsgn(σ)

)
≤ −kσ1kσ2|σ|ρσ1+ρσ2 − (Lσ − l2)kσ2|σ|ρσ2

≤ −kσ1kσ2|σ|ρσ1+ρσ2

(46)

Apply the Lasalle theory. The set
{

σ, w1

∣∣∣ .
V4 = 0

}
consists of the axis σ = 0, and only

the invariant set inside σ = 0 is the origin σ = w1 = 0. Thus, the asymptotic convergence
of σ and w1 to zero is assured.

It can be seen from the above analysis that the term −
∼
ζ − Lσsgn(σ) in (44) can be

omitted reasonably. The
.
σ and

.
w1 can be obtained as:

.
σ = −kσ1|σ|ρσ1 sgn(σ) + w1

.
w1 = −kσ2|σ|ρσ2 sgn(σ)

(47)

According to the analysis process of the stability of the system in (38), the dynamics
described by (47) are finite-time stable.

The proof is concluded. �

4.2. Surge Controller Design

In this subsection, the surge controller is designed for the USV to track the desired
surge speed, which is set manually in advance.

To estimate the unknown term ζu, FTESO is introduced as follows:

.
û = ζ̂u +

τu
m11

− ko3sigρo3
(∼

u
)
− Lo3sgn

(∼
u
)

.
ζ̂u = −ko4sigρo4

(∼
u
)
− Lo4sgn

(∼
u
) (48)

where ko3, ko4 are positive constants.

Define estimation errors as
∼
u = û − u,

∼
ζ u = ζ̂u − ζu. The derivatives of

∼
u and

∼
ζu can

be obtained as: .∼
u =

∼
ζ u − ko3sigρo3

(∼
u
)
− Lo3sgn

(∼
u
)

.∼
ζ u = −ko4sigρo4

(∼
u
)
− Lo4sgn

(∼
u
) (49)

Define speed tracking error as eu = u − ud, where ud is the desired surge speed, which
is given manually in advance, then the surge control law can be given by:

τu = m11
(−ζ̂u − ku1|eu|ρu1sgn(eu) + w2 − Lusgn(eu)

)
.

w2 = −ku2|eu|ρu2 sgn(eu)
(50)

Substituting (50) into (4),
.
eu can be obtained as:

.
eu = −ku1|eu|ρu1 sgn(eu) + w2 − Lusgn(eu)

.
w2 = −ku2|eu|ρu2 sgn(eu)

(51)

13
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Theorem 5 For the surge motion dynamics (4) with the total unknown dynamic ζu, the FTESO
established in (48) can be employed to obtain the value of the unknown disturbance simultaneously,
and the estimation error in (50) is able to converge to a bounded domain of zero.

Theorem 6. The control law (50) can make the tracking error eu converge to zero within finite time.

Remark 3. The proof processes of Theorems 5 and 6 are omitted because they are similar to the proof
of Theorems 3 and 4.

5. Stability Analysis

The stability of the guidance system and control system are given in Sections 3 and 4.
In the following, the stability of the closed-loop system of the path-following control for
the USV based on the proposed control method are explained.

Theorem 7. The path-following errors xb|p and yb|p are uniformly ultimately bounded.

Proof. According to where the variables have the constraints as Umin ≤ U ≤ Umax,
|ψe|≤ π , Umin and Umax are the speed limits of the ship. up is a designed virtual point of
the path, which is also bounded.

Theorems 1 and 3–6, the errors
∼
β, eu, and sliding surface σ can converge to zero within

finite time. Then, under the conditions of
∼
β = 0, eu = 0, and σ = 0, the Lyapunov function

candidate can be selected as V = 1
2 x2

b|p +
1
2 y2

b|p +
1
2 e2

ψ, where eψ = ψ − ψd. Taking the time
of derivative of V along (17), with the guidance law (26) and (27), it can be obtained:

.
V = −c1e2

ψ − kxb|p x2
b|p + Uyb|psin

(
eψ + ψd − ψp

)
+ Uyb|pcos

(
eψ + ψd − ψp

)
β

= −c1e2
ψ − kxb|p x2

b|p + Φ
(

t, yb|p, U
)

γ
(

eψ, yb|p
)
− cos

(
eψ

)
Φ
(

t, yb|p, U
)

y2
b|p

≤ −k3V + Φ
(

t, yb|p, U
)

γ
(

eψ, yb|p
) (52)

where k3 = 2min
(

c1, kxb|p , cos
(
eψ

)
Φ
(

t, yb|p, U
))

, which satisfies γ(0, 0) = 0. With a proper

k3,
.

V ≤ 0. According to the Lyapunov stability theorem, the whole system is uniformly
ultimately bounded.

The proof is concluded. �

6. Numerical Simulations

For the simulation, the mathematical model of the Otter USV is applied [40], with
length L = 2.0 m, width 1.07 m, and weight 65 kg. The model is given in [41], and the
parameters are m11 = 70.5 kg, m22 = 147.5 kg, m23 = m32 = 11 kg, m33 = 43.2394 kg,
l1 = 0.395 m, kpos = 0.0111 kgm, kneg = 0.0064 kgm. The desired path is a sinusoidal
path described as xp(θ) = 5cos(0.8θ), yp(θ) = 5θ. The surge speed of the Otter USV
is set as ud = 1.2 m/s, and the constant ocean current speed and direction are set as
vc = 0.2 m/s and βc = 30◦, respectively. In addition, the time-varying exterior disturbances
are selected as:

τw =

⎡⎣10 + 5sin(0.8t)cos(0.2t)
1.5sin(0.8t)cos(0.2t)

5 + 15sin(0.8t)cos(0.2t)

⎤⎦ (53)

In order to verify the performance of SSMC for heading control, two other con-
trollers are applied to the USV. The first one is the PID controller with reference feedback
proposed as [20]:

τn = τf f − Kp

(
eψ +

1
Ti

∫ t

0
eψdτ + Td

.
eψ

)
(54)
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The reference feedback signal is defined as:

τf f =
T
K

.
ψd +

1
T

ψd (55)

where Kp, Ti, Td are proportional gain, integral time constant, and derivative constant,
respectively. Nomoto gain and time constants K and T can be chosen according to the
multiple maneuvering experiment.

The second one is the conventional SMC controller, which is defined as:

τn = −(β1 + d)sat(a, σ1) (56)

where β1 and d are designed positive constants; sliding mode is σ1, which satisfies
σ1 =

.
eψ + c0eψ; sat(a, ∗) is the saturation function.
The control system and guidance system parameters are designed as Tables 1–3. It

should be noted that the same surge controller is used to track the desired surge speed, and
the same guidance system is chosen to produce expected heading angle, where the only
difference is the heading controller. The control performances of PID, conventional SMC,
and SSMC proposed by this paper are compared for USV curved path following.

Table 1. Heading controller parameters.

Control Strategies Parameters

SSMC

ko1 = 10, ko2 = 25, ρo1 = 0.9, ρo2 = 0.8,
Lo1 = 0.01, Lo2 = 0.1,
kσ1 = 2, kσ2 = 0.05, ρσ1 = 0.8,
ρσ2 = 0.6, Lσ = 0.001

PID
Kp = 93.15, Ti = 0.89, Td = 6.67,
K = 0.0242, T = 1

SMC β1 = 1.2, d = 0.3, a = 0.05

Table 2. Surge controller parameters.

Parameters

ko1 = 10, ko2 = 25, ρo1 = 0.9, ρo2 = 0.8, Lo1 = 0.01, Lo2 = 0.1,
kσ1 = 2, kσ2 = 0.05, ρσ1 = 0.8, ρσ2 = 0.6, Lσ = 0.001,
Kp = 93.15, Ti = 0.89, Td = 6.67, K = 0.0242, T = 1,
β1 = 1.2, d = 0.3, a = 0.05

Table 3. Guidance system parameters.

Parameters

Δ = 3 m, kxb|p = 2, kx̂ = 5, kŷ = 5. ρ = 0.8, kβ = 10

Figures 4–9. The desired path and the actual trajectories are shown in Figure 4. It
is apparent that SSMC and SMC heading controllers have better performance than the
PID controller under severe external disturbances. Around 20 s, the SSMC controller has
higher tracking accuracy than the SMC controller. The sliding-mode dynamics of SMC
and SSMC are shown in Figure 5. Both systems can reach the region of 0 bounded by
±0.02 within 4 s. However, the convergence of SSMC is smoother than SMC. The path-
following errors are plotted in Figure 6, and SSMC and SMC controllers have almost the
same tracking performance. The heading tracking errors of SSMC and SMC converge to a
small neighborhood of 0 from 20◦ within 8 s. The tracking errors of the PID controller are
relatively large and choppy because of the influence of ocean current. It proves that SSMC
and SMC controllers are more robust than the PID controller. The velocities of USVs are
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shown in Figure 7. As shown in the third figure in Figure 7, the yaw velocities with SMC
exhibit more severe oscillations than SSMC.

Figure 4. Desired path and actual trajectories of USVs with different control methods.

 
Figure 5. Sliding-mode dynamics σ and σ1 of SSMC and SMC.

Figure 6. Path-following errors xe, ye, and ψe.
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Figure 7. Velocities of USVs with different control methods.

Figure 8. Propeller shaft speeds n1 and n2 with different control methods.

Figure 9. Effect of disturbances estimation ζσ and ζu with FTESO.
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The propeller shaft speeds of the three controllers are shown in Figure 8. It is obvious
that the very high frequency oscillation phenomenon occurs in the SMC controller. The
changes of propeller shaft speeds of SSMC and PID controllers are comparatively gentle. It
is shown that the high frequency auto-oscillation can be effectively avoided by the SSMC
controller. The effect of disturbances estimation is shown in Figure 9. FTESO-based errors

of
∼
ζ σ reach the region of 0 bounded by ±0.1 within 2.5 s, and the errors of

∼
ζ u reach the

region of 0 bounded by ±0.01 within 2.1 s. It is illustrated that the estimation errors of
FTESO are able to reach to a small bounded domain of zero within a finite time.

In summary, with the comparison analysis, the SSMC based on FTESO is more robust
than the PID controller and smoother than the conventional SMC, thus the SSMC has the
best path-following performance compared to the PID and SMC.

7. Conclusions

This paper develops a novel SSMC method based on FTESO for path following of
the USV with unknown dynamics and exterior disturbances. The guidance and control
scheme have simple and clear structures, and both the smoothness and robustness of
the system are improved to visible levels, with the least possible modeling information
and environmental disturbances. For the guidance system, the finite-time sideslip angle
observer is incorporated into the LOS guidance law, which can make sideslip estimation
error convergent to zero in finite time and speed up the convergence process. For the control
system, FTESO is designed to estimate and compensate for the unknown disturbances on
the sliding-mode surface instead of using a strong discontinuous control signal, which
will cause a strong chattering phenomenon. At the same time, all errors of the dynamic
system are proved to be bounded. The simulation results prove that the designed strategy
has a better effectiveness than PID and conventional SMC, and the USV has satisfactory
performance for path following under the unknown disturbances. It should be noted
that the obstacle avoidance is not considered in the proposed control method. In the
future, the artificial potential fields will be incorporated in the guidance system to realize
collision avoidance.
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Abstract: This paper focuses on the collision-free formation tracking of autonomous underwater
vehicles (AUVs) with compound disturbances in complex ocean environments. We propose a novel
finite-time extended state observer (FTESO)-based distributed dual closed-loop model predictive
control scheme. Initially, a fast FTESO is designed to accurately estimate both model uncertainties
and external disturbances for each subsystem. Subsequently, the outer-loop and inner-loop formation
controllers are developed by integrating disturbance compensation with distributed model predictive
control (DMPC) theory. With full consideration of the input and state constraints, we resolve the local
information-based DMPC optimization problem to obtain the control inputs for each AUV, thereby
preventing actuator saturation and collisions among AUVs. Moreover, to mitigate the increased
computation caused by the control structure, the Laguerre orthogonal function is applied to alleviate
the computational burden in time intervals. We also demonstrate the stability of the closed-loop
system by applying the terminal state constraint. Finally, based on a connected directed topology,
comparative simulations are performed under various control schemes to verify the robustness and
superior performance of the proposed scheme.

Keywords: multi-AUV system; formation tracking; finite-time extended state observer; distributed
model predictive control; Laguerre function

1. Introduction

Autonomous underwater vehicles (AUVs) have assumed indispensable roles in vari-
ous underwater operations, such as ocean exploration and hydrologic surveys [1]. They
can autonomously perform appropriate maneuvers to achieve predefined objectives. Com-
pared with the operational capability of a single AUV, collaborative AUVs can respond
more reliably and flexibly to complex missions and extended operational ranges, thereby
improving the efficiency and robustness of undersea operations. Given this backdrop,
numerous application cases about AUV coordinated formation have been triggered in both
civilian and industrial fields for decades [2,3]. Irrespective of the specific collaborative
missions undertaken by AUVs, the core challenge lies in ensuring motion stability of AUV
formations within complex underwater environments and the constraints of their own
models. To tackle this problem, several mainstream methodologies have been proposed
by engineers and academics. Studies by Chen et al. [4] and Zhen et al. [5] proposed AUV
formation control schemes combined with the virtual structure method. However, this
approach suffers from limited flexibility and applicability. Wang et al. [6] utilized the
leader–follower method to address the AUV formation tracking problem, but this approach
relies on the state of the leader, reducing the robustness and fault tolerance of the formation.
Conversely, leaderless formations have been proposed promisingly and have received
more considerable attention [7]. Munir et al. [8] proposed a new arbitrary-order distributed
control strategy based on the novel sliding surfaces of error dynamics, which addresses the
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cooperative tracking control of uncertain higher-order nonlinear systems. The strategies
to mitigate the chattering issue caused by sliding surfaces are discussed in [9]. Despite
the abundance of existing research, multiple-AUV formation tracking control remains a
significantly challenging project.

One of the main challenges is the various disturbances resulting from the underwater
environment and the motion model of the AUVs themselves [10]. On the one hand, un-
known disturbances such as waves, tides, and currents, are inevitable in practical marine
environments. On the other hand, AUVs exhibit highly nonlinear and coupled dynamics,
leading to model uncertainties. These uncertainties are often induced by modeling errors
and deviations in hydrodynamic coefficient measurement. According to the research by
Cui et al. [11], these external disturbances and model uncertainties that degrade the system
performance negatively are referred to as compound disturbances. In response to these
challenges, researchers have developed diverse schemes, such as disturbance observers [12],
fuzzy logic theory [13], and neural networks [14]. Among these, the extended state observer
(ESO) initially proposed by Han [15] is an attractive option to estimate compound distur-
bances, as it does not rely on an accurate model. Lei et al. [16] designed a high-gain ESO to
solve AUV horizontal trajectory tracking problems under the time-varying disturbances.
Although many ESOs have been established for different platforms, most only guarantee
asymptotic convergence of estimation errors, implying a potentially infinite convergence
time. Some research works also lack a rigorous analysis of convergence. Considering
the impact of severe underwater environments on estimation accuracy, the concept of
finite-time ESO proves more beneficial for improving control performance [17]. Wang
et al. [18] implemented a FTESO-based nonsingular terminal sliding mode controller to
address unmanned surface vehicle (USV) trajectory tracking in disturbed environments.
This approach ensured that the disturbance estimation errors converge within a finite time.
However, there remains room for improvement and optimization of the design structure to
further enhance observation performance.

AUV formation navigation also presents significant technical challenges due to various
complex constraints. For instance, the AUV attitude has a certain desired range and
navigation velocities are inherently limited. These intrinsic input and state constraints
pose substantial challenges to control performance [19]. In practical applications, actuators
often have input saturation constraints due to physical structure limitations. This results
in a limitation of the actual active control force of the AUV. If a control signal exceeds
this boundary, it may lead to system instability. However, most previous work assumes
that the actuators can tolerate any level of control signals. To avoid actuator saturation, a
nonlinear auxiliary system for filtering saturation errors was proposed [20]. Additionally,
collisions between AUVs are undesirable during the formation configuration phase. Thus,
the ability to avoid collisions is vital for AUV formation control. A wealth of solutions
have been developed to this end, with Li and Wang [21] proposing a collision-free position
consensus algorithm for AUVs based on potential function. Moreover, Xu et al. [22]
presented an event-triggered algorithm based on deep reinforcement learning to avoid
AUV collisions. However, the above studies disregard the physical constraints of AUVs.
From the perspective of safe navigation, it is essential to integrate factors such as input,
state restrictions, and collision avoidance into the design scheme.

Model predictive control (MPC) has garnered considerable attention due to its ability
to simultaneously handle multiple composite constraints and offer superior dynamic
performance. This is widely applied to MIMO systems affected by model distortions
and complex constraints. Several MPC-based applications have been integrated into
AUV control systems. Zhang et al. [23] proposed an MPC-based AUV trajectory tracking
strategy under random disturbances. In [24], a robust model-predictive control scheme
based on the active disturbance rejection control approach was developed for the AUV
tracking task. The challenge of extending these systems to multi-AUV systems involves
coordinating the control behavior of each subsystem and ensuring the closed-loop stability
of the local MPC optimization problem under system constraints. This coordination aims to
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maximize the overall control performance. Hence, DMPC came into being. Zheng et al. [25]
proposed a DMPC method based on local state information for MAS formation tracking.
To the best of our knowledge, there are few studies that apply DMPC to multi-AUV
formations. Wei et al. [26] developed a Lyapunov-based distributed predictive controller
for AUV formation tracking, subject to current disturbances. The auxiliary controller was
utilized to establish stability constraints to ensure the closed-loop stability of the system.
However, this method only considers horizontal formations without uncertainties and
state constraints. Furthermore, many works that design predictive controllers result in
additional computational loads, which could impair the real-time execution capability
of the controller. Shen and Shi [27] managed to reduce the MPC computational burden
by decomposing the original AUV trajectory tracking optimization problem into smaller
subproblems and then solving them in a distributed manner. Despite these efforts, there has
been no research to address the heavy computation of DMPC applied to AUV formations.
In order to improve the dynamic response and control accuracy of AUV formation tracking
in three-dimensional (3-D) space, we adopt the Laguerre orthogonal function to reduce
the computational load. In response to these discussions, it is imperative to develop a safe
and efficient formation control scheme to solve the problems of disturbances, parameter
uncertainties, and complicated constraints.

Motivated by the above observations, this paper investigates the collision-free forma-
tion tracking of multi-AUVs with compound disturbances under complicated constraints.
A novel FTESO-based distributed dual closed-loop model predictive control scheme is
proposed. This method satisfies the formation constraints and collision avoidance re-
quirements while compensating for model uncertainties and external disturbances. We
incorporate the Laguerre function to alleviate the computational burden of the DMPC
optimization problem, also giving corresponding stability analysis. Based on the connected
directed topology, comparative simulations under different schemes demonstrate the effec-
tiveness and robustness of our proposed scheme. The main contributions of this paper are
as follows:

1. Compared with the FTESO-based controllers presented in works [16,28], the proposed
third-order fast FTESO can estimate the compound disturbances and their first deriva-
tives, which effectively suppress the amplification and fluctuation of the generalized
uncertainties. It has better estimation accuracy and convergence speed. Hence, the
active disturbance rejection capability of AUV formation is enhanced;

2. Unlike the existing DMPC schemes depicted in works [29,30], a dual closed-loop
structure is utilized to enhance the response speed of the DMPC system and the
controllability of the AUV speed. The outer-loop controller sets the desired velocity
and the inner-loop controller generates the driving force. By solving the constrained
quadratic programming (QP) problems, the risks of actuator saturation and collision
are reduced. The safety and robustness of formation tracking are improved;

3. In order to solve the issue of heavy computational burden in traditional predictive
control, the Laguerre orthogonal function is incorporated to reconstruct the input
matrices, which automatically trades off control performance and computational com-
plexity, thus avoiding possible formation deviation due to slow computational speed.
The stability of the closed-loop system is proved by exerting terminal state constraints.

The rest of this paper is organized as follows: Section 2 introduces some notations,
lemmas, and graph theory, and describes the AUV model and control objective. Section 3
presents the methodology, including the design of the FTESO and dual closed-loop DMPC
scheme, the application of the Laguerre function, and the corresponding stability analysis.
Sections 4 and 5, respectively, provide simulation results and conclusions.

2. Preliminaries

2.1. Notations and Lemmas

Notation. Rn represents the n-dimensional Euclidean space, and R
m×n denotes the set of

(m × n) real matrix. In, 0n, and 0p×q signify (n × n) identity matrix, (n × n), and (p × q)
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null matrices, respectively. ‖·‖ refers to the Euclidean vector norm and the induced matrix
norm, while the infinity norm is denoted by ‖·‖∞. λmin(·) represents the minimum eigen-
value of the specified matrix (·), with its maximum eigenvalue denoted as λmax(·). For sim-
plicity, some notations are defined as sigp(x) = sign(x)|x|p, |x|p =

[|x1|p, |x2|p, . . . , |xn|p
]T ,

x = [x1, x2, . . . , xn]
T , p ∈ R. sign(·) symbolizes the signum function with sign(0) = 0.

Notably, sig0(x) = sign(x), sig0(x)|x|p = sigp(x).

Lemma 1 ([31]). Consider the system
.
x(t) = f (x(t)), x(0) = x0, f (0) = 0, x ∈ R

n, where
f : U → R

n is a continuous function. Suppose that this system has a unique solution in
forward time for all initial conditions. If there exists a Lyapunov function V(x), with
V(x0) denoting its initial value, the following can be assumed: (1) The trajectory of this
system is finite-time uniformly ultimately bounded stable within the region of Q1 ={

x|V(x)α1−α2 < β2
γ1

}
, if

.
V(x) ≤ −β1V(x)α1 + β2V(x)α2 for α1 > α2, β1 > 0, β2 > 0,

γ1 ∈ (0, β1). The settling time for the states reaching the stable residual set is subject to

the constraint as T1 ≤ V(x0)
1−α1

(β1−γ1)(1−α1)
. (2) The trajectory of this system is fast finite-time

uniformly ultimately bounded stable within Q2 =
{

x|γ1V(x)α1−α2 + γ2V(x)1−α2 < β3

}
,

if
.

V(x) ≤ −β1V(x)α1 − β2V(x) + β3V(x)α2 for β3 > 0, γ2 ∈ (0, β2). The convergence time

T2 is bounded as T2 ≤ ln
[
(β2−γ2)V(x0)

1−α1 /(β1−γ1)+1
]

(β2−γ2)(1−α1)
.

2.2. Graph Theory

We introduce a directed topology graph G = {V, ε} to describe the information
interactions among the AUVs. Let the node set V = {V1, V2, · · · , VN} to represent the N
members in the formation, and an edge set ε ⊆ V ×V to represent the communication from
the node Vi to the node Vj. A =

[
aij
] ⊂ R

N×N is defined as an adjacency matrix, where
aij represents the connection weight and aij = 1 if (i, j) ∈ ε, while aij = 0 if (i, j) /∈ ε. It
is assumed that the ith vehicle could receive information from the virtual leader and its
neighbors Ni = {j ∈ V : (j, i) ∈ ε}. The graph is termed an undirected graph if bidirectional
communication links exist among all members of the formation. Otherwise, it is referred to
as a directed graph. A directed graph is considered strongly connected if a directed path
can connect any point in the formation to any other.

2.3. AUV Model

As shown in Figure 1, it is convenient to describe the six-degree-of-freedom (DOF)
AUVs with two reference frames: an earth-fixed frame {E} and a body-fixed frame {B}.
This paper employs a fully actuated torpedo-type AUV, referenced from [32], based on the
control objectives. In addition, the AUV uses an ultra-short baseline acoustic positioning
system for underwater localization. Since this AUV can be regarded as a highly metacentric
stable vehicle with self-stable roll motion, the effect of roll is ignored (roll angle Φi = 0, roll
angular velocity pi = 0). The kinematics and dynamics of the ith AUV are described as
follows [33]:

.
ηi = J(ηi)vi (1)

Mi
.
vi + Ci(vi)vi + Di(vi)vi + gi(ηi) = τi + τic (2)

where i = 1, 2, . . . , N, ηi = [xi, yi, zi, θi, ψi]
T ∈ R

5, and vi = [ui, vi, wi, qi, ri]
T ∈ R

5 denote
the states of position, orientation, and velocity of the AUV, respectively. J(ηi) is a rotation
transformation matrix from the body-fixed frame to the earth-fixed frame, expressed as:

J(ηi) =

⎡⎢⎢⎢⎢⎣
cos ψi cos θi − sin ψi cos ψi sin θi 0 0
sin ψi cos θi cos ψi sin ψi sin θi 0 0
− sin θi 0 cos θi 0 0

0 0 0 1 0
0 0 0 0 1/ cos θi

⎤⎥⎥⎥⎥⎦ (3)
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Mi represents the inertial matrix, which includes added mass. Ci(vi) and Di(vi) de-
note the Coriolis and centripetal and hydrodynamic damping matrix, respectively, while
gi(ηi) represents the restoring force and moment generated by gravity and buoyancy.
τi =

[
τiu, τiv, τiw, τiq, τir

]T represents the control input, and τic denotes the external distur-
bance. Detailed expressions of these matrices are available in [34].

Figure 1. AUV coordinate system.

In practical engineering, we may not be able to obtain accurate hydrodynamic co-
efficients in the model, so the matrices in (2) are typically divided into two parts: the
nominal value part and the uncertainty part caused by linear shifts, i.e., Mi = M∗

i + ΔMi,
Ci(vi) = C∗

i (vi) + ΔCi(vi), Di(vi) = D∗
i (vi) + ΔDi(vi), and gi(ηi) = g∗i (ηi) + Δgi(ηi),

where (·)∗i denotes the nominal value that can be obtained from the computational fluid
dynamics (CFD) or experimental analysis. Δ(·)i symbolizes the difference between the real
value and the nominal value.

Accordingly, the ith AUV dynamic model (2) can be reformulated as:

M∗
i

.
vi = −C∗

i (vi)vi − D∗
i (vi)vi − g∗i (ηi) + τi + τid (4)

where τid = τic − ΔMi
.
vi − ΔCi(vi)vi − ΔDi(vi)vi − Δgi(ηi) is regarded as the compound

disturbance, which includes uncertainties and unknown external disturbance. Typically,
external disturbances are periodically varying and energy limited. The model uncertainties
are related to the actual states and physical properties of the AUV. Based on the constraints
of DMPC on the system state, in practice, we give the following reasonable assumption:

Assumption 1 ([11]). The ocean current disturbance term τic and the first time derivative
.
τic are bounded, and the model uncertainties ΔMi, ΔCi, ΔDi, and Δgi are unknown and
bounded. Hence, the compound disturbance τid of the ith AUV is bounded and satisfies
‖τid‖ ≤ τid, where τid ∈ R

+ represents the unknown upper bound.

It should be noted that the above assumption is untenable if there are no system state
constraints [35,36].

2.4. Control Objective

In this paper, the control objective is to develop a control scheme that enables AUV
formation to track a reference trajectory while maintaining a predefined configuration. Ini-
tially, a FTESO is designed to compensate for external disturbances and model uncertainties
of the AUV formation, so that the estimation errors converge to the origin. Subsequently, a
dual closed-loop DMPC controller is designed. In this structure, the outer-loop controller
enables the ith AUV to track the reference trajectory ηr by generating the desired velocity,
resulting in the convergence of position tracking errors. The inner-loop controller is used to
achieve the convergence of velocity tracking errors. The desired formation is implemented
by setting the corresponding formation configuration vector ri f and the relative distance
vector rij. The task must adhere to various constraints and ensure collision avoidance.
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Because the navigation trajectory has a limited range and the speed is continuous without
abrupt changes, we adopt the following reasonable assumptions to avoid singularities in
the reference trajectory:

Assumption 2. The reference trajectory ηr = [xr, yr, zr, θr, ψr]
T and its derivatives are

smooth and bounded, i.e., ‖ηr‖∞ ≤ ηr,
∥∥ .

ηr
∥∥

∞ ≤ ηr1, and
∥∥ ..

ηr
∥∥

∞ ≤ ηr2 with positive
numbers ηr, ηr1, and ηr2.

3. Methodology

This section develops the FTESO-based distributed dual closed-loop model predictive
control scheme for the AUV formation to perform trajectory tracking. A novel FTESO is
designed to compensate the compound disturbances. Based on the model information
reconstructed by FTESO, the DMPC optimization problems are formulated for the outer
and inner loops under constraints such as actuator saturation and collision avoidance,
respectively. The Laguerre function is applied to alleviate the computational load. The
block diagram of proposed control scheme is depicted in Figure 2.

 

Figure 2. The FTESO-based DMPC dual closed-loop structure for the AUV formation.

3.1. FTESO Design and Convergence Analysis

The AUV model is fundamental to controller design, but obtaining an accurate model
in practice is challenging. Considering the superiority and effectiveness of the ESO tech-
nique in estimating and compensating for synthetic uncertainty, a novel fast FTESO is
designed to simultaneously reconstruct the external disturbance and model uncertainties
of multiple AUVs.

First, define the auxiliary velocity variable as ωi(vi) = M∗
i vi +

∫
vi, the derivative of

ωi(vi) with respect to time can be obtained from (4)

ωi(vi) = vi − C∗
i (vi)vi − D∗

i (vi)vi − g∗i (ηi) + τi + τid. (5)

For simplicity, denote Gi(ηi, vi) = vi − C∗
i (vi)vi − D∗

i (vi)vi − g∗i (ηi). Then, a new
variable is defined as zi1 = ωi(vi), and the order of the system is extended by additional
state variables, zi2 and zi3, defined as zi2 = τid and zi3 =

.
zi2 with

.
zi3 = σi. It should be

noted that the compound disturbances zi2 are assumed to be bounded and continuously dif-
ferentiable, and the components of its second derivative satisfies

∣∣σip
∣∣ ≤ σi, p = 1, 2, . . . , 5.

where σi is an unknown positive constant. Afterward, the dynamic model of the ith AUV
can be extended as follows: ⎧⎨⎩

.
zi1 = Gi(ηi, vi) + τi + zi2.
zi2 = zi3.
zi3 = σi.

(6)
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Denote ẑi1, ẑi2, and ẑi3 as the observation values of states zi1, zi2, and zi3 in the above
extended system, and ei1 = ẑi1 − zi1, ei2 = ẑi2 − zi2, and ei3 = ẑi3 − zi3 as the observation
errors of the velocity, the compound disturbances, and its first derivatives, respectively.
Then, a third-order fast FTESO is proposed as follows:⎧⎪⎨⎪⎩

.
ẑi1 = ẑi2 − βi1(sigαi1(ei1) + ei1) + Gi(ηi, vi) + τi.
ẑi2 = ẑi3 − βi2(sigαi2(ei1) + 2sigαi1(ei1) + ei1).
ẑi3 = −βi3(sigαi3(ei1) + 2sigαi2(ei1) + sigαi1(ei1))

(7)

where the observer gains satisfy βik > 0, k = 1, 2, 3, αi1 ∈ (2/3, 1) and αi2 = 2αi1 − 1, and
αi3 = 3αi1 − 2. Although the actual value of zik is probably unavailable, its observed value
ẑik can be obtained by the above FTESO. The analysis and proof that ẑik tracks the actual
value are described below.

According to the extended system (6) and the proposed FTESO (7), we can obtain the
observation error dynamics as follows:⎧⎨⎩

.
ei1 = −βi1(sigαi1(ei1) + ei1) + ei2.
ei2 = −βi2(sigαi2(ei1) + 2sigαi1(ei1) + ei1) + ei3.
ei3 = −βi3(sigαi3(ei1) + 2sigαi2(ei1) + sigαi1(ei1))− σi.

(8)

The stability and convergence of the proposed FTESO are stated in the following theorem:

Theorem 1. Consider the AUV formation control system with the dynamic model (4) under
Assumption 1. If the FTESO is proposed in the form of (9), with appropriate observer gains
satisfying the prescribed constraints, then the observation errors ei =

[
eT

i1, eT
i2, eT

i3
]T will converge to

the small region Ωi in finite time Ti f . This implies that the error dynamics system (8) is finite-time
uniformly ultimately bounded stable.

Proof of Theorem 1. Consider a Lyapunov candidate function as Vi1(e) = εT
i Piεi, where Pi

is a positive definite symmetric matrix and εT
i =

[
(sigαi1(ei1) + ei1)

T , eT
i2, eT

i3

]
is introduced

as an auxiliary error variable. It should be noted that ei1, ei2, and ei3 will converge to
origin in finite time, if the new state εi is finite-time stable. The time derivative of εi,
invoking (8), yields:

.
εi =

⎡⎣ αi1|ei1|αi1−1 .
ei1 +

.
ei1.

ei2.
ei3

⎤⎦ =

⎡⎣ αi1|ei1|αi1−1(ei2 − βi1(sigαi1(ei1) + ei1))
ei3
2 − βi2(sigαi2(ei1) + sigαi1(ei1))
−βi3(sigαi3(ei1) + sigαi2(ei1))

⎤⎦
+

⎡⎣ ei2 − βi1(sigαi1(ei1) + ei1)
ei3
2 − βi2(sigαi1(ei1) + ei1)

−βi3(sigαi2(ei1) + sigαi1(ei1))

⎤⎦+

⎡⎣ 05
05
−σi

⎤⎦ = diag
([

|ei1|αi1−1, |ei1|αi1−1, |ei1|αi1−1
])

Ai1εi + Ai2εi + Φi

(9)

where Φi =
[
05 05 −σi

]T and the coefficient matrices Ai1 and Ai2 are expressed as:

Ai1 =

⎛⎝−αi1βi1I5 αi1I5 05
−βi2I5 05 e−1

i I5/2
−βi3eiI5 05 05

⎞⎠, A2i =

⎛⎝ −βi1I5 I5 05
−βi2I5 05 I5/2
−βi3eiI5 05 05

⎞⎠ (10)

with ei = |ei1|αi1−1. From the characteristic polynomials of Ai1 and Ai2 that all their
eigenvalues have negative real parts if the observer gains are set as βik > 0, indicating that
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Ai1 and Ai2 are Hurwitz matrices. Thus, symmetric and positive definite matrices Qi1 and
Qi2 exist that satisfy the following Lyapunov equations:{

AT
i1Pi + PiAi1 = −Qi1

AT
i2Pi + PiAi2 = −Qi2.

(11)

Differentiating Vi1(e) with respect to time yields the following:

.
Vi1 = εT

i
[
diag([ei, ei, ei])

(
AT

i1Pi + PiAi1
)]

εi + εT
i
(
AT

i2Pi + PiAi2
)
εi + 2εT

i PiΦi

= −εT
i [diag([ei, ei, ei])Qi1]εi − εT

i Qi2εi + 2εT
i PiΦi ≤ −emax

i εT
i Qi1εi − εT

i Qi2εi + 2‖εi‖‖Pi‖‖Φi‖
(12)

where emax
i = |ei1|αi1−1

max and |ei1|max = max{|ei11|, . . . , |ei15|}. Given the fact that |ei1|max ≤
‖ei1‖ ≤ ‖εi‖1/αi1 and αi1 ∈ ( 2

3 , 1
)
, we can obtain the following:

.
Vi1 ≤ −‖εi‖

αi1−1
αi1 εT

i Qi1εi − εT
i Qi2εi + 2‖εi‖‖Pi‖‖Φi‖

≤ −λmin(Qi1)‖εi‖3− 1
αi1 − λmin(Qi2)‖εi‖2 + 2‖εi‖‖Pi‖‖Φi‖.

(13)

Since σi is assumed to be bounded reasonably by
∣∣σip
∣∣ ≤ σi, we have 2‖εi‖‖Pi‖‖Φi‖ ≤

2
√

5σi‖εi‖‖Pi‖ ≤ 2
√

5σiλmin(Pi)
− 1

2 V
1
2

i1‖Pi‖, by using the inequality

λmin(Pi)‖εi‖2 ≤ Vi1 ≤ λmax(Pi)‖εi‖2 (14)

Then, inequality (13) becomes the following:

.
Vi1 ≤ −λmin(Qi1)λmax(Pi)

1
2αi1

− 3
2 V

3
2 − 1

2αi1
1i − λmin(Qi2)λmax(Pi)

−1Vi1 + 2
√

5σi‖Pi‖λmin(Pi)
− 1

2 V
1
2

i1

≤ −λi1V
3
2 − 1

2αi1
i1 − λi2Vi1 + λi3V

1
2

i1

(15)

where λi1 = −λmin(Qi1)λmax(Pi)
1

2αi1
− 3

2 , λi2 = −λmin(Qi2)λmax(Pi)
−1, and

λi3 = 2
√

5σi‖Pi‖λmin(Pi)
− 1

2 .
It can be seen that (15) has the same form as the sufficient condition in Lemma 1

2. Thus, the error trajectories of the proposed FTESO (7) are fast finite-time uniformly
ultimately bounded stable. The state observation errors ei will converge to a small region
Ωi in the finite time Ti f . Moreover, the settling time Ti f is subject to the constraint:

Ti f ≤
ln
((

λi2 − λi2
)
Vi1(e0)

1
2αi1

− 1
2 /
(
λi1 − λi1

)
+ 1
)

(
λi2 − λi2

)( 1
2αi1

− 1
2

) . (16)

And the stable region Ωi is denoted as

Ωi =

{
e|λi1Vi1(e)

1− 1
2αi1 + λi2Vi1(e)

1
2 < λi3

}
(17)

where λi1 and λi2 are arbitrary constants that meet the conditions λi1 ∈ (0, λi1) and
λi2 ∈ (0, λi2). This completes the proof. �

Remark 1. Contrasting our proposed FTESO (7) with the FTESO in [37], our approach
factors in the dynamics of disturbances and uncertainties to achieve a higher degree of
estimation accuracy. Our usage of fractional powers within the FTESO allows for a quick
finite-time convergence. It can be noted that the size of the attraction region Ωi hinges upon
the selection of the observer gains βik and αi1. By increasing βik or decreasing αi1, the attrac-
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tion region of the observation error system can be expanded and the convergence speed
can be improved, but excessive tuning will lead to undesired overshoot and oscillation. As
a result, a trade-off should be taken for βik and αi1.

3.2. Outer-Loop Formation Prediction Control Law

In this subsection, we design a DMPC-based outer-loop formation controller. This
controller, which draws on the information interaction with neighbors, facilitates the
positional tracking of the ith AUV. The controller operates under composite constraints
and ensures the avoidance of collisions. Then, we formulate a constrained QP problem in
accordance with the control objective to obtain the optimal driving speed.

To facilitate the recursive model prediction and the implementation of the control law,
the kinematic model (1) is discretized by using the Forward-Euler method with a sampling
period Ts, resulting in following discrete model:

ηi(k + 1) = ηi(k) + Ji(k)vi(k)Ts. (18)

To smoothen the speed change of the AUV, the velocity increment Δuiv(k) = vi(k)−
vi(k − 1) is taken as the control input. xiη(k) =

[
ηi(k) vi(k − 1)

]T is denoted as the state
variable of the prediction model. The augmented state-space model of the outer-loop
subsystem can be derived as:

xiη(k + 1) = Aiηxiη(k) + BiηΔuiv(k) (19)

yiη(k) = Ciηxiη(k) (20)

where Aiη =

[
I5 Ji(k)Ts
05 I5

]
∈ R

10×10, Biη =

[
Ji(k)Ts

I5

]
∈ R

10×5, and Ciη =
[
I5 05

] ∈ R
5×10.

According to the state prediction model (19) and (20), we can calculate the predicted
state sequence of the system when given an input sequence. Let Np1 and Nc1 denote the
prediction and control horizon of the outer-loop controller, respectively. The predicted state
sequence and the input incremental sequence are usually represented by compact vectors:

Yiη =

⎡⎢⎢⎢⎢⎣
yiη(k + 1|k)
yiη(k + 2|k)

...
yiη
(
k + Np1

∣∣k)

⎤⎥⎥⎥⎥⎦ ∈ R
5Np1 , xiη =

⎡⎢⎢⎢⎣
xiη(k + 1|k)
xiη(k + 2|k)

...
xiη
(
k + Np1

∣∣k)
⎤⎥⎥⎥⎦ ∈ R

10Np1 (21)

ΔUiv =

⎡⎢⎢⎢⎣
Δuiv(k|k)

Δuiv(k + 1|k)
...

Δuiv(k + Nc1 − 1|k)

⎤⎥⎥⎥⎦ ∈ R
5Nc1 (22)

where yiη(k + l|k) and xiη(k + l|k) are the output vector yiη(k + l) and state vector xiη(k + l)
predicted at time k, respectively. Δuiv(k + j|k) denotes the input increment Δuiv(k + j) pre-
dicted at the same time k. Then, we characterize the relationship between the predicted
output vector sequence and the control increment sequence through the following predic-
tion equation based on the recurrence relations:

Yiη = H1
ixxiη(k) + H1

iuΔUiv (23)

where xiη(k) is the initial state, H1
ix =

[
CiηAiη , CiηA2

iη , . . . , CiηA
Np1
iη

]T ∈ R
5Np1×10 and
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H1
iu =

⎡⎢⎢⎢⎢⎣
CiηBiη 05 · · · 05

CiηAiηBiη CiηBiη · · · 05
...

...
. . .

...

CiηA
Np1−1
iη Biη CiηA

Np1−2
iη Biη · · · CiηA

Np1−Nc1
iη Biη

⎤⎥⎥⎥⎥⎦ ∈ R
5Np1×5Nc1 .

Considering the control objective, the constraints within the outer-loop subsystem are
considered. First, we set upper and lower boundaries for the amplitude of the control input
uiv(k) and the input increment Δuiv(k):

umin
iv ≤ uiv(k) ≤ umax

iv (24)

Δumin
iv ≤ Δuiv(k) ≤ Δumax

iv (25)

where umin
iv and Δumin

iv represent the predefined lower bounds, and umax
iv and Δumax

iv repre-
sent the predefined upper bounds.

Next, to assure safe navigation throughout the formation construction stage, we need to
consider the collision avoidance constraints between AUVs. The primitive collision avoidance
constraints of the ith AUV can be transformed into a convex constraint, as follows:∥∥∥S

(
yiη(k + l|k)− yjη(k + l|k)

)∥∥∥ ≥ rs, j ∈ Ξi (26)

where l = 1, 2, . . . , Np1 and rs is the preset minimum allowable distance between the ith
AUV and the jth AUV. S denotes a scaling matrix. Let rd be the radius of the safe detection
zone for the ith AUV. Ξi is the set of those AUVs that contain within rd. Let the nominal
value yiη represent an initial guess of the actual value yiη for convexifying the collision
avoidance constraint. It follows from (26) that a sufficient condition for upholding the
collision avoidance constraint is the following:

d
T
ij(k + l|k)STS

(
yiη(k + l|k)− yjη(k + l|k)

)
≥ rs

∥∥∥Sdij(k + l|k)
∥∥∥ (27)

where dij(k + l|k) = yiη(k + l|k) − yjη(k + l|k). In order to express the constraints in a

compact matrix form, define Rl = rs

∥∥∥Sdij(k + l|k)
∥∥∥ + d

T
ij(k + l|k)STSyjη(k + l|k), Rij =[

R1, R2, . . . , RNp1

]T
and Sij = diag

{
S1, S2, . . . , SNp1

}
, and Sl = d

T
ij(k + l|k)STS. Then, (27)

can be rewritten as SijYiη ≥ Rij. Substitute (23) to derive the collision avoidance constraint
as follows:

SijH1
iuΔUiv ≥ Rij − SijH1

ixxiη(k). (28)

The input amplitude constraint (24) can be converted to the input incremental con-
straint, associating (25) and (28), expressed in the compact linear constraint form as follows:

ΓiηΔUiv ≤ γiη (29)

where Γiη =

⎡⎢⎢⎢⎢⎣
I5Nc1

−I5Nc1

Iη1
−Iη1

−SijH1
iu

⎤⎥⎥⎥⎥⎦, γiη =

⎡⎢⎢⎢⎢⎣
ΔUmax

iv
−ΔUmin

iv
Umax

iv − Iη2ui(k − 1)
−Umin

iv + Iη2ui(k − 1)
SijH1

ixxiη(k)− Rij

⎤⎥⎥⎥⎥⎦, Iη1 =

⎡⎢⎢⎢⎣
I5 05 · · · 05
I5 I5 · · · 05
...

...
. . .

...
I5 I5 · · · I5

⎤⎥⎥⎥⎦ ∈

R
5Nc1×5Nc1 , and Iη2 = [I5, I5, . . . , I5]

T ∈ R
5Nc1 .
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In order to achieve the control objective of formation positional tracking with low en-
ergy requirements, we define the local distributed cost function in the outer-loop subsystem
of the ith AUV in a discretized form:

Jiη(k) =
Np1

∑
l=1

∥∥∥(yiη(k + l|k)− yi f (k + l)
)∥∥∥2

Qi f
+

Nc1−1
∑

l=0
‖Δuiv(k + l|k)‖2

Ri1

+
Np1

∑
l=1

∑
j∈Ni

aij

∥∥∥(yiη(k + l|k)− yij(k + l)
)∥∥∥2

Qij

(30)

where Qi f , Qij, and Ri1 are the weight matrices. yi f (k + l) = ηr(k + l) + ri f (k + l) with
ri f (k + l) represents the formation configuration. yij(k + l) = yjη(k + l) + rij(k + l) with
rij(k + l) represents the predefined relative distance between the ith AUV and its neighbor
jth AUV. Np1 indicates the degree of prediction of future tracking errors. The larger it is,
the better the tracking accuracy and stability. The smaller Nc1 is, the worse the dynamic
response is, and conversely the more maneuverable the control is. Qi f is the position
tracking matrix, the larger it is, the better the tracking accuracy and dynamic response.
Qij is the relative position matrix, the larger it is, the better the ability of the formation to
maintain the preset configuration. Ri1 is the control increment weight matrix, mainly to
limit the drastic change of Δuiv.

Based on the above derivations, we can formulate the optimization problem for
the outer-loop subsystem of the ith AUV at the sampling instant k within the receding-
horizon framework:

min
ΔUiv

Jiη(k)

s.t. ΓiηΔUiv ≤ γiη .
(31)

To simplify the computation of (31), it can be transformed into a convex QP problem.
This problem is solved over a finite receding horizon using a QP solver. The standard
convex QP form of the DMPC problem (31) can be derived:

ΔU∗
iv = argmin

ΔUiv

(
1
2 ΔUT

ivWiηΔUiv + fT
iηΔUiv

)
s.t. ΓiηΔUiv ≤ γiη

(32)

where Wiη = Ri1 + H1T
iu Qi f H1

iu + ∑j∈Ni
aijH1T

iu QijH
1
iu,

fiη = H1T
iu Qi f

(
H1

ixxiη − Yi f

)
+ ∑j∈Ni

aijH1T
iu Qij

(
H1

ixxiη − Yij

)
, with Yi f =[

yi f (k + 1), . . . , yi f
(
k + Np1

)]T
, Yij =

[
yij(k + 1), . . . , yij

(
k + Np1

)]T
, Qi f =

diag
{

Qi f , Qi f , . . . , Qi f

}
∈ R

5Np1×5Np1 , Qij, and Ri1 are similar to Qi f , both correspond-
ing compact matrices.

By solving the QP optimization problem in (32) online, we obtain the optimal control
input increment sequence ΔU∗

iv. Of this sequence, we only utilize the first element Δu∗
iv(k|k)

for receding optimization. Once Δu∗
iv(k) is determined, we obtain vi(k) which serves as the

desired driving speed for the inner-loop controller of the ith AUV, i.e.,

vir(k) = vi(k) = vi(k − 1) + Δu∗
iv(k). (33)

3.3. Inner-Loop Formation Prediction Control Law

In this subsection, with the aid of the proposed FTESO, we design a DMPC-based
formation controller for the inner-loop subsystem to obtain the optimal driving force and
moment for the ith AUV to track the desired speed.

The dynamic model (4) is discretized with a sampling period Ts, yielding the following
discretized model:

vi(k + 1) =
(

I − M∗
i
−1Ts(C∗

i + D∗
i )
)

vi(k) + M∗
i
−1Tsτi(k) + M∗

i
−1Tsτ̂id(k) (34)
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where τ̂id represents the compound disturbance compensated by FTESO (7), which is
supposed to be invariant over a short period. It should be noted that we assume the center
of gravity and buoyancy of the ith AUV to coincide, which allows gi(ηi) to approximate
to zero. We select xiv(k) =

[
vi(k) τi(k − 1)

]T as the state variable and take the increment
Δuiτ(k) = τi(k)− τi(k − 1) as the control input. This allows us to reformulate the inner-
loop predictive model as follows:

xiv(k + 1) = Aivxiv(k) + BivΔuiτ(k) + Div (35)

yiv(k) = Civxiv(k) (36)

where Aiv =

[
I5 − M∗

i
−1Ts

(
C∗

i + D∗
i
)

M∗
i
−1Ts

05 I5

]
∈ R

10×10, Biv =

[
M∗

i
−1Ts
I5

]
∈ R

10×5,

Civ =
[
I5 05

] ∈ R
5×10, and Div =

[
M∗

i
−1Tsτ̂id
05×1

]
∈ R

10. Similar to our previous approach,

we can characterize the relationship between the predicted output vector sequence and the
control increment sequence using the following prediction equation:

Yiv = H2
ixxiv(k) + H2

iuΔUiτ + Div (37)

where Yiv =
[
yiv(k + 1|k), yiv(k + 2|k), . . . , yiv

(
k + Np2

∣∣k)]T ∈ R
5Np2 ,

ΔUiτ = [Δuiτ(k|k), Δuiτ(k + 1|k), . . . , Δuiτ(k + Nc2 − 1|k)]T ∈ R
5Nc2 ,

H2
ix =

[
CivAiv, CivA2

iv, . . . , CivA
Np2
iv

]T ∈ R
5Np2×10,

H2
iu =

⎡⎢⎢⎢⎢⎣
CivBiv 05 · · · 05

CivAivBiv CivBiv · · · 05
...

...
. . .

...

CivA
Np2−1
iv Biv CivA

Np2−2
iv Biv · · · CivA

Np2−Nc2
iv Biv

⎤⎥⎥⎥⎥⎦ ∈ R
5Np2×5Nc2 , and

Div =

[
CivDiv, CivAivDiv + CivDiv, . . . , Civ

Np2−1

∑
n=0

An
ivDiv

]T

∈ R
5Np2 . Np2 and Nc2 de-

note the prediction and control horizon of the inner-loop controller, respectively.
According to the control objective, we assess the constraints on the control input

increment and the actuator saturation in the inner-loop subsystem, as follows:

Δumin
iτ ≤ Δuiτ(k) ≤ Δumax

iτ (38)

τmin
i ≤ τi(k) ≤ τmax

i (39)

where τmin
i and Δumin

iv represent predefined lower bounds, while τmax
i and Δumax

iv denote
predefined upper bounds. The actuator saturation constraint (39) can be transformed into
an input incremental constraint, and we can express the above constraints in a compact
linear constraint form:

ΓivΔUiτ ≤ γiv (40)

where Γiv =

⎡⎢⎢⎣
I5Nc2

−I5Nc2

Iv1
−Iv1

⎤⎥⎥⎦, γiη =

⎡⎢⎢⎣
ΔUmax

iτ
−ΔUmin

iτ
τmax

i − Iv2τi(k − 1)
−τmin

iv + Iv2τi(k − 1)

⎤⎥⎥⎦, with Iv1 =

⎡⎢⎢⎢⎣
I5 05 · · · 05
I5 I5 · · · 05
...

...
. . .

...
I5 I5 · · · I5

⎤⎥⎥⎥⎦ ∈

R
5Nc2×5Nc2 and Iv2 = [I5, I5, . . . , I5]

T ∈ R
5Nc2 .

To achieve the convergence of the formation tracking velocity to the desired value, we
define the local distributed cost function of the inner-loop subsystem as follows:

Jiv(k) =
Np2

∑
l=1

‖(yiv(k + l|k)− vir(k + l))‖2
Qiv

+
Nc2−1

∑
l=0

‖Δuiτ(k + l|k)‖2
Ri2

(41)
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where yiv(k + l|k) and Δuiτ(k + j|k) denote the predicted value of yiv(k + l) and Δuiτ(k + j)
at time k, respectively. Qiv and Ri2 are given weight matrices.

By substituting (37) into (41), we can formulate the DMPC optimization problem for
the inner-loop subsystem of the ith AUV at sampling instant k as the following QP form:

ΔU∗
iτ = argmin

ΔUiτ

(
1
2 ΔUT

iτWivΔUiτ + fT
ivΔUiτ

)
s.t. ΓivΔUiτ ≤ γiv

(42)

where Wiv = Ri2 + H2T
iu QivH2

iu and fiv = H2T
iu Qiv

(
H2

ixxiv + Div − Vir
)
, with vir =[

vir(k + 1), . . . , vir
(
k + Np2

)]T ∈ R
5Np2 , Qiv = diag{Qiv, Qiv, . . . , Qiv} ∈ R

5Np2×5Np2 , and
Ri2 = diag{Ri2, Ri2, . . . , Ri2} ∈ R

5Nc2×5Nc2 .
The solution of the QP optimization problem (42) yields the optimal control in-

put increment sequence ΔU∗
iτ at time k. However, only the first element Δu∗

iτ(k|k) of
the sequence is used for the ith AUV to obtain the optimal control force and moment
τ∗

i (k) = τi(k − 1) + Δu∗
iτ(k). The Δu∗

iτ(k) is recalculated at each sampling instant, the
ith AUV repeatedly calculates and executes τ∗

i (k) to achieve receding optimization. The
predicted state xiv(k + 1) and the optimal input τ∗

i (k) are both determined solely by the
current state xiv(k).

With the parallel optimization of N AUV subsystems, all local optimization problems
are solved simultaneously at each sampling moment. One or more information interactions
occur between local controllers to obtain the optimal input sequence for that moment.
Thus, the proposed control law can compensate well for the compound disturbances,
which consist of model uncertainties and external disturbances. This occurs throughout
the iterative optimization process, while simultaneously ensuring collision avoidance and
formation tracking control tasks under complex constraints.

3.4. Use of Laguerre Functions in the DMPC Design

This subsection introduces a strategy to handle the computational burden caused by a
longer control horizon and dual closed-loop structure. This is the main difficulty in our
theoretical analysis. The Laguerre orthogonal functions are leveraged in the DMPC design
to decrease the order of the input incremental matrices. This approach permits a reduction
in input variables during each control cycle, thereby reducing the computational burden in
the time interval and improving real-time performance.

The Laguerre functions are a set of discrete orthogonal polynomial functions, let it be
l1(k), l2(k), . . . , lM(k), the z-transfer of the mth Laguerre function is expressed as follows:

Xm(z) =

√
1 − a2

z − a

[
1 − az
z − a

]m−1
(43)

where 0 ≤ a < 1 denotes the pole of the Laguerre function, also known as the scaling factor.
It can be verified that Xm satisfies the following orthogonality:⎧⎨⎩

1
2π

∫ π
−π Xm

(
ejω)Xn

(
ejω)∗dω = 1 m = n

1
2π

∫ π
−π Xm

(
ejω)Xn

(
ejω)∗dω = 0 m �= n

(44)

where (·)∗ denotes complex conjugate of (·).
The discrete Laguerre functions are defined by taking the inverse Z-transform of (43),

i.e., lm(k) = Z−1{Xm(z)}. Given the network structure of Xm(z) and the recurrence relation,
the set of discrete Laguerre functions satisfies the following difference equation:

L(k + 1) = ΞL(k) (45)
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where Ξ =

⎡⎢⎢⎢⎢⎢⎣
a 0 0 · · · 0
β a 0 · · · 0

−aβ β a · · · 0
...

...
...

. . .
...

(−a)M−2β (−a)M−3β (−a)M−4β · · · a

⎤⎥⎥⎥⎥⎥⎦ and L(k) =

[l1(k), l2(k), . . . , lM(k)]T , with β = 1 − a2 and initial condition L(0) =√
β
[
1,−a, a2,−a3, . . . , (−a)M−1

]T
. Note that at a = 0, the Laguerre functions are con-

verted to impulse functions.
Assuming the current moment is k, the input increment of the single-input system at

the next time l, represented by the Laguerre function, is:

Δu(k + l) =
M

∑
m=1

κmlm(l) = L(l)TK (46)

where K = [κ1, κ2, . . . , κM]T . When we extend this to the multi-AUV system, each AUV has
five independent control inputs, and the input increment of the ith AUV is as follows:

Δui(k)
T =

[
L1

i (k)
TK1

i , L2
i (k)

TK2
i , . . . , L5

i (k)
TK5

i

]
= Li(k)

TKi (47)

where Lp
i (k) =

[
lp
i1(k), lp

i2(k), . . . , lp
iM(k)

]T
and Kp

i =
[
κ

p
i1, κ

p
i2, . . . , κ

p
iM

]T
, with p = 1, 2, . . . 5.

Li(k) = diag
{

L1
i (k)

T , L2
i (k)

T , . . . , L5
i (k)

T
}

, and Ki =
[
K1T

i , K2T
i , . . . , K5T

i
]T

. Note that within
a multi-input structure, the scaling factor ap and the number of polynomial terms Mp can
be selected independently for each input signal.

For illustrative purposes, the inner-loop predictive controller of the ith AUV is taken as
an example. If we partition the input matrix into Biv =

[
B1

iv B2
iv . . . B5

iv
]
, the prediction

of the system output in the next l steps can be derived as follows:

yiv(k + l|k) =
l−1
∑

j=0
CivAl−j−1

iv

[
B1

ivL1
i (j)TK1

iτ B2
ivL2

i (j)TK2
iτ . . . B5

ivL5
i (j)TK5

iτ

]
+CivAl

ivxiv(k) +
l−1
∑

j=0
CivAl−j−1

iv Div.
(48)

For a compact notation, we denote (48) by the following:

yiv(k + l|k) = CivAl
ivxiv(k) + μi(l)

T Kiτ + Dl
iv (49)

where μi(l)
T =

l−1
∑

j=0
CivAl−j−1

iv

[
B1

ivL1
i (j)T B2

ivL2
i (j)T . . . B5

ivL5
i (j)T

]
and Dl

iv =

l−1
∑

j=0
CivAl−j−1

iv Div. Kiτ as the parameter vector that is to be optimized.

First, we employ the Laguerre function to optimize the constraint terms (38) and (39),
leading to the following constraint form:

Δumin
iτ ≤ Liτ

TKiτ ≤ Δumax
iτ (50)

τmin
i ≤ �

L iτKiτ + τi(k − 1) ≤ τmax
i (51)

where Liτ = diag
{

L1
iτ(l)

T , . . . , L5
iτ(l)

T
}

and
�
L iτ = diag

{
l−1
∑
j=0

L1
iτ(j)

T,
l−1
∑
j=0

L2
iτ(j)

T, . . . ,
l−1
∑
j=0

L5
iτ(j)

T

}
.

Given that the Laguerre functions are orthonormal for a sufficiently large control
horizon Nc2. Substituting (47) into (41) and using the orthogonality (44) of the Laguerre
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function (i.e., the inner product of different terms is 0 and the same term is 1), the following
derivation can be performed to obtain the reconstructed form of the cost function (41):

Jiv(k) =
Np2

∑
l=1

‖(yiv(k + l|k)− vir(k + l))‖2
Qiv

+
Nc2−1

∑
l=0

Δuiτ(k + l|k)TRi2Δuiτ(k + l|k)

=
Np2

∑
l=1

‖(yiv(k + l|k)− vir(k + l))‖2
Qiv

+
Nc2−1

∑
l=0

(
Liτ(l)

TKiτ

)
Ri2

(
Liτ(l)

TKiτ

)T

=
Np2

∑
l=1

[yiv(k + l|k)− vir(k + l)]TQiv[yiv(k + l|k)− vir(k + l)]

+
Nc2−1

∑
l=0

(
diag

{
L1

iτ(l), L2
iτ(l), . . . , L5

iτ(l)
}

Kiτ
)
Ri2
(
diag

{
L1

iτ(l), L2
iτ(l), . . . , L5

iτ(l)
}

Kiτ
)T

=
Np2

∑
l=1

[yiv(k + l|k)− vir(k + l)]TQiv[yiv(k + l|k)− vir(k + l)] + KT
iτRi2Kiτ .

(52)

By substituting (49) into (52), we can rewrite the DMPC optimization problem (42) for
the inner-loop subsystem of the ith AUV as:

min
K∗

iτ

Jiv(k) = min
K∗

iτ

(
1
2 KT

iτWiLKiτ + fT
iLKiτ

)
s.t. (50), (51)

(53)

where WiL = ∑
Np2
l=1 μi(l)Qivμi(l)

T + Ri2 and fiL =

∑
Np2
l=1 μi(l)Qiv

(
CivAl

ivxiv(k) + Dl
iv − vir(k + l)

)
.

The QP optimization Equation (53), with constraints, can be solved to obtain the
optimal parameter vector K∗

iτ . This vector replaces the conventional DMPC method calcu-
lation of Δu∗

iτ . Thus, the optimal input increment of the inner-loop subsystem is indirectly
obtained by the rolling optimized control law, Δuiτ(k)

T = Liτ(0)
TKiτ , until the control

variables at the next moment are calculated. This iterative process ensures the achievement
of receding horizon optimization. The use of the Laguerre function in the design of the
outer-loop predictive controller is not included here, as its analysis parallels that of the
inner-loop controller described above.

Remark 2. By parameterizing the input increment sequence using the Laguerre function,
the input matrix order in the prediction horizon can be lowered, thereby reducing the
computational load online. This property enables its application in large-scale and real-
time AUV control systems. With the employment of the Laguerre function, the coefficients
ap and Mp can also be served as tuning parameters, in addition to the control and prediction
horizon and weighting matrices. Larger ap and Mp lead to faster closed-loop responses [38].

3.5. Stability Analysis

A notable attribute of the MPC is the potential for establishing the stability of a closed-
loop system under certain conditions. Extending this to cases using Laguerre polynomials,
a terminal state constraint is utilized to analyze the stability of the closed-loop system.
Specifically, for the inner-loop subsystem, an additional constraint is attached to the final
state of the receding optimization problem: xiv

(
k + Np2

)
= 0, where xiv

(
k + Np2

)
is the

terminal state produced under the effect of the control sequence, Δuiτ(k + l)T = Liτ(l)
TKiτ .

Theorem 2. Consider the inner-loop subsystem (35) and (36) of the ith AUV in the formation
control system, which has a local cost function (41) with constraints (38) and (39). The inner-loop
predictive control subsystem is asymptotically stable if for each sampling instant k, there exists a
solutionKiτ such that the performance index Jiv is minimized subject to the terminal state constraint.
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Proof of Theorem 2. Constructing an appropriate Lyapunov function is key to ensuring
the stability of the DMPC system. Select the cost function Jiv(k) as the Lyapunov function
Vi2(y(k), k):

Vi2(y(k), k) =
Np2

∑
l=1

ỹiv(k + l|k)TQivỹiv(k + l|k) +
Nc2−1

∑
l=0

Δuiτ(k + l)TRi2Δuiτ(k + l) (54)

where ỹiv(k + l|k) = yiv(k + l|k)−vir(k + l) and yiv(k + l|k) = CivAl
ivxiv(k)+μi(l)

T Kk
iτ +

Dl
iv, Kk

iτ is the parameter vector solution of the cost function (41) under the original and

terminal constraints at moment k, and input increment Δuiτ(k + l)T = Liτ(l)
TKk

iτ . It is clear
that Vi2(y(k), k) is positive definite and tends to infinity as yiv(k) tends to infinity. Similarly,
the Lyapunov function at moment k + 1 can be derived as:

Vi2(y(k + 1), k + 1) =
Np2

∑
l=1

ỹiv(k + 1 + l|k + 1)TQivỹiv(k + 1 + l|k + 1)

+
Nc2−1

∑
l=0

Δuiτ(k + 1 + l)TRi2Δuiτ(k + 1 + l)

(55)

where yiv(k + 1 + l|k + 1) = CivAl
ivxiv(k + 1) + μi(l)

T Kk+1
iτ + Dl

iv, Kk+1
iτ is the parameter

vector solution at time k + 1, and Δuiτ(k + 1 + l)T = Liτ(l)
TKk+1

iτ . Given that yiv(k + 1)
is the response one step ahead of yiv(k) and yiv(k + 1) = CivAivxiv(k) + CivBivΔuiτ(k) +
CivDiv, the feasible solution of Kk+1

iτ corresponding to the initial output yiv(k + 1) in the

receding horizon is Kk
iτ . Therefore, the feasible solution sequence at moment k + 1 is to

move the elements in Liτ(0)
TKk

iτ , Liτ(1)
TKk

iτ , . . ., Liτ(Nc2 − 1)TKk
iτ one step forward and

substitute the last element with 0, i.e., Liτ(1)
TKk

iτ , Liτ(2)
TKk

iτ , . . ., Liτ(Nc2 − 1)TKk
iτ , 05×1.

Due to the optimality of the solution Kk+1
iτ at k + 1, it follows that

Vi2(y(k + 1), k + 1) ≤ V̂i2(y(k + 1), k + 1) (56)

where V̂i2(y(k + 1), k + 1) is identical to (55) except that the parameter vector solution Kk+1
iτ

in the control sequence is replaced by the feasible solution Kk
iτ . The difference between

Vi2(y(k), k) and Vi2(y(k + 1), k + 1) is then bounded by the following:

Vi2(y(k + 1), k + 1)− Vi2(y(k), k) ≤ V̂i2(y(k + 1), k + 1)− Vi2(y(k), k). (57)

Eliminate the same terms in the control sequence and output sequence of V̂i2(y(k + 1), k + 1)
and Vi2(y(k), k) at moments k + 1, k + 2,. . ., k + Np2 − 1, and we can derive the follow-
ing equation:

V̂i2(y(k + 1), k + 1)− Vi2(y(k), k) = ỹiv
(
k + Np2

∣∣k)TQivỹiv
(
k + Np2

∣∣k)
−ỹiv(k + 1|k)TQivỹiv(k + 1|k)− Δuiτ(k)

TRi2Δuiτ(k).
(58)

Given the terminal constraint xiv
(
k + Np2

)
= 0 is applied, equivalent to yiv

(
k + Np2

)
=

0, we have the following:

V̂i2(y(k + 1), k + 1)− Vi2(y(k), k) = −vir
(
k + Np2

)TQivvir
(
k + Np2

)
−ỹiv(k + 1|k)TQivỹiv(k + 1|k)− Δuiτ(k)

TRi2Δuiτ(k).
(59)

This allows inequality (57) to be converted into:

Vi2(y(k + 1), k + 1)− Vi2(y(k), k) ≤ −vir
(
k + Np2

)TQivvir
(
k + Np2

)
−ỹiv(k + 1|k)TQivỹiv(k + 1|k)− Δuiτ(k)

TRi2Δuiτ(k) < 0.
(60)
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Namely, Vi2(y(k + 1), k + 1) < Vi2(y(k), k); the Lyapunov function is monotonically
decreasing. This proves that the inner loop subsystem is asymptotically stable. �

Next, we analyze the stability of the entire closed-loop system. Analogous to the
proof of Theorem 2, we select Jiη(k) as the Lyapunov function Vi3(y(k), k) of the outer-
loop subsystem:

Vi3(y(k), k) =
Np1

∑
l=1

∥∥∥(yiη(k + l|k)− yi f (k + l)
)∥∥∥2

Qi f
+

Nc1−1
∑

l=0
‖Δuiv(k + l|k)‖2

Ri1

+
Np1

∑
l=1

∑
j∈Ni

aij

∥∥∥(yiη(k + l|k)− yij(k + l)
)∥∥∥2

Qij
.

(61)

According to the idea of the proof of Theorem 2, the following inequality can be obtained:

Vi3(y(k + 1), k + 1)− Vi3(y(k), k) ≤ −yi f
(
k + Np1

)TQi f yi f
(
k + Np1

)− ỹiη(k + 1|k)TQi f ỹiη(k + 1|k)
−N(N − 1)rij

(
k + Np1

)TQijrij
(
k + Np1

)− Δuiv(k)
TRi1Δuiv(k) < 0.

(62)

Next, we set the Lyapunov function of the entire closed-loop system as follows:

Vi4(y(k), k) = Vi2(y(k), k) + Vi3(y(k), k). (63)

From inequalities (60) and (62), we have the following:

Vi4(y(k + 1), k + 1)− Vi4(y(k), k) = Vi2(y(k + 1), k + 1)− Vi2(y(k), k)

+Vi3(y(k + 1), k + 1)− Vi3(y(k), k) < 0
(64)

As a result, the entire closed-loop system is asymptotically stable.

4. Simulation

In this section, some simulation analyses are conducted to verify the effectiveness
and robustness of the proposed control scheme. A formation system consisting of four
AUVs (N = 4, i = 1, 2, 3, 4) with a virtual leader (AUV0) is considered. The directed
communication topology for the simulation is depicted in Figure 3, the meaning of the
arrows is the direction of the communication or information flow between the nodes in
the formation network. Initial values for xi, yi, and zi are randomly distributed within
the intervals [10, 40], [0, 30], and [−10, 0], respectively, while the attitude angles θi and
ψi lie within the intervals [−π/18, π/18] and [0, π], respectively. The parameters re-
lated to the AUVs are based on previous research [39]. A diamond formation was pre-
defined to facilitate omnidirectional exploration, with the desired formation configura-
tion preset to r1 f = [0, 0, 6.5, 0, 0]T , r2 f = [0,−7.5, 0, 0, 0]T , r3 f = [0, 0,−6.5, 0, 0]T , and
r4 f = [0, 7.5, 0, 0, 0]T . r12 = −r21 = [0, 7.5, 6.5, 0, 0]T , r13 = −r31 = [0, 0, 13, 0, 0]T , r14 =

−r41 = [0,−7.5, 6.5, 0, 0]T , r23 = −r32 = [0,−7.5, 6.5, 0, 0]T , r24 = −r42 = [0,−15, 0, 0, 0]T

and r34 = −r43 = [0,−7.5,−6.5, 0, 0]T . The safety distance during the formation construc-
tion stage is set as rs = 3 m, while the detection distance measured using sonar is set as
rd = 6 m. To reflect model uncertainties, 20% of the nominal values were taken as model
errors, meaning that the parameters for the AUVs in the simulation represented only 80% of
the nominal system dynamics. External disturbances were applied to each AUV to evaluate
the formation robustness, modeled as follows [34]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τicu = 0.1sign(ui) + 0.2 sin(0.1t) N
τicv = 0.1sign(vi) + 0.3 sin(0.3t) N
τicw = 0.08sign(wi) + 0.2 sin(0.5t) N
τicq = 0.02sign(qi) + 0.1 sin(0.3t) N · m
τicr = 0.05sign(ri) + 0.1 sin(0.3t) N · m

(65)
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Figure 3. Structure of communication topology.

Each control parameter has its settings guidelines: Given the low driving speed of the
AUV in this paper, smaller Np1 and Np2 are intended to be used. During debugging, reduce
it if the rapidity is not enough, and increase it if the stability is not good; the selection of Nc1
and Nc2 is based on a trade-off between performance and computation [40]; since we value
the position tracking performance more than the velocity tracking performance, Qi f is set
slightly larger than Qiv; to weaken the interaction of angles between AUVs, the orientation
weight in Qij is set slightly smaller; when tuning Ri1 and Ri2, it can be set very small first,
and then increase it slightly if the system is stable and the control variable does not change
too drastically [41]. By solving the Lyapunov Equation (11), the relationship between the
observer gains βik and αi1, such that Ai1 and Ai2 are Hurwitz matrices, can be obtained, and
tuned to select the appropriate values [42]; the Laguerre parameter ap is adjusted within
the constraint interval, and a smaller Mp is selected to coordinate the number of constraints
in the optimization problem, and to make a trade-off between response speed and control
complexity [38]. Following the above guidelines, we dealt with the main difficulties in the
simulation and selected the parameters that produced the optimal simulation results and
listed them in Table 1.

Table 1. Control parameters of the proposed scheme.

Parameter Value Parameter Value

Qi f diag
(
102, 102, 102, 102, 102) Ts 0.5 s

Qij diag
(
102, 102, 102, 10, 10

)
Np1 20

Qiv diag(10, 10, 10, 10, 10) Nc1 8
Ri1 diag

(
10−2, 10−2, 10−2, 10−2, 10−2) Np2 10

Ri2 diag
(
10−1, 10−1, 10−1, 10−1, 10−1) Nc2 5

βi1 diag(20, 20, 20, 10, 10) αi1 0.75
βi2 diag(160, 160, 160, 80, 80) ap 0.7
βi3 diag(160, 160, 160, 80, 80) Mp 3

Moreover, based on the actual speed limit of the thruster, we provide the state and in-
put constraints as follows: ΔUmax

iv = −ΔUmin
iv = [0.2, 0.1, 0.2, 0.05, 0.05]T ,

Umax
iv = −Umin

iv = [1.5, 1, 1, 0.05, 0.2]T , and ΔUmax
iτ = −ΔUmin

iτ = [50, 50, 100, 5, 5]T . To
avoid actuator saturation for each AUV, the bounds of force and moment are set as
τmin

i = [−200,−500,−500,−7,−10]T and τmax
i = [300, 500, 500, 7, 10]T .The reference tra-

jectory generated by the virtual leader is a 3-D spiral curve, defined as follows:⎧⎨⎩
xr(t) = 30 cos(0.005πt)
yr(t) = 30 sin(0.005πt)
zr(t) = −0.05t − 3

(66)

To verify the disturbance compensation performance of the proposed FTESO (7),
we conducted comparative simulations with the ESO (67) from [43] and the FTESO (68)
from [18]. Figure 4 shows the norms of the compound disturbance estimation errors
‖ei2‖ = ‖τ̂id − τid‖ for the four AUVs under the three observers, characterizing insights
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into transient and steady-state responses. We calculated the settling time of the designed
FTESO in the simulation and highlighted it on the plots. It is clear from Figure 4 that our
proposed third-order fast FTESO can achieve finite-time stabilization, with the estimation
errors converging to a small neighborhood of the origin. And the dynamic convergence
speed and estimation accuracy of the proposed FTESO are better than ESO (67) and FTESO
(68) with less chattering. This shows the advantages of our approach. Thus, each AUV can
accurately compensate for model uncertainties and external disturbances of its correspond-
ing subsystem in finite time.{ .

ẑi1 = ẑi2 − βi1ai1ei1 + Gi(ηi, vi) + τi.
ẑi2 = −β2

i1ai2ei1
. (67)

{ .
ẑi1 = ẑi2 − βi1sig3/4(ei1) + Gi(ηi, vi) + τi.
ẑi2 = −βi2sig1/2(ei1)

. (68)

 
Figure 4. Compound disturbance estimation errors ei2 of the ith AUV.

The collision avoidance performance of the AUV formation was tested via a set of
comparison experiments with and without collision avoidance constraints based on our
proposed scheme. Since the initial positions of the four AUVs are randomly distributed,
the risk of collision is increased. The formation trajectory without collision avoidance
constraints is shown in Figure 5 (top). Here, the four AUVs track the reference trajectory
while keeping the preset shape, but AUV3 and AUV4 collide at 10 s, followed by a collision
between AUV1 and AUV2 at 20 s. Specifically, as presented in Figure 6 (top), the relative
distance between AUV1 and AUV2 during the formation configuration stage exceeds
the safe distance, resulting in a collision. The same situation occurs with AUV3 and
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AUV4. However, when collision avoidance constraints are considered, the formation
trajectory (shown in Figure 5 (bottom)) indicates that the four AUVs can perform the
formation tracking task while avoiding collision during the configuration stage. The
collision avoidance performance is visualized in Figure 6 (bottom), where the distances
among AUVs within the detection zone are always greater than the safe distance, indicating
that inter-vehicle collision avoidance can be achieved. Therefore, the proposed control
scheme can provide real-time collision avoidance capability for AUV formation maneuvers.

Figure 5. 3-D formation trajectories without (top) and with (bottom) collision avoidance constraints.

 
Figure 6. Relative distances among AUVs without (top) and with (bottom) collision avoidance constraints.
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In order to assess the feasibility and superiority of the proposed scheme, we con-
ducted three sets of comparative simulations with the same parameters, constraints, and
disturbance settings: (a) the proposed FTESO-based dual closed-loop DMPC with Laguerre
function; (b) a FTESO-based dual closed-loop DMPC without Laguerre function; (c) a
standard DMPC without FTESO. Figures 7–16 plot the tracking performance curves of
AUV positional and velocity states under the three schemes. It can be easily observed that,
in all scenarios, the four AUVs are able to successfully track the desired state despite the
differing tracking errors. In scheme (a), full-state stable tracking is achieved within 200 s.
Meanwhile, in scheme (b), the process takes about 300 s, which suggests that the use of
the Laguerre function improves both the response speed and control accuracy. Although
the standard DMPC scheme (c) can also achieve formation tracking, the settling time of
the state variables is longer and accompanied by oscillations due to the uncompensated
compound disturbance effects. Compared with the other schemes, our proposed method
delivers superior formation tracking control performance.

 

Figure 7. State xi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

 

Figure 8. State yi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

 

Figure 9. State zi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 10. State θi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

 

Figure 11. State ψi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

 

Figure 12. State ui of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

Figure 13. State vi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.
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Figure 14. State wi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

 
Figure 15. State qi of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

 

Figure 16. State ri of the AUV formation system. (a) The proposed FTESO-based dual closed-loop
DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC without Laguerre
function. (c) The standard DMPC without FTESO.

Figure 17 intuitively presents a 3-D formation trajectory tracking. Combined with
Figures 7–16, it implies that all three schemes can successfully accomplish formation spiral
tracking under the specified input and state constraints. However, when the formation
faces harsh compound disturbances, the tracking performance of the controller without
disturbance compensation performs poorly, demonstrating a tracking error significantly
larger than that of the FTESO-based controller. This is because the compound disturbances
cause the AUV to deviate from the desired trajectory. By comparing the results of (a,b), it
can be further observed that the proposed control scheme with Laguerre function allows the
AUV to form the preset formation more quickly and converge to the desired trajectory more
smoothly. This implies a faster response at the onset of the task. Thus, the dual closed-loop
structure and Laguerre function enable the AUV formation to track the reference trajectory
with better speed and accuracy.
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Figure 17. 3-D trajectories of the AUV formation under different schemes. (a) The proposed FTESO-
based dual closed-loop DMPC with Laguerre function. (b) The FTESO-based dual closed-loop DMPC
without Laguerre function. (c) The standard DMPC without FTESO.

Without loss of generality, Figure 18 shows the actual control forces and moments
versus time for AUV1 under the three schemes. Without the benefit of FTESO to compensate
for compound disturbances, the fluctuations of the control force and moment are relatively
drastic and unstable (Figure 18(c1,c2)). This is attributed to the need for the AUV to
significantly rectify the driving forces and moments to more rapidly approach the deviated
reference trajectory. Under the proposed scheme, as shown in Figure 18(a1,a2), the AUV
forces and moments vary relatively smoothly, which makes the AUV track the trajectory
steadily when disturbed. Comparing Figure 18(a1,a2) and Figure 18(b1,b2), the Laguerre-
based controller has the fastest control signal response with the smallest amplitude when
the disturbances are accurately compensated. This confirms that our proposed scheme
(a) provides superior control performance. It is worth noting that the variation of control
forces and moments always remains within the prescribed limits. This reflects the ability
of the DMPC to handle the actuator saturation effectively, ensuring that the control input
for each DOF does not exceed the maximum force provided by the actuator, thus reducing
actuator losses.

 

Figure 18. Actual control force and moment for AUV1 under different schemes. (a1) Control force
of scheme (a). (a2) Control moments of scheme (a). (b1) Control force of scheme (b). (b2) Control
moments of scheme (b). (c1) Control force of scheme (c). (c2) Control moments of scheme (c).

To differentiate between the computational demands among the three schemes, we
recorded the emulator execution times under the same configurations. The detailed simu-
lation times corresponding to Figure 17 are given in Table 2. It can be observed that the
actual running time of the standard DMPC system is approximately 43.62 s. In contrast, the
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system with a dual closed-loop DMPC requires 57.91 s, which is about 32.8% longer than
the standard DMPC. This increase is due to the greater complexity of the dual closed-loop
structure as opposed to the simpler DMPC structure. Although there is improvement in
control efficacy, the execution of the dual closed-loop structure is sacrificed to some extent.
However, the proposed system, which employs a Laguerre-based dual closed-loop DMPC,
the computation time only requires 11.75 s. This suggests that, despite the inclusion of
both the dual closed-loop structure and FTESO, the use of the Laguerre function makes
the system solution faster. Thus, the proposed scheme can simultaneously improve the
computational speed and control performance.

Table 2. Comparison of controller execution time.

Control Scheme Simulation Time Run Time

Scheme (a) 600 s 11.75 s
Scheme (b) 600 s 57.91 s
Scheme (c) 600 s 43.62 s

5. Conclusions

In conclusion, this study presents a FTESO-based distributed dual closed-loop model
predictive control scheme for the AUV formation subject to compound disturbances. The
designed FTESO can compensate for model uncertainties and external disturbances of each
AUV faster and more accurately. Control inputs are determined by solving a constrained
DMPC optimization problem based on local information, while avoiding both collisions
among AUVs and actuator saturation. The Laguerre orthogonal function is applied to
alleviate the heavy computational burden, and the corresponding stability proof is provided.
Finally, based on a connected directed topology, simulation results of different schemes
are investigated under the same compound disturbances and system constraints. It is
confirmed that our proposed scheme provides the best tracking effect and superior active
disturbance rejection capability. Control signals show smaller oscillations and enhanced
stability. In addition, the computation time of our proposed formation control system,
which utilizes the Laguerre function, is reduced by 73.1% and 79.7% compared to the
standard DMPC system and the dual closed-loop DMPC system, respectively. This verifies
that our proposed scheme can respond quickly to minimize control costs and improve
real-time execution and dynamic performance of the system.

The proposed method does not consider the impact of communication burden on AUV
formation. Therefore, in future work, we will focus on the control scheme based on the
event-triggered mechanisms. Considering the limitations of the optimization accuracy of
discrete predictive control, we want to carry out research on continuous predictive control
with faster control response. In addition, it is essential to conduct formation obstacle
avoidance research and real AUV experiments.

Author Contributions: Conceptualization, M.Z. and Z.Y.; Data curation, J.Z. and L.Y.; Funding
acquisition, Z.Y.; Investigation, J.Z. and L.Y.; Methodology, M.Z.; Resources, Z.Y.; Software, L.Y.;
Validation, M.Z.; Visualization, J.Z.; Writing—original draft, M.Z.; Writing—review & editing, M.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China under grant No.
52071102, and in part by National Natural Science Foundation of China under grant No. 51679057.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

45



J. Mar. Sci. Eng. 2023, 11, 1897

References

1. Shi, Y.; Shen, C.; Fang, H.; Li, H. Advanced control in marine mechatronic systems: A survey. IEEE ASME Trans. Mechatron. 2017,
22, 1121–1131. [CrossRef]

2. Liu, G.; Chen, L.; Liu, K.; Luo, Y. A swarm of unmanned vehicles in the shallow ocean: A survey. Neurocomputing 2023, 531, 74–86.
[CrossRef]

3. Yu, H.; Zeng, Z.; Guo, C. Coordinated formation control of discrete-time autonomous underwater vehicles under alterable
communication topology with time-varying delay. J. Mar. Sci. Eng. 2022, 10, 712. [CrossRef]

4. Chen, Y.L.; Ma, X.W.; Bai, G.Q.; Sha, Y.; Liu, J. Multi-autonomous underwater vehicle formation control and cluster search using a
fusion control strategy at complex underwater environment. Ocean Eng. 2020, 216, 108048. [CrossRef]

5. Zhen, Q.; Wan, L.; Li, Y.; Jiang, D. Formation control of a multi-AUVs system based on virtual structure and artificial potential
field on SE(3). Ocean Eng. 2022, 253, 111148. [CrossRef]

6. Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Sliding mode based neural adaptive formation control of underactuated AUVs with
leader-follower strategy. Appl. Ocean Res. 2020, 94, 101971. [CrossRef]

7. He, X.; Geng, Z. Globally convergent leaderless formation control for unicycle-type mobile robots. IET Contr. Theory Appl. 2020,
14, 2651–2662. [CrossRef]

8. Munir, M.; Khan, Q.; Ullah, S.; Syeda, T.M.; Algethami, A.A. Control Design for Uncertain Higher-Order Networked Nonlinear
Systems via an Arbitrary Order Finite-Time Sliding Mode Control Law. Sensors 2022, 22, 2748. [CrossRef]

9. Ullah, S.; Khan, Q.; Mehmood, A.; Kirmani, S.A.M.; Mechali, O. Neuro-adaptive fast integral terminal sliding mode control design
with variable gain robust exact differentiator for under-actuated quadcopter UAV. ISA Trans. 2022, 120, 293–304. [CrossRef]

10. Zhang, W.; Wu, W.; Li, Z.; Du, X.; Yan, Z. Three-Dimensional Trajectory Tracking of AUV Based on Nonsingular Terminal Sliding
Mode and Active Disturbance Rejection Decoupling Control. J. Mar. Sci. Eng. 2023, 11, 959. [CrossRef]

11. Cui, R.; Chen, L.; Yang, C.; Chen, M. Extended state observer-based integral sliding mode control for an underwater robot with
unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 2017, 64, 6785–6795. [CrossRef]

12. Ding, S.; Chen, W.H.; Mei, K.; Murray-Smith, D.J. Disturbance observer design for nonlinear systems represented by input-output
models. IEEE Trans. Ind. Electron. 2019, 67, 1222–1232. [CrossRef]

13. Liang, X.; Qu, X.; Wan, L.; Ma, Q. Three-dimensional path following of an underactuated AUV based on fuzzy backstepping
sliding mode control. Int. J. Fuzzy Syst. 2018, 20, 640–649. [CrossRef]

14. Zhang, G.; Yin, S.; Huang, C.; Zhang, W. Intervehicle Security-Based Robust Neural Formation Control for Multiple USVs via
APS Guidance. J. Mar. Sci. Eng. 2023, 11, 1020. [CrossRef]

15. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [CrossRef]
16. Lei, M.; Li, Y.; Pang, S. Extended state observer-based composite-system control for trajectory tracking of underactuated AUVs.

Appl. Ocean Res. 2021, 112, 102694. [CrossRef]
17. Nie, J.; Wang, H.; Lu, X.; Lin, X.; Sheng, C.; Zhang, Z.; Song, S. Finite-time output feedback path following control of underactuated

MSV based on FTESO. Ocean Eng. 2021, 224, 108660. [CrossRef]
18. Wang, N.; Zhu, Z.; Qin, H.; Deng, Z.; Sun, Y. Finite-time extended state observer-based exact tracking control of an unmanned

surface vehicle. Int. J. Robust Nonlinear Control. 2021, 31, 1704–1719. [CrossRef]
19. Sankaranarayanan, V.N.; Yadav, R.D.; Swayampakula, R.K.; Ganguly, S.; Roy, S. Robustifying payload carrying operations for

quadrotors under time-varying state constraints and uncertainty. IEEE Robot. Autom. Lett. 2022, 7, 4885–4892. [CrossRef]
20. Chu, Z.; Xiang, X.; Zhu, D.; Luo, C.; Xie, D. Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with

input constraint. Int. J. Fuzzy Syst. 2018, 20, 1460–1469. [CrossRef]
21. Li, S.; Wang, X. Finite-time consensus and collision avoidance control algorithms for multiple AUVs. Automatica 2013, 49,

3359–3367. [CrossRef]
22. Xu, J.; Huang, F.; Wu, D.; Cui, Y.; Yan, Z.; Du, X. A learning method for AUV collision avoidance through deep reinforcement

learning. Ocean Eng. 2022, 260, 112038. [CrossRef]
23. Zhang, Y.; Liu, X.; Luo, M.; Yang, C. MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints

in complex ocean environments. Ocean Eng. 2019, 189, 106309. [CrossRef]
24. Arcos-Legarda, J.; Gutiérrez, Á. Robust Model Predictive Control Based on Active Disturbance Rejection Control for a Robotic

Autonomous Underwater Vehicle. J. Mar. Sci. Eng. 2023, 11, 929. [CrossRef]
25. Zheng, Y.; Li, S.E.; Li, K.; Borrelli, F.; Hedrick, J.K. Distributed model predictive control for heterogeneous vehicle platoons under

unidirectional topologies. IEEE Trans. Control Syst. Technol. 2016, 25, 899–910. [CrossRef]
26. Wei, H.; Shen, C.; Shi, Y. Distributed Lyapunov-based model predictive formation tracking control for autonomous underwater

vehicles subject to disturbances. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 5198–5208. [CrossRef]
27. Shen, C.; Shi, Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking. Automatica 2020,

115, 108863. [CrossRef]
28. Li, B.; Hu, Q.; Yu, Y.; Ma, G. Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst.

2017, 53, 2572–2582. [CrossRef]
29. Wei, H.; Sun, Q.; Chen, J.; Shi, Y. Robust distributed model predictive platooning control for heterogeneous autonomous surface

vehicles. Control Eng. Pract. 2021, 107, 104655. [CrossRef]

46



J. Mar. Sci. Eng. 2023, 11, 1897

30. Zhao, R.; Miao, M.; Lu, J.; Wang, Y.; Li, D. Formation control of multiple underwater robots based on ADMM distributed model
predictive control. Ocean Eng. 2022, 257, 111585. [CrossRef]

31. Hu, Q.; Jiang, B. Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer. IEEE Trans.
Aerosp. Electron. Syst. 2018, 54, 1082–1092. [CrossRef]

32. Yan, Z.; Gong, P.; Zhang, W.; Li, Z.; Teng, Y. Autonomous underwater vehicle vision guided docking experiments based on
L-shaped light array. IEEE Access 2019, 7, 72567–72576. [CrossRef]

33. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011.
34. Xu, J.; Cui, Y.; Xing, W.; Huang, F.; Yan, Z.; Wu, D.; Chen, T. Anti-disturbance fault-tolerant formation containment control for

multiple autonomous underwater vehicles with actuator faults. Ocean Eng. 2022, 266, 112924. [CrossRef]
35. Tao, T.; Roy, S.; De Schutter, B.; Baldi, S. Distributed Adaptive Synchronization in Euler Lagrange Networks with Uncertain

Interconnections. IEEE Trans. Autom. Control, 2013; online ahead of print.
36. Roy, S.; Baldi, S.; Fridman, L.M. On adaptive sliding mode control without a priori bounded uncertainty. Automatica 2020,

111, 108650. [CrossRef]
37. Kong, S.; Sun, J.; Wang, J.; Zhou, Z.; Shao, J.; Yu, J. Piecewise Compensation Model Predictive Governor Combined with

Conditional Disturbance Negation for Underactuated AUV Tracking Control. IEEE Trans. Ind. Electron. 2022, 70, 6191–6200.
[CrossRef]

38. Wang, L. Continuous time model predictive control design using orthonormal functions. Int. J. Control. 2001, 74, 1588–1600.
[CrossRef]

39. Yan, Z.; Wang, M.; Xu, J. Integrated guidance and control strategy for homing of unmanned underwater vehicles. J. Frankl.
Inst.-Eng. Appl. Math. 2019, 356, 3831–3848. [CrossRef]

40. Hosen, M.A.; Hussain, M.A.; Mjalli, F.S. Control of polystyrene batch reactors using neural network based model predictive
control (NNMPC): An experimental investigation. Control Eng. Pract. 2011, 19, 454–467. [CrossRef]

41. Cortes, P.; Kouro, S.; La Rocca, B.; Vargas, R.; Rodriguez, J.; Leon, J.I.; Vazquez, S.; Franquelo, L.G. Guidelines for weighting
factors design in Model Predictive Control of power converters and drives. In Proceedings of the IEEE International Conference
on Industrial Technology, Churchill, VIC, Australia, 10–13 February 2009; pp. 1–7.

42. Zhang, C.; Zhang, G.; Dong, Q. Multi-variable finite-time observer-based adaptive-gain sliding mode control for fixed-wing UAV.
IET Contr. Theory Appl. 2021, 15, 223–247. [CrossRef]

43. Ma, C.; Tang, Y.; Lei, M.; Jiang, D.; Luo, W. Trajectory tracking control for autonomous underwater vehicle with disturbances and
input saturation based on contraction theory. Ocean Eng. 2022, 266, 112731. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

47





Citation: Pan, Z.; Guo, W.; Sun, H.;

Zhou, Y.; Lan, Y. Path Planning of

Deep-Sea Landing Vehicle Based on

the Safety Energy-Dynamic Window

Approach Algorithm. J. Mar. Sci. Eng.

2023, 11, 1892. https://doi.org/

10.3390/jmse11101892

Academic Editor: Kamal Djidjeli

Received: 24 August 2023

Revised: 24 September 2023

Accepted: 26 September 2023

Published: 28 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Path Planning of Deep-Sea Landing Vehicle Based on the Safety
Energy-Dynamic Window Approach Algorithm

Zuodong Pan 1,2, Wei Guo 1,3,*, Hongming Sun 1,3, Yue Zhou 2,* and Yanjun Lan 1

1 Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
zuodongpan@163.com (Z.P.); sunhm@idsse.ac.cn (H.S.); lanyj@idsse.ac.cn (Y.L.)

2 School of Engineering, Shanghai Ocean University, Shanghai 201306, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: guow@idsse.ac.cn (W.G.); y-zhou@shou.edu.cn (Y.Z.)

Abstract: To ensure the safety and energy efficiency of autonomous sampling operations for a deep-
sea landing vehicle (DSLV), the Safety Energy-Dynamic Window Approach (SE-DWA) algorithm
was proposed. The safety assessment sub-function formed from the warning obstacle zone and
safety factor addresses the safety issue arising from the excessive range measurement error of
forward-looking sonar. The trajectory comparison evaluation sub-function with the effect of reducing
energy consumption achieves a reduction in path length by causing the predicted trajectory to
deviate from the historical trajectory when encountering “U”-shaped obstacles. The pseudo-power
evaluation sub-function with further energy consumption reduction ensures optimal linear and
angular velocities by minimizing variables when encountering unknown obstacles. The simulation
results demonstrate that compared with the Minimum Energy Consumption-DWA algorithm, the
SE-DWA algorithm improves the minimum distance to an actual obstacle zone by 68% while reducing
energy consumption by 11%. Both the SE-DWA algorithm and the Maximum Safety-DWA (MS-DWA)
algorithm ensure operational safety with minimal distance to the actual obstacle zone, yet the SE-
DWA algorithm achieves a 24% decrease in energy consumption. In conclusion, the path planned
by the SE-DWA algorithm ensures not only safety but also energy consumption reduction during
autonomous sampling operations by a DSLV in the deep sea.

Keywords: deep-sea landing vehicle; the Safety Energy-Dynamic Window Approach algorithm; safe;
low energy consumption; autonomous sampling operations

1. Introduction

The abundance of marine resources has attracted global attention as resources, energy,
and space available on land are gradually diminishing [1,2]. The Deep-Sea Landing Vehicle
(DSLV) is an autonomous deep-sea equipment capable of long-term, large-scale, and short-
distance refinement operations in the deep-sea environment [3,4]. There is a huge challenge
for DSLV to complete autonomous sampling operations because the forward-looking sonar
has a large ranging error caused by-deep sea noise and the battery power of the DSLV is
limited. Therefore, planning a safe and energy-efficient path holds significant importance
for DSLV in autonomous sampling operations.

Path planning is categorized into global path planning and local path planning. Global
path planning relies on accurate global maps to efficiently achieve collision-free and shortest
path planning [5,6]. Local path planning is real-time path planning in unknown environ-
ments based on data collected by relevant sensors such as LiDAR and forward-looking
sonar, with higher requirements for path safety, smoothness, and traceability [7–9]. The
Dynamic Window Approach (DWA) algorithm, one of the classical algorithms for two-
dimensional local path planning, generates trajectories and assigns scores through feasible
velocity combinations to directly determine the optimal velocity [10,11]. The algorithm
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considers the robot’s physical constraints, environmental factors, and current state compre-
hensively without requiring path following.

Xin et al. [12] proposed an Enhanced DWA algorithm that takes the distance function
as the weight of the target-oriented coefficient, which effectively optimizes the stability of
the mobile robot during operation with lower angular velocity dispersion and less energy
consumption. However, this algorithm has a longer runtime compared with the DWA
algorithm. While using this algorithm for autonomous sampling operations can reduce
energy consumption in the propulsion system, it may increase energy consumption in
other systems such as positioning and communication. Additionally, it does not account
for safety concerns in the deep-sea environment.

Wang et al. [13] proposed an ACO-DWA algorithm that addresses the issue of poor
obstacle avoidance performance for robots in high-density obstacle environments and
unknown obstacle static environments. This algorithm effectively addresses safety concerns
for DSLVs in the deep-sea environment. However, it lacks an energy-related evaluation
sub-function, leading to an inability to reduce the DSLV’s energy consumption during
autonomous sampling operations.

Masato Kobayashi et al. [14] proposed the DWV (Dynamic Window Approach with
Virtual Manipulators) algorithm, which enhances the robot’s success rate in reaching the
target point by generating more predictive trajectories in narrow or dynamic environments.
While this algorithm can ensure a certain degree of energy reduction by reducing the path
length, the safety of DSLV is not guaranteed when applying this algorithm for autonomous
sampling operations.

Figure 1 illustrates the deep-sea autonomous sampling operations for DSLV. The appli-
cation of the DWA algorithm for autonomous sampling operations in the deep sea has two
deficiencies. (1) The safety of the DSLV is considerably compromised when encountering
ground obstacles such as underwater ridges in unknown deep-sea environments. This com-
promise is mainly due to the degradation of the accuracy of forward sonar ranging caused
by deep-sea noise. The detected obstacle volume may be smaller than the actual volume
due to the decrease in accuracy [15,16]. (2) The limited energy of DSLV will be depleted
more quickly due to the absence of energy consumption-related evaluation sub-functions
in the DWA algorithm [3].

Figure 1. DSLV deep-sea autonomous sampling operations. � The safety of the DSLV.

To address the above issues, improvements and additional evaluation sub-functions
have been introduced to ensure the safety and reduce energy consumption during au-
tonomous sampling operations. The safety assessment sub-function, formed of warning
obstacle zones and safety factors, addresses safety concerns arising from the decreased
accuracy of forward-looking sonar due to underwater noise and other factors. The tra-
jectory comparison evaluation sub-function reduces energy consumption by decreasing
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the path length when encountering “U”-shaped obstacles. The pseudo-power evaluation
sub-function reduces energy consumption by optimizing linear and angular velocities
when encountering unknown deep-sea obstacles.

The subsequent sections of this paper are outlined as follows: Section 2 presents the
kinematic modelling of the DSLV. Section 3 introduces the fundamental principles of the
SE-DWA algorithm and the flows of applying it to the DSLV for deep-sea autonomous
sampling operations. Section 4 determines the coefficients of the SE-DWA algorithm’s
evaluation functions and compares them with the DWA algorithm in terms of safety and
energy consumption under a deep-sea environmental map. Section 5 concludes the findings
of this article.

2. Kinematic Modelling of DSLV

Flat abyssal plain areas are commonly chosen to enhance the success rate of au-
tonomous sampling operations for DSLV [17]. The problem is simplified to a two-dimensional
plane for algorithmic research, as the terrain changes in these areas are minor and negligible.

The DSLV developed in this paper utilizes a dual-motor rear-wheel drive system,
controlled differentially to manage its forward, backward and steering movements. The
schematic diagram of bilateral motor drive of DSLV is shown in Figure 2.

Figure 2. The schematic diagram of bilateral motor drive of DSLV.

The DSLV kinematic modelling diagram is shown in Figure 3. In the Cartesian
coordinate system O-XY, let x(t) and y(t) represent the horizontal and vertical coordinates of
the geometric center of the DSLV, respectively, and θ denotes the heading angle. The project
team reinforced the track structure’s tensioner brackets to withstand the impact of landing
on the seabed during the design phase of the DSLV. Furthermore, the DSLV maintains a
slow crawling speed when operating on a flat sandy bottom. For analysis purposes, it can
be assumed that the DSLV’s center of mass aligns with the geometric center. Consequently,
the linear and angular velocities of its center of mass are as follows:{

v = ωR = vo+vi
2

ω = vo−vi
B

(1)

where the expressions for vo and vi are as follows:{
vo = (1 − s1)·r1·ω1
vi = (1 − s2)·r1·ω2

(2)

where R represents the steering radius; vo and vi denote the linear velocities of the left
and right tracks, respectively; B indicates the center distance between the left and right
tracks; s1 and s2 refer to the slip rates of the left and right tracks, respectively; r1 stands for
the radius of the left and right track drive wheels; and ω1 and ω2 represent the angular
velocities of the left and right track drive wheels, respectively.
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Figure 3. DSLV kinematic modelling diagram.

By combining Equation (1) and Figure 3, the position coordinates of the DSLV at
moment t can be obtained as (x(t), y(t), ϕ(t)), as shown in Equation (3), and the position
coordinates corresponding to moment t + 1 can be obtained as (x(t + 1), y(t + 1), ϕ(t + 1)),
as shown in Equation (4). ⎧⎨⎩

x(t) = v· cos θ·t
y(t) = v· sin θ·t
ϕ(t) = ω·t

(3)

⎧⎪⎨⎪⎩
x(t + 1) = x(t) +

∫ t+1
t (v· cos θ·t)dt

y(t + 1) = y(t) +
∫ t+1

t (v· sin θ·t)dt
ϕ(t + 1) = ϕ(t) +

∫ t+1
t (ω)dt

(4)

The DSLV autonomous sampling control module model is shown in Figure 4.
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iv
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Figure 4. The DSLV control module model.

3. The SE-DWA Algorithm

3.1. Velocity Constraints

The speed window of the SE-DWA algorithm is illustrated in Figure 5. It is constrained
by speed limit (Ev), safety limits (Eo), and the acceleration and deceleration limits of
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the motor drive (Ea) [18]. The expression (Eall) for the velocity window of the SE-DWA
algorithm is as follows:

Eall = Ev ∩ Eo ∩ Ea (5)

max

oE

vE

min

maxv

aE

Figure 5. The speed window of the SE-DWA algorithm.

(1) Speed limit

The maximum and minimum speed limits for DSLV are as follows:

Ev = {(v, ω)|v ∈ [0, vmax], ω ∈ [ωmin, ωmax]} (6)

where vmax represent the maximum linear velocities, and ωmin and ωmax represent the
minimum and maximum angular velocities.

(2) Security restriction

The DSLV limits the speed window to avoid collisions with obstacles, and the limited
speed window is as follows:

Eo =

⎧⎨⎩
{
(v, ω)|v ≤

√
2·distobs(v, ω)· .

v ∩ ω ≤
√

2·distobs(v, ω)· .
ω
}

Ldist > 2σsonar
max{

(v, ω)|v ≤
√

2·distwarn(v, ω)· .
v ∩ ω ≤

√
2·distwarn(v, ω)· .

ω
}

0 < Ldist ≤ 2σsonar
max

(7)

where distobs(v, ω) represents the distance on the trajectory corresponding to the velocity
combination to the nearest obstacle zone; distwarn(v, ω) represents the distance on the
trajectory corresponding to the velocity combination to the nearest warning obstacle zone;
Ldist represents the distance between the edges of the two nearest obstacle zone; and σsonar

max
represents the maximum error value of the forward sonar ranging distance.

(3) Reachable speed limit

The range of DSLV speed combinations in a sampling period is as follows:

Ea =
{
(v, ω)

∣∣v ∈ [v0 − .
v·Δt, v0 +

.
v·Δt], ω ∈ [ω0 − .

ω·Δt, ω0 +
.

ω·Δt]
}

(8)

where v0 and ω0 represent the current linear and angular velocities of the DSLV;
.
v and

.
ω

represent the maximum linear accelerations and angular accelerations of the DSLV; and Δt
represents the sampling period.

3.2. Evaluation Function
3.2.1. Safety Evaluation Sub-Function

The DWA algorithm requires real-time acquisition of obstacle positions as a component
of its local path-planning approach. However, the precision of forward sonar ranging data
in the deep-sea environment is lower and the errors are larger compared with LiDAR
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ranging data on land [16,19]. The inability to guarantee the safety of autonomous sampling
operations on the seafloor emphasizes the need to address this issue. In this section, the
obstacle avoidance evaluation sub-function within the DWA algorithm will be enhanced
and will be named the safety evaluation sub-function.

The safety evaluation sub-function calculates its cost based on the distance between
the predicted trajectory and obstacles, multiplied by the safety coefficient corresponding to
the warning obstacle zone. Figure 6 illustrates the method for computing this cost, using
the example of cost calculation for the i-th predicted trajectory and j-th obstacle. To prevent
a sharp increase in cost due to a high number of obstacles in the local map, a threshold
radius Rsa f e is established, with the geometric center of the DSLV as the point of origin.
When the j-th obstacle located within this circle, the cost associated with the i-th predicted
trajectory encountering the j-th obstacle is as follows:

costsa f e
ij = ηLsa f e

ij (9)

where η represents the safety coefficient and Lsa f e
ij represents the distance from the end-

point of predicted trajectory i to the center of the j-th obstacle. Their respective values
are as follows:

η =

⎧⎪⎨⎪⎩
0.8 0 < Lobsmin

ij ≤ σsonar
max /2

0.9 σsonar
max /2 < Lobsmin

ij ≤ σsonar
max

1.0 σsonar
max < Lobsmin

ij

(10)

Lsa f e
ij = (

√
(xj − xi)

2 +
√
(yj − yi)

2) (11)

where Lobsmin
ij represents the closest distance from the endpoint of predicted trajectory i to

the edge of the j-th obstacle; xi and yi represent the x and y coordinates of the endpoint of
predicted trajectory i, respectively; and xj and yj represent the x and y coordinates of the
center of the j-th obstacle, respectively.

Figure 6. Computation method of safety sub-function cost values.

The expression for the safety evaluation sub-function of predicted trajectory i within
the current sampling cycle is as follows:

sa f e(v, ω)i =
1

jmax

jmax

∑
j=1

costsa f e
ij (12)

where jmax represents the number of obstacles within a radius of Rsa f e.
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The construction of the obstacle zone, actual obstacle zone, and warning obstacle zone
is illustrated in Figure 7. In the figure, λ = rand[−σsonar

max , σsonar
max ]. Both the obstacle zone and

the actual obstacle zone are impassable areas. The obstacle zone is a known area, while the
actual obstacle zone is unknown. Both the DWA algorithm and the SE-DWA algorithm plan
paths based on the obstacle zone. However, a certain distance from the actual obstacle zone
is required to ensure the safety of DSLV’s autonomous sampling operations. In trajectory
one, obstacles are enlarged by the DSLV’s width, resulting in a shorter path length but
lower safety. The algorithm corresponding to trajectory one will be referred to as the
Minimum Energy Consumption-DWA (MEC-DWA) algorithm. In trajectory two, obstacles
are expanded by the DSLV’s width and σsonar

max , resulting in a longer path length but higher
safety. The algorithm corresponding to trajectory two will be referred to as the Maximum
Safety-DWA (MS-DWA) algorithm.

Figure 7. Region construction.

Figure 8 illustrates the mechanism of the safety evaluation sub-function. In trajectory
one, obstacles are expanded only by the DSLV’s width. The volume of the actual obstacle
zone can easily exceed the obstacle zone, leading to safety concerns. However, trajectory
two involves obstacles that are expanded by both the DSLV’s width and σsonar

max . Although
the volume of the actual obstacle zone cannot exceed the obstacle zone, the excessive
inflation requires DSLV to crawl a longer distance to reach the target point. In trajectory
three, despite expanding the obstacles only by the DSLV’s width, the presence of the
warning obstacle zone and the safety evaluation sub-function lead to a different choice.
Under the same linear and angular velocities, when compared with the DWA algorithm, it
selects position 2 instead of position 1. This decision keeps it away from the actual obstacle
zone, ensuring the safety of the DSLV.

Figure 8. The mechanism of the safety evaluation sub-function.
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3.2.2. Trajectory Comparison Evaluation Sub-Function

The seafloor is filled with irregular obstacles, making it prone to the formation of a
“U”-shaped obstacle environment [20]. The DWA algorithm, due to the scoring mechanism
of its evaluation functions, may end up crawling a longer distance while attempting to
find an exit from the “U”-shaped obstacle environment. In some cases, it might even
become stuck without finding a way out. To address this issue, this section introduces a
new trajectory comparison evaluation sub-function.

The trajectory comparison evaluation sub-function entails evaluating the proximity of
predicted trajectories to the grid cells occupied by historical trajectories, which contributes
to the calculation of the cost value used for scoring. Figure 9 illustrates the method for
computing the cost value of the trajectory comparison evaluation sub-function. The shaded
area represents grid cells within a radius of Rlocus around the historical trajectory. Taking the
calculation of predicted trajectory m and historical trajectory n as an example, a threshold
radius of Rlocus is established with the DSLV’s geometric center as the origin. When
historical trajectory n falls within the circle, the corresponding cost value for predicted
trajectory m in relation to historical trajectory n is as shown below:

costlocus
mn =

(
Rlocus − Llocus

mn

)
·||v − v0

vmax
|| (13)

where Llocus
mn represents the distance from the endpoint of the predicted trajectory m to the

grid cell where the historical trajectory n is located, and v and vmax, respectively, denote
the current linear velocity at the endpoint of the predicted trajectory m and the maximum
linear velocity achievable within the current velocity window. (The addition of velocity
terms aims to prevent a sharp increase in the cost values for the surrounding grid cells
when the vehicle travels at low speeds.)

Figure 9. Computation method of trajectory contrast sub-function cost values.

The expression for the trajectory comparison evaluation sub-function of the predicted
trajectory m is as follows:

locus(v, ω) =
1

nmax

nmax

∑
n=1

costlocus
mn (14)

where nmax represents the number of grid cells within a radius of Rlocus that contain
historical trajectories.

Figure 10 illustrates the mechanism of the trajectory comparison evaluation sub-
function. Trajectories four and five are generated by the DWA algorithm and the SE-DWA
algorithm, respectively. When faced with a ‘U’-shaped obstacle environment, trajectory five
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is more favorable than trajectory four because of its ability to escape local optima. When
scoring is conducted using the evaluation function of the DWA algorithm, satisfying both
conditions θ1 < θ2 and d1 < d2, the two trajectories will receive similar scores, making
it challenging to determine their relative superiority. However, with the inclusion of the
trajectory comparison evaluation sub-function, the cost of grid cells within the purple circle
for trajectory four is lower compared with that for trajectory five. As a result, trajectory
five receives a higher score, allowing the DSLV to identify the exit of the ‘U’-shaped
obstacle environment.

Figure 10. The mechanism of the trajectory contrast sub-function.

3.2.3. Pseudo-Power Evaluation Sub-Function

The trajectory comparison evaluation sub-function aims to decrease energy consump-
tion by minimizing the distance crawled by the DSLV. According to the reference literature,
the DSLV maintains optimal velocity during crawling to minimize variations in the linear
and angular velocities, which can reduce energy consumption to a certain extent [21,22].
Therefore, the constructed pseudo-power evaluation sub-function is as follows:

energy(v, ω) = 1 − v· .
v + ω· .

ω

vmax· .
vmax + ωmax· .

ωmax
(15)

where
.
v and

.
ω represent linear and angular accelerations, respectively, and

.
vmax and

.
ωmax

represent the maximum linear velocity and the maximum angular acceleration, respectively.

3.3. Evaluation Function of the SE-DWA Algorithm

To satisfy the dynamic constraint conditions of the DSLV, the evaluation sub-functions
need to undergo a smoothing process, specifically normalization. The calculation formula
is shown as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

head(v, ω)smooth
k =

head(v,ω)k
K
∑

k=1
head(v,ω)k

sa f e(v, ω)smooth
k =

sa f e(v,ω)k
K
∑

k=1
sec (v,ω)k

vel(v, ω)smooth
k =

vel(v,ω)k
K
∑

k=1
vel(v,ω)k

locus(v, ω)smooth
k =

locus(v,ω)k
K
∑

k=1
locus(v,ω)k

energy(v, ω)smooth
k =

energy(v,ω)k
K
∑

k=1
energy(v,ω)k

(16)

where K represents the total number of predicted trajectories; k represents the current
predicted trajectory under evaluation; head(v, ω) represents the navigation evaluation
sub-function, which indicates the complement angle between the velocity direction and the
target point; sa f e(v, ω) represents the safety evaluation sub-function; vel(v, ω) represents
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the velocity evaluation sub-function, which indicates the speed magnitude in the trajectory;
locus(v, ω) represents the trajectory comparison evaluation sub-function; and energy(v, ω)
represents the pseudo-power evaluation sub-function.

The final evaluation function of the SE-DWA algorithm is as follows:

G(v, ω) = γ1head(v, ω)smooth
k + γ2sa f e(v, ω)smooth

k + γ3vel(v, ω)smooth
k

+γ4locus(v, ω)smooth
k + γ5energy(v, ω)smooth

k
(17)

where γ1, γ2, γ3, γ4, and γ5 represent the weights of the five evaluation sub-functions,
respectively.

3.4. Application of the SE-DWA Algorithm in DSLV

The process diagram of DSLV applying the SE-DWA algorithm is depicted in Figure 11,
with the following main steps. (1) Initialization: the deep-sea environment data acquired
using sensors such as forward sonar are used to construct a map using the grid-based
method. Subsequently, the destination point is established. (2) The SE-DWA algorithm:
after acquiring a DSLV’s state parameters, the SE-DWA algorithm’s evaluation function is
employed to determine the optimal predicted trajectory for the sampling period. (3) Real-
time environmental detection: sensors continuously monitor the surrounding environment.
When a potential collision with an actual obstacle zone or a local optimum is detected,
adjustments in heading angle are executed. (4) Destination detection: at the end of each
sampling period, a check is performed to verify whether the DSLV has reached the target
point. If the target point has been reached, the path planning for this cycle is concluded.
Otherwise, steps (2) and (3) are reiterated until the target point is attained.

Figure 11. Flowchart of the SE-DWA algorithm for DSLV applications.
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4. Simulation Experiment

4.1. Determination of Evaluation Function Coefficients

The SE-DWA algorithm comprises five evaluation sub-functions associated with four
weights. These weights are designated as the navigation weight, safety weight, velocity
weight, and energy consumption weight. The navigation weight corresponds to the naviga-
tion evaluation sub-function, which is used to control the DSLV’s motion direction. The
safety weight corresponds to the safety evaluation sub-function, which is employed to
prevent collisions between the DSLV and obstacles. The velocity weight pertains to the
velocity evaluation sub-function, governing the DSLV’s maximum linear velocity. The
energy consumption weight is associated with both the trajectory comparison evaluation
sub-function and the pseudo-power sub-function. It serves the purpose of reducing path
length and ensuring optimal velocity, respectively, thus lowering energy consumption.

The coefficients for the navigation evaluation sub-function, safety evaluation sub-
function, and velocity evaluation sub-function in the SE-DWA algorithm are referenced
from the coefficients set in the DWA algorithm [18]. To determine the coefficients for
the trajectory comparison evaluation sub-function and the pseudo-power evaluation sub-
function, simulation experiments are conducted in the simulated deep-sea environmental
map (80 m × 80 m) shown in Figure 12. In the figure, S(2,2) and G(78,78) represent the
starting point and the goal point, respectively. Assuming that DSLV behaves as a point
mass, obstacles were constructed as shown in Figure 7 to form obstacle zones, actual
obstacle zones, and warning obstacle zones. The algorithm was validated using Matlab
2018a. The software was run on a 64-bit operating system with an Intel(R) Core(TM) i5-5200
CPU processor.

Figure 12. Map of the deep-sea environment.

To determine the ratio between the coefficients of the safety evaluation sub-function,
trajectory comparison evaluation sub-function, and pseudo-power evaluation sub-function,
a coefficient ratio (ratio = γ2/(γ4 + γ5)) was set from 0 to 2 in increments of 0.1 for ten
path-planning experiments. During these experiments, the closest distance to an actual
obstacle zone and the average energy consumption when moving to the target point were
recorded. Finally, the relationship between the coefficient ratio and the closest distance to
obstacles and energy consumption is illustrated in Figure 13.
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Figure 13. The relationship between average energy consumption and the average distance to actual
obstacle zone. (a) The average energy consumption and the average distance to actual obstacle zone
of the three-dimensional graph; (b) the average energy consumption and the average distance to
actual obstacle zone of the two-dimensional graph.

From Figure 13, it can be observed that the closest distance to the actual obstacle zone
increased from 0.5 m to 3 m when the coefficient ratio ranged from 0.5 to 1.5, indicating a
significant improvement in safety distance. However, in the range of 1.5 to 2.0, the value
remained relatively stable at around 3 m, indicating little change in safety distance. As
for energy consumption, it gradually increased within the coefficient ratio of 0.6 to 1.5,
while a noticeable upward trend was observed in the range of 1.5 to 2.0. To strike a balance
between energy consumption and safety considerations, the coefficient ratio of 1.5 was
selected, corresponding to a ratio of 3:2 for the coefficients. As a result, the final coefficient
ratios for the safety evaluation sub-function, trajectory comparison evaluation sub-function,
and pseudo-power evaluation sub-function were determined to be in the ratio of 3:1:1.

4.2. Simulated Experiments in the Deep-Sea Environment

To validate the effectiveness of applying the SE-DWA algorithm to autonomous sam-
pling operations in the deep sea, a simulation-based verification is conducted in the un-
derwater environment depicted in Figure 12. The simulation parameters for the DSLV are
outlined in Table 1, where the DSLV slip rate (s1 and s2) is referenced from the literature [23].
The simulation parameters for both the DWA algorithm and the SE-DWA algorithm are
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detailed in Tables 2 and 3, respectively. In these tables, tpre refers to prediction time, R1
represents the inflation of the DSLV’s body width, R2 denotes the inflation maximum error,
R3 signifies the safety distance, and σsonar

max is referenced from the literature [16,24].

Table 1. Simulation parameters for the DSLV.

vmax ωmax ωmin
.
vmax

.
ωmax s1,s2

0.2 m/s 0.4 rad/s −0.4 rad/s 0.1 m/s2 0.15 0.85~1.0

Table 2. Simulation parameters for the DWA algorithm.

α1 α2 α3 tpre R1 R2

0.1 0.3 0.2 5 s 1 m 2 m

Table 3. Simulation parameters for the SE-DWA algorithm.

γ1 γ2 γ3 γ4 γ5 tpre R1 R3 σsonar
max Rsafe Rlocus

0.1 0.3 0.2 0.1 0.1 5 s 1 m 0.5 m 2 m 30 m 25 m

Constructing the environmental map in Figure 10 based on the scheme in Figure 7,
three approaches—namely the MEC-DWA algorithm, the MS-DWA algorithm, and the SE-
DWA algorithm—are employed for 50 simulation experiments. The distinction between the
MEC-DWA algorithm and the MS-DWA algorithm resides solely in their size-to-obstacle
expansion. They exemplify two extremes concerning safety and energy consumption. The
paths produced by the MEC-DWA algorithm demonstrate the lowest attainable energy
consumption within the realm of DWA algorithms, albeit at the expense of the safety perfor-
mance. Conversely, the paths generated by the MS-DWA algorithm attain the highest level
of safety among DWA algorithms but do so at the cost of the highest energy consumption.

The comparison of distances to actual obstacle zones and energy consumption for
these 50 simulations is illustrated in Figures 14 and 15. The statistical results, including the
average values for the simulation data, are presented in Table 4.

 
(a) 

Figure 14. Cont.
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(b) 

Figure 14. Comparison analysis of distance to actual obstacle zone. (a) Closest distance; (b) average
closest distance.

Figure 15. Comparison of energy consumption data.

Table 4. Average of 50 simulation data.

Algorithm
Minimum Distance
to Actual Obstacle

Zone

Average Minimum
Distance to Actual

Obstacle Zone
Energy Consumption Path Length

The MEC-DWA algorithm 0.547 m 3.505 m 26,880.3 J 134.752 m
The MS-DWA algorithm 2.113 m 6.231 m 31,651.7 J 160.051 m
The SE-DWA algorithm 1.715 m 5.534 m 24,049.4 J 124.981 m

Based on Figure 14 and Table 4, it is evident that both the SE-DWA and MS-DWA
algorithms have planned paths with a minimum distance from actual obstacle zones that
exceeds 1.5 times the width of the DSLV (1 m). This distance provides a substantial safety
margin to accommodate imperfect sensing systems, control errors, or other sources of
uncertainty. In contrast, the paths generated by the MEC-DWA algorithm result in a
minimum distance from actual obstacle zones that is less than the width of the vehicle. In
such a scenario, the risk of collision between the DSLV and obstacles significantly increases
due to factors such as sensor inaccuracies.

To validate the safety of the planned paths, besides checking if the minimum dis-
tance from actual obstacle zones meets the requirements, a safety assessment can also be
employed. Safety assessment (sd) is represented as the ratio of the minimum distance
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from actual obstacle zones to the average minimum distance from actual obstacle zones.
For the paths generated by the SE-DWA algorithm and the MS-DWA algorithm, sd is
0.339 and 0.310, respectively. This indicates that the DSLV is relatively distant from ob-
stacles, resulting in a lower collision risk. Conversely, for the paths generated by the
MEC-DWA algorithm, sd is 0.156. This indicates that the DSLV is relatively closer to obsta-
cles, resulting in a higher collision risk. The safety assessment for paths generated by the
SE-DWA algorithm and the MS-DWA algorithm shows little difference, which confirms the
validity of the SE-DWA algorithm’s safety evaluation sub-function.

According to Table 4, it is evident that the path length for the SE-DWA algorithm
is the shortest, showing a 21.9% reduction compared with the path length of the MS-
DWA algorithm. When compared with the energy-efficient MEC-DWA algorithm, it also
demonstrates a 7.2% reduction. At the same velocity, less time and energy are consumed
when crawling to the target point. The trajectory comparison evaluation sub-function of
the SE-DWA algorithm has been validated.

Based on Figure 15 and Table 4, it is evident that the SE-DWA algorithm plans paths
with the lowest energy consumption. The unit energy consumption is the ratio of energy
consumption to path length, indicating shorter travel times and lower energy consumption
for the same path length. The unit energy consumption corresponding to the MEC-DWA
algorithm, MS-DWA algorithm, and SE-DWA algorithm is 199.47, 197.76, and 192.42,
respectively. The pseudo-power evaluation sub-function of the SE-DWA algorithm has
been validated.

For the specific analysis, the path-planning results of the three approaches from one
of the fifty trials were selected for examination. The path-planning results for the DWA
algorithm and the SE-DWA algorithm are depicted in Figures 16 and 17, respectively.
The variations in linear and angular velocities for the DWA algorithm and the SE-DWA
algorithm are displayed in Figures 18 and 19, respectively. The energy consumption profiles
for all three approaches are illustrated in Figure 20.

  
(a) (b) 

Figure 16. Path-planning results of the DWA algorithm. (a) The MEC-DWA algorithm; (b) The
MS-DWA algorithm.
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Figure 17. Path-planning result of the SE-DWA algorithm.

 
(a) 

(b) 

Figure 18. Linear velocity–angular velocity variation in the DWA algorithm. (a) The MEC-DWA
algorithm; (b) the MS-DWA algorithm.

64



J. Mar. Sci. Eng. 2023, 11, 1892

Figure 19. Linear velocity–angular velocity variation in the SE-DWA algorithm.

Figure 20. Unit energy consumption variation graph.

Based on the results from Figure 16 and Table 4, it is evident that the path generated
by the MEC-DWA algorithm contains three turning points. These turning points indicate
instances where the DSLV detects an impending collision with the actual obstacle zone,
triggering emergency braking and adjustments to the heading angle. The minimum
distance from the generated path to the actual obstacle zone is 0.547 m, which is smaller
than the DSLV’s vehicle width. This result does not ensure the autonomous sampling safety
of the DSLV.

The path planned by the MS-DWA algorithm maintains a minimum distance of
2.113 m from the actual obstacle zones. This distance is significantly greater than the
0.547 m maintained by the MEC-DWA algorithm. Due to the larger inflation, the DSLV
is required to travel a greater distance to reach the target point when encountering nar-
row areas. As a result, the path length increases by 18.7% compared with that of the
MEC-DWA algorithm.

Based on the outcomes presented in Figure 17 and Table 4, it is evident that the SE-
DWA algorithm generates a path with a minimum distance of 1.715 m from the actual
obstacle zone, which is greater than the width of a DSLV’s width. This ensures the safety
of a DSLV’s autonomous sampling operations. It validates the effectiveness of the added
safety evaluation sub-function and the warning obstacle zone. The path length is reduced
by 7.8% compared with that of the MEC-DWA algorithm and further reduced by 21.9%
compared with that of the MS-DWA algorithm. This confirms the effectiveness of the
trajectory comparison evaluation sub-function.

As evident from Figures 18 and 19, it is clear that when comparing the SE-DWA
algorithm with the DWA algorithm, there are smaller variations in both the linear and
angular velocities. This ensures that the DSLV remains at an optimal speed, contributing
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to a reduction in energy consumption to some extent. This finding validates the effec-
tiveness of the pseudo-power evaluation sub-function. Simultaneously, Figures 17 and 19
reveal that the path-planning times for the DWA algorithm are 1010 s and 830 s, respec-
tively. In contrast, the SE-DWA algorithm completes path planning in only 700 s. This
efficiency is a result of shorter path lengths and optimal velocities, further confirming the
effectiveness of the trajectory comparison evaluation sub-function and the pseudo-power
evaluation sub-function.

From Figure 20 and Table 4, it is evident that the SE-DWA algorithm has the lowest
energy consumption per meter. Compared with the MEC-DWA algorithm, the energy
consumption is reduced by 10.5%. When compared with the MS-DWA algorithm, the
energy consumption is reduced by 24%.

5. Conclusions

We have proposed the SE-DWA algorithm to address safety and energy consump-
tion challenges faced by DSLVs during autonomous sampling operations in the deep-sea
environment. Based on the dynamic window derived from the analysis of a DSLV’s
kinematics, we have devised three crucial sub-functions: safety evaluation sub-function,
trajectory comparison evaluation sub-function, and pseudo-power evaluation sub-function.
The safety evaluation sub-function tackles safety issues arising from reduced accuracy of
forward-looking sonar due to underwater noise and other factors. The trajectory compari-
son evaluation sub-function reduces energy consumption by decreasing the path length
when encountering “U”-shaped obstacles. The pseudo-power evaluation sub-function
optimizes linear velocity and angular velocity to reduce energy consumption when encoun-
tering unknown deep-sea obstacles. Eventually, we conducted simulation experiments
using deep-sea environmental maps. The simulation results demonstrate that the path
planned by the SE-DWA algorithm compared with that from the DWA algorithm not only
ensures enhanced safety performance but also results in at least an 11% reduction in energy
consumption. The SE-DWA algorithm aligns better with the requirements of DSLVs for
autonomous sampling in the deep-sea environment.

In the safety evaluation sub-function of the SE-DWA algorithm, the value used to
construct the warning obstacle zone is currently set as the maximum forward-looking sonar
error, which is a fixed value. When this value can be adaptively adjusted in the future,
path security will be further enhanced and energy consumption will be further reduced. In
the future, the focus will be on applying the SE-DWA algorithm to DSLVs’ autonomous
sampling operations at a depth of 4500 m in the deep sea to validate its feasibility and
effectiveness in real-world environments.
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Abstract: The motion of unmanned surface vehicles (USVs) is frequently disturbed by ocean wind,
waves, and currents. A poorly designed controller will cause failures and safety problems during ac-
tual navigation. To obtain a satisfactory motion control performance for the USVs, a model predictive
control (MPC) method based on an improved Nonlinear Disturbance Observer (NDO) is proposed.
First, the USV model is approximately linearized and MPC is designed for the multivariable system
with constraints. To compensate for the influence of disturbances, an improved NDO is designed
where the calculation time for MPC is reduced. Finally, comparison simulations are conducted
between MPC with the original NDO and MPC with an improved NDO, and the results show that
they have similar performances to the USVs. However, the proposed method has fewer parameters
that need to be tuned and is much more time-saving compared to MPC with a traditional NDO.

Keywords: unmanned surface vehicle; trajectory tracking; nonlinear disturbance observer; model
predictive control

1. Introduction

As technology has developed, USVs have been extensively used in various fields.
However, due to disturbances from the sea wind, waves, and current, trajectory tracking
control is of widespread concern. There have many studies undertaken on the control
of the USV trajectory tracking technologies, including the PID controller [1–4], sliding
mode control [5–8], backstepping control [9–12], MPC [13–16], adaptive control [17–20] and
intelligent control [21–24].

MPC has been developed as an advanced optimization control algorithm based on
the superiorities of feedback correction and rolling optimization. MPC has low require-
ments for the model, and it can solve constrained and multivariable problems. Although
the computational load increases with fractional order, presently the development of mi-
croprocessors has made it possible for such computation. Predictive compensator-based
event-triggered MPC with an NDO strategy has been proposed, and the trajectory tracking
control problem of USV subject to input constraints, external disturbances, and cyber-
attacks has been addressed [14]. However, the output constraints are considered in this
paper, and the NDO has been discretized with an approximate discretization method. The
adaptive line-of-sight algorithm was developed to obtain an expected heading angle. In
addition, MPC was applied to reduce the lateral error, where the sideslip angle compen-
sation was considered [25]. In addition, to obtain accurate state variables in real time, a
linear extended-state observer was designed to overcome the influence of environmental
disturbances and the nonlinearity of the model. However, the linearization still caused
certain deviations in model disturbance estimation. To adjust the controller parameters, the
MPC controller has been used to carry out both control allocation and trajectory tracking
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in real time [26]. Furthermore, it has concurrently optimized closed-loop performance
with reinforcement learning-based and system-identification methods. To convert chance
constraints into deterministic convex constraints, a convex conditional value of risk approx-
imation has been introduced [27]. The converted constraints were further transformed into
second-order cone constraints. Then, to account for the external disturbances and fulfill
physical constraints, a stochastic model predictive control (SMPC) scheme was used to
design the controller. The authors in [28] designed the path planning and control of the
USVs simultaneously to overcome the disadvantage of the “first-planning-then-tracking”
structure, and the artificial potential field and MPC were combined to solve the planning
and tracking problem. The authors in [29] proposed the finite control set model predictive
control (FCS-MPC). The more practical control commands formed a limited set of control,
namely the thruster propulsion angle and speed of the USV. In addition, a fast and safe
collision-avoidance system was designed according to the basics of FCS-MPC, which was
applicable to varying environments. The authors in [30], to guarantee precise and stable
trajectory tracking performance for AUVs, proposed a novel control architecture based
on model-free control principles. The combination of intelligent PID and PD feedforward
control had good performance for trajectory tracking accuracy, disturbance rejections, and
initial tracking error compensations. The authors in [31], to solve the surge-motion track-
ing control problem of an autonomous undersea vehicle (AUV) with system constraints,
proposed an adaptive backstepping control scheme. Both a state feedback control scheme
and an output feedback control scheme were developed for AUVs with deferred output
constraints. The authors in [32], to pay more attention to the characteristics of flexibility
and accessibility, proposed a fusion framework of field theoretical planning and an MPC
algorithm. In addition, the trajectory smoothness and collision-avoidance constraints under
a complex environment were considered. The authors in [33], to solve the fault-tolerant
trajectory tracking control problem of twin-propeller non-rudder USVs subject to propeller
faults, proposed an adaptive fault-tolerant trajectory tracking control scheme by utilizing
the excellent nonlinearity approximation performance of neural networks. The authors
in [34], to achieve autonomous cooperative formation control of underactuated USVs in a
complex ocean environment, adopted a dual MPC approach based on a virtual trajectory.
The authors in [35] showed that time-varying external disturbances affected the accuracy of
trajectory tracking. To ensure trajectory tracking accuracy, a reduced-order extended-state
observer and the super-twisting second-order sliding mode controller were proposed. The
authors in [36], to solve the lumped uncertainties caused by input quantization, actuator
faults, and dead zones, proposed an adaptive sliding mode tracking controller for USVs
with predefined time performance. In the control design, adaptive control gains were es-
tablished based on barrier functions. In addition, a predefined time-adaptive SMC scheme
was adopted by introducing an auxiliary function. The authors in [37], to set the velocity
of the USV converge to zero at the berth, adopted an interpolation approach to densify
the waypoints at the end of the berthing trajectory. In addition, to improve computational
performance during the USV berthing, an event-triggered adaptive horizon MPC approach
was adopted.

Controllers are usually poorly tuned to USV motion systems, and the disturbance-
rejection performance of controllers is not satisfactory due to disturbances from ocean
waves, wind, and currents. Therefore, an improved NDO-based MPC method for trajectory
tracking control of USVs is proposed in this paper. First, the MPC is designed for USV
trajectory tracking. Then, an NDO is designed to estimate the disturbance of ocean wind,
waves, and currents, which has fewer parameters. In addition, Lyapunov stability is
analyzed for the overall system. Finally, the proposed method is verified by simulation
experiments. The main contributions of this work can be summarized as follows: the
output constraints are considered in this paper, and the NDO has been discretized with an
approximate discretization method; the disturbances are compensated for by an improved
NDO, and better trajectory tracking performances are obtained for USVs; also, with the
improved NDO, calculation time is saved compared with the traditional NDO.
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The rest of the paper is structured as follows: Section 2 introduces the USV kinematics
model and dynamic model. In Section 3, the improved NDO-based MPC is designed for the
USV, and Lyapunov stability is analyzed for the overall system. Comparison simulations
and discussion of the results is performed in Section 4. Section 5 presents the conclusions.

2. State-Space Model of Unmanned Surface Vehicles

In general, the kinematics modeling of USVs is represented by the North–East–Down
coordinate system, while the dynamics model is built in the ship coordinate system. The
North–East–Down coordinate system is also called the geodetic coordinate system or the
inertial coordinate system. It is usually used as the reference system, and any point on the
sea can be used as the origin of the system. The ship coordinate system changes with the
motion of the ship and can describe the force, moment, linear velocity, and angular velocity
of a USV in various degrees of freedom.

To simplify the model, a USV model is utilized with three degrees of freedom for
trajectory tracking control. The motions of yaw, surge, and sway are the most important for
the trajectory tracking of the USVs, so the roll, pitch, and heave of the USVs are ignored.
Thus, the USV model can be represented in the ship coordinate system and the geodetic
coordinate system. This is shown in Figure 1.

Figure 1. Three degrees of freedom of motion model for USVs.

In Figure 1, it can be seen the North–East–Down coordinate system is represented by
NOEE, and the coordinate system for the ship is described by XOY. The kinematics and
dynamics model of the ship can be represented as:

.
η = R(ψ)υ (1)

M
.
υ+ C(υ)υ+ D(υ)υ = τ+ τd (2)

where η = [x, y, ψ]T represents the x, y position and heading angle vector of the USV
in the inertial coordinate system; x and y represent the position of the ship with regard
to the North–East–Down coordinate system, ψ represents the yaw angle information of
the USV; υ = [u, v, r]T is the vector of the velocity and angular velocity for the USV in
the ship coordinate system; u, v, and r are the surge velocity, sway velocity, and yaw
angular velocity of USV, respectively; τu, τv, and τr represent the surge thrust, sway thrust,
and yaw moment, which are the control inputs of the system; τd = [τud, τvd, τrd]

T is the
corresponding thrust and moment caused by the time-varying external disturbances. R(ψ)
is the rotation matrix with the relationship of R−1(ψ) = RT(ψ); M represents the inertial
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matrix of USV, where M = MT > 0; C(υ) represents the Coriolis centripetal force matrix,
and C(υ) = −C(υ)T ; and D(υ) is the nonlinear hydrodynamic damping matrix. The
detailed information for the matrixes is shown as follows:

R(ψ) =

⎡⎣cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤⎦, M =

⎡⎣m11 0 0
0 m22 m23
0 m32 m33

⎤⎦ (3)

C(υ) =

⎡⎣ 0 0 −m22υ
0 0 m11u

m22υ −m11u 0

⎤⎦, D(υ) = −
⎡⎣d11 0 0

0 d22 d23
0 d32 d33

⎤⎦ (4)

According to Equations (3) and (4), the reduced kinematics and dynamics equations
can be represented as: ⎧⎨⎩

.
x = u cos ψ − v sin ψ
.
y = u sin ψ + v cos ψ
.
ψ = r

(5)

⎧⎨⎩
m11

.
u − m22vr + d11u = τu + τud

m22
.
v + m23

.
r + m11ur + d22v + d23r = τv + τvd

m32
.
v + m33

.
r + (m22 − m11)uv + d32v + d33r = τr + τrd

(6)

For the USVs, there are constraints for the actuators and the outputs. In addition, they
are described as follows.

The increment constraints for inputs can be represented as:

Δumin(t + k) ≤ Δu(t + k) ≤ Δumax(t + k)
k = 0, 1, · · · , Nc − 1

(7)

where Nc denotes the control horizon.
The upper and lower-limit constraints for inputs can be represented as:

umin(t + k) ≤ u(t + k) ≤ umax(t + k)
k = 0, 1, · · · , Nc − 1

(8)

The outputs of speed increment constraints can be represented as:

Δυmin(t + k) ≤ Δυ(t + k) ≤ Δυmax(t + k)
k = 0, 1, · · · , Nc − 1

(9)

The outputs of speed upper and lower-limit constraints can be represented as:

υmin(t + k) ≤ υ(t + k) ≤ υmax(t + k)
k = 0, 1, · · · , Nc − 1

(10)

The terminal equality constraint can be represented as:

‖η(k + N|t )− ηr(k + N|t )‖2 = 0 (11)

where η denotes the vector to be controlled, and ηr denotes the reference trajectory.

3. Nonlinear Disturbance Observer-Based Model Predictive Control

In this section, NDO-based MPC is designed for the three-degrees-of-freedom kine-
matics and dynamics of a USV with the state-space model. The design schematic diagram
of NDO-based MPC is shown in Figure 2.
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Figure 2. Schematic diagram of MPC based on a nonlinear observer.

According to Equations (1) and (2), the state-space equation for the ship can be
rewritten as: { .

η = R(ϕ)υ
.
υ = M−1(τ+ τd − C(υ)υ− D(υ)υ)

(12)

From Equation (12), the matrixes R, C, and D are nonlinear variables, which gives the
model strong nonlinearity.

3.1. Model Predictive Control Design of an Unmanned Surface Vehicle
3.1.1. Discrete Linearization of an Unmanned Surface Vehicle Model

USV is a complex system with large inertia and time-delay characteristics. During
navigation, it is subjected to various forces such as thrust, hydrodynamic force, hydrostatic
force, and external disturbances. Therefore, the USV model has obvious nonlinear char-
acteristics. In this paper, a simplified model of the USV is applied, and the uncertainty is
dealt with by the NDO together with the disturbances from the ocean environment. In
addition, the model is linearized.

In this paper, the NDO is designed to compensate for the disturbance. Therefore,
a linear model of the USV is sufficient for MPC design, where the uncertainty from the
linearization of the USV model can be solved with an NDO. Therefore, the model is
linearized first and then discretized. Finally, the optimal control sequence is obtained
according to the linear model predictive control.

The linearization of a nonlinear system can be divided into approximate linearization
and exact linearization. Among them, the approximate linearization method is relatively
simple with high applicability but low accuracy. The precision of the accurate linearization
method is high, but it should be noted that a special case analysis of a single system is
difficult and has poor universality.

The reference trajectory is represented in Equation (13) with environmental distur-
bances. The first-order Taylor expansion can be obtained at any point (xr, ur); then ap-
proximate linearization is achieved by leaving the higher-order terms. This can be seen in
Equation (14).

.
xr = f (xr, ur) (13)

.
x = f (xr, ur) +

∂ f
∂x

∣∣∣∣x = xr

u = ur

(x − xr) +
∂ f
∂u

∣∣∣∣x = xr

u = ur

(u − ur) (14)

Subtract Equation (13) from (14), and the following equation can be achieved.

.
x̃ = Ax̃ + Bũ (15)

and x̃ = x − xr, ũ = u − ur, A = ∂ f
∂x

∣∣∣x = xr

u = ur

, B = ∂ f
∂u

∣∣∣x = xr

u = ur

.
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The discrete form for Equation (15) is shown as follows:{
x̃(k + 1) = Adx̃(k) + Bdũ(k)
ỹ(k) = Cx̃(k)

(16)

where Ad = TA + I, Bd = TB, ỹ(k) = y(k)− yr(k), T is the discretization step.

3.1.2. Objective Function Design

To ensure that the USV can track the trajectory smoothly and quickly, the cost function
shown in Equation (17) is applied, which concerns the increments of the control variables
and the errors of the system states.

min J = min

⎧⎨⎩Np

∑
i=1

‖η(k + i)− ηr(k + i)‖
2

Q

+
Nc−1

∑
i=1

‖Δu(k + i)‖
2

R

⎫⎬⎭ (17)

where Q and R are the weight matrixes for tracking errors and increments of the control
variables, respectively; and Np is the prediction horizon. Δu(k + i) is the variable of the
increments of the control variables, so it can be obtained as follows:

ξ(k) =
[

x̃(k)
ũ(k − 1)

]
(18)

The new state-space equation is represented as:{
ξ(k + 1) = Ãξ(k) + B̃Δu(k)
ỹ(k) = C̃ξ(k)

(19)

where Ã =

[
Ad Bd

0 INu

]
, B̃ =

[
Bd

INu

]
, C̃ = [INx 0], Nu denotes the number of control

variables, Nx denotes the number of state variables.
Therefore, the system prediction outputs can be calculated as follows:

Y = Ψξ(k) + Hũ(k)
J = 1

2 Δu(k)THJΔu(k) + fJΔu(k)
(20)

where HJ = 2
(
HTQcH + Rc

)
, fJ = 2Ψξ(k)QcH, Qc =

⎡⎢⎣Q
. . .

Q

⎤⎥⎦
Np×Np

,

Rc =

⎡⎢⎣R
. . .

R

⎤⎥⎦
Nc×Nc

.

3.2. Nonlinear Disturbance Observer Design of Unmanned Surface Vehicles

To make MPC for a USV more applicable, a nonlinear disturbance observer is designed,
which can estimate and compensate for the external environmental disturbance received
by the USV. Therefore, the stability and anti-disturbance performance is improved for the
USV, while capsizing and unnecessary navigation accidents are avoided for the USV.

According to the mathematical model of the USV, the state equation is designed
as follows:

.
τ̂d = K0(τd − τ̂d) = −K0τ̂d + K0(M

.
υ+ C(υ)υ+ D(υ)υ− τ) (21)
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where K0 is a three-dimensional positive definite matrix; the estimated disturbance values
τ̂d can be specifically written as τ̂d = [τ̂ud, τ̂vd, τ̂rd]

T , which are the estimated values of
surge disturbance, sway disturbance, and yaw direction disturbance.

It can be seen from Equation (12) that υ of a USV can be obtained directly, but the
derivative term of the speed state variable

.
υ cannot be obtained directly. Therefore, it

is necessary to improve the disturbance observer. The variable β can be selected as the
intermediate assignment variable of the observer, which is expressed as follows:

β = τ̂d − K0Mυ (22)

Then,
.
β =

.
τ̂d − K0M

.
υ

= K0(M
.
υ+ C(υ)υ+ D(υ)υ− τ)− K0τ̂d − K0M

.
υ

= −K0(β+ K0Mυ) + K0(C(υ)υ+ D(υ)υ− τ)
= −K0β− K0(K0Mυ− C(υ)υ− D(υ)υ+ τ)

(23)

Therefore, the new equation of the improved NDO is:

τ̂d = β+ K0Mυ
.
β = −K0β− K0(K0Mυ− C(υ)υ− D(υ)υ+ τ)

(24)

The improved equation avoids the calculation of
.
υ and simplifies the calculation

process. Therefore, it can improve calculation efficiency and save calculation time.
Equation (24) is in a continuous form, and cannot be directly used for MPC design.

Therefore, it is discretized with the approximate discretization method:

τd(k + 1) = βd + Kd1Mυ+ τd(k)
β(k + 1) = −Kd2β(k)− Kd1(K0Mυ− C(υ)υ− D(υ)υ+ τ)

(25)

and βd = Tβ, Kd1 = TK0, and Kd2 = TK0 − I.

3.3. Stability Analysis of Unmanned Surface Vehicles
3.3.1. Stability Analysis of the Model Predictive Control of Unmanned Surface Vehicles

To verify the stability of the USV control system under MPC, the Lyapunov function
defined as V0(k) is selected:

V0(k) = min
Δv

Np

∑
i=1

‖η(k + i|t )− ηd(k + i|t )‖
2

Q

+
Nc−1

∑
i=1

‖Δu(k + i|t )‖
2

R

(26)

If the control horizon Nc is defined to be equal to the prediction horizon Np, the above
equation can be simplified as follows:

V0(k) = min
Δv

N

∑
i=1

‖η(k + i|t )− ηd(k + i|t )‖2
Q + ‖Δu(k + i|t )‖2

R (27)

The quadratic function is always greater than 0, so its positive definiteness is proven:

V0(k) ≥ 0 (28)

Then, we only need to prove that V0(k) is decreasing, then its stability is proven.
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V0(k + 1) = min
Δυ

{
N
∑

i=1
‖ η(k + i + 1|t )− ηd(k + i + 1|t ) ‖2

Q + ‖ Δu(k + i + 1|t ) ‖2
R

}

= min
Δυ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N
∑

i=1

(
‖ η(k + i|t )− ηd(k + i|t ) ‖2

Q + ‖ Δu(k + i|t ) ‖2
R

)
−

‖ η(k + 1|t )− ηd(k + 1|t ) ‖2
Q − ‖ Δu(k + 1|t ) ‖2

R+

‖ η(k + 1 + N|t )− ηd(k + 1 + N|t ) ‖2
Q + ‖ Δu(k + 1 + N|t ) ‖2

R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Δv

= −‖ η(k + 1|t )− ηd(k + 1|t ) ‖2
Q − ‖ Δu(k + 1|t ) ‖2

R+

min
Δυ

⎧⎪⎨⎪⎩
N
∑

i=1

(
‖ η(k + i|t )− ηd(k + i|t ) ‖2

Q + ‖ Δu(k + i|t ) ‖2
R

)
+

‖ η(k + 1 + N|t )− ηd(k + 1 + N|t ) ‖2
Q + ‖ Δu(k + 1 + N|t ) ‖2

R

⎫⎪⎬⎪⎭
≤ −‖ η(k + 1|t )− ηd(k + 1|t ) ‖2

Q − ‖ Δu(k + 1|t ) ‖2
R + V0(k)+

min
Δυ

{
‖ η(k + 1 + N|t )− ηd(k + 1 + N|t ) ‖2

Q + ‖ Δu(k + 1 + N|t ) ‖2
R

}

(29)

The terminal equation constraint is:

‖η(k + 1 + N|t )− ηr(k + 1 + N|t )‖2
Q = 0 (30)

Furthermore,

min
Δυ

{
‖η(k + 1 + N|t )− ηd(k + 1 + N|t )‖2

Q + ‖Δu(k + 1 + N|t )‖2
R

}
= 0 (31)

‖η(k + i|t )− ηr(k + i|t )‖2
Q + ‖Δu(k + i|t )‖2

R = 0 (32)

Therefore, V0(k + 1) ≤ V0(k), and the stability of MPC is proven.

3.3.2. Stability Analysis of the Nonlinear Disturbance Observer of Unmanned
Surface Vehicles

To verify the stability of the NDO and ensure that it can be applied to the trajectory
tracking control system, it is necessary first to define the variable of the difference between
the observer’s estimated value and the actual value of the external disturbance to the USV:

τ̃d = τd − τ̂d (33)

Considering the kinematic Equations (2), (24) and (33) of the USV, then by calculating
the derivative of time on both sides of Equation (27), the formula can be represented
as follows:

.
τ̂d =

.
β+ K0M

.
υ

= −K0β− K0(K0Mυ− C(υ)υ− D(υ)υ+ τ) + K0(−C(υ)υ− D(υ)υ+ τ+ τd)
= K0(τd − (β+ K0Mυ))
= K0τ̃d

(34)

From Equation (34), one can calculate the derivative of both sides of Equation (33)
with respect to time, and simplify it to obtain:

.
τ̃d =

.
τd − .

τ̂d =
.
τd − K0τ̃d (35)

The Lyapunov method is used to verify the stability of the disturbance observer, and
the appropriate Lyapunov function is selected as follows:

Vd =
1
2
τ̃T

dτ̃d (36)
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According to Equation (35), the derivative of both sides of Equation (36) with respect
to time can be obtained as follows:

.
Vd = τ̃T

d

.
τ̃d = −τ̃TK0τ̃+ τ̃T

d

.
τd (37)

According to Young’s inequality theory,

τ̃T
d

.
τd ≤ a1τ̃

T
dτ̃d +

C2
d

4a1
(38)

and a1 > 0, Cd is the limit of the disturbance change rate.
From Equations (37) and (38), this can be written as inequality:

.
Vd ≤ −τ̃TK0τ̃+ a1τ̃

T
dτ̃d +

C2
d

4a1
≤ −2(λmin(K0)− a1)Vd +

C2
d

4a1
(39)

Take {
μ0 = 2(λmin(K0)− a1) > 0

C0 =
C2

d
4a1

> 0
(40)

and λmin(K0) > a1. Equation (39) can be abbreviated as follows:

.
Vd ≤ −μ0Vd + C0 (41)

According to Equation (36), Vd is always greater than 0, and from (41), the result can
be obtained as follows:

0 ≤ Vd ≤ C0

μ0
+ (Vd(0)− C0

μ0
)e−μ0t (42)

According to Equation (42), it shows that the Lyapunov function Vd stays in a closed
ball of some radius whose origin is the center of the sphere. In addition, it is uniformly

ultimately bounded. In addition, the radius of the sphere is RVd = C0
μ0

=
C2

d
8a1(λmin(K0)−a1)

.
According to Equation (36), it can be found that the disturbance estimation error variable

τ̃d also converges to the sphere radius Rτ̃d
=
√

2 C0
μ0

= Cd√
4a1(λmin(K0)−a1)

with the origin

as the center of the sphere. At the same time, it can also be known that if the external
environmental disturbance value τd of USV is an arbitrary unknown constant value, then
the boundary of the disturbance charge rate is Cd = 0. According to Equation (39), the
observer estimation error value τ̃d can converge to the origin.

According to Equation (40), as long as the appropriate observer parameters a1 and
K0 can be selected, an arbitrarily small error convergence radius Rτ̃d

can be obtained. In
other words, NDO can estimate the external environmental disturbance suffered by the
USV according to an arbitrarily small error, and the estimation accuracy depends on the
selected parameters.

4. Results and Discussions

To verify the influence of the improved NDO-based MPC, it is applied for trajectory
tracking control of a USV called CyberShip II. The tracking errors and performance of the
USV are shown in this section. In addition, the computational efficiency of the improved
NDO is verified.
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4.1. Model Parameters of Unmanned Surface Vehicle

In Equations (3) and (4), M =

⎡⎣25.8 0 0
0 33.8 1
0 1 2.8

⎤⎦, D =

⎡⎣0.72 0 0
0 0.86 −0.11
0 −0.11 1.90

⎤⎦. In (16),

C =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦. In (17), Q =

⎡⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

⎤⎥⎥⎥⎥⎥⎥⎦,

R =

⎡⎣0.01 0 0
0 0.01 0
0 0 0.01

⎤⎦.

In the simulation, η = [0 0 0◦]T, which is set as the initial state of USV; υ = [0 0 0]T,
which is set as the initial speed of USV. In addition, the reference trajectories of USV are
shown as follows: ⎧⎪⎨⎪⎩

xd = 2 sin(0.02t), 0 ≤ t ≤ 500
yd = 2 − 2 cos(0.02t), 0 ≤ t ≤ 500
ψd = arctan(

.
xd/

.
yd), 0 ≤ t ≤ 500

(43)

⎧⎪⎨⎪⎩
xd = 8 sin(0.02t), 0 ≤ t ≤ 500
yd = t, 0 ≤ t ≤ 500
ψd = arctan(

.
xd/

.
yd), 0 ≤ t ≤ 500

(44)

T = 0.1, which is set as the simulation sampling time; Nx = 6, which is set as the
number of states; Nu = 3, which is set as the number of control variables; Np = 20, which
is set as the prediction horizon; Nc = 10, which is set as the control horizon.

4.2. Simulation Results and Analysis

In MATLAB 2021a, NDO-based MPC for trajectory tracking control of a USV is
compared with MPC without an observer. Simulations with different disturbances are
performed to verify the anti-disturbance and robustness performances. The performances
of the improved NDO are discussed.

The composite model of external disturbances meets the requirements of Level 3
sea conditions. The specific external wind, wave, and current disturbances settings are
as follows: ⎧⎨⎩

τdu = m11h(s)wu(s)
τdv = m22h(s)wv(s)
τdr = m33h(s)wr(s)

(45)

where wave transfer function h(s) = Kωs
s2+2ζω0s+ω2

0
, Kω = 2ζω0σ0, ω0, ζ, and σ0 represent

wave frequency, wave strength gain, and damping constant, respectively; Kω = 0.255,
ω0 = 0.808. wu(s), wv(s), and wr(s) represent random white-noise disturbances, then the
noise power is set to 0.01, 0.005, and 0.1, respectively.

The simulation results of improved NDO-based MPC for trajectory tracking control
and traditional MPC with disturbances, when the reference trajectory is a circle, are shown
in Figure 3. The comparisons of improved NDO-based MPC for trajectory tracking control
and traditional MPC with disturbances, when the reference trajectory is sinusoidal, are
shown in Figure 4. The calculation times between the two NDO methods with disturbances
are shown in Figure 5. The trajectory tracking errors of the three trajectory tracking methods
with different parameters are shown in Figure 6.
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Figure 3. Comparisons of improved NDO-based MPC for trajectory tracking control and traditional
MPC with disturbances when the reference trajectory is a circle.
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Figure 4. Cont.
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Figure 4. Comparisons of improved NDO-based MPC for trajectory tracking control and traditional
MPC with disturbances when the reference trajectory is sinusoidal.

Figure 5. Comparison of the calculation time between the two NDO methods with disturbances.
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Figure 6. Trajectory tracking errors of the three trajectory tracking methods with different parameters.

Figure 3 shows that the improved NDO-based MPC has better disturbance-rejection
performance than MPC without an observer when the reference trajectory is a circle. It
also can be seen from the simulations that both methods can track the reference trajectory.
However, the former can track the reference trajectory smoothly, while the latter fluctuates
a lot. The surge position error range of MPC without an observer for trajectory tracking
control is −0.1 to 0.1 m; the sway position error range is −0.1 to 0.1 m; and the yaw angle
error range is −0.05 to 0.05. Although the surge position error range of the NDO-based
MPC is −0.005 to 0.005 m, the sway position error range is −0.005 to 0.005 m and the yaw
angle error range is −0.005 to 0.005. Figure 4 shows the comparisons of the two trajectory
tracking methods with disturbances when the reference trajectory is sinusoidal. In addition,
the improved NDO-based MPC has lower tracking errors than MPC without an observer.
The surge position error range of MPC without an observer for trajectory tracking control is
−0.05 to 0.05 m; the sway position error range is −0.02 to 0.02 m; and the yaw angle error
range is 0.00 to 0.05. Although the surge position error range of NDO-based MPC is 0.05
to 0.05 m, the sway position error range is 0.02 to 0.06 m, and the yaw angle error range
is 0.000 to 0.005. Figure 5 shows that the improved NDO has better performance than the
unimproved NDO in terms of the calculation time with disturbances.

We do not have a real ship for this experiment. To overcome this shortage, the ship
parameters were changed when we did some comparisons between different methods to
ensure the robustness of the proposed method. The USV model has uncertainty, so three
methods were used for trajectory tracking for the USV with different model parameters. The
three methods are unimproved NDO-based MPC, improved NDO-based MPC, and MPC
without NDO. Figure 6 shows that the improved NDO and unimproved NDO effectively
reduce the roughness caused by model uncertainty. In addition, the unimproved NDO has
similar performance of tracking errors compared to the improved NDO-based MPC.

In addition, a comparison of the calculation time of two NDOs with disturbances is
shown in Table 1. It shows the average calculation time and maximum single calculation

time of the two NDOs. IAE =
∫ t

0 |e(ζ)|dζ and RMSE = ( 1
t
∫ t

0 e2(ζ)dζ)
1/2

are used to
evaluate the tracking effect and steady-state performance. The smaller the values of IAE
and RMSE, the better the control performance of the scheme applied. In addition, the
comprehensive performance comparisons of the position and speed tracking errors of the
two methods are shown in Table 2. Table 2 shows the IAE and RMSE of the two methods.

From Table 1, the calculation time of the improved NDO is much lower than that of
the traditional NDO. The average calculation time of the improved NDO is 0.0020, and it
is 0.0024 for the traditional NDO. The maximum single calculation time of the improved
NDO is 0.0046, and it is 0.0064 for the traditional NDO. The results show that, compared
with the traditional NDO, the average calculation time of the improved NDO is decreased
by 16.67%, and the maximum individual calculation time is decreased by 28.13%.
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Table 1. Comparison of the calculation time of the two methods.

Improved NDO
Based MPC

Unimproved NDO
Based MPC

Average calculation time(s) 0.0020 0.0024
Maximum single calculation time(s) 0.0046 0.0064

Table 2. Comparison of position and velocity errors of the two methods.

Tracking Error Computing Method
Improved NDO

Based MPC
Non-Observer

ye
IAE 9.3209 141.6562

RMSE 0.0072 0.1104

xe
IAE 9.2273 135.6914

RMSE 0.0071 0.1061

ψe
IAE 10.7869 79.6175

RMSE 0.0077 0.0574

‖ue‖ IAE 6.3167 55.5531
RMSE 0.0055 0.0435

‖υe‖ IAE 3.9132 58.2295
RMSE 0.0030 0.0425

‖re‖ IAE 6.1470 40.2591
RMSE 0.0050 0.0290

From Table 2, the IAE and RMSE of NDO-based MPC are lower than the MPC without
an observer. NDO-based MPC effectively enhances the anti-disturbance performance of
the system. MPC without observer trajectory tracking control has the characteristics of the
predictive model, rolling optimization, and feedback correction, which can resist external
disturbances and model mismatches to some extent.

With the data shown in Tables 1 and 2, NDO-based MPC is superior to MPC without
an observer for trajectory tracking control in terms of position and speed tracking errors.

The NDO is designed to estimate the external disturbances suffered, to improve the
anti-disturbance performance of the USV. Therefore, the comparison of estimated values of
the NDO and actual disturbances is shown in Figure 7.

Figure 7. Comparison of estimated values of the NDO and actual disturbances.
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Figure 7 shows the relationship between the estimated values of the NDO and the
actual values of the disturbance. The NDO has good estimation performance in terms
of the disturbances, including surge disturbance force, sway disturbance force, and yaw
disturbance force.

5. Conclusions

In this paper, an improved NDO-based MPC for trajectory tracking is proposed to
guarantee the stable motion of a USV, which suffers various disturbances from the ocean
wind, waves, and currents. MPC is used to optimize the system torque based on the
measured position and speed state variables. Then, the NDO is designed to estimate the
disturbances, and the estimated torque is compensated for in the controller. Estimation
errors can converge to zero in a finite time. The simulation results show that NDO-
based MPC can effectively compensate for external disturbances and obtain good tracking
and disturbance-rejection performance. The proposed method has a similar tracking
performance to the USVs with the MPC based on unimproved NDO, but the improved
NDO-based MPC is far quicker. However, due to the linearization of the model of the USV,
the method only shows good performance in a near-neighbor area around the operation
point. For large-difference operation points, the parameters need to be retuned.
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Abstract: Autonomous underwater vehicles (AUVs) are important in areas such as underwater
scientific research and underwater resource collection. However, AUVs suffer from data portability
and energy portability problems due to their physical size limitation. In this work, an acoustic
guidance method for underwater docking is proposed to solve the problem of persistent underwater
operation. A funnel docking station and an autonomous remotely operated vehicle (ARV) are used
as the platform for designing the guidance algorithms. First, the underwater docking guidance is
divided into three stages: a long-range approach stage, a mid-range adjustment stage and a short-
range docking stage. Second, the relevant guidance strategy is designed for each stage to improve the
docking performance. Third, a correction method based on an ultra-short baseline (USBL) system is
proposed for the ARV’s estimate of the depth, relative position and orientation angle of the docking
station. To verify the feasibility of the docking guidance method, in this work, tests were performed
on a lake and in a shallow sea. The success rate of autonomous navigation docking on the lake
was 4 out of 7. The success rate of acoustic guidance docking on the lake and in the shallow sea
were 11 out of 14 and 6 out of 8, respectively. The experimental results show the effectiveness of the
docking guidance method in lakes and shallow seas.

Keywords: underwater docking; acoustic guidance; autonomous navigation; autonomous
underwater vehicle; autonomous remotely operated vehicle; docking station

1. Introduction

With the continuous deepening of ocean exploration in various countries, autonomous
underwater vehicles (AUVs) have become an important tool for exploring the marine
environment [1–4]. AUVs have important applications in areas such as underwater rescue,
military reconnaissance, resource exploration and marine scientific research [5,6]. The small
size of the AUV makes it highly concealable during operation, however, the small size of
the AUV also limits its range of motion, resulting in an inability to operate underwater
for extended periods of time [7–10]. In addition, the low transmission rate of underwater
acoustic data prevents the AUV from uploading the data in a timely manner [11]. Therefore,
the AUV requires multiple manual recoveries and deployments, which greatly reduces
efficiency, increases costs and is less concealable [12,13].

To enable the AUV to stay underwater for long periods, a docking station for data and
power transmission has been deployed underwater [14]. After the mission, the AUV can
navigate autonomously to the underwater docking station and perform operations such as
energy replenishment and data upload [15,16]. Underwater docking technology greatly
improves the concealment, continuity and mobility of AUV underwater operations and is a
key research direction in the future [17–19].

Underwater docking guidance methods can be divided into three methods depending
on the used sensor: acoustic guidance [20], optical guidance [21] and electromagnetic
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guidance [22]. Underwater acoustic guidance refers to the application of acoustic equipment
such as long baseline (LBL) systems, short baseline (SBL) systems and ultra-short baseline
(USBL) systems for guidance. The advantage of acoustic guidance is that it works over
long distances, up to 3 km, and can be omnidirectional [23,24]. The disadvantage is
that the positioning accuracy is low, the real-time performance is poor and it is easily
exposed [25,26]. The following are typical results of docking using acoustic guidance:

Stokey et al. proposed a funnel docking scheme based on the REMUS AUV [20].
They designed an acoustic localisation method based on a USBL, a clamp and contact
motors for locking, charging and communication circuits. Tests were performed in the
summer of 1997. Allen et al. proposed a second generation of the REMUS docking system
as an improvement on the original docking scheme [23]. In their work, they adopted a
low-profile, bottom-mounted docking station and upgraded the sensors of the docking
station and the docking vehicle. They also successfully performed docking tests in 2005.

Singh et al. proposed a pole docking scheme based on the Odyssey IIB AUV [27]. They
used acoustic guidance and divided the docking into five stages: homing, docking, core
alignment, power transfer and undocking. Tests were conducted at Cape Hatteras in May
1997 to demonstrate the reliability of the docking system.

Kawasaki et al. proposed a platform-based underwater docking solution based on the
Marine Bird AUV [28,29]. They used a super short base line (SSBL) for acoustic guidance
and divided the docking process into six stages: approaching the transponder service area,
approaching the base, holding the guide, connecting to the base, recharging the batteries
and undocking. In 2001–2003, trials were carried out at a dock and at sea to demonstrate
the performance of the docking system.

McEwen et al. proposed a docking method for the Bluefin-21 AUV and a fixed
cone docking station [30,31]. In their work, the docking process is as follows: use pure
pursuit guidance while homing to within USBL range of the beacon, then use the USBL for
positioning and sail along the centreline of the cone, when the AUV is close to the dock,
slow down and complete the final alignment and then latch. Docking tests were performed
in 2005–2006 in a seawater test tank and in Monterey Bay.

Hayato et al. proposed a docking method using acoustic guidance and optical
guidance [32]. They used passive acoustic guidance to guide the vehicle into a dock-
ing cage from a long distance and used optical guidance at short distance to provide high
positioning accuracy during terminal guidance. Due to the limitations of the experimental
conditions, they tested the optical guidance system to demonstrate the validity of the
proposed method.

Maki et al. proposed a docking method for a hovering Tri-TON AUV at a seafloor
station [33]. In their work, an acoustic localisation and communication device (ALOC) was
used to estimate the rough position of the AUV at long distance, while, at short distance,
image processing was used to measure the precise relative position of the AUV. Tests were
performed in a tank, and the docking success rate was 50%. Sato et al. conducted acoustic-
optical docking tests with a Tri-TON 2 AUV [34,35]. Compared to the Tri-TON AUV,
the maximum depth of the Tri-TON 2 was extended from 800 m to 2000 m. The performance
of the docking method was verified through a series of tank and sea trials in 2015.

Vallicrosa et al. proposed a combined acoustic–optical-based guidance method using
the Sparus II AUV and conducted tests in a water tank and in a shallow sea [36–40]. In their
work, the docking procedure is as follows: (1) Estimate the position and orientation of the
docking station and guide the AUV to a location 40 m in front of the docking station. (2) If
the range is available, use an acoustic localisation algorithm to estimate the position of the
docking station. (3) If the docking station is detected, navigate the AUV to a location 10 m
in front of the docking station. (4) Follow the track towards the docking station until light
beacons are detected. Otherwise, return to (3). (5) Navigate the AUV to the entrance of the
docking station.

Existing acoustic guidance docking methods mostly rely on pre-positioning the AUV
within the range of acoustic equipment and then using the acoustic equipment to obtain
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the precise position of the docking station and then homing. However, these studies focus
on the design of the docking structure and the selection of the docking sensors, and the
docking guidance process is not studied enough. During the docking process, as the AUV
approaches the docking station, the docking accuracy requirement also increases. Therefore,
the docking process needs to be divided into several stages according to the distance from
the AUV to the docking station, and guidance strategies need to be designed for each stage
in order to improve the docking success rate. To address these issues, this paper proposes a
docking method based on acoustic guidance for autonomous remotely operated vehicles
(ARV). First, the docking process is divided into three stages according to the distance
from the ARV to the docking station. Second, the corresponding guidance algorithm for
each docking stage is designed. Third, an acoustic-based method is proposed to update
the ARV’s perception of the docking station, including the depth, relative position and
orientation angle of the docking station.

The paper is organised as follows: Section 2 describes the parameters, structure and
functions of the ARV for docking and the docking station. Section 3 presents the docking
procedure, describes the specific methods for each stage of docking and proposes a method
for correcting the ARV’s perception of the docking station. Section 4 presents lake and
shallow sea tests and analyses the results of the tests. Section 5 outlines the conclusions
and future work.

2. Docking Platform

2.1. Underwater Docking ARV

An ARV is a composite underwater robot that combines the features of a remotely
operated vehicle (ROV) and an AUV, which can operate either remotely or autonomously
for underwater tasks [41]. The ARV used for underwater docking is shown in Figure 1.
The dimensions of the ARV are 2.980 (L) × 0.697 (W) × 0.779 (H) (m), the weight is 350 kg
and it is equipped with 6 underwater cameras, 6 lights, a USBL beacon terminal, a doppler
velocity log (DVL), a wi-fi module, an altimeter, a depth gauge, an inertial navigation
system (INS), a global positioning system (GPS), an attitude sensor and other modules.
The ARV can realise motion states such as forward and backward, transverse, in situ
rotation, surfacing and diving, its speed can reach 3 knots, the radius of its turning circle is
5 m and the working water depth is 0–4500 m. The ARV can be divided into two types of
path planning mode: waypoint path mode and heading path mode [42].

Figure 1. Underwater docking ARV.

The structure of the ARV autonomous docking module is shown in Figure 2. The dock-
ing module is an NVIDIA Jetson Nano, which is used to receive status information and
optical guidance video information from the ARV main controller and store them into a
shared data area. The acoustic guidance module and the optical guidance module generate
ARV control commands by processing the shared data and send them to the ARV to realise
ARV docking control.
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Figure 2. Structure diagram of the docking control module.

2.2. Underwater Docking Station

The docking station used for underwater docking is shown in Figure 3. The overall
outline of the docking station consists of two main parts: the base and the dock, where the
dock can be divided into two parts: the frame and the guide funnel. The overall dimensions
of the dock are 2.067 (L) × 2.065 (W) × 2.065 (H) (m) and the weight is 210 kg, where the
guide funnel has a length of 1.17 m, a maximum inner diameter of 1.82 m, a minimum
inner diameter of 0.86 m and a weight of 66 kg. The dock is installed on top of the base so
that it can be suspended in the water. The internal structure of the docking station includes
8 guide lights, a USBL host terminal, an underwater camera, an altimeter, a depth gauge,
an electronic compass and other equipment.

Figure 3. Underwater docking station.

3. Docking Method

The docking flowchart is shown in Figure 4. Due to the limitation of the entrance
nozzle angle of the docking station, it is necessary to reduce the error of the docking attitude
angle and the position of the ARV. In addition, during the docking process, the actual
depth, orientation angle and position may deviate due to ocean currents or other reasons.
Therefore, it needs to be continuously corrected during the docking process. To overcome
the above problems, the docking guidance process is designed to be divided into three
stages: a long-range approach stage, a mid-range adjustment stage and a short-range
docking stage. In the long-range approach stage, the ARV approaches a position on the
centreline of the docking station, which is far from its entrance nozzle, to make adjustments
with sufficient distance; in the mid-range adjustment stage, the ARV gradually approaches
the docking station at a slow speed along its centreline to reduce the lateral deviation
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during navigation; in the short-range docking stage, the ARV uses inertial navigation to
sail directly to the docking station or uses optics for more precise guidance.

Figure 4. Docking flowchart.

3.1. Long-Range Approach Stage

When the ARV receives the docking command, it begins the remote docking procedure.
The purpose of the long-range approach stage is to allow the ARV to approach the centreline
of the docking station, at a heading angle approximately towards its entrance nozzle,
to adjust to a more suitable position and heading angle and then enter the mid-range
adjustment stage.

In the long-range approach stage, the ARV will descend to the preset depth of the
docking station and perform fixed-depth navigation mode so that the ARV and the docking
station are at the same level. It selects several points between 80 m and 300 m away from
the docking station along the centreline of the docking station (the last point is the 80 m
point), and performs a waypoint path mode from far to near. Once the ARV has reached
the target position at 80 m, it enters the mid-range adjustment stage.

The method for controlling the ARV to reach the target position during waypoint path
mode is shown in Figure 5. The ARV starts from the start position ps and sails towards the
target position pe. The formula for calculating the coordinates of pe is as follows:{

xe = xd + lde × sin ϕd
ye = yd + lde × cos ϕd

, (1)

where xe and ye are the along-axis and lateral coordinates of pe, xd and yd are the along-axis
and lateral coordinates of the docking station pd, lde is the distance between pd and pe and
ϕd is the orientation angle of pd in the geodetic coordinate system.

Figure 5. Judgment of reaching the target position.

If the distance between pe and the current ARV position pv is less than or equal to
5 m, or if the ARV sails past Le, which is a vertical plane perpendicular to ps pe that passes
through pe (as shown in the shaded part of Figure 5), it can be determined that the ARV
has reached the target position. The judgement formula is as follows:{ √

(xv − xe)
2 + (yv − ye)

2 ≤ 5
|ϕse − ϕve| ≥ 90

, (2)
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where xv and yv are the horizontal and vertical coordinates of pv and ϕse and ϕve are the
azimuth angles of pe relative to ps and pv in the geodetic coordinate system.

To prevent the ARV from being unable to reach the target position due to obstacles and
other reasons during waypoint path mode, set the maximum time limit for ARV waypoint
path mode:

tmax = 2 ×
√
(xs − xe)

2 + (ys − ye)
2

v
, (3)

where tmax is the maximum time limit of waypoint path mode, xs and ys are the horizontal
and vertical coordinates of ps and v is the ARV forward speed in waypoint path mode.

3.2. Mid-Range Adjustment Stage

The purpose of the mid-range adjustment stage is to adjust the position and heading
angle of the ARV. Compared to [20], to enter the short-range docking stage with a better
attitude, a lateral deviation adjustment algorithm is added to stabilise the ARV near the
centreline of the docking station with a heading angle towards the entrance nozzle of the
docking station.

In the mid-range adjustment stage, the start position and the target position are
respectively 80 m and 5 m in front of the entrance nozzle of the docking station, and heading
path mode is used. Once the ARV has reached the target position, it enters the short-range
docking stage.

The path tracking method in the mid-range adjustment stage is shown in Figure 6.
When the distance l3 between ARV current position pv and the docking station centreline
L is less than or equal to 1 m, the ARV will dock with the heading angle ϕt1 of the target
position p1. Otherwise, the ARV will dock with the heading angle ϕt2 of the target position
p2, which is the midpoint between p1 and the projection point p3 of pv on L. The judgment
formula is as follows:

l3

{ ≤ 1, target heading is ϕt1
> 1, target heading is ϕt2

, (4)

where the distance l3 is between pv and L, the target heading ϕt1 and ϕt2 can be calculated
by the following formula: ⎧⎨⎩

l3 = l1 × |sin ϕ1|
ϕt1 = atan 2(x1 − xv, y1 − yv)
ϕt2 = atan 2(x2 − xv, y2 − yv)

, (5)

where x1 and y1 are the horizontal and vertical coordinates of the target point p1:{
x1 = xd + 5 × sin ϕd
y1 = yd + 5 × cos ϕd

, (6)

l1 is the distance between pv and p1:

l1 =

√
(xv − x1)

2 + (yv − y1)
2, (7)

ϕ1 is the angle between pv p1 and L:

ϕ1 = ϕd − atan 2(xv − x1, yv − y1), (8)

x2 and y2 are the horizontal and vertical coordinates of p2, which is the midpoint of p1
and p3: ⎧⎪⎪⎨⎪⎪⎩

x2 = x1 +
l1 × | cos ϕ1| × sin ϕd

2

y2 = y1 +
l1 × | cos ϕ1| × cos ϕd

2

. (9)
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If the distance between pv and p1 is less than or equal to 2 m, or if the ARV sails past L1,
which is the vertical plane perpendicular to L that passes through p1, it can be determined
that the ARV has reached the p1 point and enters the short-range docking stage.

Figure 6. Path tracking method in the mid-range adjustment stage.

3.3. Short-Range Docking Stage

The purpose of the short-range docking stage is to control the ARV to navigate accu-
rately to the docking station. The short-range docking stage can be appoached using an
optical guidance method, or an autonomous navigation guidance method. In this paper,
the autonomous navigation guidance method is used.

In the short-range docking stage, a heading path mode is used, the ARV sails from 5 m
in front of the entrance nozzle of the docking station and the direction of the entrance nozzle
of the docking station is used as the heading angle for docking. As the ARV approaches
the docking station, the influence of the docking station positioning error on the heading
angle increases. To avoid the above problem, the ARV will use a fixed-heading mode if the
distance between the ARV and the docking station is less than 1.5 m.

As the docking system does not have a capture mechanism, it is impossible to judge
whether the docking is in place by hardware. To stop the ARV after it has been guided to
the docking station, it is necessary to calculate the sailing time through actual tests.

3.4. Correction of Docking Station Status Information

During the docking process, as the ARV approaches the docking station, it receives
status information from the docking station measured by the USBL and the depth gauge
through a hydroacoustic communicator. The docking station status information includes
its depth, relative position and orientation angle, and the ARV uses this information to
correct its docking strategy in real time.

The docking station depth correction method is as follows: if the difference between
the received docking station depth and the docking station depth before update is less than
5 m, update the depth information.

The correction of the docking station relative position and orientation angle is obtained
by the positioning information measured by the USBL. The method is shown in Figure 7:

Figure 7. Correction of the relative position and orientation angle of the docking station.

If the difference between the depth of the ARV and the preset depth of the docking
station is less than 0.5 m, the ARV and the docking station are considered to be in the same
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horizontal plane. The formula for calculating the relative position of the docking station is
as follows: {

xd = xv + lr × sin(ϕv + ϕa)
yd = yv + lr × cos(ϕv + ϕa)

, (10)

where lr is the distance between the ARV and the docking station measured by USBL,
ϕv is the heading angle of the ARV and ϕa is the azimuth angle of the docking station in
the ARV coordinate system measured by USBL. If the distance between the new docking
station position and the docking station position before update is less than 15 m, update
the position information.

The formula for calculating the orientation angle of the docking station is as follows:

ϕd = atan2(xv − xd, yv − yd)− ϕh, (11)

where ϕh is the azimuth angle of the ARV in the docking station coordinate system mea-
sured by the USBL. If the difference between the new docking station orientation angle
and the docking station orientation angle before update is less than 15 degrees, update the
orientation angle information.

The method for updating the position and orientation angle is shown in Figure 8.
DP . . . and DO . . . are the currently stored docking station positions and orientation angles,
5 groups are stored in total and the initial values are the preset position and orientation
angle of the docking station. DP and DO are the new status information measured by
USBL, DPmean and DOmean are the average docking station position and orientation angle.
If DP and DO satisfy the conditions for updating the position and orientation angle of the
docking station, they are pushed into the array and DP0 and DO0 are pushed out of the
array. The ARV uses the updated position and orientation angle of the docking station
DPmean and DOmean.

Figure 8. Method of updating the position and orientation angle.

4. Test Verification and Analysis

To verify the feasibility of the guidance method, tests on lakes and shallow seas
are performed from July 2022 to August 2022. The tests include autonomous navigation
docking tests and acoustic guidance docking tests.

4.1. Autonomous Navigation Docking Tests on the Lake

Autonomous navigation docking uses only position information provided by inertial
navigation for guidance without using USBL to correct the docking station depth, position
and orientation angle. The ARV starts the docking task at a random position between 20 m
and 50 m away from the docking station and a random initial heading angle. The long-
guidance waypoints are set at 100 m and 80 m in front of the docking station, and the sailing
speed is set at 2 knots for the first waypoint path mode and 0.3 m/s for the remaining stages.

The docking station is deployed 1.5 m underwater, and the position and the orientation
angle of the docking station are measured and input to the ARV autonomous docking
module as the preset docking station position and the preset orientation angle.

Real images and video screenshots of the autonomous docking tests on the lake are
shown in Figure 9. A total of seven autonomous navigation docking tests were performed,
of which four docking tests were successful. The records of the docking tests are shown
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in Table 1, where the lateral control error is the distance between the ARV position when
docking is complete and the vector, which is in the direction of the docking station orienta-
tion angle through the docking station position. A positive value means that the ARV is to
the right side of the vector, and a negative value means that the ARV is to the left side of
the vector.

Figure 9. Autonomous docking tests on the lake.

Table 1 shows that the lateral deviation of the docking control using the position
information provided by the inertial navigation has reached the accuracy required for
docking. However, the large positioning error of inertial navigation causes the actual
arrival position of the AUV to deviate, resulting in docking failure.

Table 1. Records of autonomous navigation docking tests on the lake.

Index
ARV Initial Heading

Angle (°)

Docking Station
Initial Orientation

Angle (°)

Initial Distance
between ARV and

Docking Station (m)

Lateral Control
Error (m)

Success or Not

1 161.237 196 45.271 0.106 No
2 184.230 196 47.307 0.023 No
3 233.973 196 39.273 0.106 No
4 249.888 196 45.216 −0.091 Yes
5 278.954 196 41.150 −0.091 Yes
6 174.634 196 42.331 −0.061 Yes
7 175.202 196 49.301 −0.061 Yes

The track and the deviation curve of the sixth autonomous navigation docking test are
shown in Figure 10. It can be seen that as the ARV sails from the 100 m waypoint to the
80 m waypoint, there is some fluctuation in the lateral deviation at this stage due to the
change in target heading. As the ARV approaches the 80 m waypoint, the lateral deviation
has stabilised around 0, that is, the ARV has been adjusted to be close to the centreline of the
docking station. As the ARV sails from the 80 m waypoint to the docking station, the track
is always stable on the centreline of the docking station. When entering the docking station,
the lateral deviation is −0.061 m.

95



J. Mar. Sci. Eng. 2023, 11, 1629

116.964 116.9642 116.9644 116.9646 116.9648
Longitude (°)

38.5791

38.5792

38.5793

38.5794

38.5795

38.5796

38.5797

38.5798

38.5799

38.58

L
at

itu
de

 (
°)

AUV track
AUV start position
Waypoint
Dock position

0 50 100 150 200 250 300 350

Time (s)

-60

-40

-20

0

20

40

60

80

100

120

D
is

ta
nc

e 
(m

)

Distance between AUV and dock
Lateral deviation

(a) (b)

Figure 10. (a) Track of autonomous navigation docking test on the lake. (b) Deviation curve of
autonomous navigation docking test on the lake.

4.2. Acoustic Guidance Docking Tests on the Lake

Acoustic guidance docking uses inertial navigation position for guidance and uses
underwater acoustic communication to correct the docking station depth, position and
orientation angle in real time. The ARV starts the docking task at a random position
between 20 m and 50 m away from the docking station and starts the docking task with a
random initial heading angle. The long-guidance waypoints are set at 120 m and 80 m in
front of the docking station, and the navigation speed at each stage is the same as that of
the autonomous navigation docking tests.

The docking station is deployed 1.5 m underwater, and the position and the orientation
angle of the docking station are measured and input to the ARV autonomous docking
module as preset values.

The acoustic guidance docking tests are divided into three stages: acoustic guidance
performance tests, docking station orientation angle adjustment tests and docking station
position adjustment tests.

4.2.1. Acoustic Guidance Performance Tests

In this stage, the USBL functioned only to adjust the position of the docking station,
the method for updating the docking station orientation angle mentioned in Section 3.4 is
not used, and the orientation angle of the docking station is kept at the preset value.

In the first stage of acoustic guidance docking, a total of 10 tests were performed,
of which 8 docking tests were successful. The records of the docking tests are shown in
Table 2.

The track and the deviation curve of the ninth acoustic guidance docking test is
shown in Figure 11. The apparent position of the docking station after several updates
has some deviation from the preset position because the inertial navigation of the ARV
has a cumulative error during its navigation, resulting in some offset in its self-estimated
position. As the ARV navigates from the 80 m waypoint to the docking station, its track is
gradually corrected as the position of the docking station is continuously updated. When
the docking is complete, the lateral deviation of the ARV relative to the updated docking
station position is −0.909 m. It can be seen that the acoustic guidance docking algorithm
has sufficient adjustment capability in the case of drift in autonomous navigation.
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Table 2. Records of acoustic guidance docking tests on the lake (stage 1).

Index
ARV Initial

Heading Angle
(°)

Docking Station
Initial

Orientation
Angle (°)

Initial Distance
between ARV
and Docking
Station (m)

Update Times of
Docking Station

Status
Information

Lateral Control
Error (m)

Success or Not

1 268.108 196 40.246 20 −0.589 Yes
2 269.674 196 36.265 28 −0.702 Yes
3 220.765 185 37.316 12 0.200 Yes
4 242.820 185 21.649 30 0.556 No
5 152.327 185 21.937 14 0.431 Yes
6 269.948 185 20.919 36 −1.256 No
7 139.144 185 21.771 45 −0.238 Yes
8 242.691 185 23.836 16 −0.242 Yes
9 179.415 185 22.938 38 −0.909 Yes

10 242.952 185 21.615 24 −0.536 Yes
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Figure 11. (a) Track of acoustic guidance docking test on the lake (stage 1). (b) Deviation curve of
acoustic guidance docking test on the lake (stage 1).

Figure 11 shows that when the ARV is successfully docked, its position has not reached
the updated docking station position that it has estimated using data provided by the USBL.
After analysis, due to reasons such as data delay caused by ARV movement and the USBL
operating mechanism, the estimated docking station position is directly behind the actual
docking station position after multiple adjustments. This error affects the lateral deviation
and the success rate of acoustic guidance docking.

4.2.2. Docking Station Orientation Angle Adjustment Tests

At this stage, the orientation angle of the docking station received by the USBL is used
to update the docking strategy in real time and control the docking of the ARV.

In the second stage of acoustic guidance docking, a total of two tests were performed,
both of which were successful. The records of the docking tests are shown in Table 3.

The track and heading angle update curve of the first acoustic guidance docking test
are shown in Figure 12. The orientation angle of the docking station will fluctuate to some
extent due to factors such as water flow. The ARV successfully used the updated docking
station orientation angle to modify the docking path in real time, and the docking can still
be successful. The lateral deviation of the ARV when it reaches the docking station was
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0.023 m, which meets the accuracy requirements for docking. This proves that the ARV
docking strategy can overcome fluctuations in the orientation angle of the docking station.

Table 3. Records of acoustic guidance docking tests on the lake (stage 2).

Index
ARV Initial

Heading
Angle (°)

Docking
Station Initial

Orientation
Angle (°)

Initial
Distance

between ARV
and Docking
Station (m)

Update Times
of Docking

Station Status
Information

Updated
Docking
Station

Orientation
Angle (°)

Lateral
Control Error

(m)

Success or
Not

1 159.068 210 22.747 67 209.898 0.023 Yes
2 286.052 210 22.348 45 213.571 −0.726 Yes
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Figure 12. (a) Track of acoustic guidance docking test on the lake (stage 2). (b) Orientation angle
update curve of acoustic guidance docking test on the lake (stage 2).

4.2.3. Docking Station Position Adjustment Tests

At this stage, the preset position of the docking station was altered so that there
was a certain deviation from the actual measured position, forcing the ARV to correct its
estimate of the position of the docking station in real time according to the information
from the USBL.

In the third stage of acoustic guidance docking, a total of two tests were performed,
of which one docking test was successful. The records of the docking tests are shown in
Table 4.

Table 4. Records of acoustic guidance docking tests on the lake (stage 3).

Index
ARV Initial

Heading Angle
(°)

Docking
Station Initial

Orientation
Angle (°)

Initial
Distance

between ARV
and Docking
Station (m)

Update Times
of Docking

Station Status
Information

Lateral Control
Error (m)

Success or Not

1 290.271 200 24.521 33 0.956 Yes
2 269.674 200 25.127 38 1.479 No

The track of the first acoustic guidance docking test is shown in Figure 13. The preset
docking station position is 2.608 m east of the measured docking station position, so
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the ARV adjusts the relative position and the orientation angle of the docking station using
the positioning information from the USBL and finally successfully completes the docking.
The lateral deviation is 0.956 m when the docking is complete.

116.9638 116.964 116.9642 116.9644 116.9646 116.9648 116.965

Longitude (°)

38.579

38.5792

38.5794

38.5796

38.5798

38.58
L

at
itu

de
 (

°)

AUV track
AUV start position
Waypoint
Measured dock position
Preset dock position (wrong)
Updated dock position
Final dock position

116.9645 116.96453

38.58008

38.5801

38.58012

Figure 13. Track of acoustic guidance docking test on the lake (stage 3).

4.3. Acoustic Guidance Docking Tests in the Shallow Sea

In the shallow sea acoustic guidance docking tests, the ARV started the docking task
with a random initial heading angle at a random position between 20 m and 500 m from
the docking station. The long-guidance waypoints were set at 220 m, 180 m, 120 m and
80 m ahead of the docking station, and the sailing speed was set at 2 knots for the first
waypoint path mode and 1 knot for the remaining stages.

The docking station was deployed 1.5 m to 2.5 m underwater, and the position and the
orientation angle of the docking station were measured and input to the ARV autonomous
docking module as preset values.

Real images and video screenshots of the autonomous docking tests in the shallow sea
are shown in Figure 14. A total of eight acoustic guidance docking tests were performed,
of which six docking tests were successful. The records of the docking tests are shown in
Table 5.

Table 5. Records of acoustic guidance docking tests in the shallow sea.

Index
ARV Initial

Heading
Angle (°)

Docking Station
Initial

Orientation
Angle (°)

Initial Distance
between ARV
and Docking
Station (m)

Update Times of
Docking Station

Status
Information

Lateral Control
Error (m)

Success or Not

1 174.546 225 72.906 12 0.472 Yes
2 145.463 225 23.004 19 0.448 Yes
3 352.805 225 460.635 6 −1.424 No
4 339.969 205 295.552 19 −0.347 Yes
5 23.115 215 332.006 44 0.635 No
6 330.825 215 359.362 36 0.085 Yes
7 349.211 215 356.190 30 −0.972 Yes
8 316.172 215 355.217 21 0.163 Yes
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Figure 14. Autonomous docking tests in the shallow sea.

The track and the deviation curve of the seventh acoustic guidance docking test are
shown in Figure 15. To overcome the influence of the complex underwater environment
on ARV navigation and USBL reception, more waypoints were set in the long-range
approach stage, adjustments were made from a longer distance to reduce lateral deviation
during docking and more USBL positioning information was received to locate the relative
position of the docking station more accurately. It can be seen that the ARV has tracked to
the centreline of the docking station when it sailed to 180 m ahead of the docking station.
During the approach, as the position and orientation angle of the docking station are
updated, the centreline of the docking station will also change, resulting in an increase in
the lateral deviation of the ARV. Through continuous adjustment, the ARV can track the
centreline of the docking station in real time and complete the docking successfully.
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Figure 15. (a) Track of acoustic guidance docking test in the shallow sea. (b) Deviation curve of
acoustic guidance docking test in the shallow sea.

We have compared the success rates of some classical docking tests in the sea, as
shown in Table 6. It can be seen that the docking algorithm in this paper has improved the
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docking success rate, demonstrating the reliability of the docking algorithm. The heading
adjustment algorithm in the mid-range adjustment stage effectively reduced the lateral
deviation during docking. The real-time adjustment of the depth, relative position and
orientation of the docking station using USBL effectively overcame the depth and orienta-
tion changes of the docking station in the water as well as the cumulative errors generated
by the ARV inertial navigation. All these were helpful for the improvement of docking
success rate.

Table 6. Comparison of success rates of sea docking tests.

Docking System Success Rate

Tri-Ton 2 AUV 2 out of 3 (66.7%)
REMUS AUV 17 out of 29 (58.6%)

Odyssey IIB AUV (electromagnetic guidance) 5 out of 8 (62.5%)
This paper 6 out of 8 (75.0%)

After analysis, the following reasons are summarised for the failures of the acoustic
guidance docking tests in the shallow sea:

1. The ocean environment is complex and changing; sea currents and waves will also
affect the navigation of the ARV, resulting in docking failure.

2. There is a drift in autonomous navigation; if the ARV has a long continuous under-
water navigation distance, the inertial navigation will accumulate significant error;
if the error is large, it will be difficult for the ARV to adjust to the centreline of the
docking station after it begins to receive information from the USBL, resulting in
docking failure.

3. If the ARV does not receive a sufficient amount of docking station status information,
it may not be able to locate the correct position of the docking station, resulting in
docking failure.

5. Conclusions

Aiming at persistent operation of autonomous underwater vehicles, this paper pro-
poses an underwater docking method based on acoustic guidance. According to the
structural properties of the funnel docking station, the underwater docking is divided into
three stages. To solve the problem of autonomous navigation deviation in underwater
docking, a USBL-based correction method for the docking station depth, relative position
and orientation angle is proposed. Autonomous navigation docking tests on a lake were
first performed, with a docking success rate of 4 out of 7. Next, acoustic guidance docking
tests on the lake were performed, and the docking success rate was 11 out of 14. Finally,
through shallow sea tests, acoustic guidance docking tests were performed, with a docking
success rate of 6 out of 8. The following conclusions can be drawn from the analysis of
the test data: the average lateral error of the autonomous navigation docking was 0.077 m,
which met the required accuracy for docking, however, due to the cumulative error of
inertial navigation, the docking success rate was low; acoustic guidance docking tests on
the lake improved the docking success rate by 17.9% by correcting the ARV’s estimate of the
depth, relative position and orientation angle of the docking station, verifying the reliability
of the acoustic guidance algorithm on the lake; finally, in acoustic guidance docking tests
in a shallow sea, due to the complexity of the ocean environment, the success rate of the
docking was reduced. Therefore, improving the docking success rate of acoustic guidance
in the sea and increasing the stability of the docking guidance algorithm are the focus of
future research.
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The following abbreviations are used in this manuscript:

ALOC Acoustic localisation and communication device
ARV Autonomous remotely operated vehicle
AUV Autonomous underwater vehicle
DVL Doppler velocity log
GPS Global positioning system
INS Inertial navigation system
LBL Long baseline
ROV Remotely operated vehicle
SBL Short baseline
SSBL Super short baseline
USBL Ultra-short baseline
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Abstract: As crucial technology in the auto-navigation of unmanned surface vehicles (USVs), path-
planning methods have attracted scholars’ attention. Given the limitations of White Shark Optimizer
(WSO), such as convergence deceleration, time consumption, and nonstandard dynamic action, an
improved WSO combined with the dynamic window approach (DWA) is proposed in this paper,
named IWSO-DWA. First, circle chaotic mapping, adaptive weight factor and the simplex method
are used to improve the initial solution and spatial search efficiency and accelerate the convergence
of the algorithm. Second, optimal path information planned by the improved WSO is put into the
DWA to enhance the USV’s navigation performance. Finally, the COLREGs rules are added to the
global dynamic optimal path planning method to ensure the USV’s safe navigation. Compared with
the WSO, the experimental simulation results demonstrate that the path length cost, steering cost and
time cost of the proposed method are decreased by 13.66%, 18.78% and 79.08%, respectively, and the
improvement in path smoothness cost amounts to 19.85%. Not only can the proposed IWSO-DWA
plan an optimal global navigation path in an intricate marine environment, but it can also help a USV
avoid other ships dynamically in real time and meets the COLREGs rules.

Keywords: circle chaotic mapping; simplex method; White Shark Optimizer; dynamic window
approach; COLREGs rules; path planning method

1. Introduction

As small surface vehicles with autonomous navigation capability, USVs are widely
used in maritime patrolling, resource exploration and marine rescue [1]. Comprehensively
considering conditions such as reefs, water depth and no-sail areas, planning safe and
efficient routes for USVs in a complex marine environment has gradually become a hot
topic for scholars [2]. To address USV path planning issues in real marine environments,
Sing et al. [3] improved the Dijkstra method and planned a global navigation path in a
workspace with dynamic and static obstacles. However, the algorithm has high compu-
tational complexity and slow path search efficiency. Rui et al. [4] presented an enhanced
A-star algorithm for USV path planning. The algorithm has three path smoothers, which
are capable of generating a smooth and continuous path in a marine environment, but
are not capable of avoiding moving obstacles in real time. Recently, some nature-inspired
meta-heuristic algorithms have gradually been adopted in USV path planning. Guo et al. [5]
presented an enhanced particle swarm optimization (PSO) algorithm to plan a global USV
path that could avoid collisions. Cui et al. [6] enhanced the ant colony algorithm (ACO)
and implemented it in USV path planning. Ma Y. et al. [7] presented a dynamic enhanced
PSO, which constrained USV path planning in terms of three aspects: collision avoidance,
boundary movement and speed. Sahoo et al. [8] combined the advantages of the grey
wolf algorithm (GWO) and the genetic algorithm (GA) and proposed a hybrid grey wolf
algorithm (HGWO) for path planning and obstacle avoidance of autonomous underwater
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vehicles (AUVs). Gu et al. [9] proposed an improved RRT algorithm for ship path planning,
which clustered the data from an automatic identification system (AIS) and then improved
the sampling strategy to accelerate convergence. The improved Douglas–Peucker (DP) and
RRT algorithms are combined to optimize paths. Ma D. et al. [10] presented an enhanced
Gaussian pseudospectral method (RGPM) for continuous optimal control of USVs, which
can obtain an optimal smooth path. Han et al. [11] introduced a mixed approach to path
planning based on enhanced Theta* and the DWA. Theta* was utilized to globally plan
an optimal path and then the improved DWA was used to enhance the vehicle’s dynamic
collision avoidance ability. Wang et al. [12] improved the velocity obstacle method (VO) and
integrated it into the set-based guidance (SBG) framework to establish a dynamic collision
avoidance (DCA) model known as USV-DCA. In order to respond to the dynamic ocean
environment, Hu et al. [13] applied the A-Star algorithm and DWA method to safe USV
navigation, and the real-time collision avoidance behavior of USVs conforms to COLREGs
rules. Zhao et al. [14] put forward an adaptive elite GA with fuzzy inference (AEGAfi),
which can control the USVs to optimize its global trajectory, and its dynamic behavior
conforms to COLREGs. Li et al. [15] combined the artificial potential field (APF) with the
ACO and proposed an improved APF-ACO algorithm, which overcame the local optimum
shortcomings in the APF method, and achieved the path planning and collision avoid-
ance of ships. Hao et al. [16] proposed a dynamic fast Q-learning algorithm (DFQL) to
plan global USV paths in known marine environments. The algorithm initializes the Q
table in combination with the APF method and provides static and dynamic rewards to
motivate the USV to move toward the target point. Guo S. et al. [17] proposed a model
based on deep reinforcement learning, which combined the Depth Deterministic Strategy
Gradient (DDPG) algorithm with the APF method for autonomous path planning of USVs.
Sang et al. [18] proposed an improved APF method and combined it with the A-Star
algorithm for the formation control and path planning of the USVs.

These above researchers have carried out commendable work, however, there are still
some existing problems such as falling into local optimum, time consumption and lack of
smoothness in the planned path. White Shark Optimizer (WSO) is an innovative intelligent
method that was developed in 2022 to imitate the foraging behavior of white sharks.
Compared to other nature-inspired methods such as Butterfly Optimization Algorithm
(BOA) [19], Grey Wolf Optimizer (GWO) [20], Manta Ray Foraging Optimizer (MRFO) [21],
Whale Optimization Algorithm (WOA) [22] and Sparrow Search Algorithm (SSA) [23], the
WSO algorithm offers the benefits of simplicity, high flexibility, strong robustness and rapid
convergence [24]. However, since the population of WSO is not rich enough in its initial
stage, it will decelerate the convergence in later iterations, and the risk of being caught in
a local optimum should be considered. Therefore, the traditional WSO algorithm needs
to be further improved. In line with the above research, this study focuses on innovative
improvements and applications of WSO. When the previous literature is reviewed, the
research on combining the improved WSO and DWA to solve the optimal USV path
planning problem has not been found. To overcome the limitations of the traditional WSO
algorithm, guide the USV to plan its global optimal path and avoid the obstacles in time,
this paper proposes an enhanced WSO algorithm named IWSO-DWA, which combines the
advanced techniques of circle chaotic mapping, adaptive weight factor, the simplex method
and the DWA. First of all, the population of white sharks is initialized by using circle chaotic
mapping to increase its diversity and speed up the algorithm’s convergence. Secondly, the
adaptive weight factor method is used to update the location of the best white shark, which
maintains a balance between both exploration and exploitation to promote the algorithm’s
capacity. Then, the simplex method is adopted to refresh the location of white sharks as
they move toward the best white shark, so as to enhance the ability of escaping the local
optimal value. Finally, the enhanced DWA is utilized for avoiding obstacles dynamically.
Furthermore, the azimuth evaluation function of the DWA is improved to incorporate
the COLREGs rules for dynamic obstacle avoidance. By combining the improved WSO
algorithm with the improved DWA method, the USV can not only sail along the optimal
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path, but also avoid other obstacle ships regularly in real time, and its dynamic behavior
conforms to the COLREGs rule.

The following are the primary contributions of this paper:

1. Aiming at insufficient search ability caused by uneven population distribution of the
WSO, the white shark population is initialized by using circle chaotic mapping to
enrich the diversity and enhance the initial solution quality of the algorithm.

2. In the proposed IWSO, the adaptive weight factor is utilized to refresh the best white
shark’s location to balance the exploration and exploitation capacity.

3. To address the issue that the WSO slips into the regional optimum easily in the later
iteration, the simplex method is used to update the other white sharks’ movement
position toward the best white shark, which increases the probability of breaking out
the local optimum.

4. An innovative fusion method known as the IWSO-DWA algorithm is created by
combining the improved WSO with the enhanced DWA. The proposed IWSO-DWA
can not only plan a global optimal path of navigation in an intricate marine envi-
ronment, but also can help USV avoid the other ships dynamically in real time and
meet the COLREGs.

The rest of this paper is arranged as follows: Section 2 introduces the WSO algorithm
and its improvement with multi-strategies innovatively. Then, in Section 3, both the
standard DWA and its enhancement are presented. Section 4 introduces a novel global
optimal path planning method called IWSO-DWA. The experimental simulation results
of the IWSO-DWA are presented in Section 5, which also includes a comparison of its
performance advantages with those of conventional algorithms. Section 6 concludes the
research and outlines future work.

2. White Shark Optimizer and Its Improvement

2.1. Traditional White Shark Optimizer (WSO)

The White Shark Optimizer, a novel nature-inspired algorithm introduced in 2022,
mimics the foraging behavior of white sharks. The WSO has the superiorities of sim-
plicity, high flexibility and strong robustness. However, it also has certain drawbacks,
including population diversity deficiency, limited search range and a tendency to slip into
the regional optimum.

Assume that the set matrix of the white shark population is:

W = [w1, w2, w3, . . . , wn]
T , wi = [wi,1, wi,2, wi,3, . . . , wi,d] (1)

Let n denote the number of white sharks, with i = (1,2, . . . ,n). The dimension of the
problem definition is represented by the variable d.

According to Equation (1), the fitness function of white sharks is expressed as follows:

F(w) = [ f (w1), f (w2), . . . , f (wn)]
T (2)

where f (wi) = [ f (wi,1), f (wi,2), . . . , f (wi,d)]. The i-th white shark’s fitness value is repre-
sented by f (wi). The white shark population’s fitness value is denoted by F(w).

In the traditional WSO algorithm, white sharks search for prey extensively through
their sensitive hearing, smell and sight. While prey is moving in the sea, it will produce
hesitation of the waves and special smells. Once a white shark perceives the prey’s po-
sition, it approaches the prey in a wave motion. The white sharks’ motion speed can be
expressed as follows:

vi
k+1 = μ[vi

k + p1(ωgbestk
− ωi

k)× c1 + p2(ω
vi

k
best − ωi

k)× c2] (3)

where k denotes the current iterations. vi
k+1 is the i-th white shark’s new velocity vector

in (k + 1)-th iteration. vi
k is the i-th white shark’s current velocity vector in k-th iteration.
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ωgbestk
denotes the white shark’s global optimal position. In the k-th step, the i-th white

shark’s current position is denoted by ωi
k. The i-th optimal known position in the white

shark population is denoted by ω
vi

k
best. c1 and c2 are selected from [0,1] randomly. vi

k denotes
the white sharks’ i-th index vector when they have reached their optimal location.

Great white sharks usually hunt for food in the ocean’s depths randomly. What is
more, great white sharks approach the optimal prey’s location. The location of white sharks
near the optimal prey is updated as follows:

ωi
k+1 =

{
ωi

k · ¬ ⊕ ω0 + u · a + l · b; rand < mv
ωi

k + vi
k/ f ; rand ≥ mv

(4)

where ωi
k+1 represents the new position of i-th white shark. ¬ is a negation operator. The

search space bound is indicated by l and u. mv represents the increasing movement force of
the white shark as it approaches its prey. a,b and ω0 represent the vector in one dimension.

The best white shark is closely situated to the optimal prey. By using fish school
behavior, all white sharks will migrate towards the best white shark, and the position is
updated as follows:

ω′ i
k+1 = ωgbestk

+ r1
→
Dωsgn(r2 − 0.5), r3 < ss (5)

where ω′ i
k+1 denotes the i-th white shark’s position relative to the prey. sgn(r2 − 0.5) stands

for the search direction of the white shark.
→
Dω stands for the distance between the white

shark and its prey. ss stands for the strength of white sharks’ sense organs. R1, r2 and r3 are
selected from [0,1] randomly.

The fish school behavior of the traditional WSO algorithm can be expressed as follows:

ωi
k+1 =

ωi
k + ω′ i

k+1

2 × rand
(6)

where the related variables have been explained in Equations (3) and (5), so they will not
be described here again.

The flow chart of the traditional WSO algorithm is depicted in Figure 1.
To sum up, the traditional WSO algorithm exhibits the following limitations:

1. Since the white shark’s initialization population is created randomly, it is prone to
problems such as uneven population distribution, poor diversity and low quality of
the initial solution, which will not only decelerate the convergence, but also may fall
into local optimum.

2. Since white sharks hunt for prey amid the ocean’s depths randomly, they may not be
close enough to the optimal prey, which will lead to an imbalance in both exploration
and exploitation capacity.

3. In the fish school behavior, other white sharks’ position may not be optimal to the
best white shark, which will slip into the regional optimum easily.
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Figure 1. Flow chart of traditional WSO algorithm.

2.2. Improved White Shark Optimizer (IWSO)

Due to the traditional WSO algorithm’s drawbacks, the following aspects will be
improved in this paper:

1. Considering the shortcomings of the WSO, such as uneven distribution and insufficient
diversity of the population, a circle chaotic mapping algorithm is used to initialize the
white shark population, thus further improving the quality of the initial solution.

2. To address the imbalance of exploration and exploitation capacity, the adaptive weight
factor method is utilized to update the best white shark’s position so that it can
strengthen the balance between the exploration and exploitation capability.

3. To deal with the issue that the WSO slips into the regional optimum easily, the simplex
method is utilized to update the other great white sharks’ position near the best white
shark to increase the possibility of the algorithm escaping the local region.

2.2.1. Circle Chaotic Mapping

Circle chaotic mapping has gained considerable attention owing to its simple structure
and strong uniformity. It exhibits complex, unpredictable and random behaviors, and
is often employed to enhance the diversity of the population. Circle chaotic mapping
outperforms other kinds of chaotic mappings like logistic chaotic mapping and tent chaotic
mapping in terms of ergodic uniformity, randomness and diversity.

In the traditional WSO algorithm, the initialization population of white sharks is gen-
erated randomly, which may lead to the disadvantages of uneven population distribution,
poor diversity and slipping into the regional optimum easily in the later iteration. For this,
the circle chaotic mapping method is employed to generate the initial circle population of
white sharks, which is then combined with a random population. The resulting group is
evaluated, and the best sharks are selected to form the optimal white shark population of
the next generation. The optimized white shark individuals are more similar to the initial
optimal solution than the sharks in the random population and initial circle population,
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which evens out white shark population distribution, broadens the algorithm’s search
range and improves its efficacy.

Let wi denote the individuals within the white shark population, and then the initial-
ization formula for the white shark population using the circle chaotic mapping method
can be expressed as follows [25]:

wi+1 = mod(wi + 0.2 − 0.5
2π

· sin(2π · wi), 1) (7)

where mod indicates remainder.

2.2.2. Adaptive Weight Factor

When white sharks hunt for prey amid the ocean’s depths randomly, they may not be
close enough to the optimal prey, which may lead to an imbalance between exploration
and exploitation. So, the adaptive weight factor is used to update the best white shark’s
position in this paper, which makes the algorithm have outstanding exploration ability in
the earlier iteration and excellent exploitation ability in the later iteration. By introducing
the adaptive weight factor in the process of white shark hunting prey, it is beneficial to
balance the capacity for both exploration and exploitation. The adaptive weight factor
proposed in this paper is expressed as follows:

α = 0.2 +
1

0.6 + e(− f (wi)/μ′)k (8)

where f (wi) represents the i-th white shark’s fitness value. μ′ represents the white shark’s
best fitness value in the first iteration. α is the dynamic nonlinear factor, which is used to
update the best white shark’s position. The refined formula is presented below:

ωi
k+1 =

{
α · ωi

k · ¬ ⊕ ω0 + u · a + l · b; rand < mv
(1 − α) · ωi

k + vi
k/ f ; rand ≥ mv

(9)

As can be seen from the formula, the best white shark’s position is adjusted by the
adaptive weight factor adaptively, so that the capacity for both exploration and exploitation
can be balanced.

2.2.3. Simplex Method

The simplex method is a direct search algorithm for optimizing multi-dimensional
unconstrained problems proposed by Nelder et al. [26] in 1965. The algorithm takes
d + 1 points in d-dimensional space to form a simplex and then calculates the function
value of its vertices. The sub-optimal points are obtained by internal compression, external
compression, reflection and expansion of the worst point of the simplex. Then, the worst
point of the simplex is replaced by the sub-optimal point, and the simplex is reconstructed
to approach the global optimum continuously [27]. Since the simplex method is not affected
by the continuity and derivability of the objective function, it has an excellent optimization
ability, thus improving its capacity to break out the regional optimum. For this, the simplex
method is utilized to update the other white sharks’ location in the fish school behavior, so
as to urge them to approach the best white shark continuously and make their positions
close to the global optimum, which accelerates the convergence to the optimal solution and
enables it to overcome regional optimum. The diagram of the optimization process for the
simplex method is shown in Figure 2.
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Figure 2. Diagram of optimization process for the simplex method.

As is shown in the figure, the optimization steps of the simplex method can be
summarized as follows:

Step 1: Ranking and evaluating. All individuals of the white shark population in the
d-dimensional space were ranked and evaluated for fitness values, and the current best
white shark xg, the second best white shark xb and the abandoned white shark xs will be
selected, which is expressed as follows:

f (xd+1) ≥ . . . ≥ f (xb) ≥ f (xc) = f (
xg + xb

2
) ≥ f (xg) ≥ f (x1) (10)

Step 2: Reflection. Performing a reflection operation to obtain a reflection point xr.
The formula of reflection operation is:

xr = (1 + δ) · xc − δ · xs (11)

Here, xr refers to the reflective point obtained from xs. δ is the reflective factor, typically set
at 1.

Step 3: Expansion. If f (xg) > f (xr), the expansion process is carried out to obtain the
expansion point xe. The basic formula of expansion operation is as follows:

xe = (1 − χ) · xc + χ · xr (12)

where χ is the expansion factor. If f (xe) > f (xr), substitutes xr for xs.
Step 4: Outside Contraction. When f (xr) < f (xs), the outside contraction point xoc

can be obtained by the outside contraction operation, which can be expressed as follows:

xoc = xc + φ · (xr − xc) (13)

where φ is the contraction coefficient. If f (xr) > f (xoc), substitutes xoc for xs.
Step 5: Inside Contraction. If f (xs) < f (xr), the inside contraction operation can be

expressed as follows:
xic = xc − φ · (xr − xc) (14)

where xic is the inside contraction point. If f (xic) < f (xs), substitutes xic for xs.
Step 6: Shrinkage. For vertices xi in d-dimensional space, the shrinkage operation is

expressed as follows:
xi = x1 + ξ · (xi − x1) (15)

where ξ is the shrinkage coefficient.
After optimization by the simplex method, the position of the white shark individuals

is closer to global optimum, which helps improve the probability of the algorithm breaking
out the regional optimum.
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2.2.4. Performance of IWSO on IEEE CEC-2005

In this paper, a series of advanced strategies such as circle chaotic mapping, adaptive
weight factor method and simplex method is used to enhance the WSO. Moreover, the
CEC-2005 test suite is used to verify the improved effect of the presented IWSO and its
outstanding performance. CEC-2005 is a test suite containing several challenging benchmark
functions, which has a large number of local optimal solutions, so it could be used to simulate
the complexity of real search space and further verify the IWSO’s capability and reliability.
The presented IWSO is compared with WSO and other five highly respected meta-heuristic
algorithms such as BOA, GWO, MRFO, WOA and SSA over 25 independent runs in some
benchmark functions of CEC-2005. The population size of the IWSO and other algorithms
is set to 300, and the search agent is set to 50. The experimental simulation results are
displayed in Table 1.

Table 1. Optimization results of IWSO and other algorithms (BOA,GWO,MRFO,WOA,SSA,WSO)
running on the CEC-2005 test function.

Function BOA GWO MRFO WOA SSA WSO IWSO

F1

Best 9.16 × 10−6 7.19 × 10−20 2.40 × 10−269 2.20 × 10−55 0.00 × 100 7.21 × 101 0.00 × 100

Worst 2.99 × 10−5 7.00 × 10−18 2.73 × 10−255 8.42 × 10−49 2.26 × 10−175 3.75 × 102 0.00 × 100

Mean 2.00 × 10−5 1.80 × 10−18 1.20 × 10−256 3.44 × 10−50 9.03 × 10−177 2.25 × 102 0.00 × 100

Std 5.34 × 10−6 1.85 × 10−18 0.00 × 100 1.68 × 10−49 0.00 × 100 7.07 × 101 0.00 × 100

F2

Best 1.85 × 10−8 8.05 × 10−12 1.14 × 10−136 1.40 × 10−35 0.00 × 100 2.78 × 100 0.00 × 100

Worst 5.21 × 10−1 6.99 × 10−11 5.96 × 10−127 1.04 × 10−31 2.31 × 10−61 7.02 × 100 0.00 × 100

Mean 5.52 × 10−2 1.75 × 10−11 2.71 × 10−128 1.28 × 10−32 9.24 × 10−63 4.94 × 100 0.00 × 100

Std 1.31 × 10−1 1.27 × 10−11 1.19 × 10−127 2.66 × 10−32 4.62 × 10−62 1.17 × 100 0.00 × 100

F3

Best 8.23 × 10−6 1.17 × 10−5 4.60 × 10−261 2.10 × 104 0.00 × 100 3.76 × 102 0.00 × 100

Worst 2.74 × 10−5 2.66 × 10−2 7.44 × 10−245 6.91 × 104 5.76 × 10−121 1.42 × 103 0.00 × 100

Mean 1.81 × 10−5 2.73 × 10−3 6.66 × 10−246 4.73 × 104 2.31 × 10−122 8.60 × 102 0.00 × 100

Std 4.48 × 10−6 5.69 × 10−3 0.00 × 100 1.27 × 104 1.15 × 10−121 2.75 × 102 0.00 × 100

F4

Best 1.14 × 10−3 1.54 × 10−5 1.10 × 10−136 3.57 × 10−2 0.00 × 100 6.73 × 100 0.00 × 100

Worst 2.66 × 10−3 2.81 × 10−4 7.69 × 10−122 8.50 × 101 8.76 × 10−97 1.17 × 101 0.00 × 100

Mean 1.81 × 10−3 8.91 × 10−5 3.25 × 10−123 4.22 × 101 3.51 × 10−98 9.04 × 100 0.00 × 100

Std 3.89 × 10−4 5.82 × 10−5 1.54 × 10−122 2.65 × 101 1.75 × 10−97 1.35 × 100 0.00 × 100

F5

Best 2.88 × 101 2.57 × 101 2.21 × 101 2.76 × 101 2.35 × 10−9 8.02 × 102 2.87 × 10−7

Worst 2.89 × 101 2.87 × 101 2.51 × 101 2.87 × 101 5.60 × 10−4 2.27 × 104 2.24 × 10−6

Mean 2.89 × 101 2.67 × 101 2.35 × 101 2.80 × 101 8.45 × 10−5 7.75 × 103 1.03 × 10−6

Std 2.47 × 10−2 7.96 × 10−1 5.87 × 10−1 3.10 × 10−1 1.50 × 10−4 5.41 × 103 1.06 × 10−6

F6

Best 3.48 × 100 9.60 × 10−5 3.32 × 10−9 7.01 × 10−2 1.99 × 10−10 5.18 × 101 9.98 × 10−9

Worst 6.28 × 100 1.36 × 100 1.71 × 10−7 9.51 × 10−1 2.22 × 10−6 4.60 × 102 2.35 × 10−8

Mean 4.98 × 100 6.08 × 10−1 2.70 × 10−8 3.29 × 10−1 4.36 × 10−7 2.50 × 102 1.88 × 10−8

Std 6.48 × 10−1 3.91 × 10−1 3.38 × 10−8 2.07 × 10−1 5.68 × 10−7 1.05 × 102 7.65 × 10−9

F7

Best 8.60 × 10−4 6.36 × 10−4 2.06 × 10−5 1.49 × 10−4 5.74 × 10−6 1.55 × 10−2 1.29 × 10−5

Worst 6.09 × 10−3 5.87 × 10−3 3.18 × 10−4 1.68 × 10−2 9.01 × 10−4 1.15 × 10−1 1.00 × 10−4

Mean 3.13 × 10−3 2.41 × 10−3 1.57 × 10−4 3.62 × 10−3 2.88 × 10−4 4.02 × 10−2 4.56 × 10−5

Std 1.28 × 10−3 1.24 × 10−3 8.72 × 10−5 3.36 × 10−3 2.25 × 10−4 2.27 × 10−2 4.74 × 10−5

F8

Best −1.71 × 107 −7.42 × 103 −9.41 × 103 −1.26 × 104 −1.26 × 104 −4.11 × 103 −1.23 × 104

Worst −6.46 × 104 −4.57 × 103 −7.32 × 103 −7.05 × 103 −5.63 × 103 −2.94 × 103 −1.22 × 104

Mean −1.48 × 106 −6.18 × 103 −8.51 × 103 −9.84 × 103 −8.76 × 103 −3.40 × 103 −1.23 × 104

Std 3.37 × 106 8.07 × 102 5.36 × 102 1.87 × 103 2.36 × 103 2.90 × 102 7.79 × 101
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Table 1. Cont.

Function BOA GWO MRFO WOA SSA WSO IWSO

F9

Best 3.42 × 10−8 1.65 × 10−12 0.00 × 100 0.00 × 100 0.00 × 100 3.12 × 101 0.00 × 100

Worst 3.58 × 10−4 2.03 × 101 0.00 × 100 5.68 × 10−14 0.00 × 100 1.73 × 102 0.00 × 100

Mean 2.50 × 10−5 7.42 × 100 0.00 × 100 2.27 × 10−15 0.00 × 100 1.15 × 102 0.00 × 100

Std 7.67 × 10−5 5.76 × 100 0.00 × 100 1.14 × 10−14 0.00 × 100 3.90 × 101 0.00 × 100

F10

Best 6.63 × 10−4 6.33 × 10−11 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 3.80 × 100 8.88 × 10−16

Worst 1.87 × 10−3 6.28 × 10−10 8.88 × 10−16 1.51 × 10−14 8.88 × 10−16 6.75 × 100 8.88 × 10−16

Mean 1.35 × 10−3 2.28 × 10−10 8.88 × 10−16 5.58 × 10−15 8.88 × 10−16 5.25 × 100 8.88 × 10−16

Std 2.77 × 10−4 1.38 × 10−10 0.00 × 100 2.85 × 10−15 0.00 × 100 7.50 × 10−1 0.00 × 100

The table presents the objective function values for the IWSO and other algorithms in
terms of their best, worst, average and standard deviation. Based on the results, it can be
concluded that the IWSO effectively identifies the global optimum solution for the majority
of the CEC-2005 test functions, and its standard deviation is smaller than that of the WSO
algorithm and the other five meta-heuristic algorithms, which shows that IWSO algorithm
is effective in improving WSO algorithm. Therefore, when solving complex optimization
problems, the proposed IWSO algorithm is robust and reliable.

3. Dynamic Window Approach and Its Improvement

3.1. USV Modeling

Since there are many parameters in the actual USV motion model, it may be difficult
to directly model it. Therefore, the following assumptions are used to simplify the USV
motion model [28].

1. USV is considered a rigid body with uniform mass distribution and no geometric
deformation.

2. The roll, pitch and heave motions of USV can be ignored.
3. The xz-plane of USV is symmetrical, and the center of mass lies in the geometric

symmetry plane.
4. During the voyage of USV, the temporal and spatial variability of ocean currents and

wind in the selected area is considered to be quasi-static.

For the DWA method, it is important to construct the motion model of USV first.
According to Ref. [29], the USV has restricted mobility and its motion trajectory can be
regarded as consisting of each small arc. If Δt is very small, the motion of the USV may
be modeled as a uniform linear motion. In Ref. [30], USV’s motion planning problem can
be simplified to the motion of a rigid body with three freedom degrees (surge, sway and
yaw) in plane space. Based on the above analysis, ignoring the influence of wind and ocean
currents, USV’s model can be formulated as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xt+1 − xt = vt · Δt · cos θt
yt+1 − yt = vt · Δt · sin θt

θt+1 − θt = ωt · Δt
.
p = Rψ(ψ) · v

.
ψ = r

(16)

where at time t, (xt, yt) and θt are the USV’s location and orientation, respectively. Similarly,
(xt+1, yt+1) and θt+1 represent the USV’s location and orientation at time t + 1, respectively.
vt represents the USV’s linear velocity at time t. ωt represents the USV’s angular velocity
at time t. p = [x, y]T stands for the USV’s spatial vector. v = [u, v]T represents the USV’s
velocity vector. Rψ(ψ) is a rotation matrix, which is expressed by the following formula:

Rψ(ψ) =

[
cos ψ − sin ψ
sin ψ cos ψ

]
(17)
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The USV’s motion model is displayed in Figure 3.

Figure 3. Diagram of motion model for USV.

3.2. Velocity Sampling

Due to countless groups (v, ω) in the domain of motion vectors, sampling these velocities
based on the real USV restrictions is required to obtain a workable velocity range [31].

1. Speed constraint: limited by the USV’s maximal and minimal velocity:

Vm = {(v, ω)|v ∈ [vmin, vmax], ω ∈ [ωmin, ωmax]} (18)

where the minimal and maximal linear velocities are represented by vmin and vmax, re-
spectively. The minimal and maximal angular velocities are represented by ωmin and
ωmax, respectively.

2. Dynamic constraint: influenced by the motor acceleration and deceleration perfor-
mance of USV, which is expressed as follows:

Vd =
{
(v, ω)

∣∣∣v ∈ [vg − v f
′ · Δt, vg + ve

′ · Δt] ∧ ω ∈ [ωg − ω f
′ · Δt, ωg + ωe

′ · Δt]
}

(19)

where vg, ωg represents the USV’s current linear and angular velocity, respectively. ve
′, ωe

′
represent the USV’s maximal linear acceleration and maximal angular acceleration, re-
spectively. v f

′, ω f
′ represent the USV’s maximal linear deceleration and maximal angular

deceleration, respectively.

3. Braking distance constraint: To prevent the USV from colliding with other ships or
obstacles, the USV will be constrained by the braking distance, and the speed will be
reduced to zero within the braking distance according to its maximum deceleration.
The braking distance constraint is presented in the following formula:

Va =

{
(v, ω)

∣∣∣∣v ≤
√

2 · dist(v, ω) · v f
′
∧ ω ≤

√
2 · dist(v, ω) · ω f

′}
(20)

where dist(v, ω) stands for the distance between the nearest obstacle to the USV and the
end of the deduced trajectory.

3.3. Evaluation Function and Its Improvement

After sampling the velocity of USV, the DWA method will deduce the trajectory based
on the sampled velocity, and the scoring mechanism is used to sort these trajectories, and the
greatest score trajectory will be selected as the final trajectory of USV. Among them, the scoring
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mechanism of the DWA method is composed of three functions, speed function, azimuth
evaluation function and obstacle distance function [32], which are expressed as follows:

F(v, ω) = α · vel(v, ω) + β · head(v, ω) + γ · dist(v, ω) (21)

where α, β and γ are the weight factor of the three functions. However, owing to the
absence of knowledge on the global path, the DWA method is prone to slip into the regional
optimum when encountering a complex marine environment. Therefore, global path
information planned by the IWSO will be incorporated into the enhanced DWA method, so
that the USV can break out the regional optimum.

Aiming at the shortcomings of the traditional DWA, some strategies are used to
improve it in this paper. Firstly, head(v, ω) is changed to the tangent angle between the
global optimal navigation path and the USV. Then, the current azimuth angle from the USV
to the nearest sub-target point can be expressed by the following formula:

θc = tan(
y2 − y1

x2 − x1
) · 180

◦

π
(22)

where θc represents the current azimuth of the USV. (x1, y1) represents the current position
coordinates of USV. (x2, y2) represents the position coordinates of the sub-target point
nearest the USV. What is more, the improved azimuth cost function is expressed as follows:

head′(v, ω) = |θc − θst| (23)

where θst represents the azimuth between the predicted trajectory and the target point.
The improved azimuth evaluation function can guide USV along the global optimal path
planned by the IWSO while avoiding other obstacle ships or dynamic obstacles.

Secondly, in order to hasten USV arrival at the target point, the distance cost function
within the USV’s present location and the sub-target point is constructed, which is expressed
as follows:

path(v, ω) =

√
(xE − xST)

2 + (yE − yST)
2 (24)

where (xE, yE) represents the sub-target point coordinates. (xST , yST) represents the current
predicted trajectory coordinates.

To sum up, the assessment function for the enhanced DWA is:

F′(v, ω) = σ(α · vel(v, ω) + β · head′(v, ω) + γ · dist(v, ω) + η · path(v, ω)) (25)

where σ represents the smoothing factor. η represents path cost weight coefficient.

4. The Proposed Fusion Algorithm IWSO-DWA

To further smooth the USV’s navigation path and endow it with the ability of real-
time dynamic collision avoidance, this paper combines the proposed IWSO algorithm
with the improved DWA method and proposes a novel global dynamic optimal path
planning method, which is named IWSO-DWA. Due to the complex maritime navigation
environment and many ships coming and going, the COLREGs is introduced in this paper
to construct the collision avoidance model of USV, so that it can avoid other obstacle ships
reasonably while navigating along the optimal path globally. The pseudo-code of the
proposed IWSO-DWA is illustrated in Algorithm 1.
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Algorithm 1: IWSO-DWA

Input:
The set of population size: P;
The map information: G;
The maximum number of iterations: K.
Output: Optimal navigation path.
1. Initializing population by circle chaotic mapping;
2. While k < K do
3. Updating the parameters of WSO;
4. Identifying the current optimal solution;
5. for i = 1 to P do
6. Updating the motion velocity of white sharks;
7. end for
8. for i = 1 to P do
9. Refreshing the best white shark’s location by the adaptive weight factor;
10. end for
11. for i = 1 to P do
12. If rand ≤ss then

13.
→
Dω =

∣∣∣rand × (ωgbestk
− ωi

k)
∣∣∣;

14. If i ==1 then
15. ωi

k+1 = ωgbestk
+ r1

→
Dωsgn(r2 − 0.5);

16. else

17. ω′ i
k+1 = ωgbestk

+ r1
→
Dωsgn(r2 − 0.5);

18. ωi
k+1 =

ωi
k+ω′ i

k+1
2×rand ;

19. end if
20. end if
21. Using the simplex method to update the white sharks’ position;
22. end for
23. Modifying the position of any white shark that exceeds the boundary;
24. Assessing and revising the updated positions;
25. k = k + 1;
26. end while
27. Obtaining the optimal path globally and incorporating it into DWA;
28. Considering the COLREGs rules;
29. return optimal navigation path.

As can be seen from the pseudo-code of the proposed IWSO-DWA, the IWSO is
responsible for planning the global optimal path under a given environment model. The
global optimal path information is obtained to choose the present route’s start point and
sub-target point, and fed into the local path planner subsequently. Under the action of the
IWSO-DWA algorithm, USV can travel along the global optimal path planned by the IWSO,
and the other obstacle ships will be detected in real time as the process proceeds. When
other obstacle ships approach, USV will avoid it in real time, and its dynamic behavior
meets the COLREGs. After successful collision avoidance, USV will continue to move along
the global optimal path. Finally, refresh the current path’s status until the USV reaches the
final target point. The flow chart of IWSO-DWA for global dynamic optimal path planning
is displayed in Figure 4.
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Figure 4. Flow chart of global dynamic optimal path planning method (IWSO-DWA).

4.1. COLREGs Rules

The International Regulations for Preventing Collisions at Sea (COLREGs) is a kind of
sea traffic regulation that aims to avoid collisions between ships navigating the open seas.

According to Ref. [33], there are four representative rules of COLREGs: overtak-
ing, head-on, port side crossing and starboard crossing. The four representative rules of
COLREGs are shown in Figure 5.

(a) (b) (c) (d) 

Figure 5. Four representative rules of COLREGs: (a) overtaking situation; (b) head-on situation;
(c) port side crossing situation; (d) starboard crossing situation.
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The blue pentagon stands for USV, the red pentagon stands for obstacle ship, and the
yellow oval dotted line stands for the shape range of the ship. In the overtaking situation,
both USV and obstacle ship move from bottom to top. When the USV is behind the obstacle
ship and on the same route, USV can overtake the obstacle ship from the port side or
starboard. In the head-on situation, the obstacle ship moves from top to bottom, while the
USV sails from bottom to top and meets the front of the obstacle ship, and USV can avoid
the obstacle ship through starboard. In the port side crossing situation, the obstacle ship
moves from left to right, while the USV sails from bottom to top and meets the obstacle ship.
At this time, the obstacle ship has the obligation to avoid a collision. However, if the red
dynamic obstacle ship (OS) fails to take relevant collision avoidance actions, USV should
adjust the starboard in time to avoid collision with it. When the red dynamic obstacle is far
away, the USV continues to move to the target point. In the starboard crossing situation,
when the obstacle ship moves from right to left and the USV moves from bottom to top
and meets the obstacle ship, the obstacle ship has no obligation to avoid a collision at this
time. The USV needs to adjust the starboard and quickly cross the obstacle ship to avoid
collision with it.

4.2. Complexity Analysis

An algorithm’s time complexity might be determined by the magnitude of the input
problem (d), the population size (n), the algorithm’s iterations (K) and the cost function
evaluation (c). In this paper, the total time complexity of the IWSO-DWA algorithm can be
expressed as:

O(IWSO-DWA) = O(optimal path problem) + O(initialization)
+O(cost f unction evaluation) + O(Solution update)
= O(1 + d · n + n · c · K + d · n · K)
∼= O(n · c · K + d · n · K)

(26)

5. Experimental Results and Analysis

5.1. Environment Modeling

To replicate the intricate navigational marine conditions for USV simulation purposes,
two map environment models of USV are established, both of which are 500 m × 500 m.
The light blue arrow represents the direction of ocean currents, the black block represents
the islands, the heavy blue triangle represents the starting point of USV with the coordinate
(10,10), and the red star represents the target point of USV with the coordinate (490,490), as
shown in Figure 6.

(a) (b) 

Figure 6. Environmental models for USV: (a) environmental model 1 (ENV.1); (b) environmental
model 2 (ENV.2).

118



J. Mar. Sci. Eng. 2023, 11, 1386

Additionally, the experiment was simulated on a laptop with an Intel(R) Core(TM)
i7-5500 processor clocked at 2.40 GHz, 8 GB memory and Windows 7 64-bit operating
system with MATLAB R2017b software.

5.2. Static Path Planning Simulation Experiment

There are two sets of static path planning simulation experiments to validate the
proposed IWSO-DWA’s advantages in the USV’s path planning problems. The static path
planning simulation experiment of USV is carried out by using the proposed IWSO-DWA,
IWSO, WSO and five other common meta-heuristic algorithms (BOA, GWO, MRFO, WOA
and SSA) in the same map. The parameters of the DWA part of the proposed IWSO-DWA
are set as follows: The maximal linear velocity vmax is 5 m/s and the maximal angular
velocity ωmax is 60 rad/s. The minimal linear velocity vmin is 1 m/s and the minimal
angular velocity ωmin is 10 rad/s. The maximal linear acceleration v′e is 0.7 m/s2 and
the maximal angular acceleration ω′

e is 75 rad/s2. The maximal linear deceleration v′f is

0.8 m/s2 and the maximal angular deceleration ω′
f is 80 rad/s2. The weight α, β and γ

of the evaluation function are set to 0.3, 0.06 and 0.4, respectively. The population size of
white sharks and five other meta-heuristic algorithms are all set to 50, and the maximal
iteration is set to 300. The mentioned algorithms (BOA, GWO, MRFO, WOA, SSA, WSO,
IWSO and IWSO-DWA) are used for the static path planning of USV in the ENV.1, and the
results obtained from the simulation experiment are displayed in Figure 7.

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. Static path planned by the algorithms (BOA, GWO, MRFO, WOA, SSA, WSO, IWSO,
IWSO-DWA) in ENV.1: (a) planned by BOA; (b) planned by GWO; (c) planned by MRFO; (d) planned
by WOA; (e) planned by SSA; (f) planned by WSO; (g) planned by IWSO; (h) planned by IWSO-DWA.
The dark blue triangle represents the start point and the red star represents the target point.

When taking into account the metrics of path length, steering times, path smoothness
and time cost systematically, the static path planning performance of IWSO-DWA proposed
in this study surpasses that of IWSO, WSO and other meta-heuristic algorithms (BOA,
GWO, MRFO, WOA, SSA). Compared with the WSO, the path length, steering times and
time cost planned by the IWSO decreased by 16.12%, 28.57% and 76.97%, respectively. And
the path smoothness planned by the IWSO is improved by 30.22%.

Since the proposed IWSO-DWA algorithm is based on the IWSO algorithm to increase
its dynamic characteristics, the proposed IWSO-DWA algorithm and the IWSO algorithm
have equivalent effects on convergence performance when solely focusing on their static
characteristics. Thus, when analyzing the algorithm’s convergence, it suffices to only
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evaluate the IWSO. The convergence curves of the mentioned algorithms (BOA, GWO,
MRFO, WOA, SSA, WSO and IWSO) in ENV.1 are displayed in Figure 8.

 

Figure 8. Convergence curve of mentioned algorithms (BOA, GWO, MRFO, WOA, SSA, WSO, IWSO)
in ENV.1.

In the convergence curves, the horizontal axis label represents the iteration of the
algorithms, and the vertical axis represents the fitness value of the algorithms. When
compared with the WSO and five other meta-heuristic algorithms, the proposed IWSO
algorithm has demonstrated the fastest convergence speed and highest accuracy of final
convergence accuracy.

Based on its demonstrated performance, the second group of static path planning
simulation experiments is executed to further validate the advancements of the proposed
IWSO-DWA. The mentioned algorithms (BOA, GWO, MRFO, WOA, SSA, WSO, IWSO and
IWSO-DWA) are utilized in the static path planning simulation experiment in ENV.2, and
the results are illustrated in Figure 9.

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9. Static path planned by the algorithms (BOA, GWO, MRFO, WOA, SSA, WSO, IWSO,
IWSO-DWA) in ENV.2: (a) planned by BOA; (b) planned by GWO; (c) planned by MRFO; (d) planned
by WOA; (e) planned by SSA; (f) planned by WSO; (g) planned by IWSO; (h) planned by IWSO-DWA.
The dark blue triangle represents the start point and the red star represents the target point.
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Similarly, when synthetically considering measurement criteria such as path length,
steering times, path smoothness, and time cost, the proposed IWSO-DWA algorithm exhib-
ited superior performance in the static path planning simulation experiments compared
to the IWSO, the WSO and the five other meta-heuristic algorithms (BOA, GWO, MRFO,
WOA and SSA). Compared with the WSO, the path length, steering times and time cost
planned by the IWSO are decreased by 11.2%, 9% and 81.19%, respectively. Meanwhile,
the path smoothness planned by the IWSO is improved by 9.49%. The convergence curves
of the mentioned algorithms (BOA, GWO, MRFO, WOA, SSA, WSO, IWSO) in ENV.2 are
shown in Figure 10.

 

Figure 10. Convergence curve of mentioned algorithms (BOA, GWO, MRFO, WOA, SSA, WSO,
IWSO) in ENV.2.

In the convergence curves, the horizontal axis label represents the iteration of the
algorithms and the vertical axis represents the fitness value of the algorithms. When
compared with the WSO and five other meta-heuristic algorithms, the proposed IWSO
algorithm reaches stability in about 15 iterations, which excelled in both convergence speed
and accuracy.

After the completion of two static path planning simulation experiment sets, it is
necessary to summarize the performance of the BOA, GWO, MRFO, WOA, SSA, WSO and
IWSO algorithms in numerical format. Supposed the planned path of the algorithms can be
represented by a group of points set L, and L = {L1, L2, . . . , Lλ}. λ is the number of path
points in the set L. Then, the continuous steering angle between the path point Li and the
subsequent path point Li+1 is denoted by θi. To better assess the smoothness of the path
planned by the mentioned algorithms, a path smoothness cost metric denominated mot has
been established, which is defined as follows:

mot =
λ−1

∑
i=1

ε · π · θi

180 · (1 + θi+1)
3
2

(27)

where i = 1,2, . . . , λ − 1. ε is the number of turns of the L. θi+1 is the next rotation angle of
the continuous rotation angle θi. The smaller the value of mot, the smoother the path.

In addition, to better evaluate the optimal path planning performance of the proposed
algorithm, some metrics such as the steering cost, planning time cost and shortest path
length cost are considered as the measure criteria of the mentioned algorithms. The steering
cost indicates the total number of turns of the path planned by the algorithms. The planning
time cost refers to the time it takes for an algorithm to plan its path in a static obstacle
environment. The shortest path length cost means that the algorithm plans the shortest
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safe and collision-free path from the starting point to the target point, which can be defined
as follows:

CL = Csa f e ·
λ

∑
i=2

√
(xLi − xLi−1)

2 + (yLi − yLi−1)
2 (28)

where CL represents the shortest path length cost, which is the sum of the Euclidean dis-
tances between the points Li−1 and Li in the set L of path points planned by the algorithms.
Csa f e represents the safety path cost. In this paper, all the paths provided by the algorithms
must be safe and collision-free, so here, Csa f e = 1.

In summary, the simulation experiments of the static path planning demonstrate
that the proposed IWSO-DWA can effectively plan an optimal path globally that is both
secure and smooth in the established environmental models, irrespective of any changes
to the distribution of obstacles. As the proposed IWSO-DWA algorithm enhances its
dynamic qualities based on the IWSO algorithm, it can be deemed equivalent to the IWSO
algorithm when solely considering the static characteristics of path planning. Thus, when
summarizing the simulation comparison experiments of the static path planning in digital
form, it only needs to compare the performance of the proposed IWSO with WSO and five
other algorithms (BOA, GWO, MRFO, WOA and SSA). The algorithms’ performance in the
simulation comparison experiments of the static path planning is summarized in Table 2.

Table 2. Comparison performance of the mentioned algorithms (BOA, GWO, MRFO, WOA, SSA,
WSO, IWSO).

ENV.
Model Algorithm

Metrics
Shortest Path Length Cost (m) Steering

Cost
Smoothness
Cost (mot)

Time Cost (s)

ENV.1

BOA 914.530 8 0.591 2.056

GWO 802.370 9 0.456 6.564

MRFO 777.267 11 0.794 1.920

WOA 801.650 8 0.455 7.037

SSA 862.133 5 0.628 3.472

WSO 847.487 7 0.309 5.416

IWSO 710.873 5 0.215 1.247

ENV.2

BOA 1144.975 19 3.097 7.846

GWO 996.773 11 0.947 2.228

MRFO 950.803 11 0.930 2.256

WOA 941.590 11 0.977 3.355

SSA 959.620 15 2.220 6.317

WSO 1044.975 11 1.024 5.490

IWSO 927.925 10 0.926 1.033

5.3. Dynamic Avoidance Simulation Experiment

Two sets of dynamic collision avoidance simulation experiments were conducted to
validate whether the proposed IWSO-DWA conforms to COLREGs rules and effectively
avoids collisions in dynamic scenarios. Four situations are established in environmental
model 1 and environmental model 2 of the COLREGs respectively: overtaking situation,
head-on situation, port side crossing situation and starboard crossing situation. In the figures,
the blue boat indicates the USV and the red boat indicates the obstacle ship. In ENV.1, the
overtaking situation between the USV and the red obstacle ship is shown in Figure 11.
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(a) (b) (c) 

Figure 11. Overtaking situation in ENV.1: (a) the preparatory state; (b) the meeting state; (c) the
completion state. The dark blue triangle and red star represent the start point and target point of the
USV (in blue color), respectively, and the purple circle represents the start point of the obstacle ship
(in red color).

The starting coordinate of the red dynamic obstacle ship is (260,120), and it moves
in a straight line from bottom to top at a velocity of 2 m/s. The coordinate of the starting
point of USV is (260,30), the target point of USV is (260,380), and it moves in a straight line
from bottom to top at a velocity of 4 m/s. In the overtaking situation, when encountering
the red dynamic obstacle ship, the USV initiates collision avoidance by veering toward the
upper right direction at an angle of approximately 65 degrees. It expertly navigates past
the red dynamic obstacle ship from its starboard side and continues towards the target
point, following a previous path, thereby successfully avoiding a rear-end collision, and
the dynamic collision avoidance behavior of the USV conforms to the COLREGs. The
x, y position and yaw angle of the USV for its dynamic collision avoidance behavior are
depicted in Figure 12.

 

Figure 12. The motion states of the USV for overtaking situation in ENV.1.

After completing the overtaking situation of USV in ENV.1, the head-on situation
experiment of USV is carried out, and the results are displayed in Figure 13.

(a) (b) (c) 

Figure 13. The head-on situation in ENV.1: (a) the preparatory state; (b) the meeting state; (c) the
completion state. The dark blue triangle and red star represent the start point and target point of the
USV (in blue color), respectively, and the purple circle represents the start point of the obstacle ship
(in red color).
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The starting point coordinate of the red dynamic obstacle ship is (260,350), and it
moves in a straight line from top to bottom with a moving speed of 3 m/s. The coordinate
of the starting point of USV is (260,30), the target point of USV is (260,380), and it moves in
a straight line from bottom to top with a moving speed of 4 m/s. In the head-on situation,
when encountering the red dynamic obstacle ship, the USV initiates adjusting starboard of
the ship in a direction approximately 70 degrees towards the upper right direction, then
skillfully navigates past the red dynamic obstacle ship’s upper region from the USV’s
starboard side. After successfully avoiding the head-on collision with the red dynamic
obstacle ship, the USV then progresses toward the target point, and the dynamic collision
avoidance behavior of the USV conforms to the COLREGs. The x, y position and yaw angle
of the USV for its dynamic collision avoidance behavior are depicted in Figure 14.

 

Figure 14. The motion states of the USV for head-on situation in ENV.1.

After completing the head-on situation of USV in ENV.1, the port side crossing situa-
tion experiment of USV is carried out, and the results are displayed in Figure 15.

(a) (b) (c) 

Figure 15. Port side crossing situation in ENV.1: (a) the preparatory state; (b) the meeting state;
(c) the completion state. The dark blue triangle and red star represent the start point and target point
of the USV (in blue color), respectively, and the purple circle represents the start point of the obstacle
ship (in red color).

The starting point coordinate of the red dynamic obstacle ship is (180,110), and it
moves in a straight line from left to right with a moving speed of 4 m/s. The coordinate of
the starting point of USV is (260,30), the target point of USV is (260,180), and it moves in a
straight line from bottom to top with a moving speed of 4 m/s. In the port side crossing
situation, since the red dynamic obstacle ship is a giving way vessel, it should stop to let
the USV pass when it encounters the USV. However, if the red dynamic obstacle ship did
not stop, the USV must take evasive action to prevent a collision. When the red obstacle
ship enters the evasive range, the USV actively adjusts the starboard and keeps a safe
distance from the red obstacle ship. After collision avoidance, the USV continued to move
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along the original path to the target point, thus finishing the port side crossing situation,
and the dynamic collision avoidance behavior of the USV conforms to the COLREGs. The
x, y position and yaw angle of the USV for its dynamic collision avoidance behavior are
depicted in Figure 16.

 

Figure 16. The motion states of the USV for port side crossing situation in ENV.1.

After completing the port side crossing situation of USV in ENV.1, the starboard crossing
situation experiment of USV is carried out, and the results are displayed in Figure 17.

(a) (b) (c) 

Figure 17. Starboard crossing situation in ENV.1: (a) the preparatory state; (b) the meeting state;
(c) the completion state. The dark blue triangle and red star represent the start point and target point
of the USV (in blue color), respectively, and the purple circle represents the start point of the obstacle
ship (in red color).

The starting coordinate of the red dynamic obstacle ship is (330,110), and it moves in a
straight line from right to left with a moving speed of 4 m/s. The coordinate of the starting
point of USV is (260,30), the target point of USV is (260,180), and it moves in a straight
line from bottom to top with a moving speed of 4 m/s. In the starboard crossing situation,
since the USV is a giving way vessel, it should stop to let the red dynamic obstacle ship
pass when it encounters the red dynamic obstacle ship. When the red obstacle ship enters
the evasive range, the USV adjusts its starboard side at approximately 47 degrees to avoid
the red dynamic obstacle vessel and stops to wait for it to move away from the evasive
range. Once the red obstacle vessel is out of the evasive range, the USV continues to move
to the upper left to the target point, thus finishing the starboard crossing situation of the
USV, and the dynamic collision avoidance behavior of USV conforms to the COLREGs. The
x, y position and yaw angle of the USV for its dynamic collision avoidance behavior are
depicted in Figure 18.
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Figure 18. The motion states of the USV for starboard crossing situation in ENV.1.

Similarly, in ENV.2, four dynamic avoidance simulation experiments were conducted to
validate the effectiveness of the proposed IWSO-DWA in line with the COLREGs. The over-
taking situation between the USV and the red dynamic obstacle ship is shown in Figure 19.

(a) (b) (c) 

Figure 19. Overtaking situation in ENV.2: (a) the preparatory state; (b) the meeting state; (c) the
completion state. The dark blue triangle and red star represent the start point and target point of the
USV (in blue color), respectively, and the purple circle represents the start point of the obstacle ship
(in red color).

The starting point coordinate of the red dynamic target obstacle is (130,260), and it moves
in a straight line from bottom to top with a moving speed of 2.5 m/s. The coordinate of
the starting point of USV is (130,180), the target point of USV is (130,380), and it moves
vertically upwards at a velocity of 4 m/s. In the overtaking situation, when the USV enters the
evasive range, it avoids collision by steering approximately 68 degrees to the upper right and
proactively sails across the upper section of the red dynamic obstacle ship from the USV’s port
side. Once it safely overtakes the red dynamic obstacle ship, the USV proceeds to advance
toward the target point in the upper left direction, thus finishing the overtaking situation
between the USV and the red dynamic obstacle ship, and the dynamic collision avoidance
behavior of the USV conforms to the COLREGs. The x, y position and yaw angle of the USV
for its dynamic collision avoidance behavior are depicted in Figure 20.
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Figure 20. The motion states of the USV for overtaking situation in ENV.2.

After completing the overtaking situation of USV in ENV.2, the head-on situation
experiment of USV is carried out, and the results are displayed in Figure 21.

(a) (b) (c) 

Figure 21. The head-on situation in ENV.2: (a) the preparatory state; (b) the meeting state; (c) the
completion state. The dark blue triangle and red star represent the start point and target point of the
USV (in blue color), respectively, and the purple circle represents the start point of the obstacle ship
(in red color).

The starting point coordinate of the red dynamic obstacle ship is (130,350), and it
travels vertically downwards at a velocity of 2 m/s. The coordinate of the starting point
of USV is (130,180), the target point of USV is (130,380), and it moves vertically upwards
at a speed of 4 m/s. In the head-on situation, when the USV encounters the red dynamic
obstacle ship, the USV avoids the collision by turning approximately 63 degrees to the
starboard and proceeding to cross the upper section of the red dynamic obstacle ship. Once
it is far away from the red dynamic obstacle ship, the USV moves to the target point in
the direction of around 18 degrees to the upper left, thus finishing the head-on situation
between the USV and the red dynamic obstacle ship, and the dynamic collision avoidance
behavior of the USV conforms to the COLREGs. The x, y position and yaw angle of the
USV for its dynamic collision avoidance behavior are depicted in Figure 22.
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Figure 22. The motion states of the USV for head-on situation in ENV.2.

After completing the head-on situation of USV in ENV.2, the port side situation
experiment of USV is carried out, and results are displayed in Figure 23.

(a) (b) (c) 

Figure 23. Port side situation in ENV.2: (a) the preparatory state; (b) the meeting state; (c) the
completion state. The dark blue triangle and red star represent the start point and target point of the
USV (in blue color), respectively, and the purple circle represents the start point of the obstacle ship
(in red color).

The starting point coordinate of the red dynamic obstacle ship is (75,260), it moves in a
straight line from left to right with a moving speed of 3 m/s. The coordinate of the starting
point of USV is (130,180), the target point of USV is (130,380), and it moves in a straight
line from bottom to top with a moving speed of 4 m/s. In the port side situation, since the
red obstacle ship is a giving way vessel when encountering the USV, it should stop to let
the USV pass. However, if the red dynamic obstacle ship did not stop, the USV should
take evasive action to prevent a collision. When the red obstacle ship enters the evasive
range, the USV adjusts its starboard at roughly 80 degrees to avoid the red obstacle ship.
Once the USV moves away from the red obstacle ship, it continues to move to the upper
left towards the target point, thus finishing the port side situation between the USV and
the red dynamic obstacle ship, and the dynamic collision avoidance behavior of the USV
conforms to the COLREGs. The x, y position and yaw angle of the USV for its dynamic
collision avoidance behavior are depicted in Figure 24.
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Figure 24. The motion states of the USV for portside crossing situation in ENV.2.

After completing the port side situation of USV in ENV.2, the starboard situation
experiment of USV is carried out, and the results are displayed in Figure 25.

(a) (b) (c) 

Figure 25. Starboard situation in ENV.2: (a) the preparatory state; (b) the meeting state; (c) the
completion state. The dark blue triangle and red star represent the start point and target point of the
USV (in blue color), respectively, and the purple circle represents the start point of the obstacle ship
(in red color).

The starting point coordinate of the red dynamic obstacle ship is (200,260), and it
moves in a straight line from right to left with a moving speed of 3 m/s. The coordinate of
the starting point of USV is (130,180), the target point of USV is (130,380), and it moves in
a straight line from bottom to top at a velocity of 4 m/s. In the starboard situation, since
the USV is a giving way vessel when encountering the red obstacle ship, it should stop
to let the red dynamic obstacle ship pass. When the red obstacle ship enters the evasive
range, the USV steers away from collision by adjusting its starboard and maintaining a safe
distance from the red obstacle ship. Once the red obstacle ship is far away, the USV crosses
the upper section of the red dynamic obstacle ship and moves to the target point in the
upper left direction, thus finishing the starboard situation between the USV and the red
dynamic obstacle ship, and the dynamic collision avoidance behavior of the USV conforms
to the COLREGs. The x, y position and yaw angle of the USV for its dynamic collision
avoidance behavior are depicted in Figure 26.
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Figure 26. The motion states of the USV for starboard crossing situation in ENV.2.

6. Conclusions and Future Work

This research proposes a new IWSO-DWA algorithm to address the optimal path
planning issue for USV. First of all, aiming at the disadvantages of uneven distribution and
insufficient diversity of the white shark population, a circle chaotic mapping algorithm
is employed to improve the initial solution’s quality. Then, the adaptive weight factor
technique is used to update the best white shark’s position, ensuring a balance between
global exploration and local exploitation. Furthermore, the simplex method is used to
update the other white sharks’ position near the best white shark, enhancing the algorithm’s
ability to escape the local optimum solution. Finally, a novel global dynamic optimal
path planning method called the IWSO-DWA algorithm is developed by combining the
improved WSO and the enhanced DWA. The performance of the IWSO-DWA algorithm is
tested through two sets of static path planning simulation comparison experiments and two
sets of dynamic avoidance simulation experiments. The study found that the IWSO-DWA
algorithm outperformed traditional WSO algorithms and five other heuristic algorithms
(BOA, GWO, MRFO, WOA and SSA) in the simulation experiments. Thus, the proposed
IWSO-DWA algorithm not only addresses the issues encountered in the traditional WSO
algorithm, but also guides USV to plan a global optimal path in challenging marine
environments and possesses path smoothing capability and dynamic collision avoidance
ability, and its collision avoidance behavior conforms to the COLREGs. However, the
proposed IWSO-DWA has only been evaluated through simulations, and future research
is required to focus on assessing its effectiveness in practical engineering optimization
problems in real USV.
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Abstract: In this paper, we propose a trajectory tracking controller with experimental verification
for torpedo-like autonomous underwater vehicles (AUVs) with underactuation characteristics. The
proposed controller overcomes the underactuation problem by designing the desired error dynamics
in a coupled form using state variables in body-fixed and world coordinates. Unlike the back-stepping
control requiring high-order derivatives of state variables, the proposed controller only requires the
first derivatives of the states, which can alleviate noise magnification issues due to differentiation.
We adopt time delay estimation to estimate the dynamics indirectly using control inputs and vehicle
outputs, making the proposed controller relatively easy to apply without requiring the all of the
vehicle dynamics. We also address some practical issues that commonly arise in experimental
environments: handling measurement noises and actuation limits. To mitigate the effects of noise on
the controller, a filtering technique using a moving window average is employed. Additionally, to
account for the actuation limits, we design an anti-windup structure that takes into consideration the
nonlinearity between the thrusting force and rotating speed of the thruster. We verify the tracking
performance of the proposed controller through experimentation using an AUV. The experimental
results show that the 3D motion control of the proposed controller exhibits an RMS error of 0.3216 m
and demonstrate that the proposed controller achieves accurate tracking performance, making it
suitable for survey missions that require tracking errors of less than one meter.

Keywords: autonomous underwater vehicles; robust trajectory tracking; coupled desired error
dynamics; time delay estimation

1. Introduction

Designing a trajectory tracking controller for torpedo-like autonomous underwater
vehicles (AUVs) is challenging due to their underactuation characteristics. These vehicles
have only three control inputs—surge force, pitch, and yaw moment—to control their 3D
motion in space. The lack of control inputs leads to dissatisfaction of the matching condi-
tion, where certain uncertain terms in the state equation cannot be directly compensated for
by the control inputs [1,2]. Additionally, the vehicles have nonlinear dynamics involving
both rigid body dynamics and hydrodynamics [2]. In the development of AUVs and their
control systems, it is crucial to verify their performance in experimental environments.
During such verification, numerous issues can affect the system’s performance, including
sensor measurement noise, modeling errors in system dynamics, disturbances, and im-
perfections in control systems, such as jitter in the sampling time. As a result, developing
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a trajectory tracking controller for AUVs is challenging in two aspects: the design of the
control algorithm and the experimental verification process.

Regarding the controller design manner, there have been several research works to
propose trajectory tracking control scheme for AUVs. To overcome the matching condition
issues of the vehicles, several research works have proposed control schemes based on
back-stepping control (BC). BC using the vehicle dynamic model was proposed in [3–6].
BC with time delay estimation (BCTDE), an indirect estimator of the vehicle dynamics,
has also been studied [2,7,8]. BC provides an excellent and systematic method to han-
dle matching condition issues. However, it requires high-order derivatives of the state
variables, which may result in instability in experimental environments due to the mag-
nification of noise effects. There have been several studies on controlling the vehicles
using other schemes. Hierarchical design of the controllers has been researched to address
the underactuation characteristics [9,10]. Sliding mode control has been applied to gain
robustness against model errors and disturbances [11–14]. Adaptive schemes have been
employed to resolve model uncertainty [15,16]. Neural networks have been used for robust
path following [17,18].

Regarding the experimental verification manner, however, it is hard to find previ-
ous research works proposing trajectory tracking algorithms with experimental results.
For example, the aforementioned previous research works primarily demonstrate control
performance with simulation results and lack experimental verification. The reasons for
the absence of experiments in previous works are not explicitly mentioned, but this could
be attributed to the need for further investigation to address practical issues such as sensor
noises or modeling errors in AUV dynamics, including disturbances. For example, the au-
thors have attempted to verify the performance of the BCTDE [2,7,8] and found it difficult
to determine stable gains for the BCTDE. Figure 1 illustrates the experimental results for
depth control using the BCTDE, which indicate unstable responses. This instability arises
because the BCTDE requires high-order differentiation of the state variables to handle
unmatched dynamics and disturbances, thereby amplifying the effects of noise in the
state measurements. As another reason for the lack of experimentation, the difficulty of
obtaining a suitable experimental platform can be considered, as AUVs are costly plaforms.
In constrast to the trajectory tracking problem, however, there have been several research
works that proposed via point tracking control of underactuated AUVs with experimen-
tal verification [19–21]. These research works utilize traditional approaches employing
PID-type controllers for the forward velocity, pitch angle (or depth), and heading angle,
combined with a desired heading angle planner such as the line of sight (LOS) [22–24].
Designing via point tracking controllers is relatively straightforward since each controller
focuses only on stabilizing states with dynamics matched to the control inputs. However,
they mainly focus on waypoint tracking and are unable to handle time-varying trajectory
tracking problems. There have also been research works suggesting trajectory tracking
controllers for underwater vehicles with full degree-of-freedom (DOF) actuation [25–29].
In such cases, the vehicle can generate the control actuations for every controlled state,
eliminating issues arising from a lack of satisfaction of the matching condition.

In this paper, we propose a robust trajectory tracking controller for the 3D motion
of underwater vehicles, along with experimental verification of its control performance.
In terms of controller design, the proposed controller incorporates an appropriate design of
the desired error dynamics and time delay estimation (TDE). To address the underactuation
issues of the vehicle, the desired error dynamics is formulated in a coupled form between
the state variables in body-fixed and world coordinates. By utilizing the TDE [2,30], the
controller effectively compensates for the nonlinear dynamics and disturbances of the
vehicle while maintaining a simple structure. The proposed controller only requires the
state variables and their first derivatives, mitigating the issues of noise amplification due to
differentiation. An initial version of the proposed controller was presented in [31], and in
this paper, we extend the controller for motion control in a 3D space. In terms of experimen-
tal implementation, practical issues related to measurement noise and actuation limitations
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are addressed. A moving average filter is employed to mitigate the effects of sensor noise
on control performance, and actuation limitations combined with nonlinear dynamics are
also considered. We verify the tracking performance of the proposed controller through
experiments conducted on an AUV.

Figure 1. Experimental results for depth control using the BCTDE. The results indicate an almost
unstable response due to the high−order differentiation of states required by the controller, which
amplifies the noise effect in the state measurements.

2. Controller Design for the AUV

2.1. AUV Systems and Motion-Governing Equations

Figure 2 illustrates the AUV platform utilized in this research, which was developed
by Hanwha Systems [32]. The AUV serves as a testbed for underwater docking tasks [33].
The linear velocities of the vehicle are measured using a Doppler velocity log (DVL), and the
angular velocities are measured using an inertial measurement unit (IMU). The position
of the vehicle in the world coordinate is estimated using an extended Kalman filter (EKF)
that utilizes navigation sensor data from an IMU, a DVL, a depth sensor, a digital compass,
and a global navigation satellite system (GNSS) [34–36]. The vehicle is equipped with a
thruster for forward propulsion, as well as rudder fins and stern fins for lateral and vertical
moments, respectively. The actuators are controlled by an ARM-based embedded system
with a control sampling frequency of 10 Hz.

Figure 2. AUV used in the experiment. The vehicle was developed by Hanwha Systems [32]. The
AUV serves as a testbed for underwater docking tasks [33].

To formulate the motion-governing equation, let us consider the control problem of
the vehicle in a 3D space as shown in Figure 3. Assuming that the roll motion of the vehicle
can be neglected, the governing equations for motion are given as follows [8,37]:

η̇ = Rν

θ̇ = q,

ψ̇ = r/cθ, and,

(1)
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m11u̇ − m22vr + m33wq + fu(u)u + τeu = τu,

m22v̇ + m11ur + fv(v)v + m22τev = 0,

m33ẇ − m11uq + fw(w)w − d1 + τew = 0,

m55q̇ − (m33 − m11)uw + fq(q)q + (d2 + τeq) = τq,

m66ṙ − (m11 − m22)uv + fr(r)r + τer = τr,

(2)

where c• and s• denote cos(•) and sin(•), respectively; η = [x, y, z]T ; ν = [u, v, w]T ; x, y,
z, θ, and ψ are the positions and orientations of the vehicle in the world coordinate; u,
v, w, q, and r are the translational velocities and angular velocities; τu, τq, and τr are the
control inputs; τeu, τev, τew, τeq, τeu, and τer are the bounded external disturbances, such
as ocean currents and waves; mii(i = 1, 2, 3, 5, 6) represent the terms for the combined
mass and intertia parameters; d1 = (W − B)cθ; d2 = (zgW − zbB)sθ; W is the gravity, B is
the buoyancy of the vehicle; fk(k)(k = u, v, w, q, r) represents the hydrodynamic damping
and friction terms; and R ≡ Rz(ψ)Ry(θ) is the rotation matrix of {B} with respect to {W}.
From Equation (2), the dynamics of the controllable states are rearranged as follows:

muu̇ + hu = τu,

mqq̇ + hq = τq,

mrṙ + hr = τr,

(3)

where mu, mq, and mr are the positive constants which represent the known ranges of
inertia and hu, hq, and hr are nonlinear terms, defined as

hu ≡ (m11 − mu)u̇ − m22vr + m33wq + fu(u)u + τeu,

hq ≡ (m55 − mq)q̇ − (m33 − m11)uw + fq(q)q + (d2 + τeq),

hr ≡ (m66 − mr)ṙ − (m11 − m22)uv + fr(r)r + τer.

(4)

Figure 3. Definition of coordinates.

2.2. Desired Trajectory

Due to the underactuated nature, only three trajectory variables can be designed
independently. Note that in Equation (2), there are only three independent control inputs to
control five DOFs in the world coordinate. We can set the independent trajectory variables
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as x, y, and z in {W}. The trajectories can be represented by the following continuous time
functions [8]:

ηd = [xd(t), yd(t), zd(t)]T . (5)

Note that, when taking into account Equation (1), the angular and velocity trajectories
according to Equation (5) satisfy the following relationship [8]:

θd = −sin−1
(

żd/
√

ẋ2
d + ẏ2

d + ż2
d

)
,

ψd = atan2(ẏd, ẋd), and,

ud =
√

ẋ2
d + ẏ2

d + ż2
d,

qd = θ̇d,

rd = ψ̇dcθd.

(6)

The goal of this paper is to design a controller for an AUV system represented by
Equations (1) and (3) to track the desired trajectories defined in Equations (5) and (6).
The controller is specifically designed to reduce the tracking error along ηd by using
control inputs.

2.3. Dynamics of Tracking Error

In this subsection, we arrange the tracking error dynamics of the vehicle by describing
them in the desired trajectory coordinate {D}. This approach helps to minimize changes
in the relationship between variables in different coordinates [38,39]. When there is no
tracking error, u affects Dx for every attitude of the vehicle, and the transformation can be
easily achieved as follows [40]:

Dη = RT
d η− RT

d ηd, (7)

where Dη =
[Dx, Dy, Dz

]T denotes the translational position of the vehicle with respect to
{D} and Rd ≡ Rz(ψd)Ry(θd). Using Equation (7), the desired trajectories in Equation (5)
can be transformed into those in {D} as follows:

Dηd = 0. (8)

Subtracting Equation (7) from Equaiton (8) yields the following relationship:

Dηe = RT
d ηe, (9)

where •e ≡ •d − •. Note that from Equation (9), the tracking problem in {D} is identical
to that in {W}. Convergence of the tracking error in {D} guarantees convergence in {W}.
This is because Rd is a rotation matrix and cannot be singular. By taking the derivatives of
Equation (9) with Equations (1) and (5) and introducing positive constants αu, αψ, and αθ ,
the error dynamics of the state variable in {D} can be rearranged as follows [8]:⎡⎣ Dẋe

Dẏe
Dże

⎤⎦ =

⎡⎣ αuue
αψψe
−αθθe

⎤⎦+

⎡⎣ λx
λy
λz

⎤⎦. (10)

Refer to [8] for a detailed derivation of Equation (10). The last term in the above equation
represents the nonlinear terms defined as follows:⎡⎣ λx

λy
λz

⎤⎦ = −
⎡⎣ αuue

αψψe
−αθθe

⎤⎦+ νd − RT
d Rν − ω×

d
Dηe, (11)
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where νd = [ud, 0, 0]T and ω×
d is a skew-symmetric matrix of ωd ≡ [0, qd, rd]

T [8]. Aside
from that, from Equations (1) and (6), the attitude error is obtained as follows:

θ̇e = qe,

ψ̇e = αrre + λψ,
(12)

where αr is a positive constant and

λψ = −αrre + rd/cθd − r/cθ. (13)

As a result, the tracking error dynamics are expressed in Equations (10) and (12).
The objective of this paper is to design a control input in Equation (3) to stabilize the error
dynamics, particularly Dxe, Dye, and Dze.

2.4. Controller Design Using the Coupled Error Dynamics and Time Delay Estimation

In this paper, our goal is to design the desired error dynamics for ue, re, and qe that can
asymptotically stabilize the tracking errors of Dxe, Dye, and Dze, respectively. Note that from
Equation (3), one can directly control the variables in {B}, namely u, q, and r, by designing
appropriate control inputs τu, τq, and τr, respectively. From Equations (10) and (12), u
adjusts Dxe, q affects θe and consequently Dze, and r determines ψe and therefore Dye.
Thus, coupled error dynamics between the variables in {B} and {D} can be designed to
stabilize the variables in {D}. The desired error dynamics of ue, re, and qe are designed
as follows:

u̇e + Kuue + Kx
Dxe = 0,

q̇e + Kqqe + Kθθe − Kz
Dze = 0,

ṙe + Krre + Kψψe + Ky
Dye = 0,

(14)

where K• > 0 represents the control gains.
In the manner of the computed torque control, the controller for Equation (3) can be

designed as follows:
τu =ĥu + muμu,

τv =ĥq + mqμq,

τr =ĥr + mrμr,

(15)

where •̂ denotes the estimate of • and μu, μq, and μr are the command inputs to insert the
desired dynamics for u, q, and r, respectively. When •̂ = •, the controlled dynamics is
obtained from Equations (3) and (15) as follows:

μu − u̇ = 0,

μq − q̇ = 0,

μr − ṙ = 0.

(16)

To induce the desired error dynamics in Equations (14)–(16), the command inputs are
designed as follows:

μu =u̇d + Kuue + Kxp
Dxe,

μq =q̇d + Kqqe − Kθθe − Kzp
Dze,

μr =ṙd + Krre + Kψψe + Kyp
Dye.

(17)

To implement the controller in Equation (15), it is necessary to obtain ĥu, ĥq, and ĥr,
the estimates of Equation (4). However, obtaining an exact dynamic model of Equation (4)
is difficult and time-consuming. To address this, we employ the TDE [2,30,41,42] for
robust and efficient estimation. The key idea behind TDE is that if the system dynamics
are given as a continuous or piece-wise continuous function, then the variation in the
dynamics during a very short time can be negligible. Thus, the value of the dynamics
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at the current time can be estimated by using the value of the dynamics at a short time
before. Based on this idea, the system dynamics can be estimated indirectly by utilizing
previous information on the system input and output. From Equation (3), the dynamics
can be estimated as follows:

ĥu(t) = hu(t−L) = τu(t−L) − muu̇(t−L),

ĥq(t) = hq(t−L) = τq(t−L) − mqq̇(t−L),

ĥr(t) = hr(t−L) = τr(t−L) − mrṙ(t−L),

(18)

where L denotes a short time delay which is commonly set as the sampling time of the
control system. As a result, the final form of the proposed controller is Equation (15) with
Equations (17) and (18).

It is noteworthy that the proposed controller in Equation (15) with Equations (17) and (18)
only requires the first derivative of the state variables and the states themselves. The linear
and angular velocities can be measured using IMU and DVL, while the vehicle’s position
can be obtained through a navigation algorithm such as a Kalman filter, utilizing sensors
such as IMU, DVL, the depth sensor, and the digital compass [34]. The advantage of not
requiring high-order differentiation of the states is that it helps stabilize the controller in
experimental environments. This is because differentiating the states amplifies the noise
effect present in the state measurements. In comparison, the BCTDE [2,7,8] necessitates
third-order differentiation of the states. Therefore, one can expect that the proposed
controller is relatively easier to stabilize in experimental environments. In addition, note
that the TDE method does not require the entire vehicle dynamics model. One can design
the proposed controller by only selecting the inertial gains, such as mu, mq, mr, αu, αψ, αθ ,
and αr, as well as the feedback gains, such as Kx, Ku, Ky, Kψ, Kr, Kz, Kθ , and Kq.

2.5. Error Dynamics of the Proposed Controller

The TDE provides an efficient way to estimate the nonlinear dynamics of the vehicle,
but it cannot estimate the dynamics variation exactly during a sampling time L. Thus, an es-
timation error of the dynamics remains. Taking into account the estimation error of the TDE,
one can rearrange the error dynamics in Equaiton (14) by utilizing Equations (3) and (15)
with Equations (17) and (18) as follows:

u̇e + Kuue + Kx
Dxe = εu,

q̇e + Kqqe + Kθθe − Kz
Dze = εq,

ṙe + Krre + Kψψe + Ky
Dye = εr,

(19)

where ε• denotes the TDE errors, which are defined as follows:

εu ≡ m−1
u

(
hu(t) − hu(t−L)

)
,

εq ≡ m−1
q

(
hq(t) − hq(t−L)

)
,

εr ≡ m−1
r

(
hr(t) − hr(t−L)

)
.

(20)

From Equations (10), (12), and (19), the error dynamics of the controlled system for the
forward, lateral, and vertical directions, respectively, are as follows:
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[ Dẋe
u̇e

]
=

[
0 αu

−Kx −Ku

]
︸ ︷︷ ︸

Ax

[ Dxe
ue

]
+

[
λx
εu

]
︸ ︷︷ ︸

Bx

, (21a)

⎡⎣ Dẏe
ψ̇e
ṙe

⎤⎦ =

⎡⎣ 0 αψ 0
0 0 αr

−Ky −Kψ −Kr

⎤⎦
︸ ︷︷ ︸

Ay

⎡⎣ Dye
ψe
re

⎤⎦+

⎡⎣ λy
λψ

εr

⎤⎦
︸ ︷︷ ︸

By

, (21b)

⎡⎣ Dże
θ̇e
q̇e

⎤⎦ =

⎡⎣ 0 −αθ 0
0 0 1

Kz −Kθ −Kq

⎤⎦
︸ ︷︷ ︸

Az

⎡⎣ Dze
θe
qe

⎤⎦+

⎡⎣ λz
0
εq

⎤⎦
︸ ︷︷ ︸

Bz

. (21c)

By taking the Laplace transform of Equations (21a)–(21c), one can examine the stability of
the error dynamics and the influence of the forcing functions Bx, By, and Bz. The Laplace-
transformed error dynamics can be obtained as follows:[ Dxe

ue

]
= (sI − Ax)

−1Bx =
1

|sI − Ax|
[

s + Ku αu
−Kx s

][
λx
εu

]
, (22a)⎡⎣ Dye

ψe
re

⎤⎦ =
1∣∣sI − Ay

∣∣
⎡⎣ s2 + Krs + αrKψ αψs + αψKr αψαr

−αrKy s2 + Krs αrs
Kys −Kψs − αψKy s2

⎤⎦⎡⎣ λy
λψ

εr

⎤⎦, (22b)

⎡⎣ Dze
θe
qe

⎤⎦ =
1

|sI − Az|

⎡⎣ s2 + Kqs + Kθ −αθ

Kz s
Kzs s2

⎤⎦[ λz
εq

]
, (22c)

where s denotes the Laplace operator and

|sI − Ax| = s2 + Kus + αuKx, (23a)∣∣sI − Ay
∣∣ = s3 + Krs2 + αrKψs + αψαrKy, (23b)

|sI − Az| = s3 + Kqs2 + Kθs + αθKy. (23c)

From Equations (22a)–(22c), the influence of each term of the forcing functions Bx,
By, and Bz can be estimated. The tracking errors in a steady state can be analyzed by
using the final value theorem of the Laplace transform: limt→∞ x(t) = lims→0 sx(s). For
example, from Equations (22a) and (23a), Dxe(s)/λx(s) = (s + Ku)/(s2 + Kus + αuKx).
Assume that λx(s) is given as a step function: λx(s) = l/s with a constant l. Then,
Dxe(t)|t→∞ = Kul/(αuKx), and one can estimate that in the forward direction error, Dxe(t),
there will be a steady state error dependent on the amount of disturbed dynamics l and the
control gains αu, Ku, and Kx. The controller cannot perfectly compensate for the influence of
the forcing function, but it can attenuate the influence by selecting appropriate control gains.

The characteristic equations in Equations (23a)–(23c) are useful for selecting appropri-
ate control gains. In order to ensure stable error dynamics, the characteristic equations must
satisfy the Hurwitz condition, and the gains K• must be chosen accordingly. Additionally,
the inertial gains mu, mq, mr, αu, αψ, αθ , and αr can be obtained through tuning. Previous
research works utilizing the TDE have suggested selecting inertial gains within a known
range of the vehicle’s inertial terms. If the vehicle model is unknown, however, then
the inertial gains can be obtained through tuning [2,30].

3. Practical Issues for the Experiments

When setting up the controller for the experiment, practical issues such as the noise
effects of the measurements and actuator limitations have to be considered. These issues
will be discussed in the following subsections.
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3.1. Handling the Noise Effect in the TDE

The TDE provides an effective and efficient method for estimating the nonlinear
dynamics of vehicles. However, the use of state derivatives in the TDE amplifies the
noise effect in the measurement of the state variables. In the case of underwater vehicles,
the vehicle’s position is usually estimated by Kalman filtering of the sensor data, such as
acceleration from the IMU and velocity from the DVL, which have considerable measure-
ment noise. The amplification of noise can undermine the stability conditions. One way
to handle this is to use the low-pass filtering effects of the inertial gains of the TDE [30].
Decreasing the inertial gains shows a similar effect to low-pass filtering. However, we
found experimentally that adjusting the inertial gains was not enough. Therefore, we
devised a method to attenuate the noise effect of the TDE. The idea is quite simple: cut
down the direct TDE value and supplement the remaining part with the averaged value of
the TDE. Figure 4 shows the noise attenuation method in the TDE. Note that the use of an
average filter in Figure 4 can attenuate the noise effect because the filter also averages the
noise. However, the filter may slightly degrade the performance of the TDE because the
filtered value of the TDE cannot estimate exactly any quick changes in vehicle dynamics.
In the case of underwater vehicles, dynamic changes occur due to the vehicle dynamics
and disturbance changes such as sea currents, which depend on the mission (or desired
trajectory) and the environment. In the case of AUVs, dynamic changes may not be fast
because they are commonly used for surveys of large areas, and disturbances such as sea
currents change slowly according to tide variation.

Figure 4. Filtering the TDE to reduce the noise effect. The algorithm reduces the direct TDE value
and supplements the remaining part with the averaged value of the TDE. This mitigates the noise
present in the TDE thanks to the averaging effect.

3.2. Handling Nonlinearity and the Limits of the Actuators

When designing a controller, it is important to consider the actuator characteristics,
such as nonlinearity and the actuation limits. For instance, the thruster of a vehicle exhibits
nonlinear dynamics between the propulsion force and rotation speed of the thruster. More-
over, the thruster has limits on rotational velocity and acceleration because the thruster is a
mechanical system. In this subsection, we address compensation methods for the actuator
characteristics, focusing on the thrusters in particular and briefly touching on the rudder
fins and stern fins. The thruster dynamics are as follows [23,43]:

τu = T|n|n|n|n + T|n|u|n|u, (24)

where n denotes the rotation velocity of the thruster and T|n|n and T|n|u represent the
actuator coefficients corresponding to the rotational speed of the actuator and fluid speed
around the actuator, respectively. By ignoring T|n|u|n|u and T|n|n from Equation (24), we
adopted a simple thruster model, which is as follows:

τ′
u = |n|n. (25)
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This is because the effect of T|n|u|n|u, the term included in the RHS of Equation (24),
can be compensated for by the feedback loop of the controller, and the scale coefficient T|n|n
in Equation (24) can be adjusted by tuning the controller gain. Note that when substituting
Equation (24) into the first equation of Equation (3), T|n|u|n|u can be treated as part of the
nonlinear term hu (i.e., h′u = hu − T|n|u|n|u). The coefficient T|n|n simply scales the value of
mu (i.e., m′

u = mu/T|n|n).
Regarding the actuation limit of the thrusting force, we considered the limits on the

rotational velocity and acceleration of the thrusting propeller as follows:

n =

{
n, when |n| < nmax, |ṅ| < ṅmax, n ≥ 0,
f (n), when any o f above conditions is not satis f ied,

(26)

where n represents n with the actuation limit and f (n) is a limiting function that considers
the limit of n and ṅ as well as the sign of n. Note that in Equation (26), the sign condition
n ≥ 0 is included because only the forward thrusting force is available. In the case of the
controllers using the TDE, handling the actuation limit to prevent the wind-up phenomenon
is as straightforward as incorporating a limit block to ensure that the calculated control
input for the TDE matches the actual value of the actuation applied to the vehicle [44].
Figure 5 shows the limiter block for handling the actuation limit of the thrusting force,
while Figure 6 shows the structure of the limiter block, which is explained by Equation (26).
In the case of the rudder fins and stern fins, one can handle the actuation limit in similar
ways to the case of the thrusting force. The only differences are that (1) the actuation forces
are linear with the fin motions [23] and (2) both positive and negative forces are available.
By simply removing the condition n ≥ 0 in Equation (26) and eliminating the blocks of
sqrt() and square() in Figures 5 and 6, the same limiting algorithm can be applied to the
rudder fins and the stern fins.

Figure 5. TDE feedback block for hu of the controller. Sgn(•) denotes a signum function, and
Sqrt(•) ≡ √•. The ‘Limiter’ block is included to prevent the wind-up phenomenon due to the
actuation limit [44]. The ‘Sgn(•)Sqrt(| • |)’ block is for compensating for the actuation dynamics in
Equation (25).

Figure 6. Limiter block of the thrusting force τu: The thruster has actuation limits on the rotation
speed and acceleration. Therefore, before checking the limitation, the ‘Sgn(•)Sqrt(| • |)’ block is
included to convert the control force τu into the rotation speed according to Equation (25).
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4. Experimental Study

The tracking performance of the proposed controller was experimentally verified
using the AUV platform depicted in Figure 2. The experiments were performed in
the seawater at a port located in the South Sea of Korea. For the experiment, the con-
trol gains were set as follows. The inertial gains were set to mu = 3000, mq = 0.7,
mr = 1.0, αu = 1.0, αψ = 1.5, αθ = 1.5, and αr = 1.5 by tuning, and the feedback
gains Kx = 1.0, Ku = 2.0, Ky = 0.216, Kψ = 1.08, Kr = 1.8, Kz = 0.125, Kθ = 0.75,
and Kq = 1.5 were selected for the desired error dynamics having poles at pdx = −1.0
(double poles), pdy = −0.6 (triple poles), and pdz = −0.5 (triple poles). In this case,
the characteristic equations in Equations (23a)–(23c) had poles at pcx = −1.0 (double poles),
pcy = −0.502,−0.649 ± 0.740i, and pcz = −0.897,−0.302 ± 0.344i, which were placed in
the LHP. Regarding the noise-handling algorithm in Figure 4, the window size for the
average filter was set at N = 128, and the β values for ĥu, ĥq, and ĥr in Equation (18) were
βu = 0.7, βq = 0.5, and βr = 0.9, respectively.

4.1. Experimental Verification of the Noise-Handling Issue

In this subsection, the noise handling method described in Section 3.1 is experimen-
tally verified. The experiments were conducted on the surface of the sea, with actuations
in the XY plane. The thrusters and rudder fins were activated, while the stern fins were
deactivated. The tracking performances were compared between the case where the
noise-handling algorithm was not applied and the case where the algorithm was applied.
A trajectory involving linear motion was used, as shown in Figure 7. The experimental
results are presented in Figures 7–12. Figures 7–9 show the responses for the case without
the noise-handling algorithm, while Figures 10–12 show the responses when the algo-
rithm was applied. When comparing Figures 7 and 10, it may be difficult to recognize
a significant difference in performance between the two cases. Aside from the initial er-
rors in Figure 10, the error bounds appear to be similar in both cases. However, when
comparing Figures 9 and 12, it is evident that the noise-handling algorithm was effective.
In the case without the algorithm (Figure 9), the control input (rudder angle) switched
frequently, resulting in erratic responses in r, ψ, and Dy. This behavior was due to the
TDE in Equation (18), which included the first-order derivative of the velocity state and
amplified the noise present in the state measurement. In contrast, when the noise-handling
algorithm was applied (Figure 12), the control input (rudder angle) reacted smoothly to
tracking errors, leading to smooth convergence in the velocity and position responses.
From Figures 8 and 11, it can be observed that the chatterings in the forward direction
responses were alleviated when the noise-handling algorithm was adopted.

Figure 7. XY plot of the responses when noise-handling algorithm was not applied. The responses
exhibited chattering behaviors due to the influence of measurement noise on the TDE.
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Figure 8. Forward direction responses when noise-handling algorithm was not applied. The re-
sponses were stable; however, there was some minor chattering in the control input.

Figure 9. Lateral direction responses when noise-handling algorithm was not applied. The control
input switched frequently, leading to chattering responses in r, ψ, and Dy.

Figure 10. XY plot of the responses when noise-handling algorithm in Figure 4 was applied. The re-
sponses smoothly converged to the desired trajectories even in the presence of an initial angular error.
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Figure 11. Forward direction responses when noise-handling algorithm in Figure 4 was applied. The
responses exhibited smoother convergence compared with the responses shown in Figure 8.

Figure 12. Lateral direction responses when noise-handling algorithm in Figure 4 was applied. The
responses exhibited smoother convergence compared with the responses shown in Figure 9.

4.2. Experimental Verification of Tracking Performance in 3D Space Motion

The trajectory tracking performance of the proposed controller in 3D space motion was
verified experimentally. As shown in Figure 13, the desired trajectory, drawing the shape of
the number eight, was applied. The experimental results are presented in Figures 13–17.
Figures 13 and 14 show the tracking responses in the world coordinate {W}, demonstrating
that the controlled system had stable responses and followed the desired trajectory with
bounded errors. The root mean square (RMS) errors in Table 1 indicate that the tracking
performances were accurate enough to perform surveying missions requiring tracking
errors of less than one meter. It can be observed from Table 1 that the RMS error in the
vertical direction was slightly larger than those in the other directions due to buoyancy
acting as a disturbance in the vertical direction. Figures 15–17 show the responses and
control inputs for each direction. Note that in Figure 17, the response of θ exhibited a large
tracking error induced by the controller to reduce the tracking error of z. In Figure 15, it can
be observed that the tracking error of Dx bounced around at times t = 66 s, 87 s, and 141 s,
which was caused by irregular DVL signals resulting from stiff changes in the seabed.
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Figure 13. XYZ plot of the tracking responses.

Figure 14. The time responses of the positions in a Cartesian space.

Figure 15. The responses and actuation in the forward direction. Dx converged to zero because,
as explained in Equation (8), the desired trajectory expressed in the desired trajectory coordinate {D}
was zero. The responses of Dx and u followed their desired trajectories smoothly, demonstrating
the effectiveness of the noise filtering depicted in Figure 4. That aside, the tracking response of
Dx bounced around at times t = 66 s, 87 s, and 141 s, which was caused by irregular DVL signals
resulting from stiff changes in the seabed.
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Table 1. The root mean square (RMS) errors in {D}.

Direction Forward Lateral Vertical Total

RMS error (m) 0.0838 0.1595 0.2663 0.3216

Figure 16. The responses and actuation in the lateral direction. The responses of Dy, ψ, and r followed
their desired trajectories smoothly, demonstrating the effectiveness of the noise filtering depicted
in Figure 4. The responses did not exhibit any significant chattering, in contrast to the responses in
Figure 9, which represents the case without noise filtering.

Figure 17. The responses and actuation in the vertical direction. The responses of z, θ, and q
followed their desired trajectories smoothly. The response of z showed a steady state error because
the buoyancy acted as disturbances in the vertical direction. The error of θ induced a reduction
in the error of z, corresponding to the desired error dynamics in (14). The responses having non-
zero errors were matched with the error dynamics analysis in Equations (22a–22c), which explains
that the proposed controller may not converge to zero if there are non-zero disturbances on the
vehicle dynamics.
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5. Conclusions

In this paper, we proposed a trajectory tracking controller for AUVs in 3D space motion,
along with experimental verification on the sea. The main concept of the proposed controller
is to design the desired error dynamics that combine the state variables in the body-fixed
coordinate and the world coordinate (i.e., the desired trajectory coordinate) to address the
underactuated nature of the vehicle. The TDE, an indirect estimation method utilizing
control inputs and vehicle outputs, was employed to estimate the nonlinear dynamics
and disturbances of the vehicle. Consequently, the proposed controller is relatively easy
to implement as it does not require the entire dynamic model of the vehicle. In terms
of experimental implementation, the controller is relatively easy to stabilize since it only
requires the first derivatives of the states and the states themselves, thereby potentially
mitigating noise amplification arising from differentiation. Practical issues related to
implementation in experimental environments were also addressed. A noise-filtering
algorithm for the TDE was developed, and compensation methods for the mechanical
limitations and nonlinear dynamics of the actuators were devised. The performance of
the proposed controller was validated through experiments in seawater. The experimental
results demonstrate the effectiveness of the noise-filtering algorithm in stabilizing the
control performance. Through trajectory tracking control experiments in 3D space motion, it
was verified that the proposed controller achieves accurate tracking performance, rendering
it suitable for survey missions requiring precise tracking performance with errors of less
than one meter.
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Abbreviations

The following abbreviations are used in this manuscript:

AUV Autonomous underwater vehicle
BC Back-stepping control
BCTDE Back-stepping control with time delay estimation
TDE Time delay estimation
DOF Degree of freedom
IMU Inertial measurement unit
DVL Doppler velocity log
GNSS Global navigation satellite system
RMS Root mean square
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Abstract: Vessel trajectory prediction is an important step in route planning, which could help
improve the efficiency of maritime transportation. In this article, a high-accuracy long-term trajectory
prediction algorithm is proposed for oil tankers. The proposed algorithm extracts a set of waymark
points that are representative of the key traveling patterns in an area of interest by applying DBSCAN
clustering to historical AIS data. A novel path-finding algorithm is then developed to sequentially
identify a subset of waymark points, from which the predicted trajectory to a fixed destination is
produced. The proposed algorithm is tested using real data offered by the Danish Maritime Authority.
Numerical results demonstrate that the proposed algorithm outperforms state-of-the-art vessel
trajectory prediction algorithms and is able to make high-accuracy long-term trajectory predictions.

Keywords: trajectory prediction; AIS data; clustering

1. Introduction

About 90% of global trade is carried by maritime transportation [1]. With the continu-
ing growth of international trade, modern maritime transportation calls for more intelligent
methods for transportation management to achieve larger capacity, faster traveling speed
and higher safety levels. To achieve these goals, accurate predictions of vessels’ future
movement is important and can be used in many maritime applications, such as port
management, anomaly detection and collision avoidance [2].

Despite the importance of vessel trajectory prediction, it remains a challenging task
due to the diverse navigation environments and the stochastic nature of vessel movements.
While most of the existing works on vessel trajectory prediction have focused on making
short-term predictions [3–7], being particularly useful for collision warning and avoidance,
this work investigates the problem of long-term vessel trajectory prediction. Long-term
trajectory predictions can be used to guide the captains to operate the ship in a more
fuel-efficient way and hence reduce the carbon dioxide emissions, with assistance also from
additional information, including weather and current forecasts on the route. Long-term
vessel trajectory predictions can also be used by the agencies of port management to obtain
more accurate estimates of the remaining navigation distance and subsequently obtain
more accurate predictions for vessel arrivals.

The prevalence of maritime transportation data makes it possible to take a data-
driven approach to develop high-accuracy vessel trajectory algorithms [2,8]. For instance,
the Automatic Identification System (AIS), a global autonomous tracking system that has
been made compulsory for ships exceeding 300 tons, provides abundant and near real-time
information about ships. Apart from static information such as MMSI, ship name and ship
type, the AIS messages also contain the location information of the ship (longitude (Lon)
and latitude (Lat)) and information about its traveling (e.g., speed over ground (SOG),

J. Mar. Sci. Eng. 2023, 11, 1211. https://doi.org/10.3390/jmse11061211 https://www.mdpi.com/journal/jmse
151



J. Mar. Sci. Eng. 2023, 11, 1211

course over ground (COG) and heading) [9]. This information, when gathered in large
scale, can be used to characterize the voyage patterns in a corresponding area and can
further be exploited to predict vessel trajectory.

This paper presents an AIS data based long-term vessel trajectory prediction algorithm,
aiming to predict the trajectory of oil tankers from any location to a pre-defined destination,
e.g., a port. The proposed algorithm takes a data-driven approach. First, the traveling
patterns of tankers in an area of interest are extracted from the historical AIS data via key
point clustering. The output of clustering is a set of waymark points, with each corresponding
to a cluster. Each waymark point is characterized by the average Lon, Lat, COG and the
number of key points in the cluster that it represents. In real-time trajectory prediction,
the algorithm uses the Lon and Lat to filter the waymark points and uses the information
of COG and the number of points to calculate a weighted distance between the filtered
waymark points and the current reference point. A segment of the predicted trajectory is
generated by connecting the reference point to the waymark point that has the smallest
weighted distance. The complete long-term trajectory prediction is made by repeating
this process until the reference point reaches the destination. For the proposed algorithm,
the key point clustering only needs to be perform once. Once the set of waymark points is
obtained, all subsequent oil tankers arriving at the same destination can use the obtained
set of waymark points to achieve trajectory prediction. We verify the effectiveness of
the proposed algorithm using real AIS data provided by the Danish Maritime Authority
(DMA) [10].

The rest of this paper is organized as follows. Section 2 provides a brief review of
related work in the area of trajectory prediction. Section 3 describes the proposed trajectory
prediction algorithm. In Section 4, the proposed algorithm is applied to real AIS data and is
compared to state-of-the-art algorithms. Finally, Section 5 draws conclusions and discusses
possible future research directions. For ease of exposition, Table 1 lists the key notation
used in this paper.

Table 1. List of key notations.

Key Notation

λk Longitude

φk Latitude

θi COG ∈ [0◦, 360◦)

p̃k = (λk, φk, θk) The k-th key point

pk = (λk, φk) The location of the k-th key point

qm =
(
λ̄m, φ̄m, θ̄m, ρ̄m

)
The m-th waymark point, λ̄m ,φ̄m, θ̄m, ρ̄m denotes the Lon, Lat, COG and the point density

pDES Destination location

dire(pm, pn) The heading direction from position pm to position pn

dist(pm, pn) The spherical distance between position pm and pn

�a Direction�a, a unit vector of the origin of a two-dimensional coordinate system

LDM{�a1, �a2, ..., �am} The linear directional mean of direction �a1, �a2, ..., �am, defined in Equation (2)

Δ
�a,�b The angular change from direction�a to direction�b, defined in Equation (3)

Qn Candidate set identified in the n-th iteration, defined in Equation (4)

Q′
n Refined candidate set at the n-th iteration, defined in Equation (8), Q′

n ⊆ Qn

�dcurn The heading trend at the beginning of the n-th iteration, defined in Equation (5)

�dQ′
n

The mean COGs of the waymark points in Q′
n
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Table 1. Cont.

Key Notation

�dn The heading direction from position pn−1 to position pn

�dDESn The direction from position pn to the destination

δ′m = Δ�dpn ,qm ,�dDESn
Directional difference between �dpn ,qm and �dDESn , defined in Equation (6)

δm = Δθn ,θ̄m
Directional difference between the COG of pn and the COG of qm, defined in Equation (7)

2. Related Work

With the advances in high-precision positioning technologies such as the Global
Positioning Systems and real-time radars, it is possible to acquire accurate information
about positions for vehicles, aircraft, ships and pedestrians. The availability of high-
accuracy positioning data, together with other information such as speed and acceleration,
makes it possible to predict the trajectories of the targets of interest automatically, which
could find applications in many areas, including terrestrial navigation [11,12], autonomous
driving [13,14], and maritime traffic management [2,8,15,16]. This paper focuses on the
trajectory prediction problem for vessels, for which the existing works can be classified
into two categories, i.e., short-term trajectory prediction [3–7] and long-term trajectory
prediction [17,18].

For short-term vessel trajectory prediction, the time horizon over which the predictions
are made is usually from a few seconds to a few tens of minutes. Such vessel prediction
algorithms are often developed for collision avoidance to ensure navigation safety. Hence,
apart from the prediction accuracy, timeliness is also important [19]. In this category,
classical algorithms follow from mathematical models of mobility and statistical techniques
for accurate trajectory predictions. Examples of such methods include the Kalman filter-
based algorithm [20], the Gaussian process-based algorithm [3], and the Markov process-
based algorithm [21]. However, due to the complicated nature of vessel trajectories, these
methods may not be able to capture the characteristics of the trajectories to predict and
thus fail to provide accurate predictions.

The recent advances in machine learning techniques, along with the assistance of
abundant AIS data, have stimulated a burst of research on machine-learning-based vessel
trajectory algorithms [5–7]. For instance, Zhang et al. [5] used a hybrid method based on
LSTM and KNN for short-term trajectory prediction. The algorithm switches between
LSTM and KNN based on the trajectory densities of different areas. That is, in dense
areas, KNN is used for trajectory prediction, while in sparse areas, LSTM is adopted.
Using publicly available AIS data collected near Xiamen Port, Fujian Province from 2018
to 2019 [5], the results show that this method has better prediction accuracy compared
with classical prediction algorithms developed based on Kalman filtering. You et al. [6]
proposed a sequence-to-sequence model based on GRU to predict vessel trajectory at a
time horizon of 5 min. The model works by first encoding the trajectory as a context vector
to maintain the temporal relationship of the trajectory position, and then using GRU as a
decoder to output the future trajectory. Numerical results based on the data collected near
Chongqing and Wuhan of Yangtze River Channel demonstrate good short-term trajectory
predictions. Murray et al. [7] proposed a data-driven trajectory prediction method which
first applies Principal Component Analysis (PCA) to each trajectory to generate feature
vectors and then uses the extracted feature vectors as inputs for the Gaussian Mixer model
to predict multiple possible trajectories at the same time. The time horizon of prediction
is about 30 min. All of the above work uses deep learning or data-driven methods and
achieves better results.

Compared to the problem of short-term trajectory prediction, the progress on the long-
term trajectory prediction problem is much less reported, partly due to the more challenging
nature of the long-term prediction problem. Existing short-term prediction algorithms may
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be used to produce long-term predictions through recursions; however, the accuracies are
expected to decrease as the number of prediction steps increases [6]. One relevant work
that tackles the problem of long-term trajectory can be found in [22], where DBSCAN was
used to cluster historical trajectories, and the trajectory predictions are produced by pre-
trained deep learning models. This work was tested using the publicly available AIS data
from MarineCadastre in Zones 15 and 16. While [22] also adopted DBSCAN, the overall
methodology is completely different from our proposed approach. For instance, in [22],
DBSCAN was used to cluster trajectories based on trajectory statistics such as the trimmed
mean of the longitude (latitude). In contrast, our work adopts DBSCAN to cluster the key
points from many historical trajectories, where key points sharing similar characteristics
are grouped into the same cluster. Two other relevant works on long-term vessel trajectory
predictions can be found in [17,18]. Both these two works attempt to predict the remaining
path of ships to a destination in order to better estimate the remaining traveling distance
and to achieve a more accurate estimate of the arrival times. Ogura et al. [17] evaluated
the difference between the predicted weather and the weather of historical trajectories,
and then adopts the historical trajectory with the smallest difference as the prediction. The
AIS data of four cargos traveling to and from Japan was used to test the weather-based
algorithm [17]. Alessandrini et al. [18] adopted a graph-based approach by calculating the
raster of density and directionality of all the historical data and applying a path-finding
algorithm to identify a path from the current location to the destination. This method was
tested using AIS data recorded in October 2015 near the port of Trieste, an Italian city on
the Northeastern Adriatic Sea, with the assistance of historical LRIT data from 2009 to
2014 [18].

3. Methodology

In this section, we describe the proposed long-term vessel trajectory prediction algo-
rithm. Figure 1 presents a flow chart of the proposed algorithm. As shown in the figure,
the algorithm has the following two modules: the key point clustering module and the
trajectory finding module. In the remaining part of this section, we present the details of
the two modules.

Figure 1. Flow chart of the trajectory prediction algorithm; (1) pre-processed original trajectory is
used in key point clustering, (2) filter the candidate set and calculate weighted distance, (3) select the
point with the smallest weighted distance as the next location point, (4) calculate the distance from
the current location to the destination. If it is less than the threshold value, continue to execute the
key point connection step; otherwise, output the predicted trajectory to end the prediction process.
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3.1. Key Point Clustering

The key point clustering module aims to extract from pre-processed training trajec-
tories a set of waymark points that are representative of the traveling patterns of the oil
tankers in an area of interest. Instead of keeping all the raw AIS data points in the training
trajectories, each trajectory is pre-processed to remove redundant data and to reduce the
number of points retained in the trajectory. (A detail description of data pre-processing will
be presented in Section 4.1 along with the experiments.) The points retained in the training
trajectories are called the key points. The key point clustering module treats all key points
(from all different training trajectories) as the input and produces a set of waymark points.
As a result of clustering, each waymark point not only reflects the Lon and Lat of tankers
passing through the vicinity of the corresponding cluster, but also contains information
such as the COG to better capture the motion of tankers in the corresponding area.

Each predicted trajectory consists of a number of waymark points. Hence, to achieve
accurate predictions, there should be a sufficient number of waymark points that can
comprehensively capture all possible routes in the area of interest. Additionally, waymark
points that are close in space should have distinguishing features related to the motion of
the vessels to make clear selections among the waymark points. To fulfill these purposes,
we adopt a COG-based clustering process to generate the waymark points [23].

To facilitate the description of the clustering process, we use λk, φk to represent the
Lon and Lat of the key point p̃k, respectively, and θk the COG of p̃k. Hence, each key point
is represented by p̃k = (λk, φk, θk) . Let D = { p̃1, p̃2, p̃3, . . . , p̃K} be the set of key points in
the training trajectories. The core idea of the clustering algorithm is first to discretize the
entire area of interest into a set of grids and then run DBSCAN for each grid to cluster the
key points falling into the corresponding area. Specifically, DBSCAN is used to cluster the
key points within the grid area based only on the COG to extract representative traveling
directions. Each cluster identified by DBSCAN forms a waymark point qm, which contains
four-dimensional information, including the average Lon λ̄m and average Lat φ̄m of all the
key points in the corresponding cluster, the median COG of the key points, i.e., θ̄m, and the
number of key points ρ̄m in the cluster, i.e., qm =

(
λ̄m, φ̄m, θ̄m, ρ̄m

)
.

Each of the grid areas can be represented as:

Gi,j = {(λ, φ)|λ ∈ (λ̄i − δλ, λ̄i + δλ

)
, φ ∈ (φ̄j − δφ, φ̄j + δφ

)}, (1)

where λ̄i and φ̄j are the Lon and Lat of the center of the grid, and δλ and δφ are the widths
in the longitude and latitude direction. The difference of the center Lon (Lat) between two
adjacent grid areas can be made smaller than 2δφ (2δλ), e.g.,

∣∣λ̄i − λ̄i+1
∣∣ < 2δφ. In such cases,

two adjacent grid areas may partially overlap with each other, and the key points falling
into the overlapped areas are used multiple times during clustering. Such a setup makes it
easier to obtain a representative set of waymark points from non-uniformly distributed key
points by using a relatively large grid width.

It is noted that a customized distance metric is adopted when applying DBSCAN for
COG clustering. Specifically, suppose θi ∈ [0◦, 360◦) and θj ∈ [0◦, 360◦) are two COGs.
Then, the corresponding DBSCAN distance metric is calculated as |θi − θj| if |θi − θj| < 180◦
and 360− |θi − θj| otherwise. This customized metric is to avoid the errors caused by COGs
close to the north, i.e., COG values close to 0◦ or 360◦. Additionally, it is noted that the
Lon and Lat are not used in the clustering process. This is due to the fact that the COG
clustering is performed for each grid area, where the key points have relatively close values
of Lon and Lat.

As an illustrative example, Figure 2 presents the key points obtained from the trajecto-
ries of the oil tankers passing through the shown area between 2017 to 2019. It can be seen
that there are areas where the key points are sparse, while there are also areas where the
key points are much denser. It is known that DBSCAN requires one to specify a value on
the minimum number of points in a cluster so the algorithm can operate. If there are less
key points than this value, then all points in the grid area will be classified as noise, and no
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cluster can be formed. Therefore, in a sparse area, the width of the grid area has to be set
sufficiently large. However, if overlapping is not permitted, then a large width will lead to
a reduced number of waymark points, which will make the representation of the traveling
patterns less accurate.

Figure 2. Key points obtained from oil tankers’ trajectories between 2017 to 2019.

3.2. Trajectory Finding Based on Waymark Points

Without loss of generality, suppose a prediction of the future trajectory is made at
time instant 0, where the historical trajectory consisted of the set of previous location
points {p−I . . . , p−2, p−1, p0}, and pn = (λn, φn) contains the Lat and Lon of the n-th
position. Denote Q = {q1, q2, . . . , qM} as the set of all waymark points obtained from the
key point clustering. The task of the trajectory prediction is to select from Q a set of N
points to produce the predicted trajectory T = {p1, . . . , pn, . . . , pN , pDES}, where pDES is
the destination of interest. This process is implemented in an iterative way by sequentially
identifying the N waymark points. Note that the number of point N is determined by the
algorithm automatically and is not a preset value.

In the n-th iteration, the algorithm first identifies a candidate waymark point set
Qn ⊆ Q based on Tn = {p−I . . . , p0, . . . , pn}. The candidate set Qn is then filtered to
generate a refined candidate set Q′

n, from which the predicted point pn+1 is chosen based
on a weighted distance to be explained later in this section. In this process, the Lat, Lon
and the information of direction and point density are all utilized.

For ease of exposition, we introduce the following notation:

• dire(pm, pn): the heading direction from position pm to position pn;
• dist(pm, pn): the spherical distance between pm to position pn, calculated using the

Python package Geopy;
• LDM{�a1,�a2, . . . ,�am}: the linear directional mean of direction �a1,�a2, . . . ,�am, calcu-

lated as:

LDM{�a1,�a2, . . . ,�am} = ∠
(
�a1 +�a2 + ... +�am

m

)
, (2)

where�ai, i = 1, . . . , m is a unit vector from the origin.
• Δ

�a,�b : the angular change from direction�a to direction�b, measured in degrees. Δ
�a,�b is

calculated as :

Δ
�a,�b =

{
360◦ − Δ Δ ≥ 180◦

Δ Δ ≤ 180◦
(3)

where Δ =
∣∣∠�a − ∠�b

∣∣. Here, angle ∠�a, ∠�b both take value in [0◦, 360◦), where 0◦
corresponds to the north.

At the n-th iteration, the distance from pn to pDES is compared against a pre-determined
threshold εDES. If

dist(pn, pDES) < εDES,
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i.e, the distance to the destination is sufficiently small, then the iterative process terminates,
and pDES is appended to Tn to form the completed trajectory prediction. Otherwise,
the algorithm continues to identify pn+1. The threshold εDES needs to be chosen with care,
as setting it too large can lead to premature terminations of the trajectory finding, while
setting it too small may make the prediction susceptible to interference from other routes
in the areas of high concentrations of multiple routes towards different directions, e.g., the
areas near a port. We recommend to set εDES to be the distance from the destination from
which various routes begin to diverge.

3.2.1. Candidate Set Qn Identification and Navigation Status Update

At iteration n ≥ 1, the algorithm first identifies the candidate set Qn, which is made
up of all the waymark points within a rectangle centered at the latest point in the trajectory,
i.e., around point pn = (λ̄n, φ̄n):

Qn = {(λ̄m, φ̄m, θ̄m, ρ̄m)|λm ∈ (λ̄n − ελ, λ̄n + ελ), φm ∈ (φ̄n − εφ, φ̄n + εφ)} (4)

where ελ > 0 and εφ > 0 are used to define the size of the rectangular area.
To ensure that the waymark point pn+1 locates in the direction that is consistent with

the recent trajectory trend, we update the current heading trend �dcurn as:

�dcurn =

{
�dn n = 1

LDM
(
�dcurn−1 , �dn, �dQ′

n−1

)
n > 1

(5)

where �dn = dire(pn−1, pn) and �dQ′
n−1

is the mean of the COGs of the waymark points in
set Q′

n−1, and Q′
n−1 is the filtered candidate set in the (n − 1)-th iteration (see Section 3.2.2

for details). From the above equation, it can be seen that when n > 1, �dcurn is the linear
directional mean of the (predicted) traveling direction of iteration n − 1, the heading
direction �dn from point pn−1 to pn (the current position), and the mean COG of the key
points in Q′

n−1.

3.2.2. Candidate Set Filtering

In this step, the waymark points in Qn that deviate significantly from the expected
traveling direction are filtered out from further consideration in the current prediction
iteration. To do so, we first denote �dDESn

.
= dire(pn, pDES) as the direction from the current

position to the destination and then introduce the following angle-dependent parameters:

δ′m = Δ�dpn ,qm ,�dDESn
(6)

δm = Δθn ,θ̄m
(7)

where �dpn ,qm = dire(pn, qm) is the heading direction from pn to qm. Parameter δ′m measures
the degree of difference between �dpn ,qm and the direction of the current position towards
the destination, while δm measures the degree of difference between the COG of pn and the
COG of qm. An illustration of the above notation is given in Figure 3.

Ideally, if a tanker does not make a sharp turn, δm is expected to take small values.
Additionally, as the tanker is traveling towards the destination, it is expected that the
heading from pn to qm does not deviate too drastically from �dDESn . Therefore, it is expected
that δ′m does not take extremely large values. Therefore, we identify the refined candidate
set by applying filtering based on δm and δ′m as follows:

Q′
n =

{
qm|qm ∈ Qn, δm ≤ εm, δ′m ≤ ε′m

}
, (8)

where εm and ε′m are two thresholds.
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Figure 3. An illustration of the mathematical notation for candidate set filtering.

3.2.3. Waymark Point Selection

Once the filtered candidate set of waymark points, Q′
n, has been identified, the algo-

rithm can proceed to make a selection for the next waymark point. As each waymark point
qm =

(
λ̄m, φ̄m, θ̄m, ρ̄m

)
represents a cluster of key points, a higher value of ρ̄m means that

the corresponding grid area has been visited more frequently. Hence, it is reasonable to
allocate more weight to such waymark points in the selection. Additionally, the expected
trajectory trend, i.e., �dcurn , is expected to be close to the heading from pn to qm. Based on
these considerations, we propose a weighted distance to account for both the frequency that
a waymark point is visited and the angular change from pn to qm. Specifically, the weighted
distance between the current point pn and a candidate waymark point qm ∈ Q′

n can be
calculated as:

Dis(pn, qm) = κ
√

ρmax/ρ̄m + (1 − κ)Δ�dcurn ,�dpn ,qm
(9)

where Δ�dcurn ,�dpn ,qm
is the angular change defined in (3), and κ ∈ (0, 1) is the weight. Usually,

Δ�dcurn ,�dpn ,qm
is much larger than

√
ρmax/ρ̄m; thus, κ can be set close to 1 to better balance

the two terms. Parameter ρmax = max{ρ̄m|qm ∈ Q′
n} is the maximum density of all the

waymark points in the refined candidate set Q′
n. Based on the weighted distance, the next

waymark point is then selected as the one with the smallest weighted distance, i.e.,

pn+1 = arg min
qm∈Q′

n
Dis(pn, qm). (10)

The weighted distance defined in (9) does not consider the geo-distance between two
waymark points. This is due to the fact that the refined candidate set Q′

n ⊆ Qn contains
waymark points that are sufficiently close to the current reference point, as shown in (4).
In this case, it is sufficient to focus on the angular and density differences to identify the
next waymark point. The proposed trajectory prediction algorithm is finally summarized
in Algorithm 1:
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Algorithm 1 Trajectory prediction algorithm

Require: pDES, T0 = {. . . , p−1, p0}, Q = {q1, q2, . . . , qM}
Parameters: εDES, ελ, εφ, εδk , εδ′k

, κ, εm, ε′m
Initialization: T = {p0}

while dist(pn, pDES) ≥ εDES do
Qn = {(λ̄m, φ̄m, θ̄m, ρ̄m

)|λ̄m ∈ (λ̄n − ελ, λ̄n + ελ

)
,

φ̄m ∈ (φ̄n − εφ, φ̄n + εφ

)}
Q′

n = {qm|qm ∈ Qn, δm ≤ εm, δ′m ≤ ε′m}
for all qm in Q′

n do
Dis(pn, qm) = κ

√
ρmax/ρ̄m + (1 − κ)Δ�dcurn ,�dpn ,qm

end for
pn+1 = arg minqm∈Q′

n
Dis(pn, qm)

Append pn+1 to T
end while
return T

4. Experimental Results

In this section, we present the experimental results that evaluate the performance of
the proposed trajectory prediction method. We start this section by introducing the dataset
and the pre-processing techniques used to process the raw AIS data. The results obtained
from key point clustering are then presented to illustrate the operation of the proposed
method, followed by the evaluations of trajectory prediction accuracies.

4.1. Dataset and Pre-Processing

In the experiment, we evaluate the proposed trajectory prediction method using the
historical AIS data provided by the Danish Maritime Authority (DMA) [10]. The raw
data contain AIS messages from various types of vessels traveling around Danish waters.
The AIS data have 26 fields, including latitude, longitude, COG, destination, etc. In these
experiments, we will mainly use latitude, longitude and COG fields for trajectory prediction.
A comprehensive list and description of other fields can be found in Appendix A of [23].
The experiment uses the AIS data from oil tankers traveling to Port Skagen during the
period between 2017 and 2019. This dataset contains the AIS data for 1278 vessels and has
over 40 million AIS records. In this dataset, the data between 1 January 2017 and 30 June
2019 are used to extract the training trajectories and produce the waymark points. The AIS
data from oil tankers traveling to the same port from 1 July 2019 to 31 December 2019 are
used to test the proposed trajectory prediction algorithm.

The raw data are pre-processed before being used to produce the waymark points.
Key steps of the pre-processing include trajectory extraction and integrity check and
downsampling. We refer to Appendix B of [23] for a detailed description of the pre-
processing steps. In the experiments, a total of 1046 training trajectories were obtained
after the pre-processing, and there are 232 trajectories in the test period. Each trajectory
undergoes a route to the destination, i.e., Port Skagen.

4.2. Results for Grid-Based Key Point Clustering

In the training dataset, there are over 550,000 key points. During the key point
clustering, the difference in latitude/longitude between the center of the adjacent grid areas
is set to 0.05 degrees, while the width of the grid area is 0.05 degrees for both the latitude
and the longitude. The parameters for DBSCAN are listed in Table 2.
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Table 2. Key point clustering: DBSCAN parameter settings.

Minimum Number of Points ε

COG clustering key points n

100 ≤ n 40

110 ≤ n < 100 5

n < 10 �n/3�

Figure 4 plots all the key points from the training trajectories, from which the results
show that there are some relatively clear routes in the eastern part of the area. In contrast,
the routes are much less clear in the western part of the area. After DBSCAN clustering,
a total of 6127 waymark points are obtained, which are plotted in Figure 5. Comparing
Figure 4 to Figure 5, the results show that although the number of waymark points is only
about 1.1% of the key points, they capture all the main route patterns in both the western
and the eastern part of the area.

Figure 4. All key points in the training trajectories.

Figure 5. All waymark points obtained after clustering of the key points.

Figure 6 shows the empirical cumulative distribution (CDF) of the COG standard
deviation (STD) before and after clustering. Before applying the clustering algorithm,
each COG STD is estimated based on the key points within the same grid area. After the
clustering, the COG STD is for the key points within the same cluster. Therefore, as expected
and shown in Figure 6, the clustering significantly reduces the STD of the COG. For example,
before applying the COG clustering, the 95% STD value is about 67.8◦. This means that for
about 5% of the clusters (before applying the COG clustering), the COG spread measured
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by the STD is ≥67.8◦. This result suggests that although the grid areas are relatively small,
the traveling directions of the tankers within the same small area can differ significantly.
In contrast, after applying the clustering, the 95% STD of the COG reduces to 2.2◦. In other
words, after clustering, the traveling direction of the cluster becomes more consistent,
which is more indicative for the prediction of future positions of the vessel of interest.

Figure 6. The empirical distribution of the COG variance before and after grid clustering, showing
that the variance of the COG is greatly reduced after clustering.

4.3. Results for Trajectory Prediction

We now evaluate the performance of the proposed trajectory prediction. The parame-
ters for waymark point connection are set as follows. The distance threshold εDES = 20 km,
the length and the width of the rectangular region used to identify Qn were set to ελ = 0.2◦,
εϕ = 0.2◦, and the weight coefficient of the weighted distance is set to κ = 10/11. In the
filtering waypoint step, we have chosen two more lenient values to filter out impossible
points, which are ε′m = 180◦ and εm = 120◦.

Figure 7 shows the number of test samples versus the prediction horizon measured
by the number of hours. It can be seen that the test samples contain a mixed of short-term
and long-term trajectory prediction tests. About 53.5% of the tests correspond to trajectory
predictions in 10 h or more.

Figure 7. Number of test samples vs. time horizon of trajectory prediction.

To test the proposed algorithm, we implemented a trajectory prediction algorithm
based on graph theory and the Dijkstra algorithm [18] and use it as the baseline. Addition-
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ally, we also implemented a straightforward trajectory prediction algorithm that simply
selects the training trajectory that most matches the historical segment of the trajectory
under prediction. This baseline is termed best-matched. Directed Hausdorff distance is
adopted to measure the similarity. Figure 8 presents four examples of the trajectory predic-
tion results of the proposed algorithm (the red curves), the graph-based baseline from [18]
(the greed curves), and the baseline of the best matched (the orange curves). The ground
truth trajectory is also plotted as a reference in each example (the grey solid curves). In the
figures, the grey dotted curves are the historical segment of the trajectory prior to the pre-
diction moment. The results show that while the baseline algorithms can provide trajectory
predictions fairly close to the ground truth, the smoothness of the predicted trajectories
is not good enough. As a comparison, the proposed algorithm can offer more accurate
predictions in the sense that the predicted trajectories are visually closer to the true ones
and retain the smoothness of realistic trajectories.

From a quantitative perspective, we further evaluate the similarities between the
predicated and the ground truth trajectories for the proposed algorithm and the baseline
algorithms. To measure the similarity, we consider the DTW distance [24–27] and the
Hausdorff distance [28], which are commonly used to measure the similarities of two
curves/sequences of data. A smaller value of this metric suggests a higher degree of
similarity and thus a more accurate trajectory prediction.

As the area of interest contains different routes to Port Skagen from different directions,
to better demonstrate the details of the performance evaluation, we classified the trajectories
into eight trajectory clusters, as shown in Figure 9, for the tested data. Table 3 shows the
number of test instances for each cluster in the experiment and the corresponding average
DTW and HD. Each test instance refers to a time instance of a trajectory in the test dataset.
Since each track lasts more than 25 h on average, the number of test instances is significantly
larger than the number of trajectories.

Figure 8. Examples of trajectory prediction results.
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Figure 9. An illustration of the trajectories of the 8 clusters in the test dataset.

From Table 3, it can be seen that the proposed algorithm outperforms the baseline
algorithms on both the performance metrics and for all the eight trajectory classes. Specif-
ically, there is a 12.08% and 25.18% improvement in the DTW distance compared to the
best-history and the graph-based baselines, respectively. For Hausdorff distance, the im-
provement is 11.05% and 42.04% over the two baselines. It can also be seen that for
trajectory clusters 1, 6 and 7, which locate on the eastern side of the sea, the advantages of
the proposed algorithm over the graph-based approach are even more significant due to
the complexity of the shipping lanes and the extremely narrow passable channels.

To further show the stability of the performance of the algorithms, box plots of the
performance metrics of the three algorithms are presented in Figures 10 and 11, where the
orange line indicates the median, and the green triangle is the location of the mean. It can
be seen that for both metrics, the proposed algorithm has a lower median and 75% quantile
of the mean than the baseline algorithm, demonstrating higher robustness.

Table 3. Performance comparison between different trajectory prediction algorithms based on DTW
and Hausdorff distance.

Cluster Sample Size
DTW Distance (Unit: km) Hausdorff Distance (Unit: km)

Proposed Best-Matched Graph-Based Proposed Best-Matched Graph-Based

0 137 555.68 676.44 772.76 8.93 9.96 11.68

1 1734 759.10 908.50 1181.15 11.68 16.04 19.06

2 903 1872.65 2086.40 2221.03 13.46 15.80 15.16

3 13 201.43 218.75 421.26 5.10 8.18 9.86

4 105 1475.34 1552.61 1668.01 11.80 10.42 12.79

5 162 1075.40 1050.57 1204.27 13.61 14.70 15.07

6 115 522.76 548.78 943.52 7.83 8.85 14.81

7 8 167.82 408.43 359.49 3.28 8.01 14.45

Average 3177 1094.31 1244.72 1462.59 11.98 15.14 17.02

Percentage −12.08% −25.18% −11.05% −42.04%
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Figure 10. Boxplot of the DTW distance obtained for the proposed algorithm and the two baselines.

Figure 11. Boxplot of the Hausdorff distance obtained for the proposed algorithm and the two baselines.

5. Conclusions and Discussion

In this paper, a long-term trajectory prediction algorithm has been developed for
oil tankers traveling to a known destination port. The proposed algorithm utilizes key
points from historical training trajectories that are extracted from historical AIS data in an
area of interest. The algorithm then applies the DBSCAN clustering algorithm to generate
a set of waymark points that are much fewer than the key points but still retain all the
traveling patterns of the oil tankers. Based on the waymark points, a novel path-finding
algorithm has been developed that sequentially identifies a set of waymark points to form
the predicted trajectory. The proposed algorithm was tested on real AIS data for oil tankers
in Danish waters with a fixed destination of port Skagen. Experimental results show that
compared to existing trajectory prediction algorithms, including the graph-based and
the best-matched approach, the proposed method can achieve more accurate trajectory
predictions with higher trajectory smoothness. Specifically, measured by DTW distance and
Hausdorff distance, the proposed method offers a reduction of 25.18% and 42.04% over the
graph-based baseline and 12.08% and 11.05% over the best-matched baseline, respectively.

While the proposed algorithm has been tested using real AIS data, the tested scenario
is relatively limited. Further testings with AIS data from different areas, on different
types of vessels, and to different destinations are needed to obtain a more comprehensive
evaluation of the performance of the algorithm. Additionally, the focus of the current work
was only on the prediction of the trajectory path. Further effort is needed to match the
positions of the predicted trajectory to timestamps. In this direction, a combination of the
current algorithm with machine learning techniques may be needed to better capture the
motion dynamics of vessels in different areas.
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Abstract: The primary objective of this study is to investigate maritime collision avoidance and
trajectory planning in the presence of dynamic and static obstacles during navigation. Adhering to
safety regulations is crucial when executing ship collision avoidance tasks. To address this issue,
we propose an optimized APF-ACO algorithm for collision avoidance and path planning. First, a
ship collision avoidance constraint model is constructed based on COLREGs to enhance the safety
and applicability of the algorithm. Then, by introducing factors such as velocity, position, and shape
parameters, the traditional APF method is optimized, creating a dynamic APF gradient for collision
avoidance decision making in the face of dynamic obstacles. Furthermore, the optimized APF method
is integrated with the ant colony optimization algorithm, the latter modified to overcome the inherent
local optimality issues in the APF method. Ultimately, validations are conducted in three areas:
static avoidance and planning in restricted sea areas, avoidance under conditions of mixed static and
dynamic obstacles, and avoidance in situations of multiple ship encounters. These serve to illustrate
the feasibility and efficacy of the proposed algorithm in achieving dynamic ship collision avoidance
while simultaneously completing path-planning tasks.

Keywords: path planning; collision avoidance; the optimal APF; ACO

1. Introduction

In the wake of sustained growth within the maritime and shipbuilding industries,
the significance of oceanic transport has become increasingly conspicuous. According
to estimations by the International Maritime Organization (IMO), approximately 90% of
global commerce is conducted via sea transportation [1]. Nevertheless, ship collision
incidents are becoming progressively prevalent. The prevention of inter-ship collisions
and the avoidance of surface obstacles are integral components of successful navigation.
Statistical data regarding ship collisions reveal that human factors are the primary cause,
with approximately 96% of accidents attributed to human error [2]. In an effort to mitigate
such errors, autonomous vessels supporting intelligent navigation have garnered signifi-
cant interest, with automatic collision avoidance and path planning constituting a pivotal
challenge in the development of intelligent ships [3]. Path-planning technology directly
influences the degree of vessel intelligence. In accordance with the International Regula-
tions for Preventing Collisions at Sea (COLREGs) [4], vessels must continually adapt their
collision avoidance and obstacle evasion plans during navigation, adjusting the obstacle
trajectory accordingly [5]. Consequently, it is imperative to investigate a swift and effective
path-planning method for implementation in autonomous ship control systems [6].

Currently, prevalent ship path-planning and collision avoidance algorithms include
APF, genetic algorithm (GA) [7], ant colony optimization (ACO) [8], particle swarm op-
timization (PSO), model predictive control, and deep reinforcement learning, among
others [9]. However, these methods have certain limitations in practical applications.
For instance, while the APF method is simple and easy to implement, it is prone to local
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optima [10]; the GA is suitable for handling complex mathematical models and nonlin-
ear constraint problems but has higher computational complexity [11]. Consequently,
researchers often improve or combine multiple methods to overcome their respective
drawbacks and enhance path planning and collision avoidance performance.

Numerous scholars have achieved significant advancements in the fusion and opti-
mization of various path-planning algorithms. Xia Chen et al. [12] addressed the shortcom-
ings of the rapidly exploring random tree star (RRT*) algorithm, such as slow convergence
speed and large randomness in the search range, by proposing a UAV trajectory planning
method based on a goal-biased APF-RRT* algorithm. This method employs a goal-biased
strategy to guide the generation of random sampling points, accelerating the convergence
speed of the algorithm, and introduces an improved APF method into the random search
tree to significantly reduce the number of iterations, generate higher quality new nodes,
and decrease path length. M. F. D. Santos et al. [13] addressed the issue of robust control
for surface vessels, employing a robust optimal control approach based on continuous loop
closure and optimal control theory. They adjusted the PID controller to handle uncertainties
arising from different parameter variations. Y. Su et al. [14] conducted asymptotic dynamic
positioning of ships in the presence of constraints on the actuators and partial failures of
the actuators. The authors put forth a nonlinear PD fault-tolerant controller. Yangsheng Liu
et al. [15] presented an improved simulated annealing-APF (SA-APF) algorithm to address
path-planning problems in 3D space. This method uses the simulated annealing (SA)
algorithm to optimize distance costs and combines it with the APF, realizing large-scale
multi-objective 3D space path planning. Zhe Zhang et al. [16] designed a fusion algorithm
combining an improved APF method and rolling window method for the local path-
planning problem of unmanned underwater vehicles. The rolling window method models
the local environment detected by UUV sensors, and the position factor is introduced into
the repulsive force equation of the traditional APF method, making the approach effective
and real-time. Hang Zhang et al. [17] developed an adaptive particle swarm optimization
APF method. By using the APSO algorithm to preliminarily obtain the global virtual path,
the method improves the APF approach and solves the local minimum value problem in
traditional APF. Sarada Prasanna Sahoo et al. [18] proposed a hybrid algorithm combining
grey wolf optimization (GWO) and GA and extended the hybrid path-planning to the
cooperative path-planning application for autonomous underwater vehicles.

Moreover, numerous scholars have conducted extensive research on dynamic collision
avoidance decision algorithms. Yanshuang Du et al. [19] addressed flight safety issues in
dynamic airspace for unmanned aerial vehicles by proposing a real-time reactive collision-
free path generation method, capable of adjusting the safe distance based on the relative
motion of surrounding obstacles. Wenjun Zhang et al. [20] examined the relationship
between a ship’s encounter state and the COLREGs in the context of collision avoidance
for ship path planning, which can help reduce the cost of planned routes. Hongguang Lyu
et al. [21] introduced an autonomous trajectory planning algorithm based on a modified
APF, aimed at ensuring that ships or unmanned surface vessels effectively address collision
avoidance problems in dynamic environments while adhering to the COLREGs. Yufei
Zhuang et al. [22] proposed a waypoint generation algorithm that considers USV turning
radius constraints by establishing an obstacle detection mechanism, reducing redundant
turning angles and path lengths when USVs traverse obstacles. They devised a multi-
dimensional path evaluation function for reasonably assessing planned routes, enabling
improved USV path planning in complex environments. Zhongxian Zhu et al. [23] pro-
posed a precise environmental potential field model based on electronic navigational chart
(ENC) surface objects and an improved APF, which can obtain collision-free paths under
different weather conditions and in narrow waters. Sung-Wook Ohn et al. [24] considered
open-sea, restricted-water interactions between two or multiple vessels and the COLREGs
while constructing optimal local path-planning routes for ships.

In practical scenarios, the schematics of ship trajectory planning and collision eva-
sion necessitate a holistic consideration of an array of determinants encompassing vessel
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dynamics, marine environments, and established navigational safety norms [1]. Hence,
the cruciality of selecting and fine-tuning apt methodologies to circumnavigate real-world
dilemmas becomes paramount. The APF algorithm exhibits structural clarity and com-
putational swiftness, making it an indispensable asset in local ship route planning and
dynamic obstacle avoidance. Despite the algorithm’s inherent drawbacks in terms of global
planning and intricate movements, its theoretical framework is nonetheless amenable to
enhancements and pragmatic applications. Further, the synergistic application of the APF
and ACO algorithms, particularly if the ACO algorithm can bolster its computational speed
and global planning within a broad scale, could offer a more precise resolution to the
extensive obstacle path-planning problem. Throughout the research journey, simulation
experiments and practical trials can serve as credible tools to authenticate the effectiveness
and applicability of the chosen methods, providing invaluable insights for the ongoing
study and advancement of intelligent ship navigation.

2. Problem Description

In light of the current research landscape and inspiration, this paper proposes an
optimized artificial potential field method for ship collision avoidance and path planning,
adhering to COLREG requirements. This approach achieves superior global and local
path planning for vessels while facilitating avoidance decision making for both static and
dynamic obstacles. The research primarily addresses three issues.

Given the current state of research and inspiration, this study proposes an optimized
artificial potential field method for ship collision avoidance and path planning. In compar-
ison to prior methodologies, this novel approach fully considers ship dynamics, marine
environment, and COLREG requirements. Through the innovative integration of APF
and ACO algorithms, it addresses path planning among large-scale obstacles and local
optimum issues, achieving global and local path planning for ships and providing support
for collision avoidance decision making against static and dynamic obstacles. This research
primarily addresses the following three issues:

(1) Ship collision avoidance rule modeling: By considering ship dynamics and COLREGs
in collision avoidance decision making and trajectory planning, this paper constructs
a rule constraint model for vessel navigation through the study of the COLREGs,
thereby enhancing practical applicability;

(2) Construction of an optimized artificial potential field: To achieve collision avoidance
planning for static and dynamic obstacles, this paper, inspired by prior work [25],
introduces endpoint and dynamic obstacle information, such as position, speed, and
type parameters, to optimize the attractive and repulsive potential field models,
fulfilling dynamic ship collision avoidance requirements;

(3) Incorporating ant colony optimization to address local optimality issues: To resolve
the local optimality problem prevalent in traditional artificial potential field methods
for global planning, this paper combines the artificial potential field method with ant
colony optimization and introduces improvements to the latter, achieving dynamic
obstacle avoidance and global path planning for vessels.

3. Ship Collision Avoidance Rule Modeling

In open-water navigation, examining ship collision avoidance decision-making and
path-planning algorithms requires the integration of the COLREGs as constraints. Key
aspects include the following: (1) Feasibility of real-time environmental data collection
during navigation and concurrent hazard assessment; (2) Determination of ship collision
avoidance decisions, timing, and evasive actions; (3) Consideration of ship dynamics and
COLREGs within decision making and trajectory planning.

In compliance with the COLREGs, vessels must ensure that other ships remain outside
the safe encounter distance throughout their journey, necessitating navigation beyond the
safe encounter distance as a performance criterion.
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When evaluating collision risks with obstacles, the vessel safety field and safety
distance are commonly used as vital factors. Unlike static obstacles, dynamic obstacles
call for the consideration of both the current safety field and safety distance, as well as the
prediction of safety field and safety distance trends for future temporal dynamic obstacles.
As illustrated in Figure 1, assume our vessel is located at point O, and the obstructing vessel
moves from point A to point B, decreasing the distance between the two vessels from OA
to OB and altering the azimuth angle Δδ between them.

 
Figure 1. Relationship between distance and bearing among vessels.

The ship safety field is an area centered on the vessel’s center of gravity. Although
various safety field models with different shapes and judgments are employed in ship
safety research, the safety distance standard remains widely utilized in the navigation
process. The selection of a ship safety field must consider numerous factors. Existing
research that overemphasizes the form of the ship safety field may not be conducive to the
practical application of domain models.

For computational convenience, this paper treats the safety field of ships and other
obstacle ships as circles, as illustrated in Figure 2. P0 represents the center of gravity of our
ship’s safety field circle, while P1 denotes the center of gravity of other ships. Lpp signifies
the total length of ships contained within the circumcircle, s0 and s1 are the adequate
safety margins for both ships. When selecting the safety margin, the position data of the
own ship and other ships should be considered, as well as the increase in field range due
to the proportional effect of the ship. The product of Lpp and the set factor μ indicates
that the radii of the expanded circles for the ship and other obstacle ships are R0 and R1,
respectively.

 

Figure 2. Diagram Depicting Ships Safety Distance.

By treating the safety field of ships and other obstacle ships as circles, the proposed
method simplifies calculations while still providing a reasonable safety margin for both
ships. This approach enables efficient and effective collision avoidance, considering the
position data of both the own ship and other ships in the navigation process.

Building upon this, the distance between the expanded boundaries of the ship and
other obstacle ships is denoted as Ds. This distance considers the maneuverability param-
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eters of the ship and other ships, their respective speeds, relative speeds, hydrological
conditions, and other factors. During the voyage, the distance is also related to the respec-
tive headings of the own ship and other ships. Different encounter situations necessitate
varying Dm values. The radius of the ship safety field established in this paper is the safety
distance between the ship and other ships, expressed as follows:

Dm = R0 + Ds + R1. (1)

The illustration of ship safety field is shown in Figure 3.

 

Figure 3. Illustration of ship safety field.

It is worth noting that there is a distinct difference between the ship safety field
calculated based on the own ship and the ship safety field calculated according to other
obstacle ships. The Ds of the other ship differs from ours. Factors contributing to this
difference include vessel size and maneuverability.

The expression for the ship safety distance Ds is as follows:

Ds =
∫
|v|dt + μeDe + μwDw, (2)

where dt is the sampling period; |v| is the absolute value of the speed at which the two
ships approach each other; Dn is the safe distance in the current navigation environment;
De is the safe distance in the current environment; Dw is the safe distance in the current
waters; μe and μw are the adjustment coefficients of De and Dw, respectively. In practical
computations, according to the type of vessel and its suitable navigational waters, the
values of De and Dw typically range from 0.3 to 1.2 nautical miles. Moreover, the values of
μe and μw are adjusted based on the current environment and waters.

In order to effectively avoid collisions during a ship’s navigation, it is essential to
have a well-designed collision avoidance decision algorithm that considers various factors
and stages of the collision development process. The stages include long distance without
danger, collision risk, emergency situation, urgent danger, and final collision. These stages
represent the process of the distance between the own ship and the obstacle ship developing
from near to far.

The collision avoidance decision algorithm should be capable of taking the most
appropriate action to best avoid a collision when other ships are not maneuvering in
accordance with the COLREGs or if the two ships are in close proximity due to some
other reason. The algorithm should also be able to determine when to initiate collision
avoidance maneuvers, as initiating them too early or too late could negatively impact the
ship’s navigation.

When analyzing risk situations, the influence of other factors must be considered,
particularly the distance between our ship and other obstacle ships as a constraint. Figure 4
elucidates that in compliance with the COLREGs, the most crucial aspect is the closest
point of approach DA between the obstacle ship and the own ship and the collision risk
detection distance Dc, which represents the distance allowing the vessel to undertake
collision avoidance measures upon identifying a collision risk situation.
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Figure 4. Distance closest point of approach.

In this paper, Dc is defined as the sum of the safety field radius Dm and the potential
field influence range radius αo. The value of αo is determined by the maximum value of the
product of fk times the obstacle’s bulking circle radius and αomin, with αomin set at 0.4. This
definition allows for a comprehensive assessment of collision risk, considering both the
safety and the potential fields’ influence on the ship’s navigation.

Dc = Dm + αo (3)

In this context, αo = max{Df ·R1, αomin}, Df is a proportional coefficient referred to as
the obstacle distance influence factor, which adjusts the potential field’s influence range
depending on the distance between the ship and the obstacle.

4. Path Planning Based on Optimized APF

During the navigation process, the ship can use the APF method to take appropriate
collision avoidance actions according to the COLREGs. Once the risk of collision is elimi-
nated, the ship can resume sailing on the planned route and continue towards its destination.
The APF method can adapt to changing environmental conditions and the movements of
other ships, making it a suitable choice for intelligent ship navigation systems.

4.1. Construction and Calculation of Attractive Potential Field

At present, in the artificial potential field algorithm, the potential energy equation of
the destination’s attractive potential field is usually transformed into a standard parabolic
equation; Pa(p, v) is the attractive potential field; D(p0, ps) is the distance between the ship
and the goal; D(v0, vs) is the equation of the resultant velocity of our ship and the goal.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pa(p, v) = Pa(p) + Pa(v)

Pa(p) =
1
2

σpD2(p0, ps)

Pa(v) =
1
2

σvD2(v0, vs)

, (4)

where σp is scale weight factor for location, σv is speed factor, p0 is the current position of
the ship, ps is the current position of the goal, v0 is the current speed of the ship, vs is the
current speed of the goal. When the ship sails in the two-dimensional space on the sea
surface, the attractive potential field that the ship experiences is non-negative. Only when
the relative position D(p0, ps) and relative velocity D(v0, vs) of the ship and the target
point are all 0, is the attractive potential field 0.

According to the attractive potential field equation Pa(p, v), the attractive forces of
equation Fa(p, v) can be obtained:

Fa(p, v) =
∂Pa(p, v)

∂p
+

∂Pa(p, v)
∂v

(5)

The attractive forces equation Fa(p, v) can be rewritten as
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⎧⎪⎨⎪⎩
Fa(p, v) = Fa(p) + Fa(v)
Fa(p) = εpD(p0, ps)μp

Fa(v) = εvD(v0, vs)μv

, (6)

where the attractive force Fa(p) represents the magnitude of the location-based influence,
while μp denotes the position vector. Additionally, Fa(v) signifies the magnitude of the
velocity-based attractive force, ensuring that the ship’s speed aligns with the target end-
point’s speed in both magnitude and direction upon arrival. Fa(v) exhibits a positive
correlation with D(p0, ps), with the direction coinciding with the target point’s movement
relative to the ship and μv representing the unit vector in the direction of velocity.

4.2. Construction and Calculation of Repulsive Potential Field

When the relative position between the vessel and other ships falls within the collision
risk detection threshold, our vessel should adhere to the COLREGs and implement collision
avoidance measures to achieve dynamic and static obstacle avoidance. The equation for
the repulsive potential field of dynamic obstacles Prd in complex waters is⎧⎪⎪⎪⎨⎪⎪⎪⎩

Prd = εdR1ω∗(D∗
d
)2d2

s

ω∗ = |eω0−ω − 1|
D∗

d =
1

D − Dm
− 1

ρ0

, (7)

where εd represents the proportional coefficient of the repulsive potential field generated
by the dynamic obstacle, ω0 denotes the maximum relative position line angle, and ds is
the distance between the vessel and the goal.

The equation for the repulsive potential field of a static obstacle Prs in open water is⎧⎪⎨⎪⎩
Prs = εsR1

(
D∗

d
)2d2

s

D∗
s =

1
D − DL

− 1
ρ0

, (8)

where εs represents the proportional coefficient of the repulsive potential field generated
by the obstacle.

When ship encounters a static obstacle, the repulsive potential field it experiences
depends on the distance between the ship and the static obstacle. Unlike the traditional
repulsive potential field model, this model introduces a smaller constant: DL. In this paper,
DL is chosen as the product of γ times the LPP of the ship as the radius.

DL = γ·LPP, (9)

where γ is an adjustment factor with a value range from 1 to 3. Its value is determined by
considering factors such as the maneuverability of our ship, the ship’s length, the accuracy
of sensor data (particularly position and distance), and an appropriate safety margin. The
circle with the ship’s position as its center and DL as its radius represents an area where no
obstacles are allowed to enter. If any obstacle enters this area, it is considered a collision
accident, so this area is called the forbidden zone. Within this range, the repulsive potential
field is large enough and bounded to prevent our ship from colliding with other obstacles.

The total repulsive potential field equation is

Pr = Prd + Prs. (10)

By calculating the negative gradient of the repulsive potential field function Pr(p, v)
with respect to position and velocity, the corresponding repulsive force function expression
Fr(p, v) can be derived:

Fr(p, v) = −∂Pr(p, v)
∂p

− ∂Pr(p, v)
∂v

(11)
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The equation of the ship under the resultant force is

F(p, v) = Fa(p, v) + Fr(p, v) (12)

Considering the presence of multiple static obstacles and dynamic obstacle ships, the
resulting expression for the repulsive force acting on our vessel is as follows:

Fr = ∑n
i=1 Fri , (13)

where Fri represents the repulsive force exerted by the i-th ship or obstacle on the vessel
and n refers to the total number of obstacles and other ships encountered by the vessel.

4.3. Ant Colony Optimization Algorithm

In path planning, the quality of a route often depends on multiple factors, such
as distance, safety, and time consumption, thus forming a multi-objective optimization
problem. The ant colony algorithm is a nature-inspired heuristic algorithm, drawing
inspiration from the path optimization behavior of ants in search of food and avoidance
of obstacles [26]. Utilizing the global search capability and parallelism of the ant colony
algorithm, satisfactory solutions can be effectively found in multi-objective optimization
problems.

Specifically regarding local optima, the search may stall or cycle infinitely among sev-
eral singular points when a local optimum or singularity is encountered. However, the ant
colony algorithm selects the next node to visit based on the roulette wheel selection method,
rather than choosing directly according to the size of the probability [27]. This method
expands the search range, enabling the search to possibly escape local optima and find
the global optimum. The application of the ant colony algorithm in a global optimization
strategy not only effectively enhances search efficiency but also avoids becoming trapped
in local optima.

At time t, ant k selects the direction of travel from point i to point j based on the
calculation of the state transition probability. By calculating the transition probability Pk

ij(t)
of the available paths adjacent to point i, the transition probability of moving to grid point
j is determined using the roulette wheel selection rule:

Pk
ij(t) =

⎧⎪⎨⎪⎩
[

phij(t)
]γ[

h f ij(t)
]σ

∑j∈m

[
phij(t)

]γ[
h f ij(t)

]σ , j ∈ m,

0 , j /∈ m
(14)

where m is the set of available nodes for the ant’s next step, Pk
ij(t) is the node transition

probability, phij(t) is the pheromone concentration on the path, h f ij(t) is the heuristic
function, γ is the pheromone concentration coefficient, and σ is the heuristic function
coefficient. The definition of the heuristic function h f ij(t) is

h f ij(t) =
1

Dij
(15)

In the formula, Dij represents the Euclidean distance between node i and node j. The
definition of Dij is

Dij =
√(

xi − xj
)2(yi − yj

)2 (16)

To prevent an abundance of pheromones from leading subsequent ants astray in their
path selection, the information along the path will be updated using the following method
after each generation of ants completes their search:

phij(t + 1) = phij(t)− βphij(t) + Δphij(t, t + 1) (17)
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In the formula, β represents the pheromone evaporation coefficient, and Δphij(t, t + 1)
denotes the increment of pheromones between points i and j during the current iteration.

Δphij = ∑N
a=1 Δphij

a (18)

where N represents the predefined number of ants in the colony, and Δphij
a refers to the

pheromones released by ant a as it traverses the path. The definition of Δphij
a is

Δphij
a = P/Da (19)

P represents the initial pheromone value; Da denotes the total length of the path
traversed by ant a.

In traditional ant colony algorithms, the initial distribution of pheromones in the
environment is set to the same value, leading to a certain degree of blindness in the initial
path search by ants. This affects the search efficiency of the algorithm and increases the
search time. In this paper, an improved method for initial pheromone distribution is
proposed. This method calculates the initial pheromone phij(0) amount based on the
number of obstacles surrounding a node. The specific implementation is as follows:

phij(0) = ϑ· f (j) (20)

f (j) =
1 − CU(m)

8
(21)

In the formula, ϑ is an enhancement coefficient that can be determined based on the
actual situation; f (j) is an obstacle avoidance coefficient; CU represents the complement
symbol; and U is the set of adjacent pixels for the current pixel position. The f (j) function
can be used to calculate the proportion of free pixels among the eight adjacent pixels of
the current pixel. When there are fewer obstacle pixels in the neighborhood of the pixel,
the initial pheromone of the pixel is larger; otherwise, the initial pheromone is smaller.
This guides ants to advance and avoid searching in areas with too many obstacles, thus
accelerating the convergence speed of the algorithm.

4.4. Collision Avoidance and Path Planning Algorithm Design

The method proposed in this paper first extracts key information from electronic chart
data, such as ships, obstacles, and target points. The electronic chart is then converted into
a rasterized image, where each grid cell represents either a navigable area or an obstacle.
The system employs an ant colony algorithm for global path planning, initializing the ant
population, heuristic information, and improved pheromone allocation, allowing ants to
search and select the next grid cell on the rasterized image. Upon reaching the target point,
the pheromone concentration is updated, the path length is recorded, and iterations are
repeated, with the shortest path chosen as the global plan.

Local planning is achieved through an optimized artificial potential field method,
calculating the attractive potential field (pointing towards the target) and repulsive potential
field (moving away from obstacles) for static and dynamic obstacles. The composite
potential field is obtained by combining these fields, which is used to calculate the ship’s
moving direction. Dynamic obstacles are detected, and repulsive potential fields are
applied, realizing local static and dynamic collision avoidance. The ship’s position is
updated, and steps are repeated until the target is reached.

The global planning path of the ant colony algorithm and the local planning path of
the optimized artificial potential field method are integrated to form the final ship path.
The visualized final path is output for further analysis and use. Through this process,
the combination of the optimized artificial potential field method and the ant colony
algorithm is achieved, realizing ship path planning and dynamic collision avoidance in
complex environments.

The traditional APF algorithm often encounters multiple local optima during the
computation process. When it reaches these points, the search may stagnate or loop
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infinitely among several singular points, rendering the program unable to stop. Therefore,
the search is likely to become trapped in these local optima, preventing it from finding
the global optimum. To address this situation, this study proposes a fusion algorithm
that incorporates an optimized ant colony algorithm to implement a global optimization
strategy. The algorithm employs a roulette wheel selection method to choose the next
node to visit, rather than making a direct choice based on the size of the probability. This
approach broadens the search range, thereby locating the global optimum and avoiding
becoming mired in local optima. For the optimization of the local planning APF method,
a maximum number of iterations is set in this study. If the search exceeds this number
without finding a satisfactory solution, the search is forcibly halted. The algorithm process
proposed in this paper is illustrated in Figure 5.

Figure 5. Algorithm flow chart.
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5. Results and Analysis

In this study, the traditional artificial potential field algorithm was optimized by con-
sidering ship types and parameters in the waters, as well as adhering to the requirements
and specifications of the COLREGs. This enabled the establishment of a collision avoid-
ance decision system for static and dynamic obstacles at sea and the realization of the
ship’s autonomous obstacle avoidance decision and path-planning algorithm. To further
validate the effectiveness, reliability, and real-time performance of the ship obstacle avoid-
ance decision-making and path-planning algorithms based on the artificial potential field
method, a simulation test of autonomous collision avoidance and navigation planning was
conducted using the aforementioned ship autonomous collision avoidance system.

To meet real-world navigational task requirements, multiple simulation validations
have been conducted in this study. Initially, tests for static avoidance and planning in three
types of water areas, such as coastlines, islands, and reefs, were carried out to validate the
performance of the proposed algorithm under varying static obstacles. Subsequently, tests
were conducted under mixed dynamic and static obstacles to verify the algorithm’s stability
and robustness under composite obstacle interference. Last, based on the COLREGs’
classification of vessel encounters, multiple encounter simulation tests were performed
under different meeting patterns, simulating navigational situations in real waters. An
in-depth discussion and analysis of the results followed the simulations.

In the simulation experiment, the positive direction of the vertical axis in the coordinate
system represents north, while the positive direction of the horizontal axis represents east.
The planned path of our ship is depicted by a blue trajectory, dynamic obstacle ships are
represented by red dotted lines, and static obstacles are indicated by black color blocks.

5.1. Preprocessing of Electronic Nautical Chart Image Data

Prior to implementing the proposed algorithm, electronic nautical chart image data
must undergo preprocessing. As shown in Figure 6, this preprocessing includes image
binarization and rasterization, which simplifies the data for subsequent simulation and
validation. First, the electronic nautical chart image is binarized, converting elements,
such as ships, obstacles, and target points, into black and white pixels to streamline the
image information. Next, rasterization divides the electronic nautical chart into regular
smaller areas, with each raster cell representing a navigable area or an obstacle. The raster
cell size can be adjusted based on specific requirements and computational resources. In
this study, the raster window value is set to five to reduce computation time without
sacrificing accuracy.

  
(a) (b) 

  
(c) (d) 

Figure 6. Image preprocessing: (a) Original electronic nautical chart; (b) Binarization; (c) Binarization
inversion; (d) Rasterization.
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This preprocessing method helps to simplify the geographical environment, providing
clear and easily processed input data for the subsequent simulation and validation of the
ant colony algorithm and the optimized artificial potential field method, thereby enhancing
the efficiency and accuracy of path planning.

5.2. Static Obstacle Avoidance Simulation

In order to avoid collisions in restricted water areas, vessels need to consider different
types of static obstacles. In this simulation experiment, an environment map corresponding
to the electronic chart is established to accomplish autonomous ship obstacle avoidance
decision-making and route-planning experiments. Analyses are conducted for coastlines,
islands, and reefs, based on their specific characteristics.

(1) Coastline: The coastline, where land meets the sea, usually exhibits complex topog-
raphy, possibly comprising beaches, cliffs, and bay currents. Coastal areas present a
challenge for ship route planning due to the potential for shallow waters and complex
terrain. Ships must maintain a certain distance to avoid grounding and collisions.
Moreover, maritime currents and tidal factors in coastal areas must be factored into
route planning, thus the repulsive potential field has a large range of influence;

(2) Islands: Islands are pieces of land in the sea, varying in size. The presence of is-
lands may necessitate detours, especially in areas with many small islands, such as
archipelagos or coral reefs. Concealed hazards, such as reefs and sandbars, may be
present around some islands, posing higher demands for route planning;

(3) Reefs: Reefs are rocks or stones in the sea that can appear anywhere, including
coastlines, around islands, and even in the open sea. Reefs pose a significant risk
for ship route planning as they often lie below the water’s surface and are difficult
to observe directly. If a ship strikes a reef, it may sustain severe damage or even
sink. Therefore, safety and local optimization issues must be considered in ship
route planning.

For ships navigating in restricted waters to avoid collisions, different types of static
obstacles must be considered individually. In this section’s simulation experiment, obstacles
are categorized into three types: coastlines, islands, and reefs, which are analyzed separately.
The basic parameters of the subject vessel are presented in Table 1.

Table 1. Basic parameters of target ship.

Parameter Target Ship

LPP 82 m
Width 21 m
Weight 5430 t

Safety field radii R 246 m

Based on the electronic chart, a corresponding water environment map is created to
carry out the ship’s autonomous collision avoidance decision-making and path-planning
experiments.

Simulation results are shown in Figure 7, where black represents the projection of
obstacles on the horizontal plane, and white areas indicate navigable regions for the ship.
The simulation statistics are shown in Table 2.
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(a) (b) (c) 

Figure 7. Trajectory schematics amidst static obstacles: (a) Coastlines; (b) Islands; (c) Reefs.

Table 2. Statistical analysis table for static obstacles.

Obstacle Types

Traditional APF Optimized Algorithm

Reach
the Goal

Simulation
Duration

Path Length
Reach

the Goal
Simulation
Duration

Path Length

Coastlines Yes 18.75 s 17.57 n mile Yes 46.35 s 14.80 n mile
Islands Yes 22.42 s 21.24 n mile Yes 53.76 s 16.92 n mile
Reefs No - - Yes 64.25 s 7.95 n mile

The simulation results presented in Figure 7 and Table 2 allow us to compare the
trajectory planning of the traditional APF method and the optimized algorithm under
three common marine environment obstacles. As can be seen clearly from Figure 7a,b, the
path of the optimized algorithm is shorter than that of the traditional APF method. By
repeating this experiment 10 times, each result exhibits minor differences, demonstrating
some randomness. The average path length is reduced by 17%, and the simulated curve
is smoother.

Moreover, as shown in Figure 7c, the traditional APF algorithm, under complex
environmental conditions, stagnates due to the influence of multiple repulsive potential
fields or becomes trapped in an infinite loop between several singular points, causing the
program to become non-responsive. The path planning becomes stuck in these local optimal
solutions, unable to find the global optimum. However, the optimized ant colony algorithm
in this paper implements a global optimization strategy. It uses a roulette wheel selection
method to choose the next node to be visited, instead of directly selecting according to
the size of the probability. This strategy broadens the search range to find the global
optimum and avoids falling into local optima, effectively resolving the local optimum
problem present in the traditional APF method. However, due to the complexity of the
optimized algorithm, the simulation computation time is longer than that of the traditional
APF method, indicating a certain limitation.

5.3. Dynamic Obstacle Avoidance Simulation

Dynamic obstacle collision avoidance simulation refers to target ship navigating
through and encountering obstacle ships, the parameters for the obstacle ship is delineated
as depicted in Table 3.
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Table 3. Basic parameters of obstacle ship.

Parameter Obstacle Ship

LPP 54 m
Width 8 m
Weight 1042 t

Safety field radii R 135 m

When the obstacle ship maintains its sailing state unchanged, our ship makes an
emergency collision avoidance decision outside the safety domain. The starting position
of my ship is designed, with an initial heading angle of −45◦ and a maximum speed of
16 knots. The obstacle ship has a sailing direction angle of 45◦ and maintains a speed of
10 knots. Under these circumstances, the simulation results of the proposed optimized
algorithm are compared with the traditional dynamic APF method. The simulation results
are illustrated in Figure 8.

  
(a1) (a2) 

  
(b1) (b2) 

Figure 8. Cont.
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(c1) (c2) 

  
(d1) (d2) 

Figure 8. Path-planning trajectory diagram under dynamic obstacles: (a1) The ship and the obstacle
ship form a cross encounter situation; (a2) Ships form a cross encounter situation; (b1) The ship is
directed to turn left to avoid; (b2) The ship is directed to turn right to avoid (c1) The ship ends collision
avoidance operation and resumes sailing; (c2) The ship end avoidance and resume navigation;
(d1) The ship arrives at the finish line after avoiding static obstacles; (d2) The ship reaches its
terminus subsequent to circumvent stationary impediments.

The simulation statistics are shown in Table 4.

Table 4. Statistical analysis table for dynamic obstacles.

Algorithm
Categories

Simulation
Duration

Path Length
Minimum Distance

between Ships
Maximum

Turning Angle

Traditional APF 59.25 s 18.72 n mile 0.24 n mile −71◦

Optimized
algorithm 143.40 s 15.81 n mile 1.16 n mile 49◦

Analyzing the simulation results using the traditional dynamic artificial potential field
method for collision avoidance simulations, the target vessel performs a 71◦ left turn when
encountering a crossing situation with the obstacle vessel due to the lack of constraint
from the vessel collision avoidance rule model, as shown in Figure 8(b1). Furthermore, the
distance between the target vessel and the obstacle ship is too small in Figure 8(c1), and the
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vessel does not resume its course after avoiding the collision. These actions do not comply
with COLREG requirements for vessel handling and safe navigation.

In contrast, as shown in Figure 8(a2) and based on the optimized algorithm proposed
in this paper, the target vessel detects an impending obstacle ship outside the safe zone. In
Figure 8(b2), it promptly takes evasive action and performs a collision avoidance maneuver
by turning right 49◦. This complies with COLREG requirements for vessel handling,
adhering to the principle of turning right at an appropriate angle to yield and effectively
clears the path in Figure 8(c2). After completing the collision avoidance maneuver, the
vessel resumes its course and eventually reaches its destination. During the path planning
and collision avoidance process, the minimum distance between the target vessel and
the obstacle ship is significantly greater than R0 + R1, fulfilling the safety requirements
for collision avoidance. After conducting this segment of the experiment five times, it
is evident that the results of each trial vary slightly due to the stochastic roulette wheel
structure of the ant colony algorithm. Despite the inherent randomness, the stability of the
system remains unaffected. The average navigational distance is 18.84 n miles, with the
greatest recorded distance being 19.30 n miles.

5.4. Validation of Multi-Ship and Multi-State Collision Avoidance

As per the COLREG ship encounter categorization, the encounters between the target
ship and the obstacle ships are divided into three types: overtaking, head-on meeting, and
crossing. This section will carry out multiple encounter simulation tests under different
encounter modes, simulating the navigation situation in real waters. The parameters of the
obstacle ships in the three typical meeting situations are shown in Table 5.

Table 5. Parameters of the obstacle ships in three typical encounter scenarios.

Parameter
Obstacle Ship 1

(OS1)
Obstacle Ship 1

(OS2)
Obstacle Ship 1

(OS3)

LPP 68 m 104 m 78 m
Width 9 m 11 m 9 m
Weight 1566 t 4650 t 2080 t

Safety field radii R 186 m 306 m 244 m
Encounter scenario Overtaking Head-on Crossing

The experiment is set in an open-water scenario, where three distinct obstructive
vessels intersect the path of the target ship in different encounter scenarios. Figure 9
demonstrates the result of the multi-vessel, multi-state collision avoidance test.

  
(a) (b) 

Figure 9. Cont.

182



J. Mar. Sci. Eng. 2023, 11, 1177

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Results of multi-vessel, multi-state collision avoidance validation: (a) Numerous ships
navigate concurrently within the same maritime expanse; (b) The ship and OS1 constitute a head-on
encounter scenario; (c) The ship turns right to avoid and continues to sail; (d) The ship and OS2
constitute a overtaking encounter scenario; (e) The ship turning right at a wide angle to avoid; (f) The
ship resume navigation after completing a right turn to avoid; (g) The ship and OS3 constitute a
crossing encounter scenario; (h) The ship arrives at the end of the line after completing avoidance.
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Based on the validation curves presented in Figure 9, the statistical data garnered
from simulation results, encompassing multiple vessels and diverse circumstantial collision
avoidance, are articulated as exhibited in Table 6.

Table 6. Statistics of the simulation data results for multi-vessel and multi-condition collision
avoidance validation.

Encounter Scenario
Minimum Distance

between Ships
Maximum Turning Angle

Overtaking 1.05 n mile 46◦
Head-on 1.20 n mile 42◦
Crossing 1.42 n mile 53◦

According to the validation results in Figure 9a, the target vessel has a course of −45◦
and is heading straight to the destination along the pre-planned route. Despite the presence
of several obstructing vessels in this open sea, the distances between them are considerable
and do not yet invade the safety distance criterion. Consequently, the target vessel is
not within the influence range of the repulsive force field of the obstructing vessels and
therefore does not take evasive actions.

Figure 9b shows that over time, both the target vessel and the obstructing vessel OS2
have traveled a certain distance, forming a head-on meeting situation. The target vessel
enters the influence range of OS2’s repulsive field and makes a significant 42◦ right turn.
The closest point of approach is 1.20 nautical miles, which meets the COLREGs and safety
requirements, fully demonstrating the robustness and stability of the algorithm.

Figure 9c–e illustrate that after successfully avoiding OS2 with a right turn, the target
vessel encounters a situation of overtaking OS1. Upon entering OS2’s repulsive field, the
vessel makes a substantial 46◦ right turn following the algorithm’s constraints on vessel
operations. The closest point of approach is 1.05 nautical miles. After evasion, the vessel
resumes its course to the endpoint, meeting COLREG requirements.

Figure 9f–h demonstrate that after resuming its course, the target vessel intersects
with the obstructing vessel OS3. The target vessel executes a substantial 53◦ right turn and
passes from the rear side of OS3. The closest point of approach is 1.42 nautical miles. After
completing the evasion, the vessel resumes its course and eventually reaches the endpoint.

Through the multi-vessel and multi-condition collision avoidance validation simula-
tion, the algorithm’s capability to handle multiple meeting scenarios under COLREGs and
multiple encounters in real waters is proven. The algorithm shows stability and robustness,
and the evasive actions meet the normative requirements of the COLREGs.

In summary, the three sets of experiments validate the algorithm’s performance in
static evasion and planning in restricted waters, collision avoidance under mixed static and
dynamic obstacles, and collision avoidance in multiple encounters. The vessel’s evasive
actions comply with regulations, and the planned route meets safety requirements. This
indicates that the algorithm can prevent collisions in emergencies and that the planned
route is a smooth curve, demonstrating its practicality.

6. Conclusions

This paper primarily investigates collision avoidance and path-planning problems
for ships encountering dynamic and static obstacles during navigation. To address these
challenges, a collision avoidance and path-planning algorithm based on an optimized
APF-ACO algorithm is proposed. First, a ship collision avoidance constraint model is
established according to the COLREGs, enhancing the algorithm’s safety and applicability.
Subsequently, by introducing factors such as velocity, position, and shape parameters, the
traditional APF method is optimized, creating a dynamic APF gradient to enable collision
avoidance decision making for dynamic obstacles. Furthermore, this research combines the
optimized APF method with an ant colony optimization algorithm, improving the latter to
resolve inherent local optimality issues in the APF method and achieve collision avoidance
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decision-making and trajectory-planning methods for static/dynamic obstacles in complex
waters based on the APF method.

Comparative simulation experiments demonstrate the feasibility and effectiveness
of the proposed algorithm in accomplishing dynamic ship collision avoidance and path-
planning tasks. This research holds significant practical implications for the safe navigation
of ships in complex environments and offers valuable insights for the development and
study of intelligent ship navigation systems. Future research may focus on further opti-
mization of the algorithm to enhance its performance in handling more complex scenarios
and diverse obstacle types, laying the foundation for the realization of intelligent and
automated ship navigation.
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Abstract: Global route planning is a pivotal function of unmanned surface vehicles (USVs). For
ships, the safety of navigation is the priority. This paper presents the VK-RRT* algorithm as a way of
designing the planned route automatically. Different from other algorithms or studies, this study
employs electronic navigation chart (ENC) vector data instead of grid maps as the basis of the search,
which reduces data error when converting the vector map into the grid map. In addition, Delaunay
triangulation is employed to organize vector data, in which the depth value is taken as a factor to
ensure the safety of the planning route. Furthermore, the initial planned route is not suitable for ship
tracking as it does not consider the ship motion characteristics. Therefore, the planned route needs to
be further optimized. In the final part, we also conducted experiments to verify the effectiveness and
advantages of the proposed algorithm. The results show that the proposed algorithm could reduce
the lengths of paths by about 23% on average and save planning time; these are largely dependent on
the environment.

Keywords: route planning; ENC map; sample-based algorithm

1. Introduction

Recently, the number of studies on unmanned surface vehicles (USV) has attracted
much attention in the marine technology field. In fact, one of the premises of USV is
generating the ship planning route (SPR) automatically. Then, the ship can track the route
and arrive at the destination safely.

The ship route planning problem is a sub-field of route planning, where various
algorithms and strategies were proposed and applied.

At first, there was a large number of studies on algorithms based on graphs. Refer-
ence [1] proposed the Dijkstra algorithm to address two problems in the route planning
field: (1) Refer to a data structure that consists of paths connecting any two points; (2) Find
the optimal path with a minimum total length between two given nodes. Then, the Dijkstra
algorithm was employed and improved to solve practice issues. To solve the route planning
problem involving the length of paths, a novel algorithm was created based on the Dijkstra
algorithm, which referred to fuzzy theory [2]. Except the length of paths, time costs were
also considered in [3,4], where traditional Dijkstra was improved. Furthermore, there were
also various studies on the ship route planning problem employing the Dijkstra algorithm.
There were also researchers who created a three-dimensional Dijkstra algorithm that sup-
ported the ship to plan the motion in which the speeds and courses were determined
at each second [5]. Generating global optimum solutions for ship routes was expected.
Moreover, the weather was also taken as an index of the Dijkstra algorithm when planning
the minimum time cost for a route [6].

Then, based on the Dijkstra algorithm, a novel method called A* was also proposed
and improved. In the original A* algorithm, the path was connected by the vertices of
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the grid map used, which means that the length of the route was not optimal. Therefore,
Theta* was applied to [7] to make up for the drawback. Moreover, to save searching time,
time-efficient A* was employed in [8] and simulated successfully. To address route planning
problems, researchers considered multiple factors when applying the A* algorithm. For
example, collision avoidance, rules on the sea, and the motion characteristics of ships were
taken as examples [9]. Moreover, some researchers even considered the space characteristics
of the ship [10].

Moreover, sampling theory was also extended and applied to route planning problems.
RRT (rapid-exploring random tree) is a common algorithm used in the field of path planning.
The RRT algorithm is completed in probability if reaches 100% if enough time is given
for exploration. The main idea is to construct the searching tree and find line segments
connecting the start point to the destination. Compared to other sample-based algorithms,
not only does the RRT* have their advantages but it also has a higher degree of freedom [11].
Moreover, there were several algorithms that were generated based on the RRT algorithm.
For instance, the RRT* is a kind of sample-based algorithm, which optimized the length
of the route given by the RRT algorithm. In reference [12], the RRT* was compared with
the A* via simulations to illustrate their advantages and disadvantages. In fact, the RRT*
had been improved in various ways, taking into account different optimization goals or
environmental conditions. To solve the field programmable gate arrays problem, the RRT*
was improved to consider the terrain, planning speed, etc., [13]. Furthermore, a novel
series of improved RRT* algorithms, named Quick-RRT*, PQ-RRT*, and P-RRT* were
proposed by researchers [14,15]. All of them focused on fast speed converges to improve
the characteristic of the route planning module of the ship. To do so, they combined the
RRT* and potential function to give a better solution with a fast speed of convergence.
Except for the above algorithms, the Connect-RRT algorithm was also developed to plan
routes with fast speed [16]. In fact, the Connect RRT algorithm maintains two trees: one
of them started from the departure point and another began from the destination. When
the two trees encountered each other during the searching process, the route planning task
could be ended. Based on that, various studies imitating the principle of Connect-RRT
emerged, such as RRT*-connect [17], bidirectional potential guided RRT* [18], informed
RRT*-connect [19], smooth RRT-connect [20], and so on.

RRT and its extended methods in the marine technology field (ship route planning)
was applied to generate planned routes in a canal [21]. In such area, the current had to be
considered, as is reasonable, as it would affect the navigation safety of ships. Moreover,
the rule of local governments regarding canal navigation shall be also considered to avoid
collisions between surface vehicles. To make up for the disadvantages of the RRT algorithm,
reference [22] gave a hybrid step size and target attractive force RRT algorithm, which
mainly improved the accuracy of the planned route in narrow waters. Moreover, the RRT
algorithm was developed to have abilities of enhanced adaptability in [23]. Furthermore,
it was necessary to include regulations when considering the route planning algorithm.
Based on that, reference [24] gave a novel algorithm that combined the rule on the sea.
Moreover, reference [25] gave the Bi-RRT algorithm, which can make decisions when faced
with obstacles to prevent collisions.

Recently, with the development of artificial intelligence, many researchers have started
using the reinforce leaning theory to address route planning problems [26–28]. For instance,
the algorithm called deep reinforcement learning was provided in [29] to solve collision
avoidance problem and optimize the length of the route at the same time. Moreover, the
reinforcement learning algorithm was also engaged in unsupervised learning [30].

Different from robots and other vehicles, the navigation safety of ships involves two
factors: water depth and obstacles. It means that the SPR could not cross land, reefs, and
shallow water areas. However, few of the above studies consider both factors. Instead,
they paid more attention to avoiding obstacles. Moreover, it is well-known that SPR is
a polyline. However, the ship could not follow polylines accurately because of kinetic
constraints [31]. Therefore, it is essential to consider ship motion characteristics in waypoint
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areas in optimization. In addition, most of the studies reviewed employed grid maps as
configuration spaces. It means that converting from ENC or other sources of charts to raster
maps should be conducted in advance. Errors occurred during such processes.

To make up for the above drawbacks, this study proposes a novel approach called the
VK-RRT* algorithm. The main contributions of it are as follows:

(1) Unlike in most research, ENC vector data are utilized instead of simulated environ-
mental data or raster map data. The use of vector data could reduce errors emerging from
the raster map data process and could also accelerate the application of the path planning
algorithm in navigational practice;

(2) We propose a novel strategy for the implementation of the path planning algorithm
to account for ship kinetic constraints. Under constant speed, turning trajectories in the
form of arcs are predicted and checked for safety in the path planning process. The
strategy could largely decrease the pressure of controllers to track the planed path in the
turning area;

(3) Compared to RRT and RRT* algorithms, the VK-RRT* method could give solu-
tions faster.

The remainder of this study is arranged as follows: Section 2 presents the preliminary
knowledge involved in this study. Section 3 gives RRT, RRT*, and the proposed VK-RRT*
algorithm descriptions in detail for readers to compare and understand. Section 4 presents
two case studies to illustrate the advantages and effectiveness of the proposed algorithm.
Section 5 gives some conclusions and drawbacks, which need to be addressed in near future.

2. Preliminary Knowledge

In this section, we give the definition of the route planning of ships, motion constrains
considered, and the Delaunay triangulation explanations used in our algorithms.

2.1. Problem Definition

This section presents the ship route planning problem that is investigated in this study.
Let χ ⊆ Rd be the configuration space where ships navigate where d ≥ 2. In addition, there
are two sub-spaces χobs and χ f ree in χ, which represent the obstacle space and the free
space of navigation, respectively. pinit represents the initial position, whereas pgoal is the
position of the destination that is to be reached. Path σ is a continuous function [0, 1] �→ χ
and it has bounded variation. Moreover, σ is free of collision when σ(τ) ∈ χ f ree, τ ∈ [0, 1].

Ship route planning problem: It is designed to safely find a proper or optimal σ
guiding ship from the departure position to the destination.

Additionally, the three sub-problems are defined as follows:
Sub-problem 1. Considering a triplet

{
pinit, pgoal , χobstacle

}
, generate a feasible route if

there is one. Otherwise, report failure.
For ship navigation, the shorter route means less cost. Therefore, this study also

considers route optimization in the process of planning. Let Σ be the set of all routes and
Σ f easible be the set of all feasible routes.

Sub-problem 2. Considering a triplet
{

pinit, pgoal , χobstacle

}
, define a cost function c

and find a feasible route σf , such as c(σf ) = min(c(σ) : σ ∈ Σ f easible). Report failure if
there is no σf .

Sub-problem 3. Considering a triplet
{

pinit, pgoal , χobstacle

}
, define a cost function c

and find a feasible route σk, such as c(σk) = min(c(σ) : σ ∈ Σ f easible), and find out if it is
feasible to follow σk, considering ship motion characteristics. Report failure if there is no σk.

2.2. ENC Vector Data

To address the above problems, electronic nautical chart (ENC) vector data are em-
ployed to generate configuration space χ without rasterization. This type of chart could be
used in the marine field, such as in navigation, fishing, etc.
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According to the International Hydrographic Organization (IHO) S57 standard [32],
ENC data consist of a certain amount of features that play a vital role in navigation.
However, in this study, sound/depth in χ f ree, land, reef or other static obstacles instead of all
the features in ENC are employed in χobs to generate a planning route. In short, this study
only considers the effects of depth and obstacle positions on the route planning problem.

Before implementing the ENC vector data, it is important to clarify the types of data.
In ENC, an object is defined as an identifiable set of information. An object may have
attributes and may be related to other objects. Feature objects have descriptive attributes
but no geometry (i.e., information about the shape and position of a real-world entity).
Spatial objects may have descriptive attributes and must have geometry. To be specific,
there are three elements that represent geometry: point, line, and area.

In the proposed algorithm, ENC data are employed to form the configuration space χ.
Obstacle areas make up χobs while depth points compose χ f ree.

2.3. Ship Motion Characteristics

The motion characteristics of a vessel refer to the physical phenomena that describe
the vessel’s movements and behaviors on a waterway. These characteristics are influenced
by several factors, including the physical characteristics of a vessel, such as its size, shape,
weight, speed, and the hydrodynamic conditions of the water through which it moves.
In particular, the motion of a vessel can be characterized by its heave (vertical motion),
pitch (rotational motion around the transverse axis), roll (rotational motion around the
longitudinal axis), and yaw (rotational motion around the vertical axis). These motions are
indicative of the vessel’s dynamic behavior and are influenced by external forces, such as
wind, waves, and currents. A thorough understanding of the motion characteristics of a
vessel is essential for ensuring the safe and efficient operation of a marine craft.

For route planning control problems, the turning constraint are usually taken into
consideration. To be specific, when a ship alters its course, its trajectory is an arc. While
most routes designed by researchers are presented as broken lines, straight line segments
are connected in sequence. It is possible that ships ground in waypoint areas. Therefore,
we have to take ship motion into account for safety purposes.

In order to simulate the ship motions, the MMG model is applied in this paper and
Table 1 gives explanation of the variables used in Equations (1) and (2).⎧⎪⎪⎨⎪⎪⎩

(m + mx)
.
u − (m + my)vr = XH + XP + XR + Xwind + Xwave

(m + my)
.
v + (m + mx)ur = YH + YP + YR + Ywind + Ywave

(Ixx + Jxx)
.
p = KH + KP + KR + Kwind + Kwave

(Izz + Jzz)
.
r = NH + NP + NR + Nwind + Nwave

, (1)

⎧⎪⎪⎨⎪⎪⎩
.
x = u cos(ψ)− v cos(ϕ) sin(ψ)
.
y = u sin(ψ) + v cos(ϕ) cos(ψ)
.
ϕ = p
.
ψ = r cos(ϕ)

, (2)

Table 1. Explanation of variables.

Variables Explanation Variables Explanation

m mass Ixx Roll moment of inertia
mx, my additional mass Izz yaw moment

x, y position Jxx additional roll moment
ψ, ϕ course and roll angle Jzz additional yaw moment

X, Y, K, N with H, P, R, wind, wave subscripts Forces and moments

Reference [33] gives more information about this model.
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2.4. Delaunay Triangulation

The Delaunay triangulation is a geometric algorithm that constructs a triangulation
using a set of points in a plane, where each triangle in the triangulation satisfies the
Delaunay criterion; no point in the point set is inside the circumcircle of any triangle.
This feature ensures that the triangulation avoids forming skinny triangles, which is
advantageous for various applications, such as mesh generation and image processing.

In practice, there are many situations that we need in order to design routes using
discrete points. The Delaunay triangulation (DT) method is such a method that can be used
to solve the above problem. In electronic nautical charts, the depth points are unordered
and discrete. The DT method could reconstruct them as the initial map for route planning.

The principle of DT is simple: for a given set P, any two points could construct an
edge of DT map when there is a circle above two points and there is no other point in the
circle [34].

It should be made clear that different ways of generating maps largely affect the
planed route. In this paper, we only discuss the effectiveness of the proposed algorithm.

3. Route Planning Algorithm

In this section, we propose the VK-RRT* algorithm for the route planning problem
of USV. Based on traditional RRT and considering motion constraints, the VK-RRT*
could be applied using data from the ECDIS platform, which has great potential for
commercial realisation.

3.1. Rapid-Exploring Random Tree

Rapid-exploring random tree (RRT) is a conventional algorithm in the field of path
planning. It gives feasible solutions faster than other methods, such as A*, genetic algorithm
(GA). Therefore, in this study, we improve RRT to VK-RRT* to produce a planned route
quickly. In fact, RRT is a data structure. It will be sampled in the configuration space χ, and
connect adjacent points constructing tree Γ.

Figure 1 shows the working principles of the RRT algorithm. The function sample()
will randomly find a point from space χ; nearest() is responsible for selecting the nearest
node from Xrand in tree Γ; steer() gives the Xnew according to Xrand and Xnearest.

Figure 1. Flow chart of rapid-exploring random tree.
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Theoretically, the RRT algorithm could find feasible paths connecting departure points
and destinations if time cost is not considered, which means that the algorithm reaches
100%. However, the RRT algorithm cannot be used in practical applications because the
given path is in the form of a polyline, making it impossible to track ships.

Therefore, the RRT* algorithm has been proposed by previous researchers to improve
it. Figure 2 describes the RRT* algorithm. The difference between RRT and RRT* is that
there is a rewire function in the RRT* algorithm. It optimizes the relationships of nodes in
Γ to reduce the account of nodes.

Figure 2. Flow chart of RRT* algorithm. (a) Outlines of RRT* algorithm, (b) Rewire function of
RRT* algorithm.

3.2. VK-RRT* Algorithm

Taking ship motion characteristics into account, we propose the VK-RRT* algorithm.
Before introducing the algorithm, the usage of the Delaunay triangulation is illustrated.

The depth points Ei ∈ E and obstacle positions are extracted from the electronic nautical
chart. There are five attributes of Ei: (ϕ,λ) represents the latitude and longitude; d denotes
the depth value; η is minimum depth of around Ei; ε means the minimum distance from
adjacent objects. Similarly, to enlarge the waypoints data set, we also created Ci ∈ C to
represent the nodes in the center of every triangular (Figures 3 and 4).

By obtaining data sets of depth points and obstacles, Delaunay triangulation is applied
for generating the DT map, which is represented as χ. It is noted that there are two areas
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in space χ: free space χ f ree and obstacle space χobs. E and C make up the configuration
space χ f ree.

Figure 3. Sketch map of Delaunay triangle constructing E.

Figure 4. Methods to generate the new node qnew. (a) Method when the nearest node is in the
triangular; (b) Method when the nearest node is on the vertex of a triangular.

Figure 5 describes the working principle of VK-RRT*. Except for the data process, the
rewire module is different from traditional RRT*, as it considers ship motion characteristics.

Figure 5. Flow chart of VK-RRT*.
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As shown in Figure 6, the dark blue line is the route given by RRT*. However, it is
impossible for surface ships to track the polyline as the large inertia.

Figure 6. Route optimization considering ship motions.

Moreover, ships may encounter dangers in waypoint areas, as such in areas that have
not been checked for safety in the route planning stage.

In fact, when the ship changes its course, the trajectory will be an arc line. Therefore,
arc line segments in waypoint areas are designed. Navigating along the arc line, the ship
only needs to give a fixed rudder angle to achieve tracking.

For example, Figure 7 shows the sketch map. The route qnearq → qnear → qnearest is
not suitable for a ship to track. Instead, we used qnearq → ρ f → ρl → qi to replace it. The
new route is determined by using Equations (1) and (2).

Figure 7. Rewire function of VK-RRT*.

Specifically, the main task is to determine the distance of ρ f → qnear : ν. We suggest
the following equations

ν =
R

tan((DN(qnearp → qnear)− DN(qnear → qi))/2)
, (3)

where DN is the function used to measure the direction of a vector from the north; R is the
turning radius determined by Equations (1) and (2).

Then, we can obtain the latitude and longitude of ρ f and ρl .⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Pρ f (x, y) = qnearp(x, y) + (1 − ν

‖qnear(x,y)−qnearp(x,y)‖ )

·(qnear(x, y)− qnearp(x, y))
Pρl (x, y) = qnear(x, y) + (1 − ν

‖qnear(x,y)−qi(x,y)‖ )
·(qi(x, y)− qnear(x, y))

, (4)
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In detail, VK-RRT* could plan the route that satisfies the requirement of ship mo-
tion constraints.

4. Simulation and Analysis

In order to verify the effectiveness and advantages of VK-RRT*, we carried out two
simulations. Moreover, in our tests, we used the ships described in [33]. In the first
scenario, we aimed to examine the ability of the proposed algorithm to plan route passing
through narrow channels. In the second scenario, we tried to examine it in an open
area. In each experiment, we compared the proposed algorithm with the RRT and RRT*
algorithms to present the advantages of our algorithm. Both experiments have been
conducted on ECDIS platform, which means that the frame we propose could be applied
after professional packaging.

Moreover, in the process of choosing new points, we could add goal orientation to
accelerate the search. This kind of strategy has been extensively studied in [35–40].

qrand

{
qgoal , ω > ωd

x ∈ χ f ree, ω ≤ ωd
, (5)

where ω is a random number, ωd is set parameter of the adjustment.

4.1. Simulation in Islands

In this simulation, we use the electronic nautical chart numbered “US5M16IM.000”,
shown in Figure 8.

Figure 8. Electronic nautical chart numbered “US5M16IM.000”.

First, the positions of the departure point and destination are (89.909◦ W, 45.924◦ N)
and (83.853◦ W, 46.924◦ N) separately. Moreover, we assume that the ship will steer in a
rudder angle of δ = 15◦ altering its course. In this experiment, the ability to search the
route passing through narrow channels is mostly validated.

The results are illustrated in Figures 9–13, in which the red line is the planned route
given by algorithms with different strategies; the blue lines construct the rapid-explore
random tree, and the black lines represent the search process.

Figure 9. Planned routes without goal orientation in islands areas: (a) Given by the RRT algorithm;
(b) Given by the RRT* algorithm; (c) Given by the proposed algorithm.
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Figure 10. Planned routes with goal orientation in island areas: (a) Given by the RRT algorithm;
(b) Given by the RRT* algorithm; (c) Given by the proposed algorithm.

Figure 11. Overview of the planned route designed by the proposed algorithm on electric nautical chart.

Figure 12. Electronic nautical chart of Dalian port.
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Figure 13. Planned routes without goal orientation in the port: (a) Given by the RRT algorithm;
(b) Given by the RRT* algorithm; (c) Given by the proposed algorithm.

Specifically, in Figure 9a, the RRT algorithm gives the planning route in 170 s. It
sampled the entire area and constructed bigger trees compared to other algorithms. The
length of the route is 22.62 nautical miles, with 84 waypoints. Then, in Figure 9b, the RRT*
spends 167.24 s to plan the route. Because of its advance, the length of the route is 19.65,
which is shorter than that given by the RRT algorithm. The result of the proposed algorithm
is shown in Figure 9c. The time cost has been reduced significantly and it only took 129.41 s
to provide the planned route. The length of that route is also the shortest: 18.72 nautical
miles. We can also observe that in the proposed algorithm, most of nodes searched were
lump together, which improves search effectiveness.

Figure 10 illustrates the results of comparisons of the RRT, RRT*, and proposed algo-
rithms considering goal orientations. The time consumed using the above three algorithms
is reduced significantly compared to the algorithms without goal orientation. Their time
costs are 41.47 s, 161.72 s, and 39.81 s, respectively. The lengths of the routes are 19.55 nm,
18.91 nm, and 18.71 nm.

Moreover, we should also focus on the characteristics of the waypoint areas. In such
places, ships will alter their courses, which could not be tracked by the route planned by
the RRT and RRT* algorithms, as both of them create a polyline-based route.

Figure 11 shows the planned route on an electronic nautical chart. It is noticeable that
the planned route consists of straight-line segments and arc-line segments. In waypoint
areas, the route guides ship navigation from a straight line segment to another line segment
in an arc-shaped trajectory. This kind of route takes ship motion characteristics into account.
The arc line segments are checked for safety in the search process to could ensure safety.

To be specific, in navigation practice, the planned route was not considered by route
optimization in waypoints areas. In previous studies, many researchers have used different
kinds of technologies to smooth out the route, making it smoother to track. However,
for ship control engineers, it is difficult to design a controller that could track curves
well, especially considering the large inertia of ships. Instead, our strategy could let ship
navigate at a fix rudder angle to track arc lines as they are designed in reference to ship
turning trajectories.

4.2. Simulation in the Port

Here, we provide another simulation in the port area to further validate the feasibility
of the proposed algorithm. The area is shown as Figure 12: Dalian Port, China.

In this scenario, the departure point and destination are set as (121.727◦ E, 38.964◦ N)
and (121.944◦ E, 39.02◦ N), respectively. The other parameters of the simulation are the
same as those of the first simulation.

Figures 13 and 14 demonstrate the search process of the RRT, RRT*, and proposed
algorithms with or without goal orientation strategy. Without considering goal orientation
(shown in Figure 12), the time cost of RRT, RRT*, and proposed algorithms is 97.08 s, 87.59 s,
and 34.01 s, respectively. It is clear that the proposed algorithm has advantages in the time
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cost index. Moreover, the lengths of the routes of these algorithms are 32.79 nm, 27.45 nm,
and 17.57 nm, respectively.

Figure 14. Planned routes with goal orientation in island areas: (a) Given by the RRT algorithm;
(b) Given by the RRT* algorithm; (c) Given by the proposed algorithm.

Figure 14 illustrates the planned route given by three algorithms with goal orientation.
Their time costs are 26.02 s, 19.94 s, and 9.49 s, respectively. The lengths of the routes given
by the RRT, RRT*, and the proposed algorithms are 22.98 nm, 17.73 nm, and 17.22 nm. For
the proposed algorithm, the goal orientation strategy only affects the time cost but has little
impact on the length of the route.

Similarly, we also show the planned route on the electronic nautical chart for the
convenience of analyzing waypoint areas.

We can see that in waypoint areas in Figure 15, the planned route is optimized to adapt
ship motion characteristics.

Figure 15. Overview of the planned route designed by the proposed algorithm on electric nautical charts.

In this section, we carry out two simulations validating the feasibility and advantages
of the proposed algorithm. The result shows that the proposed algorithm meets the
requirements of navigation and ensures safety.
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5. Conclusions

This study introduces VK-RRT*, a novel algorithm for addressing SPR problems using
ENC data. The algorithm uses Delaunay triangulation to organize ENC vector data, and
searches for routes within it. Two cases are examined to demonstrate the effectiveness of
VK-RRT*.

However, the study has some limitations that need to be addressed in the future.
Firstly, this research only considers depth and land/reef areas; other traffic schemes, such
as traffic separation, should also be considered. Secondly, local path planning, or collision
avoidance, is not considered, which is also an important part for intelligent ships.

Moving forward, future research should focus on addressing these limitations to
improve the effectiveness of the algorithm in practical applications. In addition, it is worth
developing a route planning model that could be applied on the ECDIS platform. Finally,
there should be a focus on local path planning considering dynamic vessels or obstacles if
a better global route is to be obtained and smart navigation is to be achieved.
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Abstract: A proper filtering method for jump Markov system (JMS) is an effective approach for
tracking a maneuvering target. Since the coexisting of heavy-tailed measurement noises (HTMNs) and
one-step random measurement delay (OSRMD) in the complex scenarios of the surface maneuvering
target tracking, the effectiveness of typical interacting multiple model (IMM) techniques may decline
severely. To solve the state estimation problem in JMSs with HTMN and OSRMD simultaneously, this
article designs a novel robust IMM filter utilizing the variational Bayesian (VB) inference framework.
This algorithm models the HTMNs as student’s t-distribuitons, and presents a random Bernoulli
variable to describe the OSRMD in JMSs. By transforming measurement likelihood function form
from weighted summation to exponential product, this paper constructs hierarchical Gaussian state
space models. Then, the state vectors, random Bernoulli vairable, and model probability are inferred
jointly according to VB inference. The surface maneuvering target tracking simulation example result
indicates that the presented IMM filter achieves superior target state estimation accuracy among
existing IMM filters.

Keywords: variational Bayesian; surface maneuvering target tracking; random measurement delay;
heavy-tailed measurement noise; interacting multiple model

1. Introduction

State estimation is an important topic in maneuvering target tracking of traditional ships
and surface autonomous ships. As a minimum mean square error estimator, the Kalman
filter (KF) provides the optimal state estimation method for a linear Gaussian system (The
abbreviations are summarized in Table 1). However, the system nonlinearity and system model
uncertainty in jump Markov systems (JMSs) may lead to the KF’s performances degrading
dramatically. Additionally, the KF assumes that the measurement noises obey Gaussian
distributions and that all measurements need to arrive in time. Both aspects may affect the
filtering accuracy significantly when these assumptions are not satisfied. Thus, the extension
for the KF under various assumptions has attracted considerable attention on account of its
widely applied in engineering, for example, targets tracking, signal processing, integrated
navigation, fault diagnosis, ect. [1–6].

The surface maneuvering target tracking is a problem of state estimation in JMSs. Since
the state estimation in JMSs is well-known computational intractability and nondeterminis-
tic polynomial difficult, it is hard to find an optimal solution [7]. In the past few decades,
some sub-optimal solutions were presented, for example, the interacting multiple model
(IMM) approach [8], pseudo-Bayesian technique [9], particle filter [10], etc. Among these
methods, the IMM approach is one of the most efficient since it reasonably balances the
estimation performances and the computation complexity. In the process of IMM technique
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development, many researchers contributed remarkable achievements. The stability and
performances of the IMM filter are analyzed by [11,12]. A series of executable pseudocode is
provided in [13]. IMM algorithms are widely used in various practical engineering [14–16].

The typical IMM filters parallelly perform a bank of KFs to estimate mode-conditional
system state and probability at each cycle. The weighted sum of sub-filter outputs obtains
the final state estimates [17]. An effective method to develop the performances of sub-filters
(KFs) is the variational Bayesian (VB) inference, which implements approximations for the
conjugate exponential model with acceptable computational costs [18]. Based on the com-
bination of VB theory and the KF, the development of the KF has made significant progress
and remarkable achievements [19–22]. Extended to IMM filters for the state estimation in
JMSs, some VB-based IMM methods were designed in past few years. Ref. [23] presented an
IMM filter to adaptively estimate the unknown process and measurement noise covariance
matrices in JMS. The authors selected the conjugate prior distribution of noise covariance
matrix as the inverse-Wishart distribution, the conditional system state vectors and the
noise parameters can be estimated simultaneously by VB inference. This method achieved
remarkable estimation accuracy when the noise covariances were unknown. However, this
technique requires linear Gaussian systems, and the measurements need to be arrived in
time, which is usually not satisfied in actual tracking scenarios affected by measurement
outliers and communication channel latency.

Table 1. Definitions of notations in this paper.

Notation Definition Notation Definition

VB Variational Bayesian HGSSM Hierarchical Gaussian state
space model

KF Kalman filter OSRMD One-step random
measurement delay

PDF Probability density function N(·; μ̄, P) Gaussian distribution,
JMS Jump Markov system μ̄-mean vector, P-scale matrix
STD student’s t-distribution St(·; μ̄, P, v) Student’s t-distribution,
RBV Random Bernoulli variable μ̄-mean vector, P-scale matrix,
KLD Kullback-Leibler divergence v-degree of freedom parameter
E[·] Expectation computation G(·; a, b) Gamma distribution,
tr(·) Trace operation a-shape parameter,

HTMN Heavy-tailed measurement
noise b-rate parameter

Aiming to solve state estimation problems in JMSs with measurement outliers, Ref. [24]
modeled the measurement noises as students’ t-distributions (STDs), and estimated the
system states and mode probabilities jointly by VB inference. Compared with the typical
IMM algorithm, the estimation performance was significantly developed. Ref. [25] de-
veloped the IMM filter in [24] by reasonably selecting the conjugate prior distributions of
covariances and degree of freedom parameters as inverse Wishart and Gamma distribu-
tions, respectively. The state vectors and the degree of freedom parameters were inferred
simultaneously by VB method. This algorithm improved the estimation accuracy and can
be utilized for nonlinear JMSs. The methods mentioned in [24,25] show superior estimation
accuracy in the scenarios of state estimation in JMSs containing heavy-tailed measurement
noises (HTMNs). However, the performances of these approaches may lose efficacy when
the random measurement delay happens since they assume the measurements can be
obtained in real-time. To deal with the one-step random measurement delay (OSRMD),
Ref. [26] designed a particle filter by defining two variables to extend the original system
state vector. This filter can effectively handle the systems with delayed measurements. Al-
though this algorithm provided a solution to measurement delay and achieved satisfactory
estimation accuracy, the particle filters have problems of high computational burden and
curse of dimensionality. Ref. [27] proposed a Gaussian approximate filter with OSRMD,
and measurement noise vectors are inferred by the Bayesian rules. Ref. [28] developed
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the KF to deal with the OSRMD in nonlinear systems. In this method, the authors utilized
a random Bernoulli variable (RBV) to describe the random measurement delay, and the
system states were inferred by the VB technique. However, these methods failed to deal
with the HTMN and system model jumping problems in JMSs. In complex JMSs engineer-
ing applications, the HTMNs and random measurement delay often exist simultaneously.
It is necessary to propose a more general IMM filter for HTMNs coexist with random
measurement delay.

This article designs a novel robust IMM filter to deal with the filtering problems in JMSs
with HTMN and OSRMD. The HTMN and the OSRMD in JMSs are reasonably modeled
in the designed filter. By transforming the measurement likelihood function to a new
form, this algorithm constructed a new hierarchical Gaussian state space model (HGSSM).
According to the VB inference, the state vectors, model probability, RBVs, and distribution
parameters are inferred simultaneously. Target tracking experiment validates that the
presented approach has better performance than existing IMM approaches.

The main contribution of our work is summarized as follows:

• The one-step predictive probability density function (PDF) and HTMN are assumed
to obey Gaussian and STDs, respectively. This paper presents an RBV to characterize
the OSRMD in JMSs. Aiming to introduce the VB method directly, this article converts
measurement likelihood function form from weighted summation to exponential
product, and constructs the HGSSM.

• To address the coupled state vectors and the noise covariance matrices, a novel IMM
filter is designed by combining the VB theory with IMM method. In measurement up-
date part, the mode conditional posterior PDFs are approximated recursively. The state
vectors, RBVs, model probabilities, and unknown parameters are estimated through
VB technique. Then, the final estimates are obtained by the weighted sum of sub-filters.

• Four parts of the surface target tracking simulation indicate that the presented method
outperforms existing IMM filters on estimation accuracy. The presented algorithm pro-
vides a robust solution to the filtering problem in the scenarios of HTMNs coexisting
with OSRMD.

The rest parts of this paper can be arranged as the following sections. Section 2
provides the problem statement. We construct a new HGSSM in Section 3. Furtherly, we
summarize the derivations of our designed IMM method in Section 4. The performances of
exsiting IMM algorithms and the proposed are verified in Section 5. Finally, the conclusions
of this paper is in Section 6.

2. Problem Statement

Considering a state-space model of nonlinear jump Markov system:

xs = fs−1(xs−1, Ms−1) + gs−1, s ≥ 1 (1)

zs = hs(xs, Ms) + εs, s ≥ 1 (2)

ys =

{
(1 − σs)zs + σszs−1, s > 1
zs, s = 1

(3)

where s is time index, xs ∈ R
n is the system state vector, zs ∈ R

m and ys ∈ R
m denote the

ideal and real measurement vectors, m and n are their dimension numbers. fs−1(·) and
hs(·) refer to the process function and measurement function. We denote fs−1(xs−1, Ms−1)
as f i

s−1(xs−1) and hs(xs, Ms) as hi
s(xs) conditioned on Ms = i, respectively. The system

mode Ms indicates the state of the Markov chains. It selects a value from a limited set
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{1, 2, 3, . . . , k} according to the transition probability matrix T =
[
λji
]

k×k, which satisfies
the equations as follows:

λji
Δ
= P{Ms = i|Ms = j} (4)

k
Σ

i=1
λji = 1 (5)

gs−1 represents the Gaussian process noise vector with nominal covariance matrix Qs, while
εs refers to the HTMN vector caused by measurement outliers with nominal covariance
matrix Rs. ys ∈ R

m denotes the real random delayed measurement vector. The RBV
σs ∈ {0, 1} with corresponding probability can be defined as follows:

p(σs = 1) = ϕs (6)

p(σs = 0) = 1 − ϕs (7)

where ϕs ∈ (0, 1) denotes the probability of OSRMD. Note that random variables xs, σs,
gs−1, and rs are independent of each others.

Utilizing Equation (3) and Equations (6) and (7), the measurement likelihood PDF is
as follows:

p(ys|xs, xs−1 , Ms = i) =
1

∑
σs=0

p(ys, σs|xs, xs−1, Ms = i )

= p(σs = 1)p(ys|xs, xs−1, σs = 1 , Ms = i) + p(σs = 0)p(ys|xs, xs−1, σs = 0 , Ms = i)
= ϕs p(ys|xs, xs−1 , σs = 1, Ms = i) + (1 − ϕs)p(ys|xs, xs−1, σs = 0, Ms = i ) (8)

Utilizing Equations (2) and (3) yields

p(ys|xs, xs−1 , σs = 1, Ms = i) = pεs−1 [ys − hs−1(xs−1)] (9)

p(ys|xs, xs−1 , σs = 0, Ms = i) = pεs [ys − hs(xs)] (10)

In Equation (8), replaced by Equations (9) and (10), we can obtain:

p(ys|xs, xs−1 , Ms = i) = ϕs pεs−1 [ys − hs−1(xs−1)] + (1 − ϕs)pεs [ys − hs(xs)] (11)

However, the measurement likelihood PDF in Equation (11), which is formulated by
a weighted sum form, has neither conjugate property nor closed property. Therefore, it
is not easy to introduce the VB technique directly. Aiming at this difficulty, in the next
section, the weighted sum form of measurement likelihood PDF is converted to exponential
multiplication, which can be further utilized to design a novel adaptive estimation method
for JMSs.

3. Construction of the HGSSM

3.1. Measurement Likelihood PDF Convertion

The relationship between RBV σs with fixed delay probability can be seen in
Equations (6) and (7). The probability mass function p(σs|ϕs ) is defined as the following formula:

p(σs) = (1 − ϕs)
(1−σs)ϕs

σs (12)
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according to Equations (11) and (12), reformulating Equation (8) by:

p(ys|xs, xs−1, Ms = i ) =
1

∑
σs=0

p(ys, σs|xs, xs−1, Ms = i )

=
1

∑
σs=0

(ϕs)
σs pεs−1(ys − hs−1(xs−1))

σs(1 − ϕs)
(1−σs)pεs(ys − hs(xs))

(1−σs)

=
1

∑
σs=0

p(σs)pεs−1(ys − hs(xs))
σs pεs(ys)

(1−σs) (13)

then, transforming the conditional measurement likelihood PDF to exponential product form:

p(ys|xs, xs−1, σs ) =
[
pεs−1(ys − hs−1(xs−1))

]σs [pεs(ys − hs(xs))]
(1−σs) (14)

Equation (14) can be also denoted by the formula as follows:

p(ys|ηs, σs ) =
[
pεs−1(ys − hs−1(xs−1))

]σs [pεs(ys − hs(xs))]
(1−σs) (15)

where the extended state vector ηs =
[

xT
s xT

s−1
]T .

3.2. Prior PDFs Selection

First of all, the one-step predictive PDF of the extended system state ηs is formulated by

p(ηs|y1:s−1 ) = N
(

ηs; η̂s|s−1 , Pηη
s|s−1

)
(16)

where η̂s|s−1 represents the predicted mean vector, Pηη
s|s−1 refers to the predicted covariance

matrix, and they are expressed by:

η̂s|s−1 =
[

x̂T
s|s−1 x̂T

s−1|s−1

]T
(17)

Pηη
s|s−1 =

⎡⎣ Ps|s−1 Ps−1,s|s−1(
Ps−1,s|s−1

)T
Ps−1|s−1

⎤⎦ (18)

where η̂s|s−1 , Ps|s−1 , and Ps−1,s|s−1 can be calculated by the standard Gaussian approximate
filter [29], i.e.,

x̂s|s−1 =
∫

f i
s−1(xs−1)N

(
xs−1; x̂s−1|s−1 , Ps−1|s−1

)
dxs−1 (19)

Ps|s−1 =
∫

f i
s−1(xs−1) f i(T)

s−1 (xs−1)N
(

xs−1; x̂s−1|s−1 , Ps−1|s−1

)
dxs−1 (20)

Ps−1,s|s−1 =
∫

xs−1 f i(T)
s−1 (xs−1)N

(
xs−1; x̂s−1|s−1 , Ps−1|s−1

)
dxs−1 − x̂s−1|s−1 x̂T

s|s−1 (21)

Secondly, in the aspects of processing the measurement noises, since the STD has
heavier tails compared with Gaussian distribution and is more robust to outlier [30–32],
STD is selected to model HTMN, i.e.,

p(εs−1) = St(εs−1; 0, Rs−1, τs−1) (22)

p(εs) = St(εs; 0, Rs, τs) (23)
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where the p(εs−1) and p(εs) represent the PDFs of previous and current measurement noise
vector. Based on the properties of the STDs, PDFs p(εs−1) and p(εs) are formulated in
hierarchical form as follows:

p(εs−1)
∫

N(εs−1; 0, Rs−1/vs−1)p(vs−1)dvs−1 (24)

p(vs−1) = G
(

vs−1;
as−1

2
,

as−1

2

)
(25)

p(εs)
∫

N(εs; 0, Rs/vs)p(vs)dvs (26)

p(vs) = G
(

vs;
as

2
,

as

2

)
(27)

Utilizing Equations (15), (24)–(27), the conditional likelihood PDF p(ys|xs, xs−1, vs,
vs−1, σs) can be obtained by:

p(ys|xs, xs−1, vs, vs−1, σs ) = [N(ys; hs(xs), Rs/vs)]
(1−σs)[N(ys−1; hs−1(xs−1), Rs−1/vs−1)]

σs (28)

Finally, according to Equation (28), the measurement vector ys depends on the ex-
tended state vector ηs, auxiliary variables vs and vs−1, and the RBV σs, the joint prior PDFs
p(ηs, vs, vs−1, σs|y1:s−1 ) can be obtained as follows:⎧⎪⎨⎪⎩

p(Ξ|y1:s−1 ) = p(ηs|y1:s−1 )p(vs)p(vs−1)p(σs)

= N
(

ηs; η̂s|s−1 , Pηη
s|s−1

)
G
(
vs; as

2 , as
2
)
G
(
vs−1; as−1

2 , as−1
2
)
(1 − ϕs)

(1−σs)ϕs
σs

Ξ Δ
= {ηs, vs, vs−1, σs}

(29)

Then, the HGSSM consists Equations (15), (17)–(21) and (24)–(29) is constructed, based
on which a novel adaptive estimation algorithm will be designed to infer the state vector ηs
and BRV σs in JMSs with OSRMD and HTMN.

4. Design of the Proposed Filter

Based on the IMM filtering framework, the designed filter as an iterative algorithm
mainly consists of four recursive steps, i.e., interacting/mixing, mode-conditioned filtering,
mode probability updating, and combination.

Step 1: Interacting/Mixing
To interact the state vector and noise parameters, the mixing probability needs to be

computed first utilizing the mode transition probability λji as follows:

μ
ji
s−1 =

1
ēi

pjiμ
j
s−1 (30)

where the mode transition probability has been defined in Equations (4) and (5), and the
normalized constant ēi is defined by Equation (31):

ēi =
k

∑
j=1

λjiμ
j
s−1 (31)

where μ
j
s−1 represents the mode probability, and the mode index j, i ∈ {1, 2, 3, . . . , k}.

Suppose that the posterior PDF at j-th mode can be obtained by

p(ηs−1|y1:s−1, Ms−1 = j ) = N
(

ηs−1; η̂
j
s−1|s−1 , Pj

s−1|s−1

)
(32)
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Utilizing the total probability thorem and the Bayes rules to calculate the mixing PDFs
p(ηs|y1:s−1, Ms = i ), i.e.,

p(ηs|y1:s−1, Ms = i ) =
k

∑
j=1

p(ηs|y1:s−1, Ms−1 = j )p(Ms−1 = j|Ms = i, y1:s−1 )

=
k

∑
j=1

μ
ji
s−1N

(
ηs−1; η̂

j
s−1, Pj

s−1

)
(33)

Using the Kullback-Leibler average fusion method [33], the summation term in
Equation (33) is approximated as follows:

p(ηs−1|y1:s−1, Ms = i ) ≈ N
(

ηs−1; η̂0i
s−1|s−1 , P0i

s−1|s−1

)
(34)

where the mixing mean vector and covariance matrix of the distribution of ηs−1 can be
obtained as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η0i

s−1|s−1 =
k
∑

j=1
μ

ji
s−1|s−1 η

j
s−1|s−1

Pηη,0i
s−1|s−1 =

k
∑

j=1
μ

ji
s−1|s−1

(
Pηη,j

s−1|s−1 +
(

x̂j
s−1|s−1 − x̂0i

s−1|s−1

)(
x̂j

s−1|s−1 − x̂0i
s−1|s−1

)T
) (35)

Step 2: Mode-Conditioned Filtering
The posterior PDFs at the i-th mode is formulated by:

p(ηs, vs, vs−1, σs|y1:s, Ms = i ) =
p(ηs, vs, vs−1, σs|ys, Ms = i )

p(ys|y1:s−1, Ms = i )
(36)

Since the presence of couplings between the state vectors and the noise covari-
ances, the analytic solution can not be obtained for the mode conditional posterior PDFs
p(ηs, vs, vs−1, σs|ys, Ms = i ). However, by using the VB inference, the approximate solu-
tion can be available. Based on the VB technique, the abovementioned posterior PDFs is
approximated as a multiplied factor form:

p(ηs, vs, vs−1, σs|y1:s, Ms = i ) ≈ q
(

ηi
s

)
q
(

vi
s

)
q
(

vi
s−1

)
q
(

σi
s

)
(37)

where q(·) is approximated posterior PDF of p(·). Using the VB technique to minimize the
kullback-Leibler divergence (KLD) between the actual and approximated posterior PDFs,
the optimal approximation PDFs can be obtained, i.e.,

q
(

ηi
s

)
q
(

vi
s

)
q
(

vi
s−1

)
q
(

σi
s

)
= arg min KLD

[
q
(

ηi
s

)
q
(

vi
s

)
q
(

vi
s−1

)
q
(

σi
s

)∥∥∥p
(

ηi
s, vi

s, vi
s−1, σi

s|y1:s, Ms = i
)]

(38)

where KLD(q(·)‖p(·) ) Δ
=
∫

q(·) ln q(y)
p(y)dy, Equation (38) is the optimal method for approxi-

mation:

ln q(φs) = E
Ξ−φs

s
[ln p(Ξ|y1:s )|Ms = i ] + cstφs (39)

where φs denotes one element from Ξ, Ξ−φs
s represents the rest elements after removing

element φs in Ξs. cstφs refers to the constant about φs.
The joint PDF p(Ξ, y1:s|Ms = i ) in Equation (39) can be formulated by
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p(Ξ, y1:s|Ms = i ) =p(y1:s−1|Ms = i )p(ys|ηs, vs, vs−1, σs, Ms = i)p(ηs|y1:s−1, Ms = i )
p(vs|Ms = i )p(vs−1|Ms = i )p(σs|Ms = i ) (40)

Substituting Equations (12) and (28), (29) into (40):

p(Ξ, y1:s|Ms = i ) =
[

N
(

yi
s; hi

s

(
xi

s

)
, Ri

s/vi
s

)](1−σi
s)[

N
(

yi
s−1; hi

s−1

(
xi

s−1

)
, Ri

s−1/vi
s−1

)](1−σi
s)

·N
(

ηi
s; η̂i

s|s−1 , Pηη,i
s|s−1

)
G
(

vi
s;

ai
s

2
,

ai
s

2

)
G

(
vi

s−1;
ai

s−1
2

,
ai

s−1
2

)(
1 − ϕi

s

)(1−σi
s)

·
(

ϕi
s

)σi
s
p(y1:s−1) (41)

Utilizing Equation (41), ln p(Ξ, y1:s|Ms = i ) is further derived:

ln p(Ξ, y1:s|Ms = i ) = 0.5
(

m
(

1 − σi
s

)
+ ai

s − 2
)

ln vi
s + 0.5

(
mσi

s + ai
s−1 − 2

)
ln vi

s−1

− 0.5
(

1 − σi
s

)
vi

s

(
yi

s − hi
s

(
xi

s

))T
Ri(−1)

s

(
yi

s − hi
s

(
xi

s

))
− 0.5σi

svi
s−1

(
yi

s − hi
s−1

(
xi

s−1

))T

· Ri(−1)
s−1

(
yi

s − hi
s−1

(
xi

s−1

))
− 0.5

(
ηi

s − η̂i
s|s−1

)T
Pηη(−1)

s|s−1

(
ηi

s − η̂i
s|s−1

)
+ σi

s ln ϕi
s

+
(

1 − σi
s

)
ln
(

1 − ϕi
s

)
− 0.5vi

s−1 − 0.5vi
s + cstη,v,σ (42)

The approximated PDFs togather with relevant expectations are obtained after N iterations:

q(N)
(

ηi
s

)
≈ N

(
ηi

s; η̂
(N)i
s|s , P(N)ηη,i

s|s
)

(43)

q(N)
(

vi
s

)
≈ G

(
vi

s; α
(N)i
s|s , β

(N)i
s|s
)

(44)

q(N)
(

vi
s−1

)
≈ G

(
vi

s−1; α
(N)i
s−1|s−1 , β

(N)i
s−1|s−1

)
(45)

E(N)
[
vi

s

]
=

α
(N)i
s

β
(N)i
s

(46)

E(N)
[
vi

s−1

]
=

α
(N)i
s−1

β
(N)i
s−1

(47)

E(N)
[
ln vi

s

]
= ψ

(
α
(N)i
s

)
− ln

(
β
(N)i
s

)
(48)

E(N)
[
ln vi

s−1

]
= ψ

(
α
(N)i
s−1

)
− ln

(
β
(N)i
s−1

)
(49)

E(N)
[
σi

s

]
=

Pr(N)
(
σi

s = 1
)

Pr(N)
(
σi

s = 1
)
+ Pr(N)

(
σi

s = 0
) (50)

E(N)
[
1 − σi

s

]
= 1 − E(N)

[
σi

s

]
(51)

where ψ(·) refers to digamma function, and the derivation details of Equations (43)–(51)
can be found in Appendix A.

Step 3: Mode Probability Updating
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In this step, the mode probability Pr{Ms = i|y1:s } can be updated by combining the
total probability equation with the Bayes rule, i.e.,

μi
s = Pr{Ms = i|y1:s } =

p(ys|Ms = i, y1:s−1 )Pr(Ms = i|y1:s−1 )
k
∑

j=1
p(ys|Ms = j, y1:s−1 )Pr(Ms = j|y1:s−1 )

=
μ̄i

s−1Γi
s

k
∑

j=1
μ̄i

s−1Γi
s

(52)

where

μ̄i
s−1 =

k

∑
j=1

λjiμ
j
s−1 (53)

Γi
s refers to the likelihood function, and the ln p(ys|y1:s−1, Ms = i ) is rewritten by

ln p(ys|y1:s−1, Ms = i ) = L(Λ) + KLD(Λ‖p(Ξ|y1:s, Ms = i ) ) (54)

In Equation (54), L(Λ) represents the evidence low bound of the function Λ(·). Uti-
lizing the VB technique, the term of KLD(·) can be minimized and approximated to zero,
therefore, we can obtain:

Γi
s � exp{L(Λ)} (55)

where

L(Λ) = ln
p(y1:s, ηs, vs, vs−1, σs|Ms = i )
p(ηs, vs, vs−1, σs|y1:s, Ms = i )

− ln p(y1:s−1|Ms = i ) (56)

and

p(ηs, vs, vs−1, σs|y1:s, Ms = i ) � q
(

ηi
s

)
q
(

vi
s

)
q
(

i
s−1

)
q
(

σi
s

)
(57)

After approximate operation, the L(Λ) can be newly derived:

L(Λ) =EΛ[ln p(y1:s, ηs, vs, vs−1, σs|Ms = i )]− EΛ

[
ln q
(

ηi
s

)
q
(

vi
s

)
q
(

vi
s−1

)
q
(

σi
s

)]
− ln p(y1:s−1|Ms = i ) (58)

where

p(y1:s, ηs, vs, vs−1, σs|Ms = i ) =p(ys|ηs, vs, vs−1, σs, Ms = i )p(σs|Ms = i)p(y1:s−1|Ms = i )
·p(ηs|y1:s−1, Ms = i )p(vs|Ms = i )p(vs−1|Ms = i ) (59)

and Equation (60) is obtained:

L(Λ) = EΩ[ln p(ys|ηs, vs, vs−1, σs, Ms = j )] + EΩ[ln p(ηs|y1:s−1, Ms = j )]
+ EΩ[ln p(vs|Ms = j )] + EΩ[ln p(vs−1|, Ms = j )] + EΩ[ln p(σs|Ms = j )]

− EΩ

[
ln q
(

η
j
s

)]
− EΩ

[
ln q
(

vj
s

)]
− EΩ

[
ln q
(

vj
s−1

)]
− EΩ

[
ln q
(

σ
j
s

)]
(60)

based on Equation (60), the likelihood function in Equation (55) can be calculated.
Step 4: Combination
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The estimated system states and covariances of sub-filters are combined in this step
and can be defined as follows:

x̂s|s =
k

∑
i=1

μi
s x̂i

s|s (61)

Ps|s =
k

∑
i=1

μi
s

(
Pi

s|s +
(

x̂i
s|s − x̂s|s

)(
x̂i

s|s − x̂s|s
)T
)

(62)

Based on the abovementioned derivations, the design of the proposed method consists of
the time update Equations (16)–(21) and the recursive measurement update Equations (43)–(51).
Executable pseudocode of the presented algorithm can be found in Algorithm 1.

Algorithm 1: One filtering iteration of the designed algorithm.

Input: f i
s(·), hi

s(·), ys, x̂i
s−1|s−1 , P̂i

s−1|s−1 , μ0, λji, n, m, Q, R, φs, N, δ.
Step 1: Interaction/Mixing Process

Mixing weight μ
ji
s−1 via Equation (30).

Mixing system state vector η̂0i
s−1|s−1 and covariance matrix P̂ηη,0i

s−1|s−1 via
Equation (35).

Step 2: Mode-conditioned Filtering Process

Time update:
Predict system state vector η̂i

s|s−1 and covariance matrix P̂ηη,i
s|s−1 via Equations (17)

and (18).
Measurement update:
Initial expectations by Equations (46)–(51).
for L = 0, 1, 2, · · · , N − 1 do

Updating q(L+1)(ηi
s
)

by Gaussian distribution in Equation (43).
Updating q(L+1)(vi

s
)

by Gamma distribution in Equation (44).

Updating A(L+1)i
s and B(L+1)i

s according to Equation (A16).
Calculating E(L+1)[vi

s
]

and E(L+1)[log vi
s
]

in Equations (46) and (48).
Updating q(L+1)(vi

s−1
)

by Gamma distribution in Equation (45).
Calculating E(L+1)[vi

s−1
]

and E(L+1)[log vi
s−1
]

in Equations (47) and (49).
Updating q(L+1)(σi

s
)

by Bernoulli distribution in Equations (A25) and (A26).
Calculating E(L+1)[σi

s
]

and E(L+1)[1 − σi
s
]

in Equations (50) and (51).

if

∥∥∥η̂
(L+1)
s|s −η̂

(L)
s|s
∥∥∥∥∥∥η̂

(L)
s|s
∥∥∥ ≤ δ, iteration stops.

Subfilter Outputs x̂i
s|s = x̂(N)i

s|s , P̂i
s|s = P̂(N)i

s|s .
Step 3: Mode Probability Update Process

Calculate μi
s via Equations (52)–(60).

Step 4: Combination Process

Calculate x̂s|s and P̂s|s via Equations (61) and (62).
Output: x̂s|s , P̂s|s .

5. Simulation Results of Maneuvering Target Tracking

To verify the estimation performances of the designed method, this paper utilizes mov-
ing target tracking simulation experiments. The target moves by following the coordinate
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turning (CT) and the constant velocity (CV) model alternately, where the dynamics of the
CV model can be described as:

xs =

⎡⎢⎢⎣
1 D 0 0
0 1 0 0
0 0 1 D
0 0 0 1

⎤⎥⎥⎦xs−1 + gs−1 (63)

where D represents sampling interval, the system state in CV model xs =
(

px, vx, py, vy
)

comprises the positions
(

px, py
)

and the velocities
(
vx, vy

)
. The nominal process noise

covariance matrix is provided as follows:

Q =

[
b1U2×2 02×2

02×2 b1U2×2

]
(64)

where the matrix

U2×2 =

[
D3

3
D2

2
D2

2 D

]
(65)

and the CT model can be described by:

xs =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
sin(�D)

�
0

cos(�D)− 1
�

0

0 cos(�D) 0 − sin(�D) 0

0
1 − cos(�D)

�
1

sin(�D)

�
0

0 sin(�D) 0 cos(�D) 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
xs−1 + gs−1, � �= 0 (66)

where the system state in CT model xs =
(

px, vx, py, vy, �
)

comprises positions
(

px, py
)
,

the velocities
(
vx, vy

)
, and the turning rate �. The nominal process noise covariance matrix

is in Equation (67)

Q =

⎡⎣ b1U2×2 02×2 0
02×2 b1U2×2 0
01×2 01×2 b2D

⎤⎦ (67)

where b1 and b2 represent the power spectral densities.
One sensor locates in

(
px0, py0

)
receives the noise ranges and bearing measurements

by the following formula [25]:

h(xs) =

[ √(
ys − py0

)2
+ (xs − px0)

2

arctan
((

ys − py0
)
/(xs − px0)

) ] (68)

According to [20,34], the HTMNs are generated by

εs ∼
{

N(0, R) w.p. 0.9
N(0, 100R) w.p. 0.1

(69)

where w.p. denotes “with probabilities of”, the nominal covariance matrices of the measure-
ment noises are assumed to be R = diag

(
(10 m)2, (0.1◦)2

)
. The meaning of Equation (69)

is that the measurement noise mostly obeys Gaussian distributions in a probability of 0.9,
and follows Gaussian distributions with severely large covariances in a probability of 0.1.

The simulation time is from 0s to 1000 s. In detail, the moving target switches dynamic
models alternately between the CT model and the CV model, i.e., the target executes the
CV model with coordinate turn −5◦/s in 0–200 s, 401–600 s and 801–1000 s, while moves by
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the CT model in 201–400 s and 601–800 s. The sensor is positioned at (0 m, 0 m). Initialize
the state vector x0 = (10,000 m, 20 m/s, 10,000 m, 20 m/s, −5◦)/s and the covariance matrix
P0 = diag(100 m2, 50 m2/s2, 100 m2, 50 m2/s2, 100 m rad2/s2).

Four IMM approaches, containing the IMM cubature KF (IMM-CKF) [8], the robust
STD-based IMM unscented KF (IMM-RSTUKF) [25], the Gaussian approximate filter with
OSRMD [27] in the IMM framework (IMM-DGAF), and the designed IMM filter are com-
pared simultaneously. All these algorithms are implemented with MATLAB 2020b in
Windows 10, and the simulation experiments are run on a computer with Intel Core i5-
10400F CPU at 2.9 GHz and 16GB 2666MHz memory. The simulation parameters are
summarized in Table 2. 1000 Monte Carlos are carried out for each filter. Two evaluation
indicators are utilized to validate the performances of all algorithms, one is root mean
square errors (RMSEs), the other one is averaged RMSEs (ARMSEs). According to [35,36],
the RMSE and the ARMSE can be defined as follows:

RMSEpos(s) =

√√√√ 1
Kmc

Kmc

∑
j=1

((
x̂(j)

s − x(j)
s

)2
+
(

ŷ(j)
s − y(j)

s

)2
)

(70)

ARMSEpos =
1
ts

ts

∑
s=1

RMSEpos(s) (71)

where Kmc denotes the total Monte Carlo run times,
(

xj
s, yj

s

)
and

(
x̂j

s, ŷj
s

)
represent the real

and estimated positions in j-th Monte Carlo cycle, and ts refers to the total simulation time.
Additionally, the RMSEs and the ARMSEs of the velocities and turning rates can be defined
similarly to the abovementioned positions.

Table 2. Filtering parameters.

Index Values

Probability of OSRMD ϕs 0.5
Sampling interval D 1s
Number of iterations N 10
Filtering parameter δ 10−16

Simulation time ts 1000 s
Power spectral densities b1 0.1 m 2s−3

Power spectral densities b2 1.75 × 10−4 rad2s−3

Transition probability matrix T
[

0.99 0.01
0.01 0.99

]
.

The surface maneuvering target tracking simulation can be divided into four parts to
evaluate the performances of different algorithms. The first part considers the designed
algorithm and existing ones regarding their estimation accuracy. Figures 1–3 displays the
RMSEs of position, velocity, and turning rate of all algorithms. The IMM-CKF performs
poorly due to the coexistence of the HTMNs with random measurement delay, significantly
affecting filtering accuracy. It can be seen in Figures 1–3 that the proposed method has
smaller RMSEs than existing filters. When the measurement outliers occur, the RMSE
fluctuation of the proposed method is relatively small. This is because the proposed
method is robust to the measurement outliers and adaptive to random measurement delay.
As illustrated in Figures 1–3, the designed algorithm outperforms existing algorithms in
estimation accuracy. Figures 4 and 5 provide the estimated and actual model probabilities
for the two models. The estimated model probabilities from the designed filter are closer to
the actual than the other filters. Figures 4 and 5 illustrate that the proposed method can
better match the system model. Table 3 shows that the designed filter has smaller ARMSEs
in each period in the scenarios of HTMNs coexisting with OSRMD. Compared with IMM-
RSTUKF, which utilizes VB approach, the accuracy of ARMSE in position, velocity and
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turning rate of the designed filter is improved by 41.46%, 47.96% and 6.92%, respectively.
Moreover, the introduction of the VB inference increases computational costs.
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Figure 1. RMSEs of position for different filters.
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Figure 2. RMSEs of velocity for different filters.
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Figure 3. RMSEs of turning rate for different filters.
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Figure 4. The CV model probability for different filters.
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Figure 5. The CT model probability for different filters.

Table 3. ARMSEs and SSRTs from all algorithms in different time periods. Filter 1, 2, 3, and 4
respectively represent the IMM cubature KF [8], the robust STD-based IMM unscented KF [25],
the GAF with OSRMD in IMM filtering framework [27], and our designed robust IMM filter with
HTMNs and OSRMD.

Time (s) Filter 1 Filter 2 Filter 3 Filter 4

A
R

M
SE

po
s

(m
)

1∼200 37.28 24.42 27.69 12.77
201∼400 53.33 35.49 52.29 21.60
401∼600 47.07 28.45 37.60 15.66
601∼800 65.01 41.03 61.88 26.29
801∼1000 48.90 29.13 39.99 16.47

A
R

M
SE

ve
l

(m
/s

)

1∼200 10.45 3.87 4.55 1.75
201∼400 16.00 8.79 11.64 4.74
401∼600 11.65 4.37 5.28 2.06
601∼800 18.06 9.52 12.48 5.41
801∼1000 19.84 4.39 5.51 2.14

A
R

M
SE

om
g

(d
eg

/s
)

1∼200 3.33 1.12 1.10 0.77
201∼400 9.80 9.07 9.08 8.85
401∼600 3.19 1.30 1.27 0.91
601∼800 9.73 8.91 8.94 8.71
801∼1000 6.23 1.28 1.33 0.94

SS
IT

(m
s)

1∼1000 0.166 1.632 0.264 1.651
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The second experiment part validates the impact of different OSRMD probabilities on
estimation accuracy. The range of the measurement delay probability ϕs is set to be from
0.1 to 0.9. In Figures 6–8, the ARMSEs of the positions, velocities, and turning rate from
the designed filtering method and existing algorithms are provided. The horizontal axises
of Figures 6–8 denote different measurement delay probabilities, and the longitudinal
axises of Figures 6–8 represent the value of ARMSEs. From Figures 6–8, it can be seen that
the IMM-CKF shows the worst estimation performance among all filters. The reason is
that IMM-CKF deals with neither measurement outliers nor random measurement delay,
leading to unsatisfactory estimation performance. As the probability of delay increases,
the ARMSEs of IMM-RSTUKF has a relatively large change, the reason is that the IMM-
RSTUKF lacks of adaptive estimation ability to random measurement delay. For the IMM-
DGAF, although it has good adaptability to random measurement delay, it still has large
estimation error due to inaccurate modeling of HTMNs. Since the proposed method can
address the HTMNs and OSRMD simultaneously, this algorithm shows better adaptability
to different measurement delays and obtain higher estimation accuracy in the presence of
measurement outliers than existing algorithms.
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Figure 6. ARMSEs of position with different measurement delay probabilities.
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Figure 7. ARMSEs of velocity with different measurement delay probabilities.
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Figure 8. ARMSEs of turning rate with different measurement delay probabilities.

The third part of the experiment aimed to verify the performances of all filters under
different measurement outlier probabilities. The fixed measurement outlier probability
value in Equation (69) is transformed into a range from 0.05 to 0.15. Figures 9–11 exhibits
the ARMSEs from all algorithms under different measurement outlier probabilities. It
can be seen from Figures 9–11 that the IMM-CKF still performs poorly, the conclusions
about the IMM-CKF in the second experiment are further verified. In addition, with the
increasing of the measurement outlier probability, the ARMSE value of the IMM-DGAF
shows great fluctuation, this is because the IMM-DGAF assumes the measurement noises
to obey Gaussian distributions, however, the Gaussian distribution is sensitive to outliers.
As a result, the IMM-DGAF shows serious performance degradation to the increase of the
measurement outlier probability. The reason for the IMM-RSTUKF performs worse than
the proposed method is that the IMM-RSTUKF assumes all the measurement vectors can
arrive in time, which is not satisfied when the OSRMD exists. The results in Figures 9–11
indicate that the presented algorithm can achieve better adaptive estimation performances
than existing algorithms under different measurement outlier probabilities.
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Figure 9. ARMSEs of position with different measurement outlier probabilities.

216



J. Mar. Sci. Eng. 2023, 11, 1047

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

The probability of measurement outlier

2

4

6

8

10

12

14

16

18

A
R

M
S

E
s 

of
 v

el
oc

ity
 (

m
/s

)

IMM-CKF IMM-DGAF IMM-RSTUKF Proposed filter

Figure 10. ARMSEs of velocity with different measurement outlier probabilities.
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Figure 11. ARMSEs of turning rate with different measurement outlier probabilities.

In the fourth part of the experiment, the effects of the variational iterations on filtering
accuracy are validated individually. In Figures 12–14, the ARMSEs from all filters under
different variational iterations N = 1, 2, . . ., 15 are shown. The simulation results in
Figures 12–14 indicate that the presented algorithm converges when iteration number
N = 2, and performs better than existing filters in estimation accuracy when N ≥ 2.
The proposed algorithm converges faster than the IMM-RSTUKF which is also based
on the VB framework. We can see from Figures 12–14 that the estimation accuracy of
the IMM-CKF and IMM-DGAF is relatively stable since these two algorithms do not
depend on the variational iterations. As the variational iteration N increases, the estimation
performance of the designed filter improves. However, computational efficiency must be
taken into account. Considering the balance between computing efficiency and estimation
performances, the recommended variational iteration number is 4 to 8.
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Figure 12. ARMSEs of position under different iteration numbers.
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Figure 13. ARMSEs of velocity under different iteration numbers.
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Figure 14. ARMSEs of turning rate under different iteration numbers.

6. Conclusions

In the applications of surface maneuvering target tracking, due to the adverse effects
of unreliable sensors and communication channel latency, the measurement outliers and
random measurement delay often occur simultaneously. The state estimation issue of
surface maneuver target faces severe challenges. Aiming at solving the problem of state
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estimation in JMSs with HTMNs and OSRMD, this paper designed a novel robust IMM
filtering method and applied to surface maneuvering target tracking. Firstly, the HTMNs
are assumed to follow STDs, and we introduced an RBV to characterize the random mea-
surement delay. Secondly, this paper established a new HGSSM to utilize VB method.
Finally, by using VB inference, the system state, RBV, and model probability are estimated
simultaneously. The surface maneuvering target tracking simulation results indicated that
the designed filtering method has better estimation accuracy than existing algorithms.
In addition, compared with existing filters, the proposed filtering method showed bet-
ter robustness to different outlier probabilities, and achieved better adaptive estimation
performances under various of random measurement delay probabilities. Although the
computational costs of the designed method increased slightly, the accuracy of ARMSE
in position, velocity and turning rate is improved by 41.46%, 47.96% and 6.92% than the
state-of-the-art, respectively. In our future work, based on the theoretical content and
results of the proposed filtering method, more complex measurement environments will
be considered, including the cases of multi-step random measurement delay and random
measurement loss with unknown probability. The effect of heavy-tailed process noises on
filtering accuracy and computational efficiency are also focuses of our future research.
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Appendix A

Proposition A1. Let φ = ηi
s in Equation (39), and ln q(L+1)(ηi

s
)

is derived by:
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where q(L+1)(·) is the approximate posterior PDF of p(·) when variational iteration is (L + 1) .
The likelihood PDF is modified as:

p(L+1)
(

ȳi
s
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s

)
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(
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(A2)
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where ȳi
s, h̄i

s
(
ηi

s
)

and R̄(L+1)i
s represent the extended measurement vector, mean vector, and updated

measurement noise covariances, they are defined as follows:
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Then, the q(L+1)(ηi
s
)

can be updated by
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where η̂
(L+1)i
s|s and P(L+1)ηη,i

s|s are calculated through the following equations:
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Proposition A2. Let φ = vi
s in Equation (39), and ln q(L+1)(vi

s
)

is updated by Equation (A13):
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and q(L+1)(vi
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)

can be updated by
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where α
(L+1)i
s and β

(L+1)i
s are calculated as:⎧⎪⎨⎪⎩

α
(L+1)i
s = 0.5

(
mE(L)[1 − σi

s
]
+ ai

s

)
β
(L+1)i
s = 0.5

{
E(L)[1 − σi

s
]
tr
(

A(L+1)
s Y1

(
B(L+1)

s

)−1
)
+ ai

s

} (A15)

220



J. Mar. Sci. Eng. 2023, 11, 1047

where necessary matrices are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Im×m refers the identity matrix, and the necessary expectations are provided by:
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and the matrices uesd in Equation (A21) can be calculated by
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the RBV σs selecting values from {0, 1} is updated as follows:
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Abstract: This paper presents a nonsingular terminal sliding mode and active disturbance rejection
decoupling control (NTSM-ADRDC) scheme for the three-dimensional (3D) trajectory tracking of
autonomous underwater vehicles (AUV). Firstly, the AUV model is decoupled into five independent
single input–single output (SISO) channels using ADRDC technology. Secondly, the NTSM-ADRDC
controller is designed. The linear extended state observer (LESO) is used to observe the AUV state
variables, and estimate the total disturbance of the system. In addition, to improve the system error
convergence rate, the combination of exponential reaching rate and NTSM constitutes a nonlinear
states error feedback control law for the controller. Finally, the stability of the proposed control
law is proved using the Lyapunov theory. The simulation results demonstrate the effectiveness and
robustness of the designed NTSM-ADRDC trajectory tracking approach.

Keywords: AUV; 3D trajectory tracking; LESO; nonsingular terminal sliding mode control

1. Introduction

Autonomous underwater vehicles (AUV) are increasingly being utilized in a variety
of civil and military applications, such as intelligence collection, ocean mapping, pipeline
inspection, and maritime rescue [1,2]. In order to better perform these tasks, it is essential
that the AUV has the ability to accurately track three-dimensional (3D) trajectories in
underwater space [3]. However, due to the highly nonlinear, strong coupling, complex
hydrodynamic coefficient of the AUV model, the precise control of AUV has become a
significant challenge [4]. Moreover, the sensitivity of AUVs to external disturbances further
increases the difficulty in controller design [5]. Therefore, how to design an AUV trajectory
tracking controller with good robustness has become a research hotspot.

The trajectory tracking of AUVs has been the subject of extensive research in recent
years, and various control methods have been used in the design of AUV controllers.
These control methods mainly include proportional–integral–derivative (PID) control [6,7],
fuzzy logic control [8,9], adaptive control [10,11], neural network control (NNC) [12,13], and
model predictive control [14–16]. In the literature [6], an intelligent PID controller is applied
to AUV’s horizontal plane path tracking control and vertical plane depth control. However,
PID cannot provide accurate control in the presence of ocean current disturbances. In [8], a
fuzzy dynamic surface control method was designed for solving the 3D trajectory tracking
problem of the under-actuated AUV in the presence of model uncertainty and time-varying
disturbance. To solve the dynamic trajectory tracking control of AUV in a three-dimensional
underwater environment, a variable fuzzy predictor-based predictive control approach
was proposed [9]. However, the membership functions and fuzzy rules of fuzzy logic
control need to be determined based on rich experience. An adaptive controller based
on Lyapunov’s direct method and the back-stepping technique was proposed [10], which
can address the issue of trajectory tracking control of underactuated AUV of six degrees
of freedom. In the literature [11], an adaptive disturbance observer has been designed
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for AUV trajectory tracking control in the presence of unknown external disturbances,
and the gain of the observer can be adjusted automatically by introducing an adaptive
law. However, adaptive control can only achieve good control effects if the model of the
controlled object is known, the parameters change slowly, and the uncertainty of the system
is finite. A neural network-based tracking control method for underactuated AUV with
model uncertainties was presented [12]. Simulation results demonstrated the effectiveness
of the proposed control strategy. However, due to a large amount of calculation, NNC
cannot meet the real-time requirement of AUV. The literature [14] presented a novel 3D
underwater trajectory tracking approach for underwater robots based on model predictive
control, considering actual constraints on system inputs and states. The main disadvantage
of MPC is that it not only relies on an accurate mathematical model but also requires a
high level of computational power of the AUV. Although the above control algorithm
has achieved a better trajectory tracking effect to a certain extent, there are still some
respective weaknesses.

The active disturbance rejection control (ADRC) algorithm can effectively solve the
problem of system uncertainty (internal model and external disturbance uncertainty) [17,18].
The unique anti-interference capability of ADRC technology allows for a wide range of
applications in engineering control fields [19,20]. ADRC was first proposed by Han in the
1990s [21,22]. As the core of ADRC, the extended state observer (ESO) can estimate the
total disturbance including internal dynamics and external disturbance. Furthermore, the
nonlinear states error feedback control law can compensate for the total disturbance of
the system [23]. The control objective of the ADRC is to converge the system state error
to zero so that the desired control effect can be achieved. However, the traditional ADRC
has too many parameters, so it is difficult to set the parameters in engineering applications.
To simplify the structure of ADRC, Professor Gao designed a linear active disturbance
rejection controller (LADRC) [24]. The LADRC simplified the control parameters compared
to ADRC, which is very convenient for engineering applications. In addition, the theory
for the stability proof of LDARC was provided by Gao [25].

Sliding mode variable structure control has received extensive attention from scholars
due to its ideal robustness [26,27]. For example, a second-order sliding mode controller
is designed to addresses the problems of depth regulation control of AUV in wave cir-
cumstance [28].The simulation results show that this method can be effectively applied
to robust tracking of AUV. However, chattering is the main drawback of sliding mode
control. The literature [29] proposed a non-singular terminal sliding mode control (NTSMC)
method, which can effectively suppress chattering and avoid singular. In the literature [30],
an NTSMC method based on an exponential convergence law was proposed to improve
the convergence speed for reaching non-singular terminal sliding surfaces. The simula-
tion results showed that the designed control law can make the system converge to the
equilibrium point in a short time.

In order to solve the problem of external disturbances and ocean current in AUV 3D
trajectory tracking control, and also include the problem of tracking error convergence. A
novel control scheme based on NTSM-ADRDC is proposed in this paper. The main idea
is to combine the strong robustness of the NTSMC method with the LADRC controller’s
ability to suppress model uncertainty and external disturbance. Firstly, the AUV model
is decoupled by taking advantage of active disturbance rejection decoupling control tech-
nology, in which a new virtual control vector is introduced. Then, the LESO is utilized to
estimate the internal unmodeled dynamics and external disturbance of the AUV system as
the total disturbance. After that, the NTSM nonlinear states error feedback control law is
designed to compensate for the total disturbance of the system. Finally, the stability of the
AUV system is proved by the Lyapunov theory.
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The rest of this paper is organized as follows: the AUV model and its decoupling
control process are given in Section 2. Section 3 illustrates the total structure of the AUV tra-
jectory tracking control based on NTSM-ADRDC and the detailed proof of the controller’s
stability. Section 4 verifies the effectiveness of the designed controller through simulation.
Finally, the conclusions are given in Section 5.

2. AUV Model and Decoupling

In this section, the kinematics and dynamics model of the AUV is first described. Then,
the decoupling control of the AUV model based on the ADRC technique is introduced.

2.1. AUV Kinematics and Dynamics

Establishing the kinematics and dynamics model of the AUV is the prerequisite for
studying its motion control. The inertial reference frame (I-frame) and body-fixed frame
(B-frame) of the AUV are depicted in Figure 1. We assumed the rol1 of the AUV is passively
stable, and its coupling nonlinear effect can be ignored. Based on the assumption, the
kinematic and dynamic model of a five-degrees-of-freedom (5-DOF) full actuated AUV are
stated as follows [31]: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

.
x = u cos ψ cos θ − v sin ψ + w sin θ cos ψ
.
y = u sin ψ cos θ + v cos ψ + w sin θ sin ψ
.
z = −u sin θ + w cos θ
.
θ = q
.
ψ = r/ cos θ

(1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
u = m22

m11
vr − m33

m11
wq − d11

m11
u + 1

m11
τu +

1
m11

du
.
v = −m11

m22
ur − d22

m22
v + 1

m22
τv

.
w = m11

m33
uq − d33

m33
w + 1

m33
τw + 1

m33
dw

.
q = m33−m11

m55
uw − d55

m55
q + 1

m55
τq +

1
m55

dq
.
r = m11−m22

m66
uv − d66

m66
r + 1

m66
τr +

1
m66

dr

(2)

where η =
[
η1 η2

]T represent the position and Euler angles of the AUV in I-frame.

η1 =
[
x y z

]T indicate the north, east, and depth coordinates of the AUV. η2 =
[
θ ψ

]T
indicate the pitch and yaw angle of the AUV. v =

[
v1 v2

]T represent the linear ve-

locity and angular velocity of the AUV in B-frame. v1 =
[
u v w

]T denote the lon-

gitudinal, lateral, and vertical velocity of the AUV. v2 =
[
q r

]T denote the pitch and

yaw angular velocity of the AUV. τ =
[
τ1 τ2

]T are the input forces and moments of

the AUV system. τ1 =
[
τu τv τw

]T are the longitudinal, lateral, and vertical input

forces. τ2 =
[
τq τr

]T are the pitch and yaw input moments. mii, djj represent AUV
hydrodynamic parameters and damping coefficients, m11 = m − X .

u, m22 = m − Y .
v,

m33 = m − Z .
w, m55 = Iy − M .

q, m66 = Iz − N.
r, d11 = −Xu − Xu|u||u|, d22 = −Yv −

Yv|v||v|, d33 = −Zw − Zw|w||w|, d55 = −Mq − Mq|q||q|. d =
[
du dv dw dq dr

]T repre-
sent bounded external disturbances. For detailed definitions of hydrodynamic parameters
of AUV, readers can refer to the literature [32,33].
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Figure 1. The AUV coordinate system.

2.2. Decoupling Control of AUV Model

From the above-established AUV multi-input and multi-output (MIMO) system, we
can observe that the AUV is a nonlinear, multivariable, strongly coupled system. It brings
a dramatic challenge to the subsequent design of the AUV tracking controller due to its
characteristics. The ADRC technique is a good scheme for solving control problems of the
coupled MIMO system. When using the ADRC technique for decoupling control of MIMO
system, the coupling term between the different input and output channels can be seen as an
external disturbance. The ADRC controller for each channel can estimate and compensate
for external disturbances independently, thus achieving the decoupling of control for each
channel by introducing virtual control variables. Next, the active disturbance rejection
decoupling control technology will be introduced in detail [34].

Suppose there is an m-dimensional MIMO system as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

..
x1 = f1(x1,

.
x1, · · · , xm,

.
xm) + b11u1 + · · ·+ b1mum..

x2 = f2(x1,
.
x1, · · · , xm,

.
xm) + b21u1 + · · ·+ b2mum

...
..
xm = fm(x1,

.
x1, · · · , xm,

.
xm) + bm1u1 + · · ·+ bmmum

y1 = x1, y2 = x2, · · · , ym = xm

(3)

where xi, yi(i = 1, 2 · · ·m) are, respectively, expressed as system state variables and output;
ui represents control input; the amplification factor of the control variable bij = bij(x,

.
x, t)

is a function of state variables and time, which can be written in a matrix form as:

B(x,
.
x, t) =

⎡⎢⎣ b11(x,
.
x, t) · · · b1m(x,

.
x, t)

...
...

...
bm1(x,

.
x, t) · · · bmm(x,

.
x, t)

⎤⎥⎦ (4)

If the control variable coefficient matrix B(x,
.
x, t) is invertible, the system Equation (3)

can be simplified as: { ..
x = f (x,

.
x, t) + U

y = x
(5)

where x = [x1 x2 · · · xm]
T , y = [y1 y2 · · · ym]

T , f = [ f1 f2 · · · fm]
T , u =

[u1 u2 · · · um]
T , U = B(x,

.
x, t)u is the newly introduced virtual control vector.
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Therefore, the i−th channel in the system (5) can be expressed as:{ ..
xi = fi(x1,

.
x1, · · · , xm,

.
xm, t) + Ui

yi = xi
(6)

Essentially, the ADRC technology regards the fi(x1,
.
x1, · · · , xm,

.
xm, t) of i-th channel

as the external disturbance of the channel, while the ADRC controller of each channel can
estimate and compensate for the external disturbance independently. Therefore, the virtual
control variable Ui and the output variable yi of each channel are in SISO relationship, that
is, the system realizes the complete decoupling control by introducing virtual control vector.
The decoupling control process of the MIMO system based on active disturbance rejection
technology is shown in Figure 2. The desired input value vi(i = 1, 2 · · ·m) and the actual
output value yi(i = 1, 2 · · ·m) of the system constitute a closed-loop channel. Each ADRC
controller can achieve independent control of the corresponding channel so that the actual
output of the system converges to the desired value.

v

mv
B−

U

mU

u

mu

y

my

Figure 2. The active disturbance rejection decoupling control of MIMO system.

For the 5-DOF model of AUV in Equations (1) and (2), which is a strongly coupled
MIMO system. In order to facilitate the design of the controller in the latter, it is necessary
to decouple the control of the AUV model using the ADRC technique.

First, the derivation of Equation (1) is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

..
x =

.
u cos θ cos ψ − u cos θ sin ψ

.
ψ − u sin θ cos ψ

.
θ − .

v sin ψ

−v cos ψ
.
ψ +

.
w sin θ cos ψ + w cos θ cos ψ

.
θ − w sin θ sin ψ

.
ψ

..
y =

.
u cos θ sin ψ − u sin θ sin ψ

.
θ + u cos θ cos ψ

.
ψ +

.
v cos ψ

−v sin ψ
.
ψ +

.
w sin θ cos ψ + w cos θ sin ψ

.
θ + w sin θ cos ψ

.
ψ

..
z = − .

u sin θ − u cos θ
.
θ +

.
w cos θ − w sin θ

.
θ

..
θ =

.
q

..
ψ =

.
r sec θ + r tan θ sec θ

(7)

Next, substitute Equation (2) into Equation (7):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

..
x = f1(u, v, w, q, r, θ, ψ) + 1

m11
cos ψ cos θ(τu + du)− 1

m22
sin ψ(τv + dv) +

1
m33

cos ψ sin θ(τw + dw)
..
y = f2(u, v, w, q, r, θ, ψ) + 1

m11
sin ψ cos θ(τu + du) +

1
m22

sin ψ(τv + dv) +
1

m33
sin ψ sin θ(τw + dw)

..
z = f3(u, v, w, q, r, θ)− 1

m11
sin θ(τu + du) +

1
m33

cos θ(τw + dw)
..
θ = f4(u, w, q) + 1

m55
(τq + dq)

..
ψ = f5(u, v, r, θ) + 1

m66
sec θ(τr + dr)

(8)

where fi(i = 1, 2, 3, 4, 5) is the sum of other items except τ and d.
Here, we will introduce a new virtual control vector as follows:

U = B ∗ τ (9)

With
U =

[
ux uy uz uθ uψ

]T (10)
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B =

⎡⎢⎢⎢⎢⎢⎢⎣

cos ψ cos θ
m11

− sin ψ
m22

cos ψ sin θ
m33

0 0
sin ψ cos θ

m11

cos ψ
m22

sin ψ sin θ
m33

0 0
− sin θ

m11
0 cos θ

m33
0 0

0 0 0 1
m55

0
0 0 0 0 sec θ

m66

⎤⎥⎥⎥⎥⎥⎥⎦ (11)

After calculation, |B| = sec θ/m11m22m33m55m66 is reversible, the Equation (8) can be
simplified as: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

..
x = f1(u, v, w, q, r, θ, ψ) + w1 + ux..
y = f2(u, v, w, q, r, θ, ψ) + w2 + uy..
z = f3(u, v, w, q, r, θ) + w3 + uz..
θ = f4(u, w, q) + w4 + uq..
ψ = f5(u, v, r, θ) + w5 + ur

(12)

where w =
[
w1 w2 w3 w4 w5

]T , w = B ∗ d.
The decoupling control process of the AUV system based on ADRC technology is

shown in Figure 3. The ADRC technology regards fi + wi(i = 1, 2, 3, 4, 5) as the total
external disturbance of the i-th channel of the AUV system, while the ADRC controller
of each channel can estimate and compensate for the total disturbance independently.
Therefore, the virtual control variable U and the output variable η of each channel are in
SISO relationship, that is, the AUV system realizes the complete decoupling control through
virtual control vector U. The five channels of the AUV system can be individually designed
with controllers. ηd =

[
xd yd zd θd ψd

]T are the reference signals of position and
angle of AUV. Through the action of the control coefficient matrix B−1, the virtual control
vector U can generate the real control input τ acting on the AUV.

 

B−

uψ

dz zu wτ z

dψ rτ ψ

dθ uθ qτ θ

vτyu

xu uτdx

dy y

x

Figure 3. The ADRDC of AUV.

3. Three-Dimensional Trajectory Tracking Controller Design

After the above discussion, the basic framework of the decoupling control of the AUV
system based on ADRC technology has been initially developed. In this section, we will
introduce the design process of the AUV 3D trajectory tracking controller based on the
NTSM-ADRDC. The total control framework of the proposed algorithm is depicted in
Figure 4. The control frame is divided into five channels: xd − x, yd − y, zd − z, θd − θ
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and ψd − ψ, among which each channel is an independent SISO system. The LESO has
strong ability to observe the total disturbance of AUV system, and the introduction of the
exponential reaching law in NTSM allows for faster convergence of tracking errors. The
close combination of the methods constitutes the NTSM-ADRDC controller.

 

B−

dx

dy

dθ

dz

x
y
z

ψ

uτ

vτ
wτ

rτ

xu

yu

zu

uθ

x

y

z

θ
dψ uψ

ψ

qτ θ

Figure 4. The control framework of the AUV system.

3.1. Linear Extended State Observer Design

As the core component of LADRC algorithm, the LESO can estimate the internal
uncertain dynamics and external disturbances according to the input–output states of the
system. Taking the position state x of AUV as an example, according to Equation (12),
the f1(u, v, r, ψ) + w1 is regarded by LESO1 as the total disturbances of the xd − x channel
in AUV system, which can be expanded into the new state variable x3, namely x3 =
f1(u, v, r, ψ) + w1, and let x1 = x,

.
x3 = h1. Where the h1 denotes the derivative of the total

disturbance observed by LESO1. Therefore, the equation of
..
x in the system (12) can be

expanded into the following control system:⎧⎪⎪⎨⎪⎪⎩
.
x1 = x2.
x2 = x3 + ux.
x3 = h1
y = x1

(13)

231



J. Mar. Sci. Eng. 2023, 11, 959

Next, we can construct LESO1 according to Equation (13)⎧⎪⎨⎪⎩
.
x̃1 = x2 − β01(x̃1 − x1).
x̃2 = x3 − β02(x̃1 − x1) + ux.
x̃3 = −β03(x̃1 − x1)

(14)

Here x̃1, x̃2, x̃3 are the estimated values of x1, x2, x3, respectively, and β01, β02, β03 are
the gains of the LESO1. According to the characteristics of linear ESO, β01, β02, β03 have
the following relationship:[

β01 β02 β03
]
=
[
3ω0 3ω0

2 ω0
3] (15)

where ω0 is often called the observer bandwidth. Note that there is a LESO1 estimation
error between the estimated values x̃i and actual values xi(i = 1, 2, 3), but the estimation
error is able to converge to 0 according to the literature [35,36]. The remaining three
channels of LESO can be designed as follows:⎧⎪⎨⎪⎩

.
ỹ1 = ỹ2 − β01(ỹ1 − y1).
ỹ2 = ỹ3 − β02(ỹ1 − y1) + uy.
ỹ3 = −β03(ỹ1 − y1)

(16)

⎧⎪⎨⎪⎩
.
z̃1 = z̃2 − β01(z̃1 − z1).
z̃2 = z̃3 − β02(z̃1 − z1) + uz.
z̃3 = −β03(z̃1 − z1)

(17)

⎧⎪⎪⎨⎪⎪⎩
.
θ̃1 = θ̃2 − β01(θ̃1 − θ1).
θ̃2 = θ̃3 − β02(θ̃1 − θ1) + uθ.

θ̃3 = −β03(θ̃1 − θ1)

(18)

⎧⎪⎪⎨⎪⎪⎩
.
ψ̃1 = ψ̃2 − β01(ψ̃1 − ψ1).
ψ̃2 = ψ̃3 − β02(ψ̃1 − ψ1) + uψ.
ψ̃3 = −β03(ψ̃1 − ψ1)

(19)

where ỹi, z̃i, θ̃i, ψ̃i(i = 1, 2, 3) are the state estimates of yi, zi, θi, ψi(i = 1, 2, 3), respectively.

3.2. Design of NTSM Nonlinear States Error Feedback Control Law

Combined with LESO’s observation ability to system state variables and total distur-
bance, the NTSM nonlinear states error feedback control law will be designed. Its key idea
is to use LESO to improve the control law by real-time estimates of the AUV’s internal
uncertain dynamics and external disturbance. On the premise of ensuring the advantages of
LADRC, it improves the robustness of the controller. In addition, the exponential reaching
law is introduced to enhance the convergence speed of the system tracking error.

To ensure that the tracking error in the xd − x channel converges to zero in finite
time, and to solve the singularity problem in terminal sliding mode control, we choose the
following non-singular terminal sliding surface [29]:

Sx = ex +
1
β1

sgn(
.
ex)
∣∣ .
ex
∣∣λ1 (20)

where ex = x1 − xd,
.
ex = x2 − .

xd. Since LESO1 can observe the estimated value of state
variable x, we can rewrite it as ex ≈ x̃1 − xd,

.
ex ≈ x̃2 − .

xd. β1, and λ1 are adjustable
parameters, satisfying β1 > 0, 1 < λ1 < 2.
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From the derivation of Equation (20),

.
Sx =

.
ex +

λ1
β1

∣∣ .
ex
∣∣λ1−1..

ex

=
.
ex +

λ1
β1

∣∣ .
ex
∣∣λ1−1( f1(u, v, r, ψ) + w1 + ux − ..

xd
) (21)

Here, we introduce the exponential reaching law,

.
Sx = −k1Sx − ε1tanh(Sx) (22)

Among them, the first term is to use the exponential to shorten the convergence
time, and the second term uses the function tanh(.) to weaken the system chattering [37],
satisfying k1 > 0, ε1 > 0.

Combining Equations (21) and (22), we can conclude that

.
ex +

λ1

β1

∣∣ .
ex
∣∣λ1−1( f1(u, v, r, ψ) + w1 + ux − ..

xd
)
= −k1Sx − ε1tanh(Sx) (23)

Let ρ(
.
ex) =

λ1
β1

∣∣ .
ex
∣∣λ1−1, according to the Equation (23), the NTSM control based on the

exponential reaching law can be deduced as:

ux = −ρ(
.
ex)

−1
(k1Sx + ε1tanh(Sx) +

.
ex)−

(
f1(u, v, r, ψ) + w1 − ..

xd
)

(24)

Considering that the control law (24) contains ρ(
.
eξ) =

λ1
β1

∣∣ .
eξ

∣∣λ1−1 term that will cause
a relatively large amount of calculation, we can simplify the control law on the basis of
ensuring the reaching law and the simplified control law can be described as:

ux = −(
β1

λ1
sgn(

.
ex)
∣∣ .
ex
∣∣2−λ1 + J1Sx + σLESO1tanh(Sx) + f1(u, v, r, ψ) + w1 − ..

xd) (25)

where J1 > 0 and σLESO1 > 0, σLESO1 is the upper bound of the observation error of LESO1
to the uncertainty.

Since x̃3 is LESO1′s real-time estimated value of the sum of internal dynamics and
external disturbances of the AUV channel xd − x, it can be obtained that

x̃3 = f1(u, v, r, ψ) + w1 (26)

Substituting Equation (26) into Equation (25), the nonlinear states error feedback
control law of channel xd − x can finally be expressed as:

ux = −(
β1

λ1
sgn(

.
ex)
∣∣ .
ex
∣∣2−λ1 + J1Sx + σLESO1tanh(Sx) + x̃3 − ..

xd) (27)

Similarly, the sliding mode surfaces of the remaining three channels can be chosen as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Sy = ey +

1
β2

sgn(
.
ey)
∣∣ .
ey
∣∣λ2

Sz = ez +
1
β3

sgn(
.
ez)
∣∣ .
ez
∣∣λ3

Sθ = eθ +
1
β4

sgn(
.
eθ)
∣∣ .
eθ

∣∣λ4

Sψ = eψ + 1
β5

sgn(
.
eψ)
∣∣ .
eψ

∣∣λ5

(28)

where ⎧⎪⎪⎨⎪⎪⎩
ey = ỹ1 − yd
ez = z̃1 − zd
eθ = θ̃1 − θd
eψ = ψ̃1 − ψd

(29)
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
ey = ỹ2 − .

yd.
ez = z̃2 − .

zd
.
eθ = θ̃2 −

.
θd

.
eψ = ψ̃2 −

.
ψd

(30)

The nonlinear error control law of the remaining four channels can be designed as
follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uy = −
(

β2
λ2

∣∣ .
ey
∣∣2−λ2 + J2Sy + σLESO2tanh(Sy) + ỹ3 − ..

yd

)
uz = −

(
β3
λ3

∣∣ .
ez
∣∣2−λ3 + J3Sz + σLESO3tanh(Sz) + z̃3 − ..

zd

)
uθ = −

(
β4
λ4

∣∣ .
eθ

∣∣2−λ4 + J4Sθ + σLESO4tanh(Sθ) + θ̃3 −
..
θd

)
uψ = −

(
β5
λ5

∣∣ .
eψ

∣∣2−λ5 + J5Sψ + σLESO5tanh(Sψ) + ψ̃3 −
..
ψd

) (31)

3.3. System Stability Analysis

Assumption 1. The reference trajectory of AUV system ηd =
[
xd yd zd θd ψd

]T
are bounded.

Theorem 2. For the 5-DOF AUV system, considering the model (12), LESO (14)–(19), and
the control laws Equations (27) and (31), then there exist control parameters satisfying
βi > 0, 1 < λi < 2, Ji > 0, and σLESOi > 0 (i = 1, 2 · · · , 5), such that the closed-loop system
is stable.

Proof. Construct the Lyapunov function of the AUV system as:

V = Vx + Vy + Vz + Vθ + Vψ =
1
2

Sx
2 +

1
2

Sy
2 +

1
2

Sz
2 +

1
2

Sθ
2 +

1
2

Sψ
2 (32)

According to Lyapunov stability theory, AUV system is stable if the condition of
V = s

.
s ≤ 0 is satisfied. Therefore, the derivative of the Equation (21) is as follows:

.
V =

.
Vx +

.
Vy +

.
Vz +

.
Vθ +

.
Vψ = Sx

.
Sx + Sy

.
Sy + Sz

.
Sz + Sθ

.
Sθ + Sψ

.
Sψ (33)

where

.
Vx = Sx

.
Sx = Sx[

.
ex +

λ1
β1

∣∣ .
ex
∣∣λ1−1( f1(u, v, r, ψ) + w1 + ux − ..

xd
)
]

= Sx

{ .
ex +

λ1
β1

∣∣ .
ex
∣∣λ1−1

[ f1(u, v, r, ψ) + w1 − ..
xd − ( β1

λ1
sgn(

.
ex)
∣∣ .
ex
∣∣2−λ1 + J1Sx + σLESO1tanh(Sx) + x̃3 − ..

xd

)
]
}

= Sx[
.
ex − λ1

β1

∣∣ .
ex
∣∣λ1−1

( β1
λ1

sgn(
.
ex)
∣∣ .
ex
∣∣2−λ1 + J1Sx + σLESO1tanh(Sx)] = Sx[− λ1

β1

∣∣ .
ex
∣∣λ1−1

(J1Sx + σLESO1tanh(Sx))]

= − λ1
β1

∣∣ .
ex
∣∣λ1−1

(J1Sx
2 + σLESO1Sxtanh(Sx))

(34)

Since β1 > 0 and 1 < λ1 < 2, so λ1
β1

∣∣ .
ex
∣∣λ1−1 ≥ 0. In addition, because of Sxtanh(Sx) ≥

0, Sx
2 ≥ 0, we can conclude that

.
Vx ≤ 0.

In a similar way, we can derive the following results:

.
V =

.
Vx +

.
Vy +

.
Vz +

.
Vθ +

.
Vψ ≤ 0 (35)

�

4. Simulation Results and Analysis

To verify the effectiveness of the NTSM-ADRDC algorithm proposed in this paper, the
AUV 3D trajectory tracking simulation is studied in this section. By comparing with the
LADRC method, the proposed control strategy has better performance in control accuracy,
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anti-disturbance, and robustness. The control laws for the NTSM-ADRDC algorithm are
Equations (27) and (31). A detailed introduction to the LDARC method can be referred to
in the literature [24]. The detailed hydrodynamic parameter values of AUV as shown in
Table 1.

Table 1. Hydrodynamic parameters and damping coefficient of AUV.

Hydrodynamic Parameters Damping Coefficients

m11 = 215 kg d11 = (70 + 100|u|) kg/s
m22 = 265 kg d22 = (100 + 200|v|) kg/s
m33 = 265 kg d33 = (100 + 100|w|) kg/s

m55 = 80 kg.m2 d55 = (50 + 100|q|) kg.m2/s
m66 = 80 kg.m2 d66 = (50 + 100|r|) kg.m2/s

The control parameters of the NTSM-ADRDC controller in the simulation are selected
as: h = 0.05, ω0 = 15; β1 = 0.60, λ1 = 15/13, J1 = 0.60, σLESO1 = 1.00; β2 = 0.75, λ2 = 13/11,
J2 = 0.65, σLESO2 = 0.85; β3 = 0.55, λ3 = 15/13, J3 = 0.75, σLESO3 = 0.80; β4 = 0.25, λ4 = 11/9,
J4 = 0.50, σLESO4 = 0.52; β5 = 0.20, λ5 = 17/15, J5 = 0.50, σLESO5 = 0.55; AUV initial state
η0 =

[
0 0 0 0 0

]T . In the simulation, the method of determining the bandwidth ω0
of the LESO can be found in the literature [38]. The control parameter λi can be determined
first since it has little effect on the control effect as long as it satisfies 1 < λi < 2. Then, the
value range of βi is constrained to be between 0 and 1. Finally, the larger the parameters
of σLESOi and Ji, the faster the convergence rate. However, the “chattering” phenomenon
may be generated as the values of σLESOi and Ji increase. Therefore, it is necessary to trade
off between suppressing “chattering” and speeding up the convergence rate. Usually, we
choose a slightly larger value of σLESOi than Ji to weaken the “chattering”.

AUV three-dimensional tracking reference trajectory is defined as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xd = 5 + 10 sin(0.03t)
yd = −5 + 10 cos(0.03t)
zd = −0.05t
θd = 0.03
ψd = 0.03t

(36)

Figure 5 shows the three-dimensional trajectory curves of two different control al-
gorithms without disturbance. The cylindrical spiral is used as the reference trajectory
to simulate the tracking of the spiral diving target by the AUV. The black dotted line
represents the reference trajectory. The blue solid line represents the AUV tracking re-
sult under the LADRC algorithm. The red solid line represents the simulation result of
the designed NTSM-ADRDC. It can be seen from the figure that the three-dimensional
trajectory curves of the two control algorithms without disturbance are consistent with
the reference trajectory. It shows that although the initial position of the AUV is far from
the reference trajectory, both methods can track the reference trajectory more accurately
and quickly. However, there is an overshoot in NTSM-ADRDC compared to LADRC. The
position tracking performance of the AUV is shown in Figure 6. We can observe that both
control algorithms show good trajectory tracking performance.

The position tracking performance of the AUV is shown in Figure 6. We can observe
that the two control algorithms can follow the corresponding reference trajectory curve well.
Through the comparison of the first 20 s, it can be clearly found that the NTSM-ADRDC
algorithm can approach the desired position faster. By comparing the position error of
the two control methods in Figure 7, can we discover NTSM-ADRDC has a faster error
convergence rate than LADRC.
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Figure 5. AUV 3D trajectory tracking curve without disturbance.

 

Figure 6. The position-tracking performance of the AUV without disturbance.
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Figure 7. The position errors of the AUV without disturbance.

In order to reflect the trajectory tracking accuracy of different controllers, we define
the AUV trajectory tracking error in the 3D space as follows:

Eη(t) =
√
(x(t)− xd(t))

2 + (y(t)− yd(t))
2 + (z(t)− zd(t))

2 (37)

where x(t), y(t), z(t) are the actual position values of the AUV at the time t, and xd(t),
yd(t), zd(t) represent the desired position values at the time t.

Figure 8 shows the comparison curve of AUV trajectory tracking error. Since the initial
position of the AUV is far from the starting point of the reference position, it takes a certain
time for the AUV to make the trajectory tracking error tend to 0. The AUV tracking error
tends to zero after approximately 8 s under the ATSM-ADRDC algorithm, while LADRC is
about 20 s. This shows that the error convergence time of the former is shorter than that of
the latter. From the partial enlargement, we can clearly see that the trajectory tracking error
of ATSM-ADRDC converges more smoothly compared to LADRC.

To further evaluate the tracking error accuracy of the AUV under the two controllers,
we introduce three indicators related to the tracking error: the maximum tracking error
(Max), the minimum tracking error (Min), and the average tracking error (Avg). The
tracking error measurement values after 20 s are shown in Table 2. Taken together, it can
be concluded that the control accuracy of NTSM-ADRDC is much higher than that of
LADRC. As can be seen from Figure 9, the proposed NTSM-ADRC scheme has almost
no “chattering” in the control inputs. It also indicates that the use of the tanh function to
replace the sign function can reduce “chattering”.

Table 2. AUV trajectory tracking error measurement values without disturbance.

Methods Max (m) Min (m) Avg (m)

LADRC 0.12163 0.07649 0.10533
NTSM-ADRDC 0.00158 0.00131 0.00146
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Figure 8. The AUV trajectory tracking errors without disturbance.

 

τ
τ

τ
τ

τ

Figure 9. The AUV of control input without disturbance.

Based on the above analysis, both controllers can track the reference trajectory well
in the absence of disturbance. In comparison, the trajectory following performance of
NTSM-ADRDC is significantly better than LADRC. The main reason is that the former
combines the exponential approach law (22), which ensures the rapid error convergence of
the designed algorithm in a finite time.
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In order to analyze the anti-disturbance performance of the designed algorithm, ocean
current and bounded disturbances are added to the simulation. Ocean current disturbance
in I-frame: uI

c = 0.25 m/s, vI
c = 0.25 m/s. External bounded disturbances:

du = 0.02m11[1 + sin(0.05t)], dv = 0.02m22[1 + sin(0.05t)],
dw = 0.02m33[1 + sin(0.05t)], dq = 0.01m55[1 + cos(0.01t)],

dr = 0.01m66[1 + cos(0.01t)].

Figure 10 shows the AUV 3D trajectory curves of the two control algorithms with the
disturbance. We can find that both control approaches can still track the reference trajec-
tory relatively well in the presence of disturbances. Nevertheless, the LADRC produces
significant overshoot. From Figure 11 we can observe that the NTSM-ADRDC algorithm
not only allows a faster approach to the desired position, but also without overshoot.

 

Figure 10. AUV 3D trajectory tracking curve with disturbance.

By comparing the position error under the two control algorithms, we can find from
Figure 12 that the algorithm designed in this paper still has a faster error convergence rate
with the disturbance, which shows that the exponential reaching law introduced into the
NTSM-ADRDC algorithm is effective in the presence of disturbance. From Figure 13, we
can clearly find that the AUV tracking error tracking convergence time is approximately
10 s under the ATSM-ADRDC algorithm, while LADRC is about 26 s. This shows that the
proposed NTSM-ADRDC method has a faster error convergence compared to the LADRC.
Additionally, the partial enlargement shows that there are larger fluctuations in the LADRC
method compared to NTSM-ADRDC. It shows that the stability of NTSM-ADRDC is much
better than that of the latter.
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Figure 11. The position-tracking performance of the AUV with disturbance.

 

Figure 12. The position errors of the AUV with disturbance.

The tracking error measurement values after 26 s are shown in Table 3. In the presence
of disturbance, the average of the tracking error of NTSM-ADRDC is 0.00162 m, while
LADRC is about 0.12461 m. This indicates that the designed controller has high control
accuracy in the presence of ocean currents and external disturbances. Figure 14 shows the
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control input of AUV with disturbance. We can see that there is some fluctuation in the
control input due to the presence of ocean currents and external disturbances.

 

Figure 13. The AUV trajectory tracking errors with disturbance.

Table 3. AUV trajectory tracking error measurement values with disturbance.

Methods Max (m) Min (m) Avg (m)

LADRC 0.20466 0.08036 0.12461
NTSM-ADRDC 0.00227 0.00143 0.00162

 

τ
τ

τ
τ

τ

Figure 14. The AUV of control input with disturbance.
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Based on the above analysis, the designed algorithm has good robustness and anti-
disturbance. There are two main reasons: one is that ADRC technology can effectively
suppress model uncertainty and external disturbance, and the other is that the combination
of NTSM and the exponential reaching law not only retains strong robustness but also can
ensure the rapid convergence of tracking errors in a finite time.

5. Conclusions

Aiming at the problem of AUV trajectory tracking control, this paper designs a novel
tracking control method based on NTSM-ADRDC. Firstly, the AUV 5-DOF model is decou-
pled by introducing the ADRC technology. Secondly, the 3D trajectory tracking controller
based on NTSM-ADRDC is designed. The controller uses LESO to observe the state vari-
able values of the AUV and estimate the sum of the unmodeled dynamics and external
disturbances of the system. By introducing the exponential reaching law into NTSM, a
nonlinear error feedback law is designed to compensate for the total disturbance of the
system. Combining NTSMC and ADRC technology can retain the advantages of the two
control algorithms to the maximum. The NTSMC strategy can make the AUV quickly ap-
proach the reference trajectory, and the ADRC can suppress model uncertainty and external
disturbance. Finally, the simulation verifies the effectiveness of the designed controller by
comparing it with LADRC.

In future work, we will investigate the theory of optimization of the control parameters
of the NTSM-ADRDC algorithm to improve the engineering applicability of the designed
algorithm. Meanwhile, considering the input and state constraints existing in the AUV
system, we will combine other methods, such as model predictive control, in the design
process of the ADRC controller. In addition, in order to match the configuration of AUV
actuators in actual applications, thrust allocation schemes will be investigated for the design
of the controller.

Author Contributions: Methodology, W.W.; Validation, Z.Y.; Investigation, Z.L.; Data curation, X.D.;
Writing—original draft, W.W.; Writing—review & editing, W.W.; Funding acquisition, W.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
grant E1102/52071108, and in part by National Natural Science Foundation of China under grant
5217110332, and the Natural Science Foundation of Heilongjiang Province under grant JJ2021JQ0075.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wynn, R.B.; Huvenne, V.A.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J. Autonomous Underwater Vehicles (AUVs): Their
past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [CrossRef]

2. Palomeras, N.; Vallicrosa, G.; Mallios, A.; Bosch, J.; Vidal, E.; Hurtos, N.; Carreras, M.; Ridao, P. AUV homing and docking for
remote operations. Ocean Eng. 2018, 154, 106–120. [CrossRef]

3. An, L.; Li, Y.; Cao, J.; Jiang, Y.; He, J.; Wu, H. Proximate time optimal for the heading control of underactuated autonomous
underwater vehicle with input nonlinearities. Appl. Ocean Res. 2020, 95, 102002. [CrossRef]

4. Yan, Z.; Yu, H.; Zhang, W. Globally finite-time stable tracking control of underactuated UUVs. Ocean Eng. 2015, 107, 106–120.
[CrossRef]

5. Yan, Z.; Gong, P.; Zhang, W.; Wu, W.H. Model predictive control of autonomous underwater vehicles for trajectory tracking with
external disturbances. Ocean Eng. 2020, 217, 107884. [CrossRef]

6. Li, Y.; Jiang, Y.Q.; Wang, L.F.; Cao, J.; Zhang, G.C. Intelligent PID guidance control for AUV path tracking. J. Cent. South Univ.
2015, 22, 3440–3449. [CrossRef]

242



J. Mar. Sci. Eng. 2023, 11, 959

7. Robert, S.M.; Brett, W.H.; Lance, M. Docking control system for a 54-cm-diameter (21-in) AUV. IEEE J. Oceanic. Eng. 2009, 33,
550–562.

8. Liang, X.; Qu, X.; Wang, N. Three-Dimensional Trajectory Tracking of an Underactuated AUV based on Fuzzy Dynamic Surface
Control. IET Intell. Transp. Syst. 2019, 14, 364–370. [CrossRef]

9. Yin, J.C.; Wang, N. Predictive Trajectory Tracking Control of Autonomous Underwater Vehicles Based on Variable Fuzzy Predictor.
Int. J. Fuzzy Syst. 2020, 23, 1809–1822. [CrossRef]

10. Rezazadegan, F.; Shojaei, K.; Sheikholeslam, F.; Chatraei, A. A novel approach to 6-DOF adaptive trajectory tracking control of an
AUV in the presence of parameter uncertainties. Ocean Eng. 2015, 107, 246–258. [CrossRef]

11. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Adaptive disturbance observer for trajectory tracking control of underwater
vehicles. Ocean Eng. 2020, 200, 107080. [CrossRef]

12. Park, B.S. Neural Network-Based Tracking Control of Underactuated Autonomous Underwater Vehicles with Model Uncertainties.
J. Dyn. Syst.-T Asme. 2015, 137, 021004. [CrossRef]

13. Eski, K.; Yldrm, S. Design of Neural Network Control System for Controlling Trajectory of Autonomous Underwater Vehicles.
Int. J. Adv. Robot. Syst. 2014, 11, 1–17. [CrossRef]

14. Zhang, Y.D.; Liu, X.F.; Liu, M.Z.; Yang, C.G. MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with
constraints in complex ocean environments. Ocean Eng. 2019, 189, 106309. [CrossRef]

15. Chao, S.; Yang, S.; Buckham, B. Path-Following Control of an AUV: A Multiobjective Model Predictive Control Approach. IEEE
Trans. Control Syst. Technol. 2019, 27, 1334–1342.

16. Chao, S.; Yang, S.; Buckham, B. Integrated Path Planning and Tracking Control of an AUV: A Unified Receding Horizon
Optimization Approach. IEEE ASME Trans. Mechatron. 2017, 22, 1163–1173.
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Abstract: For the problem of hydroacoustic communication constraints in multi-AUV leader follower
formation, this paper designs a formation control method combining CNN-LSTM prediction and
backstepping sliding mode control. First, a feedback linearization method is used to transform
the AUV nonlinear model into a second-order integral model; then, the influence of hydroacoustic
communication constraints on the multi-AUV formation control problem is analyzed, and a sliding
window-based formation prediction control strategy is designed; for the characteristics of AUV
motion trajectory with certain temporal order, the CNN-LSTM prediction model is selected to predict
the trajectory state of the leader follower and compensate the effect of communication delay on
formation control, and combine the backstepping method and sliding mode control to design the
formation controller. Finally, the simulation experimental results show that the proposed CNN-
LSTM prediction and backstepping sliding mode control can improve the effect of hydroacoustic
communication constraints on formation control.

Keywords: formation control; communication constraints; feedback linearization; CNN-LSTM
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1. Introduction

With the further exploration of the ocean, Autonomous Underwater Vehicles (AUVs)
have started to play an important role in various marine activities, and AUVs are commonly
used in tasks such as marine ecosystem detection, underwater inspection and surveillance,
and subsea pipeline laying [1–3]. As the complexity of AUV missions increases, the
operating environment of AUVs will become more and more complex. Due to constraints,
such as the limited energy carried by them, AUVs start to look overwhelmed when facing
some more demanding tasks. Therefore, multi-AUV collaboration, information sharing,
and joint mission accomplishment have become the new direction of AUV development
today. Multi-AUV collaboration can accomplish difficult tasks faster and better for single
AUVs, especially in data acquisition [4], target search [5–7] and path planning [8,9], etc.
Therefore, multi-AUV collaborative operation is the future development trend of AUVs to
deal with complex problems in complex environments.

In the actual application, the multi-AUV formation will inevitably be affected by the
actual environment, there will be a communication delay when multi-AUVs communicate
with each other, and it takes some time to fuse and calculate the information of each
sensor, so the real-time information sharing between multi-AUVs cannot be achieved in
the actual application and the multi-AUV formation control will produce large control
errors [10,11]. Therefore, the study of multi-AUV formation control under communication
delay is helpful to apply the theory to practice and promote the development of multi-AUV
formation technology.
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For the multi-AUV formation control problem, different authors have proposed differ-
ent solutions. Kang [12] used fuzzy control theory to coordinate the behavior of multiple
AUV members, and the fuzzy control scheme inputs for the leader AUV in a multi-AUV
formation were the yaw angle during obstacle avoidance and the yaw angle during target
finding maneuvers, and the fuzzy control scheme for the follower consisted of the yaw
angle deviations during obstacle avoidance and formation keeping. Borhaug [13] proposed
a time-varying smooth feedback control law for multiple non-complete AUVs to maintain
formation. An integral backstepping method was used to cooperatively park the follower
AUV in its desired docking position and orientation relative to the leader, and the above
control law was applied to a real AUV formation system to investigate the implementa-
tion problem and singularity avoidance problem of the physical AUV system. Ding [14]
proposed a multi-AUV 3D formation control and obstacle avoidance method based on
backstepping control and a bio-inspired neural network model. The followers track the
virtual AUVs, during which the backstepping control method is guided to achieve 3D
underwater formation control. The formation of AUVs was transformed using a bio-neural
network model in order to avoid obstacles and pass through the area of obstacles. For the
problem of leader failure in multi-AUV leader-following formations, Juan [15] proposed
a solution to the problem of leader failure in multi-AUV leader-following formations by
using the Hungarian algorithm to reconstruct the failed formation with the lowest cost.
The Hungarian algorithm was improved to solve the nonstandard assignment problem.
To address the issue of increased leader communication pressure after formation recon-
struction, an event trigger mechanism was applied to reduce unnecessary communication.
The efficiency of the event trigger mechanism was improved by increasing the event trig-
ger condition of the sampling error threshold. Zheping [10] considered the presence of
bounded communication delay and non-convex control input constraints in multi-AUV
formation under weak communication conditions. They proposed a formation consis-
tency constrained controller algorithm for discrete-time leaderless multi-AUV systems
with dual independent communication topologies by introducing a constraint operator.
For the problem of hydroacoustic communication constraints between multiple AUVs,
Yuepeng [16] proposed a consensus control algorithm for multi-AUVs combined with the
leader-following method under communication time delay, using graph theory to describe
the communication topology of multi-AUVs and introducing a hybrid communication
topology to accommodate large formation control. The consensus theory was combined
with the leader-following method to construct distributed control laws. Suryendu [17]
designed a time-lag estimator based on the gradient descent method to estimate the com-
munication delay, and the actual delay was significantly reduced because the time tagging
of the leader AUV state packets was avoided in the formulation of the estimator. Shibin [18]
investigated the leader-following consistency problem for a multi-intelligent body system
with input delays. A distributed state observer was designed to estimate the states of neigh-
bors using the output information between neighboring intelligences, and a consistency
algorithm was proposed using the estimated state information. Sufficient conditions for
stability were constructed using Lyapunov theory and solved by a set of linear matrix
inequalities with iterative parameters.

Based on the above research results, this paper proposes a formation control method
combining CNN-LSTM prediction and backstepping sliding mode control. The specific
contributions of this paper are summarized as follows:

1. A multi-AUV formation control method combining CNN-LSTM prediction and
backstepping sliding mode control is proposed, the stability of the control method is
demonstrated, and the effectiveness of the control method is verified by simulation.

2. Combining the advantages of CNN feature extraction, filtering noise and LSTM tem-
poral memory, a CNN-LSTM prediction model is built for predicting the state information
of navigators.

3. Applying the feedback linearization method, the AUV nonlinear model is trans-
formed into a second-order integral model, and the controller is designed by combining
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the backstepping method and sliding mode control, which improves the robustness of
the controller.

2. AUV Nonlinear Model Building and Feedback Linearization

2.1. AUV Nonlinear Model

To study the motion of the AUV, the fixed coordinate system {E} and the motion
coordinate system {O} established in this section are shown in Figure 1.

Figure 1. Coordinate system diagram, where E − ξηζ is the fixed coordinate system, ξ points due
north, η points due east, O − xyz is the motion coordinate system, and O coincides with the center of
gravity of the AUV, where the x-axis points to the bow of the vehicle.

A fixed point at sea level is usually chosen as the origin of the fixed coordinate system,
where the ξ axis points to due north and the η axis points to due east. In order to simplify
the nonlinear model of the AUV, the center of gravity of the AUV is chosen as the origin
of the motion coordinate system {O}, where the x axis is located in the longitudinal mid-
profile and points to the bow of the AUV, and the y axis is perpendicular to the longitudinal
mid-profile and points to the starboard side of the AUV.

In model building, it may be assumed that the AUV studied in this paper is a rigid
body with a certain mass distribution, and the effect of its transverse rocking motion is not
considered when the AUV is operating underwater, i.e., the transverse rocking attitude
angle and angular velocity are kept as desired values. In the following, the nonlinear model
of the AUV and the feedback linearization process are based on this assumption.

For the purpose of the following study, the following motion variables are defined:
The position vector in a fixed coordinate system is η = [x y z θ ψ]T ∈ R3 × S2.
The position is η1 = [x y z]T ∈ R3, The attitude angle is η2 = [θ ψ]T ∈ S2.
The velocity vector in the motion coordinate system is v = [u v w q r]T ∈ R5.
The linear velocity in the motion coordinate system is v1 = [u v w]T ∈ R3.
The angular velocity in the motion coordinate system is v2 = [q r]T ∈ R2.
The forces and moments in the motion coordinate system are T = [X Y Z M N]T ∈ R6.
The force in the motion coordinate system is T1 = [X Y Z]T ∈ R3.
The moment in the motion coordinate system is T2 = [M N]T ∈ R2.
Where R3 denotes the three-dimensional Euclidean space and S3 denotes the three-

dimensional torus, i.e., there exist three angles in the range [0, 2π].
Combining the AUV kinematic model and dynamics model, the AUV nonlinear

mathematical model vector expression can be obtained as:

.
η = J(η)v
MR

.
v + MA

.
v + CR(v)v + Y(v) + g(η) = T + λ

(1)

The kinematic and kinetic mathematical model derivation process and model parame-
ters of the AUV are shown in the literature [19] shown.
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2.2. AUV Feedback Linearization Model

As can be seen from Equation (1), the nonlinear model of the AUV is still very compli-
cated even if it is written in vector form. In this subsection, we simplify the AUV nonlinear
model by using the transformation method to make the complex problem simple. By
coordinate transformation, we can transform the nonlinear model of the AUV in the motion
coordinate system to a specific coordinate system, in which the nonlinear model will realize
the decoupling of each control channel and transform into a second-order integral model.

According to the literature [20], the AUV model is transformed appropriately:{ .
η = J(η)v
.
v = M−1N(η, v) + M−1T

(2)

where M = MR + MA is the sum of the inertia matrix and the additional inertia matrix. T
denotes the control input forces and moments. Synthesizing the three terms of the model
CR(v)v, Y(v), g(η) into a column vector N(η, v), then Equation (2) can be transformed into:[ .

η
.
v

]
=

[
I 0
0 M−1

][
J(η)v

N(η, v)

]
+

[
0

M−1

]
T (3)

In Equation (3), a mathematical model with three axial thrusters and two rudders is
considered, replacing the controller input T in Equation (3) with the thrust of the axial
thrusters Xprop, Yprop, Zprop and the rudder angles δr, δs. The vector ξ = [ηT , vT ]

T will be

formed by η and v. The two matrices in Equation (3) are taken to be M1 =

[
I 0
0 −M−1

]
∈

R10×10 and M2 =

[
0

M−1

]
∈ R10×5, respectively. The above Equation (3) is transformed

into the following vector form for model linearization:

.
ξ = f (ξ) + M2g′(ξ)û (4)

Among them f (ξ) = M1

[
J(η)v

N(η, v)

]
∈ R10×1, g′(ξ) =

[
g′ij(ξ)

]
∈ R5×5,

û =
[
Xprop, Yprop, Zprop, δs, δr

]T .
Vector field: the nonlinear first-order model is taken as the following equation:

.
x = f (x) + g(x)u
y = h(x)

(5)

where f (x), g(x), h(x) is smooth enough over the definition domain D ∈ Rn, the mapping
f : D → Rn and g : D → Rn are vector fields over the domain of definition D.

Lie derivative: derivative of y in Equation (5).

.
y =

∂h
∂x

[ f (x) + g(x)u] = L f h(x) + Lgh(x)u (6)

where L f h(x) = ∂h
∂x f (x), Lgh(x) = ∂h

∂x g(x), is said to be the Lie derivative of h along the
smooth vector field f .

Define the output function ζ = h(ξ), then the dynamics of the AUV are modeled as:

.
ξ = f (ξ) + M2g′(ξ)û
ζ = h(ξ)

(7)

The basic idea of feedback linearization is to find an appropriate coordinate transfor-
mation and a control rate after the coordinate transformation.
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Select the coordinate transformation z = ϕ(x).

z1 = [h1(x), h2(x), h3(x), h4(x), h5(x)]T

z2 =
[

L f h1(x), L f h2(x), L f h3(x), L f h4(x), L f h5(x)
]T (8)

From transforming the coordinates, we have:

z1 = h(x)
z2 = L f h(x) (9)

The transformation gives:

.
z1 = z2.
z2 = L2

f h(x) + LgL f h(x)û (10)

In a given coordinate system, to obtain a simpler form, we might as well allow u to
equal L2

f h(x) + LgL f h(x)û. So, we can obtain the following equation:

u = B(x) + Γ(x)û = L2
f h(x) + LgL f h(x)û (11)

Then, the second-order integral model of the AUV in the new coordinate system after
transformation can be obtained under the action of Equations (6) and (10).

û = Γ−1(x)(u − B(x)) (12)

The AUV linearized mathematical model can be obtained as:
.
z1 = z2.
z2 = u

(13)

where, z1 is the position information of the AUV after the coordinate transformation, z2 is
the speed information of the AUV after the coordinate transformation, and u is the control
input of the AUV after the coordinate transformation.

3. CNN-LSTM Prediction Model

3.1. Pre-Requisite Knowledge
3.1.1. Convolutional Neural Network

In underwater formations of multiple AUVs, the transmitted track data from the
leader to the follower may be subject to both delay and noise interference caused by various
factors such as oceanic noise. To enable accurate trajectory prediction, the data must be
filtered prior to analysis. In this study, a convolutional neural network is employed to filter
the data and extract the relevant trajectory data features. The basic structure diagram of
the network is illustrated in Figure 2.

Figure 2. CNN structure schematic.
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Figure 2 shows the structure of a convolutional neural network (CNN), which consists
of an input layer, a convolutional layer, a ReLU layer, a pooling layer, and a fully connected
layer. CNNs differ from traditional neural networks in two main ways:

1. CNNs use a common filter for different regions, which reduces parameters, improves
training speed, and prevents overfitting;

2. The output of a CNN is related to only a portion of the input data due to the convo-
lutional layers, which allows for the extraction of exclusive features for each input,
whereas a traditional neural network is fully connected and outputs are related to all
input units.

3.1.2. Long Short-Term Memory

For problems related to time series, such as AUV formation tracking, traditional neu-
ral network algorithms such as CNNs are not fully applicable. Long short-term memory
(LSTM) networks are better suited for these problems due to their memory effect. LSTM
networks use memory modules instead of traditional storage units, which are intercon-
nected recursive subnetworks. The memory module contains gates that control the flow
of information, allowing for memory information to affect neuronal nodes at longer time
intervals. The three gates of an LSTM cell are the input gate, output gate, and forgetting
gate, which control the storage and inflow of information as well as the core cell unit. The
cell structure of LSTM is shown in Figure 3. The activation function plays an important
role in the neural network by introducing nonlinear factors into the model, enabling it to
perform well on problems where the linear model is not suitable.

Figure 3. LSTM cell structure diagram.

In Figure 3, the symbol “ ft” represents the forgetting gate, “it” represents the input
gate, and “ot” represents the output gate. “xt” denotes the input to the input layer at time
“t”, “ht” denotes the output at time “t”, “Ct” denotes the state value of the memory cell at
time “t”, and “σ” represents the sigmoid function. The mathematical expressions for “σ”
and “tanh” in the figure are as follows:

σ(z) =
1

1 − e−z (14)

tanh(x) =
ex − e−x

ex + e−x (15)

The LSTM processes the data internally as follows:
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ft = σ
(

Wx f xt + Whjht−1 + b f

)
(16)

it = σ(Wrixt + Whiht−1 + bi) (17)

o f = σ(Wxvxt + Whuht−1 + bo) (18)

ct = ft · ct−1 + it · tanh(Wxcxt + Whcht−1 + bc) (19)

hi = ot · tanh(ct) (20)

where, W is the weight matrix, · is the product of point pairs, and b is the deviation.
From Equations (14)–(18), it can be seen that the LSTM is computed by first calculating

the values of the forgetting gate, input gate, output gate, and candidate state ht−1 and the
input at the current moment based on the external state. Next, the internal state ct−1 is
used to compute the values of the forgetting gate, the input gate and the candidate state in
order to update the internal state ct. Finally, the information is passed to the external state
ht via the current internal state and output gates.

3.2. CNN-LSTM Prediction Model Building

This paper proposes a neural network prediction model that combines the advantages
of CNN feature extraction and noise filtering with LSTM temporal memory. The model is
designed by connecting the CNN and LSTM layers in series, and its structure is depicted in
Figure 4.

Figure 4. CNN-LSTM prediction model diagram.

The proposed structure is composed of two main modules: the data processing module
and the model prediction module. Upon receiving the navigator state information, the data
are first preprocessed and then fed into the prediction model. As illustrated in Figure 4,
the CNN module is composed of three convolutional layers: a BatchNorm layer, a dropout
layer, an expansion layer, and a fully connected layer, which is responsible for receiving
the preprocessed data and extracting data features. The LSTM module, on the other hand,
consists of two LSTM layers, which analyze the features extracted by the CNN, explore the
time series relationships in the data, and predict multiple future points.
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The overall prediction process is as follows: the navigator state information is pre-
processed by the data processing module, and the processed data are passed to the CNN
module for filtering and spatial feature learning. The CNN generates a sequence of high-
level features representing the capture and passes it to the tensor processing module. The
tensor processing layer then reshapes the output of the CNN so that it can be accepted by
the LSTM sub-module. Finally, the LSTM module learns the time-series dependencies of
the delayed data and outputs the predicted values for the current moment.

4. Predictive Control of Multi-AUV Formations Based on CNN-LSTM Models

4.1. Multi-AUV Formation Controller Design under Ideal Communication Conditions

It may be assumed that there are five AUVs in the formation: one leader and four
followers. The formation that the formation wants to form and maintain is an isosceles
triangle (the specific formation is shown in Figure 5 below), and the AUVs are required to
maintain the formation even when making a spiral dive.

Figure 5. Formation diagram.

As shown in Figure 5, L denotes the leader, and F1, F2, F3 and F4 are all follower
AUVs. According to the formation that we want to achieve, we introduce the variables R
and β to constrain the formation, where the distance from the leader to the followers F1
and F2 line is R, the distance from the follower F1 and F2 line to the follower F3 and F4
line is also R, and the attitude angle of the formation hold is β. The formation constraints
proposed in this paper are: ⎧⎪⎪⎨⎪⎪⎩

ηF1 + d1 = ηL
ηF2 + d2 = ηL
ηF3 + d3 = ηL
ηF4 + d4 = ηL⎧⎪⎪⎨⎪⎪⎩
.
ηF1 + dv1 =

.
ηL.

ηF2 + dv2 =
.
ηL.

ηF3 + dv3 =
.
ηL.

ηF4 + dv4 =
.
ηL

(21)

where d1, d2, d3, d4, dv1, dv2, dv3 and dv4 are denoted as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d1 = (−(cos β)−1R cos(ψL − β − π

2 ), (cos β)−1R cos(ψL + β − π
2 ), 0, 0, 0)

T

d2 = (−(cos β)−1R cos(ψL + β − π
2 ),−(cos β)−1R cos(ψL − β − π

2 ), 0, 0, 0)
T

d3 = (−(cos β)−12R cos(ψL − β − π
2 ), (cos β)−12R cos(ψL + β − π

2 ), 0, 0, 0)
T

d4 = (−(cos β)−12R cos(ψL + β − π
2 ),−(cos β)−12R cos(ψL − β − π

2 ), 0, 0, 0)
T⎧⎪⎪⎪⎨⎪⎪⎪⎩

dv1 = Jη(rL tan(−β)× R, 0, 0, 0, 0)T

dv2 = Jη(rL tan(β)× R, 0, 0, 0, 0)T

dv3 = Jη(rL tan(−β)× 2R, 0, 0, 0, 0)T

dv4 = Jη(rL tan(β)× 2R, 0, 0, 0, 0)T

(22)

In a leader-follower formation control with five AUVs, the motion state vector of the
i th follower AUV at the moment of t is εi(t) = ηi(t) and the motion state vector of the
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leader is εL(t) = ηL(t). If the formation satisfies Equation (23), it is said that the formation
can achieve formation maintenance and stability convergence.

lim
t→∞

∣∣∣∣εi(t)− εL(t) + di

∣∣∣∣= 0

lim
t→∞

∣∣∣∣ .εi(t)− .
εL(t) + dvi

∣∣∣∣= 0
i = 1, 2, 3, 4 (23)

Let the attitude vector of the i th follower AUV at the time of t and the attitude vector
of the leader AUV at the time of z1d in the lead follower formation control of the AUV
be z1i.

Define the trajectory tracking error of the i th follower AUV as zi1e = zi1 − z1d + di,
then

.
zi1e = zi2 − .

z1d.
Define the following Lyapunov function:

Vi1 =
1
2

zi1e
2 (24)

Define zi2 = zi2e +
.
z1d − ci1zi1e, where ci1 is the positive constant and zi2e is the

intermediate virtual control item. We can get zi2e = zi2 − .
z1d + ci1zi1e, and the derivation

gives
.
zi1e = zi2 − .

zi1d = zi2e − ci1zi1e.
The derivative of Vi1 gives:

.
Vi1 = zi1e

.
zi1e = zi1ezi2e − ci1zi1

2 (25)

Define the switching function as:

σi = ki1zi1e + zi2e (26)

Among them, ki1 > 0.
Because of

.
zi1e = zi2e − ci1zi1e, we can derive:

σi = ki1zi1e + zi2e = ki1zi1e +
.
zi1e + ci1zi1e = (ki1 + ci1)zi1e +

.
zi1e (27)

Because of ki1 + ci1 > 0, there is σi = 0 only when zi1e = 0, zi2e = 0 and
.

Vi1 ≤ 0. For
this, the next design step is needed.

Define the following Lyapunov function.

Vi2 = Vi1 +
1
2

σi
2 (28)

The derivative of Vi2 gives:

.
V2 =

.
Vi1 + σi

.
σi

= zi1ezi2e − ci1zi1e
2 + σi

.
σi

= zi1ezi2e − ci1zi1e
2 + σi(ki1

.
zi1e +

.
zi2e)

= zi1ezi2e − ci1zi1e
2 + σi(ki1(zi2e − ci1zi1e) +

.
zi2 − ..

z1d + ci1
.
zi1e)

= zi1ezi2e − ci1zi1e
2 + σi(ki1(zi2e − ci1zi1e) + Ui + F − ..

z1d + ci1
.
zi1e)

(29)

where Ui is the expression of the controller to be designed. F is the total uncertainty of the
system.

The design of the i follower controller is shown below.

Ui = −ki1(zi2e − ci1zi1e)− Ftanh(σi) +
..
z1d − ci1

.
zi1e − hi(σi + βitanh(σi)) (30)

where hi and βi are positive constants.
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Substituting Equation (30) into
.

Vi2 yields:

.
Vi2 = zi1ezi2e − ci1zi1e

2 − hiσi
2 − hiβi|σi|+ Fσi − Fσi

≤ −ci1zi1e
2 + zi1ezi2e − hiσi

2 − hiβi|σi|
(31)

Let Qi be equal to the following matrix.

Qi =

[
ci1 + hik2

i1 hiki1 − 1
2

hiki1 − 1
2 hi

]
(32)

Due to

zie
TQizie =

[
zi1e zi2e

][ ci1 + hik2
i1 hiki1 − 1

2
hiki1 − 1

2 hi

][
zi1e zi2e

]T
= ci1z2

i1e − zi1ezi2e + hik2
i1z2

i1e + 2hiki1zi1ezi2e + hiz2
i2e

= ci1z2
i1e − zi1ezi2e + hiσi

2

(33)

Among them, zie
T =

[
zi1e zi2e

]
.

If you want to guarantee that Qi is a positive definite matrix, then

.
Vi2 = −zie

TQizie − hiβi

∣∣∣σi

∣∣∣� 0 (34)

Due to ∣∣∣∣∣Qi

∣∣∣∣∣= hi

(
ci1 + hik2

i1

)
−
(

hiki1 − 1
2

)2
= hi(ci1 + ki1)− 1

4
(35)

Therefore, it is possible to guarantee
.

Vi2 ≤ 0 by taking the values of hi, ci1 and ki1
such that |Qi|> 0 , i.e., Qi is a positive definite matrix.

By taking the values of h, c1 and k1, you can make |Q|> 0 . Thus, it can be deduced
that Q is a positive definite matrix and that

.
V2 ≤ 0 is guaranteed.

According to LaSalle’s invariance principle, when
.

Vi2 ≡ 0 is taken, it can be deduced
that zie ≡ 0, σi ≡ 0. When t → ∞ , since zi1e → 0 , zi2e → 0 , it can be deduced that zi2e → 0 ,
.
zi1 → .

z1d .
In summary, it can be seen that the Lyapunov functions Vi1 and Vi2 are positive definite,

and the values of Vi1, ci1 and ki1 can be reasonably chosen to ensure that
.

Vi1 and
.

Vi2 are
negative definite, so the designed AUV formation controller (30) is stable and convergent.

4.2. Sliding Window-Based Predictive Control of Multi-AUV Formations under
Communication Constraints

In the previous section, the backstepping sliding mode control method was used and
the formation controller was designed according to the formation constraint relationship.
The controller for the follower AUV in the formation with time-lag state is presented below
due to the communication delay between the leader and the follower and the limitations
of the hydroacoustic sonar in transmitting high-frequency signals, resulting in a longer
communication interval between them. As a consequence, the follower may not receive the
real-time status information of the leader.

Ui = −ki1(zi2e − c1zi1e)− Ftanh(σi) +
..
z1d − c1

.
zi1e − h(σi + βtanh(σi)) (36)

where, zi1e = zi1 − z1d(t − τ) + di, zi2e = zi2 − z2d(t − τ) + c1zi1e + dvi, σi = k1zi1e + zi2e,
and τ are the communication delay times between the navigator and the follower.

To illustrate the effect of communication delay on formation control while preparing
for a new predictive control strategy, the following assumptions are made about the
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communication delay between the leader and the follower and the hydroacoustic sonar
occurrence interval:

Assumption 1. The distance between the navigator and the follower is close, and the speed of
acoustic wave transmission in the water is 1500 m/s, so the communication time delay caused by the
communication transmission is small, where it is assumed that the delay time between the broadcast
of the navigator sending the status information and the follower receiving the information and
measuring the settlement is 1 s.

Assumption 2. Due to the limitation of communication bandwidth, the navigator cannot send too
many beats of historical status data to the follower at one time; so, suppose the navigator can send
five beats of status data to the follower at one time.

Assumption 3. The hydroacoustic sonar is unable to sound at high frequencies and the sounding
time is affected by the size of the data sent, assuming that the communication interval of the
hydroacoustic sonar is 6–9 s.

To solve the communication delay and communication interval problem between the
leader and the follower, this section proposes a formation control strategy based on a sliding
window to achieve multi-step prediction, which iterates the historical state information of
the leader to predict the current state information of the leader step by step, which saves
computational efficiency and has better adaptability compared with the observer-based
iterative prediction method. The specific principle of the strategy is described below.

At the M time, the navigator sends its own status data {Z1, Z2, · · · · · · ZM−1, ZM}
from the previous M time to the follower in the formation. Due to the communication
transmission delay τtran and the hydroacoustic sonar sounding time consuming τinter, a
fixed time delay τonce_tal = τtran + τinter is defined, and the follower receives the status
information of the navigator at the M + τonce_tal time, and the status information of the
navigator received by the follower at this time is the status information of the navigator
at the M time. So, the follower needs to predict the state information of the leader at the
M + τonce_tal time as the tracking target based on the state information of the leader at the
M time.

The second sounding of the sonar starts immediately after the first sounding. Since
the transmission delay after the first sounding is included in the second sonar sounding
elapsed time, the follower needs time τinter to receive the information of the navigator
for the second time. Therefore, after the follower receives the status information of the
navigator at the M + τonce_tal time, the follower firstly has to predict the status information
of the navigator at the M time as the tracking target; secondly, since the follower cannot
receive the status information of the navigator at the τinter time in the future, the follower
needs to then predict the status information of the navigator at the τinter time in the future.
A schematic diagram of the information transfer process is shown in Figure 6.

Figure 6. Information transmission diagram.
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This paper focuses on predicting the real-time state of the leader in AUV formation
by using delayed state data received by the followers as input to the prediction model.
The delayed data are in the form of a time series, and to achieve continuous prediction, a
sliding window approach is designed where the delay information is fed into the window
as input and the real information as output, as illustrated in Figure 7. To evaluate the
model’s performance, a delay time of 10 s is set, and the size of the sliding window, which
corresponds to the time step of the input data, is set to 5. The prediction equation is given
as follows:

z(t) = f ({z(t − 14), · · · , z(t − 11), z(t − 10)}) (37)

where z = [z1, z2] denotes the position vector of the navigator in time. z1 = [x, y, depth, θ, ψ]T,
where x, y and depth represent the displacement in three coordinate directions; θ and
ψ represent the pitch and heading angles. z2 = [u, v, w, q, r]T , where u, v and w are the
longitudinal, lateral and vertical velocities respectively; q and r are the longitudinal and
bow angular velocities.

Figure 7. Schematic diagram of the sliding window.

The prediction strategy designed in this paper has two main phases: fixed delay
prediction and communication interval prediction. In the fixed delay prediction stage, the
follower puts the state information sent by the navigator into the designed sliding window
and uses the prediction model to predict the state quantity ẐM+1 at the M + 1 th time based
on the data in the first M times of the sliding window. Put ẐM+1 into the sliding window,
and then the sliding window moves forward to obtain ẐM+2 using ẐM+1 and the historical
state quantity prediction, and finally obtain the state prediction ẐM+τonce_tal

at M + τonce_tal

moments through continuous iterative prediction.
At the same time, due to the effect of hydroacoustic sonar sounding time consumption,

the follower will only receive the next status data from the navigator at the moment of
M + τonce_tal + τinter, so the follower will continue to make iterative predictions based on
the status quantity ẐM+τonce_tal

obtained from the prediction compensation during this pe-

riod, obtain ẐM+τ
once_tal+1+1, ẐM+τonce_tal+2· · · · · · ẐM+τonce_tal+τinter , and output in turn until

it receives the time delay status data from the navigator again. Based on the above strategy,
the follower will get the predicted value of the current moment of the leader; the controller
of the follower in the AUV formation at this time is shown below.

Ui = −ki1(ẑi2e − c1ẑi1e)− Ftanh(σ̂i) +
..
z1d − c1

.
ẑi1e − h(σ̂i + βtanh(σ̂i)) (38)

where, ẑi1e = zi1 − ẑ1d(t) + di, ẑi2e = zi2 − ẑ2d(t) + c1ẑi1e + dv2, σ̂i = k1ẑi1e + ẑi2e, ẑ1d(t)
and ẑ1d(t) are the predicted values of CNN-LSTM model.

The block diagram of CNN-LSTN-based multi-AUV formation prediction control
under communication constraints is shown in Figure 8. Based on the pilot-follower for-
mation control strategy, there is a communication delay when the follower AUV receives
the position and speed information from the pilot due to the influence of hydroacoustic
communication. In this paper, a CNN-LSTM prediction model is established to make
predictions based on the historical information of the pilot, which can well offset the effects
of noise and communication delay on formation control. The prediction information and
feedback information are used as the input of the AUV formation controller to finally
realize the AUV formation prediction control.
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Figure 8. AUV formation prediction control block diagram.

5. Simulation Verification and Analysis

5.1. Simulation Results and Analysis of CNN-LSTM Model

The trajectory data of a small AUV, consisting of longitude and latitude measurements
from multiple positioning systems, as well as values from GPS, bathymetry, and Doppler
measurements with a maximum depth of 20 m, were selected as the training set for this
study. The relevant information of the training set is shown in Table 1.

Table 1. AUV status information.

Sample Size Maximum Depth (m) Lon Lat U (m/s)

39,875 20 119.18◦ E 29.56◦ N 1–3

These training data were obtained from the trajectory data of an AUV on-lake experi-
ment, and some of its trajectories are shown in Figure 9. The raw data were preprocessed
and used for the training of the CNN-LSTM model.

Figure 9. AUV partial trajectory data.
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The CNN model designed in this paper contains three convolutional layers with filter
sizes of (2, 1), (3, 1) and (3, 1) for each layer, and a dropout layer is added to prevent
overfitting. The processed features were passed to the two-layer LSTM model, and the
predicted data were output by the last LSTM layer. Through continuous debugging, it
was found that the network with 125 and 128 neurons in each layer was trained well.
Additionally, to prevent the overfitting of the network, a discard layer with probability
0.3 is built after the hidden layer. The Adam algorithm is used for optimization, and
the design learning rate decline period is 100, the learning rate is 0.012, the learning rate
decline coefficient is 0.8, and finally, the gradient threshold is set to 1 in order to prevent
gradient explosion.

After processing the delayed data according to the aforementioned data processing
steps, they are fed into the CNN-LSTM model using the sliding window format. The
performance of the model is then evaluated by computing the mean square error (MSE) and
maximum absolute error (MAXERR) between the predicted values and the actual trajectory
data. The evaluation metrics can be formulated as follows:

MSE =
1
N

N

∑
t=1

( observed t − predicted i)
2 (39)

where N indicates the number of samples.

Maxerr = max
∣∣∣∣ observedt − predicted t

observed

∣∣∣∣ (40)

According to Assumption 2, the leader broadcasts the data of the past five beats to
each follower at a time, so the size of the sliding window is set to 5, and the prediction effect
of the prediction model is verified under the fixed delay of 2 s and the communication
interval of 7 s. The selected navigator trajectory is a spiral dive trajectory, and Gaussian
white noise with an amplitude of 0.003 is superimposed on the trajectory data, and the
LSTM prediction model is selected for simulation comparison. The parameters of the two
model designs are shown in Table 2.

Table 2. AUV status information.

Models Structural Layer Parameter Setting Learning Rate

LSTM model

Hidden layer neurons [10, 10, 10, 10]

0.02
activation function ReLU

Optimizers Adam
Epochs 30

Batch size 128

CNN-LSTM model

Filter 1 ×16 size (2, 1)

0.012

Filter 2 ×16 size (3, 1)
Filter 3 ×16 size (3, 1)

Dropout ratio 0.3
Optimizers Adam

LSTM cells 1 10
LSTM cells 2 10

Activation function ReLU

Since the velocity quantities in the selected trajectories are kept constant, in order to
objectively compare the advantages and disadvantages of the two prediction models, only
the navigator state quantities z = [x, y, depth, θ, ψ] are compared for prediction, and the
simulation results are shown in Figure 10.
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Figure 10. AUV trajectory prediction error: (a) northward trajectory prediction error, (b) eastward
trajectory prediction error, (c) vertical trajectory prediction error, (d) longitudinal inclination angle
prediction error and (e) bow angle prediction error.
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Based on Figures 10 and 11, it can be observed that the CNN-LSTM model predicts
a trajectory that is closer to the actual value, with a smoother prediction curve and lower
error fluctuations. These results demonstrate that the CNN-LSTM model provides higher
accuracy and stability. The MSE values for the predicted states by the LSTM model are
1.7911, 1.7947, 1.1921, 1.6871, and 0.2564, while the CNN-LSTM model predicts the state
with lower MSE values of 0.6868, 0.6315, 0.0664, 1.3078, and 0.1139. These MSE values are
smaller compared to those of the pure LSTM model, indicating that the CNN-LSTM model
provides better prediction results.

Figure 11. AUV trajectory prediction: (a) horizontal plane trajectory prediction and (b) 3D trajectory
prediction.

5.2. Formatting of Mathematical Components

To verify the prediction effectiveness of the CNN-LSTM prediction model in the
formation and formation holding phases of the multi-AUV formation, the communication
transmission delay τtran is set to 1 s and the hydroacoustic sonar sounding delay τinter is
set to 4 s, i.e., the fixed time delay τonce_tal is defined to be 5 s and the maximum total time
delay is 9 s. The formation design is consistent with Figure 5.

The navigational track of the navigator is⎧⎨⎩
xp = 60 cos(2πt/1000)
yp = 60 sin(2πt/1000)
zp = −0.3t

0 ≤ t ≤ 2000 (41)

The initial state of the AUV is as follows: initial position x(0) is randomly taken in the
range of [55, 65] m, y(0) is randomly taken in the range of [−10, 10] m, x(0) is 65 m, depth
is 0 m, initial attitude θ(0) is 0 rad, bow angle ψ(0) is 4π/3 rad, longitudinal velocity u(0)
is 0.5 m/s, all other velocities are initialized to 0 m/s, and controller parameters are h = 1,
k1 = 0.3, c1 = 0.3, F = 0.02, β = 0.5.

The simulation results are shown in Figures 12 and 13.
In Figure 12, (a) to (e) are the simulation plots of AUV formation position information,

from which it can be seen that the leader and the follower always keep the same position,
pitch angle and bow angle during the spiral dive under the action of the formation con-
troller; (f) to (j) are the simulation plots of AUV formation speed information, from which
it can be seen that the bow speed, lateral speed and vertical speed of the follower in the
formation have some fluctuations, but the overall velocity remains stable. Figure 13 shows
the 3D trajectory of the AUV formation and its projection on the horizontal plane, from
which it can be seen that the followers can follow the leader more accurately and can realize

260



J. Mar. Sci. Eng. 2023, 11, 873

the multi-AUV formation control in a 3D environment. The simulation results illustrate that
the formation control method combining CNN-LSTM prediction and backstepping sliding
mode control designed in this paper can better realize the three-dimensional predictive
control of multi-AUV formation under the communication constraints.

Figure 12. Cont.
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Figure 12. Simulation diagrams of formation position and velocity information: (a) AUV northward
trajectory, (b) AUV eastward trajectory, (c) AUV vertical trajectory, (d) AUV longitudinal inclination
angle state, (e) AUV bow angle state, (f) AUV longitudinal velocity, (g) AUV lateral velocity, (h) AUV
vertical velocity, (i) AUV longitudinal inclination angle velocity and (j) AUV bow angle velocity.

Figure 13. AUV formation 3D trajectory diagram and its horizontal projection: (a) 3D trajectory
diagram and (b) horizontal projection diagram.
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Figure 14 shows the position and attitude errors of the AUV formation under CNN-
LSTM prediction. Figure 15 shows the position and attitude error of AUV formation under
communication delay. From Figures 14a,b and 15a,b, it can be seen that the northward and
eastward errors of the AUV formation under predictive control are much smaller than the
control errors under delay, indicating that the CNN-LSTM prediction-based AUV formation
control method can better overcome the effect of communication delay on formation control.

Figure 14. Errors of follower AUV under CNN-LSTM model prediction: (a) northward error, (b) east-
ward error, (c) vertical error, (d) longitudinal inclination angle error and (e) bow angle error.
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Figure 15. Errors of follower AUV under time delay: (a) northward error, (b) eastward error, (c) vertical
error, (d) longitudinal inclination angle error and (e) bow angle error.

6. Conclusions

This paper focuses on the multi-AUV formation control problem under communica-
tion constraints. Firstly, a five-degree-of-freedom nonlinear model of the AUV is established
and processed by using feedback linearization to obtain a second-order integral model of
the AUV. A sliding-window-based formation prediction control strategy is designed to
iteratively predict the current state information of the leader by the historical state informa-
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tion of the leader step by step. The method saves computational efficiency and has better
adaptability. The CNN-LSTM prediction model is chosen to predict the trajectory state
of the navigator for the characteristics of AUV motion trajectory with certain temporality,
which compensates for the influence of communication delay on the formation control; and
the backstepping method and sliding mode control are combined to design the formation
controller, which improves the robustness of the controller. The stability of the control is
proved based on Lyapunov stability theory. The effectiveness of the CNN-LSTM prediction
model and the designed controller are verified by simulation.
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Abstract: This dissertation presents a fresh control strategy for dynamic positioning vessels exposed
to model uncertainty, various external disturbances, and input constraint. The vessel is supposed
to work in a particular situation surrounding a lighthouse or a submerged reef, where collision
avoidance must be prevented. The control strategy involves making the vessel navigate under the
action of modified artificial potential functions (MAPFs) along a smooth trajectory. To achieve this
goal, we put forward a collision-avoidance control strategy, which consists of the backstepping
technique, an extended state observer (ESO), and an active dynamic positioning control technique.
The MAPFs, together with a strategy, are applied to realize collision avoidance. To address the input
constraint problem, an auxiliary dynamic system (ADS) is constructed. Entire related signals of the
control system could converge to a small neighboring zone of the equilibrium state via Lyapunov
deduction. Simulation outcomes verify the effectiveness of the presented control strategy.

Keywords: dynamic positioning vessels; collision avoidance; input constraint

1. Introduction

As an increasingly widely used tool for exploring and exploiting marine resources,
the motion control strategy of dynamic positioning vessels has attracted increasing atten-
tion [1–4]. The study and investigation on the control method of dynamic positioning
vessels have been sufficient. However, due to model uncertainty and the effects of envi-
ronmental disturbances, undertaking research remains challenging [5–7]. To deal with
this challenge, several control methods have been proposed for the tracking control of
dynamic positioning vessels. In general, control schemes used for compensating the model
uncertainty and disturbances can be classified as passive and active approaches. The active
approaches exploit the estimation of the model uncertainty and disturbances to compensate
for these effects [8], while the passive approaches rely on the robustness property of the de-
signed controller [9–11]. To reduce the ship roll motion in waves, a self-tuning proportional
integral derivative (PID) controller is used to adjust optimal stabilizer fin angles in [12].
However, the controller has poor performance to deal with the high magnitude of the dis-
turbance values. In order to increase the performance, fuzzy logic systems and intelligent
control techniques have been proposed in [13,14]. The fuzzy logic systems depend on a
good human understanding of the dynamical behavior of the system. Model predictive
control is employed to ensure optimal system performance [15], and the method algorithm
requires a large number of account operations and resources. To solve this problem and
enhance robustness property, sliding mode control is proposed for the tracking control of
dynamic positioning vessels [16]. To reduce the effects of uncertainty and disturbances,
an active approach is designed based on observers. In order to estimate uncertainty and
disturbances, the disturbance observer is proposed for the tracking control of vessels [17];
the key features of disturbance observer are based on velocity measurements. The position
and heading of vessels can be acquired by using GPS and electronic compass, although
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it is difficult to obtain their velocities. To avoid using velocity measurements, a nonlinear
extended state observer (ESO) is employed for dynamic positioning vessel in [18].

Besides model uncertainty and disturbances, another challenge to tracking control for
dynamic positioning vessel is input constraint. Due to physical limitations, the actuator
outputs are constantly bounded or constrained [19]. Input constraint may degrade the
system performance and lead to an imbalance [20]. To deal with this challenge, a Gaussian
error function is used to approximate input saturation in [21]. The hyperbolic tangent
function is used to handle the input saturation in [22], and a trajectory tracking control law
is designed based on the hyperbolic tangent function. However, the hyperbolic tangent
function and Gaussian error function limit system performance, even if the control inputs
are not saturated. To avoid this, an anti-windup compensator is incorporated into controller
design to solve trajectory tracking of dynamic positioning vessel with input saturation
in [23]. To solve the input saturation in trajectory tracking control of vessels, an auxiliary
dynamic system (ADS) is applied to controller design in [24]. Ref. [25] introduces an
auxiliary control to solve the formation control of autonomous underwater vehicles with
input saturation.

However, few papers take the problem of collision-avoidance control into account.
In the view of engineering practice, it is inevitable for unmanned vessels to encounter
fixed or moving obstacles such as lighthouses and submerged reefs. Collision avoidance is
crucial to navigation safety. The existing achievements often use a path-planning algorithm
to solve the collision-avoidance problem [26–29]. The method depends on an optimization
algorithm, which is complex and takes a long time to obtain a feasible solution, so it is not
conducive to lowering the construction cost of dynamic positioning vessels. In order to
address this problem, some scholars design the control system of unmanned vessels with
collision avoidance [30,31]. However, input saturation is neglected in the controller-design
process, and the performance of the actuator has a great impact on collision-avoidance
ability. Therefore, input constraint also needs to be considered when proposing the collision-
avoidance control algorithm.

Motivated by the above research background, this paper investigates the trajectory
tracking control of surface vessels subject to input saturation, uncertainty, and environ-
mental disturbances. Even more significantly, both static obstacles and unknown non-
cooperative ships are taken into consideration. Inspired by the works in [30], an improved
output feedback controller is proposed. Firstly, an ESO is used to estimate the velocity,
model uncertainty, and disturbances. To avoid collisions with obstacle and unknown non-
cooperative ships, modified artificial potential functions (MAPFs) are incorporated into the
controller-design process. In particular, MAPFs can render the vessel bypass obstacle and
unknown non-cooperative ships smoothly, which greatly reduces the actuator performance
requirements. An ADS is introduced to solve the input saturation. Then, an output feedback
controller is designed based on the ESO, the MAPFs, and the ADS. Finally, the stability of
closed-loop system is proved. Simulations demonstrate the proposed control strategy.

Three salient features of this paper are summarized as follows. First, MAPFs are
designed to solve the problem of automatic collision avoidance system for dynamic posi-
tioning vessels. Second, both obstacle and unknown non-cooperative ships are considered
in the controller-design process. The embedded processor of the vessels carries out read-
ing computations using only the position and yaw, and the transmission loads are saved.
Third, the designed strategy can achieve collision avoidance, even if the control inputs
are saturated.

Compared with the existing related results, the novelty of this paper is summarized as
follows. First, compared with the control strategy [20–23], this paper designs a strategy to
achieve collision avoidance between a vessel and an obstacle. Second, unlike the existing
control approaches [30,31], input saturation is considered in the controller-design process;
the proposed controller has become more attractive in practice engineering. Third, com-
pared with the collision-avoidance algorithm proposed in [18], a non-cooperative ship is
also considered.
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The other sections are organized as follows. The problem is formulated in Section 2.
Section 3 provides a collision-avoidance strategy, Section 4 presents an observer design,
and Section 5 presents a controller design and stability analysis. Simulation outcomes are
described in Section 6. Conclusions are given in Section 7.

2. Problem Formulation

The kinematic (position and orientation) and dynamic (linear velocity and angular
velocity) models of dynamic positioning vessel are [32]

η̇ =R(ψ)ν (1)

Mν̇ + Cν + Dν =τ + d, (2)

where η = [x, y, ψ]T, x, and y are vertical and horizontal coordinates in the earth-fixed refer-
ence frame, respectively. ψ is the yaw angle in the earth-fixed reference frame. ν = [u, v, r]T

denotes the velocity vector containing linear velocity u, v and the angular velocity r.
M ∈ R

3×3 denotes the inertia matrix including added mass, which is positive definite, in-
vertible, and constant. C ∈ R

3×3 represents a skew-symmetric matrix of Coriolis and
centripetal term. D ∈ R

3×3 denotes the damping matrix, which is positive definite.
τ = [τu, τv, τr]T is the input signal. d = [d1, d2, d3]

T are the environmental disturbances.
R(ψ) is the rotation matrix and given by

R(ψ) =

⎡⎣ cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦.

In practical application, due to the limited engine power, the input signals are limited
by maximum force and moment. The input limitation is given:

τ =

⎧⎨⎩
τmax τc > τmax

τc τmin ≤ τc ≤ τmax
τmin τc < τmin

where τmax and τmin ∈ R
3 are the maximum and minimum control force and moment,

respectively. The mismatch function is defined as � = τc − τ, τc = [τuc, τvc, τrc]T, τuc, τvc
and τrc are control force and moment calculated by the proposed controller, respectively.
The saturated input signal can be attained by τ = τc − �.

3. Collision Avoidance Strategy

The collision-avoidance ability of the control system plays an important role in ship-
collision avoidance and ensuring the safety of ship navigation, and artificial potential
functions are used for achieving collision avoidance [33,34]. Here, the MAPFs are designed;
they consist of a repulsion function, and they do not work when the vessel is sufficiently far
away from obstacle and other ship. The MAPFs repel the vessel when the vessel approaches
the obstacle and the other ship, which keeps a safe distance from the obstacle and the other
ship. The obstacle is modeled as a circle-shaped object [35], and the MAPFs are given
as follows:

po =

{
1
2 αo(

1
pv

− 1
R̄o
)2, if pv ≤ R̄o

0, otherwise
(3)

where pv = ‖p − po‖ is the distance between the vessel and the obstacle , p = [x, y]T is the
position of the vessel, po = [xo, yo]T is the center of the obstacle, and αo is a positive constant.
R̄o = max{Ro, Ru}, Ro is the collision avoidance range with respect to the obstacle, and Ru
is the collision avoidance range with respect to the vessel.
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To avoid collision with an obstacle, the MAPFs are introduced to the control objective.
Additionally, the control objective is given as follows:

lim
t→+∞

‖η − ηd − ηo‖ < c1 (4)

where ηd is the desired trajectory, ηo = [po, po, 0]T.

Hypothesis 1. ηd and its derivative η̇d are bounded.

Remark 1. The MAPFs do not work when the vessel is sufficiently far away from obstacle . This
means that ηo = [0, 0, 0]T if pv > R̄o, and the control objective is a trajectory tracking task.
The MAPFs work and repel the vessel when it approaches the obstacle. The design of ηo ensures that
the MAPFs can render the vessel bypass obstacle smoothly, which leads to conservative input signals.

4. Observer Design

In this section, we develop a nonlinear observer to estimate the unknown term contain-
ing environmental disturbances d, the damping matrix D, and the Coriolis and centripetal
term C; the model of USV can be rewritten as

η̇ =R(ψ)ν (5)

ν̇ =M−1τ + ζ, (6)

where ζ = M−1(−Cν − Dν + d).

Hypothesis 2. There is a positive constant ζ∗ such that ‖ζ̇‖ ≤ ζ∗.

Inspired by [36], an ESO is given to provide the estimations of model uncertainties
and disturbances, which is shown as:

˙̂η =− Ko1(η̂ − η) + R(ψ)ν̂, (7)
˙̂ν =− Ko2RT(ψ)(η̂ − η) + ζ̂ + M−1τ, (8)
˙̂ζ =− Ko3RT(ψ)(η̂ − η) (9)

where η̂ = [x̂, ŷ, ψ̂]T ∈ R
3, ν̂ = [û, v̂, r̂]T ∈ R

3, ζ̂ = [ζ̂1, ζ̂2, ζ̂3]
T ∈ R

3, x̂, ŷ, ψ̂, û, v̂, r̂, ζ̂1, ζ̂2, ζ̂3
are the estimates of x, y, ψ, u, v, r, ζ1, ζ2 and ζ3. Ko1 ∈ R

3×3, Ko2 ∈ R
3×3, and Ko3 ∈ R

3×3

are gain matrices.
From (5)–(9), the error dynamics of the ESO are given as

˙̃η = −Ko1η̃ + R(ψ)ν̃,

˙̃ν = −Ko2RT(ψ)η̃ + ζ̃, (10)
˙̃ζ = −Ko3RT(ψ)η̃ − ζ̇,

where η̃ = η̂ − η, ν̃ = ν̂ − ν and ζ̃ = ζ̂ − ζ are estimation errors.
The observer error dynamics (10) can be rewritten as

Ẋ =AX + Bφ (11)

η̃ =CoX, (12)

where X = [η̃T , ν̃T , ζ̃T ]T ∈ R
9×1,

A =

⎡⎣ −Ko1 R(ψ) 03
−Ko2RT(ψ) 03 I3
−Ko3RT(ψ) 03 03

⎤⎦, (13)
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B =

⎡⎣ 03
03
I3

⎤⎦, (14)

Coi =
[

I3 03 03
]
, (15)

φ = −ζ̇. 03 is a 3 × 3 dimensional zero matrix. I3 is a 3 × 3 dimensional identity matrix.
According to Hypothesis 2, we can devise a hypothesis that ‖φ‖ ≤ φ̄ and φ̄ is a

positive constant.
A nonlinear term J(ψ) makes it difficult to conduct the stability analysis of the ESO.

To solve the difficulty, a transformation χ = TX with T = diag{JT(ψ), I3, I3} is intro-
duced, thus

χ̇ = (A0 + rST)χ + Bφ, (16)

where ST = diag{S1, 03, 03},

S1 =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦, (17)

A0 =

⎡⎣ −Ko1 I3 03
−Ko2 03 I3
−Ko3 03 03

⎤⎦. (18)

Lemma 1. The error of the ESO X is bounded, if there are symmetric definite positive matrices
Q, P ∈ R

9×9 such that

AT
0 P + PA0 + PBBT P + Q

+ r̄(ST
T P + PST) ≤ 0, (19)

AT
0 P + PA0 + PBBT P + Q

− r̄(ST
T P + PST) ≤ 0, (20)

r̄ ∈ R is the upper bound of r.

Chose a Lyapunov function as follows:

Vo =
1
2

χT Pχ. (21)

We can obtain that V̇o =
1
2 (χ

T Pχ̇ + χ̇T Pχ). Form (16), we can obtain that

V̇o =
1
2
(χT P((A0 + rST)χ + Bφ)) +

1
2
((A0 + rST)χ + Bφ)T Pχ (22)

By using ((A0 + rST)χ)
T Pχ = χT(AT

0 p + rST
T P)χ and (Bφ)T Pχ = χT PBφ, differenti-

ating Vo with respect to time is given:

Vo =
1
2

χT(PA0 + AT
0 P + rPST + rST

T P)χ

+ χT PBφ

≤1
2

χT(PA0 + AT
0 P + rPST + rST

T P (23)

+ PBBT P)χ +
1
2

φTφ

≤ −co1 Vo + co2 ,
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where co1 = λmin(Q)
λmax(P) , co2 = 1

2 φ̄2. Since co2 is symmetric definite positive, the state χi is

bounded. Using ‖T−1‖ = 1 and X = T−1χ, the estimation error signal X is bounded .

5. Controller Design

In order to clearly describe the process of controller design, the diagram of the pro-
posed output feedback controller is given in Figure 1. The designed ESO provides esti-
mations of velocities, model uncertainty, and disturbances by using position of the vessel.
A filter is used to give the velocity estimations of obstacle or non-cooperative ship. An ADS
is designed based on the mismatch function � = τc − τ. The proposed kinetic control law
is designed by using the ADS and the ESO.

Figure 1. The diagram of the proposed output feedback controller.

An output feedback controller design for vessel with collision avoidance is presented
step by step.

Step 1: A modified error function based on the information of desired trajectory and
obstacle is defined as

z1 = η − ηd − ηo. (24)

Along with the kinematics (5), the time derivative of (24) is given as

ż1 = R(ψ)ν − η̇d − η̇o. (25)

Choosing α as a virtual input, the kinematic control law α is proposed as

α = RT(ψ)(η̇d + ˙̄ηo − K1z1), (26)

where K1 ∈ R
3×3 is a diagonal matrix, η̇d is known time derivative of ηd, ˙̄ηo is the signal

originated from the filter, and lo ˙̄ηo + η̄o = ηo, lo is a positive constant.

Remark 2. The virtual input (26) is a virtual velocity signal. If z1 and ˙̄ηo → [0, 0, 0]T, α →
RT(ψ)η̇d, which is the desired velocity in the hull coordinate system. If z1 → [0, 0, 0]T and
˙̄ηo �= [0, 0, 0]T, α → RT(ψ)(η̇d + ˙̄ηo), the velocity of the vessel converges to the vector piled up by
the desired velocity and the velocity of obstacle. The term −K1z1 ensures the convergence of the
signal α, the therms η̇d + ˙̄ηo give equilibrium points of the control system, and the RT(ψ) is the
transform matrix between the earth-fixed reference frame and the hull coordinate system.

Remark 3. Narrow channels and coastal waters form regions with heavy maritime traffic. Small
sea vehicles do not have navigational aids such as VHF radio or AIS [37]. Users are unable to
gain the velocity information. We refer to these actors as non-cooperative ships. Non-cooperative
ships need to be taken into account in controller design. To estimate the velocity information of
non-cooperative ships, a filter is introduced to the process of controller design. Errors are caused
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when the velocity estimation is used. Errors are bounded due to position-bounded ηo. This shows
that enough safety distance between dynamic positioning vessels and non-cooperative ships or
obstacles is necessary.

Step 2: In this step, a dynamic controller at the kinetic level is developed. Define the
second error vector as

z2 = ν̂ − ᾱ − β, (27)

where β is signal of ADS; it is designed to solve input saturation. ᾱ is introduced to avoid
the calculation of the time derivative of α; a first-order filter is used instead of the time
derivative of α, l ˙̄α + ᾱ = α with time constant l > 0. The update law of β is given as

β̇ =− K2β − M−1� (28)

where K2 ∈ R
3×3 is a diagonal matrix.

The time derivative of z2 is derived as

ż2 = −Ko2RT(ψ)η̃ + ζ̂ + M−1(τc − �)− ˙̄α − β̇. (29)

To stabilize z2, a kinetic control law is designed as

τc =M(−K3z2 − ζ̂ + ˙̄α + K2β − RT(ψ)z1), (30)

where K3 ∈ R
3×3 is a diagonal matrix.

Lemma 2. Consider the system consisting of the dynamic positioning vessel dynamics (1) and
(2); the kinetic control law (30); the observer (7), (8), and (9); and the ADS (28) with input
saturation, environmental disturbances, and model uncertainty. If Hypotheses 1–2 are satisfied,
the proposed output feedback-control scheme guarantees that all of the signals in the closed-loop
system are bounded.

Proof. Choose a Lyapunov function candidate as follows:

V1 =
1
2

zT
1 z1. (31)

Using (25), the time derivative of V1 is given

V̇1 =zT
1 [R(ψ)ν − η̇d − η̇o]. (32)

By applying (27) to (32), the time derivative of V1 is rewritten as

V̇1 =zT
1 [R(ψ)(z2 + α + β + α̃ − ν̃)− η̇d − η̇o]. (33)

Substituting (26) into (33), the time derivative of V1 can be rewritten as

V̇1 =− zT
1 K1z1 + zT

1 [R(ψ)(z2 + β + α̃ − ν̃)] + Δv, (34)

where Δv is a positive constant containing estimate error of the velocity information of
non-cooperative ships.

Define a another Lyapunov function

V2 = V1 +
1
2

zT
2 z2. (35)
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Form (8), (27), and (34), the time derivative of V2 can be attained

V̇2 =− zT
1 K1z1 + zT

1 [R(ψ)(z2 + β + α̃ − ν̃)]

+ zT
2 [−Ko2RT(ψ)η̃ + ζ̂ + M−1(τc − �)

− ˙̄α − β̇] + Δv (36)

Using equations (30) and (28),

V̇2 =− zT
1 K1z1 + zT

1 [R(ψ)(β + α̃ − ν̃)]

− zT
2 Ko2RT(ψ)η̃. (37)

Define the last Lyapunov function

V3 = V2 +
1
2

βT β + Vo. (38)

Using (28) and (37) yields, the time derivative of V3 is given

V̇3 =− zT
1 K1z1 − zT

2 K3z2 + zT
1 [R(ψ)(β + α̃ − ν̃)]

− zT
2 Ko2RT(ψ)η̃ − βTK2β − βM−1� + Δv + V̇o. (39)

Using Young’s inequality, the inequalities are given as

zT
1 [R(ψ)(β + α̃ − ν̃)] ≤1

2
(3zT

1 z1 + βT β + α̃T α̃ + ν̃T ν̃), (40)

−zT
2 Ko2RT(ψ)η̃ ≤λmin(Ko2)/2(zT

2 z2 + η̃T η̃), (41)

−βM−1� ≤1/2(βT β + Δ), (42)

where Δ = M−1�T�M−1.
Substituting (40)–(42) into (39), the time derivative of V3 is rewritten as

V̇3 ≤− [λmin(K1)− 3/2]zT
1 z1 − [λmin(K3)− λmin(Ko2)/2]zT

2 z2

− [λmin(K2)− 1]βT β − co3 Vo + co4 , (43)

where co3 = [λmin(Q)− max{λmin(Ko2), 1}]/λmax(P), co4 = co2 + α̃T α̃ + Δ/2 + Δv.
The inequality (43) becomes

V̇3 ≤− c1V3 + c2, (44)

where c1 = min{2[λmin(K1)− 3/2], 2[λmin(K3)− λmin(Ko2)/2], 2[λmin(K2)− 1], co3}, c2 =
co4.

From the definition of V3, it can be concluded that all of the signals in the closed-loop
are bounded.

6. Simulation Results

In this section, numerical simulations are designed to show the effectiveness of the pro-
posed controller (PC). The reference signal ηd is used to generate desired trajectory. In simu-
lations, the model of dynamic positioning ship Cybership II is used [38]. The control forces
and moment are constrained as τmax = [2 N, 2 N, 1.5 Nm], τmin = [−2 N, −2 N,−1.5 Nm].
Environmental disturbances are modeled as the sum of some sinusoidal signals. The pa-
rameters of observer are chosen as Ko1 = diag[15, 15, 15], Ko2 = diag[15, 15, 15], Ko3 =
diag[15, 15, 15]. The design parameters of the controller are K1 = diag[5, 5, 5], K2 =
diag[10, 10, 10], K3 = diag[5, 5, 5]. The avoidance ranges R̄o = 8 m, αo = 20.
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6.1. Trajectory Tracking Control with Obstacle Avoidance

The formation tracking results for case 1, case 2, case 3, and case 4 are shown in
Figures 2 and 3. For all cases, the initial postures of desired trajectory are given in [0 m, 0 m,
0 rad]T. The trajectory is generated by time-varying velocity vector νd, and νd(t) is given in
Table 1. The center of the obstacle is presented in Table 1, and the safe collision-avoidance
radii is 1.5 m. The initial postures of dynamic positioning vessel η(0) are chosen in Table 1.
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Figure 2. Trajectory tracking control under four cases (the blue circle denotes obstacle).
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Figure 3. The distances between dynamic positioning vessel and obstacle under four cases.

Table 1. Design simulations.

Simulation Scenario η(0) νd(t) Po

Case 1 [−2 m, −2 m, 0 rad]T [0.2 m/s, 0 m/s, 0 rad/s]T [10 m, −1 m]T

Case 2 [−2 m, −2 m, 0 rad]T [0.2 m/s, 0 m/s, 0 rad/s]T [10 m,−1 m]T

Case 3 [−8 m, −10 m, 0 rad]T [0 m/s, 0.2 m/s, 0 rad/s]T [10 m, −1 m]T

Case 4 [−8 m, −10 m, 0 rad]T [0 m/s, 0.2 m/s, 0 rad/s]T [10 m, −1 m]T

Figure 2 shows trajectory tracking control under four cases. In all cases, the dynamic
positioning vessel overtakes the obstacle on its portside, and it makes a detour around the
obstacle. Figure 3 shows the distances between the dynamic positioning vessel and the
obstacle. The results show all of the distances are greater than the safe collision-avoidance
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radii. This explains why there are no safety risks during voyaging: collisions between
the dynamic positioning vessel and the obstacle are avoided . To describe the collision-
avoidance process, Figure 4 shows the time-varying error function zT

1 z1 containing the
tracking error z1. In 0 s–25 s, the tracking error z1 gradually converges to the neighboring
zone of zero, and the MAPFs are ineffective. During 25 s–45 s, the dynamic positioning
vessel is moving toward the obstacle, and the MAPFs start to work, which leads to the
actual operation deviating from the predetermined trajectory. At 45 s–60 s, the dynamic
positioning vessel is moving away from the obstacle, the error function zT

1 z1 decreases
continuously, and the dynamic positioning vessel gets back on the predetermined trajectory.
At 60 s–100 s, the dynamic positioning vessel keeps a safe distance from the obstacle, and
the MAPFs do not work.
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Figure 4. zT
1 z1 under four cases.

Figure 5 describes the velocity recovery performance of the observer. At 25 s–60 s,
owing to the effect of the MAPFs, the lateral speed and longitudinal speed are changing
zigzag. Figure 6 shows that the uncertainty and disturbances can be estimated by the
proposed observer, and the estimated initial value is set as zero. Figure 7 shows that the
input signals of system are constrained by the input saturation. At 25 s–60 s, , to ensure the
safety navigation of the dynamic positioning vessel, the MAPFs work and affect the input
signals, which generates terrible twitter and saturated input signals.

0 20 40 60 80 100
t[s]

-0.1
0

0.1
0.2
0.3

u 1[m
/s

]

0 20 40 60 80 100
t[s]

0

0.2

0.4

v 1[m
/s

]

0 20 40 60 80 100
t[s]

-0.2

0

0.2

r 1[r
ad

/s
]

Figure 5. Velocity estimation.
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Figure 6. Unknown function and estimation.
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6.2. Trajectory Tracking Control with Non-Cooperative Ship

To show the effectiveness of the collision-avoidance ability of the PC, a non-cooperative
ship is considered in trajectory tracking control. The initial position of non-cooperative
ship is set as [4 m, −1 m, 0 rad]T , and the constant velocity non-cooperative ship is set
as [0.1 m/s, 0 m/s, 0 rad/s]T . Figure 8 shows the trajectory-tracking results. At t = 10 s,
the dynamic positioning vessel tracks the desired signal successfully. The non-cooperative
ship comes from port side of the dynamic positioning vessel. At t = 50 s, the non-
cooperative ship takes no actions to avoid collisions, and the dynamic positioning vessel
turns to avoid a collision with the non-cooperative ship, which leads to large formation
tracking errors. The dynamic positioning vessel overtakes the non-cooperative ship from
its starboard. At t = 60 s, the dynamic positioning vessel keeps a safe distance between
the non-cooperative ship, and tracking trajectory gradually converges to the desired trajec-
tory. The non-cooperative ship is moving out from behind the dynamic positioning vessel.
At t = 100 s, the dynamic positioning vessel successfully tracks the desired trajectory
again. The dynamic positioning vessel moves away from the non-cooperative ship, and the
non-cooperative ship sails on the starboard of the dynamic positioning vessel . Figure 9
demonstrates the distance between the dynamic positioning vessel and the non-cooperative
ship. Figure 10 depicts the bounded control force and moment. Under the effect of the
ADS, the rapid saturation of the input signals is fast convergence.
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Figure 8. Four moments of trajectory tracking control.

0 20 40 60 80 100
t[s]

2

3

4

5

6

7

8

9

10

11

12

[m
]

Distance

Figure 9. The distance between dynamic positioning vessel and non-cooperative ship.

0 20 40 60 80 100
t[s]

-2

0

2

[N
] u

0 20 40 60 80 100
t[s]

-2

0

2

[N
] v

0 20 40 60 80 100
t[s]

-1.5

-1

-0.5

0

[N
m

]

r

Figure 10. Control inputs under non-cooperative ship.
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6.3. Comparison Study

To further appraise the performance of the PC, an output feedback tracking controller
(OFC) without an auxiliary dynamic system is given by

z1 =η − ηd − ηo (45)

z2 =ν̂ − ᾱ, (46)

τc =M(−K3z2 − ζ̂ + ˙̄α − RT(ψ)z1), (47)

where the parameters K1, K2, and K3 are same as the proposed controller, and the pa-
rameters and structure of the observer are also the same. In the same environmental
interference, a non-cooperative ship is considered in trajectory tracking control. The initial
position of the non-cooperative ship is set as [4 m, −1 m, 0 rad]T , and the constant velocity
non-cooperative ship is set as [0.1 m/s, 0 m/s, 0 rad/s]T . The simulation results are shown
as Figures 11–13. Figure 11 shows the four moments of the trajectory-tracking results, and
the dynamic positioning vessel takes evasive action under OFC. At t = 10 s, the dynamic
positioning vessel tracks the desired signal successfully. The non-cooperative ship comes
from port side of the dynamic positioning vessel . At t = 50 s, the non-cooperative
ship takes no actions to avoid collisions, and the dynamic positioning vessel makes turns
to avoid collisions. However, at t = 60 s, the dynamic positioning vessel overtakes the
non-cooperative ship from its portside. However, unlike the PC, the trajectory of the
dynamic positioning vessel has a coincidence with the non-cooperative ship navigation
curve. At t = 100 s, the dynamic positioning vessel moves away from the non-cooperative
ship, and the non-cooperative ship sails on the starboard of the dynamic positioning vessel.
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Figure 11. Four moments of trajectory tracking control under OFC.

Figure 12 shows the time-varying distances between the dynamic positioning vessel
and the non-cooperative ship under different controllers. The safe collision-avoidance
radii is set to 1.5 m; collisions may happen between the dynamic positioning vessel and
non-cooperative ship under OFC. Figure 13 shows that the control inputs suffer from
sudden jumps, and the proposed scheme can decrease jitters.
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Figure 12. The distances between dynamic positioning vessel and non-cooperative ship under
different controllers.
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Figure 13. Input signals under different controllers.

7. Conclusions

This article suggests an output feedback controller for a dynamic positioning vessel
with model uncertainty, unknown environmental disturbances, and input constraints. Static
obstacles and unknown non-cooperative ships are also considered. An ESO is given, and
unknown model dynamics and velocity are simultaneously estimated. The controller is
designed based on the ADS and MAPFs. Finally, a mathematical analysis is undertaken
to prove that all of the error signals of the system are bounded. Simulation experiments
affirm the tracking performance of the proposed controller. This paper proposes an anti-
collision controller for the dynamic positioning vessel, and simulations prove that the
vessel can avoid the obstacle and navigate itself to the desired trajectory. However, there is
no mathematical analysis that shows that the controller can guarantee safety. Finding the
best way to solve this problem can be considered as a part of future works.
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Abstract: In this paper, contraction theory is applied to design a control law to address the horizontal
trajectory tracking problem of an underactuated autonomous underwater vehicle. Suppose that
the vehicle faces challenges such as model uncertainties, external environmental disturbances, and
actuator saturation. Firstly, a coordinate transformation is introduced to solve the problem of
underactuation. Then, a disturbance observer is designed to estimate the total disturbances, which
are composed of model uncertainties and external environmental disturbances. Next, a saturated
controller is designed based on singular perturbation theory and contraction theory. Meanwhile,
contraction theory is used to analyse the convergence properties of the observer and the full singular
perturbation system, and make quantitative analysis of the estimation error and the tracking error.
Finally, the results of numerical simulations prove that the method in this paper enables the vehicle
to track the desired trajectory with relatively high accuracy, while the control inputs do not exceed
the limitations of the actuators.

Keywords: underactuated autonomous underwater vehicle; trajectory tracking; actuator saturation;
singular perturbation system; contraction theory

1. Introduction

Underactuated AUV is a kind of AUV which has fewer independent control inputs
than the DOF to be controlled. Compared with the fully actuated AUV, it has more
advantages in saving costs, reducing consumption, and improving system reliability, so it
has a wide range of applications [1]. However, due to the challenges such as nonlinearity,
model uncertainties, time-varying external disturbance, actuator saturation, etc., the control
of the underactuated AUV becomes difficult. Currently, the precise motion control of the
underactuated AUV is one of the research hotspots.

As a powerful system design and analysis tool, CT [2] has been applied in many fields;
however, to our knowledge, there is currently no literature on the application of CT to
underactuated AUVs. Based on this, this paper focuses on the horizontal trajectory tracking
control of an underactuated AUV in the presence of model uncertainties, time-varying
environmental disturbances, and actuator saturation. CT and its application in SPS [3] are
used to design the controller and give quantitative analyses of various errors. In general,
the contributions of this paper are as follows:

(1) A coordinate transformation is introduced to cope with the problem of underactuation
and a disturbance observer is designed to estimate the total disturbances.

(2) CT and SPT are used to construct a saturated controller such that the reference states
defined by the coordinate transformation converge to the desired states asymptotically,
while the error between the actual states and the desired states converges to the
region near zero, and the control inputs do not exceed the limitations of the actuator.

J. Mar. Sci. Eng. 2023, 11, 805. https://doi.org/10.3390/jmse11040805 https://www.mdpi.com/journal/jmse
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Compared with existing methods, the controller designed in this paper has a simple
form and is easy to apply. In solving input saturation problems especially, there is no
need to design auxiliary systems or run complex algorithms such as NN or FL.

(3) CT is applied to analyse the convergence properties of the DO and the SPS, and the
upper bounds of estimation error, tracking error, and the error between the ideal
controller and actual controller are given.

The structure of this paper will be arranged as follows. Section 1 introduces the
research background, purpose, contributions, and structure of this paper. Section 2 reviews
the literature related to the work of this paper. Section 3 establishes the mathematical
model for an underactuated 3-DOF AUV in the presence of model uncertainties, external
disturbances, and actuator saturation. A coordinate transformation is introduced to deal
with the problem of underactuation. The DO and the saturated controller are designed
in Section 4. Section 5 gives quantitative analysis of the control variable error and the
tracking error. Section 6 conducts numerical simulations and analyses the performance
of the controller and DO. Finally, Section 7 gives conclusions. In addition, Appendix A
summarizes the abbreviations used in this paper and Appendix B briefly introduces the
theoretical basis of this paper.

2. Literature Review

Underactuation is the first problem to be solved in the motion control of a USV or
underactuated AUV. One of the common methods to tackle this problem is to derive the
tracking error model in SF frame [4–7], and then design the control law on each controllable
DOF. In [4], a 3D-path-following error model for an underactuated 5-DOF AUV was
established based on virtual guidance method in SF frame, and then backstepping and
sliding mode control were applied to design controllers in surge, pitch, and yaw directions.
In [6], the path-following error dynamics were derived and several reduced-order ESOs
were designed to estimate various disturbances. Coordinate transformation is also a
common method [8–12]. In [8,9], the model of a USV was converted into a cascade system
and the control problem of the USV was transformed into the stabilization analysis of
two small subsystems. In [10,11], the output variables of the USV were redefined via a
coordinate transformation and then the other control methods were applied to design the
controller such that the new output variables could track their desired values. In addition,
the system order of the underactuated AUV can be reduced by constructing an SPS [13–15].
In [13], SPT was used to decompose the full system of a 4-DOF underactuated AUV into
two time-scale subsystems and then the independent controller design was carried out on
each subsystem.

Disturbances are a ubiquitous challenge for the motion control of an AUV. It may
come from model uncertainties, unknown system parameters, or external environment
disturbances, or more likely the superposition of these factors. The estimation and com-
pensation of disturbances are very important for AUVs’ motion control. For mechanical
systems including AUVs, a common practice is to combine various disturbances into total
disturbances, and then design a DO to estimate it. The observer based on auxiliary variables
and the ESO [16] are two common types of DO. Readers can find a detailed overview of
the first type of DO in [17,18]. In [19], an auxiliary variable was introduced to design a
nonlinear DO and then a backstepping finite-time sliding mode controller was constructed
for the trajectory tracking control of a 5-DOF AUV. In [20], a reduced-order observer was
proposed to estimate the total disturbances. ESO estimates the total disturbances as another
state of the system. In [14], a high gain ESO based on SPT was designed to estimate the
total disturbances. In [21], a proportional-integral velocity variable based third-order fast
finite-time ESO was designed to estimate the lumped uncertainties and their first deriva-
tives. In addition, with the continuous maturity of artificial intelligence, more and more
researchers use NN [22] and FL [23] to approximate disturbances and uncertainties.

In practical applications, the problem of actuator saturation is almost unavoidable since
the force/torque provided by the actuators is limited. Ignoring this problem may reduce
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the performance of the controller or even cause instability. At present, the auxiliary variable
system [24–27], adaptive method [28], FL [29], NN [30], MPC [31,32], and DAI [33,34] are
common means used to address actuator saturation. In [27], the saturation effects of rudder
angle in diving control of AUVs were compensated by a modified auxiliary system with
time-varying nonlinear gains. In [28], a smooth dead zone based model was designed to
linearize the actuator model, so that the adaptive law could be applied to eliminate input
saturation and actuator failure. In [31,32], a 3D trajectory tracking controller based on
MPC was proposed such that the state and control input of the AUV did not exceed their
respective physical constraints. In [33], DAI was recently applied to guarantee saturation
avoidance and the techniques were applied to DC motor control for UUVs [34]. However,
most of the methods used to solve input saturation are relatively complex, and some require
additional design of new systems. In addition, methods such as NN and FL require strong
computing power, which is a significant challenge for AUVs.

In the above literature, the Lyapunov method occupies an absolute position in the
design and stability analysis of the system. However, for a complex nonlinear system,
it is not easy to find a suitable Lyapunov function and prove that its first derivative is
UND. In recent years, the continuous development of CT [2] provides researchers with new
ideas. It studies the convergence properties of system trajectory, which is very applicable
to tracking control problems. At present, CT has been widely used in many fields, such
as controller and observer design [35–39], cooperative control [40,41], SPS [3,42], iterative
learning control [43,44], convex optimization [45,46], and so on.

Compared with the extensive application in other fields, the application of CT in AUVs
is still rare, and the model of AUVs in some rare applications is relatively simple. In [35],
CT was used to design the position and velocity observer for an AUV with 1-DOF and
analyse the convergence properties. In [47], after omitting the Coriolis and centripetal terms
in the dynamic equation, CT was applied to design an UGES observer for a 6-DOF AUV.
Unfortunately, the simulation results of the observer were not shown. In [48,49], combining
the CT and the backstepping method, the author designed a speed stabilization controller
and a trajectory tracking controller for a simplified AUV, and discussed the incremental
stability of the AUV system. In [37], CT was applied to construct a trajectory tracking
controller for an openframe AUV under the pH framework.

3. AUV Modelling

3.1. AUV Modelling in the Horizontal Plane

This section establishes a horizontal 3-DOF kinematics and dynamics model for an
underactuated AUV. To describe the motion of the AUV, we first define two reference
frames: earth-fixed frame and body-fixed frame, as shown in Figure 1. Here, (x, y, z)T

and (ϕ, θ, ψ)T denote the position vector and the attitude vector relative to the earth-fixed
frame, respectively. The terms (u, v, w)T and (p, q, r)T represent the linear velocity vector
and angular velocity vector with respect to the body-fixed frame, respectively.

Figure 1. Schematic diagram of coordinate system.
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Since the motion considered here is the motion of an underactuated 3-DOF AUV in
the horizontal plane, the dynamics in heave, roll, and pitch directions are all neglected and
the AUV is supposed to be neutrally buoyant. The kinematics model is such that [50]⎧⎨⎩

ẋ = ucosψ − vsinψ
ẏ = usinψ + vcosψ
ψ̇ = r

(1)

and the dynamics model⎧⎨⎩
m11u̇ − m22vr − Xuu − X|u|u|u|u = τu + τd1

m22v̇ + m11ur − Yvv − Y|vs.|v|vs.|v = τd2
m33ṙ + (m22 − m11)uv − Nrr − N|r|r|r|r = τr + τd3

(2)

where m11 = m − Xu̇, m22 = m − Yv̇ and m33 = Iz − Nṙ. m is the AUV’s mass; Iz is the
moment of inertia about the yaw rotation; Xu̇, Yv̇, and Nṙ are the hydrodynamic added mass
terms in the surge, the sway, and the yaw directions, respectively; Xu, Yv, and Nr are the
linear damping terms, and X|u|u, Y|vs.|v, and N|r|r are the second-order damping terms. τu
and τr are control inputs for the surge force and the yaw torque. τd1, τd2, and τd3 represent
the total disturbances in three directions, they are composed of model uncertainties and
time-varying environmental disturbances.

To facilitate subsequent design, (2) is simplified as follows:⎧⎨⎩
u̇ = fu + m−1

11 τu + m−1
11 τd1

v̇ = fv + m−1
22 τd2

ṙ = fr + m−1
33 τr + m−1

33 τd3

(3)

with fu = m−1
11 (m22vr + Xuu + X|u|u|u|u), fv = m−1

22 (−m11ur + Yvv + Y|vs.|v|vs.|v), and
fr = m−1

33 ((m11 − m22)uv + Nrr + N|r|r|r|r).
This paper also considers the problem of actuator saturation. In order to deal with this

problem, we design a control law τi = σ(τci, τmax), i = u, r, where τci is the force/torque
calculated by the controller, τmax represents the maximum force/torque that the actuator
can provide, τi is the actual output force/torque of the actuator, and σ(·) is a bounded
smooth function, which satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ(0, τmax) = 0
sσ(s, τmax) > 0, ∀ s �= 0
lim

s→+∞
σ(s, τmax) = τmax, lim

s→−∞
σ(s, τmax) = −τmax

∂σ(s,τmax)
∂s > 0, ∀s ∈ Ds ∈ R

(4)

As we know, many functions including the Gaussian error function and hyperbolic tangent
function satisfy the properties in (4). Here we choose the hyperbolic tangent function (Figure 2),
so the form of the controller is τ = σ(τc, τmax) = τmaxtanh(τc/τmax), where τ = [τu τr]T,
τc = [τcu τcr]T.

Figure 2. Schematic diagram of tanh(x).
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The dynamics model considering actuator saturation is obtained:⎧⎨⎩
u̇ = fu + m−1

11 σ(τcu, τmax) + m−1
11 τd1

v̇ = fv + m−1
22 τd2

ṙ = fr + m−1
33 σ(τcr, τmax) + m−1

33 τd3

(5)

The following Assumptions are made to facilitate the subsequent design and analyses:

Assumption 1. τd1, τd2, and τd3 are all unknown and time-varying, and their first and second
time derivatives are bounded.

Remark 1. The disturbances are bounded since the energy of the environmental disturbance and
the state of AUVs are finite. Therefore, Assumption 1 is reasonable.

3.2. Coordinate Transformation

To cope with the problem of underactuation, the following coordinate transformation
is introduced [10,12]: {

xr = x + lcosψ
yr = y + lsinψ

(6)

where l > 0 is a constant, xr → x, y → y as l → 0. The first order derivatives of xr and yr
with respect to time are given:{

ẋr = ucosψ − vsinψ − lrsinψ
ẏr = usinψ + vcosψ + lrcosψ

(7)

Subsequently, the second derivatives of xr and yr are obtained:{
ẍr = u̇cosψ − (v̇ + lṙ)sinψ − fx(z)
ÿr = u̇sinψ + (v̇ + lṙ)cosψ + fy(z)

(8)

where z = [u v r ψ]T , {
fx(z) = ursinψ + (vr + lr2)cosψ
fy(z) = urcosψ − (vr + lr2)sinψ

(9)

In the light of (5) and (8), we have{
ẍr = Fx(z)− fx(z) + Δx + m−1

11 cosψσ(τcu, τmax)− lm−1
33 sinψσ(τcr, τmax)

ÿr = Fy(z) + fy(z) + Δy + m−1
11 sinψσ(τcu, τmax) + lm−1

33 cosψσ(τcr, τmax)
(10)

where {
Fx(z) = fucosψ − ( fv + l fr)sinψ

Δx = m−1
11 τd1cosψ − (m−1

22 τd2 + lm−1
33 τd3)sinψ

(11)

{
Fy(z) = fusinψ + ( fv + l fr)cosψ

Δy = m−1
11 τd1sinψ + (m−1

22 τd2 + lm−1
33 τd3)cosψ

(12)

Let η1 = [xr yr]T be the reference trajectory and η2 = [ẋr ẏr]T , (10) can be rewritten as
follows: {

η̇1 = η2
η̇2 = Φ(z) + Δ + g(ψ)σ(τc, τmax)

(13)

where Φ(z) = [Fx(z)− fx(z) Fy(z) + fy(z)]T , Δ = [Δx Δy]T is the combined disturbance
vector and

g(ψ) =
[

m−1
11 cosψ −lm−1

33 sinψ

m−1
11 sinψ lm−1

33 cosψ

]
(14)

It is obvious that the matrix g(ψ) is nonsingular for any ψ. The control objective is
to design a controller τc such that the reference trajectory η1 = [xr yr]T converges to the
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desired trajectory ηd = [xd yd]
T asymptotically, and the error between the actual trajectory

η = [x y] and the desired trajectory is small enough. In addition, considering that the
disturbance Δ is unknown, a DO is needed.

Assumption 2. According to Assumption 1, (11) and (12), the disturbance vector Δ and its first
derivative are also bounded. For the convenience of subsequent analysis, we assume that ‖Δ̇‖ ≤ Δ.

Assumption 3. The desired trajectory ηd = [xd yd]
T and its first two time derivatives η̇d, η̈d are

bounded. Furthermore, the desired yaw angle ψd = arctan ẏd(t)
ẋd(t)

is also bounded.

4. DO and Saturated Controller Design

4.1. DO Design

Here, we introduce an auxiliary variable to design a DO to estimate Δ, and its expres-
sion is as follows:{

Δ̂ = ξ + K1η2
ξ̇ = K1(−Φ(z)− gψσ(τc, τmax))− K1(ξ + K1η2)

(15)

where Δ̂ is the estimated value of Δ, ξ is the auxiliary variable and K1 > 0 is the observer
gain. Define the estimation error e1 = Δ̂ − Δ. According to (13) and (15), the dynamic of e1
is obtained as follows:

ė1 = ˙̂Δ − Δ̇ (16)

= K1(−Φ(z)− f (z)− gψσ(τc, τmax))− K1Δ̂ + K1η̇2 − Δ̇

= −K1e1 − Δ̇

according to Assumption 2, the dynamic of e1 can be regarded as the combination of the
nominal dynamic ė0 = −K1e0 and the bounded disturbance Δ̇. Obviously, the nominal dy-
namic is contracting with respect to e0 with a contracting rate λ1 = K1 and a transformation
matrix Θ1.

According to triangular inequality, we obtain ‖e1‖ ≤ ‖e1 − e0‖ + ‖e0‖. Since
ė0 = −K1e0 is contracting, there is ‖e0(t)‖ ≤ ‖e0(0)‖ and e0(0) is the initial value of e0.
Then, applying the robust properties of contracting system, we can obtain

‖e1‖ ≤ ‖e1 − e0‖+ ‖e0‖

≤ χ1‖e1(0)− e0(0)‖exp−λ1t +
χ1Δ
λ1

+ ‖e0(0)‖
= v1 (17)

where χ1 is the upper bound of the condition number of Θ1.
We can see that v1 consists of three parts. The first part χ1‖e1(0)− e0(0)‖exp−λ1t will

converge to zero exponentially, so the size of v1 will ultimately depend on the last two
items. Obviously, ‖e1‖ can be infinitely close to zero by selecting the appropriate observer
gain and the initial estimation values of the disturbances.

4.2. Saturated Controller Design

In this subsection, we apply CT and SPT to design a saturated controller. Firstly, we
define a tracking error e2 = η1(t)− ηd(t) and then construct a new variable based on e2:

S = ė2 + K2e2 (18)

here K2 > 0 is the gain. From the definition of S, we know that
S → 0 ⇒ e2 → 0 (19)
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In the light of (13) and (18), we have

Ṡ = F(z, τc, Δ, e2) = Φ(z) + Δ + g(ψ)σ(τc, τmax)− η̈d + K2ė2 (20)

The present objective is to design a controller τc to make S converge to 0. Applying
SPT, we construct a dynamic process for τc:

μτ̇c = H(z, τc, Δ, e2, μ) = −gT(ψ)(K3S + Φ(z) + Δ + g(ψ)σ(τc, τmax)− η̈d + K2ė2) (21)

where 0 < μ � 1 is the singular perturbation parameter and K3 > 0 is the controller gain.
Equations (20) and (21) constitute a standard SPS [51], where (20) is the slow subsystem,

and (21) is the fast subsystem. Since μ � 1, the dynamic process of (21) is much faster than (20).
Now, we apply CT to analyse the properties of the controller. By solving the partial

derivative of τc, the Jacobian of (21) is

Jb = − 1
μ

gT(ψ)g(ψ)

[
∂σ(·)
∂τu

∂σ(·)
∂τr

]
(22)

According to the properties of σ(·) and g(ψ), it is obvious that Jb is UND. Therefore, for
any z, Δ, e2, and μ, H(z, τc, Δ, e2, μ) is partially contracting with respect to τc, we assume
that the contracting rate is λ2

μ and the transformation matrix is Θ2. Then, according to the
results in [3], the algebraic equation H(z, τc, Δ, e2, 0) = 0 can be equivalently written as
τd = ϑ(z, Δ, e2), i.e., there is a unique, global mapping between τc and z, Δ, e, where τd is
the root of the above algebraic equation, which is also called the quasi-steady state of the fast
subsystem (21). According to the properties of contracting system, τc converges to its quasi-
steady state τd exponentially. Now, solving the algebraic equation H(z, τd, Δ, e2, 0) = 0,
we obtain

σ(τd, τmax) = g−1(ψ)(−K3S − Φ(z)− Δ + η̈d − K2ė2) (23)

according to SPT, the slow subsystem can be simplified via the quasi-steady state of the fast
subsystem, therefore, bring (23) into (20), and the simplified slow subsystem is obtained:

Ṡ = −K3S (24)

since K3 > 0, the dynamic of S is contracting with a transformation metric I and a contract-
ing rate λs = K3. Therefore, S converges to 0 exponentially. Based on the above analysis,
we know that

μ → 0 ⇒ τc → τd ⇒ S → 0 (25)

Therefore, when μ is small enough and K3 is large enough, τc → τd and S → 0 quickly.
At the same time, due to the existence of σ(·), the control input will not exceed the limit
of the actuator. Compared with the literature in the introduction, the method proposed
in this paper is simple in form and convenient in application when dealing with actuator
saturation.

Since it has been proven in Section 3.1 that Δ̂ approaches Δ infinitely, we replace Δ

in (21) with its estimated value, and the practical controller can be obtained:

μτ̇c = −gT(ψ)(K3S + Φ(z) + Δ̂ + g(ψ)σ(τc, τmax)− η̈d + K2ė2
τ = τmaxtanh(τc/τmax)

(26)

In order to ensure the fast convergence of τc to τd and e2 to 0, K2, K3 and μ should
be reasonably selected. At the same time, K1 should be large enough to ensure the rapid
convergence of the estimation error. Of course, due to the complexity of the system, each
parameter has an impact on the performance of the controller. After many simulations,
we find that three parameters l, μ, and K2 have a significant impact on the performance of
the controller. For l, when l is too small, the controller may diverge, while too large l will
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reduce the tracking accuracy. Reducing μ can improve the convergence speed, but it also
makes the changes of the control input less smooth. For μ , the smaller the μ , the faster the
convergence speed will be, but it will lead to drastic changes in the control input, while an
excessively large μ will reduce the convergence speed. At the same time, the larger the K2
, the faster the convergence speed, but this will cause oscillation. In addition, K1 mainly
affects the performance of DO, and K3 has a limited impact on the results. Based on the
above analysis, it is necessary to make a balance between tracking accuracy, convergence
speed, and smooth changes in control input when selecting parameters.

5. Error Analysis

5.1. Error Analysis of Control Variables

As analysed above, when τc converges exponentially to its quasi-steady state τd, the
contracting reduced-order slow subsystem will be obtained. However, there is always an
error between τc and τd, because μ can only be be as small as possible and cannot be equal
to zero. Here, we make a quantitative analysis of the error between τc and τd.

Defining the control variable error τe = τc − τd. According to SPT, the fast boundary
layer dynamics in a new time scale t1 = t

μ can be derived as

dτe

dt1
= H(z, τe + τd, Δ̂ − e1, e2, μ)− μτ̇d (27)

The unperturbed error dynamic of (27) is

dτe

dt1
= H(z, τe + τd, Δ̂ − e1, e2, μ) (28)

Because the Jacobian Jb in (22) is UND, it implies that (28) is also partially contracting with
respect to τe, and the contracting rate is λ2

μ and the transformation matrix is denoted as Θ2

with a supermum condition number χ2. Assume that τ̇d is Lipschitz continuous in τe and
e1 [42], i.e.,

‖τ̇d(·)‖ ≤ c1‖τe‖+ c2‖e1‖+ c3 (29)

where c1, c2, c3 are all positive constants.
According to the robust properties of contracting system and ignoring the initial value

of τe,

‖τe(t)‖ = ‖τc − τd‖ ≤ χ2‖τc(0)− τd(0)‖exp
− λ2

μ2 t
+

μχ2(c1‖τe‖+ c2‖e1‖+ c3)

λ2
(30)

then, we can obtain

‖τe(t)‖ ≤ λ2χ2

λ2 − μχ2c1
‖τc(0)− τd(0)‖exp

− λ1
μ2 t

+
μχ2(c2v1 + c3)

λ2 − μχ2c1
(31)

it can be observed that τe depends not only on μ, but also on λ2 and χ2, which are related
to the values of observer gain and controller gain. Therefore, τe can be very small by
reasonably selecting parameters.

5.2. Analysis of Tracking Error

The existence of e1 and τe causes S to fail to converge to zero. In this subsection, a
quantitative analysis of S is conducted. By performing some simple transformations on (20),
we obtain a new dynamic form of S

Ṡ =Φ(z) + g(ψ)σ(τd, τmax) + Δ − η̈d + K2ė2+

Φ(z) + g(ψ)σ(τc, τmax) + Δ − η̈d + K2ė2−
(Φ(z) + g(ψ)σ(τd, τmax) + Δ − η̈d + K2ė2) (32)

290



J. Mar. Sci. Eng. 2023, 11, 805

By substituting (23) in (32), we obtain

Ṡ = −K3S + g(ψ)σ(τd, τmax)(σ(τc, τmax)− σ(τd, τmax)) (33)

Similarly, the dynamic of S can be regarded as the coupling of the contracting nominal
dynamic Ṡ0 = −K3S0 and the bounded disturbance g(ψ)(σ(τc, τmax)− σ(τd, τmax)). Sup-
pose the contracting rate is λ3 and the transformation matrix is Θ3. For the convenience of
analysis, it is further assumed that g(ψ)(σ(τc, τmax)− σ(τd, τmax)) is Lipschitz continuous
in τe with constant L, i.e.,

‖g(ψ)(σ(τc, τmax)− σ(τd, τmax))‖ ≤ L‖τc − τd‖ = L‖τe‖ (34)

Continuing to apply the triangular inequality and the robustness property of the
contracting system, and we can obtain:

‖S‖ ≤ ‖S − S0‖+ ‖S0(0)‖
≤ χ3‖S(0)− S0(0)‖exp−λ3t +

χ3L‖τe‖
λ3

+ ‖S0(0)‖ (35)

where χ3 is the upper bound of the condition number of Θ3 and S0(0) is the initial value
of S0. If we replace τe in (35) with (31), a more detailed expression of S can be obtained.

From the above analysis, we can see that the estimation error and tracking error can
finally converge to a small range by reasonably selecting the controller gain, the observer
gain, and the singular perturbation parameters.

6. Numerical Simulations

In this section, based on Matlab Simulink, numerical simulations on the Remus
AUV [52] are conducted to illustrate the effectiveness of the proposed method; the pa-
rameters in (2) are given as follows: m = 30.58, Iz = 3.45, Xu̇ = −0.93, Yv̇ = −35.5,
Nṙ = −4.88, Xu = −13.5,Yv = −66.6, Nr = −6.87, X|u|u = −1.62, Y|v|v = −131 and
N|r|r = −188.

In order to highlight the advantages of this method, the simulation results obtained
based on the methods in [53] are compared with the results in this paper. In [53], the
sliding mode control method was applied to deal with the trajectory tracking problem of an
underactuated AUV by introducing a first-order sliding surface in terms of surge tracking
errors and a second-order surface in terms of lateral motion tracking errors. The sliding
surfaces are defined as {

S1 = eu + λ1
∫ t

0 eu(τ)dτ

S2 = ėv + λ3ev + λ2
∫ t

0 ev(τ)dτ
(36)

where λ1, λ2, λ3 > 0. eu = u − ud and ev = v − vd are tracking errors for surge and sway
velocity, respectively. ud and vd are desired surge velocity and sway velocity, and they are
defined as follows: [

ud
vd

]
=

[
cosψ sinψ
−sinψ cosψ

][ẋd + lxtanh(− kx
lx

xe)

ẏd + lytanh(− ky
ly

ye)

]
(37)

where kx, ky > 0 are controller gains and lx, ly > 0 are saturation constants. xe = x − xd
and ye = y − yd are position tracking errors.

Then, the control law is given by{
τu = τu,eq + τu,sw
τu = τr,eq + τr,sw

(38)
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where

τu,eq = −m22vr − Xuu − X|u|u|u|u + m11u̇d − m11λ1eu

τu,sw = m11(−k1S1 − W1sign(S1)

τr,eq = −(m11 − m22)uv − Nrr − N|r|r|r|r + (m11m−1
22 u̇r − m−1

22 (Yv + 2sign(v)Y|v|vv)v̇)/b

+ (Γ − λ3 ėv − λ2ev)/b

τr,sw = (−k2S2 − W2sign(S2))/b

b = m−1
33 (ud − m11m−1

22 )

Γ = −...
x dsinψ +

...
y dcosψ − ẍdrcosψ − ÿdrsinψ − u̇dr + γ1rcosψ + γ2rsinψ

+ γ̇1sinψ − γ̇2cosψ

γ1 = kxẋesech2(− kx

lx
xe)

γ2 = kyẏesech2(− ky

ly
ye)

The first derivatives of the desired velocity is given by[
u̇d
v̇d

]
= r
[−sinψ cosψ
−cosψ −sinψ

][ẋd + lxtanh(− kx
lx

xe)

ẏd + lytanh(− ky
ly

ye)

]
+

[
cosψ sinψ
−sinψ cosψ

][
ẍd − γ1
ÿd − γ2

]
(39)

There are two types of trajectories that need to be tracked by the AUV, one is a
sinusoidal curve, and the other is a combination of straight lines and circles.

Trajectory 1: Sinudoidal curve{
xd(t) = 0.5t
yd(t) = 20cos(0.02t)

The total simulation time is 200π s. To facilitate the distinction, we mark the simulation
based on the method in this paper as Case 1, while the simulation based on the literature [53]
is marked as Case 2. The various settings for Case 1 and Case 2 simulations have been
given in Table 1.

Table 1. Settings in Case 1 and Case 2.

Terms Case 1 Case 2

parameters
l = 0.35, K1 = 10, K2 = 0.024 lx = ly = 1, kx = ky = 0.5

K3 = 500, μ = 0.01 l1 = l2 = l3 = 1
k1 = k2 = 1, W1 = W2 = 0.1

initial
conditions

[x(0) y(0) ψ(0)]T = [0 − 2 0]T [x(0) y(0) ψ(0)]T = [0 − 2 0]T

[u(0) v(0) r(0)]T = [0.2 0 0]T [u(0) v(0) r(0)]T = [0.2 0 0]T

ξ(0) = 0, τc(0) = 0

actuator limitation τu,max = τr,max = 30

Trajectory 2: A combination of straight lines and circles{
xd(t) = 0.4t, yd(t) = 20, t < 100
xd(t) = 40 + 20cos(0.02t + 1.5π − 2), yd(t) = 40 + 20sin(0.02t + 1.5π/ − 2), t ≥ 100

The total simulation time is 100π + 100 s. Similarly, two simulations are called Case 3
and Case 4, respectively. The various settings required for them are shown in Table 2.
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Table 2. Settings in Case 3 and Case 4.

Terms Case 3 Case 4

parameters
l = 0.25, K1 = 50, K2 = 0.08 lx = ly = 1, kx = ky = 0.5

K3 = 500, μ = 0.02 l1 = l2 = l3 = 1
k1 = k2 = 1, W1 = W2 = 0.1

initial
conditions

[x(0) y(0) ψ(0)]T = [−1 − 18 0]T [x(0) y(0) ψ(0)]T = [−1 − 18 0]T

[u(0) v(0) r(0)]T = [0.2 0 0]T [u(0) v(0) r(0)]T = [0.2 0 0]T

ξ(0) = 0, τc(0) = 0

actuator limitation τu,max = 30, τr,max = 25

The following disturbances are considered in these simulations:⎧⎨⎩
τd1 = 0.1 fu − 3 + 2sin(0.2t) + 2ε(5)
τd2 = 0.2 fv + 5 + 0.2sin(0.2t) + 5ε(5)
τd3 = 0.15 fr + 2 + sin(0.1t) + 3ε(5)

(40)

here, ε(5) is the zero-mean white noise with power intensity of 5%. Specifically, the first term
denotes degrees of model uncertainties. The second, third, and forth terms, respectively,
account for the constant, periodic unknown disturbances, and Gaussian white noise.

Simulation results for Case 1 and Case 2 are shown in Figures 3–6. Figure 3 illustrates
the trajectory of the AUV. It can be seen that both the method in this paper and the sliding
mode control method in the literature have high tracking accuracy. The reference trajectory
in Case 1 and the actual trajectory in Case 2 all converge to the desired trajectory. Of course,
the error between the actual trajectory and the desired trajectory in Case 1 is relatively
large, which can be more clearly seen from Figure 4.

Figure 3. The comparison of trajectories in Case 1 and Case 2.

(a) (b)

Figure 4. The tracking errors in Case 1 and Case 2: (a) position error, (b) heading angle error.
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Figure 5. The estimation results of DO in Case 1.

Figure 6. The control inputs in Case 1 and Case 2.

Figure 4 shows the trajectory tracking error and heading angle error, where
ηe1 =

√
(x − xd)2 + (y − yd)2 and ηe2 =

√
(xr − xd)2 + (yr − yd)2 denote the trajectory

tracking error, ψe = ψ − ψd represents the heading angle error. It can be seen from
Figure 4a that the trajectory error ηe2 in Case 1 converges after about 200s, and it is almost 0,
indicating that the reference state defined via coordinate transformation can accurately
be traced to the desired state. However, ηe1 in Case 1 does not converge to 0 but remains
around 0.35, which is just the value of l. Reviewing Equation (6), we know that there is
an inherent error between the reference state and the actual state. The results here just
confirm this phenomenon. A very natural idea is that the value of l should be as small
as possible to reduce ηe1. However, we find in the simulation that too small l will lead to
slower convergence and even divergence. Therefore, the value of l should be balanced
between tracking accuracy and convergence speed. In contrast, the sliding mode control
methods in the literature have high tracking accuracy and convergence speed regardless of
trajectory tracking error shown in Figure 4a or heading angle error shown in Figure 4b, which
is a disadvantage of the method in this paper.

Figure 5 provides the results of the DO in Case 1. It reveals that the unknown distur-
bance including model uncertainties and time-varying environmental disturbance can be
accurately estimated by the DO designed in this paper.

Figure 6 shows the control inputs of surge force and yaw torque in Case 1 and Case 2. It
can be seen that the method in this paper considers the problem of input saturation, so neither
τu nor τr exceed the limitation of the actuator, and the control input changes smoothly, which is
conducive to the stable operation of the actuator. However, the methods in the literature do not
solve the problem of input saturation. We can see that at the initial stage of simulation, both τu
and τr are large, which can easily exceed the limitation of the actuator. Moreover, due to the use
of symbolic functions in the controller, there is significant chattering in the control input curve,
which is detrimental to the stable operation of the actuator.
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In general, the sliding mode control methods in the literature excel in tracking accuracy
and convergence speed. The advantage of the method in this paper lies in the simple form
of the controller, and it easily solves the problem of input saturation, ensuring stable
changes in control inputs and stable operation of the actuator. Of course, improving
tracking accuracy and convergence speed is the work we must do in the next stage.

Simulation results for Case 3 and Case 4 are shown in Figures 7–10. It can be seen that
the conclusions obtained from the analysis of Case 1 and Case 2 are still applicable here.
Although the desired trajectory becomes more complex, the AUV still tracks the desired
trajectory accurately. At the same time, even if the input saturation is more complex, the
saturated controller proposed in this paper enables the control input in each direction to
not exceed the limit of the actuator. Similarly, it can be seen that the performance of the
sliding mode control method in the literature in Case 4 is the same as in Case 2.

Figure 7. The comparison of trajectories in Case 3 and Case 4.

(a) (b)
Figure 8. The tracking errors in Case 3 and Case 4: (a) position error, (b) heading angle error.

Figure 9. The estimation results of DO in Case 3.
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Figure 10. The control inputs in Case 3 and Case 4.

In all of above simulation results, the proposed controller works well for the horizontal
trajectory tracking of underactuated AUVs in the presence of unknown internal and external
disturbances. Therefore, we reach a conclusion that the validity and efficacy of the proposed
method and proposed control scheme are sufficiently demonstrated.

7. Conclusions

This paper focusses on the horizontal trajectory tracking control of a 3-DOF underactu-
ated AUV in the face of model uncertainties, time-varying external disturbance, and input
saturation. A coordinate transformation is introduced to tackle the problem of underactua-
tion and a DO is designed to estimate the total unknown disturbance. Applying CT and
SPT, we design a saturation controller and perform quantitative analysis for the estimation
error and the tracking error. Simulation results show that the controller proposed in this
paper makes the AUV track the desired trajectory well and avoid the problem of input
saturation. Of course, compared to the methods in the literature, the method in this paper
still needs to be improved in terms of tracking accuracy and convergence speed. Therefore,
the next research direction is to improve the tracking accuracy and convergence speed on
the basis of this paper, while expanding the research results to the 3D trajectory tracking of
underactuated AUVs.
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Appendix A

Due to the use of many abbreviations in this paper, for the sake of standardization, they
are summarized in the Table A1 according to the order in which they appear in the paper.
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Table A1. The abbreviations used in this paper.

Abbreviation Full Name

AUV autonomous underwater vehicle
CT contraction theory
DO disturbance observer
SPT singular perturbation theory
SPS singular perturbation system
NN neural networks
FL fuzzy logic

DOF degrees-of-freedom
USV unmanned surface vehicle
SF Serrent–Frenet

ESO extended state observer
3D three-dimensional

MPC model predictive control
DAI deterministic artificial intelligence
UUV unmanned underwater vehicles
UND uniformly negative definite
UGES uniformly global exponential stable

pH port-Hamiltonian

Appendix B

Appendix B.1. Contraction Theory

For a nonlinear system

ẋ = f (x, t), x(t0) = x0, ∀t ≥ t0 ≥ 0 (A1)

where x(t) ∈ Rn is the state vector, t is the time and f : R×Rt≥t0 → Rn is a nonlinear
smooth function, meaning that all required derivatives and partial derivatives exist and are
continuous. If there is a positive scalar λ and a uniformly positive matrix Θ, such that

(F + FT)/2 ≤ −λIn (A2)

then (A1) is said to be contracting, where In denotes the identity matrix with dimension
n, F = (Θ̇ + ΘT ∂ f (x,t)

∂x )Θ−1 is the generalized Jacobian. For a contracting system, the
trajectories starting from any initial condition will converge together exponentially. If λ = 0,
(A1) is called semi-contracting and all its trajectories converge together asymptotically [2].

Partial contraction is a very important concept in CT [40]. Let the auxiliary system,
called virtual system

ς̇ = f (ς, x, t) (A3)

associated with (A1) through f (x, x, t) = f (x, t). Assume that (A3) is contracting with
respect to ς, i.e., the Jacobian ∂ f (ς,x,t)

∂ζ is UND for any ς and x.
If a particular solution of the virtual system verifies a smooth specific property, then

all trajectories of the original x-system verify the same property exponentially. The original
system is called partial contracting.

When a contracting system is subject to bounded disturbance, the error between the
trajectory of the system after the disturbance and the original system trajectory is very
small, that is, the contracting system is robust.

Consider the perturbed system:

ẋp = f (xp, t) + d(xp, t) (A4)
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where d(xp, t) is bounded, i.e., ∃ d0 ≥ 0, ∀xp, ∀t ≥ 0, ‖d(xp, t)‖ ≤ d0. Then the error
between x(t) and xp(t) satisfies

‖xp(t)− x(t)‖ ≤ χp‖xp(0)− x(0)‖exp−λt +
χpd0

λ
(A5)

where χp is the upper bound of the condition number of Θ.

Appendix B.2. Contraction Analysis of Singular Perturbation System

For a standard singular perturbation system (SPS) [51]:{
ẋ = f (x, z)
εż = g(x, z, ε)

(A6)

0 < ε � 1 is the singular perturbation parameter. For any z, if the virtual system ẏx =
f (yx, z) is contracting with respect to yx, then the system (A6) is called to be partially
contracting with respect to x. Similarly, it is partially contracting in z when the virtual
system εẏz = g(x, yz, ε) is contracting for any x [3,40].

If the system (A6) is partially contracting in z, there exist a unique, global mapping
between x, z and ε [3], i.e., the algebraic equation g(x, z, ε) = 0 can be equivalently written
as z = h(x, ε), here h(x, ε) is called slow manifold or the quasi-steady state of the z-
subsystem. According to SPT, the x-subsystem can be simplified by introducing the slow
manifold into the x-subsystem:

ẋre = f (xre, h(xre, ε)) (A7)

To analyse the convergence behavior between z and the slow manifold h(x, ε), we
define a error variable y = z − h(x, ε), and the dynamic for y can be expressed as:

dy
dτ

= g(x, y + h(x, ε), ε)− ε
h(·)
dt

(A8)

where τ = t
ε is a new time scale. Then, the dynamic behavior of the whole SPT (A6) can be

determined by analysing the behavior of the reduced order state variables xre and z.
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Abstract: A deep reinforcement learning method to achieve complete coverage path planning for an
unmanned surface vehicle (USV) is proposed. This paper firstly models the USV and the workspace
required for complete coverage. Then, for the full-coverage path planning task, this paper proposes a
preprocessing method for raster maps, which can effectively delete the blank areas that are impossible
to cover in the raster map. In this paper, the state matrix corresponding to the preprocessed raster
map is used as the input of the deep neural network. The deep Q network (DQN) is used to train
the complete coverage path planning strategy of the agent. The improvement of the selection of
random actions during training is first proposed. Considering the task of complete coverage path
planning, this paper replaces random actions with a set of actions toward the nearest uncovered grid.
To solve the problem of the slow convergence speed of the deep reinforcement learning network
in full-coverage path planning, this paper proposes an improved method of deep reinforcement
learning, which superimposes the final output layer with a dangerous actions matrix to reduce the
risk of selection of dangerous actions of USVs during the learning process. Finally, the designed
method validates via simulation examples.

Keywords: environment modeling; raster map; screening matrix; DQN; reward function

1. Introduction

In recent years, the field of USV based on sensor technology and intelligent algorithms
has made great progress [1]. During the working process, USV first uses sensors to model
the working environment, estimates its own state, and then makes decisions based on the
surrounding environment and its own state to complete the corresponding tasks. Compared
with humans, USVs are more suitable for performing some highly dangerous or repetitive
tasks, such as target reconnaissance [2], hydrographic mapping [3], and water patrol [4].
To accomplish these tasks in unpredictable water environments, path planning techniques
are crucial for USVs.

As an important aspect of robotics, coverage path planning (CPP), is special path plan-
ning. full-coverage path planning requires that the generated USV motion trajectory can
cover all areas in the workspace, except obstacles, to the greatest extent. The full-coverage
path planning algorithm has a wide range of applications, such as unmanned surface
vehicles [5–7], intelligent sweeping robots [8], gardening electric tractors [9], cleaning
robots [10,11], tile robots [12], rescue robots [13], window cleaning robot [14], automatic
lawn mower [15], etc. In practice, there are many optimization algorithms that USV can
use, such as the Taguchi method, ant colony algorithm, fuzzy logic, and TLBO, which
provide many options for the design of path planning. The Taguchi method is an analyt-
ical approach for a design algorithm, first proposed to enhance the quality of products
in manufacturing. Wang et al. [16] designed optimal bridge-type compliant mechanism

J. Mar. Sci. Eng. 2023, 11, 645. https://doi.org/10.3390/jmse11030645 https://www.mdpi.com/journal/jmse
301



J. Mar. Sci. Eng. 2023, 11, 645

flexure hinges with low stress by using a flexure joint. Sun et al. [17] proposed a new binary
fully convolutional neural network (B-FCN) based on Taguchi method sub-optimization
for the segmentation of robotic floor regions, which can precisely distinguish floor regions
in complex indoor environments. The ant colony optimization algorithm is a bionic intelli-
gent algorithm inspired by the foraging behavior of ant colonies. A global path planning
algorithm based on an improved quantum ant colony algorithm (IQACA) is proposed by
Xia et al. [18]. Fuzzy logic has gained much attention due to its ease of implementation
and simplicity. The concept behind it is to smooth the classical Boolean logic of true (1 or
yes) and false (0 or no) to a partial value located between these values, coming in a term
of the degree of membership. Abdullah Alomari et al. [19] proposed a novel, distributed,
range-free movement mechanism for mobility-assisted localization based on fuzzy-logic
approach. Teaching a learning-based optimization (TLBO) algorithm is a distinguished,
nature-inspired, population-based meta-heuristic, which is basically designed for uncon-
strained optimization. Wang et al. [20] proposed a novel approach to improve centrifugal
pump performance based on TLBO.

In recent years, due to the new demand for USVs with full-coverage path planning in
various fields, such as civil, military, patrol [21], search and rescue [22–25], cybersecurity
industry [26], and inspection [27,28], scholars and experts from various countries have
proposed various methods to complete the task of full-coverage path planning.

The full-coverage path planning algorithm based on the intelligent algorithm means
that USV first models the environment through sensors and relies on the modeled map
to perform full-coverage path planning [29]. The grid map is a common expression of
the environment, and it divides the map into several square grids, which can be used
for a full-coverage route plan. The full-coverage path planning algorithm, based on the
traditional algorithm, includes the full-coverage path planning algorithm of boustrophedon
or the inner spiral full-coverage path planning [30,31]. The boustrophedon method drives
the USV to go back-and-forth along a path, similar to that of an ox plowing a field. In the
work area that needs to be covered, the USV performs full-coverage path planning work
with certain direction rules. Once an obstacle is encountered, the USV changes direction to
cover in another direction. Lee et al. [32] proposed a full-coverage path planning algorithm
based on the inner spiral. This algorithm is an online full-coverage path planning algorithm,
which ensures complete coverage in unstructured planar environments. However, this
kind of algorithm does not introduce global control [33], and the USV can only perceive the
regional state within a certain range, instead of global information, so it will lead to a large
cumulative error.

The most classic full-coverage path planning algorithm based on the exact cell decom-
position method was proposed by Choset [34] in 2000. Choset developed an accurate cell
decomposition method for full-coverage path planning, which is essentially a generaliza-
tion of trapezoidal decomposition. It can be used in work environments with non-polygonal
obstacles and is more efficient than trapezoidal decomposition. Zhu et al. [35] proposed
the Glasius bionic neural network (GBNN) algorithm and improved this algorithm in
view of the shortcomings of the bionic neural network algorithm, such as high computa-
tional complexity and long path planning time. This algorithm constructs a grid graph
by discretizing the two-dimensional underwater environment and then establishes a cor-
responding dynamic neural network on the grid graph. Luo et al. [36] first proposed a
complete coverage neural network (CCNN) algorithm for ultrasonic motor path planning.
By simplifying the calculation process of neural activities, this algorithm can significantly
reduce the calculation time. In order to improve coverage efficiency and generate more
standardized paths, the author establishes the optimal next-step location decision formula,
combined with the coverage direction term.

However, the above studies mainly focus on the coverage rate, and a systematic study
on the coverage path repetition rate is rare. In this study, a new full-coverage path planning
algorithm based on reinforcement learning is proposed. In the decision phase, USV can
use the model learning capability of reinforcement learning to select actions based on the
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historical information of the area coverage. In the training phase, the information of area
coverage is used to train the neural network, which makes the neural network model fit the
best motion action. This algorithm improves the defects of the traditional full-coverage path
planning algorithm with higher efficiency. Both ensure the coverage rate and significantly
reduce the coverage path repetition rate. The feasibility and efficiency of the algorithm are
verified in simulation experiments. This contribution is expected to provide a scientific
reference for the future research about the coverage path repetition rate.

2. USV Models and Environment Modeling

2.1. USV Model

When the USV moves in the workspace, in order to avoid the USV colliding with the
obstacles or the map boundary, it is necessary to model according to the size and shape
of the USV. In path planning, there are two ways to model the USV. The first one is to
model the USV in real-time and the second one is to inflate obstacles to a width the size
of the vehicle’s radius. Since the first method needs to model the USV in real-time, it can
move the USV irregularly with a better effect and stronger robustness, but it consumes too
many computing resources and is difficult to implement. The obstacle avoidance effect
is very good, but the efficiency of the path planning is too low. In the second method,
an irregular USV can be regarded as a circular USV with a diameter equal to the maximum
width of the USV, as shown in Figure 1. The model diagram of the USV is a subset of
the approximate model of the USV, that is, the area of the approximate model of the USV
is greater than or equal to the model diagram of the USV, so as long as the approximate
model of the USV does not collide with obstacles, the USV can be guaranteed. During the
movement, it is possible not to collide with obstacles. This will not lose too much USV
modeling accuracy, but also has the advantages of good real-time performance, convenience,
reliability, and high efficiency. Since the grid size selected in this paper is equal to the
diameter of the approximate image of the USV, the target point moved by the USV each
time can be set as the midpoint of the next grid, and when the USV needs to move obliquely,
it is very likely that, as shown in Figure 2, in order to simplify the kinematic model of the
USV, this paper sets the movement direction of the USV to only the horizontal and vertical
directions and does not support the oblique direction. The red arrows in Figure 2 indicate
the direction of usv’s oblique motion.

Figure 1. USV approximation.
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Figure 2. Oblique motion diagram of USV.

2.2. Workspace Modeling and Preprocessing

When the USV uses the grid map modeling method for full-coverage path planning,
the resolution of the grid map has a great influence on the efficiency of its algorithm.
If the resolution is too high, the map information will be redundant, will take up a lot
of memory, and will even lead to repeated traversal, which will reduce the efficiency of
the full-coverage path planning algorithm. When the resolution is too low, although the
memory footprint of the grid map will become very small, it cannot represent some details
of the environmental map, and there is a high probability that the blank area around the
obstacle will be represented as the obstacle area, so using low-resolution raster maps results
in lower coverage for USVs. Therefore, when modeling the working environment of the
USV, in order to reduce the memory occupied by the map and represent some details of the
environment, this paper adopts the coverage size of the USV as the resolution size, that is,
the size of each grid is the size that the USV can use once. The size of the coverage area.
When the USV reaches the middle position of the grid, it is considered that the grid has
been covered by the USV.

The construction method of the grid map in this paper is to first divide the working
environment of the USV into several grids of the same size, set the grid that the USV can
reach and cover as white with a value of 0, and set the grid where the obstacles are located.
The grid is set to black, with a value of −1. However, there is only a part of obstacles in
some grids, that is, there are both white areas and black areas in this grid. Here, in order to
prevent the USV from being damaged by collisions when performing full-coverage tasks,
this paper uses such grids. Unpassable areas are uniformly set to black. The construction
method of the grid map is shown in Figure 3.

304



J. Mar. Sci. Eng. 2023, 11, 645

Figure 3. The way to build a grid map.

In order to realize the full-coverage path planning of the USV, it is first necessary to
determine the area that the USV needs to cover. In the grid map, the general area that
the USV needs to cover is all the blank grids in the grid map, but there are some special
For example, if an obstacle surrounds a blank grid, although there is no obstacle in the
surrounded grid, the USV cannot pass through the obstacle to cover the grid, as shown
in Figure 4. Therefore, it is necessary to deal with this situation, that is, the non-coverable
grid becomes the grid with obstacles.

Figure 4. Unreachable grid.

The difficulty of this task lies in how to use the algorithm to automatically find the non-
coverable grids. The non-coverable grids can be easily found by human judgment, but for
the computer, the map is just a series of two-dimensional matrices inputs. For this reason,
this paper proposes a raster map preprocessing method to remove non-overridable rasters.

Since the memory occupied by the matrix is much smaller than the memory occupied
by the image, and each element in the matrix of the same dimension as the grid map can
corresponds to the grid in the grid map, the grid map preprocessing method is proposed
in this paper. First, the grid map is converted into a two-dimensional state matrix form.
The element value of the blank grid in the corresponding position in the state matrix is 0,
and the element value of the black grid representing the obstacle in the corresponding
position in the state matrix is −1. The element value of the corresponding position of the
covered grid in the state matrix is 1, and the element value of the corresponding position
of the grid where the USV is located in the state matrix is 7. In the preprocessing stage of
the grid map, the location of the USV does not need to be considered, and the USV cannot
appear in the grid where obstacles exist, so the element value corresponding to the grid
where the USV is located is recorded as 0 in the preprocessing stage. The grid map shown
in Figure 4 is converted into a two-dimensional matrix, as shown in matrix 1.⎡⎣−1 −1 −1

0 −1 0
−1 0 0

⎤⎦ (1)
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Because the surrounding of the map is the map boundary, the map boundary is re-
garded as an obstacle, and the USV should not go out of the map boundary, so firstly, add −1
around the two-dimensional matrix representing the grid map, as shown in matrix 2.⎡⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
−1 0 −1 0 −1
−1 −1 0 0 −1
−1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎦ (2)

Then, set a 3 × 3 matrix and denote it as a screening matrix Mf , which is matrix 3.⎡⎣0 1 0
1 4 1
0 1 0

⎤⎦ (3)

Decompose matrix 2 into (n−2) × (n−2) 3 × 3 matrices, where n is the dimension of
the matrix after adding −1, and then do a dot product operation with matrix 3. That is,
multiply and sum the elements of each position of the two 3 × 3 matrices, and finally, obtain
a 3 × 3 matrix, and write the obtained result into a matrix of the same size as matrix 1.
The calculation process is shown in Figure 5. The final result is matrix 4.⎡⎣−7 −7 −3

−4 −5 −2
−6 −3 −2

⎤⎦ (4)

Figure 5. Remove non-overridable grid calculation process.

Then, filter the generated matrix. If the value of a certain position is less than or equal
to −4, the grid representing the position is an uncoverable point or an obstacle, and the
value corresponding to the element of its position should be −1. The other grids are grids
that need to be fully covered, and the element value corresponding to their position is 0.
The two-dimensional matrix corresponding to the filtered raster map is shown in matrix 5.
Use this method to correctly and efficiently remove non-overridable blank rasters, turning
them into black rasters. ⎡⎣−1 −1 −1

−1 −1 0
−1 0 0

⎤⎦ (5)

In the process of performing the full-coverage task, use this matrix to record the grid
where the USV is located and the grid that the USV has covered. The element value of
the corresponding matrix position is changed from 0 to 1, and the element value of the
matrix position corresponding to the rest of the grids remains unchanged. The matrix
corresponding to Figure 6 is shown in matrix 6.
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Figure 6. A state in the process.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 −1 −1 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0
0 0 −1 −1 −1 −1 0 0 0 0 0
0 0 −1 −1 −1 −1 0 0 0 0 0
0 0 −1 −1 −1 −1 0 0 −1 0 0
0 0 −1 −1 −1 −1 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0 0
1 1 1 1 7 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

In order to increase the difference between elements, make the features more obvious,
improve the efficiency of the neural network, and multiply the input matrix M of the
preprocessed raster map by a coefficient β as the input of DQN, that is, the input is β × M.

The size of the grid map affects the speed and success rate of the algorithm learning
process. Bian, T et al. [37] have investigated the correlation between the size of the grid
map and the learning process by using several different algorithms. When the size of grid
map increases, the time required for the algorithm to learn increases and the success rate
decreases to different degrees.

3. Deep Reinforcement Learning Models and the Improvements

3.1. Q Learning

Different from the supervised learning commonly used in machine learning, reinforce-
ment learning is a process in which an agent continuously explores the environment and
tends to an optimal solution. The goal of reinforcement learning is to find the optimal
strategy for a continuous time series. Inspired by psychology, it focuses on how the agent
can take different actions in the environment to obtain the highest reward.

Reinforcement learning is mainly composed of agents, environmental states, actions,
rewards, and punishments. After the agent performs an action, the action will affect the
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environment, so that the state will change to a new state. For the new state, a reward and
punishment signal will be given according to the completion of the task. Subsequently,
the agent performs new actions according to a certain strategy and according to the new
environment state and the feedback reward and punishment.

Q-learning is a reinforcement learning method using the temporal difference method,
which needs to be updated step-by-step in the process of interaction between the agent
and environment, so that the global state transition probability cannot be known. The tem-
poral difference method combines the Monte Carlo sampling method and the dynamic
programming method, making it suitable for model-free algorithms, and it can be updated
in a single step.

The core idea of Q-learning is to use the greedy algorithm to select the behavior
according to a certain probability through the agent, according to the current state s,
and then obtain the corresponding reward r. At the same time, the environment is updated
according to the current state s and the action a selected by the agent. The environment
state is s(t + 1), and the next action is selected based on s(t + 1), until the end of the task
(including the successful completion of the task and the failure of the task). The parameter
update formula of Q-learning is Equation (7).[

Q(s, a) < −Q(s, a) + α ∗ (r + γmaxQ(s′, a′)− Q(s, a))
]

(7)

Among them, α is the learning rate, α is a number less than 1, γ is the discount factor,
and Q(s, a) is essentially a table, which stores the Q value corresponding to each action in
various environments. This table is called the Q-value table. Q-learning uses the Q value
of each action in the Q-value table to decide what action to choose in the corresponding
environment. However, in order to avoid Q-learning, it can only find the local optimal
solution. Using the greedy selection method to select behavior a, the agent has a certain
probability to randomly select the action, instead of according to the Q-value table, and then
updates the Q-value table according to the reward obtained by the agent after taking the
action. An example of the Q-value table is shown in Table 1.

Table 1. Q-value table.

Q-Value Table a1 a2 a3

s1 Q(s1, a1) Q(s1, a2) Q(s1, a3)
s2 Q(s2, a1) Q(s2, a2) Q(s2, a3)
s3 Q(s3, a1) Q(s3, a2) Q(s3, a3)
. . . . . . . . . . . .

3.2. Deep Reinforcement Learning Models

Q-learning is a very classic algorithm in reinforcement learning, but it has a big flaw. Its
actions are selected based on the Q-value table. On the one hand, the capacity of the Q-value
table is very small, and when the environment becomes more complicated, the number
of states will increase exponentially. If the Q-value table needs to completely record the
Q-values corresponding to all states and actions, it will consume a lot of storage space,
and when the state and action spaces are high-dimensional and continuous, it becomes
more difficult to use the Q-value table to store the action space and state. Another aspect is
that the Q-value table is just a table. If there is a state that has never appeared in the Q-value
table, then Q-learning will be helpless, that is, Q-learning has no generalization ability.

Therefore, the deep mind team proposed the deep Q network (DQN) based on an
artificial neural network to make up for the defects of Q-learning. Both DQN and Q-
learning are value-based algorithms in nature. DQN uses a neural network to calculate the
Q-value of the corresponding action in a state and generates the Q-value corresponding
to the action in a certain environment by fitting a function, instead of the Q-value table,
thus avoiding the Q-value table occupying a lot of memory and querying the Q-value.
The slowness of the table and other shortcomings, this method of using a deep neural
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network to fit a Q-value table is called deep reinforcement learning. The basic framework
of DQN is shown in Figure 7. In the figure, S is the current state, A is the current action, R
is the reward, S′ is the next state, A′ is the next action, θ is the parameter of the Q network,
θ′ is the network parameters used to compute the target.

Figure 7. The structure of DQN.

DQN is an improvement to Q-learning. It uses the characteristics of the artificial neural
network to fit the Q-value table. On this basis, DQN also adds an experience replay pool to
solve the problem of too high a correlation between samples. The experience replay pool
stores A large amount of historical data, DQN does not update parameters immediately
after performing an action like Q-learning, but stores a sample corresponding to the action
< st, at, rt, a (t + 1) > in Experience playback pool. When the acquired samples accumulate
to a certain number, the training of the neural network starts. During training, a fixed
number of samples are randomly selected from the experience replay pool for training.
Since it is randomly selected, the probability of data drawn in the same round is very small,
and the strong correlation between samples is broken, thus avoiding the need for neural
networks. The local optimum problem arises from the instability. At the same time, labels
are constructed through reward and punishment functions for neural network training.
In addition, DQN also uses two neural networks with the same structure, one of which
is a neural network with hysteresis parameters, namely the current value network and
the target value network. The parameters of the Q-target (target value network) are the
historical version of the Q-eval (current value network) neural network. Only the Q-eval
neural network is trained. After a certain step, Q-target updates parameters that are the
same as the parameters of Q-eval neural network, so as to reduce the connection between
the current Q-value and the target Q-value, as well as to improve the convergence speed
and stability of the neural network. The specific neural network parameter update formula
is shown in Equation (8).[

loss = (rt + γmaxQ(st+1, a′; θ−)− Q(st, at; θ))2] (8)

In Equation (8), Q(∗; θ−) is the Q-target neural network. It does not need to train
parameters through the Loss function, but only needs to update the parameters after a
certain step size—Q(∗; θ) is the Q-eval neural network, and it directly gives the action that
the agent needs to make through the environment. DQN uses the gradient descent method
to train neural network parameters.

There are two artificial neural networks with the same structure, but different parame-
ters in DQN. Q(st, at; θ) represents the value output by the current network, that is, Q-eval,
which is used to output the optimal action in the current state. Additionally, Q(st+1, a′; θ−)
represents the output result of the target value network Q-target, so when the agent takes
an action, it can update the parameters of Q-eval according to Equation (8), and after a
certain step, iterate several times and copy the parameters of Q-eval to Q-target, thus
completing a learning process.

Three existing improved DQN are combined to achieve the improvements proposed
by this manuscript, including double DQN, dueling DQN, and prioritized experience
replay (DQN).
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3.3. Sampling Method

In DQN, the training samples in the playback memory pool are generated by the
interaction between the agent and the environment and do not need to be provided by
humans. During the interaction between the agent and the environment, new samples will
be continuously generated and stored in the playback memory pool. When the number of
memories stored in the playback memory pool reaches the size of the storage memory pool,
the oldest sample will be deleted, and the new round is stored in the playback memory
pool. Figure 8 shows the update method of the playback memory pool, which can ensure
that the maximum capacity of the playback memory pool remains unchanged.

Figure 8. Replay memory pool update method.

In DQN, the random sampling method is used to extract data from the playback
memory pool for training, while in the full-coverage path planning, the repeated data that
has less effect on the neural network update will have a high probability of being extracted
as the neural network training data. It will slow down the convergence speed of the neural
network. In this paper, the method of sumtree is used to extract data for learning.

Sumtree is a binary tree structure, and its tree structure is only used to store the priority,
and the extra data block is the data needed to be stored in the playback memory pool.
The structure of sumtree is shown in Figure 9.

Figure 9. The framework of sumtree.

The leaf node stores the training priority value of each state, and this priority value is
determined according to the value of its td-error. The larger the value of td-error, the higher
the priority of selecting the memory. Its parent node is the sum of its two child nodes,
and the value of the top-level node is the sum of the values of all the child nodes of the
next layer. Each memory sample corresponds to a leaf node, and a certain amount of
memory is extracted from the leaf nodes for the training each time. Saving data in a tree
structure can greatly facilitate the sampling process, and it also ensures that each leaf node
has a probability of being drawn, which greatly increases the convergence speed of the
neural network.

In addition to replaying the memory pool, it is also necessary to optimize the loss
function of the current value network to eliminate bias. The improved sample priority
function is: [

loss = 1/m ∑j=1 wj(yj − Q(sj, aj; θ))2] (9)
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The definition of wj is shown in Equation (10).[
wj = (1/N ∗ 1/P(j))β

]
(10)

Due to the use of priority to select samples, this will cause the distribution of samples
to change, which will cause the sample model to converge to different values, that is,
the neural network will be unstable. Therefore, importance sampling is used in this paper,
which not only ensures that the probability of each sample being selected for training is
different, in order to improve the training speed, but also ensures that its influence on
the gradient descent of the neural network is the same, thereby ensuring that the neural
network receives the same the result of. In Equation (10), N is the number of samples in the
playback memory pool, and β is a hyperparameter that needs to be set manually to offset
the impact of changes in sample distribution.

3.4. Improvements Based on Action Selection

The USV explores the map under the strategy of the initial neural network. Since
the parameters of the initial neural network are not trained or trained only a few times,
the initial neural network is likely to give a strategy to collide with obstacles or go out
of the map boundary. When the USV collides with an obstacle or walks out of the map
boundary, the full-coverage task fails, and the USV returns to the initial position to try the
next full-coverage path planning task, so the USV needs to undergo much training to avoid
collision obstacles. The worst behavior is to avoid objects or go outside the boundaries of
the map. Moreover, during the training process, even if the USV is in the same position,
the state matrix of the map is different, due to the different previous behaviors. When the
USV does the worst behavior, the reinforcement learning model will only make the state
corresponding to this time. The Q-value of the action is reduced without extending it to all
similar states, as shown in Figure 10.

Figure 10. Dangerous actions in different states.

As shown in Figure 10, state s1 and state s2 are two different states, black squares
are obstacles, white squares are movable paths, gray squares are the paths traveled by
USV, black circle is USV, and a represents the action taken by USV. When the USV makes a
dangerous action only in state s1, deep reinforcement learning will only train the neural
network, so that Q–eval(s1, a) becomes smaller without making the value of Q–eval(s2, a)
smaller, so that when the USV encounters the s2 state, there is still a probability to choose
the dangerous action a, which leads to the failure of the task.

When humans perform similar tasks, they will actively avoid the above dangerous
actions, so this paper proposes a method that can greatly reduce the probability of such
dangerous actions. The policies for USVs are derived from current networks in deep
reinforcement learning. The output of the current network is the Q-value of each action in
the current environment. If you want to reduce the selection of dangerous actions, you only
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need to subtract a large number from the Q-value of the dangerous action. The specific
implementation method is as follows.

Step 1: Assuming the size of the state map is n × n, first add −1 around the state map
to represent the map boundary, as mentioned in the previous chapter. Then, convert the
state map to the initial state, that is, change the values of all covered grids to 0.

Step 2: The position value in the state matrix of the USV is 7—find the position of
the USV, and then multiply it by the surrounding elements based on the action value.
For example, if the action value is up, it is multiplied by the element directly above
the USV to obtain the danger of the action in this state. The four actions derive their
corresponding dangers.

Step 3: Multiply the risk by the risk coefficient t, and then add it to the final output
layer of DQN to form the final output. Its structure diagram is shown in Figure 11.

Figure 11. Framework for reducing the probability of choosing a dangerous action.

3.5. Design of the Reward Function

In order to improve the efficiency of full-coverage path planning, the USV should try
to avoid repeatedly covering the covered area during the full-coverage path planning task
and try to select the area that can cover the uncovered area every time an action is selected.
So, the reward function initially defined by the text is shown in Equation (11).

r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, m(i, j) = 0

0, m(i, j) = 1 and m−1(i ± 1, j ± 1) = 1

−1, m(i, j) = 1 and ∃m−1(i±, j ± 1) = 0

−20, m(i, j) = −1 or i, j < 0 or i, j > N

20, done

(11)

where m(i, j) represents the position in the grid map after the USV takes an action, and
m−1(i ± 1, j ± 1) is the grid situation around the grid before the USV takes an action. When
the USV enters an uncovered grid, it will obtain reward 1. When there is no uncovered grid
around the USV, that is, all the grids around the USV have been covered or are obstacles,
the USV takes no collision obstacles or actions that go out of the map’s borders and are
rewarded with 0. When there is an uncovered grid around the USV, the vehicle still takes
action to make itself enter the covered grid, and the reward is −1. When the vehicle takes
an action and collides with an obstacle or goes out of the map boundary, it will obtain a
reward of −20.

4. Simulation Results and Discussion

4.1. Simulation Platform

The simulation experiment in this paper runs in the Ubuntu 20.04 environment, using
Python as the development language, and the parameters of the simulation platform are
shown in Table 2.
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Table 2. Simulation platform

Os Language CPU GPU RAM

Ubuntu 20.04 Python 3.8 intel10900 GTX2070 6 Gb

Based on the simulation platform we use, the duration of the proposed algorithm
learning process usually takes one to two days. The duration of the learning process is
limited by simulation platform, and a better simulation platform can significantly reduce
learning time of the proposed algorithm. In order to verify the algorithm proposed in this
paper, the size of the working environment of the USV in this paper is 20 × 20 m2, which is
divided into 11 × 11 grid maps.

4.2. Algorithm Simulation

In the simulation process, the above environmental parameters and DQN network
model parameters are initialized first, and then a preprocessed grid map is constructed to
record the grid map information and location information covered by the USV. Before each
training starts, the position of the USV appears randomly on the grid map, and it is
ensured that the position of the USV is not the position of the obstacle. During training,
when the USV task is moved, the training will terminate, and the next training will begin.
The conditions for task termination are that the USV collides with the map boundary or
the obstacle grid, completes the full-coverage task, and the USV’s step size exceeds the
set maximum step size. During the training process, each action will generate a sample,
and the sample will be stored in the playback memory pool. When the number of samples
reaches a certain level, the artificial neural network will be trained. When the training
round reaches the set maximum training round, the training will end.

The simulation diagrams are shown in Figures 12–15. Both the improved DQN
proposed in this paper and the traditional boustrophedon method can complete the full-
coverage path planning task well, and the coverage rate is 100%. The DQN and inner
spiral coverage cannot complete the full-coverage path planning task. Their coverage
rates are only 13% and 86%. As shown in Figures 13 and 15, the coverage repetition rate
of the improved DQN was 0.04%, while that of the boustrophedon method was 0.13%.
Its final composite scores were 0.96 and 0.87 points, respectively. The effect of using the
improved DQN-based full-coverage path planning algorithm is due to the traditional
boustrophedon method.

Figure 16 shows the coverage of the full-coverage path planning algorithm using
boustrophedon and the full-coverage path planning algorithm using the improved DQN.
The red curve is the real-time coverage using boustrophedon, and the blue curve is the
real-time coverage using the improved DQN full-coverage path planning. The horizontal
axis is the step size, and the vertical axis is the coverage. From the real-time coverage map,
it can be concluded that the improved DQN-based full-coverage path planning algorithm
is more efficient than the boustrophedon method.

The loss function diagram of the improved DQN is shown in Figure 17, and its
ordinate is the distance between the path and the optimal path, which can be obtained
from Figures 4–7. When the number of training times reaches 1000, the neural network
has converged. The 1000 times at this point is not that the agent has performed 1000 tasks,
but that 1000 times of memory are extracted from the playback memory pool for playback
training, and the overall efficiency is high.
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Figure 12. Path plan of inner spiral coverage.

Figure 13. Path plan of boustrophedon.
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Figure 14. Path plan of DQN.

Figure 15. Path plan of improved DQN.
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Figure 16. Coverage map.

Figure 17. Training graph.

5. Conclusions

5.1. Main Conclusions and Findings

This paper proposes a raster map preprocessing method. Combined with the de-
scription and analysis of typical full-coverage path planning task scenarios, and further
according to the characteristics of full-coverage path planning, we found the grids that
cannot be covered by USVs and set them as obstacle grids.

To solve the problem of the low learning efficiency of traditional DQN, an improved
action selection mechanism is proposed. This makes the failure rate of full-coverage path
planning in the initial training phase lower. At the same time, the method of extracting
memory training is improved, so that valuable data has a greater probability of being
trained, and the efficiency of full-coverage of the area is improved.

Simulation experiments show that the algorithm can effectively complete the full-
coverage path planning task. The results show that, compared with the traditional full-
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coverage path planning algorithm, the proposed algorithm has good coverage rate. Com-
pared with the boustrophedon and DQN algorithms, the performance of this algorithm
on the coverage repetition rate is better, indicating that the performance of this algorithm
is better.

5.2. Main Limitation of the Research

In modeling phase, the dynamical constraints and performance of the USV were not
fully considered. The actual model of USV is more complex than the one in this study.
This full-coverage path planning algorithm for USV might not have good performance in
some situations.

5.3. Future Research Prospects

Considering economic factors, we usually want USVs to achieve full-coverage tasks
efficiently at a low cost. To achieve this goal, the efficiency of path planning algorithms and
their adaptability to different environments need to be improved.

In future work, the focus will be on the USV model and reward function, since the
full-coverage path planning algorithm is affected by USV model and reward function when
using simulation platform. At the same time, how to extend this algorithm to a complex
actual environment with disturbances to obtain application value is also worth studying.
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Abstract: Autonomous underwater vehicles (AUVs) are increasingly being used in missions involving
submarine cable detection, underwater archaeology, pipeline inspection, military reconnaissance,
and so on. It is very important to realize AUV path tracking to accomplish these missions. In this
paper, a fuzzy controller based on the established kinematic and dynamic models of AUV systems
is presented to solve the AUV path-tracking problem. In order to design the fuzzy controller to
exhibit good performance, we select the path length, smoothness, and cross-track position error as the
multiple optimization performance indexes for the fuzzy controller. We propose the particle swarm
optimization (PSO) algorithm to determine the parameters of the membership functions. Different
scenarios are presented to test the performance of the proposed algorithm, including the straight
line, sine curve, half-moon shape, Archimedean spiral, and practical paths. The results are given to
illustrate the effectiveness and feasibility of the fuzzy controller with the optimization of multiple
performance indexes.

Keywords: AUV; path tracking; fuzzy controller; optimization; multiple performance indexes

1. Introduction

The ocean is an important strategic space for economic and social development. Due
to the increasing exploitation and utilization of marine resources, autonomous underwater
vehicles (AUVs) have been rapidly developed for use in the fields of pipeline inspection,
seawater quality detection, marine geological exploration, submarine cable detection, and
so on [1–3]. It is important to control the AUV to complete missions quickly and accu-
rately [4–6]; however, complex underwater working environments increase the difficulty
of controlling AUVs [7]. Therefore, as the premise to realize AUV missions, path tracking
becomes an important problem to be solved.

There has been much research on AUV path tracking based on traditional design
methods, including proportional integral differential (PID) control [8,9], sliding mode
control [10,11], predictive control [12], and so on. PID is one of the most widely used
algorithms for controller design; to guide an AUV to track an underwater cable, it forms
a straight-line path-tracking control problem with magnetic sensing. Previous research
presented a PID controller to track the desired guidance profiles in light of the linearizing
feedback method [8]. The PID algorithm can give a line-of-sight guidance law with drift an-
gle compensation to solve the problem of AUV tracking in a complex marine environment,
and the PID algorithm can be used to guide AUVs to track the desired path [9]. However,
PID is a linear control method, which is difficult to use in complex nonlinear systems
related to AUVs in practice. To solve the under-actuated AUV horizontal path-tracking
control problem, the authors of another study utilized a sliding mode control method
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with line-of-sight guidance and cross-track errors [10]; however, chattering was inevitable
in the tracking control process. This necessitated a nonlinear second-order sliding mode
controller for the purpose of improving the stability of the control system by eliminating
the chattering motion [11]. In light of the backstepping algorithm, a model predictive
control method was given for AUV path tracking [12]. In summary, the above traditional
methods [8–12] are highly dependent on the models of AUV control systems, which are
difficult to apply in engineering practice because of the difficulty of obtaining accurate
models in complex underwater environments.

Compared with the traditional control methods of path tracking, intelligent algorithms
have attracted more and more attention because their application of intelligent control is
independent of an accurate kinetic model. Reinforcement learning refers to agent learning
according to “trial and error”, which interacts with the environment to obtain rewards
to guide behavior for path tracking [13,14]. A line-of-sight method of guidance was
proposed by reinforcement learning algorithms, which can also utilize long short-term
memory neural networks to pre-train the reinforcement learning framework to speed up
the learning process [13]. Considering the uncertainty of ocean currents and according to
the data on ocean currents obtained by the observer, one study presented a novel reward
function to improve the learning ability of a reinforcement learning architecture, and thus,
deep reinforcement learning was developed for path tracking [14]. Fuzzy control is a
method considering the theory of fuzzy mathematics, which has been used for AUV path
tracking [15–17]. In fuzzy control, a nonlinear single-input fuzzy controller was used for
path tracking, resulting in reductions in the computation complexity [15]. For an AUV
with an unknown actuator saturation and environmental disturbance, the authors of one
study presented a kinematic controller by the backstepping technique, whose law was
designed in light of an indirect adaptive fuzzy logic control system [16]. To improve the
performance of fuzzy controllers, the authors of another study proposed a fuzzy controller
optimized by the genetic algorithm [17]. In summary, although there are many different
intelligent control methods for AUV path tracking, they are focused on improving the
tracking error; in practice, the path length and smoothness are also important for path-
tracking performance. Therefore, a new method is needed to solve the AUV path-tracking
problem with multiple good performance indexes.

It should be noted that the existing fuzzy theory and the related research have made
some contributions regarding the collision avoidance problem in marine engineering. In
one study, fuzzy theory was used to reason the degree of the collision risk, A*search was
used to make an avoidance action plan, and the action space searched by the ship was
formed in the expert system using marine traffic rules [18]. In order to trigger the prompt
alert of a potential collision, the authors of another study utilized evidential research theory
to calculate the risk of collision according to the relevant navigation information [19].
Based on the need to prevent collisions according to sea rules, the authors of another
study proposed a collision risk inference system using fuzzy rules to enable autonomous
surface ships to avoid collisions [20]. Furthermore, on the basis of [20], the authors of
another study proposed a local route planning method to avoid collisions with maritime
autonomous surface ships [21]. Although the above works can provide some reference to
fuzzy theory [18–21], they are difficult to directly use in AUV path tracking.

Path tracking is very important to perform missions in complex underwater environ-
ments. To solve the path-tracking problem for AUVs according to the established kinematic
and dynamic models, a fuzzy controller is presented to realize path tracking. We select
the path length, smoothness and cross-track position error as the performance indexes for
the fuzzy controller, which determines the AUV tracking path energy, traveling time and
tracking accuracy. The fuzzy controller is optimized with the optimization of membership
function by the particle swarm optimization (PSO) algorithm. The designed fuzzy controller
makes a path-tracking system with strong robustness and anti-interference ability.

The rest of this paper is arranged as follows. Section 2 gives the problem description
and definition for AUV path tracking; Section 3 presents mathematical models for AUV
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path tracking; Section 4 proposes a fuzzy control method based on the PSO algorithm for
AUV path tracking; Section 5 gives the results and discussion for the proposed algorithm;
Section 6 provides some conclusive remarks.

2. Problem Description and Definition for AUV Path Tracking

The goal of AUV path tracking is to follow the desired path with the performance
indexes. In the tracking process, once the coordinates of the current and target locations are
given, the desired attitude angles can be obtained with the desired AUV velocity, the essence
is to eliminate the error between the practical and desired angles. In order to solve the AUV
path-tracking problem, we select the path length, smoothness and cross-track position error
as the path-tracking performance indexes. The reason is that the indexes determine the
path tracking energy consumption, travelling time, etc. [22]. The fuzzy control can solve
the control problem of nonlinear system with strong robustness effectively; therefore, the
fuzzy controller is presented for path tracking in this paper. Figure 1 gives the technology
roadmap for AUV path tracking. The optimization performances for the fuzzy controller
are formed according to the established kinematic and dynamic models, the deviations and
their derivatives are taken as input parameters. We present the PSO algorithm to optimize
the membership function to realize optimal path tracking. The AUV tracks with the desired
path based on the optimized fuzzy controller.

Kinematic 
model 

Fuzzy 
controller

Tracking 
path 

Dynamic 
model 

Optimization 
performances PSO

 

Figure 1. The technology roadmap for AUV path tracking.

We select the cross-track position and heading angle errors as the important factors
to illustrate the path-tracking effect [10]. Figure 2 shows the definitions of the AUV’s
cross-track position and heading angle errors, where Ppr = Pdx(i − 1), Pdy(i − 1), Pcu =
Pdx(i), Pdy(i) and Pne = Pdx(i + 1), Pdy(i + 1) are the adjacent discrete points of the desired
path. Pce = (Px(t), Py(t)) is the AUV’s center.

x

y

rL
d t( )

δ t( )

e t( )
peP

prP

cuP

neP

ceP

Figure 2. Cross-track position and heading angle errors for the AUV.

The cross-track position error e(t) is the vertical distance from the AUV’s center to the
adjacent segment of the desired path. In light of the points Ppr, Pcu and Pce, the cross-track
position error can be obtained as follows:

e(t) = d(t)× sin(δ(t)) (1)
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where d(t) is the distance from the AUV’s center to the target point.

d(t) =
√
(Py(t)− Pdy(i))

2 + (Px(t)− Pdx(i))
2 (2)

The cross-track heading angle error δ(t) is an angle between the
→

PcePcu and
→

PprPcu
vectors, which can be given as follows:

δ(t) = arctan
(

Pdy(i)− Py(t)
)

/(Pdx(i)− Px(t))− arctan
(

Pdy(i)− Pdy(i − 1)
)

/(Pdx(i)− Pdx(i − 1)) (3)

In this paper, the smaller the cross-track position and heading angle errors, the better
the tracking effect.

In Figure 2, the straight line PcePpe is perpendicular to PprPcu, Ppe is the corresponding
crossing point. Whether the AUV drives into the next segment path can be evaluated by
the following decision factor fd(t):

L = d(t) cos(δ(t)) (4)

fd(t) =
{

1 (L ≤ 0 or d(t) ≤ r)
0 (L > 0 and d(t) > r)

(5)

where L denotes the length of straight line PpePcu. r and Pcu are the circle radius and center,
respectively. If L ≤ 0 or d(t) ≤ r, then fs(t) = 1, that is, the AUV executes path tracking
in the next segment. If L > 0 and d(t) > r, then fs(t) = 0, and the AUV executes path
tracking in the current segment.

3. Mathematical Models for AUVs

3.1. AUV Kinematic Model

Figure 3 shows the platform of our self-made “Ocean Star” AUV, six thrusters provide
forces to control the AUV. The detailed AUV’s mechanical structure and size can be found in
the Section 5. We give the earth ({O − X, Y, Z}) and body-fixed frames ({O1 − X1, Y1, Z1})
to express the AUV kinematic model, the AUV kinematic model can be written as fol-
lows [23–27]:

.
η =

[
J1 03×3

03×3 J2

]
v (6)

[
.
x

.
y

.
z

.
φ

.
θ

.
ϕ
]T

=

[
J1 03×3

03×3 J2

][
u v w p q r

]T (7)

where η =
[
x y z φ θ ψ

]T , x, y, z represent the AUV’s location in the Earth-
frame, φ, θ, ψ are AUV’s roll, pitch and yaw angles in the Earth-frame frame; υ =[
u v w p q r

]
, u, v, w are the surge, sway and heave in the body-fixed frame, p, q, r

are the roll, pitch and yaw rates in the body-fixed frame; J1 and J2 denote the coordinate
transformation matrixes, whose mathematical expressions can be presented as follows:

J1 =

⎡⎣cos θ cos ψ sin θ sin φ cos ψ − cos φ sin ψ sin θ sin ψ + sin θ cos φ cos ψ
cos θ sin ψ sin θ sin φ sin ψ + cos φ cos ψ sin θ cos φ sin ψ − sin φ cos ψ
− sin θ sin φ cos θ cos φ cos θ

⎤⎦ (8)

J2 =

⎡⎣1 sinφtanθ cos φ tan θ
0 cos φ − sin φ
0 sin φ/cos θ cos φ/cos θ

⎤⎦ (9)
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O X

Y

Z

Earth-frame

Body-fixed frame

p(roll)

r(yaw)

φ

q(pitch)
O1

X1Y1

Z1

Figure 3. Two coordinate systems for the AUV.

3.2. AUV Dynamic Model

The dynamic equation of the AUV’s motion can be given as follows [11,25,28]:

M
.
υ + C(υ)V + D(υ)υ + g(η) = τ (10)

where M ∈ R6×6 is the inertial matrix, which includes the added mass; D ∈ R6×6 is the
damping matrix; g ∈ R6×6 is the gravitational terms matrix; C ∈ R6×6 is the matrix of
Coriolis and centripetal terms; υ is the position and orientation vector; τ is the control
forces vector. The AUV’s gravitational and buoyancy centers are located at one point. The
translational and rotational motions can be described with six equations, which denote
surge, sway, heave, roll, pitch, and yaw, respectively as follows:

m
( .
u − vr + wq − xg

(
q2 + r2)+ zg(pr + q)

)
= XHS + Xu|u|+ X .

uu + Xwqwq + Xqqqq + Xvrvr + Xrrrr + Xprop
(11)

m
( .
v − wp + ur − zg

(
qr − .

p
)
+ xg

(
pq +

.
r
))

= YHS + Yv|v|v|v|+ Yr|r|r|r|+ Y .
v

.
v + Y.

r
.
r + Yurur + Ywpwp + Ypq pq + Yuvuv + Yuuδr u2δr

(12)

m
( .
w − uq + vp − zg

(
q2 + p2)+ xg

(
rp +

.
q
))

= ZHS + Zw|w|w|w|+ Zq|q|q|q|+ Z .
w

.
w + Z .

q
.
q + Zuquq + Zvpvp + Zpr pr + Zuwuw + Zuuδs u2δs

(13)

Ixx
.
p +
(

Izz − Iyy
)
qr + m

∣∣−zg
( .
v − wp + ur

)∣∣
= KHS + Kp|p|p|p|+ kp|p|p|p|+ k .

p
.
p + kprop

(14)

Iyy
.
q + (Ixx − Izz)pr + m

∣∣zg
( .
u − vr + wq

)− xg(
.

w − uq + vp)
∣∣ =

MHS + Mw|w|q|q|+ Mq|q|q|q|+ M .
w

.
w + M .

q
.
q + Muquq + Mvpvp + Mrprp + Muwuw + Muuδs u2δs

(15)

Izz
.
r +
(

Iyy − Ixx
)
qp + m

∣∣xg
( .
v − wp + ur

)∣∣ =
NHS + Nv|v|v|v|+ Nr|r|r|r|+ N .

v
.
v + N.

r
.
r + Nurur + Nwpwp + Npq pq + Nuvuv + Nuuδr u2δr

(16)

where m is the AUV’s mass; xg and zg are the location parameters of the AUV’s gravitational
centers; Ixx, Iyy, Izz are the AUV’s inertia mass moments; Xu, Yv, Zq, Nr, Nv and Mq are
the speed coefficients; Xu|u|, Yv|v|, Zq|q|, Mw|w|, M|w|q, Nr|r|, Mq|q| are the second-order
speed coefficients; Xwq and Xqq are the second-order speed coefficients; δs and δr are the
vertical angle and horizontal fins, respectively; Xprop is the propeller thrust; and kprop is the
propeller torque.

It should be noted that one can select several equations from Equations (11) to (16) for
path-tracking design according to the actual engineering.
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4. AUV Path Tracking with the Fuzzy Controller

4.1. The Design of the Fuzzy Controller

Fuzzy control is a human-like intelligent control method embodying the human control
experience and strategy [29]. Fuzzy control does not depend on the precise models of the
nonlinear control system, which can be used in the control process with strong robustness
and good anti-interference performance [30–32]. A fuzzy controller contains four basic
elements: fuzzification, knowledge base, fuzzy inference and defuzzification.

In this paper, we select triangle membership function for fuzzification, the reasons are
given as follows: (1) Consisting of simple straight-line segments, triangular membership
function is very easy to apply in fuzzy control; (2) Triangular membership function can
obtain good performance for AUV control [30]. The methodologies to use for membership
function optimization are given as follows: the membership function is assumed as an
isosceles triangle, the function includes three parameters; the first and third parameters are
optimized by the PSO algorithm, the middle is obtained as the average of the first and third
values. Input parameters e(t) and

.
e(t) are transformed into fuzzy information based on the

given triangle membership function. Based on the results of different fuzzy control rules
with a trial-and-error method, Table 1 can be obtained with the fuzzy control rules for AUV
path tracking. Combined with the input parameters, the output parameters attitude angles
are obtained according to the fuzzy control rules, which are changed with e(t) and

.
e(t).

The center of gravity method has smooth output inference control, whose output changes
in response to small changes in the input value. Therefore, we select the center of gravity
method for defuzzification in this paper.

Table 1. Fuzzy control rules for the AUV.

e(t)
NB NM NS ZO PS PM PB.

e(t)

NB NB NB NM NM NS ZO ZO

NM NB NB NM NS NS ZO PS

NS NM NM NM NS ZO PS PS

ZO NM NM NS ZO PS PM PM

PS NS NS ZO PS PS PM PM

PM NS ZO PS PM PM PM PB

PB ZO ZO PM PM PM PB PB

Remark 1. NB denotes negative big, NM denotes negative middle, NS denotes negative small, ZO
denotes zero, PS denotes positive small, PM denotes positive middle, PB denotes positive big.

In the control process for AUV path tracking, once the coordinates of the current and
target locations are given, the desired attitude angles can be obtained at the desired AUV
velocity [17]. Therefore, we select not only the cross-track position and attitude angle errors
but also their derivatives as the input parameters. Figures 4 and 5 show the membership
functions of cross-track position errors and corresponding derivatives, respectively, which
are like the ones for cross-track attitude angle errors and their derivatives. Input and output
variables need to be divided into different fuzzy sets. The more numbers of the fuzzy sets,
the more detailed and flexible for the constituted fuzzy control rules, this may increase the
programming complexity and computing time. Conversely, the less numbers of the fuzzy
sets, the less simple the fuzzy control rules, this may lead to difficulties for the controller
to achieve the expected effect. We divide input and output variables into seven fuzzy
sets based on the experiment, which are good enough to balance the calculation time and
control accuracy. The fuzzy states of cross-track position errors and their derivatives are
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given as follows: (1) Cross-track position error (e(t)) is divided into seven fuzzy states
as follows, NB ∈ [α1

1, α1
3], NM ∈ [α1

2, α1
5], NS ∈ [α1

4, α1
7], ZO ∈ [α1

6, α1
9], PS ∈ [α1

8, α1
11],

PM ∈ [α1
10, α1

13], PB ∈ [α1
12, α1

14]; (2) Cross-track position error derivative is divided into
seven fuzzy states as follows: NB ∈ [α2

1, α2
3], NM ∈ [α2

2, α2
5], NS ∈ [α2

4, α2
7], ZO ∈ [α2

6, α2
9],

PS ∈ [α2
8, α2

11], PM ∈ [α2
10, α2

13], PB ∈ [α2
12, α2

14]. Similar to Figures 4 and 5, the fuzzy states
of the attitude angles and their derivatives can be given as follows: (1) Cross-track attitude
angle error is divided into seven fuzzy states as follows: NB ∈ [α3

1, α3
3], NM ∈ [α3

2, α3
5],

NS ∈ [α3
4, α3

7], ZO ∈ [α3
6, α3

9], PS ∈ [α3
8, α3

11], PM ∈ [α3
10, α3

13], PB ∈ [α3
12, α3

14]; (2) Cross-track
attitude angle error derivative is divided into seven fuzzy states as follows: NB ∈ [α4

1, α4
3],

NM ∈ [α4
2, α4

5], NS ∈ [α4
4, α4

7], ZO ∈ [α4
6, α4

9], PS ∈ [α4
8, α4

11], PM ∈ [α4
10, α4

13], PB ∈ [α4
12, α4

14].
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Figure 4. Membership function of the cross-track position error.
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Figure 5. Membership function of the corresponding derivative.

Remark 2. Cross-track attitude angle errors include the cross-track roll, pitch, and yaw (heading)
angle errors in the three-dimensional environment, cross-track attitude angle error is the heading
angle error if just considering path tracking in the XOY plane, the definition is given in Section 2.

4.2. The Optimization for the Fuzzy Controller

In this paper, fuzzy control converts a linguistic control strategy into an automatic
controller capable of managing the AUV path-tracking system. The membership function
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greatly affects the performance of the fuzzy controller, whose parameters are usually
obtained by the cut-and-trial method with many experiments. This takes a lot of time
and increases the difficulty to obtain the optimal value. Therefore, an algorithm needs to
optimize the controller to ensure the control performance.

PSO is a popular and efficient method to solve many different kinds of engineering
optimization problems [33,34]. The PSO algorithm has been proven to be simple for
formulation, easy for programming and has good convergence [35–38], this conclusion
is verified for fuzzy controller optimization of AUV path tracking. The PSO algorithm
simulates the foraging behavior of a flock of flying birds, the result is achieved through
cooperation and competition between individuals in the flock. In the PSO algorithm, flying
“birds” are simulated by particles without weight or volume, each potential solution is
represented by one particle in the search space, and its “flight state” is denoted with both
the velocity and position of the particle. The global optimal search is realized by the
particles, which continuously learns from the group and neighborhood optimal solutions.
The new particle position and velocity can be obtained as follows [39,40]:

vp(k + 1) = wpvp(k) + c1r1(Bp − xp(k)) + c2r2(Bg − xp(k)) (17)

xp(k + 1) = xp(k) + vp(k + 1)) (18)

wp(k) = wmax − wmax − wmin
Nmax

Niter(k) (19)

where vp(k) is the current velocity of one particle; vp(k + 1) is the new velocity of one
particle; k is the k-th iteration; wp is the inertia weight; c1 is the social acceleration for the
local best position; c2 is the cognitive acceleration for the global best position; r1 and r2 are
random numbers between 0 and 1; Bp and Bg are the best solutions found by a particle and
in a population, respectively; xp(k) is the current position; xp(k + 1) is the new position;
Nmax is the maximum number of iterations; Niter(k) is the current number of iteration; and
wmax and wmin are the initial and final inertia weight, respectively.

In this paper, the following function is given to optimize the fuzzy controller to
improve the path-tracking performance.

FTM = fL + fS + fE (20)

where FTM is the optimization performance index including fL, fS and fE; fL is the length
of the tracking path; fS is the smoothness of the tracking path; and fE is the average cross-
track position error. To solve the multiple objective functions for path tracking, a weight
coefficient method is presented to transform Equation (20) as follows:

FTM = α� fL�+ β� fS�+ γ� fE� (21)

where α, β, γ are the weight coefficients; and � fL�, � fS�, � fE� are the normalized values of
fL, fS, fE respectively.

(1) Tracking path length

The start and target points are (x0, y0, z0) and (xT , yT , zT) for the path, respectively,
and T is the total number of the segments of the tracking path. The path can be expressed
as follows: A = [(x0, y0, z0), · · · , (xt, yt, zt), · · · , (xT , yT , zT)].

The total length of the tracking path can be obtained as follows [22,41]:

fL =
T

∑
t=0

d(qt, qt+1) (22)
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where qt = (xt, yt, zt) is one point of the tracking path at t, and t is the corresponding serial
segment number. d(qt, qt+1) is the length from the adjacent point qt to qt+1, which can be
calculated as follows:

d(qt, qt+1) =

√
(xt+1 − xt)

2 + (yt+1 − yt)
2 + (zt+1 − zt)

2 (23)

(2) Tracking path smoothness

A virtual triangle is used to describe the path smoothness, which is composed of three
adjacent points qt−1, qt, and qt+1. The cosine function is given to obtain the intersection
angle for the AUV tracking path as follows.

cos αs =
b̃2 + c̃2 − ã2

2b̃c̃
(24)

fS(A) =
R

∑
r=1

1
αs

, αmin < αs < αmax (25)

where αs is the intersection angle with the corner vertex of qt (rad). ã, b̃, and c̃ are the
lengths of triangle sides with the angles of αs, γs, and βs, respectively. βs is the intersection
angle with the corner vertex of qt−1 (rad); and γs is the intersection angle with the corner
vertex of qt+1 (rad). fS(A) is the AUV tracking path smoothness, the smaller fS(A), the
better the path smoothness. r = 1, 2, 3 · · · R, R is the serial number of the corner for each
turning point.

(3) Cross-track position error

The average of the total absolute of the cross-track position errors is given as a perfor-
mance index, which is referred to simply as the average cross-track position error in this
paper, calculated as follows:

fE =
1
T

T

∑
t=0

|et| (26)

where fE is the average of the total |et|; et is one cross-track position error; and |et| denotes
the absolute value of et.

Figure 6 shows the flowchart of the path tracking in light of the fuzzy controller with
the PSO algorithm, algorithm 1 presents the path-tracking steps in detail.

Algorithm 1: The path-tracking algorithm

1: Establishing the AUV kinematic model (Equation (7)) and the dynamic model (Equation (10)),
obtaining the optimization function (Equation (21)) for the fuzzy controller for path tracking;
2: Defining the rules for the fuzzy controller, setting the basic initial parameters of the triangle
membership function;
3: Initializing the parameters including c1, c2, and so on;
4: Setting the AUV start point as q0, t = 0;
5. Obtaining the target point of the desired path (qt);
6: Calculating the errors and these derivatives of the input parameters of the fuzzy controller,
executing fuzzification optimization;
7: Realizing the fuzzy inference based on the membership functions, executing the defuzzification
operation;
8: Calculating the fitness functions of each particle based on Equation (21), obtaining the
optimization particle position;
9: Updating the current velocity of each particle based on Equations (17)–(19);
10: If Niter is smaller than Nmax, go to the next step, else if, obtain the parameters of membership
functions, setting Niter = Niter + 1, go to step 7;
11: Obtaining the tracking point qt based on the AUV kinematic and dynamic models, if t is
smaller than T, setting t = t + 1, go to step 4, else if, go to the next step;
12: Obtain the optimal tracking path.
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Figure 6. Flowchart for path tracking with the fuzzy controller.

5. Results and Discussion

In this section, a self-made “Ocean Star” AUV is used to illustrate the effectiveness of
the proposed algorithm. Figure 7 gives the “Ocean Star” AUV and its configuration, the
length is 400 mm, the width is 295 mm, and the high is 255 mm. Six thrusters are given to
provide forces to control the AUV, Figure 7b shows the corresponding configuration.
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Figure 7. The mechanical structure and physical drawing.

Different scenarios are given including straight line, sine, half-moon shape, Archimedean
spiral, and practical paths tracking. For the PSO algorithm, the initial value of the inertia
weight wp = 0.8, the social and cognitive accelerations are c1 = 0.5 and c2 = 0.2, respectively.
In general, the fewer particles, the more iterations are required to obtain good optimization
results. For example, the algorithm needs more than 100 iterations with 15 particles and 160
iterations with 10 particles to guarantee the optimization results. In this paper, the number of
particles and the maximum number of iterations are good enough for the proposed algorithm
with the settings as follows: the number of the particles is 20 for the group, the maximum
number of iterations is 50. We set the weight coefficients as α = 0.3, β = 0.1, and γ = 0.6 for
the optimization objective functions.

A desired straight line is given as follows: x(t1) = t1 + 10, y(t1) = 2t1 + 10, where
t1 ∈ [0, 60] (as shown in Figure 8). The straight line is discretized by the sequential
discrete points [(10, 10, 0), (11.7, 13.3, 0), · · · , (70, 130, 0)], and the corresponding start point
is (10, 10, 0) [m]. The initial position, Euler angle, and velocity are set to (x, y, z) = (0, 0, 0)
[m], (ϕ, θ, φ) = (0

◦
, 0

◦
, 0

◦
), (u, v, w) = (0, 0, 0) [kn], respectively. The desired velocity is

set to (u, v, w) = (0.18, 0, 0) [kn]. Figure 8 shows the desired and tracking path curves,
we can see that the tracking path coincides well with the desired path. The tracking
path length is 141.46 m, smoothness is 982.4, and average cross-track position error is
0.078 m. Figure 9 shows the cross-track position error, Figure 10 shows the heading angle
error. The cross-track position and heading angle errors become smaller and smaller over
time. The cross-track position error is limited in the range of [−0.084 m, 0.037m], and the
standard deviation is 0.007 m for path cross-track position errors calculated from the start
to the target tracking points. The cross-track heading angle error is limited in the range
of [−0.008 rad , 0.19 rad], and the standard deviation is 0.0045 rad for the cross-track
heading angle errors calculated from the start to the target tacking points. The proposed
fuzzy controller with the PSO algorithm can deal with straight line path tracking practically
and effectively.
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Y(
m

)

Figure 8. Path tracking results for the straight line.

Figure 9. Cross-track position error for the straight line.

Figure 10. Cross-track heading angle error for the straight line.

The desired sine curve path is given as follows: x(t2) = t2, y(t2) = 5 sin(t2π/40),
where t2 ∈ [0, 240], Figure 11 shows the corresponding curve. The sine curve is discretized
by the sequential discrete points [(0, 0, 0), (2, 0.78, 0), · · · , (240, 0, 0)], and the corresponding
start point is (0, 0, 0) [m]. The initial position, Euler angle, and velocity are set to (x, y, z) =
(−10,−1, 0) [m], (ϕ, θ, φ) = (0

◦
, 0

◦
, 0

◦
), and (u, v, w) = (0, 0, 0) [kn], respectively. The

desired velocity is set to (u, v, w) = (0.18, 0, 0) [kn]. Figure 11 shows the tracking path
by the proposed algorithm, the tracking path length is 259.52 m, smoothness is 1802.2,
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and average cross-track position error is 0.18 m. Figure 12 shows the cross-track position
error, Figure 13 shows the cross-track heading angle error. The cross-track position error
is limited in the range of [−0.79 m, 0.66 m], and the standard deviation is 0.25 m for the
path-tracking position. The cross-track heading angle error is limited in the range of
[−0.31 rad, 0.22 rad], and the standard deviation is 0.08 rad for the cross-track heading
angle error. Although larger values are at the peaks and valleys of the cross-track position
and heading angle errors, the tracking path still coincides well with the desired curve. The
proposed fuzzy controller with the PSO algorithm can deal with sine curve path tracking
practically and effectively.

Figure 11. Path-tracking results for the sine curve.

Figure 12. Cross-track position error for the sine curve.

Figure 13. Cross-track heading angle error for the sine curve.

333



J. Mar. Sci. Eng. 2023, 11, 463

The desired half-moon shape path is given as follows: x(t3) = 50 cos(t3), y(t3) =
50 sin(t3), where t3 ∈ [−π/2, π/2]. x(t4) = 100 cos(t4)+ 100 cos(5π/6), y(t4) = 100 sin(t4),
where t4 ∈ [π/6,−π/6]. Figure 14 shows the half-moon shape path, which is discretized by
the sequential discrete points [(0,−50, 0), (0.7854,−49.9938, 0), · · · , (0,−50, 0)]. The start
and target points are all at (0,−50, 0) [m] for the desired path, the AUV moves along the
half-moon shape in an anti-clockwise direction. The initial position, Euler angle, and ve-
locity are set to (x, y, z) = (−10,−60, 0) [m], (ϕ, θ, φ) = (0

◦
, 0

◦
, 0

◦
), and (u, v, w) = (0, 0, 0)

[kn], respectively. The desired velocity is set to (u, v, w) = (0.18, 0, 0) [kn]. Figure 14 shows
the tracking path by the proposed algorithm, the red curve coincides well with the desired
path. The tracking path length is 278.38 m, smoothness is 1931.5, and average cross-track
position error is 0.17 m. Figures 15 and 16 show the cross-track position and heading angle
errors, respectively. The standard deviation is 0.38 m for the path cross-track position
calculated from the start to the target tracking points. The standard deviation is 0.11 rad
for the cross-track heading angle error calculated from the start to the target tracking point.
The proposed fuzzy controller algorithm can deal with the half-moon shape path tracking
practically and effectively.

Figure 14. Tracking results for the half-moon shape.

Figure 15. Cross-track position error for the half-moon shape.
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Figure 16. Cross-track heading angle error for the half-moon shape path.

Some comparison results are given to make an in-depth analysis of the path-tracking simulation
results. A desired Archimedean spiral path is given as follows: x(t5) = (5t5 cos(t5)), y(t5) = 40 +
(5t5 sin(t5)), where t5 ∈ [1.5π : 4.1π]. Figure 17a shows the Archimedean path, which is discretized
by the sequential discrete points [(0, 16.44, 0) [m], (2.26, 16.0, 0) [m], · · · , (61.25, 59.9, 0) [m]],
the corresponding start point is (0, 16.44, 0) [m]. It should be noted that Figure 17b is a partial
enlargement of Figure 17a. The initial position, Euler angle, and velocity are set to (x, y, z) =
(−3, 16, 0) [m], (ϕ,θ,φ) = (0

◦
,0

◦
,0

◦
), and (u,v,w) = (0,0,0) [kn], respectively. The desired velocity

is set to (u,v,w) = (0.34,0,0) [kn]. Figures 18 and 19 show the comparison tracking results between the
proposed algorithm, fuzzy control method (using only fuzzy logic), and the traditional method (PID
algorithm). Table 2 gives the corresponding comparison with some performance indexes. The tracking
path length is 360.9 m, smoothness is 1353, and average cross-track position error is 0.05 m by the
proposed algorithm. The tracking path length is 361.2 m, smoothness is 1355, and average cross-track
position error is 0.06 m by the fuzzy control method. The tracking path length is 361.8 m, smoothness is
1357, and average cross-track position error is 0.09 m by the traditional method. Figure 18 shows the
cross-track position error for the Archimedean spiral. The fluctuating range of the error curve by the
proposed algorithm is smaller than the fuzzy control and traditional methods. The standard deviations
of the cross-track position errors are 0.065 m, 0.078 m, and 0.113 m by the proposed, fuzzy control, and
traditional methods, respectively. The proposed algorithm obtains better tracking results compared
with the fuzzy control and traditional methods.

 
(a) (b) 

Figure 17. (a). Path-tracking results for Archimedean spiral. (b) Partial enlargement for the track-
ing path.
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Figure 18. Cross-track position error for the Archimedean spiral.

Figure 19. Cross-track heading angle error for the Archimedean spiral.

Table 2. Comparison of the proposed and existing algorithms.

Method
Tracking Path

Length (m)

Path
Smoothness

(–)

Average
Cross-Track

Position Error
(m)

Standard
Deviation (m)

The proposed
algorithm 360.9 1353 0.05 0.065

The fuzzy
control method 361.2 1355 0.06 0.078

The traditional
method 361.8 1357 0.09 0.113

Figures 20 and 21 show a desired path in the real environment of our university. The
length and width are obtained for a man-made river with an irregular polygon shape based
on a diastimeter. The desired path is the line with a distance of 1 m from the riverbank to the
AUV’s center. As shown in Figure 21, we establish the coordinate system (XOY), and select
a point of the bottom left corner of the river as the origin. The AUV start and target positions
are at the same point (x, y, z) = (44.7, 1, 0) [m], and the AUV moves along the path in a
clockwise direction. The initial Euler angle is (ϕ, θ, φ) = (180

◦
, 0

◦
, 0

◦
), the initial velocity

is (u, v, w) = (0, 0, 0) [kn], and the desired velocity is (u, v, w) = (0.18, 0, 0) [kn]. Figure 21
shows the tracking results, the tracking path length is 99.14 m, smoothness is 633.59, and
average cross-track position error is 0.05 m. Figure 22 shows the cross-track position error,
and the standard deviation is 0.1 m of the cross-track position errors. Figure 23 shows
the cross-track heading angle error, and the standard deviation is 0.04 of the cross-track
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heading angle errors. Results show that the AUV can follow the path effectively by the
proposed algorithm.

 

Figure 20. The desired path in a real man-made river.
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Figure 21. The path tracking in the real man-made river.
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Figure 22. Cross-track position error for the AUV.
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Figure 23. Cross-track heading angle error for the AUV.

6. Conclusions

AUV path tracking is important to realize for AUV application in numerous missions
for the exploration of marine resources. In this paper, a fuzzy controller was designed with
multiple performance optimizations to complete path tracking. Based on the established
AUV kinematic and dynamic models, we selected the path length, smoothness and cross-
track position error as the objective functions of the optimization problem for the fuzzy
controller. The PSO algorithm was used to optimize the membership function. We gave
the straight line, sine curve, half-moon shape, Archimedean spiral, and practical paths to
test the fuzzy controller’s performance for path tracking. The test results showed that the
AUV effectively tracked the desired path using the proposed algorithm. Compared to the
traditional algorithm, the designed controller made the path-tracking system perform well
with better tracking accuracy, better smoothness and a shorter length using the proposed
algorithm.

In the near future, we are interested in improving the path-tracking performance by
incorporating salient features such as sliding mode control, deep reinforcement learning,
and so on. Collaborative work on multiple AUVs is an important way to efficiently
accomplish these missions, of which the key factor is how to accurately track multiple
paths. Therefore, providing a method for multiple AUV path tracking is also our next work.
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Abstract: Marine transportation and operations have attracted the attention of more and more
countries and scholars in recent years. A full-state finite time feedback control scheme is designed
for the model parameters uncertainty, unknown ocean environment disturbances, and unmeasured
system states in the underactuated Unmanned Surface Vessel (USV) trajectory tracking control. The
external wind, wave and current environmental disturbances and model parameters perturbation are
extended by Nonlinear Extended State Observer (NESO) to the state of the system, namely complex
disturbances. The complex disturbances, positions and velocities of USV can be observed by NESO
and feedback to USV control system. Next, the underactuated USV error model is obtained by
operating the obtained feedback information and the virtual ship model. According to the error
model, a Nonsingular Fast Terminal Sliding Model surface (NFTSM) is constructed to realize finite-
time control. The control law is deduced through the Lyapunov stability theory to ensure the stability
of the system. The results of MATLAB numerical simulations under different disturbances show that
the trajectory tracking algorithm has fast responses, and a good convergence of the errors is observed,
which verifies the effectiveness of the designed scheme.

Keywords: nonsingular fast terminal sliding model; nonlinear extended state observer; finite time
control; full-state feedback; trajectory tracking

1. Introduction

In recent years, with the continuous development of unmanned driving, artificial
intelligence, image processing, Internet space technology, etc., the whole industry has made
great progress in digitalization and intelligence, and the USV is also rapidly developing
towards intelligence [1]. The research on USV has also become a research hotspot. USV has a
wide application prospect [2] because of its high flexibility and cost-effective characteristics,
carrying specific equipment to complete a variety of dangerous specific tasks. In the
military, the USV can be used for counter-reconnaissance and other intelligence collection,
while in the civilian field, it can be used for water quality detection/monitoring, maritime
patrol and ocean mapping [3–6]. To accomplish such missions, USVs require good motion
control ability, and trajectory tracking control is the solution. Trajectory tracking is different
from path tracking as for the former, the trajectory is parameterized and depends on
time [7], which requires the ship to reach specified coordinates along a specific trajectory at
a specified time. The under-actuation of a USV increases the control difficulty because the
number of independent control inputs is less than its degrees of freedom [8] and is thus a
nonlinear system [9].
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In practice, there are many factors in the system to deal with, such as nonlinearity,
parameter uncertainty, unmeasurable noises, unmeasurable speeds and external environ-
ment disturbances, which bring great challenges to the design of the control system. A
neural network can approximate any nonlinear function and can be used to solve the
control problems in uncertain models. In [10], the existing model uncertainties and external
disturbances were treated by radial basis function neural network and disturbance observer,
respectively. Similarly, neural network techniques and adaptive techniques were used to
compensate for the uncertainty of the model [11]. In [12], a wavelet neural network was
used to approximate completely unknown dynamic and external disturbances. In [13], an
adaptive neural network was proposed to approximate uncertain nonlinear dynamics and
external environmental disturbances. Combined with the backstepping method, adaptive
technology was used to approximate the disturbed boundary, and a neural network was
used to approximate the uncertain function to achieve trajectory tracking [14]. The difficulty
of neural network radial basis function approximating arbitrary function lies in how to
properly select the center points, the number of nodes and the appropriate width of radial
basis function to generate hidden layers. Based on the stability theory of immersion and
invariance, the asymptotic stability was guaranteed, and the adaptive law was derived to
deal with the parameter uncertainty [15]. An online constructive fuzzy approximator was
designed to dynamically adjust fuzzy rules to deal with time-varying uncertainties [16].
Combined with dynamic surface technology, the desired signal is smooth and bounded,
and the control output realizes trajectory tracking.

In [17], the external disturbances and model uncertainty were compensated by a
disturbance observer, and trajectory tracking was realized by sliding mode control. A
nonlinear disturbance observer was constructed to deal with the disturbances problem [18].
For the unmeasured velocities problem, [19] constructed a hyper-distortion observer to
observe the velocity. The unknown disturbance is estimated by RBF neural network
combined with adaptive method. In order to ensure sufficient safety, the state of the system
is subject to certain boundary constraints to perform a specific task; Li et al. [20] used the
barrier Lyapunov function to constrain all states of the system to achieve trajectory tracking
control. A pre-defined performance tracking control law based on quantization state was
proposed to achieve tracking control without requiring system structural parameters and
function approximators for a long time [21]. In the trajectory tracking control of mobile
robot [22], state feedback control and disturbance feedforward compensation control are
designed to solve the problems of unmeasurable speed and disturbance. Given that the
disturbances are bounded, the disturbances suppression and tracking error reduction were
guaranteed by finite time convergence.

Finite time control has better convergence performance and is more desirable in
practical applications. It is able to complete the trajectory tracking task within finite time
and has fast response characteristics [23–28]. Sliding mode control has been widely used
in nonlinear uncertain systems because of its strong robustness, simple design and easy
implementation. Traditional sliding mode control does not have the characteristics of finite
time control. The terminal sliding mode can control the convergence rate near or away
from the equilibrium point to realize finite time control because it introduces nonlinear
function into sliding hyperplane design. It is widely used to solve finite time control
problems [29–31]. In [32], a finite time adaptive sliding mode controller is designed, and
the adaptive law is obtained by Lyapunov function. In [33], a finite time control strategy is
designed based on proportional integral-differential sliding mode control to make the error
converge in finite time.

The above studies deal with the problems of external environmental disturbances
by designing disturbance observers to compensate for the disturbance or neural network
approximation and using state observers for velocity estimation. In this study, perturbation
and velocity unmeasurable problems are considered and dealt with together. NESO and
NFTSM are combined to realize finite time underactuated USV trajectory tracking control.
The overall structure block diagram of this study is shown in Figure 1. The underactuated
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USV mathematical model is taken as the research plant, and then NESO and NFTSM are
designed and verified by numerical simulation. The main contributions are as follows:

Kinematics

Kinetics

Underactuated USV Full-state Feedback 
Scheme

Constructing 
Error Model

Constructing 
NFTSM

Design 
Control Law

Finite Time Control 
Scheme

Numerical Simulation and 
Verification

Design NESO

Stability 
proof

 

Figure 1. Structure diagram of research.

A NESO is designed to achieve full-state feedback, which eliminates the need for a
separate disturbance observer to compensate the disturbance, thus reducing the design
difficulty. Uncertainty of model parameters and external disturbances are regarded as
complex disturbances and expanded as part of the state variables of the system, and the
observation values of complex disturbances feedback to the controller to simplify the design
process. The observed values of velocity and position are obtained and feedback to the
system, which is particularly useful in the case of sensor malfunction.

NFTSM can realize the convergence of tracking error in a shorter time, which is used to
solve the problem of slow convergence of trajectory tracking error. According to Lyapunov
stability theory, the corresponding surge force and yaw moment are derived to ensure the
stability of the system. The numerical simulation by MATLAB verifies that the controller
has fast response characteristics, and the chattering phenomenon of the controller is also
reduced.

2. Definition

For first-order nonlinear systems, NTSM and NFTSM were defined [34] as follows:

σ(t) = x + ksigna .
x = 0, k > 0, 1 < a < 2,

σ(t) = x + k1signa1 x + k2signa .
x = 0, k1 > 0, k2 > 0, 1 < a < 2, a1 > a

(1)

where x ∈ R, signax := signx · |x|a, k, k1 and k2 are coefficients greater than 0, a = p/q, p
and q are positive integers p > 0, q > 0.

3. Underactuated USV Modeling and Problem Formulation

Assumption 1: Only three degrees of freedom of the underactuated USV are considered,
namely, surge, sway and yaw.
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Assumption 2: The underactuated USV has a uniform mass distribution and a left-right
symmetry.

Assumption 3: The (Center of Gravity) CoG and Center of Buoyancy (COB) of the underac-
tuated USV are located on the z-axis of the body-fixed coordinate system.

On the premise of the above assumptions, the kinematic and dynamic equations of
USV can be obtained as follows:

.
η = R(ψ)v

M
.
v = −C(v)v − D(v)v + τ+ τE

(2)

where η = [x, y, ψ]T denotes the actual positions and heading angle of underactuated USV
in the Earth-fixed coordinate also called North-East-Down coordinate; v = [u, v, r]T denotes
the actual velocities and angle velocity; R(ψ) is the transformation matrix between the
Earth-fixed coordinate system and the Body-fixed coordinate system, as shown in Figure 2.
M is inertial matrix; C(v) is the Coriolis and centripetal matrix; D(v) is the hydrodynamic
damping parameters matrix; τ = [τu, 0,τr]

T denotes the surge force, sway force and yaw
moment, where sway force is 0; τE = [τEu,τEv,τEr] is used to represent the disturbances
caused by the wind, wave and current environment of the USV. The above parameter
matrices satisfy the following properties:

Body-fixed frame

( )oX

( )oYO

x

y

A

X

Y

u

v

r

Earth-fixed frame

North

East

ψ

Figure 2. Earth-fixed O − XoYo and Body-fixed A − XY coordinate frames of a USV.

Property 1: The rotation matrix is orthogonal to satisfy ‖R(ψ)‖ = 1 and

RT(ψ) = R−1(ψ)
.

R(ψ) = R(ψ)S(r)
R(ψ)S(r)RT(ψ) = R(ψ)TS(r)R(ψ)

(3)

where

R(ψ) =

⎡⎣cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦, S(r) =

⎡⎣0 −r 0
r 0 0
0 0 0

⎤⎦ (4)

Property 2: The symmetric positive definite of the inertia matrix satisfies:

M = MT > 0 (5)

Property 3: The Coriolis and centripetal force matrices are obliquely symmetric and
satisfy:

C(v) = −CT(v), ∀v ∈ R
3. (6)
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Property 4: Hydrodynamic damping matrix is an asymmetric and strictly positive
definite real matrix, which satisfies:

D(v) > 0, ∀v ∈ R
3. (7)

The expressions of matrix M, C(v), and D(v) are, respectively:

M =

⎡⎣m11 0 0
0 m22 0
0 0 m33

⎤⎦ =

⎡⎣m − X .
u 0 0

0 m − Y .
v 0

0 0 Iz − N.
r

⎤⎦ (8)

C(v) =

⎡⎣ 0 0 −m22v
0 0 m11u

m22v −m11u 0

⎤⎦ (9)

D(v) =

⎡⎣d11 0 0
0 d22 0
0 0 d33

⎤⎦ =

⎡⎣−Xu 0 0
0 −Yv 0
0 0 −Nr

⎤⎦ (10)

Define auxiliary quantity ω = R(ψ)v, there are:

.
ω =

..
η

=
.

R(ψ)v + R(ψ)
.
v

= f (η, v,τE) + B(ψ)τ

(11)

where f (η, v,τE) = R(ψ)M−1[τE − C(v)v − D(v)v] +
.

R(ψ)v, B(ψ) = R(ψ)M−1.
Therefore, the underactuated USV mathematical model can be written in the following

form: .
η = ω

.
ω = f (η, v,τE) + B(ψ)τ

(12)

In this study, a reference trajectory is generated by providing a predefined input to the
virtual underactuated USV, as shown in Figure 3.

oX

oYO

Figure 3. Virtual USV generation reference estimation schematic.

Similarly for virtual underactuated USV:

.
ηd = Rd(ψd)vd

Md
.
vd = −Cd(vd)vd − Dd(v)vd + τd

(13)
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Defining an auxiliary quantity ωd = Rd(ψd)vd, there are:

.
ωd =

..
ηd

=
.

Rd(ψd)vd + Rd(ψd)
.
vd

= fd(ηd, vd) + Bd(ψd)τd

(14)

where fd(ηd, vd) = Rd(ψd)M
−1
d [−Cd(vd)vd − Dd(v)vd] +

.
Rd(ψd)vd, Bd(ψd) =

Rd(ψd)M
−1
d .

According to Equations (11) and (14), an error model can be obtained.

.
ηe =

.
η− .

ηd..
ηe =

..
η− ..

ηd
= f (η, v,τE) + B(ψ)τ− fd(ηd, vd)− Bd(ψd)τd

(15)

4. Design of NESO

In the actual navigation process, it is inevitable that the USV is subjected to the distur-
bances of the external environment: wind, wave and current. At the same time, considering
the parameters perturbation, that is, the system inertia matrix, Coriolis centripetal force
matrix and hydrodynamic damping matrix, this part of the influence will be regarded
as whole complex disturbances, and it will be expanded into part of the system states
to deal with together. Further considering the situation that the system states cannot be
measured, NESO will be used to observe the system states, that is, the velocities, positions
and composite disturbances are feedback to the underactuated USV system.

The following NESO can be designed for the underactuated USV model (12).⎧⎪⎪⎨⎪⎪⎩
e1 = z1 − x1, e2 = z2 − x2, e3 = z3 − x3
.
z1 = z2 + λ1e1
.
z2 = z3 + Bτ+ λ2fal(e1, β1, δ1)
.
z3 = λ3fal(e1, β2, δ2)

(16)

where x1 = η, x2 =
.
η = ω, the derivative of complex disturbances x3 = f (η, v,τE) is

unknown but bounded, that is, f (η, v,τE) <= f > 0, z1 is position observed value of η,
z2 is the observed value of

.
η, z3 is complex disturbances observed value of f (η, v,τE); λ1,

λ2, λ3 are gain matrix of NESO, ei =
[
ei,j
]T
(i = 1, 2, 3, j = 1, 2, 3) are the corresponding

approximation errors. The function of fal(•) expression is as follow:

fal(x, β, δ) =

{
|x|βsign(x) , |x| > δ

s
δ1−β , |x| ≤ δ

(17)

where x is independent variable of the function. β ∈ (0, 1), δ an arbitrary small positive
number.

Combining Equations (12) and (16) to calculate the derivatives of e1, e2, e3, the error
system of NESO is as follows: ⎧⎨⎩

.
e1 = e2 − λ1e1
.
e2 = e3 − λ2e1
.
e3 = f (η, v,τE)− λ3e1

(18)

The error state equation of NESO can be expressed as:

.
e = Ae + B

.
f (η, v,τE) (19)
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where

A =

⎡⎣−λ1 I3×3 03×3
−λ2 03×3 I3×3
−λ3 03×3 03×3

⎤⎦, B =

⎡⎣03×3
03×3
I3×3

⎤⎦ (20)

The eigenequation of matrix A is

∣∣sI − A
∣∣ =
⎡⎣s + λ1 −I3×3 03×3

λ2 s −I3×3
λ3 03×3 s

⎤⎦ (21)

The characteristic polynomial of Equation (19) is

s3
i +α1s2

i +α2s1
i +α3 = 0 (22)

where si = [s1i, s2i, s3i]
T , i = 1, 2, 3. Appropriate choice of parameter matrixes, λi, i = 1, 2, 3,

makes A satisfy the Hurwitz stability condition. By Lyapunov’s second method, for
arbitrary given positive definite matrix Q and P, the following Lyapunov equation is
satisfied.

ATP + PA + Q = 0 (23)

Define the Lyapunov function regarding NESO as

V = eTPe (24)

The differential Equation (24) can be obtained.

.
V =

.
eT Pe + eT P

.
e

= eT AT Pe +
[

B
.
f (η, v,τE)

]T
Pe + eT PAe + eT PB

.
f (η, v,τE)

= eT
(

AT P + PA
)

e + 2eT PB
.
f (η, v,τE)

≤ eT(Q)e + 2‖e‖·‖PB‖·‖
.
f (η, v,τE)‖

≤ λmin(Q)‖e‖2 + 2 f ‖e‖·‖PB‖

(25)

When
.

V ≤ 0, it can be proved that NESO is convergent, and the convergence condi-
tions are:

‖e‖ ≤ 2 f ‖PB‖
λmin(Q)

(26)

From Equation (16), the observed value
^
η = z1 of position, the observed value

v̂ = R−1(ψ)z2 of velocity, and the observed value f̂ (η, v,τE) = z3 of complex disturbance
can be obtained. Using the observations obtained by NESO to replace the position states and
velocity states corresponding to the actual USV, and the complex disturbances composed
of unknown internal disturbances, namely model parameter disturbances and external
unknown wind, wave and current environment disturbances, can simplify the design of
the controller and reduce the complex operation process.

5. Controller Design

The feedback value of the underactuated USV system states obtained by NESO has
been mentioned before. After redefining the error model, the sliding mode surface is
designed for controller design. The control scheme structure diagram is shown in Figure 4.
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Figure 4. Control scheme structure diagram.

According to the design idea, the error model is redefined by the error model (15) and
NESO (16).

.
ηe =

.
^
η− .

ηd
..
ηe =

..
^
η− ..

ηd

= f̂
(

^
η, v̂,

^
τE

)
+ B
(
ψ̂
)
τ− fd(ηd, vd)− Bd(ψd)τd

(27)

From the definition of NFTSM, the following sliding surface can be obtained:

s = ηe + k1signa1ηe + k2signa .
ηe (28)

From Equations (27) and (28), the differential equation of the sliding mode surface can
be obtained:

.
s =

.
ηe + a1k1diag

(
signa1−1τe

)
.
ηe + ak2diag

(
signa−1 .

ηe

)
..
ηe (29)

Since
..
ηe contains the required control τ, the Lyapunov function about the sliding

surface is constructed, and the desired controller output τ can be obtained by selecting the
appropriate τ to satisfy the Lyapunov stability condition.

Define the following Lyapunov function,

V1 =
1
2

sTs (30)

and obtain the differential equation:

.
V1 = sT .

s
= sT

[
.
ηe + a1k1diag

(
signa1−1ηe

)
.
ηe + ak2diag

(
signa−1 .

ηe

)
..
ηe

] (31)

If the underactuated USV input is selected as:

τ = MR−1(ψ̂){− f̂
(

^
η, v̂,

^
τE

)
+ Rd(ψd)Md−1τd + fd(ηd, vd)

− 1
ak2

[
ak1diag

(
signa1−1ηe

)
+ I
]
sign2−a .

ηe − k3s−k4signs}
(32)
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Substituting Equation (32) into Equation (31) can be obtained:

.
V1 = sT .

s
= sT

[
.
ηe + a1k1diag

(
signa1−1ηe

)
.
ηe + ak2diag

(
signa .

ηe
) ..
ηe

]
= ak2sTdiag

(
signa−1 .

ηe

)
(−k3s − k4signs)

≤ −ak2
3
∑

i=1
k3i

∣∣∣signa−1 .
ηei

∣∣∣s2
i − ak2

3
∑

i=1
k4i

∣∣∣signa−1 .
ηei

∣∣∣|si|

(33)

The Lyapunov function V1 ≥ 0 is selected, and the design τ makes
.

V1 ≤ 0, so it can be
concluded that the underactuated USV system is stable.

6. Numerical Simulation and Analysis

In order to verify the effectiveness of using NESO for full-state feedback with the
combination of NFTSM for finite-time trajectory tracking control, the BAYCLASS long-range
patrol ship in reference [35] is used for simulation, and the parameters of underactuated
USV are shown in Table 1. The virtual USV, actual USV, NESO and controller in the design
process are modeled using the Simulink simulation tool in MATLAB, and the solver is
chosen ode45 with variable step size. The work of the simulation is divided into two stages.
First of all, the simulation verifies whether the mentioned NESO has a good approximation
effect on the complex disturbances, positions and velocities state of the underactuated
USV system. Finally, the simulation incorporates parameters perturbation using NESO to
obtain the three-part state feedback values of positions, velocities, and expansion of the
underactuated USV system combined with NFTSM to verify the simulation and compare it
with the NTSM in [36] in order to verify the design of the control.

Table 1. USV model parameters.

Parameter Definition Value Units

m Mass of USV 1.18 × 103 kg
L Length of USV 38 m

m11 Parameter of inertia matrix 1.2 × 105 kg/s
m22 Parameter of inertia matrix 1.779 × 105 kg/s
m33 Parameter of inertia matrix 6.36 × 107 kg/s
d11 Parameter of damping matrix 2.15 × 104 kg/s
d22 Parameter of damping matrix 1.47 × 105 kg/s
d33 Parameter of damping matrix 8.02 × 106 kg/s

The virtual underactuated USV used to generate the reference trajectory uses the same
model parameters as the actual underactuated USV model. The initial values of position
and velocity of underactuated USV are η0 = [0, 0, 0]T and v0 = [0, 0, π/6]T . The initial
values of positions and velocities of virtual underactuated USV are ηd0 = [5, 3.5, π/6]T

and vd0 = [0, 0, 0]T . To reflect the parameter perturbation, M = ±1.1M, C(v) = ±1.1C(v),
D(v) = ±1.1D(v) are used in the simulation. Four periods with higher probability of
disturbance occurrence were chosen according to the scatter diagram of the sea states. The
disturbances τE caused by wind, wave and current are assumed to be:

τE =

⎡⎣8 × 10n sin(ω · t)
6 × 10n sin(ω · t)
7 × 10n sin(ω · t)

⎤⎦ (34)

where n = 3, 4, T = 5, 6, 7, 8s, four different periods can be obtained when the angular
frequency as ω = 1.2566, 1.0472, 0.8976, 0.7854.
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The reference trajectory is designed as the complex trajectory obtained by the combi-
nation of straight line and circle, and the control input τd of the virtual underactuated USV
is selected as follows:

τd =

{ [
1 0 0

]T × 105, 0 ≤ t ≤ 100[
1 0 2

]T × 105, 100 < t ≤ 300
(35)

The parameters selected for Equation (16) NESO are: λ1i = 6,λ2i = 9,λ3i =
15(i = 1, 2, 3), βi = 0.5, δi = 0.001(i = 1, 2). Regarding the design form Equation (32)
of the controller, the chosen parameters are k1 = 3, k2 = 1, k3 = k4 = diag

(
10 10 10

)
,

a = 9/5, a1 = 5/3. It is worth noting that the symbolic function k4signs in Equation (32)
will cause obvious chattering in the controller in the actual simulation, so the saturation
function is used to replace the symbolic function in the simulation, and the form of the
saturation function is shown below.

Sat(si) =

{
sign(si) ,|si| > �

|si|ξsign(si)/�ξ ,|si| ≤ �
, (i = 1, 2, 3) (36)

The parameters used are � = 7, ξ = 0.2.
For the disturbances in the form of Equation (34), there are two different amplitudes.

For the first amplitude, the disturbances as in Equation (37) are chosen for simulation.

τE =

⎡⎣8 × 103 sin(ω · t)
6 × 103 sin(ω · t)
7 × 103 sin(ω · t)

⎤⎦ (37)

Figure 5 shows the tracking curves of the complex disturbances f (η, v,τE) for four
periods under the disturbances of Equation (37). The complex disturbances are related to
the USV’s own velocity, position information and external environmental disturbances,
which are non-periodic disturbances. The red curve, which is the observed value, is very
close to the actual value (the blue curve), as can be seen in the figures below.
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(a) (b) 

 
(c) (d) 

Figure 5. Simulation results of complex disturbances under four periods. (a) Complex disturbances
tracking curve graph at period T = 5s; (b) Complex disturbances tracking curve graph at period
T = 6s; (c) Complex disturbances tracking curve graph at period T = 7s; (d) Complex disturbances
tracking curve graph at period T = 8s.

Figure 6 shows the observation error curves of complex disturbances f (η, v,τE),
positions ηe and velocities ve. It can be seen in the three figures that for the three different
state tracking error curves converge in a minimal neighborhood of zero. The composite
disturbance error is less than 10−1, and the position and velocity observation error is less
than 10−3. Despite the change in the period of the disturbance, the NESO observations are
still valid within the error tolerance. There is an initial error in the estimation error of the
vessel positions and velocities state at the initial stage. As time goes on, the error converges
very quickly. From the convergence range of the error, it can be concluded that the estimated
vessel speed and position states can replace the actual measured states information and
feedback to the system. Therefore, when the states of the underactuated USV system cannot
be measured or is disturbed by the external environment, the structural information of the
system itself can be used to estimate the states information of the underactuated USV.
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(a) (b) 

 
(c) 

Figure 6. Observation error results at four periods. (a) Graph of complex disturbances tracking error
under four periods; (b) Graph of positions tracking error under four periods; (c) Graph of velocities
tracking error under four periods.

Figures 7–10 show the simulation results under four periods of disturbance T =
5s, 6s, 7s, 8s. The trajectory tracking curve, position tracking error curve, velocity tracking
error curve and surge force and yaw moment curve are given for each period. For the
trajectory tracking curves under four periods, it can be seen that, overall, both control
methods can track the reference trajectory, but from the local zoom in, it can be seen that the
NFTSM control method used in this study approaches the reference trajectory earlier than
the NTSM method and the approximation error is smaller. The small error indicates that
the safety is higher and the risk is lower when performing the task using this method. As
seen from the velocity tracking error curve, there is not much difference between the two
methods because, overall, both methods can make the USV track on the reference trajectory,
while achieving the position tracking needs to satisfy the velocity tracking first. For the
simulation curves of surge force and yaw moment, it can be seen that the output curve of
the controller is smoother than the control method used in this study, and the output curve
of the NTSM control method is more strongly chattered. When the periods are T = 7s
and T = 8s, it is obvious from the position tracking Figures 9b and 10b under the two sets
of periods that the control method NFTSM of this paper is better than the NTSM control
scheme.
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(c) (d) 

Figure 7. Simulation results at disturbance period of T = 5s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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Figure 8. Cont.
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(c) (d) 

Figure 8. Simulation results at disturbance period of T = 6s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.

 
(a) (b) 

 
(c) (d) 

Figure 9. Simulation results at disturbance period of T = 7s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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(a) (b) 

 
(c) 

 
(d) 

Figure 10. Simulation results at disturbance period of T = 8s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.

The second disturbances amplitude is 10 times the first disturbances amplitude, and
the disturbances as in Equation (38) are chosen for simulation.

τE =

⎡⎣8 × 104 sin(ω · t)
6 × 104 sin(ω · t)
7 × 104 sin(ω · t)

⎤⎦ (38)

Figure 11 presents the observation error curves of complex disturbances, position and
velocity under disturbances as shown in Equation (38). For disturbances with amplitude
11 times larger, the observations of the complex disturbances as shown in Figure 11a
are not as good as in the case of small disturbances, but the observation errors of the
position and velocity states are within 10−2. In the case of period variation, there is no
significant difference between the simulation graphs under the four periods, and there is
good adaptability for the period variation.
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(a) (b) 

 
(c) 

Figure 11. Observation error results at four periods. (a) Graph of complex disturbances tracking error
under four periods; (b) Graph of positions tracking error under four periods; (c) Graph of velocities
tracking error under four periods.

The simulation results shown in Figures 12–15 are obtained by varying the period T =
5, 6, 7, 8s of the disturbances. Since the disturbances amplitude is 10 times the disturbances
in Equation (37), the errors of the observed value obtained by NESO are relatively large
compared to the small amplitude disturbances, which have an impact on the position
tracking results and lead to a larger error. In the presence of observation errors, both control
methods can achieve trajectory tracking control as seen in the trajectory tracking result
graph, but the control effects are different. From the simulation results of Figure 12 at the
disturbance period of T = 5s, it is obvious from Figure 12b that the control effect of the blue
curve NFTSM of the control method used in this paper has a smaller error, and Figure 12d
shows that the chattering of the yaw moment is smaller. When the period becomes larger,
as seen from the position error curves of the four periods, the tracking error of the control
method in this paper is smaller, and its error curves are closer to the reference error curve
of zero value. The simulation graph of the yaw moment at four periods shows that the
control scheme proposed in this study has a smaller frequency of control output variation
and less chattering.
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(a) (b) 

 
(c) (d) 

Figure 12. Simulation results at disturbance period of T = 5s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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Figure 13. Cont.
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(c) (d) 

Figure 13. Simulation results at disturbance period of T = 6s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.

 
(a) (b) 

 
(c) (d) 

Figure 14. Simulation results at disturbance period of T = 7s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.
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(a) 

 
(b) 

 
(c) (d) 

Figure 15. Simulation results at disturbance period of T = 8s. (a) Trajectory tracking curves; (b) Posi-
tion tracking error curves; (c) Velocity tracking error curves; (d) Surge force and yaw moment curves.

The simulation results of the above two amplitudes and four periods show that the
observation errors of position and velocity are less than 10−3 and the complex disturbance
less than 2 × 10−2 in the case of small disturbance amplitude. In the case of a large dis-
turbance of 10 times the small amplitude disturbance, the observation errors of position
and velocity are less than 1 × 10−2, and the observation errors of the complex disturbance
are less than 0.3. Under the disturbance of small amplitude and large amplitude distur-
bances, the position, velocity and composite disturbance observations with a small enough
error can be obtained, which shows that the designed full state observer is feasible. The
comparison of different periods of the two control methods highlights that the control
method NFTSM in this paper has a better trajectory tracking effect, a smaller error and less
controller chattering.

7. Conclusions

In this study, a method combining NESO and NFTSM is presented for trajectory control
of an underactuated USV under the disturbances of wind, wave and current in external
environment, in the presence of perturbation of the parameters of an underactuated USV
model and in the absence of accurate information about the state of the system. Based
on theoretical analysis, it is proved that the design process of NESO and NFTSM satisfies
the Lyapunov stability condition. Two types of disturbances with 10 times difference in
amplitude and four different periods are designed. The four period disturbances with
the higher probability of generating wind and wave currents are chosen according to the
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scatter diagram of the sea states, and the numerical simulation verifies the effectiveness
of NESO for all of the states observed. Finally, the NTSM and NFTSM are compared
with the position, velocity and complex perturbation observations obtained by NESO, and
the following conclusions can be drawn: (1) The stability demonstration and simulation
results of NESO show that the designed observer can quickly approximate the actual
complex disturbances and the underactuated USV system state, and the vessel position
and vessel velocity observation errors for different periods of the two disturbances are
less than 10−3, thus it is feasible and easier to implement the observer as a measurement
module of the system to feedback the underactuated USV system state. (2) The simulation
results show that the actual trajectory has a good approximation for the combined linear
and circular trajectory, and the error curve shows the control scheme of NFTSM with a
smaller error, and the error finally converges to the small neighborhood of zero, thus the
probability of accidents is lower. (3) The simulation results show that under the conditions
of environmental disturbances, model parameter uncertainty and state unpredictability, the
control method of NFTSM can achieve rapid trajectory tracking control with less tracking
error and less chattering in the process.

In future work, the focus will be on adaptive NESO, since the control accuracy is
affected by the observer accuracy when using state feedback.
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Abstract: To adapt to complex navigation conditions, this paper addresses the coordination formation
of autonomous surface vehicles (ASVs) with the constraint of information interruption. For this
purpose, a distributed robust fast finite-time formation control algorithm is proposed by fusion of
the directed graph and neural network method. In the strategy, the graph theory is utilized for the
channel of information transmission to maintain the stability of the formation system. In addition, the
radial basic function (RBF) neural network is employed to approximate the structure uncertainty. Due
to the merits of the robust neural damping technique, only two adaptive parameters are designed to
compensate the perturbation from the model uncertainty and external environmental. Furthermore,
an improved dynamic surface control (DSC) technology is developed for constituting the exponential
term of the Lyapunov function. It is proven that the proposed scheme is able to achieve consensus
tracking in finite time quickly, and the errors rapidly approach a small region around the origin.
Finally, the feasibility and effectiveness of the algorithm are verified by two numerical simulations.

Keywords: fast finite-time; formation control; autonomous surface vehicles; adaptive control

1. Introduction

In the past decades, there has been increased attention aimed at the development of
autonomous surface vehicles (ASVs) in the field of marine cybernetics [1]. This attention
primarily originates from the practical applicability of ASVs in various civilian and military
missions, e.g., the emergency search and rescue, the offshore supply and the cooperative
transportation [2]. The formation control is a class of effective solutions to implement
the coordinated and compensated operation of ASVs. In the existing work, the control
protocols almost entirely use uniformly ultimately-bounded convergence performance. In
practice, the possible delay or tardiness may cause the inaccuracy of the attitude of ASV and
even lead to invalidation of the whole engineering operation. Therefore, the investigation
of the formation control of ASVs, with consideration to the fast response and information
loss, requires more efforts and holds significance in the marine industry.

The research on vehicle formation has been developed to some extent [3–6]. Its control
objective is to drive a group of ASVs converged to an anticipated geometric formation with
a desired heading angle. To obtain the predefined formation, the mainstream formation
control methods in the existing literature are the leader-follower approach [7,8], the virtual
structure approach [9], the behavioral-based approach [10] and the graph theory-based
approach [11]. In addition, the above formation methods present a mixed development
state in recent years, which effectively promote the further development of formation
control. In [12], novel sliding mode control laws are proposed to control multiple surface
vehicles with arbitrary formations. Xiang et al. [13] developed a nonlinear controller for
formation coordination to avoid collision with a certain formation. Moreover, a leader-
follower formation tracking approach with limited torque was developed for tackling
actuator saturation. Considering accurate formation in [14], Xiao et al. [15] designed a novel
disturbance estimation scheme for the formation controller based on a terminal sliding
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mode observer. In [4], a practical coordinated path-following algorithm was presented for
a group of underactuated surface vehicles to achieve and maintain the desired formation
pattern. For the multi-input and multi-output system, a traditional adaptive control
approach was designed in the presence of the amplitude and rate saturation in [9].

Aside from the proposed formation control methods, the consensus control for multi-
agent system (MAS) is also a method to solve the vehicle formation coordination problem.
It has the superiorities of autonomy, distribution, coordination and certain autonomous
learning ability. Moreover, it holds strong robustness to the external influence and high
tolerance to the fault of internal single agent. The consensus problem for MAS is a basic
research direction in multi-agent cooperation; it makes each individual reach a common
state. The existing papers on consensus control are mainly divided into two general
categories, e.g., leader-following consensus problem and leaderless consensus problem.
Especially, leader-following consensus problem (also called distributed tracking control)
has already become an active research area owing to its dependability. The leader is
an individual different from a follower. On the one hand, the state information of the
leader can be directly or indirectly transmitted to all followers, and affects the behaviors
of followers. On the other hand, the leader can be a virtual, ideal individual which is
not affected by external disturbance. Based on these proposed advantages, the consensus
control of MAS has been widely used with the development of vehicle formation control,
such as in papers [11,16]. Based on a modular design approach, a new cooperative control
scheme is proposed for the dynamic positioning of multiple offshore vessels. In [16], the
paper designs a leader-follower cooperative formation control algorithm for ASV with
uncertain dynamics and external disturbances.

The control algorithms mentioned above deal with the asymptotic consensus for the
system. Each system state can reach the equilibrium only when the time tends to infinity
theoretically. Moreover, the convergence speed is an important performance index, which
affects the real-time performance of formation systems. In the existing literature, there is
little fast finite-time stability theory applied to the formation control of ASVs. Actually,
the fast finite time stability analysis is used in [17–20] to achieve rapid stability. In [17],
a tracking control scheme for the first-order MAS is proposed in the sense of finite time
convergence. The works in [18] address the tracking control of second-order MASs, and the
tracking control strategies are developed, which guarantee the achievement of fast tracking
in finite time. Subsequently, a fast finite-time consensus proposal with a virtual leader is
presented for heterogeneous MASs in [19]. In [20], the leader-follower consensus tracking
problems are discussed for high-order MASs.

Motivated by the aforementioned discussions, an improved distributed fast finite-time
formation of ASVs control scheme is developed for ASVs with information interruption.
The objective is to propose a consensus formation control proposal for underactuated
ASVs based on fast finite-time stability criterion; the main contributions are summarized
as follows:

(1) Considering the possible information interruptions during the navigation, the directed
theory has been adopted to improve the fault-tolerant performance of the vehicle
formation. Unlike the traditional leader-follower method, the proposed distributed
control algorithm is designed to communicate between the networked underactuated
vehicles which only required the information of partial neighbors, which can effec-
tively enhance the robustness and reduce the over-dependence on the leader vehicle.

(2) In this paper, the proposed formation control scheme is firstly developed for the
underactuated ASVs based on the fast finite-time stable criterion and an improved
DSC technique. Different from the existing finite time protocols, the proposed strategy
has the superiority of a faster convergence rate and higher control accuracy. Moreover,
the convergence time of the errors has been independent with the initial condition,
and is only related to the design parameters, which are more in accordance with the
practical requirements.
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2. Problem for Formulation and Preliminaries

Throughout the paper, h is a constant with h = 4z−1
4z+1 (z ∈ Z+). (̂·) is the estimate of (·),

and the estimation error (̃·) = (̂·)− (·). The variables u and r are represented by ς.

2.1. The Mathematical Model for Underactuated ASVs

In this paper, the control plant is the underactuated vehicle with h propellers and rud-
ders for surge and yaw motions only. Based on the Newtonian and Lagrangian mechanics,
the mathematical dynamic model of ASVs is given as Equations (1) and (2), following [21].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
xi = ui cos(ψi)− vi sin(ψi)
.
yi = ui sin(ψi) + vi cos(ψi).
ψi = ri
.
ui =

mv
mu

viri − fu(ui) +
1

mu
τui + dwui

.
vi = −mu

mv
uiri − fv(vi) + dwvi,

.
ri =

mu−mv
mr

uivi − fu(ui) +
1

mr
τri + dwri

(1)

with ⎧⎪⎪⎨⎪⎪⎩
fu(ui) =

du
mu

ui +
du2
mu

|ui|ui +
du3
mu

u3
i

fv(vi) =
dv
mv

vi +
dv2
mv

|vi|vi +
dv3
mv

v3
i

fr(ri) =
dr
mr

ri +
dr2
mr

|ri|ri +
dr3
mr

r3
i

(2)

where xi, yi ψi denote the position and heading angle of the ith vehicle based on the earth
centered fixed coordinate frame. ui, vi, ri are the vehicle velocities in surge, sway and
yaw in the body-fixed frame. dwui, dwvi, dwri are the interference effect of marine envi-
ronment on vehicles, such as wind, wave and ocean current. τui, τri are control input of
vehicle model on surge and yaw. mu, mv, mr, du, dv, dr, du2, dv2, dr2, du3, dv3, dr3 are
all considered as unknown parameters, and described as the vehicle’s inertia, hydrody-
namic damping and nonlinear damping terms. fu(ui), fv(vi), fr(ri) denote the high-order
hydrodynamic effects.

2.2. Directed Graph Theory

In a formation system with M ASVs, each ASV can be regarded as the node of the
directed graph G, and the channel among ASVs can be regarded as the edge of the directed
graph G. v = {v1, v2, · · ·, vM} is called the vertex set of graph G, and its elements are
nodes; e = {e1, e2, · · ·, eM} is called the edge set of graph G, whose elements are edges. The
M-order matrix A is called adjacency matrix with the elements aij = 1, representing the
adjacency relationship between the nodes of the whole system. When aij = 1, it means
that the information flow can be directly transmitted from jth vehicle to ith vehicle; when
aij = 0, it means that there is no direct connection between the two agents. Diagonal

matrix D = diag(d1, d2, · · ·, dM) is the in-degree matrix of graph G, with di =
M
∑

j=1
aij. When

the autonomous vehicle sent a message to the jth vehicle (called its neighbor), thus, the
neighbor set of jth vehicle is expressed as Nj =

{
vk
∣∣(vk, vj)

}
. Taking the leader into

consideration, the augmented graph G is used to denote the communication topology of
the leader-following system for ASVs.

2.3. RBF NNs

Based on the existing results [22,23], the neural networks and fuzzy logic systems are
effective approximation tools to model the model uncertainty and extraneous disturbances.
This paper adopts the radial basis function neural networks (RBF NNs) to address the
uncertainty of the above mathematical model.
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Lemma 1 ([24]). For any real continuous function f (x) with f (0) = 0, there is always one result
like Equation (3)

f (x) = S(x)A(x) + ε (3)

where S(x) = [s1, s2, · · · , sn] with si(x) is called the basis function and chosen as in Gaussian form:

si =
1√

2πηi
exp(− (x − μi)

T(x − μi)

2ηi
), i = 1, 2, · · · , l (4)

l is the node number of NNs, ε is the approximation error with unknown upper bound ε, n is the
dimension number of x, and

A =

⎡⎢⎢⎢⎣
w11 w12 · · · w1n
w21 w22 · · · w1n

...
...

. . .
...

wl1 wl2 . . . wln

⎤⎥⎥⎥⎦
is an optimal weight matrix.

Assumption 1. The formation system consists of a leader and its followers, and each follower just
communicates with its neighbors. Thus, a directed graph G is formed mathematically from the
cooperative formation, contained a directed spanning tree when the leader is considered as the root.

Remark 1. As for directed graph G, if only the Laplacian matrix L = D − A has only one
zero eigenvalue and other eigenvalues have positive real parts, then the directed graph is strongly
connected or has a directed spanning tree. That is, all the control information is available for
every agent.

Assumption 2. Assume that the unstructured uncertainty terms satisfy dwui ≤ dumax
dwvi ≤ dvmax, dwri ≤ drmax, where dumax, dvmax, drmax are unknown positive constants.

Assumption 3. The leader is an ideal vehicle with no inertia and damping, it is not affected by the
marine environmental disturbance. x0, y0, ψ0 represent its status information, the reference path of
leader is generated by following Equation (5).⎧⎨⎩

.
x0 = u0 cos ψ0.
y0 = u0 sin ψ0.
ψ0 = r0

(5)

where u0 and r0 are set values according to the needs.

Lemma 2 ([25]). Supposing a continuous function V(x, t) satisfies Vis positive define.

There exist scalars β > 0, γ > 0, 0 < α < 1, 0 < ρ < ∞ and an open neighbor-
hood Ω of origin such that

.
V(x, t) ≤ −βV(x, t)α − γV(x, t) + ρ, x ∈ Ω. Then there ex-

ists a finite time T, 0 < η < γ such that for any t ≥ T, one has V(x, t) ≤ ρ
γ−η , where

T = 1
η(1−α)

ln

(
β
η +V(0)1−α

β
η +
(

ρ
γ−η

)1−α

)
.

Lemma 3. For sl ∈ R, l = 1, 2, · · · , k, 0 < μ ≤ 1, the following inequality is correct.

(
k

∑
l=1

|sl |)
μ

≤
k

∑
l=1

|sl |μ ≤ k1−μ(
k

∑
l=1

|sl |)
μ
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3. Roust Fast Finite-Time Controller Design

As shown in Figure 1, the purpose of this paper is to provide an algorithm such that
the vehicle formation would converge to the desired planning trajectory in a predetermined
geometric pattern. In this part, the algorithm for vehicle formation is fully explained and
proved through mathematical derivation and theoretical analysis.

Robust neural 
damping technique

Waves, wind and 
ocean currents

Distributed 
Controller

Vehicles 
trajectory

Way-point 
generator

Nonlinear feedback

Guidance

Reference path 
genetate

Control

Formation 
shape

1th vehicle

nth vehicle

Operator 
input

Fast finite-time 
stability theory

Figure 1. Conceptual signal flow box diagram for guidance, and control.

3.1. Distributed Robust Fast Finite-Time Controller Design

In this paper, the vehicle formation consists of a virtual leader and its followers. The
function of the leader is to guide the vehicle formation to navigate along the planned path.
The ith vehicle in the formation system just communicates with its neighbors or leader
according to the designed directed graph. Based on the information from its own and
other vehicles, the robust fast finite-time formation controller of ith ASV is designed by
a backstepping approach and directed graph theory. In this part, the construction method
of the controller is described in the following two steps.

Step 1: According to the relative position of the vehicles in Figure 2, the position errors
of ith are defined based on directed graph as Equations (6) and (7).

xei =
M

∑
j=1

aij(xi − xj − Δxij) + bi(xi − x0) (6)

yei =
M

∑
j=1

aij(yi − yj − Δyij) + bi(yi − y0) (7)

where Δxij, Δyij are constants maintained the geometry for vehicle formation.

Figure 2. The schematic diagram of the proposed control principle.
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Remark 2. B = [b1, b2, · · · , bM]T is a column of vectors, which is used to describe the existence
of information connectivity between ith vehicle and leader. When the ith vehicle can receive the
information from the leader, bi = 1, otherwise bi = 0. Here, the leader and vehicles in the formation
are constructed into a directed graph G.

Based on the geometrical relation between the current position of ith vehicle and the
reference signal in Figure 2, the error zei and ψei are calculated as Equation (8).

zei =
√

x2
ei + y2

ei
ψei = ψi − ψri

(8)

Note that ψri ∈ (−π, π) is the expected angle of the ith ship, which can be calculated
as Equation (9).

ψri = 0.5[1 − sign(xei)]sign(yei)π + arctan(
yei
xei

) (9)

The mathematical relationship between position errors is calculated according to the
trigonometric function as Equation (10).

xei = zei cos ψri, yei = zei sin ψri (10)

In view of the Equations (1) and (2), the time derivative of xei and yei are calculated as
follows:

.
xei = (di + bi)(ui cos ψi − vi sin ψi)−

M
∑

i=1
aij(uj cos ψj − vj sin ψj + Δ

.
xij)− bi

.
x0

.
yei = (di + bi)(ui sin ψi + vi cos ψi)−

M
∑

i=1
aij(uj sin ψj + vj cos ψj + Δ

.
yij)− bi

.
y0

(11)

Combining Equations (8)–(11), we can simplify the time derivation of zei as

.
zei =

.
xei cos ψri +

.
yei sin ψri

= (di + bi)[ui cos ψei − vi sin ψei]−
M
∑

j=1
aijξ − bi cos ψri

.
x0 − bi sin ψri

.
y0

(12)

with ξ = uj cos(ψj − ψrj) + vj sin(ψj − ψrj).
According to the Equations (2) and (8), the time derivative of the heading angle error

ψei is calculated as (13).
.
ψei =

.
ψi −

.
ψri = ri −

.
ψri (13)

To stabilize the kinematic error dynamics (8), the virtual control laws αui and αri can
be respectively designed for ui and ri as Equation (14).

αui = [(di + bi) cos ψei]
−1[−kz1zei − kz2z2h−1

ei + (di + bi)vi sin ψei

+
M
∑

i=1
aijξ + bi cos ψri

.
x0 + bi sin ψri

.
y0]

αri = −kψ1ψei − kψ2ψ2h−1
ei +

.
ψri

(14)

where kz1, kz2, kψ1, kψ2 are positive design parameters.

Remark 3. For control law Equation (14), note that αui is not defined at ψei = ±0.5π, thus,
we assume in the control design that |ψei < 0.5π|, and conceive that if ψei = ±0.5π, then
ψei = 0.5π ∓ 0.01π. Moreover, in the algorithm, the real vehicle follows a certain route generated
by a virtual vehicle, and the heading angle error ψei will not be equal to 0.5π owing to the small
tracking error.

368



J. Mar. Sci. Eng. 2022, 10, 1775

In this part, we introduce a novel DSC technology by applying first-order nonlinear
filter βui and βri instead of the traditional first-order linear filter to avoid repeatedly
differentiating αζi as Equation (15). This effectively simplifies the process of controller
design and solves the problem of the so-called “explosion of complexity”.

εζi
.
βζi = sig(αζi − βζi)

2h−1 + sig(αζi − βζi) (15)

where εζi are time constants, sig(·)κ = | · |κsig(·).
Defining the errors of filters as Equation (16).

qui = βui − αui, qri = βri − αri (16)

From the above result, qζi
.
qζi can be simplified as Equation (17)

qζi
.
qζi = qζi(

.
βζi −

.
αζi) = − 1

εζi
q2h

ζi − 1
εζi

q2
ζi − qζi

.
αζi

≤ − 1
εζi

q2h
ζi − 1

εζi
q2

ζi + q2
ζi +

1
4 η2

ζi(·)
(17)

where ηζi(·) ≥
∣∣− .

αζi
∣∣ is a nonnegative continuous function.

Step 2: At this step, the control inputs τςi and the derivative of adaptive laws
.
λ̂ςi for

the ith vehicle are obtained according to the deduction of kinetic errors. In addition, the
RBF NNs is used to approximate the model uncertainty part, which effectively enhances
the stability of the system.

Firstly, one defines the kinetic errors as Equation (18).

uei = ui − βui
rei = ri − βri

(18)

The time derivative of uei and rei can be calculated along Equations (2) and (18) as
Equation (19).

.
uei =

.
ui −

.
βui =

mv
mu

viri − fu(ui) +
1

mu
τui + dwui −

.
βui

.
rei =

.
ri −

.
βri =

mu−mv
mr

uivi − fr(ri) +
1

mr
τri + dwri −

.
βri

(19)

Here, fς(ςi) is an unknown smooth function in vehicle model which is used to describe
hydrodynamic effects. According to Lemma 1, it can be approximated by NNs as

fς(ςi) = Sςi (ς)Aςi ςi + εςi

= Sςi (ς)Aςi βςi + Sςi (ς)Aςi ςei + εςi
= Sςi (ς)Aςi βςi + bςi Sςi Wςi + εςi

(20)

where bς =
∣∣∣∣∣∣Aς

∣∣∣∣∣∣, Am
ς = (Aς/bς), Wς = Am

ς ςe = (Aς/bς)ςe, bςWς = Aςςe .

According to Equation (20), the simplified
.
uei and

.
rei can be obtained as Equation (21).

.
uei = υui − buiSuiWui +

1
mu

τui −
.
βui

.
rei = υri − briSriWri +

1
mr

τri −
.
βri

(21)

369



J. Mar. Sci. Eng. 2022, 10, 1775

To promote the understanding, one defines the variables υςi , ϑςi and ϕςi to describe
simplistically the controller construction.

υui =
mv
mu

viri − Sui Auiβui + dwui − εui

≤ du
v2

i +r2
i

2 + Sui Auiβui+du max + εui

≤ max{‖Auiβui‖, du, du max + εui}
(

1 + ‖Sui(u)‖+ v2
i +r2

i
2

)
≤ ϑui ϕui

(22)

where ϑui = max{‖Auiβui‖, du, du max + εui} and ϕui =

(
1 + ‖Sui(u)‖+ v2

i +r2
i

2

)
Similar to the previous process, we can obtain

υri ≤ ϑri ϕri (23)

where ϑri = max{‖Ariβri‖, dr, dr max + εri} and ϕri =

(
1 + ‖Sri(r)‖+ u2

i +v2
i

2

)
, with du and

dr are an unknown positive constant.

Now, the controller inputs of τui, τri and parameter update laws
.
λ̂ui,

.
λ̂ri are designed

as follows Equations (24) and (25).

τui = mu
.
βui − λ̂uiΦui(·)uei − ku1uei − ku2u2h−1

ei
τri = mr

.
βri − λ̂riΦri(·)rei − kr1rei − kr2r2h−1

ei

(24)

.
λ̂ui = Γui

[
Φui(·)u2

ei − δu1(λ̂ui − λ̂0
ui)− δu2(λ̂ui − λ̂0

ui)
2h−1

]
.
λ̂ri = Γri

[
Φri(·)r2

ei − δr1(λ̂ri − λ̂0
ri)− δr2(λ̂ri − λ̂0

ri)
2h−1

] (25)

with
Φςi (·) = (Sςi (ς)Sςi (ς)

T/(4γ2
i1)) + (ϕ2

ςi
/(4γ2

ς2
)

λς = mςmax
{

b2
ς , ϑ2

ς

}
ς = u, r

where kς1 , kς2 , Γςi , δς1 , δς2 are positive parameters for controller. λ̂ςi is the estimate of λς,
and λ̂0

ς is the initial value of λ̂ς.

3.2. Distributed Robust Fast Finite-Time Control Algorithm Stability Analysis

In this section, the stability analysis for the vehicle formation system, which is
equipped with the proposed distributed robust fast finite-time controller, is carried out
based on the Lemma 2 and Lyapunov approach.

The main result is summarized as Theorem 1.
For any B1 > 0 and B2 > 0, the sets

Π1 :=
{
(x0,

.
x0,

..
x0, y0,

.
y0,

..
y0,

.
ψ0,

..
ψ0) : x2

0 +
.
x2

0 +
..
x0

2 + y2
0 +

.
y2

0 +
..
y2

0 +
.
ψ

2
0 +

..
ψ

2
0 ≤ B1

}
Π2 :=

{
zei, ψei, uei, rei, qui, qri, λ̃ui, λ̃ri : z2

ei + ψ2
ei + u2

ei + r2
ei + q2

ui + q2
ri + λ̃2

ui + λ̃2
ri ≤ B2

}
Therefore, the nonnegative continuous function ηςi (·) has a maximum value Mςi on

compact set Π1 × Π.

Theorem 1. Assume the close-loop system consists of the vehicle dynamic (1) satisfied Assumption
2, the virtual controllers (14), the distributed robust controllers (24) and the adaptive laws (25). The
proposed algorithm for the closed-loop will guarantee that: 1. all signals remain bounded uniformly;
2. the tracking errors converge to a small region in finite time T.
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Proof. To make the reasoning process clear, we divide it into the four steps according to the
system state.

Step 1: Defining the Lyapunov function V1 = 1
2 z2

ei, we can get the derivative of V1 as
Equation (26) according to Equations (12), (16) and (18).

.
V1 = zei{(di + bi)[(qui + αui + uei) cos ψei − vi sin ψei]

− M
∑

j=1
aijζ − bi cos ψri

.
x0 − bi sin ψri

.
y0}

(26)

On account of Young’s inequality, the time derivative of V1 is derived along (14) and
(26) as Equation (27)

.
V ≤ −kz1z2

ei − kz2z2h
ei + (di + bi)cosψei(qui + uei)zei

≤ −
[
kz1 − 1

2 (di + bi)
]
z2

ei − kz2z2h
ei

+(di + bi)q2
ui + (di + bi)u2

ei

(27)

Step 2: Constructing the Lyapunov function V2 = 1
2 ψ2

ei, one can obtain the
.

V2 by
substituting (13), (16) and (18).

.
V2 = ψei(qri + αri + rei −

.
ψr) (28)

Substituting the virtual law αri (14) into (28),
.

V2 can be simplified as

.
V2 ≤ −kψ1ψ2

ei − kψ2ψ2h
ei + qriψei + reiψei

≤ −(kψ1 − 1
2 )ψ

2
ei − kψ2ψ2h

ei + q2
ri + r2

ei
(29)

Step 3: In order to stabilize kinetic errors ςei and adaptive parameters λςi , here we allow

V3 =
1
2

ς2
ei +

1
2mς

Γ−1
ςi

λ̃2
ςi
+

1
2

q2
ςi

(30)

The time derivative of V3 can be derived by invoking from Equations (21) and (17) as
Equation (31)

.
V3 = ςei(υςi − bςi Sςi Wςi +

1
mς

τςi −
.
βςi

) +
Γ−1

ςi
mς

λ̃ςi

.
λ̂ςi + qςi

.
qςi

≤ υςi ςei − bςi Sςi Wςi ςei +
1

mς
τςi ςei −

.
βςi

ςei +
Γ−1

ςi
mς

λ̂ςi

.
λ̂ςi

− Γ−1
ςi

mς
λςi

.
λ̂ςi − 1

εςi
q2h

ςi
− 1

εςi
q2

ςi
+ q2

ςi
+ 1

4 M2
ςi

(31)

Based on Young’s inequality, one simplifies the partial variables of Equation (31).

υςi ςei − bςi Sςi Wςi ςei

≤ b2
ςi

ST
ςi

Sςi ς2
ei

4γ2
ς1

+ γ2
ς1

WT
ςi

Wςi +
ϕ2

ςi
ϑ2

ςi
ς2

ei
4γ2

ς2
+ γ2

ς2

≤ (
ST

ςi
Sςi

4γ2
ς1

+
ϕ2

ςi
4γ2

ς2
)mςmax

{
b2

ςi
, ϑ2

ςi

}
1

mς
ς2

ei + γ2
ς1

WT
ςi

Wςi + γ2
ς2

≤ 1
mς

λςi Φςi ς
2
ei + γ2

ς1
ς2

ei + γ2
ς2

(32)

with

Wςi = Am
ςi

ςei =
Aςi

‖Aςi ‖
ςei =

1
‖Aςi ‖

⎡⎢⎢⎢⎣
wς1 ςe
wς2 ςe

...
wςl ςe

⎤⎥⎥⎥⎦
WT

ςi
Wςi =

1
‖Aςi ‖

(w2
ς1
+ w2

ς2
++w2

ςL
)ς2

ςi
= ς2

ςi
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Then,
.

V3 is calculated by virtue of Equation (32).

.
V3 ≤ 1

mς
Φςi λςi ς

2
ei + γ2

ς1
ς2

ei + γ2
ς2
+ 1

mς
τςi ςei −

.
βςi

ςei

+
Γ−1

ςi
mς

λ̂ςi

.
λ̂ςi −

Γ−1
ςi

mς
λςi

.
λ̂ςi − 1

εςi
q2h

ςi
− 1

εςi
q2

ςi
+ q2

ςi
+ 1

4 M2
ςi

≤ ςei
mς

(Φςi λ̂ςi ςei − mς

.
βςi

+ τςi ) +
λ̃ςi
mς

(Γ−1
ςi

.
λ̂ − Φςi ς

2
ei)

− 1
εςi

q2h
ςi
− 1

εςi
q2

ςi
+ q2

ςi
+ 1

4 M2
ςi
+ γ2

ς1
ς2

ei + γ2
ς2

(33)

Substituting control inputs Equation (24) and adaptive laws (25) into Equation (33),
one can get

.
V3 ≤ − kς1

mu
ς2

ei −
kς2
mu

ς2h
ei −

δς1
mu

λ̃ςi (λ̂ςi − λ̂0
ςi
)

− δς2
mu

λ̃ςi (λ̂ςi − λ̂0
ςi
)

2h−1
+ 1

4 η2
ςi
− 1

εςi
q2h

ςi

−( 1
εςi

− 1)q2
ςi
+ γ2

ς1
ς2

ei + γ2
ς2

(34)

where
−λ̃ςi (λ̂ςi − λ̂0

ςi
)

2h−1

= −λ̃ςi (λ̂ςi − λςi + λςi − λ̂0
ςi
)

2h−1

= −
[

λ̃
2h

2h−1
ςi + λ̃

1
2h−1
ςi (λςi − λ̂0

ςi
)

]2h−1

≤ −
[

λ̃
2h

2h−1
ςi − 1

2h λ̃
2h

2h−1
ςi − 2h−1

2h (λςi − λ̂0
ςi
)

2h
2h−1

]2h−1

≤ −
(

2h−1
2h λ̃

2h
2h−1
ςi

)2h−1
−
[
− 2h−1

2h (λςi − λ̂0
ςi
)

2h
2h−1

]2h−1

≤ −aλ̃2h
ςi
+ a(λςi − λ̂0

ςi
)

2h

(35)

with a = ( 2h−1
2h )

2h−1
,−λ̃ςi (λ̂ςi − λ̂0

ςi
) ≤ − 1

2 λ̃2
ςi
+ 1

2 (λςi − λ̂0
ςi
)

2
, when h = 1.

Step 4: Based on the above argument, we construct the Lyapunov function V for5the
close-loop control system.

V = V1 + V2 + V3

= 1
2 z2

ei +
1
2 ψ2

ei +
1
2 ς2

ei +
1

2mς
Γ−1

ςi
λ̃2

ςi
+ 1

2 q2
ςi

(36)

By combining (27), (29), (34) and (35), the time derivative of V can be derived as
Equation (37)

.
V = zei

.
zei + ψei

.
ψei + ςei

.
ςei +

Γ−1
ςi

mς
λ̃ςi

.
λ̂ςi + qςi

.
qςi

≤ −
[
kz1 − 1

2 (di + bi)
]
z2

ei −
(

kψ1 − 1
2

)
ψ2

ei

−
[

kς1
mς

− γ2
ς1
− (di + bi)

]
ς2

ei −
[

1
εui

− 1 − (di + bi)
]
q2

ui

−
[

1
εri

− 2
]
q2

ri −
δς1
2mς

λ̃2
ςi
− kz2ze2h

ei − kψ2ψ2h
ei

− kς2
mς

ς2h
ei − 1

εςi
q2h

ςi
− aδς2

mς
λ̃2h

ςi
+ ρ

(37)

with
ρ =

δς1

2mς
(λςi − λ̂0

ςi
)

2
+

aδς2

mς
(λςi − λ̂0

ςi
)

2h
+ γ2

ς2
+

1
4

M2
ςi
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Now we can choose

γ = min
{

2kz1 − (di + bi), 2kψ1 − 1, 2kς

mς
− γ2

ς1
− 2(di + bi),

2
εui

− 1 − (di + bi), 2
εri

− 4,
δς1
Γςi

}
β = min

{
2kz2, 2kψ2,

k2ς2
mς

, 2
εςi

,
aδς2
Γςi

} (38)

then
.

V ≤ −γV − βVh + ρ. �

Remark 4. By applying Lemma 2, this inequality implies that all the signals in the forma-
tion of ASVs are bounded uniformly. Moreover, V(x) ≤ ρ

γ−η always holds for t > T, with
α = h according to the proof process of Lemma 2 in [25]. Compared with the system satisfied
.

V ≤ −αV + ρ or
.

V ≤ −αVα + ρ, the proposed control strategy is with the merits of fast conver-
gence and practicability.

4. Numerical Simulation

In this section, two examples are given to verify the performance and feasibility of
the proposed distributed robust fast finite-time control scheme. The simulation plant are
the underactuated vehicles (length of 38 m, mass of 118 × 103 kg), which is the same as
it in [26], and model parameters of simulation vehicles as follows: mu = 120 × 103 kg,
mv = 177.9 × 103 kg, mr = 636 × 105 kg. Moreover, the personal computer (the PC (Ryzen
7 4700U CPU @2GHz RAM:16GB)) was chosen to simulate the proposed algorithm.

4.1. Search and Rescue Formation in Presence of Partial Information Interruption

In the field of maritime search and rescue, we expect that the task should be conducted
with the advantages of a wide search range and high efficiency, hence multi-vehicle co-
operative formations are more suitable for this task. In this part, we suppose the vehicle
formation consists of a virtual leader and three analogous followers. They are arranged
horizontally to carry out the search task under the disturbance of ocean environment. The
processes of information communication between vehicles are designed as Figure 3.

0

1

2 3

0

1

2 3

Figure 3. The augmented graph of information transfer in the ASVs.

Considering the possible delay or information interruption, the experiment simulates
the interruption of a message during navigation by invalidating one of the information
transmission channels at 600 s. Moreover, this above situation is described by graph
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theory as: the corresponding adjacency matrix and Laplacian matrix are expressed in the
topological relationship of the vehicle formation, respectively,

A =

⎡⎣ 0 0 0
1 0 0
1 1 0

⎤⎦→
⎡⎣ 0 0 0

1 0 0
0 1 0

⎤⎦,

L =

⎡⎣ 0 0 0
−1 1 0
−1 −1 2

⎤⎦→
⎡⎣ 0 0 0

−1 1 0
0 −1 1

⎤⎦.

Remark 5. Before or after the information channel interruption, the Laplacian matrix L from
graph always satisfies the condition in Assumption 1, and the information needed to achieve control
tasks is always globally accessible, hence the result of formation control will not be affected by the
interruption of a specific signal.

Additionally, B = [1, 0, 0] is a used to describe the communication ability between the
vehicle and leader; following Remark 2, the leader’s path is composed of path planning
based on waypoints, with details such as in article [26]. The geometric formation is
constructed by the distances in X and Y directions between vehicles, and the relative
distances between vehicles are given as Δx21 = −1, Δy21 = 299; Δx32 = −1, Δy32 = 299;
Δx31 = −2, Δy31 = 598. Moreover, the initial positions and orientations of the three ASVs
are designed as Equation (39).⎡⎣xi(0)

yi(0)
ψi(0)

⎤⎦ =

⎡⎣−1m −1m −1m
0m −300m −600m
0
◦

0
◦

0
◦

⎤⎦ (39)

The RBF NNs for fu(ui) and fr(ri) include 32 nodes, l = 35, the centers spaced in
[−10 m/s, 10 m/s] for fu(ui) and [−2.5 rad/s, 2.5 rad/s] for fr(ri) and widths ηj = 3(j =
1, 2, . . . , l). For the external disturbances, the ASVs inevitably encounter the disturbance of
wind and wind-generated waves in the course of navigation. This paper adopts a physical-
based mathematical model to reflect the actual environment. The NORSOK wind and the
JONSWAP wave spectrums are adapted to produce these two disturbances, which have
been defined as an International Towing Tank Conference standard. Figure 4 describes
the wind conditions (e.g., the speed is about 12.25 m/s and the direction is about 45 deg)
and wind-generated waves in the simulation experiment. As for the current perturbation,
the speed vvurrent = 0.8 m/s and the direction ψcurrent = 60◦. These disturbances exert
influence on the underactuated ASVs through a certain mechanism, and the detailed
descriptions of the impact method are illustrated in book [27]. For adjusting the parameters
more conveniently in the application, the three ASVs in this simulation use the same set of
controller parameters. The main controller parameters adjusted properly are selected as
Table 1.

Table 1. Controller parameters for the controller.

Indexes Items

Control gains
kz1 = 5, kz2 = 0.9, kψ1 = 1.2, kψ2 = 10,
ku1 = 8.6 × 105, ku2 = 20,
kr2 = 1.52 × 109, kr2 = 20.

Other parameters
δu1 = 4.5, δu2 = 4.5, δr1 = 4.5, δr2 = 4.5,
γu1 = 1.2, γu2 = 4.3, γr1 = 1.2, γr2 = 4.3,
Γu1 = 8.5, Γu2 = 9.0, Γr1 = 8.5, Γr2 = 10.0,
Γu = 0.08, Γr = 0.08, εu = 0.01, εr = 0, 01.
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Figure 4. The simulated environment with physical-based mathematical model.

Based on the above configuration, the numerical simulation results are shown in
Figures 5–10. Figure 5 is the navigation chart of ASVs formation under the proposed
control scheme. The navigation path for ASVs formation is expanded by concentric square,
the circles (with a radius of 150 m) in figure is the search radius. Figure 6 demonstrates
the tracking errors xei, yei and ψei, the fluctuation of the errors curve in the figure is caused
by the turning of the ASVs formation. When the information is interrupted at 600 s, the
positions errors xe3 and ye3 have a sudden change, which is consistent with the description
of Equation (6) combined with the ASVs’ position at 600 s in Figure 5. In Figure 6, other
places are continuous except that the error at the signal interrupt is discontinuous. During
the turning, the surge speed of the vehicle outside the circle is larger than that of the inner
circle to achieve the formation turning behavior; the action is described in Figure 7. In
addition, there exists a decline in the surge velocity of second and third vehicles at the time
180 s, which is different from at 600 s. For Figure 8, we can see that one of the changes in
the adaptive parameters related to surge and yaw velocity, and the fluctuation time is the
same as that of surge and yaw velocity, which is reasonable for this phenomenon to appear
in the course of a formation system turning. Figure 9 shows the control efforts τu and τr of
the three ASVs with the proposed algorithm.

Figure 5. The position and orientation errors for the formation.
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Figure 6. The position and orientation errors for the formation.

Figure 7. The change in surge velocity and sway velocity in vehicle navigation.

Figure 8. The changes in adaptive laws λu and λr during simulation.
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Figure 9. The control inputs τu and τr for ASVs.

x

y

Figure 10. Comparison of the tracking path: the proposed scheme (dot dash line) and the result
in [28] (dashed line).

4.2. Comparison Simulation for Individual Ship

In this section, a comparative experiment is given to demonstrate the superiority of
the proposed robust fast finite-time control algorithm with a single ship. The proposed
approach is compared with the finite-time path-following control algorithm in [28]. The
vehicle model used in this experiment are same as above simulation, and the time-varying
disturbances in the comparison simulation are as follows:

dwu = (11/22)(1 + 0.35 sin(0.2t) + 0.15 cos(0.5t))
dwv = (26/17.79)(1 + 0.3 cos(0.4t) + 0.2 sin(0.1t))
dwr = −(950/636)(1 + 0.3 cos(0.3t) + 0.1 sin(0.5t))

The reference path is generated by a virtual vehicle, as shows in Equation (40).

rd =

⎧⎨⎩
− exp( 0.005t

300 ), 0s ≤ t < 10s
−0.05, 10s ≤ t < 72s

0, t ≥ 72.
(40)

MAE = 1
t∞−t0

∫ t∞
t0

|e(t)|dt
MAI = 1

t∞−t0

∫ t∞
t0

|τ(t)|dt
(41)

Figures 10–12 and Table 2 show the results of the comparison simulation. To better
reflect the comparison results, three performance indexes in Table 2 are employed to display
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the advantages and disadvantages of the two algorithms, e.g., the mean absolute error
(MAE), the mean absolute control input (MAI) and the adjustment time (AT). MAE is
used for evaluating the control accuracy of control algorithm. MAI is for properties of
energy consumption and smoothness; the two indicators are calculated as Equation (41).
In addition, AT represents the time from the initial state to the steady state of the errors,
which can directly reflect the convergence performance.

ex
ey

e
ψ

Figure 11. The error xe, ye, ψe of comparison experiment: the proposed scheme (solid line) and the
result in [28] (dot dash line).

uτ
rτ

Figure 12. The control inputs τu and τr of comparison experiment: the proposed scheme (solid line)
and the result in [28] (dot dash line).

Table 2. The main comparison results for two algorithms.

Indexes Items The Proposed Approach The Scheme in [28]

MAE

xe(m) 0.6129 0.5000

ye(m) 0.2712 0.3748

ψe(deg) 0.0084 0.0479

MAI
τu(N) 6.4942 × 105 7.0622 × 105

τr(N · m) 9.4191 × 107 9.4224 × 107

AT

xe(s) 2.25 3.86

ye(s) 4.82 5.26

ψe(s) 6.42 6.87
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5. Conclusions

In this paper, a fast finite-time robust adaptive control method-based directed graph
theory is proposed for underactuated vehicle formation, which has a superior faster con-
vergence rate and better robust performance. In addition, the effectiveness of the algorithm
mentioned above has been verified through the simulation results. It is meaningful for
improving the coordination performance of vehicle formation. However, the proposed
strategy of vehicle formation is suitable for the ideal sea area, which has limitations on
areas with restricted formation deployment. In navigation, it is expected that the formation
shape can be adjusted according to the changes in obstacles or coast. Hence, we will spend
more energy on the research of variable vehicle formation of in the following research.
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Abstract: With the continued development of artificial intelligence technology, unmanned surface
vehicles (USVs) have attracted the attention of countless domestic and international specialists and
academics. In particular, path planning is a core technique for the autonomy and intelligence process
of USVs. The current literature reviews on USV path planning focus on the latest global and local path
optimization algorithms. Almost all algorithms are optimized by concerning metrics such as path
length, smoothness, and convergence speed. However, they also simulate environmental conditions
at sea and do not consider the effects of sea factors, such as wind, waves, and currents. Therefore,
this paper reviews the current algorithms and latest research results of USV path planning in terms
of global path planning, local path planning, hazard avoidance with an approximate response,
and path planning under clustering. Then, by classifying USV path planning, the advantages and
disadvantages of different research methods and the entry points for improving various algorithms
are summarized. Among them, the papers which use kinematic and dynamical equations to consider
the ship’s trajectory motion planning for actual sea environments are reviewed. Faced with multiple
moving obstacles, the literature related to multi-objective task assignment methods for path planning
of USV swarms is reviewed. Therefore, the main contribution of this work is that it broadens the
horizon of USV path planning and proposes future directions and research priorities for USV path
planning based on existing technologies and trends.

Keywords: unmanned surface vehicle (USV); path planning; hazard avoidance; hybrid algorithms;
multi-objective task assignment

1. Introduction

With the rapid development of science and technology, the USV is an indispensable
means to accomplish tasks at sea. In addition, it is the outstanding advantage of USV
that it is intelligent [1]. Individual USVs can perform intelligence acquisition, surface
search and rescue, and marine resource exploration, while cluster of USVs can perform
cooperative sensing and formation, intelligent escorting, and other operational tasks [2,3].
USV path planning is one of the most significant aspects of its safe navigation in the
working environment, which directly affects the safety and economy of USVs during
navigation [4]. Path planning is also one of the prominent technologies for the automation
and intelligence of USVs and for performing complex tasks [5]. The evaluation criteria for
USV path planning are to seek a safe and feasible optimal path from a defined starting
point to an endpoint in an obstacle-ridden working environment. The aim of the path
planning algorithm is the optimal selection of routes to maximize efficiency. An optimal
path is predicted by analyzing the path length, smoothness, safety, and other indicators to
save time and energy consumption.
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The research method for this paper is the literature research method. New findings are
obtained through extensive reading of the latest current literature to gain a comprehensive
and correct understanding of the problems associated with USV path planning. In the
past five years, several review papers [2–4,6–12] have been published summarizing the
advancement of research on path planning. The following is a list of the most relevant
review papers:

Ref. [2] describes the progress of USV path planning research based on multi-modality
constraints in three stages: route planning, trajectory planning, and motion planning.
Ref. [3] provides a comprehensive review of the development of USV from target tracking,
trajectory tracking, path tracking, and cooperative formation control. This study focuses
on intelligent motion control with less description of path planning. Ref. [4] addresses the
USV local path planning problem and describes the characteristics of various algorithms at
two levels of path search and trajectory optimization. Ref. [6] reviews recent advances and
new breakthroughs in AUV path planning and obstacle avoidance methods, and compares
constraints and marine environmental impacts of AUV from global and local path planning
algorithms. Ref. [7] explores a path planning algorithm for autonomous maritime vehicles
and its collision regulation correlation. This study focuses on USVs and COLREGs from
the perspective of the safety of navigation.

Next, we will present the purpose and contribution of our review paper and emphasize
the necessity of this work in comparison to current review papers. We present an up-to-date
review of USV path planning. Not only are traditional graph-based search and sampling
methods covered, but recent developments in reinforcement learning, neural networks, and
swarm-intelligence-based optimization algorithms are also included. The innovation of this
paper is to point out the limitations of current path planning methods, namely, most of them
ignore the effects of winds, waves, and currents at sea on the ship. However, this paper
systematically and comprehensively introduces new developments in current research into
path planning algorithms in the face of unknown complex maritime situations. Secondly,
in the face of multiple moving obstacles, this paper introduces the relevant algorithms to
accomplish multi-objective task assignment planning and cooperation using USV clusters
to achieve autonomous obstacle avoidance of vehicles. The rest of the paper is structured as
follows: Section 2 presents and compares conventional as well as evolutionary algorithms
under global path planning; Section 3 presents algorithms related to local path planning;
Section 4 presents types of and methods for hazard avoidance in proximity response;
Section 5 presents path planning algorithms under clustering; Section 6 gives conclusions
and analyzes valuable future research directions in this area.

2. Global Path Planning

Global path planning is a large-scale offline path planning method based on provided
information about the marine environment (electronic charts) to obtain information about
static obstacles in the area that USV passes through. The global path planning algorithm
acquires information about the entire environment, modeling the environment based on the
obtained information pairs and performing the preliminary planning for a given path [13].
Global path planning is a viable path from the starting point to the ending point of the USV
in a known operating environment. Once in sophisticated maritime environments, or when
obstacles suddenly appear in the route, it can easily lead to a local optimization situation.
Currently, the main global path planning methods are traditional algorithms such as the
Dijkstra algorithm and A start (*) heuristic search algorithm, and evolutionary algorithms
such as the genetic algorithm and neural network algorithm, as shown in Figure 1.
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Figure 1. Global path planning algorithm.

2.1. Dijkstra Algorithm

The Dijkstra algorithm, a classical shortest-path search algorithm, was formulated
by E.W. Dijkstra in 1959 [14]. By searching the graph and choosing any starting point
among the schema, it is possible to calculate the closest path to all vertices. Due to the
Dijkstra algorithm computing all vertices during the search process, it is less efficient to
run. To address the problem of low operational efficiency, ref. [15] proposed an improved
Dijkstra algorithm to add key nodes and divide regions, which can effectively reduce the
computation time and improve the operational effectiveness of the algorithm. In [16],
another improved Dijkstra algorithm was proposed, which needs to select the nearest
node. As a result, the computation of non-critical nodes decreased, which saves time
and speeds up the path-planning operation. Nevertheless, the method does not select
an optimal route for the appearance of multiple paths with the same shortest distance.
In [17], a running time calculation function was introduced to calculate the optimal route
by running time when several paths of the same length occur. Once the data are heavy, the
method consumes a lot of time. To address the inefficiency caused by a large amount of
data, ref. [18] proposed a hierarchical Dijkstra improvement algorithm. It saves the location
information that has been searched to be synchronized to avoid repeated searches for the
same location. The algorithm can quickly find a more suitable path when there are large
amounts of data. In a way, it saves time and improves efficiency, even if it is not the best
path. For considering the effect of under static obstacles, ref. [19] raised a distance-seeking
Dijkstra algorithm based on electronic nautical charts to solve the global path planning
problem for USVs. By finding the node with the shortest path, the algorithm speeds
up planning, optimizes the global route, and makes the planned path smoother. In [20],
a three-dimensional Dijkstra optimization algorithm was proposed to generate globally
optimal routes. Compared with the two-dimensional Dijkstra algorithm, this algorithm has
a high global search capability, finds the globally optimal path more precisely, and saves
time and fuel costs. Considering the effect of dynamic obstacles on global paths, ref. [21]
presented a D*Lite algorithm. The prediction of dynamic path planning using dynamic
information from the first computed path enables a bi-directional variable search in an
unknown environment. If the map changes too much, it will calculate duplicate nodes
and result in a slow planning efficiency. Moreover, the results are not convergent and the
algorithm becomes stuck in a dead loop. In [22], a path planning algorithm was raised,
based on the improved D*Lite algorithm was by enhancing the path cost function and
reducing the expansion range of nodes. As a result, it avoids double-node computation
and raises computational efficiency.
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2.2. A* Algorithm

The A* algorithm, proposed by Cove in 1967 [23], was a heuristic search algorithm for
discovering the shortest route between two nodes. The A* algorithm is simple in principle,
and quicker than Dijkstra’s algorithm. Using an optimal search approach ensures that the
path has the lowest cost and enhances the efficiency of the operation. However, it relies
more on heuristic functions. Once the heuristic functions are complex or invalid, it produces
poor smoothness and continuity of the paths, which are not detrimental to the navigation
of the vessel [24]. At present, the main improvements of the A* algorithm in academia
include: firstly, expanding the number of neighboring points to be searched to improve the
smoothness; secondly, optimizing the heuristic function to reduce the computation time;
and thirdly, reducing the computation of the raster to hence efficiency. In [25], a finite angle
FFA* algorithm was proposed by introducing a safety distance parameter. This algorithm
expands the search range and increases the number of adjacent points, thus improving the
smoothness of the generated route and increasing the safety of ship navigation. However,
adding branches leads to more computing time and less efficiency. In [26], a limited
destructive A* (LDA*) was raised, based on the problem of the slow running of the FFA*
algorithm. By optimizing the heuristic function, the shortest path from the starting point
to the endpoint is found in the grid environment to save time. The method is fast for
static obstacles and generates feasible routes, but the performance is not optimal. In [27],
another constrained A* algorithm was proposed. In a simulated closed ocean environment,
the effects of static and dynamic obstacles are considered to generate a safer route by
maintaining a safe distance. It reduces the computation time and improves operational
efficiency by optimizing the heuristic function, which adapts to the globally optimal path
planning. In [28], an R-RA* algorithm was proposed. As only a fraction of the grid map, it
is possible to significantly reduce the length of the route, saving computational time and
improving the operational efficiency of the algorithm. However, the generated paths are
not globally optimal. In [29], a rectangular grid instead of a hexagonal grid was presented.
With the reduction in intermediate nodes, it makes the path smoother. The optimization is
also performed in the path length to ensure the robustness and safety of the ship.

2.3. Genetic Algorithm (GA)

The genetic algorithm (GA) was proposed by John Holland, and adheres to the prin-
ciples of genetics and natural selection [30]. The main benefit of GA is that it is available
for complex problems and is a general approach to solving search methods. However,
classical GA suffered from low convergence and function-dependent optimization [31].
The slow processing speed makes it unsuitable for real-time route planning in dynamic and
unknown situations. GA improvements have focused on improving the crossover and vari-
ation operators, choosing better coding methods, and adjusting genetic parameters. In [32],
a new crossover operator to solve the complicated case of the USV path planning problem
was utilized. With the aim of minimizing the overall flight cost, the algorithm randomly
selects the child paths from the parent and generates paths to find the globally optimal
solution and improve the convergence speed. In [33], an artificial adaptation function and
two custom genetic operators were proposed, dealing with the path planning problem
of USVs in the static case. It is shown that the method enables fast optimal solutions in
a static environment but is hard to obtain in dynamic obstacle avoidance. In [34], a hybrid
repetition-free string selection operator and heuristic multiple variables operators was
proposed to find optimal paths and extend the population search. It obtains smooth flight
paths and reduces the computational time of the algorithm. In [35], an adaptive genetic
algorithm (AGA) was proposed that focuses on solving complex optimization problems.
The hierarchical approach to selecting operators reduces time and speeds up convergence.
The algorithm can shorten the length of the global path, improve quality, and find globally
optimal routes in static environments. In [36], an improved particle swarm genetic algo-
rithm (IPSO-GA) was proposed for UAV path planning, which optimizes continuously by
swarm mating variation operations. The algorithm saves time and improves efficiency com-
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pared to greedy algorithms. It is more suitable for computationally intensive and complex
situations to achieve collision avoidance of dynamic obstacles, but the quality of generat-
ing globally optimal paths in complex environments. In [37], a multi-objective enhanced
genetic algorithm (EGA) was developed. Using crossing and variational operators, it takes
full account of path smoothness and path length in ensuring that the generated paths are
safe and feasible, and improves running time and efficiency. However, the method needs
further improvement for dynamic obstacle avoidance. In [38], an improved multi-objective
genetic algorithm (IMOGA) was proposed. Decreasing the path length is achieved by
removing the redundant nodes of the running path. The optimized path quality is achieved
by improving the mobility of the mobile robot, reducing the number of turning movements,
and improving smoothness. However, the method does not consider the dynamic obstacle
avoidance problem in the underwater environment.

2.4. Neural Network (NN)

The Neural Network (NN), introduced by McCulloch Pitts in 1944 [39], also becomes
the Artificial Neural Network (ANN). It also describes the NN method to navigate in an
unknown environment [40]. In [41], an NN based the COLREG rule and the risk of avoiding
collisions with static obstacles was considered, to ensure the safety of MASS. However, the
generated global path is not optimal by the limited environmental information. In [42],
a CNN to extract information and collect visual data through two-dimensional images was
proposed. Furthermore, considering COLREG, the algorithm changes the motion vector to
avoid collisions. However, the data do not update in real-time and the path planning for
dynamic obstacles is not accurate enough. In [43], a residual convolutional neural network
(R-CNN) algorithm was investigated. It improves the capability of real-time path planning
path quality by collecting previous global information, training by reinforcement, and
avoiding dynamic obstacles in a real-time environment. At the same time, it can generate
optimal paths on global paths. In [44], a GNN model to use features extracted from graphs
by NN was proposed. With consideration of the structure and node characteristics of the
graph, it improves the smoothness and speeds up the computation. However, using the
GNN model directly on large-scale graphs can be computationally challenging [45]. In [46],
a graph convolution network (GCN) was proposed. It is a semi-supervised learning method
based on graphical data. Using a model of GCN, nodes with previously unknown data are
created to capture global information to predict traffic states [47] and to achieve global path
planning. The method has few weight parameters and fast convergence. However, it has
a poor performance when it is applied to maritime USVs and works for planning globally
optimal paths on the ground. In [48], a bio-inspired neural network (BINN) algorithm was
proposed and applied to full-coverage path planning for robots on land. It is able to find the
shortest path by a full-coverage approach while avoiding static obstacles. Applied to USV,
it generates paths with too large turning angles and not smooth enough paths. To adapt
full-coverage path planning for USV over the sea, ref. [49] proposed a full-coverage neural
network (CCNN) algorithm for USV path planning. It can greatly reduce the computation
time and improve coverage efficiency. The turning angle is further reduced to make the
path smoother and to avoid all dynamic obstacles to obtain the globally optimal path.

2.5. Summary of Global Path Planning Algorithms

The above research uses tools such as shortening the path length and smoothing the
generated paths when designing path planning algorithms to make the planned paths
more compatible with navigation practice. The use of hierarchical processing of data in
constraints to avoid repeated searches and the introduction of genetic crossover operators
make the paths more convergent and efficient while reducing the solution time of the
algorithm to meet practical needs. The safety distance parameter is entered, following
COLREGs, to improve the safety and robustness of the ship. The global path algorithm
is dependent on perceived environmental information and cannot optimally deal with
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unknown and dynamic obstacles. As shown in Table 1, it compares different algorithms for
global path planning and considers various factors for optimal paths.

Table 1. Characteristics of different algorithms for global path planning.

References Methods Length Smooth Safety COLREG Time Duplicate DOA Efficiency

[14] Dijkstra F F F F T F F F
[15,16] improved Dijkstra T F F F T F F T

[18] hierachial Dijkstra T F T T T F F T
[20] 3D-Dijkstra T F T F T F F T

[21,22] D*Lite T F F F T T T T
[23] A* T F F F T T F T
[25] FFA* T F T F T T T T
[26] LDA* T F T F T F F T

[28,29] R-RA* T T F F T T F T
[35] AGA T T F F T F F T
[36] improved GA T T F F T T F T
[37] EGA T T T F T F F T
[38] IMGA T T T F T T F T
[42] CNN T F T T T F F T
[44] GNN T T T F T F F T
[46] GCN T T T F T F F T
[48] BINN T T T F T F F T
[49] CINN T T T F T F T T

Note: consider (T), no consider (F), dynamic obstacle avoidance (DOA), * (start).

3. Local Path Planning

In contrast to the global path planning algorithm, local path planning is the optimal
path from the current node to a targeted node. It uses sensors to obtain data from the
surrounding location environment, senses the obstacle distribution in the region, and
performs local path planning in a real-time path search. Due to the lack of global envi-
ronment information, it is easy for the pathway to fall into local optimum. Typical local
path planning algorithms include artificial potential field (APF), fast extended random tree
(RRT), velocity obstacle (VO), and dynamic window method (DWA). As shown in Figure 2,
the typical local algorithms are analyzed for their advantages and disadvantages and the
corresponding optimization algorithms.

Figure 2. Local path planning algorithm.
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3.1. Artificial Potential Field (APF)

The artificial potential field (APF) method is a well-known USV local path planning
algorithm proposed by Khatib [50]. Although the APF method has the advantages of
a single structure, fast speed, and good real-time performance, it suffers from problems
such as local optimum and poor path smoothing. In [51], the APF method is applied to
the local path planning of USVs to solve the problem of avoiding static obstacles during
navigation and ensuring the safety of the ship’s trajectory. However, when the target points
near obstacles are difficult to detect, there is poor performance of the generated global
paths. To solve the problem of dead loops, ref. [52] proposed an improved APF approach
using map expansion to reprogram local routes. When an infinite loop occurs, the map
is transformed and starts searching for travelable paths, but does not take into account
the problem of unreachability due to obstacles being too close to the target point. In [35],
a vector artificial potential field method (VAPF) was proposed that improves the use of
the space vector method to calculate the total force of AUVs. It allows USVs to reach
static targets and track dynamic targets. The improved algorithm improves computational
efficiency and reduces the cumbersome time in AUV dynamic avoidance. It can avoid
dynamic obstacles effectively in real-time and reduces the cost of AUVs. However, when
the target points near obstacles are difficult to detect, there is poor performance of the
generated global paths. In [53], the discrete artificial potential field (DAPF) method was
proposed. The results show that the algorithm not only efficiently and quickly computes
safe routes in static and dynamic obstacle environments but also solves local optimization
methods. Using the path optimization algorithm can reduce the path length and improve
the smoothness. In [54], the Ant Colony Potential Field Algorithm (APF-ACO) global
obstacle avoidance scheme was used, where the real-time information from a LiDAR sensor
can avoid local obstacles, and a method to create a potential field without local extrema
was proposed. The length of the path is optimized to reduce steering during driving and
to ensure the robustness and safety of the ship itself. In [55], a model prediction strategy
and an artificial potential field (MPAPF) was proposed. It overcomes the drawbacks of the
traditional APF and other algorithms and solves the difficulty of becoming stuck in the
local optimum. At the same time, it considers the head-on and cross-encounter situations
of ships, effectively avoiding dynamic obstacles in real-time and ensuring the safety of
USVs under complex conditions.

3.2. Rapidly Expanding Random Tree (RRT)

The rapidly expanding Random Tree (RRT), formulated by Lavalle [56], is a sampling-
based path planning algorithm. As the creation of new nodes is random, node creation will
stop once the node determines the target location. However, the RRT algorithm provides
a preferred path that generates many nodes, which consumes time and generates a not
sufficiently smooth path. In [57], the algorithm reduces the randomness of the final path
by deselecting the parent node.The shortest path is found by increasing the number of
iterations, but it can fall into local optimality. In [58], RRT* trajectory optimization is
used to create smoother paths and reduce path lengths. However, convergence to the
optimal path solution is slow and consumes considerable memory and time. In [59],
a Q-Learning-based RRT* (Q-RRT*) method was proposed that reduces the path length
and accelerates convergence to the optimal solution by extending the search. However, it
yields paths that are not globally optimal and obstacle avoidance for dynamic obstacles
requires further consideration. In [60], the RRT-Connect algorithm was proposed, which
is a simple and efficient stochastic algorithm. The greedy heuristic algorithm needs to
speed up the search capability and the convergence process by searching from the starting
and target points but is prone to local optima. To address the case of falling into a local
optimum, ref. [61] proposed a path extension-based heuristic sampling RRT* algorithm (EP-
RRT*). Based on RRT-Connect, the sampling-based asymptotically optimal path planning
algorithm is proposed, which can quickly explore the global environment and find feasible
paths. In [62], a novel probabilistic smoothed bi-directional RRT (PSBi-RRT) algorithm was
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presented. A greedy algorithm and biasing strategy require searching for nearby points.
As a result, it avoids collisions in the environment, significantly reduces running time,
and decreases the likelihood of local optimization. In [63], a method combining APF and
RRT* (P-RRT*) was presented. By introducing randomized gradient descent (RGD), the
algorithm sufficiently reduces the number of iterations and the time and converges to the
optimal path solution more quickly. The algorithm solves the local minima problem, but
the real-time performance needs to be enhanced. In [64], an improved heuristic Bi-RRT
algorithm based on the Bi-RRT algorithm was presented. Not only can dynamic obstacles
in the real-time environment be avoided, but further improvements are also achieved in
the efficiency of algorithm operation and path length, and smoothness.

3.3. Velocity Obstacle (VO)

To address the dynamic obstacle avoidance of USVs, Fiorini and Shiller [65] proposed
the velocity obstacle (VO) approach in 1998 and incorporated the velocity characteristics of
obstacles into the scope. However, the algorithm failed to consider the dynamic changes in
the velocity of the obstacle and the dynamic performance of the USV. In [66,67], a VO-based
dynamic avoidance algorithm was designed for USV to avoid moving obstacles. Since
COLREGs are not considered, the experiments verify that USV is ineffective for moving
and unknown obstacle avoidance, and the safety of the generated paths needs further
enhancement. In [68], an enhanced velocity obstacle-based method with a particular trian-
gular obstacle geometry model for autonomous dynamic obstacle avoidance of USVs was
proposed. COLREGs should be considered to optimize the heading angle and improve
the portability of the ship. It also reduces the USV path length and fuel cost by ensuring
accurate obstacle avoidance. In [69], a hybrid VO-APF algorithm for obstacle avoidance
of dynamic obstacles was raised, which enhances the real-time performance of obstacle
avoidance and integrates COLREGS rules and path optimization functions. However, the
algorithm can easily fall into a local optimum and cannot generate a globally optimal path.
To tackle the situation of falling into a local optimum, in [70], a path planning method, based
on the COLREGs, was displayed, combining the VO algorithm with the ACO algorithm to
realize dynamic obstacle transitions relative to the stationary state of the USV at a given
instant. The method can effectively avoid dynamic obstacles and obtain a reasonable risk
avoidance strategy that provides the globally optimal path. However, owing to the uncer-
tainty of the obstacle motion state, the predicted obstacle information i nevitably appears
inaccurate. Based on the Generalized Velocity Obstacle (GVO) algorithm [71,72] proposed
a collision avoidance system (GVO-CAS). The method, based on COLREG, visualizes the
collision course and velocity for collision avoidance of multiple dynamic obstacles at close
range. The algorithm takes into account the ship dynamics to improve collision avoidance
performance and provides the globally optimal path. In [73], a novel efficient path planning
algorithm was presented, the Constraint Locked Sweep Method and Velocity Obstacles
(CLSM-VO). The algorithm optimizes global search performance, increases computational
efficiency, and enhances generated path smoothness. It is suitable for complex environ-
ments with multiple dynamic obstacles and enables fast and effective dynamic obstacle
avoidance by providing USV initial yaw angle and constraint layer optimization.

3.4. Dynamic Window Approach (DWA)

The Dynamic Window Approach (DWA) is a commonly used path planning method,
originally proposed by FOX et al. [74,75] in 1997. The algorithm samples multiple veloc-
ity values in velocity space and simulates the trajectory generated by the robot at each
velocity. To avoid the influence of dynamic obstacles, in [76], a “dynamic collision model”
was introduced for the conventional DWA to predict possible future collisions, taking into
account obstacle movements. The DWA algorithm for real-time path planning reduces wasted
space and time by simulating the obstacle shape based on the obstacle. In [77], a local virtual
target dynamic window (DW-VG) obstacle avoidance method was proposed. Introducing
virtual target points selects the optimal amount of motion control. As a result, the algo-
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rithm can avoid all dynamic obstacles and predict an optimal path. In [78], the DWA-VO
algorithm was proposed. The algorithm can speed up the search and improve the effi-
ciency of the operation. It only considers local moving and unknown obstacles, which
solves the information error caused by dynamic obstacles encountered by USV. It fails
to identify accurately the global obstacles and leads to a local optimum. To address the
condition of being trapped in a local minimum, ref. [79] proposed a path planning system
with DWA and A* algorithms, where USV can avoid unknown obstacles by selecting the
optimal speed. USV can adapt to global and local maritime obstacles by choosing the
best velocity to avoid unknown obstacles and avoid local optimum problems. In [80],
an improved dynamic window approach (IDWA) was proposed to improve the efficiency
of USV navigation. Combined with the idea of non-uniform theta*, the reverse search is
performed from the target node to reduce the path length and improve the navigation
efficiency and the real-time performance of the USV. The algorithm prevents the USV from
falling into local minima and enhances the ability of the USV to avoid dynamic obstacles at
close distances. In [81], the ant colony optimization (ACO) and dynamic window approach
(DWA) were combined to solve local path planning. The global path length is optimized by
enhancing the search capability and removing redundant points through a dual population
heuristic function. Adaptive navigation strategies are used to achieve obstacle avoidance
for unknown dynamic obstacles and to solve the local optimum problem.

3.5. Summary of Local Path Planning Algorithms

The above research focuses on solving local optimization problems. Using the sensor’s
ability to sense the maritime environment, it can efficiently and quickly avoid dynamic
obstacles, making the generated paths smoother, and can calculate safe routes. By using
space vectors, employing extended search, and introducing greedy algorithms, the length
of the path is reduced while reducing the solution time of the algorithm to meet practical
needs. Using a dynamic collision model and considering the speed variation of dynamic
obstacles, it can avoid all obstacles in real time. However, local paths ignore the effects of
wind and wave currents in real sea conditions. There is no good solution to the problem
in the face of complex situations. Table 2 compares different algorithms for local path
planning and considers the factors of the optimal path.

Table 2. Characteristics of different algorithms for local path planning.

References Methods Length Smooth Efficiency DOA GOA COLREG Real-Time Optimal

[35] VAPF T T T T T F T F
[51] APF T F F F F F T F
[52] improved APF T T T T T T T F
[53] DAPF T T T T F F T T
[54] APF-ACO T T T T T F T T
[55] MPAPF T T T T F T T T
[56] RRT T F T F F F F F
[58] RRT* T T F T F F T F
[59] Q-RRT* T T F T T F T F
[60] RRT-Connect T T T T F F T T
[63] P-RRT* T T F T F F F T
[64] improved BI-RRT T T T T T F T T
[61] PSBI-RRT T T T T T F T F
[66] VO T F F T T T F F
[68] improved VO T T T T T T T F
[69] VO-APF T F T T F T T F
[70] VO-ACO T T T T F T T T
[72] GVO-CAS T T T T F T T F
[73] CLSM-VO T T T T T T T F
[76] DWA F F T T F F T F
[79] DWA-A* T T T T F T T F
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Table 2. Cont.

References Methods Length Smooth Efficiency DOA GOA COLREG Real-Time Optimal

[78] DWA-VO T T T T T T T F
[80] IDWA T T T T F F T T
[81] DWA-ACO T T T T T F T T

Note: consider (T), no consider (F), dynamic obstacle avoidance (DOA), global obstacle avoidance (GOA), * (start).

4. Proximity Responsive Hazard Avoidance

Proximity-responsive hazard avoidance is where a USV, following a set course, needs
to adjust its response in time to effectively avoid a collision with an obstacle if the un-
certainty of a dynamic obstacle is detected suddenly. In contrast, close-range collision
avoidance requires consideration of the vessel’s shape and turning angle. Hazard avoid-
ance and multi-vessel collision avoidance in complex marine conditions are also hot topics
of current research.

4.1. Hazard Avoidance in a Complex Environment

For USV path planning in complex environments, an increasing number of hybrid
algorithms are used to deal with the above problem. In [82], a multi-layer path planner
(MPP) was proposed, which combines the fast marching method (FMM) [83] and the SDCE
model to simulate a static environment. Collision Avoidance (CA) decisions are used to
introduce safety parameters to achieve obstacle avoidance for dynamic and unknown
obstacles and reefs in the coastal environment. The method does not consider the effects
of wind, waves, and currents. In [84], a combined GA and APF approach was presented.
It can perform path planning for various complex dynamic obstacle situations and find
the best path among the obstacles on three sides around the starting point. However, the
method only plans for simple geometries and coastlines, which does not work well in
actual maritime environments. To consider realistic factors at sea, ref. [85] improved the
multi-objective route planning method of PSO-GA and proposed a risk assessment model
for wind and waves. Meanwhile, the length of the path, smoothness, and speed of the ship
are taken into account. The genetic algorithm is used for cross-calculation, which improves
operational efficiency. However, it does not consider the effect of ocean currents. If you
want to consider the impact of ocean currents on path planning, building a kinematic USV
model is a key choice, as shown in Figure 3.

In [86], an improved imperial competition algorithm (ICA) was proposed. Based on
a three-dimensional current model and the influence of static obstacles at sea, the locally
optimal solution is solved effectively and the AUV can obtain the global optimal path.
However, the method cannot be adapted to dynamic obstacles. In [87], the steering angle of
the ship is incorporated into the cost by building a cost model of the effect of ocean currents
on the energy consumption of the AUV. The algorithm uses an improved D* algorithm and
considers the kinematic and dynamical equations to plan the path with the minimum energy
consumption, but the path is not optimal. In [88], a VF-RRT* algorithm was proposed,
which improves its effectiveness in the current environment by introducing a virtual
field sampling function and an ocean current constraint function. As a result, it greatly
reduces the navigation time and energy consumption of the USV. In [89], an improved
sparrow search algorithm (SSA) was designed, which considers the effects of time-varying
characteristics of ocean currents, wind and wave factors, and dynamic obstacles on the
navigation of AUVs in complex ocean environments. Convergence speed and search
capability are improved by building a 3D underwater model and optimizing the coefficient
weights. The algorithm can avoid all the obstacles underwater and find the globally optimal
path in the complex ocean environment.
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Figure 3. USV kinematic model.

Using machine learning algorithms is another way to deal with path planning in com-
plex environments. In [90,91], a deep Q network (DQN) is developed for ship path tracking
and heading control in calm seas without considering the actual sea environment. In [92],
an improved DQN algorithm for vehicle path tracking using a nonlinear dynamic model
was shown. It also ensures the safety and robustness of ship navigation in a windy and
rough marine environment. Due to the complex environment of wind, waves, and currents,
USV need to constantly change their speed and direction, considering the dynamics and
kinematics of USV. In [93], a combination of Q-learning and neural networks (Q-NN) was
proposed for path planning in unknown and harsh environments. It is able to avoid obsta-
cles in real time and considers the kinematics of USVs, but it does not consider the effect
of ocean currents. In [94], harsh environments such as wind, waves, and currents on USV
path planning were considered. The optimization using the least squares strategy considers
the dynamics and kinematics of the USV. However, the method is mainly applicable to
static obstacle avoidance and textcolorred needs further breakthroughs for dynamic and
unknown obstacles. In [95], an improved deep reinforcement learning algorithm (DRL)
was presented. A two-dimensional ocean current model and a planar kinematic model
are developed with energy cost as an important constraint. The global optimal path is
solved by utilizing an improved reward function, action set, and state set and using B
spline smoothing optimization.

4.2. Multi-Vessel Collision Hazard Avoidance

The multi-vessel collision problem is a common traffic accident at sea [96,97]. Currently,
AIS ship trajectory data analysis is mainly used to require compliance with COLREG to
prevent ship collisions as much as possible. The distance to the point of closest approach
(DCPA) and the time to the point of closest approach (TCPA) are important indicators of
a ship’s collision risk [98]. Figure 4 shows the positional relationship between the ship and
the target ship. The DCPA Collision Hazard Model is used to determine the distance from
the vessel to the hazardous vessel for collision hazard assessment. In [99] DCPA and TCPA
were combined to calculate hazard classes and analyses collision hazard classes in the
context of ship safety domains, ship domains, and dynamic boundaries. A full-coverage
algorithm is used to enable collision avoidance for multiple vessels. In [100], a full-coverage
path planning algorithm based on deep reinforcement Q-learning neural network (DQN)
was proposed, which uses convolutional layers to perceive the raster map and construct
and train deep reinforcement learning. However, the traditional DQN suffers from low
learning efficiency and low coverage. In [101,102], a method to improve its action selection
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mechanism was proposed. Training data is selected based on the priority of the task.
A dynamic reward mechanism ensures that valuable data is trained and reduces the risk
of dangerous USV action selection during the learning process. The method improves the
convergence and efficiency of full-area coverage, and can effectively avoid other vessels.
As shown in Figure 5, the improved DQN algorithm can achieve full coverage, which
is able to avoid all obstacles and has fewer repeated paths. It is also feasible to apply
this algorithm to collision avoidance of multiple vessels. In [103], a sliding window
algorithm (SWA) was raised for accurately detecting ship collision avoidance behavior
from AIS trajectory data, but the real-time performance is not strong enough. In [104],
AIS and spatial-temporal was used to analyze the massive data of vessel traffic conditions
in past waters, and used simulated vessel traffic demand and temporal characteristics to
predict vessel trajectories. The method achieves global ship collision avoidance and cannot
monitor the risk of ship collision in real-time. For the issue of weak real-time monitoring
of the risk of ship collision, in [105], using AIS data and ACO-APF algorithm, real-time
dynamic avoidance is performed to plan a safe route. It achieves real-time dynamic collision
avoidance for multiple vessels and effectively reduces the risk of collision vessels. In [106],
a practical rule-aware time-varying conflict risk (R-TCR) for multi-ship collision avoidance
was raised, considering vessel maneuverability and COLREGs. In [107], a synergy ship
domain (SSD) was proposed to construct a collision risk model in a two-ship situation,
which can identify the risk of ship collision in real time. By simulating frontal collision,
side collision, and cross-collision, it identifies the dynamic changes in collision risk. For
the local optimal problem in multi-objective complex situations, ref. [108] investigated
collision avoidance considering COLREGs for solving multi-ship encounter problems.
To obtain an optimal decision to avoid ship collisions, multiple objective decision-making
(MODM) was combined with CGA. The algorithm keeps the ship moving safely as it
avoids dynamic obstacles. In the case of multiple objectives, it takes a global view rather
than just considering optimizing one target. In [109], a RACO combination of the ant
colony algorithm (ACO) with the rolling window method (RWM) [110] was proposed.
To address the complexity of collisions, the algorithm considers three possible approaches:
frontal collision, side collision, and random collision. By introducing secondary safety
distances and complying with COLREGs, it achieves real-time collision avoidance safely
and effectively and finds the globally optimal path.

Figure 4. Vessel collision avoidance route map based on DCPA.

4.3. Summary of Hazard Avoidance Algorithm

The above study considers the problem of reactive avoidance of proximity in the design
of path-planning algorithms. In the face of complex environments, a hybrid algorithm
using hierarchical processing and a grid-based model prevents repeated searches and
makes paths more efficient. In realistic marine environments, the effects of wind, waves,
currents, and other factors are also considered to ensure safety and to produce globally
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optimal paths. Based on AIS data, COLREGs and machine learning algorithms combine
historical data with real-time data for route planning to ensure safe navigation and avoid
multi-vessel head-on collisions, cross-collisions, and random collisions. Table 3 compares
different algorithms for hazard avoidance and considers the factors of the optimal path.

Figure 5. Path planning of improved DQN [102].

Table 3. Characteristics of different algorithms for hazard avoidance.

Reference Method Efficiency DOA COLREG Real-Time AIS Wind Current Dynamics

[82] MPP F T F T F F F F
[84] GA-APF T F T T F F F F
[85] PSO-GA T T T T F T F F
[86] ICA T T T T F T T T
[89] SSA T T T T F T T T
[87] improved D* T T T F F T T T
[88] VF-RRT* T T T T F T T T
[91] DQN T F F T F F F T
[92] IDQN T T F T F T F T
[90] RL F F T T F F F F
[93] Q-NN T F F T F T F T
[95] DRL T F F T F T T T

[102] CCPP T T F T F T T T
[103] SWA T F T F T F F T
[105] ACO-APF T T T T T F F T
[107] SSD F T T T T F F T
[108] MODM-CGA T T F T T F F F
[109] ACO-RWM T T T T F F F T

Note: consider (T), no consider (F), DOA (dynamic obstacle avoidance), * (start).
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5. Cluster Path Planning

USVs cluster path planning technology is rapidly developing as a core key technol-
ogy. USVs cluster path planning is the key to cluster path generation, obstacle avoidance,
collision avoidance, and other navigation and coordination tasks assignment. It is essen-
tially a multi-constrained combinatorial optimization algorithm. The cluster intelligence
optimization algorithm focusing on the bionic approach and the multi-task assignment
strategy are essential assets to solve the cluster path planning problem [111].

5.1. Bionic Algorithm

For large-scale, high-dimensional, and non-linear USV cluster path planning prob-
lems, it is a good choice to use a bionic optimization algorithm. In [112], a firefly-based
Approach (FA) for robot cluster path planning is proposed, where Firefly social behavior
optimizes group behavior. Since the path planning problem is an NP complexity prob-
lem, multi-objective evolutionary algorithms are an effective way to solve this problem.
In [113], a cluster path-planning algorithm based on ant colony optimization (ACO) [114] in
a dynamic environment is proposed to perform path-planning optimization and establish
the path-planning optimization objective function in a multi-tasking scenario. In [115],
based artificial bee colony (ABC) algorithm [116], an efficient artificial bee colony (EABC)
algorithm is proposed. It solves online path planning collision avoidance for multiple
mobile robots by selecting appropriate objective functions for the target, obstacles, and
robots. It utilizes elite individuals to maintain good evolution, improve performance and
shorten path length. The method improves the quality of path planning for clusters, but it
tends to fall into local optimality. For USV clusters caught in a local optimum, ref. [117]
proposed an improved particle swarm optimization(PSO) algorithm based on an adaptive
sensitivity decision operator that is more adapted to 3D path. It solves the drawback
that traditional PSO is prone to fall into local optimality [118], improves the convergence
accuracy and cooperative operation of clusters, and predicts the globally optimal plan-
ning. In [119], it proposed a decision support algorithm to use an artificial fish swarming
algorithm (AFSA) [120] based on AIS data for path-planning decisions in USV clusters.
It can calculate the optimal avoidance turn to time and avoidance angle, and the algorithm
possesses excellent robustness and converges quickly. In [121], a hybrid improved artifi-
cial fish swarm algorithm (HIAFSA) was proposed to address the problem of falling into
local optima. It combines the A* algorithm with AFSA for further optimization in global
suboptimal paths. It introduces decay functions to enhance the visual range and motion
steps to improve the convergence speed. The algorithm offers access to local optimum
avoidance, convergence speed, and accuracy. In [122], the salp swarm algorithm (SSA) [123]
optimization algorithm was used to divide the task area using Voronoi diagrams to achieve
collaborative path planning for USV clusters. This optimization algorithm avoids repeated
searches, improves search efficiency and accuracy, and effectively avoids collisions between
obstacles and USVs. However, the method does not consider the influence of COLREGs
and the actual environment at sea. To consider USV clusters in realistic environmental
scenarios at sea, ref. [124] proposed a simulated annealing-bacterial foraging optimization
algorithm (SA-BFO). The bacterial foraging optimization algorithm (BFO) is a popula-
tion intelligence optimization algorithm with good search efficiency and robustness [125].
The hybrid approach, based on COLREGs, can perform real-time avoidance of dynamic
obstacles using USV cooperative control. It is able to plan collision-free paths efficiently,
moving away from local optima and converging to global optima.

5.2. Multi-Objective Task Assignment Algorithm

When faced with multiple target missions, it is difficult for a single USV to perform
complex tasks in unknown underwater environments. Then, USV clustering can improve
the performance of the system, shorten the mission time and increase the probability of
the search success. Multi-objective search task assignment is the key to USV clustering
path collaboration [126,127]. As shown in Figure 6, multiple search tasks are assigned
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to multiple specific USVs. Currently, reinforcement learning algorithms (RL) are more
suitable for task assignment, and path planning [128,129]. In [130], combining HER with
DQN and introducing a reward mechanism can increase the validity of the sample and
the speed of convergence. In [131], a pheromone mechanism using ACO on the classical
Q-learning approach is investigated. It solves the information-sharing problem in rein-
forcement learning systems and improves the efficiency of robot cluster path planning.
In [132], a hexagonal area search (HAS-DQN) was proposed. It solves the collaborative
path planning problem for UAVs, maximizes the data collected by UAVs, minimizes the
total energy consumption, and extends the lifetime. However, due to the effects of offshore
winds, waves, currents, etc., the above multi-task and multi-objective optimization deci-
sions based on reinforcement learning do not work well when applied to USVs. In [133],
an improved self-organizing map (SOM) [134] with collision avoidance capability was
proposed, based on a fast marching square (FMS) [135] path planning algorithm. It is
adapted to multi-task assigned USVs cluster for complex tasks, such as maritime patrol
search and rescue and environmental detection. The algorithm first assigns tasks to each
USV and enables the function of fast task assignment and optimized execution sequences.
Not only does it achieve avoidance of all static and dynamic obstacles, but it also takes
into account COLREGs. However, the algorithm does not consider the complex terrain
and time-varying currents under the sea. In [136], an improved the K-means algorithm to
accommodate unsupervised learning of competing strategies was proposed. The algorithm
first assigns different tasks to multiple USVs and performs the task assignment by the
SOM algorithm. It can autonomously undertake complex maritime missions in a limited
environment and verifies its effectiveness by simulating it in a real marine environment.
In [137], an improved SOM combined with spectral clustering (SC), is used to solve collabo-
rative path planning for USVs cluster and multi-task allocation. The method allows for the
selection of the globally optimal path with minimal energy consumption in a collision-free
manner. To make the generated routes smoother, a dual smoothing strategy with B-samples
and indirect adaptive disturbance observer-based line-of-sight (IADO-LOS) [138] are used
to achieve the precise path following of the USV. The method also accounts for the effect of
ocean currents on ship driving and is more in line with the realistic environment at sea.

Figure 6. USV cluster multi-objective task assignment.
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5.3. Summary of Cluster Path Planning Algorithm

The above study uses the bionic optimization concept for path planning algorithms
in USV clusters to optimize multi-objective paths for multi-task, multi-constraint models.
Using AIS big data, COLREG and machine learning algorithms are used to combine
historical and real-time data for path planning to ensure safe navigation while completing
multi-tasking assignment strategies at sea. Table 4 compares different algorithms for the
USV cluster and considers the factors of the optimal path.

Table 4. Characteristics of different algorithms for clusters.

References Methods Mass Efficiency Convergence COLREG Real-Time Muti Environment

[112] FA T T T F F T F
[113] ACO F T F F F F T
[115] EABC T T T F T F F
[117] improved PSO T T T F T T F
[119] AFSA F T T F T F F
[121] HIAFSA T T T F T T F
[123] SSA T T T F T T F
[124] SA-BFO T T T T T T F
[128] RL T T T F F T T
[130] HER-DQN T T T F T F F
[132] HAS-DQN T T T F T F F
[133] improved SOM F T T F T T T
[137] SOM-SC T T T F T T T

Note: consider (T), no consider (F), Muti (muti-objective).

6. Conclusions

Path planning is a hot and complex area of research in the USV field and a key
technology to ensure its autonomy in the marine environment. This paper mainly reviews
and analyzes the literature related to USV path planning in recent years. Path planning
is divided into four aspects: global path planning, local path planning, hazard avoidance
with approximate responses, and path planning under clustering. The advantages and
disadvantages of different algorithms for global and local path planning are analyzed
in Sections 2 and 3. As shown in Table 5, global path planning can cover the whole
map and find the global optimal solution. However, the computational complexity is
high, the operation efficiency is slow, and it cannot cope with dynamic environmental
changes. The local path planning algorithm is simple, responsive, and can adapt to the
dynamic environment. However, it cannot handle the dead ends and obstacles in global
path planning, and it is easy to fall into local optimal solutions. In addition, most of
the improved algorithms for global and local path planning ignore the influence of real
environments, such as ocean currents and wind waves. Modeling USV kinematics and
dynamic constraints is important for path planning when considering the effects of wind,
waves, and currents on safe avoidance and energy consumption. Using USV clusters with
multi-task assignment and path collaboration strategies is also the right choice when facing
multiple tasks.

Table 5. Global path planning strategy and local path planning strategy contrast and analysis.

Characteristics Global Path Planning Strategy Local Path Planning Strategy

Information known and all sensor acquisition
Function global optimization search local optimization search

Calculation volume complex and slow simple and quick
Application scenario static environments dynamic environments
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7. Prospects

Firstly, the future direction of current path planning optimization algorithms is multi-
algorithm fusion, based on traditional optimization algorithms combined with deep rein-
forcement learning, digital twins, and other artificial intelligence optimization algorithms,
which holds the promise of dynamic and online path planning.

Secondly, the evaluation system of the path and the collision risk assessment models
need to be further improved. Under the premise of ensuring safety, it considers factors such
as path length, smoothness, time consumption, and efficiency, and also further considers
the motion performance of angular velocity, acceleration, and turning angle of the ship.

Finally, USV cluster collaboration for path planning is also a hot research topic for the
future. How to make USV clusters perform multiple tasks while performing integrated
obstacle avoidance is also a problem that needs to be tackled in the future. Improving
the perception of the navigation area and the autonomous decision-making capability is
a significant part of the solution to this problem.
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