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To my sons Nityan and Haris



Preface 

The fundamental dynamical variables of any physical system take values in what is 
referred to as the phase space. The geometry and topology of this space play a guiding 
role in the dynamics of the physical system. While this was well-appreciated and 
well-understood in classical dynamics, early formulations of quantum mechanics 
did not have an easy flexibility to accommodate features of geometry and topology. 
Over the years, this problem was addressed with increasing levels of sophistication. 
Geometric quantization gives an elegant framework for accommodating geomet-
rical and topological features of the phase space. By now there are many books 
and mathematically sophisticated reviews of this topic. Most of these focus on the 
formalism and some of the subtleties involved. While this is of great value, I think that 
highlighting a variety of diverse applications, especially those which are physically 
motivated and interesting, can be a very useful complementary approach. This book 
is an attempt in this direction. In keeping with this motivation, most of the material 
here is presented from a physicist’s point of view. 

Some of the topics were covered in lectures at different summer schools in theo-
retical physics. More recently, a skeletal draft of most of the topics was prepared 
for lectures at the Second Autumn School on High Energy Physics & Quantum 
Field Theory in Yerevan, Armenia, in October 2014. This book is an augmented and 
updated version of the lecture notes. 

I thank all the organizers of the summer school in Armenia for the invitation to 
speak there. I have discussed some of these topics with my colleagues and express 
my thanks for their insights and comments. I also thank my wife Dimitra for collabo-
rations, discussions and for a span of time free from mundane worries while working 
on this. This work was supported in part by the U.S. National Science Foundation 
Grant PHY-2112729. 

New York, USA 
May 2024 

V. Parameswaran Nair
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Chapter 1 
Introduction 

A physical theory, as a logical explanation of physical phenomena, is to be constructed 
taking account of general principles and incorporating data and information from 
experiments. Any effects we attribute to the quantum nature of phenomena should be 
included from the outset. A classical description may then be obtained, in a suitable 
regime of parameters, as a useful and simpler working approximation. The flow of 
logic should thus be: 

. 
General principles+
experimental input

⎞
=⇒ Quantum theory =⇒ Classical approximation.

But the build-up of a theory along these lines is almost never done in practice. 
Primarily, this is because, at the human level of direct experience, most phenomena 
are well described by classical dynamics, and hence our intuition about physical 
systems is mostly classical. So we tend to start there and try to “quantize” the classical 
theory. This is a process with many ambiguities, but over the course of many years, 
we have learned to understand the structure of this procedure of quantization. In 
this book, we will attempt to describe some aspects of geometric quantization and 
consider a few examples or applications. 

We will begin with some general observations on why we need such a proce-
dure as geometric quantization. This is best illustrated by an example. Consider the 
elementary quantum mechanics of a single particle in three spatial dimensions. The 
operators of position.x̂i , i = 1, 2, 3 and momentum. p̂i obey the Heisenberg algebra 

. x̂ i x̂ j − x̂ j x̂ i = 0

x̂ i p̂ j − p̂ j x̂
i = i δij (1.1) 

p̂i p̂ j − p̂ j p̂i = 0 

As is well known these have the standard Schrödinger representation on the .x-
diagonal wave functions .ψ(x), 
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2 1 Introduction

.x̂ i ψ = xi ψ, p̂i ψ = −i
∂

∂xi
ψ (1.2) 

Notice that the commutation rules (1.1) and the specific representation (1.2) are  
expressed in terms of Cartesian coordinates. While we know that we should have the 
freedom of choosing any set of coordinates for the classical description, constructing 
the commutation rules and the operators in coordinate systems other than the Carte-
sian one is not straightforward. What is usually done in textbook solutions, say, of 
the Hydrogen atom in spherical polar coordinates is to set up the quantum theory 
and the Schrödinger equation first in the Cartesian basis (with . p̂2 = −∇2) and then 
make a change of coordinates. While this is an adequate working procedure for many 
situations, it is clearly unsatisfactory; one would like a procedure that works directly 
without the crutch of the Cartesian system. Also, in situations where we may have a 
curved space or a curved phase space, a quantization procedure which takes account 
of the geometry of the manifold is not just a desirable choice, but is actually needed. 

There are also situations, such as in field theory, where the dynamical variables 
are components of fields and have no obvious Cartesian-like structure. In assigning 
commutation rules to the components of fields, a more general procedure is then 
called for. Geometric quantization is a partial answer to these concerns. It highlights 
the geometry and topology of the phase space and gives insights into many physical 
situations. But as it stands, it is still not a complete answer to the issues mentioned 
above. We will comment on some of these inadequacies later in the text. 

There are many other approaches to quantization as well. Quantum theory may be 
viewed as a unitary irreducible representation (UIR) of the algebra of observables, 
the latter being selected by physical criteria [ 1]. The algebra itself must satisfy certain 
conditions so as to have the correct physical requirements. Generally it ends up as 
a .C∗-algebra with further additional conditions equivalent to symmetries or other 
desirable properties (such as Lorentz invariance, relativistic causality) and so on. In 
relativistic field theory, this would lead to a von Neumann algebra. Here we are 
not going to pursue such an algebraic approach to quantization. Instead, we will 
consider the essential geometry (which has to do with the symplectic structure) of 
the classical theory and work out how a quantum theory can be constructed. This 
will be done in the language of Hamiltonians and Hilbert space. The key principle 
of quantization, as always, is that canonical transformations of the classical theory 
should be represented as unitary transformations on the Hilbert space of states in the 
quantum theory. 

There is yet another approach to the quantum theory, the functional integral 
approach, which is formulated directly in terms of the action and can be made man-
ifestly covariant if the theory of interest has relativistic invariance [ 2, 3]. Here we 
will not discuss this formulation either, but some points of overlap will be pointed 
out as the occasion arises.
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Chapter 2 
Symplectic Form and Poisson Brackets 

We start with the formulation of theories in the symplectic language [ 4, 5]. Later, we 
will briefly discuss how this is connected to the action which may be used to specify 
the physical theory. 

2.1 Symplectic Structure 

In the analytical formulation of classical physics, the key concept is the phase space, 
which is a smooth even dimensional orientable manifold .M (say, of dimension .2n) 
endowed with a symplectic structure . Ω . By this we mean that there is a differential 
2-form .Ω defined on .M which is closed and nondegenerate. Closure means that 
.dΩ = 0, where. d denotes exterior differentiation. The qualification “nondegenerate” 
refers to the fact that for any vector field . ξ on . M , if  .iξΩ = 0, then . ξ must be zero. 
Here. iξ indicates interior contraction with the vector field. ξ. We will use.qμ to denote 
local coordinates on . M . In terms of these, we can write 

.Ω = 1

2
Ωμν dq

μ ∧ dqν (2.1) 

The closure condition .dΩ = 0 can be written out as 

. dΩ ≡ 1

2

∂Ωμν

∂qα
dqα ∧ dqμ ∧ dqν

= 1

3!
[
∂Ωμν

∂qα
+ ∂Ωαμ

∂qν
+ ∂Ωνα

∂qμ

]
dqα ∧ dqμ ∧ dqν

= 0 (2.2) 
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6 2 Symplectic Form and Poisson Brackets

The contraction of .Ω with a vector field .ξ = ξμ(∂/∂qμ) is given by 

.iξΩ = ξμΩμν dq
ν, ξ = ξμ ∂

∂qμ
(2.3) 

Thus in terms of components, the equation .iξΩ = 0 becomes .ξμΩμν = 0. Nonde-
generacy of .Ω is then seen to be equivalent to the invertibility of .Ωμν as a matrix, 
so that .ξμΩμν = 0 implies .ξμ = 0; in other words, .Ωμν , viewed as a matrix, does 
not have an eigenstate of eigenvalue equal to zero. 

The inverse of.Ωμν , which will be needed for some equations, will be denoted by 
.Ωμν , with upper indices; i.e., 

.Ωμν Ωνα = δ α
μ (2.4) 

For now, we will take .Ω to be nondegenerate. There are cases where the action 
will lead to a degenerate .Ωμν ; this occurs when the theory has a gauge symmetry. 
Elimination of certain components of the gauge field via gauge-fixing is then needed 
to define a nondegenerate . Ω; we will consider such cases briefly later. With the 
structure .Ω defined on it, .M is a symplectic manifold. 

Since .Ω is closed, at least locally we can write 

.Ω = dA (2.5) 

The one-form. A defined by this equation is called the canonical one-form or symplec-
tic potential. There is an ambiguity in the definition of .A since .A and .A + dΛ will 
give the same.Ω for any function.Λ on. M . As we shall see shortly, this corresponds 
to the freedom of canonical transformations. 

There are two types of features associated with the topology of the phase space 
which are apparent at this stage. The first question is: Is every 2-form .Ω which 
is closed (i.e., obeys .dΩ = 0) the exterior derivative of a 1-form . A? In general, 
the answer is no. The set of linearly independent closed 2-forms which cannot be 
expressed as.dA for some 1-form. A is the second cohomology group of the manifold 
. M ; this is denoted by .H2(M). 1 Thus, if the phase space .M has nontrivial second 
cohomology, i.e., if .H2(M) /= 0, then there are possible choices for .Ω for which 
there is no globally defined potential . A. There are examples of physical interest 
where this happens. Such . Ω’s correspond to the Wess-Zumino terms in the action 
and are related to anomalies and also to central (and other) extensions of the algebra 
of observables. 

Even when.H2(M) = 0, there can be topological issues in defining. A. If the first 
cohomology.H1(M) /= 0, this means, by definition, that there are 1-forms. A whose 
derivative is zero, but which are not of the form . d of a function on . M . Thus .A and 
.A + Awill give the same. Ω , but the difference is not just. d for some function. Λ, since 
. A does not have to be of the form.dΛ, globally. In other words, there are inequivalent

1 We refer to the cohomologies over .R since adding forms with real coefficients is what is 
appropriate. 
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. A’s for the same . Ω . In these cases, one can consider the integral of .A around 
closed noncontractible curves on . M . The values of these integrals or holonomies 
will be important in the quantum theory as vacuum angles. The standard .θ-vacuum 
of nonabelian gauge theories is an example. We will take up these topological issues 
in more detail later. 

Given the symplectic structure, transformations which preserve .Ω are evidently 
special; these are called canonical transformations. In other words, a canonical 
transformation is a diffeomorphism (or coordinate transformation) of .M which 
preserves . Ω . Infinitesimally, the coordinate transformation may be taken to be 
.qμ → qμ + ξμ(q). The change in .Ω due to this is given by 

. δξ Ω = 1

2
Ωμν(q + ξ) d(qμ + ξμ) ∧ d(qν + ξν) − 1

2
Ωμν dq

μ ∧ dqν

= 1

2

[
ξα ∂Ωμν

∂qα
+ Ωαν

∂ξα

∂qμ
+ Ωμα

∂ξα

∂qν

]
dqμ ∧ dqν

= 1

2
ξα

[
∂Ωμν

∂qα
+ ∂Ωαμ

∂qν
+ ∂Ωνα

∂qμ

]
dqμ ∧ dqν

+ 1

2

[
∂μ(ξ

αΩαν) − ∂ν(ξ
αΩαμ)

]
dqμ ∧ dqν

= iξ(dΩ) + d(iξΩ) (2.6) 

For a canonical transformation, this change must be zero. 2 Since .dΩ = 0, this  
means that canonical transformations are generated by vector fields . ξ such that 

.d (iξΩ) = 0 (2.7) 

Thus for canonical transformations, .iξΩ is a closed 1-form. If the first cohomology 
.H1(M) of .M is trivial, we can write 

.iξΩ = −d f, ξα Ωαν = − ∂ f

∂qν
(2.8) 

for some function . f on . M . In other words, to every infinitesimal canonical trans-
formation, we can associate a function on . M . 3 Since.Ω is invertible, we can always 
associate a vector field to a function . f by the correspondence 

.ξμ = Ωμν∂ν f (2.9)

2 The right hand side of (2.6) is the Lie derivative of.Ω with respect to the vector field.ξα(∂/∂qα). 
3 If .H1(M) /= 0, then there is the possibility that for some transformations . ξ, the corresponding 
.iξΩ in a nontrivial element of .H1(M) and hence there is no globally defined function . f for this 
transformation. As mentioned before this is related to the possibility of vacuum angles in the 
quantum theory. For the moment, we shall consider the case.H1(M) = 0. 
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What we are saying now is that, for a canonical transformation, we can go the 
other way, associating a function with the vector field which gives the canonical 
transformation, at least when .H1(M) = 0. There is a one-to-one mapping between 
functions on .M and vector fields corresponding to infinitesimal canonical transfor-
mations. A vector field corresponding to an infinitesimal canonical transformation 
is often referred to as a Hamiltonian vector field. The function . f defined by (2.8) is  
called the generating function for the canonical transformation corresponding to the 
vector field. 

It is important that for every function . f on the phase space . M , we can associate 
a Hamiltonian vector field as in (2.11). This means that all observables which are 
functions on .M generate canonical transformations. 

2.2 Poisson Brackets 

Let .ξ, η be two Hamiltonian vector fields which means that they preserve . Ω; let  
their generating functions be. f and. g respectively. The Lie bracket or commutator of 
. ξ and . η is given in local coordinates by 

.[ξ, η]μ = ξν∂νη
μ − ην∂νξ

μ (2.10) 

We can easily verify that the commutator will also preserve . Ω . We must therefore 
have a function corresponding to .[ξ, η]. It is designated as the Poisson bracket of . g
and . f and is denoted by .{g, f }. Explicitly, we define the Poisson bracket (PB) as 

. { f, g} = iξiηΩ = ημξνΩμν

= −iξdg = iηd f

= Ωμν∂μ f ∂νg (2.11) 

Notice that, for the choice . f = qμ, .g = qν , this reduces to 

.{qμ, qν} = Ωμν (2.12) 

Because of the antisymmetry of .Ωμν , the Poisson bracket has the property 

.{ f, g} = −{g, f } (2.13) 

Further, from the definition, we can write, using local coordinates,
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. 2 ∂α{ f, g} = ∂α(η · ∂ f − ξ · ∂g)

= ∂αημ∂μ f + ημ(∂μ∂α f ) − ∂αξμ∂μg − ξμ(∂μ∂αg)

= ∂αημ∂μ f − ∂αξμ∂μg + η · ∂(ξμΩαμ) − ξ · ∂(ημΩαμ)

= ∂αημ∂μ f − ∂αξμ∂μg + (ξ · ∂η − η · ∂ξ)μΩμα

+ ημξν(∂μΩαν + ∂νΩμα)

= [ξ, η]μΩμα + ∂α(ημξνΩμν)

+ ημξν(∂μΩαν + ∂νΩμα + ∂αΩνμ) (2.14) 

In local coordinates, the closure of .Ω is the statement . ∂μΩαν + ∂νΩμα + ∂αΩνμ =
0. From the equation given above, we then see that 

. − d{g, f } = i[ξ,η] Ω (2.15) 

This result shows the correspondence stated earlier. 
Consider now the change in a function. F due to a canonical transformation. qμ →

qμ + ξμ. The change in .F is obviously.ξμ∂μF . Let . f be the function corresponding 
to the vector field .ξμ via the correspondence (2.8). We can write the change in .F as 

.δF = ξμ∂μF = (Ωμα∂α f ) ∂μF = {F, f } (2.16) 

Thus the change in a function.F due to the canonical transformation. qμ → qμ + ξμ

is given by the Poisson bracket of .F with the generating function . f corresponding 
to the vector field . ξ. 

Another important property of the Poisson bracket is the Jacobi identity. For any 
three functions . f, g, h, we have the identity 

.{ f, {g, h}} + {h, { f, g}} + {g, {h, f }} = 0 (2.17) 

This can be verified by direct computation from the definition of the Poisson bracket. 
In fact, if .ξ, η, ρ are the Hamiltonian vector fields corresponding to the functions 
. f, g, h, then, by direct computation, 

.{ f, {g, h}} + {h, { f, g}} + {g, {h, f }} = iξiηiρ(dΩ) (2.18) 

and so the Jacobi identity (2.17) follows from the closure of . Ω . 
An expression which will be useful later is the change of the symplectic potential 

.A under an infinitesimal canonical transformation; this can be worked out as



10 2 Symplectic Form and Poisson Brackets

. δξA = Aμ(q + ξ)d(qμ + ξμ) − Aμ(q)dqμ =
[
ξα∂αAμ + Aα

∂ξα

∂qμ

]
dqμ

= [
ξα(∂αAμ − ∂μAα) + ∂μ(ξ

αAα)
]
dqμ

= [
ξαΩαμ + ∂μ(ξ

αAα)
]
dqμ

= ∂μ (ξαAα − f ) dqμ (2.19) 

where we used the definition of.Ω and the fact that. ξ is a Hamiltonian vector field with 
a corresponding function . f defined by Eq. (2.8). Equation (2.19) shows that under 
a canonical transformation .A → A + dΛ, .Λ = iξA − f . Evidently .dA = Ω is 
unchanged under such a transformation. This suggests a very useful way of thinking 
about these structures. 

We may view .A as a .U (1) gauge potential and .Ω as the corresponding field strength. 
The transformation.A → A + dΛ is thus a gauge transformation. We can use this point of 
view to construct an invariant description, using covariant derivatives and other properly 
transforming quantities. 

A remark comparing the symplectic language we have used to some other formula-
tions may be useful at this point. If we use the definition of the Poisson bracket, 
namely (2.11), for the phase space coordinates themselves, we have Eq. (2.12), 
.{qμ, qν} = Ωμν . This is often interpreted as saying that the “basic Poisson brack-
ets” (i.e., PBs for the phase space coordinates themselves) are the inverse of the 
symplectic structure. 

2.3 Phase Volume 

The symplectic two-form can be used to define a volume form on the phase space 
.M by 

.dσ(M) = c
Ω ∧ Ω ∧ · · · ∧ Ω

(2π)n
= c n!

/
det

(
Ω

2π

)
d2nq (2.20) 

where we take the .n-fold product of . Ω’s for a .2n-dimensional phase space and 
the second expression involves the determinant of .Ωμν as a matrix. (. c is a constant 
which is undetermined at this stage.) If the dimension of the phase space is infinite, 
then a suitable regularized form of the determinant has to be used, with .n → ∞ at 
the end. The volume measure defined by Eq. (2.20) is called the Liouville measure. 
Since it is defined in terms of . Ω , this volume element is invariant under canonical 
transformations.
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2.4 Darboux’s Theorem 

A useful result concerning the symplectic form is Darboux’s theorem which states 
that in the neighbourhood of a point on the phase space it is possible to choose 
coordinates .pi , xi , .i = 1, 2, . . . , n, (which are functions of the coordinates .qμ we 
started with) such that the symplectic two-form is 

. Ω = dpi ∧ dxi = 1

2
Jμν dQ

μ ∧ dQν

Qμ = (p1, x
1, p2, x

2, . . . , pn, x
n) (2.21) 

The tensor .Jμν (which is .Ωμν in this coordinate system) can be expressed in matrix 
form as 

.Jμν =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 · · ·
−1 0 0 0 · · ·
0 0 0 1 · · ·
0 0 −1 0 · · ·
.. .. .. .. · · ·

⎤
⎥⎥⎥⎥⎦ (2.22) 

Evidently from the form of . Ω , we see that the Poisson brackets in terms of this set 
of coordinates are 

. {xi , x j } = 0

{xi , p j } = δij

{pi , p j } = 0 (2.23) 

An elegant proof of this theorem can be found in Arnold’s book [ 4]. Here we will 
give a short rephrasing of the same argument. The simplest way to prove the theorem 
is by induction. First of all, we note that the Darboux theorem is equivalent to the 
statement that one can choose coordinates such that the fundamental Poisson brackets 
are given by (2.23). 

We now start with a point. P in some neighborhood of the manifold. M . Our attempt 
is to reduce .Ω to the Darboux form in this neighborhood. We start by taking any 
nonconstant function of the coordinates .qα as the first coordinate .p1, with . dp1 /= 0
at . P . We can also assume .p1 = 0 at . P , since this can always be done by adding 
a constant to any chosen .p1. Since .p1 is a function in the neighborhood, there is a 
Hamiltonian vector field 

.P1 = Ωαβ ∂ p1
∂qβ

(2.24) 

Consider now a set of trajectories defined by 

.
dξα

dτ
= −Ωαβ ∂ p1

∂qβ
(2.25)
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These are flow lines generated by the vector field.P1, with.ξα as the values of the coor-
dinates.qα on the trajectories, as functions of. τ . Now choose a.(2n − 1)-dimensional 
surface .Σ which intersects these flow lines transversally and contains the point . P . 

Consider any point . q (with coordinates .qα) near .Σ but not necessarily on it. We 
can solve (2.25) with . q as the initial point and choose the direction such that the 
motion is towards the surface . Σ . At some value . τ determined by the initial point . q, 
this motion arrives at . Σ . We denote this particular value of . τ , viewed as a function 
of the coordinates .qα of the starting point . q, by . x1. If . τ is taken to be infinitesimal, 
this is given by 

.ξα(τ )
||
Σ

= qα − Ωαβ ∂ pi
∂qβ

τ (q) (2.26) 

Equivalently, we can write this as 

.Ωαβ ∂ pi
∂qβ

τ (q) = qα − ξα(τ )
||
Σ

(2.27) 

This equation shows that for this function .x1(q) = τ (q) we have 

.{x1, p1} = 1 (2.28) 

We can thus take .p1, x1 as the first pair of Darboux coordinates. Notice that . x1 = 0
for points on . Σ . 

We now consider a subspace, a surface.Σ∗ defined by.p1 = 0,.x1 = 0. The differ-
entials .dp1, dx1 are linearly independent since the Poisson bracket of .x1 and .p1 is 
nonzero. Thus they define two noncollinear directions which take us off the surface. 
Therefore the surface .Σ∗ is .(2n − 2)-dimensional. If .X1 and .P1 denote the vector 
fields corresponding to.x1 and.p1 respectively, we have.iX1Ω = −dx1,.iP1Ω = −dp1. 
This result, along with (2.28) shows that we can write 

.Ω = Ω∗ + dp1 ∧ dx1 (2.29) 

where .Ω∗ does not involve differentials .dp1 or .dx1. (If it did, we would have a 
contradiction with the contraction of .X1 and .P1 with .Ω in comparison to (2.28).) 
Now consider a vector field. χwhich generates a flow along (i.e. tangential to).Σ∗. By  
definition, . χ cannot change the value of .p1, x1, so we have  .iχdp1 = 0, .iχdx1 = 0. 
This means that the contraction of any vector tangential to .Σ∗ with .Ω∗ is the same 
as its contraction with . Ω . Thus .Ω∗ must be invertible for vectors tangential to .Σ∗. 
Finally, it is evident that .dΩ∗ = 0. .Ω∗ therefore defines a symplectic two-form on 
the .(2n − 2)-dimensional subspace .Σ∗. The problem has thus been reduced to the
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question of the existence of the Darboux coordinates on the lower dimensional space. 
We can now proceed in similar manner, starting with .Σ∗ and .Ω∗. We can construct 
another canonical pair .p2, x2 and reduce the problem to a .(2n − 4)-dimensional 
subspace, and so on inductively to complete the proof of the theorem. 

Problem 

2.1 Derive Eq. (2.18) from the definition of Poisson brackets. 
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Chapter 3 
Classical Dynamics 

The importance of the symplectic approach is that, classically, the time-evolution of 
any quantity is a particular canonical transformation generated by a function.H called 
the Hamiltonian. This is the essence of the Hamiltonian formulation of dynamics. 
Thus if .F is any function on . M , we then have 

.
∂F

∂t
= {F, H} (3.1) 

Specifically for the local coordinates .qμ on .M this equation leads to 

.
∂qμ

∂t
= {qμ, H} = Ωμν ∂H

∂qν
(3.2) 

Since .Ω is invertible, we can also write this equation as 

.Ωμν

∂qν

∂t
= ∂H

∂qμ
(3.3) 

If we use the Darboux coordinates .(pi , xi ), these equations (either (3.2) or (3.3)) 
become 

. ṗi = −∂H

∂xi
, ẋ i = ∂H

∂pi
(3.4) 

which are more easily recognizable as Hamilton’s canonical equations. 
We are now in a position to connect the dynamics to an action and a variational 

principle. We define the action as 

.S =
∫ tf

ti

dt

(
Aμ

dqμ

dt
− H

)
(3.5) 
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where .qμ(t) gives a path on . M . Under a general variation of the path . qμ(t) →
qμ(t) + ξμ(t), the action changes by 

. δS =
∫ 

dt

(
∂Aν

∂qμ

dqν

dt
ξμ + Aμ

dξμ

dt
− ∂H

∂qμ
ξμ

)

= Aμξμ

]tf

ti

+
∫ 

dt

(
Ωμν

dqν

dt
− ∂H

∂qμ

)
ξμ (3.6) 

The variational principle says that the equations of motion are given by the extrem-
ization of the action, i.e., by .δS = 0, for the restricted set of variations with the 
boundary data (initial and final end point data) fixed. From the above variation, we 
see that this gives the Hamiltonian equations of motion (3.3). There is a slight catch in 
this argument because.qμ are phase space coordinates and obey first order equations 
of motion. So we can only specify the initial value of.qμ. However, the Darboux the-
orem tells us that one can choose coordinates on.M such that the canonical one-form 
. A is of the form.pidxi . As a result, the.ξμ in the boundary term is just.δxi . Therefore, 
instead of specifying initial data for all .qμ, we can choose to specify initial and final 
data for the . xi ’s. Since the boundary values are to be kept fixed in the variational 
principle.δS = 0, wemay  set.δxi = 0 at both boundaries and the equations of motion 
are indeed just (3.3). 

We have shown how to define the action if.Ω is given. However, going back to the 
general variations, notice that the boundary term resulting from the time-integration 
is just the canonical one-form contracted with .ξμ. Thus if we start from the action 
as the given quantity, we can identify the canonical one-form and hence.Ω from the 
boundary term which arises in a general variation. In fact 

.δS = iξA(tf) − iξA(ti) +
∫ 

dt

(
Ωμν

dqν

dt
− ∂H

∂qμ

)
ξμ (3.7) 

As an example of this, consider a real scalar field theory with the action 

.S =
∫ 

d4x

[
1

2
ϕ̇2 − 1

2
(∇ϕ)2 − 1

2
m2ϕ2 − αϕ4

]
(3.8) 

The variation of the action leads, upon time-integration, to the boundary term 

.δS =
∫ 

d3x ϕ̇ δϕ
]tf
ti

+
∫ 

d4x [· · · ] (3.9) 

The canonical 1-form or the symplectic potential (at a fixed time . t) can thus be 
taken as 

.A =
∫ 

d3x ϕ̇ δϕ (3.10)
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In this analysis, we are at a fixed time, so. ϕ̇ is a function independent of. ϕ. The phase 
space thus consists of the set of functions.{ϕ̇, ϕ} on the three-dimensional space.R

3. 
.A in (3.10) is a 1-form on the phase space, if we interpret .δϕ (which is a functional 
variation) as the exterior derivative on the space of fields. 1

If we add a total derivative to the Lagrangian, say, .S → S + ∫ 
dt ḟ , it does not 

affect the equations of motion. However, the new.A obtained from the boundary val-
ues has an extra term.δ f . This is the exterior derivative of. f and hence the symplectic 
two-form .Ω (which is .δA) is unchanged. We see that the freedom of adding total 
derivatives to the Lagrangian is thus the freedom of canonical transformations. 

An interesting variant for the scalar field theory is to consider the light-cone 
quantization of the same theory. Introduce light-cone coordinates, corresponding to 
a light-cone in the .z-direction, as 

.u = 1√
2
(t + z), v = 1√

2
(t − z) (3.11) 

Instead of considering evolution of the fields in time . t , we can consider evolution 
in one of the light-cone coordinates, say, . u. The analog of ‘space’ is given by the 
other light-cone coordinate . v and the two coordinates .xT = x, y transverse to the 
light-cone. They correspond to equal-. u hypersurfaces. The action (3.8) for the real 
scalar field .ϕ(u, v, x, y) can be written in these coordinates as 

.S =
∫ 

du dv d2xT
[
∂uϕ∂vϕ − 1

2 (∂Tϕ)2 − 1
2m

2ϕ2 − αϕ4
]

(3.12) 

This is of the first order in the .u-derivatives, which are the analog of the 
time-derivatives. The time-integration of the variation of this action leads to the 
boundary term 

.δS =
∫ 

dv d2xT ∂vϕ δϕ
]uf
ui

+ volume integral (3.13) 

Since .∂vϕ is a spatial derivative now, it is not independent of . ϕ and so the phase 
space is given by field configurations .ϕ(v, xT). The symplectic potential is 

.A =
∫ 

dv d2xT ∂vϕ δϕ (3.14) 

Taking the exterior derivative (denoted by the symbol . δ on the space of fields), we 
find the symplectic two-form as 2

1 In the context of field theory we will often use. δ to indicate the exterior derivative on the space of 
fields. 
2 There is a wedge product for the two differentials in this equation. To avoid clutter, we will not 
write the wedge symbol from now on if it is clear from the context.
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.Ω =
∫ 

dv d2xT (∂vδϕ) δϕ (3.15) 

The contraction of this with the vector field .ξ = δ/δϕ gives 

.iξΩ = −2∂v(δϕ) = −δ(2∂vϕ) (3.16) 

The function corresponding to the vector field . ξ is thus .2 ∂vϕ. Using  (2.11), we 
then find 

.{2∂vϕ(v, xT), ϕ(v', x 'T)} = −iξ δϕ(v', x 'T) = −δ(v − v')δ(xT − x 'T) (3.17) 

Keeping in mind the antisymmetry of the Poisson brackets, this is equivalent to 

.{ϕ(v, xT), ϕ(v', x 'T)} = −1

4
∈(v − v')δ(xT − x 'T) (3.18) 

where .∈(v − v') is the signature function given by 

.∈(v − v') =
⎧
1 v > v'

−1 v < v' (3.19) 

By using the symplectic form, we are directly led to the Poisson bracket (3.18). In 
the more conventional approach where we consider the canonical momentum. Π , the  
present situation has a constraint .Π − ∂vϕ ≈ 0. In such a formulation, one has to 
use Dirac’s theory of constraints to obtain the basic Poisson bracket. The use of . Ω
bypasses these steps. 

We will consider other cases of determining the symplectic form using this method 
(of identifying the surface term from the time-integration in the variation of the action) 
when we take up examples. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chapter 4 
Geometric Quantization 

Quantum theory of any physical system is a unitary irreducible representation of the 
algebra of observables of the system. This means that the observables are realized 
as linear operators on a Hilbert space. The allowed transformation of variables are 
then unitary transformations. There are thus two key points regarding quantization: 

1. We need a correspondence between canonical transformations and unitary 
transformations. 

2. We must ensure that the representation of unitary transformations on the Hilbert 
space is irreducible. 

Since functions on phase space generate canonical transformations and hermitian 
operators generate unitary transformations, the first point ensures that we get a corre-
spondence between functions on phase space and operators on the Hilbert space. The 
algebra of Poisson brackets will be replaced by the algebra of commutation rules for 
the operators. The irreducibility leads to the necessity of choosing a polarization for 
the wave functions. Some general references on geometric quantization are [ 5, 7, 8]. 

4.1 Pre-Quantization 

We will first consider the notion of the wave function before discussing how operators 
act on such wave functions. In the geometric approach, the first step is the so-called 
prequantum line bundle. 

This is a complex line bundle on the phase space with curvature . Ω . Sections 
of this line bundle form the prequantum Hilbert space. In less technical terms, we 
utilize the similarity we mentioned earlier, namely, that the symplectic potential may 
be thought of as a .U (1) gauge field, with the transformations.A → A + dΛ viewed 
as a gauge transformation. We can then consider complex functions.Ψ (q) defined on 
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open neighborhoods in . M . These are like matter fields, they are the sections of the 
line bundle. This means that locally they are complex functions which transform as 

.Ψ → Ψ , = exp(iΛ) Ψ (4.1) 

We can define a covariant derivative acting on .Ψ (q) using .A as 

.Dμ Ψ ≡
(

∂

∂qμ
− iAμ

)
Ψ (4.2) 

The commutator of two covariant derivatives gives .−iΩ , this is the meaning of 
saying that the curvature of the line bundle is . Ω . 

Since canonical transformations correspond to.A → A + dΛ, the transformation 
of .Ψ as given in (4.1) is equivalent to the requirement of canonical transforma-
tions being implemented as unitary transformations. The transition rules for the. Ψ ’s 
from one patch on .M to another are likewise given by exponentiating the transition 
function for . A. The functions . Ψ ’s so defined form the prequantum Hilbert space 
with the inner product 

.(1|2) =
{

dσ(M) Ψ ∗
1 Ψ2 (4.3) 

where .dσ(M) is the Liouville measure (2.20) on the phase space defined by . Ω . 
The next step will be to define operators (acting on . Ψ ) corresponding to vari-

ous functions on the phase space. A function . f (q) on the phase space generates a 
canonical transformation which leads to the change.Λ = iξA − f in the symplectic 
potential, see (2.19). The corresponding change in .Ψ is thus 

. δΨ = ξμ∂μΨ − i( iξA − f )Ψ

= ξμ
(
∂μ − iAμ

)
Ψ + i f Ψ

= (
ξμDμ + i f

)
Ψ (4.4) 

where the first term on the right hand side in the first line gives the change in . Ψ
considered as a function and the second term compensates for the change of . A. The  
change can be expressed using the covariant derivative as in the last line. Given (4.4), 
it is natural to define the prequantum operator corresponding to . f (q) by 

.P( f ) = − i
(
ξ · D + i f

)
(4.5) 

We can easily check that 

.

{
d2nq

√
detΩ Ψ ∗

1

[
P( f ) Ψ2

]
=

{
d2nq

√
detΩ

[
P( f )Ψ1

]∗
Ψ2 (4.6)
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so that .P( f ) is a symmetric operator, which is a necessary condition for a unitary 
representation. (Strictly speaking, before we can claim a unitary representation, we 
need to consider the completion of the set of such functions and also make sure the 
domains and ranges of operators match; we will not go into this question, since the 
whole issue has to be addressed for the true wave functions anyway.) 

Now consider the algebra of the prequantum operators. We have already seen in 
(2.15) that if the Hamiltonian vector fields for . f , . g are . ξ and . η respectively, then 
the vector field corresponding to the Poisson bracket .{ f, g} is .−[ξ, η]. Using  the  
definition of the prequantum operator above, we then find 

. [P( f ),P(g)] = [−iξ · D + f,−iη · D + g]

= − [
ξμDμ, ηνDν

] − iξμ[Dμ, g] + iημ[Dμ, f ]
= iξμηνΩμν − (ξμ∂μην)Dν + (ημ∂μξν)Dν − iξμ∂μg + iημ∂μ f

= i
(−ξμηνΩμν + i[ξ, η] · D)

= i
(−i (i[η,ξ ]D) + { f, g})

= iP({ f, g}) (4.7) 

In other words, the prequantum operators form a representation of the Poisson bracket 
algebra of functions on phase space. 

4.2 Polarization 

It seems like we have all the ingredients for the quantum theory, but not quite so. The 
prequantum wave functions .Ψ depend on all phase space variables. The representa-
tion of the Poisson bracket algebra on such wave functions, given by the prequantum 
operators, is reducible. A simple example will suffice to illustrate this point. 

Consider a point particle in one dimension, with the symplectic two-form . Ω =
dp ∧ dx . We can choose .A = p dx . The vector fields corresponding to . x and . p are 
.ξx = −∂/∂p and .ξp = ∂/∂x . The corresponding prequantum operators are 

.P(x) = i
∂

∂p
+ x, P(p) = −i

∂

∂x
(4.8) 

which obey the commutation rule 

.[P(x),P(p)] = i (4.9) 

We have a representation of the algebra of .P(x), .P(p) in terms of the prequantum 
wave functions .Ψ (x, p). But this is reducible. For if we consider the subset of 
functions on the phase space which are independent of . p, namely those which obey 
the condition
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.
∂Ψ

∂p
= 0, (4.10) 

then the prequantum operators reduce to 

.P(x) = x, P(p) = −i
∂

∂x
(4.11) 

which obey the same algebra (4.9). Thus we are able to obtain a representation of 
the algebra of observables on the smaller space of. Ψ ’s obeying the constraint (4.10), 
showing that the previous representation (4.8) is reducible. 

In order to obtain an irreducible representation, one has to impose subsidiary conditions 
which restrict the dependence of the prequantum wave functions to half the number of 
phase space variables. This is the choice of polarization and generally leads to an irreducible 
representation of the Poisson algebra. 

If we are talking about ordinary functions . f on the phase space . M , the statement 
that . f is independent of . n of the coordinates can be phrased as 

.Pμ

i

∂ f

∂qμ
= 0 (4.12) 

where .Pi = Pμ

i (∂/∂qμ), .i = 1, 2, . . . , n, form. n linearly independent vector fields. 
An integrability requirement for (4.12) is  

.[Pi , Pj ]μ ∂ f

∂qμ
= 0 (4.13) 

which can be ensured if 
.[Pi , Pj ] = Ck

i j Pk (4.14) 

where the coefficients .Ck
i j need not be constants. If we have a set of vector fields 

.Pi obeying (4.14), then they are said to be in involution. If this is satisfied, we can 
integrate, starting from some point on . M , along these vector fields and obtain, at 
least locally, a neighborhood of an .n-dimensional submanifold. (This is ensured by 
Frobenius’ theorem.) Such a submanifold is said to be a Lagrangian submanifold if 
we also have the condition 

.Ωμν P
μ

i Pν
j = 0 (4.15) 

The prequantum wave functions are not functions on . M , they are sections of a 
line bundle, i.e., they transform with a phase under .A → A + dΛ, and so we must 
impose the covariant version of (4.12). Thus, as the polarization condition we choose 

.Pμ

i Dμ Ψ = 0 (4.16)
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where .Pi are . n linearly independent vector fields obeying (4.14) and (4.15). The 
integrability requirement for (4.16) is automatically satisfied since 

. [Pμ

i Dμ, Pν
j Dν] Ψ = Ck

i j P
μ

k DμΨ − iΩμνP
μ

i Pν
j Ψ

= 0 (4.17) 

by virtue of (4.15) and (4.16). The prequantum wave functions restricted by the 
polarization condition (4.16) are the true wave functions of the theory. There can be 
different possible choices for the polarization leading to wave functions depending on 
different subsets of phase space coordinates. For example, the difference between the 
momentum space wave functions and the coordinate space wave functions familiar 
from elementary quantum mechanics is one of different polarization choices. 

4.3 Measure of Integration 

The next step is to define an inner product to make these wave functions into a Hilbert 
space. Obviously, if the wave functions do not depend on half the number of phase 
space coordinates, it does not make sense to integrate over them in an inner product. In 
particular, it would give an undefined or infinite value if those directions do not have 
a finite volume. So one needs to define a volume measure for integration over those 
directions or coordinates on which the wave functions do have a dependence. The 
problem is that while the Liouville measure for all of phase space is naturally defined 
in terms of the symplectic structure, there is no natural choice of integration measure 
for the reduced set of variables, once we impose the polarization requirement. In 
many cases, the phase space is the cotangent bundle of some manifold (which is 
the configuration space . Q), which means that it is made of the coordinates and 
co-vectors. For example, for particle dynamics on .Q = R

3, .M = T ∗
R

3. The usual 
coordinates.xμ and the momenta.pμ are the basic coordinates for. M . Then, if we use 
a polarization given by .Pμ

i = (∂/∂pμ), the wave functions depend on .xμ only. This 
is the usual coordinate space Schrödinger quantum mechanics and one can use the 
integration just on .R3 to form the inner product. But generally speaking, unless . M
is the cotangent bundle of some manifold, finding a reduced integration measure is 
not trivial. 

However there is one case where there is a natural inner product on the Hilbert 
space. This happens when the phase space is also Kähler and .Ω is the Kähler form 
or some multiple thereof. In this case we can introduce local complex coordinates 
.(za, z̄ā) and write 

.Ω = Ωaā dz
a ∧ dz̄ā (4.18) 

.a, ā = 1, 2...n. The corresponding covariant derivatives are 

.Da = ∂a − iAa, Dā = ∂ā − iAā (4.19)
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The characteristic of a Kähler manifold is the existence of a Kähler potential . K
such that 

.Aa = − i

2
∂aK , Aā = i

2
∂ā K (4.20) 

In this case, one can choose the holomorphic polarization (also referred to as the 
Bargmann polarization) defined by 

.DāΨ = (∂ā + 1

2
∂ā K )Ψ = 0 (4.21) 

The solutions are the polarized wave functions .ψ given by 

.ψ = exp(− 1
2K ) F (4.22) 

where. F is a holomorphic function on. M . The wave functions are thus holomorphic, 
apart from the prefactor involving the Kähler potential. In this case, .ψ∗ involves the 
antiholomorphic functions .F∗ and the product depends on all the phase space coor-
dinates. Integration over all of phase space is acceptable and the inner product of the 
prequantum Hilbert space can be retained, may be up to a constant of proportionality, 
as the inner product of the true Hilbert space; specifically we have 

.⟨1|2⟩ =
{

dσ(M) e−K F∗
1 F2 (4.23) 

The cases where .M = T ∗Q for some manifold .Q and the Kähler case will cover 
most of the physical situations of interest to us. 

4.4 Representation of Operators 

Once the polarized wave functions are defined, the idea is to represent observables 
as linear operators on the wave functions as given by the prequantum differential 
operators. Let. ξ be the Hamiltonian vector field corresponding to a function. f (q). If  
the commutator of. ξ with any polarization vector field.Pi is proportional to.Pi itself, 
i.e., .[ξ, Pi ] = C j

i Pj for some functions .C j
i , then, evidently, . ξ does not change the 

polarization; .ξΨ will obey the same polarization condition as . Ψ . In this case the 
operator corresponding to . f (q) is given by .P( f ), but, of course, now acting on the 
wave functions in the chosen polarization. 

The situation with operators which do not preserve the polarization is more com-
plicated. There are many such operators of interest in any physical problem. For 
example, the Hamiltonian for a free nonrelativistic particle in one spatial dimension 
is.H = p2/2m, with the vector field.ξH = (p/m) (∂/∂x). If we choose the polariza-
tion which gives wave functions depending on . x , namely, choose .P = (∂/∂p), then 
we find
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.[ξH , P] = − 1

m

∂

∂x
(4.24) 

We see that .ξH does not preserve the polarization. The solution is also suggested 
by this example. We can define .p2 trivially by using the momentum-space wave 
functions, namely, ones corresponding to the polarization .(∂/∂x). It is possible to 
transform from one type of wave functions to the other; in this particular case, 
this is done by Fourier transformation. More generally, there are kernels, known 
as Blattner-Kostant-Sternberg (BKS) kernels, which map from one polarization to 
another [ 5]. Using this, we can define operators as follows. We carry out a canonical 
transformation on the wave functions by the vector field.t ξ f where. f is the function 
whose operator version we wish to find and . t is a real parameter. The result is no 
longer in the same polarization, but we can transform back using an appropriate 
BKS kernel. The derivative of the result with respect to . t at .t = 0 will give the 
action of the operator. Equivalently, we can work out the form of the operator in a 
polarization which is preserved by the corresponding vector field and then transform 
to the required polarization using an appropriate BKS kernel. 

4.5 Comments on the Measure of Integration, Corrected 
Operators, Etc 

The problem of defining the measure of integration in a given polarization has impli-
cations, which necessitates a certain modified definition for operators. Fortunately, 
this will not be an issue for most of the examples we discuss later, but, neverthe-
less, a comment is in order at this stage. (For more detailed analysis, see [ 5, 7, 
8].) To illustrate the problem, consider how we can show that .P( f ) is a symmet-
ric operator, as in (4.6). The relevant integration-by-parts leads to a discrepancy 
.∂μξμ + 1

2ξ
μ∂μ(log detΩ) which is zero by virtue of the closure of .Ω and. ξ being a 

Hamiltonian vector field. However, the integration measure for the polarized wave 
functions is not given by .Ω and hence this argument does not go through. Consider 
a real polarization and let the inner product be of the form 

.⟨1|2⟩ =
{

dnx J ψ∗
1 ψ2 (4.25) 

(We do not necessarily mean that. x denotes coordinates of some configuration space, 
it is used as a generic notation here.) We then find 

. 

{
ψ∗

1 (P( f )ψ2) −
{

(P( f )ψ1)
∗ ψ2 = i

{
dnx J

[
∂ · ξ + ξ · ∂ log J

]
ψ∗

1 ψ2

(4.26)
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Clearly using .P( f ) to act on the polarized wave functions will not do. One strategy 
is to factorize . J as .σ̄ σ where . σ need not be real and consider .ψ σ in place of the 
wave function. The quantity. σ behaves as the square root of the integration measure 
on the complement of the subspace defined by the polarization vector fields. For this 
reason, this way of considering .ψ σ directly, rather than .ψ and then the measure 
of integration separately, is called the half-form quantization. We then modify the 
definition of the operator corresponding to . f as 1

. P( f ) ψ σ = [(−iξ · D + f ) ψ] σ − ψ (iLξ σ )

−iLξ σ = −iξ · ∂σ − i

2
∂ · ξ σ (4.27) 

With this definition, we can verify that 

.

{
dnx ψ∗σ̄ [P( f )ψ σ ] =

{
dnx [P( f )ψ σ ]∗ ψ σ (4.28) 

It is useful to consider the problem of the integration measure in some more detail. 
For this purpose, let us consider the Lagrangian submanifold defined by the polariza-
tion .{Pi }. Let  .ui denote the local coordinates on this submanifold. The coordinates 
.qμ on the submanifold can be considered as functions of .ui and obey equations of 
the form 

.(E−1) k
i

∂qμ

∂uk
= P μ

i (4.29) 

The matrix of functions .E k
i plays the role of frame fields for the subspace and we 

can define a volume measure of the form.(det E) dnu. In the inner product (4.25), the 
integrand .ψ∗

1ψ2 is independent of . ui . So, just as how one deals with the case of the 
functional integral for gauge theories, we can introduce a constraint. δ(n)(u) (det E)−1

and integrate with the full Liouville measure. This will effectively remove the vol-
ume element .(det E)dnu of the Lagrangian submanifold from the Liouville volume 
element. An alternative is to construct the antisymmetric tensor 

.σ−1(P) = 1

n!∈
i1i2···in (E−1)

k1
i1

(E−1)
k2
i2

· · · (E−1)
kn
in

∂

∂uk1
∧ ∂

∂uk2
∧ · · · ∂

∂ukn
(4.30) 

The contraction of this with the Liouville volume form will remove the volume factor 
.(det E) dnu of the Lagrangian submanifold defined by the . Pi ’s. The expression for 
.σ−1 given in (4.30) is in terms of local coordinates. We can extend this over the 
manifold. M , so that .σ−1 can be viewed as sections of an appropriate bundle.δ−1(P). 
Notice that if we make a transformation .Pi → N j

i Pj on the basis of polarization 
vectors, we have .(E−1)ki → N j

i (E−1)kj and 

.σ−1(N P) = (det N ) σ−1(P) (4.31)

1.Lξ σ is again the Lie derivative of. σ . 
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The reduced volume will have this transformation property. More generally, one can 
consider bundles .δr (P) for which we have the transformation 

.σr (N P) = (det N )−r σr (P) (4.32) 

There are a couple of other properties obeyed by . δr . For example, if we have dual 
spaces .F and.F∗ (analogous to .T M and.T ∗M), .δr (F) = δ−r (F∗); further, from the 
transformation property (4.32),.δr (F) ⊗ δs(F) = δr+s(F). Also, in particular,. δ1(M)

can be taken as the volume element for . M . 
In order to have a strategy which can work for all polarizations, including holo-

morphic (or partly holomorphic) ones, we will need to consider a “square root” of 
.δ−1(P), say.δ−1/2. This bundle.δ−1/2 is called a metaplectic structure on. M . There are 
conditions on whether this square root can be defined consistently over the manifold, 
as we mention below. (We may think of.δ1/2 as defining a volume on spinor frames.) 
The volume for the polarized subspace can be defined using .δ−1/2(P) and . δ−1/2(P̄)

acting on.δ1(M). Let.W = (P ∪ P̄)/(P ∩ P̄). This can be shown to be a symplectic 
space with its own volume measure which will transform as. σ1. The general formula 
for the required integration measure is then 

.dμ = σ−1/2(P) σ−1/2(P̄) σ1(W ) dσ (M) (4.33) 

For a real polarization,.P = P̄ and.W is empty. Thus we get the result. σ−1(P) dσ(M)

which is the same as (4.25). The formula (4.33) factors out the effect of the directions 
defined by . P . The two factors .σ−1/2(P) and .σ−1/2(P̄), which we denoted by . σ and 
. σ̄ in Eqs. (4.27) and (4.28), are needed for the action of the operators as in (4.27). 2 In 
the integration measure, we can go back to the form.δ(n)(u) det E−1 which is given by 
.σ−1(P). If we consider holomorphic polarization, then.P ∪ P̄ = M and.P ∩ P̄ = ∅, 
so that we get .σ1(W ) = σ1(M), which gives another factor of .

√
detΩ . This cancels 

with the .σ−1/2 factors retaining .dσ(M) as the volume. Thus we see that (4.33) will 
correctly reproduce the expected volume element. 

An explicit formula for.σ−1/2 is not easy to construct, but this is not needed for most 
of the calculations. As seen from the statements above, the two factors of.δ−1/2 often 
combine to produce an appropriate factor of .δ−1. However, the transformation rule 
is important in working out the consequences of using half-forms. As we see from 
(4.27), once we include such half-form factors, the definition of operators will have 
the corrections from.Lξ σ−1/2. This can give a correction even when the operator . ξ f

preserves the polarization. If .ξ f preserves the polarization, then we find 

.Lξ f Pi = [ξ f , Pi ] = C j
i Pj (4.34)

2 By the way,.σr (P̄) = σr (P). 
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for some.C j
i . Since the polarization is preserved by. ξ f , the prequantum operator with 

the modification as in (4.27) can be used as the quantum version of . f . Thus 

.P( f ) = (−iξ · D + f ) − i

2
Tr C (4.35) 

In comparison with (4.32), .N ≈ 1 − iC . 
The condition for the existence of a metaplectic structure is essentially the same as 

the condition for the existence of spinors on the manifold, namely, the vanishing of the 
Stiefel-Whitney class; i.e., .H2(M,Z2) = 0. (The metaplectic group is the covering 
group for the symplectic group, and .δ−1/2 can be constructed using spinor frames.) 
If we have.H2(M,Z2) = 0, then there can still be inequivalent .δ−1/2 bundles, which 
are classified by .H1(M,Z2), exactly as for spinors. 

The metaplectic structure gives a more formal and better way to address the issue of 
defining the integration measure for the inner product of the true wave functions and 
of having to modify the definition of operators corresponding to . f as in (4.27). We 
will not go into this in any more detail here. The point is that, overall, while geometric 
quantization is very beautiful, it must be admitted that defining operators which do 
not preserve the polarization and defining an integration measure on the space of 
polarized wave functions are somewhat awkward and cumbersome. In what follows, 
we will be considering mostly the holomorphic polarization which avoids most of 
these issues. 
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Chapter 5 
Topological Features of Quantization 

Many of the topological properties of the phase space have an impact on the pro-
cedure of quantization and on key features of the quantum theory. We have already 
mentioned the Stiefel-Whitney class .H2(M,Z2) for the existence of the metaplec-
tic structure and how .H1(M,Z2) will classify such structures. There are two other 
important features we will consider here. These are in relation to the first and second 
cohomology of the phase space. For further reading, see [ 5– 7]. 

5.1 The Case of Nontrivial . H1(M,R)

Consider first the case of.H1(M,R) /= 0, which means that.M admits one-forms, say 
. A, which are closed but not exact. This implies that, for a given symplectic two-form 
. Ω , we can have different symplectic potentials.A and.A + A which lead to the same 
.Ω since . A is closed, i.e., .dA = 0. Now  if . A is exact, there is some globally defined 
function. h on.M such that.A = dh. The function. h is a canonical transformation and 
physical results will be unchanged. In fact an exact one-form is equivalent to . A = 0
upon carrying out a canonical transformation. However, if . A is closed but not exact, 
i.e., it is a nontrivial element of the cohomology .H1(M,R), then we cannot get rid 
of it by a canonical transformation. Locally we can still write .A = d f for some . f , 
but . f will not be globally defined on . M . Thus globally we cannot eliminate . A. 

Classical dynamics is defined by the equations of motion as in (3.2) which involves 
only . Ω , not the symplectic potential . A. Thus this ambiguity in the choice of the 
symplectic potential due to nonzero.H1(M,R)will not affect the classical dynamics. 
In the quantum theory such . A’s do make a difference. This can be seen in terms of 
the action . S; for a path . C , parametrized as .qμ(t) from a point . a on .M to a point . b, 
the action is 

.S =
∫

dt

(
Aμ

dqμ

dt
− H

)
+

∫ b

a
Aμdq

μ (5.1) 
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The action depends on the path but the contribution from .A is topological. If we 
change the path slightly from .C to .C ' with the end points fixed, we find, using 
Stokes’ theorem, 

.

∫
C
A −

∫
C '

A =
∫
C−C '

A =
∫

Σ

dA = 0 (5.2) 

where .C − C ' is  the path where we go from  . a to . b along .C and back from . b to . a
along . C '. (Since this is the return path, the orientation is reversed, hence the minus 
sign.) .Σ is a surface in .M with .C − C ' as the boundary. The above result shows 
that the contribution from. A is invariant under small changes of the path, which also 
explains why it does not contribute to the classical equations of motion, since the 
latter arise from extremization of the action under small variations. (The full action 
. S does depend on the path.) In particular, the value of the integral of .A is zero for 
closed paths so long as they are contractible; for then we can make a sequence of 
small deformations of the path (which do not change the value) and so the value of 
the integral will coincide with what it is for a path that is contracted to zero. In other 
words, the value will be zero. 

If there are noncontractible loops, which is the case if .H1(M,R) /= 0, then there 
can be nontrivial contributions arising from the integral of .A around such loops. 
While this is irrelevant for the classical dynamics, in the quantum theory, it is . eiS

which is important, so we need.ei
∫
A. (If one considers a path-integral formulation of 

the quantum theory, it is clear that.eiS is what is relevant. For the present discussion of 
an equal-time operator formulation,.eiS is again the relevant quantity as it determines 
the phases of the wave functions, which can be measurable via interference. Hence 
a nontrivial .ei

∫
A has physical consequences.) 

Assume for simplicity that .H1(M,R) has only one nontrivial element (say . α) 
up to addition of trivial terms and multiplicative factors. Then there is only one topo-
logically distinct noncontractible loop apart from multiple traversals of the same. 
Let .A = θ α where . θ is a constant and . α is normalized to unity along the noncon-
tractible loop for going round once. For all paths which include . n traversals of the 
loop, we find 

. exp

(
i
∫

A

)
= exp

(
i θ

∫
α

)
= exp (i θ n) (5.3) 

Notice that a shift .θ → θ + 2π does not change this value, so that we may restrict . θ
to be in the interval zero to.2π . Putting this back into the action (5.2), we see that, as a 
function over all paths, the action has an extra parameter. θ . Thus the ambiguity in the 
choice of the symplectic potential due to .H1(M,R) /= 0 leads to an extra parameter 
. θ which is needed to fully characterize the quantum theory. Since. θ is in the interval. 0
to.2π , we may regard.A = θ α as an element of.H1(M,R)/H1(M,Z). If. H1(M,R)

has more than one distinct element, there are more distinct paths possible and there 
can be more parameters like. θ . Such parameters are generally called vacuum angles. 

It is now easy to see these results in terms of wave functions. The relevant covariant 
derivatives are of the form.DμΨ = (∂μ − iAμ − iAμ)Ψ . We can write
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.Ψ (q) = exp

(
i
∫ q

a
A

)
Φ(q) (5.4) 

where the lower limit of the integral is some fixed point . a. By using this in the 
covariant derivative, we see that . A is removed from.Dμ in terms of action on. Φ; . Dμ

acting on .Φ is then just .Dμ = ∂μ − iAμ. The redefinition of the wave functions in 
(5.4) is like a canonical transformation, except that the relevant factor . exp

(
i
∫ q
0 A

)
is not single valued. As we go around a closed noncontractible curve, it can give 
a phase .eiθ . Since .Ψ is single-valued, this means that .Φ must have a compensating 
phase factor; .Φ is not single-valued but must give a specific phase labelled by . θ . 
Thus we can get rid of .A from the covariant derivatives, and hence from various 
operator formulae, by taking the wave functions to be the. Φ’s related to the. Ψ ’s as in 
(5.4). But diagonalizing the Hamiltonian on such. Φ’s can give results which depend 
on the angle . θ , since the . Φ’s must pick up a phase .e−iθ for each traversal of the 
noncontractible loop. 

The.θ -vacua in a nonabelian gauge theory is an example of this kind of topological 
feature. The description of particles of fractional statistics in two spatial dimensions 
is another example. 

5.2 The Case of Nontrivial . H2(M,R)

We now turn to the second topological feature mentioned earlier, namely the case of 
.H2(M,R) /= 0. This means that there are closed two-forms on.M which are not exact. 
Correspondingly, there are closed two-surfaces which are not the boundaries of any 
three-dimensional region, i.e., there exists noncontractible closed two-surfaces. In 
general, elements of .H2(M,R) integrated over such noncontractible two-surfaces 
will not be zero. If the symplectic two-form.Ω is some nontrivial element, or it has 
a part which is a nontrivial element, of .H2(M,R), then the symplectic potential . A
cannot be globally defined. This is easily seen from the following argument. Consider 
the integral of .Ω over a noncontractible two-surface . Σ , 

.I (Σ) =
∫

Σ

Ω (5.5) 

First of all, this is a topological invariant, for if .Σ ' is a small deformation of . Σ , then 

.I (Σ) − I (Σ ') =
∫

Σ−Σ '
Ω =

∫
V
dΩ = 0 (5.6) 

where.V is a three-dimensional volume with the two surfaces.Σ − Σ ' as the bound-
ary. This shows that the integral of .Ω is invariant under small deformations of the 
surface over which it is integrated. If we could write .Ω as .dA for some .A which is 
globally defined on.Σ then clearly.I (Σ) is zero by Stokes’ theorem. Thus if.I (Σ) is
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nonzero, we must conclude that there is no potential .A which is globally defined on 
. Σ . We have to use different choices for .A in different coordinate patches on .M and 
have transition functions relating the . A’s in the overlap regions. But we must have 
the same .Ω on a given overlap region whether we use the .A for one patch or the . A
for the other patch to calculate it. Thus the transition functions on overlap regions 
must be canonical transformations (or gauge transformations on . A). 

As an example, consider a closed noncontractible two-sphere, or any smooth 
deformation of it, which may be a subspace of . M . We can cover it with two coordi-
nate patches corresponding to the two hemispheres, denoted .N and . S as usual. The 
symplectic potential is represented by .AN and .AS respectively. On the equatorial 
overlap region, they are connected by 

.AN = AS + dΛ (5.7) 

where .Λ is a function defined on the overlap region. It gives the canonical 
transformation between the two . A’s. 

The symplectic potential .A is what is needed in setting up the quantum theory. 
And since canonical transformations are represented as unitary transformations on 
the wave functions, we see that we must also have a .ΨN for the patch .N and a . ΨS

for the patch. S. On the equator they must be related by the canonical transformation, 
which from (4.1), is given as 

.ΨN = exp(iΛ) ΨS (5.8) 

Now consider the integral of .dΛ over the equator . E , which is a closed curve being 
the boundary of either .N or . S. From (5.7) this is given as 

. ΔΛ =
∫
E
dΛ =

∫
E
AN −

∫
E
AS =

∫
∂N

AN +
∫

∂S
AS

=
∫
N

Ω +
∫
S
Ω =

∫
Σ

Ω (5.9) 

(In the second step, we reverse the sign for the .S-term because .E considered as the 
boundary of . S has the opposite orientation compared to it being the boundary of 
. N .) The above equation shows that the change of .Λ as we go around the equator 
once, namely .ΔΛ, is nonzero if .I (Σ) is nonzero. In other words, .Λ is not single-
valued on the equator. But the wave function must be single-valued. From (5.8), we 
see that this can be achieved if .exp(iΔΛ) = 1 or if .ΔΛ = 2πn for some integer . n. 
Combining with (5.9), this can be stated as a topological quantization rule implied 
by the single-valuedness of wave functions in the quantum theory, 

.

∫
Σ

Ω = 2π n (5.10)
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The integral of the symplectic two-form .Ω on closed noncontractible two-surfaces 
must be quantized as .2π times an integer. (Or we may say that .Ω must belong to 
an integral cohomology class of . M .) Notice that .A only sees .dΛ as we go from one 
patch to the other, and the transition condition on the wave functions only involve 
.exp(i Λ) as in (5.8). Both.dΛ and.exp(i Λ) are single-valued if the condition (5.10) is  
satisfied, so there is no difficulty for any observable quantity in the quantum theory. 

We have given the argument for surfaces which are deformations of a two-sphere, 
but a similar argument can be made for general noncontractible two-surfaces. The 
quantization condition (5.10) on  .Ω is quite general: The integral of .Ω over any 
closed two-cycle in .M must be .2π times an integer. 

The quintessential example of this kind of topological feature is the motion of a 
charged particle in the field of a magnetic monopole. The condition (5.10) is then the 
famous Dirac quantization condition. The Wess-Zumino terms occuring in many field 
theories are another example. 

5.3 Summary of Holomorphic Polarization 
and Quantization 

Since we will be using geometric quantization with holomorphic polarization in 
some of the examples later, this is a good point to summarize the key features of 
quantization using the holomorphic polarization. 

1. We need a phase space which is also Kähler; the symplectic two-form must be a 
multiple of the Kähler form. 

2. The prequantum wave functions are sections of a bundle which is the product of 
the holomorphic line bundle with curvature equal to the symplectic form and a 
half-form bundle. (The existence of the half-form bundle requires the vanishing 
of the Stiefel-Whitney class as mentioned earlier.) 

3. The true wave functions are obtained by imposing the polarization condition, 
which, for the holomorphic polarization is .Dā Ψ = 0. 

4. The inner product of the prequantum Hilbert space, which is essentially square 
integrability on the phase space with the Liouville measure of integration, is 
retained as the inner product on the true Hilbert space in the holomorphic 
polarization. 

5. The operator corresponding to an observable . f (q) which preserves the chosen 
polarization is given by the prequantum operator .P( f ) acting on the true (polar-
ized) wave functions. The half-form part of the wave functions, while not impor-
tant for the integration measure in the holomorphic polarization, can modify the 
operators as in (4.27) or (4.35). 

6. For observables which do not preserve the polarization, one has to construct 
infinitesimal unitary transformations whose classical limits are the required 
canonical transformations.
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7. If .H1(M,R) is not zero, then there are inequivalent . A’s for the same .Ω and we 
need extra angular parameters to specify the quantum theory completely. 

8. If the phase space .M has noncontractible two-surfaces, then the integral of . Ω
over any of these surfaces must be quantized in units of .2π . 

Problem 

5.1 For a particle moving on a circle with coordinate . θ , .dθ/(2π) is an element of 
.H1(M). Consider the action 

. S =
∫

dt
[
1
2 θ̇

2 + α

2π
θ̇
]

Obtain the energy eigenvalues to show how they depend on the vacuum angle . α. 
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Chapter 6 
Coherent States, the Two-Sphere 
and .G/H Spaces 

We will now consider some examples of geometric quantization. Specifically, we 
discuss coherent states in flat space, on the two-sphere and on the complex projec-
tive space, using local coordinates, homogeneous coordinates and a group-theoretic 
formulation [ 5– 7, 9]. Quantization of Kähler spaces of the.G/H -type and the use of 
index theorems to calculate the dimension of the Hilbert space will also be briefly 
outlined. 

6.1 Coherent States 

We will start with the simplest case of coherent states for a one-dimensional quantum 
system to illustrate how the ideas of geometric quantization take concrete form. In 
one spatial dimension,.Ω = dp ∧ dx = i(dz ∧ dz̄)/κ, where.z, z̄ = κ (p ± ix)/

√
2. 

(We introduce a parameter . κ which will be useful for later considerations.) Choose 

.A = i

2κ
(z dz̄ − z̄ dz) (6.1) 

The space has the Kähler property, with the Kähler potential.K = z̄z/κ. The covariant 
derivatives corresponding to (6.1) are  

.Dz = ∂z − z̄

2κ
, Dz̄ = ∂z̄ + z

2κ
(6.2) 

Holomorphic polarization corresponds to .P = ∂/∂ z̄, so that the polarization 
condition on the prequantum wave functions is 

.Dz̄Ψ =
(
∂z̄ + z

2κ

)
Ψ = 0 (6.3) 
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The solutions of this equation are of the form 

.Ψ = e− 1
2 (zz̄/κ) ϕ(z) (6.4) 

where .ϕ(z) is holomorphic in . z. The Hamiltonian vector fields corresponding to 
.z, z̄ are 

.z ←→ −iκ
∂

∂ z̄
, z̄ ←→ iκ

∂

∂z
(6.5) 

These commute with.P = ∂/∂ z̄ and so are polarization-preserving. The prequantum 
operators corresponding to these are 

. P(z) = −i(−iκ)

(
∂

∂ z̄
+ z

2κ

)
+ z = −κ

∂

∂ z̄
+ 1

2 z

P(z̄) = −i( iκ)

(
∂

∂z
− z̄

2κ

)
+ z̄ = κ

∂

∂z
+ 1

2 z̄ (6.6) 

In terms of their action on the functions.ϕ(z) in (6.4), corresponding to. Ψ ’s obeying 
the polarization condition, we define the operator versions of . z and . z̄ by 

.P(z) Ψ = e− 1
2 (z̄z/κ) O(z)ϕ(z), P(z̄) Ψ = e− 1

2 (z̄z/κ) O(z̄)ϕ(z) (6.7) 

so that 

. O(z)ϕ(z) = z ϕ(z)

O(z̄)ϕ(z) = κ
∂ϕ

∂z
(6.8) 

The inner product for the .ϕ(z)’s is 

.〈 1|2〉 =
∫

i
dz ∧ dz̄

2πκ
e−zz̄/κ ϕ∗

1 ϕ2 (6.9) 

A basis for the Hilbert space of states is given by 

.ψn = e− 1
2 (zz̄/κ) zn

κ
n
2

√
n! ≡ 〈 z|n〉 (6.10) 

What we have obtained is the standard coherent state (or Bargmann) realization of 
the Heisenberg algebra.
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It is illuminating to consider the quantization of the function . z̄z. The vector field 
corresponding to this is.ξ = iκ(z∂z − z̄∂z̄). The prequantum operator for this is easily 
seen to be .z∂z acting on .ϕ(z). For the polarization we have chosen, 

.
[
ξ, ∂z̄

] = iκ ∂z̄ (6.11) 

Thus. ξ preserves polarization and we can identify.C = iκ in comparing with (4.34). 
The operator corresponding to . z̄z, including the metaplectic correction, is thus 

.O(z̄z) = κ

(
z

∂

∂z
+ 1

2

)
(6.12) 

For most of what follows we will set .κ = 1. 

6.2 Quantizing the Two-Sphere 

We now consider the example of the phase space being a two-sphere . S2. This space 
can be considered as .CP1, the complex projective space in one (complex) dimen-
sion. It is a Kähler manifold. We may also regard .S2 as .SU (2)/U (1), a point of 
view which is useful for generalization later. We will consider quantization of the 
two-sphere first in local coordinates, then using homogeneous coordinates for .CP1, 
and then from the group theory point of view. 

6.2.1 Quantization Using Local Coordinates 

We introduce local complex coordinates for .CP1 as .z = x + iy, z̄ = x − iy, the  
standard Kähler two-form is given by 

.ω = i
dz ∧ dz̄

(1 + zz̄)2
(6.13) 

These coordinates can be related to an embedding of .S2 in .R
3 via 

.X1 = z + z̄

(1 + zz̄)
, X2 = i(z − z̄)

(1 + zz̄)
, X3 = 1 − zz̄

(1 + zz̄)
(6.14) 

so that we may view .z, z̄ as the coordinates of a plane onto which the sphere is 
stereographically projected. The metric is given by .ds2 = e1e1 + e2e2 where the 
frame fields are
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.e1 = dx

1 + zz̄
, e2 = dy

1 + zz̄
(6.15) 

The Riemannian curvature is .R1
2 = 4 e1 ∧ e2, giving the Euler number 

.χ =
∫

R12

2π
= 2 (6.16) 

The phase space has nonzero .H2(M,R) with its generating element given by 
the Kähler two-form, which is also proportional to the volume form for . S2. As the  
discussion which led to (5.10) showed, the symplectic two-form must belong to an 
integral cohomology class of .M to be able to quantize properly. So we consider the 
symplectic form 

.Ω = n ω = i n
dz ∧ dz̄

(1 + zz̄)2
= i ∂ ∂̄ K , K = n log(1 + zz̄) (6.17) 

where . n is an integer. In this case, we can verify by direct evaluation of the integral 
that 

.

∫

M
Ω = 2πn (6.18) 

as required by the quantization condition. In (6.17), .K is the Kähler potential for 
. Ω . Classically the Poisson bracket of two functions .F and .G on the phase space is 
given by 

. {F,G} = Ωμν ∂μF ∂νG

= i

n
(1 + zz̄)2

(
∂F

∂z

∂G

∂ z̄
− ∂F

∂ z̄

∂G

∂z

)
(6.19) 

Turning to the quantization, first of all, the symplectic potential corresponding to 
the .Ω in (6.17) can be taken as 

.A = i
n

2

[
z dz̄ − z̄ dz

(1 + zz̄)

]
(6.20) 

The covariant derivatives, which are given by .∂ − iA, are  

. Dz = ∂z − iAz = ∂z − n

2

z̄

1 + zz̄

Dz̄ = ∂z̄ − iAz̄ = ∂z̄ + n

2

z

1 + zz̄
(6.21)
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The holomorphic polarization condition is 

.Dz̄Ψ = (∂z̄ − iAz̄)Ψ =
[
∂z̄ + n

2

z

(1 + zz̄)

]
Ψ = 0 (6.22) 

This can be solved as 

.Ψ = exp
(
−n

2
log(1 + zz̄)

)
f (z) (6.23) 

where . f (z) is a holomorphic function of . z. Notice that we have a factor . exp(− 1
2K )

as expected. The inner product is given by 

.〈 1|2〉 = i c
∫

dz ∧ dz̄

2π(1 + zz̄)n+2
f1

∗ f2 (6.24) 

Here . c is an overall constant, which can be absorbed into the normalization factors 
for the wave functions. Since. f (z) in (6.23) is holomorphic, we can see that a basis of 
nonsingular wave functions is given by. f (z) = 1, z, z2, . . . , zn; higher powers of. z
will not have finite norm. The dimension of the Hilbert space is thus.(n + 1). We could 
have seen that this dimension would be finite from the semiclassical estimate of the 
number of states as the phase volume. Since the phase volume is finite for .M = S2, 
the dimension of the Hilbert space should be finite. 

An orthonormal basis for the wave functions may be taken to be 

. fk(z) =
[

n!
k! (n − k)!

] 1
2

zk (6.25) 

with the inner product 

.〈 1|2〉 = i(n + 1)
∫

dz ∧ dz̄

2π(1 + zz̄)n+2
f1

∗ f2 (6.26) 

Here we have chosen the parameter . c in (6.24) such that the trace of the identity 
operator is the dimension of the Hilbert space, equal to .n + 1. 

Consider now the vector fields 

. ξ+ = i

(
∂

∂ z̄
+ z2

∂

∂z

)
, ξ− = −i

(
∂

∂z
+ z̄2

∂

∂ z̄

)
, ξ3 = i

(
z

∂

∂z
− z̄

∂

∂ z̄

)

(6.27) 
It is easily verified that these are the standard .SU (2) isometries of the sphere. The 
Lie commutator of the . ξ’s give the .SU (2) algebra. Further, these are Hamiltonian 
vector fields corresponding to the functions 

.J+ = −n
z

1 + zz̄
, J− = −n

z̄

1 + zz̄
, J3 = −n

2

(
1 − zz̄

1 + zz̄

)
(6.28)
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The prequantum operators .−iξ · D + J corresponding to these functions are 

. P(J+) =
(
z2∂z − nz

2

2 + z̄z

1 + z̄z

)
− iξ z̄+Dz̄

P(J−) =
(

−∂z − n

2

z̄

1 + zz̄

)
− iξ z̄−Dz̄

P(J3) =
(
z∂z − n

2

1

1 + zz̄

)
− iξ z̄3Dz̄ (6.29) 

Acting on the polarized wave functions, .Dz̄ in these expressions will give zero. 
Writing .Ψ as in (6.23), we can then work out the action of the operators on the 

holomorphic wave functions . f (z), by moving the derivatives through the . e− 1
2K

factor. We then find 

. Ĵ+ f = (z2∂z − n z) f

Ĵ− f = (−∂z) f

Ĵ3 f = (z∂z − 1
2 n) f (6.30) 

If we define . j = n/2, which is therefore half-integral, we see that the operators 
given above correspond to a unitary irreducible representation of .SU (2) with . J 2 =
j ( j + 1) and dimension.n + 1 = 2 j + 1. Notice that there is only one representation 
here and it is fixed by the choice of the symplectic form . Ω . In other words, the 
quantization of the two-sphere with the symplectic form (6.17) gives one unitary 
irreducible representation of .SU (2) with . j = n/2. 

6.2.2 Quantization Using Homogeneous Coordinates 

The complex coordinates we used are only local coordinates valid in a coordinate 
patch around.z = 0; strictly speaking we need at least another coordinate patch with 
a different choice of coordinates to describe the sphere in a nonsingular way. This 
second patch would be needed around.z = ∞, corresponding to the south pole of the 
sphere .S2 in the stereographic projection (6.14). It did not matter too much in what 
we did so far, because the potential coordinate singularity is basically a point with 
zero measure. 

A more global approach is to use the homogeneous coordinates of the sphere 
viewed as .CP1. Recall that the complex projective space .CPk is defined by 
.(k + 1) complex coordinates .(u1, u2, . . . , uk+1) ∈ C

k+1 with the identification 
.(u1, u2, . . . , uk+1) ∼ λ (u1, u2, . . . , uk+1), for any complex nonzero. λ,.λ ∈ C − {0}. 
Thus, for.CP1, we will need two. u’s which we may think of as a two-component spinor 
.uα, .α = 1, 2, with the identification .uα ∼ λuα. We also define .ū1 = u∗

2, ū2 = −u∗
1
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or.ūα = ∈αβu∗
β , where.∈αβ = −∈βα, .∈12 = 1. The metric corresponding to the frames 

(6.15) is  

.ds2 =
[
dū · du
ū · u − ū · du dū · u

(ū · u)2

]
(6.31) 

This is known as the Fubini-Study metric. The symplectic form corresponding to 
(6.17) is  

.Ω = −i n

[
du · dū
ū · u − ū · du u · dū

(ū · u)2

]
(6.32) 

where the notation is.u · v = uαvβ∈αβ . This means that.ū · v = u†v = u∗
1v1 + u∗

2v2. 
1

It is easily checked that .Ω(λu) = Ω(u); it is invariant under .u → λu and hence is 
properly defined on.CP1 rather than on.C2. The choice of.u2/u1 = z leads to the previ-
ous local parametrization; this is valid around.u1 /= 0. We can use another coordinate 
patch with the local coordinates .w = u1/u2. These two patches will correspond to 
the north and south hemispheres of the sphere, in the stereographic projection. 

The symplectic potential corresponding to (6.32) is  

.A = −i
n

2

[
u · dū − du · ū

ū · u
]

(6.33) 

Directly from the above expression we see that 

.A(λu) = A(u) + d
(
i
n

2
log(λ̄/λ)

)
(6.34) 

This means that. A cannot be written as a globally defined form on.CP
1 since it is not 

invariant under the needed identification .uα ∼ λuα. This is to be expected because 
.
∫

Ω /= 0 and hence we cannot have a globally defined potential on .CP1. From the  
transformation law (6.34) and (4.1), we see that the prequantum wave functions must 
transform as 

.Ψ (λu, λ̄ū) = Ψ (u, ū) exp
[n
2
log(λ/λ̄)

]
(6.35) 

The polarization condition for the wave functions becomes 

.

[
∂

∂ūα
− n

2

uβ ∈βα

ū · u
]

Ψ = 0 (6.36) 

The solution to this condition is 

.Ψ = exp
(
−n

2
log(ū · u)

)
f (u) (6.37)

1 In (6.32), a wedge product is implied, while there is no wedge product in (6.31). 
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Combining this with (6.35), we see that the holomorphic functions . f (u) should 
behave as 

. f (λu) = λn f (u) (6.38) 

Therefore . f (u) must have .n . u’s and hence is of the form 

. f (u) =
∑
α's

Cα1···αn uα1 · · · uαn (6.39) 

Because of the symmetry of the indices, there are .n + 1 independent functions, as 
before. There is a natural linear action of .SU (2) on the .u, ū given by 

.u'
α = Uαβ uβ, ū'

α = Uαβ ūβ (6.40) 

where .Uαβ form a .(2 × 2) .SU (2) matrix. The corresponding generators are the . Ja
we have constructed in (6.29) and (6.30). We have thus recovered all the previous 
results in a more global way. 

6.2.3 Group Theoretic Version 

Equation (3.5) relating the action and the symplectic potential .A shows that the 
potential of interest to us, namely, (6.20) can be obtained from the action 

.S = i
n

2

∫
dt

z ˙̄z − z̄ ż

1 + zz̄
(6.41) 

where the overdot denotes differentiation with respect to time. This action may be 
written as [ 10, 11] 

.S = i
n

2

∫
dt Tr(σ3 g−1ġ) (6.42) 

where. g is an element of.SU (2)written as a.(2 × 2)-matrix,.g = exp(i (σi/2)θi ) and 
. σi , .i = 1, 2, 3, are the Pauli matrices, given explicitly as 

.σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(6.43) 

In the action (6.42), the dynamical variable is thus an element of .SU (2). There are 
many ways to parametrize the group element, corresponding to local coordinates 
on the group viewed as a Riemannian manifold. One convenient parametrization is 
given by
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.g = 1√
1 + zz̄

(
1 z

−z̄ 1

) [
ei

θ
2 0
0 e−i θ

2

]
(6.44) 

If this is used in (6.42), we get (6.41). 
In the action (6.42), if we make a transformation.g → g h,.h = exp(iσ3ϕ), we get 

.S → S − n
∫

dt ϕ̇ (6.45) 

The extra term is a boundary term and does not affect the equations of motion. (It 
is for this same reason that . θ in (6.44) does not appear in (6.41).) Since equations 
of motion do not depend on . θ, we see that classically the dynamics is actually 
restricted to .SU (2)/U (1) = S2. 

Even though classical dynamics is restricted to .SU (2)/U (1), the boundary term 
in (6.45) does have an effect in the quantum theory. Consider choosing.ϕ(t) such that 
.ϕ(−∞) = 0 and.ϕ(∞) = 2π. In this case.h(−∞) = h(∞) = 1 giving a closed loop 
in the .U (1) subgroup of .SU (2) defined by the .σ3-direction. For this choice of .h(t), 
the action changes by .−2πn. However, .eiS remains single-valued since . n is chosen 
to be an integer, and, even in the quantum theory, the extra .U (1) degree of freedom 
is consistently removed. If the coefficient were not an integer, this would not be the 
case and we would have inconsistencies in the quantum theory. The quantization 
of the coefficient to an integral value, already seen in (6.18), is seen again from a 
slightly different point of view. 

We can now move ahead and complete the quantization. The canonical one-form 
is obtained from. S as 

.A = i
n

2
Tr(σ3 g−1dg) (6.46) 

The corresponding two-form is given by 

.Ω = −i
n

2
Tr(σ3 g−1dg g−1dg) (6.47) 

The prequantum wave functions are sections of a bundle on .SU (2)/U (1). Let us 
start with functions on .SU (2). A function on .SU (2) may be written as a linear 
combination of the representation matrices .D( j)

ab (g) as 

.Ψ =
∑
j

∑
a,b

C ( j)
ab D( j)

ab (g) =
∑
j

∑
a,b

C ( j)
ab 〈 a|ei Ĵi θi |b〉 (6.48) 

where. Ĵi is the angular momentum or.SU (2) generator in an arbitrary representation. 
(The matrices .D( j)

ab (g) are also known as the Wigner .D-functions.) Consider the 
transformation .g → g h, .h = exp(i σ3

2 θ); the change in .A is given by . A → A −
(n/2) dθ. Since .σ3/2 corresponds to . Ĵ3 in an arbitrary representation, this implies 
that the wave functions must obey
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.Ψ
(
g ei Ĵ3θ

)
= Ψ (g) exp

(
− i n

2
θ

)
(6.49) 

This identifies the .J3-eigenvalue of the state .|b〉 in (6.48) as  .−n/2, so that we can 
write .|b〉 = | j,− n

2 〉. 
We have considered translations of . g on the right by .h ∈ U (1). The remaining 

generators for the right action are .R± = R1 ± iR2, where .Ri is defined by 

.Ri g = g
σi

2
(6.50) 

The combinations .R± are complex and conjugate to each other. We can take .R− as 
the polarization condition, requiring the wave functions to obey 

.R− Ψ = R−
∑
j

∑
a,b

C ( j)
ab 〈 a|ei Ĵi θi |b〉 =

∑
j

∑
a,b

C ( j)
ab 〈 a|ei Ĵi θi Ĵ−|b〉 = 0 (6.51) 

This is a holomorphicity condition and upon using the parametrization (6.44) will be 
seen to be identical to the condition (6.22), namely,.Dz̄Ψ = 0. From the group theory 
point of view, (6.51) means that the state .|b〉 must also be the lowest weight state. 
If we have a state .|b〉 with .J3 = −n/2 and it is also the lowest weight state, then 
we must have . j = n/2. Thus only one representation in (6.48) will have nonzero 
coefficients, identifying the general wave function as 

.Ψ =
∑
a

C
( n
2 )

a,− n
2
D( n

2 )

a,− n
2
(g) (6.52) 

A general state is a linear combination of .D( n
2 )

a,− n
2
(g); since . a takes .2 j + 1 values, 

we see that the Hilbert space corresponds to a unitary irreducible representation of 
.SU (2) with . j = n/2. The operators .Ji given in (6.29) or (6.30) correspond to the 
left action on . g, i.e., 

.Ji Ψ (g) =
∑
a

C
( n
2 )

a,− n
2
D( n

2 )

a,− n
2
(
σi

2
g) =

∑
a,c

C
( n
2 )

a,− n
2
(Ji )acD( n

2 )

c,− n
2
(g) (6.53) 

Here .(Ji )ac is the matrix version of . Ĵi in the representation with . j = n/2. We have  
thus reproduced the previous results from a purely group theoretic point of view. 

The explicit construction of the wave functions is also straightforward. Since. R−
must annihilate.Ψ (g) and we need.R3Ψ = −(n/2)Ψ , we see that the wave functions 
are of the form 

.Ψ (g) = N gi12 gi22 · · · gin2 (6.54) 

where.gi j is given by the.2 × 2 matrix in (6.44). Once we choose a coordinate patch, 
we can set . θ to some specific value. In particular around .z = 0, we can set .θ = 0. 
Notice that the second index for each.gi j is set to the value 2. It is then easy to see that
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this does give .−n/2 for the value of .R3 and that .R− annihilates this since each . gi2
is in the lowest state for the right translations. In this equation .N is a normalization 
factor. The wave function .Ψ is symmetric in the indices .i1, i2, . . . , in , so that the 
number of independent components is .n + 1, as expected. Normalizing these wave 
functions, we then get the same set as in (6.23), (6.25). 

Before we consider the generalization of this to arbitrary groups, it is useful to 
mention some examples where these results turn up. We may regard the .Ω = nω as 
a .U (1) magnetic field which is constant (in the appropriate coordinate frame) on the 
sphere. If we consider the two-sphere to be embedded in .R

3, this constant magnetic 
field can be viewed as the (radial) field due to a magnetic monopole of charge . n at 
the origin. This identification of the .U (1) field is further supported by looking at 
.R±. These are translation operators on the sphere, but their commutator is given by 
.[R+, R−] Ψ = 2 R3Ψ = −n Ψ . Since the commutator of covariant derivatives is the 
field strength in the presence of a gauge field, we can identify a magnetic field for 
this case as .2 B = n. (We set the electric charge to be . 1; also we took the sphere to 
have radius equal to . 1, otherwise this would read.2 Br2 = n where. r is the radius of 
the sphere.) In the context of charged particle dynamics in the presence of a magnetic 
monopole, the quantization of the magnetic flux is the Dirac quantization condition. 
We see that this is equivalent to the quantization of .

∫
Ω . Thus the states (6.52) we  

find are the angular part of the wave functions for a charged particle in the presence 
of a magnetic monopole. Also they can be thought of as the lowest Landau levels 
for a constant magnetic field on the sphere [ 12, 13]. The left action of the .Ji as in 
(6.53) correspond to the so-called magnetic translations for the Landau levels. So 
quantum Hall effect on the sphere can be discussed using these wave functions. We 
will consider some more details of this problem later. 

The geometric quantization of the two-sphere can also appear as part of the dynam-
ics of a particle with spin; we get one unitary irreducible representation (UIR) of 
.SU (2), so we have exactly what is needed for spin. It can also be thought of as 
describing the internal symmetry structures, such as the color degrees of freedom for 
a particle with nonabelian charges for the case of the color group being .SU (2). 

6.3 Kähler Spaces of the .G/H-Type 

The two-sphere.S2 = SU (2)/U (1) is an example of a group coset which is a Kähler 
manifold. There are many Kähler manifolds which are of the form .G/H where . H
is a subgroup of a compact Lie group . G. In particular .G/H is a Kähler manifold 
for any compact Lie group if .H is its maximal torus. Another set of Kähler spaces 
of this type is given by .CPk = SU (k + 1)/U (k). There are also examples of this 
type corresponding to noncompact groups. For example, the Lobachevskian space 
.SL(2,R)/U (1) is also a Kähler manifold, although its volume defined by the Kähler 
two-form is infinite. There are many other cases as well which are interesting from 
the physics point of view, see later chapters and corresponding references.
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In these cases, one can consider theories where the symplectic form is propor-
tional to the Kähler form or is a combination of the generators of .H2(M,R) for 
these manifolds and quantize as we have done for the case of . S2. The general result 
is that they lead to one unitary irreducible representation of the group. G, the specific 
representation being determined by the choice of . Ω . 

6.3.1 Quantizing . CP2

In most of these cases with.G/H structure, it is rather simple and straightforward to 
construct the Kähler form for these spaces. We will now consider in some detail 
another example, namely, the quantization of .CP2 = SU (3)/U (2). A general ele-
ment of .SU (3) can be represented as a unitary .(3 × 3)-matrix. This can be taken 
to be of the form .g = exp(itaθa), where the generators .{ta} in the .3 × 3 matrix 
representation can be chosen as 

. t1 = 1

2

⎛
⎝
0 1 0
1 0 0
0 0 0

⎞
⎠ t2 = 1

2

⎛
⎝
0 −i 0
i 0 0
0 0 0

⎞
⎠ t3 = 1

2

⎛
⎝
1 0 0
0 −1 0
0 0 0

⎞
⎠

t4 = 1

2

⎛
⎝
0 0 1
0 0 0
1 0 0

⎞
⎠ t5 = 1

2

⎛
⎝
0 0 −i
0 0 0
i 0 0

⎞
⎠ t6 = 1

2

⎛
⎝
0 0 0
0 0 1
0 1 0

⎞
⎠ t7 = 1

2

⎛
⎝
0 0 0
0 0 −i
0 i 0

⎞
⎠

t8 = 1√
12

⎛
⎝
1 0 0
0 1 0
0 0 −2

⎞
⎠ (6.55) 

(These matrices . ta form an orthonormal basis for the Lie algebra of .SU (3), they are  
normalized so that .Tr(tatb) = 1

2δab.) We define a .U (1) subgroup by elements of the 
form.exp(it8θ8) and we can also define an.SU (2) subgroup which commutes with this 
.U (1) subgroup; the latter has elements of the form .U = exp(itaθa) for .a = 1, 2, 3. 
These two subgroups together form the.U (2) subgroup of.SU (3). 2 Consider now the 
one-form 

.A(g) = iw Tr(t8 g−1dg) = −iw

√
3

2
uα du

∗
α (6.57) 

2 Strictly speaking there is an identification of certain elements involved. There is a common . Z2
subgroup for the factors in.SU (2) ×U (1) defined by.Z2 = {1, hZ },.hZ = (h2, h1)with.h2Z = 1 and 

.h2 =
(−12×2 0

0 1

)
, h1 = exp(it8

√
12 π) =

(−12×2 0
0 1

)
(6.56) 

The.U (2) subgroup is thus given by.SU (2) ×U (1)/Z2.
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where . g is an element of the group.SU (3) and.w is a numerical constant; .u∗
α = gα3. 

If . h is an element of .U (2) ⊂ SU (3) of the form.h = U exp(i t8 θ), we find 

.A(g h) = A(g) − w

2
dθ (6.58) 

We see that .A changes by a total differential under the .U (2)-transformations. The 
two-form.dA is therefore independent of . θ or it is invariant under .U (2) transforma-
tions. Thus the two-form.dA is defined on the coset space.SU (3)/U (2). Evidently it 
is closed (.ddA = 0 since.d2 = 0), but it is not exact since the corresponding one-form 
.A is not globally defined on .SU (3)/U (2), but only on .G = SU (3). Thus .dA is a 
nontrivial element of .H2(SU (3)/U (2),R) = H2(CP2,R). There will be quantiza-
tion conditions on. w and the lowest possible choice, with our choice of normalization 
for. t8, will be.2/

√
3. With this choice, we define the Kähler 2-form for. SU (3)/U (2)

as 

.ω = d

(
i
2√
3
Tr(t8 g−1dg)

)
(6.59) 

The connection with the complex projective space is clarified by introducing . Zα =
ρ uα, where. ρ is an arbitrary complex number, not equal to zero. We can then consider 

.A = −iw

√
3

2

Z · dZ̄
Z̄ · Z = −iw

√
3

2

[
uα du

∗
α + d log ρ

]
(6.60) 

This .A differs from (6.57) by a total derivative and hence .dA will be the same 
for both . A’s. We thus see that we can write . ω as 

.ω = −i

[
dZ · dZ̄
(Z · Z̄)

− dZ · Z̄ Z · dZ̄
(Z · Z̄)2

]
(6.61) 

which is the expected Kähler form on .CP
2. 

As the symplectic form for quantization of the phase space.CP
2, we can consider 

any integral multiple of . ω; we need an integral multiple, since the integrals of . Ω =
dA over nontrivial two-cycles on .CP2 will have to be integers. Thus the possible 
choices for .w are of the form .w = 2 n/

√
3, .n ∈ Z. 3 Therefore we will consider the 

symplectic two-form 

. Ω = −i
2 n√
3
Tr

(
t8 g−1dg ∧ g−1dg

)

= n ω = −i n

[
dZ · dZ̄
(Z · Z̄)

− dZ · Z̄ Z · dZ̄
(Z · Z̄)2

]
(6.62)

3 It should be kept in mind that different choices of. w correspond to different theories and different 
physics. 
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The action which leads to the chosen .A and the .Ω in (6.62) is  

.S = i
2 n√
3

∫
dt Tr(t8 g−1ġ) (6.63) 

Again, for.eiS to be well defined on.CP
2, the values of. w will have to be restricted to 

the form given above, namely,.w = 2 n/
√
3,.n ∈ Z. The wave functions are functions 

on .SU (3) subject to the restrictions given by the action of .SU (2) and .U (1) and a 
holomorphicity condition, which is the polarization condition. In other words, we 
can write, using the Wigner .D-functions for .SU (3), 

.Ψ ∼ D(r)
AB(g) = 〈 r, A| ĝ |r, B〉 (6.64) 

Here.(r) is a set of indices which labels the representation,.A, B label the states within 
a representation. Only the finite-dimensional (and hence unitary) representations can 
occur here, since they form a complete set for functions on .SU (3). 

The groups involved in the quotient can be taken as the right action on . g. The  
transformation law for .A then tells us that .Ψ must transform as 

.Ψ (g h) = Ψ (g) exp

(
−i

n√
3

θ

)
(6.65) 

This shows that the wave functions must be invariant, i.e., singlets, under the. SU (2)
subgroup and carry a definite charge.n/

√
3 under the.U (1) subgroup generated by. t8. 

This restricts the choice of values for the state .|r, B〉 in (6.64). Further . w = 2 n/
√
3

must also be quantized so that it can be one of the allowed values in the representations 
of .SU (3) in (6.64). This is the same as what we already found, namely, that . n must 
be an integer. 

One has to choose a polarization condition as well. The generators of .SU (3) can 
be divided into those of the .SU (2) and .U (1) subgroups, and the coset ones which 
correspond to. ti with.i = 4, 5, 6, 7. These can be grouped into.ta, tā , with.a, ā = 1, 2, 
corresponding to .t1 = t4 + it5, t2 = t6 + it7, and their conjugates. Correspondingly, 
we can define the right translation operators 

.Ra g = g ta, Rā g = g tā (6.66) 

As the holomorhic polarization condition, we choose 

.Rā Ψ (g) = 0 (6.67) 

This requires the state.|r, B〉 to be a lowest weight state. This requirement, along with 
the earlier statement that .|r, B〉 should be an .SU (2) singlet with eigenvalue . −n/

√
3

for the .t8-transformation, completely fixes the representation . r and the state .|r, B〉. 
However, the left index. A in (6.64) is free, taking values corresponding to the possible
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states in the representation. r . Thus the result of the quantization is to yield a Hilbert 
space which is one unitary irreducible representation of the group .SU (3). 

We can also carry out an explicit construction of the wave functions which form a 
basis of the Hilbert space.H along the lines of how it was done for. S2 = SU (2)/U (1)
in (6.54). They are of the form 

.Ψ (g) = N gα13 gα23 · · · gαn3 (6.68) 

where .gαβ ∈ SU (3) is the .3 × 3 .SU (3) matrix in the fundamental representation. 
Since .(gt8)α3 = −(1/

√
3)gα3 and .Rāgα3 = 0, we see that the requirements (6.65) 

and (6.67) are indeed satisfied by .Ψ (g) in (6.68). From the left action of .SU (3) on 
.gα3’s, we see that .Ψ is in the symmetric rank-. n representation of .SU (3). This is the 
UIR obtained for the choice of .Ω = n ω or the action in (6.63). The dimension of 
the Hilbert space is seen to be .N = 1

2 (n + 1)(n + 2). 
The volume element for .CP2 is defined by the Kähler form . ω as .ω ∧ ω. We will 

use a normalized volume where the total volume of .CP2 is taken to be. 1. In terms of 
local coordinates . zi , .i = 1, 2, with .gi3 = zi/

√
1 + z̄ · z, the volume is given by 

.dμ = 2

π2

d2zd2 z̄

(1 + z̄ · z)3 (6.69) 

The normalized version of . Ψ ’s in (6.68) is thus 

. Ψ (g) = √
N

/
n!

k1!k2!(n − s)!
zk11 z

k2
2

(1 + z̄ · z) n
2

(6.70) 

k1, k2 = 1, 2, . . . ,  n, s = k1 + k2 

6.3.2 Quantizing General .G/H Spaces 

More generally, with a view of obtaining UIRs of a compact Lie group. G, one can take 

.A(g) = i
∑
a

waTr(ta g−1dg) (6.71) 

where. ta are diagonal elements of the Lie algebra of. G (in some suitable orthonormal 
basis) and.wa are a set of numbers. The number of independent generators. ta is given 
by the rank of the group. The elements of the group given by the exponential map 
.eitaθ

a
form the subgroup . T which is the maximal torus of . G. 

Notice that, under .g → gh, .A will change by a total differential if . h commutes 
with the factor.

∑
a wata in (6.71). The subgroup of. G consisting of all elements which 

commute with .
∑

a wata is the subgroup . H . While .A changes under right transla-
tions by . h, .dA is invariant, and so .dA will be a closed nonexact form on .G/H .
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If some of the eigenvalues of .
∑

a wata are equal, .H can be larger than the maxi-
mal torus. Upon quantization, for suitably chosen .wa , we will get one unitary irre-
ducible representation of .G and .wa will be related to the highest weights defining 
the representation. 4

There is another way to think about this problem. Let us say that we want to 
construct a unitary irreducible representation (UIR) of a group . G. We ask the ques-
tion: Is there a classical action which upon quantization gives exactly one UIR of the 
group . G? Recall that if we quantize the rigid rotor we get all UIR’s of the angular 
momentum group .SO(3). That is not what we want, we want one and only one 
representation. The answer to this is the action 

.S = i
∑
a

wa

∫
dt Tr(ta g−1ġ) (6.72) 

with the choice of .{wa} determined by which representation we wish to obtain upon 
quantization. This action is known as the co-adjoint orbit action, since it is defined 
on the orbit .gwata g−1 of the group . G. Often it is also referred to as the Kostant-
Kirillov-Souriau action. 

One can use an action similar to (6.72) for noncompact groups as well. The key 
here is that, since we are quantizing the system, the representation we obtain is 
unitary. Thus if one carries out the quantization of .SL(2,R)/U (1), we will get a 
UIR of .SL(2,R). Such representations are infinite dimensional since .SL(2,R) is 
noncompact. The representation obtained will be one of the series needed for the 
completeness relation for functions on.SL(2,R). The infinite dimensionality is also 
in agreement with the semiclassical counting of the dimension of the Hilbert space 
since the phase volume (. = the volume of.SL(2,R)/U (1) as measured by its Kähler 
form) is infinite.  

6.3.3 A Note on an Index Theorem 

It is interesting to see the dimension of the Hilbert space in another way [ 14]. The 
polarization conditions (6.22) and (6.67) express the .∂̄-closure of .Ψ with a . U (1)
gauge field. A and on a space of Riemannian curvature.R12. Generally, the number of 
normalizable zero modes of the. ∂̄ operator for a vector bundle. V can be obtained using 
the index theorem for the twisted Dolbeault complex. Explicitly, this is expressed as 

.Index(∂̄V ) =
∫

M
td(M) ∧ ch(V ) (6.73)

4 We use the term highest weight in the general algebraic sense, although the actual eigenvalue may 
be the lowest value in the representation as in some of the previous examples. 
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where. td is the Todd class of the complex tangent space of the manifold and. ch(V ) =
Tr(eF/2π) is the Chern character. (. F is the curvature of the vector bundle.) The Todd 
class itself can be expressed in terms of the Chern classes, which, for a vector bundle 
with curvature . F , are  given by  

. det

(
1 + iF

2π
t

)
=

∑
i

ci t
i (6.74) 

The Todd class may also be represented, via the splitting principle, in terms of a 
generating function as 

.td =
∏
i

xi
1 − e−xi

(6.75) 

where .xi represent the “eigenvalues” of the curvature in a suitable canonical form 
(diagonal or the canonical antisymmetric form for real antisymmetric.iF). Explicitly, 
the Todd class, up to the 3-form level, is given as 

.td = 1 + 1

2
c1 + 1

12
(c21 + c2) + 1

24
c1 c2 + · · · (6.76) 

The curvature .iF relevant for us will be the curvature of the complex tangent space 
of the manifold, .TcM . After multiplying out .td(M) and.ch(V ), the differential form 
of the dimension appropriate to the space of interest should be used as the integrand 
in (6.73). 

In the two-dimensional case, the Todd class.td(M) is.R/4π and the Chern character 
.ch(V ) = Tr(eF/2π) is .Ω/2π for us. The number of normalizable solutions to (6.22) 
for the two-sphere is thus 

.Index(∂̄V ) =
∫

M

Ω

2π
+

∫

M

R

4π
= n + 1 (6.77) 

Notice that, semiclassically, we should expect the number of states to be.
∫

Ω/2π = n. 
The extra one comes from the Euler number in this case. (The semiclassical counting 
is supposed to apply only for large . n, so this is all consistent with expectations.) 

For the case of .CP2, we have  

. Index(∂̄V ) =
∫

M

[
1

2
Tr

(
F

2π

)2

+ 1

2
c1Tr

(
F

2π

)
+ 1

12
(c21 + c2)

]

=
∫

M

[
1

2
Tr

(
Ω

2π

)2

+ 1

2
Tr

(
R

2π

)
Tr

(
Ω

2π

)]

+ 1

12

∫

M

[
3

2

(
Tr

R

2π

)2

− 1

2
Tr

(
R

2π

R

2π

)]
(6.78)
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where .Ω = nω. Further, in terms of the Kähler two-form, 

.Tr
R

2π
= 3

ω

2π
, Tr

(
R

2π

R

2π

)
= 3

( ω

2π

)2
(6.79) 

With our chosen normalization for the total volume of .CP2, 

.

∫

M

( ω

2π

)2 = 1 (6.80) 

The index is then easily evaluated as 

.Index(∂̄V )

|||
CP

2
= 1

2
(n + 1)(n + 2) (6.81) 

This agrees with what we obtained as the dimension of the Hilbert space with the 
explicit construction of the wave functions as in (6.68). 

6.3.4 A Short Historical Note 

Historically, geometric quantization arose out of representation theory for groups. 
The construction of UIR’s of a compact group using the Kähler two-form on . G/T
where .T is the maximal torus was carried out in the 1950s. It goes by the name of 
Borel-Weil-Bott theory. Geometric quantization was developed in the 1970s (by 
Kostant, Souriau, Kirillov and others) as an attempt to generalize this to arbitrary 
symplectic manifolds. The use of actions of the form (6.72) for various physical 
problems was pursued in the 1970s by Wong, Balachandran and others [ 10, 11]. 
This action (6.72) may also be viewed as the prototypical Wess-Zumino term. The 
usual Wess-Zumino term was introduced in the context of meson physics by Wess 
and Zumino in 1971 as an effective action for anomalies [ 15]. It was developed and 
its full import was realized in the work of Witten [ 16]. (In this context, Novikov’s 
work on the Wess-Zumino term in a (2+1)-dimensional setting should be mentioned, 
although the physics implications were not fully evident [ 17]. There were also a 
few other earlier papers which focused on certain aspects of the Wess-Zumino term.) 
Also, as mentioned before, geometric quantization applies to the quantum Hall effect 
as well, both in two dimensions and in higher dimensions [ 12, 13]. 

Problems 

6.1 Find the spin connection and curvature and its integral for . S2. 

6.2 Carry out the infinitesimal transformations generated by the vector fields.ξ±, . ξ3
given in (6.27) and show that they are isometries of . S2. 

6.3 Identify the generators of left translations of . g in .Ω of (6.47).
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6.4 Consider the geometric quantization of the hyperboloidal space.SL(2,R)/U (1). 
The canonical two-form is given by 

. Ω = 2iλ
dz ∧ dz̄

(1 − zz̄)2

This applies to the region.zz̄ ≤ 1. Show that .V+ = iz2∂z − i∂z̄ , .V− = −iz̄2∂z̄ + i∂z , 
.V3 = iz∂z − iz̄∂z̄ are Hamiltonian vector fields. Identify the nature of the wave 
functions, the inner product in the holomorphic polarization and the operators 
corresponding to .V±, .V3. 

6.5 Consider the geometric quantization of the hyperboloidal space.SL(2,R)/U (1). 
The canonical two-form is given by 

. Ω = 2iλ
dz ∧ dz̄

(1 − zz̄)2

This applies to the region.zz̄ ≤ 1. Show that .V+ = iz2∂z − i∂z̄ , .V− = −iz̄2∂z̄ + i∂z , 
.V3 = iz∂z − iz̄∂z̄ are Hamiltonian vector fields. Identify the nature of the wave 
functions, the inner product in the holomorphic polarization and the operators 
corresponding to .V±, .V3. 
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Chapter 7 
The Chern-Simons Theory in 2+1 
Dimensions 

The Chern-Simons (CS) theory is a gauge theory in two space (and one time) 
dimensions [ 18, 19]. The action is given by 

. S = − k

4π

∫
Σ×[ti ,t f ]

Tr

[
A dA + 2

3
A A A

]

= − k

4π

∫
Σ×[ti ,t f ]

d3x ∈μνα Tr

[
Aμ∂ν Aα + 2

3
AμAν Aα

]
(7.1) 

Here .Aμ is the Lie algebra-valued gauge potential, .Aμ = −i ta Aa
μ, corresponding to 

a compact Lie group. G. . ta are hermitian matrices forming a basis of the Lie algebra 
in the fundamental representation of the gauge group. We shall take the gauge group 
to be.G = SU (N ) in what follows and, as before, normalize.{ta} to obey the condition 
.Tr(tatb) = 1

2δab, with the structure constants. fabc defined by.[ta, tb] = i fabctc. Thus, 
for example, for the case of the gauge group being .SU (3), the set of matrices . ta can 
be taken as the ones given in (6.55). In addition to the choice of the group, the theory 
has one parameter . k, which is referred to as the level number of the Chern-Simons 
form. It is a real constant whose precise value we do not need to specify at this stage. 
The two-dimensional spatial manifold is denoted by . Σ . The classical equations of 
motion for the theory are 

.Fμν = 0 (7.2) 

We will be interested in the case of .Σ being a Riemann surface, the complex 
structure on .Σ facilitating geometric quantization with holomorphic polarization. 
However, it is useful to consider some features of quantization on .Σ = R

2 first. 
We may think of .R2 as a disc of radius . r , with .r → ∞ eventually. (On a compact 
manifold without boundary, the action is invariant under gauge transformations; we 
will take .Fμν to vanish as .r → ∞ so that we have gauge invariance for .Σ = R

2 as 
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well.) Consider now the gauge .A0 = 0. The term involving the time-derivatives in 
the action is 

.S = − k

8π

∫
∈i j Aa

i ∂0A
a
j + · · · (7.3) 

The surface term arising from the time-integration in the variation of the action is 

.δS = − k

8π

∫
Σ

∈i j Aa
i δA

a
j

|||tf
ti

+ · · · (7.4) 

From this we can read off the symplectic potential and the corresponding canonical 
two-form as 

. A = − k

8π

∫
Σ

∈i j Aa
i δA

a
j + δρ[A]

Ω = − k

8π

∫
Σ

∈i jδAa
i δA

a
j (7.5) 

where . ρ is arbitrary functional of . A. Its presence in .A indicates the freedom of 
canonical transformations. The Hamiltonian vector field corresponding to.Aa

j is thus 

.VAa
j
= −4π

k
∈ jk

δ

δAa
k

(7.6) 

The basic Poisson bracket is thus given by 

.{Aa
i (x), A

b
j (y)} = 4π

k
∈i jδ

abδ(2)(x − y) (7.7) 

The phase space of the theory is the space of the fields .Aa
i (x), i.e., the space of 

Lie algebra-valued one-forms on .R2. We will assume that these obey some (mild) 
conditions which ensure finiteness of the action or .

∫
Σ
F2. 

A gauge transformation of the field . A is given by 

.A → Ag = g A g−1 − dg g−1, g ∈ G (7.8) 

For infinitesimal transformations, .g ≈ 1 − itaθa , and we get 

.δgA
a
i = − (

∂iθ
a − f cab Ac

i θ
b
) = −(Diθ)

a (7.9) 

The basic commutation rule which follows from the Poisson bracket (7.7) is  

.
[
Aa
i (x), A

b
j (y)

] = 4πi

k
∈i jδ

abδ(2)(x − y) (7.10)



7 The Chern-Simons Theory in 2+1 Dimensions 57

Using this relation we can directly check that 

.
[
G0(θ), A

a
i (x)

] = i(Diθ)
a = −i δAa

i (7.11) 

where 

.G0(θ) = k

8π

∫
Σ

θa ∈kl Fa
kl (7.12) 

We see that.G0(θ) generates the transformation (7.9). Although.G0(θ) does generate 
gauge transformations, the nature of the functions .θa(x) is important in obtaining a 
consistent action on functionals of . A. This can be illustrated by a simple example of 
how.G0(θ) acts on .

∫
A2. Again using the commutation rule (7.10), we find 

. 

[
G0(θ),

∫
A2

]
= 2i

∫
x,y

[
−θa(y)

∂

∂yi
δ(2)(y − x)Aa

i (x)

− f cab Ac
i (y)θ

b(y)Aa
i (x)δ

(2)(y − x)
]

(7.13) 

We can simplify this expression in two ways. If we integrate over . x first, we get 

.

[
G0(θ),

∫
A2

]
= −2i

∫
Σ

θa ∂ · Aa (7.14) 

We can also write .∂yδ
(2)(y − x) = −∂xδ

(2)(y − x) and integrate over . y first. This 
gives the expression 

. 

[
G0(θ),

∫
A2

]
= 2i

∫
Σ

∂iθ
a Aa

i

= 2i

[
−

∫
Σ

θa∂ · Aa +
∫

∂Σ

θa Aa · dS
]

(7.15) 

Comparing (7.14) and (7.15), we see that the consistent evaluation of the action of 
.G0(θ) on functionals of. A will require the functions.θa to vanish on the boundary, or 
as .r → ∞. The subscript on .G0(θ) was introduced in anticipation of this to signify 
that the functions . θ must vanish at the boundary. 

We can now consider reducing the theory to the physical degrees of freedom which 
are gauge-invariant by starting with wave functions which are arbitrary functionals 
of . A and then selecting the physical states by imposing the condition 

.G0(θ) Ψ = 0 (7.16) 

This condition is just the Gauss law of the Chern-Simons theory. Notice that it is also 
one of the equations of motion in (7.2). The equation.Fi j = 0 cannot be a Heisenberg 
equation of motion, since it only involves spatial derivatives of the data at a fixed time, 
namely .Aa

i . Therefore it must be viewed as a condition restricting the phase space
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variables to the physical subspace. The condition (7.16) is one way this restriction 
can be implemented in the quantum theory. 

The analysis given above also clarifies the nature of the space of fields. Let 

.F = {Set of all gauge potentials Ai } (7.17) 

where, as stated before, the potential .Ai is a Lie algebra-valued one-form on . Σ , 
obeying some finiteness condition on integrals like the action or .

∫
Σ
F2. This is the 

space of fields we start with; it is also the starting phase space for the Chern-Simons 
theory with .Ω as in (7.5). We also define the space of gauge transformations as 

.G∗ = {g(x) : R2 → G, with g → 1 as r → ∞} (7.18) 

This is the relevant space as seen from our discussion of the boundary value of .θa in 
.G0(θ). It is obviously a group under pointwise multiplication. The physical space of 
fields is then given by.C = F/G∗. If we now consider a one-point compactification of 
.R

2 to . S2, with the point at infinity mapped to a point .x0 on the sphere, the definition 
of .G∗ becomes 

.G∗ = {g(x) : S2 → G, with g → 1 at x0} (7.19) 

Such maps from a compact space to . G, with . g set to a fixed value (in our case 
.g = 1) at a specific point .x0 are called pointed maps. These are the relevant ones to 
be factored out in the quantization of the gauge theory [ 20]. 

The gauge transforms of a given gauge field or connection . A, the set of fields 
.gAg−1 − dgg−1 for all .g ∈ G∗ define the orbit of . A. Since these are all identified in 
.C = F/G∗, points in .C correspond to gauge orbits and .C is often referred to as 
the gauge-orbit space. Also, wave functions are sections of a line bundle on the 
gauge-orbit space . C. 

We close this section with a couple of remarks. Analogous to.G0(θ)we can define 
the operator 

.G(ϕ) = k

8π

∫
Σ

∈kl
[−2 ∂kϕ

a Aa
l + f abcϕa Ab

k A
c
l

]
(7.20) 

We do not assume that .ϕa vanishes as .r → ∞. It is easy to verify that there is no 
subtlety in the action of .G(ϕ) on functionals of . A. For example, 

.

[
G(ϕ),

∫
A2

]
= 2i

∫
∂ϕa · A (7.21) 

Further, we can check that 

. [G0(θ),G(ϕ)] = iG0(θ × ϕ), (θ × ϕ)a = f abcθbϕc (7.22) 

Notice that, since .θa vanishes, .(θ × ϕ)a → 0 as .r → ∞. Therefore the expression 
on the right hand side of (7.22) can be understood as .G0(θ × ϕ). An important
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consequence of this equation is that, if .Ψ is a physical state obeying the Gauss law, 
i.e., satisfying (7.16), 

.G0(θ)
[
G(ϕ)Ψ

]
= G(ϕ)G0(θ)Ψ + iG0(θ × ϕ)Ψ = 0 (7.23) 

This shows that .G(ϕ)Ψ is a physical state. By different choices of .ϕa , the action of 
.G(ϕ) will generate a number of new physical states from . Ψ . Even though the data 
defining such states is .ϕa , only the values of .ϕa as .r → ∞ are relevant since the 
values at finite . r can be modified by the action of .G0(θ). So the states generated by 
.G(ϕ) are called the edge modes of the theory. They represent physical degrees of 
freedom residing on the boundary or at .r → ∞. (For more details on edge states for 
the Chern-Simons theory, see [ 18, 21, 22].) 

Our second remark is about the gauge-orbit space. C. Consider the gauge transform 
of a connection . A given by .Ag = gAg−1 − dgg−1. If this is equal to . A itself, i.e., if 

.Ag = gAg−1 − dgg−1 = A (7.24) 

for a nontrivial .g(x) ∈ G∗, i.e., for .g /= 1, we say that the connection is reducible. 
When we make the identification of gauge transforms of. A to go from. F to.C = F/G∗, 
such connections can lead to singularities. Pointed maps however can avoid the 
reducible connections for a manifold like . S2. Consider solving (7.24) for  . g for a 
given . A. Towards this first consider the Wilson line associated to a connection . A. It  
is defined by 

.WC(x, y, A) = P exp

(
−

∫ x

y,C
A

)
(7.25) 

where.P denotes path-ordering. In general, .WC(x, y, A) depends on a curve. C con-
necting the points . y and. x and it is also defined by the chosen. A. Since. WC(x, y, A)

obeys the equation 

. n · [
∂x + A(x)

]
WC(x, y, A) = 0

n · [
∂yWC(x, y, A) − WC(x, y, A)A(y)

] = 0 (7.26) 

where .ni denotes the tangent to the curve, it is easy to verify that 

.WC(x, y, Ag) = g(x)WC (x, y, A) g−1(y) (7.27) 

Thus for a reducible connection, we get 

.g(x)WC (x, y, A) g−1(y) = WC(x, y, A) (7.28) 

Notice also that by reversing the curve, we get the inverse to.W (x, y, A) Using these 
results, we can write .g(x) at any point for a reducible connection as
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.g(x) = WC(x, y, A) g(y)W−1
C (x, y, A) (7.29) 

This gives.g(x) at any point. x , for any. g which preserves. A as in (7.24), in terms of. g
at the point. y. If we choose.y = x0, which is the point where we set.g = 1 for pointed 
maps, we see that this equation implies.g(x) = 1 for all. x . Thus there is no nontrivial 
.g(x) consistent with setting .g(x0) = 1. The factoring out of .G∗ can be carried out 
without encountering singularities. (If the group has a center, then we can set . g(x0)
to be an element of the center, and a similar reduction can be done with.g(x) equal to 
the same element of the center, since such an element will commute with .WC . The  
theory then has sectors labeled by the elements of the center.) 

7.1 Analysis on . S2 × R

We now turn to the more detailed analysis of Chern-Simons theory on .S2 × R [ 23, 
24]. We shall use complex coordinates for .Σ = S2. In terms of local Cartesian 
components, the complex gauge fields are .Az = 1

2 (A1 + iA2), .Az̄ = 1
2 (A1 − iA2). 

In terms of the complex components, the symplectic two-form.Ω is given by 

. Ω = − ik

π

∫
Σ

dμΣ Tr
(
δAz̄δAz

)

= ik

2π

∫
Σ

dμΣ δAa
z̄ δA

a
z (7.30) 

The complex structure on .Σ induces a complex structure on . F. We may  take  
.Az, Az̄ as the local complex coordinates on. F. In fact, we have a Kähler structure on 
. F, .Ω being the Kähler two-form with the Kähler potential 

.K = k

2π

∫
Σ

Aa
z̄ A

a
z (7.31) 

The Hamiltonian vector fields corresponding to .Az and .Az̄ are 

.Aa
z (z) −→ −2π

ik

δ

δAa
z̄

, Aa
z̄ (z) −→ 2π

ik

δ

δAa
z

(7.32) 

The Poisson brackets for .Az̄ , .Az are obtained using the general formula (2.11) as  

. {Aa
z (z), A

b
w(w)} = 0

{Aa
z̄ (z), A

b
w̄(w)} = 0

{Aa
z (z), A

b
w̄(w)} = −2πi

k
δabδ(2)(z − w) (7.33) 

These become commutation rules upon quantization.
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The infinitesimal version of the gauge transformations (7.8) (for  .g ≈ 1 − itaθa) 
corresponds to the vector field 

.ξ = −
∫

Σ

[
(Dzθ)

a δ

δAa
z

+ (Dz̄θ)
a δ

δAa
z̄

]
(7.34) 

where .Dz and .Dz̄ denote the corresponding gauge covariant derivatives. By 
contracting this with .Ω we get 

.iξΩ = − δ

[
ik

2π

∫
Σ

Fa
zz̄θ

a

]
(7.35) 

This identifies the generator of infinitesimal gauge transformations is 

.G0(θ) = ik

2π

∫
Σ

θa Fa
zz̄ (7.36) 

This is same as (7.12) written using complex components. Notice also that, for finite 
transformations, we get 

. Ω(Ag) − Ω(A) = δ

[
ik

π

∫
Σ

Tr(g−1δg Fzz̄)

]

= δ

[
k

2π

∫
Σ

Tr(g−1δg F)

]
(7.37) 

(.F in the second line of this equation is the two-form.d A + A A.) 
The construction of the wave functions proceeds as follows. One has to consider 

a line bundle on the phase space with curvature . Ω . Sections of this bundle give the 
prequantum Hilbert space. In other words we consider functionals .Φ[Az, Az̄] with 
the condition that under the canonical transformation.A → A + δΛ, Φ → eiΛ Φ. 
The inner product on the prequantum Hilbert space is given by 

. 〈1|2〉 =
∫

dμ(Az, Az̄) Φ∗
1 [Az, Az̄] Φ2[Az, Az̄] (7.38) 

where .dμ(Az, Az̄) is the Liouville measure associated with . Ω . Given the Käh-
ler structure . Ω , this is just the volume .[dAzdAz̄] associated with the metric 
.||δA||2 = ∫

Σ
δAa

z̄ δA
a
z . 

The wave functions so constructed depend on all phase space variables. We must 
now choose the polarization conditions on the . Φ’s so that they depend only on half 
the number of phase space variables, leading to the reduction of the prequantum 
Hilbert space to the Hilbert space of the quantum theory. Given the Kähler structure 
of the phase space, the most appropriate choice is the Bargmann polarization. With 
a specific choice of .ρ[A] in (7.5), the symplectic potential can be taken as
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.A = − ik

2π

∫
Σ

Tr
(
Az̄δAz − AzδAz̄

) = ik

4π

∫
Σ

(
Aa
z̄ δA

a
z − Aa

z δA
a
z̄

)
(7.39) 

The covariant (functional) derivatives with .A as the potential are 

.∇ = ( δ

δAa
z

+ k

4π
Aa
z̄

)
, ∇ = ( δ

δAa
z̄

− k

4π
Aa
z

)
(7.40) 

The holomorphic (or Bargmann) polarization condition is 

.∇ Φ = 0 (7.41) 

The solution of this condition are the wave functions of the form 

.Φ = exp

(
− k

4π

∫
Aa
z̄ A

a
z

)
ψ[Aa

z̄ ] = e− 1
2K ψ[Aa

z̄ ] (7.42) 

where .K is the Kähler potential of (7.31). The states are represented by wave func-
tionals .ψ[Aa

z̄ ] which are holomorphic in .Aa
z̄ . Further, the prequantum inner product 

can be retained as the inner product of the Hilbert space. Rewriting (7.38) using  
(7.42) we get the inner product as 

.
〈 
1|2〉 =

∫
[d Aa

z̄ d A
a
z ] e−K (Aa

z̄ ,A
a
z ) ψ∗

1 ψ2 (7.43) 

On the holomorphic wave functions, 

.Aa
z ψ[Aa

z̄ ] = 2π

k

δ

δAa
z̄

ψ[Aa
z̄ ] (7.44) 

As we have mentioned before, one has to make a reduction of the Hilbert space 
by imposing gauge invariance on the states, i.e., by setting the generator .Fa

zz̄ to zero 
on the wave functionals. This amounts to 

.

[(
Dz̄

δ

δAz̄

)a

− k

2π
∂z A

a
z̄

]
ψ[Aa

z̄ ] = 0. (7.45) 

Consistent implementation of gauge invariance can lead to quantization requirements 
on the coupling constant . k. For nonabelian groups .G this is essentially the require-
ment that. k should be an integer, based on the invariance of.eiS under homotopically 
nontrivial gauge transformations. It is also the same as the Dirac quantization condi-
tion (5.10). Further, once we impose the gauge invariance condition, the integration 
in (7.43) must be restricted to the gauge-invariant volume.
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7.2 Argument for Quantization of . k

We will now work out how the quantization of . k arises, in some detail, staying 
within the geometric quantization framework. Since we are on . S2, the group of 
gauge transformations consists of maps from.S2 to. G. We have chosen.G = SU (N ), 
so obviously 

.Π0(G∗) = Π2(G) = 0, Π1(G∗) = Π3(G) = Z (7.46) 

The space of fields. F is an affine space with trivial topology. Therefore, the homotopy 
groups given above imply that 

.Π1(F/G∗) = 0, Π2(F/G∗) = Z (7.47) 

The nontriviality of .Π2(F/G∗) arises from the nontrivial elements of .Π1(G∗). 
Therefore consider a noncontractible loop . C of gauge transformations, 

.C = g(x,α), 0 ≤ α ≤ 1, with g(x, 0) = g(x, 1) = 1 (7.48) 

With the boundary condition given, .g(x,α) may be considered as a map from.S3 to 
. G. Such elements fall into homotopy classes corresponding to .Π3(G) = Z. We can 
now use this.g(x,α) to construct an example of a noncontractible two-surface in the 
gauge -invariant space.F/G∗. We start with a square in the space of gauge potentials 
parmetrized by .0 ≤ α,σ ≤ 1 with the potentials given by 

.A(x,α,σ) = (g A g−1 − dg g−1)σ + (1 − σ)A (7.49) 

For our purpose, we can simplify this even further by taking .A = 0, so that 

.A(x,α,σ) = −σ dg g−1 (7.50) 

This potential goes to zero on the boundaries .α = 0 and .α = 1 and also on .σ = 0. 
.A goes to the pure gauge .−dgg−1 at .σ = 1, which is gauge-equivalent to .A = 0. 
Thus the boundary corresponds to a single point on the quotient .F/G∗ and we have 
a closed two-surface. This surface is noncontractible if we take .g(x,α) to be a 
nontrivial element of .Π3(G) = Z since the contraction of the two-surface would 
constitute a homotopy mapping . g to the identity; this is impossible if . g belongs to a 
nontrivial element of .Π3(G). Using this set of configurations in .Ω and carrying out 
the integration over . σ we get 

.

∫
Ω = −2π k Q[g] (7.51)
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where 

.Q[g] = − 1

24π2

∫
Tr(dgg−1)3 (7.52) 

This quantity .Q[g] is the winding number (which is an integer) characterizing the 
class in.Π1(G∗) = Π3(G) to which. g belongs. From (5.10) we know that the integral 
of .Ω over any closed noncontractible two-surface in the phase space must be an 
integer. Thus we see that (7.51) and (7.52) lead to the requirement that the level 
number. k of the Chern-Simons theory has to be an integer. (Even though we presented 
the arguments for quantization of the coefficient of the action for .Σ = S2, similar 
arguments and results hold more generally.) 

7.3 The Ground State Wave Function 

We now turn to the solution of (7.45). For this we introduce the Wess-Zumino-Witten 
(WZW) action given by [ 17, 25] 

. Swzw = 1

8π

∫
Σ

d2x
√

g gab Tr(∂aK∂bK
−1) + Γwz[K ]

Γwz[K ] = i

12π

∫
M3

Tr(K−1dK )3 (7.53) 

The fields are matrices .K which can generally belong to .GL(N ,C). Also  .Σ is the 
two-dimensional space on which the fields are defined. Since it can in general be a 
curved manifold, we use the two-dimensional metric tensor .gab. (.gab is the inverse 
metric and. g denotes the determinant of.gab as a matrix.) (This model can be defined 
and used for fields on .R2 as well, by choosing the boundary condition .K → 1 (or 
some fixed value independent of directions) as .|x| → ∞; topologically, such fields 
are equivalent to fields on the closed manifold . S2.) 

The second term in the action, .Γwz[K ], is the so-called Wess-Zumino term. It 
is defined in terms of integration over a three-dimensional space .M3 which has . Σ
as its boundary. The integrand does not require metrical factors for the integration 
since it is a differential three-form. However, it requires an extension of the field . K
to the three-space .M3. There can be many spaces .M3 with the same boundary . Σ , 
or equivalently, there can be many different ways to extend the fields to the three-
space .M3. The physical results of the theory are independent of how this extension 
is chosen, if we consider actions of the form.k Swzw where . k is an integer. By direct 
calculation, we can verify the Polyakov-Wiegmann identity [ 26] 1

1 In accordance with the convention for.Az ,.Az̄ given above (7.30), here we use.∂z = 1
2 (∂1 + i∂2), 

.∂z̄ = 1
2 (∂1 − i∂2) in terms of real components.
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.Swzw[K h] = Swzw[K ] + Swzw[h] − 1

π

∫
Σ

Tr(K−1∂z̄ K ∂zh h
−1) (7.54) 

where we have used local complex coordinates. Now, in two dimensions, we can 
parametrize a nonabelian gauge potential as 

.Az = −∂zM M−1, Az̄ = M†−1∂z̄ M
† (7.55) 

where.M is a complex matrix which may be taken to be in.SL(N ,C) for gauge fields 
corresponding to the gauge group .SU (N ). The identity (7.54) shows that 

.δSwzw(M†) = Swzw[M† (1 + θ)] − Swzw[M†] = 1

π

∫
Tr(∂z Az̄ θ) (7.56) 

With.Dz̄ denoting the covariant derivative with respect to.Az̄ , we also have the identity 

.∂z Az̄ = Dz̄(M
†−1∂zM

†) (7.57) 

Notice that, since .δM† = M† θ, we may write .θ = M†−1δM†; further, from (7.55), 
.δAz̄ = Dz̄(M†−1δM†) = Dz̄θ. Combining these relations with (7.57), we can 
simplify (7.56) as  

.Dz̄
δSwzw

δAa
z̄

= 1

2π
∂z A

a
z̄ (7.58) 

where we have also evaluated the trace in terms of the components. Comparing this 
with (7.45), we see that we can solve it as 

.ψ(Az̄) = N exp
(
k Swzw[M†]) (7.59) 

The normalization factor .N is to be fixed by using the inner product (7.43). There 
is only one state for this theory. On . S2, there are no degrees of freedom left for 
the Chern-Simons theory after one reduces to the physical configuration space. Thus 
there is only the vacuum state of the theory. What we have found is the expression for 
the ground state wave function in terms of the variables on . F. If we consider higher 
genus Riemann surfaces, or two-manifolds with a boundary, then the Chern-Simons 
theory will have nontrivial degrees of freedom. 

7.4 Abelian Theory on the Torus 

We will now consider an Abelian Chern-Simons theory, with .G = U (1) and with 
.Σ being a torus .S1 × S1. This will illustrate some of the topological features we 
mentioned. The torus can be described by .z = ξ1 + τξ2, where . ξ1, .ξ2 are real and 
have periodicity of .ξi → ξi+ integer, and . τ , which is a complex number, is the
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modular parameter of the torus. The metric on the torus is .ds2 = |dξ1 + τdξ2|2. 
The two basic noncontractible cycles of the torus are usually labelled as the. α and. β
cycles. Further the torus has a holomorphic one-form. ω with 

.

∫
α

ω = 1,
∫

β

ω = τ (7.60) 

Since . ω is a zero mode of . ∂z̄ , we can parametrize .Az̄ as 2

.Az̄ = ∂z̄χ + i
π ω̄z̄

Imτ
a (7.61) 

where. χ is a complex function and. a is a complex number corresponding to the value 
of .Az̄ along the zero mode of . ∂z . Also .Imτ denotes the imaginary part of . τ . 

For this space .Π0(G∗) = Z × Z, because the gauge transformations .gm,n can 
have nontrivial winding numbers .m, n around the two cycles. Consider one con-
nected component of.G∗, say.Gm,n . A homotopically nontrivial.U (1) transformation 
can be written as .gm,n = eiα eiθm,n , where .α(z, z̄) is a homotopically trivial gauge 
transformation and 

.θm,n = iπ

Imτ

[
m

∫ z

ω̄ − ω + n
∫ z

τ ω̄ − τ̄ ω

]
, m, n ∈ Z (7.62) 

With the parametrization of .Az̄ as in (7.61), the effect of this gauge transformation 
can be represented as 

.χ → χ + α, a → a + m + nτ (7.63) 

The real part of . χ can be set to zero by an appropriate choice of . α. (The imaginary 
part also vanishes when we impose the condition .Fzz̄ = 0.) The physical subspace 
(which has only the zero modes left after reduction) is given by the values of . a
modulo the transformation (7.63), or in other words, 

.Physical space for zero modes ≡ C = C

Z + τZ
(7.64) 

This space is known as the Jacobian variety of the torus. It is also a torus and therefore 
we see that the phase space. C has nontrivial.Π1 and.H2. In particular,. Π1(C) = Z × Z

and this leads to two angular parameters .ϕα and .ϕβ which are the phases the wave 
functions acquire under the gauge transformation.g1,1. The symplectic two-form can 
be written as

2 In this section, . ω will denote a one-form obeying (7.60), not the Kähler two-form as in previous 
sections. 
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. Ω = k

4π

∫
∂̄δχ ∧ ∂δχ̄ + kπ

4

dā ∧ da

Imτ

∫
Σ

ω̄ ∧ ω

Imτ

= Ωχ − i
kπ

2

dā ∧ da

Imτ
(7.65) 

(Here we are using the notation of holomorphic and antiholomorphic exterior deriva-
tives, so that .∂̄δχ = ∂̄z̄δχ dz̄, etc.) Integrating the zero mode part over the physical 
space of zero modes . C, we get 

.

∫
C

Ω = k π (7.66) 

showing that . k must be quantized as an even integer for .U (1) fields on the torus due 
to (5.10). 3

The modular parameter of the torus is subject to the so-called modular transforma-
tions which are homotopically nontrivial diffeomorphisms of the torus. The vacuum 
angles change under such transformations and can eventually be set to zero. To con-
tinue with the quantization, we focus on the zero modes for which the symplectic 
potential can be written as 

.A = −π k

4

(ā − a)(τ dā − τ̄ da)

(Imτ )2
(7.67) 

The polarization condition then becomes 

.

[
∂

∂ā
+ i

πk

4

(ā − a)τ

(Imτ )2

]
Ψ = 0 (7.68) 

with the solution 

.Ψ = exp

[
−i

πk

8

(ā − a)2τ

(Imτ )2

]
f (a) (7.69) 

where . f (a) is holomorphic in . a. Under the gauge transformation (7.63) we find 

. Ψ (a + m + nτ ) = exp

[
−i

πk(ā − a)2τ

8(Imτ )2
− πkn(ā − a)τ

2Imτ
+ i

πkτn2

2

]
f (a + m + nτ )

(7.70)

3 Since there have been different statements on this point in the literature, a comment might be in 
order. In geometric quantization, we are considering the wave functions as sections of a line bundle. 
This means that each quantum state has a wave function which is a complex number. One can avoid 
the quantization condition on. k for the Abelian theory if one is willing to go beyond this and allow 
for more general or multicomponent wave functions (for each state). However, the interpretation 
of the theory in such a situation will be very different [ 27]. 
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Under this gauge transformation .A changes by .dΛm,n where 

.Λm,n = i
π k n (τ ā − τ̄a)

2 Imτ
(7.71) 

The change in.Ψ should thus be given by.exp(iΛm,n)Ψ ; requiring the transformation 
(7.70) to be equal to this, we get 

. f (a + m + nτ ) = exp

[
−i

π k n2 τ

2
− iπ k n a

]
f (a) (7.72) 

This transformation rule shows that . f (a) is a Jacobi .Θ-function. The operator . ā is 
realized on these functions . f (a) as 

.ā f (a) =
[
2 Imτ

kπ

∂

∂a
+ a

]
f (a) (7.73) 

The inner product for the wave functions of the zero modes is 

.〈 f |g〉 =
∫

exp

[
−πk āa

2 Imτ
+ πk ā2

4 Imτ
+ πk a2

4 Imτ

]
f̄ g (7.74) 

It is then convenient to absorb the holomorphic part of the exponent into the wave 
function defining the new set of holomorphic wave functions 

.Φ ≡ exp

[
πka2

4 Imτ

]
f (a) = exp

[
πka2

4 Imτ

]
Θ(a) (7.75) 

On these functions, . ā acts as 

.ā = 2 Imτ

kπ

∂

∂a
(7.76) 

The key point we wanted to illustrate here is the use of the homotopically nontrivial 
gauge transformations. 

Problems 

7.1 Calculate .Ω(Ag) − Ω(A) for finite transformations, i.e., obtain (7.37). 

7.2 Derive the Polyakov-Wiegmann identity given in (7.54). 

7.3 The WZW action can be quantized as a 1+1 dimensional field theory in its own 
right. In lightcone coordinates .u = (t − x)/

√
2, .v = (t + x)/

√
2, the action is 

.S = − k

4π

∫
Tr(∂ugg−1 ∂vgg−1) + ΓWZ
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Identify the canonical two-form. Show that left translations of . g, i.e., . g → (1 +
(−itaθa))g are generated by .Jav = (k/4π)(∂vgg−1)a . Obtain also the commutation 
rules 

. [Jv(θ), Jv(ϕ)] = iJv(θ × ϕ) − i
k

4π

∫
∂vθ

aϕa .
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Chapter 8 
.θ-Vacua in a Nonabelian Gauge Theory 

Consider a nonabelian gauge theory in four spacetime dimensions, the gauge group 
is some compact Lie group. G. For specificity we may consider the Yang-Mills theory 
defined by the action 

. S = − 1

4e2

∫
d4x FaμνFa

μν

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + f abc Ab

μA
c
ν (8.1) 

Here . e is the coupling constant and . f abc are the structure constants defined by 
.[tb, t c] = i f abcta , where .{ta} are the generators of the Lie algebra of . G. We can 
choose the gauge where .A0 = 0 so that there are only the three spatial components 
of the gauge potential, namely,.Ai , considered as an antihermitian Lie algebra-valued 
vector field. The choice .A0 = 0 does not completely fix the gauge, one can still 
do gauge transformations which are independent of time. These are given by 

.Ai → A'
i = gAig

−1 − ∂ig g−1 (8.2) 

The Yang-Mills action gives the symplectic two-form as 

.Ω =
∫

d3x δEa
i δAa

i = −2
∫

d3x Tr (δEi δAi ) (8.3) 

where .Ea
i is the electric field .∂0Aa

i /e
2, along the Lie algebra direction labeled by 

. a. The gauge transformation of .Ei is .Ei → gEig
−1. By combining this with the 

transformation (8.2), we identify the vector field generating infinitesimal gauge 
transformations, with .g ≈ 1 + ϕ, as  

.ξ = −
∫

d3x

[
(Diϕ)a

δ

δAa
i

+ [Ei ,ϕ]a δ

δEa
i

]
(8.4) 
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This leads to 

.iξΩ = −δ

∫
d3x

[−(Diϕ)a Ea
i

]
(8.5) 

The generator of time-independent gauge transformations is thus 

.G(ϕ) = −
∫

d3x (Diϕ)a Ea
i (8.6) 

For transformations which go to the identity at spatial infinity,.Ga = (Di Ei )
a . This is  

Gauss law, one of the Yang-Mills equations of motion. As before, it is to be viewed 
as a condition on the allowed initial data and enforces a reduction of the phase 
space to gauge-invariant variables. We again define the space of fields and gauge 
transformations as 

.F =
{
Space of gauge potentials Ai

}
(8.7) 

.G∗ =
⎧
Space of gauge transformations g(x) : R3 → G

such that g → 1 as |x| → ∞
⎞

(8.8) 

The transformations.g(x)which go to a constant element.g∞ which is not necessarily 
equal to . 1 act as a Noether symmetry. The states fall into unitary irreducible repre-
sentations of such transformations, which are isomorphic to the gauge group. G, upto 
.G∗-transformations. The true gauge freedom is only.G∗. The physical configuration 
space of the theory is thus .C = F/G∗. 1

With the boundary condition on the . g’s, the gauge functions are equivalent to 
a map from .S3 to . G, and hence there are homotopically distinct transformations 
corresponding to the fact that .Π3(G) = Z. (In other words, .Π0(G∗) = Z.) These 
can be labeled by the winding number .Q[g] given in (7.52). We can write .G∗ as the 
sum of different components, each of which is connected and is characterized by the 
winding number . Q, i.e., 

.G∗ =
+∞∑

Q=−∞
⊕ GQ (8.9) 

where each .GQ consists of all maps with winding number . Q. .GQ and .GQ' are dis-
connected from each other for .Q /= Q', since if they are connected, .gQ ∈ GQ and 
.gQ' ∈ GQ' should be homotopically deformable to each other and this is impossi-
ble since .Q /= Q'. One can easily check that .Q[g g'] = Q[g] + Q[g'] and hence 
this structure is isomorphic to the additive group of integers . Z. The space of 
gauge potentials .F is an affine space and is topologically trivial. Combining 
these facts, we see that the configuration space has noncontractible loops, with 
.Π1(C) = Π3(G) = Z.

1 For further elaborations on this question, see [ 6, 20] and references therein. 
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An example of a noncontractible loop in . C is as follows. Let .g1(x) be a gauge 
transformation with winding number equal to . 1 and consider the line in . F given by 

.Ai (x, τ ) = Ai (x)(1 − τ ) + Ag1
i τ (8.10) 

for .0 ≤ τ ≤ 1, or more generally 

.Ai (x, τ ) with Ai (x, 0) = Ai (x), Ai (x, 1) = Ag1
i (x) (8.11) 

where .Ag1
i is the gauge transform of .Ai by .g1(x). This is an open path in . F. But  

since.Ag1
i is the gauge transform of .Ai , both configurations.Ai and.Ag1

i represent the 
same point in .C = F/G∗. Thus .Ai (x, τ ) describes a closed loop in . C. If this loop is 
contractible, we can deform the trajectory to a curve purely along the gauge flow 
directions which connects .g = 1 to .g1(x). This would imply that .g1(x) is smoothly 
deformable to the identity. But this is impossible from our discussion of the structure 
of .G∗. In turn this implies that .Ai (x, τ ) of (8.11) is a noncontractible loop. By 
considering other values of the winding number, we can easily establish that. Π1(C) =
Z. Our general discussion from Chap. 5 shows that there must be a vacuum angle . θ
which appears in the quantum theory. We can now see how this emerges by writing 
out the symplectic potential [ 28, 29]. 

We will first construct a flat potential on the space of fields. For this we start with 
the instanton number which is given, for a four-dimensional potential, by 

. ν[A] = − 1

32π2

∫
d4x Tr

(
FμνFαβ

)
∈μναβ

= 1

16π2

∫
d4x ∈i jk Ea

i F
a
jk (8.12) 

The density in the above integral is a total derivative in terms of the potential. A, but  it  
cannot be written as a total derivative in terms of gauge-invariant quantities..ν[A] is an 
integer for any field configuration which is nonsingular up to gauge transformations. 
It is possible to construct configurations which have a nonzero value of . ν and which 
are nonsingular; these are instantons in a general sense. 2 An example of a . ν = −1
configuration, for .G = SU (2), is  

.Aμ(x) = x2

x2 + α2
ω−1∂μω, ω = x4 + i σ · x√

x2
(8.13)

2 There is a more specific sense in which the word instanton is used; it applies to self-dual solutions 
of the Yang-Mills equations which further have.ν[A] /= 0. 
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For our purpose, we can transform this to the gauge with .A0 = A4 = 0 obtaining 

. Ai = U

(
x2

x2 + α2
ω−1∂iω

)
U−1 − ∂iU U−1, U = exp

(
iσ · x̂ ρ

)

ρ = |x|√ |x|2 + α2

[
arctan

(
x4√ |x|2 + α2

)
+ π

2

]
,

∂ρ

∂x4
= |x|

x2 + α2
(8.14) 

Again, in these equations, .σi are the Pauli matrices and the path is parametrized by 
. x4, .−∞ ≤ x4 ≤ ∞. .x2 = x2 + x24 . Since.x4 parametrizes the path, we see that . ν[A]
can be written as 

. ν[A] =
∫

K [A]

K [A] = − 1

8π2

∫
d3x ∈i jkTr(δAi Fjk) = 1

16π2

∫
d3x ∈i jkδAa

i F
a
jk (8.15) 

The integral of . K , which is a one-form on the configuration space, around a closed 
curve is the instanton number. ν and is nonzero, in particular, for the loop correspond-
ing to (8.14) for which  .ν = −1. We can also see that the one-form .K [A] on . C is 
closed in the following way. 

. δK [A] = − 1

8π2

∫
d3x δ

(
Tr

(
FjkδAi

))
∈i jk

= − 1

4π2

∫
d3x Tr

(
(DjδAk) δAi

)
∈i jk

= − 1

4π2

∫
d3x Tr

(
∂ jδAk δAi + [A j , δAk]δAi

)
∈i jk

= 0 (8.16) 

In the last step we have used the antisymmetry of the expression under permutation of 
. δ’s, cyclicity of the trace and have carried out an integration by parts. We see from the 
above discussion that .K [A] is a closed one-form, but it is not exact since its integral 
around the closed curves can be nonzero. 

With this flat potential on. C, we can construct a general solution for the symplectic 
potential corresponding to the .Ω in (8.3) as  

.A =
∫

d3x Ea
i δA

a
i + θ K [A] (8.17) 

Use of this potential will lead to a quantum theory where we need the parameter 
. θ, in addition to other parameters such as the coupling constant, to characterize the 
theory. The potential .A in (8.17) is obtained from an action
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.S = − 1

4e2

∫
d4x Fa

μνF
aμν + θν[A] (8.18) 

This shows that the effect of using (8.17) can be reproduced in the functional integral 
approach by using the action (8.18). Since it is .exp(iS) which is important, we see 
that . θ is an angle with values .0 ≤ θ < 2π. Alternatively, we can see that one can 
formally eliminate the .θ-term in .A by making a transformation . ψ → exp(iθΛ)ψ

where 

.Λ = − 1

8π2

∫
Tr

(
A dA + 2

3
A A A

)
(8.19) 

Notice that.2πΛ is the Chern-Simons action (7.1) for.k = 1..Λ is not invariant under 
homotopically nontrivial transformations. The wave functions get a phase equal to 
.eiθQ under a transformation with winding number equal to . Q, showing that . θ can be 
restricted to the interval indicated above. This is in agreement with our discussion 
after Eq. (5.4). 

Problem 

8.1 Calculate .ν[A] for the instanton in (8.13) and (8.14). 
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Chapter 9 
Fractional Statistics in Quantum Hall 
Effect 

The quantum Hall effect is an important physical phenomenon which has been ana-
lyzed both theoretically and experimentally for a few decades by now [ 30]. In this 
chapter, we will discuss this effect in relation to geometric quantization. We will also 
see how fractional statistics for quasiparticles is related to nontrivial .H1(M,R) of 
the phase space. 

9.1 Quantum Hall Effect and the Landau Problem 

When an electric field is applied, the electrons in a conducting material will move in 
response, leading to an electric current in the direction of the applied field. If there 
is also an applied magnetic field (which is usually taken to be uniform), the Lorentz 
force due to this will deflect electrons in a direction transverse to their velocity (i.e., 
transverse to the applied electric field) and this can create a voltage and a current in 
the transverse direction. This is Hall effect. We can write the transverse current . Ji , 
also referred to as the Hall current, in the form 

.Ji = σi j E j (9.1) 

where .E j is the applied field. The indices .i, j take values 1, 2, corresponding to a 
two-dimensional plane, the magnetic field is taken to be along the third direction. 
.σi j is the Hall conductivity and, classically, it is proportional to the magnetic field. 
At very low temperatures, however, a plot of .σi j versus the magnetic field .B shows 
a series of plateaux, where the value of .σi j is independent of .B for a certain range 
of . B, with the system making a transition to another plateau as .B is increased or 
decreased beyond this range. The general expression is 
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.Ji = −ν
e2

2π
∈i j E j (9.2) 

where. e is the charge of the electron. The coefficient. ν in (9.2) can take integer values 
(1, 2, 3, etc.) or certain rational fractional values. These cases are referred to as the 
integer and fractional quantum Hall effects (QHE), respectively. Quantum effects are 
crucial for the plateaux behavior with quantized values of . ν, hence the qualification 
as quantum Hall effect. 

The quantization of . ν is seen to be very robust, insensitive to impurities in the 
sample (for some range of densities for the impurities) and can be related to the 
integrals of certain Chern classes associated with the band structure of electrons in 
the material. 

The dynamics of charged particles in a uniform magnetic field is known as the 
Landau problem. In the specific context of QHE, the electrons are the ones in the 
conduction band, i.e., the freely movable electrons in the material. The general expec-
tation is that the analysis in terms of the Landau problem neglecting the mutual 
Coulomb interaction of the electrons suffices for the integer QHE. The Coulomb 
interaction is expected to be significant for obtaining the fractional QHE states. 

Our aim here will be to highlight certain features of the QHE which over-
lap with considerations of geometric quantization. Towards this we start by con-
sidering the Landau problem of charged particles moving on a two-sphere . S2 =
SU (2)/U (1) [ 12, 13]. As before, we can parametrize the sphere by.g ∈ SU (2) with 
the identification .g ∼ gh, .h ∈ U (1) ⊂ SU (2). Right translation operators .R± on . g, 
defined by 

.R± g = g t±, t± = 1
2 (σ1 ± iσ2), (9.3) 

are the translation operators on the sphere. The covariant derivatives are given by 
.D± = iR±/r , where . r is the radius of the sphere. The Hamiltonian for the charged 
particle is proportional to the covariant Laplacian and has the form 

. H = − 1

2m
D2 = − 1

4m
(D+D− + D−D+) = 1

4mr2
(R+R− + R−R+)

= 1

2mr2
(R+R− − R3) (9.4) 

where .m is the mass of the particle. 
In viewing .S2 as .SU (2)/U (1), the .U (1) subgroup (generated by .R3) is the local 

isotropy group of frame rotations, while.SU (2), which includes translations as well, 
gives the full isometry group. Thus the curvature of .S2 takes values in the Lie alge-
bra of .U (1) and is a constant in the tangent frame basis for . S2. A magnetic field 
which is uniform will be proportional to the curvature. Since the commutator of 
covariant derivatives is proportional to the curvatures, the relation . [R+, R−] = 2R3

shows that the value of .R3 is proportional to the background magnetic field. (There 
can be an additional term proportional to the spin times the spatial curvature if the
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particle has spin.) Taking the eigenvalue of .R3 as .− 1
2n for some integer . n, we see  

that, for a spinless particle, 1

. − n = 2R3 = [R+, R−] = −r2[D+, D−] = −r2(2eB) (9.5) 

This identifies the magnetic field as 

.B = n

2er2
, e

[∫
B · dS
4π

]
= n

2
(9.6) 

The condition on the integral of. B is consistent with the Dirac quantization condition 
on the charge of a monopole. A uniform magnetic field corresponds to a monopole at 
the origin of .R3 if we think of the sphere as embedded in .R

3. The whole discussion 
here is agreement with similar considerations in Chap. 6. 

As for the eigenfunctions of . H , consider functions on .SU (2); i.e., functions of 
.g = exp(iσaθ

a/2). By the Peter-Weyl theorem, they can be expanded as 

.ψ =
∑
j,p,w

C( j)
p,w 〈 j, p|ei Ĵ ·θ| j, w〉 =

∑
j,p,w

C( j)
p,w D( j)

pw(g) (9.7) 

We can then reduce this set by the required conditions on the states. The requirement 
on.R3 implies that we should choose.| j, w〉 = | j,−n/2〉. The eigenfunctions are thus 

.ψ( j)
p = N 〈 j, p|ei Ĵ ·θ| j,−n/2〉 (9.8) 

The action of .H on this identifies the energy eigenvalues as 

.Eq = n

2mr2
(q + 1

2 ) + q(q + 1)

2mr2
(9.9) 

where we write  . j = (n/2) + q, .q = 0, 1, 2, etc. Equations (9.8) and (9.9) give the  
solution of the Landau problem on the sphere. 

Defining the left translation operator by .La g = ta g, we see that .[La, Rb] = 0, 
so that we also have 

.[La, H ] = 0 (9.10) 

Thus the left action of.SU (2)on the group element. g is a symmetry of the Hamiltonian 
and leads to degeneracy of the energy levels. In fact, notice that each wave function 
in (9.8) transforms as the spin-. j representation of .SU (2), corresponding to left 
translations of the group element; i.e., 

.ψ( j)
p (Ug(θ)) = 〈 j, p|U | j, r〉ψ( j)

r (9.11)

1 We take.D1 = ∂1 + iA1, D2 = ∂1 + iA2 to relate. B to the conventional definitions. 
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These left translations are referred to as magnetic translations in the context of the 
Landau problem. Since we have a uniform magnetic field, there should be a symmetry 
under translations on the sphere. The left translations give the explicit realization of 
this symmetry. 

Obviously, from the expression for the energy levels in (9.9), .q = 0 corresponds 
to the lowest Landau level. From the form of the Hamiltonian in (9.4), we also see 
that the lowest Landau level should satisfy 

.R−ψ = 0 (9.12) 

Thus the state.| j, w〉 in (9.7), for the lowest level, not only has.R3 equal to.− 1
2n, it is  

also the lowest weight state of the representation, so we can make the identification 
. j = n

2 , i.e., .q = 0. The lowest Landau level has a degeneracy equal to . 2 j + 1 =
n + 1. It is easy to see that the states corresponding to the lowest Landau level agree 
with the geometric quantization on the two-sphere carried out in Chap. 6. The  wave  
functions (9.8), with the parametrization of . g as in (6.44), become 

.ψp =
/

(n + 1)!
p!(n − p)!

z p

(1 + z̄z)
n
2

(9.13) 

These are normalized as 

.

∫
ω

2π
ψ∗

p ψp' = δpp' , ω = i
dz ∧ dz̄

(1 + z̄z)2
(9.14) 

(. ω is the Kähler two-form on . S2.) We may restate this correspondence as follows. 

1. The Hilbert space of states in the lowest Landau level can be obtained by 
geometric quantization of the symplectic form .Ω = −i n2Tr

(
σ3g

−1dg g−1dg
)
on 

.S2 = SU (2)/U (1). 
2. The two-sphere represents the coordinate space of the particle from the point of 

view of the Landau problem; it becomes the phase space for dynamics in the 
lowest Landau level. 

3. The condition.R−ψ = 0 selects the lowest Landau level for the Hamiltonian (pro-
portional to the Laplace operator); it becomes the polarization condition from the 
point of view of the geometric quantization on . S2. 

The wave functions (9.8) are the single particle wave functions. Quantum Hall 
effect is a many-particle phenomenon. If the particles are fermions (as they are in the 
physical situation since they are electrons), the many-particle wave function must be 
antisymmetric under permutation of particle positions. If the lowest Landau level is 
fully occupied (corresponding to .ν = 1), there should be .N = n + 1 particles and 
the many-particle wave function is given by
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.Ψ (x1, x2, . . . , xN ) = 1√
N !

|||||||||

ψ1(x1) ψ2(x1) · · · ψN (x1)
ψ1(x2) ψ2(x2) · · · ψN (x2)

... · · · ...

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

|||||||||
(9.15) 

It is easy to see the structure of this function by using the form of.ψp written in terms 
of the homogeneous coordinates .uα, .α = 1, 2. The single particle wave function 
(9.13) is  

.ψ = N uα1 uα2 · · · uαn (9.16) 

This has . n factors of .uα, with .N = n + 1 distinct functions for different choices 
of .{α1α2 · · · αn}. Notice that for two particles labeled as .i, j , the combination 
.∈αβu(i)

α u( j)
β is antisymmetric under .i ↔ j and is invariant under a common (left) 

translation .uα → Uαγuγ . In the wave function (9.15), .uα for each particle must 
appear . n times, since the single particle function (9.16) has . n factors of .uα, and 
further we must have antisymmetry under exchange of labels. These two features 
show that (9.15) is of the  form  

. Ψ (x1, x2, . . . , xN ) = N ' ∏
i< j

[
∈αβu

(i)
α u( j)

β

]

= N ' ∏
k

1

(1 + z̄k zk)
n
2

∏
i< j

(zi − z j ) (9.17) 

This is known as the Laughlin wave function for the.ν = 1 QHE state on the sphere. 
Essentially all physical properties of the .ν = 1 state can be derived from this wave 
function. 

It is also useful to consider the large radius limit of the sphere and obtain results 
for the two-dimensional plane. This can be done by the scaling 

.z, z̄ → 1

2r
z,

1

2r
z̄, r2 = n

2eB
(9.18) 

where . z, . z̄ on the right hand side are the coordinates on the plane. Taking . r2 → ∞
at fixed .eB, we find 

.Ψ (x1, x2, . . . , xN ) = N '' e− eB
4

∑
z̄k zk

∏
i< j

(zi − z j ) (9.19) 

This is the Laughlin wave function for .ν = 1 on the plane. In comparing this with 
the coherent states discussed in Chap. 6, we see that the exponential factor is just 
.exp(− 1

2K ), and we can identify the parameter. κ as.2/(eB). The  large. B limit is thus 
the analogue of the semiclassical limit of small . κ.
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9.2 Excitations in Fractional QHE 

As mentioned earlier, there are also QHE states corresponding to fractional values of 
. ν in (9.2). There are several such possibilities including the so-called Laughlin states, 
the Jain states, etc. [ 30]. We will focus here on Laughlin states with .ν = 1

2p+1 , . p =
1, 2, 3, etc. A wave function which gives an excellent description of the physics of 
such states is 

.ΨLaughlin = N exp

(
− 1

2

N∑
i=1

z̄i zi

) ∏
1≤i< j≤N

(zi − z j )
2p+1 (9.20) 

where .z = x1 + ix2, and the subscript, as before, refers to the particle. This is the 
wave function on the plane. While keeping factors of .eB was important in going 
from the sphere to the plane, we now rescale the coordinates as .z → √

2/eB z to 
eliminate explicit factors of .eB. (It should be noted that, so far, this wave function 
has not been derived from fundamental principles. Using (9.20) as an ansatz, one 
can show numerically that it is a good approximation to an eigenstate of the many-
particle Hamiltonian including the Coulomb interaction of the electrons.) The wave 
function (9.20) leads to an electric current of the form 

.〈Ji 〉 = −ν
e2

2π
∈i j E j , ν = 1

2p + 1
(9.21) 

This corresponds to the observed Hall conductivity, quantized as the reciprocals of 
odd integers. 

In Chap. 5, we have discussed how the nontrivial connectivity of the phase space 
can lead to physical consequences via vacuum angles or via flat connections (which 
can modify the symplectic one-form but not the two-form). We will now show that 
excitations in the fractional quantum Hall effect will provide an example of how the 
nontrivial connectivity can affect the physics. 

Among the excited states of the system are hole-like excitations, sometimes 
referred to as quasiparticles, with a wave function of the form 

. Ψhole =
N∏
i=1

(zi − w)ΨLaughlin

= N
N∏
i=1

(zi − w) exp

(
− 1

2

N∑
i=1

z̄i zi

) ∏
1≤i< j≤N

(zi − z j )
2p+1 (9.22) 

where. w is the position of the hole. We want to briefly consider the statistics of such 
hole-like excitations in fractional quantum Hall effect. We can do this in an effective 
description with an action of the form
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.S =
∫

d3x

[
k

4π
∈μναaμ∂νaα + aμ

(
jμ − e

2π
∈μνα∂ν Aα

)]
(9.23) 

where .aμ (.μ = 0, 1, 2) is a new auxiliary field and . jμ denotes the hole current. The 
value of the constant. k will be specified shortly. Also.Aμ is the electromagnetic vector 
potential. (We are using a three-dimensional covariant notation now. . B0 = ∈0i j∂i A j

is the magnetic field along the .x3-axis.) The variation of the action with respect to 
.Aα identifies the electromagnetic current as 

.Jα = − e

2π
∈αμν∂μaν (9.24) 

The equation of motion for the auxiliary field .aμ is 

.
k

2π
∈μνα∂νaα + jμ − e

2π
∈μνα∂ν Aα = 0 (9.25) 

From (9.24) and this equation, we see that 

.Jμ = e

k
jμ − e2

2πk
∈μνα ∂ν Aα. (9.26) 

Choosing .k = 2p + 1 we see that we can reproduce the Hall conductivity in (9.21) 
correctly in the absence of holes. The first term then shows that the charge per hole 
is .e/k. 

For a pair of well-separated holes we can take 

. jμ = ẇ
μ
1 δ(2)(x − w1) + ẇ

μ
2 δ(2)(x − w2) (9.27) 

Leaving the electromagnetic field aside for the moment and focusing on the holes, 
the action becomes 

. Shole = k

4π

∫
d3x ∈μναaμ∂νaα

+
∫

dt

(
aμ(w1)ẇ

μ
1 + aμ(w2)ẇ

μ
2 + mẇ2

1

2
+ mẇ2

2

2

)
(9.28) 

where we have also added a regular kinetic energy term for the holes. (The specific 
form of this will not be important for our purpose.) The time-component of the 
equation of motion for . aμ, namely (9.25), can be simplified as 

.∂zaz̄ − ∂z̄az = −i
π

k

(
δ(2)(x − w1) + δ(2)(x − w2)

)
(9.29)
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where .z = x1 + ix2, etc. Using the identity 

.∂z
1

z̄ − w̄
= ∂z̄

1

z − w
= π δ(2)(x − w) (9.30) 

the solution to (9.29) can be worked out as 

.az̄ = 0, az = i

k

(
1

z − w1
+ 1

z − w2

)
(9.31) 

The coincident point .w1 = w2 has to be excluded for consistency. We will also use 
the .a0 = 0 gauge; the action (9.28) for the dynamics of the holes can be taken as 

.S =
∫

dt
[m
2

( ˙̄w1ẇ1 + ˙̄w2ẇ2) + aw1ẇ1 + aw̄1
˙̄w1 + aw2ẇ2 + aw̄2

˙̄w2

]
(9.32) 

where we have removed the singularities at the poles; thus in (9.32), 

. aw1 = i

k

1

w1 − w2
+ bw1 , aw̄1 = bw̄1

aw2 = i

k

1

w2 − w1
+ bw2 , aw̄2 = bw̄2 (9.33) 

where .bi are the quantum operators for the gauge fields. The two Eqs. (9.32) and 
(9.33) suffice for our semiclassical consideration of the statistics of holes (for which 
.bi can be neglected). 2

The configuration space for the dynamics of the two holes is . R2 × R
2 −

{coincident points}. Because the coincident points .w1 = w2 have been excluded, 
the closed path of one hole going around the other is not smoothly deformable to 
zero. In other words, .Π1 of the configuration space is nonzero, equal to . Z. In fact, 
with .w2 fixed, 

.aw1dw1 + aw̄1dw̄1 = d

[
i

k
log (w1 − w2)

]
(9.34) 

This is evidently closed, . a is thus a flat connection on the configuration space. But 
. a cannot be considered exact since 

.

∫
C
a = −2π

k
/= 0 (9.35) 

where . C is a contour enclosing .w2. 
The Hamiltonian corresponding to the action (9.32) is

2 If we quantize the gauge field, (9.29) is the Gauss law. Solving for wave functions (in the az̄-
diagonal polarization as in Chap. 7) leads to the same result for.aw , .aw̄ in the operators in (9.38). 
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.H = 1

2
m

( ˙̄w1ẇ1 + ˙̄w2ẇ2
)

(9.36) 

The canonical one-form corresponding to the action (9.32) is  

. A = m

2

( ˙̄w1dw1 + ẇ1dw̄1 + ˙̄w2dw2 + ẇ2dw̄2
) + a(1) + a(2)

a(1) = aw1dw1 + aw̄1dw̄1

a(2) = aw2dw2 + aw̄2dw̄2 (9.37) 

This has the structure of the usual symplectic potential for particles plus a flat connec-
tion, in accordance with the general considerations in Chap. 5. From  . A, or directly 
from the action, we can also identify the operators 

. 
1
2mẇ1 = −i

∂

∂w̄1
− aw̄1 ,

1
2m

˙̄w1 = −i
∂

∂w1
− aw1

1
2mẇ2 = −i

∂

∂w̄2
− aw̄2 ,

1
2m

˙̄w2 = −i
∂

∂w2
− aw2 (9.38) 

This shows that, written as a differential operator, the Hamiltonian will involve the 
. a’s. Because of this, it is convenient to write the wave function as 

. Ψ (x1, x2) = exp

[
−1

k
log(w1 − w2)

]
Φ(x1, x2)

= eiΛ(x1,x2) Φ(x1, x2) (9.39) 

The action of .H on .Φ is then the usual one, 

.H Φ = − 2

m

(
∂

∂w1

∂

∂w̄1
+ ∂

∂w2

∂

∂w̄2

)
Φ (9.40) 

The use of .Φ(x1, x2) as in (9.39) maps the problem to one where the connections . a, 
. ā do not appear in the Schrödinger equation. 

We can now consider the exchange of the two holes as due to a rotation of the 
two points by . π followed by a translation to bring them back to the same points. 
Since .Φ is the wave function on which .H acts without any extra flat connection . a, 
we can take .Φ to be symmetric under exchange. As for the prefactor eiΛin (9.39), 
the translation does not change it, but the .π-rotation leads to 

.eiΛ(x1,x2) = e−iπ/keiΛ(x1,x2) (9.41) 

With .k = 2p + 1, we see that the two holes do display fractional statistics. The 
origin of this can be traced to the closed but not exact one-form (9.34), which is itself 
related to the nontrivial connectivity of the configuration space.
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In two spatial dimensions, it is also possible to have fractional values for the spin 
for a particle [ 31]. The usual argument for the quantization for spin in three spatial 
dimensions relies on two ingredients: the fact that the components of the angular 
momentum operators do not commute among themselves and the requirement of 
unitarity for the representation. In two spatial dimensions, where there is only one 
rotation, fractional values for spin are possible. This is true even in a Lorentz-invariant 
theory, because of the noncompact nature of the Lorentz group [ 32]. There is a spin-
statistics theorem in two spatial dimensions as well. In accordance with this, the 
result we have shown implies that the holes must also have fractional spin or that 
they are “anyons” [ 31]. 

Another comment which may be of interest is the following. Consider the 
operators 

.pk = −i
∂

∂w̄k
− aw̄k , p'

k = −i
∂

∂w̄k
, k = 1, 2, (9.42) 

with similar operators for the derivatives with respect to.wk . Notice that if we exclude 
the coincident point .w1 = w2, then .a(1) and .a(2) are flat connections by virtue of 
(9.29). As a result, both sets of operators .{pk, w̄k, p̄k, wk} and . {p'

k, w̄k, p̄'
k, wk}

obey the Heisenberg algebra. Formally, they are related by the transformation, 

.e−iΛ pk e
iΛ = p'

k (9.43) 

However, even the pure phase part of this transformation (i.e.,.ei(Λ+Λ̄)/2) is not a uni-
tary transformation since. it is not single-valued on the space. Therefore, the two sets 
.{pk, w̄k, p̄k, wk} and .{p'

k, w̄k, p̄'
k, wk} constitute inequivalent representations of the 

Heisenberg algebra. The Stone-von Neumann theorem tells us that a finite number 
of Heisenberg algebras have unique representations (up to unitary equivalence) if 
the underlying space is simply connected, but that they can have inequivalent repre-
sentations if the space is not simply connected. Since the coincident point . w1 = w2

has been excluded from consideration, the position space for the quasiparticles is not 
simply connected. So the result we find can be viewed as exemplifying this particular 
feature of the Stone-von Neumann theorem. 

Problem 

9.1 Obtain the Landau levels for electrons in a uniform Abelian magnetic field on 
.CP

2 and show that the lowest level wave functions agree with (6.70).
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Chapter 10 
Fluid Dynamics 

We now turn to considerations about how an action for fluid dynamics can be con-
structed using the results o the geometric quantization of .G/H spaces and how 
anomalies can be incorporated into fluid dynamics [ 33]. Co-adjoint orbit actions, 
introduced in Chap. 6, will be used to set up a group-theoretic formulation of fluid 
dynamics. We will start with the well known formulation of classical nonrelativistic 
fluid dynamics. 

10.1 The Lagrange Formulation 

The so-called Lagrange formulation of fluid dynamics, developed more than two 
centuries ago by Euler and Lagrange, is an elegant method of obtaining the equations 
of fluid dynamics starting from Newton’s equations for point-particles. Here one 
considers a collection of, say, .N particles obeying the equations of motion 

.
d

dt
Ẋ i

λ = − ∂V

∂Xiλ
(10.1) 

where .Xi
λ denote the position of the .λ-th particle, .λ = 1, 2, . . . , N . For simplicity, 

we have taken all particles to have the same mass . m, with units adjusted so that 
.m = 1. We can label the particles by their positions at time .t = 0, assuming that 
there is no overlap of particles. In this way of labeling particles, . λ is a three-vector 
corresponding to the initial position vector. In the limit of a large number of particles, 
we may take . λ to be continuous. Let .ρ0(λ) be the number density of particles. Then 
we sum Eq. (10.1) over a small range of . λ and go to the continuous.λ-limit to obtain 

.ρ0(λ) d3λ
d

dt
Ẋ i (t,λ) = −ρ0(λ) d3λ

∂V

∂Xi (t,λ)
(10.2) 
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Now, the particle at position . λ at .t = 0 moves to .Xi (t,λ) at time . t . This is a con-
tinuous transformation of the .λi into .Xi , which is invertible at least for small . t . We  
can therefore solve for .λi as a function of .Xi and . t and write various quantities 
as functions of .t, Xi . Since the number of particles is conserved, we should have 
.ρ0(λ) d3λ = ρ(t, X) d3X . This shows that we can define the density of particles in 
terms of .X as 

.ρ(t, X) = ρ0(λ)

det(∂X/∂λ)
(10.3) 

The density . ρ so defined obeys an equation of continuity. By direct differentiation 
with respect to time, we find 

. 
∂ρ

∂t
+ ∂ρ

∂Xi
Ẋ i = ρ0(λ)

d

dt

1

det(∂X/∂λ)
= − ρ0(λ)

det(∂X/∂λ)

d

dt
(log det(∂X/∂λ))

= −ρ
∂λi

∂Xk

∂ Ẋ k

∂λi
= −ρ ∇k Ẋ

k (10.4) 

We now define the velocity at a point .X as 

.vi (t, X) = Ẋ i (t,λ)
]

λ=λ(t,X)
(10.5) 

Equation (10.4) then reduces to the continuity equation 

.
∂ρ

∂t
+ ∇k(ρvk) = 0 (10.6) 

The equation of motion (10.2) involves the time-derivative of the velocity . Ẋ i (t,λ)

at fixed. λ. If we substitute for. λ in terms of. X in.Ẋ i , i.e., use.Ẋ i (t,λ(t, X)), we have  

.
d Ẋ i

dt
= d Ẋ i

dt

]

λ fixed

+ ∂ Ẋ i

∂λk
λ̇k (10.7) 

Since .λi (being the initial positions) do not depend on time, being initial data, we 
also have the identity 

.0 = ∂λi (t, X)

∂t
+ ∂λi (t, X)

∂Xk
Ẋk (10.8) 

Using this in (10.7) we get 

. 
d Ẋ i

dt

]

λfixed

= d Ẋ i

dt
+ ∂ Ẋ i

∂λk

∂λk

∂Xl
Ẋ l

= dvi

dt
+ vk∇kv

i (10.9)
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Thus the equation of motion (10.2) becomes 

.ρ

[
∂vi

∂t
+ vk∇kv

i

]
= −ρ

∂V

∂Xi
(10.10) 

This equation, which is known as the Euler equation, along with the continuity 
Eq. (10.6), defines perfect fluid dynamics. The right hand side of (10.10) can be 
expressed in terms of the gradient of the pressure, but we will not need that for now. 

In modern physics, a point-particle is defined as a unitary irreducible representa-
tion (UIR) of the Poincaré group which is the group of spacetime translations and 
Lorentz transformations. In addition, we may want to consider particles with internal 
symmetries such as nonabelian color charges, the latter being also described by an 
appropriate representation of the symmetry group. So we may ask: 

Can we do a Lagrange trick and describe fluid dynamics in terms of group theory, with 
each particle corresponding to a unitary irreducible representation of the symmetry group 
(Poincaré.⊗ internal symmetry group)? 

Beyond the formalistic value, there are some good reasons why this will be of interest. 
In such a formalism, symmetry would be really foundational and this would facilitate 
the inclusion of nonabelian internal symmetries and spin in magnetohydrodynamics 
and also incorporate anomalous symmetries as well. These have all become issues 
of interest in recent research partly because of the deconfined fluid phase of quarks 
and gluons. 

We start with a simple case of a nonrelativistic particle which carries an internal 
symmetry, say, .SU (2) to see how this can all work out. (This internal symmetry 
could be “color” or spin or something else depending on the physical context.) The 
action for such a particle coupled to an .SU (2) gauge field is given by 

. S =
∫

dt

[
1

2
mẋ2 − Aa

i Q
a ẋi − i

n

2
Tr(σ3 g−1ġ)

]

=
∫

dt

[
1

2
mẋ2 − i

n

2
Tr(σ3 g−1D0 g)

]
(10.11) 

where .Qa = n
4Tr(σ3 g−1σag) and .D0 = ∂0 + Aa

i ẋi (−iσa/2). .D0 is the covariant 
derivative of . g with respect to the .SU (2) gauge field evaluated on the trajectory of 
the particle. This action was proposed in the 1970s by Balachandran and collaborators 
[ 11]; the equations of motion corresponding to this action were written down earlier, 
in 1971, by Wong [ 10]. The last term in (10.11), apart from the gauge field term, 
is familiar to us as the action (6.42) for  .G/H = SU (2)/U (1). The quantization of 
the action is also familiar. The usual kinetic term . 12mẋ2 will lead to the usual point 
particle dynamics, with a minimal coupling to the gauge field via the charge operator 
.Qa . The degrees of freedom represented by. g will lead to a unitary representation of 
.SU (2), with . j = n

2 . This part will describe the dynamics of the internal symmetry 
and how it influences and is influenced by the kinetic motion of the particle and by 
the external field.
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We can now see how to generalize to fluids. We will focus on the last term in 
(10.11) as it is the key term for obtaining UIRs of the group after quantization. We 
consider a large number of particles, using a variable . λ to label them. As with the 
Lagrangian approach to fluids, we will eventually take . λ to be continuous and to 
correspond to a three-volume. For the last term in (10.11) we get 

.S = −i
n

2

∫
dt Tr(σ3 g−1ġ) −→ S = − i

2

∫
dt

∑
λ

nλTr(σ3 g−1
λ ġλ) (10.12) 

We can take the continuum limit by .
∑

λ → ∫
J d3x/v, where . J is the Jacobian of 

the transformation.λ → x, .J = |∂λ/∂x | and. v indicates a small volume over which 
the dynamics is coarse-grained. Defining a density by . j0 = n J/v, we get [ 34] 

.S = −i
∫

d4x j0 Tr(t3g
−1∂0g), t3 = σ3

2
(10.13) 

where.g(t,λ) = g(t, x) is to be considered as a spacetime-dependent group element. 
The form of the action (10.13) also suggests a natural relativistic generalization 

.S = −i
∫

jμ Tr(t3 g−1∂μg) (10.14) 

The remaining terms in the action can be added on at this stage, but before doing 
that, we pause to consider what happens with the Poincaré group. If we follow the 
same strategy we should consider the analog of the term.Tr(t3 g−1ġ) for the Poincaré 
group, which has the translational parameters.xμ and the rotational and Lorentz boost 
parameters; the latter set of parameters may be gathered into a Lorentz group element 
. Λ. The action is then given by 

.S = −
∫

dτ pμ ẋ
μ + i

n

4

∫
dτ Tr(Σ3 Λ−1 Λ̇) Σ3 =

[
σ3 0
0 σ3

]
(10.15) 

where we have chosen to display the term involving the Lorentz group element.Λ in 
terms of the usual spinor representation. 1 This is almost what we want, but the first 
term in the action (10.15) needs some rewriting. This is because, in going over to a 
fluid description, the position variables.xμ are a bit awkward. First of all, there should 
only be three independent. x’s or corresponding velocities. For the point-particle, this 
is naturally implemented by a mass-shell type constraint. It is not clear how to do 
this for fluids. Secondly, the role of diffeomorphisms versus translations is not clear 
in this language. So we will first deal with this problem before returning to the main 
line of development.

1 This is like using the .2 × 2-matrix version of . g to display the action (10.11). It does not imply 
that there is anything special about this representation. 
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10.2 Clebsch Variables and the General Form of Action 

We return to the usual approach to fluids briefly. It has been known for a long time 
that fluid dynamics can be described as a Poisson bracket system. This means that 
the equations of motion are derived from a Hamiltonian 

.H =
∫

d3x

[
1

2
ρ v2 + V (ρ)

]
(10.16) 

by using the Poisson bracket 

.{F,G} =
∫ [

−δF

δρ
∂i

(
δG

δvi

)
+ δG

δρ
∂i

(
δF

δvi

)
+ ωi j

ρ

δF

δvi

δG

δv j

]
(10.17) 

We have written the form of the bracket for arbitrary functions . F , .G of the fluid 
variables and .ωi j = ∂iv j − ∂ jvi is the vorticity. The potential energy term in . H , 
namely .V (ρ), is related to the pressure of the fluid as .P = ρ∂V

∂ρ
− V . 

It is then easy to check that any local observable .F will Poisson commute with 
the helicity which is defined as 

.C = 1

12π2

∫
∈i jk vi ∂ jvk (10.18) 

where we take the velocity to vanish at the boundary of the spatial region of integra-
tion. Denoting the variables.ρ, vi collectively as.qμ, and writing the Poisson brackets 
as .{qμ, qν} = K μν , we can check from (10.17) that .δC/δvi is a zero mode for .K μν . 
This means that .K μν is not invertible. Comparing with (2.12) we see that we have a 
problem. If .K μν has an inverse, that would be the symplectic structure .Ωμν and we 
can construct an action. But that is not possible because .K μν has a zero mode. This 
is a problem, but the way to a solution is also clear. Since. C Poisson commutes with 
any local observable, it must be superselected. We must fix its value and then con-
sider only those velocities which keep the value unchanged. Such a parametrization 
is given by the Clebsch variables which expresses the velocity as 

.vi = ∂iθ + α ∂iβ (10.19) 

where . θ, . α and . β are 3 independent fields. One can easily check that the integrand 
of .C is a total derivative with this parametrization and gives zero upon integration. 
(We can also accommodate other values of . C , see below.) A suitable action which 
gives the fluid equations is then 

.S =
∫

d4x
[
ρ θ̇ + ρα β̇

] −
∫

d4x

[
1

2
ρ v2 + V

]
(10.20)



94 10 Fluid Dynamics

We can also write this as 

.S =
∫

d4x
[
jμ

(
∂μθ + α ∂μβ

)] −
∫

d4x

[
j0 − j i j i

2 ρ
+ V

]
(10.21) 

where . j0 = ρ and we introduce an auxiliary field . j . Elimination of . j takes us back 
to (10.20). This is easily generalized to the relativistic case as 

.S =
∫

d4x
[
jμ

(
∂μθ + α ∂μβ

) − F(n)
]

(10.22) 

where .F(n) = n + V (n) and .n2 = j2 = ( j0)2 − j i j i . Notice that . n =√
( j0)2 − j · j ≈ j0 − ( j i j i/2 j0) + · · · , so that (10.21) is recovered in the 

nonrelativistic case. 
The Clebsch parametrization can also be written in a group-theoretic form [ 35, 

36]. For this purpose, we can use either .SU (1, 1) or .SU (2). We parametrize an 
element of the group as 2

.g = 1√
1 ∓ ūu

(
1 u

±ū 1

) (
ei

θ
2 0
0 e−i θ

2

)
, (10.23) 

We can easily check that 

. − i Tr
(
σ3 g−1dg

) = dθ + α dβ, α = ūu

(1 ∓ ūu)
, β = ∓ i log(u/ū) (10.24) 

where the upper sign applies to.SU (1, 1) and the lower to.SU (2). 3 We can now write 
the usual ordinary fluid dynamics action as 

.S =
∫

d4x
[−i jμ Tr(σ3 g−1∂μg) − F(n)

]
(10.25) 

We have thus brought the action, even for the usual fluid dynamics, to a form con-
sistent with the group-theoretic approach. We can now see how the Poincaré group 
can be accommodated. For the translational part we use the action in terms of the 
Clebsch variables. For the rest of it, we can use the usual group-theoretic way which 
we have already discussed. The action for general fluid dynamics is thus given by 
[ 37]

2 Whether we should choose.SU (1, 1) or.SU (2) depends on the vorticity which is given as.dα dβ. 
The group .SU (2) would describe situations with quantized vorticity, .SU (1, 1) would give no 
quantization condition on vorticity. 
3 By the way, we are also saying that ordinary fluid dynamics can display an .SU (1, 1) or . SU (2)
symmetry, which is effectively replacing the diffeomorphism symmetry. This is a point worth further 
exploration. 
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. S =
∫

d4x
[
jμ (∂μθ + α ∂μβ) − i

2
jμ(s) Tr(Σ3 Λ−1∂μΛ)

− i
∑
a

jμa Tr(qa g−1Dμ g) − F({n}))
]

+ S(A) (10.26) 

We use .qa to denote the diagonal generators of the internal symmetry group .G with 
.g ∈ G. The currents. jμ,. jμ(s),. j

μ
a correspond to the transport of mass, spin and internal 

quantum numbers, respectively. Generally, we must have different currents . jμ, . jμ(s), 
. jμa for mass flow, spin flow and the transport of other quantum numbers, since they 
are independent. For example, we may have a cluster of particles of zero total spin 
moving off in some direction, giving mass transport but no spin transport; we can 
have a similar situation with internal symmetry groups as well. Generally these 
currents are independent; any relations among them must be viewed as “constitutive 
relations” characteristic of the physical system. The coupling of the system to gauge 
fields follows from covariant derivatives on the group elements. The function. F({n})
depends on all the invariants such as .n = √

jμ jμ, .na =
/
jμa jμ a , . nab =

/
jμa jμ b

etc., which we can make from the currents and the gauge fields. We have explicitly 
indicated the action for the gauge fields. The group-valued fields are related to flow 
velocities and currents and are given by the equations of motion, 

. 
1

n

∂F

∂n
jμ = ∂μθ + α ∂μβ

1

na

∂F

∂na
jμ a = −i Tr (qa g−1Dμ g), etc. (10.27) 

10.3 Assorted Comments 

Many new concepts (or at least concepts which may not be very familiar) have been 
introduced, so a few clarifying remarks are in order at this point. 

Helicity 

In terms of the group-valued variables, the helicity is given by the topological 
invariant 

.C = 1

24π2

∫
Tr(g−1 dg)3 (10.28) 

This shows how we may generalize the Clebsch parametrization to situations with 
nonzero value of . C . We choose a particular . g, say .g1 which gives the desired value 
. C . Then we use.g1 g in place of. g in (10.24) to get the parametrization for velocities. 
. g is taken to have zero . C . It is easy to check that .C[g1 g] = C[g1] + C[g] = C[g1]. 
Notice also that .C[g] is basically.−Q[g], the winding number in (7.52), for the case



96 10 Fluid Dynamics

of .g ∈ SU (2). For .g ∈ SL(2,R), we still have the expression (10.28) for . C , but  the  
result does not yield a quantized number since .Π3(SL(2,R)) = 0. 

The action and the density matrix 

The idea of using an action of the form .
∫
j0 Tr(σ3g

−1ġ) may be seen from another 
more general point of view as well. The full quantum dynamics for a state with 
density matrix . ρ is given by the action 

.S =
∫

dt Tr

[
ρ0

(
U †i

∂U

∂t
−U † H U

)]
(10.29) 

where .U is a general unitary transformation. The variational equation for this is 

.i
∂ρ

∂t
= H ρ − ρ H, ρ = U ρ0U

† (10.30) 

which is the expected equation for the time-evolution of the density matrix. The 
canonical one-form corresponding to this action is 

.A = i Tr(ρ0U
† δU ) (10.31) 

where.δU includes all possible observables. Suppose we now restrict ourselves to the 
dynamics of a smaller number of observables, say those corresponding to symmetry 
transformations which can survive into the hydrodynamic regime. Let these symme-
try transformations form a Lie group . G. Then for .g ∈ G, parametrized in terms of 
.θA, we can write 

.g−1dg = −i ta Ea
Adθ

A (10.32) 

where .ta are the generators of the group and this equation defines the one-forms 
.Ea

Adθ
A. For the variation of unitary transformations corresponding to this subset in 

the quantum theory, we can then write 

.U †δU = −i q̂a Ea
A δθA (10.33) 

where .q̂a are the quantum operators corresponding to the generators of the group. 
This shows that .A restricted to the variables of interest is 

.A = 2iρaTr(tag
−1dg), ρa = Tr(ρ0q̂a) (10.34) 

We can now ask the question: What is the action (at the level of the reduced set of 
observables . θ’s) which gives this . A? This is evidently the co-adjoint orbit action of 
the form we have been using. The variables. θ’s are essentially the relevant collective 
variables of the theory in the regime of interest.
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Diffeomorphisms and Clebsch variables 

Finally, we can think of the Clebsch variables in another way as well. We start by 
looking at the diffeomorphism algebra, 

.{M(ξ), M(ξ')} = M(ξ × ξ'), (ξ × ξ')i = ξk∂kξ
'i − ξ

'k∂kξ
i (10.35) 

where .M is the generator of spatial diffeomorphisms, given by .T0i where .Tμν is the 
energy-momentum tensor. The algebra (10.35) can be realized by 

.Ji = π1 ∂iϕ1 + π2 ∂iϕ2 + · · · (10.36) 

for any number of canonical pairs of variables .(πi ,ϕi ). We need two such pairs 
for a complete characterization in 3 spatial dimensions. Hence, we can see that 
diffeomorphism symmetry can be traded for an .SU (1, 1) or .SU (2) symmetry for 
the pairs.πi ,ϕi . The redesignation of variables as.π1 = ρ,.π2 = ρα,.ϕ1 = θ,. ϕ2 = β
takes us back to the usual Clebsch form. 4

We can also view.π1,ϕ1 as the modulus and phase of a complex field.ψ, ψ∗. The  
interpretation of . α, . β, which will need another complex field, is a little more subtle. 
Recall that . α, . β are the fields required to get nonzero vorticity. We may observe that 
for vorticity, we need to compare the velocities of nearby particles. Thus in attributing 
some nonzero vorticity to each local coarse-graining unit, we see that inside each such 
unit (around, say,. x), we must have distinct fields representing these particles whose 
velocities are to be compared. This means that .ψ(x) and .ψ(x + ∈) must be counted 
as independent fields since we want to replace them by fields at a single point . x
upon coarse-graining. This gives some understanding of how the.SU (1, 1) or. SU (2)
group emerges. 

10.4 Examples 

10.4.1 Nonabelian Magnetohydrodynamics 

We will briefly mention a few examples before going on to the question of anomalies. 
Our first example is about nonabelian magnetohydrodynamics, say with.SU (2) as the 
internal symmetry [ 34]. Picking out the relevant terms in the general action (10.26), 
we see that we can take the action for this case as 

. S =
∫

jμ(m)

(
∂μθ + α ∂μβ

) − i
∫

jμ Tr(σ3 g−1Dμg) −
∫

F(n)

+ SYM (10.37)

4 In principle, we can use the action (10.15) with the translational degrees of freedom.xμ even in 
the fluid case, instead of the Clebsch variables. If we keep.ẋμ as fluid velocity, then we do get the 
correct fluid equations, but with no pressure. 
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As a reminder, our conventions in this expression are as follows. 

.Dμg = ∂μg + Aμ g, jμ(m) = nm Uμ, jμ = n uμ (10.38) 

Also,.Aμ = −i ta Aa
μ, t

a = 1
2σ

a .. jμ(m) denotes the mass current, while. jμ corresponds 
to the current for the diagonal generator of the internal symmetry. We have also 
defined the flow velocities .Uμ and .uμ in terms of the currents; they are 4-vectors 
normalized to unity, .U 2 = 1, .u2 = 1. 

The current which couples to the gauge field may be obtained as 

. Jμ
a = − δS

δAa
μ

= Tr(σ3 g−1tag) jμ = Qa u
μ

Qa = n Tr(σ3 g−1tag) (10.39) 

Notice that the current factorizes into a charge density .Qa and a flow velocity .uμ. 
This is known as the Eckart factorization. The equations of motion may be derived 
from the action (10.37) by varying all the fields. We show some of the equations 
here: 

. ∂μ j
μ = 0

(Dμ J
μ)a = 0

[ jμ g−1Dμg,σ3] = 0

n uμ∂μ(uνF
') − n ∂νF

' = −Jμ
a F

a
μν (10.40) 

The first of these equations arises from right transformations of the form. g → g(1 +
σ3∈), the second from general left transformations of . g. The third equation is from 
arbitrary right translations. The last equation is obtained by applying .uμ∂μ to the 
equation resulting from variations of . jμ. The first two are conservation laws, while 
the last one is the Euler equation for the (nonabelian) charge transport. 5 The first 
three equations in (10.40) also give  

.uμ(DμQ)a = (D0Q)a + u · (DQ)a = 0 (10.41) 

This may be viewed as the fluid version of the Wong equations for the transport of 
nonabelian charge by a point-particle. We also have.∂μT μν = Tr (JμFμν) where the 
energy-momentum tensor .Tμν has the perfect fluid form. 

The group element. g may be given a nice physical interpretation. The nonabelian 
charge density .ρ = ρa ta (which is the time-component of .Jμ

a ) transforms, under 
gauge transformations, as 

.ρ → ρ' = h−1ρ h, h ∈ SU (2) (10.42)

5 There is another equation for mass transport which we are not displaying. Here we are zeroing in 
on just the “new” equations, namely, those beyond the usual ones from variation of. θ, . α, . β, etc.  
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Thus we can diagonalize . ρ at each point by an .(x, t)-dependent transformation . g. 
Then we can write .ρ = g ρdiag g−1, with .ρdiag = ρ0σ3. In other words, 

.ρa = ρ0 Tr(g σ3 g−1 ta) = j0 Tr(g σ3 g−1 ta) (10.43) 

The group element . g diagonalizes the charge density at each point. The eigenvalues 
are gauge-invariant and are represented by . n. We may thus view. g as describing the 
degrees of freedom corresponding to the orientation of the local charge density in 
color space. Under a gauge transformation, .g → h−1 g. 

The Poisson brackets involving the charge densities are 

. { j0(x), j0( y)} = 0

{ j0(x), g( y)} = −i g(x)
(σ3

2

)
δ(x − y)

{J 0
a (x), J 0

b ( y)} = fabc J
0
c (x) δ(x − y)

{J 0
a (x), g( y)} = −i

(σa

2

)
g(x) δ(x − y) (10.44) 

Notice that .J 0
a generates left transformations on . g, while . j0 generates right 

transformations along the .σ3-direction. 

10.4.2 Spin and Fluids 

Another example we will briefly quote is for fluids with spin [ 37]. Consider a special 
case where mass transport and charge transport are described by the same flow 
velocity. In other words, impose a “constitutive relation” .(e/m) jμ(m) = jμe . Such a 
relation is reasonable when we have one species of particles with the same charge. 
Further, for dilute systems, if we neglect the possibility of spin-singlets forming (and 
moving independently), we can take spin flow velocity .≈ charge flow velocity, so 
that we can further impose .(s/m) jμ(m) = jμ(s). 

6 (We will set .m = 1 from now on, for 
simplicity, by a proper choice of units.) In this case, the action (10.26) simplifies, 
with a single current . jμ, as  

. S = S(A) +
∫

d4x
[
jμ (∂μθ + α∂μβ + eAμ) − i

4
jμ Tr(Σ3 Λ−1∂μΛ) − F(n,σ)

]

(10.45) 
The Lorentz group element .Λ may be written as .Λ = B R, where .B is a specific 
boost transformation taking us from a rest frame to a moving frame and. R is a spatial 
rotation. Explicitly,

6 Here we are considering a very special case to illustrate certain physical results. The general 
formalism allows for the discussion of the case with independent transport of mass, charge and 
spin. 
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.B(u) = 1√
2(u0 + 1)

[
u0 + 1 σ · u
σ · u u0 + 1

]
(10.46) 

The statement that . jμ(m) = jμ(s) means that .B contains the same velocity .uμ as for 
the mass transport, as in . jμ = n uμ. The function .F in (10.45) depends on . n and 
.σ = Sμν Fμν , where .Sμν is the spin density, 

.Sμν = 1

2
Tr (Σ3 Λ−1 Jμν Λ), Jμν = i

4
[γμ, γν] (10.47) 

Here .γμ are the Dirac .γ-matrices, obeying 

.γμγν + γνγμ = 2 gμν (10.48) 

One interesting feature which emerges from this analysis, and the equations of 
motion for the action (10.45), is that the spin density is subject to precession effects 
due to pressure gradient terms in addition to the expected precession due to the 
magnetic field. This is seen explicitly from the equations of motion 

. uα∂α(F ' uν) − ∂νF
' = e uλ Fλν + · · ·

uα∂αSμν = e

F '
[
S λ

μ Fλν − S λ
ν Fλμ

] + [
S λ

μ fλν − S λ
ν fλμ

] + · · ·
(10.49) 

where .F ' = (∂F/∂n) and 

. fλν = 1

F '
[
uλ ∂νF

' − uν ∂λF
'] (10.50) 

The first equation in (10.49), which is the Euler equation, shows the expected Lorentz 
force formula for charged fluids. The first term on the right hand side of the second 
equation describes the precession of the spin density in the electromagnetic field. The 
second term, .S λ

μ fλν − S λ
ν fλμ, describes a spin precession effect due to pressure 

gradient terms which can exist even in the absence of external fields. This is a bit 
unusual and is a novel effect in the context of fluid dynamics, although its origin can 
be traced to the spin-orbit couplings in the relativistic theory. There are corrections 
to both these equations depending on the gradient of the spin density, as indicated 
by the ellipsis.
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10.5 Anomalies in Fluid Dynamics 

We will now consider how anomalies can affect fluid dynamics. Anomalies arise in 
the quantum theory because of the need to regularize the theory. This involves an 
upper (ultraviolet) cut-off on the integrations over loop momenta in various Feynman 
diagrams. If a situation arises that one cannot find a regulator which preserves all the 
classical symmetries, then we have to ensure that the regulator we choose preserves 
gauge symmetries (for consistency reasons). This may mean that we have to give up 
some of the other non-gauge symmetries, with the corresponding currents not being 
conserved. We say that those symmetries are anomalous. 

Even though anomalies arise out of ultraviolet regulators, they have a deeper 
topological origin and one consequence of this aspect of the anomalies is that they 
are not renormalized. Further, they can also be reproduced from infrared physics. 
Because of this property, we should expect the anomalies to be present in all phases 
of the theory. In particular, we can expect them to be relevant in the hydrodynamical 
regime as well. 

10.5.1 Anomalous Electrodynamics 

First of all we will consider a very simple case, that of an Abelian.U (1) theory which 
has anomalies. We may think of this as electromagnetism. The basic equations we 
need are the conservation laws, 

. ∂μT
μ
ν = Fνμ Jμ

∂μ J
μ = − c

8
∈μναβFμνFαβ (10.51) 

The first equation is the expected relation for the divergence of the energy-momentum 
tensor. The second one is the conservation law for charge which is anomalous, with 
the anomaly as given on the right hand side. Here . c is a constant, the anomaly 
coefficient, which can be calculated from the underlying quantum physics. The lack 
of conservation for the electric current will, of course, lead to inconsistencies, so we 
must really regard this system as describing a subsystem which is anomalous, with 
another subsystem which will cancel this anomaly for the full system, thus avoiding 
any inconsistencies. These two Eq. (10.51) are to be supplemented by the form of 
.T μ

ν and .Jμ, given by 

. T μ
ν = μ n Uμ Uν + δμ

ν P

Jμ = n Uμ + ∈μναβ
[ c
6

μUν ∂α(μUβ) + c

2
μUν ∂αAβ

]
(10.52) 

where . μ is the chemical potential corresponding to the particle number and .P is the 
pressure. Notice that .T μ

ν has the perfect fluid form. These Eqs. (10.51) and (10.52)
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were written down in [ 38] as a minimal way to incorporate anomalies. We now turn 
to the question of whether we can find an action which leads to these equations. We 
may expect such an action in terms of the formalism we have developed. Indeed such 
an action can be found, it is given by [ 39] 

. S =
∫

d4x
[
jμ(Vμ + Aμ) + c

6
∈μναβ

(
Aμ Vν∂αVβ + Vμ Aν∂αAβ

)

− μ
√

− j2 + P(μ)
]

(10.53) 

where .Vμ = ∂μθ + α ∂μβ and the flow velocity .Uμ is related to .Vμ by 

.(V + A)μ = −μUμ (10.54) 

It is not difficult to see why the action is of the form (10.53). The terms representing 
the anomaly must be independent of the metric, and hence it must be a differential 
four-form. The only one-forms available are the electromagnetic gauge potential 
.A = Aμ dxμ and the velocity of the fluid for which we can use the Clebsch form, 
.V = Vμ dxμ = dθ + α dβ. Thus we can take a linear combination of .A V dV and 
.V A dA. The coefficients can be fixed by comparison with (10.51) and (10.52). This 
leads to the action (10.53). The equations which follow from this action have been 
analyzed in more detail in [ 39]. 

10.5.2 Anomalies in the Fluid Phase of the Standard Model 

A more interesting scenario is where there are no gauge anomalies and we ask the 
question of how we can include the anomalies for the non-gauge symmetries. The 
most physical realization of this would be the standard model, so we will phrase 
our arguments in terms of it. We may regard the fluid we are talking about as the 
quark-gluon plasma phase for three flavors of quarks, say, .u, d, s. In other words, 
we consider a phase with thermalized .u, d, s quarks, so that they must be described 
by fluid variables while the heavier quarks are described by the field corresponding 
to each species. We will also neglect the quark masses so that we have the full flavor 
symmetry .U (3)L ×U (3)R. Thus the group .G to be used in (10.26) is  

.G = SU (3)c ×U (3)L ×U (3)R (10.55) 

with individual flows corresponding to the charges. Here we want to focus on the 
flavor transport, as this is the sector with anomalies, so we will drop the color group 
.SU (3)c from the equations to follow. 

The flavor symmetry is not fully preserved even in the absence of masses; this is 
because of the anomalies. It may be useful at this point to recall the argument why we 
expect a term in the effective action which reproduces anomalies [ 40]. We set up a
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gedanken argument, where we consider all flavor symmetries to be gauged with their 
anomalies canceled by an extra set of fermions; the latter will not play any role in the 
dynamics except for the anomalies, so they are referred to as spectator fermions. The 
full theory is nonanomalous. The usual argument is that if, instead of the quarks, we 
consider the confined phase with mesons and baryons as the basic degrees of freedom, 
the theory will continue to remain nonanomalous. Even though the confined phase 
is obtained only at low energy, anomalies, because of their topological origin, are 
unaffected. Thus in the effective action for baryons and mesons, we should be able 
to find a term which reproduces the original anomalies, thereby ensuring cancellation 
with the spectator fermions. This is the Wess-Zumino term written in terms of the 
pseudoscalar meson fields. Clearly, we can expect a similar reasoning for the fluid 
phase where .u, d, s are replaced by fluid variables. We must then have a term in 
the fluid action which can reproduce the anomalies so that the cancellation with 
spectator fermions still remains valid. How do we write this term? Since we have 
formulated fluid dynamics in terms of group-valued variables, the solution is almost 
trivial. We can simply use the usual Wess-Zumino term, but interpret the group-valued 
variables in it, not in terms of mesons, but as describing the fluid flow velocities for 
various flavor quantum numbers. 

Adapting (10.26) to the case at hand with .U (3)L ×U (3)R symmetry, the action 
for fluid phase of the standard model is [ 36] 

. S =
∫ [

−i jμ3 Tr
(
t3 g−1

L Dμ gL
) − i jμ8 Tr

(
t8 g−1

L Dμ gL
)

− ikμ
3 Tr

(
t3 g−1

R Dμ gR
) − i kμ

8 Tr
(
t8 g−1

R Dμ gR
)

− i jμ0 Tr
(
g−1
L Dμ gL

) − i kμ
0 Tr

(
g−1
R Dμ gR

)
(10.56) 

− F( jl · jl ' , kl · kl ' , jl · kl ')
]

+ SYM(A) 

+ Γwz(AL, AR, gL g† R) − Γwz( AL, AR, 1) 

The three diagonal generators correspond to the. t3, . t8 and the identity for .U (3)L and 
.U (3)R, with the corresponding currents . j

μ
3 , . j

μ
8 , . j

μ
0 and . kμ

3 , . k
μ
8 , . k

μ
0 . The function . F

can in general depend on all invariants of the form . jl · jl ' = jμl jμl ' , .kl · kl ' , . jl · kl ' , 
.l, l ' = 0, 3, 8. 

The group elements .gL ∈ U (3)L and .gR ∈ U (3)R will describe the various flow 
velocities; their relation to the currents is seen upon eliminating the latter by the 
equations of motion. Further,.Γwz(AL, AR, gL g†R) is the standard Wess-Zumino term 
.Γwz(AL, AR,U ) with.U replaced by.gL g†R. We have also subtracted. Γwz(AL, AR,1)

which is necessary to bring the analysis to the so-called Bardeen form of the anoma-
lies [ 41]. The Bardeen form is the one which not only preserves the vector gauge 
symmetries, but also gives a manifestly vector-gauge-invariant form to the remaining 
axial anomalies. This form is what is appropriate for the fluid phase. The explicit 
expression for .Γwz(AL, AR, gL g†R) is
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. Γwz = − iN

240π2

∫

D
Tr(dU U−1)5

− iN

48π2

∫

M
Tr[(AL dAL + dAL AL + A3

L) dUU−1]

− iN

48π2

∫

M
Tr[(AR dAR + dAR AR + A3

R)U−1dU ]

+ iN

96π2

∫

M
Tr[AL dUU−1AL dUU−1 − AR U

−1dU AR U
−1dU ]

+ iN

48π2

∫

M
Tr

[
AL(dUU−1)3+AR(U−1dU )3

+ dAL dU AR U
−1− dAR d(U

−1) AL U
]

+ iN

48π2

∫

M
Tr[AR U

−1 ALU (U−1dU )2 − AL U AR U
−1(dUU−1)2]

− iN

48π2

∫

M
Tr

[
(dAR AR + AR dAR)U−1 ALU

− (dAL AL + AL dAL)U AR U
−1

]

− iN

48π2

∫

M
Tr[ALU AR U

−1 AL dUU−1 + AR U
−1 AL U AR U

−1dU ]

− iN

48π2

∫

M
Tr

[
A3
R U−1 ALU − A3

L U AR U
−1

+ 1
2U AR U

−1 ALU AR U
−1 AL

]
(10.57) 

with .U = gL g†R. (.N is the number of colors, .= 3 for us.) This is evidently a very 
complicated expression and we will need to pick out some pieces to highlight some 
physical effects. The most relevant of such effects is the chiral magnetic effect. 

10.5.3 The Chiral Magnetic Effect 

The chiral magnetic effect corresponds to the following. In the quark-gluon plasma, 
in the presence of a magnetic field, there is charge separation and a chiral induction 
which may be displayed as 

.J0 = e2

2π2
∇θ · B, Ji = − e2

2π2
θ̇ Bi (10.58) 

Here . θ is an axial .U (1) field, similar to the .η'-meson. In the plasma, we can replace 
. θ̇ by the difference of the chemical potentials.μL and.μR corresponding to the. U (1)L
and .U (1)R subgroups of .U (3)L ×U (3)R as .θ̇ → 1

2 (μL − μR). In this case, we find
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.Ji = − e2

4π2
(μL − μR) Bi (10.59) 

We see that the chiral asymmetry of chemical potentials can lead to an electro-
magnetic current in the direction of the magnetic field [ 42]. In the experiment with 
colliding heavy nuclei which produces this fluid phase, if the collision is slightly 
off-center, the two nuclei constitute a current which produces, for a very short time, 
an intense magnetic field of the order of .1017 G. The resulting current can affect the 
charge distribution of particles, creating an asymmetry in the total charge of particles 
coming off in the direction of .B versus .−B. Such an asymmetry is indeed experi-
mentally observed; however, there are other effects to be taken into account which 
could possibly give an alternate explanation. So it is not entirely clear if the observed 
asymmetry can be attributed to the chiral magnetic effect. We may also note that the 
original calculation of the chiral magnetic effect is via Feynman diagrams, but the 
fluid action readily incorporates this effect due to the anomaly. 

There are many other anomaly related effects, such as a possible pion asymmetry 
[ 43] or chiral vorticity effects. But the present discussion suffices to illustrate the main 
issues of principle; the reader is referred to the cited references for details. The full 
set of equations following from (10.56) are necessary to describe full hydrodynamic 
transport of flavor charges. 

The main thrust of this chapter was to show that the co-adjoint orbit action intro-
duced in Chap. 6, which is the quintessential realization of geometric quantization, 
can be used for fluid dynamics and can lead to many new insights. 

Problems 

10.1 Write the Wilson line for an .SU (2) gauge field as a path integral. (Although 
this is based on material from Chap. 6, it is included here as it serves as a prelude to 
constructing flow equations for charged fluids.) 

10.2 The dynamics of a particle moving on Anti-de Sitter space in 4+1 dimensions 
(.= SO(4, 2)/SO(4, 1)) can be described by the co-adjoint orbit action 

. S =
∫

dt

[
−i

mR

2
Tr(γ0g

−1ġ) + s1
2
Tr(γ1γ2 g−1ġ) + s2

2
Tr(γ3γ5 g−1ġ)

]

where. γμ,.μ = 0, 1, 2, 3, 5, are the usual Dirac matrices and. s1,. s2 label the two spins 
needed since .SO(4) is of rank 2. The group element may be parametrized as 

. g =
(√

z iX/
√
z

0 1/
√
z

)
Λ, X = x0 − σ · x, Λ = e−[γμ,γν ]Θμν

Identify the analog of (10.46) for this case and formulate fluid dynamics for mass 
and spin flows on AdS. 5.
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Chapter 11 
Quantization Rules 

In the usual textbook discussions of quantum mechanics, one usually starts with a 
quantization rule which assigns an operator for any classical function on the phase 
space. The simplest example of this is the correspondence 

.x → x̂, p → p̂ = −iĦ
∂

∂x
(11.1) 

For arbitrary functions of . x and . p, the simple use of this rule can lead to operator 
ordering issues. Thus the function.xp could be viewed as.x̂ p̂,. p̂x̂ or. 12 (x̂ p̂ + p̂x̂). The  
first two versions are not hermitian. The operator . 12 (x̂ p̂ + p̂x̂) is the Weyl-ordered 
version of .xp. More generally for the Weyl-ordered version of a function . f (x, p), 
one can use 

. f̂ =
∫ 

dxdp

2π

dudv

2π
eiu(x̂−x)+iv( p̂−p) f (x, p) (11.2) 

Effectively, here one is taking the Fourier transform of. f (x, p) and then transforming 
back with operators . x̂ , . p̂ in place of . x , . p. For polynomials of . x and . p, this leads to 
the symmetrized products of the operators which are also hermitian. 

There is also an inversion formula due to Wigner for (11.2). Taking the matrix 
element of the operator . f̂ in an .x-diagonal basis of states, the inversion formula is 1

. f (x, p) =
∫ 

dz e−ipz/h 〈 x + 1
2 z| f̂ |x − 1

2 z 〉 (11.3) 

In the context of geometric quantization, there is a very elegant procedure for 
the function-to-operator correspondence known as the Berezin-Toeplitz quantiza-

1 We kept. Ħ in (11.1) and  (11.3), so the reader can see how an.Ħ-expansion can be worked out. 
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tion [ 44]. When the phase space is a complex Kähler manifold (with complex coor-
dinates .zα, z̄α), we can consider the geometric quantization of a suitable .Ω in the 
holomorphic polarization. Let .{ψi } form a basis of wave functions. Then the matrix 
elements of an operator . Â are given in this basis as 

.Ai j =
∫ 

dμψ∗
i A(z, z̄)ψ j (11.4) 

This is the Berezin-Toeplitz quantization rule. Here.A(z, z̄) is a function on the phase 
space . M , known as the contravariant symbol of the operator . Â. 

There are a couple of questions which arise naturally in this context. The first is 
about how operator products work out in relation to the classical theory [ 44, 45]. The 
second question is about the existence of an inverse relation to (11.4) where we can 
construct .A(z, z̄) given the matrix elements.Ai j . We will consider these questions in 
turn. 

The matrix elements of the products . Â B̂ of two operators . Â and . B̂ are given by 

. ( Â B̂)i j =
∑
k

Aik Bk j =
∫ 

dμdμ' ψ∗
i (z)A(z, z̄) K (z, z') B(z', z̄')ψ j (z

')

K (z, z') =
∑
k

ψk(z)ψ
∗
k (z

') (11.5) 

The reduction of the kernel .K (z, z') is what is needed to simplify this expression. 
Consider, as an example, the case of the complex plane. C as the phase space with 

the symplectic form .Ω = (i/κ)dz ∧ dz̄. As seen in Chap. 6, a basis for the wave 
functions in this case is given by 

.ψn = e− 1
2 (zz̄/κ) zn

κ
n
2

√
n! (11.6) 

We can then write (11.5) as  

. ( Â B̂)nm = κ− n+m
2√

n!m!
∫ 

dμdμ' z̄n A(z, z̄)e(zz̄'−zz̄−z' z̄')/κB(z', z̄')z'm

= κ− n+m
2√

n!m!
∫ 

dμdμ' z̄n A(z, z̄)e−(zz̄+z' z̄')/κ B(z' + z, z̄')(z' + z)m

= κ− n+m
2√

n!m!
∫ 

dμdμ' z̄n A(z, z̄)e−(zz̄+z' z̄')/κ ez
'∂z

[
B(z, z̄')zm

]
(11.7) 

For the integral over .z', z̄', taking . B to be power-expandable in . z̄, we can write
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. 

∫ 
dμ' e−z' z̄'/κ ez

'∂z
[
B(z, z̄')zm

] =
∫ 

e−z' z̄'κ ez
'∂z

∑
s

1

s! z̄
's∂s

w̄B(z, w̄)zm
|||
w̄=0

=
∑
s

κs

s! (∂z∂w̄)s
(
B(z, w̄)zm

) |||
w̄=0

= eκ∂z∂w̄
(
B(z, w̄)zm

) |||
w̄=0

(11.8) 

In combining this with the rest of the terms in (11.7), we can use 

. e−zz̄/κeκ∂z∂w̄ B(z, w̄) = eκ∂z∂w̄e−zz̄/κez̄∂w̄ B(z, w̄)

= eκ∂z∂w̄e−zz̄/κB(z, z̄ + w̄) (11.9) 

We can now substitute this into (11.7) and and do integrations by parts to transfer 
the .∂z derivatives to act on .A(z, z̄). Notice that the factor .z̄n is not affected by this. 
This is the advantage of the holomorphic polarization. The result is 

. ( Â B̂)nm = κ− n+m
2√

n!m!
∫ 

dμ z̄n A(z, z̄)eκ∂z∂w̄e−zz̄/κB(z, z̄ + w̄)zm
|||
w̄=0

= κ− n+m
2√

n!m!
∫ 

dμ z̄ne−zz̄/κ

[∑
s

(−κ)s(∂s
z A ∂s

z̄ B)

]
zm

=
∫ 

dμψ∗
n (A ∗ B)ψm (11.10) 

This shows that the symbol corresponding to the product of the operators is given by 
the “star-product” of the symbols for the operators, which is defined by 

. A ∗ B =
∑
s

(−κ)s(∂s
z A ∂s

z̄ B)

= AB − κ ∂z A ∂z̄ B + O(κ2) (11.11) 

The star-product is given by the ordinary commuting product of the functions plus 
terms involving derivatives of the functions. The .∗-commutator takes the form 

. A ∗ B − B ∗ A = κ (∂z̄ A∂z B − ∂z A∂z̄ B) + O(κ2)

= i{A, B} + O(κ2) (11.12) 

where we have used the definition of the Poisson bracket for the given .Ω as 

.{A, B} = iκ (∂z̄ A∂z B − ∂z A∂z̄ B) + O(κ2) (11.13)
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In other words, the symbol corresponding to the commutator is . i times the Pois-
son bracket, which is the usual and expected correspondence. (Small values of . κ
correspond to the semiclassical limit.) 

Similar reasoning will apply to other Kähler manifolds as well [ 45]. Thus for a 
coset manifold of the form.G/H , the wave functions are given by 

.Ψ
(r)
i = √

N 〈 r, i |ĝ|r, w 〉 = √
N D(r)

i,w(g) (11.14) 

where. N is the dimension of the representation. r and the state.|r, w 〉 is a highest weight 
state chosen by the polarization condition. The matrix elements of an operator take 
the form as in (11.4), and the relevant kernel for the star-product is 

.K (g, g') = N 〈 r, w|ĝ'†ĝ|r, w 〉 (11.15) 

The reduction of this needed to write the star-product in a form analogous to (11.11) is  
somewhat more involved. The simplest way is to use a complete set of eigenfunctions 
of the Laplace operator on the manifold [ 46]. For the case of .SU (2)/U (1) with 
.Ω = −i(n/2)Tr(σ3g

−1dg g−1dg), for example, the star-product takes the form 

. A(z, z̄) ∗ B(z, z̄) = A(z, z̄) B(z, z̄) +
∞∑
s=1

(−1)scs
(
Rs

+A(z, z̄)
)(
Rs

− B(z', z̄')
)

= A B + 1

(n + 2)
(R+A) (R−B)

+ 1

2(n + 2)(n + 3)
(R2

+A) (R2
−B) + · · · (11.16) 

where .R± are the right translation operators on . g, introduced in Chap. 6. The coeffi-
cients.cs in this expansion can be recursively calculated by successive application of 
the completeness relation for the eigenfunctions of the Laplacian. We see from this 
equation that we obtain the Poisson bracket as the .∗-commutator in large . n limit, 
which is the semiclassical limit in this case. 

Consider now the question of constructing the function (or symbol) from the 
matrix elements of the operator. We will use a coset manifold of the.G/H -type (with 
. G and.H compact) for this. The result for the case of the plane (or higher dimensional 
flat spaces) can be obtained by a suitable large radius limit. Given the symmetry . G, 
we can consider a tensor operator which transforms according to the irreducible 
representation . r ' of . G, i.e., 

.ĝ F̂α ĝ† =
∑

β

F̂β 〈 r ',β|ĝ|r ',α 〉 (11.17) 

For the matrix elements of such an operator, we have the Wigner-Eckart theorem, 

.(F̂α)i j = 〈 r, i |r ',α; r, j 〉 〈 〈 F̂ 〉  〉 (11.18)
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where .〈 r, i |r ',α; r, j 〉 is the Clebsch-Gordan coefficient relating the product of the 
representations . r ' and . r to . r and .〈 〈 F 〉  〉 is the reduced matrix element defined as 

.〈 〈 F̂ 〉  〉 = 1

N

∑
i, j,β

〈 r ',β; r, j |r, i 〉 (F̂β)i j (11.19) 

In terms of the representation matrices for . g, we have the relation 

.

∫ 
dμ(g)D(r)

i,i '(g
†)D(r)

j ', j (g)D(r ')
β,α(g) = 1

N
〈 r ',β; r, j '|r, i ' 〉 〈 r, i |r ',α; r, j 〉 . (11.20) 

Setting .β = 0, .i ' = j ' = w in this equation, we can write 

. 〈 〈 F̂ 〉  〉 〈 r, i |r ',α; r, j 〉 〈 r ', 0; r, w|r, w 〉 
= N

∫ 
dμ(g) D(r)∗

w,i (g†) D(r)
w, j (g) 〈 〈 F̂ 〉  〉 D(r ')

0,α(g)

= N
∫ 

dμ(g) D(r)∗
i,w (gT )D(r)

j,w(gT ) 〈 〈 F̂ 〉  〉 D(r ')
α,0(g

T )

=
∫ 

dμ(g) Ψ
(r)∗
i

[
〈 〈 F̂ 〉  〉 D(r ')

α,0(g)
]
Ψ

(r)
j (11.21) 

where, in the last step, we changed the variables of integration as .g → gT , and used 
the definition of wave functions in (11.14). We can now define a function .Fα(g) by 

.Fα(g) 〈 r ', 0; r, w|r, w 〉 = D(r ')
α,0(g)〈 〈 F̂ 〉  〉 . (11.22) 

Equation (11.21) then takes the form 

. 

∫ 
dμ(g) Ψ

(r)∗
i Fα(g) Ψ

(r)
j = 〈 r, i |r ',α; r, j 〉 〈 〈 F̂ 〉  〉 

= (F̂α)i j . (11.23) 

We see that the matrix element of .F̂α is reproduced in terms of a function .Fα(g), 
in accordance with the Berezin-Toeplitz formula (11.4). Equation (11.22), along 
with (11.18), is the required inverse relation to (11.4), constructing the contravariant 
symbol in terms of the matrix elements of the operator. For a general operator, one 
can first write it as a linear combination of tensor operators and the result extends by 
linearity; i.e., 

.F̂ =
∑
r ',α

Cr ',α F̂ (r ')
α =⇒ F =

∑
r ',α

Cr ',α F (r ')
α (11.24) 

The existence of a function in terms of which one can write the matrix elements 
of an operator is essentially the diagonal coherent state representation, originally
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proved by Sudarshan for coherent states in flat space [ 47]. The arguments given 
above were taken from [ 48]. 

For completeness, we may note that there is another notion of a function associated 
with an operator known as the covariant symbol. It is defined by 

.(A) = 1

N

∑
i j

Ψi Ai jΨ
∗
j =

∑
i j

D(r)
i,w(g) Ai j D(r)∗

j,w (g) (11.25) 

This is different from the contravariant symbol in the sense that if we start from 
.A(z, z̄), construct .Ai j according to (11.4) and then construct .(A) as in (11.25), then 
.(A) /= A(z, z̄) in general. The classical limits will be the same; for example, for the 
case of .SU (2)/U (1), 

.(A) = A(z, z̄) + terms of order
1

n
(11.26) 

A star-product can be defined for the covariant symbols as well. The .∗-commutator 
will reproduce the Poisson bracket, differing from the .∗-commutator for the 
contravariant symbols only at order .κ2 or at .1/n2. 

There is a close connection between Berezin-Toeplitz quantization, covariant and 
contravariant symbols, Landau levels for the quantum Hall effect and fuzzy spaces. 
It is difficult to survey this vast field here, the articles [ 48, 49] and references therein 
can facilitate an entrée into the large body of literature. 
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Chapter 12 
A Comment on the Metaplectic 
Correction 

In Sect. 7.1, we considered the quantization of the symplectic form .Ω = i dz ∧ dz̄, 
obtaining the standard coherent states. (In this chapter, we are setting .κ = 1 for 
convenience.) The quantum operator corresponding to.z̄z was also identified as. z∂z +
1
2 , where the extra term . 12 is due to the metaplectic correction. We now consider a 
set of symplectic transformations which can elucidate the meaning and importance 
of the metaplectic structure. 

The symplectic form .Ω = i dz ∧ dz̄ is invariant under the infinitesimal transfor-
mations 

.z → z' = z + i A z + B z̄, z̄ → z̄' = z̄ − i A z̄ + B̄ z (12.1) 

where. A is real. The finite version of these transformations form the.Sp(1,R) group. 
We can also introduce real variables .(p, q) by 

.z = 1√
2

(p + iq), z̄ = 1√
2

(p − iq) (12.2) 

for which.Ω = dp ∧ dq. This choice of coordinates would be convenient for choos-
ing real polarizations such as wave functions which only depend on. q. The transfor-
mations (12.1) do not preserve holomorphicity and these are what help to connect 
different polarizations. For example, consider for simplicity the case of.A = 0. Then 
differentiating . f (z', z̄'), we find 

.∂z̄ ≈ ∂z̄' + B ∂z' , ∂z̄' ≈ ∂z̄ − B ∂z (12.3) 

We see that the holomorphic polarization in terms of .z, z̄ is not the same as the 
holomorphic polarization in terms of .z', z̄'. This shows that the transformations 
(12.1) help implement infinitesimal changes of polarization, which can lead to real 
polarizations or polarizations which are not holomorphic. Classically, we have a 
closed Poisson bracket algebra for the generators of the transformations, 
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. { f A , fB} = −i fB, { f A , f B̄} = i f B̄
{ f B̄ , fB} = −2i f A (12.4) 

for . f A = 1
2 zz̄, . fB = −(i/2)z2, . f B̄ = (i/2)z̄2. This is the algebra of .Sp(1,R). 

In going to the quantum theory, since we need to have the facility of changing 
polarizations, the unitary implementation of (12.1) is important. The operators cor-
responding to. z̄,. z are the annihilation and creation operators. a,. a†, respectively, with 
.[a, a†] = 1. In the holomorphic polarization, this corresponds to the identification 

.z → a† = z z̄ → a = ∂

∂z
, (12.5) 

so that the quantum version of .zz̄ without the metaplectic correction is .a†a. 
However, the quantum version of . fB = −(i/2)z2, . f B̄ = (i/2)z̄2 are unambigu-

ously given by the prequantum operators as 

. f̂ B = − i

2
a†2, f̂ B̄ = i

2
a2 (12.6) 

Their commutator is given by 

. [ f̂ B̄, f̂ B] =
(
a†a + 1

2

)
= 2

[
1
2 (a

†a + 1
2 )

]

≡ 2 f̂ A (12.7) 

We see that the closure of the algebra and the quantum implementation of (12.6) 
requires us to identify . f̂ A = 1

2 [a†a + 1
2 ] as the quantum generator of the .A-type 

transformations. In other words, we should have .zz̄ → (a†a + 1
2 ). The essence of 

the metaplectic correction is thus the quantum realization of the .Sp(1,R). 
Notice that while the quantum operator corresponding to.z̄z is identified as. a†a +

1
2 , there is no statement about whether one should use this operator for a Hamiltonian. 
We bring up this point because, sometimes in the literature, one finds the statement 
that the half-form quantization is needed as it leads to the “correct" quantization 
which should have the zero-point energy if one applies this to the harmonic oscillator 
(for which the classical Hamiltonian is . z̄z). This statement certainly needs some 
clarification. The classical Hamiltonian for the oscillator is .z̄z + C for any constant 
. C , so the question of zero-point energy is completely different. To sharpen this point, 
consider the free relativistic scalar field which can be considered as a collection of 
harmonic oscillators. In fact, for scalar fields in a cubical box of volume .V with 
periodic boundary conditions, we can use the mode expansion 

.φ(x) =
∑
k

Zk uk(x) + Z̄k u
∗
k(x)
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φ̇(x) = π(x) =
∑
k 

(−iωk)
(
Zk uk(x) − Z̄k u

∗ 
k (x)

)

uk(x) = 1√
2ωk V 

e−ik·x , ωk =
 √  
k2 + m2 (12.8) 

The phase space degrees of freedom correspond to .(Zk, Z̄k). From the action of a 
free scalar field, we find the symplectic structure and classical Hamiltonian as 

.Ω = i
∏
k

dZk ∧ dZ̄k, H =
∑
k

ωk Z̄k Zk + C (12.9) 

Classically, this is indeed a collection of harmonic oscillators. However, in quantizing 
this, keeping any nonzero value for the zero-point energy is the wrong thing to do. 
For this problem, we want to obtain a unitary realization of the Poincaré group. One 
of the commutation rules for this group is 

.[Pi , K j ] = i δi j H (12.10) 

where .Pi is the momentum operator and .K j is the Lorentz boost generator. The 
Lorentz invariance of the vacuum (in the limit of .V → ∞) requires .K j |0〉 = 0. As  
a result, we must have .〈 0| H |0〉 = 0 (upon taking the expectation value of (12.10)), 
showing that the quantization we need should have no zero-point energy. The correct 
thing to do is thus to define a renormalized form of the quantum Hamiltonian which 
has no zero point energy. 

Notice that the generators of the symplectic transformations discussed earlier 
do have the extra metaplectic correction, but the choice of the Hamiltonian (and how it 
should represented as an operator) is determined by imposing desirable symmetries, 
the Lorentz invariance of the vacuum in the present context. More explicitly, the 
relevant algebraic relations for the symplectic transformations are 

.[akal , a†r a†s ] = δkra
†
s al + δlr a

†
s ak + δksa

†
r al + δlsa

†
r ak + (δksδlr + δkrδls) (12.11) 

One does realize this algebra unitarily on the Fock space of the theory. (The finite 
transformations corresponding (12.11) are also what are used to generate squeezed 
states in quantum optics.) The Hamiltonian however is one of the generators of the 
Poincaré algebra, given by.H = ∑

k ωk a
†
k ak (with no term corresponding to the zero-

point energy) and.Pi = ∑
k ki a

†
k ak . For some recent work in relating the metaplectic 

correction to coherent state path integrals, see [ 50].
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Solutions to Problems 

Problem 2.1 Derive Eq. (2.18) from the definition of Poisson brackets. 

Solution: 

. iξiηiρ(dΩ) = ξνημρα(∂αΩμν + ∂μΩνα + ∂νΩαμ)

= ξνρα
[
∂α(ημΩμν) − (∂αημ)Ωμν

] + cyclicperm.

= −ξν∂ν(ρ
α∂αg) − ημ∂μ(ξ

ν∂νh) − ρα∂α(ημ∂μ f )

= { f, {g, h}} + {g, {h, f }} + {h, { f, g}}

Problem 5.1 For a particle moving on a circle with coordinate . θ, .dθ/(2π) is an 
element of .H1(M). Consider the action 

. S =
{

dt
[
1
2 θ̇

2 + α

2π
θ̇
]

Obtain the energy eigenvalues to show how they depend on the vacuum angle . α. 

Solution: The solution is straightforward, the eigenvalues are labeled by an integer 
. n, with .En = 1

2 (n − (α/2π))2. 

Problem 6.1 Find the spin connection and curvature and its integral for . S2. 

Solution: With no torsion, the spin connection .ωa
b is defined by . dea + ωa

b e
b = 0

From (6.15), we get 

. ω1
2 = 2x e2 − 2y e2, ω2

1 = −ω1
2

R1
2 = (dω + ω ω)12 = 4 e1 e2,

{
R1

2 = 4π

Problem 6.2 Carry out the infinitesimal transformations generated by the vector fields 
.ξ±, .ξ3 given in (6.27) and show that they are isometries of . S2. 
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Solution: The metric is given by .ds2 = dzdz̄/(1 + zz̄)2. The vector field .ξ+ corre-
sponds to .z → z + i∈z2, .z̄ → z̄ + i∈. The change in the metric is 

. ds ,2 = d(z + i∈z2)d(z̄ + i∈)

(1 + (z + i∈z2)(z̄ + i∈))2
≈ ds2+ 2i∈z

dzdz̄

(1 + zz̄)2
−2i∈z(1 + zz̄)

dzdz̄

(1 + zz̄)3

≈ ds2

Thus .ξ+ is an isometry; so is .ξ− since it is the conjugate and .ds2 is real. Further 
.[ξ+, ξ−] = 2iξ3, so .ξ3 is also an isometry. 

Problem 6.3 Identify the generators of left translations of . g in .Ω of (6.47). 

Solution: With .V as the generator of left translations of the form.V g = θg, 

. iVΩ = −i
n

2
Tr

[
σ3(g

−1θgg−1dg − g−1dg g−1θg
] = −i

n

2
dTr(σ3g

−1θg)

= −d(Qaθ
a), Qa = n

2
Tr(σ3g

−1tag)

Problem 6.4 Consider the geometric quantization of the hyperboloidal space 
.SL(2,R)/U (1). The canonical two-form is given by 

. Ω = 2iλ
dz ∧ dz̄

(1 − zz̄)2

This applies to the region .zz̄ ≤ 1. Show that .V+ = iz2∂z − i∂z̄ , .V− = −iz̄2∂z̄ + i∂z , 
.V3 = iz∂z − iz̄∂z̄ are Hamiltonian vector fields. Identify the nature of the wave func-
tions, the inner product in the holomorphic polarization and the operators corre-
sponding to .V±, .V3. 

Solution: The wave functions are of the form .ψ = N e−K/2 f (z), where the Kähler 
potential is .K = −2λ log(1 − zz̄), with the inner product 

. ⟨1|2⟩ = 1

2πi

{
dz̄ ∧ dz

f ∗
1 f2

(1 − zz̄)2−2λ

The operators corresponding to .V±, .V3 are given by 

. J+ f = (z2∂z + 2λz) f, J− f = ∂z f, J3 f = (z∂z + λ) f

This should give the discrete series of representations of .SL(2,R) bounded below. 

Problem 7.1 Calculate .Ω(Ag) − Ω(A) for finite transformations, i.e., obtain (7.37). 

Solution: With . δ denoting the exterior derivative along the gauge directions, . δAg =
g [δA + Dv] g−1, with .Dv = dv + Av + vA, .v = g−1δg, and 

.Ω(Ag) − Ω(A) = k

4π

{
Tr (δADv + DvδA + DvDv)
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. 

{
δADv = −

{
(DδA)v =

{
δFv,

{
DvDv =

{
vD2v =

{
v(Fv − vF)

It should be kept in mind that . δ and . d anticommute. This gives 

. Ω(Ag) − Ω(A) = k

4π

{
Tr[(2δFv) + vFv − v2F] = δ

k

2π

{
Tr(vF)

Problem 7.2 Derive the Polyakov-Wiegmann identity given in (7.54). 

Solution: Straightforward expansion using. (Kh)−1d(Kh) = h−1K−1dK h + h−1dh
will give the result. 

Problem 7.3 The WZW action can be quantized as a 1+1 dimensional field theory in 
its own right. In lightcone coordinates.u = (t − x)/

√
2,.v = (t + x)/

√
2, the action 

is 

. S = − k

4π

{
Tr(∂ugg−1 ∂vgg−1) + ┌WZ

Identify the canonical two-form. Show that left translations of . g, i.e., . g → (1 +
(−itaθa))g are generated by .Jav = (k/4π)(∂vgg−1)a . Obtain also the commutation 
rules 

. [Jv(θ), Jv(ϕ)] = iJv(θ × ϕ) − i
k

4π

{
∂vθ

aϕa

Solution: From the general formula for the canonical one-form.A given in (3.7), the 
canonical two-form should be 

. Ω = k

4π

{
dv Tr

[
ξ∂vξ + 2ξ2∂vgg−1] , ξ = δgg−1

It is easy to check that.Jv is the generator of left translations and the Poisson bracket 
then follows from the general formula (2.11). 

Problem 8.1 Calculate .ν[A] for the instanton in (8.13), (8.14). 
Solution: For the given. A,.ρ → 0 as.x4 → −∞,.ρ → f (r) as.x4 → ∞. Thus. A → 0
as .x4 → −∞ and .A → −dUU−1 as .x4 → ∞, where 

. U = φ0 + iσiφ
i , φ0 = cos f, φi = xi

r
sin f, f (r) = πr√

r2 + α2

The instanton number is simplified as
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. ν[A] = − 1

8π2

{
Tr

(
AdA + 2

3
A3

) ||||

x4=∞

x4=−∞
= − 1

24π2

{
Tr(dUU−1)3

= Q[U ]

We also find .dUU−1 = −iσi
[
(φidφ0 − dφiφ0) − ∈i jkdφ jφk

]
so that 

. Tr(dUU−1)3 =Tr
[
dUU−1d(dUU−1)

] = 6(sin2 f ) d f ∈i jk x̂
idx̂ jdx̂ k

Q[U ] =− 1

2π2

{
(sin2 f )d f sin θdθdϕ = 1

π
[ f (0) − f (∞)] = −1

Problem 9.1 Obtain the Landau levels for electrons in a uniform Abelian magnetic 
field on .CP

2 and show that the lowest level wave functions agree with (6.70). 

Solution: Since .CP2 = SU (3)/U (2), the curvatures take values in the Lie algebra 
of .U (2) ∼ SU (2) ×U (1) and are constant in the tangent frame basis. A uniform 
Abelian magnetic field can be taken to be proportional to the .U (1) curvature, so the 
one-particle wave functions obey 

. R8 ψ = − n√
3

ψ, Ri ψ = 0, i = 1, 2, 3,

using the notation from Chap. 6. The solutions are given by 

. ψ({α}, {β}) = N ⟨  
T

α1α2···αp

β1β2···βq

|
| ĝ

|
|T 33···3

33···3
⟩

where we use the tensor notation .T
α1α2···αp

β1β2···βq
to denote .SU (3) representations. (The 

indices.{β} correspond to fundamental representation and.{α} to the conjugate.) Here 
.p − q = n and the lowest Landau level has .q = 0. The energy eigenvalues are 

. E = 1

4mr2
(R+i R−i + R−i R+i ) = 1

2mr2

[
C2(q + n, q) − n2

3

]

= 1

2mr2
(q(q + n + 2) + n)

.C2 denotes the quadratic Casimir invariant for .SU (3). For the lowest Landau level, 

.q = 0, we get .Raψ = 0, and it is easy to check that the wave functions agree with 
(6.70). For more information, see [ 13]. 

Problem 10.1 Write the Wilson line for an .SU (2) gauge field as a path integral. 

Solution: Parametrize the curve .C as .xμ(τ ), .xμ(1) = xμ, .xμ(0) = yμ, .0 ≤ τ ≤ 1. 
With .Aa = Aa

μ ẋ
μ, we do the slicing of the .τ -interval into segments of length . τi −

τi−1 = ∈, so that the Wilson line is
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. W (C) =
[
P exp

(
i
{ 1

0
ta A

adτ

)]
= [

eita A
a(τN−τN−1)eita A

a(τN−1−τN−2) · · · ]

Insert completeness relations for the coherent states and use . ⟨z,|z⟩ ≈ (n + 1)eiA∈

.
⟨  
z,|ta|z

⟩ ≈ Qa, z, = z + ∈ż, to write 

. 
⟨  
z,|eita Aa∈|z⟩ ≈ (n + 1)ei

{
(A+Qa Aa)dτ (12.12)

This leads to the path-integral expression 

.

Wkl(C) =
{

[Dz] ψ∗
k (z) e

iS(z,z,) ψl(z
,)

S(z, z,) = i
n

2

{
dτ Tr

[
σ3g

−1

(
∂g

∂τ
+ A · ẋ g

)]

[Dz] = 1

π

d2zN
(1 + zN z̄N )2

N−1∏

i=1

(n + 1)d2zi
(4π∈)2(1 + zi z̄i )2

(12.13) 

with .N → ∞, .∈ → 0 as usual. 

Problem 10.2 The dynamics of a particle moving on Anti-de Sitter space in 4+1 
dimensions (.= SO(4, 2)/SO(4, 1)) can be described by the co-adjoint orbit action 

. S =
{

dt

[
−i

mR

2
Tr(γ0g

−1ġ) + s1
2
Tr(γ1γ2 g−1ġ) + s2

2
Tr(γ3γ5 g−1ġ)

]

where. γμ,.μ = 0, 1, 2, 3, 5, are the usual Dirac matrices and. s1,. s2 label the two spins 
needed since .SO(4) is of rank 2. The group element may be parametrized as 

. g =
(√

z iX/
√
z

0 1/
√
z

)
Ʌ, X = x0 − œ · x, Ʌ = e−[γμ,γν ]Θμν

Identify the analog of (10.46) for this case and formulate fluid dynamics for mass 
and spin flows on AdS. 5. 

Solution: This will be left as a challenge problem.
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