
LN
BI

P
25

1

17th International Conference, XP 2016
Edinburgh, UK, May 24–27, 2016
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Helen Sharp
Tracy Hall (Eds.)

Lecture Notes
in Business Information Processing 251

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Helen Sharp • Tracy Hall (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming
17th International Conference, XP 2016
Edinburgh, UK, May 24–27, 2016
Proceedings

Editors
Helen Sharp
Computing and Communications
Department

The Open University
Milton Keynes
UK

Tracy Hall
Computer Science Department
Brunel University London
Middlesex
UK

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-33514-8 ISBN 978-3-319-33515-5 (eBook)
DOI 10.1007/978-3-319-33515-5

Library of Congress Control Number: 2016937949

© The Editor(s) (if applicable) and the Author(s) 2016. This book is published open access.
Open Access This book is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial
use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license
and any changes made are indicated.
The images or other third party material in this book are included in the work’s Creative Commons license,
unless indicated otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain permission
from the license holder to duplicate, adapt or reproduce the material.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

http://creativecommons.org/licenses/by-nc/4.0/

Preface

Agile software development continues to be adopted widely, and the submissions to
XP 2016 reflected a diversity of concerns. Alongside challenges that have traditionally
been the subject of discussion and research such as scalability, UX design, and agile
measurement, this year’s submissions included an increased focus on domains that
originally shied away from agile working, such as safety-critical systems and other
regulated environments. In addition, submissions considered agile sustainability, both
across a software system’s life, and within the organizational context.

The XP conference attracts a large number of software practitioners and researchers,
providing a rare opportunity for interaction between the two communities. In order to
leverage this opportunity, a new Empirical Studies track was introduced this year. In
this track, researchers who wanted to collect empirical data from practitioners during
XP 2016 were invited to submit their research plans. Accepted plans were then
associated with accepted industry and practice sessions to collect empirical data live
during XP 2016 sessions. Accepted study plans are included here; papers resulting
from the studies appear in a later special section of the Information and Software
Technology journal.

These proceedings contain full research papers, experience reports, empirical study
plans, and doctoral symposium papers. All of these submissions went through a rig-
orous peer-review process commensurate with their track. In all, 42 research papers
were submitted; each was reviewed by three members of the Program Committee, and
14 were accepted (an acceptance rate of 33 %). Experience reports were initially
submitted as two-page outlines, and after initial screening, they were then shepherded
to produce the papers seen in this volume. Empirical studies papers were reviewed and
ranked by the track chairs and discussed with the industry and practice chairs in order
to ensure suitable sessions were available to run the planned empirical study. Of the 12
study plans submitted, five were accepted (an acceptance rate of 42 %).

Together, the papers presented here represent a set of high-quality contributions to
the literature on agile research and experience addressing a wide range of contemporary
topics.

The conference program featured a rich set of session topics and session types that
extend beyond the papers contained in these proceedings. Sessions focusing on prac-
tical hands-on activities, on teaching agile in academic and industry settings, and
coping with change were complemented by ad hoc lightning talks and a vibrant Open
Space track. Materials from all of the sessions are available on the conference website
at www.xp2016.org.

XP 2016 attendees were also treated to a number of high-profile keynote speakers.
Elisabeth Hendrickson spoke about “XP at Scale,” Mary Poppendieck discussed the
role of “Software Engineering in a Digitized World,” and Professor Lionel Briand
explained that “Documented Requirements Are Not Useless After All.” Finally, Steve

http://www.xp2016.org

Freeman and Nat Pryce battled it out as “The Odd Couple,” considering how good code
should be, and what to do about poor-quality code.

Over 330 submissions were received across all of XP 2016 tracks, excluding
workshop papers, and it was a mammoth effort to review these and bring them together
into a coherent program. We would like to thank everyone who contributed to this
effort including paper authors, session presenters, track chairs, Program Committee
members, shepherds, volunteers, and sponsors. Without their support the event would
not have been as successful.

March 2016 Helen Sharp
Tracy Hall

VI Preface

Organization

Organizing Committee

General Chair

Seb Rose Claysnow Limited, UK

Academic Chair

Helen Sharp The Open University, UK

Scientific Workshops

Katie Taylor University of Central Lancashire, UK
Peggy Gregory University of Central Lancashire, UK

Industry and Practice Track

Giovanni Asproni Asprotunity, UK
Andrea Provaglio andreaprovaglio.com, Italy

Experience Reports

Rebecca Wirfs-Brock Wirfs-Brock Associates, USA
Ken Power Cisco, Ireland

Teaching Agile Track

Bruce Scharlau University of Aberdeen, UK
Chris Murray University of Sheffield, UK

Empirical Studies Track

Tracy Hall Brunel University London, UK
Nat Pryce Technemetis Ltd., UK

Posters

Ville T. Heikkilä Aalto University, Finland

Research Papers

Helen Sharp The Open University, UK
Tracy Hall Brunel University London, UK

Doctoral Symposium

Darja Smite Blekinge Institute of Technology, Sweden
Brian Fitzgerald Lero – the Irish Software Research Centre, Limerick,

Ireland

Open Space

Charlie Poole Independent, USA
Andy Mell Independent, UK

Bridging Research and Practice

Morten Elvang Nordea, Denmark
Nils Brede Moe SINTEF, Norway

Program Committee (Research Papers)

Barroca, Leonor The Open University, UK
Bjarnason, Elizabeth Lund University, Sweden
Counsell, Steve Brunel University London, UK
Digsøyr, Torgeir SINTEF, Norway
Erdogmus, Hakan Carnegie Mellon University, USA
Fitzgerald, Brian Lero – Irish Software Engineering Research Centre,

Ireland
Garbajosa, Juan Universidad Politecnica de Madrid/Technical

University of Madrid (UPM), Spain
Goldman, Alfredo University of São Paulo, Brazil
Greer, Des Queens University Belfast, UK
Gregory, Peggy University of Central Lancashire, UK
Hall, Tracy Brunel University London, UK
Hoda, Rashina The University of Auckland, New Zealand
Holmström Olsson, Helena Malmö University, Sweden
Kelly, Tim University of York, UK
Lassenius, Casper MIT, USA
Madeyski, Lech Wroclaw University of Science and Technology,

Poland
Marchesi, Michele DIEE – University of Cagliari, Italy
Marczak, Sabrina PUCRS, Canada
Mishra, Alok Atilim University, Turkey
Moe, Nils Brede SINTEF, Norway
Noble, James Victoria University of Wellington, New Zealand
Paasivaara, Maria Aalto University, Finland
Petersen, Kai Blekinge Institute of Technology/Ericsson AB, Sweden
Prechelt, Lutz Freie Universität Berlin, Germany
Pries-Heje, Jan Roskilde University, Denmark

VIII Organization

Rolland, Knut H. Westerdals Oslo School of Arts, Communication
and Technology, Norway

Rumpe, Bernhard RWTH Aachen University, Germany
Schneider, Kurt Leibniz Universität Hannover, Germany
Sharp, Helen The Open University, UK
Smite, Darja Blekinge Institute of Technology, Sweden
Tonelli, Roberto University of Cagliari, Italy
Van Solingen, Rini Delft University of Technology, The Netherlands
Wang, Xiaofeng Free University of Bozen-Bolzano, Italy
Yague, Agustin Universidad Politecnica de Madrid, Spain

Reviewers and Shepherds (Experience Reports)

Wirfs-Brock, Rebecca Wirfs-Brock Associates, USA
Power, Ken Cisco, Ireland
Eckstein, Jutta IT communication, Germany
Yoder, Joseph The Refactory, Inc., USA
Poupko, Avraham Cisco, Israel
Passivaara, Maria Aalto University, Finland
Zuill, Woody Independent, USA
Hvatum, Lise Schlumberger, USA
Ville, Heikkilä T Aalto University, Finland
Kelly, Allan Software Strategy Ltd., UK
Rothman, Johanna Rothman Consulting, USA

Reviewers (Industry and Practice)

Asproni, Giovanni Asprotunity, UK
Barbini, Uberto gamasoft.com, UK
Braithwaite, Keith Zuhlke Engineering Ltd., UK
Brown, Simon Coding the Architecture, UK
Chatley, Robert Develogical Ltd., UK
Clapham, John Cotelic, UK
Dalgarno, Mark Software Acumen, UK
Eckstein, Jutta IT communication, Germany
Freeman, Steve M3P, UK
Gaillot, Emmanuel /ut7, France
García, Vicenç Valtech, UK
Hellesøy, Aslak Cucumber, UK
Holyer, Steve Steve Holyer Consulting, Switzerland
Larsen, Diana FutureWorks Consulting, USA
Lewitz, Olaf trustartist.com, Germany
Mell, Andrew Independent
Milne, Ewan IPL, UK
Murray, Russell Murray Management Services Ltd., UK
Nagy, Gaspar Spec Solutions, Hungary

Organization IX

Provaglio, Andrea andreaprovaglio.com, Italy
Rose, Seb Claysnow Limited, UK
Skelton, Matthew Skelton Thatcher Consulting Ltd., UK
Vandenende, Willem QWAN, The Netherlands
Webber, Emily Tacit, UK
Wloka, Nils codecentric AG, Germany

Sponsors

Crown Jewels Sponsor

Sky Plc

Chieftain Sponsors

JP Morgan
Cisco
Head Resourcing

Tartan Sponsors

Amazon
Cucumber
NDC Conferences

Munro Sponsors

Scotland IS
Redgate
Claysnow Limited
Endava
Stattys
Calba
Cultivate
NewRedo
QWAN

Regional Support

Marketing Edinburgh
SICSA*
Visit Scotland

X Organization

Contents

Full Research Papers

Focal Points for a More User-Centred Agile Development 3
Silvia Bordin and Antonella De Angeli

Agility Measurements Mismatch: A Validation Study on Three Agile Team
Assessments in Software Engineering . 16

Konstantinos Chronis and Lucas Gren

Scaling up the Planning Game: Collaboration Challenges in Large-Scale
Agile Product Development . 28

Felix Evbota, Eric Knauss, and Anna Sandberg

The Lack of Sharing of Customer Data in Large Software Organizations:
Challenges and Implications . 39

Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch

TDDViz: Using Software Changes to Understand Conformance to Test
Driven Development . 53

Michael Hilton, Nicholas Nelson, Hugh McDonald, Sean McDonald,
Ron Metoyer, and Danny Dig

Minimum Viable User EXperience: A Framework for Supporting Product
Design in Startups. 66

Laura Hokkanen, Kati Kuusinen, and Kaisa Väänänen

Team Portfolio Scrum: An Action Research on Multitasking
in Multi-project Scrum Teams . 79

Christoph J. Stettina and Mark N.W. Smit

Quality Assurance in Scrum Applied to Safety Critical Software 92
Geir K. Hanssen, Børge Haugset, Tor Stålhane, Thor Myklebust,
and Ingar Kulbrandstad

Flow, Intrinsic Motivation, and Developer Experience in Software
Engineering . 104

Kati Kuusinen, Helen Petrie, Fabian Fagerholm, and Tommi Mikkonen

Minimum Viable Product or Multiple Facet Product? The Role of MVP
in Software Startups . 118

Anh Nguyen Duc and Pekka Abrahamsson

http://dx.doi.org/10.1007/978-3-319-33515-5_1
http://dx.doi.org/10.1007/978-3-319-33515-5_2
http://dx.doi.org/10.1007/978-3-319-33515-5_2
http://dx.doi.org/10.1007/978-3-319-33515-5_3
http://dx.doi.org/10.1007/978-3-319-33515-5_3
http://dx.doi.org/10.1007/978-3-319-33515-5_4
http://dx.doi.org/10.1007/978-3-319-33515-5_4
http://dx.doi.org/10.1007/978-3-319-33515-5_5
http://dx.doi.org/10.1007/978-3-319-33515-5_5
http://dx.doi.org/10.1007/978-3-319-33515-5_6
http://dx.doi.org/10.1007/978-3-319-33515-5_6
http://dx.doi.org/10.1007/978-3-319-33515-5_7
http://dx.doi.org/10.1007/978-3-319-33515-5_7
http://dx.doi.org/10.1007/978-3-319-33515-5_8
http://dx.doi.org/10.1007/978-3-319-33515-5_9
http://dx.doi.org/10.1007/978-3-319-33515-5_9
http://dx.doi.org/10.1007/978-3-319-33515-5_10
http://dx.doi.org/10.1007/978-3-319-33515-5_10

On the Impact of Mixing Responsibilities Between Devs and Ops. 131
Kristian Nybom, Jens Smeds, and Ivan Porres

Arsonists or Firefighters? Affectiveness in Agile Software Development 144
Marco Ortu, Giuseppe Destefanis, Steve Counsell, Stephen Swift,
Roberto Tonelli, and Michele Marchesi

Insights into the Perceived Benefits of Kanban in Software Companies:
Practitioners’ Views . 156

Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo

Key Challenges in Software Startups Across Life Cycle Stages. 169
Xiaofeng Wang, Henry Edison, Sohaib Shahid Bajwa,
Carmine Giardino, and Pekka Abrahamsson

Experience Reports

Mob Programming: Find Fun Faster . 185
Karel Boekhout

Agile Testing on an Online Betting Application . 193
Nuno Gouveia

Pause, Reflect and Act, the Pursuit of Continuous Transformation. 201
Sandeep Hublikar and Shrikanth Hampiholi

Smoothing the Transition from Agile Software Development to Agile
Software Maintenance . 209

Stephen McCalden, Mark Tumilty, and David Bustard

University of Vienna’s U:SPACE Turning Around a Failed Large Project
by Becoming Agile . 217

Bernhard Pieber, Kerstin Ohler, and Matthias Ehegötz

The Journey Continues: Discovering My Role as an Architect
in an Agile Environment . 226

Avraham Poupko

Lessons Learned from a Failed Attempt at Distributed Agile 235
Mark Rajpal

Tailoring Agile in the Large: Experience and Reflections
from a Large-Scale Agile Software Development Project 244

Knut H. Rolland, Vidar Mikkelsen, and Alexander Næss

Hire an Apprentice: Evolutionary Learning at the 7digital
Technical Academy . 252

Paul Shannon and Miles Pool

XII Contents

http://dx.doi.org/10.1007/978-3-319-33515-5_11
http://dx.doi.org/10.1007/978-3-319-33515-5_12
http://dx.doi.org/10.1007/978-3-319-33515-5_13
http://dx.doi.org/10.1007/978-3-319-33515-5_13
http://dx.doi.org/10.1007/978-3-319-33515-5_14
http://dx.doi.org/10.1007/978-3-319-33515-5_15
http://dx.doi.org/10.1007/978-3-319-33515-5_16
http://dx.doi.org/10.1007/978-3-319-33515-5_17
http://dx.doi.org/10.1007/978-3-319-33515-5_18
http://dx.doi.org/10.1007/978-3-319-33515-5_18
http://dx.doi.org/10.1007/978-3-319-33515-5_19
http://dx.doi.org/10.1007/978-3-319-33515-5_19
http://dx.doi.org/10.1007/978-3-319-33515-5_20
http://dx.doi.org/10.1007/978-3-319-33515-5_20
http://dx.doi.org/10.1007/978-3-319-33515-5_21
http://dx.doi.org/10.1007/978-3-319-33515-5_22
http://dx.doi.org/10.1007/978-3-319-33515-5_22
http://dx.doi.org/10.1007/978-3-319-33515-5_23
http://dx.doi.org/10.1007/978-3-319-33515-5_23

How XP Can Improve the Experiences of Female Software Developers 261
Clare Sudbery

Pair-Programming from a Beginner’s Perspective . 270
Irina Tsyganok

Empirical Studies Papers

Empirical Research Plan: Effects of Sketching on Program Comprehension . . . 281
Sebastian Baltes and Stefan Wagner

The 4+1 Principles of Software Safety Assurance and Their Implications
for Scrum. 286

Osama Doss and Tim Kelly

Development Tools Usage Inside Out . 291
Marko Gasparic, Andrea Janes, and Francesco Ricci

Pitfalls of Kanban in Brownfield and Greenfield Software
Development Projects . 296

Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo

Towards a Lean Approach to Reduce Code Smells Injection:
An Empirical Study. 300

Davide Taibi, Andrea Janes, and Valentina Lenarduzzi

Doctoral Symposium Papers

Towards a More User-Centred Agile Development 307
Silvia Bordin

Responding to Change: Agile-in-the-large, Approaches
and Their Consequences . 312

Kelsey van Haaster

Hybrid Effort Estimation of Changes in Agile Software Development 316
Binish Tanveer

Planned Research: Scaling Agile Practices in Software Development 321
Kathrine Vestues

Architecting Activities Evolution and Emergence in Agile Software
Development: An Empirical Investigation: Initial Research Proposal 326

Muhammad Waseem and Naveed Ikram

Author Index . 333

Contents XIII

http://dx.doi.org/10.1007/978-3-319-33515-5_24
http://dx.doi.org/10.1007/978-3-319-33515-5_25
http://dx.doi.org/10.1007/978-3-319-33515-5_26
http://dx.doi.org/10.1007/978-3-319-33515-5_27
http://dx.doi.org/10.1007/978-3-319-33515-5_27
http://dx.doi.org/10.1007/978-3-319-33515-5_28
http://dx.doi.org/10.1007/978-3-319-33515-5_29
http://dx.doi.org/10.1007/978-3-319-33515-5_29
http://dx.doi.org/10.1007/978-3-319-33515-5_30
http://dx.doi.org/10.1007/978-3-319-33515-5_30
http://dx.doi.org/10.1007/978-3-319-33515-5_31
http://dx.doi.org/10.1007/978-3-319-33515-5_32
http://dx.doi.org/10.1007/978-3-319-33515-5_32
http://dx.doi.org/10.1007/978-3-319-33515-5_33
http://dx.doi.org/10.1007/978-3-319-33515-5_34
http://dx.doi.org/10.1007/978-3-319-33515-5_35
http://dx.doi.org/10.1007/978-3-319-33515-5_35

Full Research Papers

Focal Points for a More User-Centred Agile Development

Silvia Bordin(✉) and Antonella De Angeli

Department of Information Engineering and Computer Science, University of Trento,
via Sommarive 9, 38123 Trento, Italy

{bordin,antonella.deangeli}@disi.unitn.it

Abstract. The integration of user-centred design and Agile development is
becoming increasingly common in companies and appears promising. However,
it may also present some critical points, or communication breakdowns, such as
a variable interpretation of user involvement, a mismatch in the value of docu‐
mentation, and a misalignment in iterations. We refine these themes, emerging
from both literature and previous fieldwork, by analysing a case study performed
in an IT company that adopts both software engineering approaches, and we
further extend the framework with a new theme related to task ownership. We
argue that communication breakdowns can become focal points to drive action
and decision for establishing an organisational context acknowledging the value
of user involvement: to this end, we suggest the adoption of design thinking and
the active engagement of the customer in embracing its values.

Keywords: Communication breakdowns · Organisational culture · Case study

1 Introduction

In recent years we have witnessed a growing interest in the integration of Agile meth‐
odologies with user-centred design (UCD), in order to achieve a more holistic software
engineering approach. In fact, UCD and Agile show some complementary aspects: on
the one hand, UCD does not address how to implement the software, while Agile
provides large flexibility in accommodating changing requirements; on the other hand,
Agile does not directly address user experience (UX) aspects, although valuing customer
involvement in the development process.

However, even though the integration of UCD and Agile appears promising, it also
presents some issues and no fully satisfactory approach to it has been found yet. In
particular, three communication breakdowns [4] hampering such integration have been
identified [5], namely a variable interpretation of user involvement, a mismatch in the
value of documentation, and a misalignment in iteration phases. In this paper, we refine
this framework by discussing a new case study looking at the practices of a software
and interaction design company. To support our analysis, we define the main actors
involved and how they are mutually linked in a communication network, comparing the
latter with the one resulting from the case study presented in [5]. Despite the differences
in the two working contexts, the three themes manifest anyway and an additional point,
related to task ownership, emerges. We conclude by discussing how these

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 3–15, 2016.
DOI: 10.1007/978-3-319-33515-5_1

communication breakdowns can become focal points to support action and decision in
companies adopting UCD and Agile; moreover, we argue that possible solutions to these
issues need to be backed by a supportive organisational culture that recognises the value
of user contribution and actively endorses it with the customer.

2 Related Work

User-centred design (UCD) is an umbrella term used to denote a set of techniques,
methods, procedures that places the user at the centre of an iterative design process [25].
The benefits of involving users in systems design are widely acknowledged [1, 14, 16, 18]:
they include improved quality and acceptance of the system [11], and cost saving, since
unnecessary features or critical usability issues are spotted early in the development
process [23]. In recent years, there have been several attempts at integrating UCD with
Agile software development, as witnessed for instance by the literature reviews in [15, 26].
Despite the large common ground that the two approaches share, there are at least three
themes on which their perspectives diverge [5]: we frame these themes by drawing on the
concept of communication breakdown, that is a “disruption that occurs when previously
successful work practices fail, or changes in the work situation (new work-group, new
technology, policy, etc.) nullify specific work practices or routines of the organizational
actors and there are no ready-at-hand recovery strategies” [4]. Although originally
discussed with respect to global software development, we believe that this concept can
support a reflection on the synthesis of different software engineering approaches: we
argue, in fact, that it refers to issues occurring at “work practice level” that are due to an
“underdeveloped shared context of meaning” [4], which could also be interpreted as the
incomplete establishment of a common ground [10] between designers and developers of
the same company.

The three communication breakdowns in the integration of UCD and Agile were
formalised during a field study carried out within the Smart Campus project [5], where
UCD and Scrum were integrated in a process of mobile application development for a
community of users, namely students of the University of Trento campus. The goal of
this R&D project was to create an ecosystem fostering students’ active participation in
the design and development of mobile services for their own campus [12]; more details
about the aims and results of the project can be found in [6, 12, 34]. In the following,
we will illustrate the three communication breakdowns identified by drawing on the
literature review that supported the findings of the Smart Campus field study.

User Involvement. In UCD, user involvement can range from informative, to consul‐
tative, to participative [11]. In Agile instead, the emphasis is rather put on the customer
[1], who acts as a representative of users, but may or may not have direct and regular
contact with them [27, 28], to the point that some authors question the extent of such
representativeness [30] and others recommend that the customer role is supported by
members of the project team [9].

Documentation. Both UCD and Agile encourage frequent communication among
team members; however, there can be issues in the communication between designers

4 S. Bordin and A. De Angeli

and developers [1] and in the role of documentation in this respect. In fact, UCD suggests
the use of several artefacts such as personas and prototypes to record requirements and
design rationales [28], while Agile promotes face-to-face conversation as the most
effective means of communication in its fundamental principles [3], to the point of
incorporating the customer in the development team.

Synchronisation of Iterations. There are different schools of thought about whether UCD
and Agile should be merged into a unified software engineering process, leveraging on their
common practices [19, 35, 37], or should just proceed in parallel [20, 24, 33].

3 H-umus

We will now discuss a field study performed in H-umus, presented in their website
as a “software and interaction design company”. Born in 2007 in one of the most
well known Italian venture incubators, H-umus designs and develops mobile sales
tools for the fashion industry and now belongs to a large Italian software and serv‐
ices business. The personnel include a CEO, a CTO, four project managers (two of
whom are also interaction designers), and five developers. The company adopts a
customised version of Scrum for the development and follows a loose interaction
design approach. At present, H-umus offers two main products to an established
customer portfolio: a B2B merchandising platform and a time and expenses
accounting tool. The company also follows some ad-hoc projects for more occa‐
sional customers: we consider here the development of a mobile tool for a leading
fashion brand that we will call FashionX.

3.1 Field Study Methodology

The field study was carried out by one of the authors and is summarised in Table 1: it
consisted of 20 h of observation of working practices, semi-structured interviews,
attendance to meetings. Furthermore, artefacts used to support work were examined,
while interviews were transcribed and thematically analysed [29].

Table 1. Summary of field study activities performed at H-umus.

Day Activity Duration
October 26th, 2015 Attendance of sprint planning meeting; inter‐

views with the CEO, a project manager, a
designer and a developer

7 h

November 20th, 2015 Interviews with both designers and the CTO 6 h
December 14th, 2015 Attendance of sprint planning meeting; inter‐

views with two developers, a designer,
and a project manager

7 h

Focal Points for a More User-Centred Agile Development 5

3.2 Communication Network

This section will illustrate the actors involved in H-umus and how, possibly through
some artefacts, they are connected in a network, as shown in Fig. 1. The dialogue with
users is completely mediated by the customer, usually represented by the IT department
of a large fashion business. The customer in turn communicates with H-umus through
a project manager of this company, who is often also an interaction designer; such
dialogue is supported by a series of artefacts such as requirements documents, proto‐
types, and cost or time estimates, which will be described more in detail in later para‐
graphs. The project manager is then usually the only point of contact between the inside
and outside of H-umus: he collaborates with the management (i.e. the CEO) in the early
stages of an approach to a new customer, with the CTO in the definition of the technical
analysis, and with developers during the implementation. Internal communication is also
supported by a range of artefacts. Finally, the owner group refers to the management for
products developed on their behalf.

Fig. 1. Communication network in H-umus.

3.3 Artefacts

A variety of artefacts are used in H-umus to support communication, both internally and
with the customer. In this paragraph, we will describe the most relevant ones.

Mockups and Wireframes. In the case of enhancements to already consolidated prod‐
ucts, designers prepare high-fidelity mockups relying on the existing interface; in the
case of software built from scratch instead, they prepare wireframes, representing inter‐
action flows and layouts. Mockups and wireframes are then iteratively discussed with
the customer: this allows to check that requirements have been correctly understood, to
ensure that the customer is aware of project status and will not change his mind later,
and to skip formal validation steps at the end of each sprint.

6 S. Bordin and A. De Angeli

Briefs. Prototypes and requirements are integrated in documents called briefs, which
crystallise the requirements; they are then iteratively revised with the customer to ensure
that both parties share the same understanding of requirements and status of advance‐
ment.

Roadmaps. For each project, the relevant project manager keeps a chart showing the
evolution of the product at a high level, including milestones to be delivered to the
customer. This chart is often linked to other documents reporting, for instance, more
extensive descriptions of functionalities or specifications of the customer’s target plat‐
forms. Roadmaps are used internally, at management level: the CEO, the CTO and
project managers refer to them to supervise the status of each project. However, if the
customer requires so, roadmaps are also used to provide long-term visibility on the
articulation of the project.

Technical Analysis. The CTO elaborates this document for each project: it includes
finalised interface mockups, a description of the data flow and of the data structure, cost
and time estimates, and a finer-grained breakdown of development tasks. The technical
analysis serves two purposes: internally, it is a reference for developers to determine
what to implement in the next sprints; externally and if needed, it can provide the
customer with a detailed understanding of the implementation process.

3.4 Findings

In the following, we discuss the results of the interviews with the H-umus staff, cate‐
gorising the narratives according to the three communication breakdowns constituting
our framework. Citations in the next paragraphs will be attributed to interviewees as
follows: Dev for developers; Des for designers; PM for project managers who are not
designers; Mgmt for the CTO and the CEO.

User Involvement. The distinction between customers and users is very sharp and
project managers usually communicate only with the customer, who can be represented
by different employees at different stages of the same project. Especially when the
customer is a large company, its most appropriate representative to liaise with can be
difficult to identify and often changes over time:

Dev2: “The most difficult thing in communicating with the customer is understanding
who you should be talking to.”

In general, the customer representative is the IT department:

Mgmt2: “You would not believe how conservative IT departments can be. Whatever
change may affect their working routine, it’s a no-no.”

There are, however, exceptions to this situation: for example, a few demos were
arranged with business and sales representatives of FashionX, i.e. with a sample of final
users, in order to collect feedback that could supplement the requirements provided by

Focal Points for a More User-Centred Agile Development 7

the IT department of the company. Yet, this only happens occasionally: usually, and as
shown in Fig. 1, the customer completely mediates user needs, requirements, and feed‐
back. This causes some concern in the H-umus management:

Mgmt2: “Then it is difficult to determine how to handle the feedback we receive and
how relevant it actually is with respect to the customer or with respect to the needs users
may truly have. […] Sometimes I wonder whom we should really satisfy. Is it the business
department or the IT department? We usually speak only to the latter. I believe this
causes a large drop in the value we deliver with our products.”

H-umus designers acknowledge that it would be desirable to apply a proper user-
centred design methodology, involving real users in requirement gathering and interface
evaluation. However, this is very hard to achieve in practice, because of two main
reasons: first, the time for design is constrained; second, it is difficult to gain access to
users. In fact, the customer is not always interested in being actively involved in the
design of the commissioned product: sometimes H-umus may only be asked to prototype
a new graphical interface for an existing software. The customer may even believe that
users are not able to provide any sensible contribution:

Dev1: “I do not have any contact with users […] Sometimes they are even described to
me as being as dumb as an ox, so it is paramount to design products that are very easy
to use, and I guess this is a major challenge for designers.”

Documentation. The staff has a small size and is co-located in the same open space:
hence, most coordination occurs face to face or at most through instant messaging, both
among developers and between developers and designers. This leads to a scarcity of
documentation for internal use. However, in order to avoid knowledge gaps in case
someone leaves the company, pair programming is adopted when a part of the code
needs to be modified: the task is in fact assigned both to the developer who already
worked on that code and to a “fresh” developer at the same time. In this way, in the long
run everybody will have at least an overview of all the code produced. Working in pairs
is also a common practice in the early stages of a new project, where a designer and a
developer cooperate in order to shape the design space quickly and based on an under‐
standing of what can be technically feasible.

PM1: “Everybody has an overview, but also a specific responsibility.”

Documentation is instead actively and carefully maintained to support the relation‐
ship with the customer. Despite the Agile principle [3] of “embracing change”, the
management highlighted the need of making the customer responsible for his require‐
ments and committed to them. The CTO and the project managers in fact insisted on
their strong need to shield H-umus from sudden, important changes in customer require‐
ments; being the company so small, this could cause a lot of work to be wasted and not
paid, causing in turn potentially severe financial issues.

8 S. Bordin and A. De Angeli

PM1: “H-umus is a small company. If the customer first says he wants a mobile app,
and then after six months he comes and says that now he wants a standalone applica‐
tion… We cannot afford that. Unless the customer is paying for the extra time, of
course.”

Des2: “We do not have much development capacity. It can become a big issue if I draw
the mockup and then we have to go back and change fundamental parts of it.”

This protection is achieved by using several artefacts that are admittedly not typically
Agile: documents such as requirements lists and technical analyses are shared with the
customer, iteratively discussed and then signed off.

Mgmt1: “We make the customer sign the requirements document, so nobody can come
up and say: “This is not what we agreed upon”. Whatever extra, we discuss it and it is
billed on top.”

Des2: “Being able to tell the customer: “Look, this is what we suggested and you
approved it” is something that can cover our back when we need to ask for more funding
or when we just say that something is not feasible”.

The strong perception of documentation as having a purpose mainly in relation to
the customer emerges very clearly also in relation to other themes:

Mgmt1: “I’ll show you the technical analysis we did for FashionX […] Please write
down in your notes that to me this is complete nonsense. The risk estimates and the
planning poker and stuff… It is obvious that these numbers are meaningless. Yet the
customer wants to have a long-term perspective on the project, so here it is.”

Synchronisation of Iterations. Given the small size of the company, designers and
developers work together, so synchronisation is handled through constant, direct
communication. Indeed, there is no separate process for design and for development:
for instance, design tasks such as prototyping are listed as regular user stories in the
Agile management tool in use:

Des1: “UX aspects are regarded as common functionalities.”

Despite a general awareness among the staff of the company transitioning towards
a more design-oriented culture, the overall attitude appears to be still strongly technical.
For instance, sprint meetings only involve developers:

Mgmt1: “We are born as a data-driven company […] Sprint meetings are too technical;
designers would waste time attending them.”

Furthermore, a different theme emerges, related to the recognition of designers’
expertise in a technically dominant environment. Several times designers referred to
their competence in UX as being interpreted as common sense in the company:

Focal Points for a More User-Centred Agile Development 9

Des2: “Why should the CEO’s opinion be more relevant than mine, if I designed the
interface from the beginning? Sometimes [Des1] and I refer to it as a class conflict with
the developers”

Des2: “Everybody feels entitled to comment on the design, just because each of us is a
technology user, while nobody would comment on the code unless competent. So [devel‐
opers] bring in their own use cases, but we are not developing, say, Instagram, which
only has a couple of functionalities: it is totally different. Sometimes the comments are
just “I don’t like it”. I can take it from the customer, if he pays for the extra time needed
to rework the design, otherwise I’d expect some sounder feedback.”

The rest of the team perceives this issue as well, although in variable ways:

Dev1: “Interfaces are subjective […] usability is subjective too: you need to design stuff
that is comfortable for the user, more than functional. [Des1 and Des2] do a great job
in my opinion in this respect.”

PM1: “The best way to work shouldn’t be to tell the designer how to do the things, but
just what you need; unfortunately, the customer is often unable to articulate what he
wants, and anyway we must give priority to the development to save time.”

Dev2: “We all give our opinion, but in the end it is the designer who decides.”

4 Discussion

Despite a positive attitude towards UCD, H-umus found objective difficulties in inte‐
grating it with Agile in practice. These difficulties were partially overlapping with the
communication breakdowns identified in Smart Campus [5], although the working
context of the latter was quite different from the H-umus one as illustrated by Fig. 2,
which represents the main actors in Smart Campus and their communication network.

Fig. 2. Communication network in Smart Campus.

The analysis of the H-umus case study allowed us to refine our framework, broad‐
ening the scope of identified communication breakdowns as follows.

10 S. Bordin and A. De Angeli

User Involvement. In Smart Campus, the customer and the user community were two
clearly differentiated actors; most of the team had direct contact only with the users
through a variety of communication channels such as a forum. However, the perception
of user involvement appeared to be variable between designers and developers, denoting
an underlying mismatch in the understanding of this concept: while designers struggled
to promote a participative role of the user community, developers intended such role as
informative or at most consultative instead [11]. In H-umus, the extent of user involve‐
ment remains problematic, although with a different flavour: the customer completely
mediates the interaction with the user, so the role of the latter is practically less than
informative [11]. Therefore, we can argue that the understanding of the extent of user
involvement should be shared not only inside the company (among designers, devel‐
opers, managers), but also outside, by the customer.

Documentation. In Smart Campus, documentation did not appear to have an intrinsic
value as a communication tool for developers; however, it became increasingly relevant
to keep the development team aligned when the latter became more distributed due to
the introduction of interns working at variable times and often remotely. Yet, how to
effectively support the need for a shared knowledge base remained an open point,
particularly referring to design artefacts, although the team tried to adopt a variety of
articulation platforms. In H-umus instead, the team is co-located: in this case, besides
being a tool for tracing the history of the software and the rationale of related design
and development choices, documentation can also have an instrumental function in
balancing the power relationship with the customer, protecting the company against
unsustainable changes in requirements.

Synchronisation of Iterations. The Smart Campus project was oriented towards a
large and strong user community, whose feedback escalated quickly and was not medi‐
ated (for instance by a customer). This caused severe difficulties in synchronising the
iterations of UCD and Agile: designers struggled to elaborate requirements and provide
suggestions in a timely manner that could fit the development pace, while developers
often took the initiative of fixing interfaces regardless of the overall UX vision. In
general, designers resorted to several ad-hoc interventions, elaborated together with the
developers requesting them. In H-umus instead, the team is co-located and quite small,
so synchronisation can easily occur through face-to-face communication. Furthermore,
the existence of signed documents prevents the customer from changing requirements
with the same frequency witnessed in Smart Campus with the user community.

Task Ownership. An additional communication breakdown strongly emerged from
the interviews conducted in H-umus. Several interviewees argued that, in order for an
effective communication to occur, it is advisable that the whole team shares a common
language. Additionally, our observations suggested that the team should also share a
common understanding about who is responsible for each task, especially in the case of
UX activities, and in particular for taking final decisions over it. This will help avoid
situations in which a technically predominant environment interprets UX as mere
“common sense”, which are not conducive to endorsing the added value that UX can
provide to a product and which seem to reflect a long-lasting contrast between soft and

Focal Points for a More User-Centred Agile Development 11

hard sciences. To this end, we point to the concept of boundary objects, i.e. mediating
artefacts that allow knowledge sharing and promote collaboration since their interpretive
flexibility facilitates “an overlap of meaning while preserving sufficient ambiguity” for
different groups to read their own meanings [2]. The briefs used in H-umus can be
considered as boundary objects in this sense, as they gather mockups from designers,
technical specs from developers, and business requirements from the customer, and they
act as a common reference point for monitoring the evolution of the product.

5 Conclusion

In this paper we have discussed four communication breakdowns that may affect the
integration of user-centred design and Agile development and that emerged from an
analysis of working practices in companies. Possible solutions can derive from discount
usability techniques [e.g. 13, 22] or more recent research on automatic usability evalu‐
ation tools [e.g. 21, 31]. However, we remark that communication breakdowns are
manifested at the work process level [4, 5]: hence, we suggest that their solution could
be found in a supportive organisational environment [5, 8, 11, 17], whose fundamental
importance is reiterated by the present study. As seen in H-umus, not even having
designers play the role of project managers is enough to fully endorse the UCD compo‐
nent of the working process. To leverage the full potential of the integration of UCD
and Agile, the management should actively counteract the so-called “developer mindset”
[1, 14], i.e. an approach that is overly focused on technical aspects rather than on
customer and user satisfaction, and commit to an explicit inclusion of UCD in company
goals and financial allocation [36].

We claim that the four communication breakdowns discussed in this paper can
become focal points to drive action and decision in companies, facilitating communi‐
cation between designers and developers and supporting management in the construc‐
tion of a favourable context. Our current research is addressing the development of
specific guidelines concerning how to apply such focal points in practice through addi‐
tional case studies. Nonetheless, and as already suggested in [5], we believe that design
thinking [7] can be an appropriate methodology in this respect: grounded on a “human-
centred design ethos”, it advocates a “designer’s sensibility” pervading the whole organ‐
isation, so that also technical personnel (be it part of the development or of the manage‐
ment) can be aware of the importance of meeting users’ needs with what is technolog‐
ically feasible. Inspired by design thinking, the organisational culture is likely to
empathise more with the user and to share the ownership of the UX vision among all
members of the company: this is in turn also likely to address the task ownership theme
introduced above.

However, the benefits of this internal culture may be limited if the customer does
not share its same values, preventing access to users or completely mediating the
communication with them. A direct contact with users can allow the company to deliver
a product that, although requiring a possibly longer design period, will be more suited
to the needs of people ultimately using it and will therefore bring more value to the
customer for its money. Even after many years from [23], we still need to address the

12 S. Bordin and A. De Angeli

“developer mindset” [1, 14] and persuade the customer and the technical personnel (at
least partially) of the positive cost-benefit trade-off of devoting time to user studies and
usability [32]. We insist that attainable benefits should be clearly presented to the
customer in order to win its buy-in of the principles of design thinking, its acknowl‐
edgement of the advantages of involving the users and its active collaboration in this.
We point out to the research community that however, to this end, a set of actionable
measures that can more objectively assess the positive impact of user involvement on
the quality of produced software [18] is still lacking, together with a set of less resource-
intensive practices to put such involvement in place.

Acknowledgments. Smart Campus was funded by TrentoRISE. The present work has been
possible thanks to the funding granted by the Italian Ministry of Education, University and
Research (MIUR) through the project “Città Educante”, project code CTN01_00034_393801. We
wish to thank the Smart Campus team, the students who contributed to the project, and the H-
umus team for their kind support.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Ardito, C., Buono, P., Caivano, D., Costabile, M.F., Lanzilotti, R.: Investigating and
promoting UX practice in industry: an experimental study. Int. J. Hum. Comput. Stud. 72(6),
542–551 (2014)

2. Barrett, M., Oborn, E.: Boundary object use in cross-cultural software development teams.
Hum. Relat. 63(8), 1199–1221 (2010)

3. Beck, K., et al.: Manifesto for Agile software development. http://www.Agilemanifesto.org
4. Bjørn, P., Ngwenyama, O.: Virtual team collaboration: building shared meaning, resolving

breakdowns and creating translucence. Inf. Syst. J. 19(3), 227–253 (2009)
5. Bordin, S., De Angeli, A.: Communication breakdowns in the integration of user-centred

design and Agile development. To appear. In: Cockton, G., Larusdottir, M.K., Gregory, P.,
Cajander, A. (eds.) Integrating User Centred Design in Agile Development. Springer, London
(2016)

6. Bordin, S., Menéndez Blanco, M., De Angeli, A.: ViaggiaTrento: an application for
collaborative sustainable mobility. EAI Endorsed Trans. Ambient Syst. 14(4), (2014)

7. Brown, T.: Design thinking. Harvard Bus. Rev. 86(6), 84 (2008)

Focal Points for a More User-Centred Agile Development 13

http://creativecommons.org/licenses/by-nc/4.0/
http://www.Agilemanifesto.org

8. Cajander, Å., Larusdottir, M., Gulliksen, J.: Existing but not explicit - the user perspective in scrum
projects in practice. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.)
INTERACT 2013, Part III. LNCS, vol. 8119, pp. 762–779. Springer, Heidelberg (2013)

9. Chamberlain, S., Sharp, H., Maiden, N.A.M.: Towards a framework for integrating Agile
development and user-centred design. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.)
XP 2006. LNCS, vol. 4044, pp. 143–153. Springer, Heidelberg (2006)

10. Clark, H.H., Brennan, S.E.: Grounding in communication. Perspect. Socially Shared Cogn.
13, 127–149 (1991)

11. Damodaran, L.: User involvement in the systems design process-a practical guide for users.
Behav. Inf. technology 15(6), 363–377 (1996)

12. De Angeli, A., Bordin, S., Menéndez Blanco, M.: Infrastructuring participatory development
in information technology. In: Proceedings of the 13th Participatory Design Conference:
Research Papers(1), pp. 11–20. ACM (2014)

13. Gothelf, J.: Lean UX: Applying Lean principles to improve user experience. O’Reilly Media
Inc, Redwood Shores (2013)

14. Hussain, Z., Milchrahm, H., Shahzad, S., Slany, W., Tscheligi, M., Wolkerstorfer, P.:
Integration of extreme programming and user-centered design: Lessons learned. In:
Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) Agile Processes in Software Engineering
and Extreme Programming, pp. 143–153. Springer, Heidelberg (2006)

15. Jurca, G., Hellmann, T.D., Maurer, F.: Integrating Agile and user-centered design: a
systematic mapping and review of evaluation and validation studies of Agile-UX. In:
Proceedings of Agile, pp. 24–32. IEEE (2014)

16. Kujala, S.: User involvement: a review of the benefits and challenges. Beh. Inf. Technol.
22(1), 1–16 (2003)

17. Lárusdóttir, M.K., Cajander, Å., Gulliksen, J.: The big picture of UX is missing in Scrum
projects. In: Proceedings of the 2nd International Workshop on The Interplay between User
Experience Evaluation And Software Development, in Conjunction with the 7th Nordic
Conference on Human-Computer Interaction (2012). http://ceur-ws.org/Vol-922/I-
UxSED-2012-Proceedings.pdf#page=49

18. Mao, J.Y., Vredenburg, K., Smith, P.W., Carey, T.: The state of user-centered design practice.
Commun. ACM 48(3), 105–109 (2005)

19. Memmel, T., Gundelsweiler, F., Reiterer, H.: Agile human-centered software engineering.
In: Proceedings of the 21st British HCI Group Annual Conference on People and Computers:
HCI… but not as We Know It vol. 1, British Computer Society, pp. 167–175 (2007)

20. Miller, L.: Case study of customer input for a successful product. In: Proceedings of Agile,
pp. 225–234 (2005)

21. Miniukovich, A., De Angeli, A.: Computation of Interface Aesthetics. In: Proceedings of the
CHI, pp. 1163–1172 (2015)

22. Nielsen, J. Guerrilla HCI: Using discount usability engineering to penetrate the intimidation
barrier. In: Cost-justifying Usability, pp. 245–272 (1994)

23. Nielsen, J.: Usability Engineering. Elsevier, New York (1994)
24. Nodder, C., Nielsen, J.: Agile Usability: Best Practices for User Experience on Agile

Development Projects. Nielsen Norman Group, Freemont (2010)
25. Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer Interaction.

John Wiley & Sons, New York (2011)
26. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile development

processes and user centred design integration. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, p. 5. ACM (2014)

14 S. Bordin and A. De Angeli

http://ceur-ws.org/Vol-922/I-UxSED-2012-Proceedings.pdf#page=49
http://ceur-ws.org/Vol-922/I-UxSED-2012-Proceedings.pdf#page=49

27. Schwartz, L.: Agile-User Experience Design: does the involvement of usability experts
improve the software quality? Int. J. Adv. Softw. 7(3&4), 456–468 (2014)

28. Sharp, H., Robinson, H.: Integrating user-centred design and software engineering: a
role for extreme programming? (2004). http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.99.4554&rep=rep1&type=pdf

29. Smith, C.P.: Motivation and Personality: Handbook of Thematic Content Analysis.
Cambridge University Press, New York (1992)

30. Sohaib, O., Khan, K.: Integrating usability engineering and agile software development: a
literature review. In: International Conference on Computer Design and Applications, vol. 2,
pp. V2–32. IEEE (2010)

31. Staiano, J., Menéndez, M., Battocchi, A., De Angeli, A., Sebe, N.: UX_Mate: from facial
expressions to UX evaluation. In: Proceedings of the DIS, pp. 741–750. ACM (2012)

32. The Standish Group CHAOS report (2014). https://www.projectsmart.co.uk/white-papers/
chaos-report.pdf

33. Sy, D.: Adapting usability investigations for Agile user-centered design. J. Usability Stud.
2(3), 112–132 (2007)

34. Teli, M., Bordin, S., Blanco, M.M., Orabona, G., De Angeli, A.: Public design of digital
commons in urban places: a case study. Int. J. Hum Comput Stud. 81, 17–30 (2015)

35. Ungar, J.M., White, J.A.: Agile user centered design: enter the design studio – a case study.
In: Proceedings of the CHI, pp. 2167–2177. ACM Press (2008)

36. Venturi, G., Troost, J., Jokela, T.: People, organizations, and processes: an inquiry into the
adoption of user-centered design in industry. Int. J. Hum. Comput. Interact. 21(2), 219–238
(2006)

37. Wolkerstorfer, P. et al.: Probing an Agile usability process. In: Proceedings of the CHI, pp.
2151–2157. ACM Press (2008)

Focal Points for a More User-Centred Agile Development 15

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4554&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.4554&rep=rep1&type=pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

Agility Measurements Mismatch: A Validation
Study on Three Agile Team Assessments

in Software Engineering

Konstantinos Chronis1 and Lucas Gren1,2(B)

1 Chalmers and University of Gothenburg, 412 96 Gothenburg, Sweden
konstantinos.chronis@gmail.com, lucas.gren@cse.gu.se

2 University of São Paulo, São Paulo 05508–090, Brazil

Abstract. Many tools have been created for measuring the agility of
software teams, thus creating a saturation in the field. Three agile mea-
surement tools were selected in order to validate whether they yield sim-
ilar results. The surveys of the tools were given to teams in Company
A (N = 30). The questions were grouped into agile practices which
were checked for correlation in order to establish convergent validity. In
addition, we checked whether the questions identified to be the same
among the tools would be given the same replies by the respondents.
We could not establish convergent validity since the correlations of the
data gathered were very few and low. In addition, the questions which
were identified to have the same meaning among the tools did not have
the same answers from the respondents. We conclude that the area of
measuring agility is still immature and more work needs to be done. Not
all tools are applicable to every team but they should be selected on the
basis of how a team has transitioned to agile.

Keywords: Validation · Agile measurement · Empirical study

1 Introduction

Agile and plan-driven methodologies are the two dominant approaches in the
software development. Although it has been almost 20 years since the former
were introduced, the companies are quite reluctant in following them [1].

Software development teams started adopting the most known agile method-
ologies, such as eXtreme Programming [2], Feature Driven Development (FDD),
[3], Crystal [4], Scrum [5] and others. Most companies use a tailored methodology
by following some of the aforementioned processes and practices which better
suit their needs. Williams et al. [6] report that all XP practices are exercised
rarely in their pure form, something on which Reifer [7] and Aveling [8] also
agree based on the results of their surveys, which showed that it is common for
organizations to partially adopt XP. The most important issue that tends to be
neglected though, is how well these methodologies are adopted.

c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 16–27, 2016.
DOI: 10.1007/978-3-319-33515-5 2

Agility Measurements Mismatch 17

According to Escobar-Sarmiento and Linares-Vasquez [9], the agile method-
ologies are easier to misunderstand. The previous statement is also supported
by Taromirad and Ramsin [10], who argue that the agile software development
methodologies are often applied to the wrong context. Sidky [11] defines the level
of agility of a company as the amount of agile practices used. Considering this
statement, a group that uses pair programming and collective code ownership
at a very low level is more agile than a group which uses only pair programming
but in a more efficient manner.

Williams et al. [12] pose the question “How agile is agile enough”? Accord-
ing to a survey conducted by Ambysoft [13], only 65 % of the agile companies
that answered met the five agile criteria posed in the survey. Poonacha and
Bhattacharya [14] mentioned that the different perceptions of agile practices
when they are adopted are troublesome, since even people in the same team
understand them differently, according to the result of a survey [15].

Since agile methodologies become more and more popular, there is a great need
for developing a tool that can measure the level of agility in the organizations that
have adopted them. For over a decade, researchers have been constantly coming
up with models and frameworks in an effort to provide a solution.

This case study comprises three tools which claim to measure the agility of
software development teams using surveys. These tools are Perceptive Agile Mea-
surement (PAM) [16], Team Agility Assessment (TAA) [17], Objectives Princi-
ples Strategies (OPS) [18]. The first one has been validated with a large sample of
subjects, the second one is well-used by companies and the third one covers many
agile practices. Since all three tools measure agility, convergent validity should
be established among them to corroborate this. The surveys from the three tools
were given to Company A employees to answer. The analysis of the data was per-
formed by grouping the survey questions in accordance to to agile practices. The
correlation of these practices were the indications for establishing the convergent
validity. Moreover, questions identified to have the same meaning among the tools
should have the same answers from the respondents. The purpose of this study is
to check whether these three tools will yield similar results.

Research Questions.

1. Will PAM, TAA and OPS yield similar results?
(i) Does convergent validity exist between the tools?
(ii) Will the questions that are exactly the same in the tools yield the same

results?

2 Case Study

Any effort to see if the selected agility measurement tools are valid in what they
do, would require to apply them to real software developments teams. According
to Runeson and Host [19], a case study is “a suitable research methodology for
software engineering research since it studies contemporary phenomena in their
natural context”. As a result, a case study was selected as the most suitable
means.

18 K. Chronis and L. Gren

2.1 Subject Selection

Company A is a United States company which operates in the Point Of Sales
(POS) area. It has four teams with mixed members of developers and testers.
The teams do not follow a specific agile methodology, but rather a tailored mix
of the most famous ones which suits the needs of each team. Methodology A,
as we can name it, embraces the practices from the various agile methodologies,
some of them to a larger and some of them to a smaller extent. The analysis
process created by Koch [20] was used for identifying these methodologies. The
identification of the practices was done by observing and understanding how the
teams work.

2.2 Data Collection

In order to collect the data, an online survey was considered to be the best
option, since it could be easily answered by each subject.

For each of the tools, four surveys were created (one for each team). The
data collection lasted about one month, while the surveys for each tool were
conducted every ten days. None of the subjects was familiar with any of the
tools.

Two subjects were requested to answer to the surveys first, in order to detect
if there were any questions which could cause confusion, but also to see how
much time is needed to complete a survey. Once the issues pointed out by the
two subjects were fixed, the surveys were sent to the rest of the company’s
employees.

The links for the surveys were sent to the subjects via email, and they were
asked to spend 15–20 min to reply to the survey. The employees who belonged
to more than one team were asked a couple of days later to take the other survey
in order to verify that their answers matched in both surveys.

OPS agility measurements are based on three aspects: Adequacy, Capability
and Effectiveness. Effectiveness measurement focuses on how well a team imple-
ments agile methodologies. Since the rest of the tools focus on the same thing,
it was decided only to use the survey from Effectiveness and not to take into
account the Adequacy and Capability aspects.

The surveys for PAM, TAA and OPS were answered on a Likert scale 1–7
(never having done what is asked in the question to always doing what is asked
in the question).

The employees who were asked to answer to the surveys were all members of
the software development teams, which consisted of software and QA engineers.
All of the participating employees have been in the company for over a year
and most of them have more than five years of work experience in an agile
environment. Employees who had been working for less than six months in the
company were not asked to participate, since it was considered that they were
not fully aware of the company’s procedures or that they were not familiar
enough with them. Each participant replied to 176 questions in total. Initially,
34 surveys were expected to be filled in, but in the end, 30 of them were filled
in, since some employees chose not to participate.

Agility Measurements Mismatch 19

2.3 Data Preparation

All three tools have different amount of questions and cover different practices.
For this reason, we preferred to do a grouping of the questions based on the
practices/areas to which they belong.

Team Agility Assessment – Areas. Team Agility Assessment (TAA) does not
claim that it covers specific agile practices, but rather areas important for a
team. It focuses on product ownership for Scrum teams but also on the release,
iteration planning and tracking. The team factor plays a great role, as well as
the development practices and the work environment. Automated testing and
release planning are important here as well.

Perceptive Agile Measurement – Practices. The Perceptive Agile Measurement
(PAM) tool focuses on the iterations during software development, but also on
the stand-up meetings for the team members, their collocation and the retro-
spectives they have. The access to customers and their acceptance criteria have a
high importance as well. Finally, the continuous integration and the automated
unit testing are considered crucial in order to be agile.

Objectives, Principles, Strategies (OPS) – Practices. Objectives, Principles,
Strategies (OPS) Framework is the successor of the Objectives, Principles, Prac-
tices (OPP) Framework [21]. OPP identified 27 practices as implementations of
the principles which later on were transformed into 17 strategies.

Practices Covered Among The Tools. We have abstracted some of the OPP prac-
tices to OPS strategies in order to avoid repeating the mapping of the questions.
The connection between the practices and the strategies is done based on the
questions of each tool.

Mapping of questions among tools. PAM has its questions divided on the basis of
agile practices, while on the other hand, TAA has divided them based on areas
considered important. Although all practices/areas from PAM and TAA are
mapped onto OPP and OPS, not all of their questions are under OPP practices
or OPS strategies. This can be explained due to the different perception/angle
that the creators of the tools have and what is considered important for an
organization/team to be agile.

2.4 Data Analysis

The data gathered from the surveys were grouped on the basis of the practices
covered by the OPP, and as a consequence, the OPS.

Convergent Validity Analysis. Since all the tools claim to be measuring agility
and under the condition that convergent validity exists among them, then, by
definition, they should yield similar results.

20 K. Chronis and L. Gren

In similar studies [22,23], the correlation analysis was selected as the best way
to check similar tools and this was followed here as well. We decided to use the
practices covered by each tool and see if they correlate with the same practices
from the other two tools. The idea is based on the multitrait-multimethod matrix,
presented by Campbell and Fiske [24]. The matrix is the most commonly used
way for providing construct validity.

In order to select which correlation analysis method to choose from, the
data were checked if they had normal distribution by using the Shapiro-Wilk
test which is the most powerful normality test, according to a recent paper
published by Razali and Wah [25]. The chosen alpha level was 0.05, as it is the
most common one.

Out of the 42 normality checks (three for each of the 14 practices), only
17 concluded that the data are normally distributed. The low level of normally
distributed data gave a strong indication that Spearman’s rank correlation coef-
ficient, which is more adequate for non-parametric data, was more appropriate
to use, rather than the Pearson’s product-moment correlation.

In order to use the Spearman’s rank correlation coefficient, a monotonic rela-
tionship between two variables is required. In order to check for the monotonicity,
plots were drawn between the results of each tool for all 14 practices. The plots
surprisingly showed that only eight out of 42 were monotonic, which indicates
no correlation what-so-ever.

Direct Match Questions Analysis. We want to find which questions are the same
among the tools. In order to achieve this, the mapping described in Subsect. 2.3
was used. Afterward, the questions were checked one by one to identify the ones
which had the same meaning. When we finalized the groups of questions which
were the same, we requested from the same employees who were taking the pilot
surveys to verify if they believed the groups were correctly formed. Their answer
was affirmative, so we continued by checking if the answers of the subjects were
the same. Surprisingly, OPS–TAA have 20 questions with the same meaning,
while OPS–PAM and TAA–PAM only four and three respectively.

Out of the 35 normality checks (two for each group and three for one group),
only 2 concluded that the data are normally distributed. Since the samples are
also independent (they do not affect one another), there is a strong indication
that the MannWhitney U test is appropriate. For the group Smaller And Fre-
quent Product Releases, we used the Kruskal–Wallis one-way analysis of variance
method, which is the respective statistical method for more than two groups.

The hypothesis in both cases was:
H0: There is no difference between the groups of the same questions
H1: There is a difference between the groups of the same questions

3 Results

3.1 Correlations

As it was previously stated, only eight out of 42 plots were monotonic. The
more interesting than the correlations result is the non-existence of monotonicity

Agility Measurements Mismatch 21

in the other 34 relationships, which leads us to the conclusion that there is
little convergence among the tools. This is surprising because tools claiming to
measure the same thing should converge.

3.2 Direct Match Questions Results

The groups of direct match questions showed some unexpected results. Questions
which are considered to have the same meaning should yield the same results,
which was not the case for any of the question groups, apart from one group
concerning the Software Configuration Management. On the other hand, the
Product Backlog practice had the lowest score with only six respondents giving
the same answer. The maximum difference in answers was up to two Likert-scale
points.

As far as the results from the Mann-Whitney U test and Kruskal-Wallis one-
way analysis of variance are concerned, the p-values from the majority of the
groups are more than the alpha level of 0.05. As a result, we cannot reject the
H0 hypothesis. Such practices are Iteration Progress Tracking and Reporting -
group #2, High-Bandwidth Communication and others. On the other hand, the
p-value of group Software Configuration Management cannot be computed, since
all the answers are the same, while for other groups the p-value is below the alpha
level which means that the H0 hypothesis can be rejected. Such practices are
Continuous Integration - group #2, Iteration Progress Tracking and Reporting -
group #4 and others.

4 Discussion

4.1 Will PAM, TAA and OPS Yield Similar Results?

The plots drawn by the data gathered showed an unexpected and interesting
result. Not only do the tools lack a correlation, but they do not even have a
monotonic relationship when compared to each other for the agile practices cov-
ered, resulting in absence of convergent validity. This could indicate two things;
the absence of monotonicity and the negative or very low correlations show that
the questions used by the tools in order to cover an agile practice do it differently
as well as that PAM, TAA and OPS measure the agility of software development
teams in their own unique way.

Almost all groups had different responses to the same questions. With
regards to the research question “Does convergent validity exist among
the tools?”, we showed that convergent validity could not be established due
to the low (if existing) correlations among the tools. Concerning the research
question “Will the questions that are exactly the same among the tools
yield the same results?”, we saw that a considerable amount of respondents’
answers were different.

The reasons for this somewhat unexpected results are explained in the
following paragraphs.

22 K. Chronis and L. Gren

Few or no questions for measuring a practice. A reason for not being able to
calculate the correlation of the tools is that they cover slightly or even not at all
some of the practices. An example of this is the Smaller and Frequent Product
Releases practice. OPS includes four questions, while on the other hand, PAM
and TAA have a single question each. Furthermore, Appropriate Distribution of
Expertise is not covered at all by PAM. In case the single question gets a low
score, this will affect how effectively the tool will measure an agile practice. On
the contrary, multiple questions can better cover the practice by examining more
factors that affect it.

The same practice is measured differently. Something interesting that came up
during the data analysis was that although the tools cover the same practices,
they do it in different ways, leading to different results. An example of this is the
practice of Refactoring. PAM checks whether there are enough unit tests and
automated system tests to allow the safe code refactoring. In case the course
unit/system tests are not developed by a team, the respondents will give low
scores to the question, as the team members in Company A did. Nevertheless,
this does not mean that the team never refactors the software or does it with
bad results. All teams in Company A choose to refactor when it adds value to
the system, but the level of unit tests is very low and they exist only for specific
teams. On the other hand, TAA and OPS check how often the teams refactor,
among other aspects.

The same practice is measured in opposite questions. The Continuous Integra-
tion practice has a unique paradox among TAA, PAM and OPS. The first
two tools include a question about the members of the team having synchro-
nized to the latest code, while OPS checks for the exact opposite. According to
Soundararajan [18], it is preferable for the teams not to share the same code in
order to measure the practice.

Questions phrasing. Although the tools might cover the same areas for each
practice, the results could differ because of how a question is structured. An
example of this is the Test Driven Development practice. Both TAA and PAM
ask about automated code coverage, while OPS just asks about the existence of
code coverage. Furthermore, TAA focuses on 100 % automation, while PAM does
not. Thus, if a team has code coverage but it is not automated, then the score of
the respective question should be low. In case of TAA, if the code coverage is not
fully automated, its score should be even lower. It is evident that the abstraction
level of a question has a great impact. The more specific it is, the more a reply
to it will differ, resulting in possible low scores.

Better understanding of agile concepts. In pre-post studies there is a possibility
of the subjects becoming more aware of a problem in the second test due to
the first test [26]. Although the testing threat, as it is called, does not directly
apply here, the similar surveys on consecutive weeks could have enabled the
respondents to take a deeper look into the agile concepts, resulting in better
understanding of them, and consequently, providing different answers to the
surveys’ questions.

Agility Measurements Mismatch 23

How people perceive agility. Although the concept of agility is not new, people
do not seem to fully understand it, as Conboy and Wang [27] also mention. This
is actually the reason behind the existence of so many tools in the field which
are trying to measure how agile the teams are or the methodologies used. The
teams implement agile methodologies differently and researchers create different
measurement tools. There are numerous definitions of what agility is [28–31],
and each of the tool creators adopt or adapt the tools to match their needs.
Their only common basis is the agile manifesto and its twelve principles [32],
which are (and should be considered as) a compass for the agile practitioners.
Nevertheless, they are not enough and this resulted in the saturation of the field.
Moreover, Conboy and Fitzgerald [33] state that the agile manifesto principles
do not provide practical understanding of the concept of agility. Consequently,
all the reasons behind the current survey results are driven by the way in which
tool creators and tool users perceive agility.

The questions in the surveys were all based on how their creators perceived
the agile concept which is quite vague, as Tsourveloudis and Valavanis [34] have
pointed out. None of the Soundararajan [18], So and Scholl [16], Leffingwell [17]
claimed, of course, to have created the most complete measurement tool, but
still, this leads to the oxymoron that the tools created by specialists to measure
the agility of software development teams actually do it differently and without
providing substantial solution to the problem. On the contrary, this leads to
more confusion for the agile practitioners.

Considering that the researchers and specialists in the agile field perceive the
concept of agility differently, it would be naive to say that the teams do not
do the same. The answers to surveys are subjective and people reply to them
depending on how they understand them. Ambler [15] stated the following: “I
suspect that developers and management have different criteria for what it means
to be agile”. This is also corroborated by the fact that, although a team works
in the same room and follows the same processes for weeks, it is rather unlikely
that its members will have the same understanding of what a retrospection or a
releasing planning meeting means to them, a statement which is also supported
by Murphy et al. [35].

5 Threats to Validity

5.1 Construct Validity

We consider that the construct validity concerning the surveys given to the
subjects was already handled by the creators of the tools which were used. Our
own construct validity lies in establishing the convergent validity. The small
sample of subjects was the biggest threat in establishing convergent validity,
making the results very specific to Company A itself. Future work on this topic
should be performed at other companies to mitigate this threat. In order to
avoid mono-method bias, some employees were asked to fill in the surveys first
in order to detect any possible issues. All the subjects were promised to remain
anonymous, resulting in mitigating the evaluation apprehension [36].

24 K. Chronis and L. Gren

5.2 Internal Validity

The creators of PAM, TAA and OPS have already tried to mitigate internal valid-
ity when creating their tools. Yet, there are still some aspects of internal validity,
such as selection bias maturation and testing effect. With regard to maturation,
this concerns the fatigue and boredom of the respondents. Although the surveys
were small in size and did not require more than 15–20 min each, still the similar
and possibly repetitive questions on the topic could cause fatigue and boredom
to the subjects. This could result in the participants giving random answers to
the survey questions. The mitigation for this threat was to separate the surveys
and conduct them during three different periods. In addition, the respondents
could stop the survey at any point and continue whenever they wanted. As far
as the testing effect is concerned, this threat could not be mitigated. The testing
effect threat applies to pre-post design studies only, but due to the same topic
of the surveys, the subjects were to some extent more aware of what questions
to expect in the second and third survey. Finally, selection could also not be
mitigated, since the case study focused on a specific company only.

5.3 Conclusion Validity

Although the questions of the surveys have been carefully phrased by their cre-
ators, still there may be uncertainty about them. In order to mitigate this, for
each survey a pilot one was conducted to spot any questions which would be
difficult to understand. In addition, the participants could ask the first author
about any issue they had concerning the survey questions. Finally, the statistical
tests were run only for the data that satisfied the prerequisites, with the aim to
mitigate the possibility of incorrect results.

5.4 External Validity

This case study was conducted in collaboration with one company and 30 sub-
jects only. Consequently, it is hard to generalize the outcomes. Nevertheless, we
believe that any researcher replicating the case study in another organization
with teams which follow the same agile practices as those used in Company A
would get similar results.

5.5 Reliability

To enable other researchers to conduct a similar study, the steps followed have
been described and the reasons for the decisions made have been explained.
Furthermore, all the data exist in digital format which can be provided to anyone
who wants to review them. The presentation of the findings could probably be
a threat to validity because of the first author’s experience at the company. In
order to mitigate this, the findings were discussed with a Company A employee
who did not participate in the case study.

Agility Measurements Mismatch 25

6 Conclusions and Future Work

6.1 Conclusions

This paper contributes to the area of measuring the agility of software devel-
opments teams. This contribution can be useful for the research community,
but mostly for practitioners. We provided some evidence that tools claiming to
measure agility do not yield similar results. The expertise of the tool creators is
unquestionable, but nevertheless, their perception of agility and their personal
experience have led them to create a tool in the way they consider appropriate.
A measurement tool which satisfies the needs of one team may not be suitable
for other teams. This derives not only from the team’s needs but also from the
way it transitioned to agile. Companies need a tool to measure agility in order to
identify their mistakes and correct them with the total purpose to produce good
quality software for their customers. There is still work to be done in order to
find a universal tool for measuring agility, and such a tool should be scientifically
validated before it is used.

6.2 Future Work

It would be interesting to see the results of a study that would be conducted at
more companies, in order to compare them to the results of the present study.
In addition, another way of forming the data samples could indicate different
results, which is worth looking into. Moreover, future work in the field could
check for establishing convergent validity among other agility measurement tools,
combine them, validate them, and finally, only use them where their output is
relevant in context.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Sureshchandra, K., Shrinivasavadhani, J.: Moving from waterfall to agile. In: Agile
Conference (AGILE 2008), pp. 97–101, August 2008

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. The
XP Series. Addison-Wesley, Reading (2004)

3. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development.
Pearson Education, London (2001)

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

26 K. Chronis and L. Gren

4. Cockburn, A.: Crystal Clear a Human-powered Methodology for Small Teams.
Addison-Wesley Professional, Boston (2004)

5. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Series in Agile
Software Development. Prentice Hall, Englewood Cliffs (2001)

6. Williams, L., Krebs, W., Layman, L., Antón, A., Abrahamsson, P.: Toward a frame-
work for evaluating extreme programming. In: Empirical Assessment in Software
Engineering (EASE), pp. 11–20 (2004)

7. Reifer, D.J.: How to get the most out of extreme programming/agile methods. In:
Wells, D., Williams, L. (eds.) XP 2002. LNCS, vol. 2418, pp. 185–196. Springer,
Heidelberg (2002)

8. Aveling, B.: XP lite considered harmful? In: Eckstein, J., Baumeister, H. (eds.)
XP 2004. LNCS, vol. 3092, pp. 94–103. Springer, Heidelberg (2004)

9. Escobar-Sarmiento, V., Linares-Vasquez, M.: A model for measuring agility in small
and medium software development enterprises. In: 2012 XXXVIII Conferencia Lati-
noamericana En Informatica (CLEI), pp. 1–10, October 2012

10. Taromirad, M., Ramsin, R.: Cefam: Comprehensive evaluation framework for agile
methodologies. In: 32nd Annual IEEE Software Engineering Workshopp, SEW
2008, pp. 195–204, October 2008

11. Sidky, A.: A structured approach to adopting agile practices: The agile adoption
framework. Ph.D. thesis, Virginia Polytechnic Institute and State University (2007)

12. Williams, L., Rubin, K., Cohn, M.: Driving process improvement via comparative
agility assessment. In: Agile Conference (AGILE 2010), pp. 3–10 (2010)

13. Ambysoft.: How agile are you? (2013)
14. Poonacha, K., Bhattacharya, S.: Towards a framework for assessing agility. In:

2012 45th Hawaii International Conference System Science (HICSS), pp. 5329–
5338, January 2012

15. Ambler, S.W.: Has agile peaked? (2011)
16. So, C., Scholl, W.: Perceptive agile measurement: new instruments for quantitative

studies in the pursuit of the social-psychological effect of agile practices. In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) Agile Processes in Software Engineer-
ing and Extreme Programming. LNBIP, vol. 31, pp. 83–93. Springer, Heidelberg
(2009)

17. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. The
Agile Software Development Series. Addison-Wesley Professional, Boston (2007)

18. Soundararajan, S.: Assessing Agile Methods, Investigating Adequacy, Capability
and Effectiveness. Ph.D. thesis, Virginia Polytechnic Institute and State University
(2013)

19. Runeson, P., Hst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2008)

20. Koch, A.: Agile Software Development: Evaluating The Methods For Your Orga-
nization. Artech House, Incorporated, Boston (2005)

21. Soundararajan, S., Arthur, J., Balci, O.: A methodology for assessing agile software
development methods. In: Agile Conference (AGILE 2012), pp. 51–54 (2012)

22. Jalali, S., Wohlin, C., Angelis, L.: Investigating the applicability of agility assess-
ment surveys: A case study. J. Syst. Softw. 98, 172–190 (2014)

23. Delestras, S., Roustit, M., Bedouch, P., Minoves, M., Dobremez, V., Mazet, R.,
Lehmann, A., Baudrant, M., Allenet, B.: Comparison between two generic ques-
tionnaires to assess satisfaction with medication in chronic diseases. PLoS ONE
8(2), 56–67 (2013)

24. Campbell, D.T., Fiske, D.W.: Convergent and discriminant validation by the
multitrait-multimethod matrix. Psychol. Bull. 56(2), 81–105 (1959)

Agility Measurements Mismatch 27

25. Razali, N., Wah, Y.B.: Power comparisons of shapiro-wilk, kolmogorov-smirnov,
lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)

26. Campbell, D.T., Stanley, J.: Experimental and Quasi-Experimental Designs for
Research. Cengage Learning, New York (1963)

27. Conboy, K., Wang, X.: Understanding agility in software development from a com-
plex adaptive systems perspective. In: ECIS (2009)

28. Kidd, P.T.: Agile Manufacturing: Forging New Frontiers. Addison-Wesley, Reading
(1994)

29. Kara, S., Kayis, B.: Manufacturing flexibility and variability: an overview. J.
Manuf. Technol. Manage. 15(6), 466–478 (2004)

30. Ramesh, G., Devadasan, S.: Literature review on the agile manufacturing criteria.
J. Manuf. Technol. Manage. 18(2), 182–201 (2007)

31. Nagel, R.N., Dove, R.: 21st Century Manufacturing Enterprise Strategy: An
Industry-Led View. Diane Pub Co, Collingdale (1991)

32. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for agile
software development (2001)

33. Conboy, K., Fitzgerald, B.: Toward a conceptual framework of agile methods: A
study of agility in different disciplines. In: Proceedings of the 2004 ACM Workshop
on Interdisciplinary Software Engineering Research, WISER 2004, pp. 37–44 (2004)

34. Tsourveloudis, N., Valavanis, K.: On the measurement of enterprise agility. J. Intell.
Robot. Syst. 33(3), 329–342 (2002)

35. Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N., Begel, A.:
Have agile techniques been the silver bullet for software development at microsoft?
In: 2013 ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement, pp. 75–84, October 2013

36. Wohlin, C., Ohlsson, M.C., Wessln, A., Hst, M., Runeson, P., Regnell, B.: Exper-
imentation in Software Engineering. Springer, Berlin Heidelberg (2012)

Scaling up the Planning Game: Collaboration Challenges
in Large-Scale Agile Product Development

Felix Evbota1,2, Eric Knauss1,2(✉), and Anna Sandberg3

1 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

2 Department of Computer Science and Engineering, University of Gothenburg,
Gothenburg, Sweden

fevbota@gmail.com, eric.knauss@cse.gu.se
3 Ericsson AB, Gothenburg, Sweden

Abstract. One of the benefits of agile is close collaboration of customer and
developer. This ensures good commitment and excellent knowledge flows of
information about priorities and efforts. However, it is unclear if this benefit can
be leveraged at scale. Clearly, it is infeasible to use practices such as planning
game with several agile teams in the room. In this paper, we investigate how a
large-scale agile organization manages, what challenges exist, and which oppor‐
tunities can be leveraged. We found challenges in three areas: (i) the ability to
estimate, prioritize, and plan; (ii) the context of planning with respect to working
environment, team build-up, and team spirit; and (iii) the ceremonial agreement
which promises to allow leveraging abilities in a given context.

Keywords: Large-scale agile · Planning · Collaboration · Communication

1 Introduction

One of the advantages associated with agile software development is the focus on
customer collaboration and the ability to deliver customer value quickly and incremen‐
tally [8]. Popular agile methods such as Scrum [18] and eXtreme Programming (XP)
[17] have powerful planning mechanisms in place, around practices such as backlog
grooming, distinction between product and sprint backlog, and defining Sprint goals in
Scrum, or user stories, onsite customer, acceptance testing, and planning game in XP.
These practices facilitate excellent information flows: Agile development teams learn
about priorities of customers, while customer representatives (product owner or onsite
customer) gain knowledge about feasibility and costs of implementing their needs.

Consequently, agile methods have been applied to more and more complex devel‐
opment endeavors, including large and embedded software systems [1, 7]. In such
contexts, it is necessary to scale up agile principles and even though this is not an easy
task to do, successes have been reported, especially on reducing time-to-market of
features or average times for solving customer requests [1].

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 28–38, 2016.
DOI: 10.1007/978-3-319-33515-5_3

Despite these successes, challenges remain, e.g. in coordination and communication
of large teams [10]. In this paper we present a qualitative case study based on ten semi-
structured interviews that explores how program and project leaders, product owners,
line managers, and developers of cross-functional teams coordinate around planning
work in a large-scale agile setting.

Contribution. Our contribution in this paper is two-fold. First, we provide insights
about the challenges of aligning the views of product owners and product developers
during planning in large-scale agile. Secondly, we provide a model on the relationship
of different challenge types that shows how technical abilities (e.g. to estimate, to priori‐
tize, or to plan) depend on contextual aspects (such as team build-up, work environment,
and team spirit). Our study indicates that ceremony agreement plays a crucial role for
enabling technical abilities of estimation, prioritization, and planning in a given context
defined by the team structure and its environment.

2 Background and Related Work

Agile software development is incremental, cooperative, and adaptive [6] and facilitates
responding to change quickly and frequently [8]. According to Leffingwell [1] it leads
to the following business benefits: increase in productivity, increase in team morale and
job satisfaction, faster time to market, and increase in quality. In this paper, we refer to
the agile methods Scrum and XP [1, 8] and we are inspired by the XP practice Planning
Game, wich suggest that developers, managers, and customers meet at the start of each
iteration to estimate and prioritize requirements (user stories) for the next release [6, 8].

Agile methods rely heavily on face-to-face communication [3, 5, 9]. However, if the
number of the involved developers (and teams) grows, it becomes extremely difficult to
practice face-to-face communication between different teams [3, 5, 9]. Such growth is
usually triggered by a large number of complex requirements and there is a considerable
challenge to manage them [3, 4]. While Larman and Vodde suggest the use of area
product owners to scale the product owners role [2], Lassenius and Paavi report that
collaboration and communication between teams and product owners in such a setup
were challenging and did not work well [4]. These challenges are related to the fact that
area product owners work with different teams and that teams could receive different
user stories from several area product owners, which thereby become difficult to priori‐
tize [4]. Also, the introduction of Scrum of Scrums meeting (SoS– a meeting where the
Scrum masters of all Scrum teams meet on a daily or weekly basis to discuss the state
of every team) was found to be ineffective because of the large number of Scrum masters
that were involved. As a consequence of this large audience, it was difficult to get
everybody interested in the coordination meetings [4].

Products with long lifecycle (e.g. complex systems like ships or planes) tend to have
very comprehensive backlogs [20]. According to Larman and Vodde, it is the respon‐
sibility of the product owner to prioritize the product backlog to improve return on
investment or delivery of value [20]. For this, they suggest using planning poker to assign
effort and relative value points (RVP) as a lightweight proxy for ‘value’ (e.g. on a scale
of 1–7). The product owner then prioritizes items based on low effort estimate and high

Scaling up the Planning Game: Collaboration Challenges 29

RVP as well as other factors, such as stakeholders’ preferences, strategic alignment,
impact on profit, and risk [20]. Daneva et al. describe requirements prioritization in
large-scale agile software development as a decision-making process [19]. In this
process, priority drives the packaging of requirements into releases: requirements with
highest priorities are packaged for development first [13] and usually the main criterion
for such prioritization is the business value of clients and vendors [19]. Agile develop‐
ment however implies incremental development prioritization, which is hard to main‐
tain: Priorities of requirements change, so there is always a need to update the priority
list [13]. Thus, for being able to carry out a successful decision in prioritization, it is of
paramount importance to continuously consider the roles involved, the contextual setting
of the prioritization process, the prioritization criteria being used, and the kind of trade-
offs being made [19]. Yet, according to Daneva et at. [19], there is a lack of (empirical)
knowledge about how requirements prioritization is done in large-scale agile software
development [19], a gap that we aim at exploring in this paper.

3 Research Method

The setting for this case study is Ericsson AB in Gothenburg, Sweden. Ericsson was
founded in the year 1876 and is a world leading Swedish telecommunication company.
Ericsson has its headquarter in Stockholm in Sweden and has more than 110, 000
employees from different parts of the world such as Sweden, China, United States of
America, South Africa, United Kingdom, Germany, Nigeria, and other countries.
Ericsson is involved in the development of several products, such as, cable TV, network
systems, Internet Protocol, networking equipment, video systems, mobile, and fixed
broadband. Ericsson also renders extensive services to its customers. Ericsson uses agile
methods at a large-scale in development of their products and their methods include for
example Scrum, Extreme programming, and Kanban.

This paper presents a case study conducted at Ericsson in which we explore collab‐
oration challenges during planning of large-scale agile development efforts. We choose
a qualitative case study approach that allows studying large-scale agile planning in its
context [12, 15, 16]. Accordingly, we selected ten participants based on their ability in
order to cover the following roles: operative product owner (OPO), line manager,
program leader, project leader, release leader, team leader and developer. Through this
setup, we were able to investigate collaboration challenges between teams, product
owners, and program leaders in large-scale agile software development in depth. Some
of our participants have about 30 years of working experience at Ericsson. The inter‐
views were based on an interview guide with open-ended and probing questions [15].
The interview questions focus on the collaboration challenges that teams, operative
product owners, and program leaders face while planning, estimating, prioritizing, and
delivery of features/tasks both on the teams and program levels at Ericsson.

We carried out a verbatim transcription of the interviews data that we collected and
analyzed it qualitatively to form themes and identify patterns using the six steps
suggested by Braun and Clarke’s thematic analysis approach [11]:

30 F. Evbota et al.

Step 1: Familiarizing with your data. We transcribed the interviews and read it
several times to familiarize ourselves with the data.

Step 2: Generating initial codes. We highlighted quotes in the transcriptions that
related to our research and assigned initial codes.

Step 3: Searching for themes. We grouped all codes from phase two into a number
of themes.

Step 4: Reviewing the themes. We reviewed the candidate themes from phase three
several times and created a thematic map containing seven categories of challenges as
well as some sub challenges.

Step 5: Defining and naming themes. We further reviewed the themes we generated
from phase four by checking them with interview data and the codes generated from
previous phases. Codes that we found assigned to wrong themes were moved to their
rightful themes. In addition to that, we also reviewed the names we gave to the themes
based on the sub challenges we have in each of the themes to ascertain suitable and
distinctive naming.

Step 6: Producing the report. For this paper we further analyzed the themes to iden‐
tify key challenges of large-scale agile planning in order to present and discuss our
findings.

In our analysis we coded the interview data by taking our research question into
consideration [11]. The analysis of the interview data was not linear, meaning that we
did not always follow the suggested steps in their exact order. The analysis phase was
instead recursive; meaning that while we were in Step 3 for example, we often had to
revisit Step 2 and even Step 1.

4 Findings: Technical Abilities, Context, and Ceremonies

Our research method resulted in a number of observations that can be arranged into
seven major themes, as shown in Fig. 1: The technical ability to estimate, prioritize, and
plan, the context of planning in terms of team build-up, work environment, and team
spirit, and finally the ceremony agreement that plays a key role in aligning technical
abilities and context. In this section, we will describe our findings with respect to each
of the themes before we will discuss relationships between the themes as well as their
implications to research and practice in Sect. 5.

4.1 Technical Ability Challenges

For adequate planning, agile teams (regardless of their scale) need to bring together the
ability to estimate required work, prioritize it with respect to business value, and to
combine this knowledge into a good plan for the coming iteration(s). At a large-scale,
where a hierarchy of product owners manages backlog items for a large number of teams,
we identify (communication) challenges in all three parts.

Scaling up the Planning Game: Collaboration Challenges 31

Estimation Ability. According to our interviewees, it is extremely challenging to make
a long-term estimation (i.e. making estimates for several months) because of the amount
of content (i.e. product backlog items) is too big. This experience has lead teams to
become skeptical about estimation in general. In addition, the fast pace and large-scale
leads to a significant amount of troubleshooting, which is hard to anticipate and impacts
available resources during a sprint:

“[Previously we] estimated on available days in the sprint, that is not a good way because you
do not include the unexpected things” [OPO]

Another challenge with estimation in large-scale agile is the need to monitor discus‐
sions during story estimation. Our interviewees reported that without systematic moni‐
toring of such discussions, they could go on in circles for hours without making signif‐
icant progress.

In the context of cross-functional teams, an unstructured estimation session can also
lead to a pathological situation, where team members should estimate tasks that do not
fit their role, as for example shown by the following quote from one of our interviewees:

“[Sometimes we have a] tester estimating design tasks and a designer estimating test tasks. It
is important to know whose estimation should be looked at”. [Line manager]

Most of our interviewees stated that they are not experts in estimation and the chal‐
lenges of large-scale agile estimation create a steep learning curve, especially for new
team members. Estimation is based learning from past iterations and experience in the
team.

Prioritization Ability. Large-scale agile product development implies a more or less
complex structure of product owners and backlogs on different levels (such as total
product, product area, operational level). It is hard to establish a shared vision with so
many stakeholders, leading to disagreements and continued discussions about priorities.

Fig. 1. Relevant themes of large-scale agile planning concern technical abilities as well as context
of planning. Ceremony agreement plays a key role to connect both spheres.

32 F. Evbota et al.

“The challenge is if you have a lot of small backlog you are not in control at all because if you
have one common backlog and you decide on a program level, that is how we work […] if not
everything is visible on the common backlog program and only visible in the XFTs backlog then
you maybe having a mismatch.” [OPO]

Such potential inconsistencies between different backlogs as well as lack of their
transparency are a big challenge. According to our interviewees, prioritization deci‐
sions need to be done on the program level. In contrast, information that is only available
in the local backlog of a cross-functional team cannot be accessed and taken into consid‐
eration. Thus, if significant information is only available on the team’s level and not
visible on the program level, prioritization decisions cannot be optimal and mismatches
will be the consequence. It is impossible to share all information (e.g. about decisions,
new technology, dependencies) with other teams, product owners, and the whole organ‐
ization. It is also very hard to understand the significance of information on the team
level for prioritization. This potential mismatch makes it hard for the program board to
establish a prioritization that teams will follow.

Planning Ability. Under the theme planning ability we discuss findings that either
affect both estimation and prioritization, or that arise from translating estimations and
prioritizations into a concrete plan. The planning ability in large-scale agile product
development is according to our interviewees enabling to balance market priorities with
the inflow of change requests and bug reports. Our interviewees mentioned two impor‐
tant goals: To be (i) less release-focused in their planning, thus supporting continuous
deployment to customers, and (ii) to achieve a higher flexibility in their planning. For
both goals, the existing challenges are impediments. Since the planning is so difficult in
large-scale agile, there is resistance towards changing a plan or establishing it as a truly
continuous activity.

Unclear requirements, one of the major challenges in large-scale agile planning,
affect both estimation and prioritization. Our interviewees reported to be challenged to
gain knowledge about the underlying user needs of a feature. This includes a potential
lack of experience and knowledge about new features, starting with the area product
owner.

Another challenge is the unclear role of operational product owners and our inter‐
viewees mention slightly different challenges in the two different products. In Product
A, our interviewees expressed confusion about to what level teams should be involved
in planning. In contrast, the responsibilities of operational product owners in Product B
where clearer. They interacted quite naturally with informal leaders in the teams during
planning, thus allowing involvement of the team, without distracting the team members
too much from their development tasks. Accordingly, it is beneficial to share the plan
with the whole team, without giving the team the formal responsibility to report on it.

Interviewees in both products agreed that balancing the involvement of teams in
large-scale agile planning is challenging and that it is crucial to find a good process for
their involvement. It is difficult for teams to engage in long-term planning beyond the
next 18 month and while this might be necessary for large-scale agile development, our
interviewees indicated that the teams do not benefit from participating in such long-term
planning and do not understand why their participation should be necessary. While such

Scaling up the Planning Game: Collaboration Challenges 33

a long-term plan is interesting to program leaders, program managers, and to the product
line, teams should focus on producing results and cut the lead-time.

Finally, our interviews reveal technical dependencies as well as dependencies
between hardware and software as a planning challenge. If known, they represent
constraints on planning. However, often such technical dependencies are hidden, leading
to duplicate work or waiting time. While such waste cannot fully be avoided during
large-scale agile planning, approaches to mitigate its impact are needed.

4.2 Contextual Challenges

In addition to the general ability to estimate, prioritize, and plan, our data also revealed
a number of challenges with respect of the context of planning, including work envi‐
ronment, team build-up, and team spirit.

Work Environment. The studied company arranges the work environment generally
as open space, where different teams sit to carry out their daily work. While this facil‐
itates information flow between teams, one team’s daily meetings can disturb other
teams, as for example shown in the following quote from one our interviews.

“…we have scrum meetings in open office space […]. You kind of get disturbed when other teams
are having their scrum meeting in the open setting. It is better [if] every team has their different
rooms.“[Dev.]

Another issue mentioned by our interviewees is that sometimes other team members
disturb them by walking into their teams to ask for help. While this is important inter-
team communication, by-passing the operative product owners can be problematic when
it happens too often or on non-trivial issues.

Team Build-Up. Capabilities and special knowledge of teams are crucial resource
constraints for planning. According to our interviewees operative product owners and
program leaders have specific views on the capabilities of the team. This can lead
to additional pressure on teams, when they are expected to develop more than what
they are capable of. Our interviewees pointed out that these different views on teams
capability can lead to frustration, when teams feel they cannot live up to the demand
of the operative product owner and the operative product owner feels maybe she has
promised something to the area product owners and the teams cannot deliver what
she has promised.

A common practice is to move team members to other teams that require additional
resources (such as special knowledge). Our interviewees indicate difficulties in finding
candidates to be moved between teams. Also, they mention doubts about the effectivity
of this practice, since the team member to be moved does not possess deep knowledge
about the target team and their context. Our interviewees claimed that instead compe‐
tence broadening of established teams should be emphasized to address missing team
capabilities. Such a solution of course implies a longer lead-time and our interviewees
pointed out that it is challenging for them to learn new roles when they already are
experts in other required roles.

34 F. Evbota et al.

Team Spirit. Our interviewees described, how team spirit starts to grow when team
members have worked together and functioned successfully for some time. As a result,
removing or adding new members to the team might decrease the spirit that has already
been established within the team. As discussed above, some times people have to be
moved between teams to provide teams with required resources. According to our data,
removing team members from an established team destabilizes its spirit, which has been
built over the period of close teamwork. In addition to that, the team spirit in the receiving
team can also be impacted. Teams and team members adopt agile methods in different
ways and some engineers are less open for the agile mindset because they have used the
traditional method for a very long time and are accustomed to it, which can further impact
the spirit of agile teams.

4.3 Ceremonial Agreement

In addition to technical abilities and context of planning, we discovered themes in our
interview data that affect the room between those two domains: Ceremonial agreement
allows a group of agile teams and product owners to align planning abilities with the
teams’ context. Efficient and effective information flows are necessary for keeping every
employee aware about important decisions. According to our interviewees, it is however
challenging to share knowledge about decisions within the large development context
due to a lack of suitable information channels. Our interviewees said that they do not
get updated on what (other) teams are doing due to insufficient time. If a product owner
is responsible for several teams and these teams have their stand-up meetings at the same
time, he needs to decide. But also the opposite can happen, when a team or an operative
product owner have to interact with two area product owners who are typically very
busy. In this situation, it is impossible to have frequent face-to-face meetings with them,
resulting in asynchronous communication via email and social media. Such communi‐
cation is not as effective as face-to-face communication and can result in long response
times.

Coordination meetings (such as scrum-of-scrum (SoS)) are a potential solution, but
were also criticized as boring or too short by our interviewees. They pointed out that in
most of the SoS meetings it is difficult to have a thorough discussion and arrive at a good
conclusion. Most of the times they have to close the meetings when they get into inter‐
esting technical discussion. One OPO mentioned that such discussions in the meetings
might not be interesting to all participants.

While it is important not to by-pass the operative product owner when communi‐
cating with the team, this also introduces some indirection, e.g. between release leaders
and the team. This requires building trusted relationships between release engineer,
operative product owner, and team. A lot of such communication is the consequence of
inadequate anatomy of features, i.e. “the relation between different features and parts
of features”, as one of our interviewees put it. With other words, the way features are
split up and assigned to sprint backlogs leads to dependencies between teams and creates
the challenge of inter-team communication and coordination within the larger product
portfolio. We found senior developers and product owners to rely on their personal
network to coordinate across program boundaries:

Scaling up the Planning Game: Collaboration Challenges 35

“…I have a colleague that works as […] operative product owner in other program and we try
to collaborate between the programs and to align features for the customers and user experi‐
ence”. [OPO]

Thus, we conclude that typical agile ceremonies are well adopted locally within
teams, but challenges remain largely on the levels of inter-team and inter-product
communication across a portfolio of products.

“The biggest challenge I pick is the coordination of the feature portfolio, […] on top of getting
out features in our program fast and efficient, we need to collaborate on a portfolio basis to
align the features over two programs”. [OPO]

Again, our findings resonate with Sauer’s recommendation to facilitate team spirit
with opportunities for informal exchange, such as coffee breaks [14]. Ceremonial agree‐
ments should support large-scale agile planning in similar ways.

5 Discussion and Conclusion

Implications for Practice. From a practical point of view, we see two main advantages:
First of all, it is necessary to understand which different themes actually affect large
scale agile planning. Too often too much effort is spend on shallow opinions, which then
become the base for future actions. By having the seven different themes thoroughly
understood, actions can be taken that lead towards true improvements. One example is
the thorough understanding of the theme ‘Estimation Ability’ where a team needs a
number of practices in place to be able to manage its velocity. Secondly, and likely even
more important, it is necessary to understand how the different themes impact each other.
For instance, once a team has understood its velocity and can estimate properly, they
can be part of larger planning game among many teams, where in the end solid priori‐
tizations can be made in favor of having one complete release ready in time that matches
a market request. Understanding these correlations between the themes helps industry
to organize improvement initiatives in a way where it becomes obvious when there will
be a true contribution to the product development.

Implications for Research. Our main contribution in this paper is the model derived
from our exploratory case study (summarized in Fig. 1). This model includes the insight
that a large-scale agile organization’s ability of planning is not only depending on its
teams’ abilities or skill, but also on the context in which those teams operate. Ceremonies
and practices on inter-team and inter-product level are currently missing and invite
further research. Our model gives an overview of key aspects of collaborative planning
in large-scale agile development. And we hope that others find this overview useful to
focus their research. In particular, we would encourage constructive research to provide
improvement for one or several aspects. Our vision is a collection of best, or at least
good, practices for each area in out model.

Threats to Validity. We carefully reviewed the codes and themes generated by our
research method, to ensure that our results are correctly derived from our data. It was
beneficial, that we could bring both industrial and academic expertise together in these

36 F. Evbota et al.

activities. Further, our qualitative investigation was carefully designed to align research
method with research questions. Through reviews and pilot-interviews we made sure
that participants of the study were able to understand and answer our questions, thus
reducing the risk of misunderstanding and misinterpretation. Thus, we believe that we
addressed internal and construct validity as well as reliability of the study in an adequate
way. With our qualitative exploratory case study we did not aim for generalizability and
external validity. Qualitative interviews and analysis are highly dependent on the
researcher. To mitigate this threat to validity, we give a thorough description of context
and procedures of our research in this paper. We are confident that repeating our study
in a different, but comparable context will yield similar planning challenges of large-
scale agile software development.

Outlook. When understanding themes and their correlation thoroughly, it is vital to get
practices in place that embrace speed and responsiveness. These are the two key elements
in agile development. Going forward, we see several different practices that could be
further investigated: What methods can be used to improve team velocity? How can we
organize work environments that facilitate a higher degree of responsiveness? Which
ceremonies can be used to speed up the complete planning process? How can the plan‐
ning process become more transparent? Are there any risks for planning too much? The
potential of questions to continue to ask around large-scale agile planning is endless
once the basic themes are understood and practiced to some level.

Acknowledgements. We thank our interviewees at Ericsson AB for their time and inspiring
discussions. This work is partly funded by Software Center and Vinnova FFI project NGEA.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley Professional, Upper Saddle River (2011)

2. Larman, C., Vodde, B.: Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum. Addison-Wesley Professional, Upper Saddle River (2009)

3. Bass, J.M.: Scrum master activities: process tailoring in large enterprise projects. In:
Proceedings of 9th IEEE International Conference on Global Software Engineering (2014)

Scaling up the Planning Game: Collaboration Challenges 37

http://creativecommons.org/licenses/by-nc/4.0/

4. Paasivaara, M., Lassenius, C.: Scaling scrum in a large distributed project. In: Proceedings
of International Symposium on Empirical Software Engineering and Measurement (ESEM)
(2011)

5. Paasivaara, M., Heikkila, V.T., Lassenius, C.: Experiences in scaling the product owner role
in large-scale globally distributed scrum. In: Proceedings of 7th IEEE International
Conference on Global Software Engineering (ICGSE) (2012)

6. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Methods:
Review and Analysis (VTT publications), pp. 17–36 (2002)

7. Reifer, D.J., Maurer, F., Erdogmus, H.: Scaling agile methods. IEEE Softw. 20(4), 12–14
(2001)

8. Cohen, D., Lindvall, M., Costa, P.: Agile software development. DACS SOAR Report, pp.
1–15 (2003)

9. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Distributed agile development: using scrum
in a large project. In: Proceedings of IEEE International Conference on Global Software
Engineering (2008)

10. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.
ACM SIGSOFT Software Engineering Notes 38, 38–39 (2013)

11. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Res. Psychol. 3,
86–93 (2006)

12. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Method Approaches.
Sage Publications, Thousand Oaks (2009)

13. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and incremental
development between state of the art and an industrial case. J. Syst. Softw. 82, 1479–1490
(2009)

14. Sauer, J.: Agile practices in offshore outsourcing–an analysis of published experiences. In:
Proceedings of the 29th Information Systems Research Seminar in Scandinavia, IRIS, pp.
12–15 (2006)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14, 131–164 (2009)

16. Hennink, M., Hutter, I., Bailey, A.: Qualitative Research Methods. Sage, Thousand Oaks
(2010)

17. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(1999)

18. Schwaber, K.: Agile Project Management With Scrum. Microsoft Press, Redmond (2004)
19. Daneva, M., Van Der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R., et al.: Agile

requirements prioritization in large-scale outsourced system projects: An empirical study. J.
Syst. Softw. 86, 1333–1353 (2013)

20. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Pearson Education, Boston
(2010)

38 F. Evbota et al.

The Lack of Sharing of Customer Data
in Large Software Organizations:

Challenges and Implications

Aleksander Fabijan1(&), Helena Holmström Olsson1, and Jan Bosch2

1 Faculty of Technology and Society, Malmö University, Nordenskiöldsgatan 1,
211 19 Malmö, Sweden

{Aleksander.Fabijan,Helena.Holmstrom.Olsson}@mah.se
2 Department of Computer Science and Engineering, Chalmers University

of Technology, Hörselgången 11, 412 96 Göteborg, Sweden
Jan.Bosch@chalmers.se

Abstract. With agile teams becoming increasingly multi-disciplinary and
including all functions, the role of customer feedback is gaining momentum.
Today, companies collect feedback directly from customers, as well as indirectly
from their products. As a result, companies face a situation in which the amount
of data from which they can learn about their customers is larger than ever
before. In previous studies, the collection of data is often identified as chal-
lenging. However, and as illustrated in our research, the challenge is not the
collection of data but rather how to share this data among people in order to
make effective use of it. In this paper, and based on case study research in three
large software-intensive companies, we (1) provide empirical evidence that ‘lack
of sharing’ is the primary reason for insufficient use of customer and product
data, and (2) develop a model in which we identify what data is collected, by
whom data is collected and in what development phases it is used. In particular,
the model depicts critical hand-overs where certain types of data get lost, as well
as the implications associated with this. We conclude that companies benefit
from a very limited part of the data they collect, and that lack of sharing of data
drives inaccurate assumptions of what constitutes customer value.

Keywords: Customer feedback � Product data � Qualitative and quantitative
data � Data sharing practices � Data-driven development

1 Introduction

Traditional ‘waterfall-like’ methods of software development are progressively being
replaced by development approaches such as e.g. agile practices that support rapid and
continuous delivery of customer value [20]. Although the collection of customer
feedback has always been important for R&D teams in order to better understand what
customers want, it is today, when R&D teams are becoming increasingly
multi-disciplinary to include all functions, that the full potential of customer data can be
utilized [21]. In recent years, increasing attention has been put on the many different
techniques that companies use to collect customer feedback. With connected products,

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 39–52, 2016.
DOI: 10.1007/978-3-319-33515-5_4

and trends such as ‘Big Data’ [1] and ‘Internet of Things’ [19], the qualitative tech-
niques such as e.g. customer surveys, interviews and observations, are being com-
plemented with quantitative logging and automated data collection techniques. For
most companies, the increasing opportunities to collect data has resulted in rapidly
growing amounts of data revealing contextual information about customer experiences
and tasks, and technical information revealing system performance and operation.

However, and as recognized in recent research [8], the challenge is no longer about
how to collect data. Rather, the challenge is about how to make efficient use of the large
volumes of data that are continuously collected and that have the potential to reveal
customer behaviors as well as product performance [1, 6, 7, 9]. Although having access
to large amounts of data, most companies experience insufficient use of the data they
collect, and as a result weak impact on decision-making and processes.

In this paper, we explore data collection practices in three large software-intensive
companies, and we identify that ‘lack of sharing’ of data is the primary reason for
insufficient use and impact of collected data. While the case companies collect large
amounts of data from customers and from products in the field, they suffer from lack of
practices that help them share data between people and development phases. As a
result, decision-making and prioritization processes do not improve based on an
accumulated data set that evolves throughout the development cycle, and organizations
risk repetition of work due to lack of traceability.

The contribution of the paper is twofold. First, we identify that ‘lack of sharing’ is
the primary reason for insufficient use of data and we provide empirical evidence on the
challenges and implications involved in sharing of data in large software organizations.
Second, and based on our empirical findings, we develop a model in which we identify
what data is collected, by whom data is collected and in what development phases it is
used. Our model depicts critical hand-overs where certain types of data get lost, and
how this causes a situation where data does not accumulate and evolve throughout the
development process. By capturing ‘current state-of-practice’, and by identifying
critical hand-overs where data gets lost, the model supports companies in identifying
what challenges they experience, and what implications this will result in. The
awareness that the model helps create can work as valuable input when deciding what
actions to take to improve sharing of data in large software-intensive organizations.

2 Background

2.1 Collection of Customer Feedback

In most companies, customer feedback is collected on a frequent basis in order to learn
about how customers use products, what features they appreciate and what function-
ality they would like to see in new products [6, 5]. Typically, a wide range of different
techniques are used to collect this feedback, spanning from qualitative techniques
capturing customer experiences and behaviors [6, 7, 10], to quantitative techniques
capturing product performance and operation [10–12]. While the qualitative techniques
are used primarily in the early stages of development in order to understand the context
in which the customer operates, the quantitative techniques are used post-deployment
in order to understand the actual usage of products.

40 A. Fabijan et al.

Starting with the pre-development stage, companies typically collect qualitative
customer feedback using customer journeys, interviews, questionnaires and surveys [6,
7], forming the basis for the requirements generation [13]. At this stage, contextual
information on the purpose of the product or a feature with functional characteristics
and means of use are typically collected by customer representatives. Typically, this
information is used to both define functional requirements as well as to form customer
groups with similar needs and priorities, also known as personas [17].

During development, customer feedback is typically collected in prototyping ses-
sions in which customers test the prototype, discuss it with the developers and user
experience (UX) specialists, and suggest modifications of e.g. the user interface [6, 7,
14], As a result, developers get feedback on product behaviors and initial performance
data. Customer feedback is typically mixed and consists of both qualitative information
on e.g. design decisions and quantitative operational data [6].

In the post-deployment stage, and when the product has been released to its cus-
tomers, a number of techniques are used to collect customer and product data. First, and
since the products are increasingly being connected to the Internet and equipped with
data collection mechanisms, operational data, and data revealing feature usage is col-
lected [6, 14, 15]. Typically, this data is of quantitative type and collected by the
engineers that operate the product and service centers that support it. Second, if cus-
tomers generate incident requests and attach the product log revealing the state of the
product, error message and other details. These are important sources of information for
the support engineers when troubleshooting and improving the product [10]. Also, and
as recognized in previous research [15, 16], A/B testing is a commonly deployed
technique to collect quantitative feedback in connected products on which version of
the feature offers a better conversion or return of investment. And although increasing
amounts of data are being collected, very little is actually being used. The challenges in
aggregating and analyzing this data in an efficient way prevent higher levels of the
organization from benefiting from it [12].

2.2 Impact and Use of Customer Data

Companies operating within transportation, telecommunications, retailing, hospitality,
travel, or health care industries already today gather and store large amounts of
valuable customer data [19]. These data, in combination with a holistic understanding
of the resources needed in customer value-creating processes and practices, can provide
the companies that fully utilize it a competitive advantage on the market [18].

However, challenges with meaningfully combining and analyzing these customer
data in an efficient way are preventing companies from utilizing the full potential from
it [1, 8]. Instead of a complete organization benefiting from an accumulated knowledge,
it is mostly only the engineers and technicians that have an advantage in using this data
for operational purposes [12]. Higher levels in the organization such as product
management or customer relationship departments need to find ways of better utilizing
customer data in order to unlock its potential and use it for prioritization and customer
value-actualization processes [18].

The Lack of Sharing of Customer Data 41

3 Research Method

This research builds on an ongoing work with three case companies that use agile
methods and are involved in large-scale development of software products. The study
was conducted between August 2015 and December 2015. We selected the case study
methodology as an empirical method because it aims at investigating contemporary
phenomena in their context, and it is well suited for this kind of software engineering
research [22]. This is due to the fact that objects of this study are hard to study in
isolation and case studies are by definition conducted in real world settings.

Based on experience from previous projects on how to advance beyond agile
practices [3, 4], we held three individual workshops with all the companies involved in
this research, following up with twenty-two individual interviews. We list the partic-
ipants and their roles in Table 1.

Table 1. Description of the companies and the representatives that we met with.

Company and their domain Representatives

Company A is a provider of telecommunication
systems and equipment, communications networks
and multimedia solutions for mobile and fixed
network operators. The company has several sites
and for the purpose of this study, we collaborated
with representatives from one company site. The
company has approximately 25.000 Employees in
R&D.
The participants marked with an asterisk (*) attended
the workshop and were not available for a follow
up-interview.

1 Product Owner
1 Product Manager
2 System Managers
2 Software Engineer
1 Release Manager
1 Area Prod. Mng.*
1 Lean Coach*
1 Section Mng.*

Company B is a software company specializing in
navigational information, operations management
and optimization solutions.
Company B has approximately 3.000 Employees in
R&D.
All the participants attended the workshop and were
interviewed.

1 Product Owner
1 System Architect
1 UX Designer
1 Service Manager

Company C is a manufacturer and supplier of
transport solutions construction technology and
vehicles for commercial use.
The company has approximately 20.000 Employees
in R&D.
All the participants that attended the workshop were
interviewed. In addition, one sales manager and one
technology specialist wished to join the project at a
later stage, and were interviewed.

1 Product Owner
2 Product Strategists
2 UX Managers
2 Function Owners
1 Feature Coord.
1 Sales Manager
2 Technology Spec.

42 A. Fabijan et al.

3.1 Data Collection

During the group workshops with the companies, we were always three researchers
sharing the responsibility of asking questions and facilitating the group discussion.
Notes were taken by two of the researches and after each workshop, these notes were
consolidated and shared to the third researcher and company representatives.

First, we conducted a workshop with an exercise with the post-it notes that build
our inventory of the customer feedback techniques. Second, we held semi-structured
group interviews with open-ended questions [2] during the workshop. These questions
were asked by on of the researcher while two of the researchers were taking notes. In
addition to the workshops, we conducted twenty-two individual interviews that lasted
one hour in average, and were recorded using an iPhone Memo application. Individual
Interviews were conducted and transcribed by one of the researchers. In total, we
collected 13 pages of workshop notes, 176 post-it notes, 138 pages of interview
transcriptions, and 9 graphical illustrations from the interviewees. All workshops and
individual interviews were conducted in English.

3.2 Data Analysis

During analysis, the workshop notes, post-it notes, interview transcriptions and
graphical illustrations were used when coding the data. The data collected were ana-
lyzed following the conventional qualitative content analysis approach where we
derived the codes directly from the text data. This type of design is appropriate when
striving to describe a phenomenon where existing theory or research literature is
limited. Two of the researchers first independently and then jointly analyzed the col-
lected data and derived the final codes that were consolidated with the third and
independent researcher who also participated at the workshops. As soon as any
questions or potential misunderstandings occurred, we verified the information with the
other researcher and participating representatives from the companies.

3.3 Validity Considerations

To improve the study’s construct validity, we conducted the exercise with the post-it
notes and semi-structured interviews at the workshops with representatives working in
several different roles and companies. This enabled us to ask clarifying questions,
prevent misinterpretations, and study the phenomena from different angles. Next, we
combined the workshop interviews with individual interviews. Workshop and inter-
view notes were independently assessed by two researchers, guaranteeing inter-rater
reliability. And since this study builds on ongoing work, the overall expectations
between the researchers and companies were aligned and well understood.

The results of the validation cannot directly translate to other companies. However,
considering external validity, and since these companies represent the current state of
large-scale software development of embedded systems industry [3], we believe that
the results can be generalized to other large-scale software development companies.

The Lack of Sharing of Customer Data 43

4 Findings

In this section, we present our empirical findings. In accordance with our research
interests, we first outline the generalized data collection practices in the three case
companies, i.e. what types of data that is collected in the different development phases,
and by whom. Second, we identify the challenges that are associated with sharing of
data in these organizations. Finally, we explore their implications.

4.1 Data Collection Practices: Current State

In the case companies, data is collected throughout the development cycle and by
different roles in the organization. Typically, people working in the early phases of
development collect qualitative data from customers reflecting customer environments,
customer experience and customer tasks. The later in the development cycle, the more
quantitative data is collected, reflecting system performance and operation when in the
field. In Tables 2, 3 and 4, we illustrate the data collection practices, together with the
customer feedback methods and types of data that different roles collect in each of the
development stages.

4.2 Data Sharing Practices: Challenges

Based on our interviews, we see that there are a number of challenges associated with
sharing of data in large organizations. For example, our interviewees all report of
difficulties in getting access to data that was collected by someone else and in a
different development phase. Below, we identify the main challenges associated with
sharing of data in the case companies:

Table 2. Customer data collection practices in the pre-development stage.

Roles that
collect customer
feedback

Common customer
feedback collection
techniques

Common types of
customer feedback
collected

Pre-Development Strategy
specialists,

Product
managers,
Product owners

Reading of industry press,
Reading of published
standards,
Reading of internal reports,
Reading customer visit
reviews

Customer wishes,
Short/Long market
trends,
Competitors ability of
delivering the product

Strategy
specialists,

Feature owners

Telephone interviews,
Face-to-face interviews,
Conducting group
interviews

Existing product
satisfaction,

Future product
specification,
Personas and User
Journeys

44 A. Fabijan et al.

• Fragmented Collection and Storage of Data

Individuals independently collect increasing amounts of customer feedback, analyze
the data they obtained, and store their findings on local repositories. Although these
findings are occasionally presented at meetings, the lack of transparency and tools
prevents others in the organization to use and benefit from the data. With so many
different roles collecting and storing data, systematic sharing across development

Table 3. Customer data collection practices in the development stage.

Roles that collect
customer feedback

Common customer
feedback collection
techniques

Common types of
customer feedback
collected

Development UX specialists,
Software Engineers

System Usability Scale
Form,

Asking open ended
questions,
Demonstrating prototypes,
Filming of users’ product
use

Acceptance of the
prototype,

Eye behavior and focus
time,
Points of pain,
Bottlenecks and
constrains,
Interaction design
sketches

System managers,
System architects,
Software engineers

Consolidate feedback
from other projects,

Reading prototype log
entries

Small improvement
wishes,

Configuration data,
Product operational data

Table 4. Customer data collection practices in the post-deployment stage.

Roles that collect
customer
feedback

Common customer
feedback collection
techniques

Common types of
customer feedback
collected

Post-Deployment Release
managers,

Service managers
Software
engineers

Reading of customer
reports,

Analyzing incidents,
Aggregating customer
requests,
Analyzing product log
files

Number of incid. and
req.,

Duration of incid. and
req.,
Product operational
data,
Product performance
data

Sales managers Reading articles in the
media,

Sentimental analysis
Customer events
participation,
Reading industry press,
Performing trend
analysis

Opinions about the
appeal of the
product,

Performance of the
product,
Business case
descriptions

The Lack of Sharing of Customer Data 45

phases becomes almost impossible. As a result, only those roles that work in close
collaboration share data, and benefit from the analysis of this data. This situation is
illustrated in the following quotes:

“… it is all in my head more or less.” -Product owner, Company B

“Information exists but we don’t know where it is.”–UX Specialist from Company C

“I do not know everyone… So I contact only the person who is next in line.” -Sales manager
from Company C.

• Filtering of Customer Data

People collect data, and share it only within the development stage they typically work
in. For example, practitioners in the development phase actively exchange product log
data, interaction design sketches, quality statistics and trouble reports. Similarly, those
working in the post-deployment phase exchange release notes, business case descrip-
tions and management system issues. Attempts to communicate the significance of
customer feedback and their findings across development stages are typically unsuc-
cessful. Feedback that is shared is filtered quantitative data.

“It is like there is a wall in-between. There is a tradition that we should not talk to each other.”
-Product Owner from Company C.

• Arduous to Measure Means Hard to Share.

The only data that is successfully shared among people and development phases, is
quantitative data representing those things that can be easily measured such as e.g.
system performance and operation. The case companies are successful in sharing
transaction records, incident figures, feature usage data and other technical feedback
that can be easily measured. However, qualitative data such as user stories, feature
purpose, or the intention of a certain requirement typically stay with the people that
collected that feedback. As a result, and instead of benefitting from an accumulated set
of data that evolves over time, companies run the risk of using fragmented data sets that
misrepresent the customer and provides an insufficient understanding of what consti-
tutes customer value.

“Maybe 10 % of information is shared. It is very difficult. It takes so much time, to, you need to
write a novel more or less and distribute it” -Product manager from Company A.

4.3 Data Sharing Practices: Implications

Due to very limited amounts of data being shared among people and across the
development phases, the case companies experience a number of implications. Below,
we present the implications:

46 A. Fabijan et al.

• Non-evolving and Non-accumulating Data.

Although quantitative data describing operational and performance requirements is
typically shared, the lack of qualitative information with the context describing where,
how and why a certain feature or a product is needed and how it will be used cause
discrepancies in understanding the overall purpose. As a result, the data forming
customer knowledge across the development stages does not accumulate and evolve.
Consequently, practitioners developing the product do not fully understand the overall
purpose of the product or a feature under development and develop suboptimal
products that can be different from the customer wishes.

“I think now a lot of thing are developed in a sub optimized way.” -Technology Spec. from
company C.

“We get feature which is broken down and then this value somehow got lost when it was broken
down, then it is harder to understand what they really need it for.” –Software engineer from
Company B.

• Repetition of Work.

Due to the lack of access to the qualitative feedback that is collected in the early stages of
development, roles in later stages that seek contextual understanding of a feature are
sometimes required to collect identical feedback to the one that was already collected.
Consequently, resources are spent on repeating the work that has already been done once.

“You cannot build on what is already there since you don’t know. You then repeat an activity
that was already made by someone else.” –UX specialist from Company C.

• Inaccurate Models of Customer Value.

Since the qualitative customer feedback is not shared across the development phases,
companies risk to use only the available quantitative customer feedback to build or
update the understanding of the customer. This results in inaccurate assumptions on
what constitutes customer value. And as a consequence of using the feedback for
prioritization on the product management level, projects that create waste risk to get
prioritized.

“You think one thing is important but you don’t realize that there is another thing that was even
more important.” -Technology Spec. from company C.

• Validation of Customer Value is a “Self-Fulfilling Prophecy”.

Due to the fact that only quantitative customer feedback is exchanged across the
development phases and development organization, companies risk to validate their
products using only the effortlessly quantifiable feedback, and neglecting the rest.
Instead of using the accumulated customer feedback and holistically asses their
products, the validation of customer value becomes a “self-fulfilling prophecy” in that
it focuses on developing and verifying things that can be quantified and provide tan-
gible evidence.

The Lack of Sharing of Customer Data 47

We map the challenges with their implications for the companies and the products
they develop, and summarize them in Table 5.

5 Discussion

Multi-disciplinary teams involved in the development of a software product are using
customer feedback to develop and improve the product or a feature they are responsible
for. Previous research [6, 8, 9] and our empirical findings show that companies collect
increasingly large amounts of customer data. Both using the qualitative techniques are
used primarily in the early stages of development [6, 7, 10] to construct an under-
standing of the customer and the context they operate in, and quantitative techniques
that are used post-deployment to monitor the actual usage of products in the field [10–
12]. And although companies gather and store large amounts of valuable customer data
[19], challenges with meaningfully combining and analyzing it in an efficient way [1,
8] are preventing companies from evolving the data across the development stages and
accumulating the customer knowledge.

5.1 The Model: From Quantifiable Feedback to Partial Customer Value

In response to the challenges and implications presented above, we illustrate our
findings and challenges in a descriptive model on Fig. 1.

In the development process, the model advocates an approach in which an internal
model of customer value in companies is being created. We illustrate that companies in
fragments collect a complete understating of the customer and their wishes, however,
benefit only from a part of the understanding.

In our model, we distinguish between three development stages, i.e.
pre-development, development and post-deployment. Although we recognize that this
is a simplified view, and that most development processes are of an iterative nature, we
use these stages as they typically involve similar roles, techniques, and types of
feedback collected.

Table 5. The mapping of identified challenges to their implications.

Challenge Description Company implications Product
implications

Fragmented
collection
and storage
of data

Sharing of data is
limited across the
development stages.

No evolving and
accumulating of
customer data and
understanding.

Suboptimal
products are
being developed.

Filtering of
customer
data.

Only roles that work
in close cooperation
exchange feedback.

Inaccurate assumptions
on customer value and
repeating work.

Risk of developing
wasteful
features.

Arduous to
measure
means hard
to share.

What can easily be
measured and
quantified is shared.

Validation of customer
value is a
“self-fulfilling
prophecy”.

Product maximizes
partial models of
customer value.

48 A. Fabijan et al.

On Fig. 1, we list a few roles that collect customer feedback (A) and different
methods of how they perform the collection (B). Within each of the development stages
we list the types of feedback being shared across the stages with a solid green lines and
those that are not with a dashed red lines. Between development stages we identify
three critical hand-over points where customer data that could and should get shared,
dissipates. Instead of accumulating data being handed over, gaps across stages appear
(illustrated with “?”symbols in blocks on Fig. 1).

5.1.1 The Vaporization of Customer Data.
We identify three critical hand-over blocks that cause data to disappear and prevent
practicioners on project to build-on

(1) The PreDev Block: While there is extensive collection of qualitative customer
feedback such as user journeys and product satisfaction surveys (Illustrated with C
on Fig. 1), roles working in the pre-development stage do not sufficiently supply
the development part of the organization with the information they collect.
Qualitative data that would inform the development stage on the context of the
product under development, how it is going to be used, and who the different user
groups perishes in the hand-over process between product owners and managers
on one side, and software engineers and UX specialist on the other (Illustrated
with D on Fig. 1). Specifically, personas, user journeys and customer wishes are
the types of feedback that should be handed over to the development stage,
however, they are not. Consequently, the development part of the organization is
forced to repeat collection activities in order to obtain this information when in
need, or continue developing the product following only the specifications /re-
quirements that were handed to them.

Fig. 1. Customer feedback sharing practices model.

The Lack of Sharing of Customer Data 49

(2) The DevOps Block: UX specialists and software engineers collect feedback on
prototypes and their acceptance, as well as where the constraints are. However,
this information is only used within the development stage. As a consequence of
not handing it over to the post-deployment stage service managers and software
engineers (Illustrated with E on Fig. 1), operators of the product do not under-
stand the reason behind a certain configuration when solving a problem, and at the
same time, suggest alternative solutions that were already known to be unac-
ceptable to the developers.

(3) The OpsDev Block: In the post-deployment stage, release and service managers
collect and exchange operational and performance data, hover, do not share it with
the development stage to software engineers and system managers. (Illustrated
with F on Fig. 1). This prevents the roles in the development stage such as system
architects from e.g. deciding on an optimal architecture for a certain type of
product and customer size.

5.1.2 Unidirectional Flow of Feedback
Illustrated with red and dashed arrows on Fig. 1, the flow of feedback from the earlier
stages of the development to the ones in the later stages is very limited. On the other
hand, the flow of feedback from the later stages to the early ones is extensive. This both
supports our finding about extensive sharing of quantitative data, which is typically
available in the later stages, as well as implies that it is easier to share data about earlier
releases of the software under development compared to sharing feedback about the
current release. Validating the value of the current release is consequently done very late.

5.1.3 Shadow Representation of Customer Value
In the absence of the accumulated data being accessible and shared across the devel-
opment stages (illustrated with missing data symbol “?” on Fig. 1), people in later
stages base their prioritizations and decisions on shadow beliefs existing in the orga-
nization. Consequently, and instead of having a unique understanding of what con-
stitutes customer value, individual development stages and roles prioritize based on
their best intuition and shared quantitative data. If sharing of customer data in the
direction towards the later stages is enabled, roles across the development stages will be
able to conduct data-informative decisions. As seen in our findings, hazards of being
purely quantitative data-driven are extensive. And with qualitative data being as
accessible as quantitative, validation of customer data could be coherent, not a
‘self-fulfilling prophecy’ as it is today.

6 Conclusion

By moving away from traditional waterfall development practices and with agile teams
becoming increasingly multi-disciplinary and including all functions from R&D to
product management and sales [21], the role of customer feedback is increasingly
gaining momentum. And although the collection of data has previously been identified
as challenging, we show in our research that the challenge is not its collection, but rather
how to share this data in order to make effective use of it.

50 A. Fabijan et al.

In this paper, we explore the data collection practices in three large software-
intensive organizations, and we identify that lack of sharing of data is the main inhi-
bitor for effective product development and improvement. Based on our case study
findings, we see that currently (1) companies benefit from a very limited part of the data
they collect due to a lack of sharing of data across development phases and organi-
zational units, (2) companies form inaccurate assumptions on what constitutes cus-
tomer value and waste resources on repeating the activities that have already been
performed, and (3) validation of customer in companies today is a “self-fulfilling
prophecy” in that it focuses on quantifiable things that provide tangible evidence.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any changes
made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Chen, H., Chiang, R.H., Storey, V.C.: Business intelligence and analytics: From big data to
big impact. MIS Q. 36, 1165–1188 (2012)

2. Dzamashvili Fogelström, N., Gorschek, T., Svahnberg, M., et al.: The impact of agile
principles on market-driven software product development. J. Softw. Maintenance Evol.
Res. Pract. 22, 53–80 (2010)

3. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘open loop’ problem. In: 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 9–16 (2014)

4. Olsson, H.H., Bosch, J.: Towards continuous customer validation: a conceptual model for
combining qualitative customer feedback with quantitative customer observation. In:
Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.) Software Business. LNBIP, vol. 210,
pp. 154–166. Springer, Heidelberg (2015)

5. Von Hippel, E.: Lead users: a source of novel product concepts. Manage. Sci. 32, 791–805
(1986)

6. Fabijan, A., Olsson, H., Bosch, J.: Customer feedback and data collection techniques in
software R&D: a literature review. In: Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.)
Software Business. LNBIP, vol. 210, pp. 139–153. Springer, Heidelberg (2015)

7. Cockburn, A., Williams, L.: Agile software development: It’s about feedback and change.
Computer 36, 39–43 (2003)

8. Bizer, C., Boncz, P., Brodie, M.L., Erling, O.: The meaningful use of big data: Four
perspectives–four challenges. ACM SIGMOD Rec. 40, 56–60 (2012)

The Lack of Sharing of Customer Data 51

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

9. Fabijan, A., Olsson, H.H., Bosch, J.: Early value argumentation and prediction: an iterative
approach to quantifying feature value. In: Abrahamsson, P., et al. (eds.) PROFES 2015.
LNCS, vol. 9459, pp. 16–23. Springer, Heidelberg (2015)

10. Bosch-Sijtsem, P., Bosch, J.: User involvement throughout the innovation process in
high-tech industries. J. Prod. Innov. Manage. 32(5), 793–807 (2014)

11. Olsson, H.H., Bosch, J.: Post-deployment data collection in software-intensive embedded
products. In: Bosch, J. (ed.) Continuous Software Engineering, pp. 143–154. Springer,
Heidelberg (2014)

12. Olsson, H.H., Bosch, J.: Towards data-driven product development: A multiple case study
on post-deployment data usage in software-intensive embedded systems. In: Fitzgerald, B.,
Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) Lean Enterprise Software
and Systems. LNBIP, vol. 167, pp. 152–164. Springer, Heidelberg (2013)

13. Sommerville, I., Kotonya, G.: Requirements Engineering: Processes and Techniques. Wiley,
Chichester (1998)

14. Sampson, S.E.: Ramifications of monitoring service quality through passively solicited
customer feedback. Decis. Sci. 27(4), 601–622 (1996)

15. Bosch, J.: Building products as innovations experiment systems. In: Proceedings of 3rd
International Conference on Software Business, Massachusetts, 18–20 June 2012

16. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practice guide. Data Min. Knowl. Disc. 18(1), 140–181 (2009)

17. Aoyama, M.: Persona-and-scenario based requirements engineering for software embedded
in digital consumer products, pp. 85–94 (2005)

18. Saarijärvi, H., Karjaluoto, H., Kuusela, H.: Customer relationship management: The
evolving role of customer data. Mark. Intell. Plan. 31, 584–600 (2013)

19. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Comput. Netw. 54,
2787–2805 (2010)

20. Rodríguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T., Eskeli, J.,
Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M.: Continuous deployment of software
intensive products and services: A systematic mapping study. J. Syst. Softw. (2015). http://
www.sciencedirect.com/science/article/pii/S0164121215002812

21. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”, in software
engineering and advanced applications (SEAA). In: 2012 38th EUROMICRO Conference
on Software Engineering and Advanced Applications, Izmir, Turkey (2012)

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2008)

52 A. Fabijan et al.

http://www.sciencedirect.com/science/article/pii/S0164121215002812
http://www.sciencedirect.com/science/article/pii/S0164121215002812

TDDViz: Using Software Changes to Understand
Conformance to Test Driven Development

Michael Hilton(B), Nicholas Nelson, Hugh McDonald, Sean McDonald,
Ron Metoyer, and Danny Dig

Oregon State University, Corvallis, USA
{hiltonm,nelsonni,mcdonalh,mcdonase,metoyer,digd}@eecs.oregonstate.edu

Abstract. A bad software development process leads to wasted effort
and inferior products. In order to improve a software process, it must
be first understood. Our unique approach in this paper uses code and
test changes to understand conformance to the Test Driven Development
(TDD) process.

We designed and implemented TDDViz, a tool that supports devel-
opers in better understanding how they conform to TDD. TDDViz sup-
ports this understanding by providing novel visualizations of developers’
TDD process. To enable TDDViz’s visualizations, we developed a novel
automatic inferencer that identifies the phases that make up the TDD
process solely based on code and test changes.

We evaluate TDDViz using two complementary methods: a controlled
experiment with 35 participants to evaluate the visualization, and a case
study with 2601 TDD Sessions to evaluate the inference algorithm. The
controlled experiment shows that, in comparison to existing visualiza-
tions, participants performed significantly better when using TDDViz
to answer questions about code evolution. In addition, the case study
shows that the inferencing algorithm in TDDViz infers TDD phases
with an accuracy (F-measure) of 87%.

Keywords: Test Driven Development · Software visualization · Devel-
opment process

1 Introduction

A bad software development process leads to wasted effort and inferior
products. Unless we understand how developers are following a process, we can-
not improve it.

In this paper we use Test Driven Development (TDD) as a case study on
how software changes can illuminate the development process. To help devel-
opers achieve a better understanding of their process, we examined seminal
research [1–3] that found questions software developers ask. From this research,
we focused on three question areas. We felt that the answers to these could pro-
vide developers with a better understanding of their process. We choose three

c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 53–65, 2016.
DOI: 10.1007/978-3-319-33515-5 5

54 M. Hilton et al.

questions from the literature to focus on, and they spanned three areas: identi-
fication, comprehension, and comparability.

RQ1: “Can we detect strategies, such as test-driven development?” (Identifica-
tion) [1]
RQ2: “Why was this code changed or inserted?” (Comprehension) [3]
RQ3: “How much time went into testing vs. into development?” (Comparabil-
ity) [2]

To answer these questions, we use code and test changes to understand con-
formance to a process. In this paper, we present TDDViz, our tool which pro-
vides visualizations that support developers’ understanding of how they con-
form to the TDD process. Our visual design is meant to answer RQ1-3 so that
we ensure that our visualizations support developers in answering important
questions about identification, comprehension, and comparability of code.

In order to enable these visualizations, we designed a novel algorithm to
infer TDD phases. Given a sequence of code edits and test runs, TDDViz uses
this algorithm to automatically detect changes that follow the TDD process.
Moreover, the inferencer also associates specific code changes with specific parts
of the TDD process. The inferencer is crucial for giving developers higher-level
information that they need to improve their process.

One fundamental challenge for the inferencer is that during the TDD prac-
tice, not all code is developed according to the textbook definition of TDD. Even
experienced TDD developers often selectively apply TDD during code develop-
ment, and only on some parts of their code. This introduces lots of noise for any
tool that checks conformance to processes. To ensure that our inference algo-
rithm can correctly handle noisy data, we add a fourth Research Question.
RQ4: “Can an algorithm infer TDD phases accurately?” (Accuracy)

To answer this question, in this paper we use a corpus of data from cyber-dojo 1,
a website that allows developers to practice and improve their TDD by coding solu-
tions to various programmingproblems.Each time auser run tests, the code is com-
mitted to a git repository. Each of these commits becomes a fine-grained commit.
Our corpus contains a total of 41766 fine-grained snapshots from 2601 program-
ming sessions, each of which is an attempt to solve one of 30 different programming
tasks.

To evaluate TDDViz, we performed a controlled experiment with 35 student
participants already familiar with TDD. Our independent variable was using
TDDViz or existing visualizations to answer questions about the TDD Process.

This paper makes the following contributions:
Process Conformance: We propose a novel usage of software changes to infer
conformance to a process. Instead of analyzing metrics taken at various points
in time, we analyze deltas (i.e., the changes in code and tests) to understand
conformance to TDD.
TDD Visualization Design and Analysis: We present a visualization
designed specifically for understanding conformance to TDD. Our visualizations
1 www.cyberdojo.org.

www.cyberdojo.org

TDDViz: Using Software Changes to Understand Conformance 55

show the presence or absence of TDD and allow progressive disclosure of TDD
activities.
TDD Phase Inference Algorithm: We present the first algorithm to infer
the activities in the TDD process solely based on snapshots taken when tests
are run.
Implementation and Empirical Evaluation: We implement the visualiza-
tion and inference algorithm in TDDViz, and empirically evaluate it using two
complementary methods. First, we conduct a controlled experiment with 35 par-
ticipants, in order to answer RQ1–3. Second, we evaluate the accuracy of our
inferencer using a corpus of 2601 TDD sessions from cyber-dojo, in order to
answer RQ4. Our inferencer achieves an accuracy of 87%. Together, both of
these show that TDDViz is effective.

2 Visualization

2.1 Visualization Elements

TDD Cycle Plot. We represent a TDD cycle using a single glyph as shown
in Fig. 1[a]. This representation was inspired by hive plots [4] and encodes the
nominal cycle data with a positional and color encoding (red=test, green=code,
blue=refactor). The position of the segment redundantly encodes the TDD cycle
phase (e.g. the red phase is always top right, the green phase is always at the
bottom, and the blue phase is always top left). The time spent in a phase is
a quantitative value encoded in the area [5,6] of the cycle plot segment (i.e.,
the larger the area, the more time spent in that phase during that cycle). All
subplots are on the same fixed scale. Taken together, a single cycle plot forms
a glyph or specific ‘shape’ based on the characteristics of the phases, effectively
using a ‘shape’ encoding for different types of TDD cycles. This design supports
both characterization of entire cycles as well as comparison of a developer’s time
distribution in each phase of a cycle. We illustrate the shape patterns of various
TDD cycles in the next section.

Fig. 1. Interactive visualization of a TDD session. The user can choose any arbitrary
selection they wish. This example shows a session that conforms to TDD. Sizes in the
TDD Heartbeat plot represent time spent in each phase. The different parts of the
visualization have been labeled for clarity. [a] a TDD Cycle plot, [b] TDD Heartbeat,
[c] Snapshot Timeline, [d] TDD Code Edits (Color figure online)

56 M. Hilton et al.

TDD Heartbeat. To support comparison of TDD cycles over time, we provide
a small multiples view [7] that we call the TDD Heartbeat view. The TDD
Heartbeat view consists of a series of TDD cycle plots, one for every cycle of
that session (See Fig. 1, [b]) We call this the TDD heartbeat because this view
gives an overall picture of the health of the TDD process as it evolves over
time. This particular view supports the abstract tasks of characterization and
comparison.

In particular, the user can compare entire cycles over time to see how they
evolve, and she can characterize how her process is improving or degrading. For
example, by looking at all the cycles that make up the TDD Heartbeat in Fig. 1,
the user sees that for every cycle in this kata, the developer spent relatively more
time writing production code than writing tests. They can also observe that the
relationship between the time spent in each phase was fairly consistent.

Snapshot Timeline. The snapshot timeline provides more information about
the TDD process, specifically showing all the snapshots in the current session.
An example snapshot timeline is shown in Fig. 1[c]. The snapshot timeline con-
sists of two parts, the snapshot classification bar (Fig. 1[c][1]) on the top, and the
snapshot event timeline on the bottom (Fig. 1[c][2]). In the snapshot event time-
line, each snapshot is represented with a rounded square. The color represents
the outcome of the tests at that snapshot event. Red signifies the tests were run,
but at least one test failed. If all the tests passed, then it is colored green. If the
code and tests do not compile, we represent this with an empty white rounded
box. The distance between each snapshot is evenly distributed, since the time in
that phase is encoded in the TDD Cycle Plot.

The snapshot classification bar shows the cycle boundaries, and inside each
cycle the ribbon of red, green and blue signifies which snapshot events fall into
which phases. For example, in Fig. 1, snapshots 17–20 are all part of the same
green phase. Snapshots 17–19 the developer is trying to get to a green, but they
are not successful in making the tests pass until snapshot 20.

This view answers questions specifically dealing with how consistent coders
followed the TDD process, what snapshots were written by coders using the
TDD process, and which ones were not.

The snapshot timeline answers questions about identification. The timeline
enables developers to identify which parts of the session conform to TDD and
which do not.

This view also allows the user to interactively select snapshots that are used
to populate the code edit area (described below). To select a series of snapshots,
the user interactively drags and resizes the gray selection box. In Fig. 1, snapshots
5 and 6 are selected.

The snapshot timeline also answers questions dealing with comprehension. By
seeing how TDDViz catagorizes a snapshot, a user can determine why selected
changes were made. For example, Fig. 1 shows a selected snapshot which represents
the changes between snapshots numbers 5 and6. Since the selected changes are part
of a green phase (as noted by the green area in the Snapshot Classification Bar),

TDDViz: Using Software Changes to Understand Conformance 57

a user can determine that these were production changes to make a failing test pass.
This canbe confirmedbyobserving the code edits.This encoding supports the same
questions as the cycle plot and heartbeat arrangement, but, it does so at a finer
granularity, showing each individual test run.

TDD Code Edits. Figure 1[d] shows an example of a code edit, which displays
the changes to the code between two snapshots. To understand the TDD process,
a coder must be able to look at the code that was written, and see how it evolved
over time. By positioning the selection box on the timeline as described above,
a user can view how all the code evolved over any two arbitrary snapshots. The
code edit region contains an expandable and collapsable box for each file that
was changed in the selected range of snapshots. Each box contains two code
editors, one for the code at the selection’s starting snapshot, and one for the
code at the ending snapshot.

Whenever the user selects a new snapshot range, these boxes dynamically
repopulate their content with the correct diffs. There are additional examples of
our visualizations on our accompanying web page http://cope.eecs.oregonstate.
edu/visualization.html.

3 TDD Phase Inferencer

In order to build the visualizations we have presented thus far, we needed a
TDD phase inference algorithm which uses test and code changes to infer the
TDD process. Instead of relying on static analysis tools, we present a novel
approach where the algorithm analyzes the changes to the code. We designed
our algorithm to take as input a series of snapshots. The algorithm then analyzes
the code changes between each snapshot and uses that information to determine
if the code was developed using TDD. If the algorithm infers the TDD process,
then it determines which parts of the TDD process those changes belong to.

3.1 Snapshots

We designed our algorithm to receive a series of snapshots as input. We define a
snapshot as a copy of the code and tests at a given point in time. In addition to
the contents of code and tests, the snapshot contains the results of running the
tests at that point in time.

Our algorithm uses these snapshots to determine the developers’ changes
to the program. It then uses these changes to infer the TDD process. In this
paper, we use a corpus of data where a snapshot was taken every time the code
was compiled and the tests were run. It is important that the snapshots have
this level of detail, because if they do not, we do not get a clear picture of the
development process.

http://cope.eecs.oregonstate.edu/visualization.html
http://cope.eecs.oregonstate.edu/visualization.html

58 M. Hilton et al.

Fig. 2. State machine diagram of the TDD phase inference algorithm.

3.2 Abstract Syntax Tree

Since our inference algorithm must operate on the data that the snapshots con-
tain, it is important to have a deeper understanding of code than just the textual
contents. To this end, our inference algorithm constructs the Abstract Syntax
Tree (AST) for each code and test snapshot in our data. This allows our infer-
encer to determine which edits belong to the production code and which edits
belong to the test code. It also calculates the number of methods and assert
statements at each snapshot. For the purposes of the algorithm, we consider
code with asserts to be test codes, and code with no asserts to be production
code. We consider each assert to be an individual test, even if it is in a method
with other asserts. If a new assert is detected, we consider that to be a new test.
All this information enables the algorithm to infer the phases of TDD. In our
implementation of the algorithm in TDDViz, we use the Gumtree library [8] to
create the ASTs.

3.3 Algorithm

We present the TDD phase inference algorithm using the state digram in Fig. 2.
Our algorithm encodes a finite-state machine (FSM), where the state nodes are
phases, and the transitions are guided by predicates on the current snapshot.
We define each of the states as follows:

Red: This category indicates that the coder was writing test code in an attempt
to make a failing test
Green: This category is when the coder is writing code in an attempt to make
a failing test pass
Blue: This is when the coder has gotten the tests to pass, and is refactoring the
code
White: This is when the code is written in a way that deviates from TDD
Brown: This is a special case, when the coder writes a new test and it passes

TDDViz: Using Software Changes to Understand Conformance 59

on the first try, without altering the existing production code. It could be they
were expecting it to fail, or perhaps they just wanted to provide extra tests for
extra security.

The predicates take a snapshot and using the AST changes to the production
and test code, as well as the result of the test runs, compute a boolean function.
We compose several predicates to determine a transition to another state. For
example: in order to transition from green to blue, the following conditions must
hold true. All the current unit tests must pass, and the developer may not add
any new tests.

The transition requires passing tests, because if not, the developer either
remains in the green phase or has deviated from TDD. No new tests are allowed
because the addition of a new test, while a valid TDD practice, would signify
that the developer has skipped the optional blue phase and moved directly to
the red phase.

There are a few special cases in our algorithm. The algorithm’s transition
from Red to Blue is the case when a single snapshot comprised the entire Green
phase, and therefore the algorithm has moved on to the blue phase. Another
thing to note is that by definition, the brown phase only contains a single commit.
Therefore, after the algorithm identifies a brown phase, it immediately moves
back to the blue phase.

4 Evaluation

To evaluate the usefulness of TDDViz, we answer the following research ques-
tions:

RQ1. Can programmers using TDDViz identify whether the code was developed
in conformance with TDD? (Identification)
RQ2. Can programmers using TDDViz identify the reason why code was
changed or inserted? (Comprehension)
RQ3. Can programmers using TDDViz determine how much time went into
testing vs. development of production code? (Comparability)
RQ4. Can an algorithm infer TDD phases accurately? (Accuracy)

In order to answer these research questions, we used two complementary
empirical methods. We answer the first three questions with a controlled experi-
ment with 35 participants, and the last question with a case study of 2601 TDD
sessions. The experiment allows us to quantify the effectiveness of the visualiza-
tion as used by programmers, while the case study gives more confidence that
the proposed algorithm can handle a wide variety of TDD instances.

4.1 Controlled Experiment

Participants. Our participants were 35 students in a 3rd-year undergrad Soft-
ware Engineering class who were in week 10 of a course in which they had used
TDD for their class project.

60 M. Hilton et al.

Treatment. Our study consisted of two treatments. For the experimental treat-
ment, we asked the participants to answer questions dealing with identification,
comprehension, and comparability (RQ1–RQ3) by examining several coding ses-
sions from cyber-dojo presented with our visualization. For the control treat-
ment, we used the same questions applied to the same real-life code examples,
but the code was visualized using the visualization2 that is available on the
cyber-dojo site. This visualization shows both the code, and the test results at
each snapshot, but it does not present any information regarding the phases of
TDD. We used this visualization for our control treatment because it is specif-
ically designed to view the data in our corpus. Also, it is the only available
visualization other than our own which shows both the code and the history of
the test runs.
Experimental Procedure. In order to isolate the effect of our visualization,
both treatments had the same introduction, except for when describing the
parts of the visualizations which are different across treatments. Both treat-
ments received the exact same questions on the same real-life data in the same
order. The only independent variable was which visualization was presented to
each treatment. We randomly assigned the students into two groups, one group
with 17 participants and the other group with 18 participants. We then flipped
a coin to determine which group received which treatment. We gave both treat-
ments back to back on the same day.
Tasks. The experiment consisted of three tasks. To evaluate identification, we
asked “Is this entire session conforming to TDD?” To evaluate comprehension we
asked “Why was this code changed?” To evaluate comparability we asked “Was
more time spent writing tests or production code?” For each task we asked
the same question on four different instances of TDD sessions. The students
were accustomed to using clickers to answer questions, and so for each task
they answered questions through the use of their clickers. Each question was a
multiple choice question.
Measures. The independent variable in this study was the visualization used to
answer the questions. The dependent measure was the answers to the questions.
For each of the three tasks we showed the subjects four different instances and
evaluated the total correct responses against the total incorrect responses. We
then looked at each question and compared the control treatment versus the
experimental treatment. We used Fisher’s Exact Test to determine significance
because we had non-parametric data.

4.2 Controlled Experiment Results

Table 1 tabulates the results for the three questions. We will now explain each
result in more detail.

2 http://cyber-dojo.org/dashboard/show/C5AE528CB0.

http://cyber-dojo.org/dashboard/show/C5AE528CB0

TDDViz: Using Software Changes to Understand Conformance 61

Table 1. Results from controlled experiment.

Identification Comprehension Comparability

Treatment Correct Not correct Correct Not correct Correct Not correct

Control (n = 18) 37 34 24 48 23 49

Experimental (n = 17) 55 13 42 26 33 35

RQ1:Identification. When we asked the participants to identify TDD, we
found that significantly more participants correctly identified TDD and non-
TDD sessions using TDDViz than when using the default cyber-dojo visual-
ization, as Table 1 shows (Fisher’s Exact Test: p<.0005). This shows that our
visualization does indeed aid in identifying TDD.

RQ2:Comprehension. When we asked participants why a specific code change
had been made, we found that significantly more participants correctly iden-
tified why the code was changed when using TDDViz than when using the
default cyber-dojo visualization (see Table 1: Comprehension, Fisher’s Exact
Test: p<.0013). They were able to identify if the given code was changed or
inserted to make a test pass, make a test fail or to refactor.

RQ3:Comparability. When we asked our participants to compare the amount
of time that went into writing tests vs. the time that went into writing code, the
experimental participants were able to outperform the control group but only by
a small margin. The difference was only just approaching significance (Fisher’s
Exact Test: p<0.0578). Additionally, as Table 1: Comparability shows, there were
slightly more incorrect answers then correct answers for the experimental group.
To answer this question, users had to mentally quantify whether the chart con-
tained more red than green overall. In the future we plan on improving the visu-
alization by providing a representation that provides a clear, numerical answer
to this question.

4.3 Case Study

We now answer our fourth research question, which measures the accuracy of
the TDD phase inference part of TDDViz, using a corpus of 2601 TDD sessions.

Corpus Origin. We use a corpus of katas that comes from cyber-dojo, a site
that allows developers to practice and improve TDD by coding solutions to
various katas.

Evaluation Corpus. To build our corpus we used all the Java/JUnit sessions as
our evaluation framework currently only supports Java. Adding other languages
would be straightforward, but is left as future work. This gives us a corpus of
2601 total Java/JUnit sessions.

62 M. Hilton et al.

We are using this corpus to evaluate our inferencer as all the sessions were
attempted by people who had no knowledge of our work.

Corpus Preparation. We developed a Ruby on Rails application that allowed
us to work with this corpus in an efficient manner. The raw data that we used
to build the corpus consists of a repository and session data. The git repository
contains commits of the code each time the coder pressed the “Test” button.
This provides a fine-grained series of snapshots that allow us to evaluate the
process used to develop the code. The session data contains meta-data files that
track things such as when the session occurred, and what was the result of each
compile and test run.

The Gold Standard. In order to evaluate our phase inferencer, we created a
Gold Standard. The first two authors manually labeled 2489 snapshots with the
TDD phase to which they belong.

We then graded our inferencer by comparing its results against the Gold
Standard. In order to not bias the selection process, we randomly selected the
sessions for our Gold Standard. To ensure that we were labeling consistently,
we first verified that we had reached an inter-rater agreement of at least 85%
between both of the authors that labeled the Gold Standard on 52 sessions (32%
of the sessions).

Once we were convinced that we had reached a consensus among the raters,
we divided the rest of the Gold Standard sessions up and rated them individually.
We labeled a total of 2489 snapshots in our Gold Standard out of a corpus of
41766 snapshots in the corpus, which is 6% of the data. We labeled each snapshot
as previously defined in Sect. 3.3.

Inference Evaluation. After we manually labeled each snapshot, we ran our
inference algorithm against the sessions that compose the Gold Standard. We
then compare the results of the algorithm at each snapshot and compare it
against the labels that were assigned by hand. We next describe how we use this
comparison to calculate precision and recall.

Accuracy. We calculate the accuracy of our inferencer by using the traditional
F-measure, which considers both precision and recall. We compute precision and
recall by first identifying True and False Positives. If the inferencer identifies a
snapshot to have the same category that it has in the Gold Standard, we consider
this a True Positive. If the inferencer considers a snapshot to be in a different
category than the Gold Standard, we consider this case to be a False Positive.
A False Negative is where a snapshot that should have been classified as one
of the TDD phases was classified by the inferencer as white (non-TDD).

Once we calculated these for each session in the Gold Standard, we calculate
precision and recall using the standard formulas. Next we calculated accuracy
using the traditional harmonic mean of precision and recall.

TDDViz: Using Software Changes to Understand Conformance 63

4.4 Case Study Results

Precision. The Gold Standard contains 2489 snapshots. Of those, 2028 were
correctly identified by the inferencer. This lead to a precision of 81%. The diver-
sity of our corpus leads to a wide variety of TDD implementations, and there are
quite a few edge cases. While our algorithm handles many of them, there are still
a few edge cases that our algorithm cannot recognize in its current incarnation.
These are cases that are hard even for human experts to agree upon.

Recall. Our Gold Standard contains 1517 snapshots that belong to one of the
TDD phases (i.e., non-white phases). Of those, our inferencer correctly classified
1440, leading to a recall of 95%. Of the remaining 5 % missed cases, most of
them arise because of difficulty identifying the template code the katas start
with. This is an issue that can be easily solved in our future work.

RQ4:Accuracy. We calculate the accuracy using the F-measure. This gives us
an accuracy of 87%. This shows that our inferencer is accurate and effective.

5 Related Work and Conclusions

Related Work. Multiple projects [9,10] detect the absence of TDD activi-
ties and give warnings when a developer deviates from TDD by identifying
when a developer spends too much time writing code without tests. In contrast,
TDDViz provides detailed analysis of the TDD phases, infers the presence or
absence of TDD not based on time intervals between test runs, but on code and
test changes. Thus, it is much more precise.

Several projects [11,12] infer TDD phases from low-level IDE edits. They
all build on top of HackyStat [13], a framework for data collection and analy-
sis. Hackystat collects “low-level and voluminous” data, which it sends to a
web service for lexical parsing, event stream grouping, and development process
analysis. In contrast to these approaches, by using AST analysis, TDDViz infers
the TDD process without the entire stream of low-level actions.

TDD Dashboard3 is a service offered by Industrial Logic, to visualize the
TDD process. It is based on recording test and refactoring events in a IDE, but
does not infer and visualize the phases of each cycle, thus enabling developers
to answer questions on identification, comprehension, and comparability.

Conclusions. Without understanding there can be no improvement. In this
paper we presented visualizations that enable developers to better understand the
development process. To design these visualizations, we developed an inferencer
that infers the TDD process with a novel use of code changes. We implemented
the visualizations and the inferencer in a tool, TDDViz. We evaluated TDDViz
using two complementary methods. We evaluated the visualization using 35 par-
ticipants. We found that participants that used our visualization had significantly
more correct answers when answering questions on identification, comprehension,

3 https://ecoach.industriallogic.com/dashboard?team=il.

https://ecoach.industriallogic.com/dashboard?team=il

64 M. Hilton et al.

and comparability of code. We evaluated the TDD phase inferencer and showed
that it is accurate and effective, with 81% precision and 95% recall.

Acknowledgements. We thank Mihai Codoban, Kendall Bailey and anonymous
reviewers for their feedback on earlier versions of this paper. We thank Jon Jagger for
making the TDD data available. We also thank Lutz Prechelt for his helpful and very
thorough review. This work was partially funded through the NSF CCF-1439957 grant.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Zaidman, A., Van Rompaey, B., van Deursen, A., Demeyer, S.: Studying the co-
evolution of production and test code in open source and industrial developer test
processes through repository mining. Empir. Softw. Eng. 16(3), 325–364 (2011)

2. Begel, A., Zimmermann, T.: Analyze this! 145 questions for data scientists in soft-
ware engineering. In: ICSE 2014, June 2014

3. LaToza, T.D., Myers, B.A. Hard-to-answer questions about code. In: PLATEAU
2010, pp. 8:1–8:6 (2010)

4. Krzywinski, M., Birol, I., Jones, S.J.M., Marra, M.A.: Hive plots, rational approach
to visualizing networks. Brief. Bioinform. 13, 627–644 (2011). bbr069

5. Mackinlay, J.: Automating the design of graphical presentations of relational infor-
mation. ACM Trans. Graph. (TOG) 5(2), 141 (1986)

6. Munzner, T.: Visualization Analysis and Design. CRC Press, New York (2014)
7. Tufte, E.R., Graves-Morris, P.R.: The Visual Display of Quantitative Information,

vol. 2. Graphics press, Los Angeles (1983)
8. Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained

and accurate source code differencing. In: ACM/IEEE International Conference on
Automated Software Engineering, ASE 2014, Vasteras, Sweden, 15–19 September,
pp. 313–324 (2014)

9. Mishali, O., Dubinsky, Y., Katz, S.: The TDD-guide training and guidance tool
for test-driven development. In: Abrahamsson, P., Baskerville, R., Conboy, K.,
Fitzgerald, B., Morgan, L., Wang, X. (eds.) Agile Processes in Software Engineering
and Extreme Programming. LNBIP, vol. 9, pp. 63–72. Springer, Heidelberg (2008)

10. Wege, C.: Automated support for process assessment in Test-Driven Development.
dissertation, Universitat Tubingen (2004)

11. Wang, Y., Erdogmus, H.: The role of process measurement in test-driven develop-
ment. In: XP/Agile Universe 2004 (2004)

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

TDDViz: Using Software Changes to Understand Conformance 65

12. Kou, H., Johnson, P.M., Erdogmus, H.: Operational definition, automated inference
of test-driven development with zorro. Autom. Softw. Eng. 17(1), 57–85 (2009)

13. Johnson, P.M.: Project hackystat: Accelerating adoption of empirically guided
software development through non-disruptive, developer-centric, in-process data
collection and analysis. Department of Information and Computer Sciences, Uni-
versity of Hawaii, vol. 22 (2001)

Minimum Viable User EXperience:
A Framework for Supporting Product

Design in Startups

Laura Hokkanen(&), Kati Kuusinen, and Kaisa Väänänen

Department of Pervasive Computing, Tampere University of Technology,
Korkeakoulunkatu 1, 33720 Tampere, Finland

{Laura.Hokkanen,Kati.Kuusinen,Kaisa.Vaananen}@tut.fi

Abstract. Startups operate with small resources in time pressure. Thus,
building minimal product versions to test and validate ideas has emerged as a
way to avoid wasteful creation of complicated products which may be proven
unsuccessful in the markets. Often, design of these early product versions needs
to be done fast and with little advance information from end-users. In this paper
we introduce the Minimum Viable User eXperience (MVUX) that aims at
providing users a good enough user experience already in the early, minimal
versions of the product. MVUX enables communication of the envisioned
product value, gathering of meaningful feedback, and it can promote positive
word of mouth. To understand what MVUX consists of, we conducted an
interview study with 17 entrepreneurs from 12 small startups. The main ele-
ments of MVUX recognized are Attractiveness, Approachability, Professional-
ism, and Selling the Idea. We present the structured framework and elements’
contributing qualities.

1 Introduction

Global markets are being infiltrated by small startups with their innovative new
products and business models. Software startups are characterized with scarce
resources, little to none operating history, and time pressure [1]. One competitive
advantage with startups compared to large organizations is their ability to move fast
and adapt to changing circumstances [2]. However, as founding teams of startups often
consist of only a few individuals, the team’s skills are naturally limited. For the same
reason, the primary business objective of startups is to survive [3]. To survive, startups
need to make the most out of their limited resources. Customer development [4] and
Lean startup method [5], that have been widely adopted and taught by accelerators and
entrepreneurship programs [6], emphasize gathering fast feedback from customers, and
testing product ideas with minimal product versions or Minimum Viable Product
(MVP) as referred by Ries [5]. While Lean Startup has no scientific evidence for
effectiveness in business creation, the method is influencing how entrepreneurs
approach product development [6, 7].

While validating business potential with minimal product versions and real cus-
tomers to minimize unnecessary risk, gathering useful feedback with early product

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 66–78, 2016.
DOI: 10.1007/978-3-319-33515-5_6

versions can be challenging. One challenge is that insufficient or disturbing user
experience (UX) might reduce the user feedback and make the users concentrate
mainly on the appearance of the user interface [8]. At the worst, poor UX can lead the
user only to criticize the UX even if the product idea itself was good. [8] Benefits of
delivering good UX from the earliest product version can be positive word of mouth
advertisement [9], and users using the product for longer.

The goal of this paper is to identify and structure the UX elements that are essential
when building early product versions in small software startups. To understand the
elements of desirable UX of early product versions, we introduce the concept and
framework of Minimum Viable User eXperience that aims at providing UX that
enables users to understand and gain value already from the early product versions.
Correspondingly, startup is then able to collect more meaningful feedback from
potential customers over a longer period of time since users do not abandon the
product.

In this paper, we report results of a two-phase interview study we conducted in
Finland. In the first phase we interviewed 13 entrepreneurs from eight startups. All the
startups were building, or had recently built, first versions of their products. Based on
the analysis of these interviews, we created the initial MVUX framework. The
framework is based on the assumption that MVUX is realized in the software being
under development when (1) user can perform the core use cases to gain value,
(2) basic hygiene factors for usability and appearance are in place, and (3) the startup is
able to get enough of feedback and data to validate and further develop the product
idea. To evaluate the MVUX framework, we then interviewed four entrepreneurs of
four more startups, all having expertise in UX. Through the interviews, we answer the
following research questions: (1) what are the goals and key elements of MVUX from
the startups’ perspective and (2) how can MVUX design framework help startups at the
early phases of their product and business development.

The rest of this paper is structured as follows. Section 2 presents related work on
characteristics of software startups and their ways of working, and UX practices.
Section 3 presents context and methods of our study. In Sect. 4 we present the results
of our study including the UX elements considered important by startups, as well as the
results of the evaluation of the MVUX framework. Section 5 discusses the results and
Sect. 6 presents the conclusions for the paper.

2 Related Work

2.1 Characteristics of Software Startups

Engineering and business concerns in software startups are more extensive than in
established companies [2]. Those concerns include having scarce resources, being
young and immature, operating with novel technologies in dynamic markets. Software
startups are also influenced by divergent stakeholders such as investors, customers,
partners, and competitors. [2] Also, customer-focused approach seems to be more
crucial for small companies [2]: When the customer is happy with the software, it
literally means more work and increased business opportunities for the small company

Minimum Viable User EXperience 67

as the happy customer wants more and is willing to recommend the software to others
[10]. Because of unestablished customer base, such positive word of mouth and
keeping the existing customers satisfied is essential for startups.

The professionalism of the entrepreneurs themselves often acts as a primary
information source for startups due to unestablished stakeholder networks and cus-
tomer base [3]. Moreover, people factors tend to be even more crucial for startups than
for larger companies in the success or failure of the software [2]. Thus, the entrepreneur
team is in a key role in keeping the startup focused and moving ahead [2]. For startups,
short time to market is one of the most critical process goals [2]. Since a fundamental
goal of a process is to describe the way an organization develops its software in a
predictable and repeatable fashion, benefits of an established process do not meet
essential needs of software startups [2, 3]. Therefore, startups require more informal
and lightweight approaches.

New entrepreneurial practices Customer development [4] and Lean startup method
[5] have been gaining attention in recent years. These practices emphasize that startups
should concentrate on producing customer value and avoid wasteful activities, i.e.
non-value adding activities. Although academic research on how well Customer
development and the Lean startup method work is scarce, those methods have been
widely adopted by incubators, accelerators and university entrepreneurship courses [6].
The Lean startup [5] suggests that by validating hypotheses of customer’s problems
startups find a problem/solution fit that indicates there is business potential in solving a
specific problem with a particular solution. Once the problem/solution fit is established,
the startup should validate what product suites to deliver the solution. For finding
validation, startups should build minimum viable products (MVP) that are then tested
with potential customers. An MVP should be built with as little resources as possible
yet it needs to enable testing the current hypothesis. Furthermore, Ries [5] emphasizes
that the key performance indicators need to be measured when “getting out of the
building” with the MVPs. From these experiments, startup should gain validated
learning [5]. This Build-Measure-Learn (BML) cycle should be continued until a
product/market fit is found and startups should also be prepared to discard the MVPs if
they do not measure up to validating sustainable business opportunity [5].

2.2 User Experience Work

UX is defined as “a person’s perceptions and responses that result from the use or
anticipated use of a product, system or service” [11]. Also, UX is often divided into
practical-oriented and hedonic dimensions [12]. The first dimension includes aspects
related to ease of use, productivity, and usability while the latter concentrates on users’
emotions such as enjoyment and motivation. Regarding UX development in industry,
companies in general tend to focus more on the practical qualities of UX while paying
less attention to the hedonic ones [13].

UX design has roots in human-centered design (HCD) [11] that starts with thor-
ough user research and design activities which are followed by design iterations. All in
all, developing UX involves gaining understanding of the user and the context of use,
designing and developing for good UX, and evaluating the resulting outcome [11].

68 L. Hokkanen et al.

While understanding users is considered important for startups [7], startups generally
do not afford to follow rigorous methods for UX development. Research on UX
development in startups is scarce. May [14] describes a case from applying lean
methodology in a startup and recommends planning the UX activities in from early on.
Klein [15] presents lightweight methods for UX work in lean startups. Finally,
Hokkanen et al. [8] report that lack of UX expertise and time constrains hinder the
startup from collecting useful feedback from users.

3 Methods, Research Context, and Participants

3.1 Course of the Study

To address our research goal of understanding which UX factors are essential when
building early product versions in startups, semi-structured interviews were chosen as
the data gathering method. The study was conducted in two phases. In the first phase
we interviewed 13 entrepreneurs from 8 small startups in order to establish the MVUX
framework. In the second phase, four entrepreneurs with UX expertise were inter-
viewed to evaluate the created MVUX framework. Altogether, 12 interview sessions
with 17 interviewees were conducted. All the interviews were conducted by one
researcher and they lasted between 50–90 min. Interviews were audio recorded and
transcribed for analysis. Participants were searched by going through Finnish startup
incubator and accelerator programs. Some startups were recruited through directly
contacting them based on their web page while others were recruited by advertising in
the premises of one incubator program.

In the first phase, eight semi-structured interviews were conducted to understand
the early design decisions and UX goals in startups. Initial results from these inter-
views, describing how startups start UX design, and what practices are beneficial at that
stage, are reported in [7]. During the interviews, we introduced the general concept of
MVUX to each interviewee. Participants were then asked to write down on a paper
their goals and central elements for UX of their early product version intended to be
deployed to users. Differences in UX goals between the earliest and complete product
version were also shortly discussed. In all the interviews, focus was on UX related
motivations and practices. However, activities such as product and business develop-
ment were covered superficially to understand their impact on UX design.

In the second phase, four semi-structured interviews were conducted to evaluate the
MVUX framework established based on the results of the first phase. The concept of
MVUX was first discussed with the interviewee after which we presented them the
initial MVUX framework. Then we asked questions about the interviewee’s perception
on the ability of the MVUX framework to cover the necessary UX elements without
including unnecessary elements. In addition, we studied the usefulness of the frame-
work by discussing with the interviewees how startups could utilize the MVUX
framework while creating early product versions.

In both phases, analysis was done from the written transcripts utilizing iterative
thematic coding. Main themes were established based on the interview questions while
sub-themes emerged from the data. Terms the interviewees used to describe the goals

Minimum Viable User EXperience 69

and central elements of UX of the early product version were collected to construct the
MVUX framework. Those terms were used as low-level elements on which the main
elements of the framework were created using a bottom-up approach as follows. In
total, 43 unique low-level elements were abstracted from the interview data. These
low-level elements were divided into groups based on similarity to form mid-level
elements of MVUX. Finally, mid-level elements were grouped based on similarity to
determine the main elements of MVUX. In the grouping of elements both the term as
well as the context in which the element was discussed was taken into consideration.

3.2 Participants

First Phase. Startups participating the first phase consisted of one to six person teams
each creating one single software product (Table 1). In this paper, we number the
startups from ‘ST11’ to ‘ST18’, to differentiate them from the startups that participated
our previous study [8].

Second Phase. In the second phase we interviewed four entrepreneurs of four other
small startups to evaluate the MVUX framework created in the first phase (Table 2).
H15 and H16 worked full time in startups, while H14 and H17 were employed also
outside their startups. Interviewees H14, H15 and H16 worked as UX designers. H16
was the CEO of ST21, and worked also on product development. All the interviewees
had been developing software products or services in startups.

Table 1. Summary of startups and interviewees participating the first phase. Legend:
CEO = Chief Executive Officer, UXD = User Experience Designer, B2B = Business to
Business, B2C = Business to Consumer, SaaS = Software as a Service.

Startup Interviewees Company
established

Size of
startup

Product Market

ST11 H01 (CEO) 2013 1 Online marketplace B2B,
B2C

ST12 H02 (CEO),
H03

2014 6 Online marketplace B2C

ST13 H04 (UXD) 2014 4 Online community and
marketplace

B2B,
B2C

ST14 H05, H06
(CEO)

2014 2 SaaS for pet owners B2C

ST15 H07 (CEO),
H08

2011 2 Automation software B2B

ST16 H09 (CEO) 2014 5 Mobile sports
application

B2B,
B2C

ST17 H10, H11,
H12

– 3 Mobile personal
finances application

B2C

ST18 H13 (UXD) 2015 3 Mobile social
application

B2C

70 L. Hokkanen et al.

4 Findings

4.1 Elements of MVUX

Those startups participating in the first phase were creating or had recently created
limited versions of their product. UX goals of these product versions varied among
startups depending on what they sought to achieve with the product version. Table 3
presents the hierarchical categorization of low-level elements mentioned by intervie-
wees and then grouped to form mid-level elements, and how mid-level elemenst were
further grouped to form the main elements of MVUX.

The most common goal was that the product UX should be intuitive to use (with six
low-level elements). Furthermore, it was considered necessary to create a UI that was
simple (5) and easy to use (5) to enable smooth start for the user. For the B2B case of
ST15, in which the acceptance of end-users was important for convincing the pilot
customer, H07 commented: “The product had to be so easy to use that everyone would
agree to start using it. That was the first requirement.” [H07] There was more diversity
in how startups wanted the user to experience the product: humane (4), visual (5) or
having a feel of novelty (3). Depending on the origin of the product idea, the early
version of the product could also be built to fulfill the entrepreneur’s needs. H06 from
ST14 explained that their first version was developed to serve their own interests: “We
thought technical looking graphs would be cool and bring a sense of high-tech. […]
Then we realized normal people don’t want to see that. You should have like soft high-
tech. The high-tech Apple has, and not like laser beams.” [H06]

Hooking, or making the user to stay and want to come back was mentioned three
times as well. These were related to needs to gain data that proved interest in the
product, or showed how users behaved with the UI. Goals related to the product being
functioning or technically working were mentioned three times. Depending on the
product idea, communicating that the solution and application was credible (4) or
efficient (3) was considered important by some startups (ST11, ST14, ST17) while for
others it did not matter. For example, in the case of mobile personal finances appli-
cation (ST17), it was crucial the product would be perceived as something the user can
trust from early on.

Table 2. Participants of the second phase interviews.

Startup Interviewee Experience in
entrepreneurship (Years)

Education

ST19 H14 3 Bachelor of Interactive
Technology

ST20 H15 3 Bachelor of Arts and Media
ST21 H16 3 PhD, Interactive Technology
ST22 H17 2 Master of Science student,

majoring in UX

Minimum Viable User EXperience 71

Table 3. Elements of MVUX

Main element Mid-level element Low-level element

Attractive Visual (5) Visual (ST14)
Visual experience (ST16)
Good visual appearance (ST11)
Modern visual appearance (ST13)
Not technical looking (ST14)

Humane (5) Likable enough (ST12)
Storytelling (ST13)
Personal (ST17)
Easy to approach (ST14)
Cozy and warm (ST14)

Novel (3) Fresh (ST12)
Differentiation from regular services
(ST13)

Strong colours to differentiate (ST11)
Hooking (3) Gamification (ST18)

Hooking (ST13, ST18)
Approachable Intuitive (6) Familiar UI elements (ST13)

Familiarity (ST14)
Intuitive (ST17)
No learning curve (ST18)
Understandable (ST18)
Explicit (ST16)

Easy (5) Easy to browse products (ST13)
Easy to use (ST12, ST15, ST16, ST18)

Simple (5) Simple (ST12, ST14, ST15)
Simple design (ST11)
Minimal design (ST11)

Professional Credible (4) Premium (ST17)
Reliable (ST11)
Secure (ST17)
Credible (ST11)

Functioning (3) Functioning (ST15)
Smooth (ST17)
Device independence (ST14)

Efficient (3) Compact (ST14)
Fast (ST17)
See by glancing (ST14)

Selling the
Idea

Introducing the idea (5) First impression (ST17)
Introducing the idea (ST11)
Example pictures (ST11)

(Continued)

72 L. Hokkanen et al.

Being able to introduce the product idea and show the value in it was one of the
mid-level elements abstracted from the low-level elements. Goals considering brand
creation and getting fans for the product included four low-level elements. In case of
ST11, starting to create positive word of mouth influenced how the UX was designed.
H02 told that he would like users to see the product as exciting so that they would tell
their friends about it.

4.2 MVUX Framework

The elements four main elements of MVUX are Attractiveness, Approachability,
Professionalism and Selling the Idea. Classification of mid-level elements into these
categories is demonstrated in Fig. 1. At the bottom of the Fig. 1 is Selling the Idea
which is the main aim of MVUX since it offers the startup a possibility to get feedback
from users who actually understand the product idea. The three other main elements

Table 3. (Continued)

Main element Mid-level element Low-level element

Lobbing (ST15)

Solution (ST12)
Building brand & fan base
(4)

Traction (ST12)
Exciting (ST12)
Social (ST17)
Word of mouth (ST12)

Fig. 1. MVUX framework for supporting early product development in startups.

Minimum Viable User EXperience 73

(Attractiveness, Approachability, and Professionalism) create the foundation for the
user to be interested in the product and to start using it. These three elements can also
be seen affecting the user in different phases of getting to know the product. The first
impression of the product is influenced by making the early product version attractive.
With approachable elements, the usage is made easy and comfortable. Giving a pro-
fessional image of the product, and the startup, is the result of a well-functioning,
efficient product.

4.3 Validation of the MVUX Framework

Impressions on the MVUX Framework. Interviewees considered that the elements
of the framework cover well the needs for UX in an early product version. H16 thought
that having a framework to guide developing UX for new products in startups would be
very useful. The importance of different elements was discussed with the interviewees.
According to H14, the element Selling the Idea communicated that the attributes
enabling to sell the product need to be taken into consideration also in UX design. In
contrast, H15 felt that selling the product can be done by marketing it and thus it does
not require having good UX or even the product itself in the beginning– even though
building the planned product might then be too difficult for the startup team (H15).
Optimization of internet marketing can help in introducing the idea and creating a
(fan) community (H15).

Being able to communicate the value proposition of the company was mentioned by
H14 as a critical part of the early phases of their startup, and this was mainly done with
text on web pages. H16 mentioned that various means are required to convince dif-
ferent stakeholder groups since buyers and users can be in very different positions.
However, in addition to being able to evoke buyers’ interest, the importance of users
accepting the new product was brought up by H14, H15 and H16. Attractiveness and
Approachability were considered as important parts of an early product version.
However, H15 commented that having too polished visual design can create false
expectations for the completeness of the product. For Professionalism, H15 and H16
both thought that it can be achieved - and is strongly affected by – other functions of
the company such as marketing or personal contacts to companies in B2B markets, or
in the case of B2C market by who recommends the product to the user.

Usefulness of the MVUX Framework. The possibility to use MVUX framework
when building the early product versions was discussed with the interviewees. H15,
H16 and H17 said that startups could benefit from using a framework to remind
themselves of where to focus in UX. However, the importance of each element depends
on the product that is used. Also, the meaning and perception of each element is
subjective. Furthermore, measuring users’ perception of the product is necessary for
understanding whether the intended UX was achieved in the product. While all
interviewees regarded talking with users as the most valuable asset in creating good
UX, H16 also stated that they could imagine using the framework to evaluate if the UX
is good enough. Evaluation could be done by the startup team or with users by
lightweight methods. To support the use of framework, H14, H16 and H17 thought that

74 L. Hokkanen et al.

practical advice and examples would be needed to design graphical elements that
support the wanted UX. However, graphical style was seen as something that can be
easily created with existing tools for UI development as well as by utilizing image
banks (H14, H15). H16 wished that the MVUX framework should indicate the iterative
nature of creating products in startups. Also H14 and H15 mentioned iterative process –
starting form early releases - to be essential for successful product development in
startups.

5 Research Validity

Since our study was qualitative, we assess our research quality in terms of credibility,
transferability, dependability, and conclusions confirmability [16].

Credibility. We identified no major threats to credibility. Since the participants
themselves wrote down the elements they considered essential for the UX of early
versions, the study is less prone to interpretation error. However, we did not discuss the
MVUX framework with participants of the first phase to evaluate interpretation issues.

Regarding the transferability of the results to other contexts, our study was con-
ducted with 12 small Finnish software startups. We consider that our descriptive
findings are transferable to similar startups. However, as startups – to a certain degree –
reflect the entrepreneurs themselves; personal characteristics may reduce the transfer-
ability of the results. In addition, when transferring the MVUX framework to other
contexts, product type and the user must be considered. Transferability of the MVUX
framework should be further analyzed with other startups.

Threats to dependability include that the studied startups did not form a random
sample, instead convenience sampling was utilized. However, we utilized open sam-
pling method in which new participants are recruited after interviewing the previous
one to increase variation in the sample. Despite concentrating on Finnish startups, our
study increases richness of related research that has been conducted, for instance, in
Ireland [3] and in Ecuador [10].

Finally, threats to confirmability include that a single researcher planned, con-
ducted and analyzed the study. The researcher, however, reflected with other
researchers in every phase of the study. Finally, the MVUX framework was audited in
a group of three researchers.

6 Discussion

Our contribution is in proposing a framework of UX elements that are essential to the
early product versions startups create. Considering that the related research on startups
in general and especially on their UX work is very limited, our study offers new insight
both for the academia and for startups. In startups, the elements of MVUX could be
used to guide the UX design of early product versions. Especially in the early phases,
startups benefit from lightweight methods – such as promoted by [14] – and could also
use MVUX framework to support the design decisions. However, further research

Minimum Viable User EXperience 75

should be done to understand and validate how MVUX can be used to support startups’
UX strategy. Our initial validation shows that using MVUX framework with light-
weight tools for implementing graphics design, and for measuring the perceived
experience, would be beneficial in creating early product versions.

The goals and key qualities for UX of the early product versions had recurring
themes from which we abstracted the elements of MVUX. Startups had different goals
for what they wanted to achieve with their early product versions [7], and, accordingly,
goals for UX varied. As reported in [7], startups also had different amounts of acquired
understanding of their target users as well as previous validation of the product idea.
This provided a wide scale of goals and qualities that reflected the different situations
the startups were in. The four main elements of MVUX that we found are Attrac-
tiveness, Approachability, Professionalism, and Selling the Idea.

Based on our evaluation of MVUX framework with startup representatives that had
expertise in UX, the MVUX framework covers the most important elements of UX in
the early stages of startup’s product development. However, the level of importance of
different elements varies in products. Additionally, comparing the elements to our
assumptions in the beginning of the study we can see how they are connected. We
assumed that to communicate the product idea and UX well enough, the user should be
able to perform the core use cases that answer to user’s needs. Furthermore, we
estimated the UX in these use cases should be at a satisfying level that does not disturb
the user. These are in line with the elements Approachability and Professionalism that
aim to provide trouble-free UX that shows the user that the product is trustworthy. Our
third assumption for MVUX was that it needs to enable startup to gain feedback and
data for validation and further development. This would be achieved through elements
of Selling the Idea and Attractiveness. The element Attractiveness has a role in getting
users interested in the product as well as hooking them to keep using the product.
Selling the Idea part needs to be in place to raise interest in users, to communicate the
product idea clearly, and to show how the product creates value to user so they will
keep using the product. Implementation of elements of Attractiveness and Selling the
Idea enables continuous data collection from longer usage as well as users being able to
give feedback on the product idea while having no confusion on what the product is
about. However, our initial assumptions did not emphasize the attractiveness and good
visual design of the product, while the results of this study show that they are con-
sidered important in startups.

These results serve to create understanding of how UX should be taken into con-
sideration when startups create their early product versions that are used by real user.
Our study consisted of 12 Finnish-based companies so companies’ motivations and
goals are influenced by the Finnish business and startup culture. Furthermore, the
end-users’ preferred design elements may be influenced by the culture. Further research
is needed to validate how well the discovered elements suit to the needs of startups and
end-users in general.

76 L. Hokkanen et al.

7 Conclusions

In this paper we introduced the results of our two-phase interview study of 17 entre-
preneurs from 12 startups. We presented the framework of Minimum Viable User
eXperience (MVUX) that represents ways in which UX can be focused on already in
early product versions. To gain value from building early product versions, MVUX
enables the startup to collect meaningful feedback and data for validating and further
developing the product idea. We abstracted the elements of MVUX through a
bottom-up analysis of startups’ goals and key elements for UX of early product ver-
sions. From these elements, a framework for supporting UX design in early product
development was established. In the second phase of the study, the constructed
framework was evaluated with experts of both entrepreneurship and UX. As a con-
clusion, we present the MVUX framework where the main elements of MVUX were
defined as Attractiveness, Approachability, Professionalism and Selling the Idea.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any changes
made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Paternoster, N., Giardino, C., Unterkalmsteiner, M., et al.: Software development in startup
companies: a systematic mapping study. Inf. Softw. Technol. 56(10), 1200–1218 (2014)

2. Sutton, S.M.: The role of process in a software start-up. IEEE Softw. 17(4), 33–39 (2000)
3. Coleman, G., O’Connor, R.: An investigation into software development process formation

in software start-ups. J. Enterp. Inf. 21(6), 633–648 (2008)
4. Blank, S.: Why the lean start-up changes everything. Harv. Bus. Rev. 91, 63–72 (2013)
5. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to

Create Radically Successful Businesses. Random House LLC, New York (2011)
6. York, J.L., Danes, J.E.: Customer development, innovation, and decision-making biases in

the lean startup. J. Small Bus. Strategy 24(2), 21–39 (2014)
7. Hokkanen, L., Kuusinen, K., Väänänen, K.: Early product design in startups: towards a UX

strategy. In: Abrahamsson, P., et al. (eds.) PROFES 2015. LNCS, vol. 9459, pp. 217–224.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-26844-6_16

8. Hokkanen, L., Väänänen-Vainio-Mattila, K.: UX work in startups: current practices and
future needs. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol.
212, pp. 81–92. Springer, Heidelberg (2015)

Minimum Viable User EXperience 77

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://dx.doi.org/10.1007/978-3-319-26844-6_16

9. Füller, J., Schroll, R., von Hippel, E.: User generated brands and their contribution to the
diffusion of user innovations. Res. Policy 42, 1197–1209 (2013)

10. Sánchez-Gordón, M.-L., O’Connor, R.V.: Understanding the gap between software process
practices and actual practice in very small companies. Softw. Qual. J. 1–22 (2015). Online
First Articles (ISSN: 0963-9314 (Print) 1573-1367 (Online))

11. ISO: 9241-210:2010. Ergonomics of Human System Interaction-Part 210: Human-Centred
Design for Interactive Systems. International Standardization Organization (ISO).
Switzerland (2009)

12. Hassenzahl, M.: The interplay of beauty, goodness and usability in interactive products.
Proc. HCI 19(4), 319–349 (2004). Lawrence Erlbaum Associates

13. Väänänen-Vainio-Mattila, K., Roto, V., Hassenzahl, M.: Towards practical user experience
evaluation methods. EL-C. In: Meaningful Measures: Valid Useful User Experience
Measurement (VUUM), pp. 19–22 (2008)

14. May, B.: Applying lean startup: an experience report: lessons learned in creating &
launching a complex consumer app. In: Agile Conference (AGILE), pp. 141–147. IEEE
(2012)

15. Klein, L.: UX for Lean Startups: Faster Smarter User Experience Research and Design.
O’Reilly Media Inc, Newton (2013)

16. Guba, E.G.: Criteria for assessing the trustworthiness of naturalistic inquiries. ECTJ 29(2),
75–91 (1981)

78 L. Hokkanen et al.

Team Portfolio Scrum:
An Action Research on Multitasking

in Multi-project Scrum Teams

Christoph J. Stettina1,2(B) and Mark N.W. Smit2

1 Centre for Innovation, Leiden University,
Schouwburgstraat 2, 2511 VA The Hague, The Netherlands

c.j.stettina@fgga.leidenuniv.nl
2 Leiden Institute of Advanced Computer Science, Leiden University,

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. Multi-project agile software development is a relatively new
area of research. While original Scrum caters to co-located teams work-
ing on a single project, multi-project Scrum teams are a day-to-day
reality, especially in small organizations. Multitasking across projects
is frequently associated with loss of effectiveness, but this assumption
is not sufficiently supported by empirical evidence. In order to better
understand the phenomenon, we review existing literature across scien-
tific domains and execute an action research project. Our findings show
that the Team Portfolio Scrum (TPS) practice designed to support mul-
titasking across projects is perceived to be useful, but with an associated
increase in overhead.

Keywords: Agile software development · Scrum · IT project gover-
nance · Project portfolio management · Task-switching · Multitasking

1 Introduction

Should agile teams work on multiple projects simultaneously? While Scrum pro-
vides an example of how to execute individual software projects outside of plan-
driven bureaucracies, the search for new organizational forms continues [1].

Scrum has been widely associated to cater well for a sweet-spot of co-located
project teams working on a single project, with a pre-defined project scope and
budget [2,3]. In particular, it stresses the need for teams to work on a single
product per sprint [4]. Nevertheless, working on multiple projects during each
sprint is a common reality [5]. For example, small companies with a small con-
tract value and a large customer base are likely to accept multiple projects at
the same time. Also, projects can be simply too small to fully occupy a team
for the duration of a sprint. However, despite common sense across practitioners
and anecdotal evidence implying a decrease in efficiency, there is little empirical
evidence on teams working on multiple projects in parallel and the impact of
multi-tasking.
c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 79–91, 2016.
DOI: 10.1007/978-3-319-33515-5 7

80 C.J. Stettina and M.N.W. Smit

In this article we (1) review empirical evidence on multitasking and task
switching across different scientific domains, (2) propose the practice of Team
Portfolio Scrum (TPS) and the role of the Team Portfolio Owner to help lowering
costs of task switching, and (3) execute an action research project to understand
the challenges of its introduction in practice.

2 Background and Related Work

While our understanding of Scrum in individual projects is quite elaborate, there
is comparably little research on agile methods in multi-project and multi-team
organizations [1,6]. In particular, the majority of literature on agile software
development assumes an environment where a software developer or team works
on only one project at a time. While most reports advise this [7], there is little
empirical evidence on agile teams working on multiple projects. To illustrate our
case, Table 1 shows an overview of the agile methods discriminated by either
a single team or multiple teams that are working on either a single project or
multiple projects. In this paper we address the case of Team Portfolio Scrum
(TPS), the case where a single team works on multiple projects simultaneously.

In order to better understand the challenges of multitasking across different
projects we will now review existing evidence across the fields of (1) software
development, (2) psychology, and (3) management science.

Table 1. Overview of agile methods across different organizational contexts

A single project/product Multiple projects/products

Single team working on Scrum Team Portfolio Scrum

Multiple teams working on Program Management &
Scrum

Portfolio Management &
Scrum

2.1 Software Development: Interruptions and Multiple Projects

Existing software development literature generally considers task switching to
be a wasteful practice that should be prevented whenever possible [8–10].

Working on multiple software projects: A common argument against multi-
project development is that projects produce a revenue stream for the company
at the time of their completion. Finishing them sequentially maximises revenue,
because most often the revenue diminishes over time [11]. Another argument is
that switching between tasks (e.g., across projects) is considered as waste [9]. Con-
crete numbers on the waste are hard to find; practitioners claim a small production
increase from going from one to two projects (70 % to 80 % effectiveness) and a
steady decline in effective hours when adding more projects: 60 % with three, 45 %
with four and 35 % with five simultaneous projects [8]. A study amongst 64 high
tech firms suggests two simultaneous projects is optimal [12].

An Action Research on Multitasking in Multi-project Scrum Teams 81

Task and resource allocation practices: A challenge frequently mentioned
by practitioners is that a team working on multiple projects is burdened with
making decisions on which project to prioritise. Lehto and Rautiainen [13]
describe governance challenges identified in a middle-sized software company.
The role of product owner was described as too much for 5 co-located teams
and was divided into three roles with split responsibilities: Solution managers
(commercial), product owner (technical), resource owner (resource). Nocks [14]
describes the practice to create very small sprints that match the amount of work
per project, but this is countered by the large overhead of meetings per Scrum
sprint. Other sources [15] discuss the need to let the different project managers
negotiate the time allocation, and the need for one person to manage the final
priorities of the projects the team works on and call this a Product Owner. If a
team works on multiple projects, the team should work from one backlog during
the sprint, containing work items from multiple projects [16–19].

Interruptions in software development: Van Solingen et al. [20] found that
every time a software developer is interrupted by others (e.g., individuals from
other or own project team), it costs on average fifteen minutes to get back to
focus on the task he/she was performing. Parnin and DeLine [21] found that
besides the initial delay, the quality of code produced following an interruption
is lower, which corresponds to the residual impact found by psychology studies.

2.2 Psychology: Interruptions and Task Switching

Experimental results on switching between simple tasks: Research has
found that task switching is not simply a cost in time going from one task set to
the other [22]. Instead, the impact of a task switch consists of three components
[23]: (1) the passive removal of the previous task context, (2) preparation for
the new task, and (3) a residual impact. The removal of a task’s context and
preparation for a new task constitute the primary costs measured between the
execution of different tasks. The residual impact is measured as an increased
response time and sometimes increased error rate.

Experimental results show consistently that switching is more difficult if a
complex task is involved. Results are ambiguous for the comparison of switching
from a simple to a complex task and vice versa. Some experiments show that
switching from a simple task to a complex one has increased primary costs [24].
Others show that switch costs are mostly determined by the task that is switched
from [22]. This suggests that the residual impact is mostly determined by the
previous task and that the results for the primary costs are ambiguous. Further,
it matters what kind of stimuli and responses both tasks consist of. In the case
where there is no overlap at all in stimuli and responses, task switching costs
have found to be zero [25]. The more the stimuli and responses overlap, the
greater the impact of the task switch. Furthermore, it has been found that when
performing two task switches shortly after each other, switching back to the first
task has higher switch costs than switching to a third, unrelated task [26].

82 C.J. Stettina and M.N.W. Smit

Complex tasks in knowledge work: Compared to the daily tasks of knowl-
edge workers, the tasks in the controlled experiments performed by psychology
researchers are of a very simple nature, even the more complex ones. This is
of course to make them controllable and repeatable. With these simple tasks,
switch costs are measured in order of milliseconds. The kind of real life switches
that knowledge workers perform are several orders of magnitude more complex,
how does the psychology research map to this?

Some researchers suggest the results for contrived tasks can be generalized
to more complex tasks [26]. We found that in all studies using a combination
of simple and complexer tasks, the latter had higher associated switch costs;
this was found already as early as 1927 [27]. One can assume that the switch
cost increases based on some function over the complexity of the task, however
we could not find such a function. Some practitioner sources claim effects in
the order of minutes which is an indication of such a function and the relation
between task complexity and switch cost.

Task-switching between similar tasks is known to increase stress [28]. Pos-
sible causes might be increasing the number of deadlines because of working
on more tasks and decreasing the time available to meet the deadlines because
of decreased productivity. On the other hand, [29] found that people very com-
monly self-interrupt, which might be a form of self-protection, decreasing fatigue
and increasing performance [30]. In general, there exist various opinions on the
effects of stress on performance [31].

Interruptions, work contexts and office spaces: Interruptions are
omnipresent in the work of knowledge workers. Mark et al. [32] report that
a knowledge worker spends on average only 12 min uninterrupted in a work
context. Another study found knowledge workers spend very little time in one
context and are interrupted before completion 57 % of the time after which they
tasks are resumed on average after 25 min [33]. Interruptions are often harmful,
to a large degree because it takes time to get back into a task or project [34].
Tasks, when interrupted, take longer and have increased error rates [35]. How-
ever, interruptions do not necessarily imply a context switch. Interruptions that
lead to a switch between working spheres (e.g., two unrelated projects) are in
general far more disruptive than interruptions from within the same sphere [32].
Further, Mark et al. [32] show that while co-located individuals (e.g., in open
offices) face more interruptions in general, distributed individuals feel more free
to engage in interruptions on topics that are actually unrelated to their work [32].

3 Research Objectives

While existing literature recommends minimizing the amount of concurrent
projects, this might not be feasible for small companies depending on a large
number of clients. Especially small companies are likely to pursue many projects
simultaneously to keep their customer base satisfied.

An Action Research on Multitasking in Multi-project Scrum Teams 83

Based on existing empirical evidence we may conclude that: (1) working on
multiple external projects increases interruptions and work pressure as team
members have to deal with requests from multiple Product Owners, (2) such
interruptions by Product Owners are expected to be far more disruptive com-
pared to the more frequent interruptions by team members working in the same
project context, (3) the context switching penalty of task switching decreases
performance and lowers code quality, and (4) penalty largely depends on simi-
larity and complexity of tasks.

Considering these facts we can assume that distraction, uncertainty and con-
text switching are likely to increase especially if priorities across different projects
are not clear. Literature suggests that teams working on multiple projects should
work from one backlog during the sprint [16–19]. However, such task prioritiza-
tion practices have been reported to be difficult to establish [13–15].

As such we pose the following research question: What barriers can be met
and what benefits can arise from introducing a task prioritization practice to
support a team working on multiple projects in parallel?

4 Research Method and Conduct

In order to appropriately understand the dynamics of small organizations pur-
suing multiple projects in context, a complex social phenomenon, we decided
to conduct an exploratory action research in the context of a real organization.
Action research (AR) is designed to create knowledge by organizational change
through a collaboration between researchers and practitioners [36]. It does so by
diagnosing the current state, bringing about guided changes and reflecting on
the results to create theory.

To ensure a credible research approach we applied the five principles of
Canonical Action Research [37], as follows: 1. Researcher-client agreement: The
research has been executed as part of a 2 year collaboration with the univer-
sity. This ensured the collaboration of the company and provided the possibility
to bring about change as part of daily routines as well as very frequent obser-
vations. 2. Cyclical process model: We adopted the five-stage process model of
Diagnosing, Action Planning, Action Taking, Evaluating and Specifying Learn-
ing. One full cycle was completed. 3. Theory principle: The theoretical ambition
is to understand task prioritization and coordination practices in agile teams. 4.
Change through action: We supported the case company throughout the entire
project. The second author was a full-time employee at the company facilitat-
ing workshops and discussions. 5. Learning through reflection: Throughout the
project meetings and workshops have been initiated to stimulate discussions
among developers and management by the second author.

Case selection: The study was performed at a Dutch software company build-
ing bespoke custom software for customers. The company consisted of about
20 employees, half of which were software developers. The company had two
teams working for two or more Product Owners nearly all the time. A known

84 C.J. Stettina and M.N.W. Smit

challenge at the beginning of the research. The company had a flat structure,
informal work environment and an open office space. Next to building custom
websites for customers there are two in-house products. The team works on one
of those products but a majority of the time is spent customizing the product
implementation per customer. Greenfield development is rare. Maintenance is
often urgent, with deadlines of one or two days being common. Work load was
always high because of too few developers. The company has been endorsing
Scrum from the beginning, however, struggled with its’ implementation due to
many parallel projects and customer requests.

Data collection and data sources: In order to build up an adequate under-
standing of the organization in context and throughout the action research
project we used the following data sources:
Observations: While embedded within the company, the second author was able
to observe the relevant practices at the company, including: (1) daily stand-ups,
(2) portfolio meetings, (3) ‘master stand-ups’, (4) planning sessions, and (5)
development activities. We conducted structured observations on 41 occasions.
Semi-structured interviews: Next to informal discussions we conducted a total of
19 semi-structured interviews. Three types of interviews were executed: (1) Diag-
nosing and scoping, (2) mid-term, and (3) post-action interviews. The interviews
were conducted with the management and development teams.
Questionnaires: We used bi-weekly questionnaires to create satisfaction graphs
for involved practitioners over time (cf. [38]). The short questionnaires consisted
of several questions using Likert-scales and open fields for additional remarks.
Eight rounds of questionnaires have been collected with staff members.

Data analysis: In contrary to traditional passive qualitative research, the
action itself provides a primary origin of interpretation [36]. To support the
reflection among researchers and involved actors all observation notes, inter-
views and questionnaires were fully transcribed and used in discussions.

5 Action Research

5.1 Diagnosing

Diagnosing started in May 2013 and lasted until December. To understand the con-
text, interviews were held with employees across all roles, resulting in a descrip-
tion of current roles and mapping of involved domains of practice. Generally the
reported problems constituted a lack of structured process connecting the devel-
opment to portfolio level decisions. On average the company has been working on
two ‘very small’ projects and 30 to 40 ‘individual’ to ‘tiny’ sized projects a year.
When the company grew it became very difficult to keep an overview and coor-
dinate these projects effectively. Further, the small teams were linked to multiple
POs exposing them to discussions due to conflicting customer priorities.

An Action Research on Multitasking in Multi-project Scrum Teams 85

During interviews and discussions with developers and management we iden-
tified a number of issues: (1) Development staff is highly distracted, to a large
degree caused by discussions with multiple POs. (2) Little connection of portfo-
lio to strategy. Little coordination across the portfolio leading to suboptimal and
unprofitable choices. Portfolio decisions are made by developers. (3) Poor knowl-
edge management, resulting in overhead and posing a danger to project continua-
tion. (4) Daily maintenance shifts help get maintenance tasks done while keeping
most of the resources focused, however, overhead for working on unknown projects
is high. (5) Hard to keep an overview and deliver work promised to clients.

5.2 Action Planning

Following the diagnosis, management acknowledged that improvements were nec-
essary. In discussions with all actors it became clear that a team having to deal
with multiple POs does not work well because developers end up making deci-
sions about portfolio priorities for a large part of their time. It was concluded
that removing the portfolio decisions from the development staff and limiting
interruptions of staff by management will likely reduce the distraction of team
members and improve portfolio decisions. In early June 2014 an initial plan
was developed based around the following proposals: (1) Introduce agile portfo-
lio management, (2) introduce stable teams, (3) work with true Scrum sprints,
limit task switching, and (4) improve company-wide knowledge management.

Based on that and hints found in practitioner’s literature (cf. [39]), we
designed the Team Portfolio Scrum (TPS) practice and the Team Portfolio
Owner (TPO) role to support the implementation of portfolio management. TPS
is based on a one week Scrum cycle including the usual Scrum practices (e.g.,
Sprint and review, daily stand-ups, retrospectives) in which the PO is replaced
by the TPO. The practice follows characteristics of agile portfolio management
[1] by (1) adding transparency of resources and work items through a Portfo-
lio board, (2) close collaboration based on routines and artifacts enabling fre-
quent feedback-loops across teams and management, (3) commitment to strate-
gically managed portfolios, and (4) team orientation. In Table 2 we summarize
the description and responsibilities of the new role.

5.3 Action Taking

Before introducing the TPO role, a portfolio team, a portfolio board and a
team portfolio backlog were introduced. The TPO role was appointed from one
of the three POs previously working with the team. On June 25 a workshop
was held with the development team and management staff. Initial resistance
arose among the developers as the goal was initially defined around increasing
engineer productivity. In response the goal was rephrased to remove mid-sprint
management interruptions and portfolio level responsibilities from the engineers.

Action taking began on June 30, 2015 with a reiteration of goals during a
lunch presentation. The implementation of the practice was reflected throughout
the project in Retrospective sessions staring on July 4. On August 15, 2014,

86 C.J. Stettina and M.N.W. Smit

Table 2. The team portfolio owner role

Team Portfolio Owner:

Person responsible for the success a team’s project portfolio. Analogously to a
Product Owner, the Team Portfolio Owner (TPO) sets the priorities across
projects during a Sprint. TPO shields team members from internal politics and
different customers pushing project priorities

Responsibilities:

• Coordinates inter-project priorities with the team, portfolio team and customers

• Takes task switching penalties into account in discussions with the team and the
Scrum Master

• Channels multiple projects into a single team backlog

• Guards inter-project priorities (1) when scope changes are needed (work taking
longer/shorter or urgent other work, and (2) during the sprint planning meeting
as the team negotiates work items

• Single channel of communication towards the team, lessening distractions
(outwards communication is at the team’s discretion)

• Attends the portfolio meetings to align priorities with company strategy

• Attends the daily stand-ups to keep up to date with the progress of the team

the team leader left the team for reasons unrelated to the project which had a
big impact on the morale of the team as became visible in our satisfaction graphs.
The action research continued with the practice being perceived as useful. The
following time line outlines the execution of the project:

– May 6, 2013: Diagnosing: Scoping interviews
– December 2, 2013: Action Planning: Discussion of improvement initiatives
– April 15, 2014: Initial presentation of action plan to all employees
– June 9, 2014: Introduction of portfolio management (portfolio board)
– June 24, 2014: Preparation meeting with management and appointing TPO
– June 25, 2014: Workshop with development team and management
– June 30, 2014: Action Taking: Introduction of TPS practice
– July 4, 2014: Retrospective after first sprint
– October 6, 2014: End of Action Taking, beginning of evaluation
– January 1, 2015: Company wide implementation of TPS

5.4 Evaluating

The Team Portfolio Owner (TPO) role was adopted company-wide by our case
company three months after the action research was completed. We consider
this as an indicator for the success of the project. We now return to the research
question in order to evaluate the action research.

An Action Research on Multitasking in Multi-project Scrum Teams 87

Barriers to a team portfolio task prioritization practice: Additional
overhead: In the case company, the hours of a manager, including the TPO,
can not be billed to clients: “As to whether it [the TPO role] is overhead, yes,
per definition, because the work isn’t billable to the client. This is related to
the way clients are billed at this company: actual booked development hours.
Other methods exist that are much more suitable for Scrum [40]. However these
methods assume one project per sprint. Billing might be a general problem for
multi-project software development as is it hard to predict the proportions of
the sprint for each customer in the face of scope changes.

High workload: The TPO reported his high workload at several occasions,
especially towards the end of the action: “..in the beginning I had much more
time to do proper backlog management.”; “it is extremely busy to fulfill this role.”

Benefits to a team portfolio task prioritization practice: Better adher-
ence to company strategy: Due to the oversight the TPO can make better deci-
sions in coordination across the entire portfolio. Yet, choosing the right projects
can be difficult for a small company: “For existing customers we basically have
to do everything, we can’t choose to not do a project. It is useful to decide on
new customers though.”

Removing portfolio level decision making and conflicting decisions from mul-
tiple POs: This benefit of the introduced role functioned very well from the
beginning, as confirmed by observations and multiple actors. Before introducing
the practice, developers had to make decisions and were blamed for those. When
asked about what to do when a task threatens achieving the sprint goals, a
developer commented: “I go directly to the TPO. The TPO manages what tasks
get dropped. This works very well.”

Limiting interrupting requests from multiple POs: Before the change POs
would often come to a developer’s desk asking questions, planning work and
lobbying for projects. As a developer comments: “It is easier for developers to
defend themselves.? and ?[the situation] improved. We have more breathing room
because of the experiment. We can be more focused on software development.”

Specifying Learning. Not more than one large context switch per day: In our
case organization the developers reported a benefit from the introduced TPS
practice. However, also the number of parallel projects increased. Recommen-
dations we found in literature deviate between two [12] parallel projects as an
optimum, and not more than one large context switch per day - thus five projects
per week. However, this largely depends on the homogeneity of the assignments.
Here it is for the TPO and the team to discuss what a reasonable number of
projects is according to: (1) familiarity with the project (architecture, code stan-
dards), (2) homogeneity (domain, application type), and (3) urgency.

TPO needs sufficient mandate: For fast resolving of issues, the TPO needs
to have a complete mandate for choosing between the customers in the current
sprint. A team member said at the beginning: “The role itself has too much
responsibility, at least too much for what the current TPO is mandated for.

88 C.J. Stettina and M.N.W. Smit

This adds a step between the management process: the team signals a problem
to the TPO, the TPO needs to consult with the PO to make the decision. This
means extra overhead for certain tasks. The TPO should define the priorities and
shield the developers from the outside.” The POs appreciated this delegation of
responsibilities at later stages of the project: “I liked it that the TPO could make
the choices.”

Collaboration of TPO and POs: The introduction of the TPO role had a
strong impact on the interaction of POs and teams. The POs had previously
direct access to the teams, and had to go through the TPO as a Master Product
Owner now. It took time to go through the TPO for planning or urgent mainte-
nance: “For me as a PO, the effect was that the planning was less fine grained,
which was something I had to get used to since I’m a control freak. [About closing
the scope] The smaller projects and maintenance are really hard to plan.”

TPO and the Portfolio Team: Knowing the inter-project priorities is very
important for this role. The project portfolio board is the primary tool for the
transfer of this information from the Portfolio Team to the TPO. Attending
the Portfolio Management Meeting gives the TPO additional information and
the possibility to discuss the priorities. The TPO said: “The weekly portfolio
management meeting is very important for this role.”

Limitations. There are two main limitations to this research: First, we present
the results of a single action research study. Credibility of AR lies in knowledge
generated and tested in practice [36]. Generalizations and external credibility
from such AR studies depend on rich storytelling as well as application of AR
guidelines such as CAR [37]. Second, with one developer leaving the team com-
position changed. This resource problem impacted the team, both in getting
more work and lowering morale. However, many action research projects take
an unpredicted course while still providing considerable scientific value [37].

6 Conclusions

In this paper we report on our experiences in introducing a task prioritization
and coordination practice in Scrum teams executing multiple projects simultane-
ously. For teams operating in small companies such as the one presented here it
is difficult to follow traditional Scrum as they are directly exposed to commercial
pressure and customer needs. As such we address an under-researched scenario
outside the ‘agile sweet-spot’ [40] by linking Scrum to a portfolio management
practice [1].

Despite the challenges encountered during this 17 months project, such as
a team member leaving the team, the practice was perceived as useful by all
participants and adopted company-wide after the project. The TPS practice
helped our case organization to align tasks to strategy and limits interrupting
requests to developers by appointing a dedicated Team Portfolio Owner.

To practitioners this paper provides the template of a concrete task prioriti-
zation practice, the barriers and benefits of its implementation. To academia, we

An Action Research on Multitasking in Multi-project Scrum Teams 89

contribute to understanding of new and more agile organizational forms. We add
a literature analysis describing the existing body of knowledge on interruptions
and task-switching across the domains of software development, psychology and
management science. As such we lay the groundwork for further investigations
to quantify the effects of task prioritization and coordination practices in Scrum.

Multitasking seems unavoidable. The presented practice helped to run more
projects simultaneously, however, the involved actors should be aware that it
comes at a high cost. Companies need to make good strategic choices regarding
resources and their allocation to stay viable and sustainable.

Acknowledgments. We thank all the participants for generously contributing to this
study.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Stettina, C.J., Hörz, J.: Agile portfolio management: An empirical perspective on
the practice in use. Int. J. Proj. Manage. 33(1), 140–152 (2015)

2. Azizyan, G., Magarian, M.K., Kajko-Matsson, M.: Survey of agile tool usage and
needs. In: Agile Conference (AGILE 2011), pp. 29–38. IEEE (2011)

3. Kruchten, P.: Contextualizing agile software development. J. Softw.: Evol. Process
25(4), 351–361 (2013)

4. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The scrum primer (2010). http://
assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf. Accessed 12
Aug 2014

5. Payne, J.H.: Management of multiple simultaneous projects: a state-of-the-art
review. Int. J. Proj. Manage. 13(3), 163–168 (1995)

6. Marchenko, A., Abrahamsson, P.: Scrum in a multiproject environment: An
ethnographically-inspired case study on the adoption challenges. In: Conference
of Agile, AGILE 2008, pp. 15–26. IEEE (2008)

7. Highsmith, J.: Agile Project Management: Creating Innovative Products. Pearson
Education, Boston (2009)

8. Wheelwright, S.C.: Revolutionizing Product Development: Quantum Leaps in
Speed, Efficiency, and Quality. Simon and Schuster, New York (1992)

9. Ikonen, M., Kettunen, P., Oza, N., Abrahamsson, P.: Exploring the sources of waste
in kanban software development projects. In: 36th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA 2010), pp. 376–381. IEEE
(2010)

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf
http://assets.scrumtraininginstitute.com/downloads/1/scrumprimer121.pdf

90 C.J. Stettina and M.N.W. Smit

10. Braun, E.: Lean/agile methods for web site development. Online-Weston Then
Wilton 29(5), 58 (2005)

11. Krebs, J.: Agile Portfolio Management. Microsoft Press, Richmond (2008)
12. McCollum, J.K., Sherman, J.D.: The effects of matrix organization size and number

of project assignments on performance. IEEE Trans. Eng. Manage. 38(1), 75–78
(1991)

13. Lehto, I., Rautiainen, K.: Software development governance challenges of a middle-
sized company in agile transition. In: Proceedings of the 2009 ICSE Workshop on
Software Development Governance, pp. 36–39. IEEE Computer Society (2009)

14. Nocks, J.: Multiple simultaneous projects with one extreme programming team.
In: Agile Conference, 5 pp. IEEE (2006)

15. Wiseman, G.: Multiple projects, one agile team (2007). http://www.infoq.com/
news/2007/12/multiple-projects-one-agile-team. Accessed 12 Aug 2014

16. Kathuria, M.: Happy marriage or divorce : What happens if single scrum team has
to handle multiple projects (2013)

17. Levison, M.: Scrum on a small team with multiple “projects” (2013). https://
groups.google.com/forum/#!topic/scrumalliance/8j-5V Cl2aI. Accessed: 12 Aug
2014

18. Dinwiddie, G.: Combined backlog for multiple projects (2007). http://blog.
gdinwiddie.com/2007/12/03/combined-backlog-for-multiple-projects/. Accessed
12 Aug 2014

19. Friedman, J.: Subprojects: Many projects, one team; one project, many
teams (2013). http://blog.assembla.com/AssemblaBlog/tabid/12618/bid/
98674/Space-Manager-Many-projects-one-team-One-project-many-teams.aspx.
Accessed 16 Jan 2015

20. Van Solingen, R., Berghout, E., Van Latum, F.: Interrupts: just a minute never is.
IEEE Softw. 15(5), 97 (1998)

21. Parnin, C., DeLine, R.: Evaluating cues for resuming interrupted programming
tasks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 93–102. ACM (2010)

22. Wylie, G., Allport, A.: Task switching and the measurement of switch costs. Psy-
chol. Res. 63(3–4), 212–233 (2000)

23. Meiran, N., Chorev, Z., Sapir, A.: Component processes in task switching. Cogn.
Psychol. 41(3), 211–253 (2000)

24. Mayr, U., Kliegl, R.: Task-set switching and long-term memory retrieval. J. Exp.
Psychol. Learn Mem. Cogn. 26(5), 1124–1140 (2000)

25. Waszak, F., Hommel, B., Allport, A.: Task-switching and long-term priming: Role
of episodic stimulus-task bindings in task-shift costs. Cogn. Psychol. 46(4), 361–
413 (2003)

26. Mayr, U., Keele, S.W.: Changing internal constraints on action: the role of back-
ward inhibition. J. Exp. Psychol.: Gen. 129(1), 4 (2000)

27. Jersild, A.T.: Mental set and shift. Arch. Psychol. 14, 81 (1927)
28. Wetherell, M.A., Carter, K.: The multitasking framework: the effects of increasing

workload on acute psychobiological stress reactivity. Stress Health 30(2), 103–109
(2014)

29. Lenox, T., Pilarski, N., Leathers, L.: The effects of interruptions on remembering
task information. Inf. Syst. Appl. Res. 5(4), 11 (2012)

30. Keick, K.E.: Cosmos vs. chaos: Sense and nonsense in electronic contexts. Organ.
Dyn. 14(2), 51–64 (1985)

http://www.infoq.com/news/2007/12/multiple-projects-one-agile-team
http://www.infoq.com/news/2007/12/multiple-projects-one-agile-team
https://groups.google.com/forum/#!topic/scrumalliance/8j-5V_Cl2aI
https://groups.google.com/forum/#!topic/scrumalliance/8j-5V_Cl2aI
http://blog.gdinwiddie.com/2007/12/03/combined-backlog-for-multiple-projects/
http://blog.gdinwiddie.com/2007/12/03/combined-backlog-for-multiple-projects/
http://blog.assembla.com/AssemblaBlog/tabid/12618/bid/98674/Space-Manager-Many-projects-one-team-One-project-many-teams.aspx
http://blog.assembla.com/AssemblaBlog/tabid/12618/bid/98674/Space-Manager-Many-projects-one-team-One-project-many-teams.aspx

An Action Research on Multitasking in Multi-project Scrum Teams 91

31. Diamond, D.M., Campbell, A.M., Park, C.R., Halonen, J., Zoladz, P.R.: The tem-
poral dynamics model of emotional memory processing: a synthesis on the neuro-
biological basis of stress-induced amnesia, flashbulb and traumatic memories, and
the yerkes-dodson law. Neural Plasticity 2007, 1–33 (2007)

32. González, V.M., Mark, G.: Constant, constant, multi-tasking craziness: managing
multiple working spheres. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 113–120. ACM (2004)

33. Mark, G., Gonzalez, V.M., Harris, J.: No task left behind?: examining the nature
of fragmented work. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 321–330. ACM (2005)

34. Czerwinski, M., Horvitz, E., Wilhite, S.: A diary study of task switching and inter-
ruptions. In: Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 175–182. ACM (2004)

35. Eyrolle, H., Cellier, J.M.: The effects of interruptions in work activity: Field and
laboratory results. Appl. Ergonomics 31(5), 537–543 (2000)

36. Greenwood, D.J., Levin, M.: Introduction to Action Research: Social Research for
Social Change. SAGE publications, Thousand Oaks (2006)

37. Davison, R., Martinsons, M.G., Kock, N.: Principles of canonical action research.
Inf. Syst. J. 14(1), 65–86 (2004)

38. Stettina, C.J., Heijstek, W., Fægri, T.E.: Documentation work in agile teams: The
role of documentation formalism in achieving a sustainable practice. In: AGILE
2012, pp. 31–40. IEEE, Washington, DC (2012)

39. Singerman, D.: How does scrum work when you have multiple projects?
(2009). http://stackoverflow.com/questions/412525/how-does-scrum-work-when-
you-have-multiple-projects/413061\#413061. Accessed 12 Aug 2014

40. Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in context. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA 2010, pp. 74–88. ACM, NY, USA (2010)

http://stackoverflow.com/questions/412525/how-does-scrum-work-when-you-have-multiple-projects/413061#413061
http://stackoverflow.com/questions/412525/how-does-scrum-work-when-you-have-multiple-projects/413061#413061

Quality Assurance in Scrum Applied to Safety
Critical Software

Geir K. Hanssen1(✉), Børge Haugset1, Tor Stålhane2,
Thor Myklebust1, and Ingar Kulbrandstad3

1 SINTEF ICT, Strindveien 4, 7465 Trondheim, Norway
{Geir.K.Hanssen,Borge.Haugset,Thor.Myklebust}@sintef.no

2 NTNU, Sem Sælandsvei 9, 7491 Trondheim, Norway
stalhane@idi.ntnu.no

3 Autronica Fire and Security AS, Haakon VII’s Gate 4, 7041 Trondheim, Norway
Ingar.Kulbrandstad@autronicafire.no

Abstract. Various agile methods have several quality assurance mechanisms
embedded in the process itself, without any explicit QA role. In principle, the
team takes care of quality assurance during sprints and as part of daily stand-ups,
sprint reviews and retrospectives. We have defined SafeScrum, a variant of Scrum
with some additional XP techniques that can be used to develop safety-critical
software and have the software certified according to the IEC 61508 standard.
This imposes a load of additional requirements on the process. In a recent indus‐
trial case, we have experienced that the quality assurance mechanisms in Scrum
becomes insufficient. We have therefore analyzed the standard, consulted an
independent assessor and worked with the Scrum team to identify necessary
additional tasks for a team-internal QA role to be added to the SafeScrum process.

Keywords: Safety critical software · Scrum · Safescrum · IEC61508 · Quality
assurance

1 Introduction

Agile software development methods and in particular variants of Scrum, often in
combination with XP techniques, has had a large uptake in the software industry over
the past decade. One of the many aspects of Scrum and similar approaches is that quality
assurance is embedded in the process itself, and not explicitly documented. A Scrum
team is supposed to be self-sustained, not having to rely on an external quality manage‐
ment or assurance function like a QA manager or QA department. The latter has been
a typical role in line organizations doing plan-based development [19, 20]. First of all,
a Scrum project enforces visibility and has frequent evaluation of status, progress and
problems, which is used to re-plan and improve the project based on the most recent and
updated knowledge. Scrum also has dedicated activities for managing quality issues
with both the product under development and the process itself; each short work-period,
or sprint, concludes with a sprint review and potentially also a retrospective. The former
evaluate the results so far and the latter evaluates the process itself to identify

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 92–103, 2016.
DOI: 10.1007/978-3-319-33515-5_8

improvement needs and opportunities. Scrum also strongly emphasizes frequent inter‐
action with the customer or the problem owner, and XP stresses continuous and frequent
testing. This is necessary to ensure that the functionality as well as the quality of the
system meets requirements and expectations. In short– Scrum can be seen as a combined
and self-sustained planning, development, and quality assurance process, although
lacking traceability.

Scrum was initially designed for small development projects with small self-
managed teams, solving small-scale problems. Research from the past decade provides
examples that this works well and that Scrum projects are more effective and flexible
than plan-driven projects [4]. However, the trend in the software industry today is that
Scrum is being used in increasingly more complex settings. We see cases where globally
distributed Scrum teams collaborate in developing large software systems [6]. We also
see that Scrum is being used for development of safety-critical systems, which have to
comply with strict quality and safety standards [5, 14, 18].

This trend of increasing complexity means that the core principles of self-sustained,
multi-disciplinary, and self-managed teams are challenged. In this paper, we look into
how this development affects the embedded quality assurance function in Scrum. We
base our analysis and discussion on an ongoing industry case where a Scrum team
develops a high-integrity fire and gas detection system where the goal is to achieve a
SIL3 (SIL: Safety Integrity Level) rating according to the IEC61508 standard [7]. The
Scrum process used by the team is adjusted and continuously refined to match the
requirements of the IEC61508 standard; we name this variant SafeScrum [18] (see
Sect. 4 for more details).

In the following, we present some background on the inherent challenges when
developing and certifying safety-critical systems, on how SafeScrum can be adapted to
support this process and the role of quality management and assurance. We then look
into our case to show how this is being done in practical terms before we use our insights
from the case to discuss how Scrum can be enforced to manage quality in high
complexity settings.

2 Quality Assurance in Agile Software Development

Mnkandla and Duolatzky gives a thorough discussion of the use of the term quality [11].
Most of the definitions identified by the two authors have a production focus and are not
relevant for development. The concept of quality– software or otherwise – is defined by
ISO 9000 as “the totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs”. According to this definition, the main concept of quality is
to make the customer happy. Deliver a quality product thus means to deliver a product
that is according to the customer’s specified and implied requirements. Sticking with
older definitions – e.g., quality is conformance to specifications – ignore the customer
and is not a smart move in a competitive industry.

Inherent in the plan-driven approach to software development is the idea that all
requirements are known at the start of the project. With faster innovation, more rapid
requirement changes, and more volatility allowed in the prioritized tasks, this idea is

Quality Assurance in Scrum Applied to Safety Critical Software 93

void. Plan-driven development creates a significant risk that the users’ requirements
remain unclear or that important opportunities for innovation are missed. The problem
is that up-front requirements become increasingly irrelevant as the pace of innovation
quickens and customers’ expectancy to fit-for-use rises. Consequently, the discrepancy
between software practice, end-users and traditional requirements specification widens.
Requirements that are out of sync with real needs has been claimed as a common cause
of terminated IT projects [13].

Agile development attempts to allow for frequent updates of the requirements as the
customer’s needs and problem understanding develop over time, thus increasing the
probability of delivering improved product quality.

3 Safety Critical Software Development

A system is defined as safety-critical if a failure may result in death or severe injury to
people, loss or severe damage to property, or harm to the environment. Examples of
such systems are fire alarm systems (failing to sound an alarm may cause casualties) or
railway signaling systems (signal error may lead to collisions etc.). Safety critical
systems are found in almost all parts of our daily lives, from transportation, to energy
systems, in medical devices etc. Traditionally, such systems have been hardware reliant,
but as hardware has become more powerful, flexible and programmable, the trend is that
larger parts of the total system are implemented in software, meaning that the software
complexity is growing. For example, the top-notch fighter plane of the forties, the Spit‐
fire, had zero lines of code. Today, the F-35 fighter has about 8 million lines of code
where most of them comprise what could be defined a safety critical system [10].

Safety critical systems may be classified with a SIL value, defining the level of
performance of the safety function of the system, or in other words, how likely the system
is to operate as intended. The classification of levels varies between different standards,
but for IEC61508, which is relevant to our case, SIL is divided from 1 to 4 where SIL
4 is the highest safety integrity level.

In order to use a safety critical system, the customer needs a certificate. A “software
certification demonstrates the reliability and safety of software systems in such a way
that it can be checked by an independent authority with minimal trust in the techniques
and tools used in the certification process itself” [3]. The certificate is an independent
document that ensures that the system operates as specified and according to the safety
standard. This introduces the role of the assessor, an independent third party with the
responsibility of assessing and eventually certifying that the development process
leading to the system is compliant with the requirements in the standard. It is important
to understand that a standard like IEC 61508 mainly has requirements for the process.
As stated in the introduction: “This International Standard sets out a generic approach
for all safety lifecycle activities for systems comprised of electrical and/or electronic
and/or programmable electronic (E/E/PE) elements that are used to perform safety func‐
tions.” E.g., the section on architecture contains material on how to select architecture
but no material on what the architecture should look like.

94 G.K. Hanssen et al.

In practical terms, the standard is a list of good software engineering practices [15].
These must be followed or argued irrelevant. The designated SIL determines which
requirements that are recommended or highly recommended. The assessor bases the
assessment on proof of compliance, which are various types of information showing
how requirements have been met. Providing such documentation imposes a large extra
effort on the development project and in some cases it may actually constitute up to 50%
of the total development cost [14].

Looking back at the past decades, we see that the development process of safety
critical systems is optimized for hardware development, where design decisions have
to be made early and locked prior to implementation to avoid late change in design,
which may impose very high costs. Normally some variant of the V-model is used to
guide design, implementation, testing and validation.

As shown in Fig. 1, integration and validation testing is done on the right side of the
V–meaning that a large part of the code-related documentation is made after coding.
While a natural approach for most hardware development, this may impose problems
for an agile software development project. Here, new or changed requirements will often
lead to changes in the low-level design, which may then lead to changes in the code. In
these cases, it is important to have well-documented code plus traceability from require‐
ments, via architecture and design down to code.

Fig. 1. The V-model

During software development is it important to control size and complexity.
Complexity is obvious – high complexity hinders understanding and can thus lead to
errors. However, experience shows that sheer size also will create problems for devel‐
opers since a large code volume makes it difficult to keep the overview, which again
leads to coding errors.

Quality Assurance in Scrum Applied to Safety Critical Software 95

4 SafeScrum – Agile Development of Safety Critical Software

SafeScrum is a variant of the well-known and extensively used Scrum development
model [16] where some additional elements are added to be able to fulfill the process
requirements from the IEC61508 standard [18]. Based on a thorough investigation of
the requirements in the standards part 3 which defines the software part of the total
system [14], we propose a set of extensions to make Scrum applicable to development
of safety critical software. Firstly, there are two backlogs, one for functional require‐
ments and one for safety requirements. Functional requirements may change frequently
whilst safety requirements normally are stable and even reusable between projects and
products. Relationships between these are maintained to keep track of which safety
requirements that are affected by which functional requirements. Secondly, SafeScrum
needs to be a traceable process. All decisions and changes throughout development must
be documented, stored and made available to the assessor. The same goes for code
reviews where all remarks and how they were resolved needs to be kept track of. Thirdly,
each sprint encompasses a validation of the safety of the present system. As part of the
sprint review of each sprint, the product backlog may be updated. In cases where a
change is considered to affect the safety of the system, a change impact analysis (CIA)
[17] is done – and documented. Here the two backlogs come in handy as a mean to
identify how a change related to a functional requirement potentially influences a safety
requirement. Besides these extensions, common features of agile practices are important,
like test-driven development (important to establish high test coverage), regular work
iterations, daily stand-ups, and continuous integration.

A series of sprints replace the ‘coding’ part and the ‘evaluation’ part of the V-model.
This means that documentation is produced continuously and as a part of development
and not as a finalizing phase as described by the V-model. SafeScrum simply replaces
the bottom and right side of the V-model. This is fundamentally important for software
development and enables a project to become more flexible with respect to changes and
still be able to provide the needed documentation and traceability to the assessor.

Adding these new elements to Scrum is necessary to meet the requirements of the
IEC61508 standard. However, this also compromises the concept of a lightweight
process as a lot of extra work, checkpoints and especially documentation are added. The
most important countermeasure is clever and efficient use of tools to automate as much
of the extras as possible. We have identified four classes of tools. Firstly, we need a tool
to support process and workflow management, like defining, assigning and following
up tasks, their responsibilities and order, etc. Put simply, this is a tool to automate the
Scrum board. Secondly, we need tools to establish and maintain traceability of require‐
ments, tests and code. Even a small project will generate large amounts of information,
which requires tool support. Thirdly, we need dedicated tools for managing information
like design, code and architectural documentation. Fourthly, we need tools to support
code quality assurance, which is particularly important with respect to IEC61508. This
includes test coverage analysis, static code analysis and test automation. There are plenty
of tools to choose from and many of them are flexible and can be combined and linked
to create a tool chain to support the SafeScrum process. The IEC61508 standard has

96 G.K. Hanssen et al.

requirements to tools and should be checked (IEC61508-3, Sect. 7.4.4, and table A3).
The walkthrough of our case will provide concrete examples of such a tool chain (Fig. 3).

Fig. 2. The SafeScrum model

5 A SafeScrum Case

The authors have been working with Autronica Fire & Security for about two years in
order to detail and trial the SafeScrum process in a real SIL3 industrial case. This
collaboration is part of a large R&D project, partly funded by the Research Council of
Norway. The collaboration is organized as an action research project [2] and the case
being described here shows some of the findings, so far. All data are collected, managed
and reported according to a joint R&D contract.

Autronica Fire & Security [1], with 380 employees, is an internationally leading
provider of fire and gas detection systems. A large part of the business is offshore instal‐
lations at oilrigs and ships where demands for safety performance are high. Our case is
a project developing new software for a fire detection system, SIL 3.

The authors have followed the case project from the start and collected data in the
form of 1) observations of sprint review and planning meetings (11), 2) analysis of
documentation like project plans and requirements documents, and 3) interviews and
discussions with the Scrum team and related roles. This also includes the assessor (a
TÜV organization), which has been asked to comment on our development process
(SafeScrum). This dialogue has been important to ensure that the development process
and the documentation it produces meet the expectations and is aligned with the
IEC61508 standard. The product being developed by the case project itself is however
not yet certified – the completion is still some years ahead. In addition to this participative
role in the shaping of SafeScrum, the researchers also made an analysis of the standard

Quality Assurance in Scrum Applied to Safety Critical Software 97

to identify any issues with respect to using an agile method [18]. Such issues were
discussed with the Scrum team to ensure compliance. The SafeScrum process has
emerged through practice. It started out by using only a few fundamental principles, like
short iterations and daily standups. Based on growing experience and dialogue between
researchers, team members, the product owner and the external assessor, the SafeScrum
process and related tools are continuously being refined and extended.

The project started development in January 2014 with a Scrum team of five experi‐
enced and co-located developers, one of them also acting as Scrum Master. Previous
experience and education in Scrum were low – only one of the developers had some
experience with Scrum from his previous workplace. Other than that the team read a
basic introduction [8], and in addition the researchers had a few seminars at the case
company, addressing agile principles, research and examples.

This was the first attempt at applying Scrum in the development department and
started out with a simplistic process. Sprint duration was set to four weeks. The team
shared workspace with separate offices and a common area in between and used a
whiteboard with stickers to track work items and their flow from planned, in progress
to done. The product owner role was managed by a company internal with extensive
knowledge of the market, the requirements, and the technology. The team focused on
producing working code and unit tests from early on and a put emphasis on improving
the Scrum process continuously. Each sprint ended with a sprint retrospective where the
process was evaluated by the team, adjustments were made and new tools were trialed
and added/removed as needed.

After a few sprints, Jira was introduced to manage the workflow and thus replaced
the manual scrum board. RMsis, a plug-in for Jira, was used to establish traceability of
the requirements management process. Confluence was used to support team collabo‐
ration and to document the sprints, e.g. by storing memos from sprint reviews. Stash
and Git was used to manage software version control and code reviews and Bamboo
was used for continuous builds, tests and release management. Doxygen was used for
maintaining design and code documentation. In addition, a set of tools was used for
additional quality assurance; Gtest and Gmoc were used to manage unit tests, Squish
Coco was used for code coverage analysis and QAC/QACPP for static code analysis.

In total, these tools constitute a tool-chain where some of the tools are linked and
operate as a greater whole. In particular, Jira serves as a hub in the tool chain. There are
many alternative tools and ways of composing them, but in our case, this setup enables
the Scrum team to be both agile and to automate many of the additional requirements
imposed by the IEC61508 standard. Figure 3 shows how the tools are inter-related.

98 G.K. Hanssen et al.

Fig. 3. The tool-chain supporting the SafeScrum process

6 The Need for Extra Attention to Quality Management

The shaping and introduction of SafeScrum at the case company has been done step by
step and by building on growing experience. The described process extensions and the
tool chain made the team able to produce and maintain the information required to
achieve a SIL3 certificate. However, after a few months, and sprints, of operation we
saw that this also puts a burden on the team, and in particular on the Scrum master who
spent an increasingly large amount of time making sure that development was compliant
with IEC61508. Some corrective actions were made but there was a concern that some
glitches happened. It was also not clear what the most important considerations to make
were. In short, the project needed some clarification on quality assurance, and asked the
researchers for assistance.

This led us to consult the assessor to clarify his expectations for QA on three topics:

1. Question: Traceability of safety related requirements: Is it sufficient to have a trace
between documents or should it be possible to trace issues down to sections, pages,
or lines in the text?
Answer: The assessor requires a link between requirements and tests, e.g. by refer‐
ring to unique requirements ID in test cases.
Response: This level of trace is handled by a dedicated requirements management
tool, RMsis, linking requirements to tests that validates them, as well as linking
requirements and tests to design and code. However, we have identified a need to
manually verify that this is done correctly and to make necessary corrections. The
QA role shall continuously verify that traceability is kept up to date and verify that
all steps of the process are done.

Quality Assurance in Scrum Applied to Safety Critical Software 99

2. Question: The standard directs ‘limited use of interrupts, pointers and recursion’ –
are there exact limits or does it mean that we should avoid this as much as possible?
Answer: You should make a table with use of interrupts, pointers etc. and a simple
explanation for why this must be used.
Response: Someone needs to check for “bad code” in every sprint and decide whether
it should be corrected (refactored) or whether the table of reasoned exceptions should
be updated. This can be assisted by checking for pointers during static code analysis.

3. Question: Control of size and complexity: should we aim for specific limits for
module complexity?
Answer: You need to define something that is useful to you, and argue why – the
standard does not specify this.
Response: We have defined a set of metrics and their values that are important for
this specific project. Checking code is done by tools (QAC and QACPP) but there
is a need to verify that this is done in every sprint and that any deviations are resolved,
typically by refactoring or improving code in the following sprint.

In addition to these issues raised from the dialogue with the assessor, we also saw that
quality of documentation and test coverage had become unsatisfactory. All in all, it
became obvious that the self-regulating quality mechanisms in Scrum were overloaded
and that there was a need to strengthen the QA function. A dedicated QA function is a
necessary part of SafeScrum, but it is important to remember that the entire team still
has a large responsibility for QA as well. The team plays an important role e.g. in retro‐
spectives to continuously improve the development process and in resolving issues that
are identified by the QA-role.

7 Shaping an Embedded QA Role in SafeScrum

Using the insights described above, the researchers, the Scrum team and the product
owner had a series of meetings to define a specific QA role in SafeScrum to alleviate
the problems. The traditional approach in this and similar organizations would be to
place the QA role as a specialized function in the line organization, outside the project.
We decided, however, to add the QA role to the Scrum team to be close to the activities
and to the information needed to execute quality assurance. This adds to the principle
of cross functional teams [12] in Scrum. We are also considering making this a rotating
role to make it a shared responsibility and to share the workload. We need a QA log to
trace findings, decisions, corrective actions, and the follow up/results of these. In our
case, Confluence is a good tool to establish this log. We have identified four tasks:

QA Task 1: Check Code Metric Values for New or Changed Code: Neither the
IEC61508 standard nor the assessor provide directions on specific metrics and limits to
monitor at the component level. We have consulted the research literature [9] and used
Minitab to analyze data from code from previous projects at the case company to define
the following metrics and limits: (1) number of static paths – STPTH: 250, (2) McCabe’s
cyclomatic number – STCYC: 15, (3) number of parameters – STPAR: 5, (4) function

100 G.K. Hanssen et al.

call count – STSUB: 13, (5) maximum nesting of control structures – STMIF: 5, (6)
number of executable lines – STXLN: 70, and (7) Myer’s value – (STMCC): 10.

QAC is used to analyze new and changed code to produce values for the metrics.
This is done at the end of each sprint. The metrics are displayed, together with their
defined maximum values in a radar plot. It is thus easy to if there are metrics that are
exceeding their defined limits. If the values are inside their limits, QA will accept the
code. If one or more values are outside their limits, the code is presented by QA in the
sprint review meeting where the team decides to either accept the violation or plan
refactoring. If the violation is accepted, a brief explanation must be added to the log and
potentially also in the code (required by the standard). If the violation is unacceptable,
the team needs to define a new task in Jira to refactor the code.

QA Task 2: Check Documentation Coverage: Check new/changed code to ensure
proper inline documentation and documents in Doxygen. This has to be done manually.
In case of missing or poor documentation, the QA-log should be updated and the findings
should be discussed in the sprint review meeting to decide how to resolve it (giving a
task to someone in the team). This check could be done at the end of each sprint.

QA Task 3: Check Test Coverage: Check for code coverage using Squish Coco. The
QA log should be updated with references to uncovered code. This could be checked by
the end of each sprint. Uncovered code should be discussed at the sprint review meeting
and the team should define corrective actions, like defining tasks to produce tests.
According to the standard, the coverage should be at least 99%.

QA Task 4: Check Requirements-Task-Code Traceability: For new requirements,
tasks, and code check that 1) requirements (RMsis) is linked to issues (e.g. in Jira), and
2) that code (e.g. Stash) is linked to issues (e.g. Jira). The QA role should control
consistency at the end of the sprint and the team should resolve any identified issues
immediately. The IEC61508 standard provides a set of explicit requirements for trace‐
ability; see table A.4 – Software design and development – detailed design, and table
A.5 – Software design and development – software module testing and integration. We
consulted the assessor about a definition of ‘module’ and its size (LOC). He referred to
part 7, chapter C.2.9: “a software module should have a single well-defined task or
function to fulfill.” The assessor recommended 1000 LOC as an upper limit. In cases
where the limit is exceeded it should be explained and documented.

The tasks have been defined to be as simple and inexpensive as possible, partly by using
the tool chain that already is in place. The goal is to not add more work to the process
ceremony than strictly needed, but to use the QA role to simplify the sprint reviews so
that they are not bogged down with unimportant details. So far, this is done by letting
the QA close issues that have low risk and complexity on his own in advance of the
sprint retrospective, where the whole team participates. This reduces the time spent on
unimportant decisions and helps the team focus on difficult tasks where a joint evaluation
and decision is needed.

Quality Assurance in Scrum Applied to Safety Critical Software 101

There should be a list of which criteria’s the team members shall have done before
the issue can be set as resolved and the QA needs to check that they have been fulfilled
(not do them himself). The project should also create a list of which criteria’s where the
QA can close an issue without any further investigation. Only QA or the team can move
an issue from resolved status to closed status. Closed issues cannot be changed.

8 Conclusions

After around two years of shaping and using SafeScrum we see that the inherent quality
assurance mechanisms in Scrum are not sufficient to meet the demands imposed by the
IEC61508 standard. We have consulted the assessor to ensure a proper match with the
standard and shaped a new role to Scrum.

Developing safety critical solutions using SafeScrum, calls for a lot of extra attention,
ceremony and documentation, which initially may be seen as a threat to the ability to be
agile [13]. However, we see that the iterative nature of Scrum with frequent breaks
between the sprints in addition to the tool chain we have put into use makes it possible
to manage quality assurance internally in the team without adding too much extra work.

As part of further work we will look into opportunities to streamline and perfect this
new role as it is vital to maintain an efficient SafeScrum process and to meet the require‐
ments of the IEC61508 standard and the assessors expectations. One viable step would
be to add tool support to assist the QA role in order to collect and analyze quality infor‐
mation with less effort and with more precision. The authors have been involved in the
U-QASAR FP7 EU project, which has developed a tool that serves as a central quality
dashboard consolidating quality information in a unified overview. We will look into
integrating this with the tool chain as a new tool for the team and the QA role.

Acknowledgements. This work was partially funded by the Norwegian research council under
grant #228431 (the SUSS project) and the EU FP7 project U-QASAR (grant agreement no.
318082). Research has been done in collaboration with Autronica Fire & Security AS. We are
grateful for valuable input from the external assessor.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

102 G.K. Hanssen et al.

http://creativecommons.org/licenses/by-nc/4.0/

References

1. Camarinha-Matos, L.M., Afsarmanesh, H. (eds.): Collaborative Networked Organizations:
A research agenda for emerging business models, 1st edn, p. 346. Springer, Heidelberg (2004)

2. Davison, R.M., Martinsons, M.G., Kock, N.: Principles of canonical action research. Inf. Syst.
J. 14(1), 65–86 (2004)

3. Denney, E., Fischer, B.: Software certification and software certificate management systems.
In: NASA Ames Research Center (2005)

4. Dingsøyr, T., Dybå, T., Moe, N.B.: Agile Software Development: An Introduction and
Overview, in Agile Software Development. Springer-Verlag, Heidelberg (2010)

5. Fitzgerald, B., Stol, K.-J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated
environments: an industry case study. In: Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press (2013)

6. Hanssen, G.K., Smite, D., Moe, N.B.: Signs of agile trends in global software engineering
research: A tertiary study. In: Proceedings of International Conference on Global Software
Engineering (ICGSE). IEEE, Helsinki (2011)

7. IEC, 61508: 2010 Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems (E/E/PE, or E/E/PES)

8. Kniberg, H.: Scrum and XP from the Trenches - How we do Scrum. Enterprise Software
Development Series, Plesa, D. (ed.) InfoQ. 131 (2007)

9. Krusko, A.: Complexity analysis of real time software – using software complexity metrics
to improve the quality of real time software. In: Department of Numerical Analysis and
Computer Science, Royal Institute of Technology (KTH): Stockholm, Sweden, p. 97 (2004)

10. Martin, L.: A Digital Jet for the Modern Battlespace (2015). http://www.f35.com/about/life-
cycle/software

11. Mnkandla, E., Dwolatzky, B.: Defining agile software quality assurance. In: International
Conference on Software Engineering Advances, IEEE (2006)

12. Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: A
case study of a Scrum project. Inf. Softw. Technol. 52(5), 480–491 (2010)

13. Myklebust, T., Stålhane, T., Hanssen, G., Wien, T., Haugset, B.: Scrum, documentation and
the IEC 61508-3:2010 software standard. In: International Conference on Probabilistic Safety
Assesment and Management (PSAM). PSAM, Hawaii (2014)

14. Myklebust, T., Stålhane, T., Hanssen, G.K., Wien, T., Haugset, B.: Scrum, documentation
and the IEC 61508-3:2010 software standard. In: Proceedings of Probabilistic Safety
Assessment & Management conference (PSAM12). Self-published, Oahu, USA (2014)

15. Myklebust, T., Stålhane, T., Haugset, B., Hanssen, G.K.: Using a goal-based approach to
improve the IEC 61508-3 software safety standard. In: Proceedings of the Twenty-Third
Safety-Critical System Symposium, Bristol, UK, 3rd-5th February 2015

16. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, New
Jersey (2001)

17. Stålhane, T., Hanssen, G.K., Myklebust, T., Haugset, B.: Agile change impact analysis of
safety critical software. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP
2014. LNCS, vol. 8696, pp. 444–454. Springer, Heidelberg (2014)

18. Stålhane, T., Myklebust, T., Hanssen, G.K.: The application of Scrum IEC 61508 certifiable
software. In: Proceedings of ESREL. Helsinki, Finland (2012)

19. Talby, D., Keren, A., Hazzan, O., Dubinsky, Y.: Agile software testing in a large-scale project.
IEEE Softw. 23(4), 30–37 (2006)

20. Vaibmu. QA role in Agile Teams (2013). http://www.uqasar.eu/qa-role-in-agile-teams/

Quality Assurance in Scrum Applied to Safety Critical Software 103

http://www.f35.com/about/life-cycle/software
http://www.f35.com/about/life-cycle/software
http://www.uqasar.eu/qa-role-in-agile-teams/

Flow, Intrinsic Motivation, and Developer
Experience in Software Engineering

Kati Kuusinen1(&), Helen Petrie2, Fabian Fagerholm3,
and Tommi Mikkonen1

1 Tampere University of Technology, Tampere, Finland
{kati.kuusinen,tommi.mikkonen}@tut.fi

2 University of York, York, UK
helen.petrie@york.ac.uk

3 University of Helsinki, Helsinki, Finland
fabian.fagerholm@helsinki.fi

Abstract. Software developers are both users of development tools but also
designers of new software systems. This dual role makes developers special
users of work-related software. To increase the understanding of developers as
users and to evaluate the ability of common measurement scales to address
developer experience, we conducted a survey measuring developers’ flow state,
intrinsic motivation and user experience. Scales used were the Short Disposi-
tional Flow Scale, items from the Intrinsic Motivation Inventory, the Short
AttrakDiff-2, and our own DEXI scale. 57 developers from 25 countries
responded and results indicate that intrinsic motivation and autotelic experience
are significant predictors of developers’ UX whereas hedonic, pragmatic, and
general quality are not. In addition, developers’ needs are characterized by
efficiency, informativeness, intuitiveness, and flexibility of the tool.

Keywords: Software development � User experience � Developer experience �
Development tools � Integrated development environments � Human factors

1 Introduction

Software engineering (SE) is a professional human activity that demands numerous
skills and qualities from developers. Technical skills are needed to create the code that
builds the software, while social skills are needed to be able to collaborate with other
developers and to communicate with stakeholders. SE is an endeavor which builds
complex systems that realize user and business requirements in technologically
sophisticated manners. Considering the challenges of SE, the user experience (UX) of
developers is an area that has been very little studied. Developers are users of multi-
faceted development tools such as integrated development environments (IDEs). Yet
little is known about how these tools support developers in their demanding activities
and the nature of their UX with such tools.

IDEs are commonly used tools in SE, and are applications used for composing,
compiling and debugging program code [1]. IDEs also manage dependencies among
different packages and modules, control builds, and provide linking to other tools such

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 104–117, 2016.
DOI: 10.1007/978-3-319-33515-5_9

as those for requirements management or test environments. Consequently, IDEs play a
major role in making developers productive and feel comfortable during their daily
activities. Yet despite their important role, little is known about how these tools support
developers and the nature of UX with such tools. While it may be overreaching to
conclude that happy developers are better at their work [2], both happiness and
motivation have been connected with raised productivity [3]. Mood influences devel-
opers’ performance on programming tasks [4], and happiness has been found to have
productivity benefits [5].

Although qualities of both developers and development work have been studied,
developers have rarely been investigated as users of development tools. As developers are
users of IDEs, all that is true of any user according to UX definitions (e.g. [6]), should
apply also to developers. However, the dual role of developer as both users of systems and
developers of systemsmakes them special: besides being IDE users, developers should be
able to understand the human user to be able to fulfill their needs with the software under
development. A concept of developer experience (DX) has been suggested to address the
particularities to SE [7]. The concept of DX is influenced by the concept of UX [7].
Moreover, DX consists of aspects related to cognition, affect, and intention and an
understanding of the concept should help practitioners in improving development
environments with respect to developers’ needs, perceptions and feelings [7].

In this paper we address DX in terms of the experienced state of flow, intrinsic
motivation (IM) and UX. Our goal is to determine the core concepts and predictors of
DX related to IDE usage in order enable improvement of IDEs to improve developers’
IM towards their work and their ability to experience flow (deep, focused, rewarding
concentration) during their work. Our assumption is that these factors both make
developers’ work more enjoyable and increase their productivity. To this end, we
conducted a survey of developers’ experiences of software development using a par-
ticular IDE, Qt Creator. We used the Short Dispositional Flow Scale (SDFS-2) [8],
parts of Intrinsic Motivation Inventory (IMI) [9], and a UX scale consisting of the Short
AttrakDiff-2 [10] and our own DEXI scale. We ran multiple linear regression analyses
to investigate whether these scales can significantly predict developers’ ratings of
overall UX (OUX) and the IDE’s ability to fulfill their needs (need fulfillment score,
NFS). Moreover, we address the impact of perceived choice of Qt Creator since it often
is the employer who decides which tools are used. Finally, we present best qualities and
areas for improvement in the IDE as assessed by the respondents. Our contributions
include increased understanding of developers as users, and core UX concepts related
to DX and developers’ needs related to IDEs.

The rest of the paper is structured as follows: the next section presents the back-
ground and related work followed by the research methodology. Then the results
section presents the linear regression analyses on the scales’ ability to predict OUX and
NFS, the impact of perceived choice on DX, and the core qualities of IDEs. We discuss
our results and threats to validity. Finally, we present concluding remarks.

Flow, Intrinsic Motivation, and Developer Experience 105

2 Background

Motivation and Flow. One of the current influential theories of motivation is
self-determination theory developed by Deci and Ryan [11]. They distinguish between
intrinsic (IM) and extrinsic motivations (EM). IM refers to engaging in a task because
of it is inherently pleasurable and satisfying, whereas EM refers to engaging in a task
because of its outcomes, the task is used as a means to lead to the outcome [11]. In
contrast, flow refers to a state of concentration so focused that it amounts to absolute
absorption in an activity [12]. Applicable to both work and leisure [13], flow builds on
IM and internal reward over the achievement rather than on external goal or recog-
nition. Its effect can be characterized as being totally focused on a particular task at
hand, so that the person becomes fully immersed in a feeling of energized focus, full
involvement, and enjoyment in the process of the activity. While immersed, three
conditions have to be met to achieve a flow state [14]: (1) One must be involved in an
activity with a clear set of goals and progress; (2) The task at hand must have clear and
immediate feedback; (3) One must have a good balance between the perceived chal-
lenges of the task at hand and their own perceived skills, so that there can be confidence
in one’s ability to complete the task at hand.

User Experience. Commonly, UX is understood as subjective, context-dependent,
and dynamic [15]. It is affected by user’s expectations, needs and motivation, as well as
system characteristics such as purpose and functionality, and the context of use
including physical, organizational and psychological aspects [6]. The
hedonic-pragmatic model of UX divides user experience into a hedonic or
non-utilitarian dimension and a pragmatic or instrumental dimension [16]. Hassenzahl
[16] further divides the hedonic into two sub-dimensions of identification and stimu-
lation while the pragmatic/instrumental dimension relates to usability and usefulness.

Software Engineering. The core of software development is writing program code
that constructs the running software; this demands the ability to concentrate and work
alone for many hours [17]. Moreover, programming work requires a logical mind and
the ability to pay attention to details [17]. Developers need to be analytical, capable of
making decisions, independent, creative, tenacious, and be able to tolerate stress [18].
Although programmers tend to be introverted, sensing, and thinking [17], social skills
are crucial in their work: developers’ interpersonal and communication skills have been
considered even more important than their technical skills for project success [19]. Due
to the complex nature of software development, specialized tools are used. One of the
most general tools that are used to create programs is an IDE, which offers numerous
features. A sophisticated IDE, extended with plugins, may manage dependencies
among different packages and modules, control complex builds, and provide linking to
other tools such as requirements management or test environment. Thus, the IDE acts
as an interface between the developer and the computing infrastructure that is needed
for creating, configuring, and managing complex applications as well as their source
code and build environment.

106 K. Kuusinen et al.

IDEs have two main productive goals: increasing developer speed and reducing the
number of errors made by developers [1]. As IDEs are a main tool in software
development, they also play a major role in making developers productive and com-
fortable in their work. Moreover, IDEs are a key aspect in developer experience (DX),
a concept that encompasses developer’s perceptions of their work and phenomena
related to it such as cognitive, motivational, affective, and social aspects. For example,
memory overload is a limiting factor for programmers, especially for beginners who
have not yet developed strategies to relieve it [20]. Modern development environments
provide many aids to programmers, but the same challenges are still present. Cognitive
factors also concern larger structures in software development, such as methods and
processes, but research on this aspect is scarce.

Developer Experience and Motivation. The concept of DX aims to provide an
intuitive abstraction of the huge variety and quantity of human factors that influence
developers and the outcomes of SE [7]. While UX considers the context of use of a
system, DX considers the context of software development, including aspects beyond
software tools, such as development processes, modeling methods, and other means of
structuring SE tasks. Some of these aspects are embedded in tools such as IDEs while
others are part of organizational practices. The software development activity and
environment differ in significant ways from other information-intensive activities and
environments. For example, software development requires a nested understanding:
developers use software to build further software that is to be used by users to
accomplish their particular tasks. Also, developers frequently configure and extend
their tools, in effect continuously developing both the development environment and
the end product at the same time.

Developer motivation is as another important factor in SE. The majority of studies
on motivation in SE report that developers are distinct from other occupational groups
with respect to motivation [3]. “The work itself” is the most commonly cited motivator,
but there is a lack of detail regarding what aspects of the work is motivating, how
motivational processes occur, and the outcomes of motivating developers [3, 21].
Investigations also show the importance of considering affective aspects of SE. The
presence and variation of developers’ emotions over time has been documented [22].
Programming is influenced by mood [4], and happiness has been found to have pro-
ductivity benefits [2]. This underlines the importance of considering affective aspects
both for purposes of well-being and outcomes.

3 Method

Our research goal is to increase understanding of DX. We aim to clarify how flow, IM,
and UX are intertwined in software development. This will enable improvement of
development tools to better support developers’ ability to experience flow in their work
and to enhance developers’ IM towards their work. Our hypothesis is that these factors
make developers’ work more enjoyable and increases their productivity.

Flow, Intrinsic Motivation, and Developer Experience 107

In this paper we address the following research questions:

1. Can we predict the developers’ overall UX with the IDE and its ability to fulfill their
needs from their sense of flow in their work and their IM?

2. Can we predict the developers’ overall UX with the IDE and its ability to fulfill their
needs from their assessment of the practical, hedonic, and general quality of the
IDE?

3. What kind of impact does perceived choice have on developers’ assessments?
4. How do developers describe the best qualities of the IDE and those that need

improvement in relation to UX vocabulary?

We conducted a survey measuring developers’ self-reported experiences of soft-
ware development activities when using Qt Creator, a cross-platform IDE including a
code editor, graphical user interface editor, compiler, visual debugger, and version
control. Our survey consisted of the following three scales: (1) the Short Dispositional
Flow State Scale (SDFS-2) [8] used in its entirety, (2) parts of the Intrinsic Motivation
Inventory (IMI) [9] including questions related to interest/enjoyment, perceived com-
petence, effort/importance, and perceived choice, and (3) a UX scale consisting of the
short version of the AttrakDiff-2 (SAD-2) [10] used in its entirety and our own
Developer Experience Scale (DEXI). The scales, except DEXI, were selected because
they are widely used and validated. They are also short enough to be combined in a
single survey. DEXI was created to address characteristics of software development.

Respondents also rated the overall UX (OUX) of the IDE and its ability to fulfill
their needs (NFS) as follows: (1) OUX: “How would you rate the overall user expe-
rience of Qt Creator?” (from 1 = bad to 7 = good). (2) NFS: “How well does Qt Creator
respond to your needs?” (ranging from 1 = not at all to 7 = completely). We also asked
respondents to describe the qualities of the IDE on two open-ended questions: (1) “In
your opinion, what are the best qualities of Qt Creator?” and (2) “How could Qt Creator
better support your development work?”. Finally, we collected demographic infor-
mation, including the country they were based in, age, experience of software devel-
opment (in years), experience of using Qt Creator, developer role, size of the
organization they are working for, their operating system and target platforms, and used
license type of Qt Creator.

Dispositional Flow State Scale (SDFS-2). We measured the frequency with which
developers experience different dimensions of flow during software development
activities with Qt Creator using the Short Dispositional Flow State Scale (SDFS-2) [8],
with Likert items (from 1 = never to 7 = always). The SDFS-2 measures nine
dimensions of flow, each with one item (Table 1). In addition to the SDFS-2 items, an
additional item measured the experience of frustration: “I feel frustrated”.

Intrinsic Motivation Inventory (IMI). Since the original IMI is long and repetitive,
we used a shortened version as recommended [23] (Table 2) with selected items from
the following IMI subscales: interest/enjoyment (the actual self-report measure of IM),
perceived competence, effort/importance, and perceived choice. Framing of the ques-
tion and assessment scale was according to the IMI. Thus, the question was as follows:
“For each of the following statements‚ please indicate how true it is for you‚ using the
following scale” (from 1 = not at all true to 7 = very true).

108 K. Kuusinen et al.

UX Scales. We used the short version of AttrakDiff-2 (SAD-2) [10]. It contains four
items (word-pairs) for both practical (PQ) and hedonic quality (HQ) of UX, and one
each for measuring goodness and beauty (general UX quality, GQ). In addition, we
formed our own DEXI scale for measuring additional aspects of UX. We selected
DEXI items from the following sources: AttrakDiff [16], the dataset of a meta-study of
often used UX items [24], and concepts that have been used to describe DX [7]. We
used the structure and wording of AttrakDiff in DEXI. We aimed at construct a scale
that would be relevant to software development. We selected 5 items (PQ1– PQ5)
measuring pragmatic UX quality (difficult/easy to learn; inflexible/flexible;
limited/extensive; uninformative/informative; inefficient/efficient) and 6 items (HQ1–
HQ6) measuring hedonic (non-utilitarian) quality (discouraging/motivating;
suppresses/promotes creativity; decreases/increases respect; unenjoyable/enjoyable;
separates me from others/brings me closer to others; uninvolving/engaging). One item
(GQ-1) measured general quality (not recommendable/recommendable).

Procedure. A web survey was organized with the Qt Company, the provider of Qt
Creator. The survey had a front page presenting informed consent statements adopted

Table 1. SDFS-2 scale. Dimensions of state of flow and related survey items [8]

Flow dimensions SDFS-2 item

Challenge-skill balance I feel I am competent enough to meet the high demands of the
situation

Action awareness I do things spontaneously and automatically without having to
think

Clear goals I have a strong sense of what I want to do
Unambiguous feedback I have a good idea while I am performing about how well I am

doing
Concentration on task I am completely focused on the task at hand
Sense of control I have a feeling of total control
Loss of
self-consciousness

I am not worried about what others may be thinking of me

Transformation of time The way time passes seems to be different from normal
Autotelic experience The experience is extremely rewarding

Table 2. Selected subscales and survey items of IMI [9]

Subscale Survey item

Interest/enjoyment I enjoy software development work very much
I think software development is a boring activity
I enjoy using Qt Creator very much

Perceived competence I am satisfied with my performance at software development
I am pretty skilled in software development
I am pretty skilled in using Qt Creator

Effort/Importance It is important to me to do well in software development
Perceived choice I use Qt Creator because I have no choice

Flow, Intrinsic Motivation, and Developer Experience 109

from World Health Organization’s template for qualitative studies [25]. We instructed
only those who had been using the IDE to respond, and to respond only once. A global
online developer community and Twitter were used to target users of the IDE.
Although the survey was distributed globally, the main interest of the IDE provider was
in Middle European market. The survey was available for the respondents for four
weeks. Participants’ median completion time was 9 min (M = 17, SD = 31).

Participants. Participants were developers using Qt Creator in their work. In total, 57
developers responded from 25 different countries. Respondents’ countries were:
France: 8; Germany: 7; Italy: 5; Norway: 4; Austria, Australia, Finland, Switzerland,
and United States: 3; Russia and Sweden: 2; Algeria, Andorra, Bulgaria, Brazil,
Belarus, Czech Republic, Denmark, Indonesia, India, Iran, Poland, Slovenia, Ukraine,
and United Kingdom: 1. The average age of respondents was 35 years (SD: 10).
Respondents had on average 8 years (SD: 5) of working experience in software
development. 86.0 % of respondents had been using Qt Creator for over a year, 12.3 %
for over a month but less than a year, and 1.8 % had used it several times. 42.1 % of
the respondents considered themselves as front-end developers, 21.1 % as back-end
developers, 19.3 % as architects, and 17.5 % considered themselves as other types
including either a combination of these roles, or hobbyist, teacher, or researcher.
Considering the size of organization where they worked, 22.8 % were individual
developers, 19.3 % worked for micro businesses (employing ten people or less),
19.3 % worked for small companies (over ten but less than hundred employees),
24.6 % worked for middle-sized companies (100–1000 employees), and 14.0 %
worked for large enterprises employing more than 1000 people. Approximately half the
respondents (49.1 %) used Linux as their primary development platform, while 28.1 %
used MS Windows and 21.1 % OS X. Most of the respondents (91.2 %) developed
desktop software, 40.3 % developed mobile software, and 25.6 % developed embed-
ded software (multiple choices were possible on this question). Free software licenses
were used by 75.4 % of respondents, while the rest (24.6 %) used commercial licenses.
Demographic variables were not significant predictors of any of the studied variables.

4 Results

Predicting Overall UX and Needs Assessment from Sense of Flow and Intrinsic
Motivation. Four multiple linear regressions investigated whether the items of the
measures of flow (SDSF-2) and intrinsic motivation (IMI) significantly predicted the
respondents’ ratings of overall UX (OUX) with the IDE and its ability to meet their
needs (NFS).

OUX could be predicted significantly from the SDSF-2 scale (see Table 3). How-
ever, only one of the SDSF-2 items was a significant individual predictor, the autotelic
experience item, (“the experience is extremely rewarding”). OUX could also be pre-
dicted from the IMI scale with two of the items being significant individual predictors,
both interest/enjoyment items: “I enjoy software development work very much” and “I
enjoy using Qt Creator very much”.

110 K. Kuusinen et al.

Need fulfillment (NFS) could also be predicted from the SDSF-2. Two individual
items were significant individual predictors: the autotelic experience item (“the expe-
rience is extremely rewarding”) and the sense of control item (“I have a feeling of total
control. NFS could also be predicted from the IMI scale. Two items were significant
predictors: “I think software development work is a boring activity” and “I enjoy using
Qt Creator very much”.

Predicting Overall UX and Needs Assessment from Practical, Hedonic, and
General UX Qualities. When comparing the assessments of quality types, general
quality had the highest mean assessment score while the hedonic had the lowest. The
difference is statistically significant: The null hypothesis that “the median difference
between measurements of PQ, GQ, and HQ, pairwise, is zero” was rejected as follows:
between measurements of practical and general quality Z = −3.333, p < .01. between
measurements of hedonic and practical quality Z = −4.171, p < .001; between hedonic
and general quality Z = −5.590, p < .001. Thus, the GQ assessment was significantly
higher than assessment of PQ and HQ.

The overall UX rating, OUX, could be predicted significantly from PQ, GQ, and HQ
together (see Table 3). However, only HQ was on the borderline of being a significant
predictor.

NFS could be predicted significantly from PQ, GQ, and HQ together (see Table 3).
However, none of the quality types were significant predictors.

Perceived Choice. The use of work-related tools can be mandatory since often the
employer is the one who selects the tools to be used [24]. We measured perceived
choice of use with the IMI scale question “I use Qt Creator because I have no choice”.
It had significant negative correlation with both OUX and NFS (r = −.380, and
r = −.370, respectively, p < .01 for both). Thus, developers who perceived high level of
choice in use of the IDE assessed OUX and NFS higher than developers who perceived

Table 3. Survey scales/items that significantly predicted OUX and NFS scores. Legend: “UX
scales” refers to SAD-2 and DEXI together.

Overall UX (OUX) Needs Assessment (NFS)

SDFS-2 (F = 3.44, df = 10, p < 0.005) SDFS-2 (F = 4.48, df = 10, 46, p < 0.001)
The experience is extremely rewarding (t =
2.85, p < 0.01)

The experience is extremely rewarding (t =
2.27, p < 0.05)

I have a feeling of total control (t = 2.80, p <
0.01)

IMI (F = 6.72, df = 8, 48, p < 0.001) IMI (F = 9.04, df = 7, 49, p < 0.001)
I enjoy software development work very
much (t = 2.29, p < 0.05)

I think software development work is a boring
activity (t = 2.26, p < 0.05)

I enjoy using Qt Creator very much (t =
5.01, p < 0.001)

I enjoy using Qt Creator very much (t = 5.62, p
< 0.001)

UX scales (F = 9.80, df = 3, p < 0.001) UX scales (F = 6.24, df = 3, p < .01)
General quality (GQ) (t = .129, n.s.) General quality (GQ) (t = .48, n.s.)
Hedonic quality (HQ) (t = 2.00, p = 0.05) Hedonic quality (HQ) (t = .16, n.s.)
Practical quality (PQ) (t = .556, n.s.) Practical quality (PQ) (t = 1.49, n.s.)

Flow, Intrinsic Motivation, and Developer Experience 111

their use of the IDE as mandatory. In addition, developers with low perceived choice
enjoyed using the IDE less; there was a moderate negative correlation between per-
ceived choice and the IMI item “I enjoy using Qt Creator very much” (r = −.534, p <
.001). Enjoyment on the IMI scale measures motivation and thus we can conclude that
developers with lower perceived choice were less motivated towards using the IDE
compared to those with high perceived choice. Developers with low perceived choice
also felt frustrated more often (r = .519, p < .001). Finally, there was a significant
negative correlation between the perceived choice and challenge-skill balance in using
the IDE (r = −.296, p <.05).
Since developers with low perceived choice enjoyed using the IDE less than others, we
also address here correlations between the motivation towards using the IDE (“I enjoy
using Qt Creator very much”) and other measures. There was a significant correlation
between motivation towards using the IDE and both NFS and OUX ratings (r = .682,
and r = .639, respectively, p < 0.001 for both). On the SDFS-2 items, developers who
enjoyed using the IDE also experienced a significantly higher sense of control (r = .548,
p < .001) and considered the experience significantly more rewarding (r = .539, p <
.001). They also felt frustration significantly less (r = −.498, p < .001). In addition,
developers who enjoyed using the IDE considered themselves significantly more
skilled in using the tool (r = .400, p < .01).

Best Qualities of the IDE and Opportunities for Improvement. Respondents
considered efficiency, flexibility, informativeness and intuitiveness the best qualities of
Qt Creator and flexibility, informativeness, and reliability required improvement the
most (see Fig. 1) [26]. Thus, although the IDE was considered both flexible and
informative, these were also areas that required improvement the most. It might indi-
cate that these concepts are focal for an IDE. In contrast, developers considered effi-
ciency as one of the best qualities most often (38 % of respondents mentioned it), and it
rarely was considered as subject for improvement. However, reliability was rarely
mentioned as good quality, whereas 36 % of the respondents considered Qt Creator
should be more reliable, mostly in terms of stability and faultlessness.

The category of efficiency includes mainly items related to the IDE being fast and
efficient to use. Flexibility is the ability of an IDE to respond to developers’ needs such
as being customizable, scalable, extensive, compatible, or complete. Informativeness
was most often related to the presentation of code and text editors, for instance, to
intelligent code completion and text highlighting. It was also related to the quality and
presentation of information in different built-in tools such as the debugger. Reliability
addresses the robustness, stability, faultlessness, and recoverability of the IDE. Intu-
itiveness is related to the IDE being simple, intuitive, understandable, intelligent, and
sensible. Clarity includes such items as clean, unbloated, uncluttered, light, and
well-structured. Value was described with the following words: good, great, awesome,
best, and free. Aesthetic design was related to the screen layout and the outlook and
visual design of the IDE. Empowerment means the ability of the IDE to support
developers’work and respect the variety of tasks they have. Finally, approachability was
mentioned as creating friendly atmosphere and making the developer to feel at home.

112 K. Kuusinen et al.

Of the UX qualities identified efficiency, effectiveness and learnability are pro-
ductivity factors. Ease of use and intuitiveness relate to interaction quality whereas
informativeness and reliability relate to information and system quality, respectively.
Empowerment, approachability, and aesthetic design are hedonic qualities related to
stimulation, appeal and aesthetic quality, respectively [16].

5 Discussion

Based on the responses of 57 developers from 25 countries, who responded to the
survey, research questions are answered as follows:

1. Can we predict the developers’ overall UX with the IDE and its ability to fulfill their
needs from their sense of flow in their work and their intrinsic motivation?
We found that autotelic experience and intrinsic motivation (IM) towards both
software development and the IDE were significant predictors of developers’
overall UX. Need fulfillment could be predicted from the aforementioned autotelic
experience item and sense of control and from intrinsic motivation.

2. Can we predict the developers’ overall UX with the IDE and its ability to fulfill their
needs from their assessment of the practical, hedonic, and general quality of the IDE?
We found that practical, hedonic, and general quality together were significant
predictors of overall UX. None of the qualities alone significantly predicted overall
UX. However, hedonic quality was on the borderline of being a significant predictor
(p = .05). Practical, hedonic, and general quality together were also significant
predictors of need fulfillment. However, none of the qualities alone was a signifi-
cant predictor of need fulfillment.

Fig. 1. Best qualities of Qt Creator and those that need improvement as reported by respondents.
Percentage of respondents (N = 45) per category.

Flow, Intrinsic Motivation, and Developer Experience 113

3. What kind of impact does perceived choice have on developers’ assessments?
We found that perceived choice had a significant negative correlation with both
overall UX and need fulfillment. It also had a significant negative correlation with
intrinsic motivation towards using the IDE and a significant positive correlation
with the frequency of feeling frustrated. Finally, perceived choice had significant
negative correlation with challenge-skill balance considering using the IDE.

4. How do developers describe the best qualities of the IDE and those that need
improvement in relation to UX vocabulary?
We found that developers considered efficiency, flexibility, informativeness and
intuitiveness the best qualities of the IDE whereas flexibility, informativeness, and
reliability required improvement the most. Developers described qualities of the
IDE with regard to the following practical qualities: productivity and interaction and
information quality. System quality represented general quality in developers’
descriptions and hedonic qualities were related to stimulation, appeal, and aesthetic
quality.

Reflections on Concept of Developer Experience. Fagerholm et al.’s [7] framework
of DX addresses the concept in terms of factors related to the perception of develop-
ment infrastructure, feelings towards work, and the value of the developer’s contri-
bution. They relate cognition to the perception of infrastructure, affect with feelings
towards the work, and intention (conation) with the value of contribution. In our study,
the IDE itself represents the development infrastructure and cognition, affect and
intention were addressed with regard to it. Our results indicate that developers also
address the infrastructure via intention and affect. Their IM was towards both the use of
the IDE and the development work. Some developers described the best qualities of the
IDE with affection. In addition, the overall UX assessment of developers seemed to be
affected more by the hedonic than pragmatic quality of the IDE since the mean value of
the hedonic aspect of UX (HQ) was on the borderline of being a significant predictor of
overall UX (p = 0.05) whereas the overall UX could not be predicted from the practical
or general quality. Thus, our results suggest that Fagerholm et al. over emphasized the
cognitive approach of developers towards the development infrastructure. Moreover,
the developers’ intrinsic motivation also seems to focus on using the IDE while
Fagerholm et al. associate it with the developer’s contribution. However, the IDE is
used to create a contribution and thus our study cannot separate motivation towards
development work itself and motivation towards the software under development.

Threats to Validity. We studied only one IDE and thus some of our results might be
specific to that. We also had a relatively limited number of respondents (57). In the
future, other IDEs and development work in general should be studied. We did not
control multiple answering of the questionnaire but asked developers to respond only
once. However, we consider the likelihood of multiple answering small. Since the
invitation to participate was sent to an online developer community and Twitter, only
developers who use those channels could participate, thus limiting the population of
developers we sampled from. However, we found no significant difference between

114 K. Kuusinen et al.

developers who were recruited via the online community and those contacted via
Twitter. In addition, demographic variables were not significant predictors of any of the
studied variables.

6 Conclusions

We have presented results of software developers’ sense of flow, their intrinsic moti-
vation (IM) and developer experience (DX) in the context of software engineering. We
conducted a survey study on developers using Qt Creator as their development envi-
ronment. We aimed to clarify how flow, IM, and UX are intertwined in software
development. Our final goal is the improvement of development tools to better support
developers’ ability to experience flow – deep, focused, rewarding concentration in their
work – and to enhance developers’ IM towards their work. Our hypothesis was that
these factors make developers’ work more enjoyable and increase their productivity.
Our results suggest that IM and sense of flow are significant predictors of DX. IM
towards both development work itself and using the IDE significantly predicted DX.
Moreover, we found perceived choice of use a significant predictor of both developers’
assessment of UX and need fulfillment. Perceived choice also affects developers’ IM
towards using the IDE and their sense of frustration during development tasks. Thus,
developers’ motivation is affected both by tool selection and qualities of development
tools. Further studies are needed to address their impact on developers’ productivity.

Our work examined DX mainly in relation to the key development tool, the IDE.
Considering the central role of the IDE in developers’ daily activities, it can be
expected that results considering developers’ experiences while using the IDE play a
prominent role also for DX in general. In relation to the concept of DX, our paper
contributes to increased understanding of its key factors and its relation to UX, IM, and
the flow state experience.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any changes
made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Flow, Intrinsic Motivation, and Developer Experience 115

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

References

1. Muşlu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of integrated
development environment recommendations. ACM SIGPLAN Not. 47(10), 669–682 (2012)

2. Graziotin, D., Wang, X., Abrahamsson, P.: Happy software developers solve problems
better: psychological measurements in empirical software engineering. PeerJ 2(1), e289
(2014)

3. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software
engineering: A systematic literature review. IST 50, 860–878 (2008)

4. Khan, I.A., Brinkman, W.-P., Hierons, R.M.: Do moods affect programmers’ debug
performance? Cogn. Technol. Work 13(4), 245–258 (2011)

5. Graziotin, D., Wang, X., Abrahamsson, P.: Software developers, moods, emotions, and
performance. IEEE Softw. 31(4), 24–27 (2014)

6. Hassenzahl, M., Tractinsky, N.: User experience - A research agenda. BIT 25(2), 91–97
(2006)

7. Fagerholm, F., Münch, J.: Developer experience: Concept and definition. In: Proceedings of
the International Conference on Software and System Process, pp. 73–77. IEEE Press (2012)

8. Jackson, S.A., Martin, A.J., Eklund, R.C.: Long and short measures of flow: the construct
validity of the FSS-2, DFS-2, and new brief counterparts. JSEP 30(5), 561 (2008)

9. Ryan, R.M.: Control and information in the intrapersonal sphere: An extension of cognitive
evaluation theory. J. Pers. Soci. Psychol. 43, 450–461 (1982)

10. Hassenzahl, M., Diefenbach, S., Göritz, A.: Needs, affect, and interactive products–Facets of
user experience. Interact. Comput. 22(5), 353–362 (2010)

11. Deci, E., Ryan, R.M.: Self-determination theory. Handbook of theories of social psychology.
SAGE, Los Angeles (2012). ISBN 9780857029607

12. Csikszentmihalyi, M.: Flow: The psychology of optimal experience, vol. 41.
HarperPerennial, New York (1991)

13. Csikszentmihalyi, M., LeFevre, J.: Optimal experience in work and leisure. J. Pers. Soc.
Psychol. 56(5), 815–822 (1989)

14. Csikszentmihalyi, M., Abuhamdeh, S., Nakamura, J.: Flow. In: Elliot, A. (ed.) Handbook of
Competence and Motivation, pp. 598–698. The Guilford Press, New York (2005)

15. Law, E.L.-C., Roto, V., Hassenzahl, M., Vermeeren, A.P.O.S., Kort, J.: Understanding,
scoping and defining user experience: a survey approach. In: Proceedings SIGCHI
Conference on Human Factors in Computing Systems (CHI 2009), pp. 719–728. ACM
(2009)

16. Hassenzahl, M.: The interplay of beauty, goodness and usability in interactive products.
Proc. HCI Lawrence Erlbaum Associates 19(4), 319–349 (2004)

17. Capretz, L.F., Ahmed, F.: Making sense of software development and personality types. IT
Prof. 12(1), 6–13 (2010)

18. Acuna, S.T., Juristo, N., Moreno, A.M.: Emphasizing human capabilities in software
development. Softw. IEEE 23(2), 94–101 (2006)

19. Lee, D., Trauth, E., Farwell, D.: Critical skills and knowledge requirements of IS
professionals: a joint academic/industry investigation. MIS Q. 19(3), 313–340 (1995)

20. Anderson, J.R., Jeffries, R.: Novice LISP Errors: Undetected losses of information from
working memory. Hum. Comput. Interact. 1, 107–131 (1985)

21. Franca, A.C.C., Gouveia, T.B., Santos, P.C.F., Santana, C.A., da Silva, F.Q.B.: Motivation
in software engineering: A systematic review update. In: Proceedings Evaluation and
Assessment in Software Engineering (EASE), pp. 154–163 (2011)

116 K. Kuusinen et al.

22. Shaw, T.: The emotions of systems developers: an empirical study of affective events theory.
In: Proceedings Computer Personnel Research: Careers, Culture, and Ethics in a Networked
Environment, SIGMIS CPR 2004, pp. 124–126. ACM (2004)

23. McAuley, E., Duncan, T., Tammen, V.V.: Psychometric properties of the intrinsic
motivation inventory in a competitive sport setting: a confirmatory factor analysis. Res.
Q. Exerc. Sport 60, 48–58 (1989)

24. Sundberg, H.-R.: The importance of user experience related factors in new product
development – Comparing the views of designers and users of industrial products. In: 23rd
Nordic Academy of Management Conference, 12-14 August 2015, Copenhagen, Denmark
(2015)

25. World Health Organization, Informed consent form template for qualitative studies. http://
www.who.int/rpc/research_ethics/informed_consent/enTools

26. Kuusinen, K.: Software developers as users: Developer experience of a cross-platform
integrated development environment. In: Product-Focused Software Process Improvement
(PROFES 2015), pp. 546–552. Springer International Publishing (2015)

Flow, Intrinsic Motivation, and Developer Experience 117

http://www.who.int/rpc/research_ethics/informed_consent/enTools
http://www.who.int/rpc/research_ethics/informed_consent/enTools

Minimum Viable Product or Multiple Facet
Product? The Role of MVP

in Software Startups

Anh Nguyen Duc(&) and Pekka Abrahamsson

Department of Computer and Information Science (IDI),
NTNU, 7491 Trondheim, Norway
{anhn,pekkaa}@ntnu.no

Abstract. Minimum viable product (MVP) is the main focus of both business
and product development activities in software startups. We empirically
explored five early stage software startups to understand how MVP are used in
early stages. Data was collected from interviews, observation and documents.
We looked at the MVP usage from two angles, software prototyping and
boundary spanning theory. We found that roles of MVPs in startups were not
fully aware by entrepreneurs. Besides supporting validated learning, MVPs are
used to facilitate product design, to bridge communication gaps and to facilitate
cost-effective product development activities. Entrepreneurs should consider a
systematic approach to fully explore the value of MVP, as a multiple facet
product (MFP). The work also implies several research directions about pro-
totyping practices and patterns in software startups.

Keywords: Prototype � MVP � MFP � Software startups � Software
development � Empirical study � Exploratory case study

1 Introduction

Software industry has witnessed a growing trend of software products developed by
software startups, often newly created companies with little operating history aiming at
high-growth software products. Different from established companies, startups typi-
cally deal with identifying and implementing a product that delivers actual customer
value [1]. Recent methodological approaches for startup product development, i.e.
Lean startup [3] or new product development processes [2] emphasize the ability to
learn about actual problems from early customers and the speed of learning. According
to Lean Startup [3], every startup should start with building a Minimum viable product
(MVP), and use it to validate their hypotheses about customer needs.

MVPs, defined as products with just enough features to gather validated learning
about the products, is a major focus in early stages. It plays an important role not only
for a startup team, but also the startup’s external stakeholders, such as potential users,
investors and mentors. Nowadays, MVP is a key artifact to be shown in a meeting with
an investor. There are several different types of MVPs, varied by development efforts,
their purposes and stages they often occur [3]. For instance, a landing page, as one

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 118–130, 2016.
DOI: 10.1007/978-3-319-33515-5_10

MVP, can be quickly created to communicate the product proposals to public. A single
feature prototype, as another MVP, might take several months for construction and
integrate into final product. Besides, different MVPs might be used to serve the same
purpose, for instance, to communicate with investors.

It is little known about how MVPs are used after their creation, from both com-
munity of practitioners and researchers. Given the importance of MVPs for early stage
startups, we are interested in understanding how the MVP is used in software startups:

“RQ: How are MVPs used in early stage software startups?”

We argued that from an engineering perspective a MVP shares a lot of charac-
teristics with a software prototype. Prototyping has a long history in Software Engi-
neering (SE) research, as an essential part of water fall life cycle [5]. However, in SE
research, there is little discussion about prototypes in the context of software startups
[6, 7]. In this paper, we discussed about the usage of MVP in the relation to prototype’s
characteristics. We also argued that MVPs has been used to communicate with external
stakeholders, such as investors and early customers. Information System (IS) has a
theory to explain about how an artifact was used to communicate among different
communities with different expertise [8]. Therefore, we utilized the boundary spanning
theory to initiate and to capture the MVP usage.

The paper is organized as follows; firstly we presented backgrounds about MVPs,
software prototype and boundary spanning theory (Sect. 2). Then, we described our
research approach and case description (Sect. 3). After that, the qualitative findings are
presented (Sect. 4). Finally, we discussed the reflections of study, threats to validity
(Sect. 5), conclusion and future work (Sect. 6).

2 Background

2.1 Classification of MVPs and Prototypes

Eric Ries initiates the classification of MVP types [3], which are discussed among the
community of practitioners, including:

• Explainer video: a short animation that explains what your product does and why
users should buy it. The video is often simple, lasts for 30 s to few minutes.

• Landing page: a web page where visitors “land” after clicking a link from an e-mail
or another type of a campaign. A landing page is used to quickly communicate the
startup proposals, to diffuse objections, and to call the visitors to action.

• Wizard of Oz: an user interface that looks like a real working product, but the actual
business process is manually carried on. The purpose of this MVP is to demonstrate
the complete job done by the product.

• Concierge MVP: a manual service that consists of exactly the same steps users
would go through with the product.

• Piecemeal MVP: similar to Wizards of Oz MVP, however, execution of the tasks is
done by using existing tools.

• Mockup MVP: such as, paper prototype and wireframe, was representative of
product user interface without any functionality.

Minimum Viable Product or Multiple Facet Product? 119

• Public project proposal: Kickstarter and other crowdsourcing sites allow for users to
pre-purchase the product and provide a great way to raise money for initial orders.

• Single feature MVP: a prototype that implements the most important function of the
product.

• Rip off MVP: a successful product to get feedback, then pivot in a different
direction.

The term “prototype” is also often used in startup context as an interchangeable
term with MVP. There are different types of software prototypes often used in early
phases of software development, such as throwaway, or rapid prototype, which con-
sumes very little efforts with minimum requirement analysis to build a prototype [9].
Another type of prototype is evolutionary prototype, which bases on building actual
minimal functionality in the beginning [9]. Last but not least, incremental prototype
refers to building multiple functional prototypes of the various sub systems and then
integrating all the available prototypes to form a complete system [9]. In this paper, we
use the above categories to differentiate and discuss about different type of MVPs
during earl-stage software startups.

2.2 Theory of Boundary Spanning

To explain the roles of MVPs and prototypes, we borrow the theory of boundary
spanning across boundaries in software startups. From the view of knowledge man-
agement, most innovation happens at the boundaries between specialized pools of
knowledge [8, 10, 11]. Three types of knowledge boundary is commonly mentioned in
IS literature:

• A syntactic knowledge boundary occurs when there is a lack of a shared syntax and
creates the concern that information may not be processed properly across a given
boundary [8]. For instance, entrepreneurs use business terms that make developers
do not understand.

• A semantic knowledge boundary occurs when a common syntax is present, different
interpretations of the common syntax make communication and collaboration dif-
ficult [8]. For instance, a designer might think about artistic mindset while a
developer think of software architecture when talking about design thinking.

• Pragmatic knowledge boundary occurs when a common interest has to be achieved
when participants negotiate with each other on the scope [8], consequences and
conflict solutions of knowledge delivery, i.e. developers and entrepreneur do not
share common interests, i.e. a clash of interests occurs.

Boundary artifact is used to cross these different types of knowledge boundaries
[10]. The theory states that an artifact only helps bridging knowledge boundaries if it
qualifies as a boundary object, which is described as an artifact that “sits in the middle”
of diverse knowledge groups, establishing a “shared and sharable” context for dis-
tributed problem solving. These artifacts need to be “both plastic enough to adapt to
local needs and constraints of the several parties employing them, yet robust enough to
maintain a common identity across sites” [11].

120 A.N. Duc and P. Abrahamsson

3 Research Approach

3.1 Study Design and Case Selection

We conducted this study by using a multiple-case study design [12]. As shown in
Fig. 1, we adopted a mixed approach of deductive and inductive research. The initial
observations about MVP usage were extracted from Case B and abstracted by using
classification from software prototyping and theory of boundary spanning. The initial
themes were used to guide the analysis of interview transcripts later. The final thematic
scheme of significant MVP usage was extended from all five case studies.

These cases describe startups from the seed-stage to the early growth-stage i.e. from
ideas to prototypes and operating products. For concealment the startups are not named
in this paper, but are instead referred to as Company A, B, C, D and E, as described in
Table 1. The cases are selected by using our industrial network, using three selection
criteria: (1) companies have at least three people and first paying customer, (2) com-
panies have at least six months operations, (3) and companies have performed some
types of software development. The industry domain varies from retail, marketing to
construction. Cases come from Italy, Norway and Finland with company size vary
from three to 18 full-time employees. Most cases have been operated mainly by
self-funding. Business models include both Business-to-Business (B2B) and
Business-to-Customer (B2C). All of the investigated startups were founded by experts
in software development.

3.2 Data Collection and Analysis

Methodological triangulation in data collection is implemented by using documents,
interviews and observation. Business documents, such as business model canvases and
full description of business plan was exposed to the research team as a preliminary step
prepared for interviews. Interview is our primary source of information. In most of the
cases, we conducted multiple interviews with their CEOs, CTOs and co-founders.
The interviewees were asked questions about (1) realization of business idea (2) pivot
practices (3) product design and development. Observation is useful to understand how

Fig. 1. Research approach

Minimum Viable Product or Multiple Facet Product? 121

MVPs and prototypes were implemented and used in the working environment. In
Case B, the author participated in five weekly meetings. In Case A, the CEO has
provided a narrative description of the startup process and observations from that.

We used thematic analysis to analyze the data, a technique for identifying, ana-
lyzing, and reporting standards (or themes) found in qualitative data [13]. We started by
reading all interview transcripts and relevant documents, and coded them according to
open coding [14]. Each segment of text that expresses MVPs and the usage of these
MVPs or prototypes were labeled with an appropriate code. The MVPs were later
classified into the MVP types, prototype types and boundary spanning types, if rele-
vance. The emerged MVP usages were compared across interviews and finally merged
into a final thematic map.

4 Result

4.1 Types of MVPs

Table 2 summarizes different types of MVP used in our cases. According to the data,
software startups adopted several types of MVPs in early stages. Landing page were
used by all cases, often during the product development or close to the product launch.
Different types of mockups were used extensively during early stages. For example,
Case B used a wireframe tool called JustInMind, as the major tasks in the beginning of
their project. In Case C, paper prototypes were used during most of all customer
meeting. Except Case C, all of our cases started early with developing the first most
important feature of their product. Other types of MVPs, such as Concierge MVP,
Wizard of Oz and Picemeal MVP were also used in some cases. In the next sections,
we described three main roles of these MVPs, which are design artifact, boundary
spanning object and reusable artifact.

Table 1. Startup case demographic

Id Product Year Loc. Dev. approach #
Ppl.

Latest Stage

A Online photo marketplace 2012 Italy Lean startup,
Tailor Agile

6 Implementation

B Marketplace for food hub 2015 Norway Adhoc 3 Conceptualization
C Collaboration platform for

construction
2011 Norway Distributed Scrum 4 Commercialization

D Sale visualization 2011 Norway Tailor Agile 18 Commercialization
E Under water camera

product
2011 Finland Adhoc 3 Implementation

122 A.N. Duc and P. Abrahamsson

4.2 MVP as a Design Artifact

Table 3 describes the themes that were grounded from interviews, As a design artifact,
a MVP facilitates the visualization of ideas, the reflection on architectural design and
the innovation process.

Visualizing Design Idea: As a rapid prototype, MVP is a mean to travel from idea to
real product. In Case B, paper-based UI prototypes were used during brainstorming
sections when the team virtually meets. The CEO mentioned, “Each of us has our own
design version of [Product name], when [CTO name] describes his idea about sharing
meals among students…We start sketching the workflow and the app UI right away…”.

Table 2. Prototyping approaches in our cases

Cases
A B C D E

Types of prototype
Landing page X X X X X
Mockup MVP X X X X X
Single feature
MVP

X X X X

Concierge MVP X
Explainer video X
Wizard of Oz X
Piecemeal MVP X

Table 3. Data grounded themes on prototype usage

Companies
A B C D E

MVP as a design artifact
Visualizing design idea X X X X X
Reflection on architectural design X X X
Facilitation of creativity X X
Clarifying mismatches on user expectation X X X
MVP as a boundary spanning artifact
Bridge between Business mind vs. Technical
mind

X X X

Bridge between Entrepreneur team vs. End user X X
Bridge between Entrepreneur team vs. Investors X X X
MVP as a reusable artifact
Documentation X X X
Growth hacking mechanism X X
Bootstrapping tool X X X X X

Minimum Viable Product or Multiple Facet Product? 123

The practice is also found in Case C and D, for example, “During the design meeting, the
team worked together in the a collaborative mockup prototyping tool. The team mem-
bers continued giving inputs to refine the prototype.”, mentioned by the CEO of
Company C.

Initial ideas and prototypes can vary, hence, cross-check during prototyping phase
is often necessary. For non-technical founders, visualizing their thoughts is important
to provide inputs for technical design: “I have many great ideas, but I have no idea if
they can be implemented. Building a prototype at least allows me and also others in my
team to ask the right questions… Visions and theory are notoriously hard to implement.
A prototype has to be real enough to be convincing, without looking like science
fiction.” (CEO of Company C).

Reflection on Architectural Design: MVP prototyping process is where product design
is reflected and revised. In Case B, mockup MVPs were created by the CEO to capture
the idealization phase. Meanwhile, the architecture of a product was initiated by the
CTO. The mockup MVP and architectural design was started at the same time and
gradually became two separate tasks that reflect business requirements and technical
insights. After talking to early customers, the MVP was updated according to new
requirements. Consequently, the MVP became a batch of new inputs for the final product
architecture: “From looking at the MVP you can see that the options for taken-away or
eat-with-host is not there in our workflow. I will update it in the next meeting …” (CTO
of Company B). It is also similarly mentioned in Case E, while the CTO reflected on how
they had changed the code structure based on early feedback from early stage working
prototypes: “Refactoring is not too big an issue compared to benefits of early releases…”
(CTO of Company E).

Facilitation of Creativity: MVP, as a rapid prototype, is more important than ideal-
ization phase, as it gives the balance between realistic and futuristic design. In Case B,
the process of finalizing a product idea has a typical path of a new product development
process [2]. Several ideas were discussed from the beginning, such as mood tracking,
event scheduling, e-receipt and food sharing. After many internal discussions, the focus
is to create a platform that facilitates gathering with friends by sharing food. Diverged
from theory, idea screening and concept testing was not really distinguished and occurs
iteratively in Case B. As ideas could come from all team members, to illustrate a given
concept, the CTO created a small prototype to convince other team member. From
experience of a serial entrepreneur, making a concrete visualization of an idea will
make his/herself and other team member easier to evaluate the innovative character-
istics of the product: “When initiating in my mind, the idea sounds great. When putting
it into paper, it looks similar to existing products that I know.” (CEO of Company D).

Realize Prototype-User Expectation Mismatch: MVP is also appeared as a part of
Lean startup approach to adjust the problem-solution fit. Some MVP, i.e. single feature
MVP is the latest point in time where disagreement, misalignment and different per-
spectives are harmonized for the sake of the project success. For example, in Com-
pany E, the CEO mentioned: “Real-life use cases give always nasty surprises
compared to the lab environment. In my case, river-side installations in our case are
fairly challenging. The deployed version gives much lesson to learn”.

124 A.N. Duc and P. Abrahamsson

4.3 MVP as a Boundary-Spanning Object

The interview data revealed that MVPs facilitate bridging knowledge gap between the
entrepreneur team and external stakeholders, i.e. customers, mentor, vendor and
investor.

Bridge between Business mind vs. Technical mind: MVP is used to communicate
about technical detail and business idea, which often is the case of early stage startups. In
Company B, a syntactic boundary occurred during an early stage of team formation by a
lack of the consistent use of technical terms. A mockup MVP was used to facilitate
common language: “She is very sharp about business and finance stuffs, but it takes a
long discussion to explain her about the importance of having flexible product design…”
(CTO of Company B). The gap also occurs in case the product is technically complicated,
as described in Company E. Technical details was too much to verbally explain in our
interview, which can lead to a threat of synaptic knowledge gaps. The CTO decided to use
a paper architectural diagram to hide some of the technical details, but still convey the
product ideas and good level of technology. In Company A, we found a quote presenting
a semantic knowledge boundary between the CEO and a developer: “I asked the guy
(developer) to create a registration page and he has done a complicated page with all the
detail… I only need a very simple login function…” The CEO mentioned that if a paper
description was given, the mis-interpretation might not be there.

Bridge between Entrepreneur team vs. End users: As mentioned in [3], MVP is used
to validate if the entrepreneur’s ideas are the same with end user’s expectation. In
Company B, the idea was to develop a platform for sharing food and food-based social
gathering. Presenting the ideas to people without showing a MVP was quite difficult:
“We have done interviews with some friends … by explaining key concepts like cuisine,
Airbnb of food, … which is not effective” (CEO of Company B). Rapid prototypes, such
as landing page and explainer video were proposed to communicate to a large amount
of audiences: “As a suggestion for the next entrepreneurs, one things we should do
from the beginning is to create a landing page. It is always difficult to follow up after
interviews if you do not have a link for them” (CTO of Company B).

In Company C, the product serves for construction tenants, the CEO had stayed in
customer organization for a period to understand gaps in the current work culture and
process. At the beginning, without a MVP, the CEO had a hard time to convince
customers about the benefits of her product. Syntactic knowledge gap was the barrier
when the CEO needed to learn about their language. The one-feature MVP was used to
show practical use of her solution: “We work with a customer organization, learn how
they have worked with the current solutions and describe our proposal via the pro-
totype. It is hard for them to realize the benefit without concrete examples…” (CEO of
Company C).

Bridge between Entrepreneur team vs. Investors: knowledge gaps were observed not
only within internal members, but also between entrepreneur teams and external
stakeholders, such as vendor and investors. MVPs were used in Case E to support
communication and negotiation beyond the team boundary: “A three-dimensional

Minimum Viable Product or Multiple Facet Product? 125

prototype is always better than just a documented specification when negotiating
contracts for manufacturing, support, and marketing. As a startup, you need all the
leverage you can get” (CTO company E). In Company C, MVPs were used to reduce
misunderstanding between entrepreneur team and outsourcing vendor. The CEO of
Company C mentioned that mockup MVP is the major mean to communicate with the
development team in India: “I can’t seat here and write about hundred page features
and that not sure everyone understands.”

Observations from investor pitches in Company B suggest that MVP is always
recommended in any pitches and be a part of evaluation criteria. This is also mentioned
by CEO of Company D: “It is important to show investors that you are committed, and
past the idea stage. Without a prototype, most professional investors won’t take you
seriously.” While most of investors have certain knowledge about technology and the
domain, the threat can be eliminated is the pragmatic knowledge gap. The presentation
can be more interesting with demonstration, and attracting interest of investors.

4.4 MVP as a Reusable Artifact

Aligned with bootstrapping approaches of many software startups, MVPs need to be
useful in many purposes. Even for a throw-away prototype, it can be used later in the
startup processes for other purposes.

Documentation: MVP is a way to document project progress and technical docu-
ments. In Company B, a wireframe is implemented using JustInMind, with concepts of
layers, reusable objects and screen scenarios. The tool also provides a function to
generating html versions with textual descriptions. In Company C, single feature MVP
is made in a self-explained and changeable manner. It is also included architectural
decisions and instruction for further extension. Besides, each prototype is an important
milestone marker to quickly keep track on pivoting: “it doesn’t matter how certain you
are about your solution; it probably will take several changes soon. It’s much easier to
pivot the pre-production prototype than to dispose of unsellable inventory… We can
later understand why we have changed from that prototype.”

Growth Hacking Exploration: Prototyping is the phase where growth hacking can be
experienced. Growth hacking techniques help to increase the amount of users, often
require the knowledge about both marketing and software development. In Com-
pany B, one of the early discussions was on what type of MVPs should be used in the
current stage. After consulting with mentors, the team decided to use a mockup MVP
that is hosted in a public server for having better reach: “We decided to use a mockup
MVP, it is hosted in Google web server. The link was attached to our online ques-
tionnaire so we can reach more people than going to each individual interview”. In
Company D, video was used in early stage to explain the concepts to large amount of
customers without going into detail of sale and marketing terms. When the first
one-feature MVP is available, it is freely offered to some organizations as beta testing.

Bootstrapping Mechanism: MVP is an economical approach of having a product,
which is demonstrable to investors and early customers. In Company E, both software

126 A.N. Duc and P. Abrahamsson

and hardware technology is needed in the product. They adopted multiple iterations to
gradually improve quality and performance of the product. It is mentioned that pro-
totype reduces cost of final product development: “One purpose of the long prototyping
process is that we can better learn about the technology. Once technical uncertainties
are clear, we can start again much faster with a clean product.” (CTO of Company C).

For startup generally, time means wasting opportunities, and would be come
competitor’s advantage. In Company D, the CEO suggested that “Don’t spend your
whole development budget, before finding that you need another iteration.” Com-
pany D composed of all technical members from the beginning: “You could say that we
have followed the Lean startup, the first MVP we have at December 2012 when we was
in [Incubator place] … We focus on the development of the MVP from Day one” (CEO
of Company C). With heavily focus on product development, they implemented the
strategies that making different prototypes of the same domain area. These MVPs later
can be (partly) reused by integrating into another product. CEO of Company A
mentioned:“ In reality, the process of designing, building, and validating a prototype
does dramatically reduce the risk, and allows everyone to hone in on the real costs of
going into production”.

5 Discussion

As a central part of build-measure-learn, Eric Ries emphasized the main role of MVP as
an artifact for customer validation [3]. Based on five case studies, we found that MVPs
could be useful for a startup as a design artifact, a boundary spanning artifact and a
reusable artifact. The process from business ideas to a launching product consists not
only loops but also parallel branches. When market validation and product design tasks
are carried on at the same time, certain types of MVPs would play a role of mutual
adjustment between input from customers and product design. In many cases, we
observed the benefits of having MVPs on final product development, such as increase
feedback quality and reachability.

Adoption of MVP might be influenced by many contextual factors. We discussed
about one most relevant factor, which is product development methodology. In our
cases, Agile development is the most viable processes for software startups (in Case A,
B, C, and D). In this context, fast releases with an iterative and incremental approach
shorten the time from idea conception to production. The continuous integration might
be the impetus for popular adopting evolutionary prototypes and single-feature MVP in
our cases (Company A, B, D, E). However, the prototyping process might be hindered
by other business and technical factors, leading to the inappropriateness of Agile
principles sometimes during the startup process. In Company A and D, the evolu-
tionary prototypes were implemented quite early and quickly during the process. While
in Company E, the prototype is evolved gradually over months, due to the technical
complexity of the product.

Reflecting on boundary spanning theory [10, 11, 13], we observed all three types of
knowledge boundary within a startup team and also between the team and external
stakeholders. MVP has been shown as an effective tool to break all these gaps. Syn-
tactic knowledge boundary was found between the CEO and a customer when

Minimum Viable Product or Multiple Facet Product? 127

explaining the product. It seems that syntactic boundary is not the main issues in our
startup cases. The reason may due to the nature of products (for wide range of users in
Company A and B), the familiarity of the CEO with the industry (Company C) and the
familiarity with some customers in the field (Company C, D and E). Semantic
boundary was found in a conversation between CEO and a developer, which can be
observed more within an entrepreneurial team. We have not found much evidence
about the boundary with mentors or investors, but it might happen as well. Pragmatic
boundary seems to be the most important issues among the team members and between
the team and investors. This can because of the divergence of entrepreneurial team in
term of startup goals and motivation over time (Company A), or pitch and presentation
skill to attract interest from investors and customers (Company B). We observe at least
in these cases that MVPs play the role of bridging these gaps.

Our research revealed different ways that MVPs can be used to support startup
business activities. However, they are not equally perceived among all startups. For
instance, only in Case B most of the MVP usages were identified. Moreover, tactics
with using MVP are arbitrary and there is no systematic approach to fully utilize the
benefit of MVP. For practitioners, we suggested that the development of MVP should
consider the ability to communicate among different stakeholders, to facilitate the
design and to save business and product development costs. In short, MVP should be
developed as a Multiple Facet Product (MFP).

There are several threats to validities worth to discuss [15]. One internal threat of
validity is the bias in data collection, as data might not represent the comprehensive
story. An important issue is related to the fact that the limited number of interviews
might not represent the complete scenarios in our context of study. In order to mitigate
this threat we selected CTO and CEO as interviewees, who have the best understanding
about their startups. We also use other types of data sources to increase our under-
standing about the cases. With Company A and Company B, we also acted as the
startup team members, which enables a lot of insights beyond interviews. Another
internal threat of validity is about how reliable the reported cases are. This is ensured as
two of the authors have not only theoretical background about software startups but
also hand-on experience.

A construct threat of validity is a possible inadequate description of constructs.
During the coding of interview transcripts, we adopted explanatory descriptive labels
for theoretical categories, to capture the underlying phenomenon without losing rele-
vant details. An external threat of validity is the representativeness of our selected
cases. As discussed earlier, the sample is collected from European technical-founded
bootstrap startups. A startup from USA or America, and a startup with different
financial models might introduce other MVP usage patterns. For more thorough
understanding and generalization of the results, a large pool of startups with variety
profiles should be included. All of the cases are small startups under development
seeking for seed funding. Besides, the startup decisions on MVP might be influenced
by individual personalities.

128 A.N. Duc and P. Abrahamsson

6 Conclusions

The study of five startups reveals some insights for prototyping approaches in software
startups. We found that MVP is also be used as a MFP, where it supports the design
process, bridges communication gaps and facilitate the cost-saving activities. When
market validation and product design tasks are carried on at the same time, certain
types of MVPs would play a role of mutual adjustment between input from customers
and product design. MVPs were used to bridge knowledge gaps between entrepreneurs
and developers, customers, investors. Particularly, we illustrate how three types of
knowledge boundaries have been resolved using MVPs.

So far, we have explored the stated research questions through a multiple case
study. Our next step in the research is to include different types of software startups.
Possible sequences of MVPs to be developed were initially observed in Company B
and Company C. Future study will explore in-depth about MVP development processes
in other cases. Another research topic is to understand how software prototype practices
fit into Agile development context. Last but not least, OSS adoption has been essential
for product development in startup. The question would be in which way startup
companies can really benefit from adopting OSS.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any changes
made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: A systematic mapping study. Inf. Softw.
Technol. 56(10), 1200–1218 (2014)

2. Coleman, G., O’Connor, R.: An investigation into software development process formation
in software start-ups. J. Enterp. Inf. Manage. 21(6), 633–648 (2008)

3. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Crown Business, New York (2011)

4. Khurum, M., Fricker, S., Gorschek, T.: The contextual nature of innovation - An empirical
investigation of three software intensive products. Inf. Softw. Technol. 57, 595–613 (2015)

5. Sommerville, I.: Software Engineering, 9th edn. Pearson Education, Harlow, England (2010)

Minimum Viable Product or Multiple Facet Product? 129

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

6. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software startup
development model: A framework for operationalizing lean principles in software startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013)

7. Lindgren, E., Münch, J.: Software development as an experiment system: A qualitative
survey on the state of the practice. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP
2015. LNBIP, vol. 212, pp. 117–128. Springer, Heidelberg (2015)

8. Carlile, P.R.: A pragmatic view of knowledge and boundaries: Boundary objects in new
product development. Organ. Sci. 13, 442–455 (2002)

9. Floyd, C.: A systematic look at prototyping. In: Budde, R., Kuhlenkamp, K., Mathiassen, L.,
Zullighoven, H. (eds.) Approaches to Prototyping, pp. 1–18. Springer, Heidelberg (1984)

10. Tushman, M.L., Scanlan, T.J.: Boundary spanning individuals: their role in information
transfer and their antecedents. Acad. Manage. J. 24, 289–305 (1981)

11. Bowker, G., Star, S.L.: Sorting Things Out: Classification and Its Consequences. MIT Press,
Cambridge, MA (1999)

12. Yin, R.K.: Case Study Research: Design and Methods (Applied Social Research Methods),
5th edn. SAGE Publications Inc, Thousand Oaks (2014)

13. Strauss, A., Corbin, J.: Basics of Qualitative Research Techniques and Procedures for
Developing Grounded Theory. 2nd edition (1998)

14. Boyatzis, R.E.: Transforming qualitative information: thematic analysis and code
development. Sage Publications, Thousand Oaks (1998)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

130 A.N. Duc and P. Abrahamsson

On the Impact of Mixing Responsibilities
Between Devs and Ops

Kristian Nybom(B), Jens Smeds, and Ivan Porres

Faculty of Science and Engineering, Information Technologies,
Åbo Akademi University, Vesilinnantie 3, 20500 Turku, Finland

kristian.nybom@abo.fi

Abstract. Many software engineering organizations around the world
are adopting DevOps. One of the goals of DevOps is to foster better col-
laboration between development and operations personnel, in order to
improve organizational efficiency. Since DevOps is lacking a common def-
inition, there are several approaches to adopt it, and organizations largely
need to determine how to apply DevOps for themselves. In this paper,
we present results from a case study in which a software organization
adopts DevOps. The focus of this research is to study the impact of mix-
ing the responsibilities between development and operations engineers.
We interviewed 14 employees in the organization during the study, and
results indicate several benefits of the chosen approach, such as improved
collaboration and trust, and smoother work flow. This comes at the cost
of a number of complications, such as new sources for friction among the
employees, risk for holistically sub-optimal service configurations, and
more.

Keywords: DevOps · Software process improvement · Adoption
benefits and challenges

1 Introduction

DevOps has in recent years gained interest in the software and service develop-
ment industry, and its adoption rate is expected to grow over the coming years
[1]. DevOps addresses the challenge of what is often described as a gap between
development and operations personnel. The gap is reduced through a combi-
nation of processes, cultural enhancements, and supporting technologies. More
specifically, DevOps encompasses automation for reducing manual effort and
improving stability, continuous feedback using metrics for improving software
development processes, and a culture of collaboration and information sharing
between teams [2]. However, the term “DevOps” is still an ambiguous concept
and is lacking a standard definition [3–5]. While the purpose of DevOps is clear,
organizations adopting DevOps must interpret and define what DevOps means
to them.

The fact that DevOps is lacking a standard definition implies that there is
no simple approach to follow when adopting DevOps in an organization. Adopt-
ing DevOps may thus not be a straightforward task since it may require that an
c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 131–143, 2016.
DOI: 10.1007/978-3-319-33515-5 11

132 K. Nybom et al.

organization introduces process, personnel and technological changes and innova-
tions. Since DevOps focuses on principles for software and service development,
rather than specifying exactly how to implement DevOps, it means the path to a
successful DevOps adoption is unique to each organization [6]. Therefore, we feel
that it can be beneficial to learn from the successes and challenges experienced
during previous DevOps adoptions when planning new DevOps initiatives.

In this article, we present how a particular organization adopted DevOps
and what the impact was of this adoption from the perspective of engineers. In
particular, we study the impact of mixing responsibilities between development
and operations personnel, and how this affects the culture, tools and work prac-
tices. The study was carried out by interviewing both development (“Devs”) and
operations (“Ops”) personnel before the start of the DevOps adoption and six
months into the adoption.

2 Background: Approaches to DevOps Adoption

DevOps is commonly viewed as a professional movement that emphasizes com-
munication, collaboration and integration between software developers and IT
operations, see e.g. [7]. According to Willis [8], DevOps is comprised of four key
aspects: culture, automation, measurement and sharing. In our previous work [9],
we described DevOps as a number of engineering process capabilities supported
by certain cultural and technological enablers. According to this definition, the
capabilities define processes that an organization should be able to carry out,
while the enablers support efficient work execution of these processes.

Common to most definitions of DevOps is that one of the main goals behind
it is to tackle the problem of having development and operations teams in func-
tional silos (see e.g. [10]) – a problem which is often present in non-DevOps soft-
ware development organizations. The teams are in functional silos when there
is little support for communication and collaboration between them in order
to make releases. Breaking down the silos improves the development cycle, by
bringing Devs and Ops closer to each other, allowing the organization to produce
more production-ready code and deliver better services more frequently. Break-
ing down existing silos is, however, a non-trivial task, and it is tightly coupled
with improvements in work processes, culture, and technology.

Focusing on concrete actions that address the problem of bringing Devs and
Ops closer to each other, three possible but distinct approaches are to

1. Mix responsibilities: assign both development and operations responsibilities
to all engineers, or

2. Mix personnel: increase communication and collaboration between Dev and
Ops, but keep existing roles differentiated, or

3. Bridge team: create a separate DevOps team that functions as a bridge
between Devs and Ops

Which approach to use may be difficult to decide on. An argument for fol-
lowing Approach 1 (mix responsibilities) lies in the concept of Infrastructure

On the Impact of Mixing Responsibilities Between Devs and Ops 133

as Code. What this concept refers to is that the infrastructure for deploying
software is fully automated, and is controlled by code. As mentioned in [11]:

“If infrastructure is code, then almost by definition, infrastructure becomes
to some degree a function of development, or at least so hard to separate
from development that the distinction becomes almost irrelevant.”

Assuming that infrastructure is code, this statement suggests that Approach 1
(mix responsibilities) is a natural approach, because Ops will be involved in Dev
tasks by developing the infrastructure together with the Devs.

As for Approach 2 (mix personnel), it is stated in [12] that creating cross-
functional teams is a good approach when adopting DevOps. These teams should
consist of Devs, testers, Ops personnel and others, and then each of them would
contribute code to a shared repository. In this way, the Dev and Ops responsibili-
ties are maintained, but communication and collaboration is promoted. It is also
mentioned in [12] that although promoting communication and collaboration is
key, training for Devs and Ops on the responsibilities of other departments can
be very beneficial for communication.

In a blog post [10], Jez Humble strongly states that Approach 3 (bridge
team) should not be followed when adopting DevOps, since a separate DevOps
team will not break any silos, but instead create new ones. Nevertheless, [13]
reports that DevOps departments are a growing trend, and that according to
their survey, more than 90 percent of those working in DevOps departments are
in companies with medium to high IT performance.

3 Research Questions and Study Design

We consider that there is a need for empirical studies describing how DevOps is
being adopted in different organizations and for the benefits and drawbacks of
adopting DevOps. In this article, we decided to focus on the DevOps approach
based on mixing responsibilities, and left studies of other approaches for future
work. The main research question is as follows

RQ What may happen when mixing responsibilities between developers and
operations teams in an existing organization?
RQ.a How does this approach affect the culture?
RQ.b How does this approach affect the tooling?
RQ.c How does this approach affect the ways of working?

This research was done as a longitudinal case study: we observed an organi-
zation as the phenomenon happened. For collecting data for the study, we used
semi-structured interviews of company employees. For selecting the organization
for the case study, we had the following two criteria:

1. Before the start of the DevOps adoption, there has to be clearly separated
roles between Devs and Ops in the organization

2. The organization chooses Approach 1 as part of their DevOps adoption

134 K. Nybom et al.

The selected organization was an international IT company with a long his-
tory and over 1000 employees, which develops both software and services for cus-
tomers. The case organization contains several organizational units, each having
their own R&D teams. These units are combined by a separate operations unit.

This study was carried out in one of the organizational units, which develops
and operates in the cloud services area. That unit was also the only unit in the
organization that was actively adopting DevOps. Motivations for the adoption
were to make software deployments faster and more frequent, to share knowledge
between development and operations, and to keep deployment costs low.

A total of 14 experienced employees were selected by the company so they
would represent different work areas, e.g. development, quality assurance, opera-
tions, and management. Their familiarity with DevOps prior to the study varied
from understanding the basics of the concept to having previous professional
experience of successfully adopting DevOps.

We conducted two rounds of interviews. The first interviews were conducted
in the end of May 2014. Before the interviews, the participants were informed
about the study, that the interviews will be recorded and that the answers will
be handled anonymously. The interviews lasted roughly 45 min on average. An
interview guide containing a broad field of questions was used for the semi-
structured interviews. The purpose of the first round of interviews was to get
an overview of the organization, of their processes, of the daily work, and of
employees’ expectations and concerns regarding their DevOps adoption. The
recordings of the interviews were transcribed, coded and analyzed, and some
results from that round have been reported in [9].

The second round of interviews were conducted in October 2014, and followed
the same procedure as the first round. The questions for the second round were
designed based on the results from the first round, and many of them were angled
to expose changes since the first round. Other topics covered were related to the
software development processes, relationship between development and opera-
tions, teamwork, employees’ feelings (such as pressure, impact and importance
regarding his/her work), how the DevOps adoption had proceeded along with
expectations and concerns, views on the management, and the DevOps aspects
of automation and familiarity with others’ work.

The recordings from the second round were transcribed. Thereafter they
were coded separately by two of the researchers to make sure that no relevant
information would be missed, and to reduce the risk of researcher subjectivity
influencing the codes. The researchers used slightly different approaches to code
the material. The first coding approach was as follows. First, the transcripts were
read though and summarized to obtain a quick overview of the subjects discussed
in the interviews. Then, the transcripts were read through in detail with the
researcher identifying, assigning, comparing and adjusting codes according to
the content. Finally, the transcripts and the corresponding coding were read
through once more from the start to check and make some final adjustments to
the codes.

A second coding approach was to use pre-defined codes according to the
research questions in this article. While reading through the transcripts and

On the Impact of Mixing Responsibilities Between Devs and Ops 135

assigning content to the codes, different subjects discussed during the interviews
were simultaneously identified. A second round of coding was then done within
each of the pre-defined codes, using the identified subjects as pre-defined sub-
codes. This resulted in detailed codes for each research question. The researchers
then individually identified what was perceived as beneficial or challenging from
both coding approaches. The individual lists were then compared, discussed and
merged into our final list of outcomes. The results presented in this article are
based on the second round of interviews.

4 Results

Before presenting the outcomes of the interviews, it is worth mentioning that
the organizational structure, or more specifically, the fact that operations were
attending the products for all the different organizational units, had an impact on
several of the things mentioned below. Most notably, this resulted in operations
having limited possibilities in taking on development responsibilities. Another
fact to notice is that only one of the organizational units were actively adopting
DevOps, while the other units were not, resulting in a difficult situation for
operations: depending on which unit they were attending, they needed to work
according to a specific pattern.

In the following we use the terms “Dev” and “Ops” to describe engineers with
previous experience and responsibilities within software and service development
and operations respectively.

4.1 Impact on Culture

A New Source for Friction. In order to enable Devs to deal with operations
tasks, it was necessary to give administration rights to Devs to different environ-
ments. Based on the comments from the employees, it was evident that gaining
access served as a cause for friction and mistrust. It was also mentioned that the
process for obtaining access was long and tedious.

The long process also had negative implications on the work efficiency,
because employees often realized too late that they needed the access, caus-
ing extra delays. The decision process for who was granted the access was also
described as unfair. Some employees mention that access seem to have been
granted based on shown interest rather on experience and knowledge. Devs also
complained about Ops getting access faster than Devs. This made them angry
and irritated.

An Eye-Opening Experience. Mixing the responsibilities of Devs and Ops
was considered educating for the Devs. In the organization, the Devs had been
developing various tools for their operations personnel to use for a long time,
but only now with the DevOps adoption initiative did they get to see how their
own tools were working.

136 K. Nybom et al.

Seeing the operations side also surprised the Devs in the sense that they now
realized how far from production ready their software usually was, although it
had passed all the tests in their own environment.

Through teaching others and learning from others, Devs and Ops were begin-
ning to trust each other more. The increased level of trust was accompanied with
stress relief, specifically for operations personnel as they could trust Devs to
do part of the operations tasks. As a consequence, knowledge about operations
tasks and problems were increased among the Devs. This lead to Devs starting to
improve test environments to better correspond with production environments,
while also contributing to increased collaboration between Devs and Ops.

Learning how to do operations tasks was not straightforward for everyone.
Some employees mention it being extremely challenging, and that they did not
see the point in having Devs do tasks which other more proficient employees
do better. The complications in learning how to do operations tasks resulted
in a certain reluctance in learning new things among the Devs. These Devs
mentioned that they would prefer having the distinction between Devs and Ops
more clear, implying that the mixing of responsibilities were not to their liking.
Additionally, learning how to do upgrades was considered time consuming, but
on the positive side, it had also revealed flaws in the upgrade processes. Devs
mentioned the greater need for knowledge and expertise, since they now were
responsible for everything and consequently needed to know every technology
used. This was visible as mixed feelings among the Devs.

Shared Responsibilities. The view on how responsibilities were shared var-
ied. Devs largely felt that responsibilities were shared, and if something went
wrong, it was everybody’s fault, while some Ops felt that Devs were somewhat
unaccountable, specifically when it came to fixing problems late in the evenings.
Their opinion was that Devs wanted to decide on everything, how the product is
designed, how it is deployed, etc., without involving operations personnel. Then
at the end of regular office hours, Devs would not care anymore and would want
Ops to take care of it.

Employees agreed that within development, the responsibility of deploying
software was shared among the Devs. They mentioned that whenever someone
had problems with deploying software, they simply needed to shout it out, and
everyone was alert and helping that person if needed.

Improved Collaboration. Mixing the responsibilities brought Devs and Ops
closer to each other. Employees mentioned that Devs and Ops now collaborate on
different tasks, since they now realize the importance of collaboration. Everyone
agreed that collaboration between Devs and Ops is good on an individual level,
and to some extent also on team level, but some employees called on the support
from managers to further improve collaboration by providing more reasons for
collaboration. It was mentioned that through the improved collaboration, it was
easier to get things moving forward, since Devs could discuss directly their issues
with Ops personnel, which is much faster than having to contact managers to
get the issues solved.

On the Impact of Mixing Responsibilities Between Devs and Ops 137

On the other hand, Ops felt uneasy about Devs coming into their domain,
and mentioned that adjusting to this takes time. Additionally, the closer col-
laboration and specifically keeping Devs and Ops synchronized was described
being time consuming. It was argued that, although individual, the work space
affects the level of collaboration to some degree, since long walking distances
might imply a threshold for going to talk to some other person.

Through the collaboration, both Devs and Ops had become more trusting and
understanding towards the other. Ops had seen that Devs can do the operations
tasks without jeopardizing service stability and Devs had realized what Ops have
to struggle with in order to deploy their software.

4.2 Impact on Internal Development Tools

Awareness of Tool Quality. As mentioned earlier, Devs had been developing
tools for their operations personnel, and now that Devs were dealing with oper-
ations tasks, they were using their own tools. Devs mentioned that they were
now experiencing the flaws and problems that the tools had, something which
Ops had been aware of all the time. But now that Devs were using their own
tools, and since they were not accustomed to having poor solutions, they were
putting extra effort into creating very good tools for deployment. Development
of these improved tools was performed in collaboration with Ops.

Deployment Risks. Previously operations was the place where the entire ser-
vice stack came together, where all problems materialized, and where decisions
were made which affected the entire service stack. Since Devs had been given
the power to deploy their own product, there was some concern that they could
make decisions that would be optimal for their specific product, while unknow-
ingly disregarding the impact of their decisions on the remaining service stack.
The main risk identified was that problems caused by these kinds of decisions
are realized too late.

Identified Tooling Obstacles. It was mentioned that the many environments
and many ways of upgrading different services creates an obstacle for full automa-
tion. Ops mentioned that automatic reactions to various glitches that may occur
cannot be defined. Ops always have to investigate those problems manually.
These problems were partially realized by Devs too. They perceived deploy-
ment as being time consuming and requiring significant effort, and while they
technically could create scripts that would deploy everything, the real problem
was to create scripts that recover from glitches. Another concern mentioned was
that without automation, configuring all the different environments correctly
is error-prone, specifically when there is a change in configuration. The Devs
felt that it is easy to forget to align the configurations across all the different
environments.

138 K. Nybom et al.

4.3 Impact on Ways of Working

Added Responsibilities. According to the chosen DevOps adoption approach,
Devs were now responsible for performing upgrades on certain production envi-
ronments. These environments were pre-staging environments, in the sense that
they were mostly for internal users. A so called build master role was introduced
among the Devs, which would rotate within the team on a weekly basis. In addi-
tion to doing the upgrades, the build master was also required to debug and
investigate the production environment.

Devs mentioned that getting used to the build master role, and focusing on it
was demanding – it is easy for Devs to start working on something else as soon
as they have completed their task as build master, even though they noticed
something that should be fixed.

Benefits of Having Administration Rights. The perceived benefits of
Devs having access to different environments were manifold. Getting e.g. statis-
tics from the production environments was described being considerably easier
through the granted access, making work much smoother. Devs mentioned that
it also allows better debugging, because Devs do not need to ask Ops for help
anymore. It is faster, and more thorough, because Ops do not always have time
to delve into the problems. On the other hand, this is time away from feature
development. Ops also said that they had many times received help from Devs
in problematic situations, making their work easier.

Common Ways of Working. Employees mentioned that the mixing of respon-
sibilities puts higher requirements on common work practices and technical solu-
tions between Devs and Ops. Without this, a risk identified was that Devs create
tools specific for only their own unit’s needs rather than having common solutions
for all the organization.Theymentioned that the upper management needs to push
for common solutions in order to avoid this situation. They also mentioned that
without strong management, the increased freedom among the Devs may result in
a chaotic working environment, where everyone is doing as he or she pleases.

A concern was that even though access had been granted to Devs and employ-
ees had new responsibilities, work was done quite far in the same way as earlier.
Other concerns among the Ops were that with added responsibilities and granted
access for the Devs, Ops responsibilities had changed towards support, and that
Devs were making decisions without consulting Ops.

Devs occasionally dealing with operations tasks was mentioned to have neg-
ative implications on the employees’ work flow, as they caused complicated con-
text switches. They said that it is easy to switch between tasks when they are
within the same area, but switching between development and operations tasks
is complicated. These context switches were perceived as frustrating.

Concerns with Mixed Responsibilities. Several concerns in the chosen app-
roach of adopting DevOps were also discussed. It was mentioned that people like

On the Impact of Mixing Responsibilities Between Devs and Ops 139

to do what they are used to doing. Thus, introducing operations tasks to Devs
was perceived as complicated, and Devs would try to avoid them. Devs were
used to making their own engineering decisions, but this was described as prob-
lematic, since they now created their own solutions also for operations tasks,
instead of learning from others and reusing common solutions.

The combined effort of Devs and Ops was described having its own complica-
tions, because more people making changes to configuration and software leads
to an increase in the probability of error, simply because the tools and processes
for performing such changes have not emerged. To cope with this situation,
employees felt that there is a great need for guidance, and will for involvement
from everyone, so that they can agree on a common approach.

Devs doing operation tasks was experienced both positively and negatively.
Some people loved having control over the entire delivery chain, while others
wondered why not more experienced people could take care of the deployment.
Several employees felt, however, that the chosen approach of mixing responsi-
bilities was the wrong approach for doing DevOps. A perceived problem was
that technical systems were tied to specific APIs and then Devs and different
development teams were given too much freedom in choosing their own way of
doing things. With many such development teams, a risk mentioned was that
the organization ends up with many ways of working, causing lack of synergy.

5 Discussion

The results from the interviews indicate several beneficial aspects when mixing
responsibilities between Devs and Ops. Devs have seen what work is required in
order to deploy their software, which is educating for them. In addition to allow-
ing them to develop more production ready code, it also reveals problems and
flaws in some of the tools they have developed for the Ops. As a consequence,
Devs are now putting more effort into developing better tools, which is done in
collaboration with Ops. This clearly shows a benefit of learning about responsi-
bilities of other teams. When Devs learn what happens with their code after it is
developed and tested, they can exploit this knowledge for producing better code
in the future. Unfortunately, corresponding benefits for the operations personnel
were not revealed, because they were unable to take on development responsi-
bilities. This was mainly due to the organizational structure, which required the
operations teams to deal with software from all the organizational units.

Both the collaboration and trust between Devs and Ops is improved through
the mixed responsibilities. Instead of contacting managers to solve problems,
employees can discuss directly with personnel from the other team which is much
faster. Ops have realized that Devs can deal with the operations tasks they are
assigned with, without jeopardizing the stability of the service. Devs, on the other
hand, have seen what Ops have to go through in order to deploy their software.
This weakens the silo structure between the Devs and Ops, and the teams are
effectively collaborating more. The weakened silos also inspire employees for
even more collaboration, and some employees said that they would want the

140 K. Nybom et al.

managers to give them even more reasons for collaboration. Thus, mixing the
responsibilities seems to weaken the silos, as Devs and Ops are encouraged, and
even required, to communicate and collaborate more.

Giving administration rights to Devs was seen as beneficial in many ways.
Devs get statistics from production environments making work smoother, they
can fix errors more easily than previously, and fixing errors is more thorough and
efficient. The drawback is that all of this is time away from feature development.

The chosen adoption approach was not without complications. Surprisingly,
getting administration rights was described as a source for friction, since employ-
ees felt that administration rights were not granted on a fair basis. Dealing with
operations tasks was far from an easy task for several Devs, and because of this,
the opinion of having separate responsibilities was strengthened among them.
The organizational structure prevented Ops to fully take part in the DevOps
adoption, since they already had their hands tied with operations tasks for
other organizational units. We believe that this fact also partially prevented
the teams from developing common ways of working, since Ops also had to work
with other units that were not adopting DevOps. The concerns associated with
taking on operations tasks among the Devs are a natural reaction. It is under-
standable that they wonder why they have to deal with operations tasks when
there already is more proficient personnel to deal with those tasks. In general, a
certain reluctance towards the adoption of DevOps was observed.

Devs having the power to deploy their own software was repeatedly men-
tioned as dangerous because this could potentially damage the entire service
stack in the organization. The reason is that Devs were not aware of software
developed in other organizational units, and consequently were configuring their
software without those in mind. This presents a risk with the adoption app-
roach, because if other organizational units had had similar power, it could have
produced a chaotic end result, where all units would create their own solutions.
With a lack of collaboration, communication and shared work practices and goals
between Devs and Ops, this risk is further strengthened. To improve the situ-
ation, management could actively try to improve inter-team relations in order
to facilitate communication to ensure that information spreads across teams.
Automation could also assist in solving this problem to some degree.

Creating fully automated deployment tools was mentioned being a neces-
sity for a well-functioning DevOps implementation. With the many different
environments and many ways of upgrading, employees were of the opinion that
automatic reactions to various glitches that may occur cannot be defined. Con-
sequently, a large effort was continuously put into configuring and upgrading
software, and employees called for a holistically well-functioning deployment
tool chain. The effort required to put into this also had other implications, since
it required Devs to make complicated context switches between development
and operations tasks. Better automation could have assisted with the context
switches, improving the work flow of the employees.

When both Devs and Ops independently make changes to configuration and
software, there is a greater probability of error, as long as the tools and processes
for performing such changes are not improved. This clearly shows the need for
developing common ways of working and improving the automation.

On the Impact of Mixing Responsibilities Between Devs and Ops 141

It is clear from the respondents that what DevOps means to the organiza-
tion should be clearly communicated to the employees in order to support a
successful adoption. Currently, Devs felt that DevOps mostly meant that they
get additional operations tasks to deal with once in a while, and when they are
completed, they go back to developing. Clearly, this view is counterproductive
for improving collaboration between the teams, and to avoid this, guidance and
instructions are a necessity.

Had a third round of interviews been performed later into the adoption
process, it is likely that the collaboration between the teams had been further
improved, and that DevOps had stabilized more. When the second round of
interviews was performed, however, employees were still adapting to the new
responsibilities. Since people change slowly, it is not surprising to see certain
instability, uncertainty, and reluctance among the employees.

6 Conclusions

This paper describes phenomena that arose when mixing responsibilities between
developers and operations personnel in an organization when adopting DevOps.
The results are from a case study, in which a software organization adopting
DevOps was studied. The case organization consisted of several organizational
units and a separate operations unit. In the organization only one organiza-
tional unit was adopting DevOps, which impacted the results in the sense that
operations were not fully able to participate in the adoption.

The results indicate several benefits of the mixed responsibilities. Collab-
oration and trust were improved between Devs and Ops, and seeing what the
other team has to deal with was very educating, helping employees in their work.
Through increased collaboration, the work flow was described as smoother and
faster as compared to earlier. Since Devs were dealing with operations tasks,
they realized problems and flaws in the tools that they had earlier developed for
operations, and Devs were now working on improving the tooling.

Several complications with the chosen adoption approach were also revealed.
As Devs had the power to configure and deploy their own software, a major
concern was that they would create solutions that were optimal for their soft-
ware, while unknowingly disregarding the impact this had on the remaining
service stack. The lack of common ways of working between Devs and Ops
reinforced this concern. Dealing with new responsibilities among the Devs was
considered challenging by many, and even strengthened their opinion of having
separate responsibilities. Because of the challenging operations tasks, Devs real-
ized the importance of having automated infrastructure, but accomplishing this
was described as being extremely complicated in the case organization.

Finally, the study reveals the need for a strong management when adopting
DevOps, since Devs and Ops need to develop common goals, practices of deploy-
ing, and approaches to technical solutions. The management also needs to clearly
communicate to the employees what DevOps means to the organization, so that
the personnel will realize the reason for the adoption, and the requirements and

142 K. Nybom et al.

benefits of it. Automation of the infrastructure is of key importance, specifically
when Devs are given the responsibility of configuring and deploying their own
software.

The results indicate that when operations work with several organizational
units, it is challenging to adopt DevOps in only some of those units. Thus, the
overall organizational structure may impact the DevOps adoption process.

Acknowledgements. This work has been partially supported by the Digile Need for
Speed program and funded by Tekes, the Finnish Funding Agency for Technology and
Innovation.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Gartner, Inc.: Gartner says by 2016, devops will evolve from a niche to a main-
stream strategy employed by 25 percent of global 2000 organizations. http://www.
gartner.com/newsroom/id/2999017. Accessed 23 February 2016

2. Babar, Z., Lapouchnian, A., Yu, E.: Modeling DevOps deployment choices using
process architecture design dimensions. In: Ralyté, J. (ed.) PoEM 2015. LNBIP, vol.
235, pp. 322–337. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25897-3 21

3. Hüttermann, M.: DevOps for Developers, 1st edn. Apress, Berkely (2012)
4. Roche, J.: Adopting devops practices in quality assurance. Commun. ACM 56(11),

38–43 (2013)
5. Capgemini, Devops - the future of application lifecycle automation, December 2014.

https://www.capgemini.com/resources/devops-the-future-of-application-lifecycle-
automation. Accessed 17 December 2015

6. Virmani, M.: Understanding devops & bridging the gap from continuous integra-
tion to continuous delivery. In: 2015 Fifth International Conference on Innovative
Computing Technology (INTECH), pp. 78–82, May 2015

7. New Relic, What is devops‘? http://newrelic.com/devops/what-is-devops.
Accessed 18th December 2015

8. Willis, J.: What devops means to me, July 2010. http://www.getchef.com/blog/
2010/07/16/what-devops-means-to-me/. Accessed 3 December 2014

9. Smeds, J., Nybom, K., Porres, I.: DevOps: a definition and perceived adoption
impediments. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015.
LNBIP, vol. 212, pp. 166–177. Springer, Heidelberg (2015)

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.gartner.com/newsroom/id/2999017
http://www.gartner.com/newsroom/id/2999017
http://dx.doi.org/10.1007/978-3-319-25897-3_21
https://www.capgemini.com/resources/devops-the-future-of-application-lifecycle-automation
https://www.capgemini.com/resources/devops-the-future-of-application-lifecycle-automation
http://newrelic.com/devops/what-is-devops
http://www.getchef.com/blog/2010/07/16/what-devops-means-to-me/
http://www.getchef.com/blog/2010/07/16/what-devops-means-to-me/

On the Impact of Mixing Responsibilities Between Devs and Ops 143

10. Humble, J.: There is no such thing as a “devops team”, October 2012.
http://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/.
Accessed 17 December 2015

11. Riley, C.: Do, should developers own infrastructure? June 2015. http://devops.
com/2015/06/25/doshould-developers-infrastructure/. Accessed 17 December
2015

12. Wade, E.: In devops culture, communication, collaboration are key.
https://www.veracode.com/blog/2015/07/devops-culture-communication-and-col
laboration-are-key. Accessed 27 December 2015

13. Puppet Labs, New Relic and Thoughtworks, “2014 state of devops report” (2014).
http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf. Acces-
sed 23 February 2016

http://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/
http://devops.com/2015/06/25/doshould-developers-infrastructure/
http://devops.com/2015/06/25/doshould-developers-infrastructure/
https://www.veracode.com/blog/2015/07/devops-culture-communication-and-collaboration-are-key
https://www.veracode.com/blog/2015/07/devops-culture-communication-and-collaboration-are-key
http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

Arsonists or Firefighters? Affectiveness
in Agile Software Development

Marco Ortu1, Giuseppe Destefanis2(B), Steve Counsell2, Stephen Swift2,
Roberto Tonelli1, and Michele Marchesi1

1 DIEE, University of Cagliari, Cagliari, Italy
{marco.ortu,roberto.tonelli,michele}@diee.unica.it

2 Brunel University, Uxbridge, UK
{giuseppe.destefanis,steve.counsell,stephen.swift}@brunel.ac.uk

Abstract. In this paper, we present an analysis of more than 500 K com-
ments from open-source repositories of software systems developed using
agile methodologies. Our aim is to empirically determine how developers
interact with each other under certain psychological conditions gener-
ated by politeness, sentiment and emotion expressed within developers’
comments. Developers involved in an open-source projects do not usu-
ally know each other; they mainly communicate through mailing lists,
chat, and tools such as issue tracking systems. The way in which they
communicate affects the development process and the productivity of
the people involved in the project. We evaluated politeness, sentiment
and emotions of comments posted by agile developers and studied the
communication flow to understand how they interacted in the presence
of impolite and negative comments (and vice versa). Our analysis shows
that “firefighters” prevail. When in presence of impolite or negative com-
ments, the probability of the next comment being impolite or negative is
13 % and 25 %, respectively; ANGER however, has a probability of 40 %
of being followed by a further ANGER comment. The result could help
managers take control the development phases of a system, since social
aspects can seriously affect a developer’s productivity. In a distributed
agile environment this may have a particular resonance.

Keywords: Agile · Data mining · Human aspect

1 Introduction

The study of emotions and psychological status of developers and people involved
in the software-building system is gaining the attention of both practitioners and
researchers [12]. Feldt et al. [8] focused on personality as one important psycho-
metric factor and presented initial results from an empirical study investigat-
ing the correlation between personality and attitudes to software engineering
processes and tools.

Software is a complex artefact which requires sharing of knowledge, team
building and exchange of opinion between people. While it has been possible to
c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 144–155, 2016.
DOI: 10.1007/978-3-319-33515-5 12

Arsonists or Firefighters? Affectiveness in Agile Software Development 145

standardise classical industrial processes (e.g., car production), it is still difficult
to standardise software production. Immateriality plays a major role in the com-
plexity of software and despite attempts to standardise the software production
process, software engineering is still a challenging and open field. There are too
many constraints to take into account. Developers build an artefact that will be
executed on a machine; software metrics, design patterns, micro patterns and
good practices help to increase the quality of a software [4,6], but developers are
humans and prone to human sensitivities. Coordinating and structuring devel-
oper teams is a vital activity for software companies [17] and dynamics within a
team have a direct influence on group success; on the other hand, social aspects
are intangible elements which, if monitored, can help the team in reaching its
goals. Researchers are increasingly focusing their effort on understanding how
the human aspects of a technical discipline can affect the final results [3,7,11].

Open-source development usually involves developers that voluntarily partic-
ipate in a project by contributing with code. The management of such develop-
ers could even be more complex than the management of a team within a com-
pany, since developers are not in the same place at the same time and coordination
becomes more difficult. The absence of face-to-face communication mandates the
use of mailing lists, electronic boards, or specific tools such as Issue Tracking Sys-
tems. Being rude when writing a comment or replying to a contributor can affect
the cohesion of the group and the successfulness of a project; equally a respectful
environment is an incentive for new contributors joining the project [13,20,24].

In this paper, we empirically analyze more than 500 K comments from Ortu
et al. [17] to understand how agile developers behave when dealing with
polite/impolite or positive/negative (sentiment) issue comments. We empiri-
cally built three Markov chain models with states for politeness (polite, neutral,
impolite), sentiment (positive, neutral, negative), and emotions (joy, anger, love,
sadness). We aim to answer the following questions:

– Do developers change behaviour in the context of impolite/negative com-
ments?

– What is the probability of shifting from comments holding positive emotions
to comments holding negative emotion?

The remainder of this paper is structured as follows: In the next section,
we provide a summary of related work. Section 3 describes the dataset used for
this study and our approach/rationale to evaluate affectiveness of comments
posted by developers. In Sect. 4, we present the results and elaborate on the
research questions we address. Section 5 discusses the threats to validity. Finally,
we summarize the study findings in Sect. 6.

2 Related Work

Several recent studies have demonstrated the importance and relationship of pro-
ductivity and quality to human aspects associated with the software development
process. Ortu et al. studied the effect of politeness [16] and emotions [15] on the

146 M. Ortu et al.

time required to fix any given issue. The authors demonstrated that emotions did
have an effect on the issue fixing time. Research has focused on understanding how
the human aspects of a technical discipline can affect final results [3,7,11], and
the effect of politeness [14,23,25]. The Manifesto for Agile Development indicates
that people and communications are more essential than procedures and tools [2].
Several recent studies have demonstrated the importance and relationship of pro-
ductivity and quality to human aspects associated with the software development
process. Ortu et al. studied the effect of politeness [16] and emotions [15] on the
time required to fix any given issue. The authors demonstrated that emotions did
have an effect on the issue fixing time. Steinmacher et al. [22] analyzed social bar-
riers that obstructed first contributions of newcomers (new developers joining an
open-source project). The study indicated how impolite answers were considered
as a barrier by newcomers. These barriers were identified through a systematic
literature review, responses collected from open source project contributors and
students contributing to open source projects. Rigby et al. [20] analyzed, using a
psychometrically-based linguistic analysis tool, the five big personality traits of
software developers in the Apache httpd server mailing list. The authors found
that the two developers that were responsible for the major Apache releases had
similar personalities and their personalities were different from other developers.
Bazzelli et al. [1] analyzed questions and answers on stackoverflow.com to deter-
mine the developer personality traits, using theLinguistic Inquiry andWordCount
[19]. The authors found that the top reputed authors were more extroverted and
expressed less negative emotions than authors of down voted posts. Gomez et al.
[9] performed an experiment to evaluate whether the level of extraversion in a
team influenced the final quality of the software products obtained and the sat-
isfaction perceived while this work was being carried out. Results indicated that
when forming work teams, project managers should carry out a personality test
in order to balance the amount of extraverted team members with those who are
not extraverted. This would permit the team members to feel satisfied with the
work carried out by the team without reducing the quality of the software prod-
ucts developed.

Compared to the existing literature, the goal of this paper is to build Markov
chain models which describe how developers interact in a distributed Agile envi-
ronment evaluating politeness, sentiment and emotions. Such models provide a
mathematical view of the behavioural aspects among developers.

3 Experimental Setup

3.1 Dataset

We built our dataset from fifteen open-source, publicly available projects from
a dataset proposed by Ortu et al. [18]. We selected the fifteen projects with the
highest number of comments (from December 2002 to December 2013), from
those projects which had a significant amount of activities in their agile kanban-
boards. The projects were developed following agile practices (mainly continuous
delivery and use of kanban-boards). Table 1 shows summary project statistics.

Arsonists or Firefighters? Affectiveness in Agile Software Development 147

Table 1. Selected project statistics

Project # of comments # of developers

HBase 91016 951

Hadoop Common 61958 1243

Derby 52668 675

Lucene Core 50152 1107

Hadoop HDFS 42208 757

Cassandra 41966 1177

Solr 41695 1590

Hive 39002 850

Hadoop Map/Reduce 34793 875

Harmony 28619 316

OFBiz 25694 578

Infrastructure 25439 1362

Camel 24109 908

ZooKeeper 16672 495

Wicket 17449 1243

3.2 Affective Metrics

Henceforward, we consider the term “affective metric” as a definition indicating all
those measures linked to human aspects and obtained from text written by devel-
opers (i.e., comments posted on issue tracking systems). This study is based on the
affective metrics (sentiment, politeness and emotions) used by Ortu et al. [15].

Sentiment. We measured sentiment using the SentiStrength1 tool, which is
able to estimate the degree of positive and negative sentiment in short texts,
even for informal language. SentiStrength, by default, detects two sentiment
polarizations:

– Negative: -1 (slightly negative) to -5 (extremely negative)
– Positive: 1 (slightly positive) to 5 (extremely positive)

The tool uses a lexicon approach based on a list of words to detect senti-
ment; SentiStrength was originally developed for the English language and was
optimized for short social web texts. We used the tool to measure the sentiment
of developers in issue comments.

Politeness. To evaluate the level of politeness of comments related to a given
issue, we used the tool developed by Danescu et al. [5]; the tool uses a machine

1 http://sentistrength.wlv.ac.uk.

http://sentistrength.wlv.ac.uk

148 M. Ortu et al.

learning approach and calculates the politeness of sentences providing, as a
result, one of two possible labels: polite or impolite. The tool also provides a
level of confidence related to the probability of a politeness class being assigned.
We considered comments whose level of confidence was less than 0.5 as neutral
(the text did not convey either politeness or impoliteness). For each comment
we assigned a value according to the following rules:

– Value of +1 for comments marked as polite;
– Value of 0 for comments marked as neutral (confidence level<0.5);
– Value of -1 for comments marked as impolite.

For each issue in our dataset, we built a temporal series of comments, and
using the two tools we assigned a value of politeness and sentiment for each
comment in the series. Next, for each issue, we calculated, starting from the first
comment posted, the probability of having a polite/impolite/neutral following
comment (for politeness), and a positive/neutral/negative comment (for senti-
ment). We thus calculated the probability of shifting from “polite” to “neutral”
and vice versa; from “polite” to “impolite” and vice versa; finally, from “neutral”
to “impolite” and vice versa.

Emotion. The presence of emotion in software engineering artifacts have been
analysed by Murgia et al. [13]. Ortu et al. [15] provided a machine learning based
approach for emotion detection in developers’ comments. We used the emotion
detection tool provided by Ortu et al. [15] to detect the presence of SADNESS,
ANGER, JOY, LOVE and NEUTRAL.

3.3 Affective Markov Chains

Markov Chains (MC) have been used to model behavioural aspects in social
sciences [10,21]. A Markov chain consists of K states and is a discrete-time
stochastic process, a process that occurs in a series of time-steps in each of
which a random choice is made.

We built a MC for each affective metric: sentiment, politeness and emotion.
Figure 1 shows the steps in building the politeness MC as an example for an issue
report in which three developers posted five comments. As a first step, we used
the politeness tool [5] to label each comment as POLITE, IMPOLITE or NEU-
TRAL. Next we collected the politeness labels of the issue report, considering
the set of labels as a politeness sequences of N-1 pair-wise politeness-transitions
([P,N,I,I,P] in the example), where N is the number of comments in the issue
report.

In this example, the issue report has 4 transitions: polite-neutral, neutral-
impolite, impolite-impolite and impolite-polite. Finally, we counted the frequency
of each politeness-transition obtaining the corresponding MC. In our example, if
we consider the POLITE state, we have two transition, P-P and P-N; hence, the
transition from POLITE to IMPOLITE state will have a probability of 0 and the
transitions to POLITE and IMPOLITE state probability 0.5.

Arsonists or Firefighters? Affectiveness in Agile Software Development 149

Fig. 1. Politeness’ Markov’s chain schema

The MC for sentiment is built in a similar way to the politeness MC. The
MC which models emotion transitions is slightly different; however, a comment
can be polite, impolite or neutral when considering politeness, but it might
contain more than one emotion. We used the emotion classifier proposed by Ortu
et al. [15] to analyze each comment and to attribute to it: Anger, Sadness, Joy
and/or Love. For example, if a comment is labeled as containing ANGER and
SADNESS and the next labeled as containing no emotion (NEUTRAL), then
we consider two transitions ANGER-NEUTRAL and SADNESS -NEUTRAL.

4 Results and Discussion

4.1 Do Developers Change Behaviour in the Context
of Impolite/Negative Comments?

Motivation. Existing research has already explored links between productivity
(as measured by issue fixing time) and discrete emotions, sentiment and polite-
ness [13,15]. The dynamic of an issue resolution involves complex interactions
between different stakeholders such as users, developer and managers. A model
able to describe such interactions could inform in the decision making process.
The underlying assumption is that a model of social interaction can be used

150 M. Ortu et al.

to understand the impact of a certain comment on the whole issue resolution
discussion.

Approach. As presented in Sect. 3.3, we built three MCs for politeness, senti-
ment and emotions to understand how developers reacted to impolite/negative
comments when they discuss an issue resolution.

Findings. Developers tended to answer to impolite/negative comments with a
positive/negative comment with higher probability than impolite/negative com-
ments.

Figure 2 shows the Politeness’ MC describing the probability of changing from
a state to another. The “neutral” state is quite stable. If a comment is classified
as “neutral”, communication flow among the developers involved tends to stay
neutral, with a 73 % probability. There is an 8 % probability of a state-shift from
“neutral” to “impolite” and a 19 % probability of a state-shift from “neutral”
to “polite”. Starting from a “polite” state, the probability of shifting to the
“impolite” state is quite low, 6 %. There is a high probability of moving to the
“neutral” state (61 %). The probability of staying in the same state is 32 %.
Starting from an “impolite” state, the probability of moving to a “polite” state
is 17 %. This is higher than the probability of moving from a “polite” state to
“impolite” and is an indication that a positive attitude could be more contagious
than a negative attitude. It is interesting to see that the probability of staying
in an “impolite” state is only 13 % (far lower than the probabilities of staying
in both “neutral” and “polite states), and that there is a 70 % of probability of
a shift from “impolite” to “neutral”.

Figure 3 shows the Sentiment MC which describes the probability of changing
from one state to another.

The “neutral” state in this case is also quite stable. If a comment is classified
as “neutral”, communication flow among developers tends to stay neutral, with
a 60 % probability. There is a 16 % probability of a state-shift from “neutral” to
“negative” and a 24 % probability of a state-shift from “neutral” to “positive”.

Fig. 2. Politeness MC

Arsonists or Firefighters? Affectiveness in Agile Software Development 151

NEUTRAL

NEGATIVEPOSITIVE

0.31

0.6

0.25

0.55

0.14

0.54

0.16

0.14

0.24

0.21

Fig. 3. Sentiment MC

Starting from a “positive” state, the probability of a shift to the “negative”
state is 14 %. The probability of a move to the “neutral” state is 55 %. The
probability of staying in the same state is 31 %. From a “negative” state, the
probability of moving to a “positive” state is 21 %. In this case, the value is
higher than the probability of moving from a “positive” state to a “negative”
one. The probability of staying in a “negative” state is 25 % (also lower than the
probabilities of staying in both “neutral” and “positive” states), and that there
is a 54 % probability to shift from “negative” to “neutral”.

4.2 What is the Probability of Shifting from Comments Holding
Positive Emotions to Comments Holding Negative Emotion?

Motivation. The first research question showed how agile developers tended to
respond more positively than negatively when considering politeness and senti-
ment. It is interesting to analyze if the same behaviours occur for emotions.

Approach. We built the MCs for emotions as presented in Sect. 3.3 to ana-
lyze the probabilities of shifting from an emotion to another when developers
communicate.

Findings. Negative emotions such as SADNESS and ANGER tend to be fol-
lowed by negative emotions more than positive emotion are followed by pos-
itive emotions. Table 2 shows the emotion transitions matrix. As for previous
MCs, the numbers represent the probability of a comment containing emotion X
being followed by a comment containing emotion Y (e.g., a comment expressing
SADNESS has a probability of 0.26 of being followed by another SADNESS
comment).

As confirmed by other studies [13], most of the comments expressing emo-
tion are likely to be followed by NEUTRAL comments, with the exception of
ANGER. Figure 4 is a graphical representation of the portion of Table 2 for
the ANGER emotion showing it has probability of 0.4 of being followed by an
ANGER comment against probability of 0.36 to be followed by a NEUTRAL

152 M. Ortu et al.

Table 2. Transiction matrix for emotion MC

SADNESS ANGER JOY LOVE NEUTRAL

SADNESS 26.11 % 4.49 % 7.88 % 6.45 % 55.08 %

ANGER 13.79 % 40.11 % 5.61 % 4.10 % 36.39 %

JOY 17.46 % 4.43 % 11.89 % 12.22 % 54.00 %

LOVE 15.84 % 3.84 % 8.29 % 15.59 % 56.44 %

NEUTRAL 16.42 % 4.29 % 7.64 % 7.80 % 63.85 %

ANGERJOY SADNESS

NEUTRAL

LOVE

0.04

0.40

0.06

0.36

0.14

0.04

0.04 0.05

0.04

Fig. 4. Anger Markov chain. For simplicity only edges from/to ANGER are diplayed

comment. This represents an interesting finding which seems consistent with
the common experience: negative emotions are more contagious than positive
emotions.

5 Threats to Validity

Several threats to validity need to be considered. Threats to external validity
are related to generalisation of our conclusions. With regard to the system stud-
ied in this work, we considered only open-source systems and this could affect
the generality of the study; our results are not meant to be representative of
all environments or programming languages. Commercial software is typically
developed using different platforms and technologies, with strict deadlines and
cost limitations and by developers with different experience. Politeness, senti-
ment and emotions measures are approximations given the challenges of natural
language and subtle phenomena like sarcasm. To deal with these threats, we used
SentiStrength form measuring sentiment, Danescu et al.’s politeness tool [5] and
Ortu et al. [15] for measuring politeness. This is a threat to construct validity.
Threats to internal validity concern confounding factors that could influence the
obtained results. Since the comments used in this study were collected over an
extended period from developers unaware of being subject to analysis, we are

Arsonists or Firefighters? Affectiveness in Agile Software Development 153

confident that the emotions we mined are genuine. This study is focused on
text written by agile developers for developers. To correctly depict the affective-
ness embedded in such comments, it is necessary to understand the developers’
dictionary and slang. This assumption is supported by Murgia et al. [13] for mea-
suring emotions. We are confident that the tools used for measuring sentiment
and politeness however are equally reliable in the software engineering domain
as in other domains.

6 Conclusions and Future Work

This paper presented an analysis of more than 500 K comments from open-source
issue tracking system repositories. We empirically determined how agile develop-
ers interacted with each other under certain psychological conditions generated
by politeness, sentiment and emotions of a comment posted on a issue tracking
system. Results showed that when in the presence of impolite or negative com-
ments, there is higher probability for the next comment to be neutral or polite
(neutral or positive in case of sentiment) than impolite or negative. This fact
demonstrates that developers, in the dataset considered for this study, tended
to resolve conflicts instead of increasing negativity within the communication
flow. This is not true when we consider emotions; negative emotions are more
likely to be followed by negative emotions than positive. Markov models pro-
vide a mathematical description of developer behavioural aspects and the result
could help managers take control the development phases of a system (expe-
cially in a distributed environment), since social aspects can seriously affect a
developer’s productivity. As future works we plan to investigate possible links
existing between software metrics and emotions, to better understand the impact
of affectiveness on software quality.

Acknowledgement. The research presented in this paper was partly funded by the
Engineering and Physical Sciences Research Council (EPSRC) of the UK under grant
ref: EP/M024083/1.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

154 M. Ortu et al.

References

1. Bazelli, B., Hindle, A., Stroulia, E.: On the personality traits of stackoverflow users.
In: 2013 29th IEEE International Conference on Software Maintenance (ICSM),
pp. 460–463. IEEE (2013)

2. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al.: Manifesto for agile
software development (2001)

3. Brief, A.P., Weiss, H.M.: Organizational behavior: affect in the workplace. Annu.
Rev. Psychol. 53(1), 279–307 (2002)

4. Concas, G., Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R.: Micro patterns
in agile software. In: Baumeister, H., Weber, B. (eds.) XP 2013. LNBIP, vol. 149,
pp. 210–222. Springer, Heidelberg (2013)

5. Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., Potts, C.: A
computational approach to politeness with application to social factors. In: Pro-
ceedings of ACL (2013)

6. Destefanis, G., Tonelli, R., Tempero, E., Concas, G., Marchesi, M.: Micro pattern
fault-proneness. In: 2012 38th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), pp. 302–306. IEEE (2012)

7. Erez, A., Isen, A.M.: The influence of positive affect on the components of
expectancy motivation. J. Appl. Psychol. 87(6), 1055 (2002)

8. Feldt, R., Torkar, R., Angelis, L., Samuelsson, M.: Towards individualized soft-
ware engineering: empirical studies should collect psychometrics. In: Proceedings
of the International Workshop on Cooperative and Human Aspects of Software
Engineering, pp. 49–52. ACM (2008)

9. Gómez, M.N., Acuña, S.T., Genero, M., Cruz-Lemus, J.A.: How does the extra-
version of software development teams influence team satisfaction and software
quality?: A controlled experiment. Int. J. Hum. Capital Inf. Technol. Professionals
(IJHCITP) 3(4), 11–24 (2012)

10. Jordan, M.I.: Learning in Graphical Models. NATO ASI Series, vol. 89. Springer,
Heidelberg (1998)

11. Kaluzniacky, E.: Managing Psychological Factors in Information Systems Work:
An Orientation to Emotional Intelligence. IGI Global, Hershey (2004)

12. Ke, W., Zhang, P.: The effects of extrinsic motivations and satisfaction in open
source software development. J. Assoc. Inf. Syst. 11(12), 784–808 (2010)

13. Murgia, A., Tourani, P., Adams, B., Ortu, M.: Do developers feel emotions? An
exploratory analysis of emotions in software artifacts. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, MSR 2014, pp. 262–271.
ACM, New York (2014)

14. Novielli, N., Calefato, F., Lanubile, F.: Towards discovering the role of emotions
in stack overflow. In: Proceedings of the 6th International Workshop on Social
Software Engineering, pp. 33–36. ACM (2014)

15. Ortu, M., Adams, B., Destefanis, G., Tourani, P., Marchesi, M., Tonelli, R.: Are
bullies more productive? Empirical study of affectiveness vs. issue fixing time. In:
Proceedings of the 12th Working Conference on Mining Software Repositories,
MSR 2015 (2015)

16. Ortu, M., Destefanis, G., Kassab, M., Counsell, S., Marchesi, M., Tonelli, R.: Would
you mind fixing this issue? An empirical analysis of politeness and attractiveness in
software developed using agile boards. In: Lassenius, C., Dingsøyr, T., Paasivaara,
M. (eds.) XP 2015. LNBIP, vol. 212, pp. 129–140. Springer, Heidelberg (2015)

Arsonists or Firefighters? Affectiveness in Agile Software Development 155

17. Ortu, M., Destefanis, G., Kassab, M., Marchesi, M.: Measuring and understand-
ing the effectiveness of JIRA developers communities. In: Proceedings of the 6th
International Workshop on Emerging Trends in Software Metrics, WETSoM 2015
(2015)

18. Ortu, M., Destefanis, G., Murgia, A., Marchesi, M., Tonelli, R., Adams, B.: The
JIRA repository dataset: Understanding social aspects of software development.
In: Proceedings of the 11th International Conference on Predictive Models and
Data Analytics in Software Engineering, p. 1. ACM (2015)

19. Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic Inquiry and Word Count:
LIWC 2001, vol. 71. Lawrence Erlbaum Associates, Mahway (2001)

20. Rigby, P.C., Hassan, A.E.: What can OSS mailing lists tell us? a preliminary
psychometric text analysis of the apache developer mailing list. In: Proceedings of
the Fourth International Workshop on Mining Software Repositories, p. 23. IEEE
Computer Society (2007)

21. Snijders, T.A.: The statistical evaluation of social network dynamics. Sociol.
Methodol. 31(1), 361–395 (2001)

22. Steinmacher, I., Conte, T.U., Gerosa, M., Redmiles, D.: Social barriers faced by
newcomers placing their first contribution in open source software projects. In:
Proceedings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing, pp. 1–13 (2015)

23. Tan, S., Howard-Jones, P.: Rude or polite: do personality and emotion in an artifi-
cial pedagogical agent affect task performance? In: Global Conference on Teaching
and Learning with Technology (CTLT 2014) Conference Proceedings, p. 41 (2014)

24. Tourani, P., Jiang, Y., Adams, B.: Monitoring sentiment in open source mailing
lists - exploratory study on the apache ecosystem. In: Proceedings of the 2014 Con-
ference of the Center for Advanced Studies on Collaborative Research (CASCON),
Toronto, ON, Canada, November 2014

25. Tsay, J., Dabbish, L., Herbsleb, J.: Lets talk about it: Evaluating contributions
through discussion in github. In: FSE. ACM (2014)

Insights into the Perceived Benefits of Kanban
in Software Companies: Practitioners’ Views

Muhammad Ovais Ahmad(&), Jouni Markkula, and Markku Oivo

M-Group, University of Oulu, Oulu, Finland
{Muhammad.Ahmad,Jouni.Markkula,Markku.Oivo}@oulu.fi

Abstract. In the last decade, Kanban has been promoted as a means for bringing
visibility to work while improving the software development flow, team commu-
nication and collaboration. However, little empirical evidence exists regarding
Kanban use in the software industry. This paper aims to investigate the factors that
users perceive to be important for Kanban use. We conducted a survey in 2015
amongKanban practitioners in the LeanKanban LinkedIn community. The survey
results consist of 146 responses from 27 different organisations, with all respon-
dents being experienced in using Kanban. The results show that practitioners
perceived Kanban as easy to learn and useful in individual and team work. They
also consider organisational support and social influence to be important deter-
minants for Kanban use. Respondents noted various perceived benefits for using
Kanban, such as bringing visibility to work, helping to reduce work in progress,
improving development flow, increasing team communication and facilitating
coordination. Despite the benefits, participants also identified challenges to using
Kanban, such as organisational support and culture, difficulties in Kanban imple-
mentation, lack of training and misunderstanding of key concepts. The paper
summarises the results and includes a discussion of implications for effective
deployment of Kanban before describing future research needs.

Keywords: Kanban � Lean � Agile � Use � Adoption

1 Introduction

In the last two decades, Agile and Lean approaches have gained wide acceptance in the
software industry. In this realm, Kanban emerged in 2004 with a strong
practitioner-driven support movement [3, 4], and today, Kanban is increasingly
adopted to complement Scrum and other Agile methods. Kanban tends to focus on fast
production, rapid and continual user feedback and interaction [1].

Used for controlling the logistical chain from a production point of view, Kanban
was developed and applied in the Japanese manufacturing industry in the 1950s [1].
Kanban’s success in the manufacturing industry has convinced software engineers to
adopt this approach, with practitioner-driven support furthering this trend. In 2004,
David Anderson introduced Kanban to a small IT team at Microsoft, aiming to help the
team members visualise their work and put limits on their work in progress (WIP).
Kanban has five underlying principles [7], the so-called Kanban properties [10]:
visualise the workflow, limit work in progress, measure and manage flow, make pro-
cess policies explicit and use models to recognise improvement and opportunities.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 156–168, 2016.
DOI: 10.1007/978-3-319-33515-5_13

The motivation behind visualisation and limiting WIP was to identify the con-
straints of the process and to focus on a single item at a time. Additionally, instead of
pushing work on to software developers, Kanban promotes a pull approach: when a
team member finishes an existing task, he or she automatically pulls the next item to
begin work. In brief, Kanban aims to provide visibility to the software development
process, communicate priorities and highlight bottlenecks [5]. This process results in a
constant flow of releasing work items to customers, as the developers focus only on a
few items at a given time [6]. The proliferation of Kanban in software engineering
boomed after the publication of key books. These seminal books included David
Anderson’s Kanban [10], which introduces the concept of Kanban in systems and
software development, and Corey Lada’s Scrumban [23], which discusses the fusion of
Scrum and Kanban. The key motivation for Kanban use involves a focus on flow and
the omission of the obligatory iteration cycles in Scrum.

Kanban has received considerable attention from some organisations; others remain
reluctant to adopt it. So far, there have been few scientific studies [1, 6, 33] addressing
Kanban usage in software organisations, and none of the existing studies report on
practitioners’ perceptions of it. Earlier Kanban studies report a number of challenges in
its use and adoption, such as organisational, social and technical issues. These studies
introduce Kanban as a new way to develop software and systems. Research is still
required to identify factors that might influence its effective usage in organisations.
Therefore, this study aims to investigate factors that practitioners deem to be important
in Kanban use. Conducted in 2015, the study includes Kanban practitioners from the
LeanKanban LinkedIn community. LeanKanban is one of the biggest social media
communities of professionals who use Kanban at their organisations.

The remainder of the paper is organised as follows. Section 2 explains the research
strategy and data collection method, while Sect. 3 provides the results. Section 4
presents validity threats before moving into Sect. 5, which concludes the paper with
recommendations for future research.

2 Research Strategy and Methods

In this section, we first introduce the theoretical model adopted as a basis for designing
the empirical research. The discussion continues with the survey design and data
collection process.

2.1 Theoretical Model

As shown in Fig. 1, we adopted Dybå et al. [8] model which is an extension of
Riemenschneider et al. [9] research model in order to explore practitioners’ perceptions
regarding Kanban use.

Riemenschneider et al. [9] explain software developers’ acceptance of method-
ologies by comparing five well-known and established theoretical models: the Tech-
nology Acceptance Model (TAM), TAM2 (an extension of TAM), Perceived
Characteristics of Innovating, Theory of Planned Behaviour and Model of Personal

Insights into the Perceived Benefits of Kanban 157

Computer Utilisation. Dybå et al. [8] extend Riemenschneider et al.’s [9] work by
incorporating measures of organisational support. The model derives its theoretical
foundations by combining prior research in technology acceptance [11, 12, 17] with
aspects of innovation diffusion theory [16] as well as empirically-tested research on
software developers’ acceptance of methodologies [9]. The model contains five con-
structs: perceived usefulness, perceived ease of use, perceived compatibility, subjective
norms and organisational support.

Perceived usefulness is defined as the degree to which a person believes that using a
particular system will enhance his or her job performance [9], which is similar to
Rogers’ [16] perceived relative advantage [15]. Software developers generally receive
reinforcements for good performance through raises, promotions and bonuses. In this
study, perceived usefulness with respect to Kanban implies that a user believes that there
is a positive user-performance relationship. The existing research provides evidence that
perceived usefulness affects behavioural intention and actual use [9, 11–13, 17]. This
pattern has also been confirmed within the software engineering domain [9]. Perceived
ease of use refers to the degree to which a person believes that using a particular system
will be free of effort [9]. Riemenschneider et al. found that ease of use played an
insignificant role in software developers’ acceptance of methodologies [9]. However,
perceived ease of use recurs in several studies as a significant determinant of adoption
behaviour [9, 12, 17, 19]. In this regard, compared to other Agile methods, Kanban is
perceived to be easier to use and less complex. According to Rogers, perceived com-
patibility refers to the degree to which an innovation is perceived as being consistent
with the existing values, needs and past experience of potential adopters [16]. Rogers
further proposes that compatibility positively relates to the diffusion of innovations [16],
making it a significant factor in explaining software developers’ acceptance of
methodologies [9, 30]. Thus, a positive perceived compatibility may lead to favourable
attitudes toward Kanban use. Subjective norms represent the degree to which software
developers believe that others who are important to them think that they should use
Kanban. This factor implies that the perceived social pressure to perform the behaviour
will influence a person’s intentions [3], and some studies indeed demonstrate its
importance [9, 13, 17, 18]. Thus, there is reason to believe that peers may influence
Kanban use. Research has also noted the importance of organisational support, the

Perceived usefulness

Perceived ease of use

Perceived compatibility

Subjective norm

Organisation support

Kanban use

Fig. 1. Conceptual model

158 M.O. Ahmad et al.

degree to which change agents promote or support efforts, as a factor in explaining an
innovation’s rate of adoption [14, 16, 29]. Studies therefore suggest that there is reason
to believe that organisational support assists in Kanban use.

2.2 Survey Design and Data Collection

Sampling and Population: For the study, we targeted a global population of Kanban
practitioners, sending out the survey to a Kanban practitioners group on LinkedIn,
administered by LeanKanban Incorporated. The population includes approximately
2000 software industry practitioners using Lean and Kanban in their work.

Prior to administration, we pre-tested the survey with three experts from the soft-
ware industry and three researchers. On the basis of this feedback, we revised the
statements to have clearer wordings. At the beginning of the survey, participants were
provided information about the purpose of the research and its benefits as well as
information about the researchers. After revision, the survey was launched and
remained open for one and a half months, between 20 June and 20 July 2015. During
that time, 148 responses were received. Two of these responses were discarded because
the participants were not using Kanban. These omissions left us with a total of 146
responses, forming the data for analysis. The survey consisted of three sections:

Demographics: This part captured information about the respondents in terms of their
organisations, Kanban experience and type of training received.

Factors affecting Kanban use: The factors affecting Kanban-use questions were based
on previous studies [8, 9], but adapted to the particular context of this study. All of the
variables related to the model’s five factors were measured using a five-point
Likert-type scale, ranging from 1 (strongly disagree) to 5 (strongly agree). Survey
questions are provided in the Appendix.

Benefits and challenges of using Kanban: Questions regarding Kanban benefits were
formulated based on previous studies [1, 6]. A five-point Likert-type scale was used to
ask the respondents to rate the significance of particular benefits to their organisations.
Further, in open-ended questions, the respondents could explain the obtained benefits
and challenges faced in Kanban use.

The data analysis was conducted through descriptive statistics. Before the analysis,
the reliability of the factor construct measurements were analysedwith Cronbach’s alpha.

3 Results

The collected data set included 146 responses: 92 were from North America, 22 from
Europe, 4 from Australia, 1 from South Korea and 1 from Russia. 26 respondents did
not specify their country. The majority of the respondents came from North America
(62.9 %). The respondents were from 27 different organisations, but 17 of the
respondents failed to specify their organisations.

Insights into the Perceived Benefits of Kanban 159

Most of the organisations were involved in software (n = 115) or IT services
(n = 13). Other represented industries included telecommunication (n = 1) and hard-
ware manufacturing (n = 1). Sixteen of the respondents did not identify their com-
pany’s primary business. Most respondents belonged to big organisations (72.6 %,
more than 250 employees); the rest worked for middle size (11 %, number of
employees between “50–249”) and small (13.7 %, number of employees between
“10–49”) organisations. Very small organisations or start-ups with 10 or less
employees represented 2.7 % of the population.

Respondents’ main organisational roles involved work for software development
teams (n = 63) and first-level management (n = 33). Table 1 presents the respondents’
Kanban training type, and Table 2 illustrates their level of Kanban knowledge.

The majority of the respondents received (n = 88) Kanban training ranging in
duration from 1–4 days (n = 61) to more than 4 days (n = 27). Only 10 respondents
had no formal training but gained familiarity with Kanban. Most respondents use
Kanban on most or all organisation projects (68.8 %). 23.9 % have used it for a few
projects, and only 8.2 % have used it on an experimental basis.

We performed a reliability analysis to test the reliability of scale constructs [27]
using Cronbach’s alpha, which measures the internal consistency of the factor mea-
sured by different variables. Table 3 demonstrates that the reliability of the factor
measurement is high; the Cronbach alpha value varied between 0.763 for subjective
norms and 0.941 for perceived usefulness.

Attitudes towards Kanban are quite positive among Kanban users, with an average
of around 4 for all variables related to perceived ease of use, perceived usefulness and
perceived compatibility. Perceptions of subjective norms and organisational support
appear to be somewhat lower, with averages of 3.7 and 3.6, respectively.

The high average for perceived ease of use variables indicates that Kanban
practitioners have a positive attitude towards using Kanban because it does not require
a great deal of mental effort to learn, and it is easy to use in their work. Previous studies
have reported similar findings regarding software development methodologies [9, 13].

The respondents perceived that Kanban is useful in terms of improving their job
performance, productivity and quality of work. This finding aligns with prior research
[9, 13]: when new methodologies and practices are perceived as enabling job

Table 1. Respondents Kanban training

Training type (n = 146) Freq. Percentage

No training 10 2
Self-studying 26 18.5
Peer mentoring 22 38.4
1–4 days training 61 28.8
More than 4 days training 27 18.5

Table 2. Responds Kanban knowledge

Knowledge level Freq. Percentage

Novice 3 2
Advance beginner 27 18.5
Competent 56 38.4
Proficient 42 28.8
Expert 18 12.3

160 M.O. Ahmad et al.

performance, they are more likely to be used and adopted. Respondents perceived
Kanban as compatible with how they organised their individual and team work.
Previous empirical studies have verified the importance of perceived compatibility in
development methodologies [9, 13, 30]. The emphasis on teamwork in software
development creates social pressure on individuals. Kanban software development
teams emphasise collaborative work, which may bring about social pressure at the
individual level. Therefore, practitioners are more likely to adopt Kanban when the
subjective norms for use are strong. Some studies have found subjective norms to be
significant [9, 20], while others found them to be insignificant [8, 13]. In this study, the
participants’ responses were positive in regards to subjective norms. The respondents
were also positive in their responses regarding organisational support. They noted

Table 3. Results of the factors affecting Kanban use

Constructs
(n = 146)

Variables Mean Median Reliability
α Type

Perceived ease
of use

Easy to learn 4.2 4.0 0.793 High
reliabilityDoes not require a lot of mental

effort
3.6 4.0

Clear and understandable 4.1 4.0
Easy to use 4.0 4.0
Useful in my job 4.3 5.0 0.941 Excellent

reliability
Perceived
usefulness

Improves my job performance 3.9 4.0
Increases my productivity 3.8 4.0
Enhances the quality of my job 3.8 4.0
Makes it easier to do my job 4.0 4.0
Overall using Kanban is useful
in my job

4.2 4.0

Perceived
compatibility

Compatible with all aspects of
my work

3.9 4.0 0.880 High
reliability

Fits well with the way I work 4.0 4.0
Compatible with the way our
team organises work

4.0 4.0

Subjective
norms

People who influence my work
think that I should use Kanban

3.7 4.0 0.763 High
reliability

Co-workers think that I should
use Kanban

3.7 4.0

Organisational
support

Specialised Kanban training is
available

3.5 4.0 0.809 High
reliability

Written Kanban instructions are
available

3.5 4.0

Management provides
necessary help and resources

3.7 4.0

Insights into the Perceived Benefits of Kanban 161

that their organisations provide necessary resources to support Kanban use, including
training and written Kanban guidance documents. The literature shows that organisa-
tional support, such as external training and consultation, plays an important role in the
use of Agile methodologies [20]. Training brings fresh perspectives to software
industry practitioners while enabling their use of Kanban. Studies suggest that training
positively affects individuals’ beliefs about the perceived compatibility of an innova-
tion [20, 31]. Because methodology training is the key to successful implementation
[28], Kanban adoption is more likely to be successful with organisational support.

3.1 Kanban Benefits

As presented in Fig. 2, the Kanban practitioners rated the significance of particular
benefits [1, 6]. Respondents further explained their obtained Kanban-use benefits with
the help of open-ended questions.

The top two benefits were improved visibility of work and improved development
flow, findings verified in previous studies [1, 3, 5, 6, 10]. Respondents elaborated as
follows:

“The most important benefit is how the visualization of your workflow increases the need for
continuous improvement”.
“Kanban provides a very large increase in the ability to identify and minimize impediments as
well as allow the team to self-swarm and work to bring resolution to potential trouble areas”.
“Benefits from Kanban include quicker identification of issues, bottlenecks, etc., of our pro-
cesses, thus creating performance evaluation, control and continuous improvement opportu-
nities for our development teams”.

The third identified benefit of Kanban is that it helps to reduce WIP. It forces team
members to work on a limited number of tasks at a given time, which reduces their mental
stress and leads to faster completion of tasks. Respondents further explained as follows:

“Working on one story at a time reduces the stress”.
“Limiting work in progress makes it much easier for the team leaders to see what is happening
in the team at any given moment in time. Before with a large amount of WIP, it was very hard to

Fig. 2. Kanban benefits (Color figure online)

162 M.O. Ahmad et al.

keep track of who was working on what and how each of our feature groups were progressing.
Also, limiting WIP and focusing on our oldest stories has helped us to dramatically control our
cycle time”.

When WIP limits are reduced, the teams work on smaller chunks that can be
completed more easily, a finding also reported in previous studies [1, 3, 5, 6, 10].
A respondent expressed his or her team experience as follows: “[With Kanban, it is]
easier to get smaller work items done. We had the problem that smaller items didn’t
get worked on because the development team only concentrated on the larger products
as directed by the product team. By splitting large work items up into smaller [pieces]
we could get the smaller work items through as well”.

Finally, Kanban helps to improve communication and collaboration inside the
teams and with related stakeholders. The respondents explained that Kanban “improves
communication with the customers and other stakeholders, helps to collaborate and
find solutions, improves the knowledge about the processes collecting data and using
metrics”. The teams work collaboratively on tasks and find solutions for any imped-
iments, which is a sign of team self-organisation.

3.2 Challenges in Kanban Use

In an open-ended question, respondents shared challenges in using Kanban in their
organisation. These challenges are organised in three main categories.

Lack of proper training and misunderstanding of Kanban is a major challenge
in its use. Surprisingly, the respondents demonstrated positive attitudes towards
organisational support variables in the adopted research model. This finding could be
due to the fact that respondents mentioned that co-workers usually teach Kanban’s key
concepts and ways of working within organisations. This mentoring process can
transfer bad habits and misunderstandings of Kanban’s key concepts. One respondent
explains, “It (Kanban) is mostly taught through peer reviews and co-workers. If a set of
people have a bad habit, that habit is often duplicated by those they train”.

Other respondents made these statements:

“Kanban is very often misinterpreted and seen only as having work items visualised and
progressed through on a board”.
“The biggest challenge I face is the lack of knowledge and understanding about what Kanban
really is and the technical aspects of how to do it. Many people think they know but they really
don’t know anything about it. So demystifying it for them has been an on-going and challenging
issue”. Interestingly, similar challenges have been reported in earlier studies [1, 5, 6, 25].

Organisational culture and mind set is the second major challenge mentioned by
respondents. They noted that management is quite busy and fails to devote attention to
improving work processes. Further, there is mind-set challenge because managers
prefer to use traditional methods, resisting the new way of working. Similar to other
Agile methods, Kanban faces challenges in organisational culture and people’s
mind-sets [1, 5, 6, 25]. Respondents mentioned the following:

“Time is not reserved for improving ways of working” “People and management are too busy
to improve, resulting in not caring about process management methods. Some managers still
prefer Microsoft projects and traditional methods”.

Insights into the Perceived Benefits of Kanban 163

Silos are created by top management and defended by middle management. Upper management
seems hesitant to adopt Kanban”.
Many people are resistant to change; there is a lack of proper culture and management
involvement and commitment”.

Difficulties in Kanban implementation can be linked to a number of other
challenges. For example, the respondents noted that there was a lack of proper planning
before introducing Kanban to teams. With poor planning, the teams found it difficult to
determine and respect WIP limits. They also found it challenging to work with remote
offices and to see the big picture of work when broken down into smaller pieces. These
challenges were expressed in these statements:

“Work is broken down into smaller pieces, which make it more difficult to see the big picture”.
“After a period of time, we need to level set to get back on WIP limit awareness and Kanban
board protocol. It is challenging to determine correct WIP limits. Stories are often so closely
related that developers are conflicting with each other, resulting in difficult merges,
etc. Developers have no power to change the process. When work is impeded, it’s unclear what
the impeded developer is supposed to do. Kanban slows everything down for the sake of
providing information”.

Again, earlier studies confirm these findings [1, 5, 6, 25, 28].

4 Validity Threats

In this study, we considered threats to validity throughout the research process by
following the guidelines outlined by Runeson and Höst [26]. With online surveys, there
is always a risk that questions may be misunderstood. To reduce this risk, we pre-tested
the survey with three experts from the software industry and three researchers. It is
important to take in consideration that this study is not empirically validating the
adopted model. There could be other factors which are affecting Kanban actual use.

The survey was posted on LinkedIn; there was no control for the researchers with
respect to external validity (i.e., the general applicability of the results). What can be
observed is that the respondents come from various sectors, such as software compa-
nies, telecommunication services and hardware manufacturing companies. It is
important to note that the study subjects were individuals who represented different
organisations. Therefore, it would have been impossible for a single person to answer
on behalf of the whole organisation. Additionally, respondents’ positions and roles
vary within the organisations. Respondents in different organisational positions may
have divergent views about the organisational practices and varying knowledge about
Kanban, factors that could affect the reliability of the results to some degree. The
respondents that opted to answer are more positive towards Kanban use; it may cause
positive bias in the study.

We intentionally selected the LeanKanban LinkedIn community to obtain an
appropriate data sample because the community has an understanding of Kanban and
its use at work. LinkedIn professional are considered groups to be a good source of data
collection for researchers and practitioners from all seniority levels [32].

164 M.O. Ahmad et al.

5 Conclusion and Future Work

This research sought to explore the factors that practitioners consider to be important in
the use of Kanban. It also investigated participants’ perceived Kanban benefits and
challenges. The study indicates that perceived usefulness, perceived ease of use, per-
ceived compatibility, subjective norms and organisational support can play important
roles in Kanban use. Kanban practitioners find it easy to learn and use in their indi-
vidual and team work. They also believe that Kanban is compatible with their work and
useful in terms of improving job performance, productivity and quality.

In general, it is important for managers to monitor and evaluate innovation factors,
such as perceived usefulness and perceived compatibility. Such monitoring will help to
sustain effective Kanban use while enabling recognition of any need for change. Higher
management support remains vital to Kanban initiatives in order to sustain visible
benefits throughout the organisation.

The results show three primary benefits of using Kanban: improved visibility of
work, stronger development flow and reduced WIP. The respondents expressed that
starting to use Kanban at work is not a straightforward process; rather, it requires
convincing managers, developers and trainers. Kanban practitioners also reported three
main challenges in Kanban use: organisational culture and mind set; lack of training
and misunderstanding of Kanban; and difficulties in Kanban implementation.

In the future, similar studies are needed in different regions and countries. Such
studies would enable comparison of the latest trends in Kanban use and adoption
around the globe. Additionally, future qualitative studies should focus explicitly on
issues and problems.

Acknowledgments. We would like to thank the participants and companies who take part in
this study. This research was carried out within the DIGILE Need for Speed program, and
partially funded by Tekes (the Finnish Funding Agency for Technology and Innovation). We
would like to thank LeanKanban incorporated and the participating companies.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any changes
made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Insights into the Perceived Benefits of Kanban 165

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Appendix: Operationalization of Constructs

See Table 4.

References

1. Al-Baik, O., Miller, J.: The kanban approach, between agility and leanness: a systematic
review. Empirical Softw. Eng. 20(6), 1–37 (2014)

2. Liker, J.: The Toyota Way. McGraw-Hill, New York (2004)
3. Hiranabe, K.: Kanban applied to software development: From agile to lean, InfoQ. http://

www.infoq.com/articles/hiranabe-lean-agile-kanban. Accessed 4 May 2015

Table 4. Likert scales.

Constructs Questions

Perceived ease of
use

I find Kanban easy to use
I find Kanban useful in my job
I find Kanban clear and understandable
Learning to use Kanban was easy for me
Using Kanban does not require a lot of mental effort

Perceived
usefulness

Using Kanban increases my productivity
Using Kanban makes it easier to do my job
Using Kanban improves my job performance
Using Kanban enhances the quality of my job
Overall, using Kanban is useful in my job

Perceived
compatibility

Kanban fits well with the way I work
Kanban is compatible with all aspects of my work
Kanban is compatible with the way our team organize work

Subjective norm People who influence my work think that I should use Kanban
Co-workers think that I should use Kanban

Organisational
support

Specialized training concerning Kanban is available to me
Written instructions concerning Kanban are available to me
Management provides the necessary help and resources to enable people
to use Kanban

Kanban benefits Using Kanban reduced work in progress
Using Kanban improved team motivation
Using Kanban improved development flow
Using Kanban improved team collaboration
Using Kanban improved team communication
Using Kanban improved understanding of the whole value stream

Open ended
question

Please describe, what other benefits are obtained with Kanban use
Please describe, what do you consider as the main challenges of Kanban
in your organisation

166 M.O. Ahmad et al.

http://www.infoq.com/articles/hiranabe-lean-agile-kanban
http://www.infoq.com/articles/hiranabe-lean-agile-kanban

4. Shalloway, A., Guy, B., Trott, R.J.: Lean-agile Software Development: Achieving
Enterprise Agility. Pearson Education, Boston (2009)

5. Ahmad, M.O., Markkula, J., Oivo, M., Kuvaja, P.: Usage of Kanban in software companies:
an empirical study on motivation, benefits and challenges. In: Proceedings of 9th
International Conference on Software Engineering Advances (2014)

6. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: a systematic
literature review. In: Proceedings of IEEE 39th Euromicro SEAA (2013)

7. Boeg, J.: Priming Kanban: A 10 Step Guide to Optimizing Flow in Your Software Delivery
System, 2nd edn. Trifork, Amsterdam (2012)

8. Dybå, T., Moe, N.B., Mikkelsen, E.M.: An empirical investigation on factors affecting
software development acceptance and utilization of Electronic Process Guides. In:
Proceedings of Software Metrics, 10th International Symposium (Metrics 2004), pp. 220–
231 (2004)

9. Riemenschneider, C.K., Hardgrave, B.C., Davis, F.D.: Explaining software developer
acceptance of methodologies: a comparison of five theoretical models. IEEE Trans. Softw.
Eng. 28(12), 1135–1145 (2002)

10. Anderson, D.: Kanban – Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, Sequim (2010)

11. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q. 13(3), 318–339 (1989)

12. Davis, F., Bagozzi, R., Warshaw, P.: User acceptance of computer technology: a comparison
of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989)

13. Hardgrave, B.C., Johnson, R.A.: Toward an information systems development acceptance
model: the case of object-oriented systems development. IEEE Trans. Eng. Manage. 50(3),
322–336 (2003)

14. Iivari, J.: Why are CASE tools not used? Commun. ACM 39(10), 94–103 (1996)
15. Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of

adopting an information technology innovation. Inf. Syst. Res. 2(3), 192–222 (1991)
16. Rogers, E.M.: Diffusion of Innovations, 4th edn. The Free Press, New York (1995)
17. Venkatesh, V., Davis, F.: A theoretical extension of the technology acceptance model: four

longitudinal field studies. Manage. Sci. 46(2), 186–204 (2000)
18. Taylor, S., Todd, P.: Understanding information technology usage: a test of competing

models. Inf. Syst. Res. 6(2), 144–176 (1995)
19. Adams, D.A., Nelson, R.R., Todd, P.A.: Perceived usefulness, ease of use, and usage of

information technology: a replication. MIS Q. 16, 227–247 (1992)
20. Chan, F.K., Thong, J.Y.: Acceptance of agile methodologies: A critical review and

conceptual framework. Decis. Support Syst. 46(4), 803–814 (2009)
21. Wang, X., Conboy, K., Pikkarainen, M.: Assimilation of agile practices in use. Inf. Syst.

J. 22(6), 435–455 (2012)
22. Kniberg, H., Skarin, M.: Kanban and scrum – Making the most of both, InfoQ (2010)
23. Ladas, C.: Scrumban – Essays on Kanban Systems for Lean Software Development. Modus

Cooperandi Press, Salt Lake City (2009)
24. Middleton, P., Joyce, D.: Lean software management: BBC Worldwide case study. IEEE

Trans. Eng. Manage. 59(1), 20–32 (2012)
25. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in Finnish

software industry. In: Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 139–148. ACM (2012)

26. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

27. Kline, P.: The Handbook of Psychological Testing. Routledge, London (1999)

Insights into the Perceived Benefits of Kanban 167

28. Roberts, T.L., Hughes, C.T.: Obstacles to implementing a system development
methodology. J. Syst. Manage. 47(2), 36–40 (1996)

29. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Commun. ACM 48(5), 73–78 (2005)

30. McManus, J.: Team agility. Comput. Bull. 45(5), 26–27 (2003)
31. Agarwal, R., Prasad, J.: A field study of the adoption of software process innovations by

information systems professionals. IEEE Trans. Eng. Manage. 47(3), 295–308 (2000)
32. de Mello, R.M., da Silva, P.C., Travassos, G.H.: Investigating probabilistic sampling

approaches for large-scale surveys in software engineering. In: Proceedings of 11th
Workshop on Experimental Software Engineering (2014)

33. Ahmad, M.O., Kuvaja, P., Oivo, M., Markkula, J.: Transition of software maintenance teams
from Scrum to Kanban. In: 49th Hawaii International Conference on System Sciences
(2016)

168 M.O. Ahmad et al.

Key Challenges in Software Startups Across Life
Cycle Stages

Xiaofeng Wang1(B), Henry Edison1, Sohaib Shahid Bajwa1,
Carmine Giardino1, and Pekka Abrahamsson2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
xiaofeng.wang@unibz.it

2 Norwegian University of Science Technology, 7491 Trondheim, Norway
http://www.unibz.it

http://softwarestartups.org

Abstract. Software startups are challenging endeavours, with various
road blocks on their path to success. The current understanding of the
challenges that software startups may encounter is very limited. In this
paper, we use the research framework of learning and product develop-
ment stages to analyse the key challenges that software startups have
to deal with at different life cycle stages, from problem definition to
solution validation and from concept to mature product. Based on an
analysis of the empirical data collected by a large survey of 4100 star-
tups, we find out that what perceived as biggest challenges by software
startups do vary across different life cycle stages. Building product is
the biggest obstacle for software startups, even though its significance
decreases when the learning focuses of the startups move from prob-
lem to solution and their products mature. Business related challenges
such as customer acquisition and scaling are more noticeable at the later
stages. Our study raises the awareness of these challenges and suggests
to tackle right challenges at the right time.

Keywords: Software startups · Challenges · Learning · Product devel-
opment stages · Building product

1 Introduction

Startups are newly created companies that aspire to grow fast in extreme uncer-
tainty. They are considered one of the key drivers of economic growth [1]. But
what is also often underlined is the alarmingly high failure rate of startups.
Sixty percent of startups do not survive in the first five years, whilst seventy
five percent of venture capital funded startups fail [2]. This demonstrates that
startups are very challenging endeavours. It is especially true for software star-
tups. According to Sutton [3], software startups are characterized by little or
no operating history. Most of them are young and immature. There is a seri-
ous lack of time and resource. Moreover, they are subject to multiple influences
from an environment that is extremely dynamic, unpredictable and even chaotic.
c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 169–182, 2016.
DOI: 10.1007/978-3-319-33515-5 14

170 X. Wang et al.

A good understanding of the challenges that software startups have to cope with
can help entrepreneurs to be better prepared when confronted by them, and to
overcome them eventually.

However, the current Software Engineering (SE) literature offers very lim-
ited understanding of the challenges in the context of software startups. A very
few number of studies have investigated them in specific areas such as decision
making [4], or user experience design [5]. A broader view has been taken in our
previous study [6], which examines the key challenges emerging from different
areas of early stage software startups. What left unexplored are the challenges
faced by software startups at later stages, and how the challenges differ across
a startup life cycle. Based on this observation, our study aims at offering a
complete and comprehensive understanding of the key challenges in software
startups. To this end, we adopted the research framework of learning and prod-
uct development stages to analyse the key challenges faced by software startups.
The main research question asked in our study is:

RQ: what are the key challenges faced by software startups at different learn-
ing and product development stages?

To answer the research question, we draw upon the empirical data obtained
from a large-scale survey of worldwide software startups conducted between 2013
and 2014. The responses from 4100 software startups were included in the data
analysis. The main results of our study is a comprehensive list of challenges
faced by software startups at different stages and the contextual understanding
of them in terms of learning and product development stages.

The rest of the paper is organized as follows: in Sect. 2, the related work are
presented drawing upon relevant software engineering and business literature.
Section 3 provides more details on the survey. It is followed by the presentation
of the findings in Sect. 4, which are further discussed in Sect. 5, together with
the reflection on the limitations of the study. The paper is summarized in Sect. 6
outlining the future research.

2 Literature Review

2.1 Challenges in Software Startups

As Bosch et al. [4] point out, in order to understand the many challenges that
software startups face, there is need to understand what a software startup is. An
increasingly accepted definition of startup is from Ries [7], a human institution
designed to deliver a new product or service under the conditions of extreme
uncertainty. This definition highlights the characteristic of no or limited his-
tory that a software startup has [3], and the chaotic environment it operates
in. However, the definition does not emphasize the intention of a startup to
find a scalable and sustainable business model [8], which is a key distinguishing
characteristic from established small businesses.

There are few studies that investigate the challenges faced by software star-
tups in SE research field [9,10], due to the nascent nature of software startup as

Key Challenges in Software Startups Across Life Cycle Stages 171

a research area. One study that touches upon the challenges in early-stage star-
tups is Bosch et al. [4]. One of the two research questions the study explores is
what are the typical challenges when finding a product idea worth scaling. They
conducted qualitative interviews with the practitioners in nine startup compa-
nies. The interviewees confirm that it is very difficult to know how to work in a
straight forward manner in early stage startups, and that decision-making sup-
port is limited. However no other challenges have been mentioned and the focus
of the study itself is less on investigating the challenges and more on developing
a methodology to support multiple product ideas being investigated in parallel.

Another study is focused on the specific challenges software startups con-
front with respect to user experience design, an increasingly important aspect of
software engineering. Based on an interview study with eight startups on their
approaches to user experience work, Hokkanen and Väänänen-Vainio-Mattila [5]
discover several user experience related challenges, including collecting mean-
ingful information from users or customers, applying right method for collecting
user feedback, and approaching right set of users.

Our previous study [6] investigated the key challenges faced by software star-
tups at early stages. By “early stage” we mean “from idea conceptualization
to first time to market”. Based on a survey study, a list of top 10 challenges
were identified: thriving in technology uncertainty, acquiring first paying cus-
tomers, acquiring initial funding, building entrepreneurial team, delivering cus-
tomer value, managing multiple tasks, defining minimum viable product, target-
ing a niche market, staying focused and disciplined, and reaching the break-even
point. These challenges are further classified into product, market, finance and
team categories. A case study of two software startups is also presented in the
paper, to provide a richer understanding than that allowed by a ranking list
only. Since the focus of the study is limited to early stage software startups, a
complete picture of the challenges faced by software startups at different stages
is missing. The study presented in this paper is a continuation of [6] and intends
to fill the observed knowledge gap.

2.2 Startup Life Cycle Stages

Learning is a crucial aspect and element for any startup, as emphasized by the
Lean Startup methodology [7]. According to Ries [7], startups do not exist to
“make stuff”. They exist to “learn how to build a sustainable business”. The
process of learning can be divided into four stages in accordance to the customer
development process [8]: defining or observing a problem; evaluating the problem;
defining a solution; and evaluating the solution. It is worth emphasizing that
the learning stages are not linear. Startups need to go through multiple build-
measure-learn loops to find their sustainable business models.

On the other hand, a startup goes through a product development process
in parallel [8], which can be further divided into the following stages: concept,
in development, working prototype, functional product with limited users, func-
tional product with high growth, and mature product. While the learning process
is engaged in customer-centric activities mainly happening outside the building,

172 X. Wang et al.

product development is focused on the product-centric activities that are taking
place internally. As contended by Blank [8], for a startup to succeed, the two
processes must remain synchronized and operate in concert.

In this study, we adopt both learning and product development stages as the
perspectives on the life cycle of a software startup, and use them to systemati-
cally analyse the perceived challenges.

3 Research Approach

This study is based on a large survey that was employed to explore different
aspects of software startups. For the purpose of this study, we only used a subset
of the questions in the whole survey. These questions are composed of three parts.
In the first part, the respondents were asked to provide background information
about their startups, including the principal business domains, the countries
they work in, and their roles within their startups. The second part is composed
of the questions related to the learning stages and product development stages.
Each question should be answered with a single choice from a set of predefined
options as described in Sect. 2.2. In the third part, the participants were asked to
provide three most significant challenges they perceived recently when working
on their startups, ranked as biggest, second biggest and third biggest. Each
question in this part should also be answered with a single choice from a set
of predefined challenges. To obtain the set of challenges, various online forums
related to entrepreneurship were searched. However, one open option was given
when each challenge question was asked. If a respondent could not find a suitable
option from the list, there was a possibility to specify a different challenge. The
list of survey questions relevant to this study can be found in Appendix A.

In total 8240 responses were received. We went through a more strict data
cleaning process than that employed in our previous study [6] in order to ensure
the quality of the data to be used in the analysis phase. First of all, we filtered
out the responses that missed the values in the fields related to learning stage,
product development stage and perceived biggest challenge. The data in these
fields are mandatory for us to conduct further analysis. Since the unit of analysis
is software startup company, we removed the data points which either did not
provide startup names or entered suspicious names, such as “balh”, “ABC”,
“name”, etc. Secondly, we identified the companies that have multiple responses
in the survey, and kept the response from the most senior role of the company
based on the assumption that he/she would have a more holistic view of the
company. If the roles of the respondents were not provided, we took the last
entered entry from the same company. To further clean the data, we removed
the responses which did not confirm that the startups in question were still in
operation at the time the survey was answered, since the challenges were about
those “recently” faced by the startups. If a startup was no more in operation,
the answer about the challenges may not be as recent as requested. Last but
not least, we removed what we considered “outlier” responses and data points
showing some abnormal patterns. As a result, the total sample size was reduced
to 4100.

Key Challenges in Software Startups Across Life Cycle Stages 173

To answer the research question, what are the key challenges faced by soft-
ware startups at different learning stages and product development stages, we
examined the frequency at which each challenge was perceived by the respon-
dents based on the learning stages and product development stages their startups
are at. To determine if the challenges perceived by the startups are related to
the stages they are at, we formulated the following hypotheses that need to be
tested:

H1 : There are differences between learning stages regarding the challenges
perceived by software startups.

H2 : There are differences between product development stages regarding the
challenges perceived by software startups.

Since the stages (both learning stages and product development stages) and
challenge are categorical variables, to test the relatedness between two categor-
ical variables, Pearson Chi-square test is a suitable statistics. We also checked
the expected frequency counts of the cross-tabulation fed into the tests, to make
sure that the validity requirements of Chi-square test are met, e.g., no more than
20 % of the cells containing the frequency counts less than 5, and none containing
0 value. We used statistics software package R for both frequency counting and
running Chi-square tests.

4 Results

4.1 Background of the Sampled Software Startups

Except the 487 responses that did not reveal locating countries, 3613 sampled
software startups come from seventy three countries around the world. Not sur-
prisingly, the majority are located in the United Stages (51.3 %), followed by
countries such as Canada (4.98 %), United Kingdom (3.44 %), Israel (2.83 %),
Australia (2.61 %), Germany and India (both 2.07 %). The business domains
that these startup companies operate in are very diverse and there is no domi-
nant one emerging from the data. The example domains include travel, art and
gifts, fashion, e-commerce, social network, idea management, event management,
social advertising, project and task management, mobile and social games, lux-
ury hobbies, real estate, e-learning, financial services, health care, etc. The types
of software these startups develop are shown in Fig. 1.

The typical team size in these software startups is less than 10 people. The
most common team sizes are 2 persons (16.3 %), 3 persons (15.6 %), 4 persons
(12.2 %), 5 persons (10.6 %) and also, as one respondent put it, “One man army”
(9.88 %). In contrast to the very small team sizes, it is interesting to see that the
respondents used more than 200 different terms to describe the roles they are
playing in their startups. The most frequently mentioned roles are “CEO” (2710),
followed by “CTO” (459) and “Engineer” (171). Apart from the traditional
chief officer titles, there are also “CXO” (Chief user eXperience Officer), “COO”
(Chief Operation Officer), “CPO” (Chief Product Officer), etc. Some interesting
titles reflect the characteristics of entrepreneurs, such as “All the hats”, “jack
of all trades”, “General Specialist”, “do-it-all”, “all-in-one”, “all rounder”, or

174 X. Wang et al.

2246Web

468Mobile

432Web/Mobile + Consulting

223Software (non-web)

219Service (Not SaaS)

203Web/Mobile + Physical Inventory

123Web/Mobile + Hardware

59Not specified

51Hardware

36Non-Profit

0 500 1000 1500 2000 2500 3000
number of startups

Fig. 1. The types of software applications developed by the startups

“we dont have defined roles”. Others expose nicely the role a founder plays, e.g.,
“visionary”, “Chief Visionary”, “Chief cook and dish washer”, “motivator”, or
“guy that does stuff”.

4.2 Key Challenges Across Life Cycle Stages

The sampled software startups are scattered at the different life cycle stages.
As shown in Table 1, in terms of product development stages, the majority are
working on either prototypes or functional products with limited users. Only
less than 3 % of the startups consider their products mature. In terms of the
learning stages, most consider they are in the stage of either validating problems
or defining solutions.

Table 1 shows the distribution of sampled software startups across learning
stages and product development stages. The biggest percentage are the startups
at the stage of defining the solutions and working on functional product with
limited users. Two startups are at the problem definition stage but already
working on either functional product with high growth or mature product. It
might be that the two data points are not valid, or the two startups are truly
outliers.

Table 2 lists the challenges perceived by the sampled software startups. It
shows that building product is the biggest challenge for 859 startups, the second
biggest for 560 and the third biggest for further 327. In total 1746 startups con-
sider it a key challenge. Customer acquisition, funding and building the team are
the following big concerns of more than a thousand of startup companies each.
In contrast, legal and regulations are perceived as challenges by least startups
in the sample.

Figure 2 (generated from the frequency table in Appendix B) depicts how the
software startups at one learning stage perceive their biggest challenges differently

Key Challenges in Software Startups Across Life Cycle Stages 175

Table 1. Distribution of software startups across learning and product development
stages

Problem Problem Solution Solution Total

definition validation definition validation

Concept 113 (2.76 %) 187 (4.56 %) 118 (2.88 %) 23 (0.56 %) 441

In development 74 (1.80 %) 366 (8.93 %) 331 (8.07 %) 35 (0.85 %) 806

Working prototype 32 (0.78 %) 337 (8.22 %) 358 (8.73 %) 53 (1.29 %) 780

Functional product 3 (0.07 %) 295 (7.20 %) 1038 (25.32 %) 275 (6.71 %) 1611

with limited users

Functional product 1 (0.02 %) 14 (0.34 %) 124 (3.02 %) 202 (4.93 %) 341

with high growth

Mature product 1 (0.02 %) 11 (0.27 %) 40 (0.98 %) 69 (1.68 %) 121

Total 224 1210 2009 657 4100
∗The percentages are cell percentages.

than those at another learning stage. As shown in Fig. 2, building product as the
most frequently perceived biggest challenge is clearly visible, even though the per-
centage of software startups decreases while the learning stage is advancing.

Another key challenge, the importance of which declines, is minimum viable
product. it starts as the third most frequently perceived big challenge at the first
learning stage - problem definition. In the solution validation stage, instead, it
gives way to other challenges which are much less perceived at the first learning
stage, such as critical mass, leadership & team alignment, over capacity/too much
to do, and revenue. Staying focused & disciplined shows a similar pattern to
minimum viable product.

It is interesting to compare the pair problem solution fit and product market
fit. It can be observed that the first fit is a much more perceived challenge than
the second at the first learning stage. However its percentage decreases while the
startups are focused more on the second fit in later learning stages.

On the contrary, the percentage of software startups that perceive customer
acquisition as the biggest challenge increases along the learning stages. For the
software startups at the solution validation stage, customer acquisition exceeds
building product noticeably and becomes the biggest challenge for the majority
startups at this learning stage. Similarly, partnership and scaling are not per-
ceived as the biggest challenges by the software startups at the first learning
stage. They are perceived so by the startups at later learning stages, especially
scaling, the significance of which increases greatly at the last stage.

The percentage change of funding takes a different shape. It is perceived
as crucial in the first learning stage, but becomes much more noticeable in the
problem validation and solution definition phases. Instead, its significance drops
back a bit at the solution validation stage. The percentage of building the team
challenge does not reveal any obvious pattern of change. Even though fluctuating
visibly, it remains as a significant concern across the learning stages. The change

176 X. Wang et al.

Table 2. Overview of key challenges perceived by software startups

No. of software startups that perceive

As 1st challenge As 2nd challenge As 3rd challenge Total

Building product 859 560 327 1746

Customer acquisition 678 454 324 1456

Funding 526 393 420 1339

Building the team 317 394 293 1004

Business model 282 345 250 877

Over capacity/Too much to do 262 309 289 860

Revenue 150 202 326 678

Minimum viable product 130 218 260 608

Staying focused & disciplined 248 191 152 591

Product market fit 151 186 193 530

Critical mass 161 162 132 455

Scaling 92 107 176 375

Problem solution fit 95 100 100 295

Leadership & team alignment 60 99 111 270

Partnership 44 71 114 229

Legal 35 56 61 152

Regulations 10 27 28 65

of business model does not follow any particular pattern either. However it is
visible that the percentage of the startups perceiving it as the biggest challenge
drops significantly from the first learning stage to the rest of the learning process.
Legal and regulation remain as the least perceived challenges across the learning
stages.

Figure 3 (based on a frequency table similar to the one in Appendix B, with
product development rather than learning as the stage) depicts how the software
startups at one product development stage perceive their biggest challenges dif-
ferently than those at another product development stage. The challenges in
Fig. 3 show less regular patterns when the stages are more granular. But some
similar tendencies are still observable, such as building product decrease vs. cus-
tomer acquisition increase. There are a couple of noticeable differences. One is
the percentage change pattern of funding. Even though the significance drops
as in the learning stage figure, it is more significant at the early stages of prod-
uct development, especially at the development and prototyping stages, which
is understandable since the companies have no products to sell therefore need
funding to sustain the product development. Another notable difference is that
legal as the biggest challenge is not perceived by any of the startup companies
with mature products.

To test the hypotheses that there are differences between different learning
stages (H1) and product development stages (H2) regarding the challenges per-
ceived by the software startups, we run the Chi-square tests on the datasets (see
Appendix B as an example). The results are shown in Table 3. With p-value <
0.0001,H1 and H2 are supported with high confidence.We repeated the Chi-square

Key Challenges in Software Startups Across Life Cycle Stages 177

tests on the second and third biggest challenges perceived by the software startups
at different stages of learning and product development. They are also significantly
related to the learning and product development stages. Therefore H1 and H2 are
supported again by taking into account the second and third biggest challenges.

5 Discussion

Table 2 adds more perceived big challenges to the list reported in [6]. The new
entries are revenue, scaling, problem solution fit, leadership & team alignment,
partnership, legal and regulations. Among them only problem solution fit is
clearly a concern more relevant to early stage startups [11]. In comparison to the
key challenges in early stage software startups reported in our previous study [6],
the list of top ten challenges in Table 2 does not differ much1. The only change
is that revenue, in the place of critical mass, becomes one of the top ten key
challenges across the stages. The little variance between the two lists can be
explained by the fact that the sample used in this study, even though including
all stages of software startups, is skewed towards early stage startups. Table 1
shows that the majority of the startups in the sample are at early stages (at the
first four stages of product development).

Our study results demonstrate that building product is the biggest challenge
faced by software startups at all stages, not just those at an early stage as shown
in [6]. Along the same line of argument in [6], this finding is consistent with
the generally innovative nature of software startups who are often chasing new
technological changes and disrupting the software industry. Therefore they need
to deal with cutting edge technology and apply innovative tools and techniques,
which renders product development challenging endeavours.

With an extremely small p-value (<0.0001), the hypotheses H1 and H2 are
supported, which means that what are perceived as the biggest challenges by
software startups do vary across different learning as well as product develop-
ment stages. Even though it is difficult to declare a global change pattern based
on Figs. 2 and 3, it is noticeable that the significance of product and finance
related challenges, such as building the product, minimum viable product and
funding, decreases when learning and product development progress. In compar-
ison, market related challenges such as customer acquisition and scaling become
increasingly perceivable. This is hardly surprising since the main focuses and
tasks of startups shift along their life cycles, so do the concerns and challenges
entrepreneurial teams have to tackle. The picture is less clear when people and
team related challenges are concerned, including building the team and stay focus
& disciplined. There is no detectable overall tendency. This is somehow contra-
dictory to our expectation that the more advanced startups are, the more stable
and better jelled entrepreneurial teams are, and therefore the less people and
team related challenges are perceived.
1 The names of the challenges reported in [6] were the adapted versions of the ones

reported in this paper. The purpose of the adaptation was to better reflect the
characteristics and focus of early stage software startups.

178 X. Wang et al.

Fig. 2. Distribution of software startups in terms of the biggest challenge per learning
stage

Table 3. Chi-square test results

H1(learning stages) H2(product development stages)

X-squared 506.9612 943.4645

df(degree of freedom) 48 80

p-value < 0.0001 0.0001

In addition, our data analysis reveals that, in a few software startups, learning
and product development stages are not synchronised (e.g., as shown in Table 1),
or they are dealing with challenges that are either too early or too late to confront
in terms of what need to be learnt or what need to be developed, e.g., confronting
product market fit at the problem definition phase (the first learning stage), or
still tackling problem solution fit when the product is already mature. As argued
in [11], investing on product market fit strategies prematurely given that users
are not yet sold on the product can be a crucial failure factor. On the other

Key Challenges in Software Startups Across Life Cycle Stages 179

Fig. 3. Distribution of software startups in terms of the biggest challenge per product
development stage

hand, having already a mature product is a huge waste if the problem solution
fit is not reached.

Regarding the limitations of the study, one limitation lies in the set of pre-
defined challenges used in the original questionnaire design. It is not based on
existing literature due to the scarcity of related studies. The challenges were
obtained through searching various online entrepreneurship forums. They need
scientific evidence to support their validity. The fact that most survey respon-
dents selected from the predefined set to certain extent demonstrates that these
challenges are relevant and significant. Of course, the fact that no meaningful
new challenges were identified in addition to the predefined list may also due to
the questionnaire design. A more flexible design would encourage respondents to
express the challenges in their own words, even though it means much more effort
needed for data analysis. Another limitation of the study is that the life cycle
stages of the software startups in the survey were chosen by the respondents,
therefore were based on their opinions rather then objective evidences. There

180 X. Wang et al.

could exist inconsistency between the real stage of a software startup and the
perceived stage by its respondent. There are additional questions in the original
survey (not included in this study) that could be used in the follow-up studies to
triangulate the perceived life cycle stages. Lastly, regarding the Chi-square test,
it is recommended that the categorical variable has a small number of categories.
To improve the confidence of the results, the challenges could be classified into
fewer groups. A meaningful and valid way to group these challenges is needed.

6 Conclusions

Software startups are challenging endeavours. Different challenges occupy the
central attentions of entrepreneurial teams at different stages. In this paper, we
extended the narrow focuses of previous studies and examined the key challenges
that software startups have to deal with at different learning stages from problem
identification to solution validation, and at different product development stages
from concept to mature product, based on a large survey study. We established
a ranked list of top challenges, and demonstrated how they vary across different
stages.

The findings can guide future studies to address the top software engineering
challenges faced by software startups, such as building software product, defining
minimum viable product and building entrepreneurial team, while taking into
account contextual factors, e.g., the product development stages and learning
stages. The practical value of our study is that it raises the awareness of the
challenges entrepreneurial teams may encounter and suggest them tackling right
ones at the right time.

The survey data provides a snapshot of the challenges faced by different
software startups at different stages. A longitudinal study of different challenges
faced by same companies at different stages would validate the findings from this
study and provide richer contextual understanding of these challenges. It is also
interesting to understand the uniqueness of the software startup challenges and
their significance in comparison to other types of startups or new product devel-
opment endeavours in general. Further more, future studies can investigate the
potential linkage between the misalignment of learning and product development
stages and startup failure.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Key Challenges in Software Startups Across Life Cycle Stages 181

Appendice

Appendix A Key Survey Questions
Category Question

Demographic questions Name of Your Startup

Web Site

Did you fill out the survey for a company that is still
operating?

Which best describes your role on the team?

What kind of startup are you a part of?

How many products do you have?

What market are you tackling?

What is the total size of your team?

Questions related to startup stages What’s the stage of your learning process?

What’s the stage of your primary product?

Questions related to challenges What has recently been your startup’s biggest
challenge?

What has recently been your startup’s second biggest
challenge?

What has recently been your startup’s third biggest
challenge?

Appendix B Challenges Perceived by Software Startups
at Different Learning Stages: Frequency Table

Problem Problem Solution Solution

definition validation definition validation

Building product 75 (33.48 %) 298 (24.63 %) 420 (20.91 %) 66 (10.05 %)

Customer acquisition 4 (1.79 %) 163 (13.47 %) 365 (18.17 %) 146 (22.22 %)

Funding 18 (8.04 %) 173 (14.30 %) 273 (13.59 %) 62 (9.44 %)

Building the team 12 (5.36 %) 127 (10.50 %) 121 (6.02 %) 57 (8.68 %)

Business model 49 (21.88 %) 58 (4.79 %) 139 (6.92 %) 36 (5.48 %)

Over capacity/Too much to do 7 (3.13 %) 69 (5.70 %) 134 (6.67 %) 52 (7.92 %)

Revenue 1 (0.45 %) 16 (1.32 %) 63 (3.14 %) 50 (7.61 %)

Minimum viable product 24 (10.71 %) 92 (7.60 %) 114 (5.67 %) 18 (2.74 %)

Staying focused & disciplined 17 (7.59 %) 57 (4.71 %) 58 (2.89 %) 18 (2.74 %)

Product market fit 2 (0.89 %) 35 (2.89 %) 94 (4.68 %) 20 (3.04 %)

Critical mass 2 (0.89 %) 28 (2.31 %) 86 (4.28 %) 45 (6.85 %)

Scaling 0 (0 %) 11 (0.91 %) 32 (1.59 %) 49 (7.46 %)

Problem solution fit 10 (4.46 %) 31 (2.56 %) 47 (2.34 %) 7 (1.07 %)

Leadership & team alignment 1 (0.45 %) 20 (1.65 %) 21 (1.05 %) 18 (2.74 %)

Partnership 0 (0 %) 15 (1.24 %) 23 (1.14 %) 6 (0.91 %)

Legal 2 (0.89 %) 14 (1.16 %) 14 (0.70 %) 5 (0.76 %)

Regulations 0 (0 %) 3 (0.25 %) 5 (0.25 %) 2 (0.30 %)
∗The percentages are column percentages.

182 X. Wang et al.

References

1. Dishman, L.: The state of the american entrepreneur in 2015.
http://www.fastcompany.com/3046773/hit-the-ground-running/
the-state-of-the-american-entrepreneur-in-2015. Accessed 15 Oct 2015

2. Nobel, C.: Why companies fail-and how their founders can bounce back. Working
Knowledge, Harvard Business School, Boston. http://hbswk.hbs.edu/item/6591.
html (2011). Accessed 29 Aug 2013

3. Sutton, S.M.: The role of process in software start-up. IEEE Softw. 17(4), 33–39
(2000)

4. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software
startup development model: A framework for operationalizing lean principles in
software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan,
L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg
(2013)

5. Hokkanen, L., Väänänen-Vainio-Mattila, K.: UX work in startups: Current prac-
tices and future needs. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP
2015. LNBIP, vol. 212, pp. 81–92. Springer, Heidelberg (2015)

6. Giardino, C., Bajwa, S.S., Wang, X., Abrahamsson, P.: Key challenges in early-
stage software startups. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP
2015. LNBIP, vol. 212, pp. 52–63. Springer, Heidelberg (2015)

7. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)

8. Blank, S.: The Four Steps to the Epiphany. CafePress, San Mateo (2005)
9. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,

P.: Software development in startup companies: A systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

10. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering knowledge
areas in startup companies: A mapping study. In: Fernandes, J.M., Machado, R.J.,
Wnuk, K. (eds.) ICSOB 2015. LNBIP, vol. 210, pp. 245–257. Springer, Heidelberg
(2015)

11. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups Fail:
A behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014.
LNBIP, vol. 182, pp. 27–41. Springer, Heidelberg (2014)

http://www.fastcompany.com/3046773/hit-the-ground-running/the-state-of-the-american-entrepreneur-in-2015
http://www.fastcompany.com/3046773/hit-the-ground-running/the-state-of-the-american-entrepreneur-in-2015
http://hbswk.hbs.edu/item/6591.html
http://hbswk.hbs.edu/item/6591.html

Experience Reports

Mob Programming: Find Fun Faster

Karel Boekhout(&)

Haarlem, The Netherlands
karel@boekhout.org

Abstract. The Mob Programming technique proves to be an effective learning
instrument with a group of less experienced developers. It is also used to explore
topics outside of just software development.
This paper describes how, with a set of weekly Mob Programming sessions,

the teams as a whole and all its individuals have grown much faster than they
could have done otherwise. They improved their coding skills, mastery of tools,
involvement in Scrum ceremonies, estimation skills, process modeling (!) and
learned to be much more self-sufficient.
This didn’t happen without plenty of experimentation, and some dead ends.

I will describe the different approaches we tried, how we ended up with a
surprisingly strict process for our mobbing sessions, and how acceptance was
easier with a team that had fewer ingrained habits of work.

Keywords: Learning � Pairing � Mob Programming � Discovering unknown
territories

1 Introduction

It started with two teams that needed to improve their skills in many different areas but
with very little support available to get them there. No seniors, no training, and a single,
non-technical, coach trying to help them.

Having been impressed by the Mob Programming [3] session at XP2015 in Hel-
sinki, I started an experiment to see whether that technique could help us accelerate the
learning process. We tried Mob Programming for a period of two months, with one full
day of mobbing a week. It proved to be a great experience for both the teams as well as
for this coach, albeit one with a steep learning curve.

In this experience report, I show the effects mobbing had on different aspects of our
work. How the adoption of the practice was different between two differently structured
teams. What we did to make it work, and how mobbing was particularly effective in
supporting learning and discovery in both technical skills as team maturity.

2 Situation

This experiment happened in a small department of a company (consisting of 18
people, 14 developers in 3 teams) based in Rijswijk, The Netherlands. The main period
of the experiment was in the summer of 2015, fresh after the inspiration from the
XP2015 conference in Helsinki.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 185–192, 2016.
DOI: 10.1007/978-3-319-33515-5_15

The experiment involved two teams within the company: a junior team (let’s call
them team Red), and a less junior team of developers (team Yellow). The junior team,
the Reds, consisted entirely of young programmers with no previous work experience
as developers. There was no senior developer available to guide them, and we needed
some way to accelerate their learning process. The Yellow team was also very junior
but had some programming experience, some from working at another company.

This isn’t a group who by themselves who would scout the outer limits of IT
innovation, so I didn’t expect them to be eager to try Mob Programming out. The
reception was not even lukewarm; I would have to earn my pay to get this accepted.

3 Introduction of Mob Programming to Teams

I started out by showing Woody Zuill’s video ‘A Day of Mob Programming’ [4] to the
whole group. I explained that even I, a non-developer, had had a lot of fun participating
in a session of Llewellyn Falco and that I would like to try it with the teams.

I told them I thought it would be fun, and mentioned similarities I saw with some of
the online games that I knew the junior team members liked playing in their own time.
These games are high paced shoot-’m-ups, in which they acted as a team with a lot of
online communication, and I hoped the similarities would spark an interest.

A second argument was, via feedback in the retrospectives the teams had raised,
that there was lot of difference in the skill level and use of tools between the team
members, regardless of seniority and time with the company. Everyone agreed that it
would be in the interest of the teams, the individuals and the company to spread those
skills more evenly. I emphasized how Mob Programming could help us achieve this.

Still, the first reactions were lukewarm. Even while stressing that the goal was
learning and not delivery, people were complaining about the apparent lack of effi-
ciency. A senior colleague, who was not part of these teams but influential in the
company, openly said he would dislike working on a daily basis as was shown in the
video. I stressed that if people liked this way of working we could do it more often, but
that it was not my goal to make this the new default way of working in the office. In the
end, I decided to just try.

4 Experiments

As part of the series of Mob Programming sessions, we continuously adapted our way
of working. When you’re doing hourly retrospectives, the rate of change can be very
high. In the following Sect. 1 describe some of the larger, and more important, changes
that happened, and the process we ended up with.

4.1 Room Setup

We went through a few iterations before we arrived at a room setup that worked for us.
Starting by just using the big screen we use for giving demo’s in the main team room,

186 K. Boekhout

we quickly found that the screen was too small, and it was hard to get everyone a
position near enough to it, due to all the desks. Distractions were also an issue, with
many interruptions from outside the team, and simply from people’s workstations (see
Fig. 1).

At the company we have a room designed for training. In this room we were
somewhat more isolated from interruptions. The room has a projector and a big monitor
for presentations. We quickly discovered that the resolution of the projector was too
low and not clear enough. A good high resolution projector is the most optimal
solution. We had to use the big monitor.

The setup in the training room initially resembled the setup used in the XP2015
conference setting that I participated in. We rearranged the tables to create one central
table, directly in front of the monitor, with a keyboard, mouse and one laptop. We
arranged some chairs in a semicircle around that driver position, and simply switched
places (see Fig. 2).

We still found issues with this setup. The simple chairs, though good enough for a
short mobbing session at a conference, wouldn’t do for sitting on all day. So we
decided to use proper office chairs, and have everybody move around keeping their
chair to save time and avoid continuously fiddling with the chair configuration (see
Fig. 3).

Lighting also turned out to be important; if there’s too much, it makes it hard to
read the screen. But when it’s too dark the bright screen strains the eyes too much. By
switching to a side-wall for the screen we could alleviate that particular issue.

4.2 Cycle Time

Copying Woody’s video, we started with a rotation of 10 min. Unfortunately, it seemed
that every change of driver and navigator became an interruption and it took the team
time to get back in focus on the problem at hand. There was clearly no sign of flow.

A tip I got from Llewellyn Franco at Agile 2015 [1] proved to be very important:
lower the rotation cycle from 10 to 4 min. By rotating so quickly, the switch has to go
smoothly, so that you really need to make sure the workspace is good, you have a good

Fig. 1. First try: mobbing in
the team room

Fig. 3. The final setup:
comfort and proper lighting

Fig. 2. Second attempt: training
room in conference-inspired
setting

Mob Programming: Find Fun Faster 187

timer and most important, that everybody is fully involved all the time. After a while,
Team Red slowed to 5 min, and declared this the sweet spot for them.

4.3 Structured Breaks

Full involvement all the time can be exhausting. It’s worth noting that more mature
teams might experience Mob Programming less stressing than Pair Programming, due
to breaks in the rotation. However, in this situation the primary goal was not delivering
software, but focus was on learning though training.

So I made sure that every hour there was a 5–10 min break after the retrospective
where people weren’t allowed to be behind the screen. Even then a full day can feel like
a marathon. The biggest advantage of a full day, was that you can do a full Sprint and
finish work in one day, which people found fulfilling.

4.4 A Sprint a Day Keeps the Coach Away

I emphasized that the Mob Programming days were an experiment with the focus on
learning, rather than delivering. Apparently I was a little bit too effective with the
emphasis on learning and creating an environment of not delivering.

The sessions were not always happening with the full attention of everyone in the
team. The results were incomplete and would bleed over into additional work outside
of the mob, and inside of the containing, normal sprint. Reflecting on this, we decided
to put a little more focus on the mobbing day, and have a clear goal of taking a small
story and having it deployed to production. I called this the ‘sprint in a day’, and it did
put the whole process in a pressure cooker.

The structure of that single-day-sprint was as follows:

• the team picks a user story during the planning session, taking into consideration
that it had to be possible to finish the story in one day,

• the day starts with a tasking session, where the team does a breakdown of all the
tasks needed to deliver the user story,

• then hourly cycles of development, which each ended in a retro and break,
• at the end of the day, the user story would be deployed to production
• the retro for the last hourly cycle is extended, looking back at the last hour and the

whole day,
• the day is closed by making the retro report together as a mob,
• and we clean up the room before we leave.

Giving ourselves this goal of completing the work had, perhaps predictably, an
immediate effect. The first time the whole team stayed for an additional two and a half
hours to deploy. Thus, they decided in the retro that perhaps more automation in the
deployment process would not be a bad idea. It also raised awareness in the team about
the advantages of small stories.

188 K. Boekhout

4.5 Hourly Retrospectives

Already mentioned above, a core practice for our teams were the hourly retrospectives.
With our focus on team learning, the most important outcome of the mob was in
learning how to improve.

An hourly retro needs to be short and to-the-point. We started with a simple
positive/negative items system, and made sure this was visualized on our daily scrum
board. Here’s an example of an early Task & Retro board (see Fig. 4):

The basis of the board is the horizontal axis for the hourly blocks. Every hour the
corresponding column is used. The top part for positive feedback (e.g. “We chose a
good user story to work on”), the lower part for the improvements (e.g. “tests fail”).

The left of the board is a basic scrum (ToDo/In Progress/Done) board, turned on its
side, where we kept track of the tasks for the day’s story.

As we refined the retro, we changed the board from having distinct sections for
positive and negative points to one where we have a gradual scale from top to bottom,
inspired by the happiness metric [2].

In the example below (Fig. 5), note the trend towards negativity as the day pro-
gresses, undoubtedly influenced by the lack of progress on the tasks shown in the task
board on the left.

In the next example (Fig. 6), a board from team Red, we do see a clear upward
trend in day. The team has further extended the board by adding a task burn-up chart.

Fig. 4. An early task and retro board - notice the focus on the hourly retro

Fig. 5. An incremental improvement to the
retro board: a gradual scale of positive to
negative

Fig. 6. A more upward trend of the day, in
both retro-points and task burn-up

Mob Programming: Find Fun Faster 189

Retrospectives are also put in Confluence. Easier to read, for reference, and as this
is done as a Mob at the end of the day, it is another moment where the retro points are
digested by the team. Additionally, actions for the next session are added as tasks.

4.6 A Special Mob: Process Flow

In one of our mobbing sessions it turned out that the story required the creation of a
process flow. As no-one in the team had any experience in this area, this was a session
where the coach (who used to be a process manager in a previous life) took on the role
of navigator for the start of the session. It was interesting to see that, even though
whiteboard drawings and Visio diagrams were the output instead of Java code, the
same effects occurred as with other techniques: after a while our process manager could
see that the basic skills had landed, and he could step back and let others take on the
navigator role.

5 Acceptance

Team Red, our junior team, embraced Mob Programming the most. They’ve indicated
that they don’t want to work this way all week, because they had to do an individual
study as well, and time spent in the mob meant less time to prepare for their OCA and
OCP exams. But, even after the initial 8 sessions of our summer experiment, the team
continues to have regular mobbing days.

On the other hand, Team Yellow, the less junior team, disliked the experiment,
didn’t like the working in a group, and kept saying that they thought it was inefficient,
no matter how much I made clear that this wasn’t a consideration. So they stopped after
only 3 attempts at mobbing.

A few months after they had stopped, team Yellow needed to work in a new
technical domain, with some pressure on learning this domain quickly due to a new
project that they had landed. Team Yellow then decided to split in two groups, both
addressing a particular area. Although they didn’t do the strict rotation, the interaction
(with driver/navigator roles, frequent updates in group and between the two groups)
was clearly reminiscent of the setup they had experienced a few months earlier while
mobbing.

In an unexpected late update, only a few weeks before finalizing this paper team
Yellow decided independently to Mob Program for a day to tackle a difficult user story.
My initial conclusion that they had rejected the technique was premature: they did find
value in mobbing and added this new tool to their toolbox.

6 Team Growth

Learning software development is the primary goal for our group of junior developers.
They were already delivering demos weekly, proving they understood the studied
chapters in their books. Working in a mob with their peers accelerated everything, from
exchanging coding practices to learning to have an opinion and to share or even defend it.

190 K. Boekhout

For instance, one day Team Red discovered that the training room was not avail-
able, so they decided to move to the boardroom. With unfavorable light conditions and
table arrangement, they themselves decided the room as unfit and changed to a better
room. All without any intervention of the coach, something that would be unthinkable a
few weeks earlier.

Team Red started to identify user stories that were suitable for Mob Programming
and those which were not, in light of the very short cycle and strict rhythm. The
characteristics of these stories proved to be mainly how clear the goal was and whether
enough contextual information was available. Basically, they were finding shortcom-
ings previously undetected in the Backlog. This dramatically improved the interactions
with the Product Owner and within the team during the regular refinement sessions.

Having to finish a story at the end of the day, the Yellow team noticed together that
deployment to production took far too much time. Since they had the rule in place that
everyone stayed until the day was closed with deploying the user story, it felt even
longer. This drastically changed their attitude to deployment automation.

A set of scripts had been disabled in Jenkins, because it gave too many errors. To
speed up the deployment process the team had to re-enable the scripts and fix the
problems. The process went down from 40 min to 10.

With both teams lacking experience in Pair Programming, I made sure that the rules
for Mob and Pair Programming were almost the same. So basically we do Mob Pro-
gramming, but if the group consists of only two people we call it Pair Programming.
Many people would perhaps dislike this approach, but after the experiment the result is
that people more often choose to do Pair Programming than before. I am positive that
with additional exposure they will reach a point where a more relaxed approach to
pairing will also work for them.

Overall, the level of discipline/cadence/structure went up for both teams, while at
the same time the evaluations during the retrospectives were more positive and
productive.

The Red team is now very mature and self-sufficient in their day to day processes.
Though they still need support on technical issues, they only need help from a scrum
master when they run into conflicts or other situations that have a need for more life
and work experience.

7 Conclusions

I can state that because of these weekly Mob Programming days, the team as a whole
and all its individuals have grown much faster than they could have done otherwise.
Not only did they improve their coding skills, they improved in many other aspects,
such as their requirements process, deployment procedures, appreciation for focus, and
perhaps most important of all, their much higher degree of self-sufficiency. Learning
would have been quicker and more directed with a senior as part of the team, but they
progressed greatly, even on their own.

As a coach, I had my own learning experience. The difference in reaction between
the teams indicates that a different approach might be more effective with more senior
people. Perhaps that is not surprising. We all get more set in our ways the longer we are

Mob Programming: Find Fun Faster 191

used to our particular habits. The experience for me as a coach has resulted in lessons
learned I’ll take into my next Mob Programming experiments. And those will certainly
happen!

Acknowledgements. First I like to thank the teams at Qualogy Solutions for being my test
subjects. Woody Zuill and Llewellyn Franco deserve credit for inspiring me, in their sessions and
through their ideas, to conduct this experiment. Many thanks go to Wouter Lagerweij, for
encouraging me to submit this report and helping me clean up the mess afterwards. Final thanks
go to Joseph Yoder, for shepherding me through the process. His knowledge of the process and
interest and enthusiasm for the subject helped me greatly.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is
provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in the
work’s Creative Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt or reproduce the
material.

References

1. Falco, L.: Group Learning. Today’s exercise: Unit Testing (session at Agile 2015)
2. Kniberg, H.: What is Crisp (on The Happiness Metric) http://blog.crisp.se/2010/05/08/

henrikkniberg/what-is-crisp
3. Zuill, W.: Mob Programming: A Whole Team Approach, experience report at Agile (2014).

https://agile2014.sched.org/event/1exPSc0/mob-programming-a-whole-team-approach-
woody-zuill

4. Zuill, W.: A Day of Mob Programming. https://www.youtube.com/watch?v=p_pvslS4gEI

192 K. Boekhout

http://creativecommons.org/licenses/by-nc/4.0/
http://blog.crisp.se/2010/05/08/henrikkniberg/what-is-crisp
http://blog.crisp.se/2010/05/08/henrikkniberg/what-is-crisp
https://agile2014.sched.org/event/1exPSc0/mob-programming-a-whole-team-approach-woody-zuill
https://agile2014.sched.org/event/1exPSc0/mob-programming-a-whole-team-approach-woody-zuill
https://www.youtube.com/watch%3fv%3dp_pvslS4gEI

Agile Testing on an Online Betting Application

Nuno Gouveia(B)

Blip (Betfair), Rua Heróis e Mártires de Angola, n◦59 4◦, Porto, Portugal
nuno.estrada@blip.pt

Abstract. Agile development with continuous integration and constant
releases is only sustainable followed by a rock solid quality process. At
blip/betfair we work very hard to build and continuously improve our
quality process to provide at the same time a unique reliability experience
to our customers and new features fast. Three major components of
this process are: Mind maps to help us learn more about our product
and represent our knowledge about it in a structure way, Exploratory
Testing that must be free and creative and happen as soon as possible
in the process to allow fast feedback cycles and CI pipelines with high
levels of automation testing to avoid regression. Agile development with
continuous integration and constant releases is only possible with a rock
solid quality process.

Keywords: Agile · Testing · Mind maps · Exploratory tests · Contin-
uous integration · Quality

1 Introduction

Before joining Blip in July 2013, all I knew about Agile was based on articles
or conversations with other people. After two and a half years of experience,
where I have had the freedom to decide the best way to do my job, I feel that
my perception about quality in agile environments has evolved a lot. This report
shares my journey from learning the existing quality process for the Exchange
Desktop project, to helping improve it to its current state.

1.1 Background

Blip is part of the Betfair Group plc, one of the biggest and most successful online
betting companies in the world, being the largest internet betting exchange, and
also has a strong position in the traditional online bookmaking business. The
growth of the online gambling market in the recent years has led to an increase
in the number of online betting websites. This generates a fierce competition for
market share which in turn increases the pressure for the companies to be more
innovative and to release new features fast in order to draw the attention of as
many users as possible. At Blip, the way we deal with this pressure is to use
agile methodologies (mostly Scrum) and continuous integration.

c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 193–200, 2016.
DOI: 10.1007/978-3-319-33515-5 16

194 N. Gouveia

Although we need to deliver new features fast, our main concern when it
comes to the continuous integration of our products is quality. Despite being
considered an “entertainment” product, our applications deal with an extremely
sensitive subject for our customers: their money. With this in mind we dedicate
a lot of time to the development of a strong quality process that gives us the
confidence to release our products frequently. This process is in constant evolu-
tion with the input from Delivery Managers and Developers but primarily from
Quality Analysts.

We work mainly with the most popular agile methodology Scrum, in mul-
tidisciplinary teams of around 5–7 people, which includes the quality analysts
(usually one for each team/we don’t have a separate quality department). This
integration of quality analysts into the teams means that different projects have
different realities and in most cases, the project teams have the freedom to tailor
their quality process according to their needs. For this reason, I will only refer to
the quality process for the project that I have worked on, for the past 2,5 years,
the Exchange desktop product that has 2 on-going projects: the Sports Site Web
(SSW), a Java-based (backend) desktop app, and the Exchange Desktop Site
(EDS), a newer (1,5 years), Angular-based desktop app.

I will focus on three different subjects within our quality process - Mind
mapping, Exploratory Testing and Continuous integration pipeline - and try to
describe their evolution over the time I have been in the company.

2 Mind Mapping

2.1 Early Days and Old Process

Back in 2013 when I joined Blip, mind maps were not a part of our quality
process. As this was my first full time job as a Quality Analyst (in my previous
job, testing was just a small part of my tasks), I started by learning the current
process from other QA’s from the project. As we work in Scrum with two weeks
sprints, the QA process is tightly connected with our Scrum process.

As in most Scrum teams, the first interaction that a QA had with any user
story was in the grooming ceremony. In this ceremony the Product owner
explained the user stories in the backlog to the team. The QA, like any team
member, tried to understand any possible flaws with the specification and make
sure it was ready to be played. Before the team estimated the user story, it was
common for the QA to discuss with the team a general idea of the strategy to
test the user story, with special focus on the kind of automated regression tests
that could be done. This helped the team estimate the user story with a bit more
detail. This part of the process is still in use nowadays, as we feel it works well.

In the beginning of a sprint the first goal of the QA was to define test cases
(this would happen before any real testing with the application). So for every
user story the QA would do the following tasks:

1. Study the user story in more detail with special focus on its acceptance
criteria,

Agile Testing on an Online Betting Application 195

2. Create test cases in our agile management tool (AMT) for all the scenarios
that we would test manually as well as different input combinations for the
scenarios to validate the acceptance criteria, and

3. Create test cases for all the scenarios that would be automated as regression
tests.

Applying this process to all the user stories would usually take at least the
first couple of days of the sprint. After a user story was implemented, the QA
would test it in a development environment following the test cases that had
previously been defined, trying to find bugs. We understood later that doing so
was quite restrictive, limiting our creativity and exploration. Our test activities
mostly followed the “scripts”.

2.2 The Introduction of Mind Maps

In late 2013, one of the more senior QA’s shared a new technique he had learned
to help him explore the user stories and create a visual representation of our
knowledge about a product feature, mind maps. This idea blew my mind com-
pletely and I immediately started thinking how we could use this in our process.
On the following sprint I started experimenting with this idea and created mind
maps to help me in my testing strategy for every user story. The use of this
technique had a huge and instantaneous impact in the way I worked. Since then,
the way we use mind maps has gone through different stages. I will now explain
what happened and what we learned along the way.

2.3 Mind Maps for Test Scenarios

The very first thing I tried to do was to use the mind maps to replace step 2 of
our process, which was the one I thought was the most inefficient. So instead of
documenting every scenario that I was going to test with in different test cases
in our AMT, I would create a mind map with all that information and attach
that single mindmap to the user story. This was helpful at first because it was a
much more visual way to represent that information than in separate test cases
and it was more practical to use when I was testing the user story, executing
those scenarios. Besides using the mind maps to guide me as I was testing the
user story, I also started ticking off as complete the different scenarios and steps
as I tested them in the app. I would later insert this updated mind map to the
respective user story as a test result. This could be used as historical data to be
consulted in the future if necessary. After some sprints following this method I
realized that all this test result information was useless because nobody really
needed it. Not me, not my delivery manager, not the other QA’s. So as a good
Agile practitioner I stopped doing it because it wasn’t adding any value. I also
stopped creating mind maps for test scenarios as I started observing that having
all those predetermined test scenarios wasn’t really helping me find many bugs
and was having the same impact in testing that step 2 previously had.

196 N. Gouveia

2.4 Mind Maps to Represent User Stories

Around the time I was struggling with the route to pursue next with the mind
maps, Michael Bolton came to Blip for the Rapid Software Testing workshop.
We talked a lot about exploration, experimentation and learning. One technique
exhaustively used during the workshop was precisely using mind maps to learn
and explore the features and characteristics of a product. This inspired me to
use mind maps in the same way, to learn more about the product instead of
representing testing scenarios as I was doing before.

I decided from that point on to try to represent the information on the
user stories in a more structured way. Instead of mapping scenarios, I started
mapping the different components of the module (or small section) that was
being implemented and think about the different states that each component
could have. Instead of replacing step 2 of the process, this new method helped
me with the step 1 - learning as much as possible about the user story. Later,
after the team had implemented the user story, I used the mind map that I had
created to help me with my exploratory tests. At this point, and with the new
concepts about exploration we had learned in the workshop, we (the QA’s on
the project) decided to drop step 2 of our process, as we understood that it
wasn’t adding value and didn’t really help us discover many bugs when we were
testing. This meant that the only test cases that we defined in our AMT were
those defined in step 3, the ones that would be automated as regression tests.

2.5 Repurposing Mind Maps - The Oracles Breakthrough

Usually when implementing a new module, the work is divided into several user
stories. Instead of creating one mind map for each user story, we started creating
a single mind map for the entire module and updating it in every user story.
These mind maps also included things common to the entire module like the
visual specs or google analytics events that would be fired on specific actions.
Figure 1 shows one our mind maps.

This process was working fine, but I realized we had a problem: we were
creating all these mind maps for every user story and modules and they were
very useful while we were testing. But after that, they were stored in a folder
and they were never used again. We understood that this was quite wasteful
because we had so much valuable information being basically thrown away after
the first utilization.

Linking Everything. What I started doing was linking everything. At this
point we had a mind map for each module but they were disconnected. So
we created a “root” mind map that would reference all the different modules
and pages we have in our application. Through this “root” mind map, anyone
could access any mind map of any module in a few clicks. For some modules
there were more levels of maps. In some cases we can have a module that has
different implementations according to the sport we are in (e.g., market header
for football, tennis, volleyball, etc.) and in those cases there will be a mind map

Agile Testing on an Online Betting Application 197

Fig. 1. A simplified version of an actual mind map for the volleyball implementation
of the Sports Header module

for each of those implementations and one “super” mind map that links all of
them together. For more complex modules, we may have the mind map of the
module which has “sub” mind maps for different areas or sections of the module.

This concept of linking mind maps really revolutionized the way we used
this tool. Most importantly it helped us create something that was missing in
our project: a high level vision of our product. Using this powerful tool, we
centralized all the relevant information about our product that would otherwise
be scattered all around our AMT. Mind maps started being used not just by
testers but also by product owners, developers or any other person who wants to
understand the expected behaviour of any module in our application. We would
often see someone asking a question like: “Is this module supposed to appear
in this page?” or “Do you remember the rules for this module we implemented
a few months ago?” being answered two or three clicks after opening the root
mind map. Now we can confidently say that this tool is in fact an Oracle for
the behaviour of our application.

3 Exploratory Testing

Exploratory testing in its essence has been used in Blip for many years, but it
wasn’t always called that. Two and a half years ago, the term we used for the
tests that were performed by the QA’s when a user story was implemented, was
Manual Testing. Only later, around the same time we started using mind maps,
we started using more consistently the term Exploratory testing, which is now
completely rooted in our testing vocabulary.

Exploratory testing at Blip has evolved a lot over the years. We made many
improvements like introducing new testing techniques we learned or stopping
specifying the test cases (for “manual” testing) beforehand, to allow us to explore
and experiment with more freedom, without a predetermined script. Those were
improvements but the aspect of exploratory testing that I want to talk about is
not so much how we do it, but when we do it.

198 N. Gouveia

3.1 Testing After CI Pipeline

Back in 2013, the “exploratory” testing performed by the QA’s only happened
when the code reached the alpha environment (with production data), which
was the last step of our CI pipeline. From the moment the developer submitted
the code to the pipeline, it would take over one hour to reach this last stage,
assuming everything went well (no errors on deployment or broken tests). This
wouldn’t be a problem... except if the QA found one or more bugs! In those cases
the cycle would go back to the beginning, and in the best scenario the QA would
be able to test again, more than one hour later (assuming the developer would
fix the bug immediately once it was communicated). This was an extremely large
feedback cycle and had a huge impact in the amount of time it took to get a
user story in front of the Product Owner, and so we decided to change that.

3.2 Setting the Local Environment

Our strategy was to make sure that we as QA’s would have the same local
environment that developers use to test their code. This way, when development
is ready, we simply have to checkout the code from the remote repository and
run it on our machines. We always have to make sure that this code is also
updated with the latest version of the master branch, so that we don’t test the
new user story on an outdated version of the site.

This process allows us to have the user story in our hands faster as we don’t
have to wait that it reaches the alpha environment. It also allows us to reduce
drastically the time for the feedback cycle of any bug that is found - once we
find it we can communicate it to developer and after he/she fixes it, we have it
again in our hands seconds later.

After the exploratory testing is finished, the code is then submitted to our
CI pipeline and once it reaches the alpha environment, we perform some sanity
tests on the feature just to make sure everything is ok, and then we send it to
our PO.

This change we implemented may seem small, but it had a huge impact on
the lead time of our user stories and allowed us to have them much earlier in
front of our PO for approval. Feedback is an essential part of agile development,
especially from the “client” (our PO in this case). The sooner it happens, the
better.

4 Continuous Integration Pipeline

Continuous Integration has been present at Blip for a long time now.
Our CI pipelines are a central piece of our quality process because they are

the ones that allow us to continuously integrate our code while making sure that
no regression has happened in our applications.

Each project at Blip has its own CI pipeline and as in other components of
the quality process, it is normal that each project adopts its own strategy for
that too.

Agile Testing on an Online Betting Application 199

For the Exchange desktop product we have two ongoing projects, and there-
fore two pipelines, one for the SSW project and other for the EDS project. In
the SSW project we are currently only doing maintenance work, so the pipeline
structure hasn’t changed in a long time, as well as the test suites that run in
it. On the contrary, the EDS project is our currently most active project, which
means that has a continuously improving pipeline, both from the regression test-
ing suites and from the pipeline structure itself. For those reasons I will focus
on describing the EDS pipeline.

4.1 EDS Pipeline Structure

Figure 2 shows an example of a build in our pipeline.

Fig. 2. Example of a build in our EDS pipeline. It shows all the steps: commit, deploy,
smoke test, mock test and end2end test which were all successful

When a commit is made to the master branch, a new build is generated,
triggering the first step of the pipeline.

1. The first step of our pipeline basically generates an RPM for that version
of the code and runs our unit test suite against it. The unit tests suite is our
largest test suite (over 2000 tests) for obvious reasons: it allows us to evaluate
the correctness of each function in the code and with a very low execution
time (under 16 s). Coverage can be a misleading metric, but we try to use it
as a rule to have at least 80 % branch coverage in our unit test suite. After
this step the build is ready to be installed in any environment;

2. The second step is to deploy our build to our alpha test environment.
This environment uses production data and can be used both for exploratory
testing and automated regression testing. Once this step is completed, the
following three steps start simultaneously. They are our UI test automation
suites and run against the alpha test environment. They used to run sequen-
tially, but now they run in parallel saving a lot of time, specially when all the
tests pass.

3. The third step, executes our Smoke test suite. It runs tests with barely
any interaction with the page aside from the assertions themselves (or expec-
tations as we call it) which makes the tests quite fast. This suite is quite small
representing roughly 10 % of our regression strategy.

4. The fourth step, runs the Mock test suite. These are simulation tests,
where we control all the responses from the services, testing mainly two dif-
ferent situations: the modules in isolation (testing all their components and
their possible states) and more complex situations that generated or could

200 N. Gouveia

generate critical defects. These are the most stable tests once they are not
subject to possible service failures and we have total control over the data
that is shown on the page. This suite represents around 60 % of our regression
strategy.

5. The fifth step executes the End2End test suite. These tests represent
more “real” scenarios that usually interact with several different modules of
the application, not making use of any mocked data. These tests are great to
test the integration between modules but are always held hostages of the data
that is available in production. This suite represents the remaining 20 % of
our regression strategy.

4.2 Current Challenges

Our current pipeline is far from perfect, and we continuously work to try to
improve it. Some of our biggest challenges are:

– Stability - This is our number one priority. Our tests aren’t as stable as
we wished they were, and we have some flakiness at times. Our approach to
improve this issue has been to tackle the most unstable tests first, disabling
and fixing them. We are making some progress but we still have some tests
(the ones in worst shape) that show a failure rate of around 13 % which is not
that good.

– Speed - The entire pipeline, from the first to the last step takes about 19 min.
We are always concerned about this, because we don’t want our pipeline to
become a delivery bottleneck for our User stories, and as we grow our codebase,
the number of regression tests keeps increasing. Our latest improvements were
to use as much parallelization as possible: our functional test suites (steps 3
to 5) run simultaneously as well as the suites themselves also parallelize their
tests, using a selenium grid.

Acknowledgements. First and foremost I would like to thank Blip for being an
amazing company that provides a fail-safe environment and for always encouraging us
to find better ways to do things. I’d also like to thank my colleagues in my project in
particular to the Avengers team for always welcoming change and personally to Pedro
Tavares who mentored me in my early days at Blip and introduced me to the mind
maps concept. Finally I would like to thank my shepherd Rebecca Wirfs-Brock for her
thoughtful guidance that made this report possible.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Pause, Reflect and Act, the Pursuit
of Continuous Transformation

Sandeep Hublikar(&) and Shrikanth Hampiholi(&)

CISCO Video Technologies India Pvt. Ltd., Bangalore, India
{sahublik,shampiho}@cisco.com

Abstract. Organizations take up agile transformation as silver bullet for all
their business problems, but the fact is transformation journey is an eye opener
to discover the real problems which were previously unnoticed. The authors
were part of such a journey. It’s easy to reap the obvious benefits of agile, but
difficult to sustain and solve systemic obstacles like long build time, complex
code base and legacy architecture that become a way of life over a long period of
time. Here we describe the challenges we faced in sustaining our transformation
beyond early victories and our efforts towards identifying and solving systemic
obstacles across the organization by setting up an effective CI environment and
addressing top people issues.

Keywords: Transformation � Agile � Sustenance � Scaling

1 Introduction

Video Business Unit (BU) in Cisco is a leader in Pay TV technology provider pow-
ering over 50+ Pay TV Service Providers and close to 80 million subscribers world-
wide (and growing). It operates in cable, IP, mobile, terrestrial and satellite TV space.
The BU has about 700 Engineers organized into more than 100 teams working on more
than 40 projects based on a single code base. The authors of this paper are part of one
project performing the role of Scrum master and Architect, additionally they are also
part AGILE champions team responsible for deployment for AGILE practices across
organization.

2 Background

CISCO Video Business unit, in order to position itself as the leading next generation
broadcast platform, had to solve business challenges such as:

1. Disruptive technologies evolving in the Pay TV business
2. The need of employees to focus and have fun at work.
3. Improve predictability to launch a complex feature to our customers.

We had to change and change quickly to maintain and extend our competitive
advantage.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 201–208, 2016.
DOI: 10.1007/978-3-319-33515-5_17

Our legacy organization structure reflected our system architecture, where Teams
were structured by components and subsystems, there were teams responsible for
integration of these components and testing and validation responsibility was owned by
a specialized team.

Analysis had repeatedly shown that multiple mutual dependencies and hand-offs
between different teams slowed down deliveries, developers didn’t feel responsibility
for integration and testing which lead to late identification of defects and developers
worked in silos which lead to local optimization instead of global optimization in terms
of number of defects and performance.

After careful consideration and planning the agile transformation initiative was
launched in year 2013. Once the decision was made the organization structure was
changed to one suitable for Scrum [1]. Component teams were replaced by
self-contained cross-functional feature development teams working from the common
project code base (Grandmaster trunk). Developers, Testers, Integrators roles were all
renamed to single role of developers. Similarly project leadership structure of Team
Managers, Component Managers, Software Project Managers and Line Managers were
replaced by Project Leadership Team (PLT) comprising of Product Owner (PO), Scrum
Master (SM), Engineering Manager (EM) (Developers reported to EM) and Architect.
Each of the 40+ projects was assigned their own Leadership team.

The first wave of agile transformation started to address problems of long
requirement cycle and slow time to market. We focused on challenges of learning
scrum practices, building CI machinery and cultivating a culture of delivering ship-
pable code every sprint. In practice the customer deployed the software in field every
quarter, the focus was to demonstrate and allow the customer to test and give early
feedback on a sprint by sprint basis.

It was very challenging yet very interesting journey with a lot of opportunities on
the way, a lot of learning and successful results. Slowly customers were acknowledging
their happiness courtesy of the improved quality and on-time deliverables.

3 Ground Reality

Any transformational journey is a work in progress; either we keep improving or we
start declining. Two years into the journey around middle of 2015 our transformation
had hit a plateau and inefficiencies were creeping back in the organization.

Motivation levels were somewhat low thanks to some unresolved systemic
obstacles like

• Long build times.
• Attrition of Subject Matter Experts with knowledge of Stack.
• Long learning curves for new comers due to complex codebase.
• Dependencies between different parties like driver providers, box manufacturers

and chipsets vendors.
• Strict Definition of Done (DOD) without adequate supporting infrastructure.
• No safety net in terms automated test suite to avoid regression.
• Scalability and flexibility challenges in legacy architecture..

202 S. Hublikar and S. Hampiholi

There were strong indications that at this rate, the transformation would fizzle out
within a few quarters.

During a brain storming session involving the project leadership teams along with
coaches and directors, metaphors were used to obtain a “pulse” or sentiment of the
developers. One of the activities was to portray the biggest challenge being faced in our
journey. Participants created an animal named ELIGA with small body and big/sharp
teeth. (ELIGA is nothing but AGILE reversed). If not tamed at the earliest, this monster
had the potential to eat and destroy whatever we had achieved so far (Fig. 1).

Since the start of journey we had learnt that multiyear timeframe is required for
consistent sustainable agile transformation [2]. As transformation evolves business
dynamics might change but organization would have embraced business agility.

Over a period, on time delivery of projects with agreed scope became priority over
agile transformation. Secondly teams that were used to work in their own component
specialization felt taxed in the new organization structure of self-sufficient cross
functional teams.

Overall there was overwhelming consensus that over time the visible benefits of
agile reaped by organization were going down.

4 Moving Forward

Multiple retrospections in the project leadership teams and feedback received from
customers as well as developer community made it amply clear that periodic rein-
forcement of agile way of working for all stakeholders and executive commitment was
a must for sustained transformation.

As a result we established an action team of about 10 people comprising Directors,
Scrum Masters and coaches and put together a plan to re-energize and reestablish the
organizational commitment to continuous transformation, thus BU wide transformation
2.0 program was started. The authors of this report were part of the leadership team and
active agile evangelists in the organization.

Fig. 1. ELIGA, an AGILE eating Monster

Pause, Reflect and Act, the Pursuit of Continuous Transformation 203

We evaluated Scaled Agile Framework (SAFe®) as most of projects were inter-
linked and stacked on top of legacy projects. While SAFe® had its own merits we
decided not pursue it as it didn’t suit our context of running multiple independent
projects on a common code base nor we were willing to invest in such large scale
adoption again. We were practicing traditional scrum [1] in pockets and were quite
happy with it.

We learnt that one of the better ways to solve the problems of the large program
was by getting better at solving smaller, more focused problems. Interactions with
industry practitioners and coaches had indicated that typically many large
companies/accounts rush into trying to find big solutions to big problems, because they
were not comfortable with improving the day-to-day activities, operational choices and
obstacles which impact developers who are really doing the work. Becoming skillful at
identifying small but obvious obstacles and resolving them had higher chance of
resulting in the larger obstacles eventually fading away.

We wanted to find answers to the question: “What does a happy organization look
like and how do we get there?”

In pursuit of finding answers to the above question a Vision Statement of the BU
emerged which read as “Happy People, Engineering Better Solutions, Everyday”

We believed that a happy organization is the one where teams would deliver
releases on time without stretching over weekends by:

(a) Ensuring that an employee is motivated in their day to day work.
(b) Manager is actively interested in employee’s development.
(c) Project Leadership team actively participates in Sprint Ceremonies.
(d) Building skills for technical excellence (Engineering Excellence).
(e) Directors actively attending sprint demos and appreciating team’s Contribution.
(f) Creating atmosphere of fun by celebrating small success

5 Action Plan

We had a series of workshops with the directors and leadership teams of all 40
+ projects to identify the areas to focus in the near future and prioritize the epics to
work on. The broad themes picked were “Code Quality” and “Employee Engagement”.
These two epics were picked as priorities because these were major pain points and
fixing them as fundamental for achieving further progress in transformation 2.0 (Fig. 2)

Some of the pain points with “Code Quality” were

• Frequently failing builds.
• Long cycle time to identify and fix regressions.
• Staying on Code repository branches for longer time due to release pressures.
• Long build time.

204 S. Hublikar and S. Hampiholi

Some of the pain points with “Employee Engagement” were

• High attrition rate.
• Low scores and comments in engagement surveys.
• Lack of career path and role clarity.
• Lack of management involvement in project life cycle.

From these broad themes ten epics (Table 1) were derived and each epic had a
sponsor who along with her core team ensured, supported and facilitated the imple-
mentation of the epic across organization. Each sponsor put together their own core
teams (members of project leadership teams) who were passionate to work on the
selected epics and to take the execution forward.

In the subsequent workshops, we arrived at plan to implement the epics across all
customer projects, since each of the 40+ projects worked with their own backlog, each
of the user stories from the epic became part of all the individual project backlogs.
Respective product owners prioritized these user stories along with other user stories so
that teams could plan in advance for the upcoming sprints without jeopardizing
deliverables.

Epics ranging from infrastructure improvements like CI/CD to people centric
improvements like Engagement and Leadership accountability were identified.

Fig. 2. Raw feedback as captured from the transformation 2.0 workshop

Pause, Reflect and Act, the Pursuit of Continuous Transformation 205

Ways of working were agreed to drive these EPICs across the projects

1. Epic Sponsors would work with the core team to define and prioritize the user
stories.

2. The sponsor and core team would work with the project leadership teams to drive
the implementation in two week sprints.

3. Deploying the EPICS in projects was an added responsibility of the CORE team in
addition to their regular project leadership work.

4. Release Demo to demonstrate what was the shift brought by these epics to be
conducted at the end of 8 weeks.

6 Results

The Goal was to ensure everybody took steps together so that the positive change was
felt uniformly across the whole system. This was one of core learning’s from earlier
transformation.

The table below summarizes the results we managed to achieve in the EPICs
Chosen (Table 2).

Table 1. Selected Themes split into Epics

Theme Epic Sponsor

Code Quality Stable Code grandmaster main Engineering
Director 1Continuous Integration

Continuous Deployment
Building stack expertise

Employee
Engagement

Frequent interaction of Directors with scrum teams. Engineering
Director 2Participation in sprint ceremonies.

Proactive communication and timely resolution of
obstacles.

Organize various forums to discuss issues common
across organization

Monthly meeting with PO/SM/EM/Architects
Open house meetings in shorter groups

Table 2. Status of epics so far achieved

CODE QUALITY EMPLOYEE ENGAGEMENT

Planned • Reduce Build Time.
• Reduce Mean Time Between

Failures (MTBF).
• Improve success rate of builds.
• Improve code coverage in
sanity testing.

• Informal interactions of Directors with
the team.

• Director’s participation in Sprint demos.
• Timely resolution of obstacles.
• Periodic project retrospective across

organization.

(Continued)

206 S. Hublikar and S. Hampiholi

7 What We Learned

While it was very easy and straight forward to realize initial benefits of AGILE, beyond
a point complacency sets in and its difficult to identify and improve unless there is a
drive from top management. We also observed that the business continuity takes a front
seat compared the commitment towards transformation which requires extreme courage
and ability to take hard decisions that might be easy to take but are hard to live with.
During the transformation journey it was very evident that it is far easier to implement
and solve systemic obstacles than changing people mindset. Eg. It was easy to improve
the CI/CD system as compared developing expertise or making people take ownership
and being accountable.

Participation of people across the organization itself is a challenge when people are
not clear of what the benefit to them is, even after lot of planning and persuasion,
significant number of people in leadership team felt that there was no need for trans-
formation 2.0 as we had improved on quality and timeliness of deliverables, also
among the people who actively participated1 there was a skew towards Scrum Masters
and Engineering managers (Fig. 3).

Table 2. (Continued)

CODE QUALITY EMPLOYEE ENGAGEMENT

Achieved • Build time reduced from 48
Min to 23 Min.

• MTBF reduced from many
days to 24 h.

• Build Success Rate increased
to 80 %.

• Sanity test Coverage increased
to 96 %.

• Regular formal one to one discussions
between Directors and engineers.

• Obstacle boards in Directors office.
Directors pro-actively seeking
acknowledgement of resolutions from
submitters.

• Reduced number of spill over user stories.

Challenges
faced

• Ownership of build failures
and identification of culprit
check-in

• Team capacity to take up
transformation 2.0 user
stories.

• Project Leadership and accountability.
• Detecting and Measuring RACI matrix

[3].
• Shielding Developers from Customer

escalations.

Future
Goal

• Reducing MTBF to 2 h.
• Developer level Ownership of

build failures and fixing.
• Improve Sanity to cover
100 %.

• Focus on reducing regressions.
• Double the number of builds

per day on CI System.

• Lower attrition rate.
• Better scores and comments in surveys.
• Happier faces around.
• Developers approaching execs more

often.

1 The figures show percentage of leadership team only as developers were not part of the
transformation 2.0 driving committee.

Pause, Reflect and Act, the Pursuit of Continuous Transformation 207

Acknowledgements. We would like to thank CISCO for providing opportunity to contribute to
agile transformation. We would like to thank colleagues for sharing agile learning’s which have
inspired this paper. We would also like to thank Ken Power for helping us to understand and
appreciate rigor involved in submission of experience reports and thus helping us to prioritize.
Last, but certainly not least, we would like to thank our experience report shepherd Maria
Paasivaara for her gentle but firm guidance in shaping this experience report. Thanks Maria for
all the help. It probably couldn’t have come together without you!

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is
provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in the
work’s Creative Commons license and the respective action is not permitted by statutory regulation,
users will need to obtain permission from the license holder to duplicate, adapt or reproduce the
material.

References

1. CISCO Agile Play book
2. Large scale Agile Transformation at Danske bank, Innovate (2013)
3. Effective Project Management: Traditional, Agile, Extreme. Chapter 2, Robert K. Wysocki
4. Agile Product Development at Cisco. http://www.cisco.com/c/dam/en/us/products/collateral/

customer-collaboration/unified-contact-center-enterprise/agile_product_development.pdf

Fig. 3. Transformation Participation profile

208 S. Hublikar and S. Hampiholi

http://creativecommons.org/licenses/by-nc/4.0/
http://www.cisco.com/c/dam/en/us/products/collateral/customer-collaboration/unified-contact-center-enterprise/agile_product_development.pdf
http://www.cisco.com/c/dam/en/us/products/collateral/customer-collaboration/unified-contact-center-enterprise/agile_product_development.pdf

Smoothing the Transition from Agile Software
Development to Agile Software Maintenance

Stephen McCalden1, Mark Tumilty1, and David Bustard2(✉)

1 Kainos, Belfast BT7 1NT, UK
{S.McCalden,M.Tumilty}@kainos.com

2 Ulster University, Coleraine BT52 1SA, UK
dw.bustard@ulster.ac.uk

Abstract. Kainos is a software company based in Belfast, Northern Ireland. As
well as bespoke development, its work includes service contracts for the main‐
tenance of software created elsewhere. This type of work is challenging because
of the knowledge transition involved. The experience reported here is of tackling
such projects in a way that integrates with the agile processes of the client. Back‐
ground on agile practice in Kainos is discussed before focusing on a specific
project for the UK Government Cabinet Office.

Keywords: Agile software development · Development-maintenance
transition · Scrum · Kanban · Case study

1 Introduction

Kainos [1] is a public limited software company, established in 1986 and based in
Belfast, Northern Ireland. It develops information technology solutions for businesses
and organizations, particularly in the public, healthcare and financial services sectors.
The company also provides consulting and support services. Kainos has offices in the
UK, Ireland, Poland and the US, operating across Europe, the Middle East, Africa and
North America. It has grown rapidly in recent years, with employee numbers of 260 in
2010, 350 in 2012, and now over 750 in 2015, of whom approximately 490 are engaged
in development and 95 in service support (maintenance).

Roughly, three-quarters of the work in the Service Support Department is concerned
with software developed by the company. There are several major projects, however,
where development took place elsewhere. In such cases, there is a significant challenge
in taking on the software in a way that is relatively seamless for the client. The central
concern is knowledge acquisition, with the goal being to build an understanding of all
aspects of the software without any adverse effect on the service provided in the tran‐
sition period.

The paper focuses on the situation where a client has had an agile way of working during
development and wishes to work with Kainos using the same process during maintenance.
The experience of a specific project with the UK Government Cabinet Office is described.
This is preceded by background information on agile practices within Kainos.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 209–216, 2016.
DOI: 10.1007/978-3-319-33515-5_18

2 Background

The introduction of agile techniques at Kainos started with development. This began in
the late 1990s with the introduction of DSDM, but has subsequently been overtaken by
the use of Scrum. As noted in surveys carried out in 2010 and 2012 [2], the use of an
agile approach in the company was mostly dictated by the requirements of each client.
At that time, this did not include the public sector part of the business. Now, however,
following a strong government commitment to agile practice in public projects [3],
roughly 70 % of the work at Kainos is currently agile-based.

The use of agile techniques in the Service Support Department is a relatively recent
innovation, starting in 2013. Like software development, this has largely been client-
led. Because of its significant involvement in the public sector, maintenance practices
in the company are ITIL-based [4], with ISO20000 IT Service Management accredita‐
tion [5] awarded in 2009. As a result, all aspects of the maintenance process are defined
in detail, and audited for conformance annually. The process definition includes the role
and content of Service Level Agreements (SLAs) and the provision of specific services,
such as a Service Desk and the management of incidents and third-party suppliers. The
transition process from development to maintenance is also specified and this will be
considered further in the next section. Overall, the resulting process has proved very
effective, for both Kainos and its clients.

The Service Department at Kainos supports over 80 clients. Each client has an
assigned service manager and an engineering team, the composition of which varies
according to need. There is also a more senior group of service delivery managers who
handle the commercial side of the work, including competition for contracts, contract
agreement, and the pricing of new work as it emerges.

Conceptually, the engineers form a single pool of staff, where often each engineer
will work with several clients simultaneously. Because of this flexible structure, and a
focus on responding quickly to client needs, agile techniques were first introduced
through Kanban, supplemented with selected Scrum practices. The approach was based
on the three key elements of Kanban identified in [6]:

• Visualize the workflow: using a Kanban board (whiteboard/wall), mark out columns
showing the left to right stages in handling a client request/incident; split the work
into pieces, write each item on a card and put it on the board.

• Limit work in progress (WIP): assign explicit limits on how many items may be in
progress in each workflow column.

• Measure the lead/cycle time (average time to complete one item): optimize the
process to make the lead time as small and predictable as possible.

Each Kanban board was set up for the clients associated with a specific client
manager. All boards started with the same base process but the associated engineers
were encouraged to adjust them as they saw fit, in line with Kanban principles. As with
any innovation, this worked best where a ‘champion’ emerged to lead the initiative.
Where possible, daily stand-ups were used to review progress with client work and,
initially, reflect on the effectiveness of the Kanban approach.

210 S. McCalden et al.

As well as refining the structure of each Kanban board there was also a need to align
its content with an existing Kainos Incident Management system (KIM), where clients
report issues or make requests for change. KIM held all of the information associated
with each work item. The Kanban cards simply recorded KIM references and brief
summaries of the tasks involved. Aligning these parallel descriptions required discipline
and, for most engineers, felt unsatisfactory. Another difficulty was that some engineers
occasionally worked offsite, which meant they couldn’t see the board or keep it up-to-
date with their own activity. To help address both problems an electronic Kanban system,
KanbanFlow [7] was introduced in early 2014 and the physical boards replaced by elec‐
tronic screens. To retain most of the benefits of the original boards, each screen was
dedicated to representing the board it replaced. Since then, the only change has been to
switch from KanbanFlow to Trello [8], because of its adoption as the general agile
support platform within Kainos.

3 The Transition Challenge

Kainos has experience of all three types of software transition [9]:

• Self-to-self, where the transition occurs entirely within the developing organization,
continuing with the same process, and largely using the same personnel.

• Intra-organizational, where the system is passed from a development team to a
separate maintenance team within the same organization.

• Inter-organizational, where the system is transferred to an entirely separate organi‐
zation.

One significant example of self-to-self transition is Evolve [10], its electronic
medical records system, which currently has 29 Healthcare Trust clients across 70
hospitals in the UK. As a major product, Evolve has a pool of dedicated staff responsible
for its promotion, deployment and support. This includes: (i) a client-facing analysis
team who work with each new Trust to identify its specific requirements; (ii) a back-
end technical team who handle the implementation and deployment of each instance of
Evolve, together with the ongoing enhancement of the base product; and (iii) a support
team with the maintenance role of responding to client incidents and their requests for
change. All of this work is managed using Scrum.

Roughly 75 % of the projects at Kainos are intra-organizational, involving the
transfer of responsibility for systems developed by a Kainos team to its Service Support
Department. In some cases, client contracts allow for one or more years of maintenance
support on top of initial development. More commonly, however, the company has to
win a competitive tendering process to obtain such work.

The remaining 25 % of projects at Kainos are inter-organizational, either in receiving
systems developed in other organizations or in passing on systems that it has created.
Such arrangements often reflect the preferences of individual clients. For example, some
organizations, such as the UK Government, generally develop in-house and then

Smoothing the Transition from Agile Software Development 211

contract out support responsibility for the resulting systems. Similarly, there are organ‐
izations that commission the initial development of systems with the intention of taking
responsibility for them after deployment.

When competing for projects, Kainos transition arrangements are made explicit, as
part of the contract. These are defined around its ITIL-based support service. In partic‐
ular, this involves the creation of a Support Handover document for each transition. The
document is instantiated from a general template that identifies all of the information
that has to be provided by the client. This ranges from basic contact details, through
descriptions of the software and associated tools, to a summary of known issues. Check‐
lists are used to ensure that no relevant information is overlooked.

The many activities associated with transition in Kainos fall into three areas:

• Software transition, covering the transfer of all software-related artefacts from the
development team to the maintenance team, including documentation, test suites,
and product backlog, in addition to the software itself.

• Process transition, covering the introduction of the way in which the client and
maintenance organization will interact.

• Knowledge transition, covering the acquisition of knowledge by the maintenance
team to the level necessary to take over full responsibility for future changes.
Each of these areas is discussed separately in the sub-sections that follow.

Software Transition. With modern configuration management practices, Kainos find
that software transition can usually be completed without difficulty. As well as gaining
access to software-related assets, there is a need to examine wider environment arrange‐
ments. This involves reviewing:

• Assets and licenses, rationalizing if possible.
• Current infrastructure, to ensure appropriate environments are in place to resolve

software issues and facilitate change; typically, this means ensuring that there are
development, test and training environments in place, and that these are consistent
with the live environment.

• Existing environments, to identify potential security issues, and make recommenda‐
tions for their resolution, as necessary.

• 3rd party agreements, if any.

Software transition is largely independent of agile practice, though with agile
projects less documentation is expected and a more comprehensive test suite is likely to
be in place.

Process Transition. Process transition in Kainos involves the alignment of the working
practices of the client with those of the company. This allows for adjustments on both
sides to achieve a process that is efficient, effective and satisfactory to all, within the
context of the contracted Service Level Agreement. The resulting process covers day-
to-day interaction in managing incidents, and higher-level interaction associated with
the planning, review and release of new content. This is also the time to introduce support
technology, such as the use of an electronic help desk and/or incident management tools.

212 S. McCalden et al.

Process transition is generally straightforward regardless of the practices on either
side of the transition. Generally, the maintenance organization adapts to client require‐
ments, though small adjustments on the client side may be necessary. For example,
clients accustomed to reporting issues at the end of a sprint cycle, will need to report
them immediately in the maintenance phase.

Knowledge Transition. The most difficult aspect of the development-maintenance
transition is the acquisition of knowledge by the maintenance team. Training courses
can help but there is really no substitute for hands-on experience, preferably with suitable
members of the development team available to provide guidance. In Kainos, mainte‐
nance teams have found it useful to document their acquired knowledge in an Operations
Manual, which is essentially a ‘how to’ guide for the system they are acquiring.

It is important for clients to be aware of the difficulty of knowledge transfer and
allow for it in their planning and costing of maintenance support. The options available
are discussed in the next sub-section.

Transition Strategy. The software, process and knowledge transition activities,
discussed in the sub-sections above, identify what needs to be done during transition,
but equally important are the decisions on where, how and by whom these are to be
performed. Although, in principle, transition responsibilities could be shared between a
development and maintenance team, the work is typically led by the maintenance team,
as it is affected most by the success or otherwise of the process.

One major factor influencing the efficiency and effectiveness of transition is the
degree of overlap between development and maintenance. With self-to-self and intra-
organizational transitions, both occurring within Kainos, there is flexibility in when and
how transition is handled. For inter-organizational transitions, however, the process has
to be treated formally. There are three situations to consider. The first is where there is
no significant overlap between development and maintenance, implying an immediate
transfer of system responsibly from one team to another. In such cases, knowledge tran‐
sition is more difficult, because typically there is little to no communication between the
two teams involved, except through documentation. This is more of a problem for agile
development projects where less documentation is produced.

Where there is an overlap in transition between development and maintenance, there
are two options available:

• Maintainer-site transition, where one or more of the development team works on-
site with the maintenance team to facilitate transition activities, mostly in a coaching
role.

• Developer-site transition, where one or more senior members of the maintenance
team work on-site with the development team to complete all necessary transition
activities; in doing so, the maintenance team members would be involved in produc‐
tion tasks, as an aid to knowledge transition.

Maintainer-site transition has the advantage of occurring at a less pressured time,
after deployment, but is typically less satisfactory overall. In particular, development

Smoothing the Transition from Agile Software Development 213

team members have a weaker role, as they are not driving the transition; also, they are
unlikely to be senior members of the team and so may lack a full understanding of all
aspects of the system and its support.

Developer-site transition can be a pressured situation if performed around a ‘go live’
date, which is often the case. A cyclical agile development structure is very helpful here,
however, in that it allows the maintenance staff to join a project at the beginning of a
sprint, and so be directly involved in its planning and subsequent review. Therefore,
while developer-site transition is preferable to having no transition overlap at all,
embedding maintenance staff in the development team appears to be the better option.
This is the approach described in the next section in a project for the UK Government
Cabinet Office.

Transition Example. The UK Government Cabinet Office project is an example of an
agile-oriented inter-organizational transition from development to maintenance. It is
significant for Kainos in being its first and, so far, only example where a client wished
to extend the sprint structure used in development, into maintenance. It is also the first
project where the client facilitated transition by supporting service support staff working
on-site with the development team. From an agile perspective, the system is additionally
significant for the Government Digital Service (GDS) [11] who developed the system,
in being their first example of a “major transactional service delivered all the way to
live as an agile project” [12].

The system, IER (Individual Electoral Registration), provides a single hub through
which those eligible to vote in England, Scotland and Wales can register online. This
covers 46 million people, across 387 local authorities. The service went live on 10 June
2014. The maintenance contract was awarded to Kainos in the same month, with the
transition to maintenance occurring across July and August 2014. Thirty days of Kainos
staff time were agreed to support the transition process. Two senior Kainos support
engineers (normally based in Belfast) travelled separately to the developer site (in
London) for part of each week; one engineer focused on web operations and the other
on the remainder of the application (the first named author of this paper). The transition
occurred after the ‘go live’ date, so developers were less pressured, although it did mean
that fewer of them were available for consultation.

A full schedule of activity was developed and approved ahead of the on-site transi‐
tion, indicating the work to be completed each day by each Kainos engineer. As part of
their transition schedule, the Kainos engineers worked alongside their counterparts in
GDS, assisting with the sprint backlog and working through incidents that occurred.

4 Lessons Learned

The main lessons learned from the Cabinet Office transition project were:

• The timing and general structure of the transition felt close to optimal. Tackling the
transition a month after the system went live meant that the development team were
available to provide initial support in the crucial first few weeks of release, and then

214 S. McCalden et al.

had time to support transition. There were 20 + lower priority items in the backlog
at the go-live point, meaning that there were tasks available to facilitate knowledge
transition and keep developers busy when there were no incidents to handle.

• Using developer-site transition proved very effective. With this approach, Service
Support in Kainos was able to take on a substantial system, cover all incidents
reported (there were very few) and move its development forward — all without any
interruption in service. One significant achievement was taking responsibility for the
system being rolled out to Scotland, which was delayed until after the independence
referendum on 18 September 2014 [13].

• Scheduling transition activities around an agile process is very straightforward. The
cyclical nature of the work, and its detailed breakdown in a backlog, meant that it
was relatively easy to identify tasks that could be shadowed, and others that could
be tackled by the Kainos engineers to build up their experience.

• The GDS development team was very supportive of the transition process, making
it fully effective. Greater efficiency may be possible, however, through a tighter
collaboration. Specifically, this would involve inserting the transition tasks directly
into the sprint backlog of the development team. In that way, transition activities
would be covered in sprint planning meetings, daily standups, sprint reviews and
sprint retrospectives, with a possibility of reducing the elapsed time of the transition
and total effort expended. Further experimentation is needed to evaluate this possi‐
bility.

• The Cabinet Office requirement to run support with the same sprint structure as
development was largely straightforward. The scale of the work involved meant that
a support team could be dedicated to the contract, and work in Scrum cycles. The
only difficulty encountered was a need to obtain approval for an exception to ISO
20000 certification to allow for changes to be specified as user stories rather than the
usual, more detailed definitions.

Acknowledgements. We are very grateful to the Cabinet Office and GDS for their facilitation
of the transition project described in the paper. With their understanding and accommodation, the
transition process proved very successful. Thanks also to Kainos for supporting the creation of
the paper, especially Tom Gray, the CTO, for his interest and enthusiasm throughout. Finally, of
course, we are grateful to our ‘shepherd’, for his guidance on the structure and content of the
paper.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Smoothing the Transition from Agile Software Development 215

http://creativecommons.org/licenses/by-nc/4.0/

References

1. Kainos. www.kainos.com
2. Bustard, D., Wilkie, G., Greer, D.: Towards optimal software engineering: learning from agile

practice. Innovations Syst. Softw. Eng. 9(3), 191–200 (2013)
3. UK Cabinet Office: Government IT Strategy (2011)
4. Cannon, D.: UK Cabinet Office: Key Element Guide ITIL Service Strategy: Aligned to the

2011 Editions. Stationery Office Books (2012)
5. Cots, S., Casadesús, M.: Exploring the service management standard ISO 20000. Total Qual.

Manag. Bus. Excellence 26(5–6), 515–533 (2015)
6. Kniberg, H., Skarin, M.: Kanban and Scrum-making the most of both. Lulu. com (2010)
7. KanbanFlow. https://kanbanflow.com/
8. Trello. https://trello.com/
9. Khan, A. S.: A Framework for Software System Handover, Doctoral Thesis. Software and

Computer Systems, School of Information and Communication Technology (ICT), KTH
Royal Institute of Technology, Sweden (2013)

10. Kainos: Evolve Electronic Medical Records Platform. https://www.kainosevolve.com/
11. Government Digital Service. https://www.gov.uk/government/organisations/government-

digital-service
12. Government Digital Service Blog: Individual Electoral Registration - changing the way we

register to vote (2014). https://gds.blog.gov.uk/2014/06/10/individual-electoral-registration-
changing-the-way-we-register-to-vote-2/

13. Wikipedia: Scottish Independence Referendum (2014). https://en.wikipedia.org/wiki/
Scottish_independence_referendum,_2014

216 S. McCalden et al.

http://www.kainos.com
https://kanbanflow.com/
https://trello.com/
https://www.kainosevolve.com/
https://www.gov.uk/government/organisations/government-digital-service
https://www.gov.uk/government/organisations/government-digital-service
https://gds.blog.gov.uk/2014/06/10/individual-electoral-registration-changing-the-way-we-register-to-vote-2/
https://gds.blog.gov.uk/2014/06/10/individual-electoral-registration-changing-the-way-we-register-to-vote-2/
https://en.wikipedia.org/wiki/Scottish_independence_referendum,_2014
https://en.wikipedia.org/wiki/Scottish_independence_referendum,_2014

University of Vienna’s U:SPACE Turning Around a Failed
Large Project by Becoming Agile

Bernhard Pieber1(✉), Kerstin Ohler2, and Matthias Ehegötz3

1 Agile coach, University of Vienna, Vienna, Austria
bernhard@pieber.com

2 Vienna University Computer Center (Zentraler Informatikdienst - ZID),
University of Vienna, Vienna, Austria
Kerstin.Ohler@univie.ac.at

3 Teaching Affairs and Student Services (Studienservice & Lehrwesen),
University of Vienna, Vienna, Austria

Matthias.Ehegoetz@univie.ac.at

Abstract. In 2012 the University of Vienna started a project, named Student
Service Portal (SSP), to create a new portal for the universtiy´s students, univer‐
sity teachers, and administrative staff. The university signed a fixed price project
with an external main contractor. Although a lot of effort was put into writing
detailed requirements documents, it remained unclear what the exact scope was.
Project management was lacking, technical problems arose, and finally the
university and the supplier got caught up in each other’s blame instead of working
together. After two years without tangible results the rectorship of the university
stopped the project and ordered a restart – this time with an agile approach. The
main contractor was replaced. The IT and the business department took over full
responsibility for the product together.

Keywords: Agile · Agile transformation · Agile organizational development ·
Change project · Scrum · University organization

1 Introduction

In 2012 the University of Vienna started the SSP project, a software development project
to implement a new service portal to be used by the university’s 93.000 students and
9.000 staff members. In 2014 it became apparent that the project was going nowhere.
An important project milestone came nearer. However, the results were practically
unusable. Morale was low, trust between business and IT was low, fighting with the
main contractor started. The rectorship – the university’s board – and the project’s
managers decided they needed nothing short of a complete restart. This time around they
decided to use an agile software development process. It was to be the first large project
within the complex organization of the university to which agile methods would be
applied for real. Could it work this time? To say the sceptics were the majority would
be an understatement. But what else should they do?

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 217–225, 2016.
DOI: 10.1007/978-3-319-33515-5_19

So they started change2agile, an organizational change project to prepare the IT
department and its project partners to switch to an agile development organization. The
business departments they worked together with and other stakeholders were invited to
participate. The organizational change project itself was run as a Scrum project, with
change teams, sprints, reviews, retrospectives etc. After half a year of intense preparation
the IT department started four cross-functional Scrum teams, two of which were
assigned to the restarted SSP project. To bring in real world experience they hired an
external operational project manager and an external agile coach.

More than one year later, the project is on a great track. The relationship between
business and IT has reached new levels of trust. The rectorship and managers are very
pleased with the project turn around. Enthusiasm, optimism, and fun, missing for so
long, are back. Of course, not everything went smoothly. A lot of planned functionality
is still missing. Some things still need to be improved. However, we are convinced that
together we will succeed. In this experience report we would like to share with you what
we learned.

2 Road to Perdition

In this chapter we will describe the different phases of the first attempt at the SSP project
from the beginning until the decision to restart in new a setup in April 2014.

Phase 1 – “Ignorance is bliss”
In 2012 the Federal Ministry of Science and Research approved the project. In 2013 the
project started with an external company as general contractor. They sent a development
team including an operational project manager. The collaboration between business and
IT had been difficult. From IT’s point of view, business had inflated expectations on the
features that were to be delivered while the contractor did not see what they had gotten
into. At the same time, IT and business hoped to solve a lot of put off problems in the
project. The moment the contractor realized that they tried to reduce project scope.

Phase 2 – “Fear is the path to the dark side …”1

Even though the detailed scope was still being negotiated and the contractor’s analysts
were still writing detailed specifications, the developers had to start. As a consequence
the project was off to a very uncoordinated start. The process was like this: the analysts
talked with business about the requirements, then went to the UI designers and devel‐
opers, and after that brought their feedback back to business. The requirement feedback
loops were endless. At the end the contractor set deadlines for the approval of specifi‐
cations by business, even though they were not really finished. Project management tried
to impose an ever more detailed process of deadlines and deliverables. While this was
meant to clarify everyone’s responsibility it had the opposite effect – it lead to each party
blaming the other. Everyone was driven by fear.

1
George Lucas, Star Wars, Episode I: The Phantom Menace, 1999.

218 B. Pieber et al.

Phase 3 – Acceptance Tests or “You shall not pass”2

The team members’ good mood and motivation disappeared over these disputes. 9
months into project this development cumulated when the target date for the first release
was not met because the acceptance test was not successful. It became clear that this
mode of working did not yield any useful results. The release date was postponed twice.
Yet the resulting software still could not be accepted by business.

Phase 4 – “Nobody has any intention of building a wall”3

At this point project goals did not matter anymore. The team members blamed each
other for the failure to meet the release dates. As a consequence project management
imposed more process and rules, documented in multi-page flow diagrams. By now no
one even remotely believed the project could be turned around by a joint effort.

Phase 5 – The War of Roses
At that point in time, the whole project team stopped working on the product. Letters
were sent back and forth between the rectorship and the contractor, trying to find a way
out. There was none. From now on discussions moved to the legal level. 16 months into
the project the partners agreed to cancel the contract. Overall, more than 1500 pages of
specification and thousands of lines of codes were written. We spent hours in emergency
meetings, the contractor changed their project managers 3 times. But none of the
modules passed the acceptance tests. When the contract was terminated, none of our
goals was achieved.

Phase 6 – Returning to meaningful life
Finally the last stage of grief began. Morale hit rock bottom. Both departments involved
in the project met to lick their wounds. Lessons learned were identified and various ways
were discussed how the project could be turned around. Many could not believe this was
even possible. The following things were clear: IT and business had to find a way to
work together more closely and take full responsibility for the project. No one ever
wanted to depend on a single external contractor anymore. And finally: the restart should
be agile.

3 The Restart: change2agile

Two years earlier the IT department had invited some other business units to experiment
with agile methods in a smaller project. The experiences with the SSP project reinforced
those ideas, both in the project departments and the rectorship. So the IT department
decided to switch all software development to Scrum. Before the SSP project could be
restarted, the project team members had to prepare for the new agile process.

2
J.R.R. Tolkien, The Fellowship of the Ring, 1954.

3
GDR head of state Walter Ulbricht in a press conference in East Berlin on June 15, 1961, when
asked whether GDR intended to build a wall separating East and West Germany (which they
actually did).

University of Vienna’s U:SPACE 219

What did we do when?
After two restart workshops, one in the IT department, and another one together with
the business units, an organizational development project was started in June 2014 –
named change2agile (c2a). People of all relevant departments united and set up three
cross-department teams to define the new agile working process. To gain practical
experience in it we decided to run the change project as a Scrum project. As the IT
department is also servicing other business units and they would be affected, we invited
them to join the change process.

What type of change stories did we have?
As c2a was a change project the user stories were a little bit different to a normal user
story. Here are some examples of our change stories:

– How should the teams be constituted, so that everyone is happy?
– How do we organize the release process?
– Define roles and responsibilities.
– What should be in a feature team’s user story?

The change stories had acceptance criteria, e.g. “there exists documentation in the Wiki”,
“all relevant stakeholders have agreed”. In addition to the Wiki documentation a news‐
letter was sent to a wider group of stakeholders after each sprint.

How did we organize?
Each of the three Scrum teams included people from IT (software development,
streaming department, operations and support) and business departments. Some of the
line managers were part of the teams. However, they had no more rights than the other
team members. There were two product owners, one from IT and one from the SSP
business unit. Three members of IT volunteered to be Scrum Masters. Every team
member was allowed to spend 20 % of her/his work time for the change project. The
rest of the time people worked on their normal duties in their departments.

Sprints were two weeks long in the beginning, later extended to three weeks. All the
teams agreed on using JIRA for tracking c2a’s backlog. There was a weekly Scrum of
Scrum. Planning meetings and reviews were held with all three teams together, retro‐
spectives were done in each team separately. The teams organized themselves, some
met twice a week, some less regularly, depending on their change stories. The teams
used planning poker to estimate story points in order to decide what stories could be
done in the upcoming sprint.

What worked well?
The cross-department setup proved to be essential. Communication improved substan‐
tially. The time boxes helped focusing on the tasks to define how the projects should be
run. It was a good vehicle for the IT and business units to get to know each other and to
learn to collaborate. It increased self-confidence in our ability to really execute the switch
to agile. It helped to reduce the fear of such a big organizational change. It allowed team
members to experience the success they had lacked for so long. It helped avoid surprises.
It helped to convince some of the sceptics. We had wanted to take our fate in our own
hands and were finally allowed to do it.

220 B. Pieber et al.

Who/what helped?
Line management helped by not interfering, encouraging self-organization and self-
responsibility. All groups could participate in all decisions, e.g. the business team
members on questions regarding software development. This was unheard of and helped
building trust. It showed that transparency is a good thing.

What did not work so well?
Although all departments were invited some of them did not participate enough in the
change process in hindsight. Some of the decisions stayed only theoretical and were
never put into action, even although some of them would have been useful and were
needed, e.g. the Definition of Done was not often followed. The Definition of Ready is
still not used. Why? It was not possible to take care of every single aspect when the team
started. It turned out to be difficult to put theory into practice immediately. It took some
practice and retrospectives to finally get there.

A small group of team members were fundamentally opposed to the agile process.
They were sure that moving away from detailed analysis would lead to bad quality and
chaos. This resulted in long and exhausting struggles and discussions. Which cost quite
some energy. Two of them eventually decided to leave the university.

What did we achieve?
We successfully developed a clear common picture of how the agile process should be
lived and practiced. This included a set of definitions and rules. Everything was docu‐
mented in a wiki. The change2agile team members spread this know-how in their
respective units. Also, the change2agile team members decided to recruit external help
for the SSP project: an operative project manager and an agile coach. In September 2014
they started working.

On October 27th 2014 four Scrum cross-functional development teams officially
started. They were built from members of the IT department’s groups project manage‐
ment, analysis & test, and software development. As a result every team consists of
software developers, one to two analysts, one tester and one Scrum Master. The team
members still report to their respective line managers. In the first step the group opera‐
tions & support was kept separate. This was a major milestone in the agile transforma‐
tion. From then on the SSP project had become a truly agile project. However, it was
clear that this actually was just the beginning, the first step in a longer journey.

4 U:SPACE – The Agile Way to SSP

With the most important questions on how to restart, we could begin the next step of the
project leading to the release of the new portal, now named U:SPACE.

How are we organized?
Currently the IT department is running five Scrum development teams, two of which
are assigned to the SSP project. In addition there are two external teams, one from a
software development company and one from the Faculty of Computer Science. In total
there are four SSP Scrum Teams. They work in sprints of three weeks starting with
planning on Wednesday. The university uses a university management software package

University of Vienna’s U:SPACE 221

based on standard software with extensive customization. This system is the data
backend for the new portal. Three freelancers, which are specialists for this system, are
part of the IT Scrum teams. They are not based in Vienna but work from Germany. They
fly in every three weeks for the refinement meetings. They participate in the other meet‐
ings using Skype.

What is special?
The SSP business unit decided to have 10+ product owners (PO) for four teams. The
product owners are responsible for different topics and their respective stories. They
meet once a week, in the PO board, and try as good as they can to reach an agreement
about the user story priorities. In case of an unresolvable conflict the SSP business unit
lead decides. This means that a team has more than one PO in a sprint. At the same time,
one PO has stories for more than one team. This allows us to concentrate all teams on
one bigger epic if needed. This means that POs and teams need to coordinate well to
ensure all software parts fit together.

To help coordinate between the POs themselves, the role backlog owner was intro‐
duced. One of the product owners fills this role. He is responsible for the JIRA backlog;
he moderates the PO boards, but does not have more rights in prioritizing than the other
product owners.

How do we report?
To bridge the gap to the non-agile departments a unique reporting process was initiated
iteratively. The rectorship gets one report with the results from all four teams after every
sprint, every three weeks. Project management assisted by the Scrum Masters and
Product Owners writes it. It includes a calculation of the achieved business value.

Feedback is very positive. One vice rector expressed that now for the first time she
has the feeling to really know the status of project, which gives her peace of mind.

What did we deliver?
In 2015 we put the first version of the portal online. A major new module for modelling
the curricula was put into production. New versions of existing applications for students
were introduced into the new portal, such as new records of examinations, study over‐
view, course directory. The process for admission to degree programs is now supported
online the first time. Students have to visit the admission office less often, which was

222 B. Pieber et al.

one major goal of the SSP project. For university teachers a new application for grading
exams was introduced. Feedback from them was generally positive.

In December 2015 the rectorship decided to go with a recent high court ruling
allowing universities to charge fees for entrance exams in the course of registration. The
rector asked the teams if they could create the new function in U:SPACE. It had to be
finished by March 1st, 2016. The teams took the challenge. Although it was hard work
and time was running out in the end, the teams made it. The most critical success factor
was the intense and very good collaboration within and between the teams. All this
cumulated in a perfect review presentation. Agility at its best!

What happened to change2agile?
After the successful start of the Scrum teams many of the responsibilities of change2agile
shifted to Scrum teams. However, the project members decided not to stop the project
in order to address organizational issues concerning all teams. Some of the less important
change stories had also not been finished. To account for the new responsibilities, some
adaptations were made to the project.

As the number of team members was reduced the project now consists of just one
core team. The amount of time reserved for the change project was reduced significantly.
The change2agile team is run as a governance team. The team members meet once a
month. For each change story a volunteer assembles a smaller ad hoc team of experts
to work on the change story. Because the people working on the change stories vary so
much, Scrum turned out not to be ideal. Therefore the team members decided to switch
to Kanban, which allows us to work on stories over a longer duration than a sprint’s
length.

Team Building and Human Factors
As in any collaborative endeavor human factors play a major role. After the restart it
took some time to build up trust again. Conflicts about various topics are unavoidable
and pose valuable challenges for improving team collaboration. The agile coach is there
to help the teams with these and other communication issues, by sharing his observa‐
tions, giving feedback, clarifying dynamics in the teams’ communication, and
suggesting helpful models of communication psychology, such as Friedemann Schulz
von Thun’s4 four-side model of communication, value and development square, or
Kerth’s retrospective prime directives.

All team members and the management agree on the importance of the following
values: open communication, business and IT working together on a daily basis, team
autonomy and self-organization. The culture of retrospectives was established and
improves transparency and honesty on all levels. In June 2015 all project team members
met for a two-day team-building workshop. It was run as an Open Space and moderated
by the external agile coach. It helped the participants to get to know each other better
and discuss topics for which there had not been enough time in the day-to-day project
work. Many of those topics led to change2agile backlog items. As feedback was positive
management approved a repetition in 2016. Other regular team-building measures

4
Friedemann Schulz von Thun, Miteinander reden 1-4, 2010.

University of Vienna’s U:SPACE 223

organized by the Scrum Masters include sprint drinks, team days, release parties, visits
to Vienna’s Christmas fair, and a solemn Christmas party.

A Survey on the Agile Transformation
Between July and October 2014 a survey was conducted among 17 members of four
business units regarding their experience and satisfaction with the agile transformation
on the one hand and the agile process on the other. The results show a median satisfaction
of 7 out of 10 for the agile transformation and a median satisfaction of 8 out of 10 for
the agile process at the time of the survey.

Overall, we consider this a great result, with still some room for improvement. In
one business unit the results were less positive, especially the satisfaction with the agile
transformation. Not surprisingly, this was one of the business units, which did not
participate much in change2agile. An important result of the survey was that some areas
of improvement were identified. In the meantime many of them have already been dealt
with, either by the respective Scrum teams or by the change2agile team. The head of the
IT department together with his management team decided to repeat this type of survey
at least once a year.

Lessons Learned
We learned that working together between departments is the basis for successfully
achieving our goals. This is possible if everyone is respected as an individual with her/
his skills and shortcomings, which we found to be a prerequisite for trusting each other.
Trust is essential within the project teams, and also to departments not fully involved in
the agile process. One key factor is encouraging social contacts beyond the daily busi‐
ness. We learned that for taking on full responsibility for the project instead of solely
relying on our external partner, we also need the management’s confidence. Regular
delivery of software, regular, transparent reporting, and solving problems within the
teams as much as possible are key factors.

In order to achieve our change to agile working it is absolutely essential that our
management is fully behind the agile values. They themselves engage in Management
3.0 theory and practice to better support the teams’ self-organization. We still have some
problems with the fact that in the past there was a strict separation of roles (analysts,
developers, and testers), which makes it difficult to work cross-functionally.

Last but not least, we learned that to successfully introduce agile software develop‐
ment we also needed to develop our organizational structures and process in a funda‐
mental way. Using agile practices for doing that was essential to develop the right mind
set. To everyone’s surprise, working in an agile way proofed to be entirely possible in
such a huge, old, politically overloaded organization as an university.

Acknowledgements. We would like to thank all involved teams for their enthusiasm, trust and
respect. We thank our management Mrs. Oberhuemer, Msc MAS, ADir. Riedel-Taschner, DI
(FH) Busch and Mag. Steinacher, and the vice rectors Univ.-Prof. Dr. Hitzenberger, ao. Univ.-
Prof. Mag. Dr. Schnabl and Mag. Dr. Schwaha for their support and trust. Last, but certainly not
least, we thank our shepherd Johanna Rothman for her feedback on this paper, her optimism and
her kindness.

224 B. Pieber et al.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

University of Vienna’s U:SPACE 225

http://creativecommons.org/licenses/by-nc/4.0/

The Journey Continues: Discovering My Role
as an Architect in an Agile Environment

Avraham Poupko(✉)

Cisco, SPVSS, Shlomo Halevi 5, Jerusalem, Israel
apoupko@cisco.com

Abstract. This paper continues telling the story begun in “It has been a long
journey, and it is not over yet” (published in Agile Process in Software Engi‐
neering and Extreme Programming XP2015, Helsinki – 2015). This experience
report tells the tale of the quest to define the role of the architect and of architecture
in an agile environment. The primary observation here is that people skills are a
key factor in that role.

Keywords: Experience · Journey · Extreme programming · XP · Architecture

1 Introduction

“When you come to a fork in the road…Take it.”
Yogi Berra

In my last experience report I described my long journey along the agile road. I ended
the report saying that the journey is far from over, and that it should be exciting to see
how things evolve. I was right. It is very exciting, with surprises, twists and turns along
the way. This second chapter of the story goes on to tell of an Architect trying to find
his place within the agile environment.

2 Background

Since 1994 I have been working for NDS (acquired in 2012 by Cisco). I write code and
design systems. I take great pride in a job well done. Having fun is a major objective.
My current role is defined as Senior Systems Architect. I am expected to be deeply
familiar with the core products, to understand the customers’ needs, and to lead the task
of building something that meets or exceeds expectations, while remaining in line with
the company’s technical and business objectives.

I work directly with customers, developers and development leads. In addition to
being an architect, I manage a large team of architects, and as such I am expected to
provide them with leadership and technical guidance.

The company I work for (Cisco) is committed to agile, and continues to adopt many of
its practices and values. The Agile Transformation includes a deep look at the current roles
in the organization and an attempt to understand how they will adapt to an agile world.
As one that has been with the organization from early on, I am deeply involved in that

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 226–234, 2016.
DOI: 10.1007/978-3-319-33515-5_20

transformation. So it is natural that people often ask me, “What exactly does an architect
do in an agile environment?” (Often, when asking the question, they will emphasize the
word exactly and accompany that emphasis with tone and gesture that express more skep‐
ticism than genuine curiosity). And the honest answer is that I do not know exactly what
an architect does or should do, but I can tell them what I do, and by way of generalization,
deduce what an architect does.

3 The Scary Problem

Often people in the agile community will say something like, “The architecture is emer‐
gent.” They go on to say that we do not really need architects any more, as agile does
not believe in upfront planning. This really has me quite challenged or even worried.
I am an architect, I do architecture, and as such, I like to feel that I bring real value to
the organization I work for. If the architecture is emergent and we don’t need an architect,
then what does the architect do? How can the role of the architect be justified?

Put a bit more formally the question can be formulated thus: Agile means responding
to change. The Agile Manifesto item that most strongly represents the agile spirit is we
value responding to change over following a plan. Looking up the word “agile” in a
dictionary, I came across the definition, “able to move quickly and easily”. On the other
hand, architecture is about long term planning; the architect has a long term vision of
the domain and of the software system, and engages in technical planning. One of the
definitions of architecture is “a unifying or coherent form or structure”. At first glance,
long term planning and responding to change seem to be at odds with each other. Hence
the question. Why do we need an architect in an agile environment?

Historically, one of the drivers behind the agile movement was frustration with the
architects. Architects design a system based on requirements. Developers implement a
system as described by the specification. However, for many reasons requirements might
not really carry the true intent of what the customer wants. Furthermore, the requirements
even when clear and well understood, are in constant flux, and as a result architects are
often in the business of predicting the future. Not only do we define what requirements
the system needs to fulfill, but we also define what the future requirements are likely to
be. In that environment, an architect makes decisions based on predictions, many of
which are wrong to some extent or another. As Yogi Berra quipped, “It’s tough to make
predictions, especially about the future.” If the predictions are wrong, then an imple‐
mentation based on the design stemming from those inaccurate (or just plain wrong)
predictions will not meet the customer expectations.

Frustrated with these wrong predictions, the agile community adopted the practice
whereby all decision-making is deferred to a time of greater certainty. Now we can
restate the question. If architecture is emergent, and it is difficult to say anything mean‐
ingful about the future, what is the role of the architect? It was this question that forced
me to better define what exactly is architecture, and more importantly, what an architect
does. I raised this question with many of my colleagues. All of them agreed that agile
projects need architecture and architects. They differed on what exactly those architects
and architectures are needed for, and quite a few of them were not able to clearly

The Journey Continues: Discovering My Role as an Architect 227

articulate that need. But through the aggregation of all those answers, I was able to come
up with some meaningful insights.

4 The Weekly Meeting

About two years ago, I started a weekly meeting with other architects and technical
leaders. Since many of us live and work in different countries, these meetings were often
phone calls. We would hang around for an hour or so, and discuss the contributions we
have made as architects, any interesting issues we faced that week, and what about our
implementation of agile needs to be fixed. This turned out to be a great platform for
discussion and idea sharing. I discovered that some architects are often great at retro‐
spection and introspection, and others are quite good at understanding people and how
they interact with each other. Agile is about people more than it is about technology. So
these insights on how people work turned out to be extremely valuable.

One key insight that we kept returning to is that whether or not it is defined in the
role of the architect, the agile architect deals with people, and a large part of the archi‐
tect’s role is a people role. For example, we were discussing the responsibility of the
architect to communicate design decisions. We asked the question, to what extent should
the architect feel obligated to convince the team of the wisdom of his decisions? We all
agreed that not only must the architect explain the rationale behind his technical decision;
he must convince the team of that rationale. Why? Because a team that understands and
agrees with what they are doing, have a better chance of doing the right thing. If they
identify with the work they are doing, they will do high quality work.

5 No Design Phase

I think that part of the question regarding the role of an architect emerges when agile is
compared to waterfall. In a waterfall environment, there is an explicit stage called the
design phase. This phase is led by the architect. He designs and documents the solu‐
tions. The design is prescriptive. The assumption is that if the developers follow the
design, then the software will be OK. This design phase is the most demanding and
solemn of the entire software phase. If you get the design phase wrong, you will end up
paying a high price for years to come.

On the other hand, in an agile environment, there often is no design phase. In conse‐
quence, the reasoning often goes: “If in an agile environment, there is no design phase,
so there is no designer hence no architect.” So we must clarify. No design phase does
not mean “no design”. No design phase means that there is not an explicit phase during
which design happens exclusively. Rather, design happens all the time. Likewise,
when we say that the architecture is emergent, that should not mean that we do not need
architects because architecture just happens. That is not true. It means something much
more subtle. When we say that the architecture is emergent, we are saying that as the
system evolves, a certain structure emerges. Someone needs to keep an eye on that
emerging structure. When it is emerging according to plan, the architect will strengthen
it, and when it is starts diverging, the architect will act accordingly. Maybe adjusting

228 A. Poupko

the plan, or maybe pushing the development in a particular direction – or both. Person‐
ally, this was the most dramatic change for me as an architect when transitioning to an
agile environment. The fact that I am designing all the time, and not just during the
design phase, has a significant impact.

So in my current role, I am always designing. The domain is changing, the require‐
ments are changing, and our understanding of the world is changing. Agile realizes and
accommodates these changes. As a result, I am always designing.

5.1 Reservation

I’ll be honest. Not because I have to, but because I choose to. Making a decision at the
“most responsible moment” is a great slogan. In reality it is somewhere between very
hard and impossible. We often do not know what the most responsible moment is until
that moment is long gone. That has often happened to me. I defer a decision to a later
moment, because I feel that it would be irresponsible to decide now. At that later
moment, I realize that I missed the opportune moment. This happens much more often
than I care for. Every time it happens, I realize (once again) that my responsibility as an
architect is not only to make and communicate technical decisions, but to make them at
the right time.

It is safe to say that as an architect I am always designing. I am always trying to find
the right time to make design decisions, and I am often fixing mistakes when I missed
the right time for a particular decision1.

6 Retrospection

Looking inward, I notice more and more that most of what I do as an architect is to
interact with people. As an architect, even when I write technical documents, I am
dealing with people. When a developer writes code or script his primary audience is the
compiler or interpreter. If he writes something that is clear and unambiguous, but is not
clear to the compiler he has not delivered. His secondary audience are human beings.
The developer writes clear code with useful names for classes and functions, he writes
comments that are concise and do not contain too many lies.

On the other hand, when the architect designs something, or creates an artifact
of any sort (diagram interface and so forth), his primary audience is the human being
reading that artifact. The architect is constantly learning and explaining. On further
inspection, architecture itself is a very human thing. Structure or lack of structure are
how humans perceive the system. This is captured beautifully by Christopher
Alexander in the introduction to The Nature of Order. Order and symmetry are
perceived by humans and used by humans. Even when humans cannot find formal

1
For an insightful discussion of last possible moment as opposed to most possible moment see
http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-
should-be-made-at-the-last-responsible-moment/.

The Journey Continues: Discovering My Role as an Architect 229

http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-the-last-responsible-moment/
http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-the-last-responsible-moment/

words to express what it is they are feeling, they share a sense of orderliness that can
be communicated through aesthetic design.

“The structure I identify as the foundation of all order is also personal. As we learn
to understand it, we shall see that our own feeling, the feeling of what it is to be a person,
rooted, happy, alive in oneself, straightforward and ordinary, is itself inextricably
connected with order. This order is not remote from our humanity. It is the stuff which
goes to the very heart of human experience”.

Wow! Does that mean that when I, as an architect, deal with order, I am dealing with
the stuff that “goes to the very heart of human experience”? That is way more than I
bargained for when taking this job.

7 Domain Knowledge

Even when the architecture is emergent, the domain certainly is not. The domain is the
real world. It is the business need that the software is there to solve. The business needs
and the rates of change of those business needs are not emergent. What might be emer‐
gent is the understanding of the domain, and the software structures that support that
understanding.

Domain understanding is critical for the success of the software. Good architecture
will not emerge from software being developed, unless the developer of the software
has a good understanding of the problem she is solving.

Someone needs to understand the domain, and be capable of organizing that under‐
standing and explaining it, and then, by observing how that understanding is reflected
in software, confirm that indeed the understanding was correct. And in cases where the
understanding was not correct, that someone needs to fix things.

That someone is the architect.

8 Dependencies

One of the most complicated things that the architect deals with is dependencies. It is
easy to state, “A is dependent on B”, as though dependency was a binary value that either
exists or does not exist. In reality, it is the nature of the dependency that matters. The
architect understands the dependencies between the domain elements (human and other‐
wise) as well as the dependency between the solution elements (human and otherwise).
She is able to offer guidance based on her understanding of those dependencies.

An example can illustrate this point. In one particular project, we recorded depend‐
encies in Rally. Each user story had a list of other user stories it was dependent on. Those
user stories had to be implemented first before the current user story could be imple‐
mented. One time, after we put all the dependencies in place, we realized that we have
a cycle or gridlock where A (Optimize Bandwidth Usage) was dependent on B
(Configure Channel), and B (Configure Channel) was dependent on A (Optimize Band‐
width Usage). That caused a few moments of panic until I pointed out that the depend‐
encies have different meanings. When A was dependent on B, we meant to say that we
cannot implement A until we have a proper understanding of B, because B is the primary

230 A. Poupko

client of A, and thus if we do not understand B we cannot implement A. On the other
hand, when B was dependent on A, we did not mean to say that B is of zero value without
A, all we meant to say was that B cannot provide its full business value without A.

The nature of these dependencies were clear to me as an architect, and were quite
clear to many on the team that understood the domain and the project. However, the
graph of the features in Rally seemed to indicate a circular dependency. Once I pointed
out the nature of the dependencies, the way forward was obvious, and we decoupled A’s
implementation from A’s interface in a way that allowed development of B to progress.

9 Metaphors

Rebecca Wirfs-Brock elaborates on the various types of architects (“Why we Need
Architects and Architecture on Agile Projects” – Most recently presented at ILTam
Conference 2015). I would like to propose some additional metaphors that describe the
architect. These are not distinct. Rather in an agile world each architect has all of them.
Personally, I have acted in all these roles, often in many of them simultaneously.

9.1 The Tribal Elder

In this role, the architect acts as the guardian of the collective memory. He has seen the
domain evolve and the architecture evolve. He understands why decisions were made.
He understands the deeper meaning of the various dependencies. He is also very expe‐
rienced beyond the scope of the particular problem. He remembers mistakes that were
made, and how they can be avoided. He remembers useful lessons. He has seen how
many predictions that were made with certainty do not materialize, and he has seen many
surprises. He has a wealth of stories that he is happy to share to make his point. He might
not be as “hands on” or as quick on his feet as some of the younger ones, but he more
than compensates for that with maturity, understanding of human nature and experience.

One of the challenges with retrospectives and with lessons learned, is how do we
preserve these insights over time? How do we maintain a record of these lessons? In a
lean or agile environment, this tribal elder is constantly making sure that lessons that
were painfully learned are not forgotten.

The challenges for a tribal elder are many. Too often he expects that people will
accept his word on authority alone, rather than on the merit of his idea. On occasion we
might find that the tribal elder has lost touch with the times, as lessons learned a long
time ago might not be relevant any more, and the tribe elder will try to keep us in line
with dogmas that are no longer relevant. So this architect needs to be humble and to
have a very good sense as to when his experience is of value, and when it is outdated.

In my group, we are constantly caught up in the tension between a generic product
and a customized product tailored to meet the customer. This tension has existed for
over twenty years, and we periodically cycle from one extreme to another. Now, when
someone suggests a shift from a generic product to a customized product or vice versa,
the tribal elder (me) will tell stories of what worked and what failed in the past. The tribe
elder will warn of pitfalls, while taking care not to dampen any enthusiasm.

The Journey Continues: Discovering My Role as an Architect 231

9.2 The Architect as the Human Document

A document is a source of information and of agreement. If you need information consult
the document. If you are in an argument, the document might be able to arbitrate. The
architect can fulfil some of that need but even better.

Sometimes code is referred to as the “Living Document” – meaning that the code is
always up-to-date in communicating what the system does. (This is as opposed to a
“dead document” that at best was correct at some point in the past.) However, code will
only tell you what the system does and how it does it. It will never tell you why the
system does what it does, or what the system should be doing.

The architect is able to actually explain all the relevant knowledge that is not captured
in code. Relevance is a matter of context. Because the architect is contextually aware,
he can give the information that is relevant in a particular context.

There are several dangers that the architect as a human document must be aware of.
First and foremost, the architect must not think that he can forgo clear, concise and

accurate documents, just because he is smart and articulate. Good documents have the
advantage of being unambiguous, context free, and they never change their minds.
Interfaces must be documented. This is especially true for teams that work over long
periods of time or across great geographical distances.

In the role of the human document, the architect must take care not to become a
bottleneck. If everyone is waiting in line to get the time and attention of the architect,
then the work gets held up. It is the responsibility of the architect to ensure that does not
happen.

9.3 The Architect as the Potter

Looking at a potter working, you will notice that the interaction between the potter and
the clay is very light and very accurate. The illusion is so strong that the clay might
actually think that it is molding itself into a vase or bowl. The clay does not fully under‐
stand the role of the potter, and might see him as redundant. But that is not true. Without
the potter’s continued presence and intervention, the clay will find itself all over the
walls of the workshop. On the other hand, the potter needs to be gentle. If the potter is
too aggressive, the clay will resist, and the result will be a shapeless mass. The “potter
architect” does the same. He allows the architecture to emerge on its own, and only
makes featherlight touches here and there when he sees that things need a little fixing.
If he is really good, the people will say that the architecture is emergent. He might be
so effective the team will start asking what they need him for.

10 Qualities

As I mentioned in the opening of this paper, it is becoming apparent to me that the role
of the architect in an agile environment has a great deal to do with people skills. In my
own personal journey I am discovering that quite often I need to call on those skills in
order to be an effective architect.

232 A. Poupko

I would like to outline some traits that I find particularly useful. While these are good
qualities in any person, they are critical for the architect. I am not including the standard
qualities such as a quick understanding and good memory. I am focusing on social skills.

Teacher at Heart – The architect must be able to explain complex material at the depth
that is appropriate to the audience. He must be able to tell if the audience understands
what he is saying, and if not, he must explain it again. He will use all tools that a teacher
uses. Metaphor, drama, humor, multisensory, example, tonality and so forth.

Empathy – The architect must be able to see things from someone else’s perspective.
That will allow the architect to understand the domain and to be able to explain the
domain as well as the solution to people that have experiences other than his own. The
empathetic architect understands that his perspective is not the only perspective, and
that the underlying assumptions of the audience, are very different from his own.

Sense of Humor – The architect must take himself seriously, but not too seriously.
A sense of humor will allow the architect to see new and surprising angles on things.
A sense of humor will allow the architect to break patterns in interesting ways and find
a solution to an elusive problem.

Humility – The architect holds power, authority, and a great deal of respect. His word
is often the final word on technical matters. He often gets to set the technical direction
of a product or a project. However he is not immune to mistakes, and his mistakes can
often have far reaching consequences. Agile is about recognizing and admitting
mistakes. An architect that sticks to a decision just because it was his decision will fail.
The architect must be prepared to admit that he made an error in judgment, or was not
diligent enough in his research.

11 Summary

Agile is about responding to change. Architecture is about structure, uniformity and
stability. The architect has a high awareness of how to balance the two. As the system
undergoes change, the architect will understand and communicate what parts of the
system need to stay the same and what parts should change.

The architect is the bridge between the people and the technology. He not only
understands what the software does and knows how to get there. He is deeply aware of
the human aspect, and uses his human understanding to lead the project forward.

Acknowledgements. The ideas in this article have been evolving over a long time. I thank all
my friends and colleagues that patiently listened to my musings and provided feedback and
adjustment. Thanks to my colleagues from Cisco, David Russ and Warren Pratten for many hours
of fruitful discussion. I look forward to more such discussions in the future.

Special thanks to Rebecca Wirfs-Brock who encouraged me to write this paper and who
provided a great deal of valuable insight and feedback.

The Journey Continues: Discovering My Role as an Architect 233

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

234 A. Poupko

http://creativecommons.org/licenses/by-nc/4.0/

Lessons Learned from a Failed Attempt
at Distributed Agile

Mark Rajpal(✉)

ARC Business Solutions, Calgary, AB, Canada
mrajpal@arcbus.com

Abstract. What do you do when you have endured an Agile experience where
things didn’t go so well? You can abandon Agile altogether or you can take those
lessons learned and apply them to future Agile projects. This paper discusses the
journey travelled from that painful experience to becoming a more confident and
experienced Agile practitioner. We will also look at some of the challenges that
I still encounter today.

Keywords: Organization · Project · Team · Agile · Scrum · Extreme
programming

1 Introduction

The 12 principles of Agile [1] indicate what is needed to make Agile effective. However,
it does not specify what elements can render Agile ineffective. Agile (like anything) can
only be successful in the right situation. There are components that pair well with Agile,
but there are also factors that may not be well suited for Agile.

Some organizations have experienced failed attempts at Agile and claim that Agile
does not work. In many cases this is a fallacy. Sometimes Agile uncovers pre-existing
issues that have been around for years that were simply neglected. In other cases, the
organization is structured in such a way that it is not conducive to the Agile mindset.

In this paper, we examine a failed Agile project that uncovered many practices that
were not in fact Agile. These elements range from non-technical to technical. In each
case we discuss the journey from the failed project to today where we apply common
practices as a result of lessons learned.

The rest of the paper is organized in five separate sections. In Sect. 2, the failed
project is explained in detail. Section 3 indicates the lessons learned that were applied.
Section 4 discusses the remaining challenges. Finally, Sect. 5 summarizes the key points
in conclusions.

2 The Failed Project

In 2008, an ambitious initiative was undertaken to implement a scheduling system for
a large organization in the energy sector. The Scrum methodology was selected in an
attempt to deliver high quality software in a short amount of time using month long

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 235–243, 2016.
DOI: 10.1007/978-3-319-33515-5_21

sprints. Consequently, teams were allocated at various locations including Alberta
Canada, North Carolina USA, and various parts of Europe. Matters were complicated
by the multi-vendor approach where one vendor provided the Canadian teams and the
other vendor provided the USA/European teams.

The project was scheduled for just one year. At completion, the project took over 3
years and was over 5 times its initial budget. As a result, the project was considered a
failure and the Agile approach was to blame. I was not convinced of this and I decided
to explore the truth behind what really went wrong.

This paper will focus on some of the challenges and lessons learned from the failed
project. These lessons learned aided me on ensuing projects. That is not to say these
subsequent projects were free from challenges. Instead, the failed project provided a
starting point, and the successive projects provided a means of moving forward while
continually learning and improving.

The lessons learned can be categorized into two main categories– communication
and requirements.

2.1 Team Communication Problems on the Failed Project

2.1.1 Intra-Team
I was part of a Scrum team (1 of 2 Scrum teams for Vendor A) consisting of 5 team
members where everyone (except the ScrumMaster) was collocated. Team members
started their day by updating the time remaining on each of their tasks before the standup
meeting. The standup meeting was usually in excess of the standard 15 min as team
members typically asked questions instead of answering the 3 questions. Sometimes
these meetings went on for over an hour as problem solving was incorporated that
unnecessarily occupied everybody’s time.

At sprint end, a retrospective was held. The team discussed what did not work well.
But the problems continued to exist as no corrective action was taken. Furthermore, the
retrospective was cancelled once the project schedule started to slip.

2.1.2 Inter-Team
In all, there were a total of 4 Scrum teams. Vendor A was responsible for 2 Scrum teams
located in Edmonton and Vendor B was responsible for 1 Scrum Team that was distrib‐
uted across North Carolina and Europe. Additionally, the client provided an operations
team that was also located in Edmonton but not dedicated to the project.

Communication between Vendor A and Vendor B teams was problematic from the
beginning. The teams were uncomfortable talking to one another so they avoided it until
they absolutely had to. Phone calls were rarely used. Instant messaging tools were not
used. Instead, email was overused so there was no sense of any kind of real-time infor‐
mation. The problem was further complicated having the Vendor B resources in
completely different time zones and geographies. It became an “us vs. them” mentality
especially after failed integration attempts at the end of each sprint.

A similar relationship existed between the client operations team and the Vendor A
teams. There was no sense of team unity between these collocated teams. Both sides did

236 M. Rajpal

the bare minimum in terms of supporting one another. Complications arose mostly due
to the fact that the operations team was not dedicated to the project. As a result, they
had various demands that they could accomplish themselves but did not have the time
to do because they were inundated with other tasks and projects.

With so many teams and participants, pressure was introduced to refrain from talking
which led to less effective communication [2].

2.1.3 ScrumMaster
As mentioned, the ScrumMaster for both Vendor A teams was not collocated with the
team and had an additional role of project manager. Even though the ScrumMaster
attended the standup via conference call, it was evident that he was not an active part of
the process. The ScrumMaster would often ask for the progress of certain tasks that had
already been completed or in some cases ignore tasks that were incomplete. Although
the ScrumMaster visited the team approximately once a month, during this time he was
immersed with meetings amongst senior management.

2.1.4 Product Owner
The Product Owner was only collocated (in Calgary) alongside a single team member
from Vendor A. This allowed that team to gain an edge in terms of face time but the
team also suffered in terms of effective communication with a distributed team member.
The Product Owner had a difficult job mostly because each team competed for her time.
As a result, much time was wasted as teams waited for their turn.

In the early stages, the Product Owner travelled to the various teams. While on-site,
the particular team she was visiting was productive. Unfortunately, the other teams were
at a standstill. As the project schedule slipped and the overall budget escalated, travel
was limited.

In one sprint, each team travelled to Calgary for sprint planning. Even though
everyone had face time with the Product Owner, the same problem persisted in that the
Product Owner was constantly bombarded.

2.1.5 Executives
The relationship between the client and Vendor A’s management was turbulent from
the beginning. Their interpretation of Agile seemed to be the core of the problem. The
relationship declined even further when milestones were not achieved.

Sprint reviews were held with the client’s senior management asking questions about
why things were done in a certain way. Then in one review, the application crashed. The
management team was convinced this was a waste of their time, and sprint reviews were
cancelled.

Lessons Learned from a Failed Attempt at Distributed Agile 237

2.2 Requirements Issues on the Failed Project

2.2.1 Confusion
The project was engulfed with many different forms of requirements. This led to much
confusion as to what was acceptable and what was not.

Before the project initiation, the client incurred a sizable cost to conduct require‐
ments gathering that resulted in a vast amount of documentation. Consequently, their
expectation was that no further requirements were necessary. Upon project
commencement, it was obvious that the requirements were outdated and was of no
use. This angered Vendor A’s management because their fixed price bid was based
on the Big Design Up Front (BDUF) requirements and they were concerned about the
impact to their profitability. BDUF is where the architecture phase is accompanied
with a vast amount of documentation [10].

2.2.2 Process
Before developers could begin coding, they were required to write a design specification.
This deliverable was not contractually bound and was only stipulated upon project
commencement and yet all vendors agreed to adhere to this. In some cases, developers
spent an entire sprint writing a specification and delivering nothing. What I found quite
peculiar is that many people agreed that this was a good use of time even though sprint
deliverables were not being met.

2.2.3 Change
Change requests were frowned upon because they implied a change to the requirements.
As mentioned, there was an assumption that the large cost of BDUF negated the need
for any changes. As change requests arose, executives required that the vendors provide
thorough documentation. Consequently, teams stopped working on their sprint goals as
they context switched to accommodate the executives. In most cases, the change request
was rejected and the vendors had to absorb the cost.

3 Lessons Learned Applied

3.1 Good Communication is Important

Be Serious About the Standup: On subsequent projects I experienced many different
interpretations of the daily standup. For some teams, the meeting turned into a 1 h water
cooler discussion that included the weather and the sporting events from the previous
night. Other teams used the time to problem solve. In some cases, my team members
decided that the meeting was optional and decided to attend when it suited them or when
they felt like it. On a more recent project, I stressed the importance of the standup meeting
by explaining “why” it was important. Team members began to realize that it was in
their best interest to understand what other team members were doing. At first, they
struggled with the 15 min rule. However, I received a really good tip at an Agile confer‐
ence. The session speaker suggested that at the start of the meeting, the ScrumMaster

238 M. Rajpal

should set a 15 min timer on their smart phone. When 15 min expires, simply end the
meeting. After 3 or 4 times, teams will get the hint and start adhering to the timebox. In
fact, one of my teams introduced a post standup discussion. Immediately after the
meeting, any team member was allowed to discuss anything they chose as long as it
benefited everyone. This included anything from upcoming vacation schedules to the
progress of testing.

Aim for Totally Integrated: We live in a world were distributed teams are becoming
the norm. According to Sutherland [5], there are three types of Scrum implementations
when teams are distributed. Isolated scrums, where teams work completely independent
of one another and have very little communication. In fact, some teams abandon Scrum
and fall back to waterfall. Distributed scrum of scrums, where teams are mainly isolated
but are integrated by a scrum of scrums that meet regularly. Totally integrated scrums,
where teams are cross-functional [6] and the project is integrated as a whole. Overall, I
would describe the failed project as the isolated scrums model. Not only did the teams
work independently, they had very little knowledge of what the other teams were doing.
Despite my best efforts, the totally integrated model was never reached on any project.
However, having those aspirations allowed for the progression from isolated scrums to
distributed scrums of scrums on more than one occasion.

Collocate the ScrumMaster: On ensuing projects the distributed nature of the Scrum‐
Master greatly affected the team. There was little to no confidence in the ScrumMaster
figurehead who was rarely seen and had very little involvement. Also, it seemed that on
most projects it was assumed that the project manager should take on the role of Scrum‐
Master. Much more success was achieved when one of the team members (that was
collocated) took on the role of ScrumMaster. On one project in particular, we decided
to rotate the role amongst ourselves which made the experience much more enjoyable.
Even though this approach worked much better, I’m not sure this would have been
successful with a non-collocated team member facilitating the role of ScrumMaster.

On another project we split the role of the ScrumMaster. Essentially, we had a team
ScrumMaster who was collocated with the team. Additionally, we had a client facing
ScrumMaster who was mainly tasked with communicating with the Product Owner.
Initially I thought the “co-ScrumMaster” approach would not work because Agile evan‐
gelists do not seem to support it. However, this allowed the junior Agilists to feel more
comfortable taking on the team facing ScrumMaster role.

I am not aware of success stories where the ScrumMaster was distributed from the
team. That does not mean it cannot exist. In fact, it is highly probable that there are such
cases but the lack of supporting information could indicate there are rare cases or that
more research needs to be explored in this area.

Involve the Users Early: After one year from the start of the project, the client brought
in an additional resource that functioned as a subject matter expert. The idea was to
alleviate the barrage of questions on the Product Owner. However, the subject matter
expert was not empowered to make decisions. Often she would have to go back to the
Product Owner for clarification or confirmation. This approach introduced an unneces‐
sary layer of communication. Furthermore, neither the Product Owner nor the subject

Lessons Learned from a Failed Attempt at Distributed Agile 239

matter expert was an active user and Agile projects require active participation from the
users [7]. The users did not have an active role in the project.

On later projects, the end users were more than happy to provide feedback. As we
listened to their concerns, they felt their trepidations were being addressed. Including
users early on in the process tends to give them a finer grain of control over the project [8].

Get Buy-in From the Top: It seemed that the executives (or possibly the organization)
were not quite ready to make the switch the Agile. Or maybe they just assumed it would
be seamless. Agile migrations are not free from issues and there will be obstacles to
overcome. “If you don’t involve your executives in the move to Agile, there is a good
chance that they will stop the move as soon as they learn of any issues with the migra‐
tion.” [9]. Having dismissed the sprint review, the executives were even less engaged
at a time where they needed to be more involved.

On successive projects, we posted displays (aka information radiators) for everybody
(including executives) to see. Posting an impediments list prompted executives to
inquire about the impediment and eventually aid in removing it. For example, one of
my teams listed “Administrator Access” as an impediment. Essentially, the team did not
have the ability to install tools on their development machines without going through a
formal approval process. It turned out that one of the executives heard this from other
people and also experienced this pain point. Consequently, the executive authorized all
team members to have Administrator access. However, this example worked well
because the executive walked past the information radiator many times a day. In many
cases, executives are not located anywhere near Agile teams.

Retrospectives Are Necessary: Even though the retrospectives encouraged good
discussion, they were completely ineffective especially once they were cancelled.
Following the project, I researched various techniques. Almost everyone I reached out
to pointed me to the book, “Agile Retrospectives: Making Good Teams Great”. There
were many helpful suggestions for the novice and also the more experienced. On most
projects I introduce the “Timeline” activity [3] for the Sprint 1 retrospective. It seems
to be a good way to get the team (as well as a rookie facilitator) accustomed to retro‐
spectives. The book provides many other activities for the other retrospectives so the
team is not repeating the same thing again and again.

Incorporate the Necessary Tools: On the failed project there were many areas that
could have been incorporated to bridge the communication gap. For instance, equipping
all computers with webcams would have allowed distributed resources to have a face-
to-face conversation. Also, teams could have adjusted their working hours to have some
overlap with the other teams. Even a one-hour overlap would have made a significant
difference. Furthermore, it seemed that the travel budget was not adequate. When travel
was requested it was quickly denied due to cost. It is difficult to say whether or not these
things would have made a noticeable difference. However, it is likely that these modi‐
fications would have gotten the teams closer to a totally integrated scrums model.

On other projects, I have used add-on tools that facilitated more collaboration. For
example, Jira is a popular issue tracking system I used on some Agile projects. There
are many supporting tools for Jira but one that stands out is Hipchat. Hipchat facilitates
instant messaging, screen sharing, and video. It can also produce notifications once the

240 M. Rajpal

state of a Jira item has been modified. On smaller projects, my teams benefited from
Kanban boards by using tools like Trello and AgileZen. While these tools can make our
lives easier it should be noted, “technology can maintain relationships but it won’t build
them” [4].

3.2 Managing Requirements is a Necessity

Time and Materials (T&M) Over Fixed Price: Fixed price can lead to false expect‐
ations and mistrust [8]. On this fixed price project, the client felt they could change the
requirements whenever they wanted, and the end product would be delivered as
expected, at the same cost, and on time. Ensuing projects that were T&M based allowed
the client to make modifications but it also allowed the teams to incorporate quality,
present alternatives, and build trust by delivering often. In fact, it was noted that while
extreme programming (XP) practices are possible for fixed price, it is not proven because
accurate estimates of scope are necessary [6].

Change is Inevitable: Requirements will change regardless of how much analysis is
spent before the development work commences, so change requests are inevitable.
However, many large organizations cause change requests to be as tedious as possible.
In this case it simply detracts from getting the work done. Later projects involving
smaller organizations viewed change requests as a waste of time. Other projects
addressed changed requests by accepting the fact that change will happen. Sometimes
that meant the user stories were pushed to another sprint. In other cases, the team put in
extra time to accommodate the change to meet their sprint goals.

Requirements Must Be Understandable and Decomposed: For the most part, the new
requirements were very complex and the teams were pressured to complete them in a
single sprint, which rarely happened. Since the team did not have the necessary availa‐
bility of the Product Owner, there were many times where they had to guess which
seldom ended well. Subsequent projects incorporated user stories as their primary means
of acquiring requirements. This worked much better for everyone. The requirements
became much clearer when the business analysts were able to write user stories as
crosscutting layers. For example, instead of taking on a pure database user story, we
developed a screen (will some functionality) that crossed the user interface, business
logic, and database layers. Developers favored this approach because it allowed them
to complete the user stories within the sprint.

4 Remaining Challenges

This report has explored the challenges associated with communication and require‐
ments using Agile approaches. The results provide information that can be useful in
overcoming these challenges. However, there are some challenges that require further
investigation.

Lessons Learned from a Failed Attempt at Distributed Agile 241

Lack of Support: Many Agile implementations (especially from a grassroots movement)
struggle to gain support from the organization. In fact, there are those that are never
going to accept Agile and they may even demean you for trying to promote it.

Empowerment: It is often the case that people are given a title of empowerment without
the power to go with it. In Agile, there are cases where ScrumMasters are not empowered
to remove roadblocks or Product Owners are not empowered to make decisions without
the approval of their superior.

User Involvement: Sometimes users do not want to take part in the Agile process as they
feel it adds to their workload. As a result, the task of writing user stories may fall upon
the requirements engineer. In other instances, management may decide that the end users
do not need to be involved until the modifications are deployed to production.

Scrum Ceremonies: Some (if not all) of the ceremonies can become redundant. Teams
often get bored of repeating the ceremonies in the same manner. This may cause the
effectiveness to come into question.

5 Conclusion

The paper presents challenges that prevent Agile teams from performing at a high level.
Ultimately, organizations need to decide whether or not Agile is a good fit. If it is a good
fit then they need to be prepared to make changes (in management style, working envi‐
ronment, team’s skills, and close relationships with users [8]) and support it across all
relevant levels. When individuals or teams are placed in a situation to fail, they often do
just that. Agile is no different.

Of the 12 principles, the one that most resonates with me is “working software is the
principal measure of progress” [1]. There have been many times when people have
denounced my Agile efforts. What they cannot argue with, is success.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Beck, K., et al.: Twelve Principles of Agile Software (2001). http://agilemanifesto.org/
2. Hogan, B.: Lessons learned from an extremely distributed project. In: Proceedings of AGILE

2006, pp. 321–326. doi:10.1109/AGILE.2006.37

242 M. Rajpal

http://creativecommons.org/licenses/by-nc/4.0/
http://agilemanifesto.org/
http://dx.doi.org/10.1109/AGILE.2006.37

3. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. The Pragmatic
Programmers. LLC, USA (2006)

4. Heffernan, M.: Willful Blindness. Anchor Canada, USA (2012)
5. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed scrum: Agile project

management with outsourced development teams. In: Proceedings of the 40th Annual Hawaii
International Conference on System Sciences, HICSS 2007, p. 274a. doi:10.1109/HICSS.
2007.180

6. Hossain, E.: Coordinating mechanisms for Agile global software development. In: IEEE
International Conference on Global Software Engineering, 2008, ICGSE 2008, pp. 257–263,
17–20 August 2008. doi:10.1109/ICGSE.2008.24

7. Wells, D.: Extreme programming: a gentle introduction (2009). http://www.extremeprogramming.org/
8. Chen, J.Q., Dien P., Wang B., Vogel, D.R.: Light-weight development method: a case study.

In: ICSSSM 2007 International Conference on Service Systems and Service Management,
9–11 June 2007, pp. 1–6. doi:10.1109/ICSSSM.2007.4280199

9. Smith, G., Sidky, A.: Becoming Agile in an Imperfect World. Manning Publications Co.,
Greenwich (2009)

10. Hadar, I., Sherman, S.: Agile vs. plan-driven perceptions of software architecture. In: 2012
5th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), 2 June 2012, pp. 50–55. doi:10.1109/CHASE.2012.6223022

Lessons Learned from a Failed Attempt at Distributed Agile 243

http://dx.doi.org/10.1109/HICSS.2007.180
http://dx.doi.org/10.1109/HICSS.2007.180
http://dx.doi.org/10.1109/ICGSE.2008.24
http://www.extremeprogramming.org/
http://dx.doi.org/10.1109/ICSSSM.2007.4280199
http://dx.doi.org/10.1109/CHASE.2012.6223022

Tailoring Agile in the Large: Experience and Reflections
from a Large-Scale Agile Software Development Project

Knut H. Rolland1,3(✉), Vidar Mikkelsen2, and Alexander Næss1

1 Westerdals Oslo School of Arts, Communication and Technology, Oslo, Norway
rolknu@westerdals.no, nesale14@student.westerdals.no

2 Sopra Steria, Oslo, Norway
vim@soprasteria.com

3 SINTEF, Trondheim, Norway

Abstract. It is not surprising that agile methods are tailored or customized in
various contexts and projects. However, there is little advice for practitioners for
how to go about tailoring agile methods in large-scale projects. Henceforth, the
aim of this experience report is to highlight some of the challenges with large-
scale agile software development and especially how to deal with these challenges
involves continuous tailoring of the agile method in use. In so doing, we report
from a large-scale agile software development effort involving more than 120
participants in a Governmental organization and running for 3,5 years. The project
consisted of three deliverables, partly developed in parallel after a delivery model
based on Scrum. After a much troubled start related to scaling challenges and
architecture complexity during the first deliverable, the project was turnaround
and the second and third deliverables were portrayed fairly successful by both
supplier and customer. From a practitioner’s perspective, we found that novel
practices emerged through out the project that improved the way of working –
especially across teams and stakeholders. Based on this, we describe some guide‐
lines for tailoring agile in the large.

Keywords: Large-scale agile software development · Method tailoring ·
Software development practices

1 Introduction

In this experience report we draw from a recent large-scale agile software develop‐
ment project in a Norwegian Governmental organization. The project involved over
120 participants and was delivered through three distinct deliverables over 3,5 years.
The project was highly prestigious and critical, as the Governmental organization had
failed in two previous projects in replacing their core IT-systems. The specific
context and complexity of the project with numerous external stakeholders, integra‐
tion with existing portfolio of IT-systems, public contracting legislation, and replacing
core legacy IT-systems made tailoring of a Scrum-based delivery model necessary.
Existing literature on agile methods has for long underscored the need for tailoring
to fit specific contexts and different types of projects [1–3]. However, the empirical
literature on tailoring is not substantial, and there is little concrete advice for

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 244–251, 2016.
DOI: 10.1007/978-3-319-33515-5_22

practitioners for how to go about doing tailoring and what to tailor in practice. Argu‐
ably, especially when agile methods and practices are scaled to larger projects in terms
of involving multiple teams, heterogeneous users needs, complex software architec‐
tures, and numerous integration efforts with existing IT-systems, there is a pressing
need to tailor and blend different agile methods [4]. Henceforth, the aim of this report
is to contribute to a richer understanding of tailoring agile methods in the context of
large-scale projects – and based on this, to carve out some guidelines that would be
useful for others. We believe our experience and reflections from this project would
be of interests to both project managers and developers as experience and guidelines
for tailoring agile methods are hard to come by.

The remainder of this experience report is structured in the following way. The next
section explains the case context. Then, we describe and analyse some of the experiences
through out the project. Next, based on our experiences and some literature we try to
give advice for tailoring agile in the large.

2 The Case: The Brownfield Project

Context. A case study of a major software development project was conducted from
September 2014 to December 2015. The project, referred to as the Brownfield project,
was a large-scale agile development effort involving over 120 participants over 3 years
from 2011 to late 2014. The project was organized as four development – or ‘Scrum’
teams and one team loosely related to the project developing a business intelligence
solution. Experience from this project is especially interesting in many respects. Firstly,
the supplier, the Consulting company had just recently before starting on the Brownfield
project been part of a prestigious large-scale agile software development project that
was especially known nationally for being a success – and often used as a template for
other large-scale agile projects in Norway. Secondly, the customer had tried two times
before earlier in the 2000s to implement the Brownfield project and failed considerably
in both cases.

This report is written based on 20 in depth-interviews of project participants, 2
workshops, project documents as well as numerous meetings with different participants.
Additionally, one of the authors was the project manager for the Consulting company
on the project during the third deliverable.

Three authors have written this report: one practitioner, one student, and one
academic. One of us was the project manager for the project during the last of three
deliverables. He has more than 10 years of experience as a project manager on large
software development projects and agile projects in particular. The other author is
currently a researcher working on a scientific case study of the project. Previously, he
has also been a practitioner for many years participating in large-scale agile software
development projects. The third author is a student of information systems management
and innovation, who also has a background in industry. Obviously, our differences in
experiences and background made the writing process especially interesting, as we were
able to challenge each other’s biases.

Tailoring Agile in the Large: Experience and Reflections 245

The scrum-based delivery model. The project followed a Scrum-based model that
interestingly had been used by a recent large-scale project where the Consulting
company was involved. This previous project was perceived as highly successful, and
is generally regarded as ‘best practice’ for doing large scale agile in the Norwegian IT
industry.

The Scrum-based delivery model is characterized by splitting up a large project in
different deliverables as shown in Fig. 1 below. For each deliverable then, a semi-agile
process is followed by first defining user stories, then architectural design, overall UX
design, and refinement of user stories – but with a minimum of effort not to plan things
in too much detail.

Fig. 1. Scrum-based delivery model of the project.

Project description and goals. The Brownfield project was established in order to
replace The Client’s outdated legacy IT systems with a new integrated system for case
management. The new system was to be based on a Service Oriented Architecture, with
support for integration with a large number of external and internal systems. In addition,
the new system would include a web-based self-service solution aimed at the general
public, as well as a rule-based application processing engine reducing the need for
manual processing.

The project thus set out with four main goals:

• To replace fragmented case management systems with one integrated system.
• To replace manual processing with automated, rule-based processing.
• To establish a self-service web interface for the general public.
• To decommission legacy systems.

These goals were further elaborated in the form of a “dual goal matrix”, specifying main
business goals and main IT goals for each deliverable. The business goals were divided
by functional areas, reflecting the existing organizational and system structure. The IT
goals were more focused on architectural requirements, cutting across the functional
areas in order to establish what was seen as a desirable “future state” of architecture in

246 K.H. Rolland et al.

the organization. The background for the two subsets of goals was somewhat divided:
The business requirements were related to limitations of the existing system portfolio
in supporting new government regulations, interfacing with external parties, and effi‐
ciency in case management and processing. The technical requirements were driven by
the strong internal technical organization’s vision of a future-proof, platform inde‐
pendent architecture which would allow the organization to “pick and choose” technical
components in a vendor independent manner. These technical requirements were
communicated in the form of architectural standards and policies. In addition, the
Customer had already purchased a number of technical components as part of existing
vendor purchasing agreements for related database systems. The Consulting company
was asked to consider the use of these components in developing the new architectural
platform. At the outset of the project, it quickly became clear that the Customer was
overwhelmed by the amount of work required in order to determine and specify require‐
ments. The technical and architectural requirements seemed especially unclear, and
resulted in a lot of time being spent by both parties in order to better understand what
was actually required to be developed by the Consulting company. As a result, the first
deliverable was delayed, and ultimately merged with the second planned deliverable in
an effort to save time by skipping one of the planned production migrations.

3 Agile Method Tailoring in the Project

After a much troubled start related to scaling challenges and architecture complexity
during the first deliverable, the project was turnaround and the second and third deliv‐
erables were portrayed fairly successful by both supplier and customer – including their
end users. Noteworthy, we came across the following new practices as the project had
been ‘turned around’:

(1) ‘Task forces’ were established across teams to deal with common challenges such
as performance issues;

(2) ‘Champion roles’ were implemented working across teams on specific technology
issues for example databases or java scripting;

(3) ‘Specifying up front’ in terms of close collaboration between customer and supplier
in preparing user stories, uncovering dependencies and prototyping prior to sprints;

(4) ‘Re-distributing development tasks’ within the current sprint in order to utilize
competence across teams and scale the project.

(5) ‘Mini demos’ were improvised in the middle of sprints to get users’ feedback as
soon as possible, and to do smaller adjustments to features and/or interaction design;

We will briefly describe these practices in more detail in the following sub-sections
below.

Task forces. In traditional agile development, participants in projects are supposed
to work within teams. In this project, however, an informal role of temporarily ‘task
forces’ was formed. Task forces were formed on developers’ own initiative for tack‐
ling specific pressing problems relevant across the four development teams. These
were typically problems related to non-functional requirements. For example,

Tailoring Agile in the Large: Experience and Reflections 247

security issues, performance problems and ways of integrating with external systems
and standardized components.

Task forces were initially not initiated by management, but grew out of a need
recognized by some developers at one of the development teams. The developers recog‐
nized that they had common problems across teams and started informally to sit together
with fellow developers belonging to a different team. This practice was later sanctioned
and even facilitated by team leaders and project management for better solving problems
across teams.

Our analysis is that task forces not only solved common problems, but also greatly
helped coordinating work across teams and helped building a more common under‐
standing across teams both regarding software architecture and business domain. In this
respect, task forces became a necessary addition to scrum-of-scrums in that they had a
much more detailed focus on solving specific problems.

Champion roles. While the task forces explained above were of a more temporary
nature, the champion roles were more permanent. Champion roles also started bottom-
up from a perceived need in the teams to coordinate and standardize certain ways of
doing things in the project. For example, it was established champion roles for java
scripting and databases ensuring a common way of working with and implementing
these technologies across teams.

Champion roles rotated among competent individuals, and over time this also
became more sanctioned and facilitated by management.

Similar to task forces, but more stable – champion roles implied better inter-team
coordination and standardization of working. Additionally, it also increased learning
among teams and members from different teams.

Specifying up front. In collaboration with the customer, the project started to have a
more formal process before a new sprint was initiated and sprint planning started. This
process where referred to as the ‘ready-to-sprint’ processes, and engaged all the relevant
actors for coordinating and planning of the work to be conducted in the upcoming sprint
in more detail. Depending on the specific challenges and type of work to be conducted
the process ensured that all involved actors had contributed and were coordinated. This
process could include further specification of user stores, flow diagrams, description of
technical as well as functional dependencies, and more overall architectural issues.

A crucial skill in agile development is to conduct the Product owner role and the
ability to create Epics and user stories upfront the sprints. The project organization
addressed these issues by including two persons from the customer in each scrum team
with the role “functional responsible”. The role was part of the customers Product owner
team, and participated both in specification work and to cope with functional clarifica‐
tions throughout the sprints.

Already from the first sprints conducted, it proved major challenges to establish
effective ways of handling the product backlog, agile collaboration that supported both
common understanding of specifications, ensure consistent architecture implementation

248 K.H. Rolland et al.

across teams and handling clarifications of upcoming issues. Corrective actions were
issued by training the Product owner in necessary skills and adding trained functional
architects to the scrum teams. The actions, which were taken, did help to some extent,
but it was necessary to make some fundamental adaptations to ensure a more robust
process.

Our analysis is that this made the initiation of the sprints more effective and ensured
that key participants were coordinated irrespective of team and role in the project.
Although this practice inevitably implies more planning up-front seemingly in conflict
with the agile principles and practices, we will argue that this practice is more aligned
to the characteristics of large-scale agile where there is an increased need for more
standardization and coordination across teams and roles.

Re-distribution of work tasks. Partly as a consequence of the previous practice, the
project got increased flexibility to re-distribute work tasks across teams within a sprint.
This practice was a part of striking a balance between the need for competence and
efficiency at the one hand, and the evenly distribution of work among teams on the other.
The practice was especially useful in the last sprints of a deliverable when user stories
belonging to different domains did not imply equal distribution of work effort between
teams.

Again, this practice may seem odd, and even unproductive, from the perspective of
‘textbook agile’. However, this gave the project as a whole better utilization of the teams
and also helped spread competence across teams. On the other hand, we also see that
this practice should be used with care and only for smaller tasks when necessary typically
late in the project.

Mini demos. The project had some especially competent project members who had
long experience from other large-scale agile projects. Some of the practices they adopted
from a previous project were the practice of ‘mini demos’. The crucial point in doing
mini demos in the middle of sprints was to demo features as soon as they were developed
irrespective of when. Typically, this was practiced as a way of negotiating and getting
feedback on details regarding functionality and interaction design. In that way, devel‐
opers and designers could easily do the last finishing touches right away, without going
through a more formal demo and going back to those details in the following sprint.

Thus, these mini demos both made the ongoing communication and collaboration
with the customer smooth and at the same time reduced the administrative cost for both
parties.

4 Implications for Tailoring Agile in the Large

In this section we propose some practical guidelines for tailoring agile in the large. We
do not want to be too bold and generalize too much, as guidelines as these could easily
be misinterpreted and used in contexts that are not comparable to our project. However,

Tailoring Agile in the Large: Experience and Reflections 249

we argue that there is something more general worth mentioning based on our
experience. The suggested guidelines are:

(1) Experiment with new practices. For tailoring agile in the large, projects should
experiment with practices that highlight functional and technical interdependencies
in the software being developed. This would help improve coordinating and
communicating across teams and roles.

(2) Facilitate novel practices to emerge. It should be underscored that project
managers should be wary of trying to enforce predefined tailored practices.
However, although agile methods and principles tend to emphasize bottom-up
initiatives, successful tailoring can be both bottom-up or top-down initiated.

(3) “Record, and move on”. Do not wait for sorting out contractual details. Try to
establish trust to that pragmatic decisions can be made and temporary solutions can
be sought.

(4) Improve inter-team coordination. Establish both long term ‘communities of
practice’ and short term ‘task forces’ across teams.

(5) Scale the project in an evolutionary manner. Plan for a ramp-up phase allowing
customers to get accustomed to the working process. Conduct training activities to
ensure customers are aware of what is required of them.

(6) Adjust content in sprints. Allow time for customers to absorb and process new
information, and coordinate requirement elicitation with stakeholders in their
organization. This can be done by inserting technical sprints where programmers
focus on technical tasks, in order to allow customers a “programmer’s holiday” [5].

5 Concluding Remarks

In this experience report we have emphasized the ways in which a large-scale agile
software development effort has been tailored during the process. Here, tailoring was
not done up-front, but rather emergent during the development over 3,5 years. Especially
in this report we have highlighted and described five different practices and roles: (1)
‘Task forces’, (2) ‘Champion roles’, (3) ‘Specifying up front’, (4) ‘Re-distributing
development tasks’, and (5) ‘Mini demos’.

We argue that these novel practices are good examples of agile method tailoring
reflecting the complexity and large-scale characteristics of the project. We do not argue
that these actual practices denote any ‘ultimate way’ of tailoring agile projects, but more
on an analytic level – that in succeeding with large-scale projects continuous tailoring
throughout the process is necessary.

In reflecting upon the establishment of these practices we discuss how some are
bottom-up initiatives (1, 2 & 4) largely initiated, planned and coordinated among team
members themselves with no or little management involvement. Whereas some practices
can be described as a blend of bottom-up and top-down (3 & 5) where management are
much more involved.

Furthermore, we recognize that all of the practices turn out more emergent. They
were not deliberately planned and adjusted ahead of starting the project – but emerged
over time based on the involved actors’ experiences. Collectively, then, the project

250 K.H. Rolland et al.

seems to preserve a sense of agility in terms of ‘learning from change’. Additionally,
interestingly, some of these practices are seemingly also in conflict with the agile prin‐
ciples – notably (3) focusing on planning.

Acknowledgments. This article was written with support from the project Agile 2.0, which is
supported by the Research council of Norway through grant 236759/O30, and by the companies
Kantega, Kongsberg Defence & Aerospace, Sopra Steria and Sticos.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change.
IEEE Comput. 36, 39–43 (2003)

2. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale Agile development. In: Dingsøyr,
T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP, vol.
199, pp. 1–8. Springer, Heidelberg (2014)

3. Haugset, B., Hanssen, G.K.: Automated acceptance testing: a literature review and an industrial
case study. Presented at the Agile 2008, Proceedings, Toronto (2008)

4. Jones, C.: Software quality in 2012: a survey of state of the art. Presentation by Namcook
Analytics LLC. www.namcook.com

5. Martin, A., Biddle, R., Noble, J.: XP customer practices: a grounded theory. In: Proceedings - 2009
Agile Conference, AGILE 2009, pp. 33–40

Tailoring Agile in the Large: Experience and Reflections 251

http://creativecommons.org/licenses/by-nc/4.0/
http://www.namcook.com

Hire an Apprentice: Evolutionary Learning
at the 7digital Technical Academy

Paul Shannon(✉) and Miles Pool(✉)

7digital, Technology Team, 69 Wilson Street, London, UK
{Paul.shannon,Miles.pool}@7digital.com

Abstract. Hiring senior software engineers with experience in Agile and Lean
has always been difficult. Training university graduates or engineers from other
backgrounds takes time and can cause disruption to software teams. 7digital
addressed both of these problems by starting a Technical Academy; a 6 month
programme of classroom sessions, pairing, deliberate practice, personal project
work and guided learning. Backed by key metrics and qualitative data, the paper
explores the positive impact that the technical academy has had on the technology
team and wider organisation at 7digital. It investigates the changes in technique,
curriculum and structure that the team made over the three iterations of the
academy. It goes on to detail the challenges that the team faced around justifying
the time away from usual activities, measuring the impact, attempting to predict
the long term benefit and make the result of extra diversity in the team more
apparent.

Keywords: Lean · Agile · Diversity · Learning · Coaching · Apprenticeships ·
Mentoring · DevOps · Inspect-adapt · Continuous improvement

1 Introduction

7digital are the power behind innovative music experiences. Their diverse, highly
regarded team of software and systems engineers build the music streaming and down‐
load platform that powers services for global brands. The industry in which they operate
is fast paced and ever-changing, and the team needs to grow to react to those changes.
Growing the team with the right type of people has often proven difficult but was
addressed in 2012 by the inception of the 7digital Technical Academy. The academy
programme has completed its third iteration and has evolved through continuous
improvement with regular inspection and adaption. In the first iteration, a key retro‐
spective resulted in a move to pull based learning; asking apprentices to solve real busi‐
ness problems and request sessions on the skills they needed to accomplish their objec‐
tives. The second iteration saw peer to peer learning and a self organising community
develop amongst apprentices. The third iteration brought a wider set of people to the
academy and was used to expand understanding of Lean and Agile principles across the
organisation.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 252–260, 2016.
DOI: 10.1007/978-3-319-33515-5_23

The authors have been heavily involved in the Technical Academy with Paul
Shannon, now VP Technology, being the founder of the programme, and Miles Pool,
the coordinator of the third iteration and a second iteration graduate.

2 Background

When searching for software development roles on the most popular recruitment
websites the ratio of jobs requiring greater than two years’ experience to those requiring
fewer is eight to one. Additionally, finding senior software developers, with greater than
5 years’ experience is notoriously difficult – so how do we provide the opportunity, to
those with less experience, to work in a welcoming and learning oriented culture so that
they can become senior members of our community?

These problems are not unique to any company working in the tech sector but became
more prevalent at 7digital when they focused on quality driven software development
practices, as the requisite skills made experienced people even harder to find.

7digital was established in 2004 as a small start-up in London’s “Silicon Round‐
about”. After establishing itself in the first 5 years there was a marked switch to quality
driven practices with the appointment of key people experienced in Agile and XP. The
two development teams at the time totalled around twenty people, over half of the total
organisation. As the technology platform expanded, so did the teams and the need to
fulfil roles, and by 2011 the total head count for the Technology Team was forty with
further plans for expansion.

2.1 Apprenticeships in Software Development

In early 2012, senior members of the team looked to solve the common problem of a
lack of experienced hands available to join the team. They researched efforts in the
Software Craftsmanship community to utilise the master/apprenticeship format of more
traditional trades. 8th Light [1] ran a programme that defined levels of craftsmanship in
the team, with newer members joining as apprentices and being mentored by master
craftsmen on a one-to-one basis.

Other efforts of this one-to-one tuition style were attempted by Codemanship, and
an interesting initiative at Accenture assigned groups of people to particular learning
projects as they joined. One of the team leads at 7digital had experience in a classroom
based training scheme during the agile transformation at Codeweavers Ltd [2] involving
short, focussed sessions away from the usual team room for new team members to try
intensive learning on a particular topic.

While many of these schemes had benefits, they didn’t directly fit with the team’s
desire to expand and invest in the future.

“Education is the kindling of a flame, not the filling of a vessel.” – Socrates

Hire an Apprentice: Evolutionary Learning at the 7digital Technical Academy 253

2.2 Diversity

A major opportunity the team saw with expanding through internally trained developers,
was that they could attract a more diverse cohort.

Gender diversity in the tech industry is a perennial yet slowly improving issue. The
7digital team hoped to improve the diversity of their team by offering a lower barrier to
entry than their usual recruitment process. Research suggests [3] that female applicants
are less likely to apply for positions that require assertions about experience or achieve‐
ment - they would only apply if they meet 100 % of requirements whereas men would
apply when meeting only 60 % - so a programme which provided training and which
emphasised a lack of requirement for experience was believed to be beneficial.

Software development candidates are often products of education in a narrow field
of study – Computer Science. The team felt that more diverse backgrounds would
provide a wider selection of opinions, so a scheme that would be attractive to people in
any field was most desirable.

3 Timeline

Before the academy was created, a first attempt at addressing our recruitment needs with
a lower barrier to entry began with an apprenticeship model similar to that at 8th Light.
New team members, with some experience in programming, were assigned a mentor
and were expected to pair and learn from that person during their daily development
tasks. This proved disruptive to teams as they effectively lost a senior developer who
spent most of their time teaching, especially in the initial three months.

The following year, in 2012, we decided that a new approach should be taken and
the Technical Academy was created. Following a gap of two years the second iteration
began and then an opportunity one year later led to the running of the third. The
programme is based in the London headquarters of 7digital with co-located teams.

3.1 The Inception of the Technical Academy

Research into other organisations’ attempts at apprenticeship programmes led us to
believe that we needed some structure, a curriculum and a clearly defined career path
for the Technical Academy. While the efforts at Codeweavers Ltd. proved useful, the
lack of direction meant it was not a key part of the team’s learning there. Efforts else‐
where resembled the initial efforts at 7digital so a committee was formed to discuss and
decide upon how to proceed.

An early agreement was reached that apprentices should be hired as full time devel‐
opers, with a permanent role and that the offer of a position was not dependent on
completion of the academy. This would give the apprentices confidence and security
that they had a job at 7digital and were just at the start of a potentially long and prosperous
career. To ensure a level of protection for both the apprentices and the organisation they
were given an extended six month probation period.

254 P. Shannon and M. Pool

3.2 Hire an Apprentice: The First Iteration

For the initial iteration we hired two new developers by advertising the role and
contacting universities externally, and recruited one internal candidate through transfer
from the operations team. Interviewing candidates with little or no experience in
programming posed a challenge as the usual recruitment process involved working
through a simple code kata. We decided that as the candidate was joining to both learn,
and to write software, that this was still the best form of early assessment. Candidates
paired with a senior developer on a simple test-driven development coding exercise. An
observer would take notes, paying particular attention to how the candidate reacted to
new concepts, such as test automation and refactoring, and how soon they could
contribute to the conversation.

Once apprentices had been selected the committee planned a curriculum. This
included skills related to Agile software development and Lean practices, with sessions
on subjects such as Test Driven Development, Theory of Constraints, Databases,
DevOps, Continuous Delivery and Design Patterns.

To help clarify what the apprenticeship entails, we produced a “path to becoming a
7digital developer” - this was a timeline encompassing an intensive “bootcamp”,
tapering to less frequent sessions on basic techniques before moving into a term of
specialisation and project work; it ended with graduation in week twenty-six. Graduation
was a company-wide event involving presentations, drinks and gifts.

3.2.1 Adoption of Pull Based Learning
It was identified early that apprentices were being asked to pair on tasks involving
concepts they had not yet been taught. A problem here became evident when a team
member was struggling to explain to an apprentice the concept of Dependency Injec‐
tion - a complex but widely used solution to software modularity. This was raised
with the Academy coordinator who organised a dedicated classroom session on the
topic. Following this the apprentice rejoined his previous pair, with an understanding
of the concept and was then able to contribute to the continuing work.

At a similar time we met with Professor Dave West, who had been running a unique
degree programme at New Mexico Highlands University, USA [4]. This course had
students, with no software development skills, working on commercial projects and
requesting the skills they wanted to learn in order to accomplish their task. They used
regular feedback, retrospectives and planning meetings to ensure they were developing
the right skills to develop software.

The success seen on Prof. West’s course, and in conjunction with our example above,
led us to adopt pull-based learning; coordinators would talk to apprentices, tutors and
team leads to organise group sessions on the topics that were currently of most relevance.

3.3 Evolution in the Academy: The Second Iteration

Following a two year hiatus, we decided to reinstate the Technical Academy under a
new coordinator. The driving force behind this decision was from members of the team,
including prospective internal candidates, perceiving the successes of the first iteration.

Hire an Apprentice: Evolutionary Learning at the 7digital Technical Academy 255

Internal apprentices were thus self-selecting - one transfer to the Technology Team, and
for the first time, one apprentice looking to up-skill in their existing, non-development
role. Two external candidates were recruited as we had done in the first iteration.

The broad structure of this iteration was much like the first, however each of the four
apprentices was now assigned a tutor who was on hand to assist with any technical issues.
During the “bootcamp” first term these tutors felt superfluous.

In the weeks before the second iteration, the coordinator collated project ideas from
teams in the wider business.

“The proposal should have clear interest to the business, but its implementation will be a proof
of concept.”

At eight weeks the apprentices chose a project to implement over the following four
months. Each project had a product owner who would help define requirements, and
ensure continuous delivery practices were observed. With projects framed as real busi‐
ness products, apprentices were also encouraged to adopt practices such as test-driven
development and Kanban, with Technical Academy stand-ups attended by stakeholders.
While helping the apprentice, the tutor would check for clean code and good automated
testing.

In the latter terms the pull for technical sessions allowed the structured learning
framework to fall away in favour of “just-in-time” planning. The cohort situated in
disparate development teams, built up a strong community with equally disparate tech‐
nical skills; an environment highly conducive to peer-to-peer learning.

Following a term two retrospective, apprentices took to pairing on their projects; this
was of particular benefit to the apprentice not based in a development team. It also
allowed apprentices to work confidently on a new and unfamiliar codebase.

3.4 Reflective Practice: The Third Iteration

Just six months after the second 7digital Technical Academy the opportunity arose to
take on another two apprentices. The academy was reinstated, this time coordinated by
a Technical Academy alumnus. The academy started up with a total of six apprentices,
after a short recruitment process and a number of existing speculative applications. Two
new hires were made along with one internal transfer, with three apprentices from
Operations and QA Teams looking to up-skill.

Termly retrospectives produced a number of valuable actions. To foster an open
environment for discussion, a weekly reading group was set up in which apprentices
would discuss several, occasionally conflicting articles. Further, it was felt that some
crucial topics were introduced, and swiftly left behind. The solution was to theme the
week’s practical, classroom and reading group sessions, and then to gauge the appren‐
tices confidence level in that week’s topic.

3.4.1 Selecting Tutors
Often the developer working directly with an apprentice is not the most suitable person
to teach a given subject. It is thus more beneficial to select an appropriate tutor from a
wider group, on a subject-by-subject basis.

256 P. Shannon and M. Pool

In the Technical Academy it is important that many and varied members of the
organisation have direct contact with the apprentices. In contrast with the master-
apprentice pattern, being exposed to diverse views within the team aids the apprentices
in drawing their own perspectives on the values the team hopes to instill. It is felt that
this is important in a team with a strong culture of shared responsibility. The academy
is also a learning experience for the tutors themselves, many of whom are previous
apprentices, and the more people involved, the greater this benefit.

4 Discussion

Making the academy visible was a key goal from early on; both in terms of its operation
and its efficacy. We managed the first part by advertising sessions more often and getting
people outside the team involved in project work. The graduation ceremonies and project
demonstrations also increased visibility. Within the teams though we wanted to show
that the academy had a positive effect on throughput and cycle time. This was difficult
as many other factors could influence these measures (continuous improvement,
absence, team changes, changing business needs) but the general trend for teams with
apprentices was that, after week six, apprentices were making a positive contribution.
This was attributed to the additional person available for pairing and - following their
intensive classroom sessions - apprentices were now adding value during these pairing
sessions.

Having someone with a new perspective, focusing on the detail and asking novel
questions was itself advantageous, - one example being a simple observation resulting
in a complete change in operation when an apprentice questioned whether we were
encoding audio files in a mathematically suboptimal way.

Qualitatively, the benefits of placing apprentices into development teams as soon as
they arrived helping the apprentices to feel as though they were already an important
and valued member of the Technology Team - this was crucial in fostering a supportive
community. It also allowed the apprentice to easily join existing pairs and gain exposure
to the team’s domain; something which cannot easily be taught during academy sessions.

The feedback cycle of pairing, and subsequently discovering missing knowledge
helped drive the tuition, through pull based learning. This “just-in-time” planning of
sessions ensured tuition only on subjects that had a direct impact on the daily work of
the apprentices, minimising the gap between learning and practicing those skills.
Apprentices thus honed new skills through use, adding business value quickly. This
resulted in a natural progression from isolated student to fully engaged team-member
over the course of the six months.

Retrospectives in the Technical Academy gradually became more frequent as the
value they delivered to the learning process became apparent, and with regular contin‐
uous improvement these ideas were instilled in the apprentices’ daily practice.

With larger cohorts, the community in the academy was slower to develop; a larger
group meant apprentices would speak less readily in early open-forum sessions. Further‐
more, with a larger cohort less one-to-one tuition was available. While one-to-one tuition
has its advantages, group tuition was more efficient when introducing the fundamentals

Hire an Apprentice: Evolutionary Learning at the 7digital Technical Academy 257

of a new concept. Pull-based group tuition also exposes apprentices to topics they may
not yet have faced. On the whole, a balance of group tuition and pairing with other
developers is more effective than either technique alone. Eventually a larger cohort
became advantageous as the drive for technical sessions rapidly increased as the appren‐
tices made progress with their technically-diverse work. With so many ongoing projects,
the challenge then came in keeping up with the pull for such a diverse set of topics.
Grouping these topics in a loose, longer-term curriculum was a method introduced to
prioritise the sessions.

Tutors and coordinators also benefited from the academy, through areas of personal
development and daily variety in their work. The sense of purpose and achievement
garnered from contributing to the next generation of software developers, and ensuring
they were taught quality driven practices, made it worthwhile for those donating their
time. Tutors and team members that were helping apprentices were also challenged on
their knowledge, as they were suddenly required to teach what they’d previously taken
as rote. When Technical Academy graduate, Sophie, was asked to pair with a new
apprentice she said:

“You have to really think about what you’re doing and it makes you realise how much you do
actually know. I still question myself though, but that helps me to learn too.”

4.1 The Tech Academy in the Wider Organisation

A key change in the third iteration was to have projects backed by the 7digital product
team. This improved alignment with adding business value and the projects gained more
prominence in the wider business.

There were some initial disagreements from other teams about the impact of the
academy as it does require team members to spend time away from their usual daily
work. We investigated ways we could measure and adapt, and elected to look at the
things already measured (throughput and cycle time) while getting regular feedback via
retrospectives, one-to-one meetings and reports to senior team members. One of our
teams that took on an apprentice in the third iteration had a cycle time of around 2 days

Fig. 1. Cycle time for content discovery team during their apprentice’s tenure

258 P. Shannon and M. Pool

before she joined. For the following 6 weeks the cycle time rose to 4.3 days peaking at
5 days before reducing again back to 1.7 days (see Fig. 1).

When Miles joined the Content Development Team he initially had a detrimental
effect on their throughput, reducing it to 1–2 minimum marketable features delivered
per week for about 8 weeks. The middle period of his tenure in that team saw a stable
throughput which then increased towards the end of his apprenticeship. We also added
more people to the team in his sixth month which saw the momentum in the team further
accelerate with a peak of 13 features delivered in one week.

The pattern based on our metrics appears to make a team slow down for the initial
6–8 weeks, then return to the team’s previous pace for the middle part of the appren‐
ticeship. Within the last month or two of an apprentice’s tenure a team sees the
throughput increase and cycle time decrease as the apprentice contributes more. While
other factors could be affecting this, the general feeling of teams is that apprentices add
value early on but notably from 4 months onwards.

4.2 Future Directions

An interesting consideration is the comparison between former Technical Academy
developers and those hired from other companies. Shared team values seem to be more
prominent in the academy graduates as they’ve been trained specifically by the existing
team, and not had to forget the ways of their previous teams. However, this meant that
fewer tried-and-tested ideas come from apprentices versus seasoned developers so the
trade-off meant that a balance between new ideas, team cohesion and well known prac‐
tices exists.

We considered alternative approaches prior to setting up the first Technical Academy
(Sect. 3) but have since adopted new practices that should aid in training inexperienced
developers. Mob programming is a good example of a practice we now use more often
that is well positioned to easily spread knowledge. We’ll investigate its use as a learning
tool in future academy iterations.

With the experience of three successful Technical Academies behind us, and a
Technology Team comprised of nine strong graduates and numerous experienced tutors,
7digital is in a stronger position than ever to run a fourth iteration. One might question
if we should ever stop, or why we would wait between iterations, or why we might limit
the number of apprentices in each cohort, and the answer is quite simple; we do not want
to overload the team with apprentices. Having more apprentices will still require effort
from teams during the time spent pairing, and diluting the number of senior developers
in the team would burden them with additional responsibility. We have discussed the
possibility of sharing sessions with other local organisations though, so that we can get
more value from each session by teaching their apprentices too.

5 Conclusion

There is a strong feeling at 7digital that the Technical Academy programme has been a
success. All of the externally hired apprentices are still with the team, and despite their

Hire an Apprentice: Evolutionary Learning at the 7digital Technical Academy 259

experience being lower than that of their peers, they contribute at an equivalent level.
The team’s gender balance is higher than it was with a notably more relaxed and open
atmosphere that promotes a variety of ideas. The mixture of people’s background also
contributes to this. Engagement in team development throughout the team has improved,
with discussion on career progression, increased knowledge sharing and collaboration
between teams.

As more senior developers have grown in their careers they have appreciated being
given the chance to pass on their knowledge through the academy. This interesting side
effect has increased retention of more experienced team members. Having their knowl‐
edge questioned too has surprisingly resulted in a motivation to ensure we are following
good practices and promoted learning at all experience levels.

Hiring has been easier; the best example with the replacement of a senior developer
with two apprentices in half the time it took to find the previous senior hire. We’ve also
hired more women into a variety of roles than previous years.

The existence of this paper is a key example of the benefit the Technical Academy
has had on the team and organisation. It is motivating for the team to know that they are
well regarded by peers in the community and that they have done something unique to
solve a common industry problem. It gives team members a sense of purpose other than
satisfying the needs of the organisation so 7digital will definitely be running the
programme again in the future.

Acknowledgements. Thanks to Allan Kelly, Neil Kidd, Matt Butt, Rob Bowley and everyone
at 7digital.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. 8th Light Inc., Apprenticeship (2016). https://8thlight.com/apprenticeship
2. Rutherford, K., Shannon, P., Judson, C., Kidd, N.: From Chaos to Kanban, via Scrum. In:

Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 344–352.
Springer, Heidelberg (2010)

3. Lark, N.F.: Act Now To Shrink The Confidence Gap (2014). http://www.forbes.com/sites/
womensmedia/2014/04/28/act-now-to-shrink-the-confidence-gap

4. West, D.: Experience Report: Agile Development Apprenticeship at NMHU (2016). http://
www.infoq.com/articles/NMHU-scrum-university-apprentice

260 P. Shannon and M. Pool

http://creativecommons.org/licenses/by-nc/4.0/
https://8thlight.com/apprenticeship
http://www.forbes.com/sites/womensmedia/2014/04/28/act-now-to-shrink-the-confidence-gap
http://www.forbes.com/sites/womensmedia/2014/04/28/act-now-to-shrink-the-confidence-gap
http://www.infoq.com/articles/NMHU-scrum-university-apprentice
http://www.infoq.com/articles/NMHU-scrum-university-apprentice

How XP Can Improve the Experiences of Female
Software Developers

Clare Sudbery(✉)

IT Department, LateRooms.Com,
The Peninsula, Victoria Place, Manchester M4 4FB, UK

AWomanInTechnology@gmail.com

Abstract. This paper describes my experience as a female software developer
with 17 years’ industry experience. Originally I worked with a more traditional
waterfall approach to software design and development, but in recent years I have
worked with XP. I have experienced many difficulties associated with being in a
minority, but a lot of those problems have been alleviated since I started working
with XP. My belief is that XP creates a more conducive environment for women
and other minorities within the industry. I believe that XP can – and should – pave
the way to making the tech industry a more welcoming and attractive place for
women.

Keywords: Women in technology · Women in tech · Women in XP · Women and
agile · XP · Agile · Women · Gender · Skills shortage · Balance · Feminism ·
Stereotypes · Assumptions · Challenging assumptions · Recruitment · Role models ·
Gender roles · Gender equality

1 Introduction

In every workplace for 17 years, I have found myself in a significant minority as a
woman. This is not unusual. In 2014, the average percentage of women working in 11
of the world’s largest tech companies was around 30 %. But the average percentage of
women occupying tech roles within those companies was around 16 % [1]. According
to the Harvard Business Review in 2008, 41 % of women working in technology ended
up leaving the profession - compared to 17 % of men [2].

The experience of being in a minority1 has caused me various problems throughout
my career. The most obvious one - which is shared by many women in my situation - is a
feeling of insecurity. To put it simply, my chosen profession is one in which it is unusual
for women to persevere or succeed. I have had to work hard to maintain belief in my own
abilities. I have more than once had to resist or reverse attempts to “promote” me into
non-technical roles, which I have found less satisfying and have had less aptitude for.

1
I will use the term “minority” to refer to women throughout this paper. Clearly women are not a
minority within society, but they are within technology.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 261–269, 2016.
DOI: 10.1007/978-3-319-33515-5_24

At one point I left the profession altogether, but luckily I realised my mistake and
returned four years later. It was at this point that I discovered XP, and I believe this
resulted a significant reduction in the difficulties I face as a woman.

XP is a forward-looking movement which emphasises flexibility, change and
progress - so this is the ideal group of people to be addressing the low proportion of
women entering IT. As agilists, we value individuals and interactions over processes
and tools. The diversity of our teams, and specifically the encouragement of the partic‐
ipation of all members of our populations, is a crucial part of this.

The rest of this paper will be split into the following three sections: My Journey as
a Female Software Engineer; Discussing Lessons Learnt: Attracting More Women
Through XP and finally Conclusions.

2 My Journey as a Female Software Engineer

In this section I will describe the experiences I have had within my career, the difficulties
that I have faced as a woman, and how my journey has become easier and more enjoyable
since I started working with XP. I will cover the following topics: Non-XP Workplaces,
Imposter Syndrome and its Effects, and finally The Welcoming Environment of XP.

2.1 Non-XP Workplaces

I have 17 years’ experience in the profession, but due to a four-year career break in the
middle, it is twenty-one years since I started my first software engineering job. At that
point I had just graduated from an MSc in Computation, which was a “conversion”
course - designed to transform people from diverse academic backgrounds into computer
graduates. My previous degree was a BSc in Mathematics and Philosophy. It was 1995,
and Agile and XP were barely heard of.

During the course of the MSc, we were told that the main careers available to us
would fall broadly into two categories: Analysis, and Development. The course was
a popular course, and split quite evenly between men and women. It was noticeable
that the women tended to be drawn towards analysis, with the men being attracted to
coding. But personally I was more excited by code than anything else. The object-
oriented C++ we were taught was very attractive to my logical, analytical, puzzle-
loving brain.

It didn’t surprise me to find that I was the only female developer in my first job.
I was used to being in a minority – as a mathematics undergraduate, myself and my
fellow female students represented approximately 10 % of the total population. I was
also used to an accompanying feeling of inferiority: In this case it seemed to me that my
male colleagues knew everything there was to know about computing, whereas I had
walked straight into the job after a year’s study.

I suppose it was at this point that a thought took root in my brain, which I have never
quite lost: These men know so much more than me. I’m only a girl, I’ll never catch up.
This is a common experience for women in our industry, and in fact for anyone operating
in an environment as a member of a group which suffers from an adverse stereotype.

262 C. Sudbery

That is to say, assumptions are often made about women in technology which suggest
they will not have the skills they need to succeed. The general term for the way people
respond to this is Stereotype Threat, and it is discussed at more length in section three
of this paper.

It’s worth stating at this point that I have never seriously believed that men have a
superior intellect to women. But the inner voice which tells me I’m inferior is one that
sneaks in without my permission. It curls up without me noticing, and can stay there for
quite a while before I spot it and shoo it away (I now know that this voice has a name:
It is called unconscious bias, and I will describe this more in section three).

Between them, my first three jobs in software engineering lasted twelve years (four
years, then one, then seven). There was one feature that all these experiences had in
common: I found it hard to ask questions. When I was struggling with a piece of work,
my approach tended to go like this:

1. Try to work it out on my own. I was proud, and hated the thought that people might
think I was ignorant – particularly if they thought I was ignorant because I was a
woman.

2. Stall. If I was stuck and too proud or scared to ask for help, I would simply cease
work. Daily stand-ups were unheard of, we worked alone, and we were given large
tasks which could last several weeks, so it was possible to do very little work for
some time before anyone noticed.

3. Ask for help. There were three problems with this approach:
a. It meant admitting that I didn’t know what I was doing.
b. It meant interrupting someone. Everyone always seemed to be very busy.
c. When people explained things, this involved me looking over their shoulder

while they whizzed through complex concepts at break-neck pace. I would
sometimes end up none the wiser.

2.2 Imposter Syndrome and its Effects

For those first ten years, I suffered significantly from self-doubt. I rose to the position
of senior developer very quickly, and always got good feedback. I loved writing code
and took it seriously. By all objective standards, I was in fact good at my job. But I still
believed that most of my colleagues knew more than me.

I frequently suffered from imposter syndrome, i.e. the idea that I was not good enough
for the role, and would be “found out”. This is not unique to women – men can suffer
from it too – and not all women have it. But it tends to be common amongst women in
IT, and it’s not difficult to see why: If you’re part of a minority, you feel like you don’t
fit in. Like you’re an imposter.

After those first twelve years as a software engineer, I was made redundant. At that
point I had been with the same company for seven years, but my interest in the job had
waned significantly. There were several factors at play:

1. I had several times asked to work on the more interesting and complex software, but
had repeatedly been denied this opportunity.

How XP Can Improve the Experiences of Female Software Developers 263

2. I had started working a four-day week. My best guess as to why I might have been
denied the opportunity to work on the more interesting software, based on conver‐
sations with other colleagues, was that because I worked reduced hours, I wasn’t
taken seriously. People working on the really exciting stuff were expected to work
evenings and weekends, and of course five days during the week.

3. I wasn’t giving the job my full attention. It was a vicious circle: I wasn’t given
interesting work to do, so I focused more on hobbies and family, which meant that
I was taken less seriously, which resulted in me paying less attention to my job.

So, when I was offered voluntary redundancy, the decision to leave was not hard. In
my exit interview, it was suggested I might try being a social worker! This did not appeal
to me.

2.3 The Welcoming Environment of XP

By the time I was made redundant, I was very bored of my job. My skills had stagnated
so much, that as well as having very little enthusiasm for finding another software role,
I doubted my ability to find anything new. As a result of these factors, I left the career
altogether.

After four years out of the industry, I realised that I was more suited to software
development than anything else. I decided to return. I was honest about my out-of-date
skills, and got myself a job with a company that specialised in taking on graduates and
training them up. It was a revelation. Because of the emphasis on training, employees
were not only encouraged, they were exhorted to ask as many questions as possible.
There was no problem with people being too busy to help. Everyone in the company
was expected to both ask and answer as many questions as possible.

The teams I worked with had daily stand-ups, where each team member would report
on what they were doing and flag up any problems. The company’s design methodology
was largely waterfall, but the cultures of communication and collaboration were filtering
through from XP working practices in other parts of the industry. This included regular
and in-depth code reviews, and an introduction to the concept of clean code.

All of this helped to counter the problems I had experienced before, in the following
ways:

1. If I got stuck, I knew that someone would be eager to help me.
2. Daily stand-ups meant that there was nowhere for me to hide. If I had problems, I

had to admit them. This was liberating.
3. My code was regularly reviewed in depth – so that I was always getting feedback.
4. The emphasis on clean code meant that I and my peers were focused on making our

code accessible to each other.

I was now back in the career and enjoying myself enormously. The idea that it was
OK to ask questions was exhilarating. It also helped that I had those twelve years of
experience behind me, so I no longer felt like everybody else was more experienced
than me.

264 C. Sudbery

I deliberately made coding my hobby, and got involved in events run by organisations
like XP Manchester [3]. This meant that I was learning about such practices as TDD
and pair programming. This excited me, and I was able to move to a more XP-focused
company. My progress at this point accelerated rapidly. It wasn’t long before I gained
the confidence to become a contractor, at which point I moved between several compa‐
nies on various contracts, and experienced several different implementations of XP.

My confidence increased, but when I felt the old insecurities creeping back in,
I decided to approach specific colleagues and ask them to act as sponsors or mentors on
my behalf. I also gained the security to discuss the value of positive feedback with my
line manager. I have learnt over time that, because of the various insecurities I face as
a minority within this profession, I benefit enormously from explicit encouragement.
I believe that there is level of openness and communication implicit within XP that has
given me the strength to ask for this kind of support.

3 Discussing Lessons Learnt: Attracting
More Women Through XP

This section describes the lessons I have learnt as a woman working with XP, and how
they might be used in order to encourage more women into XP teams, and enhance the
experiences of the women already there. This will include the following sub-sections:
The Importance of Diversity Within XP, Stereotype Threat and Unconscious Bias, and
finally The Positive Impact of XP.

3.1 The Importance of Diversity Within XP

It may or may not be true that the number of women in XP is a bit higher than elsewhere
in the industry, but even if it is, they are still in the significant minority. It’s important
that we don’t simply sit back, cross our arms and say “Oh, we use XP. We don’t have
a problem with women in IT. We’ve solved that one already.” There is still room for
improvement, and XP practitioners have an even greater responsibility than elsewhere
in the industry to increase the numbers of women in tech. This is true for several reasons:

XP emphasises the importance of seeing things from the end user’s perspective. This
is helped when we have things in common with our end users. Obviously those end users
are as diverse as our populations are. The more diversity we have within our teams, the
better chance we have of appreciating our end users’ experiences.

Also, XP is a forward-looking movement which emphasises flexibility, change
and progress. As agilists, we value individuals and interactions over processes and
tools, therefore if there is any group of people (for instance, women) whose ability
to contribute towards their teams is compromised in any way, then this should be a
matter of importance within the XP community.

How XP Can Improve the Experiences of Female Software Developers 265

3.2 Stereotype Threat and Unconscious Bias

Stereotype threat describes the experience of any group who suffer from negative ster‐
eotypes. In the case of women in technology (and also men in the caring professions, as
just one other example), these negative stereotypes manifest as a general assumption
that they will not have the skills they need to succeed. Such damaging ideas put people
under threat, because they constantly feel they have to disprove them.

There is a large body of research which supports the statements I will make in this
section. Several examples are referred to in the excellent book Delusions of Gender by
Cordelia Fine [4], and I will quote some of them here. For instance, research shows that
women’s ability to perform is hampered by their anxiety about negative stereotypes.
Instead of being able to concentrate on difficult tasks, a significant proportion of their
mental concentration is taken up by trying to quell their fears about their potential lack
of ability [5].

My own experience bears this out. I have described in this paper how, after a few
years in the profession, I found myself in a job where my requests to do more inter‐
esting work were denied. There was always a part of me which believed I was less
capable than my male peers, and that it was therefore quite reasonable for those
requests to be denied. I decided that I would be better off looking for success in other
areas of my life – my family and my hobbies – and that I would accept that my job
was simply something whose purpose was to pay the bills, rather than something I
could expect to excel at or enjoy.

Another problem is that the more successful a woman becomes in a male-dominated
profession, the more she will be affected by stereotype threat. This is for several reasons:
The more she moves up the ladder, the more of a minority she will find herself in. This
will make her more anxious about other people’s assumptions, but will also encourage
her to believe – by sheer force of statistics – that those assumptions are true. “One study
found that the more men there are taking a mathematics test in the same room as a solo
woman, the lower women’s performance becomes” [6].

The problem is not that girls are inherently less good at technology, or even that
they’re less interested; it is that people expect less of them. For instance, some men and
women were given a difficult mathematics test. Before they started, they were told that
it was designed to better understand what makes some people better at mathematics than
others. A control group were told the same thing, but were also told that thousands of
students had been tested and no gender difference had ever been found. In all groups,
the average score for men was 19 %. In the first group, women also averaged 19 %. But
in the second group, women averaged 30 %. Even though gender was not explicitly
mentioned to the first group, it did not need to be. They could make that connection for
themselves, and their performance was affected. But once that stereotype threat was
removed, the potential of the women appeared to be unlocked [7].

As well as stereotype threat, another important phenomenon is “unconscious bias”.
This is effectively the technical term for what I have referred to in this paper as an “inner
voice”. It refers to the automatic connections that most of us make, for instance between
women and the arts, and between men and technology.

266 C. Sudbery

One effect of unconscious bias can be that even when women are working within
technology, both they and their colleagues do not see them as being in the correct role.
This can be particularly true of women doing purely technical roles, such as software
engineers. During my own career I have twice faced significant pressure to move out of
a software role and into an organisational or management role. Luckily I was quite clear
that I wouldn’t enjoy those roles. In both cases I did temporarily make the change, but
quickly recognised that I was moving in the wrong direction, and fortunately I had the
confidence to move myself quickly back into a technical role.

The good news is that both unconscious bias and stereotype threat can be mitigated
against by education. When people become aware that the problem exists, and how wide-
ranging its effects are, they can start to do something about it. There are various organ‐
isations which offer “unconscious bias” training: this allows people from across a
company to become aware of how unconscious bias and stereotype threat affect both
the recruitment process and the ability of individuals to progress within the workplace.
We are hoping to introduce this at LateRooms later this year.

3.3 The Positive Impact of XP

The inner voice which whispers, “But you’re a girl,” has never entirely gone away. But
the following working practices have allowed me to take positive actions to improve
my own experience and counter all the problems caused by being in a minority:

1. Daily stand-ups: I have frequently flagged up problems, and the resulting help and
reassurance have helped to alleviate any insecurities.

2. Team retrospectives: When my team at LateRooms recently experimented with mob
programming, we found that we were sometimes getting carried away with strong
opinions, which led to some colleagues feeling excessively judged and criticised.
We agreed to be kinder to each other as a result. This highlights how effective the
culture of the retrospective can be in helping team members who might potentially
be discriminated against.

3. Pair programming: My skills have improved more quickly since I have been able to
pair program. I assume I will always have something to learn. I assume the same is
true of my colleagues. Although I may occasionally worry that my male colleagues
are more proficient than I am, this is proved wrong on a daily basis when we sit side
by side and I see that they learn from me as much as I learn from them.

4. Iterative development: The focus on iterative development and a good working rela‐
tionship between developers and stakeholders allows me to contribute towards a
diverse and comprehensive understanding of the context in which my team finds
ourselves.

5. Communication: The general supportive spirit has given me the confidence to
explicitly ask for the support and encouragement I need to overcome any lack of
confidence caused by being in a minority.

All of these practices should already be present in XP teams, but it is worth being
aware what a positive impact they can have on minority groups, and therefore
consciously practising them with that in mind.

How XP Can Improve the Experiences of Female Software Developers 267

4 Conclusions

After many years in the industry, I have encountered several problems to do with being
a woman. The main problems have centred on my own lack of confidence in my ability
to perform effectively in a technical role, and the tendency for colleagues to encourage
me away from technical roles. The available literature - and my discussions with other
women - would suggest that these are common problems for women in this industry.

However, since I have been working with XP, I have experienced several benefits
and improvements. I believe these are due partly to the emphasis on communication and
collaboration, particularly in the form of pair programming, daily stand-ups and retro‐
spectives; and partly to the focus on iterative development and a good working rela‐
tionship between developers and stakeholders. These aspects have given me the oppor‐
tunity to evaluate my own skills more objectively, share knowledge and both give and
receive the support I need. They have also allowed myself and my colleagues to evaluate
and act upon any negative experiences within the team.

Clearly the experience of women is important to all workplaces in our industry,
whether they use XP or not. But because of the emphasis placed by XP on people over
process, and because XP understands the very important relationship between devel‐
opers, business owners and stakeholders, then XP teams should not only care more about
this, but are particularly well-placed to do something about it.

Acknowledgements. This paper was made significantly easier and more pleasant by the
involvement of my shepherd, Jutta Eckstein. Her input has always been supportive, insightful and
constructive. Thank you also to Esther Derby, Wendy Closson, Arlo Belshee, Philip Brock, and
Lisa Crispin for responding to my emails. I would like to thank my employers, LateRooms.com,
for their encouragement - in particular my team leader Arwel Griffith and our Director of Delivery,
Alastair Brown. And finally many thanks to my partner Ally Fogg, for his input and support.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. United States Census (2014). http://www.cnet.com/uk/news/women-in-tech-the-numbers-dont-
add-up/, http://www.census.gov/quickfacts/table/PST045215/00, http://www.census.gov/
quickfacts/table/SEX255213/00 (2015)

268 C. Sudbery

http://creativecommons.org/licenses/by-nc/4.0/
http://www.cnet.com/uk/news/women-in-tech-the-numbers-dont-add-up/
http://www.cnet.com/uk/news/women-in-tech-the-numbers-dont-add-up/
http://www.census.gov/quickfacts/table/PST045215/00
http://www.census.gov/quickfacts/table/SEX255213/00
http://www.census.gov/quickfacts/table/SEX255213/00

2. Hewlett, S.A., Luce, C.B., Servon, L.J., Sherbin, L., Shiller, P., Sosnovich, E., Sumberg, K.:
The Athena Factor: Reversing the Brain Drain in Science, Engineering, and Technology.
Harvard Business Review, Boston (2008)

3. XP Manchester. https://xpmanchester.wordpress.com/
4. Fine, C.: Delusions of Gender. W.W. Norton & Company, Inc., New York (2010). (p. 63)
5. Johns, M., Inzlicht, M., Schmader, T.: Stereotype threat and executive resource depletion:

examining the influence of emotion regulation. J. Exp. Psychol. Gen. 137(4), 691–705 (2008)
6. Inzlicht, M., Ben-Zeev, T.: A threatening intellectual environment: why females are susceptible

to experiencing problem-solving deficits in the presence of males. Psychol. Sci. 11(5), 365–
371 (2000)

7. Good, C., Aronson, J., Harder, J.A.: Problems in the pipeline: stereotype threat and women’s
achievement in high-level math courses. J. Appl. Dev. Psychol. 29(1), 17–28 (2008)

How XP Can Improve the Experiences of Female Software Developers 269

https://xpmanchester.wordpress.com/

Pair-Programming from a Beginner’s
Perspective

Irina Tsyganok(&)

YOOX NET-A-PORTER Group, NAP Commerce,
1, The Village Offices, Ariel Way, London, UK
irina.tsyganok@net-a-porter.com

Abstract. This experience report offers a beginner’s perspective on
pair-programming with experienced developers. It discusses issues faced by
juniors and seniors when working together and highlights the importance of
emotional maturity in pairs with disparate skill sets. This paper considers per-
sonal characteristics of junior and senior developers in identifying their needs
from the pairing session and shares tactics used to improve pair-programming
experience on individual and team-wide levels.

Keywords: Pair-programming � Knowledge-sharing � Collaboration �
Culture � XP

1 Introduction

I joined YOOX NET-A-PORTER (YNAP) Group as a Technology Graduate in
September 2014. During the 12 months of the company’s graduate training programme
I worked in the roles of a developer in testing, UX researcher, front-end developer and
back-end developer, in multiple teams. As a junior, I was paired up with experienced
developers to work on each story. It was the company-wide assumption that senior
developers were the best candidates to introduce new team members to the technology
stack.

Interestingly, most (if any) of my pairs had not practiced pair-programming in their
daily work and working with me was, for many, the first exposure to pairing across
skill levels. Having no framework to follow, we were largely guided by our instincts in
conducting pairing sessions. It is through that experience I realised that social skills and
emotional intelligence were powerful influencing factors in the success of pairing
relationships.

My inspiration to explore Extreme Programming (XP) came from working with Nat
Pryce, combined with support and insights from my manager. Nat introduced me to
XProLo - a meet up on XP, which he attended along with other like-minded software
engineers. Having become a regular member of the group myself, I have learned
different ways of applying XP behaviours in the workplace and gained reassurance in
my belief that pair-programming experience if approached appropriately, could benefit
our team in many ways.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 270–277, 2016.
DOI: 10.1007/978-3-319-33515-5_25

2 Getting Started with Pair-Programming

YNAP provided a consistently supportive learning environment across all teams
I worked with. My input was always welcome and mistakes were treated as learning
opportunities. I had the opportunity to join any team on any project at any time, which
gave me complete control over my professional development. This autonomy allowed
me to accelerate progress in areas, which I found most interesting and relevant.

But despite the thriving external environment, pair-programming with senior
developers was much less of a success. It was not rare for me to feel frustrated,
overwhelmed, disengaged and even insecure when pairing. Granted, a lot of these
symptoms are a natural human reaction to facing a steep learning curve. However, six
months into my role I repeatedly faced similar problems.

3 Getting Frustrated with Pair-Programming

“If I were given one hour to solve the planet, I would spend fifty five minutes defining the
problem and only five minutes finding the solution” – Anonymous, often attributed to Albert
Einstein

When considering our issues with pair-programming, I found it useful to categorise the
challenges we faced into three groups: physical, session management and social.

Physical challenges are concerned with physical comfort. They can take the form of
unsuitable equipment or inadequate personal space and can result in poor posture and
discomfort. Session-management challenges are interruptions to the session caused by
developers without consideration of the schedule of their pairing partner.

For junior/senior pairs, the biggest challenge is frequent unavailability of senior
developers. Social challenges are less tangible and are therefore, the hardest to deal
with. They are dependent on the personality traits and emotional intelligence of both
partners. Physical and session management challenges can be more easily resolved if
the social challenges are eliminated first.

3.1 The Vicious Cycle of Non-learning

I discovered that most of my senior pairs were reluctant to allow me to experiment with
solutions. At the slightest sign of uncertainty, they were very eager to take over the
keyboard and demonstrate the solution by coding it themselves. Although instinctive
and seemingly efficient, this tactic undermines the purpose of knowledge-sharing in
pairing across skill. It is also easily developed into a pattern, which if becomes sys-
tematic, leads to the vicious cycle of non-learning, as illustrated in Fig. 1.

The pattern illustrated in Fig. 1 sets traps of short-term convenience at each step. It
is more convenient for an experienced developer to type in the code than to watch their
junior pair struggle through an imperfect solution. Similarly, watching someone writing
code for prolonged periods of time almost always leads to disengagement. Breaking
this pattern requires taking a step outside one’s comfort zone, and can be difficult to
achieve.

Pair-Programming from a Beginner’s Perspective 271

4 Observations

To investigate the relationship between social characteristics and levels of technical
expertise in software developers, I drew up high level personas for the novice and the
expert in the context of a programming session.

The diagram in Fig. 2 shows that behaviours of these personas oppose one another.
For my analysis I chose the two extremes of professional spectre - the very junior and
the very senior, as they most accurately reflect my experience at YNAP. However,
despite obvious differences, junior and senior developers have one goal in common -
they both want to learn in the course of the pairing session.

4.1 The Needs of Each Persona

Considering the disparate learning focus of the expert and the novice, I identified the
expectations of each one from the pairing session. To analyse the needs of the novice,
all I had to do was reflect on my own experience. And this is what I identified to be the
most important:

Fig. 1. The vicious cycle of non-learning

Fig. 2. Junior and senior developer personas

272 I. Tsyganok

• opportunity to experiment with solutions
• permission to make mistakes
• constructive feedback
• engagement in the session
• a flowing dialogue
• friendly disposition from my pair

In order to find out what the seniors need from the pairing session, I turned to my
technical team at YNAP. I gave a presentation ‘Pair-programming From a Beginner’s
Perspective’, in which I shared my observations, concerns and proposed solutions with
my team. When I asked my senior colleagues about their needs, we were all surprised
to discover that the needs of experienced developers are identical to the needs of the
junior.

I repeated the talk and the question at XProLo meetup in front of a very experi-
enced audience, and the results were the same.

Through these discussions I learned that senior developers can also be prone to
insecurity and that just like the juniors, they need opportunities to experiment with
solutions and desire a flowing dialogue from their pair.

5 What We Learned

“A teacher-student relationship feels very different from two people working together as equals,
even if one has significantly more experience.” - extremeprogramming.org

Industry perception of pairing across skill often assumes a teacher/student relation-
ship. Such teacher-student role division promotes a familiar classroom teaching style,
whereby the teacher talks and demonstrates and the student listens.

My experience has shown that pair-programming is most effective when both
developers are equally involved and proactive throughout the session. Therefore, I
propose to view pairing across skill in the light of the leader/adopter pattern. The latter
suggests equal participation of both developers in the session, with the experienced
developer acting as the leader and the junior, as the adopter. The skill set of the leader
should include both technical excellence and emotional intelligence - one or the other
alone is insufficient. The skill set of the adopter is incomplete, hence the role.

During my time at YNAP I have had to heavily rely on my social skills to facilitate
my own learning. This led me to a conclusion that technical expertise of an individual
does not imply emotional maturity; consequently not all senior developers are good
leaders. A simple metaphor of a parent teaching their child to ride a bike might
help. The parent tasked with teaching is expected to not only be a confident cyclist
themselves, but to be also adequately patient and articulated to lead their child through
learning experience. From the adopter’s perspective, quality of pairing experience is
heavily influenced by the emotional expertise of the leader. Continuing the cycling
metaphor, the most effective teaching method involves a parent and a child working
together as equals. In contrast, a parent demonstrating the technique by cycling around
their child in silence, is obviously ineffective. Yet, when it comes to pair-programing,
senior developers often choose the leading strategy of cycling around their junior pair.

Pair-Programming from a Beginner’s Perspective 273

http://extremeprogramming.org

5.1 Can Anyone Be a Leader?

Just like teaching a child to ride a bike, pairing with the junior demands patience, a
teaching plan (that can change), time and willingness of the leader to get deeply
involved. The latter is the deciding factor, yet in my experience it has not always been
considered.

The cycling analogy demonstrates the importance of acknowledgement and con-
sent. A child who wants to ride a bike has no choice but to master cycling first. The
parent, on the other hand, has a choice of either teaching their child themselves or
asking someone else to do it.

In making this decision, the parent has to analyse whether the amount of time they
can spare for teaching, their own physical fitness and emotional skills needed to guide
their child throughout learning experience are sufficient at a given point in time. If a
parent identifies that for whatever reason they are unable to meet one or more of the
suitability criteria, it is probably better to ask a friend or another family member to lead
the teaching. To the child on the other hand, quality of teaching is more important than
the person providing teaching.

The suitability and unsuitability of the senior are not permanent. Circumstances
may change over time to enable the parent to teach their now eagerly racing child new
stunts on their bike.

Coming back to pair-programming, in addition to acknowledging the fact that their
pair is inexperienced, a senior developer has to asses whether they are willing and able
to take on the role of a leader at a given moment in time.

5.2 The Social Aspect of Pair-Programming

I have learned that for two developers to work enjoyably and productively together,
they need to get on well socially. This applies to all pairs regardless of technical
expertise, but the experience may feel less natural in a junior/senior pair.

I observed that the act of pair-programming despite being emotionally intense, can
be socially isolating. Work environment places focus on technical expertise and pro-
fessional status and filters social interactions through a prism of organisational culture.

However, when two developers engage in an informal activity, such as having
lunch or a drink after work together, their professional status matters much less and so
does the organisational culture. Instead, the focus of their interaction shifts to personal
and emotional. Those developers are no longer ‘a junior’ and ‘a senior’, they are just
two people having a conversation. I have found that positive effects of informal
communication transcend environments. That is, once the two developers get back to
work, they find that their communication flows better, which in turn, empowers the pair
to overcome challenges imposed by the experience gap, status and other constraints of
the work environment.

274 I. Tsyganok

5.3 Pair-Programming – Child’s Play?

In the final year of my degree, I organised a Code Club at my local primary school,
where I taught a class of seventeen children programming for one year, using a
project-based curriculum and encouraging a free-form learning environment. My only
two objectives throughout the year were that the children learn to code and have fun.
Whether they wanted to work solo, in pairs or in a mob, was entirely up to them.

Throughout that year, I observed most organic transitions of my students’ learning
through various techniques.

All children started the year in the classroom learning style. They had a computer and
a project sheet each and worked solo, raising their hand as they needed my help. As
projects became increasingly complex, many children chose to pair up with their friends -
in a grown-up XPworld we call this ‘pair-programming by association’. In their pairs, the
children conversed freely, exchanging jokes and clearly enjoying each others’ company.

However, as the difficulty of learning the material continued to increase, some
children gravitated towards pairing with their more able classmates who were not
necessarily their buddies outside of the classroom. Their conversations became more
focused on the task, but the dialogue kept flowing at all times. In each pair there was a
leader and an adopter, and both remained engaged throughout.

Finally and very importantly, two of my students chose to work solo throughout the
whole year. They did not object to helping their peers when prompted, but they clearly
performed better and seemed more content having their own space.

All children made amazing progress and many of them have taken their learning
further. Reflecting on our experience, it is clear to me that the children loved the social
aspect of our club just asmuch as they loved problem-solving.Another observation Imade
that year is that not everyone is happy in the role of leader despite displaying excellent
technical aptitude. And that is a personal choice everyone should be entitled to. Unless
these individuals want to step out of their comfort zone and take a leadership role, forcing
them into pairing with a less experienced partner will never lead to a good experience.

The children gracefully demonstrated the significance of emotional intelligence in
pair-programming. In comparison, as adults, we seem to have a harder time to effec-
tively apply the practice in the workplace

6 Fixing Pair-Programming

“In theory, theory and practice are the same. In practice, they are not.” - Anonymous.

During my time at YNAP I learned that communication is the foundation of successful
pairing. Therefore, I focused on improving social interactions with my pairs and
team-wide by including jokes, casual conversations and team socials into our day.

Specifically to pairing across skill, I gave a talk to my team, in which I offered a
beginner’s perspective on pairing with experienced developers. The talk drew attention
to the challenges, which senior developers did not know existed and initiated inter-
esting discussions in the team. Our improved communication enabled us to make sound
team-wide decisions, which included:

Pair-Programming from a Beginner’s Perspective 275

• Swapping pairs to promote pairing fluidity
• Agreeing on the WIP limit and adhering to it
• Setting up our desks and pairing stations to provide comfortable working

environment
• Giving each other sufficient time apart and synchronising our breaks
• Working on a story from start to finish, in the same pair
• Finding time for small talk in pairs and socialising more as a team

6.1 How We Can Improve

Pair-programming culture in our team has significantly improved as a result of the
increased awareness and positive changes we made. However, we are still working on
the assumption that all our senior developers are equally good at pairing with juniors.
Going forward, I would like to adopt a more personalised approach in forming
junior/senior pairs, particularly, when new graduates join our team. I would also like
for us to pair with other stakeholders, such as designers, testers, product owners and
data analysts more often.

7 Conclusions and Way Forward

Over the last six months, pair-programming in our team transitioned from being a
subconscious training tool to becoming a considered cultural choice for everyone.
Working in pairs brought us closer as a team, sometimes as opposing parties of long
debates and sometimes as good friends truly collaborating and learning from each
other. Even at this early stage of adopting the practice, pair-programming has formed a
core part of our work ethos.

Our cultivation of a thriving pairing culture has not been smooth and it is far from
over. After many frustrating sessions, it was the acknowledgement of the importance of
good communication and emotional maturity in pairs that allowed us to make key
positive changes in the way we work together. I am confident that a little more per-
severance will take our team to new strengths in applying pair-programming effectively
across skill and beyond.

This extract from an email, which Ward Cunningham sent to pdxruby mailing list
in 2012 sums up this experience report beautifully: “…Our willingness to work
together could be the juice that will push computers forward. We will all have to master
pair-programming (not just mentoring) to make this work. It will be awesome”.

Acknowledgements. I would like to thank Nat Pryce for the inspiration, support and honest
feedback. I appreciate the opportunity to work on the report and attend XP2016, presented to me
by Claire Lamb and James Wyllie. Thank you to all my senior pairs for providing the material for
this paper. Finally, a special thanks to Avraham Poupko for having faith in this project, and for
his undeniable support and valuable insights at every stage of its life.

276 I. Tsyganok

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits any noncommercial use, duplication, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, a link is provided to the Creative Commons license and any changes
made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Pair-Programming from a Beginner’s Perspective 277

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Empirical Studies Papers

Empirical Research Plan: Effects of Sketching
on Program Comprehension

Sebastian Baltes1 and Stefan Wagner2(B)

1 University of Trier, Trier, Germany
research@sbaltes.com

2 University of Stuttgart, Stuttgart, Germany
stefan.wagner@informatik.uni-stuttgart.de

http://orcid.org/0000-0002-5256-8429

Abstract. Sketching is an important means of communication in soft-
ware engineering practice. Yet, there is little research investigating the
use of sketches. We want to contribute a better understanding of sketch-
ing, in particular its use during program comprehension. We propose a
controlled experiment to investigate the effectiveness and efficiency of
program comprehension with the support of sketches as well as what
sketches are used in what way.

Keywords: Experiment · Sketching · Program comprehension

1 Introduction

Software is inherently abstract and has no natural representation except source
code. Thus, especially for program comprehension, visualizations are impor-
tant [1]. Sketches are an example for informal visualizations that are often cre-
ated when understanding or explaining source code [2]. In the past, however,
these informal artefacts did not get the amount of attention by the software
engineering research community that their relevance in software development
practice could imply. With our proposed study, we want to analyse if and how
sketching improves program comprehension when explaining source code. Fur-
thermore, we want to gain a better understanding of what sketches are used in
what way to explain the source code. In the description of our experiment, we
follow the guidelines of Jedlitschka, Ciolkowski and Pfahl [3].

2 Related Work

One of the main purposes of sketching in software development is communica-
tion [2,4]. To this end, developers often employ ad hoc notations that rarely
adhere to standards like the Unified Modeling Language (UML) [2,5]. The ambi-
guity in sketches is a source of creativity [6] and they support problem solving
and understanding [7]. In other areas like engineering, controlled experiments
c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 281–285, 2016.
DOI: 10.1007/978-3-319-33515-5 26

282 S. Baltes and S. Wagner

have shown that the possibility to sketch has a positive effect on the quality
of the solutions [8]. In our study, we want to analyse if sketches improve pro-
gram comprehension in a setting where one developer explains a piece of source
code to a colleague. To be able to compare the effect of sketching on program
comprehension, we measure task correctness and response time [9].

3 Experiment Planing

The overall goal of our research is to better understand the use and usefulness
of sketches in software engineering. In this experiment, we especially focus on
sketching as a means of program comprehension in the communication between
two developers. The goal of our experiment is:

Analyze sketching while explaining source code
for the purpose of evaluating its impact on program comprehension
with respect to its effectiveness and efficiency
from the viewpoint of the developer
in the context of the conference XP 2016.

From this, we derive three research questions. The first two are more descrip-
tive and exploratory to better understand which sketches developers use and
how they use them while explaining source code to another developer. The third
covers then the causal relationship of using sketches onto the effectiveness and
efficiency of comprehending the source code.

RQ 1: Which sketches do developers use to explain code?
RQ 2: How do developers explain code with and without sketches?
RQ 3: How does the effectiveness and efficiency of the understanding of the
code differ when it was explained with or without a sketch?

3.1 Experimental Units and Materials

The participants of the experiments will be pairs of developers. They will explain
source code to each other. They have to be professional software developers.

We will use four different small open-source software systems in commonly
known programming languages such as Java or C#. As the developers do not
know the source code beforehand but have to explain them, we limit the systems
to 500 LOC at most.

3.2 Tasks

The basic task for each pair of developers is to understand the source code of
a small software system and then explain certain aspects to each other. The
source code will be made available on an iPad. In case they should sketch, this
will be done on paper. The aspects to explain will be low-level and code-centric.
Afterwards, the developer the aspect was explained to, will answer questions
evaluating how well they understood the explanations.

Effects of Sketching on Program Comprehension 283

3.3 Hypotheses, Parameters and Variables

The central independent variable of the experiment is the use of sketching. The
dependent variables we are going to measure are the time needed until the
explained aspect is understood and the correctness of the understanding. For
the explorative part, we also document which types of sketches (e.g. different
UML diagrams) they used and how they themselves judged the difference in
explanations.

The two null hypotheses we are going to investigate are:
H01: There is no difference in the effectiveness of comprehension with or without
sketches.
H02: There is no difference in the efficiency of comprehension with or without
sketches.

Furthermore, we will document further context variables such as the experi-
ence of the developers with the programming languages and whether they have
previously worked together.

3.4 Experiment Design

We will employ a blocked and balanced design. Hence, from each developer pair,
the first developer will first read and explain a software system with sketching
and then read another software system and explain it without sketching. The
second developer will do the same but first without sketching and then with
sketching.

We will openly invite the XP 2016 participants to join the experiment in
pairs. Therefore, the sample is a convenience sample.

3.5 Procedure

We need a separate location for the experiment so that the participants can
concentrate on understanding and explaining. We could hold it as one event
during the conference or continuously over the whole conference depending on
the fit to the conference schedule. We will put up lists in which the developers
can volunteer to participate.

The first step when a pair starts the experiment is that they receive an
iPad each with their two software systems to explain together with the question
concerning the aspect they later have to explain to the other developer. Then
(step 2) both get time to read the first system. In step 3, participant 1 explains
the first system to participant 2 without a sketch. The time for this is mea-
sured on the iPad. Step 4 is a short questionnaire for participant 2 to check the
correctness of their understanding. In step 5, participant 2 explains their soft-
ware system aspect to participant 1 with the help of sketches on provided paper
(including time measurement on the iPad). In step 6, participant 1 answers the
short questionnaire concerning correctness.

Next, in step 7, both participants read the next question and source code.
Then, the same procedure is repeated but participant 1 gets to use sketches while

284 S. Baltes and S. Wagner

participant 2 does not. We will ask about the general experience and context
factors in a final questionnaire.

3.6 Analysis Procedure

We will analyse the quantitative data to test the two hypotheses using an
ANOVA analysis (RQ 3). Furthermore, we will qualitatively analyse the sketches
and the answers to the open questions in the final questionnaire (RQ 1 and 2).

4 Summary and Future Work

In summary, we want to conduct a controlled experiment to better understand
how developers use sketches in explaining source code as well as the effects
on effectiveness and efficiency of the comprehension. The results of the experi-
ment allow us to reduce the discrepancy between research concentrating on more
formally defined modelling languages and the relevance of sketching in practice.
Furthermore, we want to use the gained insights to work on a sketching language
and tool support to aid practitioners in sketching in an efficient and effective way.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Storey, M.D.: Theories, tools and research methods in program comprehension: past,
present and future. Softw. Qual. J. 14(3), 187–208 (2006)

2. Baltes, S., Diehl, S.: Sketches and diagrams in practice. In: Proceedings of the
International Symposium on Foundations of Software Engineering (FSE 2014), pp.
530–541 (2014)

3. Jedlitschka, A., Pfahl, D.: Reporting guidelines for controlled experiments in soft-
ware engineering. In: International Symposium on Empirical Software Engineering
(2005)

4. Cherubini, M., Venolia, G., DeLine, R., Ko, A.J.: Let’s go to the whiteboard: how
and why software developers use drawings. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (CHI 2007), pp. 557–566 (2007)

5. Petre, M.: UML in practice. In: Proceedings of the International Conference on
Software Engineering (ICSE 2013), pp. 722–731 (2013)

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Effects of Sketching on Program Comprehension 285

6. Goldschmidt, G.: The backtalk of self-generated sketches. Des. Issues 19(1), 72–88
(2003)

7. Suwa, M., Tversky, B.: External representations contribute to the dynamic con-
struction of ideas. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams
2002. LNCS (LNAI), vol. 2317, pp. 341–343. Springer, Heidelberg (2002)

8. Schütze, M., Sachse, P., Römer, A.: Support value of sketching in the design process.
Res. Eng. Design 2(14), 89–97 (2003)

9. Dunsmore, A., Roper, M.: A comparative evaluation of program comprehension
measures. Technical report EFoCS 35–2000, Department of Computer Science,
University of Strathclyde (2000)

The 4+1 Principles of Software Safety Assurance
and Their Implications for Scrum

Osama Doss(✉) and Tim Kelly

High Integrity Systems Engineering Research Group, Department of Computer Science,
University of York, York YO10 5DD, UK
{osad500,tim.kelly}@york.ac.uk

Abstract. As part of our research concerning the integration of assurance case
development with Scrum, we are planning to conduct semi-structured interviews
with participants to gain feedback on a proposed approach. We will be inter‐
viewing individuals who have been involved with safety-critical systems devel‐
opment and Agile methods. Participants will be presented with an overview of
the challenges associated with applying the 4+1 software safety assurance prin‐
ciples to Scrum. Initial recommendations concerning how the principles can be
accommodated within a Scrum development will also be presented. Participants
will be led through a series of questions to gain feedback on the feasibility of the
approach, and for an assessment as to whether the 4+1 principles can be addressed
without compromising agility. The motivation behind this research is to gain a
deeper insight into the difficulties experienced when integrating assurance case
in to Scrum process.

Keywords: Scrum · Safety · Assurance · Certification · Assurance case · Software
safety

1 Research Aim

This study is part of the research under the High Integrity System Engineering Group,
Computer Science Department, of the University of York. This paper introduces the
4+1 Principles of Software Safety Assurance [1] and their implications for Scrum [2],
specifically, the impact on the processes, roles and artefacts associated with Scrum
development.

Historically, there has been a reluctance to adopt agile methods within safety-critical
systems development. However, feedback from our initial research in this area suggests
that there are benefits to be gained from the application of agile methods to safety critical
systems [3, 8]. Following this feedback we have done further work to assess how the
4+1 principles of software safety assurance can be integrated with Scrum, and have
developed an initial proposal for how Scrum could be modified to better address the
principles. The aim of the proposed study at XP2016 is gain practitioner feedback on
these proposals. The feedback we receive will ultimately be used to help refine the
proposal before further empirical evaluation.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 286–290, 2016.
DOI: 10.1007/978-3-319-33515-5_27

2 Research Questions and Their Motivations

Our research, as a whole, is focused on answering the following questions:

• RQ1 What are the current concerns and opportunities voiced by safety-critical
systems professionals regarding the use of agile development methods for safety-
critical systems development?

• RQ2 Can the integration of incremental assurance case development and evaluation
within the existing “Scrum” methodology alleviate the concerns identified in answer
to RQ1?

• RQ3 What changes can Scrum Process has to undertake in order to be compliant with
the safety standard?

This study, specifically furthers our investigation into RQ2 and 3. We now how have
initial proposals for changes and a description of assurance case development integrated
with Scrum. However, what we lack is a substantial and varied practitioner base to help
assess the credibility, feasibility, and efficacy of our proposals.

3 Importance of Research

Despite progress in the use of agile development methods in safety critical systems
development (e.g. [4]), there are still those with doubts about the potential for successful
integration. There are also reported experiences [5] that highlight the complementary
nature of the iterative and incremental approach underlying many agile methods, and
recognised best practice in risk management in safety critical systems development.
Rather than start with a theoretical evaluation of the compatibility of the principles of
agile development with software safety assurance, we decided to draw out these expe‐
riences, opinions (and possibly preconceptions) by means of a practitioner’s semi-struc‐
tured interview. In particular, our first round of semi-structured interviews drew out
specific responses relating to (possible) incremental and iterative nature of safety
requirements development, hazard analysis and safety (assurance) case developments.
The responses we received showed both the potential for benefits from agile develop‐
ment of safety-critical software, together with residual concerns about the ability to
provide software safety assurance in a manner compatible with current software safety
assurance standards. Rather than focusing on a single safety assurance standard (as some
have done, e.g. [4]) we have used the framework of the 4+1 software safety assurance
principles to tackle the common and broad issues of software safety assurance that exist
across multiple industry domains and safety standards. These principles have been
developed to highlight the commonality of purpose of multiple existing safety standards,
and are being adopted by industry (e.g. in Defence Standard 00-55) as a framework
against which software safety assurance can be judged.

The importance of this research is that it represents one step along the path of pushing
beyond simplistic and over-generalised preconceptions of the compatibility of agile and
safety-critical systems development, and potentially unlocking the benefits of agility
within the safety domain.

The 4+1 Principles of Software Safety Assurance 287

4 Data Collection Methods to Be Used, Including

• Who the participants should be

It is not easy task to find practitioners with both experience in the field of Agile and
Safety. However, XP2016 will involve various categories of experts (software engi‐
neers, industry and academia etc.) as well there being a significant opportunity to link
this study with the XP2016 workshop Agile Development of Safety-critical Software
(ASCS).

We would like to interview individuals who have been involved with Safety Critical-
Systems, Agile methods, or both, during XP2016 in order to use their experience and
insight to gain feedback on our proposed approach.

• What methods will be used and why these have been selected.

The study will be conducted as a qualitative survey using “semi-structured inter‐
views” for data collection [6]. Shull et al. [7] illustrate the advantage and disadvantage
of conducting semi-structured interview. The interview will include some simple (e.g.
Likert scale-based) question, as well as more open-ended questions that allow for greater
depth of response.

The responses received from XP2016 will also be compared with 1-to-1 semi-struc‐
tured interviews conducted with some of the respondents from our initial survey [3]; the
purpose of this interview study is to investigate the success of the proposed integration
of 4+1 principles and assurance safety case development with Scrum.

Interviews will be conducted face-to-face at the XP2016 location. Further interviews
(with further participants) may be conducted over phone. Interviews will be recorded
and transcribed to facilitate subsequent analysis.

• What will happen during data collection activity?

Participants would take part in an approximately 40 min interview to explore perceptions
around the 4+1 Principles of Software Safety Assurance and their implications for
Scrum.

The interview will start by introducing the research aims and the topics to be
discussed. Then the 4+1 principles will be explained, together with an outline of the
proposal for integrating these principles within a Scrum development. Questions will
then be asked relating to the proposal – picking out specific features one-by-one (e.g.
our recommendations for team composition). The questions will tackle both aspects of
(a) whether the proposed approach challenges agility and (b) whether the proposed
approach challenges safety assurance.

Documents that will be prepared for the interview:

1. Interview guide - main pointers to guide the interview
2. Information sheet - to be provided to the interviewee to provide the context of the

interview
3. Consent form - for interviewee to sign.

288 O. Doss and T. Kelly

5 Data Analysis Methods to Be Subsequently Used

Transcripts will be analysed using thematic analysis. One researcher will read all of the
interview transcripts, and will code the transcripts using first-cycle coding (Open Coding
or Initial Coding), supported by the NVivo 11 software package. Main categories (or
topics) will be identified through clustering of codes in project review meetings. Codes
and categories will be constantly compared with the data and revised or refined as
appropriate.

The results of the thematic analysis will then be written up in a form suitable for
sharing with participants and subsequent publication.

6 How the Results Will Be Used

Initially, we will present the key findings within the High Integrity System Engineering
Group at York. The findings will also potentially form part of the final thesis of the
ongoing PhD research on Assurance Case Integration with An Agile Development
Method. Our findings will be submitted, in the future, for publication in peer-reviewed
journals.

Ultimately, the findings will be used to refine our proposed approach before
proceeding to empirical case studies.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Kelly, T.: Software certification: where is confidence won and lost? addressing systems safety
challenges. In: Anderson, T., Dale, C. (eds.) Safety Critical Systems Club (2014)

2. Rubin, K.S.: Essential Scrum: A Practical Guide to the Most Popular Agile Process, 1st edn.
Addison-Wesley Professional, Upper Saddle River (2012)

3. Doss, O., Kelly, T.: Challenges and opportunities in agile development in safety critical
systems – a survey. In: Agile methods applied to development and certification of safety-critical
software Workshop, XP 2015, Helsinki, Finland (2015)

4. Stålhane, T., Myklebust, T., Hanssen, G.K.: The application of safe scrum to IEC 61508
certifiable software. ESREL (2012)

The 4+1 Principles of Software Safety Assurance 289

http://creativecommons.org/licenses/by-nc/4.0/

5. Bedoll, R.: A Tail of Two Projects: How ‘Agile’ Methods Succeeded after ‘Traditional’
Methods Had Failed in a Critical System-Development Project, Extreme Programming and
Agile Methods-XP/Agile Universe 2003, pp. 25–34. Springer, Heidelberg (2003)

6. Flink, A.: The Survey Handbook, 2nd edn. Sage Publications, Thousand Oaks (2003)
7. Shull, F., Singer, J., Sjberg, D.I.K.: Guide to Advanced Empirical Software Engineering, 1st

edn. Springer, London (2010)
8. Doss, O., Kelly, T.: Assurance case integration with an agile development method. XP 2015,

LNBIP, vol. 212, pp. 347–349 (2015)

290 O. Doss and T. Kelly

Development Tools Usage Inside Out

Marko Gasparic(B), Andrea Janes, and Francesco Ricci

Free University of Bozen-Bolzano, Dominikanerplatz 3, 39100 Bolzano, Italy
marko.gasparic@stud-inf.unibz.it, {andrea.janes,francesco.ricci}@unibz.it

Abstract. The software engineering community is continuously produc-
ing tools to tackle software construction problems. This paper presents
a research study to identify which tools, artifacts, and commands devel-
opers use during task solving and how one can design software that can
suggest and convince the developer to use specific software construction
techniques. We want to understand under which conditions developers
accept suggestions for a more efficient and effective usage of the available
instruments, and if observed usage patterns correlate with observable
improvements in the process or product. The expected results include
detailed logs of how developers construct software during XP 2016, their
preferences for software construction recommendations, and which effects
accepted suggestions have on task execution and outcome.

Keywords: Tool usage · IDE command recommendation

1 Aim of Research and Research Questions

The aim of the proposed study is to observe in depth how developers solve their
tasks, how developers accept different types of suggestions to support their work,
and what are the effects of different behaviors.

Concretely, the research questions we want to answer with this empirical
study are:

– RQ1: Which tools and artifacts developers use during task solving?
– RQ2: If a better way to solve a task exists, how can we design software that

can persuade the developer to change his or her behavior?
– RQ3: Which effects on task execution and task outcome (i.e., the code) do

different tools and command suggestions have?

To solve their daily tasks, software developers are using tools, such as inte-
grated development environments (IDEs), web-browsers, communication tools,
etc. The choice of tools and their usage have a strong impact on the productiv-
ity of developers. Understanding how developers work is therefore important to
understand how to support their work.

We already performed a preliminary study, by analyzing interaction pat-
terns within the IDE of eight developers, comparing the patterns in different
contexts. In a conference setting, such as the XP 2016 coding sessions, we now
c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 291–295, 2016.
DOI: 10.1007/978-3-319-33515-5 28

292 M. Gasparic et al.

have the opportunity to build on our experience and observe a bigger sample of
skilled, focused developers, solving a predefined programming task. This is an
experimental setting which is rare to find. Collecting such data from experienced
programmers, all executing a similar task is difficult: companies are rarely will-
ing to invest time to perform such experiments as they do not obtain a direct
benefit from it.

We assume that in a conference setting developers will be less exposed to
interruptions, which will make the results easier to interpret. This allows us to
better understand how experienced developers are spending their time interact-
ing with tools and how they are using the functionality provided by the IDE,
solely for the purposes of programming.

To answer RQ1, we want to answer the following sub-questions:

– RQ1.1: Which tools (e.g., text editing, communication, source code manage-
ment) are developers using to solve a particular task?

– RQ1.2: Which artifacts (e.g., websites, documents, source code files, text files)
are they reading, writing, and modifying?

– RQ1.3: Which IDE commands are they invoking?

RQ2 addresses the question if and how we can write software that identifies
and suggests to the developer more effective ways to solve a specific task. In this
context, we want to focus on the tools developers are using, in particular the IDE.
Many developers are not using even some basic features provided by their IDE,
even if certain features are recognized as highly useful by the community [1].

To alleviate this problem, first researchers developed and validated IDE
command recommendation algorithms [2]. These algorithms were either eval-
uated offline or by interviewing the study participants. We are not aware of any
designed and tested user interface for IDE command recommendations. Conse-
quently, we do not know how persuasive and effective such systems would be in
practice and whether the developers would accept recommendations, even if the
recommendations would be 100 % accurate.

The most precious resource that development tools require from the developer
is the attention. Due to the low usage of tools that the scientific community
developed in the last years, it is questionable if the developers are willing to
accept them in practice at all [3]. We would like to investigate whether it even
makes sense to start building new tools that would change the development
process or will the developers rather stick to the current practices. To answer
RQ2, we will answer the following sub-questions:

– RQ2.1: How do developers perceive the current integration of the various tools
they use?

– RQ2.2: How will developers react to different types of user interfaces for per-
suasive and effective IDE command recommendations?

– RQ2.3: How efficient are the proposed user interfaces and how can they be
improved?

Development Tools Usage Inside Out 293

Finally, RQ3 asks which effects on task execution and task outcome tool usage
and command suggestions have. We will observe work patterns and interactions
with tools and artifacts, as well as the effect on the source code itself.

In parallel, we want to observe the acceptance of command recommendations
generated specifically for the task at hand and delivered at the beginning of the
coding session; also, we want to observe the effects of the recommendations.
Thus, we want to perform an experiment according to the “one factor with two
treatments” design type [4], where the treatment group will have access to the
IDE command recommendation mockups.

Since the duration of the experiment is short, we plan to investigate RQ3
qualitatively through the following sub-questions:

– RQ3.1: How does the usage of different tools, commands, and artifacts affect
the produced source code?

– RQ3.2: How do command recommendations change the interaction with the
IDE?

2 Importance of Research

The software engineering community is continuously producing tools that help
developers to tackle what Fred Brooks calls “essence and accidents” [5]. Cur-
rently, a particularly dynamic field is the field of recommendation systems for
software engineering [6]. By obtaining the answer to RQ2, we would like to
better understand under which conditions software developers accept the pro-
motion of more efficient and effective usage of tools, by improving their acces-
sibility (RQ2.1) and discovery (RQ2.2). This will pave the way to construct a
recommender that can deliver useful recommendations in a real-life setting.

RQ3 is targeting the meaningfulness of the proposed tools and commands.
We aim to better understand whether the suggestions to use additional tools,
features, web-pages, etc. lead to observable improvements, i.e., cause a change
in the data collected in RQ1. Knowing the effect of the usage of certain tools
nurtures the motivation to develop new tools and facilitates the introduction of
existing tools in practice. Some examples are: the diffusion of innovation within
an organization, the training of newcomers, or the support for teaching.

3 Data Collection Methods

The majority of the data will be collected automatically by the following tools:

– A tool that logs the currently focused window, together with its process name
and caption. The window caption often contains the path to the currently
opened artifact, which can be used to infer the type of the artifact. The
obtained log contributes to answer RQ1.1 and in part RQ1.2.

294 M. Gasparic et al.

– Eclipse UDC1 to collect command executions, user interface elements activa-
tions, and start and stop events of bundles. In addition, a modified version
of Eclipse Mylyn2 will be used to record the currently focused artifact within
the IDE, together with the active perspective, including editors, and views.
These Eclipse plugins contribute to answer RQ1.2 and RQ1.3.

– A tool to collect all the logged data to a central location.

We will provide the environment in the cloud and allow participant’s to
install the necessary tools on their own machines at the beginning of the session.
If developers agree, we will use eye tracking devices to understand on what
developers are looking during their work.

To investigate the motivations behind the manifested decisions following the
display of an IDE command suggestion (RQ2), we will perform qualitative inter-
views (based on [7]) and an online survey, which will take less than 20 min.

4 Data Analysis and Data Usage

The collected data will be anonymized and studied using descriptive and infer-
ential statistics, data mining techniques, and manual inspection. To study the
results of the interviews, we will use quantitative and qualitative research meth-
ods. To study the impact of the recommendation on the code, we will use the
data provided by code smell detection tools, e.g., FindBugs3, but mainly man-
ually study which effects the invocation of the suggested commands has on the
code. The obtained data will be used to provide feedback to the participants,
improve the understanding of development tools usage, and in the development
of recommendation systems in software engineering.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Murphy-Hill, E.: Continuous social screencasting to facilitate software tool discovery.
In: International Conference on Software Engineering (2012)

1 http://www.eclipse.org/org/usagedata.
2 http://www.eclipse.org/mylyn.
3 http://findbugs.sourceforge.net.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://www.eclipse.org/org/usagedata
http://www.eclipse.org/mylyn
http://findbugs.sourceforge.net

Development Tools Usage Inside Out 295

2. Murphy-Hill, E., Jiresal, R., Murphy, G.C.: Improving software developers’ fluency
by recommending development environment commands. In: ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering (2012)

3. Gasparic, M., Janes, A.: What recommendation systems for software engineering
recommend: a systematic literature review. J. Syst. Softw. 113, 101–113 (2016)

4. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell (2000)

5. Brooks, F.P.: No silver bullet essence and accidents of software engineering.
Computer 20, 10–19 (1987)

6. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.: Recommendation
Systems in Software Engineering. Springer, Heidelberg (2014)

7. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of informa-
tion technology: toward a unified view. MIS Q. 27, 425–478 (2003)

Pitfalls of Kanban in Brownfield and Greenfield
Software Development Projects

Muhammad Ovais Ahmad(✉), Jouni Markkula, and Markku Oivo

M-Group, University of Oulu, Oulu, Finland
{muhammad.ahmad,jouni.markkula,markku.oivo}@oulu.fi

Abstract. In the last two decades, Agile and Lean approaches have gained wide
acceptance in the software industry. In this realm, Kanban emerged in 2004 with a
strong practitioner-driven support movement and today, Kanban is increasingly
adopted to complement Scrum and other Agile methods. Kanban tends to focus on
fast production, rapid and continual user feedback and interaction.

1 Background

In the last two decades, Agile and Lean approaches have gained wide acceptance in the
software industry. In this realm, Kanban emerged in 2004 with a strong practitioner-
driven support movement [1–3], and today, Kanban is increasingly adopted to comple‐
ment Scrum and other Agile methods. Kanban tends to focus on fast production, rapid
and continual user feedback and interaction.

Used for controlling the logistical chain from a production point of view, Kanban
was developed and applied in the Japanese manufacturing industry in the 1950s [6].
Kanban’s success in the manufacturing industry has convinced software engineers to
adopt this approach, with practitioner-driven support furthering this trend. In 2004,
David Anderson introduced Kanban to a small IT team at Microsoft, aiming to help the
team members visualise their work and put limits on their work in progress (WIP).
Kanban has five underlying principles [4], the so-called Kanban properties [5]: visualise
the workflow, limit work in progress, measure and manage flow, make process policies
explicit and use models to recognise improvement and opportunities.

The motivation behind visualisation and limiting WIP was to identify the
constraints of the process and to focus on a single item at a time. Additionally, instead
of pushing work on to software developers, Kanban promotes a pull approach: when
a team member finishes an existing task, he or she automatically pulls the next item
to begin work. In brief, Kanban aims to provide visibility to the software develop‐
ment process, communicate priorities and highlight bottlenecks [6]. This process
results in a constant flow of releasing work items to customers, as the developers
focus only on a few items at a given time [7]. The proliferation of Kanban in soft‐
ware engineering boomed after the publication of key books. These seminal books
included David Anderson’s Kanban [5], which introduces the concept of Kanban in
systems and software development, and Corey Lada’s Scrumban [8], which discusses
the fusion of Scrum and Kanban. The key motivation for Kanban use involves a focus
on flow and the omission of the obligatory iteration cycles in Scrum.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 296–299, 2016.
DOI: 10.1007/978-3-319-33515-5_29

2 Empirical Study Plan

Kanban has received considerable attention from software industry. The existing limited
literature explored dynamics of Kanban which is tend to be more concentrating on its
obtained benefits and less on Kanban pitfall [6, 7, 9, 10] in Brownfield project. Whereas,
there is no evidence of Kanban use is reported for Greenfield project. The reason can be
that in software industry Kanban is still in the early adoption phase. A Greenfield project
could be one developing a system for a totally new environment, without legacy systems.
Brownfield development could be one developing and deploying new software feature
or systems in the existing legacy software applications or systems. This study explores
the hidden pitfalls of Kanban in software development projects. The aim is to discover
the reasons behind the Kanban pitfalls and failure. Additionally, to shed light on a
phenomenon by discussing similar experiences among industry experts and find out
what topics are most challenging for software companies. The study finds answers rele‐
vant to following research questions:

RQ1. What are the hidden pitfalls of Kanban in software development projects?
In our research group we have strong collaboration between the authors institute and

Finnish leading software industry. In order for our research to have relevance, we need
to work on problems that have been identified by practitioners. We work with organi‐
sations in the following way: we identify a relevant topic or challenge, conduct case
studies to explore the topic or challenge within its organisational context, and conduct
a literature review to identify suggested solutions. We discuss our findings with the
organisation, engage in a dialogue with them about mitigation strategies and undertake
research into changes made. We then publish our findings as academic papers for the
research community [6, 9, 12].

2.1 Data Collection and Analysis Methods

We will deploy a ‘Kanban pitfall wall’ at XP Conference 2016. The participants can be
a mixture of Agile and Lean practitioners, business representatives and academics
researchers. The Kanban pitfall wall can be positioned with Kanban poster in a visible
place in the conference venue with a stack of pens and small cards. The small cards will
be used for writing individual pitfall as shown in Fig. 1. Participants can fill out the cards
anonymously and attached it to the wall next to the poster for others participants to read.
Similar data collection approach is used in earlier studies [13].

Participants can write one pitfall per card, and could fill in as many cards as they
wished. The pitfall wall will be a trigger point for discussions between participants of
the conference and the interviewees. The discussion central point will be the nature and
context of the identified hidden pitfalls.

After compiling the Kanban pitfalls, separate one to one interviews will be scheduled
with the interested volunteers and “key informants” to discuss it in more detail. The key
informant technique is used to identify experts and assures rich and high quality data
acquisition from them [14]. Interviews could be conducted face to face or remotely via
appropriate communication channel such as Skype.

Pitfalls of Kanban in Brownfield and Greenfield 297

We will use a thematic analysis approach for data analysis. It describes and organises
the data set in rich detail and interprets different aspects related to the research topic [11].

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Hiranabe, K.: Kanban applied to software development: from agile to lean, InfoQ. 11 Nov
2015. http://www.infoq.com/articles/hiranabe-lean-agile-kanban

2. Shalloway, A., Guy, B., James Trott, R.: Lean-agile Software Development: Achieving
Enterprise Agility. Pearson Education (2009)

3. Ahmad, M.O., Kuvaja, P., Oivo, M., Markkula, J.: Transition of software maintenance teams
from Scrum to Kanban. In: 49th Hawaii International Conference on System Sciences (2016)

4. Boeg, J.: Priming Kanban: A 10 step guide to optimizing flow in your software delivery
system, 2nd edn. Trifork (2012)

5. Anderson, D.: Kanban – Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, Sequim (2010)

A pitfall that I have experienced when using Kanban is …….

M-Group, University of Oulu, Finland

Fig. 1. A Kanban pitfall card

298 M.O. Ahmad et al.

http://creativecommons.org/licenses/by-nc/4.0/
http://www.infoq.com/articles/hiranabe-lean-agile-kanban

6. Ahmad, M.O. Markkula, J., Oivo, M., Kuvaja,P.: Usage of Kanban in software companies:
an empirical study on motivation, benefits and challenges. In: Proceedings of the 9th
International Conference on Software Engineering Advances (2014)

7. Boeg, J.: Priming Kanban: A 10 step guide to optimizing flow in your software delivery
system, 2nd edn. Trifork (2012)

8. Ladas, C.: Scrumban – Essays on Kanban Systems for Lean Software Development. Modus
Cooperandi Press, Seattle (2009)

9. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development: a systematic
literature review. In: Proceedings of the IEEE 39th Euromicro SEAA (2013)

10. Ikonen, M.: Lean thinking in software development: Impacts of kanban on projects. Doctoral
dissertation (article-based). https://helda.helsinki.fi/handle/10138/28453

11. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101
(2006)

12. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in Finnish
software industry. In: ESEM. pp. 139–148. ACM Press, New York (2012)

13. Gregory, P., Barroca, L., Taylor, K., Salah, D., Sharp, H.: Agile challenges in practice: a
thematic analysis. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP,
vol. 212, pp. 64–80. Springer, Heidelberg (2015)

14. Kumar, N., Stern, L.W., Anderson, J.C.: Conducting interorganizational research using key
informants. Acad. Manag. J. 36, 1633–1651 (1993)

Pitfalls of Kanban in Brownfield and Greenfield 299

https://helda.helsinki.fi/handle/10138/28453

Towards a Lean Approach to Reduce Code Smells
Injection: An Empirical Study

Davide Taibi(✉), Andrea Janes, and Valentina Lenarduzzi

Free University of Bozen-Bolzano, Piazza Domenicani, 3, 39100 Bozen-Bolzano, Italy
{davide.taibi,andrea.janes,valentina.lenarduzzi}@unibz.it

Abstract. Software Quality Assurance is a complex and time-expensive task. In
this study we want to observe how agile developers react to just-in-time metrics
about the code smells they introduce, and how the metrics influence the quality
of the output.

1 Introduction and Aim of the Research

Software Quality Assurance (SQA) is still a complex task that requires effort and exper‐
tise. The reasons for this are manifold, e.g., that quality-related information is difficult
to collect [2, 4] or that investment into quality is often still put aside in favor of other
activities, e.g., adding new functionalities [4]. Thanks to current SQA tools available on
the market, developers are able to increase their awareness on SQA. However, those
tools often require substantial effort to understand the provided results.

In particular code smells, a set of structural characteristics of software that may
indicate a code or design problem that can make software hard to evolve and maintain,
can be easily identified with SQA tools. Developers are often not aware of the code
smells they introduce in their source code; with the result of producing products with a
maintainability that constantly decreases over time, due to the growth of code smells.
For this reason, the identification of code smells is gaining acceptance in industry [1]
but the application to agile processes is still not clear since the effort required to apply
SQA tools and techniques is usually considered too high and not compliant with agile
processes.

The goal of this study is to understand if SQA tools, and in particular SonarQube1,
one of the most common SQA tools, can be effectively applied in agile processes
increasing the developers’ productivity and the number of generated bugs.

Therefore, we formulate our research questions as follows:

• RQ1: Is the continuous application of a SQA tool (SonarQube) applicable to agile
development processes?

• RQ2: Does the continuous application of a SQA tool (SonarQube) help to improve
the developers’ awareness of code smells in agile processes?

1
SonarQube: http://www.sonarqube.org.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 300–304, 2016.
DOI: 10.1007/978-3-319-33515-5_30

http://www.sonarqube.org

The execution of this study at XP2016 gives us the opportunity to understand if SQA
tools can be effectively applied in agile processes, considering industry practitioners that
would not participate in an industrial context because of effort reasons.

This paper is structured as follows: after the introductory section containing the aim
of our research, we briefly discuss the background and related work in Sect. 2.
Section 3 describes the design of the proposed case study.

2 Background and Related Work

Software Engineering, as every other engineering discipline, develops ways to analyze
the produced artifacts with the intention to learn how to improve the various engineering
methods and to produce outputs of an increasing quality. Approaches like the Experience
Factory [7] recommend to have a dedicated team that studies how to improve quality
and which packages the collected data into reusable knowledge so that the development
teams can reuse it later. In many agile environments, this is not feasible. Developing
approaches tailored for Agile and Lean environments requires understanding the specific
information needs and the period in which the needed information is valuable. Particu‐
larly in Lean, a just-in-time approach to feedback is required: the right information at
the right moment.

Moreover, the complexity of the QA domain makes results hard to interpret within
small companies, since they cannot afford a dedicated team or to pay external consul‐
tancy for QA. From this point of view, a tool like SonarQube helps companies to analyze
the source code with respect to different quality aspects presenting the results in form
of a web page. Unfortunately, SonarQube encourages a “one size fits all” QA model in
which users can analyze their source code with a set of predefined measures. This is an
additional impediment for teams to use SonarQube to apply a customized QA model
within their context, as it requires time and expertise. To apply QA within agile, a tail‐
ored set of metrics has to be used [9, 10].

3 The Case Study

The objective of our case study is to understand if the continuous application of Sonar‐
Qube, tailored to an agile development process (as suggested in [9]), helps to reduce the
number of injected code smells without influence the developers’ productivity and if it
helps developers to learn how to avoid code smells in the future.

According to our expectation, we formulate the goal of the study as follows:

analyze the continuous application SonarQube
for the purpose of evaluating and comparing
with respect to applicability and the code smells awareness
from the point of view of the developers
in the context of agile software development.

Towards a Lean Approach to Reduce Code Smells Injection 301

3.1 Data Collection Methods

The case study targets developers with at least three years of development experience.
We aim at collecting data from developers alongside existing programming exercises
in existing workshops, during the XP2016 conference.

The data will be collected in two steps: (1) during the development process (2) at
the end of the development process.

Before the beginning of a coding session, we will provide the access to our tail‐
ored SonarQube platform. Our researchers will configure the platform for the
projects to be developed, to avoid adding any extra task to the participants. More‐
over, for those who accept to track their development activities, we will also install
a tool we developed [8] that simply logs the current application on focus. Using this
tool, we track the time spent by the developer per application and the time spent
reading our reports. We will ask to manually track the time needed to check the
report to those who prefer to not install our tool.

During the development, we will ask participants to commit the source code related
to the development of a specific user story, reporting the user-story-id number. After the
commit, the platform will present a short report with the list of code smells introduced
in the current commit and the list of all previously introduced code smells. For usability
reasons, we will also provide a printed version of the report to the developers who prefer
to not switch to SonarQube to see the reports. Developers will be free to decide if the
code smells should be removed or not.

To understand what participants think about our approach, we will distribute a ques‐
tionnaire at the end of the development process. To answer this question, we will collect
the time overhead needed to read and understand the results provided by the tools and
the opinions of the participants by means of the Technology Acceptance Model [5],
collecting the metrics listed below.

All statements will be evaluated based on a 5-point ordinal Likert scale with the
following options: 1 (strongly disagree), 2 (disagree), 3 (neither agree nor disagree), 4
(agree), 5 (strongly agree).

Perceived usefulness: measures the degree to which the participant considers the
approach useful.

• “I learned which kind of code smells I usually introduce in the source code.”
• “The report pointed out code smells I was not aware of.”
• “The identified code smells do not make sense.”
• “The effort required to analyze the report is too high compared to the provided

benefits.”

Perceived understandability: measures the effort needed by the subject to understand
the approach built or whether the participants will need to exert little effort to understand
the relationship with the system concepts.

• “It was easy for me to understand how the approach works.”

Perceived easiness: measures the degree to which the subject believes that he or she
was able to make project decisions easier than without the approach.

302 D. Taibi et al.

• “It was easy for me to decide to remove the code smell or not, based on the infor‐
mation provided by the tool.”

• “It was easy for me to identify the code smell.”
• “After using the tool I was able to remember previous code smells and how to not

introduce them anymore.”

Self-efficacy by applying the technique.

• “The approach helped me to increase my productivity reducing refactoring time.”

3.2 Data Analysis
For our fist research question (RQ1), we will analyze separately the results for the
participants who will install our window tracking tool to calculate the time spent on each
window with those who will report the time by manually. Then after statistical tests to
check data normality, we will analyze the code smells trend in each commit, to under‐
stand the percentage of time spent on the report and on developing.

Q2 will be analyzed first performing a descriptive analysis of the collected data and
then with a One-Sample Wilcoxon Signed-Rank test for comparing the obtained
medians to the hypothesized median (α = 3). Moreover, to make sure that the statements
on the given scale will measure the same underlying assumption, we will perform a
reliability test by calculating the Cronbach’s α reliability measure.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Fontana, F.A., Braione, P., Zanoni, M.: Automatic detection of bad smells in code: an
experimental assessment. J. Object Technol. 11(2), 5:1–38 (2012)

2. Hampp, T.: A cost-benefit model for software quality assurance activities. In: Proceedings of
the 8th International Conference on Predictive Models in Software Engineering (PROMISE
2012), pp. 99–108. ACM, New York (2012)

3. Kamp, P.: Quality software costs money–heartbleed was free. Commun. ACM 57(8), 49–51
(2014)

4. Diaz-Ley, M., Garcia, F., Piattini, M.: Implementing a software measurement program in
small and medium enterprises: a suitable framework. IET Softw. 2(5), 417–436 (2008)

5. Caldera, G., Rombach, H.D., Basili, V.: Goal question metric approach. In: Encyclopedia of
Software Engineering, pp. 528–532. Wiley, New York (1994)

Towards a Lean Approach to Reduce Code Smells Injection 303

http://creativecommons.org/licenses/by-nc/4.0/

6. Venkatesh, V., Davis, F.: A theoretical extension of the technology acceptance model: four
longitudinal field studies. Manage. Sci. 46(2), 186–204 (2000)

7. Basili, V.R., Caldiera, G., Rombach, D.H.: The experience factory. In: Encyclopedia of
Software Engineering–2, Volume Set, pp. 469–476. Wiley (1994)

8. Janes, A.: Squirrel: an architecture for the systematic collection of software development data
in microenterprises to support lean software development. In: International Conference on
Software and System Process (ICSSP 2015), New York, USA, pp. 171–172 (2015)

9. Davis, C.W.H.: Agile Metrics in Action: Measuring and Enhancing the Performance of Agile
Teams, 1st edn. Manning Publications Co., Greenwich (2015)

10. Lavazza, L., Morasca, S., Taibi, D., Tosi, D.: Predicting OSS trustworthiness on the basis of
elementary code assessment. In: 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2010) (2010)

304 D. Taibi et al.

Doctoral Symposium Papers

Towards a More User-Centred Agile
Development

Silvia Bordin(B)

Department of Information Engineering and Computer Science,
University of Trento, via Sommarive 9, 38123 Trento, Italy

silvia.bordin@unitn.it

Abstract. The integration of user-centred design and Agile devel-
opment is becoming increasingly common in companies and appears
promising. However, it may also present some critical points, or com-
munication breakdowns, which manifest in working practices. A solution
is likely to be found in a supportive organisational context: in this sense,
communication breakdowns can become focal points to drive action and
decision for establishing an organisational environment acknowledging
the value of user involvement and actively endorsing it also with the cus-
tomer.

Expected graduation year: 2017.
Supervisor: prof. Antonella De Angeli, Department of Information
Engineering and Computer Science, University of Trento, Italy.
Email: antonella.deangeli@disi.unitn.it

1 Motivation

This research proposal aims at addressing the growing interest in the integration
of Agile methodologies with user-centred design (UCD), with the goal of achiev-
ing a more holistic software engineering approach [14]. In fact, available literature
gathers a rich collection of experience reports highlighting several points in com-
mon between the two, but also several calls for a more systematic convergence
of them.

On the one hand, in fact, Agile methodologies do not explicitly address usabil-
ity or user experience (UX) aspects in their understanding of the development
process, although valuing customer satisfaction [17]. Yet, a carefully designed UX
can provide an advantage over competing products [9], giving “positive effects on
both system success and user satisfaction” [10]. On the other hand, UCD does
not explicitly address how implementation should be performed, despite needing
to ensure that no “design drift” [14] occurs. Agile methodologies, popularised by
their intrinsic embracing of change and constant involvement of the customer in
the process [7], appear as a suitable match to this.

c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 307–311, 2016.
DOI: 10.1007/978-3-319-33515-5 31

308 S. Bordin

2 Related Work

User-centred design (UCD) is an umbrella term used to denote a set of tech-
niques, methods, procedures that places the user at the centre of an iterative
design process [13]. Since the benefits of involving users in systems design are
widely acknowledged [1,10], several attempts at integrating UCD with Agile
have emerged in recent years [9,14], leveraging on the large common ground
that the two approaches seem to share. However, literature also highlights some
divergences between them, or communication breakdowns [3], i.e. examples of
disruptions due to the sudden ineffectiveness of existing working practices:

– in UCD, user involvement can range from informative, to consultative, to
participative [8]; in Agile, the emphasis is put on the customer instead, who
acts as a representative of users, but whose meaningfulness in this sense is
often questioned (e.g. [17]);

– the role of documentation may be interpreted differently: Agile methodologies
encourage mostly face-to-face communication [2], while UCD also relies on
artefacts to record design rationales [15];

– there are different opinions about whether UCD and Agile should proceed in
parallel (e.g. [18]) or should be merged into the same process (e.g. [11]), and
to the amount of design to be performed before implementation [11].

3 Methodology

The research process has combined theoretical grounding and action research,
performed in two main field studies. The first field study concerned a social
innovation R&D project where UCD and Agile were both adopted and where
the author served as interaction designer. This context provided several insights
about critical aspects, or communication breakdowns [3], that may hamper the
integration of the two approaches [4]; a subsequent literature review confirmed
that such breakdowns had already emerged previously, but had not been sys-
tematised yet. The second field study, performed in a software and interaction
design company, allowed to further reinforce and extend the framework defined
by identified breakdowns, turning these into focal points for driving decision in
companies, facilitating communication between designers and developers, and
supporting the management in the construction of a favourable context for a
fruitful integration of UCD and Agile [5].

During both studies, data were collected from a number of sources, in par-
ticular through interview studies, ethnographically-inspired personal observa-
tions [12], and investigation of artefacts used to support working practices. These
qualitative data were then thematically analysed [16] and resulting findings were
supplemented with a more top-down stream of research, i.e. a literature review.

4 Results

The two case studies described above have led to the identification and validation
of a framework constituted by the following four communication breakdowns [4,5].

Towards a More User-Centred Agile Development 309

User involvement. Its perception may vary both between designers and devel-
opers, and between the company and the customer: in any case, involved parties
should explicitly share the same understanding of its extent.

Documentation. In co-located teams, besides tracing history and design ratio-
nales, documentation can help balance the power relationship with the customer,
shielding the company from unsustainable changes in requirements.

Synchronisation. If the team is not co-located, or has to incorporate a large
amount of feedback, balancing the paces of design and development can be tricky,
as it is not always possible or sufficient to rely on face-to-face communication.

Task ownership. While it is advisable that the whole team shares a common
language, the responsibility over design tasks should be clear and endorsed by
the management, in order to fully support the added value that UCD can provide
to the product.

5 Future Agenda

A third field study is under way in an IT company with no UX expert, but need-
ing to design and develop a software interface in a few months. Weekly workshops
are being run drawing inspiration from design thinking [6]; the development team
is exposed to tools deriving from both UCD and Agile (e.g. personas, use-case
diagrams, backlogs) in order to sharpen their understanding of the intended user
and subsequently of the functionalities to offer, while keeping in mind the issues
represented by identified communication breakdowns. The goal is to assist the
working process of the team to assess whether and how their understanding of
the user evolves and whether the introduction of mentioned tools may have an
observable impact on the quality of the resulting interface.

6 Publication Plan

Envisioned venues for future publications span between the human-computer
interaction and the software engineering communities; given the industry-
oriented nature of present work, particular interest is paid to conferences bring-
ing together researchers and practitioners. Targeted venues include HCSE 2016
(International Working Conference on Human-Centred Software Engineering),
XP 2017, CSCW 2017 (Conference on Computer-Supported Cooperative Work
and Social Computing) and its European homologous ECSCW 2017. Thesis
defense is foreseen for summer 2017.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

310 S. Bordin

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Ardito, C., Buono, P., Caivano, D., Costabile, M.F., Lanzilotti, R.: Investigating
and promoting UX practice in industry: an experimental study. Int. J. Hum Com-
put Stud. 72(6), 542–551 (2014)

2. Beck, K., et al.: Manifesto for Agile Software Development. http://www.
Agilemanifesto.org

3. Bjørn, P., Ngwenyama, O.: Virtual team collaboration: building shared meaning,
resolving breakdowns and creating translucence. Inf. Syst. J. 19(3), 227–253 (2009)

4. Bordin, S., de Angeli, A.: Communication breakdowns in the integration of user-
centred design and Agile development. In: Cockton, G., Larusdottir, M.K., Gre-
gory, P., Cajander, A. (eds.) Integrating User Centred Design in Agile Develop-
ment. Springer, London (2016, to appear)

5. Bordin, S., de Angeli, A.: Focal points for a more user-centred Agile development.
In: Proceedings of XP (2016, to appear)

6. Brown, T.: Design thinking. Harvard bus. rev. 86(6), 84 (2008)
7. Cajander, Å., Larusdottir, M., Gulliksen, J.: Existing but not explicit - the user

perspective in scrum projects in practice. In: Kotzé, P., Marsden, G., Lindgaard,
G., Wesson, J., Winckler, M. (eds.) INTERACT 2013, Part III. LNCS, vol. 8119,
pp. 762–779. Springer, Heidelberg (2013)

8. Damodaran, L.: User involvement in the systems design process-a practical guide
for users. Behav. inf. Technol. 15(6), 363–377 (1996)

9. Jurca, G., Hellmann, T.D., Maurer, F.: Integrating Agile, user-centered design: a
systematic mapping and review of evaluation and validation studies of Agile-UX.
In: Agile Conference (AGILE), pp. 24–32 (2014)

10. Kujala, S.: User involvement: a review of the benefits and challenges. Behav. inf.
technol. 22(1), 1–16 (2003)

11. Memmel, T., Gundelsweiler, F., Reiterer, H.: Agile human-centered softwareengi-
neering. In: Proceedings of the 21st British HCI Group Annual Conference on
Peopleand Computers: HCI... but not as we know it-Volume 1, British Computer
Society, pp. 167–175 (2007)

12. Neustaedter, C., Sengers, P.: Autobiographical design in HCI research: designing
and learning through use-it-yourself. In: Proceedings of the Designing Interactive
Systems Conference, pp. 514–523. ACM, June 2012

13. Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human-Computer
Interaction. John Wiley & Sons, New York (2011)

14. Salah, D., Paige, R.F., Cairns, P.: A systematic literature review for agile devel-
opment processes and user centred design integration. In: Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineering,
p. 5. ACM (2014)

15. Sharp, H., Robinson, H.: Integrating user-centred design and software engineering:
a role for extreme programming? (2004)

16. Smith, C.P.: Motivation and Personality: Handbook of Thematic Content Analysis.
Cambridge University Press, New York (1992)

http://www.Agilemanifesto.org
http://www.Agilemanifesto.org

Towards a More User-Centred Agile Development 311

17. Sohaib, O., Khan, K.:Integrating usability engineering and agile software develop-
ment: a literature review. In: International Conference on Computer Design and
Applications (ICCDA), vol. 2, pp. V2-32–V2-38. IEEE (2010)

18. Sy, D.: Adapting usability investigations for Agile user-centered design. J. Usability
Stud. 2(3), 112–132 (2007)

Responding to Change: Agile-in-the-large,
Approaches and Their Consequences

Kelsey van Haaster(B)

Charles Sturt University, Bathurst, NSW, Australia
kvanhaaster@csu.edu.au

http://www.csu.edu.au/

Abstract. Empirical studies covering Agility at the organisational scale
are few in number. Organisations seeking clarity about the efficacy of
any approach to business Agility must turn to the commercial literature
for information and guidance. As a whole, research into Agile Software
Development suffers from a lack of rigour and theoretical grounding, a
problem also evident in Information Systems research in general. These
issues have led to recent calls for a clear research agenda for scaling
Agility and for the quality of contributions to be addressed. Diffusions
research has a long history in a wide range of domains and provides a
clear theoretical framework for this qualitative PhD study.

Keywords: Scaled agility · Transformation · Diffusions research

1 Statement of the Research Problem

Over the last few years, Australian organisations have become increasingly inter-
ested in the concept of business Agility, which appears to offer a way forward
in an increasingly disrupted and digital world [1]. However, those embarking on
this path have found that the process of becoming an Agile organisation is not
straightforward. Large scale organisational transformation is complex, expensive
and inherently risky with few successful examples. Organisational governance
teams find that accessing high quality, independent advice is a significant chal-
lenge. This contrasts with the extensive body of academic literature and prac-
tical experience through which we understand Agility from the software team
perspective.

In order to progress understanding and support further research into Agility
and organisational transformations, this PhD study will seek to answer the
following overarching question:

Expected graduation year - December 2017.
Primary Supervisor: Associate Professor Oliver Burmeister, Charles Sturt

University, Faculty of Business, School of Computing and Mathematics, Bathurst
Campus, NSW, Australia; E-mail: oburmeister@csu.edu.au; Phone: 61 2 6338 6233.

Associate Supervisor: Dr Padma Nathan, Charles Sturt University, Faculty of
Business, School of Computing and Mathematics, Wagga Wagga Campus, NSW,
Australia, E-mail: pnathan@csu.edu.au; Phone: 61 2 6933 2532.

c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 312–315, 2016.
DOI: 10.1007/978-3-319-33515-5 32

Responding to Change: Agile-in-the-large, Approaches 313

How should a given organisation evaluate the applicability of existing and
emergent approaches to implementing or scaling Agile, based on their goals
for such an implementation and the environment in which the organisation is
operating?

2 Motivation, Contribution and Originality
of the Proposed Study

Recently a lack of theoretical underpinnings for Agile research has been high-
lighted by researchers as a cause for concern [2,3]. Criticisms include; a lack
of empirical support for claims about the efficacy of Agile methods; no unified
framework to guide the various streams of research; and a lack of methodological
and theoretical rigour [4]. Addressing these concerns results in the selection of
Diffusion of Innovations (DOI) [5] as a suitable theoretical framework to guide
the research.

DOI theory [5] has a strong theoretical basis and has been widely used to
explain the diffusion process across a broad range of domains and disciplines
[6]. Within these traditions, studies have investigated different aspects of the
diffusion process, including the consequences of innovations, this final aspect
contributing less than 1 % of diffusion studies and will be key vehicle through
which the results will be framed [5].

As an applied discipline, Information Systems research should result in find-
ings that have both a theoretical and a practical application [7]. This latter
requirement will be addressed by the development of a taxonomy allowing organ-
isations to position themselves according to their organisational characteristics.
The theoretical contribution of the study will arise from the application of (DOI)
[5] to an emergent area, business Agility. This will serve the dual purpose of test-
ing the applicability of the theory to the domain and at the same time offers a
repeatable, verifiable model through which to support further research, develop-
ment of the existing theory, or the generation of new theory [8].

3 Brief Literature Review

Since 2001 much of the early focus and research into Agility has been tightly
focused on the practices and processes of Agile software development teams.
A number of researchers have synthesised and thematically categorised this
extensive body of work [2,9–11]. These meta-analyses suggest that the exist-
ing body of work is focussed on a subset of practice based topics.

Whilst software Agility focusses on the practices contributing to software
and product development, business Agility is a broader concept. In this regard
Agile practices are often combined with the ideas behind Lean thinking [12]
which share a close philosophical alignment. A number of high profile digital
organisations have successfully demonstrated Agility as a whole of business app-
roach [13]. One of the best know of these is Spotify though its own particular

314 K. van Haaster

model of scaled Agility, generally known as the Spotify Model [14]. Organisa-
tions that have attempted to transform to an Agile business model have found
the landscape replete with complex challenges [15]. A relatively small number of
case studies documenting the experiences of such organisations demonstrate this
[16,17]. A more recent development of interest to the business community are a
number of frameworks which claim to address some of these issues and provide
a transformation pathway to business Agility [18–21].

4 Description of Proposed Research Methodology

A two-part adaptive case study design is proposed; part one will focus on the
development of a narrative description of the organisational characteristics and
innovation diffusion process for each case. Multiple sources of evidence will be
used to generate thick descriptions of each case. Part two of the study will
examine of the consequences of the diffusion approach chosen by an organisation.
For each case, this will be guided by the factors identified in part one of the study
and will focus on: positive and negative outcomes, the role of change agents and
the extent to which an organisations social structure and socioeconomic gaps
have been impacted.

5 Results Achieved so Far (if Any)

Ethics approval for the study has been granted and initial data collection is
currently underway.

6 Plans for Publication of the Proposed Study
or Set of Studies

The study will be published as a PhD thesis.

7 Future Agenda

As both a researcher and a practitioner in this field it is hoped that further pub-
lication of the outcomes of this study will lead to the development of considered
approaches towards organisational transformation. The study may also provide
a sound basis for ongoing research into specific aspects of business Agility.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Responding to Change: Agile-in-the-large, Approaches 315

References

1. Papatheocharous, E., Andreou, A.S.: Evidence of agile adoption in software orga-
nizations: an empirical survey. In: McCaffery, F., O’Connor, R.V., Messnarz, R.
(eds.) EuroSPI 2013. CCIS, vol. 364, pp. 237–246. Springer, Heidelberg (2013)

2. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012)

3. Stavru, S.: A critical examination of recent industrial surveys on agile method
usage. J. Syst. Softw. 94, 87–97 (2014)

4. Torgeir, D., Nils, B.M., Dingsoyr, T., Moe, N.B., Dingsøyr, T., Moe, N.B.: Research
challenges in large-scale agile software development. ACM SIGSOFT Softw. Eng.
Notes 38(5), 38–39 (2013)

5. Rogers, E.M.: Diffusion of Innovations, 5th edn. The Free Press, New York (2003)
6. Börjesson, A., Martinsson, F., Timmer̊as, M.: Agile improvement practices in soft-

ware organizations. Eur. J. Inf. Syst. 15(2), 169–182 (2006)
7. Hart, D.N., Gregor, S.D.: Information Systems Foundations: Theory Building in

Information Systems. Australian National University Press, Canberra (2012)
8. Eisenhardt, K.M.: Building theories from case study research. Acad. Manage. Rev.

14(4), 532–550 (1989)
9. Hasnain, E.: An overview of published agile studies: a systematic literature review.

In: Proceedings of the 2010 National Software Engineering Conference, Rawalpindi,
Pakistan, pp. 3:1–3:6. ACM (2010)

10. Chuang, S.W., Luor, T., Lu, H.P.: Assessment of institutions, scholars, and con-
tributions on agile software development (2001–2012). J. Syst. Softw. 93, 84–101
(2014)

11. Hummel, M.: State-of-the-art: a systematic literature review on agile information
systems development. In: 2014 47th Hawaii International Conference on System
Sciences, pp. 4712–4721 (2014)

12. Lean Systems Society (2012). http://leansystemssociety.org/credo/
13. Power, K.: The agile office: experience report from cisco’s unified communications

business unit. In: Agile Conference (AGILE), pp. 201–208 (2011)
14. Vlietland, J., van Vliet, H.: Towards a governance framework for chains of Scrum

teams. Inf. Softw. Technol. 57, 52–65 (2015)
15. Houston, D.X.: Agility beyond software development. In: Proceedings of the 2014

International Conference on Software and System Process - ICSSP 2014, pp. 65–69.
ACM, Nanjing (2014)

16. Van Waardenburg, G., Van Vliet, H.: When agile meets the enterprise. Inf. Softw.
Technol. 55(12), 2154–2171 (2013)

17. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremen-
tal software development approach with agile practices: An industrial case study.
Empirical Softw. Eng. 15(6), 654–693 (2010)

18. Ambler, S.: Enterprise Unified Process (EUP), Strategies for Enterprise Agile
(2014)

19. Ambler, S., Lines, M.: The Disciplined Agile Framework (2014)
20. Larmen, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large,

Multisite, and Offshore Product Development with Large-Scale Scrum, 1st edn.
Addison-Wesley Professional, Boston (2010)

21. SAFe Lean-Agile Principles Scaled Agile Framework

http://leansystemssociety.org/credo/

Hybrid Effort Estimation of Changes
in Agile Software Development

Binish Tanveer(B)

Fraunhofer Institute for Experimental Software Engineering,
Fraunhofer Platz-1, 67663 Kaiserslautern, Germany

binish.tanveer@iese.fraunhofer.de

Abstract. Unlike traditional software development approaches, Agile
embraces change. The resulting dynamism of requirements makes it chal-
lenging to estimate effort accurately. Current practice relies on expert-
judgment that can be biased, labor intensive and inaccurate. Therefore,
a systematic yet lightweight effort estimation methodology is needed to
support expert judgment and improve its effectiveness. Such an approach
will utilize the quantification of the impact of a requirement on software
artifacts potentially affected by it. It will further introduce an explicit
consideration of effort drivers that contribute to effort overhead. The aim
is to synthesize research from three often orthogonal areas of research: (1)
change impact analysis, (2) effort estimation (model and expert driven)
and (3) software visualization. Hence, resulting in a hybrid methodology
with tool support that incorporates expert knowledge, change impact
analysis and enables an explicit consideration of cost drivers by experts
to improve the effectiveness of effort estimation process.

Keywords: Effort estimation · Hybrid · Expert judgment · Agile

1 Research Problem

Effort estimation in Agile relies on expert judgment, which is labor intensive, can
be biased and inaccurate. Moreover it does not consider the data e.g. quantifi-
cation of the impact of a change on the existing artifacts, as well as an explicit
consideration of effort drivers contributing to effort overhead that affects the
accuracy of estimates.

2 Motivation

In software development, the requirements typically cannot be completely spec-
ified upfront and are developed as the project progresses. Therefore, the effort
estimates need to be adjusted for every sprint in order to deliver project incre-
ment in time-boxed release. In such an environment, systematic effort estimation

Supervisor: Prof. Dr. Dr. h. c. H. Dieter Rombach, Email: dieter.rombach@iese.
fraunhofer.de

c© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 316–320, 2016.
DOI: 10.1007/978-3-319-33515-5 33

Hybrid Effort Estimation of Changes in Agile Software Development 317

is challenging. While estimating the size of the change, its impact on other arti-
facts and context specific effort drivers need to be considered.

Currently, effort estimation in this context relies heavily on human judgment.
A cross-functional team of experts estimate by consensus how much effort a
certain change will entail. This approach is not only labor intensive but also
has limited prediction accuracy due to the use of limited information (subjective
judgment) and human judgment bias (individual and group effects).

Moreover, it does not objectively consider the potential impact of a change
on existing software artifacts which makes effort estimates obtained, less reli-
able. In Agile development, the strict distinctions between various phases of
software development are blurred. With cross functional teams and a shared
responsibility for the product instead of individual artifacts, software develop-
ment also includes e.g. testing and user-documentation beyond just writing the
source code. Thus, an effort estimate has to consider the impact of a change
on various software artifacts e.g. regression testing at unit and functional level
is now often considered part of development teams responsibility as part of a
sprint.

Therefore, an improvement potential exists with respect to systematic effort
estimation in this environment and marks the contribution to the body of
knowledge.

This thesis proposes combining expert knowledge with quantitative data i.e.
quantification of the volume/size of change, and its impact on other artifacts.
Moreover, the explicit consideration of the most relevant effort drivers that con-
tributes to the effort overhead. This data and expert knowledge will constitute
towards an effort model that will support the experts in making more accu-
rate estimates. Furthermore, the organizational estimation knowledge including
effort model will be stored for future reuse. This will help in mitigating the risk
of estimation performance drop due to staff turnover as well as reducing the
effort of expert involvement each time estimates are required.

3 Related Work

Three main related areas are briefly discussed below:

3.1 Effort Estimation Methods

In traditional software development, numerous effort estimation methods have
been proposed in research. These may be classified as [1]: Data-driven (model-
based, memory-based and composite) methods, (e.g. COCOMO I, Case-based
reasoning and COCOMO II). Expert-based methods like Wideband Delphi,
Planning Game, Analytic Hierarchy Process. Hybrid methods like Expert-
COCOMO, Bayesian Belief Nets, and CoBRA R© [2].

Each of these methods claims to have addressed a problem in effort estima-
tion, however very few of them actually demonstrated the claims in industrial

318 B. Tanveer

setting. Also very few individual studies are found that address the effort esti-
mation specifically in the Agile context. Expert-based methods are found to be
the most used estimation method in Agile context but their estimation accu-
racy is hampered by inconsistencies and wishful thinking al. [3]. However, due
to the lack of evidence that model-based methods like COCOMO produce more
accurate estimates than expert judgment, the use of the former approach is
widespread [5]. None of the existing estimation methods (in traditional or Agile
development) so far have considered the quantification of the impact that a
change has on existing software artifacts. Further, explicit consideration of the
most relevant effort drivers is also not addressed in Expert-based methods. In
Data-driven methods, to collect and analyze these effort drivers a huge amount
of data and cost are required. The Hybrid methods, these effort drivers though
are considered, but need to be adapted to Agile context.

3.2 Techniques for Change Impact Analysis

A secondary study on change impact analysis [6] has identified 23 techniques
which are broadly based on dependency and traceability analysis. In the context
of this thesis, these techniques will be analyzed for their support in estimating
the impact of a change.

3.3 Tools for Visualizing Change Impact

To support experts in judging the impact of change, visualizations will be used.
For example, to show which software components will be effected by an added
functionality heat-maps can be created. Several of the techniques identified by
Bixinli et al. [6] have tool support which will be considered in this research.

4 Research Methodology

The aim of this thesis is to develop a data driven, light-weight hybrid effort
methodology supported with a prototype tool adapted to the Agile context.

In this regard, we need to understand and answer the following questions:

1. For what purpose do practitioners perform effort estimation (project bidding,
resource allocation, sprint planning, release planning etc.)?

2. For the various uses identified for effort estimation, what are the required and
current levels of estimate accuracy?

3. How is effort estimation currently performed (which methods, data and tools
are currently used)?

4. What support do practitioners need in their effort estimation tasks?
5. Which existing approaches for effort estimation are appropriate for an Agile

context?
6. How can existing approaches be adapted for the Agile context (e.g. identifying

a minimal set of effort drivers, identifying appropriate change impact analysis
methods, necessary tool support)?

Hybrid Effort Estimation of Changes in Agile Software Development 319

A literature review will be used to formulate and design further studies to
explore questions 1–4. A web-based survey will be used to generate a broader
understanding for the questions 1–3. While an exploratory case-study will be
done to explore in-depth the concerns in questions 1–4. A secondary study will
be conducted to answer question 5. Question 6 will be answered by utilizing the
findings from answering the other questions and existing secondary studies on
the related topics. Answering question will help to achieve the overall aim of the
thesis.

This thesis work is being conducted in close collaboration with an industrial
partner and the resulting solution will be evaluated in their company.

5 Results Achieved so Far

– An exploratory case study was conducted in a large software company to
investigate and understand their effort estimation process. The study revealed
the purpose of doing estimation, estimation techniques used and effort drivers
that affect effort estimation accuracy. It further emphasized the need of tool
support for experts when making estimates.

– Results of existing secondary studies on effort estimation in Agile development
have been aggregated and will be used to design a web-based survey.

6 Publication Plan

The plan is to publish the results obtained from the exploratory case study con-
ducted in a large software company. Moreover, the overall methodology including
all the aspects i.e. change impact analysis, effort drivers and the underlying effort
model. Finally the evaluation of the resulting methodology and supporting tool
in an industrial setting are also planned to be published.

7 Future Agenda

Firstly designing and execution of an industrial survey to investigate the effort
estimation practice. Secondly, existing secondary studies on effort estimation
in traditional development have been identified. They will be analyzed with
respect to their strengths and limitations, adaptability and extendibility to Agile
context. Thirdly, the identification of variables to be used in estimation model
for generating estimates with error and identification of requirements regard-
ing quantification of impact of change. Fourthly, secondary studies on change
impact analysis have been identified. These tools and techniques identified in
these will be investigated for the purpose of change impact quantification. Lastly,
the identification of requirements for tool support and the evaluation of both the
resulting methodology and tool in an industrial setting.

320 B. Tanveer

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits any noncommercial use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, a link is provided to the Creative
Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s
Creative Commons license, unless indicated otherwise in the credit line; if such material
is not included in the work’s Creative Commons license and the respective action is
not permitted by statutory regulation, users will need to obtain permission from the
license holder to duplicate, adapt or reproduce the material.

References

1. Trendowicz, A., Jeffery, R.: Foundations and Best Practice Guidelines for Success.
Springer, Heidelberg (2014)

2. Briand, L.C., Emam, K.E., Bomarius, F.: Cobra: a hybrid method for software
cost estimation, benchmarking, and risk assessment. In: Proceedings of the 20th
International Conference on Software Engineering, IEEE Computer Society, pp.
390–399 (1998)

3. Jørgensen, M., Boehm, B.W., Rifkin, S.: Software development effort estimation:
Formal models or expert judgment? IEEE Software 26(2), 14–19 (2009)

4. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost
models for future software life cycle processes: COCOMO 2.0. Ann. Softw. Eng.
1(1), 57–94 (1995)

5. Molkken, K., Jrgensen, M.: A review of software surveys on software effort esti-
mation. In: ISESE 2003, Proceedings of the 2003 International Symposium on
Empirical Software Engineering, pp. 223–230. IEEE (2003)

6. Li, B., Sun, X., Leung, H., Zhang, S.: A survey of code-based change impact analysis
techniques. Softw. Test. Verif. Reliab. 23(8), 613–646 (2013)

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Planned Research: Scaling Agile Practices
in Software Development

Kathrine Vestues(✉)

Department of Computer and Information Science,
Norwegian University of Science and Technology, 7465 Trondheim, Norway

kathrine.vestues@idi.ntnu.no

Abstract. Agile methods are increasingly being applied to large scale and
distributed software development. While there is much evidence to support the
efficiency of agile practices in small co-located team, less is known about the
applicability of these practices to large scale projects. This paper gives an outline
of planned research on the scaling of retrospectives. By using retrospectives as
an empirical lens I will try to gain insight into the limitations and benefits of agile
practices in large scale and distributed development.

Keywords: Agile · Large scale agile · Distributed agile · Retrospectives

1 Introduction

Agile methods were originally seen as best suited for small co-located teams with easy
access to users and business experts, developing non-life-critical systems [1]. However,
the good results achieved in small, co-located teams has led organizations to apply agile
practices and principles to large scale and distributed software projects. Several papers
and surveys show that both practitioners and researchers recognize a need for further
knowledge about scaling of agile practices – a need that is further emphasized by the
apparent gap in research revealed by a preliminary literature review.

This paper gives an outline of planned research on the scaling of retrospectives. By
using retrospectives as an empirical lens, I hope to contribute to a better understanding
of how agile practices scale in distributed and large projects.

The next section contains a short overview of some of the literature in the field, tying
it to the research proposed in this paper. I will then go on to present the research problem,
research methods and future agenda.

2 Background

Early research on agile methods focused mainly on implementation and adaption of agile
practices in small, co-located teams [2]. As the use of agile methods became more
popular, and the number and quality of studies increased [3], the research scope grad‐
ually expanded to include use of agile in new contexts. Two such contexts are agile in
distributed teams, and agile in large scale projects.

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 321–325, 2016.
DOI: 10.1007/978-3-319-33515-5_34

2.1 Distributed Agile Development

In most multi-team project settings distribution will be an inevitable side effect. While
team members often are co-located, the different teams tend to be distributed across
multiple buildings or even countries. When looking at large scale agile, it will therefore
be relevant to look at how practices scale across distances, as well as across teams.

Several papers have been written about distributed agile. Among the topics treated
are pair programming in globally distributed projects [4], whether distributed develop‐
ment can be agile [5], and inter team coordination in large scale Scrum [6, 7]. Little
seems to have been written about scaling of retrospectives across distributed teams.

2.2 Large Scale Development

At the XP2010 conference, Freudenberg and Sharp [8] compiled a list of “top ten burning
questions” based on feedback from practitioners. Agile and large projects were on top
of the list. Dingsøyr and Moe [9] summarize the large scale agile research challenges
that were discussed at the International Conference on Agile Software Development
(XP2013). Among the 8 topics listed, two of them concern scaling of practices: “Which
agile practices scale and which do not? Why and when do agile practices scale?” and
“How can agile practices be adopted efficiently in large projects?”. Following the
taxonomy given by Dingsøyr et al. [10], project size is determined by the number of
team. A project is considered large if it has 2–9 teams.

The literature review revealed several papers on large scale agile [7, 11, 12], but
none discussing the scalability of retrospectives.

2.3 Retrospective Practices

The secret to more successful project management is learning from the past [13]. Dybå
et al. also emphasis the importance of reflection and learning in the IEEE special issue
on reflective practices [14]. Retrospectives are one way of achieving such reflection and
learning.

The term “retrospective” was first used by Kerth [15], but was soon adopted by the
agile community. Being a key practice within agile methods, the retrospective has been
given much attention by both practitioners and researchers. Several books offer practical
advice on planning and running retrospectives [16, 17]. There has also been done
research on specific retrospective techniques [18] and how retrospectives contribute to
the software improvement processes in agile development [19]. Little research has been
dedicated to retrospectives in large scale and distributed projects.

The interest of practitioners and researchers in scaling of agile practices, and the lack
of research on retrospectives in large scale projects makes the research questions
presented in the next chapter highly relevant.

322 K. Vestues

3 Research Problem

The (main) goal of the research is to contribute to a better understanding of how agile
practices can give value in large scale software development.

To reach an answer, I will look into the following underlying research questions in
detail:

Research question 1: How can retrospectives be adapted to suite large scale and
distributed projects?

Research question 2: How does the retrospective practice contribute to process
improvement and sharing of knowledge across teams?

4 Research Methodology

The research will be done using interpretive case studies, divided into 3 phases:

Qualitative survey: To indicate relevance of the above research questions, I will start
by performing interviews with 5–6 key informants. These informants will be chosen
among project managers and Scrum masters in large scale, distributed projects in public
and/or private sector in Norway.

Exploratory interpretative case studies: Initially, 2 cases will be chosen; one normal
and one critical case. Data will be gathered through observation and interviews of
projects members from different organizational levels.

Descriptive interpretative case studies: Not yet specified.

5 Dissertation and Publication

• Two workshop article synthesising the findings from literature review
• Two conference article on the preliminary findings from the case studies
• One journal article at the end of the study reporting on the full case studies

6 Future Agenda

Future work will be to select a theoretical foundation, conduct field studies and analyse
and communicate the results.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

Planned Research: Scaling Agile Practices in Software Development 323

http://creativecommons.org/licenses/by-nc/4.0/

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Williams, L., Cockburn, A.: Guest Editors’ introduction: agile software development: It’s
about feedback and change. Computer 6, 39–43 (2003)

2. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9), 833–859 (2008)

3. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
Towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)

4. Flor, N.V.: Globally distributed software development and pair programming. Commun.
ACM 49(10), 57–58 (2006)

5. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Commun. ACM 49(10), 41–46 (2006)

6. Lee, S., Yong, H.-S.: Distributed agile: project management in a global environment.
Empirical Softw. Eng. 15(2), 204–217 (2010)

7. Paasivaara, M, Lassenius, C, Heikkila, V.T.: Inter-team coordination in large-scale globally
distributed scrum: Do scrum-of-scrums really work? In: 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 235–238. IEEE
(2012)

8. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practitioners. IEEE
Softw. 27(5), 8–9 (2010)

9. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.
ACM SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)

10. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What is large in large-scale? A Taxonomy of Scale for
Agile Software Development. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M., Männistö, T.,
Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892, pp. 273–276. Springer,
Heidelberg (2014)

11. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP
2014. LNBIP, vol. 199, pp. 1–8. Springer, Heidelberg (2014)

12. Moe, N.B., Šmite, D., Šāblis, A., Börjesson, A.-L., Andréasson, P.: Networking in a large-
scale distributed agile project. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2014, p. 12. ACM (2014)

13. Nelson, R.R.: Project retrospectives: evaluating project success, failure, and everything in
between. MIS Q. Executive 4(3), 361–372 (2005)

14. Dyba, T., Maiden, N., Glass, R.: The reflective software engineer: reflective practice. IEEE
Softw. 31(4), 32–36 (2014)

15. Kerth, N.L.: Project Retrospectives: A Handbook for Team Reviews. Dorset House
Publishing, New York (2001)

16. Derby, E., Larsen, D., Schwaber, K.: Agile Retrospectives: Making Good Teams Great.
Pragmatic Bookshelf, Raleigh (2006)

17. Kua, P.: The retrospective handbook (2013). E–book https://leanpub.com/the-retrospective-
handbook

324 K. Vestues

https://leanpub.com/the-retrospective-handbook
https://leanpub.com/the-retrospective-handbook

18. Lehtinen, T.O.: Development and evaluation of a lightweight root cause analysis method in
software project retrospectives. Aalto University (2014)

19. Salo, O.: Enabling Software Process Improvement in Agile Software Development Teams
and Organisations. VTT Publications, Espoo (2006)

Planned Research: Scaling Agile Practices in Software Development 325

Architecting Activities Evolution and Emergence in Agile
Software Development: An Empirical Investigation

Initial Research Proposal

Muhammad Waseem(✉) and Naveed Ikram

Riphah International University, Islamabad 44000, Pakistan
m.waseem@iiu.edu.pk, naveed.ikram@riphah.edu.pk

Abstract. This proposal is design to address the proposed research work on agile
software development and architecture co-existence. The objective of this
research is to answer how architecting activities emerge and evolve with agile
software development in industry. The architecting activities are architectural
analysis (AA), architectural synthesis (AS), architectural evaluation (AE), archi‐
tectural implementation (AI), architectural maintenance and evolution (AME),
architectural recovery (AR), architectural description (ADp), architectural under‐
standing (AU), architectural impact analysis (AIA), architectural reuse (ARu) and
architectural refactoring (ARf). This research objective could achieve by using
multiple research methods. We are planning to use comprehensively report the
pure ‘state- of- practice’ for architecting activities in ASD from industry and
practitioners point of views. Therefore, we decided to use the case studies, survey
and semi structure interview as research methods. The result of this research work
can provide the baseline information for architecture evolution frameworks for
agile software development, challenges and solutions in ASD for SA activities,
expected evolvable dimensions of the software system, methods that may help
for minimizing the architectural and agile co-existence issues and architectural
technical debt in agile software development.

Keywords: Software architecture · Agile development · Architecting approach

1 Introduction

Agile methods widely accepted by the software organization in reaction of heavyweight
software development processes. Agile software development(ASD) respond to the
changes, people collaboration and working software instead of emphasizing on bureau‐
cratic and upfront planning [1]. Many classical software development activities can align
with agile software development such as requirements, architecting, coding, testing and
deployment. However, researcher have doubt that practitioners do not pay the sufficient
attention to architectural activities in agile software development [2, 3]. Software archi‐
tecture and agile related research reports two extreme views [4]: First, upfront design
and SA evaluation are highly time and effort consuming activities therefore you don’t
need to go with architecture centric activities, refactoring would help to resolve most of

© The Author(s) 2016
H. Sharp and T. Hall (Eds.): XP 2016, LNBIP 251, pp. 326–332, 2016.
DOI: 10.1007/978-3-319-33515-5_35

structural problems [2, 5]. Second, the proponent of SA is sure that the sound architec‐
tural practices (SA analysis, design, description or documentation) cannot be followed
completely in agile software development, which may effects on the project quality.
Naturally, a question arises then what happen with architecture in agile software devel‐
opment?

In recent years, a good number of studies have investigated the architectural related
challenges and solutions in agile software development [5–9]. These studies focus on
different perspective of software architecture for example a study of Boehm identify the
organizational and technical challenges that involved in integrating the traditional and
agile software development process [8, 10]. Acuna et al. reports agile methods do not
pay sufficient attention to the architecture centric activities as compares to traditional
process so that’s we could not found the significant guidance on SA activities in agile
context [11]. MA Baber identifies the architecture related challenges and issues which
agile teams could face. It has been observe that, architects should have the sound skills
and knowledge about implementation domain [12]. Boehm argues for hybrid approach
for agile architecting and development. According to him, combine the necessary char‐
acteristics from agile and plan driven development for projects implementation.

The aim of this research is to empirically investigate: how software architecture and
agile used in combination and how architecture emerge and evolve in agile software
development.

2 Problem Statement and Motivation

Software evolution may analyze through different ways; for example releases histories,
source code analysis and architecture analysis. This proposes research plan focus on
architecting activities evolution and emergence in agile software development. First,
software architecture provides the base to software system [13]. Second, the architecture
of software system presents the high level structure and behaviors of the system which
are expected to evolve with passage of time [14] and provide bases for evolution [15].
Thirdly, it is supposed to be agile and software architecture is proponent to each other.
For example, if teams spend too much time on software architecture it may possible
working software may delay. If teams pay little time to SA then the team may face high
risk of system failure (how much upfront). Fourth, SA and agile combination received
the significant consideration in recent years for research but there are very less number
of studies that consider the architecting activities emerge and evolve [16]. Therefore,
we decided to come up with following problem statement.

Problem statement: “How does architecting activities emerge and evolve in agile soft‐
ware development?”

Software architecture consists of numbers of activities that explain the process and stages
of software architecture. We have select following activities from systematic mapping
study [16] and formulated in a questions for our proposed research.

Architecting Activities Evolution and Emergence 327

RQ 1: How does an architectural significant requirement are identified and maintain
in agile software development?

RQ 2: How does architectural solutions are be provided for ASRs in agile software
development?

RQ 3: How does scenario base architectural evaluation (AE) is conducted in agile
software development?

RQ 4: How much detailed design is enough in agile software development?
RQ5: How does architecture emerge and evolve in agile software development?
RQ6: How does architecture maintain in agile software development?
RQ7: What are the possible benefits of architectural recovery (AR) in agile software

development in term of quality time and cost?
RQ8: What are most useful architectural views are being used in agile software

development and why?
RQ9: How does Architectural Understanding (AU) is used to comprehend the archi‐

tectural elements (e.g. architectural decisions) and their relationships in an
architecture design for agile software development?

RQ10: Does Architectural Impact Analysis (AIA) really have worth in agile software
development?

RQ11: How does existing architectural reusable components such as architecture
frameworks, decisions, and patterns are used in agile software development

RQ12: How does Architectural Refactoring (ARf) is happen in agile software devel‐
opment?

3 Description of Proposed Research Methodologies

Architecture is very much depended on architect and teams so we need to investi‐
gate the people and there interactions over the process (architecting in agile). We are
covering major architecting activities in agile software development that may iden‐
tify by using different research method. So we have decided to use qualitative and
quantitative research (where required) method for evaluating our research ques‐
tions. We will design the case studies, survey and semi structure interview for
exploring the practitioners experience about architecture evolution in agile software
development. We may also use the experiments for particular architecting activities
such as in architecture evaluation.

3.1 Survey

Considering the objectives of our research and available resources, we could go with
survey research method to understand the architectural and agile practices from archi‐
tecting activities perspective. A survey research method is considered suitable for
gathering self-reported quantitative and qualitative data from a large number of
respondents [17]. Our survey design will be a cross-sectional. Survey research can use
one or a combination of several data gathering techniques such as interviews, self-
administered questionnaires and others [18]. Our possible method will be

328 M. Waseem and N. Ikram

questionnaire as a data collection instrument because we want to obtain the informa‐
tion from a relatively large number of practitioners, many of whom we would not be
able to contact personally. Our proposed survey may consist on following activities.

• Instrument construction and evaluation
• Instrument deployment
• Target population identification
• Instrument deployment
• Sampling techniques selection and invitation mechanism
• Data validation and data analysis

3.2 Case Studies

Our proposed research questions may answer through ‘Multiple Embedded Case
studies’ from industry and practitioner. Following are the generic outline that may follow
for achieving our research goal(s).

• Devising unit of analysis
• Deciding case selection criteria
• Data collection technique and process
• Setting up population
• External validity
• Reporting study limitation
• Scheduling and
• Reporting

We are interested to apply both Primary and secondary data collection techniques on
collected data. Our data may consist of on field notes, audio recordings of meetings and
discussions, photographs and copies of artifacts. We will apply the triangulation
approach to incorporate multiple vantage points. We can achieve this diversity by using
different data sources and types, and by engaging multiple observers. Additionally, we
are interested to discuss our findings with the respective teams for initial verification.

3.3 Semi Structure Interviews

Architecture is very much depended on architect and teams so we need to investigate
the people and there interactions over the process (architecting in agile). Semi structure
interview is good technique when depth is required for particular phenomena. Interview
question will be design before taking the interview from participant(s). It would not be
not necessarily to ask questions in same order as they are listed. So we would ask the
questions according to situation. Further, semi structure interview allow ‘improvisation
and exploration’ in study subject. During the interview session, we will record the
participant response in audio/video format and we will take the notes where things need
to write. Our focus would be, how individuals/team qualitatively and quantitatively
experience about architecting activities.

Architecting Activities Evolution and Emergence 329

Our potential participant would be experienced architect, senior developer, team
leads and those who have significant development experiences in agile way.

4 Data Analysis Method

Data analysis methods are different for qualitative and quantitative data. Our collected
data may consist of large amount of qualitative data, so we are decided to analyze this
data through constant comparison method that originally presented by Glaser and
Strauss [19], it has been practically explained by the some other [20]. We will use the
guide lines that has been presented in [20] for constant comparison method. Steps
involved for our data analysis are

• Preformed coding field notes periodically
• Grouping into patterns according to code
• Writing of field notes

For quantitative data, analysis may include descriptive statistic (mean values, standard
deviations, histograms, scatter plots etc.), correlation analysis, development of predic‐
tive models, and hypothesis testing [21].

5 Future Agenda

This research study could provide information on the issues of agile architecture co-
existence including how architectural analysis and description change over the time?
Further, this study would also be exploring architectural models evolution on different
level, particularly on system level. This could be beneficial for analyzing traceability
between changing requirements, features and architectural model to improve the evolu‐
tion process. Furthermore, this study would also be analyzed the architectural and design
pattern evolution, this would expectedly heighten the awareness about different kind of
design and architectural practices and there possible threats in agile software develop‐
ment. To the future researchers, The result of this research can provide the baseline
information for architecting activities frameworks for agile software development,
expected evolvable dimensions of the software system, methods that may help for mini‐
mizing the architectural and agile co-existence issues and architectural technical debt in
agile software development.

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

330 M. Waseem and N. Ikram

http://creativecommons.org/licenses/by-nc/4.0/

References

1. Kent Beck, M.B., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development,
Feburvery 2001. http://agilemanifesto.org/

2. Abrahamsson, P., et al.: Mobile-D: an agile approach for mobile application development.
In: Companion to the 19th Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications. ACM (2004)

3. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
4. Babar, M.: Making software architecture and agile approaches work together: foundations

and approaches (2014)
5. Nord, R.L., Tomayko, J.E.: Software architecture-centric methods and agile development.

IEEE Softw. 23(2), 47–53 (2006)
6. Abrahamsson, P., et al.: Mobile-D for Mobile Software: How to Use Agile Approaches for

the Efficient Development of Mobile Applications. VTT Technical Research Centre of
Finland, Finland (2005)

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 528 p. Addison-
Wesley Longman Publishing Co., Inc., Boston (2003)

8. Lycett, M., et al.: Migrating agile methods to standardized development practice (2003)
9. Parsons, R.: Architecture and agile methodologies-how to get along. In: Working IEEE/IFIP

Conference on Software Architecture. IEEE Computer Society, Vancouver (2008)
10. Boehm, B., Turner, R.: Management challenges to implementing agile processes in traditional

development organizations. IEEE Softw. 22(5), 30–39 (2005)
11. Acuña, S.T., et al.: A systematic mapping study on the open source software development

process. In: 16th International Conference on Evaluation & Assessment in Software
Engineering (EASE 2012). IET (2012)

12. Babar, M.A.: An exploratory study of architectural practices and challenges in using agile
software development approaches. In: Joint Working IEEE/IFIP Conference on Software
Architecture, 2009 & European Conference on Software Architecture, WICSA/ECSA 2009.
IEEE (2009)

13. Clements, P., Kazman, R., Klein, M.: Evaluating software architectures (2003). �华���
��

14. Garlan, D.: Software architecture: a roadmap. In: Proceedings of the Conference on the Future
of Software Engineering. ACM (2000)

15. Medvidovic, N., Taylor, R.N., Rosenblum, D.S.: An architecture-based approach to software
evolution. In: Proceedings of the International Workshop on the Principles of Software
Evolution (1998)

16. Yang, C., Liang, P., Avgeriou, P.: A systematic mapping study on the combination of software
architecture and agile development. J. Syst. Softw. 111, 157–184 (2016)

17. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

18. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: Data collection
techniques for software field studies. Empirical Softw. Eng. 10(3), 311–341 (2005)

19. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Transaction Publishers, Piscataway (2009)

Architecting Activities Evolution and Emergence 331

http://agilemanifesto.org/

20. Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage,
Thousand Oaks (1994)

21. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

332 M. Waseem and N. Ikram

Author Index

Abrahamsson, Pekka 118, 169
Ahmad, Muhammad Ovais 156, 296

Bajwa, Sohaib Shahid 169
Baltes, Sebastian 281
Boekhout, Karel 185
Bordin, Silvia 3, 307
Bosch, Jan 39
Bustard, David 209

Chronis, Konstantinos 16
Counsell, Steve 144

De Angeli, Antonella 3
Destefanis, Giuseppe 144
Dig, Danny 53
Doss, Osama 286
Duc, Anh Nguyen 118

Edison, Henry 169
Ehegötz, Matthias 217
Evbota, Felix 28

Fabijan, Aleksander 39
Fagerholm, Fabian 104

Gasparic, Marko 291
Giardino, Carmine 169
Gouveia, Nuno 193
Gren, Lucas 16

Hampiholi, Shrikanth 201
Hanssen, Geir K. 92
Haugset, Børge 92
Hilton, Michael 53
Hokkanen, Laura 66
Hublikar, Sandeep 201

Ikram, Naveed 326

Janes, Andrea 291, 300

Kelly, Tim 286
Knauss, Eric 28
Kulbrandstad, Ingar 92
Kuusinen, Kati 66, 104

Lenarduzzi, Valentina 300

Marchesi, Michele 144
Markkula, Jouni 156, 296
McCalden, Stephen 209
McDonald, Hugh 53
McDonald, Sean 53
Metoyer, Ron 53
Mikkelsen, Vidar 244
Mikkonen, Tommi 104
Myklebust, Thor 92

Næss, Alexander 244
Nelson, Nicholas 53
Nybom, Kristian 131

Ohler, Kerstin 217
Oivo, Markku 156, 296
Olsson, Helena Holmström 39
Ortu, Marco 144

Petrie, Helen 104
Pieber, Bernhard 217
Pool, Miles 252
Porres, Ivan 131
Poupko, Avraham 226

Rajpal, Mark 235
Ricci, Francesco 291
Rolland, Knut H. 244

Sandberg, Anna 28
Shannon, Paul 252
Smeds, Jens 131
Smit, Mark N.W. 79
Stålhane, Tor 92
Stettina, Christoph J. 79

Sudbery, Clare 261
Swift, Stephen 144

Taibi, Davide 300
Tanveer, Binish 316
Tonelli, Roberto 144
Tsyganok, Irina 270
Tumilty, Mark 209

Väänänen, Kaisa 66
van Haaster, Kelsey 312
Vestues, Kathrine 321

Wagner, Stefan 281
Wang, Xiaofeng 169
Waseem, Muhammad 326

334 Author Index

	Preface
	Organization
	Contents
	Full Research Papers
	Focal Points for a More User-Centred Agile Development
	Abstract
	1 Introduction
	2 Related Work
	3 H-umus
	3.1 Field Study Methodology
	3.2 Communication Network
	3.3 Artefacts
	3.4 Findings

	4 Discussion
	5 Conclusion
	Acknowledgments
	References

	Agility Measurements Mismatch: A Validation Study on Three Agile Team Assessments in Software Engineering
	1 Introduction
	2 Case Study
	2.1 Subject Selection
	2.2 Data Collection
	2.3 Data Preparation
	2.4 Data Analysis

	3 Results
	3.1 Correlations
	3.2 Direct Match Questions Results

	4 Discussion
	4.1 Will PAM, TAA and OPS Yield Similar Results?

	5 Threats to Validity
	5.1 Construct Validity
	5.2 Internal Validity
	5.3 Conclusion Validity
	5.4 External Validity
	5.5 Reliability

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

	Scaling up the Planning Game: Collaboration Challenges in Large-Scale Agile Product Development
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Method
	4 Findings: Technical Abilities, Context, and Ceremonies
	4.1 Technical Ability Challenges
	4.2 Contextual Challenges
	4.3 Ceremonial Agreement

	5 Discussion and Conclusion
	Acknowledgements
	References

	The Lack of Sharing of Customer Data in Large Software Organizations: Challenges and Implications
	Abstract
	1 Introduction
	2 Background
	2.1 Collection of Customer Feedback
	2.2 Impact and Use of Customer Data

	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis
	3.3 Validity Considerations

	4 Findings
	4.1 Data Collection Practices: Current State
	4.2 Data Sharing Practices: Challenges
	4.3 Data Sharing Practices: Implications

	5 Discussion
	5.1 The Model: From Quantifiable Feedback to Partial Customer Value
	5.1.1 The Vaporization of Customer Data.
	5.1.2 Unidirectional Flow of Feedback
	5.1.3 Shadow Representation of Customer Value

	6 Conclusion
	References

	TDDViz: Using Software Changes to Understand Conformance to Test Driven Development
	1 Introduction
	2 Visualization
	2.1 Visualization Elements

	3 TDD Phase Inferencer
	3.1 Snapshots
	3.2 Abstract Syntax Tree
	3.3 Algorithm

	4 Evaluation
	4.1 Controlled Experiment
	4.2 Controlled Experiment Results
	4.3 Case Study
	4.4 Case Study Results

	5 Related Work and Conclusions
	References

	Minimum Viable User EXperience: A Framework for Supporting Product Design in Startups
	Abstract
	1 Introduction
	2 Related Work
	2.1 Characteristics of Software Startups
	2.2 User Experience Work

	3 Methods, Research Context, and Participants
	3.1 Course of the Study
	3.2 Participants

	4 Findings
	4.1 Elements of MVUX
	4.2 MVUX Framework
	4.3 Validation of the MVUX Framework

	5 Research Validity
	6 Discussion
	7 Conclusions
	References

	Team Portfolio Scrum: An Action Research on Multitasking in Multi-project Scrum Teams
	1 Introduction
	2 Background and Related Work
	2.1 Software Development: Interruptions and Multiple Projects
	2.2 Psychology: Interruptions and Task Switching

	3 Research Objectives
	4 Research Method and Conduct
	5 Action Research
	5.1 Diagnosing
	5.2 Action Planning
	5.3 Action Taking
	5.4 Evaluating

	6 Conclusions
	References

	Quality Assurance in Scrum Applied to Safety Critical Software
	Abstract
	1 Introduction
	2 Quality Assurance in Agile Software Development
	3 Safety Critical Software Development
	4 SafeScrum – Agile Development of Safety Critical Software
	5 A SafeScrum Case
	6 The Need for Extra Attention to Quality Management
	7 Shaping an Embedded QA Role in SafeScrum
	8 Conclusions
	Acknowledgements
	References

	Flow, Intrinsic Motivation, and Developer Experience in Software Engineering
	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Results
	5 Discussion
	6 Conclusions
	References

	Minimum Viable Product or Multiple Facet Product? The Role of MVP in Software Startups
	Abstract
	1 Introduction
	2 Background
	2.1 Classification of MVPs and Prototypes
	2.2 Theory of Boundary Spanning

	3 Research Approach
	3.1 Study Design and Case Selection
	3.2 Data Collection and Analysis

	4 Result
	4.1 Types of MVPs
	4.2 MVP as a Design Artifact
	4.3 MVP as a Boundary-Spanning Object
	4.4 MVP as a Reusable Artifact

	5 Discussion
	6 Conclusions
	References

	On the Impact of Mixing Responsibilities Between Devs and Ops
	1 Introduction
	2 Background: Approaches to DevOps Adoption
	3 Research Questions and Study Design
	4 Results
	4.1 Impact on Culture
	4.2 Impact on Internal Development Tools
	4.3 Impact on Ways of Working

	5 Discussion
	6 Conclusions
	References

	Arsonists or Firefighters? Affectiveness in Agile Software Development
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Dataset
	3.2 Affective Metrics
	3.3 Affective Markov Chains

	4 Results and Discussion
	4.1 Do Developers Change Behaviour in the Context of Impolite/Negative Comments?
	4.2 What is the Probability of Shifting from Comments Holding Positive Emotions to Comments Holding Negative Emotion?

	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Insights into the Perceived Benefits of Kanban in Software Companies: Practitioners’ Views
	Abstract
	1 Introduction
	2 Research Strategy and Methods
	2.1 Theoretical Model
	2.2 Survey Design and Data Collection

	3 Results
	3.1 Kanban Benefits
	3.2 Challenges in Kanban Use

	4 Validity Threats
	5 Conclusion and Future Work
	Acknowledgments
	Appendix: Operationalization of Constructs
	References

	Key Challenges in Software Startups Across Life Cycle Stages
	1 Introduction
	2 Literature Review
	2.1 Challenges in Software Startups
	2.2 Startup Life Cycle Stages

	3 Research Approach
	4 Results
	4.1 Background of the Sampled Software Startups
	4.2 Key Challenges Across Life Cycle Stages

	5 Discussion
	6 Conclusions
	References

	Experience Reports
	Mob Programming: Find Fun Faster
	Abstract
	1 Introduction
	2 Situation
	3 Introduction of Mob Programming to Teams
	4 Experiments
	4.1 Room Setup
	4.2 Cycle Time
	4.3 Structured Breaks
	4.4 A Sprint a Day Keeps the Coach Away
	4.5 Hourly Retrospectives
	4.6 A Special Mob: Process Flow

	5 Acceptance
	6 Team Growth
	7 Conclusions
	Acknowledgements
	References

	Agile Testing on an Online Betting Application
	1 Introduction
	1.1 Background

	2 Mind Mapping
	2.1 Early Days and Old Process
	2.2 The Introduction of Mind Maps
	2.3 Mind Maps for Test Scenarios
	2.4 Mind Maps to Represent User Stories
	2.5 Repurposing Mind Maps - The Oracles Breakthrough

	3 Exploratory Testing
	3.1 Testing After CI Pipeline
	3.2 Setting the Local Environment

	4 Continuous Integration Pipeline
	4.1 EDS Pipeline Structure
	4.2 Current Challenges

	Pause, Reflect and Act, the Pursuit of Continuous Transformation
	Abstract
	1 Introduction
	2 Background
	3 Ground Reality
	4 Moving Forward
	5 Action Plan
	6 Results
	7 What We Learned
	Acknowledgements
	References

	Smoothing the Transition from Agile Software Development to Agile Software Maintenance
	Abstract
	1 Introduction
	2 Background
	3 The Transition Challenge
	4 Lessons Learned
	Acknowledgements
	References

	University of Vienna’s U:SPACE Turning Around a Failed Large Project by Becoming Agile
	Abstract
	1 Introduction
	2 Road to Perdition
	3 The Restart: change2agile
	4 U:SPACE – The Agile Way to SSP
	Acknowledgements

	The Journey Continues: Discovering My Role as an Architect in an Agile Environment
	Abstract
	1 Introduction
	2 Background
	3 The Scary Problem
	4 The Weekly Meeting
	5 No Design Phase
	5.1 Reservation

	6 Retrospection
	7 Domain Knowledge
	8 Dependencies
	9 Metaphors
	9.1 The Tribal Elder
	9.2 The Architect as the Human Document
	9.3 The Architect as the Potter

	10 Qualities
	11 Summary
	Acknowledgements

	Lessons Learned from a Failed Attempt at Distributed Agile
	Abstract
	1 Introduction
	2 The Failed Project
	2.1 Team Communication Problems on the Failed Project
	2.1.1 Intra-Team
	2.1.2 Inter-Team
	2.1.3 ScrumMaster
	2.1.4 Product Owner
	2.1.5 Executives

	2.2 Requirements Issues on the Failed Project
	2.2.1 Confusion
	2.2.2 Process
	2.2.3 Change

	3 Lessons Learned Applied
	3.1 Good Communication is Important
	3.2 Managing Requirements is a Necessity

	4 Remaining Challenges
	5 Conclusion
	References

	Tailoring Agile in the Large: Experience and Reflections from a Large-Scale Agile Software Developme ...
	Abstract
	1 Introduction
	2 The Case: The Brownfield Project
	3 Agile Method Tailoring in the Project
	4 Implications for Tailoring Agile in the Large
	5 Concluding Remarks
	Acknowledgments
	References

	Hire an Apprentice: Evolutionary Learning at the 7digital Technical Academy
	Abstract
	1 Introduction
	2 Background
	2.1 Apprenticeships in Software Development
	2.2 Diversity

	3 Timeline
	3.1 The Inception of the Technical Academy
	3.2 Hire an Apprentice: The First Iteration
	3.2.1 Adoption of Pull Based Learning

	3.3 Evolution in the Academy: The Second Iteration
	3.4 Reflective Practice: The Third Iteration
	3.4.1 Selecting Tutors

	4 Discussion
	4.1 The Tech Academy in the Wider Organisation
	4.2 Future Directions

	5 Conclusion
	Acknowledgements
	References

	How XP Can Improve the Experiences of Female Software Developers
	Abstract
	1 Introduction
	2 My Journey as a Female Software Engineer
	2.1 Non-XP Workplaces
	2.2 Imposter Syndrome and its Effects
	2.3 The Welcoming Environment of XP

	3 Discussing Lessons Learnt: Attracting More Women Through XP
	3.1 The Importance of Diversity Within XP
	3.2 Stereotype Threat and Unconscious Bias
	3.3 The Positive Impact of XP

	4 Conclusions
	Acknowledgements
	References

	Pair-Programming from a Beginner’s Perspective
	Abstract
	1 Introduction
	2 Getting Started with Pair-Programming
	3 Getting Frustrated with Pair-Programming
	3.1 The Vicious Cycle of Non-learning

	4 Observations
	4.1 The Needs of Each Persona

	5 What We Learned
	5.1 Can Anyone Be a Leader?
	5.2 The Social Aspect of Pair-Programming
	5.3 Pair-Programming – Child’s Play?

	6 Fixing Pair-Programming
	6.1 How We Can Improve

	7 Conclusions and Way Forward
	Acknowledgements

	Empirical Studies Papers
	Empirical Research Plan: Effects of Sketching on Program Comprehension
	1 Introduction
	2 Related Work
	3 Experiment Planing
	3.1 Experimental Units and Materials
	3.2 Tasks
	3.3 Hypotheses, Parameters and Variables
	3.4 Experiment Design
	3.5 Procedure
	3.6 Analysis Procedure

	4 Summary and Future Work
	References

	The 4+1 Principles of Software Safety Assurance and Their Implications for Scrum
	Abstract
	1 Research Aim
	2 Research Questions and Their Motivations
	3 Importance of Research
	4 Data Collection Methods to Be Used, Including
	5 Data Analysis Methods to Be Subsequently Used
	6 How the Results Will Be Used
	References

	Development Tools Usage Inside Out
	1 Aim of Research and Research Questions
	2 Importance of Research
	3 Data Collection Methods
	4 Data Analysis and Data Usage
	References

	Pitfalls of Kanban in Brownfield and Greenfield Software Development Projects
	Abstract
	1 Background
	2 Empirical Study Plan
	2.1 Data Collection and Analysis Methods

	References

	Towards a Lean Approach to Reduce Code Smells Injection: An Empirical Study
	Abstract
	1 Introduction and Aim of the Research
	2 Background and Related Work
	3 The Case Study
	3.1 Data Collection Methods
	3.2 Data Analysis

	References

	Doctoral Symposium Papers
	Towards a More User-Centred Agile Development
	1 Motivation
	2 Related Work
	3 Methodology
	4 Results
	5 Future Agenda
	6 Publication Plan
	References

	Responding to Change: Agile-in-the-large, Approaches and Their Consequences
	1 Statement of the Research Problem
	2 Motivation, Contribution and Originality of the Proposed Study
	3 Brief Literature Review
	4 Description of Proposed Research Methodology
	5 Results Achieved so Far (if Any)
	6 Plans for Publication of the Proposed Study or Set of Studies
	7 Future Agenda
	References

	Hybrid Effort Estimation of Changes in Agile Software Development
	1 Research Problem
	2 Motivation
	3 Related Work
	3.1 Effort Estimation Methods
	3.2 Techniques for Change Impact Analysis
	3.3 Tools for Visualizing Change Impact

	4 Research Methodology
	5 Results Achieved so Far
	6 Publication Plan
	7 Future Agenda
	References

	Planned Research: Scaling Agile Practices in Software Development
	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Agile Development
	2.2 Large Scale Development
	2.3 Retrospective Practices

	3 Research Problem
	4 Research Methodology
	5 Dissertation and Publication
	6 Future Agenda
	References

	Architecting Activities Evolution and Emergence in Agile Software Development: An Empirical Investig ...
	Abstract
	1 Introduction
	2 Problem Statement and Motivation
	3 Description of Proposed Research Methodologies
	3.1 Survey
	3.2 Case Studies
	3.3 Semi Structure Interviews

	4 Data Analysis Method
	5 Future Agenda
	References

	Author Index

