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Editorial for Special Issue “Remote Sensing for Coastal
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Abstract: Most of the papers published in this Special Issue were presented at the international
conference EUCOMARE-2022 in the framework of the European Jean Monnet Chair European
Spatial Studies of Sea and Coastal zones with the support of the ERASMUS+ Programme of the
European Union.

Keywords: remote sensing; coastal and aquatic ecosystems; biodiversity management

1. Introduction

Environmental management and the preservation of biodiversity are widely consid-
ered priorities in the context of accelerating global changes affecting the physical and
biological resources of our planet. This Special Issue focuses on “Coastal and Aquatic
Ecosystems”. The coastal region is a transition area between terrestrial and marine ecosys-
tems. This transition area is now considered an important component of the biosphere, in
terms of ecosystem diversity, and the provision of resources and services. Moreover, the
coastal region is home to a significant number of distinct biological communities, including
coral reefs, mangroves, salt meadows and wetlands, phanerogam meadows, kelp forests,
estuarine assemblages or coastal lagoons, forests, and grasslands. The diversity of coastal
ecosystems is directly threatened by human activity. It is estimated that 60% of the world’s
population lives on or near the coast, and economic development stresses the coastal en-
vironment. Coastal ecosystems are undergoing permanent changes in production rates,
organism abundance, and community structure.

Achieving sustainable coastal zone management poses particularly significant chal-
lenges as the pressures of a growing human population, multiple development pressures,
pollution from land-based sources, and unsustainable exploitation of natural resources
are felt on many of the world’s coasts. Remote sensing meets this challenge by offering a
wide range of standard products on environmental coastal conditions, thanks to various
state-of-the-art sensors. The development of innovative methods based on integrating
multi-source, multi-resolution, and multi-temporal images offers promising prospects
for considering the different scales of ecosystems. Consequently, the products derived
from remote sensing contribute to the development of temporal and spatial indicators
for better knowledge and management of coastal and aquatic ecosystems. This Special
Issue includes original environmental research using satellite data processing—optical
or radar—addressing coastal and aquatic ecosystem monitoring on different spatial and
temporal scales.

2. Overview of Contributions

The following is the synthesis of results obtained in each paper published in the SI “Re-
mote Sensing for Coastal and Aquatic Ecosystems’ Monitoring and Biodiversity Management”.
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G. Xie and S. Niculescu [1] propose a methodology to map two main winter crops
(winter wheat and winter barley) in the northern Finistère region with high-resolution
Sentinel-2 data and, in a second step, the monitoring of winter crop phenology with Sentinel-
1 C-band SAR data using the Google Earth Engine (GEE) platform. In the first part of the
research, pixel-based classification (PBC) and object-based classification (OBC) methods are
proposed and evaluated. The results showed that OBC achieved better accuracy in mapping
croplands, and PBC was more accurate in extracting winter crops. In the second part of the
research, the objective was to synthesize the temporal behavior from sowing to harvesting,
identifying three important phenological states (germination, heading and maturation,
including harvesting) from the VV and VH polarizations as well as the VH/VV ratio.

W. Diruit et al. [2] focus their study on intertidal macroalgal habitats on the rocky coast
of Porspoder (Western Brittany, France). The authors studied the distribution of macroal-
gae using field sampling and airborne hyperspectral mapping by drone over 17,000 m2.
Twenty-four sampling points, according to four bathymetric levels were proposed to char-
acterize the dominant macroalgal cover and sessile fauna at low tide. These data were
later used for comparison with the results of hyperspectral image processing (seven classes
of algae, including five different species of Fucales). Two classification methods were
implemented: the maximum likelihood method (MLC) and the spectral angle method
(SAM). MLC was more accurate in classifying the main dominant species (overall accuracy
(OA) 95.1%) than SAM (OA 87.9%) at the site scale.

G. Silva et al. [3] evaluate the impact of the January 2018 Montecito Debris Flow
on the Carpinteria Salt Marsh Reserve California, a 93 ha reserve consisting of upland
vegetation, high marsh, mid marsh, open channels, and mud flats. Using Sentinel-2 data,
they calculated fractional cover, and two spectral vegetation indices prior to, immediately
following and for several years after the debris flow. Fractional cover, SVIs and LiDAR
data were used to train a Random Forest classifier to map changes in cover. Classification
accuracies ranged from a Kappa of 0.911 in January 2018, immediately following a dis-
turbance of 0.993 in November 2017, just prior to the disturbance. The most immediate
impact of the debris flow was a decrease in both marsh classes and an increase in bare
soil. Post-disturbance analysis demonstrated a rapid recovery with the vegetation extent
approaching pre-disturbance levels by November 2020, but also showed a transition of
high-marsh to mid-marsh vegetation in areas that showed initial increases in bare soil.

Timmer et al. [4] use a field spectrometer to evaluate the relative merits of Near-
Infrared (NIR) and red-edge reflectance for the detection of submerged Bull kelp (Nereocystis
luetkeana). Under clear-sky conditions, they measured kelp reflectance from 325–1075 nm at
varying depths from the surface to a depth of 100 cm at 10 cm intervals. Field spectra were
convolved to WorldView 3 bands and wavelengths sampled by the Micasense RedEdge-Mx
sensor, a sensor deployed on an unoccupied aerial vehicle (UAV). Surface kelp showed
higher NIR reflectance than red-edge reflectance. Submerged kelp resulted in two narrow
peaks, one in the NIR, the other at the red edge, with higher reflectance observed in the red
edge. SVIs calculated using red-edge bands were able to detect the presence of kelp deeper
in the water column.

Bertin et al. [5] explore the potential of using a structure from motion (SfM) photogram-
metry deployed from an RTK quadcopter to map the complex topographic variation typical
of coastal beach environments in the rapidly changing intertidal zone. A key objective was
to map topo-morphological features at submeter resolutions, while also being constrained
to a two-hour period at low tide and using a minimum number of ground-control points
(GCPs). Working at two coastal sites, they found that the addition of a single GCP produced
global precision equivalent to traditional GCP-based photogrammetry; the highest accura-
cies were achieved using five GCPs and imagery at its native resolution. These findings
offer promise for the rapid, accurate monitoring of coastal environments over large areas.

Qiu et al. [6] propose a new approach for mapping sea ice in the Yellow River Estuary,
China, using multispectral data. They argue that sea ice map accuracies in this area are
often low, due to the confounding effects of high variability in suspended particulate matter
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(SPM) in the adjacent water. They developed a sea ice spectral information index that can
be adapted to different levels of turbidity, combined with textural information and applied
multi-scale image segmentation to map sea ice using the OTSU method. The approach was
applied to Gaofen-1 (GF1), Sentinel-2 and Landsat 8 achieving accuracies above 93%, 5%
higher than accuracies using Support Vector Machines (SVM) and K-Means.

Letard, M et al. [7] illustrate the usefulness of topo-bathymetric lidar data for map-
ping coastal and estuarine habitats by categorizing multispectral data to generate three-
dimensional maps of 21 different types of land and sea cover at a very high resolution.
To find characteristics that are unique to certain environments, the whole waveform data
from a green lidar is analyzed. Random forest classifiers employ these characteristics as
predictors with infrared intensities and altitudes, and their individual contributions to
classification accuracy are evaluated. The research shows that combining green waveform
information with infrared intensities and heights improves classification accuracy. Our
segmentation accuracy on the dual-wavelength lidar dataset improves to 90.5% with this
setup. In the end, we generate an original mapping of a coastal site in the form of a point
cloud, which paves the way for the 3D categorization and administration of land and
sea covers.

D. James et al. [8] improve very high resolution (VHR) habitat mapping/classification
using Pleiades-1 derived topography, its morphometric by-products and Pleiades-1 derived
images over the Emerald Coast in Brittany, France. In their study, the authors use a tri-stereo
dataset to obtain nine 0.50 m pixel digital surface models (DSMs). Four morphometric
predictors derived from the best of the nine generated DSMs were computed: slope,
aspect, topographic position index (TPI) and TPI-based landform classification (TPILC).
These morphometric predictors were added to the Red–Green–Blue reference. The best
combination of TPILC added to RGB + DSM resulted in a 13% gain in OA, reaching 89.37%.

A. Le Quilleuc et al. [9] generated a very high-resolution (VHR) bathymetry and
habitat mapping digital depth model (DDM) in Mayotte island waters (Indian Ocean)
by fusing 0.5 m Pleiades-1 passive multispectral imagery and active ICESat-2 LiDAR
bathymetry. In particular, along the ground track of the satellite ICESat-2, the RMSE of
a DDM calibrated using ICESat-2 data was 0.89 m or around 6 percent of the maximum
depth collected by ICESat-2. There was an overall accuracy of 96.62% and a coefficient of
0.94 for the classification performed by ML utilizing the Blue and Green spectral bands and
the three geomorphic predictors. A slope geomorphic predictor was added to the SVM
classification using blue, green, and red spectral bands, and the resulting model showed an
overall accuracy of 96.50% and a coefficient of 0.95.

M. Jaud et al. [10] present light, easily-implemented, in-situ methods, using only
two Spectralon® and a field spectrometer, to correct “vignetting effects” in the sensor and
to convert digital numbers (DN) collected by the hyperspectral camera to reflectance, taking
into account the time-varying illumination conditions. A portion of the dataset gathered
above the pioneer mangrove-colonized mudflats in French Guiana is radiometrically cor-
rected. The comparison of HyperDRELIO image spectra with an in situ spectrometer
readings made high above the intertidal benthic biofilm and mangroves is used to eval-
uate the efficacy of the radiometric adjustments. Spectral angle mapper (SAM) distance
was 0.039 above the benthic biofilm and 0.159 above the mangroves, and spectral shape
remained similar throughout. Given the importance of benthic biofilm and mangroves in
coastal food webs, biogeochemical cycles, and sediment stability, the results offer new per-
spectives for measuring and mapping these features at the scale of the Guianese intertidal
mudbanks system.

E. Gairin et al. [11] investigate the historical evolution of the French Polynesian island
of Bora Bora’s classification and position from 1955 to 2019. The evolution of the island’s
shoreline was brought to light through the processing of a time series of ultra-high resolu-
tion aerial imagery. In the period between 1955 and 2019, the length of natural coastlines,
which includes beaches, declined by 46%, while the length of man-made coasts, which
includes seawalls, expanded by 476%, and now accounts for 61% of the coastline. This
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research illustrates the effects of man-made buildings on erosional processes and highlights
the need for sustainable coastal management strategies in French Polynesia by recording
the changes to the Bora Bora shoreline over time.

Author Contributions: Conceptualization, S.N., J.X. and D.R.; writing—original draft preparation,
S.N., J.X. and D.R.; writing—review and editing, S.N., J.X. and D.R.; visualization, S.N., J.X. and D.R.;
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have read and agreed to the published version of the manuscript.
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Mapping Crop Types Using Sentinel-2 Data Machine Learning
and Monitoring Crop Phenology with Sentinel-1 Backscatter
Time Series in Pays de Brest, Brittany, France
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2 Department of Geography, University of Western Brittany, 3 Rue des Archives, 29238 Brest, France
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Abstract: Crop supply and management is a global issue, particularly in the context of global
climate change and rising urbanization. Accurate mapping and monitoring of specific crop types
are crucial for crop studies. In this study, we proposed: (1) a methodology to map two main winter
crops (winter wheat and winter barley) in the northern region of Finistère with high-resolution
Sentinel-2 data. Different classification approaches (the hierarchical classification and the classical
direct extraction), and classification methods (pixel-based classification (PBC) and object-based
classification (OBC)) were performed and evaluated. Subsequently, (2) a further study that involved
monitoring the phenology of the winter crops was carried out, based on the previous results. The
aim is to understand the temporal behavior from sowing to harvesting, identifying three important
phenological statuses (germination, heading, and ripening, including harvesting). Due to the high
frequency of precipitation in our study area, crop phenology monitoring was performed using
Sentinel-1 C-band SAR backscatter time series data using the Google Earth Engine (GEE) platform.
The results of the classification showed that the hierarchical classification achieved a better accuracy
when it is compared to the direct extraction, with an overall accuracy of 0.932 and a kappa coefficient
of 0.888. Moreover, in the hierarchical classification process, OBC reached a better accuracy in
cropland mapping, and PBC was proven more suitable for winter crop extraction. Additionally, in the
time series backscatter coefficient of winter wheat, the germination and ripening (harvesting) phases
can be identified at VV and VH/VV polarizations, and heading can be identified in both VV and VH
polarizations. Secondly, we were able to detect the germination phase of winter barley in VV and VH,
ripening with both polarizations and VH/VV, and finally, heading in VV and VH polarizations.

Keywords: winter crops mapping; winter crops phenology; machine learning; hierarchical classification;
object-based classification; pixel-based classification; Google Earth Engine (GEE); Sentinel-1; Sentinel-2

1. Introduction

Crop supply is a global issue, particularly in the context of global climate change,
rising population, and urbanization. With increasing food demand worldwide, agriculture
production and food security should be guaranteed by ensuring biodiversity and limiting
the environmental impacts [1]. This makes reliable information about crop spatial distribu-
tion and growing patterns crucial for studying regional agriculture production and supply,
making political decisions, and facilitating crop management [2,3].

The classification of crop spatial distributions are valuable for agricultural monitoring
and for the implementation and evaluation of crop management strategies [4,5]. Hence,
crop type mapping is in high demand. Field research and remote sensing have always
been the most important sources for obtaining agricultural information [6], and since
the first launch of Earth observation satellites in 1972, continuous agriculture mapping
and monitoring over large areas became possible with the Earth Observation (EO) data.
Moreover, the new generation of EO data, nowadays, has increased the resolution of
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sensors for agriculture uses, therefore since the last few decades, the science of agriculture
mapping and monitoring has developed quickly, with diverse types of high spatial and
temporal resolution EO data. For example, Sun et al. in 2019 [4] conducted a study of
the crop types that were located at the lower reaches of the Yangzi River in China. They
performed a classification of crop-type dynamics during the growing season by using
three advanced machine learning algorithms (Support Vector Machine (SVM), Artificial
Neural Network (ANN), and Random Forest (RF)) with a combination of three advanced
sensors (Sentinel-1 backscatter, optical Sentinel-2, and Landsat-8). Arvor et al. in 2010 [7]
provided a methodology for mapping the main crops and agricultural practices in the
Mato Grosso state in Brazil; this study was performed by two successive, supervised
classifications with the Enhanced Vegetation Index (EVI) time series from the MODIS
sensor to create an agricultural mask and a crop classification of three main crops in
the state. In another study by Forkuor et al. in 2014 [8], they found that an integration
of multi-temporal optical RapidEye and dual-polarized Synthetic Aperture Radar (SAR)
TerraSAR-X data can efficiently improve the classification accuracy of crops and crop
group mapping in West Africa, in spite of excessive cloud cover, small sized fields, and a
heterogeneous landscape. Furthermore, in the Finistère department, Xie and Niculescu
2021 [9] evaluated the multiannual change detections of different Land Cover Land Use
(LCLU) regions, including agricultural land with accuracy indices between 70% and 90%,
by using high-resolution satellite imagery (SPOT 5 and Sentinel-2) and three algorithms
that were implemented: RF, SVM, and the Convolutional Neural Network (CNN).

More importantly, many studies of crop mapping focuses on winter crop mapping.
Dong et al. in 2020 [10] proposed a method called phenology-time-weighted dynamic time
warping (PT-DTW) for mapping winter wheat using Sentinel-2 time series data, and this
new method may exploit phenological features in two periods, with a NDPI (Normalized
Difference Phenology Index) providing more robust vegetation information and reduc-
ing the adverse impacts of soil and snow cover during the overwintering period. Zhou
et al. in 2017 [11] studied the feasibility of winter wheat mapping in an urban agricultural
region with a complex planting structure using three machine learning classification meth-
ods (SVM, RF, and neural network (NN)), and the possibility of improving classification
accuracy by combining SAR and optical data.

Besides the contributions of the new generation of EO data, the diversity of the classi-
fication approaches and methods have provided more resources for agriculture mapping
and monitoring. The classical, direct extraction approach is the traditional and most used
classification approach that is used to extract single or multiple crop types directly from
satellite images [12–14]. Moreover, we also propose the hierarchical classification approach
for crops mapping in this study. Hierarchical classification is well known for its capacity
to solve a complex classification problem by separating the problem into a set of smaller
progressive classifications; it produces a series of thematic maps to progressively classify
the image into detailed classes. Wardlow and Egbert [12] investigated the applicability
of time-series Moderate Resolution Imaging Spectro-radiometer (MODIS) 250 m normal-
ized difference vegetation index (NDVI) data for large-scale crop mapping in the Central
Great Plains of the U.S. The hierarchical classification scheme was applied in this study
with high classification accuracy, and instead of directly solving a complex irrigated crop
mapping problem, a four-level hierarchical classification framework was implemented
to produce a series of crop-related thematic maps that progressively classified cropland
areas into detailed classes. Ibrahim et al. in 2021 [15] have also employed the hierarchical
classification scheme to map crop types and cropping systems in Nigeria, using the RF
classifier and Sentinel-2 imagery. Firstly, they produced a land cover map with five classes
in order to eliminate other land cover types, then the next classification was performed
only on cropland, where the specific crop types and cropping systems were mapped. The
results indicated that the crop types were well classified with high accuracy, despite the
study area being heterogeneous and smallholder-dominated.
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In recent years, most studies in the agricultural field have explored the performance
of different classification algorithms. Random Forest (RF) is one of the most well-known
and widely used algorithms in the field for its optimal classification accuracy, effectiveness
on large data bases, and its capability of estimating the importance of the variables in
the classification [8,16–19]. The RF classification algorithm is traditionally run as a Pixel-
Based Classification, which has proven efficient and accurate in agriculture fields by
many studies [16,20–22]. On the other hand, the advantage of Object-Based Classification
(OBC) is well documented and many recent studies have the conclusion that OBC usually
outperforms PBC for its higher classification accuracy, better potential for extracting land
cover information in a heterogeneous area with small size field, and the capacity to produce
a more homogenous class [23,24]. However, even though Object-Based Classification is
better developed and considered as more accurate than PBC, both classification methods
are able to achieve a great degree of accuracy.

Aside from mapping and analyzing the crop spatial distribution, understanding
agricultural growing patterns is also a key element for crop management. Crop phenology
monitoring and the identification of the main phenological stages are highly necessary
for agricultural production predicting, efficient interventions of farmers and decision-
makers during the phenological phases such as fertilization, pesticide application, and
irrigation [25]. In particular, germination is the most critical phase to be understood, and
it is the starting point of the growing season. Based on the germination information, the
farmer and decision-makers are able to make a future projection of the season, estimate the
whole seasonal phenology for crop growth, and predict its production [25]. Furthermore,
phenology is highly related to the seasonal dynamics of a growth environment, therefore,
in the context of global warming, the phenology of many plants, especially crops, may have
changed [6].

Crop phenology is usually monitored with optical satellite images using vegetation
indices. For example, Pan et al. in 2015 [26] analyzed the phenology of winter wheat and
summer corn in the Guanzhong Plain in the Shanxi Province, China by using Normalized
Difference Vegetation index (NDVI) time series data and extracted seasonality information
from the NDVI time series for measuring phenology parameters. The potential of another
less-known index, the Normalized Difference Phenology Index (NDPI), is exploited by
Gan et al. in 2020 [27] in order to detect winter wheat green-up dates. During the evaluation
with three other indices (NDVI, EVI, and EVI2), the results indicate that NDPI outperforms
the other indices with the highest consistency with the ground truth.

Compared to the optical data, SAR data is less used in agricultural areas. Nevertheless,
lately, with the emergence of a new generation of high-resolution SAR data, in particular
since the Copernicus program Sentinel-1 C-band high spatial–temporal resolution images
became available, SAR data has begun to draw interest, especially for its advantage of
having its own source of energy, making it nearly independent of weather conditions [8].
Thus, SAR backscattering coefficient time series data is now more frequently used for crop
phenology monitoring. While optical data strongly depends on the chlorophyll content in
the plants, SAR data can reveal the main changes in the canopy structure, identify significant
phenological stages, and determine the main growing period with the signal that is received
after interacting with the canopy of the plants. Therefore, studies of crop phenology
monitoring using SAR data have increased considerably in recent years. Meroni et al. in
2020 [28] conducted a study of retrieving the crop-specific land surface phenology (LSP)
of eight major European crops from Sentinel-1 SAR and Sentinel-2 optical data, where
crop phenology was detected on the temporal profiles of the ratio of the backscattering
coefficient VH/VV from Sentinel-1 and NDVI from Sentinel-2. They revealed that the crop
phenology that was detected by Sentinel-1 and 2 can be complementary. Wali et al. in
2020 [29] introduced rice phenology monitoring in the Miyazaki prefecture of Japan by
using Sentinel-1 dual polarization (VV and VH) time series data, and attempted to clarify
the relationship between rice growth parameters and the backscattering coefficient using
the combination of two linear-regression lines. Canisius et al. in 2018 [30] exploited SAR
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polarimetric parameters that were derived from fully polarimetric RADARSAT-2 SAR time
series data to predict the growth pattern and phenological stages of canola and spring
wheat in the Nipissing agricultural district of Northern Ontario, Canada. Mandal et al. in
2020 [31] proposed a dual-pol radar vegetation index (DpRVI) from Sentinel-1 difference
data (VV-VH) to characterize the vegetation growth of three crop types (canola, soybean,
and wheat) from sowing to full canopy development, with the accumulation of the Plant
Area Index (PAI) and biomass.

The feasibility and effectiveness of winter crop type mapping and phenology monitor-
ing with optical or SAR satellite data has been proven by many studies in agricultural field,
however, some limitations remain. For example, the potential of a vegetation index other
than NDVI and EVI has rarely been explored, and the studies have never been performed
in a coastal area with fragmented and small-scale fields. More importantly, almost all
the research perform and evaluate a single classification approach or method, instead of
comparing different approaches and methods for crop type mapping.

In this study, we introduce a methodology to map two winter crop types (winter wheat
and winter barley) with Sentinel-2 optical data that was acquired during the growing season
of the winter crops. Two different classification approaches (hierarchical classification and
classical direct extraction) were performed using RF-supervised classification algorithms,
and two classification methods (PBC and OBC) were operated and evaluated within the
hierarchical classification framework. With the classification results of the winter crops,
we are able to monitor their phenology with Sentinel-1 C-band SAR backscatter time
series and precipitation data in order to understand their temporal behavior from sowing to
harvesting, identify the three main phenological stages (germination, heading, and ripening,
including harvesting), and study how crop phenology responds to weather conditions.

The main objectives of this study are listed as follows:

1. Study the feasibility of mapping winter crops with Sentinel-2 10 m spatial resolution
data in a fragmented area that is dominated by small-size fields;

2. Perform hierarchical classification and classical direct extraction and evaluate the
performance of both classification approaches;

3. Perform PBC and OBC and compare the performance in each level of the hierarchical
classification structure;

4. Study the correlation between crop phenology and Sentinel-1 C-band SAR backscatter
time series data and identify three phenological stages and the main growth period of
the winter crops.

2. Study Area

The study area is located on the west coast of France in the north of the Finistère
department and the region of Brittany (Figure 1).

The study area covers a land surface of 1034.41 km2, and extends between the latitudes
of 48◦19′39′′N and 48◦40′41′′N, and the longitudes of 4◦12′50′′W and 4◦47′13′′W. According
to French National Institute of Geographic and Forest Information (IGN), the northern
part of Finistère is mostly dominated by plains, and the elevation of the area ranges
between 0 m and 100 m [32]. The study area is mostly occupied by cropland, temporal
or permanent grasslands, small area of forests and shrubs, urban agglomeration in the
south, and a wetland area in the north [33]. Climatically, the north of Finistère is classified
as type Cfb (temperate oceanic climate), according to the Köppen climate classification,
and it is characterized by warm winters and cool summers. On average, the northern
region of Finistère receives 941 mm of total precipitation per year, with the annual average
temperature being 12.1 ◦C (7.7 ◦C and 16.8 ◦C are the monthly average temperatures for
the coldest and warmest months, respectively), and therefore the warm temperate climate
with frequent rainfall provides very favorable conditions for agriculture activities.

8



Remote Sens. 2022, 14, 4437

Figure 1. Location of study area, the north of the Finistère department, Brittany, France, as per
the RGB band combination of a Sentinel-2 satellite image on 20 April 2019 and the distribution of
agricultural land in 2019.

With such climate and topography conditions, agriculture is an important economic
sector in the study area, and a considerable number of locals work in an agricultural or
related sector in the department. There are 384,408 hectares of useful agricultural area
in the department, so 57% of the department’s surface is devoted to agricultural use [34].
One of main agricultural productions are crops, including corn, winter wheat, and winter
barley, and vegetables [35].

Hence, it is important to develop a methodology to map one or several specific crop
types and monitor their growth stages by using free access, high quality satellite images
for crop production management. The north of the Finistère department was chosen as
our first study area because of its favorable natural conditions, highly active agricultural
activities, and its proximity, which facilitate the field research and interaction with farmers.

3. Data

The study was executed in the Finistère department in France during 2019, using open-
access high-quality satellite data from the Sentinel platform. It is worth noting that the latest
version of the graphic parcel register was published in 2019 by the French National Institute of
Geographic and Forest Information, and this information was relevant to our study.

Due to the annual high-intensity precipitation there is frequent heavy cloud cover
in the region, therefore, operable optical satellite images are very rare in the study area.
Nevertheless, a Sentinel-2 optical satellite image was acquired in the spring, which is the
growing season of the winter crops. In order to create a cloud-free time series of the study,
the phenological phrases of winter crops from the SAR data were applied to the phenology
monitoring process.

3.1. Sentinel-2 Optical Data

Sentinel-2 is an satellite imaging mission that is implemented by the European Com-
mission (EC) and the European Space Agency (ESA) as a part of the Copernicus pro-
gram [36]. The two identical satellites (Sentinel-2A and Sentinel-2B) provide continually
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open-access, multispectral, wide swath (290 km), high spatial resolution (four bands at
10 m, six bands at 20 m, and three bands at 60 m), and high revisit frequency (five days with
combined satellites) image data [36]. Due to frequent heavy cloud cover in the area, only
one cloud-free level 2A atmospheric effect-corrected Sentinel-2 image from 20 April 2019
was acquired from the Theia platform (catalog.theia-land.fr) [37] (Table 1). Ten spectral
bands (Table 2) were extracted for further processing and analysis.

Table 1. Sentinel-2 image used in the study.

Date Satellite Platform Processing Level Tiles

20 April 2019 Sentinel-2 2B Level 2A T30UUU

Table 2. Sentinel-2 spectral bands used in the study.

Sentinel-2 Bands Spatial Resolution (m) Wavelength Range (nm)

Band 2-Blue 10 458–523
Band 3-Green 10 543–578
Band 4-Red 10 650–680

Band 5-Vegetation red edge 20 698–713
Band 6-Vegetation red edge 20 733–748
Band 7-Vegetation red edge 20 773–793

Band 8-Near Infrared 10 785–899
Band 8A-Vegetation red edge 20 855–875
Band 11-Short-Wave Infrared 20 1565–1655
Band 12-Short-Wave Infrared 20 2100–2280

3.2. Sentinel-1 SAR Data

The Sentinel-1 C-band SAR (Synthetic-aperture radar) is one of the ESA missions
under the Copernicus program [38]. Sentinel-1 possesses two polar-orbiting satellites
(Sentinel-1A and Sentinel-1B) sharing the same orbital plane, which are able to operate
day and night using their own energy source in order to perform high spatial resolution
(10 m), wide coverage, high repeat cycle (generally five days with two satellites), C-band
SAR imaging in all weather conditions [38].

In this study, interferometric Wide Swath mode level-1 GRD (Ground Range Detected)
Sentinel-1 data with an incidence angle ranging from 30 to 46 were acquired to create the
time series of the growing period of the winter crops (winter wheat and winter barley)
in 2019, from 1 October 2018 to 1 September 2019. Both polarizations (VV + VH) were
used, but only the descending orbit was retained for the processing. In total, 109 Sentinel-1
C-band SAR images with descending orbit were acquired for this study.

3.3. Auxiliary Data

RPG (Graphic Parcel Register) was applied as the ground truth data in our study,
used for creating training data and test data. RPG 2019 is the latest version of the very
precise, geo-referenced agricultural land database that covers the entire France territory
(except Mayotte) that was published by IGN. The databases show the precise crop types
(e.g., wheat, corn, vegetables, sunflower) or temporary and permanent grasslands in that
are in the recorded agricultural lands in each year [39].

4. Methods

The methodology of this paper is detailed in two parts, which relate to the two research
subjects: mapping winter crop types using Sentinel-2 data, and monitoring crop phenology
with Sentinel-1 backscatter time series. The data were processed in QGIS with Orfeo
Toolbox, eCognition 10.0, and GEE (Google Earth Engine).

4.1. Winter Crop Types Mapping

A flow chart of the proposed global methodology is displayed below (Figure 2)
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Figure 2. Hierarchical classification methodology used in the study for crop mapping.

4.1.1. Image Preprocessing

After the study area selection and satellite image acquisition, the boundary of the
northern region of Finistère area was applied in order to extract our area of interest by
subsetting the raw images for the purpose of reducing the image size and shortening the
processing time.

In remote sensing fields, vegetation indices (VI) are the qualitative and quantitative
evaluation of vegetation covers and their growth dynamics, using different combinations of
spectral measurements. The results of the indices are different due to the different chemical
and morphological characteristics of the surfaces of the organs or leaves of the plants [40],
however the spectral responses are also affected by other factors, such as environmental
effects, soil reflectance and its components, shadows, and atmospheric and topographic
effects [41].

For this reason, over a hundred VIs have been developed and enhanced for various
applications over the past three decades in order to enhance spectral responses, increase
sensitivity for identifying vegetated areas, distinguish different vegetation types, evaluate
the vegetation density, and provide data on the health of the vegetation [42], and also to
minimize the effects of other factors that are described above [41]. In this study, six VIs are
used with the aim of mapping winter crop types using Sentinel-2 data.

• The Normalized Difference Vegetation Index (NDVI), proposed in 1973 by [43], is
the most known and widely used index in research related to vegetation monitoring.
NDVI is the normalized difference between the visible red and near-infrared spectral
reflectance of vegetation, as follows:

NDVI =
NIR − RED
NIR + RED

(1)

Even though the index is often affected by atmospheric conditions and soil reflectance
and its components, it remains a highly used index in agriculture-related fields to measure
the rate of vegetation cover and evaluate the health of the crops.

• The Normalized Difference Water Index (NDWI), proposed by Gao in 1996 [44], is a
vegetation index that is used to highlight the changes in the liquid water content of
vegetation canopies with weak atmospheric aerosol scattering effects, while remaining
independent of the soil background [44]. The index is the normalized ratio between
visible red and short-wave infrared spectral bands, and the expression of this is
displayed below:
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NDWI =
NIR − SWIR
NIR + SWIR

(2)

With its high sensitively to water stress, NDWI is frequently used for the agricultural
monitoring of drought and irrigation management. As well, some studies reveal the
possibility of distinguishing crop types, especially winter crops, with NDWI [20,45–47].

• The Green Normalized Difference Water Index (GNDVI) was proposed in 1996 by
Gitelson et al. [48], as NDVI; it is the index for evaluating the photosynthetic activity of
the vegetation, except that the visible red band is replaced by the green band, ranging
from 0.54 to 0.57 microns, and the expression of it is as follows:

GNDVI =
NIR − Green
NIR + Green

(3)

Besides NDVI, the “Green” NDVI is more sensitive for assessing the chlorophyll
concentration at the canopy level and it enables a precise estimation of the pigment concen-
tration [48].

• The Enhanced Vegetation Index (EVI), developed by the MODIS Land Discipline
Group [49], is aimed at optimizing the vegetation signal and correcting the imprecision
of NDVI with improved sensitivity in high biomass regions by appending several
additional spectral bands [50], and it is calculated by the following equation:

EVI =
G ∗ (NIR − Red)

(NIR + C1 ∗ Red − C2 ∗ Blue + L)
(4)

EVI is able to reduce the atmospheric conditions and canopy background noise with
high sensitivity in densely vegetated areas and it is more responsive to canopy structural
variations as compared to NDVI [50].

• The Soil-Adjusted Vegetation Index (SAVI), was proposed by Huete in 1988 [51] as
an attempt to improve NDVI, which is frequently affected by the soil background
conditions. Therefore, the index aims at minimizing the influence of soil brightness
and eliminating the need for the additional calibration for different soils by using a
soil-brightness correction factor [51]. It has an adjustment factor (L) in its calculation:

SAVI =
(NIR − Red)

(NIR + Red + L)
(1 + L) (5)

SAVI was found to be helpful in separating different crop types, especially spring
crops from winter ones [52].

• The Modified Soil Adjusted Vegetation Index (MSAVI) was developed by [53] in 1994
as an improved version of SAVI, with the constant soil adjustment factor L being
replaced. It is proven to increase the dynamic range of the vegetation signal while
further minimizing the soil backgrounds spatial and temporal variations, therefore
resulting a greater vegetation sensitivity:

MSAVI =

(
2 ∗ NIR + 1 −

√
(2 ∗ NIR + 1)2 − 8 ∗ (NIR − RED)

)
2

(6)

Studies have proven that MSAVI can be used in the agriculture field [54,55], and even
more in winter crop monitoring [56].

After calculating the vegetation indices, an image stack with the ten original spectral
bands and all of the indices was created for further image processing.
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4.1.2. Image Processing

In this study, for the better extraction of winter wheat and winter barley in the study
area from the satellite image, supervised image processing using different approaches
was performed in order to make comparisons and attempt to reach the most adapted
classification in this study (Figure 3).

Figure 3. Proposed detail image processing methodology chart.

Compared to the direct extraction of winter crops with pixel-based RF algorithms,
hierarchical classification methods are effectuated in three progressive levels, each with
different objectives. The objectives from the first level of the hierarchy to the last one are
extracting vegetation (including croplands) from raw images, extracting croplands from
vegetated areas (trees, shrubs, and grassland), and finally, obtaining exclusively winter
wheat and winter barley from all crop types detected in previous stages, respectively.
Finally, the results of the two classification approaches were evaluated with accuracy
indices, in order to distinguish which one had better agreement with the ground truth data.

In addition, inside the hierarchical classification structure, except for during the
first step, separating vegetation and non-vegetation exclusively used the pixel-based RF
algorithm and this reached a very close agreement with ground truth data. Each step has
been performed using the two methods, pixel-based and object-based RF classification, in
order to determine the result with better accuracies for further processing and analysis.

Pixel-Based Classification (PBC)

The traditional PBC is the most used method in remote sensing, especially for land
use classification; therefore, this method was also widely employed in this study. The
PBC was done on the pixel level, which is the smallest unit in an image, where only the
spectral information of each single pixel was used. During the classification, each pixel was
assigned predefined classes by using a model that was well trained with training data and
a classification algorithm. In this paper, PBC is performed in both classification approaches.

Object-Based Classification (OBC)

OBC starts with an additional processing step before classification, which involves
the segmentation of an image into numerous, non-overlapping, homogeneous objects [23],
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hence, the OBC was done on the object level instead of the pixel level. At the same time,
aside from the simple spectral information, the texture, color, form, and size of the objects
are taken into account. Later the individual object that was generated by the segmentation
algorithm was used for classification.

A Multiresolution Segmentation (MRS) algorithm was applied as the first step of
the object-based image analysis (OBIA) in the current study. This relatively complex and
user-dependent algorithm has proven to be one of the most successful image segmentation
algorithms in the OBIA area [57]. At the beginning of the process, each pixel is considered
as a segment; afterwards, pairs of adjacent image objects are merged to form larger seg-
ments [58]. The three main parameters of the algorithm: scale, shape, and compactness,
can be adjusted by users. The scale parameter is able to define the maximum standard
deviation of the heterogeneity in order to control the amount of spectral variation within
objects and the size of their results [57,59]. Thereafter, there are also two homogeneity
criteria, the shape criterion that defines the weight between the shape and the spectral
information of the objects, and the compactness criterion which represents the compactness
of the objects during segmentation [60].

In this study, several combinations of parameters were used, and the optimal ones
were found on a trial-and-error basis. The scale, compactness, and shape parameters were
assigned as follows: 15, 0.5, and 0.3, respectively, for cropland extraction, and 20, 0.5, and
0.1, respectively, for winter crops extraction.

Supervised RF Classification

Supervised RF classification was performed on the Sentinel-2 data. It is the most
common procedure for the quantitative analysis of remote sensing imagery [61], and it
involves the use of training data for machine-learning classification. The training data were
selected with reference data, knowledge, and experience provided by the user, and the
selected samples were considered representative of each class.

Training data and test data in our research were selected in this step, using the RPG
2019 map. For the purpose of comparing different methods of classification, training data
that were selected for PBC and OBC were as similar as possible, such as using the same
area and very approximate surfaces, in order to improve the global comparability of the
two methods.

RF classification has been one of the most known and widely used classification
algorithms, especially in the land cover classification field, over the past two decades.
This powerful machine learning classifier has numerous key advantages, such as a low
sensitivity to noise or overtraining, the ability to handle high-dimensional data, its high
classification accuracy and non-parametric-nature, and its capacity to determine variable
importance [19].

RF is also one of the ensemble learning algorithms that builds numerous classifiers
that have been proven to improve classification accuracy considerably. For classification,
RF forms an ensemble method using a tree-like classifier, where each tree in the forest
contributes a single vote for the most popular class, and the majority of the vote determines
the final prediction of the RF model [62].

The training and classification of the RF module were applied using the Orfeo toolbox
with two user-defined parameters that were set on a trial-and-error basis: the number of
decision trees grown in the forest and the maximum tree depth, which is the length of each
tree in the forest. The two parameters that were used in this study were defined as 100 and
25, respectively.

4.1.3. Image Post Processing

After the classification, the accuracy assessment was performed with test data in order
to evaluate the classification’s degree of agreement with the reality and therefore assess
the reliability of the classified results. In this study, in order to evaluate the classification
quality and compare it amongst the different classification methods, five well-known
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and highly promoted accuracy indices were calculated for each classification method and
each class. Among them, overall accuracy (OA) and kappa were employed for the global
accuracy assessment, otherwise, precision, recall, and F-score were computed to assess the
classification results of each class.

The OA is one of the traditional measures of classification accuracy that is derived
from the confusion matrix [63]. It indicates the probability that an individual pixel will
be correctly classified by a classifier [64], hence, it is computed by dividing the number
of correctly classified pixels by the total number of pixels in the confusion matrix. The
popular kappa coefficient was first applied in the remote sensing community to express
the classification accuracy in the early 1980s [65], and it is considered to be the assessment
of the inter-classifier agreement and the accuracy of two classifiers; it usually gives a
statistically more sophisticated measure of interclass agreement, also it gives a better
interclass discrimination than OA does [66].

Among the per-class accuracy assessments, precision and recall were computed from
the confusion matrix as well. Precision is also called the positive predictive value, which
is related to the rate of correct positive predictions among the total predictions that are
classified as positive, and the recall or sensibility represents the rate of the actual positive
individual pixels that are correctly detected by the classifier. Furthermore, the F-score was
generated from the precision and recall; it provides a single harmonic mean of the model’s
precision and recall.

In the hierarchical classification process, test data that were used for evaluating the
classification of each step were generated as random points from the image that were
used to perform classification, which is the result of the previous steps. Afterwards, the
random points were labelled manually with the Graphic Parcel Register map as ground
truth. However, with the aim of evaluating the performance of the proposed hierarchical
classification approach by comparing with traditional direct extraction, a completely new
test dataset was produced from the original Sentinel-2 image that was not classified.

4.2. Crops Phenology Monitoring

This second part of the study was performed, based on the mapped winter crops
from the previous step. Due to limited climate conditions in the study area, winter crop
phenology monitoring was performed with Sentinel-1 C-band SAR data using the Google
Earth Engine (GEE) platform. GEE is an open-source, cloud computing platform with
a fast, high-performance computation and visualization system and a large data catalog
which hosts a large repository of publicly available geospatial datasets, including a variety
of satellite imaging systems [67]. The platform is designed for global-scale geospatial big
data storage, processing, and analyzing [68]. The utility of GEE has been examined in
different fields, for vegetation mapping and monitoring, land cover change mapping, and
agriculture applications [68].

The platform proposes a complete data process chain from a single or a collection
of analysis-ready images to library functions or user-defined algorithms that are applied
to achieve results generation and visualizing. One of its main advantages is allowing
long- term monitoring using a user-defined period with free access to preprocessed time
series data. Hence, in this study, the backscatter coefficient (σ◦) in decibels (dB) of both
polarizations (VV and VH) and their ratios of a Sentinel-1 image time series during a
complete growing period of winter crops (from October to September) on a few chosen
croplands was automatically generated in a line chart on the GEE platform. In order to
study the scattering behavior of our target croplands, each image was preprocessed, and the
backscatter coefficient was converted to dB by GEE using the Sentinel-1 Toolbox (Figure 4)
A flow chart of the Sentinel-1 image time series process in GEE is displayed as follow
(Figure 4):
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Figure 4. Sentinel-1 image process in the GEE platform.

The first step in applying the orbit file aims at updating the orbit metadata with a
restituted orbit file, then Ground Range Detected (GRD) border noise removal attempts
were performed to remove the low intensity noise and invalid data on the scene edges.
Afterward, a thermal noise removal function aims to remove the additive noise in sub-
swaths to reduce the discontinuities between sub-swaths for scenes in different acquisition
modes. Thereafter, radiometric calibration is applied to compute the backscatter intensity,
and subsequently, a terrain correction, also called an orthorectification, was performed to
convert the data from ground range geometry to σ◦ [69]. Lastly, dB was calculated from σ◦
with the equation dB = 10 × log10σ◦. A series of line charts in dB were plotted for each
polarization and ratio of each winter crop.

5. Results

5.1. Winter Crop Types Classification Methods Comparison

The classification results of the different approaches and methods of the winter wheat
and winter barley and their accuracy analysis are presented in this part. Firstly, the
results of PBC and OBC of each step in the hierarchical classification are demonstrated
and evaluated through accuracy assessments, the more accurate results were retained for
further processing and comparison with classical direct extractions. Then the final results
of the hierarchical classification and classical direct extraction are displayed and compared
with accuracy assessments as well.

5.1.1. PBC versus OBC
Vegetation Extraction

For vegetation extraction (including cropland), only PBC was performed since it
achieved a great accuracy, approximately close to 1. From Figure 5 we see that the distri-
bution of vegetation and cropland is coherent in the study area, apart from some urban
environments, which are marked by intense non-vegetation pixels, in particular these areas
are in the south and the northeast of the study area. According to Table 3, both global and
interclass accuracy indices are very close to 1, this indicates a high probability of a correct
classification of each individual pixel, and a great overall agreement level with the ground
truth. Besides a good performance and good training of the PBC method, the distinction
between the vegetated area and non-vegetation is very significant, and therefore, it is easy
to classify.

Table 3. Accuracy assessment of PBC vegetation (including cropland) extraction.

Precision Recall F-Score

Vegetation 0.992 0.997 0.995
Non-vegetation 0.994 0.984 0.989

Kappa: 0.984
Overall accuracy (OA): 0.993
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Figure 5. Level 1: PBC vegetation (including cropland) extraction results.

Croplands Extraction

Subsequently, based on the vegetated area that was extracted from the previous step,
we aimed to distinguish and preserve only the croplands from all arboreal vegetation,
shrub, and grasslands, including pasture. In this step, OBC and PBC were both performed
and evaluated. Figure 6 demonstrates that the results of the two methods are almost
identical, although more individual pixels were classified as cropland in PBC considering
that PBC was operated on pixel-level.

Figure 6. Level 2: PBC and OBC croplands extraction results.

Pursuant to Tables 4 and 5, even though the global accuracy indices of the results
of OBC are slightly better than PBC with a difference of 0.024 in kappa and 0.004 in OA,
the indices of the two results are still comparable. The tables below show that a large
proportion of pixels are correctly predicted, in general, and that the level of agreement with
the ground truth data is somewhat lower, but it is still acceptable. Furthermore, for the
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interclass accuracy evaluation, cropland generally has the highest precision, recall, and
F-score results, which are all around 0.90. The models were well trained to make a good
prediction of the cropland class, especially for the OBC model, and most of the individual
pixels belonging to the cropland class were correctly detected. This can be explained by
the OBC taking into account the geometry, form, and texture elements, which are the key
elements that are used to distinguish the croplands from other vegetation. The classification
of the vegetation has a slightly lower accuracy of approximately 0.2 in comparison with
croplands because of the mix of different kinds of vegetation and the uncertain form of the
vegetated area, though OBC remains more precise when it is compared to PBC. Finally,
the classes of the other pixels in our study area, which were mainly some isolated pixels
that were left from the previous step due to some errors, were better classified with PBC
since the non-vegetated area has highly different spectral behavior as compared to that of
vegetation. Considering the better accuracy assessments of OBC, its classification result
was preserved to perform the next step of classification.

Table 4. Accuracy assessment of OBC croplands extraction.

Precision Recall F-Score

Vegetation 0.786 0.746 0.765
Cropland 0.912 0.905 0.908

Others 0.700 0.875 0.778

Kappa: 0.716
Overall accuracy (OA): 0.861

Table 5. Accuracy assessment of PBC croplands extraction.

Precision Recall F-Score

Vegetation 0.769 0.678 0.721
Cropland 0.879 0.932 0.905

Others 0.929 0.813 0.867

Kappa: 0.692
Overall accuracy (OA): 0.857

Winter Crops Extraction

In this final step, two winter crop types were extracted, based on the results of the
previous step, and the classification result of the cropland extraction was achieved by using
OBC. The results of the two classification methods (Figure 7) are very close to identical in
this level, wherein the differences between the two maps can hardly be noticed.

Figure 7. Level 3: PBC and OBC winter crops extraction results.
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With the lack of a possibility to visually compare the two methods, they were evaluated
and compared by using accuracy assessments (Tables 6 and 7). In regard to the global
accuracy indices, all classes were stated as accurate when using the two methods, which
signifies a good performance by both methods with a high accuracy and a strong level
of agreement for the classification. Beyond that, it is worth noticing that PBC shows a
better potential with about 0.03 higher value in the OA and 0.04 in kappa, moreover, PBC
basically achieves a better accuracy indicator of three classes in comparison with that of
the OBC. The results illustrate that the difference in spectral behavior was exploited to
distinguish winter crops from other crops, since all the croplands share similar geometry,
form, and texture characteristics. Nonetheless, among the different crop types that were
presented in our area of study, winter wheat has the most distinctive spectral signature,
thus it was found to be the class with the best accuracy indices in both results, with very
strong reliability in terms of prediction and a high rate of precisely identifying winter wheat.
In contrast, the classification of winter barley and other crops are somewhat less accurate
with approximately 0.1–0.5, and the advantage of PBC is more significant, with higher
accuracy indicators of around 0.04, which might be caused by the confusion of winter barley
and other crops due to the similarity of their spectral behavior. In addition, the difference
between these two classes were better detected by PBC with spectral information.

Table 6. Accuracy assessment of OBC winter crops extraction.

Precision Recall F-Score

Winter wheat 0.998 0.978 0.988
Winter barley 0.833 0.871 0.852
Other crops 0.870 0.848 0.859

Kappa: 0.848
Overall accuracy (OA): 0.899

Table 7. Accuracy assessment of PBC winter crops extraction.

Precision Recall F-Score

Winter wheat 0.994 0.976 0.985
Winter barley 0.876 0.913 0.894
Other crops 0.917 0.895 0.906

Kappa: 0.892
Overall accuracy (OA): 0.928

5.1.2. Hierarchical Classification versus Classical Direct Extraction

The results of the hierarchical classification, which is the classification approach that
was proposed in this study, and the classical direct extraction for the winter crops mapping
are presented in Figure 8. Generally, winter wheat and winter barley were well detected and
extracted from the Sentinel-2 image; the results of two classification approaches are globally
identical, with particular reference to the homogeneous distribution of the winter crops over
the area of interest. Nevertheless, the classical direct extraction approach identified more
winter croplands, especially winter barley, and the winter croplands that were detected
are much more fragmented; many small pixels were classified as croplands. This could be
explained by the fact that winter crops are directly extracted from the preprocessed image;
in addition, there might be some confusion between winter barley, grasslands, and some
different crops considering the resemblance of their spectral behavior.
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Figure 8. Classification results with hierarchical classification and classical direct extraction.

To make a better comparison, the accuracy assessments of the two approaches are
displayed in Tables 8 and 9. According to the tables, both classification results are very
satisfactory as mostly all of the accuracy indicators range from 0.8 to 1, specifically, with
the hierarchical classification, almost all indices are superior to 0.9. This suggests a good
performance and training of the models and also a strong agreement with ground truth
of all classification approaches in the study. Still, it is worth noticing that the hierarchical
classification shows a better potential for specific crop type mapping as compared to the
classical direct extraction (approximately 0.1 higher in kappa and 0.07 in OA). Additionally,
nearly every class achieved a higher accuracy in hierarchical classification, which indicates
that the model is solid, and it is able to make a good prediction. Among the three classes,
winter wheat is the most correctly classified class in both of the classification approaches, the
indicators that range from 0.90 to 0.99 and with an F-score that is highly similar. Hierarchical
classification reaches a better precision index, that means that the model is more exact, yet
classical direction extraction achieved a finer recall, which means that the model returned
more relevant results, and it can correctly and efficiently identify winter wheat. In addition,
winter barley and the other classes were evaluated and less accurately classified, especially
with the classical direct extraction approach. According to Table 8, the winter barley class
obtained a high recall (0.960) and a relatively lower precision (0.683), which suggests a
high false-positive rate; many individuals that were predicted as winter barley that the
model returned were found misclassified when they were compared to the test data. On
the contrary, the other class received a high precision index (0.955) and a comparatively
low recall (0.797), and these indicators demonstrate that the pixels were correctly detected
and labelled despite there being fewer results returned by the model. The comparably low
accuracy of the two classes and the imbalance between the precision and recall indices
might be explained by: (1) the similarity of the spectral behavior between winter barley
and other crops and even grassland in the case of the classical direct extraction approach.
(2) Since two winter crops are extracted directly from the Sentinel-2 image, the other class
included not only non-vegetated urban areas, but also vegetation and other croplands
which occupy a large area of our study site. Therefore, an imbalance between classes was
caused, thus, more training datasets of the other class were acquired in consideration of its
weak intraclass correlation.
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Table 8. Accuracy assessment of hierarchical classification.

Precision Recall F-Score

Winter wheat 0.991 0.904 0.946
Winter barley 0.886 0.900 0.893

Others 0.929 0.959 0.944

Kappa: 0.888
Overall accuracy (OA): 0.932

Table 9. Accuracy assessment of classical direct extraction.

Precision Recall F-Score

Winter wheat 0.959 0.928 0.943
Winter barley 0.683 0.960 0.799

Others 0.955 0.797 0.869

Kappa: 0.789
Overall accuracy (OA): 0.866

5.2. Crops Phenology Monitoring

The Sentinel-1 temporal backscattering coefficient profiles of diverse land cover types
at VV and VH dual-polarizations from the study area during the growing season of the
winter crops (from 1 October 2018 to 1 September 2019) are shown in Figure 9; the temporal
profiles of the mean σvv and σvh values of urban, vegetation (including other crops), water,
bare soil, winter wheat, and winter barley land cover are displayed. As shown in Figure 9,
besides the profiles of the water area, which fluctuate significantly due to the weather
conditions, the temporal profiles of the vegetation, urban, and bare soil are much more
stable than the profiles of winter crops are, which have a significant fluctuation according to
their different growth stages. Especially in the σvh profile, the vegetation, urban, and bare
soil profiles are generally close to their mean value, regardless of the season. Nonetheless,
the variation of the backscattering coefficients of the two winter crops are clearly evident,
for example, a peak is seen in early December, followed by a minimum value in early
summer and a maximum value in midsummer. Thus, the results indicate that it is feasible
to distinguish winter crops from other types of land cover, particularly vegetation and
other crops, and furthermore, we are able to identify and study the main phenological
stages from germination to ripening (harvesting) by using Sentinel-1 temporal profiles.

Figure 9. Sentinel-1 temporal backscattering coefficient profiles of different land covers (vegetation,
water, urban area, bare soil, winter wheat, and winter barley) in the study area at VV and VH
polarizations from 1 October 2018 to 1 September 2019.
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Based on prior knowledge and field research with local farmers, winter wheat and
winter barley are both cereal crop types that are planted from October to November.
Generally, winter barley is sowed earlier than winter wheat in the Finistère department.
Germination, which is the first growth stage of the crops, takes place three to four weeks
after sowing, hence, this is in early December for winter wheat and in mid-November for
winter barley. The crops remain in their vegetative stage during winter, and stem elongation
begins in spring, and it lasts until the plants reach their maximum height, usually in early
summer. Lastly, ripening, the final growth stage, and harvesting occur in summer (early
summer for winter barley and mid-summer for winter wheat).

In Figure 10, both the raw signal and smoothed trend line of the temporal backscatter-
ing coefficient profiles of VV, VH, and the VH/VV ratio for the 2018–2019 growing season
are displayed. Looking at the charts, it is shown that large variations occur before the
germination due to the interaction between the bare soil and vegetation that is caused by
stem-ground double scattering [6,70], while previous research suggests that the fluctua-
tion in the backscattering profiles is mostly induced by changes in soil water content and
roughness [6]. Pursuant to previous research, germination as the first stage of emergence
of the plant can be recognized as the first maximum value of the profiles before they begin
decreasing [25], therefore the germination stage is observed at around 1 December for
winter wheat, and in early November for winter barley. Moreover, for winter wheat, this
phase is best observed with VV and the VH/VV polarizations as they represent the first
peak of the curves; however, the peak is better illustrated at VV and VH polarizations
for winter barley. Afterwards the overwintering stage occurs, and the crops remain in
their vegetative stage during winter (generally around 1 January); a gentle decreasing
and a slight flattening can be observed in the VV polarization curves during this stage
for both the crops. Furthermore, a fluctuation of the VV and VH curves of the two crops
at around 1 January 2019 is driven by a short pause of rainfall, as the signals are highly
affected by the soil water content. The stem elongation stage starts in spring, where the
vertical development of the stems and leaves of the plants cause soil scattering attenuation,
represented as a continuous and steadily decreasing line, until they reach the heading stage,
where the plants achieve their maximum height. After a long decreasing phase, σ◦ reaches
the minimum value of the temporal profiles at the heading stage at around 1 May 2019
for both winter crops, and this stage can be better observed in σvv and σvh/vv for winter
wheat phenology, and in σvh and σvh for winter barley. However, the sharp decrease in
σvv and σvh at the heading stage, specifically in the profiles of the winter barley might
be the result of the relative lack of rainfall that occurred after early April. After heading,
the inflorescence emergence, anthesis, grain development, and dough development stages
occur. As seen on the graphs the curves start to increase during the flowering and grain
development stages. These stages are illustrated by a sharp increase in the winter barley,
regardless of the polarization, while by contrast the σvv and σvh/vv of the winter wheat
shows a smooth increase. At last, the ripening stage, which is the maturation stage, occurs
and the crops are ready to be harvested. This phase is shown as the last peak of the profiles
during the growing season, followed by a sharp decrease which is caused by the absence of
volume and multiple scattering after the harvesting [25]. As the results show, harvesting,
which took place around 1 August 2019, is better demonstrated by σvv and σvh for winter
wheat, while the harvesting stage was in late June for winter barley, and it is clearly shown
by all polarizations, particularly in VV and VH.
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Figure 10. Winter wheat and winter barley Sentinel-1 temporal backscattering coefficient profiles
at VV, VH, and VH/VV polarizations of the northern part of the Finistère region for the 2018–2019
growing season, with the daily precipitation data and three main phenological stages, which are
presented by a vertical line as well.

The best polarization for each phenological stage (germination, heading, and ripening
(harvesting)) are detailed as follows in Tables 10 and 11. The phenology monitoring of the
winter wheat highly relies on VV polarization, while the VH/VV ratio is also very helpful
in identifying the germination and heading stages. Otherwise, the VH polarization was
used to detect the ripening stage and the harvesting event.

Table 10. The best polarization observed for each phenological stage of winter wheat in the study.

Stage Polarization Date Determination

Germination VH/VV, VV Early December First peak of the temporal series

Heading VV, VH/VV Early May The minimum value
after emergence

Ripening
(Harvesting)

VV, VH Around 1 August Last maximum of the profiles,
following by a sharp decrease

Table 11. The best polarization observed for each phenological stage of winter barley in the study.

Stage Polarization Date Determination

Germination VV, VH Early November First maximum of the temporal series
Heading VV, VH Around 1 May The minimum after emergence
Ripening

(Harvesting)
VV, VH,
VH/VV Around 1 July Last maximum of the profiles,

following by a sharp decrease
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Meanwhile, the phenology monitoring of the winter barley depends more on VV and
VH polarizations, which are able to easily identify the three phenological statuses. In addition,
VH/VV polarization is also effective for detecting the ripening and the harvesting stages.

6. Discussion

6.1. Hierarchical Classification for Winter Crops Mapping

In this study, two different classification approaches using Random Forest machine
learning methods were performed on a Sentinel-2 high spatial resolution satellite image
that was acquired in April 2019, which is the growing season of the winter crops, in order
to detect and map winter wheat and winter barley in a fragmented area that was occupied
by different land categories. One of the main objectives of this paper was to successfully
extract winter crops data with the hierarchical classification that was proposed in this
study, which allows an efficient winter crop type mapping for a study area with a complex
landscape, and to easily distinguish winter crops from other land cover types, especially
arboreal vegetation, shrubs, grassland, and other crop types. The results of the hierarchical
classification were evaluated with different accuracy indicators (global or interclass) and
were finally compared with the traditional direct extraction approach.

Both classification approaches achieved a good accuracy level despite the complex
occupation and small cropland size in the region, with an overall accuracy of 0.866 and
0.932 and a kappa index of 0.789 and 0.888 for classical direct extraction and hierarchical
classification, respectively. Even though the classical extraction method worked well for
winter crop mapping, the accuracy assessment indicates that the hierarchical classification
is clearly more accurate and better suited to our study by turning a complex multi-class
classification problem into a series of smaller classifications. According to the results that
are presented in Figure 8 and the accuracy indicators that are displayed in Tables 8 and 9,
apart from the global accuracy indicators, the hierarchical classification has proven to be
reliable, with outstanding performance in the classification of both winter crops classes,
particularly the winter wheat.

The hierarchical classification approach is widely used in many different fields, such
as for categorization problems [71], biological predictions [72,73], and music genre clas-
sification [74,75], meanwhile the concept of solving a complete classification problem
step-by-step using agglomerative algorithms plays also an important role in image clas-
sification and its efficacy is well known and it is recognized by previous studies [76–79].
In this study, we proposed a hierarchical classification framework that was constituted by
three smaller classifiers for extracting winter crop data, and we have clearly demonstrated
the superiority of the hierarchical framework over the classical extraction method.

Additionally, both classifications in this study were performed with supervised RF
machine learning methods and highly accurate results were acquired, regardless of the
approach or the method. Therefore, RF has proven to be a feasible, well-suited classification
algorithm for precisely mapping specific winter crop types from a small-sized field in a
complex area.

6.2. Comparison of PBC and OBC

In this work, PBC and OBC were implemented in the two steps of the classification pro-
cess within the hierarchical classification structure (croplands extraction from all vegetated
area, and winter croplands extraction from all croplands). In addition, the two classification
models were trained by a similar dataset, and then evaluated using the same test data. The
two classification methods are widely known and used, and they are always compared in
different fields. OBC provides a method to the satellite image classification, and numerous
studies in the remote sensing field it is demonstrated that OBC usually achieves a better
classification with different data and in different landscapes over PBC by bringing comple-
mentary information other than the spectral signal and turning classification units from
pixels to image objects [80–83]. Whiteside et al. in 2011 [23] indicated that OBC has a better
potential for extracting land cover information in a spatially heterogeneous land cover
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area, while Weih and Riggan in 2010 [24] proposed that OBC produced more homogeneous
classes, as the classes that were produced by PBC are more fragmented. Furthermore, many
studies have also pointed out that OBC regularly outperforms PBC for crop type mapping
and they noted that it has a more efficient calculation time [84–86]. However, OBC is limited
by segmentation errors, such as over-segmentation and under-segmentation, which bring
negative impacts to the classification; consequently, low segmentation accuracy leads to
low classification accuracy [79,86,87]. Furthermore, some studies have also revealed that
the difference in accuracy values between the two methods decreases or even disappears
when the same classification algorithms are applied, or the spatial resolution of the image
is increased [88–90].

In this work, the results illustrate that each method has its advantage in the classifica-
tion process. OBC slightly outperformed PBC in cropland extraction as the complementary
texture, geometry, and shape information are helpful for cropland detecting. On the other
hand, PBC reaches a higher accuracy in winter crops extraction, since all croplands have a
similar shape, but winter crops can be easily distinguished from other crops with direct
spectral information. Additionally, the statistical difference between the results of PBC
and OBC is not particularly significant. In conclusion, small differences that are induced
by several factors between the two methods can be noticed, yet both methods are equally
useful for our classification.

6.3. Potential of Sentinel-1 Data in Crops Phenology Monitoring

Optical satellite data are well developed and have traditionally been used for dif-
ferent crop phenology monitoring by using vegetation indices time series [91–93], with
NDVI being the most used vegetation index for crop phenology mapping [26,94,95]. How-
ever, Sakamoto et al. in 2005 [96] proposed rice phenology detection with time-series
EVI data with fewer errors between the estimated phenological dates and the statistical
data. Dong et al. in 2020 [10] have exploited the potentialities of a newly developed
vegetation index, the Normalized Difference Phenology Index (NDPI), to provide more
robust vegetation information and to reduce the adverse impacts of soil and snow cover
for winter wheat mapping. In recent years, with the emergence of the new generation
of high spatial and temporal resolution SAR data, a particular interest in radar data for
crop phenology monitoring was found, especially for its “all weather” capacity, which
leads directly to an increased role of SAR data in the field [97–99]. This study proved that
Sentinel-1 C-band SAR-polarized backscatter time series data has great potential to monitor
winter crop phenology in a coastal area that is marked by frequent precipitation, and some
important considerations of the behavior of different polarizations in regard to different
phenological stages are worth discussing.

Firstly, despite the σ◦ of both polarizations and their ratios being relatively similar, the
curves of the VH and VV polarizations are sharper when they are compared to those of the
ratio, due to the fact that the ratio is less sensitive to varying conditions like moisture and
incidence angle variations. This can be explained by such effects having certain impacts
in both polarizations, where the impacts would be reduced in the ratio [1]. As seen in
Figure 10, the curves of the ratio VH/VV of winter wheat and winter barley are smoother in
comparison with those of the single polarization and they are less impacted by continuous
rainfalls or drought due to absence of precipitation.

Secondly, the timing of the phenological stages or growing periods of the crops based
on the field knowledge are in agreement with the observations of the results. Based on prior
knowledge, the sowing takes place between October and November, and winter barley is
usually planted earlier than winter wheat is, and the germination occurs 3–4 weeks after
sowing. This period can be confirmed by noting the large variations of the curves in the
beginning which are induced by the interaction between the bare soil and the vegetation
that is caused by the stem-ground double scattering [6], afterwards the germination is
represented by the first peak of the curves, and this is especially well demonstrated in the
polarization ratio for winter wheat and in the single polarizations for winter barley. After
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the overwintering period, the stem elongation, which begins in spring, can be recognized
on the curves as a decreasing period that is caused by the attenuation of the signal when
the vegetation cover occurs. Thereafter, the heading stage, where the crops attain their
maximum height, occurs in early summer. This stage was confirmed with a minimum
value on the curves at around 1 May, which can be well observed in the polarization ratio
for winter wheat and in single polarization for winter barley. After heading, the volume
backscattering was increased due to the increase of the plant biomass [1], and the winter
barley is harvested in early summer, and the winter wheat is harvested in midsummer. This
is illustrated by the curves in all polarizations decreasing as expected with large variations
post-harvesting, depending on the soil conditions.

This leads to the conclusion that it is feasible to map crop phenology with high
accuracy by using SAR data, which is highly sensitive to the phenology of agriculture crops.
In addition, unlike many methods which exclusively use the single polarization or the
ratio [31,100,101], our study shows that the combination of both is able to provide a better
observation of agriculture phenology. Further studies can investigate the feasibility and
performance of combining SAR and optical data for crop phenology monitoring.

6.4. Limitations and Perspectives

Some limitations were revealed during the process of result analyzing. Despite the fact
that the hierarchical classification approach acquired a better accuracy (0.099 in kappa and
0.066 in OA), this classification approach required more complicated processing steps and
was more costly when one is comparing it to the direct extraction, for a slight enhancement
in the results. Moreover, the confusion between winter barley and grassland was nonneg-
ligible. For increasing classification accuracy, extra data such as SAR or Sentinel-2 time
series data can be applied. Additionally, even though the three main phenological statuses
were successfully extracted from Sentinel-1 backscatter time series, more field research and
expert knowledge is required for identifying some others important phenological stages
(e.g., tillering, flowering, soft dough and hard dough).

7. Conclusions

Three issues surrounding winter crops have been studied and discussed in this paper.
Firstly, two types of winter crops (winter wheat and winter barley) were mapped by using
a Sentinel-2 high-resolution image, and two different classification approaches were per-
formed. Both the hierarchical classification, which turns a complex classification problem
into a series of smaller classifications, and the classical direct extraction, which extracts the
winter crops directly from the original satellite image, were carried out. The hierarchical
classification was composed of three smaller classifications: vegetation extraction from
the original image, cropland extraction from the vegetation, and finally the winter crop
extraction from other crops. Additionally, PBC and OBC were both performed in the
last two steps and evaluated in order to keep the most accurate classification for further
processing and analysis. Subsequently, crop phenology monitoring was performed, based
on the results of the previous step by using Sentinel-1 C-band SAR time series data, and
the three important phenological stages (germination, heading, and ripening (harvesting))
and the main growing periods were identified as well.

To respond to the objectives of the study and as the contribution of this paper, our
results showed that winter crops in a fragmented landscape with heterogeneous land cover
were successfully detected with high accuracy by using a Sentinel-2 image and the classi-
fication approaches that have been proposed. In particular, the hierarchical classification
framework significantly improved the classification accuracy (0.1 and 0.06 increase in the
kappa and OA, respectively, against classical direct extraction), moreover the classification
of winter barley is also enhanced by reducing the confusion between winter barley and
grassland with the hierarchical classification framework (0.094 increase in the F-score).
Within the hierarchical classification, each classification method has its advantage; OBC
slightly outperformed PBC in cropland extraction, yet PBC achieved higher accuracy in
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winter crops mapping. Although some small differences can be noticed, however there is
no significant statistical divergence between the two classification methods.

The results also lead to the conclusion that Sentinel-1 C-band SAR-polarized backscat-
ter time series has great potential to monitor winter agriculture phenology in a coastal area
with frequent rainfall. Three phenological stages and main growing periods could be easily
identified from the time series in a single polarization or from the ratio, and furthermore
the timing of the stages and the growing periods of the crops that are observed in the results
highly conform to the field knowledge.

Although very satisfactory results were acquired in this study, some recommendations
can be made for further studies, such as applying Sentinel-2 time series or SAR data for
crop mapping in order to increase the classification accuracy, and in particular to reduce
the confusion between winter barley and grasslands or other crop types. Exploring the
potential of the combination of SAR and optical data for identifying more phenological
stages and growth periods from the time series is advocated by us.
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Abstract: Intertidal macroalgal habitats are major components of temperate coastal ecosystems. Their
distribution was studied using field sampling and hyperspectral remote mapping on a rocky shore
of Porspoder (western Brittany, France). Covers of both dominating macroalgae and the sessile
fauna were characterized in situ at low tide in 24 sampling spots, according to four bathymetric
levels. A zone of ca. 17,000 m2 was characterized using a drone equipped with a hyperspectral
camera. Macroalgae were identified by image processing using two classification methods to assess
the representativeness of spectral classes. Finally, a comparison of the remote imaging data to the
field sampling data was conducted. Seven seaweed classes were distinguished by hyperspectral
pictures, including five different species of Fucales. The maximum likelihood (MLC) and spectral
angle mapper (SAM) were both trained using image-derived spectra. MLC was more accurate to
classify the main dominating species (Overall Accuracy (OA) 95.1%) than SAM (OA 87.9%) at a site
scale. However, at sampling points scale, the results depend on the bathymetric level. This study
evidenced the efficiency and accuracy of hyperspectral remote sensing to evaluate the distribution of
dominating intertidal seaweed species and the potential for a combined field/remote approach to
assess the ecological state of macroalgal communities.

Keywords: seaweeds; hyperspectral; UAVs; intertidal ecology; rocky shores; supervised classification;
vegetation cover

1. Introduction

The intertidal zone hosts considerable diversity together with a great abundance of
benthic organisms [1,2] and has long been monitored as a control ecosystem in ecological
processes. Seaweeds are the major component of flora on temperate rocky shores, where
they can commonly form extensive canopies, structuring macroalgal communities compa-
rable to terrestrial forest systems in their arrangement [3,4]. Seaweed species are vertically
distributed on the shore according to several abiotic factors such as desiccation, hydrody-
namics, light and salinity, themselves largely influenced by tide oscillations [5,6]. Temperate
rocky shores are globally dominated by fucoids (i.e., large Phaeophyceae from the order
Fucales), from high to low levels of the shore and by kelps (i.e., large Phaeophyceae from
the order Laminariales sensu lato) in the lower intertidal fringe and the subtidal area [7].
Along the north east Atlantic coastline, up to six successive macroalgal communities may
be found [8,9], which can be reduced to 2–5 depending on the geographical area, the
substratum or the hydrodynamic conditions [10].
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Brittany is a long-term monitored area for macroalgal diversity (approximatively
650 species [11]) and resources (e.g., Benthic Network research program since 2005). These
characteristics are examples of a prime area to fully describe seaweed-dominated habitats
through remote sensing. Therefore, remote sensing for macroalgal covers has undergone
early development since the 1960s [12–17].

Seaweed communities have been recognized as a quality element for the classifica-
tion of coastal water bodies as part of the European Water Framework Directory (WFD,
2000/60/EC; E.C., 2000 [18]) and several metrics based on the good ecological state of
macroalgal communities have been developed along the European coasts [6,9,19–24]. On
rocky shores, the occurrence and abundance of vegetation can easily be estimated visually
through the cover-abundance scale, or percentage-cover indices, without damaging the
habitat [5]. Even if these estimations are easy to implement, they may be time consuming
and some locations remain difficult to reach. In this context, using remote sensing imagery
for spatialization is an interesting alternative to a site-specific scale [25,26], and could help
survey shifting ecosystems [27].

Both multispectral and hyperspectral imagery are routinely used on terrestrial vegeta-
tion, for instance, to estimate crop yields [28–31]. By contrast with other plants, seaweeds
have a larger phylum-specific diversity of pigments, which can be discriminated by an-
alyzing spectral characteristics at different wavelengths [32]. Pigment diversity in algae
contributed to the early development of seaweed detection through airborne remote sens-
ing [33]. Later, mapping of macroalgal communities was processed using satellite imagery
(IKONOS, SPOT, Sentinel-2), with scale refining depending on the sharpness of the sen-
sors aboard [34–37], and promoted combined airborne/ground spectra acquisition for
macroalgal mapping. Another powerful tool to study coastal environments is the use of
free-access satellite images, which could help to produce extensive habitat mapping, in
order to observe natural variations in habitats overtime [38].

These methods enable the collection of homogeneous data over broad spatial scales but
are inaccurate when applied to heterogeneous habitats, varying at a centimeter in scale [39].
Such approaches are complexified in coastal areas due to tidal variations and highly mosaic
environments [40]. Furthermore, data acquisition is generally altered by the occurrence of a
water layer [41] and often disturbed by atmospheric conditions (noticeably, cloud cover and
light reflection). The development and easy access to both unmanned aerial vehicles (UAVs)
and hyperspectral sensors further promoted the remote mapping and characterization
of intertidal habitats [42–44]. Since the 1970s, automated methods (i.e., classification
algorithms) have been developed to classify multi-/hyper-spectral images [45–47]. The
present work focuses on an easy habitat classification through high spatial resolution
pictures, obtained by a UAV and by applying commonly used algorithms. To characterize
seaweed-dominated habitats, maximum likelihood (MLC) is currently the most widely
used method of supervised classifications [48], along with the spectral angle mapper
(SAM) [49–52].

To date, there are still few studies comparing both mapping intertidal seaweed us-
ing multispectral [38,42,53] or hyperspectral sensors on UAVs, and an accurate spatial
resolution (less than 5 cm). Indeed, the majority of studies focus on kelp beds at lower
resolution (spatial and/or spectral) [54–57]. Rossiter et al. (2020) [49,58] successfully clas-
sified shores using both multispectral and hyperspectral sensors focusing on the Fucales
Ascophyllum nodosum, but did not compare sensor data with macroalgal in situ covers.

To fill these gaps existing between remote sensing and field sampling, a two-way
approach was conducted: on the one hand, in situ sampling of macroalgal communities, and
on the other hand, hyperspectral UAV imagery acquisition and automated classifications.
In that prospect, several objectives were defined:

1. Distinguishing macroalgae from seawater, substratum and associated non-algal or-
ganisms based on classification results from hyperspectral imagery.

2. Using hyperspectral data to discriminate the main species of fucoids from green and
red macroalgae.
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3. Testing the accuracy of supervised classification algorithms.
4. Comparing field and remotely estimated cover-abundance data.

The working hypothesis of this study is that the two classifications, obtained from
hyperspectral images, would yield similar results between the two, successfully differ-
entiating macroalgae and would correspond to those obtained in the field. The present
experiment was performed on a seaweed-dominated shore of western Brittany to test
the complementarity between both approaches and to study the distribution of seaweed
habitats. The aim of the study is to evaluate the correspondence between the distribu-
tion of species in macroalgal habitats obtained by both in situ sampling on the shore and
hyperspectral imagery by a UAV.

2. Materials and Methods

2.1. Studied Site and Communities

The study was performed on the coasts of north-west Brittany, on the site of Porspoder
(48◦28.88′ N/4◦46.29′ W) (Figure 1). The site is about 230 m long and 100 m wide, with
a maximal tidal range of 8.15 m and mainly exhibiting dense macroalgal canopies with
some pools, boulder fields and bedrock. The six macroalgal communities typically found
in the north-east Atlantic were vertically distributed on the shore [8] and were grouped
into 4 bathymetric levels for the study. These levels correspond to either single or mixed
communities named by the dominating Fucales and Laminariales: (1) Pelvetia canaliculata
plus Fucus spiralis communities, (2) Ascophyllum nodosum/Fucus vesiculosus community,
(3) Fucus serratus community and (4) Himanthalia elongata/Bifurcaria bifurcata plus Laminaria
digitata communities. These levels are referred to, respectively, as Pc-Fspi, An, Fser and
He-Ld hereafter.

 

Figure 1. Study site of Porspoder (Brittany, France: 48◦28.88′ N/4◦46.29′ W) showing the 24 in situ
sampling spots surveyed during the study. The color of the circles indicates the intertidal level
considered: red circles, P. canaliculata—F. spiralis; yellow circles, A. nodosum; black circles, F. serratus;
blue circles, H. elongata. The dotted lines correspond to the UAV flight lines.
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2.2. Sampling Method

Field sampling was conducted in Spring 2021 (28 April to 1 June). A total of 24 sampling
spots (i.e., 6 for each of the 4 levels) were monitored at low tide. The sampling spots were
referenced using pictures and GPS positioning (Garmin GPS 73, ±3 m). The sampling
protocol followed the methodology described in Burel et al. (2019b) [59]. A mobile plastic
grid structure of 1.65 m × 1.65 m divided into 25 quadrats of 33 cm × 33 cm was used to
delimit each sampling spot. Covers of benthic fauna, flora and bare rock were estimated
visually on the entire surface delimited by the plastic structure from 0 to 100 percent, with a
5 percent pace. That approach, known as ‘undisturbed sampling’, describes the distribution
of the main groups of benthic organisms plus the substratum during emersion.

2.3. Remote Sensing Acquisition

Acquisitions were made by Hytech-Imaging (Plouzané, Brittany, France) using a
NEO HysPex Mjolnir V-1240 sensor (Oslo, Norway) (Table 1). The sensor was set on an
octocopter UAV based on Gryphon Dynamics X8 architecture (Figure 2), with a gStabi H16
stabilization, containing an Applanix APX15 inertial unit with an L1/L2 GPS receiver and
a GPS L1/L2 Tallysman enabling geolocation. The UAV and the central acquisition unit of
the sensor were remotely controlled by a radio link.

Table 1. Characteristics of the hyperspectral visible near infrared (VNIR) Mjolnir_V-1240 sensor.
FOV = field of view.

Spectral
Range

Spatial
Pixels

Spectral
Resolution

Spectral
Sampling

Number of
Bands

FOV Across
Track

iFOV Across/
3Along Track

Coding

0.4–1 μm 1240 4.5 nm 3 nm 200 20◦ 0.27/0.27 mrad 12 bits

 

Figure 2. UAV octocopter used for the acquisitions.

Acquisitions were performed on the 24 June 2021 at a 64 m height to obtain a resolution
of 2 cm (Table 2). To perform the image acquisition, two technicians were involved to pilot
the UAV and to operate the hyperspectral sensor. The acquisition lasted about 30 min. The
flight plan was designed to cover a subsection of the site of Porspoder, including all of the
field sampling spots (Figure 1).
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Table 2. Parameters of the aerial survey.

Flight
Altitude

Ground Sampling
Distance

Swath
Mapped

Area
Viewing

Angle
Flight
Lines

64 m 2 cm 23 m 1.76 ha 20◦ 4

Images (Figure 3) were collected between 09h28 and 09h47 UTC at low tide (tidal
coefficient 92 corresponding to tidal range of 6.1 m). During the acquisitions, light was
diffused due to cloud cover.

 

Figure 3. Porspoder orthophoto (RGB) obtained during the flight on the 24 June 2021. Detailed
sections of the color image illustrating the different bathymetric levels on the shore are represented:
Pc-Fspi (red square), An (yellow square), Fser (black square) and He-Ld (blue square).

2.4. Pre-Processing

To obtain a georeferenced image in spectral radiance (W·m−2·sr−1·μm−1), the hyper-
spectral image was processed from raw data (level 0) to a radiometrically and geometrically
calibrated image (level 1c) using the HYPIP (HYPperspectral Image Preprocessing) chain
of Hytech-imaging that includes ATCOR/PARGE software applications (ReSe Applica-
tions, Wil, Switzerland). To calculate the surface reflectance, atmospheric corrections were
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performed in a two-step process: first, using the ATCOR-4 software, and then empirically
adjusting each spectrum. To adjust each spectrum, coefficients of gain and bias were cal-
culated per spectral band, by linear regression between surface reflectance data and the
reflectance signature. This reflectance signature was obtained by positioning pre-calibrated
targets (tarps) near the area of interest overflown during the survey.

2.5. Data Classification

For this study, supervised classifications were performed, where categories (classes)
correspond to spectral signatures defined by the user. A class contains a characteristic
spectral signature for each dominating fucoid species, macroalgal group or an abiotic
component and corresponds to homogeneous regions delineated on the UAV image. The
software then assigns each pixel of the image into a cover type to which its signature is
most comparable [60]. The supervised classifications were performed after defining regions
of interests (ROIs) which are training data. ROIs were created for each class using ‘ROI
tool’ in ENVI version 5.6.1 (Exelis Visual Information Solutions, Boulder, CO, USA) by
manually circling pixel areas on the image. More than one training ROI were usually
used to represent a particular class (ROIs = multiple polygons) (Table 3). The number of
polygons and pixels per class depend on the surface occupied by each species. For example,
covers of P. canaliculata and F. spiralis are low compared to those of F. serratus or H. elongata,
which represent more homogeneous and larger classes. Classes were selected in agreement
with the hyperspectral image and pictures taken during field sampling.

Table 3. Number of ROIs and pixels for each class.

Class Number of ROIs Number of Pixels

P. canaliculata 76 29,899
F. spiralis 10 551

A. nodosum 233 334,002
F. serratus 227 894,910
H. elongata 145 353,825

Green 482 73,592
Red 509 41,808

Substratum 408 1,834,496
Water 235 1,073,044

Nine classes were thus defined for the site of Porspoder (Figure 4), including five
classes of dominating Fucales (‘Pelvetia canaliculata’, ‘Fucus spiralis’, ‘Ascophyllum nodosum’,
‘Fucus serratus’ and ‘Himanthalia elongata’), and two classes related to green and red seaweeds
(respectively, ‘Green’ and ‘Red’) were created. A ‘Substratum’ class was defined grouping
bedrock, boulders, gravel and sand, and, finally, a ’Water’ class was also created, gathering
immerged parts of the shore (pools or subtidal zone). The ‘Substratum’ and ‘Water’ classes
were classified in the same way as the other classes and have subsequently been removed
from the maps to improve their clarity and interpretation. Due to the complexity of
accurately identifying benthic fauna on the UAV image, no appropriate class was created,
and these data were grouped together as the ‘Substratum’ class.

Training data (i.e., ROIs mean spectra) were checked for class separability using the
Jeffries–Matusita distance [61]. The values of the resulting output between each pair of
classes ranged between 0 and 2, with values greater than 1.9 indicating almost perfect
separability between them [46]. A large class separability indicates that accurate training
areas have been selected, whereas values approaching zero suggest either the need for
more training areas or classes that are inherently similar in their spectral properties.

38



Remote Sens. 2022, 14, 3124

Figure 4. Hierarchical tree of decision to make classes, inspired from Congalton et al. (1999) [62].

Two supervised classification methods were performed to test the representativeness
of the spectral classes running the software ENVI version 5.6.1 (Exelis Visual Information
Solutions, Boulder, CO, USA), i.e., the algorithms maximum likelihood classification (MLC)
and spectral angle mapper (SAM).

MLC calculates the probability that an individual pixel belongs to a specific class and
is based on an estimated probability density function derived from the defined reference
classes [63]. MLC is a popular classifier [64]. The use of spectral profiles by this method
requires ROIs based on multiple pixels. Following this method, the classification is based
on the selection of the most representative spectral profiles in ROIs of the same class upon
different flight lines. The MLC classifier assumes a Gaussian distribution for each input
training class [65] and it can be expressed by the following equation:

gi(x) = ln p(ωi)− 1
2

ln |∑
i
| − 1

2
(x − mi)t

−1

∑
i
(x − mi) (1)

where i is a given spectral class, x equals n-dimensional data, p(ωi) is the probability
that class ωi occurs in the image and it is assumed the same for all classes, |∑

i
| is the

determinant of the covariance matrix of the data in class ωi,
−1
∑
i

is the inverse matrix and mi

is the mean vector. The advantage of MLC as a parametric classifier is that it considers the
variance-covariance within the class distributions and, for normally distributed data, MLC
performs better than the other known parametric classifiers [66]. However, for data with a
non-normal distribution, the results may be unsatisfactory.

SAM identifies the spectral similarity between two spectra collected from an image or
distributed from a spectral library [67]. The resulting classification is rather based on the
angular orientations of spectral vectors [29]. Similarities within pairs of spectra (reference
and classification) can be compared regardless of differences in brightness, and the pairs
are treated as vectors in an n-dimensional space [68]. SAM is expressed by the following
equation, taken from Kruse et al. 1993 [67]:

α = cos−1

⎡
⎣ ∑nb

i=1 tiri

(∑nb
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1
2 (∑nb
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1
2

⎤
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where t is the spectra for a pixel, r is for the reference spectrum pixel, α is the spectral angle
between t an r (measured in radians or degrees) and n is the number of bands.

The average spectral reflectance curves from the ROIs were extracted since SAM
requires endmember spectra. If two ROIs were identical, they were averaged in order to
obtain one curve with the maximum possible data. The use of spectra derived directly from
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the image is usually better than using ground or library spectra due to better inclusions of
errors related to atmospheric corrections, calibration and effects of sensor responses [29].

For both classifications (SAM and MLC), no detection threshold was selected, so that
all pixels could be classified.

2.6. Data Analysis

Accuracy assessment for classification was checked using ground truth (or reference)
ROIs based on the same method as the training data [63,69]. These polygons were indepen-
dent of the training ROIs and their number represented one third of training ROIs. The
accuracy assessment tool was used to create the confusion matrix and derive quantitative
measures of accuracy (i.e., kappa coefficient, overall accuracy, user/producer accuracy,
errors of commission/omission) using ENVI version 5.6.1 (Exelis Visual Information So-
lutions, Boulder, CO, USA). User accuracy is the probability of correct class assignment,
calculated by dividing the number of correctly classified pixels by the total number of pixels
in the class, and producer accuracy is the correctly classified reference pixels, calculated by
dividing the number of correctly classified pixels by the total number of pixels that should
be in a class.

Each grid structure was replaced using ‘Advanced Digitizing toolbar’ (‘Move Feature’
and ‘Rotate Feature’ options) on Qgis. Corresponding polygons were accurately positioned
using pictures taken during the field sampling, in order to decrease the potential GPS error
and to compare the exact same position.

To compare in situ data and classification data, vectors of the grid structure were
replaced on the Porspoder image using the ‘Vector to ROI’ tool, and the percentage of pixels
for each class in ROIs was extracted with the ROI statistics tool on ENVI.

Statistical analyses were conducted using the R environment [70]. Normality and
homoscedasticity were first tested on each biological and classification variable, corre-
sponding to seaweed species and substratum covers, with Shapiro–Wilk and F Test/Levene
tests, respectively. These tests then determined what analyses were the most suitable
(parametric or not). In order to represent the distribution of the replicates described by
the three approaches, a distance-based redundancy analysis (db-RDA) was constructed,
based on the method described by Escobar-Briones et al. (2008) [71]. Values for each class
(apart from ‘Water’) were first converted into a distance matrix by calculating the Hellinger
distance for each class in the whole dataset. Then, a principal coordinates analysis (PCoA)
was performed on this matrix. The PCoA allows to convert the distance between items
(distance matrix) into a map-based visualization (each item is assigned a location in a
low-dimensional space, materialized by its eigenvector) in order to better understand the
relation between each object. All the PCoA eigenvectors were used as input into an RDA
in order to build the db-RDA. The db-RDA represents on a single plot the position of the
different replicates using the PCoA eigenvalues, as well as the species (classes) and the
explanatory variables (level and method).

To compare more precisely the cover of each of the classes for the three methods and
for each bathymetric level, Kruskal–Wallis tests (non-parametric) were performed followed
by a post-hoc Dunn test to identify variables that were statistically different.

3. Results

3.1. In Situ Vegetation Cover

Large discrepancies were observed in the covers between bathymetric levels, the
lowest levels being characterized by a dominance of seaweeds, whereas bare rock showed a
large occurrence in the upper level. Covers of macroalgal classes differed between the four
levels (Figure 5). The Pc-Fspi level, corresponding to the upper shore (5.2–6.1 m above chart
datum (CD)), was lightly vegetalized, with bare rock occupying 55% of the surface. The
level was dominated by the Fucales P. canaliculata for about 32.5%. The remaining covers
were well distributed between F. spiralis and red seaweeds (5% each), whereas benthic
fauna (barnacles and limpets) corresponded to a cover of 2.5%.
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Figure 5. Average covers of macroalgal groups and sessile fauna, and percentage of bare rock
observed in situ at each bathymetric level. Covers are given in percentages. Fucoids and other
brown species are grouped in the ‘Brown’ class, and erect and crustose red algae are grouped in
the ‘Red’ class.

The An level (middle shore, 3.4–4.4 m above CD) was largely dominated by the
Fucales A. nodosum (60%) and F. serratus (5.9%). Red seaweeds then covered about 25% of
the surface (22.5% erect and 2.5% crustose). Bare rock and limpets completed the remaining
surface (6.7% and 2.5%, respectively).

In the Fser level (lower shore, 3.1–2.3 m above CD), macroalgal covers became conspic-
uously dominant compared to bare rock and sessile fauna. Indeed, the cover of F. serratus
was close to 100% (94.2%), while the rest corresponded to erect red algae (5.8%).

In the He-Ld level (2.8–1.6 m ab. CD), the distribution between macroalgal groups was
equilibrated, with a co-dominance of H. elongata (39.2%) and erect red seaweeds (36.7%).
The Laminariales L. digitata also presented large covers (17.5%), and in addition, there were
little covers of crustose red and green seaweeds (2.5% and 4.2%, respectively).

Thus, An, Fser and He-Ld had a higher cover of Phaeophyceae (more than one half)
compared to the other macroalgal groups of species (65.8%, 94.2% and 56.7% of cover,
respectively). By contrast, Pc-Fspi showed only a bit more than one third of cover by
Phaeophyceae (37.5%).

3.2. Classifications Results
3.2.1. MLC Results

The results from the class separability test of image-derived spectra showed that all
of the class pairs had values greater than 1.90, indicating globally a good class separation
(Figure 6) [72].
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(a) (b) 

Figure 6. Average reflectance of the different spectral classes between 450 and 900 nm: (a) macroalgal
groups, water and substratum mean reflectance; (b) detailed spectra of each Fucales.

The MLC classifier, trained using image-derived spectra, revealed a dense cover of
intertidal Fucales (26.9% of the site) (Figure 7). The overall classification accuracy for the
MLC was 95.1% and the kappa coefficient was 0.93. The four bathymetric/vegetation
levels appeared clearly, forming four distinctive bands. The Pc-Fspi level (upper shore)
was dominated by a thin band of both P. canaliculata and F. spiralis (1.3% and 0.1% of total
pixels, respectively). The An and Fser levels (mid-shore) were dominated by a large band of
A. nodosum and of F. serratus (5.6% and 6.8% of total pixels, respectively). The He-Ld level
(lower shore) was characterized by the important development of H. elongata (9.7% of total
pixels) and a cover of red macroalgae greater than in higher levels (1.7% for all of the site).
Green algae were mainly present in the lower shore (1.7% of total pixels). The ‘Substratum’
and ‘Water’ classes represented the majority of the site (51.8% and 21.3% of total pixels
for the site, respectively). The macroalgal classes ‘A. nodosum’, ‘F. serratus’ and ‘H. elongata’
showed the highest producer/user accuracies (Table 4). There were some misclassifications
between the Fucales ‘A. nodosum’ and ‘F. serratus’ (1.56%), and between ‘A. nodosum’ and
‘P. canaliculata’ (7.04%). The lowest producer/user accuracy was for ‘F. spiralis,’ with some
misclassifications between ‘F. spiralis’ and ‘P. canaliculata’ (44.13%) and between ‘F. spiralis’
and ‘A. nodosum’ (14.81%). ‘Green’ and ‘Red’ algae were also well classified (96.92% and
90.54%, respectively) but there were some misclassifications between ‘Red’ algae and the
Fucales ‘P. canaliculata’ (3.04%) and ‘H. elongata’ (2.06%).
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Figure 7. Maximum likelihood classification (MLC), trained using image-derived spectra resulting
from the hyperspectral UAV survey at Porspoder. Seven macroalgal cover classes are displayed
over the UAV RGB imagery and an orthophotography (Mégalis Bretagne et collectivités territoriales
bretonnes—2015), giving an overview of the site. The ‘Substratum’ and ‘Water’ classes are not
represented on the map. Class codes ‘Green’ and ‘Red’ represent grouped green and red macroalgal
species, respectively.

43



Remote Sens. 2022, 14, 3124

Table 4. Maximum likelihood classification (MLC) confusion matrix, calculated, using ENVI 5.6.1,
by comparing pixels of known class locations to those predicted by the classification workflow for
each of the nine cover classes. Results are displayed as percentages of pixels assigned, correctly or
incorrectly, to each class. User/producer accuracies (User Acc. and Prod. Acc., respectively) are
also presented.

Class P. canaliculata F. spiralis A. nodosum F. serratus H. elongata Green Red Substratum Water Total User Acc.

Unclassified 0 0 0 0 0 0 0 0 0 0 -
P. canaliculata 97.82 44.13 7.04 0.01 0.02 0 3.04 0.90 0.03 1.28 26.04

F. spiralis 0.13 39.00 0.23 0 0.07 0 0.85 0.09 0.24 0.14 6.23
A. nodosum 0.79 14.81 89.32 5.59 0.03 0.27 0.78 0.04 0.02 5.63 91.93
F. serratus 0.01 0 1.56 91.71 0.03 0.01 0.04 0 0 6.80 98.61
H. elongata 0.09 0.15 0.08 0.38 93.53 0.18 2.60 0 4.00 9.69 90.72

Green 0.17 0.15 0.73 0.35 0.07 96.92 0.70 0.11 0.21 1.66 88.85
Red 0.01 1.76 0.75 1.78 3.14 1.64 90.54 0.02 0.22 1.68 67.03

Substratum 0.67 0 0.14 0.03 0 0.22 0.25 96.59 0.15 51.78 99.90
Water 0.30 0 0.15 0.15 3.10 0.75 1.20 2.25 95.15 21.34 92.76
Total 100 100 100 100 100 100 100 100 100 100 -

Prod. Acc. 97.82 39.00 89.32 91.71 93.53 96.92 90.54 96.59 95.15 - -

3.2.2. SAM Results

The SAM classifier, trained using image-derived spectra, revealed a similar cover of
intertidal Fucales as MLC (27.6% of the site) (Figure 8). The overall classification accuracy
for the SAM was 87.9% and the kappa coefficient was 0.82. By contrast with MLC, the four
bathymetric levels appeared less distinct. The Pc-Fspi level was dominated by a thin band
of both P. canaliculata and F. spiralis (1.4% and 1.3% of total pixels, respectively) with a better
cover of F. spiralis than for MLC. The An and Fser levels (mid-shore) were dominated by a
large band of A. nodosum and of F. serratus (5.5% and 3.5% of total pixels, respectively), but
the cover of F. serratus was less important than for MLC. The He-Ld level (lower shore) was
characterized by the important development of H. elongata (11.8% of total pixels). The cover
of red macroalgae was distributed on all of the site (2.2% of total pixels) and was more
present in the Fser level compared to the MLC results. Green algae were mainly present in
the lower shore (1.9% of total pixels). The ‘Substratum’ and ‘Water’ classes represented the
majority of the site (54.8% and 17.5% of the site, respectively). The macroalgal classes ‘H.
elongata’ and ‘Green’ showed the highest producer/user accuracies (Table 5). As for MLC,
there was some misclassification. First, 18% of ‘P. canaliculata’ pixels had been classified
as ‘F. spiralis’ (9.44%) and ‘H. elongata’ (9.49%). The lowest producer/user accuracy was
for ‘F. spiralis’, with the largest misclassification (37.54%) in ‘A. nodosum’ and 14.37% of
pixels in ‘P. canaliculata’. Of the ‘A. nodosum’ pixels, 18.76% were misclassified as ‘F. spiralis’,
but also 7.35% and 4.62% of ‘A. nodosum’ pixels were misclassified as ‘F. serratus’ and ‘P.
canaliculata’, respectively. Of the ‘F. serratus’ pixels, 18.86% were misclassified as ‘Red’, and
17.37% of pixels should have been classified as ‘F. serratus’, when they were in fact classified
as ‘A. nodosum’. ‘Green’ and ‘Red’ algae were globally well classified, but there was some
misclassification between ‘Red’ algae and some Fucales, such as ‘A. nodosum’. ’Substratum’
and ‘Water’ classes had the highest producer/user accuracy and so were well classified on
the entire image.
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Figure 8. Spectral angle mapper (SAM), trained using image-derived spectra resulting from the
hyperspectral UAV survey at Porspoder. Seven macroalgal cover classes are displayed over the UAV
RGB imagery and an orthophotography (Mégalis Bretagne et collectivités territoriales bretonnes—
2015), giving an overview of the site. The ‘Substratum’ and ‘Water’ classes are not represented on the
map. Class codes ‘Green’ and ‘Red’ represent grouped green and red macroalgal species, respectively.

Table 5. Spectral angle mapper (SAM) confusion matrix, calculated, using ENVI 5.6.1, by comparing
pixels of known class locations to those predicted by the classification workflow, for each of the nine
cover classes. Results are displayed as percentages of pixels assigned, correctly or incorrectly, to each
class. User/producer accuracies (User Acc. and Prod. Acc., respectively) are also presented.

Class P. canaliculata F. spiralis A. nodosum F. serratus H. elongata Green Red Substratum Water Total User Acc.

Unclassified 0 0 0 0 0.06 0 0 0 0.24 0.06 -
P. canaliculata 65.22 14.37 4.62 9.604 0.72 6.32 3.97 0.03 0.04 1.44 15.44

F. spiralis 9.44 25.95 18.76 2.78 0 0.33 0.70 0.01 0 1.35 0.43
A. nodosum 3.02 37.54 67.06 17.37 0.04 0.32 22.84 0.01 0.01 5.48 70.97
F. serratus 1.97 8.80 7.35 38.80 1.36 1.44 8.21 0.01 0.04 3.54 80.26
H. elongata 9.49 1.47 0.44 11.78 95.01 10.76 7.26 0.01 7.92 11.76 75.96

Green 7.72 6.45 0.77 0.75 0.86 77.33 1.42 0.64 0.73 1.89 62.07
Red 2.56 5.13 0.93 18.86 0.60 0.23 54.82 0 0.02 2.19 31.09

Substratum 0.29 0 0.05 0.01 0 0.43 0.06 99.04 8.41 54.81 96.79
Water 0.30 0.29 0.02 0.02 1.35 2.82 0.72 0.24 82.60 17.49 98.23
Total 100 100 100 100 100 100 100 100 100 100 -

Prod. Acc. 65.22 25.95 67.06 38.8 95.01 77.33 54.82 99.04 82.6 - -

45



Remote Sens. 2022, 14, 3124

3.3. Comparison of Field Sampling and Hyperspectral Classification

Covers determined by field sampling are compared here to the classification re-
sults by both MLC and SAM. A visual representation of the comparison between in
situ sampling, an infrared picture and the two methods is provided in Figure 9 and
Appendix A Figures A1–A3.

(a) 

   
(b) (c) (d) 

Figure 9. (a) Picture of a sampling spot on the Pc-Fspi level at Porspoder taken during field sampling
in June 2021. (b) NIR-G-B image of the same sampling spot. (c) Result of the MLC classification.
(d) Result of the SAM classification. The red square corresponds to the mobile grid structure used
for field sampling. Color code in (c,d) corresponds to the following classes: ‘P. canaliculata’ (brown),
‘F. spiralis’ (yellow), ‘A. nodosum’ (purple), ‘F. serratus’ (coral), ‘H. elongata’ (orange), ‘Red’ algae (red),
‘Green’ algae (green), ‘Substratum’ (grey) and ‘Water’ (blue).

To compare covers estimated in situ to those obtained through hyperspectral classifi-
cation, in situ erect and crustose red algae on one side, and H. elongata and L. digitata on the
other side, have been mixed up in order to attain classes similar to remote classification
(Figures 10 and 11).
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Figure 10. Db-RDA (scaling 1) performed from the macroalgal and pixels covers data for the in situ
and the two classifications algorithms. Sampling spots are indicated by circles (Pc-Fspi = red circles,
An = yellow circles, Fser = black circles and He-Ld = blue circles), variables (classes used in situ and
for classifications: Pelvetia canaliculata, Fucus spiralis, Ascophyllum nodosum, Fucus serratus, Himanthalia
elongata, Red, Green and Substratum) appear in purple, and the explanatory variables (level: Pc-Fspi,
An, Fser and He-Ld; method: in situ, MLC and SAM) in red.

The results of the db-RDA are shown in Figure 10. Only the distance between objects
(replicates) is considered; therefore, Scaling 1 has been chosen. The model is significant,
with an R2 of 91% (F-value of 117.89, p-value < 0.001). Axes 1 and 2 explain a significant
portion of the total variability, with 42% and 23%, respectively. The points, correspond-
ing to the replicates, are grouped into four homogeneous clusters, in agreement to the
four bathymetric levels, with no significant distinction between the three methods. The
explanatory variable ‘level’ is obviously correlated to the four clusters, with ‘Pc-Fspi’, ‘An’,
‘Fser’ and ‘He-Ld’ associated with the clusters corresponding to these four levels while the
variable ‘method’ appears to have no significant influence on the distribution of replicates
within each level. The results obtained from the three methods thus appear similar.

When looking in detail at the classes, the methods appeared broadly similar (Figure 11).
In Pc-Fspi (Figure 11a), the cover of the dominating Fucales ‘P. canaliculata’ estimated

by the in situ sampling was 32.5%, showing no significant difference to those obtained from
MLC (39.9%) and SAM (20.9%) (Kruskal–Wallis, p > 0.05). On the contrary, for the other
dominating Fucales ‘F. spiralis’, the test showed no significant difference between in situ
sampling (5.0%) and both methods, but a significant difference was observed between the
two models (0.6% for MLC and 5.5% for SAM, Kruskal–Wallis, p < 0.04). In contrast, the
cover of ‘Red’ macroalgae was 5.0% in situ, showing a single significant difference with the
method MLC (0.2%, Kruskal–Wallis, p < 0.001). The estimation performed by SAM (1.4%)
did not show any significant difference with the other two methods. Bare rock represented
about half of the surface of sampling spots in this level, whatever the method considered,
showing no significant differences (Kruskal–Wallis, p > 0.05).
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(a) (b) 

(c) (d) 

Figure 11. (a) Comparison of in situ (violet boxes), MLC (green boxes) and SAM (yellow boxes)
determined covers of main Fucales species, macroalgal classes and bare rock found in Pc-Fspi (a),
An (b), Fser (c) and He-Ld (d) levels. Covers are given in percentages. In the boxplots, only the
classes showing covers for all three methods are represented. Letters refer to statistical differences
(Kruskal–Wallis).

In An (Figure 11b), the cover of ‘A. nodosum’ for SAM and MLC was higher (74.7%
and 84.1%, respectively) than the in situ cover (60%). However, there was no significant
difference in its covers between in situ and SAM, but a significant difference appeared
between in situ and MLC (Kruskal–Wallis, p < 0.05). The ‘F. serratus’ cover showed no
significant difference between the three methods, i.e., circa 5% (Kruskal–Wallis, p > 0.05).
The percentage of ‘Substratum’ was also close and did not show significant differences,
with 6% in situ and ca. 3% for MLC/SAM (Kruskal–Wallis, p > 0.05). However, covers of
‘Red’ were significantly higher in the in situ field sampling (25%) than in the MLC method
(Kruskal–Wallis, p < 0.005). The SAM method was not different for either of the two.

In the Fser level (Figure 11c), the cover of ‘F. serratus’ was significantly greater in situ,
with 94.2%, than in SAM with an estimated cover of 40.5% (Kruskal–Wallis, p < 0.05). MLC
method did not show significant differences with either method (87.6%).

In He-Ld (Figure 11d), the ‘H. elongata’ covers were 56.7% in situ, 61.3% with MLC
and 65.5% with SAM and were statistically the same (Kruskal–Wallis, p > 0.05). ‘Red’
covers showed nearly similar values (39.2% and 34.9%, respectively). Even though SAM
‘Red’ covers were lower (16.8%), no significant difference was observed between the three
methods (Kruskal–Wallis, p > 0.05). ‘Green’ covers were also not significantly different
between in situ (4.2%), MLC (2.3%) and SAM (1.3%) (Kruskal–Wallis, p > 0.05).
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To summarize these results, no generalization can be applied, both methods showed
contrasted results according to the level and/or class considered. For instance, the cover of
‘Red’ is better estimated by the SAM in Pc-Fspi, and, on the contrary, better estimated by
the MLC in An. The same observation can be made for the dominating Fucales, which are
better represented by the SAM method in An, and by the MLC in Fser.

4. Discussion

Seaweeds are ecosystem engineers and key habitat-formers in temperate marine
coastal ecosystems [73,74]. The use of satellite sensors to monitor populations of large tem-
perate macroalgal species is well documented [54,75,76]. Such techniques have been used
mainly to characterize the extension of macroalgal communities and related habitats [37].
However, the accurate classification of closely related macroalgal species (e.g., different
species within the same Genus) and groups of species in remote sensing analysis remain a
key point that still needs to be investigated. Using a high spatial and spectral resolution
technology could be part of the solution [44].

In this study, heterogeneous seaweed habitats vertically distributed were success-
fully differentiated using both field and remote techniques. The ‘undisturbed’ sampling
method [59] was used in situ to describe the structure of macroalgal communities and was
then directly compared with the remote sensing imagery.

4.1. Habitats Characterization through Remote Sensing and Field Sampling

Orthophotos are often sufficient to remotely describe a habitat dominated by a single
species, forming homogeneous populations, such as mussels [77,78] or polychaete reefs [79]
that can be identified on a large scale. Eventually, species groups can be discriminated
(brown, red and green seaweeds) [43], but this differentiation is quickly overtaken when
studying complex ecosystems, showing an intricate microtopography, such as the European
rocky shores. In the present study, using hyperspectral imagery, seaweed habitats were
successfully differentiated (1) between them, (2) from substratum and (3) from seawater;
the spectral signature allowed a clear differentiation between them (Figure 6a) as already
reported in previous studies [13,42,75]. Moreover, the spectral signatures of five Fucales
species were also differentiated, allowing an accurate mapping of the study site and its
habitats. Here, two species of Fucus (F. serratus and F. spiralis), previously often gathered
as a single class [35,44,58], were also discriminated. Indeed, the rocky shore surveyed
during the present study showed a succession of several dominant fucoid species, with
a conspicuous increase of red seaweeds abundance in the low intertidal zone, as already
reported from previous studies in the area, using only field sampling [80,81]. However,
technical limitations were spotted: limpets and barnacles were impossible to discriminate
(although large limpets can be guessed) because of their heterogeneous distribution on
rocky shore and close spectral signature with substratum. The same issue was observed for
distinguishing red and green seaweed species, which were heterogeneously distributed
and can present similar spectra, or variations of spectra according to their health conditions
(e.g., pigment degradation, grazing, occurrence of epi/endophytes) [42,82,83].

In this study, we assigned several subclasses in the ‘Red’ one because of the dominance
in He-Ld by an assemblage of Mastocarpus stellatus/Chondrus crispus. That assemblage
masked the occurrence of several filamentous or turf red algae which were not identified
on hyperspectral images, but with the use of existing spectral libraries [82], it may be an
option [44]. In the same way, crustose and erect red macroalgae were also assigned in the
‘Red’ class for the same reasons, but with distinguishable patches, it could be possible to
create two different classes [42]. For further analysis, it would be interesting to refine classes
and to include more identified red species to the classification. The kelp Laminaria digitata
was not added to the classification due to residual seawater on the images. However, it
would be useful to separate that species as a spectral class due to its dominancy in the
upper sublittoral zone [44,58]. It would also be interesting to transfer the spectral library
created for other study sites to check if the method is interoperable.
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4.2. Comparison of the Two Classifiers

Our results showed that remote classification data were in agreement with covers
calculated from field sampling inside sampling spots, in spite of an approximation of 5%
for in situ estimations, and whatever spectral properties of brown macroalgae, which are
very similar [82,84] (Figure 6b).

MLC provided the best producer/user accuracies for dominating algae of three levels
(An, Fser and He-Ld) (Table 4) and SAM for two levels (An and He-Ld) (Table 5). Pc-Fspi
provided the lowest producer/user accuracy, with the lowest values for ‘F. spiralis’ for
the two classifications. This could be a site effect due to the lower extension of these
two species compare to the others in Porspoder, especially F. spiralis, which results in a
reduced pixels selection for the algorithms. Moreover, the fact that F. spiralis is found in
more shaded environments/crevices on this site could affect the data since shadows cause
serious difficulties for remote shooting [85]. There is also a clear misclassification between
P. canaliculata and F. spiralis, especially for MLC, which might be explained because of
forming confused communities with small size species, and similar colors, in this site.

In An, MLC was less accurate than SAM for A. nodosum. Due to the presence of the
red alga Vertebrata lanosa, which was not taken into account for the classifications, the
‘A. nodosum’ class was not considered as a ‘pure class’ and SAM had confusion overestimat-
ing ‘Red’ seaweed in An and Fser levels. There was also a little confusion in ‘A. nodosum’
with P. canaliculata, as in Rossiter et al. (2020) [58]. This confusion appeared in the upper
limit of A. nodosum distribution, where A. nodosum appeared brighter due to a stronger
light stress [86], with a color close to that of P. canaliculata. Not surprisingly, P. canaliculata
was also classified as A. nodosum when it was darker than usual.

The ‘Red’ class had a lower producer/user accuracy for the SAM classification, with
an overestimation in Fser to the detriment of F. serratus, which is underestimated (Table 5).
For that level, SAM is not a good descriptor at the site level.

On the processed images (Figures 7 and 8), many pixels were classified as ‘Green’,
despite a reduced cover of green seaweeds in the field data. This is mainly due to the
positioning of the spots on the shore, chosen because of a clear dominance by brown
macroalgae.

Both SAM and MLC misclassified pixels of H. elongata, with some occurrence in Pc-
Fspi, An and Fser, whereas this species does not develop in higher intertidal zones [7,87].
On the contrary, the high-level species F. spiralis could appear in An with both MLC and
SAM. An approach taking into account the bathymetric range (strongly affecting certain
species) could be determined using a lidar approach [88] and could solve such a problem,
considering the vertical zonation of species [17].

The MLC classification was found to be more accurate than SAM at the site level due
to better management of spatial heterogeneity of habitats by the MLC, and because SAM
does not consider the magnitude of pixels’ vectors. Moreover, groups of macroalgal species,
Fucales in particular, have close spectral similarities, which could partially explain the
lower accuracy of SAM [47,89]. Nevertheless, both supervised classifications mapped the
four bathymetric levels sampled in this study and both classifiers were able to separate
brown, red and green algae. At sampling spots scale, they provided similar results, so, they
can be used to compare macroalgal covers with accuracy. To refine the results, it could be
interesting to test an object-based classification that takes into account not only spectral
information but also the shape, size, texture, tone and the compactness [90,91] of objects.
In that prospect, macroalgae could be an interesting model due to various morphologies
and textures.

4.3. Consistency of Specific Identification and Perspectives

Automated macroalgal classification applied to shores dominated by a single fucoid
species is currently manageable [43]. However, discriminating and mapping Fucus spp.
remain a challenge, as seen in previous studies, in which Fucus spp. have been gathered
in a single mixed class [35,44,58]. Overall accuracy, used to estimate the quality of the
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classification [62,92], presented values indicating a clear distinction between F. spiralis and
F. serratus. Even though the final classification of the entire site of Porspoder pointed out
some pixels which were not correctly attributed, the entire distribution of pixels on the site
was consistent. The analysis by db-RDA did not show a significant influence by the method
in the distribution of the sampling spots, unlike the level. This may be related to the nature
of the site studied, with the Pc-Fspi level having much lower macroalgal covers than the An
and Fser levels, and to the spectral properties of each species. Moreover, the comparison
between in situ covers with MLC and SAM data showed no significant difference for most
classes (Figure 11), therefore, validating the algorithms as good descriptors for intertidal
macroalgal covers at sampling spots scale. This also confirm the db-RDA results; efficiency
does not depend on the method but on the studied bathymetric level. However, there were
more differences (at the site scale) with SAM which resulted in more misclassified pixels on
images (Figures 9 and A1–A3). So, the use of common algorithms could be perfectible, but
it does answer the problem of the study by classifying correctly macroalgal communities.
Other algorithms such as random forests or support vector machines might be considered
to estimate entire shores, as for coastal/terrestrial objects [93–97].

Indeed, the routine use of the hyperspectral method could be the subject of a long-
term study in an ecosystem monitoring context, particularly in the context of Fucales
regression on European coasts [98,99]. Indeed, since the last century, covers of some Fucales
species have decreased under the action of various factors such as the intensification of
grazing [100]. This trend is also well known and studied in various marine phanerogam
species [101], and also in kelp species, submitted to increasing grazing and/or heat waves
related to global change [102–104]. Indeed, hyperspectral imagery is already being used
in many ecosystems in the context of conservation biology [105,106]. Thus, the promising
results obtained in this work could serve as a basis for a conservation/monitoring program
of intertidal habitats.

5. Conclusions

In light of the results, MLC seems to be a better classifier for mapping a seaweed-
dominated rocky shore, with a more realistic achievement. To better assess the impact of
global change on coastal ecosystems, there is an increasing interest in remote sensing data
to evaluate the ecological state of corresponding habitats [107]. Otherwise, the community
approach in ecological surveys gives a good opportunity to better understand functional
traits of marine vegetation, including relationships with primary production [108,109].
In that context, this study gives for the first time a comparison of cover data for macroalgal
habitats obtained by both in situ sampling on the shore and hyperspectral imagery at a
centimeter resolution, and a consistent cartography of a site using well-known algorithms.

Our results go beyond the global distribution of macroalgal covers as inferred from
indices such as NDVI, VCI or IP [35,110,111], but rather provide information on the fine
scale repartition of species/groups of species on the shore.

Since coastal rocky shores integrate various and imbricated habitats, the UAVs ap-
proach developed here seems to be an adequate tool to evaluate the distribution of macroal-
gal communities/habitats at the site to geographical area level. Moreover, hyperspectral
imaging at the centimeter scale allows for a precise analysis of the seaweed habitat structure
in parallel to field monitoring.
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Appendix A

 
(a) 

 
(b) (c) (d) 

Figure A1. (a) Picture of a sampling spot on the An level at Porspoder taken during field sampling
in May 2021. (b) NIR-G-B image of the same sampling spot. (c) Result of the MLC classification.
(d) Result of the SAM classification. The black square corresponds to the mobile grid structure used
for field sampling. Color code in (c,d) corresponds to the following classes: ‘P. canaliculata’ (brown),
‘F. spiralis’ (yellow), ‘A. nodosum’ (purple), ‘F. serratus’ (Coral), ‘H. elongata’ (orange), ‘Red’ algae (red),
‘Green’ algae (green), ‘Substratum’ (grey) and ‘Water’ (blue).
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(a) 

 
(b) (c) (d) 

Figure A2. (a) Picture of a sampling spot on the Fser level at Porspoder taken during field sampling
in June 2021. (b) NIR-G-B image of the same sampling spot. (c) Result of the MLC classification.
(d) Result of the SAM classification. The black square corresponds to the mobile grid structure used
for field sampling. Color code in (c,d) corresponds to the following classes: ‘P. canaliculata’ (brown),
‘F. spiralis’ (yellow), ‘A. nodosum’ (purple), ‘F. serratus’ (Coral), ‘H. elongata’ (orange), ‘Red’ algae (red),
‘Green’ algae (green), ‘Substratum’ (grey) and ‘Water’ (blue).
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(a) 

 
(b) (c) (d)  

Figure A3. (a) Picture of a sampling spot on the He-Ld level at Porspoder taken during field sampling
in April 2021. (b) NIR-G-B image of the same sampling spot. (c) Result of the MLC classification.
(d) Result of the SAM classification. The black square corresponds to the mobile grid structure
used for field sampling. Color code in (c,d) corresponds to the following classes: ‘P. canaliculata’
(brown), ‘A. nodosum’ (purple), ‘F. serratus’ (Coral), ‘H. elongata’ (orange), ‘Red’ algae (red), ‘Green’
algae (green), ‘Substratum’ (grey) and ‘Water’ (blue).
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Abstract: On 9 January 2018, Carpinteria Salt Marsh Reserve received a large quantity of sediment
following debris flows in Montecito, California. Because disturbances potentially impact the ecosys-
tem services and functions that wetlands provide, an understanding of how the ecosystem responded
to the debris flows is important for the management of salt marsh systems. However, a lack of field
data before and after this disturbance makes this task impossible to complete by field methods alone.
To address this gap, we used Sentinel-2 satellite imagery to calculate landcover fractions and spectral
indices to produce maps of landcover before, during, and after the debris flow using a random forest
classifier. Change detection showed that vegetation extent in November 2020 approached pre-debris
flow conditions. While total vegetated area experienced little net change (0.15% decrease), there was
a measurable change in the areal extent of vegetation type, with high marsh vegetation transitioning
to mid marsh vegetation in regions that initially showed an increase in bare soil cover. These results
are uniquely quantifiable using remote sensing techniques and show that disturbance due to debris
flows may affect ecosystem function via plant community change. These impacts will need to be
taken into consideration when managing wetlands prone to depositional events.

Keywords: remote sensing; wetland change; change detection; random forest classifier; Salicornia pacifica

1. Introduction

Coastal salt marshes are dynamic ecosystems found at the interface between marine
and terrestrial environments. These productive ecosystems play important roles in coastal
resilience via a variety of ecosystem services, such as accreting sediments, sequestering
carbon, and providing habitat for a rich range of biota [1,2]. However, as little as 10% of
California’s historical wetland cover remains today [3]. This decrease in wetland cover is
likely to worsen with the potential increased frequency of disturbances that further reduce
and degrade wetland cover, such as sea level rise, coastal erosion, deposition, and anthro-
pogenic marine debris [4–6]. In Santa Barbara County, CA, a series of large debris flows
known as the Montecito Debris Flows exemplify a large-scale depositional disturbance
to both built and natural environments, including wetlands. The increasing frequency of
events related to climate change, such as fires, hurricanes, and altered hydrology, will likely
increase the potential for further debris flows, both locally and globally [7]. To mitigate the
impacts of disturbance, management should include the effects of disturbances from debris
flows in the understanding of marsh form and function. For instance, sediment deposition
is a common and important process in many marshes, with deposition due to hurricanes
frequently studied and found to provide sediment important for nutrient delivery and the
ability to offset sea level rise [2,5]. In contrast, anthropogenic marine debris, such as fishing
gear and wooden poles, has been found to damage plant tissues in marshes [4]; meanwhile,
oiling has been found to temporarily increase shoreline loss of affected wetlands [8].

Debris flows are an episodic depositional disturbance event; however, there is little
literature studying them in wetlands. Furthermore, many studies examining disturbance
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events in salt marshes have focused on the Gulf of Mexico and the east coast of the
U.S. [4,5,8–11]. However, the disturbances that are common in those regions, such as
hurricanes, are not common on the west coast of the U.S., where debris flows are more
common. As such, the question of how the Montecito Debris Flows impacted the marsh
is of interest. However, addressing this question with field methods is complicated by
the fact that the unpredictability of the event meant that field data could not be collected
prior to the event. Furthermore, a combination of manager-led mechanical dredging and
inundation by exceptionally high tides, also known as king tides, removed sediment from
the marsh and limited the ability to collect field data following the event. Remotely sensed
data, however, were collected before and following the event and could be used to assess
impacts of the debris flow on the marsh.

Remote sensing has been used for change detection, biomass estimation, and land
cover classification in wetlands with a large range of applications [9,12]. Due to recent
advances in sensor design and data analysis, remote sensing is becoming more practical
for monitoring natural and anthropogenic changes in coastal systems [12]. Prior studies
have recommended a variety of sensors (e.g., Landsat, imaging spectrometers, LiDAR,
Planetscope, and drone data), techniques (e.g., maximum likelihood classification, Multiple
Endmember Spectral Mixture Analysis (MESMA), reclassification, random forest, and post-
classification change detection), and indices (e.g., normalized difference vegetation index)
to monitor coastal wetland conditions [6,8,9,11,13–17]. Sensor and spectral vegetation
index recommendations vary depending on the wetland type and the characteristics that
are being assessed. Index recommendations are more dependent on the type of wetland
being assessed.

Several approaches have been used to classify land cover in wetlands. One study
implemented the use of fractional cover of different endmembers—spectra from pixels
that are representative of a land cover, obtained by spectral mixture analysis (SMA) and
MESMA [18]—in the classification of a marsh in the southern San Francisco Bay [12]. While
both MESMA and SMA have challenges, MESMA was found to provide a more accurate
representation of fractional cover, especially if 4- or 5-endmember models were used with
more than one endmember per class [12]. Peterson et al. (2015) used MESMA on airborne
visual/infra-red imaging spectrometer (AVIRIS) data to detect oil-impacted regions of
coastal salt marsh in Barataria Bay, Louisiana with high accuracy of detecting oiled vs. non-
oiled marshes (87.5% to 93.3%) [11]. Beland et al. (2017) used these maps and image change
analysis to determine that oiling temporarily accelerated land loss in coastal marshes [8].
These studies highlight the effectiveness of MESMA as a technique for classifying wetland
landcover and detecting areas affected by disturbance.

Other classification methods have also been used for tracking change. Tuxen et al.
(2008) used NDVI to track vegetation colonization in Petaluma River Marsh after tidal
restoration via post-classification change detection [19]. They concluded that NDVI can
be used to discriminate vegetated and non-vegetated portions of marshes and is robust to
human interpretations of NDVI [19]. Another study used Breaks For Seasonal and Trend
(BFAST) and random forest classification on monthly NDVI products made from Landsat
(5, 7, 8) and MODIS/Landsat fill-in images to perform change detection in forested wetlands
with a classification accuracy of 92.96% and change detection accuracy of 87.8% [17]. Parihar
et al. (2012) used maximum likelihood classification on Landsat MSS and TM data to track
changes in the East Kolkata Wetlands in the absence of ground data, although the accuracy
of this method was between 73.80% and 79.33% [14]. Im et al. (2008) showed that object-
based land cover classification with high accuracies (>90%) can be achieved with solely
using a high point density LiDAR data [20].

In this study, we use random forest classification and change detection to assess how
the Montecito Debris Flows impacted landcover in Carpinteria Salt Marsh Reserve. Our
main objectives were: (1) classification of marsh landcover before and after the debris flows,
(2) identification of what change in landcover had occurred and possible implications,
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(3) identification of important classification variables, and (4) assessment of how accurately
random forest classification could map marsh landcover.

2. Materials and Methods

2.1. Event and Site Description

In December 2017, the Thomas Fire burned an area of 1140 km2 in the Santa Ynez
Mountains, making it the largest fire in California’s history at the time [21,22]. Following
the fire, the burned areas experienced an increased risk of debris flows, and, in early January
2018, a heavy rain event mobilized soils from the burn area and triggered a depositional
event known as the Montecito Debris Flows [22]. The debris flows deposited approximately
680,000 m3 of sediment across urban and natural areas along the Santa Barbara Coast [22].
In addition to at least 3 fatalities, 167 injuries, and 408 damaged homes, the Carpinteria
Salt Marsh Reserve, an ecological study reserve operated by the University of California,
received a large deposition of sediment.

Carpinteria Salt Marsh Reserve (CSMR), located in Carpinteria, CA (34.4012◦ N,
119.5379◦ W), is situated between California Highway 101, downtown Carpinteria, and the
Pacific Ocean (Figure 1). The wetland is a heterogeneous landscape made up of 93 hectares
of annual and perennial herbs and grasses, transitional upland habitat, water channels,
and mud flats [6]. The plant community can be split into two main categories: mid marsh,
primarily dominated by Salicornia pacifica (formerly Salicornia virginica, pickleweed), and
high marsh, which is a mix of Salicornia pacifica, Jaumea carnosa (marsh jaumea), Distichlis
littoralis (shore grass), Arthrocnemum subterminale (Parish’s glasswort), Frankenia salina
(alkali heath), and a few other less abundant species [6,23]. Water inputs come largely from
tidal inundation and from water inlets in the eastern portion of the marsh that allow for
input from further inland [24].

Figure 1. Carpinteria Salt Marsh Reserve with study extent outlined. Imagery courtesy of USDA
National Agriculture Inventory Program.

2.2. Data Description and Correction

The imagery used in this study is Sentinel-2 A and B data produced by the European
Space Agency. The mission is composed of two multispectral satellites that collect images
that cover a large spatial extent, have a fine spatial resolution (up to 10 m for half the
electromagnetic bands they detect), and a five day revisit time using both sensors. Both
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satellites carry optical sensors that sample in 13 spectral bands at varying spatial resolutions
(Table 1) [25,26]. The high temporal resolution of the two satellites allowed us to assemble
a time series for quantifying marsh change despite the variable cloud cover and inundation
of CSMR which would prevent accurate image analysis. Imagery dates were selected
to represent similar times of year, tide, and cloud cover. Four dates were selected to
establish pre-flow, immediate, and post-flow conditions (approximately one and three
years after the initial Montecito Debris Flows). Imagery from 13 November 2017 was
used for pre-flow conditions as it was the date closest to the debris flow in which the
marsh was not flooded or covered by clouds. Imagery from 12 January 2018 represented
the immediate conditions as the data were collected three days after the flow occurred
and before mechanical clean up and king tides occurred. Lastly, 3 November 2018 and
12 November 2020 imagery represented two recovery steps and were chosen to be consistent
with the pre-flow November image. No November 2019 imagery was selected, as all
available images were collected when there was either dense cloud cover or the marsh was
inundated by high tide. All Sentinel-2 imagery was downloaded from the USGS Earth
Explorer portal [27].

Table 1. Sentinel-2 band descriptions.

Band
Resolution

(m)
Central

Wavelength (nm)
Bandwidth

(nm)
Description

B1 60 443 21 Ultra blue (Coastal and Aerosol)

B2 10 490 66 Blue

B3 10 560 36 Green

B4 10 665 31 Red

B5 20 705 15 Visible and Near Infrared (VNIR)

B6 20 740 15 Visible and Near Infrared (VNIR)

B7 20 783 20 Visible and Near Infrared (VNIR)

B8 10 842 106 Visible and Near Infrared (VNIR)

B8a 20 865 21 Visible and Near Infrared (VNIR)

B9 60 940 20 Short Wave Infrared (SWIR)

B10 60 1375 31 Short Wave Infrared (SWIR)

B11 20 1610 91 Short Wave Infrared (SWIR)

B12 20 2190 175 Short Wave Infrared (SWIR)

Imagery was preprocessed in the Sentinel Application Platform (SNAP) prior to being
implemented in ENVI Classic 5.5.3 [28,29]. First, the Sen2Cor SNAP add-on was used to
perform atmospheric correction to obtain bottom of atmosphere L2A imagery from the
top of atmosphere L1C imagery downloaded from the USGS [30]. This process produced
12 atmospherically-corrected L2A bands. Once corrected, bands 1, 9, and 10 were removed
as they are primarily used for atmospheric properties and are too coarse (60 m resolution) to
be used in assessment of the fine scale change in the marsh. The remaining 20 m resolution
bands (bands 5, 6, 7, 8A, 11, and 12) were then resampled using pixel replication to match
the 10 m resolution of bands 2, 3, 4, and 8. Resampled and native 10 m resolution bands
were layer stacked for further processing in ENVI.

High density LiDAR was also used in addition to Sentinel-2 imagery to assess condi-
tions immediately after the debris flows occurred (January 2018). The LiDAR data were
collected over the areas affected by the debris flows soon after the event by the Federal
Emergency Management Agency (FEMA) at a density of at least 4 points per square me-
ter [31]. LiDAR data were corrected and processed using the BCAL add-on for ENVI [29,32].
Data were height filtered at a threshold of 30 m with a 10 m search window. Height filtered
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data were then processed using last returns into a digital terrain model (DTM) with 10 m
resolution to match Sentinel-2 data.

2.3. Spectral Analysis

Before classification, corrected Sentinel-2 images were processed to obtain fractional
cover and to calculate the normalized difference vegetation index (NDVI) and modified
anthocyanin reflectance index (mARI).

Fractional cover was obtained via MESMA using the following steps. First, two
spectral libraries were generated using the November 2017 and January 2018 processed
images. Endmembers were selected based on site knowledge and similarity of spectra to
those that would be expected for each landcover class (November endmember spectra
are shown in Figure 2). Both libraries had endmembers selected to represent four broad
landcovers that are expected in the marsh: non-photosynthetic vegetation (NPV), green
vegetation, bare soil, and subtidal (water). Libraries were optimized using the endmember
average root mean square error (RMSE) (EAR) [33], minimum average spectral angle
(MASA) [34] and count-based endmember selection (CoB) [35], or the EMC option in VIPER
Tools, and included a minimum of four sample endmembers per landcover class [36]. The
November library was used for the pre-debris and two recovery images. The January 2018
image had a separate spectral library for the unique conditions that were expected around
the debris flow.

 
Figure 2. Spectral library for November 2017. Axes are (x-axis) wavelength in nm and (y-axis)
reflectance values. Spectral signatures for (a) bare soil, (b) green vegetation, (c) non-photosynthetic
vegetation (senesced), and (d) subtidal cover classes. Colors used for visual differentiation of the
different endmembers.

With the libraries generated, MESMA was performed to obtain fractional cover for all
four dates. Endmember models used were 2-, 3-, 4-, and 5-endmember models to ensure
the inclusion of the model approaches recommended by Rosso et al. (2005) [12]. All models
were constrained to fractional cover between 0.0 and 1.0, shade fraction between 0.0 and
0.8, and a maximum RMSE of 0.025. This process produced fractional cover for the four
endmember classes for each date (Figure 3 for example).
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Figure 3. Fractional cover for November 2020 shown as an example of MESMA results. Scale indicates
proportion of pixel that is made up of respective endmembers or shade. Pixels with a 0% cover were
removed for visual clarity.

To further build on the data that would guide the classification of CSMR, two vege-
tation indices were calculated from the Sentinel-2 imagery: NDVI (Equation (1)) [37] and
mARI (Equation (2)) [38,39].

NDVI =
(NIR − RED)

(NIR + RED)
=

(Band8 − Band4)
(Band8 + Band4)

, (1)

NDVI is one of the vegetation indices recommended in the literature for wetland
analysis and was found to be one of the more important factors in classifying landcover
classes in CSMR in prior work [6,9,10,19].

mARI = 800 nm ·
(

1
550 nm

− 1
700 nm

)
= Band8 ·

(
1

Band3
− 1

Band5

)
, (2)

mARI is used to detect the levels of anthocyanins, a family of red pigments that can be
related to stress and senescence in plants [40]. Anthocyanin content in Salicornia pacifica
has been found to increase in the fall and winter [41]. Therefore, mARI has the potential
to further help the classification of both senesced vegetation and a dominant marsh plant
in CSMR.

Once the Sentinel-2 and LiDAR products were produced, data were layer stacked prior
to the creation of training data. Training data were produced for five landcover classes—
bare soil, high marsh, mid marsh, senesced, and subtidal—by selecting reference polygons
that matched regions of corresponding landcover from an expert map and from a report of
landcover prior to the debris flow developed by Myers et al. (2017) (see Table 2) [23]. The
high marsh class represents a mixed plant community of Salicornia pacifica, Arthrocnemum
subterminale, Frankenia salina, and Distichlis spicata. Mid marsh represents portions of the
marsh dominated by S. pacifica. The senesced landcover is composed of upland regions
dominated by non-native shrubs and grasses [23]. Training data were collected for each
date by creation of rectangular polygons in ArcGIS (Table 2 and Supplementary Materials
Table S1) [42]. Training data and layer stacked images were analyzed in R [43].
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Table 2. Polygon counts and decision metrics for training data generation.

Polygon Counts

Class November 2017 January 2018 November 2018 November 2020 Metric

Bare soil 10 11 17 13 High Bare Soil Fractions, Low
NDVI, Low mARI

High Marsh 5 5 10 7 High Green Vegetation Fraction,
High NDVI, High mARI

Mid Marsh 12 7 16 13
Moderate-High NDVI, Mixed

Green Vegetation Fractions and
Bare Soil Fractions

Senesced 8 5 8 5
High Non-photosynthetic
Vegetation Fractions, Low

NDVI, High mARI

Subtidal 20 7 21 19 High Subtidal Fractions,
Low NDVI

2.4. Random Forest and Change Detection

We used a random forest classifier to assign landcover class to each pixel. Random
forest is a machine learning technique that automates the categorization of data by running
a datapoint (e.g., a pixel) through a set number of decision trees and picking a finalized
landcover class via majority vote. Pixel values were first extracted from the layer stacked
images with the values and associated landcover recorded into a data frame, which was
then filtered to remove variables with NA/NULL values. The data frame was then read
into the random forest algorithm, with n = 500 decision trees. This process produced
classified maps of the five landcover classes. Additional outputs include: (1) variable
importance, a measure that identifies which layer stack inputs were important in the
landcover classification; (2) mtry accuracy, an accuracy assessment metric of the final model;
and (3) kappa values, a secondary accuracy assessment metric. Final model selection and
accuracy assessment were done via k-fold cross validation. Post-classification change
detection was performed in ENVI using the change detection statistics option. Dates were
compared to each other in both chronological order (i.e., November 2017 to January 2018,
November 2018 to November 2020) and net order (November 2017 to November 2020).
Comparing the dates this way allowed us to track landcover and to obtain extent for all
five classes as time progressed, thus obtaining net change for each landcover class in the
system. ENVI reported change statistics in terms of pixel count, area in square meters,
and percentage change. These statistics include class differences and image differences.
Percentage change was recalculated using both pixel count and area and used in place of
the ENVI reported percentages.

3. Results

3.1. Random Forest

Variable importance was used to determine which of the random forest inputs were
most important in the landcover classification of CSMR. Variable importance was measured
by the mean decrease in Gini index (Gini value), a measure in which higher values indicate
higher importance in the model (Table 3) [44]. From this measure, NDVI and green
vegetation fraction were the most important variables in three of the four years. NDVI
and green vegetation fractions did not have the highest importance in January 2018 and
November 2020, respectively. Secondary variables that also had high importance were
mARI, bare soil fractions, and senesced vegetation. Recovery time steps had greater mARI
importance compared to the earlier dates. Shade fractions and subtidal fractions had
the lowest amount of importance in many of the dates. The bare surface model (digital
elevation) was only available and used for January 2018 but had moderate importance in
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the model. LiDAR was not used for other dates due to expected differences in surface from
time of the debris flow to later dates. Additionally, January 2018 had the lowest values for
decrease in Gini index, and this could be linked to having more variables to use and/or
high solar zenith angle.

Table 3. Variable importance across dates (mean decrease in Gini index).

Date
Soil

Fraction
Green Veg

Fraction
Senesced
Fraction

Subtidal
Fraction

Shade
Fraction

NDVI mARI
Digital
Terrain

November 2020 62.24 58.33 45.79 31.21 46.56 109.52 99.69

November 2018 55.01 63.01 25.91 50.83 20.55 60.63 17.14

January 2018 31.07 43.72 41.79 28.53 8.96 17.28 4.87 23.17

November 2017 40.61 94.05 60.13 23.08 34.99 83.23 21.95

Final model selection was done via k-fold cross validation where models with the
lowest error were selected as the final model, with accuracies being reported for each
number of splits tested. The number of splits that occur at each node within a decision tree is
indicated by mtry; the random forest model then selects the mtry with the highest accuracy
as the final prediction. The final mtry accuracy values (mtry = 2, 8, 2, and 2 respectively,
Table 4) were high for all four dates—99.5%, 93%, 95.6%, and 97.1%, respectively—with
similar kappa values—99.3%, 91.1%, 94.3%, and 96.3%.

Table 4. Class error and final model accuracy across dates.

Class

November 2017 January 2018 November 2018 November 2020

User’s
Error

Producer’s
Error

User’s
Error

Producer’s
Error

User’s
Error

Producer’s
Error

User’s
Error

Producer’s
Error

Bare Soil 0.103 0.062 0.038 0.05 0.020 0 0.061 0.013

High Marsh 0 0 0.017 0.048 0 0 0.006 0.011

Mid Marsh 0.030 0.072 0.171 0.105 0 0.024 0.071 0.064

Senesced Veg. 0.019 0.088 0 0 0.018 0 0 0.009

Subtidal/Water 0.12 0.029 0.1 0.1 0 0 0.061 0.089

Accuracy Kappa Accuracy Kappa Accuracy Kappa Accuracy Kappa

Final Model Accuracy 0.995 0.993 0.930 0.911 0.956 0.943 0.971 0.963

Landcover class accuracy was measured via producer’s and user’s error and allows
for the assessment of the mapping of individual landcover classes (Table 4). High marsh
vegetation was most accurately mapped with low user’s and producer’s error across all
dates. Subtidal and mid marsh had the greatest amount of user’s and producer’s error,
especially in January 2018. Subtidal cover had the greatest confusion with mid marsh
vegetation and bare soil, while mid marsh was confused with bare soil and subtidal. Error
within the subtidal and mid marsh classes was below 10% for most dates, and classification
for the two classes remained relatively accurate.

3.2. Post-Classification Change Detection

The random forest classifier produced four landcover maps for CSMR (Figure 4). Each
map shows the extent of the five landcover classes—bare soil, high marsh, mid marsh,
senesced, and subtidal—and represents different states of disturbance and recovery. The
high marsh landcover had the most area in November 2017 and January 2018, and mid
marsh vegetation was the largest landcover class in November 2018 and 2020 (Figures 5
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and 6). Senesced vegetation and subtidal landcover experienced little change compared to
bare soil, high marsh, and mid marsh vegetation (Figures 5 and 6).

Figure 4. Maps produced by the random forest classification. Maps depict the extent of bare soil,
high marsh, mid marsh, senesced vegetation, and subtidal/water landcover. Top to bottom, left to
right: (a) November 2017, (b) January 2018, (c) November 2018, and (d) November 2020. (Projection:
NAD 84 UTM Zone 11).

Figure 5. Percent cover for each landcover class in CSMR stacked by date.
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Figure 6. Difference of landcover class area (ha) compared to pre-flow conditions (November 2017).
Bars are clustered by date.

The post-classification change detection showed a 19.1 ha increase in bare soil coverage
between November 2017 and January 2018 (Figure 6). This amounted to 27.69 ha (~29%) of
the marsh being covered in bare soil immediately following the debris flow (Figure 5). In
November 2020, bare soil coverage decreased by 15.52 ha when compared to January 2018,
a decrease of bare soil coverage to 12.17 ha (~16%) of total marsh area (Figure 5). Between
November 2017 and November 2020, there was a 2.66 ha (~31%) net increase in bare soil
coverage in the marsh (Figure 6).

On the other hand, overall marsh vegetation (high marsh + mid marsh) coverage
experienced little change, with only a 0.1 ha (0.15%) net decrease in total vegetation
coverage between November 2017 and November 2020 (Figure 5). However, when split
into the two respective vegetation landcover classes, we find that high marsh vegetation
coverage decreased as mid marsh vegetation increased (Figure 6). There were a few areas
where change in landcover was prominently seen in the landscape, especially areas that
were high marsh vegetation and/or near areas covered by bare soil that changed to mid
marsh vegetation, such as near the salt pan in the northeast (Figure 7c) and some of the
mudflat region in the western portion of the marsh (Figure 7a,b).
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Figure 7. Maps highlighting areas where landcover change is most prominent. (a) High marsh to mid
marsh conversion, (b) difference in mudflat extent, and (c) difference in salt pan (soil) and vegetated
(mid marsh) perimeter. (Projection: NAD 84 UTM Zone 11, converted to lat/long).

4. Discussion

4.1. Model Accuracy

The accuracy metrics (mtry accuracy, kappa, producer’s and user’s error) suggested
that landcover was accurately mapped by the random forest classifier and that the pro-
duced maps were reliable for use in change detection. The accuracy of the random forest
classification is comparable to that of other wetland classifications. For example, Wu et al.
(2020) also performed a random forest classification for a subtropical wetland that had a
similar overall accuracy value of 92.96% compared to this study’s average of 96.3% [17].
The model also performed as well as or better than classifications done using other methods
such as maximum likelihood classification, iso-cluster unsupervised classification, or reclas-
sification/recoding of vegetation indices [14,16,19]. The random forest classification done
here was more accurate than the maximum likelihood classification done by Parihar et al.
(2012), with an average accuracy of 96.3% vs. 76.5%, respectively [14]. When compared to
Tuxen et al. (2007), the random forest did approximately the same or slightly better than
reclassification, with reclassification having accuracy values of 81.4% and 96.3% compared
to our average accuracy of 96.3% [19]. Iso-cluster classification on NDVI did somewhat
better than the random forest, with accuracy values of 97.3%, 97.5%, 97.6%, and 98.0% for
the respective dates [16].

High marsh had the highest accuracy, while the mid marsh class had high user’s and
producer’s errors. As mid marsh is one of the classes that experienced the most change
following the debris flow, any error present in its classification presents a problem; however,
this error only exceeds 10% in January 2018 (user’s: 17.1%, producer’s: 10.5%) and is within
acceptable margins for all other dates. Possible sources for the error include: (1) training
data may have included misclassified pixels and introduced error to the corresponding
landcover class, (2) pixels may have had values similar to that of multiple landcover classes,
(3) resampled 20 m resolution Sentinel-2 bands may have still been too coarse to assess
changes in the marsh, and (4) the use of a different spectral library for January 2018 may
have led to lower accuracies for this date. To remedy this, the use of data from higher
spatial resolution sensors may be useful in reducing the frequency of mixed pixels and the
need for fractional cover. Additionally, higher spectral resolution may improve the building
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of spectral libraries that can better differentiate between endmember classes, which then
improves inputs into the random forest model.

4.2. Landcover Change and Ecological Implications

A majority of the landcover change occurred in bare soil, high marsh, and mid marsh
vegetation. Bare soil area increased by 222% following the debris flows and dropped
considerably in area by November 2018, likely due to the mechanical clean-up effort and
king tides which removed a large amount of the sediment. Bare soil continued to decrease
until there was only a net 31% increase in bare soil by November 2020. This may indicate
that the marsh was still recovering from the debris flows and would continue to change
over time.

Total vegetated area in the marsh showed little change over the 3 years, with only a
0.15% decrease in total marsh vegetation between November 2017 and November 2020.
However, change was occurring, which is apparent when total vegetation is broken down
into community types (high vs. mid marsh) and compared. High marsh (a mixed commu-
nity of Salicornia pacifica, Arthrocnemum subterminale, Frankenia salina, and Distichlis spicata)
area decreased by about the same amount that mid marsh (primarily only S. pacifica) area
increased, creating the illusion of little change in vegetated area. The post-classification
change detection showed that this shift from high to mid marsh community primarily
occurred near areas that had been covered by bare soil following the debris flow.

The conversion to mid marsh vegetation from high marsh vegetation signifies a
decrease in plant biodiversity as the community shifts from a mixed community to one
that is largely composed solely of S. pacifica. This change in diversity poses some ecological
challenges important to long-term wetland management. Studies have shown that a less
diverse community is less resilient to the effects of disturbance, and spatial heterogeneity is
important in the enhancement of the resilience of ecosystem functions [45]. Less resilience
may dictate a need for more management intervention following disturbances, especially
as the frequency of disturbances, such as wildfire, sea level rise and flooding, and landslide
and mudslide damage, are predicted to increase with global climate change [7]. Studies
have found that the addition of sediment via depositional events can promote plant growth
by the delivery of mineral nutrients [5]. These nutrients may promote increased primary
productivity by providing limiting nutrients. However, biodiversity has also been found
to be positively linked to primary productivity and its temporal stability [46]. A trend of
conversion from a mixed community of several plant species to one made of primarily
only one plant species may have harmful repercussions for marsh productivity and other
ecosystem services and functions. Determining whether this change to a less diverse
community is a permanent change or only a short-term condition as the marsh recovers
from the debris flow would require analysis of a longer time series of imagery over several
years following the debris flows.

Sea level rise (SLR) is a challenge for the conservation of coastal wetlands, especially
in developed regions, as rising sea levels contribute to coastal squeeze, leading to landcover
change, fragmentation, and eventual loss of coastal marshes [47]. Sediment deposition
and soil accretion are viewed as important processes for the offsetting of SLR [5,48]. How-
ever, our results imply that debris flow deposition is also leading to landcover and plant
community change. While there are not clear policy implications from this work, beyond
possibly assisted restoration, landcover change may become an important consideration
when planning for the management of coastal wetlands that can be prone to depositional
events; this study is an important example of how to inform those plans in the absence of
field data.

4.3. Limitations and Challenges

As discussed above, the resolution of remotely sensed data is important in the assess-
ment of the fine scale changes that occur in marsh ecosystems. Some Sentinel-2 bands do
not have a native 10 m resolution and, therefore, have pixels that represent an average
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of a larger mix of landcover types. Resampling, as conducted in this study, only splits
this coarser data into smaller pixels and not into its disaggregated components. Therefore,
landcover classification would benefit from a sensor where all bands have the same fine
spatial resolution, such as unmanned aerial vehicles. High density LiDAR for more dates
would also help in the assessment of biomass and vertical landcover differences such as
water in channels vs. plants in upland regions. In addition, the baseline landcover prior
to the debris flow was limited to a single date due to cloud cover, tide, and the length of
historical record. Baseline assessments could be improved by using a sensor with a longer
history or by using multiple dates per year. Ground reference data were also scarcely
available due to the lack of prior field data to compare against classification of historical
imagery and due to the COVID-19 pandemic limiting ability to go into the field to collect
such data, hence the emphasis on other accuracy metrics. The results are also limited in
their predictive power. For example, the rate at which sediment is being removed from the
system or identification of whether the recently mapped sediment was the same sediment
that had been deposited during the debris flow cannot be properly ascertained from these
data. The processes leading to the conversion of high marsh to mid marsh vegetation also
cannot be directly detected from these data.

5. Conclusions

Post-classification change detection tracked change in the five different landcover
types in CSMR and found that mid marsh, high marsh, and bare soil landcover changed
most dramatically in the dates studied. Total marsh vegetation (high marsh + mid marsh)
cover returned to similar levels to those before the debris flows; however, assessing change
as total marsh vegetation, as was the initial frame of the research question, does not
lead to a robust conclusion. Areas that were covered in debris transitioned from high
marsh vegetation to mid marsh vegetation despite total vegetated area remaining relatively
unchanged. This transition has important ecological implications for marsh productivity
and resilience to disturbance that continue after the debris is removed from the system.

The method used here shows promise in being applied to other depositional distur-
bances to wetland systems. For example, the random forest model identified important
classification variables that can be used to classify marsh landcover without field-based
data. The method can also serve as an important first step in the identification of regions of
interest that can be used to inform field campaigns to address further questions that arise
from the use of remote sensing (e.g., a field campaign to assess the factors that are leading
to the transition from high marsh to mid marsh vegetation).

The Montecito Debris Flows provided a unique opportunity to study debris interac-
tions with marshes in a context different than what is known from previous studies which
more commonly focused on hurricane deposition. Data and information are an impor-
tant part of making informed management decisions, and this study provides a successful
demonstration of the use of post-classification change detection to assess wetland landcover
response to an episodic event and the data that can be expected from such an assessment.
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Abstract: Kelp forests are commonly classified within remote sensing imagery by contrasting the
high reflectance in the near-infrared spectral region of kelp canopy floating at the surface with the
low reflectance in the same spectral region of water. However, kelp canopy is often submerged
below the surface of the water, making it important to understand the effects of kelp submersion
on the above-water reflectance of kelp, and the depth to which kelp can be detected, in order to
reduce uncertainties around the kelp canopy area when mapping kelp. Here, we characterized
changes to the above-water spectra of Nereocystis luetkeana (Bull kelp) as different canopy structures
(bulb and blades) were submerged in water from the surface to 100 cm in 10 cm increments, while
collecting above-water hyperspectral measurements with a spectroradiometer (325–1075 nm). The
hyperspectral data were simulated into the multispectral bandwidths of the WorldView-3 satellite and
the Micasense RedEdge-MX unoccupied aerial vehicle sensors and vegetation indices were calculated
to compare detection limits of kelp with a focus on differences between red edge and near infrared
indices. For kelp on the surface, near-infrared reflectance was higher than red-edge reflectance. Once
submerged, the kelp spectra showed two narrow reflectance peaks in the red-edge and near-infrared
wavelength ranges, and the red-edge peak was consistently higher than the near-infrared peak. As
a result, kelp was detected deeper with vegetation indices calculated with a red-edge band versus
those calculated with a near infrared band. Our results show that using red-edge bands increased
detection of submerged kelp canopy, which may be beneficial for estimating kelp surface-canopy
area and biomass.

Keywords: kelp; hyperspectral; multispectral; red-edge; near-infrared; satellite; unoccupied aerial
vehicle; remote sensing

1. Introduction

Kelp forests are highly productive three-dimensional coastal marine habitats [1,2] that
provide a number of environmental services and contribute substantial economic value
to coastal communities globally [3]. In the northeast Pacific, the two dominant surface-
canopy forming kelp species, Nereocystis luetkeana and Macrocystis pyrifera [4], stabilize
shorelines via wave dampening [5,6], support economically important fisheries [7,8], and
are commercially harvested for various purposes [9,10]. However, both kelp species are
subject to high spatial and temporal variability, correlated with biotic and abiotic drivers of
change [11,12]. As such, resource managers are incentivized to monitor the status of these
kelp forests, and the corollary effects of the ecosystem services they provide [10,12,13], a
task that has been facilitated by remote sensing since the mid-20th century [12,14].

Generally, the remote sensing of surface-canopy forming kelp forests aims to detect
the portion of the kelp that forms a canopy, floating at the water’s surface; using sensors

Remote Sens. 2022, 14, 2241. https://doi.org/10.3390/rs14092241 https://www.mdpi.com/journal/remotesensing75



Remote Sens. 2022, 14, 2241

aboard Earth Observation Satellites (EOS) [15,16], piloted aircraft [10,12], and Uncrewed
Aerial Vehicles (UAVs) [17]. In order to use the data provided by remote sensing platforms
effectively, it is crucial to understand factors that influence the spectral signature of kelp
canopy in water [16]. Floating kelp canopy has high reflectance in the near-infrared
wavelength range (NIR) (700–1000 nm), which contrasts with the high NIR absorption
by the surrounding water, allowing for binary classification of floating kelp canopy and
water within an image [14]. However, there are numerous considerations (e.g., sun glint,
bathymetry, turbidity; see [13,16]) that can reduce the separability between the spectral
values of kelp canopy and water. One crucial factor that can affect the ability to detect kelp
canopy is the submersion of the canopy by tides and associated tidal currents, which can
dampen the NIR reflectance of kelp and lead to potential errors when estimating kelp area
or biomass [17,18].

In an attempt to minimize classification errors associated with kelp submergence,
remote sensing imagery is often acquired at low tides during the peak growing season
(mid-late summer) when the majority of the kelp canopy is floating at the water’s sur-
face [10,18,19]. However, there are multiple reasons why a remote sensor may also want
to detect the submerged portion of the kelp canopy. For example, the northeast Pacific
coastline often experiences non-ideal weather conditions for remote sensing data acquisi-
tion, leading to imagery being opportunistically collected at higher than ideal tidal heights
when more kelp canopy is more likely to be submerged compared to ideal low tide condi-
tions [13,16]. Further, the fixed rate of EOS orbits may result in some regions only having
imagery available during high tides even if acquisition conditions are otherwise ideal [13].
Even if remote sensing imagery is captured during ideal tide and weather conditions,
portions of kelp canopy may also be continuously submerged depending on the species
being targeted. Specifically, if a remote sensor is targeting detection of Nereocystis luetkeana
(hereafter, Nereocystis) surface canopy, one has to consider the two distinct structures with
varying buoyancy, the bulb and blades. The bulb is a roughly cylindrical gas-filled structure
that floats on the surface of the water and is anchored to the sea floor by a stipe and hold-
fast [9]. The blades are long thin structures that trail from the end of the bulb, often with
many individuals around four meters long per bulb [9]. The blades are not buoyant and
are likely to remain submerged below the water’s surface regardless of tidal height [16,20].
In addition, floating portions of kelp canopy may be periodically submerged in areas with
especially strong currents [20]. Therefore, it is important to understand how submersion
of kelp canopy affects the reflectance in the NIR range, as well as whether certain spectral
features may allow for higher detectability of kelp when collecting remote sensing imagery
from different platforms.

In the past, the red-edge (RE) spectral region (670–750 nm), which includes a range of
the shortest NIR wavelengths, has traditionally been used to determine health character-
istics of terrestrial plants [21]. However, these wavelength ranges also penetrate deeper
into the water column than longer NIR wavelength ranges [22], resulting in the potential
for higher above water reflectance in the RE than the longer NIR for submerged vegeta-
tion [23–26]. Therefore, given the spectral similarities between kelps and other types of
vegetation, it is reasonable to assume that the RE wavelength range may also be beneficial
for detecting submerged kelp canopy. Hereafter, the term NIR will refer to only the longer
wavelength range above 751 nm, to avoid confusion with the NIR wavelength range that
overlaps the RE wavelength range.

To date, there have been no direct comparisons of the ability to detect submerged kelp
when using RE or NIR wavelength ranges. Additionally, while the submersion kelp canopy
due to tides and currents is well documented using various sensors with different spatial
and spectral resolutions [11,17–20,27], there has been no characterization of the changes to
the above water spectra of kelp as the canopy is submerged, nor any investigation of the
band combinations used in vegetation indices in relationship to accurate detection of the
submerged kelp canopy. With this is mind, our goal was to characterize changes to above-
water reflectance of different Nereocystis canopy structures as they were submerged and to
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relate those changes to depth detection limits. To accomplish this goal, we performed (1) an
experiment that documents the effects of kelp submersion on the above-water hyperspectral
reflectance of both Nereocystis bulb and blade structures. We also compared (2) the detection
limits of submerged kelp using RE and NIR vegetation indices, which were calculated from
the simulated multispectral bands of high spatial-resolution air- and space-borne sensors.

2. Materials and Methods

2.1. Spectral Data Acquisition and Processing

The kelp submergence experiment took place on a marina dock in Victoria BC, on a
sunny, cloudless day in September 2020. The Secchi depth during the time of the experiment
was 7.5 m, showing relatively clear water, similar to general conditions for the coastal waters
of the Salish Sea at the same time of year with low influence from riverine discharge, and
low levels of total suspended-matter, chlorophyll-a, and colored dissolved organic matter
present in the water column [28]. While the ranges of both Nereocystis and Macrocystis
overlap on the British Columbia coast, only Nereocystis is found around the southern tip
of Vancouver Island where this study occurred. The location and timing of the experiment
allowed for the control of four criteria that we required: (1) controlled sea-state; with
the dock acting as a shelter from any slight breezes, thereby minimizing variability in
glint or light refraction due to ripples or waves on the water [29]; (2) platform stability,
which minimized the potential errors during spectral acquisition due to the movement of
both kelp and sensor that might occur in situ from a boat; (3) maintained environmental
conditions expected in situ during peak biomass for local kelp, such as the inherent optical
properties of water and optical constituents within the water column that would be difficult
to reproduce in vitro; (4) a water depth (12 m) greater than the Secchi depth to minimize
the influence of substrate reflectance on the above-water reflectance signal [30,31].

The experiment consisted of four separate trials. For each trial, a sample of Nereocystis
was attached to a black frame made of high-density polyethylene (a plastic with low
reflectance across the visual and near-infrared wavelength ranges), which was submerged
from the surface to 100 cm in 10 cm increments on the sunlit side of the dock (Figure 1).
Before each trial, radiance measurement of a Spectralon white-reference panel (Lspec(λ)) and
an internal dark-current reading were taken to calculate reflectance (Table 1; Equation (1))
and reduce noise in the spectral data [32]. During each trial, ten individual above-water
hyperspectral radiance measurements (LT(λ)) of kelp were collected at each incremental
depth. Two of the four trials used the Nereocystis bulb, and two trials used the Nereocystis
blades. Therefore, in total, 20 measurements of LT(λ) were collected for each kelp structure
(bulb or blades) at each depth. After each trial, 10 radiance measurements were taken of
the sky (Lsky(λ)) to be used in sky glint corrections [33]. Additionally, a total of 60 LT(λ)
measurements were taken of water with no kelp within the field of view as a baseline for
comparison with submerged kelp.

Table 1. Spectral parameters used to calculate above-water reflectance, as per Equation (1). All
spectral measurements were collected using a calibrated ASD Fieldspec Handheld2 spectroradiometer
with a one-degree fore optic (full viewing-angle), which detects a wavelength range from 325–1075 nm
at 1 nm increments.

Symbol Name Units Angle from Nadir Sun-Sensor Azimuthal Angle

λ Wavelength nm - -
LT Above-water radiance μW cm−2sr−1nm−1 5◦ 135◦

Lspec White panel radiance μW cm−2sr−1nm−1 5◦ 135◦
Lsky Sky radiance μW cm−2sr−1nm−1 175◦ 135◦

ρ′ Proportionality factor - - -
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Figure 1. Side view of submergence experiment showing the geometry of acquisition for spectrora-
diometer and angle of zenith for the sun. Inset shows nadir view of the experiment with the azimuthal
angle between spectroradiometer and sun and kelp blades inside the black frame. Diagrams are not
to scale.

The solar elevation angle during the experiment was 46◦, which ensured sun-glint
did not contaminate the spectra based on our geometry of acquisition [33,34]. LT(λ) mea-
surements were taken at 5◦ from a nadir viewing angle to avoid reflection of the white
spectroradiometer in the field of view on the water surface, and a sensor-sun azimuthal
angle of 135◦ was used to minimize specular reflection in the field of view (FOV) [33].
Lsky(λ) measurements were taken at 5◦ from zenith at the same azimuthal angle as LT(λ).
The spectroradiometer was held one meter above water, giving a footprint ranging from
about 1.6 cm at the surface to 3.8 cm when the target was 100 cm deep. This small footprint
was meant to ensure that the LT(λ) measurements contained 100% kelp, avoiding mixed
pixel considerations [35].

R(λ)0+(%) =

⎛
⎝ (LT(λ))(

Lspec(λ)
) −

(
ρ′· Lsky(λ)

)
(
Lspec(λ)

)
⎞
⎠× 100 (1)

Here, ρ′ was the proportionality factor of 0.0211, which relates the radiance measured
directly from the sky to the estimated amount of sky radiance reflected off the sea surface
based on wind, cloud cover, and geometry of acquisition [33]. R(λ)0+(%) for kelp at the
surface (0 cm) was not subjected to the sky glint correction. Hereafter, R(λ)0+(%) values
for kelp on the surface, submerged kelp, and water with no kelp are referred to as R0+
for brevity.

The R0+ spectra were first smoothed using a mean filter with a window of 5 nm
to reduce noise while maintaining spectral features, and all spectra were then manually
inspected for quality control. All bulb spectra were highly consistent, however, some blade
spectra showed deviations in both the blue-green and NIR regions; likely due to water
movement between blades as kelp was submerged, causing opened gaps in the “canopy”
of blades attached to the platform. These spectra likely did not contain 100% blades within
the field of view and were therefore removed from further analysis (Table 2). Despite the
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removal of some blade spectra, the smallest sample size at any depth after quality control
was at 90 cm with n = 10 spectral samples. Therefore, we do not expect that these removals
biased the results of this study.

Table 2. Total number of each class of spectra before and after quality control was performed.

Spectral Sample Type
Samples
Collected

Samples Removed during
Quality Control

Samples Used
in Analysis

Bulbs (surface-100 cm) 220 0 220
Blades (surface-100 cm) 220 51 169

Water 60 0 60
Sky 40 0 40

2.2. Simulation of Micasense and WorldView Band R0+ and Indices

After sky-glint correction, smoothing, and quality control of the spectra, R0+ mea-
surements were simulated into bands of the WorldView-3 (R0+WV3) and the Micasense
RedEdge-MX (R0+MSRE) sensors [36,37]. These sensors were chosen because both have
a relatively high spatial resolution (WV3: 1.84 m; MSRE: ~1–10 cm), which is ideal for
mapping kelp canopy in nearshore regions where it is likely to be submerged by tides
and currents [16]. The R0+ at the bands of these sensors were simulated using Gaussian
functions to estimate the sensor’s spectral response for each band, based on full-width half
maximum values of each sensor’s band (Figure 2; Table 3). For a direct comparison, only
the VNIR bands shared by both sensors were used for simulations.

Figure 2. Relative spectral responses at each band according to Gaussian functions were used to
simulate the shared bands of (a) WorldView-3 (WV-3) earth observation satellite and (b) Micasense
RedEdge-MX (MSRE) uncrewed aerial vehicle sensors—from left to right: blue, green, red, red-edge,
and near-infrared band locations are shown.

Table 3. The effective bandwidths of the overlapping bands for both WorldView-3 (WV3) and
Micasense RedEdge-MX (MSRE) sensors.

Band WV3 MSRE

Blue 445–517 nm 459–491 nm

Green 507–586 nm 546.5–573.5 nm

Red 626–696 nm 661–675 nm

Red-edge 698–749 nm 711–723 nm

Near-infrared 765–899 nm 813.5–870.5 nm
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2.3. Normalized Vegetation Indices

Once the hyperspectral data were simulated into the respective sensor bands, the R0+
at these bands were used to calculate normalized vegetation indices (VIn; Equation (2)),
which are commonly used to enhance spectral features of interest and reduce sensitivity
to environmental influences within remote sensing imagery [38,39]. We tested several
band combinations for VIn as different band combinations may increase or decrease the
separability between kelp and water in an image [40].

VIn =
band 2 − band 1
band 2 + band 1

(2)

Because naming conventions for different VIn combinations are not ubiquitous across
published literature, here, we referred to each VIn as the order in which bands appeared in
the numerator of the VIn equation, separated by an underscore (Table 4).

Table 4. Vegetation indices calculated from simulated multispectral data.

Vegetation Index (VIn) VIn Equation

RE_R RE−red
RE+red

RE_G RE−green
RE+green

RE_B RE−blue
RE+blue

NIR_R NIR−red
NIR+red

NIR_G NIR−green
NIR+green

NIR_B NIR−blue
NIR+blue

One of the most commonly used VIn for kelp mapping is NIR_R, which was originally
used to detect terrestrial vegetation because of the high NIR and low red signal [38], but has
since been used for kelp canopy detection due to the similar spectral characteristics between
kelp canopy and terrestrial vegetation [14]. More recently, NIR_R has been positively corre-
lated with both the areal extent and biomass of kelp canopy [15,18,19]. However, various
other combinations of visible and NIR bands have been used for kelp canopy detection
with multispectral sensors. For instance, Schroeder et al. (2019b) used NIR_R and NIR_G
for kelp detection with the WorldView-2 imagery. The NIR_G combination may be more
accurate for detecting a wide range of chlorophyll levels [41] and has generally been found
comparable with NIR_R in the detection of both floating and submerged vegetation [26].
Stekoll et al. (2006) found that NIR_B and NIR_G both provided higher kelp canopy and
water separability in aerial imagery than NIR_R. Further, recent comparisons with multi-
spectral UAV and satellite imagery have shown that RE indices can improve separability of
Macrocystis canopy and water when compared with NIR based indices [17,42], although
this improvement was not specifically attributed to improved detection of submerged
portions of the kelp canopy in either study.

Here, we compared the statistical differences in NIR and RE-based VIn values. R0+MSRE
and R0+WV3 bands were used to calculate NIR_B, NIR_G, NIR_R, and RE_B, RE_G, and
RE_R for both bulb and blades separately, for each depth. The statistical analysis was com-
prised of (i) VIn values compared with one another at each depth from the surface to 100 cm,
and (ii) VIn values for water (with no kelp) compared to one another. First, the dataset was
tested for normality, and while quantile–quantile plots suggested reasonable normality of
the data distributions, Levene’s test showed nearly all groupings for comparison displayed
heterogeneity in variance. Therefore a non-parametric test was used in the analysis [43].
The Welch’s ANOVA test was used to determine whether significant differences between
VIn existed at each depth, and the Games–Howell post hoc test was used to determine
which indices were significantly different from one another [44,45]. As part of the analysis,
we focused on the statistical results comparing the RE and NIR counterpart indices only
(e.g., NIR_R & RE_R, or NIR_B & RE_B) at each depth.
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2.4. Threshold Selection and Depth Limits for Kelp Detection

Once a VIn has been selected for classifying kelp in remote sensing imagery, a VIn
value is then chosen as a threshold to classify the kelp and water within the imagery. For
example, Cavanaugh et al. (2010) selected a threshold based on the 99.98th percentile
highest NIR_R value from a histogram of known ‘deep water’ pixels, and Nijland et al.
(2019) determined a NIR_R value of 0.05 to be a reasonable threshold by comparing pixel
values of sparse kelp and open water. Since the R0+ values of water vary spatially and
temporally according to optical constituents and inherent optical properties of water, as
well as the characteristics of local substrate and bathymetry [28,46,47], these thresholds are
often ‘dynamic’, and are therefore determined on an image-by-image basis. For satellite
or airborne imagery covering a large regional scale, it may even be appropriate to select
multiple thresholds across different regions within an image.

We determined a dynamic threshold for each VIn based on the maximum VIn value
measured for water during the experiment following Cavanaugh et al. (2010). The depth
where the mean VIn value of submerged kelp dropped below the dynamic threshold value
was considered the depth where kelp was spectrally indistinguishable from water. Since
our experiment was conducted under ideal conditions (flat calm water, full sun, etc.) the
dynamic thresholds were all negative values and the maximum depth of detection using
these thresholds likely overstate the potential depths for kelp detection in actual remote
sensing imagery. Therefore, we also used a second VIn threshold of zero, based on the
theoretical spectral properties of kelp within an individual pixel that contains 100% kelp.
For example, within a pixel, if the R0+ value of band 2 (RE or NIR) equals the R0+ value as
band 1 (the visible band), the numerator in the VIn equation (Equation (2)), and therefore
the overall VIn value for that pixel, equals zero. This conservative threshold is closer to the
values of 0.05 and 0.003 determined from remote sensing imagery by Nijland et al. (2019)
and Mora-Soto et al. (2020), respectively.

Depth detection limits were reported to the nearest 10 cm depth on the shallow side of
the threshold because the kelp was submerged in 10 cm intervals. To determine whether
the detectable kelp (values above the threshold) and non-detectable kelp (values below
the threshold) were statistically separable, the means for kelp measurements immediately
above and below the threshold were compared for significant differences using Welch’s
t-test [48].

3. Results

Here, we present the spectral characteristics of Nereocystis bulbs and blades as they are
each submerged from the surface to 100 cm, as well as the changes seen in the hyperspectral
data when they are simulated into multispectral sensor bandwidths. Next, we show VIn
comparisons for kelp, focusing on comparing the RE and NIR counterpart indices (e.g.,
NIR_R & RE_R, or NIR_B & RE_B) at each depth, and finally, we present the depth detection
limits for each VIn as determined by both dynamic and conservative thresholds.

3.1. Spectral Characteristics of Surface and Submerged Kelp

Overall, the R0+ of both Nereocystis bulbs and blades showed similar placement of
spectral features, however, the magnitude of reflectance at these features was different
(Figure 3a,b). For Nereocystis, spectral features in the visible wavelength ranges are largely
due to absorption by a combination of chlorophyll-a, chlorophyll-c, and fucoxanthin
pigments, which are characteristic pigments of bull kelp, as well as other kelp species [49,50].
Accordingly, here we saw a broad absorption feature in the 400–550 nm range and narrower
absorption features around 633 and 675 nm for both bulbs and blades at the surface. These
absorption features resulted in reflectance peaks at 575, 600, and 645 nm for both bulbs
and blades (Figure 3a,b, insets). In the NIR region, broad reflectance peaks were detected
from 690 nm (RE) to 900 nm (NIR) (Figure 3a,b, insets) and small, narrow peaks centered at
761 nm were observed (Figure 4a,b).
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Figure 3. Reflectance values (R0+) between 400–900 nm (mean +/− sd) of water with (a) Nereocystis
bulbs, and (b) Nereocystis blades, at incremental depths below water surface. The inset plots contain
spectra of bulbs and blades on the surface compared to the same spectra of submerged bulb and
blades as in the main plots, for the purpose of showing the difference in magnitude.

Figure 4. Zoomed in plot showing solar-induced chlorophyll fluorescence (SICF) peaks centered at
761 nm for above-water R0+ for Nereocystis bulbs (a) and blades (b) at incremental depths below the
water surface. Spectra are normalized at 770 nm to show relative changes to the shape of the SICF
peak with submergence.

When kelp structures were submerged, the influence of the water and its constituents
on the R0+ signal increased with submersion for both bulb and blades. The decreases in R0+
in the RE and NIR region were far greater than decreases in R0+ observed across the visible
region of the spectra (Figure 3a,b, insets). With initial submersion below the water’s surface,
the largest declines in the visible wavelength ranges were seen at 600 nm and 645 nm,
although all peaks in the visible region continued to decrease with submersion (Figure 3a,b).
While the R0+ at the absorption feature between 400–550 nm initially decreased with
submersion, the reflectance then rose as the depth of submersion increased. In the NIR
region of spectra for both structures, once kelp was submerged, the broad NIR peaks were
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replaced by two peaks centered around 715 nm and 815 nm (Figure 3a,b), hereafter referred
to as the RE peak and the NIR peak, respectively. At each depth, the R0+ at the RE peak
was higher than the NIR peak. As submergence increased, the position of the RE peak
shifted toward lower wavelengths within the RE wavelength ranges while the position of
the NIR peaks remained relatively stable. The small peaks at 761 nm remained stable, but
decreased in magnitude with submersion, becoming difficult to visibly distinguish around
50 cm depth (Figure 4a,b).

R0+WV and R0+MSRE showed the same general patterns as the hyperspectral data
(Figure 5a–d). However, some spectral information was lost with the reduction of spectral
resolution, such as the location and magnitude of different peaks. Overall, the differences
in width and placement of bands resulted in only small differences in R0+WV3 and R0+MSRE
band values (Figure A1a,b). For both bulbs and blades at the surface, differences in the
visible wavelength ranges between R0+WV and R0+MSRE were less than 0.8% for the red,
blue, and green bands, and these differences became even smaller as kelp was submerged.
In the RE and NIR bands, differences between R0+WV and R0+MSRE were less than 0.3%
on the surface. Once submerged to 10 cm, differences between R0+WV and R0+MSRE in-
creased to 1.8% in the NIR bands and 0.5% in the RE bands, although similar to the visible
bands, the differences between R0+WV and R0+MSRE also became smaller as the kelp was
submerged deeper.

Figure 5. Reflectance values (R0+) for bulbs (a,c) and blades (b,d) of simulated bands (mean +/− sd)
shared by the Micasense RedEdge-MX (MSRE; a,b) and WorldView-3 (WV3; c,d), derived from the
hyperspectral data (Figure 3) using Gaussian response functions (Figure 2).

3.2. Vegetation Indices: Signal Strength and Depth-Detection Limits of Submerged Kelp

Generally, RE VIn values were higher than NIR VIn values at a given depth as kelp
was submerged (Figure 6). For bulbs, RE VIn values decreased linearly from the surface to
100 cm, while NIR VIn showed a steeper linear decrease over the first 50 cm, followed by
an inflection point and a lesser decline towards 100 cm. For blades, trendlines of both NIR
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and RE VIn resemble exponential functions, with the NIR VIn displaying a steeper decrease
of values than the RE VIn.

Figure 6. Mean +/− sd of vegetation index (VIn) values for Nereocystis bulbs (a,c) and blades (b,d),
submerged from the surface to 100 cm and water; derived from simulated Micasense RedEdge-MX
(MSRE; a,b) and WorldView-3 (WV3; c,d) bandwidths. Paired letters above each column represent no
significant differences (p ≥ 0.05) between mean index values at that depth.

Specifically, the Games–Howell post hoc tests showed that for kelp at the surface, RE
VIn values were either smaller than or not significantly different from their counterpart
NIR indices (Figure 6), depending on the visible band used. Once kelp was submerged, RE
VIn values were significantly greater than their NIR counterparts at each depth with the
MSRE sensor. However, with the WV3 sensor, RE VIn values were not significantly greater
than their NIR counterparts until 10 cm and 20 cm depth for blades and bulbs, respectively.
All VIn values for water were negative, meaning that the R0+ at the visible band used in the
VIn was higher than the R0+ at the RE or NIR band used in the VIn, regardless of sensor
simulation or index combination. RE_R consistently showed the highest values for water,
followed by NIR_R, and there were no significant differences between RE_B and RE_G
water values, nor for NIR_B and NIR_G water values. Here, we focused on the statistical
results comparing the RE and NIR counterpart indices only (e.g., NIR_R & RE_R, or NIR_B
& RE_B) at each depth, however, Figure 6 displays paired letters to indicate all pairs of VIn
where no significant difference between VIn pairs was detected.

The depth detection limits varied based on sensor type, kelp structure, and thresh-
olding method (Table 5; Figure 7). Overall, when using the conservative (more realistic)
threshold of zero, RE VIn showed detection of kelp at least twice as deep as NIR VIn, and
bulbs were detectable at greater depths than blades. Detection limits for the same VIn
between sensors were generally within a range of 0–20 cm apart, although in a few cases
(e.g., RE_R) these differences were larger. In addition, the choice of different visible bands
for a VIn only resulted in detection limit differences up to 20 cm, with RE_R once again
proving the exception. No RE indices crossed below the dynamic thresholds at 100 cm
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depth, meaning RE indices could detect kelp to at least 100 cm depth with these thresholds,
while NIR indices could generally detect kelp to around 100 cm depth or less. In all cases,
the RE indices at 100 cm depth were more separable from water than the NIR indices at the
same depth. The use of different visible bands in the VIn combination generally resulted in
detection limit differences of 0–30 cm for bulbs. For all measured depth detection limits, the
index values measured at the increments 10 cm above and below the threshold remained
divergent (p < 0.05), suggesting that all the measured results for conservative and dynamic
thresholds are accurate to at least 10 cm increments.

Table 5. Depth detection limits (cm) based on conservative threshold of 0.0 and the dynamic thresh-
olds (maximum water value) for Nereocystis bulbs and blades, as simulated to Micasense RedEdge-
MX (MSRE) and WorldView-3 (WV3) bandwidths.

Index RE_B RE_G RE_R NIR_B NIR_G NIR_R

MSRE

Bulb
Conservative (0.0) >100 90 >100 40 30 30
Dynamic (max.) >100 >100 >100 >100 90 50

Blade
Conservative (0.0) 50 40 90 10 10 10
Dynamic (max.) >100 >100 >100 >100 >100 30

WV3

Bulb
Conservative (0.0) 90 80 100 50 40 40
Dynamic (max.) >100 >100 >100 >100 >100 80

Blade
Conservative (0.0) 40 40 60 20 10 20
Dynamic (max.) >100 >100 >100 >100 >100 40

Figure 7. Mean +/− sd of vegetation index (VIn) values for Nereocystis bulbs (a,c) and blades (b,d)
submerged from the surface to 100 cm. derived from simulated Micasense RedEdge-MX (MSRE; a,b)
and WorldView-3 (WV3; c,d) bandwidths. The black dashed lines at 0 represent the more conservative
and realistic threshold, and the blue bars represent the full range of water values for each respective
index, with the adjacent dashed lines representing the dynamic threshold.
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4. Discussion

Overall, we found that submersion of kelp in water changes the shape and magnitude
of R0+ in the RE and NIR region of kelp spectra (Figure 3), and Nereocystis bulbs had a
higher magnitude R0+ in the RE and NIR region than blades (Figure 3). We also observed
that RE VIn values for submerged kelp had higher separability from water than their NIR
counterparts (Figure 6), meaning that kelp can be positively classified at deeper depths
when using an RE VIn (Table 3; Figure 7). Our results also showed that VIn that used a
visible band with high R0+ (e.g., green or blue) had worse detectability for submerged kelp
than a VIn that used a visible band with low R0+ (e.g., red). Together, these findings have
important implications for the application of kelp remote sensing to the applied monitoring
of kelp forests.

4.1. Spectral Characteristics of Kelp as It Is Submerged

A broad R0+ peak across the NIR region was observed for surface measurements of
Nereocystis as a result of the interaction of light with the cellular structure of the kelp [51].
Once submerged, our experiment showed two key changes in the NIR region of the kelp
spectra (Figure 3), both due to characteristic absorption features of water: (1) the splitting
of the single broad NIR peak into two narrower RE and NIR peaks due to prominent
water absorption feature at 760 nm [52] and (2) higher R0+ at the RE peak versus the
NIR peak, resulting from the continually increasing absorption of light by water above
600 nm [22]. Since Macrocystis and Nereocystis are spectrally similar to one another in the
NIR region [15,18,27,50], and the changes seen in the spectra of submerged kelp are due to
properties of water absorption, we expect that the spectral results of this experiment are
generally applicable to both Macrocystis and Nereocystis canopies, making these findings
relevant for surface-canopy forming kelp species globally.

The results of these experiments were generally in line with our expectations according
to similar studies of submerged aquatic vegetation [24,25], although there were some
interesting phenomena seen in the spectra that are worth noting. In the visible region of the
spectra, R0+ in the red wavelength range decreased with depth, as expected. However, the
R0+ at the absorption feature between 400 and 550 nm increased slightly with submersion.
We hypothesize that this increase in R0+ is due to the scattering of light by the conditions
of the water optical constituents, thus increasing the R0+ with depth. As such, we suspect
that this increase in R0+ may be specific to the water conditions during the experiment and
may not have occurred if the water had contained more optical constituents that absorb
blue light, such as colored dissolved organic matter. Another interesting phenomenon
noted in the floating kelp spectra was what appeared to be a sunlight-induced chlorophyll
fluorescence (SICF) peak at 761 nm (Figure 4). Within the NIR region, photosynthetic
organisms generally have a broad SICF peak centered at 740 nm [53]. However, due to the
high magnitude of the NIR reflectance, the SICF is usually only visible as a small, narrow
peak centered at 761 nm. Typically, the R0+ within the NIR wavelength range overwhelms
the signal from SICF, however, atmospheric gasses highly absorb incoming irradiance at 761
nm, which can create a fill-in effect by the SICF in this region [53]. While this phenomenon
has been correlated with photosynthetic output and general health of terrestrial vegetation
and phytoplankton [53,54], we are not aware of any publications that report an SICF peak
in kelp spectra, and this may present an opportunity for future hyperspectral research.
Once kelp was submerged the SICF feature was dampened, and therefore future research
should take note of the amount of kelp at the surface if attempting to derive information
from an SICF peak.

4.2. NIR Differences between Nereocystis Bulbs and Blades

The magnitude of reflectance across the NIR region in vegetation is generally due to the
cellular structure of the respective tissues [55]. Both Nereocystis bulb and blade tissues are
composed of the same three cellular layers: the meristoderm, the medulla, and the cortex.
The meristoderm is a thin chloroplast-packed epidermal layer that surrounds the entire
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individual [56], and the medulla is a complex web of filaments that acts as a transportation
system within the kelp, composing the innermost layer of kelp tissue [57,58]. Between these
two layers is the cortex, which connects the meristoderm to the medulla, and generally
provides structural support for the kelp [56,59]. Given this structural arrangement, we
speculate that the NIR signal from bulbs is consistently higher compared to the blades’
signal because (1) the bulb cortex is many times thicker than the blade cortex [57,59]; and
(2) the gas cavity of the bulb is lined by the medulla [57], creating a high surface area with
many large refractive differences—similar to the mesophyll layer of a terrestrial leaf [55,60].
In comparison, the blade medulla is housed in a gelatinous extracellular matrix between
cells [57], and with no gas cavities, the refractive differences are much smaller, allowing
for increased transmittance of NIR light through the blades [55]. For our experiment,
spectral measurements for blades were taken using a single blade wrapped around the
polyethylene frame with only slight overlap between the edges of the blade. However,
Nereocystis individuals may have between 30–60 blades each. Overall, a thicker mass of
blade tissues due to high overlap may result in higher R0+ in the RE and NIR wavelength
ranges than seen in this experiment.

4.3. The Implications of VIn Saturation for Detection of Floating and Submerged Kelp

When the density or biomass of the vegetation increases within a pixel of remote
sensing imagery, the VIn for that pixel will asymptotically approach a saturation (i.e., a high
VIn value) [39,61]. This happens because when vegetation is dense, the R0+ at band 2 (NIR
or RE) is large relative to the R0+ at band 1 (the visible band). Our spectral measurements
contained 100% kelp within the field of view, and accordingly, the VIn values calculated
from the multispectral simulations were saturated when kelp was at the surface. Therefore,
it is critical to understand how saturation affected the VIn values of floating kelp, as well
as when kelp was submerged. For example, our WV3 simulations for bulbs at the surface
showed that the R0+ at NIR and RE bands were large compared to the red band (21%, 14%,
and 1%, respectively). As such, both NIR_R and RE_R indices for bulbs at the surface
were approaching saturation (0.83 and 0.77 respectively) and either index would perform
relatively well for detecting floating kelp if a VIn of zero was used as a threshold to classify
kelp and water. When the bulb was submerged, the R0+ in the NIR and RE bands decreased
rapidly by 10 cm depth (3.2 and 3.4% respectively) but were still relatively high compared
to the red band, which had also decreased (0.6%), and therefore the NIR_R and RE_R values
(0.66 and 0.68 respectively) were still relatively saturated, despite the large decreases in R0+
at the RE and NIR bands (Figure 5). As the kelp continued to be submerged, the R0+ at
the NIR, RE, and red bands all continued to decrease, however, the R0+ at the NIR band
decreased at a faster rate and therefore the NIR_R value dropped below the threshold of
zero by 50 cm while the RE_R value was still above the threshold by 100 cm. Ultimately,
this example shows that due to VIn saturation, the choice of RE or NIR will make little to
no difference in classification of kelp at or near the surface. However, once submerged, the
use of an RE VIn will still detect kelp deeper than an NIR VIn.

4.4. Depth Detection Limits and Separability between Kelp and Water

While it is important to understand how VIn values change as kelp is submerged,
ultimately the accuracy of submerged kelp classification depends on the spectral separa-
bility between the submerged kelp and water. Here, we defined the depth at which kelp
and water were no longer separable as the depth at where VIn values for submerged kelp
decreased below the threshold value. RE VIn values for kelp and water had higher separa-
bility at deeper depths than their NIR counterparts (Figure 6), meaning that deeper kelp
can be accurately classified when using an RE VIn. Higher separability between kelp and
water classes when using RE VIn has been documented using both high spatial-resolution
multispectral UAV imagery [13] and with moderate spatial-resolution multispectral satellite
imagery of Macrocystis [42], indicating that slight submergence of kelp surface-canopy may
play a larger role in detection than previously thought.
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While the choice between RE and NIR VIn was an important factor in submerged kelp
detection, the choice of the visible band can also shift the detection limits of submerged
kelp. Our results show that both the water and submerged kelp spectra had higher R0+
in the green and blue wavelength ranges than in the red, and as such, submerged kelp
became undetectable at shallower depths when using NIR_R compared to NIR_G or
NIR_B. In the visible wavelength ranges, red is absorbed fastest by the water column,
and in our experiment, the NIR signal is generally absorbed by around 50 cm depth,
making it reasonable for this pairing to consistently have the shallowest detection limits
for submerged kelp. At depths where the RE or NIR signal of kelp can no longer be
detected, Figure 7 shows that subtle differences between kelp and water in the blue and
green bands can still result in the kelp signal remaining above the dynamic threshold.
However, these differences are small, and because conditions during the experiment
were controlled, the added spectral noise from in situ environmental factors would likely
complicate the detection of both surface and submerged kelp in more realistic situations.
For example, the blue wavelength ranges can be highly compromised in remote sensing
imagery [29,46], with local variation in atmospheric composition reducing the certainty of
accuracy for blue band values. Additionally, the optical constituents of coastal water can
be highly spatiotemporally variable—affecting all regions of the spectra [28,46]. At high
concentrations phytoplankton in the water column may result in changes to reflectance in
the visible wavelength ranges as well as high RE or NIR reflectance [62], while changes
to optical constituents such as sediment or CDOM may also impede the detection of
submerged kelp [47,63].

In this experiment, the optical water conditions (Secchi = 7.5) were typical of the
coastal waters of British Columbia [18,28,64]. Considering the Secchi measurement, the
local depth (12 m), and the R0+ from water with no kelp (Figure 3), the bottom substrate
signal was not part of the measured R0+ in our experiment. Yet kelp on the coast of British
Columbia is often found as fringing canopies near the shoreline [18], which can result
in a strong contribution of benthic substrate to the R0+ measured by space and air-borne
platforms. Reflectance from shallow benthic features can result in highly variable R0+
in both the visible and near-infrared wavelength ranges, resulting in misclassification of
submerged vegetation as canopy kelp [47,64]. Therefore, it is important to understand site
characteristics (e.g., bathymetry and water turbidity) to define better the use of NIR or RE
for kelp classification. For instance, if enough understanding of the local conditions at the
time of imagery acquisition is not available, it may be more appropriate to use NIR_R to
reduce the addition of signal of the bottom substrate. Alternately, if imagery or associated
ground truth data have a high enough spatial resolution (e.g., from UAV or other aerial
platforms), visual interpretation of surface-canopy morphology from expert knowledge
may be adequate for manual classification or ground truthing when using an RE VIn.

4.5. Implications for Mixed Pixels

During the experiment, spectral data were collected using a small footprint to reduce
uncertainties associated with having the reflectance signal of multiple targets within the
field of view (i.e., mixed pixels). However, remote sensing imagery often contains mixed
pixels [16,35]. This becomes especially problematic when sensors have a lower spatial
resolution, where erroneous classification of a pixel as kelp may result in the overestimation
of total kelp canopy. Multiple end-member spectral mixture analysis (MESMA) is an ap-
proach that has been applied to satellite imagery for both Macrocystis [11,35] and Nereocystis
canopy [19,65] to determine what proportion of the pixel is kelp, and what proportion is
water. When MESMA is applied to remote sensing imagery for kelp detection, it is as-
sumed that all VIn or band values within a pixel are a linear combination of kelp and water
end-members [35]. However, if the kelp fraction within a pixel is low enough, the spectral
contribution from water may overwhelm the kelp signal, lowering the overall pixel value
and allowing the pixel to be erroneously classified as water [19,27]. Our results suggest that
if submerged kelp is present when MESMA is performed, which is most often the case, the
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reduced signal from the submerged kelp within the pixel may lead to an underestimation
of the kelp fraction within the pixel. Using an RE VIn when performing MESMA may
allow the user to detect more submerged kelp, thus contributing to a higher overall pixel
value and increasing the accuracy of the classification. This may be especially relevant
if attempting to determine relationships between remote sensing imagery and biomass,
since Nereocystis blades show a higher correlation to the mass of the individual than any
other metric tested [10]. Further, Nereocystis canopy generally has less dense biomass at
the surface than Macrocystis [65,66], and, therefore, is more likely to be misclassified in
moderate or low spatial resolution imagery.

5. Conclusions

Our experiment contributes new, detailed information on the effects of kelp submer-
sion on the above water reflectance, as well as a comparison of the depth detection limits of
kelp when using red-edge and near-infrared indices. We determined that the near-infrared
region of kelp spectra is strongly absorbed upon submersion, however, there is a narrow
spectral peak in the red-edge region that can be used to enhance the remote sensor’s ability
to detect submerged kelp due to lower water absorption. Detection limits varied based on
kelp tissue, the thresholding method, and the visible band used in the vegetation index
calculation, but overall, red-edge vegetation indices detected deeper than their counterpart
NIR indices, which may allow the remote sensor to improve accuracy when mapping
sparse and partially submerged kelp canopy or attempting to derive biomass from canopy
reflectance values. Kelp forests may be mapped using remote sensing for various reasons,
ranging from estimation of biomass for kelp harvesting to multi-year temporal analyses
to assess the impacts of environmental drivers on kelp ecosystems. Yet kelp systems can
be highly variable in abundance between years, and our study shows that the spectral
variables used to detect kelp canopy in remote sensing imagery play an important role in
the amount of submerged kelp canopy detected. Therefore, it is critical for a remote sensing
user to understand how the physical interaction between light and water may affect the
depth at which kelp can be detected. For example, RE VIn might be especially useful if
resource managers are attempting to set quotas for harvestable biomass of Nereocystis and
wish to detect as much blade biomass as possible for specific beds. However, if one wishes
to reduce detection of subsurface kelp canopy or other shallow benthic vegetation, we
recommend the use of the NIR_R (NDVI), which consistently had the shallowest detection
limits of the indices tested.

Author Contributions: B.T., M.C. and L.Y.R. designed the study. B.T. and L.Y.R. carried out the
experiment. B.T. conducted the analysis and wrote the manuscript with input and guidance from M.C.,
L.Y.R., F.J. and M.H.-L. All authors have read and agreed to the published version of the manuscript.

Funding: During this research BT was supported through a MITACS Accelerate internship with the
Hakai Institute, as well as an NSERC CGS-M award and Costa’s NSERC-DG.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available for research purposes upon request to the authors’
institutions.

Acknowledgments: We thank the Hakai Institute and the Canada NSERC-DG for providing funding
for this research as well as Robert Atwood for letting us use his slip at the Oak Bay marina to test this
experiment. Also, thank you to Lianna Gendall for helping with the kelp in the graphical abstract.

Conflicts of Interest: The authors declare no conflict of interest.

89



Remote Sens. 2022, 14, 2241

Appendix A

Figure A1. Differences between R0+ values of each shared band of the Micasense RedEdge-MX (MSRE)
and WorldView-3 sensors, as simulated from the bulb (a) and blade (b) spectral measurements.
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Abstract: Advances in image-based remote sensing using unmanned aerial vehicles (UAV) and
structure-from-motion (SfM) photogrammetry continue to improve our ability to monitor complex
landforms over representative spatial and temporal scales. As with other water-worked environments,
coastal sediments respond to shaping processes through the formation of multi-scale topographic
roughness. Although this topographic complexity can be an important marker of hydrodynamic
forces and sediment transport, it is seldom characterized in typical beach surveys due to environmen-
tal and technical constraints. In this study, we explore the feasibility of using SfM photogrammetry
augmented with an RTK quadcopter for monitoring the coastal topographic complexity at the beach-
scale in a macrotidal environment. The method had to respond to resolution and time constraints
for a realistic representation of the topo-morphological features from submeter dimensions and
survey completion in two hours around low tide to fully cover the intertidal zone. Different tests
were performed at two coastal field sites with varied dimensions and morphologies to assess the
photogrammetric performance and eventual means for optimization. Our results show that, with
precise image positioning, the addition of a single ground control point (GCP) enabled a global
precision (RMSE) equivalent to that of traditional GCP-based photogrammetry using numerous and
well-distributed GCPs. The optimal model quality that minimized vertical bias and random errors
was achieved from 5 GCPs, with a two-fold reduction in RMSE. The image resolution for tie point
detection was found to be an important control on the measurement quality, with the best results
obtained using images at their original scale. Using these findings enabled designing an efficient and
effective workflow for monitoring coastal topographic complexity at a large scale.

Keywords: topographic remote sensing; coastal monitoring; high-energy beaches; gravel spit;
structure-from-motion photogrammetry; multirotor drone; RTK-GNSS; permanent GCPs; DEM
error; workflow optimization

1. Introduction

The coast is a very dynamic and varied environment, constantly changing in response
to complex interrelations between landforms and processes operating across a wide range
of spatial and temporal scales. Understanding shoreline dynamics, for integration into
process-based modelling, for example, and being able to predict future evolutions in
the context of relative sea-level rise, requires an accurate characterization of the geomor-
phic processes acting at the sediment–water interface [1–5]. Sediment reworking on the
beach and nearshore due to waves and currents traduces by the formation of topographic
complexity (herewith generally called roughness), such as sedimentary bedforms. These
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topo-morphological features are the imprint of the processes that shaped them, and, as such,
measuring bedforms can provide meaningful information on hydrodynamic forces [6–10].
Besides, bedforms are roughness elements that modify the flow and dissipate energy [11,12].
They are, thus, interesting markers of the sediment bed propensity towards resistance to
entrainment and dynamic equilibrium.

Different types of bedforms generally coexist in the coastal environment
(e.g., Refs. [13–15]), whose dimensions and shapes depend on sediment availability, sedi-
ment type (e.g., size distribution and shape) and driving mechanisms (e.g., waves, currents,
wind). Examples of small-scale bedforms are wave and current sand ripples, or gravel-bed
clusters, with dimensions or length scales generally not exceeding a few tens of centimeters.
Larger-scale bedforms include varied bar and trough morphologies (e.g., ridge and runnels)
in the surf and swash zones [16], other rhythmic patterns most often found on the upper
beach, such as beach cusps [17,18], as well as aeolian sand dunes. In between those, there
are a wide range of topographic variations that take part in the continuum of roughness
scales and contribute to the overall structural complexity of the seabed, backshore and
dune system.

1.1. High-Resolution Topographic Surveying and Photogrammetric Remote Sensing of
Coastal Morphology

In tidal environments, daily fluctuations in the water level mean that the water-
worked seabed can be measured using topographic surveying, with the maximum coverage
typically achieved during the lowest low tides. Previous work largely relied on RTK-GNSS,
with a rover eventually mounted on a mobile platform, such as a quad, for monitoring the
evolution of barred beaches and other coastal landforms [12,19]. The DEMs generated have
resolutions ranging from a few meters cross-shore to tens of meters alongshore, in link with
the topographic complexity and bedform orientation, while survey coverage can reach up
to several kilometers alongshore, allowing to account for the rhythmic nature of the coastal
morphology (e.g., rip-channel systems, cusps and megacusps). Common to point-based
surveying techniques, enhancing the spatial resolution is generally counter-balanced by
increased acquisition time or reduced spatial coverage [20–22], which means that using
RTK-GNSS for the fine-scale monitoring of coastal topography remains problematic.

In contrast, remote sensing techniques, such as UAV photogrammetry, have greatly
improved, rendering very-high-resolution (e.g., submeter) topographic surveying at a large
scale (e.g., beach scale) feasible. Using off-the-shelf drones and cameras, ground sampling
distances (GSD) as small as a few centimeters can be achieved during typical beach sur-
veys [23–25]. Photogrammetric processing relies on the SfM method, which is based on
the scale-invariant feature transform (SIFT) algorithm [26] for matching corresponding
points in images, and uses external information, mostly taking the form of GCPs measured
independently, for scaling and optimizing the photogrammetric model. Yet, previous work
showed that the resulting DEM quality (e.g., horizontal and vertical precisions) is largely
variable (e.g., Refs. [23,27,28]) and depends on a wide range of parameters, among which
survey design (e.g., flying height, image overlap, camera orientation, GCP number and
distribution) and processing strategies (e.g., direct georeferencing, camera calibration and
point-matching methods) play a critical role.

Photogrammetry has been used previously in different domains of research to mea-
sure sedimentary bedforms of various dimensions, including particle clusters [29,30], bed
undulations, such as sand [31–33] and gravel bars [34–36], and sand dunes [37–42], with
measurements of small-scale bedforms generally performed in the laboratory. Hence, it is
not yet known if fine-scale water-worked topographies can be efficiently and effectively
measured using UAV photogrammetry in the field, such that there is currently a paucity of
data for assessing coastal topographic roughness and shaping processes.
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1.2. Photogrammetric Workflow Optimisation

A common limitation to achieving efficient surveys mentioned in previous work, and
finding important echo in time-constrained (e.g., tidal) environments, is the need for a
dense and well-measured network of GCPs for the accurate scaling and georeferencing
of photogrammetric results (e.g., Ref. [43]). In the absence of other external controls, this
requirement is particularly important, shown by observations of decreasing DEM quality
with distance increases from the nearest GCP [44–46]. Relief can be procured through the
installation of fixed (i.e., permanent) targets, although it is generally only partial and, in
application to the coast, implies that fixed targets are limited to dry zones [37].

The uptake of high-precision RTK-GNSS technology for drone navigation can further
improve survey efficiency. With RTK drones, image geolocations serve as airborne controls,
which, despite a generally lower precision compared to GCPs and a repartition outside
the measurement volume, can compensate for these caveats due to the comparatively
very-large number of controls provided [47]. Previous research showed that results of a
similar quality or even better can be achieved using a reduced number of GCPs when
the camera positions are used as external controls [48]. Using the camera information
as the only external control during photogrammetric processing forms the basis behind
direct georeferencing (DG) approaches (e.g., Refs. [49–51]). The DG of photogrammetry is
particularly advantageous when access to the field site and the measurement of GCPs are
problematic. However, previous studies showed that DG generally comes at the cost of
reduced measurement quality (e.g., lower accuracy and precision).

The commercialization of RTK drones at competitive prices (e.g., the Phantom 4 RTK
quadcopter) has reinstated large interest in determining the capability of DG approaches
across different settings, including building facades, urban and rural landscapes as well
as river and coastal environments. Previous studies investigated the differences between
drone positioning corrections provided either in real time (RTK) from a nearby base station
managed by the field operators or through RTK networks, or post-processed (PPK) using
observations at known base stations [52,53]. They also assessed the effect of the image
viewing angle (nadir vs. oblique [54]), as well as changes in measurement quality with and
without the provision of GCPs (e.g., Refs. [52–56]).

These studies concluded that, in the absence of GCPs, systematic error mainly through
vertical bias can impact the measurement quality, which was related to the imprecise calibra-
tion of internal orientation parameters (IOP). Yet, contrasting results were obtained when
it comes to the number of GCPs to introduce to correct this effect. Some studies reported
that one GCP was enough, although the GCP position may be important, while other
studies recommended using at least three GCPs. With the exception of the effort to survey
109 points with a theodolite on a building’s facades by Taddia et al. [52], error evaluation is
generally limited to a few check points (ChkPts), whose number and repartition may not
be adequate for reliable error characterization. This, in turn, limits the generalization of
the findings such that the measurement capabilities of RTK-assisted UAV photogrammetry
over large and GCP-poor coastal tracts are not fully understood.

1.3. Paper Overview

In this study, we explored the feasibility of using an RTK quadcopter (Phantom 4
RTK) and SfM photogrammetry for fine-scale (e.g., submeter) monitoring of water-worked
coastal topography. We carried out a variety of tests of interest for the application because
of their influences on data collection time and measurement quality (e.g., resolution and
precision). More specifically, we were interested in enhancing the survey efficiency to
surpass tide-related constraints while ensuring the results’ effectiveness through rigorous
error characterization at two macrotidal coastal field sites with contrasting survey areas
and morphologies. The DEM error evaluation at localized check points (ChkPts) was sup-
plemented where possible by full DEM comparisons and the collection of over 2000 survey
points with RTK-GNSS, whilst the availability of repeat surveys and invariant features
enabled the assessment of the complete workflow replicability.
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Our results show that at least five GCPs, in addition to camera information, were
necessary to achieve the optimal model quality that minimized vertical bias and random
errors. Under this configuration, the standard deviation of error representing measurement
precision (~1 GSD) was approximately two times better than that when camera information
was unused. First, the geomorphic analyses are presented, highlighting the potential of the
method for submeter bedform characterization over entire beach systems.

2. Materials and Methods

2.1. Field Sites

The two coastal field sites presented in this study are located in Brittany in northwest
France (Figure 1a,b). The field site at La Palue and Lostmarc’h beaches, hereafter generally
referred to as “La Palue” for concision, is situated at the western end of Crozon Peninsula.
Facing due west, La Palue and Lostmarc’h are adjacent beaches totaling ~2.5 km along-
shore separated by a rocky promontory (Kerdra point) at high tide, backed by granitic
cliffs (20–50 m high) at each end point and a mostly consolidated and vegetated dune else-
where. It is a macrotidal environment with mean neap and spring tidal ranges of 2.25 and
5.60 m [57], respectively. Waves originate from Atlantic depressions generating SW through
NW swells, but also shorter period seas from locally generated wind [58]. Based on samples
collected on the intertidal beach and processed using traditional size-sieving, sediment
belongs to fine to medium sand with a D50 (the median sediment size for which 50% of
the sediment distribution is finer) of ~0.25 mm and a sorting coefficient (

√
D84/D16) of 1.35

(i.e., well-sorted). The upper beach abutting the dune is composed of cobbles, especially
on the northern parts (Figure 2b). The morphodynamics are akin to intermediate beaches
according to the Masselink and Short classification [59], covering a range of beach states
depending on ongoing hydrodynamic conditions. Generally, a flatter profile is observed
over winter, contrasting with marked bar and rip channel morphologies developing across
calmer months. During spring tides, the intertidal beach is approximately 300–400 m wide
(Figure 1c). Large patches of ripples and megaripples can often be observed. Bedrock may
locally appear near the low-tide line, depending on sand levels. Outside a few of channel-
ized access points and small blockhouses remnant of World War 2, human encroachments
are limited. Man-made features, at the condition they are relatively flat, were useful for
preparing fixed ground targets for photogrammetry. Depending on survey date, up to six
red-painted crosses approximately 40 cm in size were used (Table 1).

Table 1. Overview of the field surveys and data collection for UAV–SfM photogrammetry. The tidal
coefficient (20–120) represents the tide magnitude in relation to its mean.

Field Site Date
Tidal Coefficient

(-)

Flight
Count/Image

Count
(-)

Flying Height
(m)

Overlap
Along/Cross

(%)

Survey Area
(m2)

GSD
(m/Pixel)

Target Count
(Fixed Targets)

(-)

Sillon de Talbert
17 November

2020
103 2/734 58 80/70 125,000 0.014 21 (0)

La Palue
17 September

2020
101 5/1407 106 80/70 1,320,000 0.026 30 (5)

La Palue
17 December

2020
90 6/1548 105 80/70 1,280,000 0.026 22 (3)

La Palue
2 March 2021 103 5/1411 108 80/70 872,000 0.025 19 (1)

La Palue
29 April 2021 106 5/1386 107 80/70 1,080,000 0.026 28 (6)
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Figure 1. Survey sites. (a) Map of France; (b) bathymetric DEM of western Brittany with green stars
representing field sites at La Palue (left) and Sillon de Talbert (top right); (c,d) orthophotographs
(source: Ortho Littorale V2, Ministère en charge de l’environnement, 2013) of La Palue and Sillon de
Talbert, respectively, showing the (yellow enclosed) survey area and depth contours (source: Litto3D
Finistère 2014—Shom). Black and pink lines represent MSL and MLWS/MHWS, respectively.

The second field site corresponds to the proximal section of the Sillon de Talbert gravel
spit. This 3.5-km-long swash-aligned barrier is located north of Brittany. The sediment
volume is estimated at 1.23 × 106 m3 [60]. According to the barrier morphology and sedi-
mentology, the gravel accumulation can be classed as a “composite gravel beach” [61,62].
The beach face shows a break slope point at the mean water level, which delimitates the
gravel barrier from an otherwise flat rocky platform (slope = 0.01%) covered by thin and
patchy periglacial deposits and/or recent sandy sheets. The upper part of the beach face
is characterized by steeper slopes of between 5% and 15%. Back-barrier areas include a
large sand-flat and salt-marshes. The site is located in a macrotidal to megatidal setting
(maximum tidal range of 10.95 m) [57]. Dominant swell comes from the WNW, which
means that waves break with a slight angle according to the shoreline orientation, generat-
ing a longshore drift oriented to the NE. Until the end of the 17th century, the barrier was
connected to the islets of the Olone archipelago located to the NE. The disconnection of
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the barrier occurred in the early 18th century [63]. In the 1970s and 1980s, several coastal
defenses were installed to prevent the retreat of the barrier, especially in the proximal
section where a groin was installed. Annual topographic surveys realized with RTK-GNSS
since 2002 revealed a strong erosion of the beach face downdrift of the groin [64]. The loss of
sediment was estimated to ca. 11,000 m3 between 2002 and 2017, which caused significant
barrier lowering and narrowing locally. These morphological changes led to the opening
of a breach at the beginning of March 2018, which has experienced a rapid enlargement
(35 vs. 15 m) and deepening (3.4 vs. 1.25 m) over the following months [65]. For monitoring
breach evolution, we have put in place trimestral UAV photogrammetry surveys.

Figure 2. Field surveys. Orthophotos showing camera locations (black dots), DRTK-2 drone mobile
station (green square), ground photogrammetric targets (triangles; the five fixed targets present
at La Palue during the September survey are shown in red), GNSS base station (yellow square)
and geodetic marks (yellow star) at (a,b) La Palue, and (c) Sillon de Talbert field sites, respectively.
RTK-GNSS survey points used for the vertical evaluation of photogrammetry at La Palue are shown
in red. At Sillon de Talbert, the GNSS base station and DRTK-2 drone mobile station were installed
one after the other using the same geodetic mark.

2.2. Field Operation and Data Collection

Five surveys altogether covering a seven-month period are considered in this study:
one at Sillon de Talbert and four at La Palue (Table 1). For the latter, only the first survey
(17 September 2020) is described and analyzed in detail, the other three (repeat) surveys
being used for assessing measurements’ replicability (cf. Section 2.6).
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Data collection starts with centimetric-accuracy RTK-GNSS (Topcon Hyper V) measure-
ments of geodetic marks (cast metal disks installed on stable ground) and photogrammetric
targets (red plastic plates 30 cm in diameter fixed to the ground using tent poles) for
data georeferencing and validation (cf. Figure 2). Between 20 and 30 photogrammetric
targets, including fixed targets, were deployed to be used either as GCPs or ChkPts (cf.
Tables 1 and 2). Measurements are carried out in rapid-static mode (10 s average) using
GNSS rovers mounted on a 2-m pole equipped with a bubble level. To provide RTK
corrections, a GNSS base station was materialized at both sites using a geodetic mark.
Fixed coordinates were obtained using long-static averaging with a tripod (~240 min),
over several periods of time, and postprocessed in comparison with nearby IGN (Insti-
tut Géographique National) GNSS stations. Repeated measurements of other geodetic
marks provide insights on georeferencing quality. For example, using between three and
seven survey marks, the standard error (SE) was estimated to be 0.004 m horizontally and
0.002 m vertically on average at La Palue across four consecutive surveys. Geographic
coordinates are referenced to the French legal systems for this region, i.e., RGF93-Lambert
93 for planimetry and NGF-IGN69 for altimetry. Elevation zero (m NGF) corresponds to
approximately 0.5 m below mean sea level (MSL).

Table 2. Overview of the processing parameters and scenarios used for DEM reconstruction with
Agisoft Metashape.

Processing Step/Scenario Image Alignment
Sparse Point Cloud

Filtering
Model Optimization

Dense Matching
and DEM

Standard (High1)

• Key points: 60,000
• Tie points: 10,000
• Adaptive camera

model fitting
• Accuracy: “high”
• Pair preselection:

“source”

• Minimum image
count: 3

• Maximum
reprojection error:
0.4 pixel

• Maximum
reconstruction
uncertainty: 5

• Adaptive camera
model fitting

• Rolling shutter
compensation

• Camera accuracy:
1 m

• Marker accuracy:
error on marker
coordinates (pixel)

• Tie point accuracy:
RMS reprojection
error (pixel) on
tie points

• Camera positions
and attitudes

• 5 GCPs/N −
5 ChkPts

• Reconstruction
quality: “high”

• Depth filtering:
“aggressive”

• DEM resolution: 0.1
and 1 m

Low Accuracy: “low” - - DEM resolution: 1 m

Medium Accuracy: “medium” - - DEM resolution: 1 m

High2
Pair preselection:
“reference” - - DEM resolution: 1 m

Highest Accuracy: “highest” - - DEM resolution: 1 m

S-GCP - -

• Camera positions
and attitudes
unused

• N GCPs/0 ChkPts
DEM resolution: 1 m

S-RTK - - 0 GCPs/N ChkPts DEM resolution: 1 m

S-RTK-GCP - - N GCPs/0 ChkPts DEM resolution: 1 m

S-RTK-1GCP - - 1 GCPs/N−1 ChkPts DEM resolution: 1 m

S-RTK-3GCP - - 3 GCPs/N−3 ChkPts DEM resolution: 1 m

S-RTK-5GCP - - 5 GCPs/N−5 ChkPts DEM resolution: 1 m

S-RTK-9GCP - - 9 GCPs/N−9 ChkPts DEM resolution: 1 m

N is the number of photogrammetric targets available, and - stands for standard parameters.
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Aerial image acquisition for photogrammetry was carried out using DJI’s Phantom
4 RTK quadcopter (P4 RTK) and D-RTK2 mobile station. The latter is used for drone
RTK positioning. According to the manufacturer, this system allows image georeferencing
precisions of 1 cm + 1 ppm (parts per million, i.e., 1 mm per 1000 m) and 1.5 cm + 1 ppm
along the horizontal and vertical directions, respectively, traducing to absolute accuracies of
around 0.05 m at a flying height of 100 m. During surveys, the D-RTK2 is positioned atop a
geodetic mark with known coordinates (explanations above). The P4 RTK is equipped with
a 20-megapixel (2.41 × 2.41-pixel size) complementary metal-oxide-semiconductor (CMOS)
camera (FC6310R) with a mechanical global shutter and an 8.8 mm focal length. Besides
precise positioning, the drone attitude (pitch, roll and yaw angles) is recorded automatically
for each image using an onboard inertial measurement unit (IMU). For collecting images,
we used a single photogrammetric block arrangement with a front and side overlap of
80% and 70%, respectively (Table 1, Figure 2) and a forward-looking camera angle of 6◦
off-nadir. The flying height, and, thus, the GSD, was adjusted depending on the field site in
order to complete surveys within two hours around low tide. The flying height (relative
to take-off elevation) was maintained at approximately 58 m and 106 m for the Sillon de
Talbert and La Palue field sites, traducing to a GSD of 0.014 m and 0.026 m, respectively. To
satisfy local drone regulations active at the sites, five flights, from five different take-off
and landing spots, were necessary at La Palue, whereas two flights were enough to cover
the breach at Sillon de Talbert. Flight pattern was designed to include an overlap between
each image block (cf. Figure 2) while ensuring that flight duration remained below the
20-min mark. Before performing the flights, camera settings were tentatively adjusted to
the environmental conditions.

Additional topographic measurements were carried out at La Palue using RTK-GNSS
(Figure 2a) to serve as vertical ground truths for the evaluation of photogrammetry. To
make for an efficient survey covering as much of the beach length as possible, a GNSS
rover was securely mounted onto a bike, using a pannier rack above the rear wheel. The
rover was mounted with the antenna pointing downwards (vertically) and aligned with
the rear wheel axis. The approximate height of the antenna center above the ground
was measured, using a tape ruler, to be ~0.60 m. Determination of the exact height was
completed using a geodetic mark, with the bike positioned atop and loaded to replicate
survey conditions. The height of the antenna center was used to reference the data into
the same coordinate system as other surveys presented above. Point sampling along the
beach using the “bike GNSS” was carried out in dynamic mode at 1 Hz. The survey was
limited to the intertidal zone close to the low-tide water line with packed sand and where
photogrammetric quality was expected to be lower due to the difficulty of deploying GCPs
and more generally because of the presence of water, the latter making for more challenging
tie point detection. Surveying was done by riding the bike alongshore (cf. Figure 2a) to
limit as much as possible introducing a pitch angle between the GNSS antenna and the
vertical. Roll minimization was made possible by a bubble level mounted onto the bike
handlebar. Strategies to account for pitch and roll-related errors on point coordinates were
implemented and will be presented in Section 2.5.

2.3. Photogrammetric Data Processing: Standard Workflow

Drone images were processed using the SfM method implemented in Agisoft Metashape
(version 1.70). For producing the final data, the same “standard” workflow was imple-
mented allowing results’ comparison (Table 2). In the following, we present the standard
workflow used before presenting variations to this workflow (Section 2.4), which was
meant to assess controls on measurement quality and to validate our approach.

After importing images from all flights into a single chunk, image coordinates are
converted from initially WGS84 ellipsoid to RGF93-Lambert 93 and NGF-IGN69. Auto-
matic identification of low-quality images is performed using the “estimate image quality”
tool, whereby each image is associated to a score between 0 and 1 representing sharpness
(0 means totally blurred). Following recommendations, images with quality below 0.5 were
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not processed in order not to negatively influence image alignment. Image alignment is
carried out using the “High” accuracy setting, a reference pair preselection set to “source”,
key point (tie point) limits set to 60,000 (10,000). After initial image alignment and the
reconstruction of a sparse point cloud, photogrammetric targets’ coordinates are imported.
Each target was manually tagged in at least eight images, progressively improving model
georeferencing. To retain only the most reliable tie points, sparse point clouds were system-
atically cleaned using the “gradual selection” tool with the following parameters: minimum
image count of 3, maximum reprojection error of 0.4 pixel and maximum reconstruction
uncertainty of 5.

During photogrammetric model optimization, model georeferencing and 3D geometry
are adjusted through self-calibrating bundle block adjustment (BBA) requiring external
information. Using the standard workflow, BBA is carried out using all camera information
available (i.e., position, attitude and associated precisions provided by the drone) and
all targets as ChkPts but five (i.e., five targets used as GCPs). For all scenarios tested
(explanations below), adaptive camera model fitting was used for camera self-calibration,
allowing the complete set of calibration parameters (f, cx, cy, k1-k4, p1-p2 and b1-b2) to be
automatically adjusted given user-decided weighting of the external information provided.
Following recommendations in Ref. [43], the marker and tie point accuracy were adjusted
to match the error in pixel on marker coordinates and the RMS reprojection error (pixel) on
tie point coordinates, respectively.

For producing the final dense models, point cloud densification is carried out using
a reconstruction quality set to “High” with “aggressive” depth filtering. Using “High”
reconstruction quality setting, dense matching is applied to images resampled at half their
resolution, speeding up the process and reducing data size. With this setting, the optimum
DEM resolution (i.e., minimum grid spacing) is capped at 2 GSD, equaling 0.028 and
0.052 m at Sillon de Talbert and La Palue, respectively. It was considered sufficient for our
application since DEMs analyzed have resolutions of 0.1 m and 1 m. Before producing the
DEMs, dense point clouds were cleaned using the “Filter by confidence” tool, whereby each
model point is graded (1–255) according to how many depth maps the point in question
appears in. For this application, points with confidence between 0 and 3 were systematically
filtered. Finally, DEMs and orthophotos with a minimum planimetric resolution of 0.1 m
are created (interpolation enabled) and exported using same orthogonal grids with integer
bounding values.

2.4. Alternative Photogrammetric Processing Scenarios

To validate our selection of the standard processing parameters, different tests were
performed, which are shown in Table 2. The first test focused on image alignment accuracy
setting, which was varied from “Low” to “Highest” and encompassing “Medium” and
“High” accuracy settings, while other parameters were left unchanged. Using “High”
accuracy, image alignment is performed using original images. Using “Highest”, the
software upscales images by a factor two in each direction, while lower accuracy settings
will see image resolution decreasing incrementally by a factor two. A compound test was
performed in the case of “High” image alignment accuracy to assess the effect of disabling
the reference pair preselection, which uses image coordinates to help finding matches.

Optimum strategies during photogrammetric model optimization were assessed
through the declination of different scenarios (cf. Table 2). The Sillon de Talbert field
site, with reduced superficies and a comparatively large number of well-distributed targets,
was used as a testing ground. The first scenario (S-GCP) used all ground targets (n = 21)
as GCPs with camera information disabled during processing. This scenario is equivalent
to the classical approach relying solely on GCPs for camera calibration and model georef-
erencing. The second scenario (S-RTK-GCP) used all targets as GCPs, as well as camera
information (location and attitude), for the optimization. Other scenarios using camera
information were implemented by varying the number of GCPs used, hereafter referred
to as S-RTK, S-RTK-1GCP, S-RTK-3GCP, S-RTK-5GCP and S-RTK-9GCP, corresponding to
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using 0 (i.e., no GCPs), 1, 3, 5 and 9 GCPs, respectively. Scenarios using 1 and 3 GCPs were
replicated (differentiation is done using subscripts 1 and 2) in that targets selected as GCPs
were changed to test the effect of GCP location on model quality.

To facilitate results’ comparison for the different scenarios tested and to expedite data
processing, evaluations were performed on 1 m resolution DEMs created from the sparse
point clouds. This decision was supported by the fact that dense matching has limited
effect on the overall model georeferencing and geometry (e.g., 3D deformations that may
be present in the sparse models following model optimization), improving mainly the
representation of fine-scale features through a higher model resolution.

2.5. RTK-GNSS Data Processing

Mounting a GNSS rover onto a bicycle made for efficient topographic measurements,
but, unlike a rover set atop a pole kept static and vertical during data acquisition, measured
points’ coordinates may well be affected by errors due to pitch and roll whereby the bike is
subject to both the local relief in the direction of travel and its own instability. In order to
minimize these effects, particularly pitch-related errors, which were easier to detect, survey
points were cleaned according to (i) the confidence level with which they were obtained,
and (ii) systematic errors due to the uneven terrain topography.

Where survey points were sufficiently close to each other, point confidence was
estimated as the standard deviation of elevations within a circular window with 0.2 m
radius, which was considered a proxy of the local bed complexity. For the points evaluated,
only those with a confidence score below 0.035 m (the theoretical vertical precision of
RTK-GNSS) were retained, hence filtering less reliable points due to a locally complex bed
morphology and/or unnaturally large deviations among surrounding points.

Pitch-related errors due to the uneven terrain were estimated, assuming the bicycle fol-
lowed a straight line between two consecutive survey points, that the antenna of the GNSS
unit was vertically aligned with the real wheel center point when the bike is horizontal and
that the system was well equilibrated at all times (i.e., no roll). Under these conditions, the
bed slope in the travel direction, the pitch angle of the bicycle and that of the GNSS antenna
are same. We calculated the horizontal (dx) and vertical (dz) point displacements due to a
sloping bed using a distance between the two wheels of 1.2 m and a GNSS antenna height
of 0.6 m. With the arrangement used, horizontal errors were predominant over vertical
errors. As an indication, a 6◦ slope (equivalent to a beach gradient of 1 in 10) resulted in
horizontal and vertical errors of approximately 0.062 m and 0.007 m, respectively. Similar
to filtering by point confidence, points with pitch-related errors exceeding 0.035 m were
systematically filtered to only retain data in permissible terrain (here, terrain with forward
slopes below approximately 3◦).

2.6. Measurement Quality Evaluation

Different strategies and error metrics (Table 3) were used to evaluate measurement
quality achieved with photogrammetry. As much as possible, they were used simultane-
ously to assess results in terms of accuracy, precision and reliability [66]. While accuracy
and precision were estimated in comparison with reference data (ground truth) supposed of
higher quality, reliability represented the consistency between data obtained using different
processing parameters determined through DEMs of differences (DoDs).

Results’ accuracy, representing systematic deviations (bias) from the ground truth, and
the precision with which they were obtained, were calculated, respectively, as the mean
error (ME, Equation (1)) and the standard deviation of error (SDE, Equation (2)) between
photogrammetric models and ground targets. RMSE (Equation (3)) is also provided,
representing the global precision within results, combining both ME and SDE into a single
statistical measure (Equation (4)). Error statistics were calculated along all three dimensions
(x, y and z) and were eventually added in quadrature to produce a measure of the 3D error
(Equation (5)). For ease of use and clarity of the text, error metrics without a direction
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specifically mentioned refer to vertical error, which is of immediate interest for measuring
morphological change with DEMs.

Table 3. Error metrics used for evaluation of measurement quality.

Error Metric Formula

Mean Error (ME) ME = 1
N

N
∑

i=1
(y i − xi)

(1)

Standard Deviation of Error (SDE) SDE =

√
1
N

N
∑

i=1
(y i − xi)

2 (2)

Root-Mean Square Error (RMSE) RMSE =

√
1
N

N
∑

i=1
(y i − xi)

2 (3)

RMSE =
√

ME2+SDE2 (4)
3D Error ( 3D) 3D =

√
X

2 + Y
2 + Z

2 (5)

Mean Unsigned Error (MUE) MUE = 1
N

N
∑

i=1
|yi − xi| (6)

y is the measurement or observation, x the reference value and N the number of available comparisons. Horizontal
and vertical bars represent the average (i.e., mean) and absolute (i.e., unsigned) values, respectively. X, Y and Z
represent easting, northing and vertical (i.e., elevation) directions, respectively.

At La Palue field site only, DEM vertical accuracy and precision were also derived
through comparisons with points surveyed with the bike GNSS. This allowed for in-
dependent error evaluation at a dense network of ground truth points. For assessing
photogrammetric results, each GNSS survey point was compared with the closest DEM
grid point, given a maximum distance for comparison of 0.2 m. The latter was decided
considering comparisons with points further away would account more for the change in
the local bed topography than measurement error itself.

Finally, the availability of four repeat DEMs obtained using the same workflow for
collecting (Table 1) and processing (Section 2.3) the data enabled assessing photogrammetric
replicability at La Palue. The temporal variability in bed elevations was estimated for each
DEM cell using both the standard deviation of elevations and the maximum elevation range
between repeat surveys. These metrics were used to assess whether a surface cell (and,
hence, the underlying terrain) was stable over the survey period. We used a maximum
range of 0.035 m to distinguish stable and unstable cells (cells with elevation range above
threshold were considered unstable). To ensure a robust statistical characterization, only
cells measured across all four repeat surveys were retained. A multitemporal ground truth
DEM was formed by averaging repeat elevations over stable cells. Comparing individual
surveys with the ground truth provided information on eventual deviations from the
“average topography” of the stable zones.

3. Results

In the following, we present the results obtained at the two field sites, starting with the
breach at Sillon de Talbert. With a reduced survey area compared to La Palue and dense
ground controls, the breach at Sillon de Talbert represented an ideal testing ground for
experimenting on the minimum number of GCPs for effective photogrammetric optimiza-
tion using an RTK quadcopter. We then apply these findings to La Palue field site, and we
validate the approach using larger-scale experiments and data validation methods. The
implications of our findings and recommendations that arise from our results are discussed
in Section 4.

3.1. The Breach at Sillon de Talbert

Figure 3 presents the results of photogrammetric quality evaluation for the different
scenarios tested during model optimization. The reference DEM used for assessing the
other DEMs was produced using scenario S-RTK-GCP. This decision was based on the
consideration that using all the external information available during photogrammetric
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optimization would produce the most reliable DEM. Besides, comparing the DEMs obtained
using the other scenarios with this reference DEM enabled assessing the effect of using
camera information or not, as well as the effect of GCP number and distribution.

Figure 3. Assessment of model optimization at Sillon de Talbert showing (a) the reference DEM
obtained with scenario S-RTK-GCP overlapped with depth contours every 0.2 m, as well as DoDs
between the reference DEM and DEMs obtained using scenario (b) S-GCP, (c) S-RTK, (d) S-RTK-
1GCP1, (e) S-RTK-1GCP2, (f) S-RTK-3GCP1, (g) S-RTK-3GCP2, (h) S-RTK-5GCP and (i) S-RTK-9GCP.
Color coding for DoDs and error at photogrammetric targets is same for all. Photogrammetric targets
used as GCPs and ChkPts are shown as triangles and circles, respectively. DEM comparisons were
performed using 1 m resolution DEMs.

Figure 3 shows that the less reliable DEMs in terms of vertical precision (SDE) are
those obtained using scenarios S-GCP and S-RTK, with respective precisions of 0.027 m and
0.029 m (~2 GSD). Not using camera information during photogrammetric optimization
(Figure 3b), the DEM quality degraded noticeably where there was no GCP (e.g., peripheral
parts of the DEM). Using only camera information (i.e., no GCPs) resulted in slightly
poorer precision, but, most importantly, the S-RTK model was affected by a mean error
of 0.37 m. This vertical bias was confirmed using ChkPts, showing ME = 0.36 m (Table 4).
Progressively adding GCPs in addition to camera information during model optimization
improved the DEM accuracy and precision (Figure 3d–i). A plateau was attained from
five GCPs, whereby the bias was approximately zero and precision reached its minimum
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at approximately 0.01 m (i.e., <1 GSD, Figure 3h,i). When one or three GCPs were used
together with camera information, the GCP position had a noticeable effect on the DEM
quality (Figure 3d–g), especially on residual bias, with variable results.

Table 4. Vertical error evaluation for the different scenarios presented in Figure 3 using ground
targets (GCPs and ChkPts) measured with RTK-GNSS. The values between brackets correspond to
GCP-based error.

(a) Reference DEM: S-RTK-GCP (b) S-GCP (c) S-RTK

ME = N.A. (0.000 m) ME = N.A. (0.000 m) ME = 0.363 m (N.A.)
SDE = N.A. (0.002 m) SDE = N.A. (0.007 m) SDE = 0.014 (N.A.)

(d) S-RTK-1GCP1 (e) S-RTK-1GCP2 (f) S-RTK-3GCP1

ME = −0.019 m (0.003 m) ME = 0.002 m (0.002 m) ME = −0.022 m (0.001 m)
SDE = 0.011 (0.000 m) SDE = 0.012 (0.000 m) SDE = 0.010 (0.001 m)

(g) S-RTK-3GCP2 (h) S-RTK-5GCP (i) S-RTK-9GCP

ME = 0.016 m (0.001 m) ME = −0.001 m (0.000 m) ME = 0.003 m (0.000 m)
SDE = 0.014 (0.001 m) SDE = 0.013 (0.002 m) SDE = 0.012 (0.002 m)

As shown in Table 4, using GCPs for error evaluation prevented detecting the vertical
registration error in the DEMs and produced optimistic precision estimates. The SDE
values estimated using GCPs were consistently lower by an order of magnitude than those
estimated at ChkPts or those derived from model comparisons with the reference DEM
(Figure 3). On the contrary, the MEs estimated using ChkPts and DEM comparisons were
very consistent with each other. The SDE calculated using ChkPts remained slightly lower,
suggesting better vertical precision.

The photogrammetric horizontal error estimated using GCPs and ChkPts is presented
in Table 5 for the same DEMs. The results show larger horizontal error compared to
vertical error for all the scenarios tested, with a ratio between horizontal and vertical error
generally around 3:1. Similar to previous observations, adding GCPs in addition to camera
information progressively improved the model quality mainly by reducing the horizontal
bias to negligible levels (<0.01 m) from 5 GCPs, while the measurement precision remained
relatively unaffected. Overall, the photogrammetric errors amounted to global precisions
(RMSE3D) of approximately 0.05 m under optimum configurations.

Table 5. Planimetric error (X easting and Y northing) evaluation for the different scenarios presented
in Figure 3 using ground targets (GCPs and ChkPts) measured with RTK-GNSS. The values between
brackets correspond to GCP-based error.

(a) Reference DEM: S-RTK-GCP (b) S-GCP (c) S-RTK

MEX = N.A. (−0.001 m) MEX = N.A. (0.000 m) MEX = −0.022 m (N.A.)
SDEX = N.A. (0.027 m) SDEX = N.A. (0.026 m) SDEX = 0.037 m (N.A.)
MEY = N.A. (0.001 m) MEY = N.A. (0.000 m) MEY = 0.039 m (N.A.)
SDEY = N.A. (0.029 m) SDEY = N.A. (0.027 m) SDEY = 0.053 m (N.A.)

(d) S-RTK-1GCP1 (e) S-RTK-1GCP2 (f) S-RTK-3GCP1

MEX = -0.025 m (0.025 m) MEX = −0.019 m (−0.029 m) MEX = −0.021 m (−0.013 m)
SDEX = 0.035 m (0.000 m) SDEX = 0.038 m (0.000 m) SDEX = 0.037 m (0.036 m)
MEY = 0.036 m (0.019 m) MEY = 0.037 m (−0.014 m) MEY = 0.044 m (−0.007 m)
SDEY = 0.053 m (0.000 m) SDEY = 0.049 m (0.000 m) SDEY = 0.048 m (0.028 m)

(g) S-RTK-3GCP2 (h) S-RTK-5GCP (i) S-RTK-9GCP

MEX = −0.019 m (0.003 m) MEX = −0.009 m (0.003 m) MEX = 0.003 m (−0.003 m)
SDEX = 0.037 m (0.022 m) SDEX = 0.039 m (0.018 m) SDEX = 0.042 m (0.021 m)
MEY = 0.026 m (0.005 m) MEY = 0.004 m (0.009 m) MEY = −0.009 m (0.004 m)
SDEY = 0.047 m (0.010 m) SDEY = 0.047 m (0.016 m) SDEY = 0.050 m (0.014 m)
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3.2. La Palue Field Site

Figure 4 presents the results of the topographic measurements using RTK-GNSS
mounted on a bike. The raw data counted 2036 survey points separated on average by
approximately 2.5 m (sigma = 0.75 m), showing that the data acquisition was carried out at
an average speed of 9 km/h (2.5 m/s). Not shown in the figures, comparing the survey
points with immediate neighbors (maximum distance of 0.2 m) enabled the point confidence
to be evaluated at 39 locations, indicating a mean and maximum point confidence of 0.007 m
and 0.015 m, respectively. As one may expect, the pitch-related errors due to the uneven
terrain affecting the measurements were larger at the turning points (e.g., beach ends) since
the bicycle was then moving up or down the beach (i.e., cross-shore), and where the local
topography was suddenly changing (Figure 4b,c). The maximum forward slope recorded
was just below 4◦, traducing to maximum horizontal (dx) and vertical (dz) pitch-related
errors of 0.04 m and 0.01 m, respectively. Filtering the data based on pitch-related errors
(dx) resulted in the rejection of 158 points. The final number of survey points retained for
comparison with photogrammetry thus amounted to 1878 (Figure 4c).

Figure 4. Verification of survey points obtained using a bike-mounted RTK-GNSS at La Palue, with
(a) the chronology of point acquisition; (b) pitch-related horizontal error (dx), where marker size is
proportional to error magnitude (×1000 magnification factor) and (c) the elevation of survey points
retained serving as ground truths for photogrammetric evaluation.
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Changing the accuracy setting during photogrammetric image alignment had major
repercussions on the data processing time, as well as on the measurement density and
quality (Table 6 and Figure 5). The image alignment time (1407 images) varied by two
orders of magnitude, from 27 min (“Low”), through 43 min (“Medium”) and 105 min
(“High1” and “Highest”), to an outright maximum of 2721 min (~45 h, “High2”) when
“source” pair preselection was unused. The number of tie points after the alignment was
the maximum using the “Highest” accuracy setting, followed by “High1” and “High2”,
with ~1:5 variations overall (from 550,000 to 2,500,000 points). However, after the automatic
filtering of less reliable tie points, the number of tie points decreased from a maximum of
~435,000 points with “High1”, through “Medium”, “High2”, “Highest” and, finally, “Low”
accuracy settings with ~80,000 points (again, 1:5 variations overall). The comparison of
the photogrammetric models obtained (DEMs at 1 m resolution) with the ground truths
provided by RTK-GNSS shows a similar tendency, with DEM quality (Table 6) in decreasing
order for “High1” (SDE = 0.042 m or 1.6 GSD), “High2”, “Medium”, “Highest” and, finally,
“Low” (SDE = 0.125 m or 5 GSD) alignment accuracy with 1:3 variations overall. The
photogrammetric deviations from the ground truth were essentially to be related to the
measurement precision since no significant bias (i.e., ME ~0) was detected in the results.
However, Figure 5 shows that the systematic errors, although of small magnitude, may
still be present in the DEMs, taking the form of undulations. The color grading shows an
error magnitude of ±0.04 m for the better-quality models (“High1”, “High2”, “Medium”),
eventually exceeding 0.1 m at some locations when the “Highest” and “Low” accuracy
settings were used. Using ground targets (GCPs and ChkPts) for error evaluation produced
error statistics with no appreciable differences between the scenarios tested (differences
were found to be non-significant at p = 0.05), and, for this reason, they are not presented.

Table 6. Effect of changing the image alignment accuracy setting during sparse DEM reconstruction
at La Palue field site in terms of processing time, number of tie points (before and after filtering) and
measurement error. Deviations between photogrammetric models (1 m resolution) and GNSS-RTK
survey points, from which vertical error statistics are extracted, are presented in Figure 5.

(a) Low (b) Medium (c) High1 (d) High2 (e) Highest

Alignment time 27 min 43 min 105 min 2721 min 105 min

Initial tie points 567,716 1,918,509 2,102,195 1,967,440 2,482,173

Final tie points 79,909 412,200 435,657 402,828 320,413

Error statistics

ME = 0.000 m ME = −0.001 m ME = 0.000 m ME = −0.002 m ME = −0.004 m
MUE = 0.096 m MUE = 0.038 m MUE = 0.031 m MUE = 0.033 m MUE = 0.045 m
SDE = 0.125 m SDE = 0.049 m SDE = 0.042 m SDE = 0.044 m SDE = 0.062 m

RMSE = 0.125 m RMSE = 0.049 m RMSE = 0.042 m RMSE = 0.044 m RMSE = 0.062 m
Max = 0.368 m Max = 0.145 m Max = 0.117 m Max = 0.144 m Max = 0.213 m

In comparison to previous tests, changing the depth filtering setting during dense
model reconstruction had lesser effects on the DEM quality. Using RTK-GNSS for ground
truthing produced nearly identical error statistics for all the settings, shown by SDE = 0.033 m
for no filtering and “Mild” and SDE = 0.032 m for the “Moderate” and “Aggressive” settings,
respectively. For this reason, Table 7 presents errors evaluated as DEM comparisons
using the case of no filtering as a reference. Deviations from this reference DEM were
essentially found at steep sections of the study site (e.g., cliff faces), resulting in potentially
large elevation deviations over small spatial extents (indicated by the neat difference
between MUE and SDE). Elevation deviations increased (in magnitude and occurrence)
with increasing depth filtering, until a plateau was reached (“Moderate” and “Aggressive”
have identical error statistics).
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Figure 5. Evaluation of image alignment accuracy setting during sparse DEM reconstruction showing
vertical errors at 177 RTK-GNSS survey points for (a) low, (b) medium, (c,d) high and (e) highest
alignment accuracy setting. For all scenarios tested, “source” reference pair preselection was used,
except for panel (d). Photogrammetric targets used as GCPs and ChkPts are shown as triangles and
circles, respectively. Error evaluation was performed using 1 m resolution DEMs.

Table 7. Evaluation of depth filtering during dense DEM reconstruction at La Palue field site. Except
for the reference DEM using no depth filtering, for which errors are estimated in comparison to 1381
RTK-GNSS survey points, vertical error statistics are the result of intercomparing DEMs with the
reference DEM. All DEMs evaluated were reconstructed using “High” image alignment accuracy
(Figure 5c) and “High” reconstruction quality for sparse and dense DEM reconstructions, respectively
(cf. explanations in the text). Evaluations were performed using 0.1 m resolution DEMs.

(a) Reference DEM (b) Mild (c) Moderate (d) Aggressive

ME = 0.001 m ME = 0.000 m ME = −0.001 m ME = −0.001 m
MUE = 0.027 m MUE = 0.003 m MUE = 0.005 m MUE = 0.005 m
SDE = 0.033 m SDE = 0.072 m SDE = 0.084 m SDE = 0.084 m

RMSE = 0.033 m RMSE = 0.072 m RMSE = 0.084 m RMSE = 0.084 m
Maximum = 0.186 m Maximum = 76.23 m Maximum = 77.33 m Maximum = 77.33 m

Figure 6 presents the DEM obtained at La Palue using the standard workflow designed
for this study (Table 2) and produced on a 0.1 m grid. The measured beach topography
shows marked 3D morphologies, particularly on the northern side of Kerdra point and
at the seaward DEM boundary, with numerous channels incised in the sand and humps
and hollows representing sand accumulations and depressions (Figure 6a). The smaller-
scale topography, which is apparent in the orthophoto and is suggested by uneven and
rugged elevation contours, is somehow subdued by the general topography when viewed
at this scale. The fine grid spacing was advantageous to allow comparisons at a large
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number of RTK-GNSS survey points (1381 points). The photogrammetric errors (Figure 6b)
show a similar spatial organization with the ones identified previously using 1 m DEMs
reconstructed from sparse point clouds (Figure 5). DEM precision using the standard
workflow was characterized by SDE = 0.032 m (i.e., 1.2 GSD, Figure 6c,d).

Figure 6. Quality assessment of the 0.1 m resolution photogrammetric DEM obtained using the
standard workflow. (a) DEM overlapped with depth contours every 0.2 m; (b) vertical error at
photogrammetric targets (GCPs and ChkPts) and 1381 RTK-GNSS survey points; (c) probability distri-
bution function (PDF) of pitch-related error (dx) binned at 0.005 m and (d) PDF of photogrammetric
vertical error in comparison to RTK-GNSS survey points binned at 0.01 m.

Four repeat photogrammetric surveys carried out between September 2020 and April
2021 are compared in Figure 7. Using the range and standard deviation of repeat bed
elevations, representing the temporal variability in the elevation for each surface cell,
shows that large portions of the back beach (i.e., dune and cliff tops), as well as rock
deposits and outcrops, can be considered stable over the 7-month period during which
the DEMs were obtained (here defined as cells with an elevation range between the four
surveys below 0.035 m). Filtering the unstable surface cells left 587,105 invariant cells
at a horizontal resolution of 0.1 m, and characterized by an overall (i.e., averaged over
all the stable cells) range and standard deviation of repeat bed elevations of 0.025 m and
0.011 m, respectively. Averaging the repeat elevations over the stable cells of the DEM
produced a multi-temporal ground truth backing the entire beach over all the sides except
seaward, and with elevations spanning over 50 m (Figure 7d). The comparison of the
17 September 2020 survey with the ground truth (Figure 7e) suggests centimeter-scale
deformations, which may echo deformations previously identified using RTK-GNSS survey
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points (Figures 5 and 6). The quantitative comparison shows ME and SDE of ~10−3 m and
0.01 m, respectively.

Figure 7. Assessment of photogrammetric workflow replicability at La Palue. (a) Cell variability
using all repeat surveys (n = 4); (b) cell variability and (c) cell elevation range after thresholding to
retain only supposedly stable cells (n = 587,105 cells); (d) resulting ground truth elevations over stable
cells and (e) comparison of 17 September 2020 survey with the ground truth.

Figure 8 presents the first applications of very-high-resolution coastal monitoring at the
La Palue field site, used here for beachface topographic complexity detection and mapping.
Three zones are analyzed in more detail, corresponding to regions of return flows, creating
narrow channels incising sand superimposed with complex small-scale topographies, such
as (mega)ripples and hummocky patterns of different forms and dimensions. For detecting
submeter bedforms, the 0.1 m resolution DEM was detrended from metric topography by
subtracting the 1 m resolution DEM. Doing so left only the small-scale topographies not
accounted for in the DEMs with resolutions of 1 m or above (Figure 8b).

The qualitative analysis of the orthophotos and DEMs suggests that the approach
was suitable for characterizing sub-metric beach topography, creating realistic maps of the
bedform arrangement at the beach scale (cf. Figure 8a,b). The submeter-scale topography
is most evident at steep sections of the beach, such as seaward of the berm and where there
is a sand-cobble transition, but is otherwise widely spread. It includes large patches of
ripples and megaripples, channels of varied dimensions, and zones of water resurgence.
Quantitatively, the net volume embodied in the sub-metric topography amounted to
~6000 m3, which is equivalent to a layer of sand of 0.011 m over the entire beach.
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Figure 8. Application of RTK quadcopter and SfM photogrammetry for very-high-resolution mea-
surement of topographic roughness and bedform mapping at the beach-scale at La Palue field site.
(a) Orthophoto and the different zones investigated in panels (c–h); (b) 0.1 m resolution DEM de-
trended from metric topography (cf. explanation in the text); (c–h) 0.1 m resolution orthophotos and
detrended DEMs cropped to the areas of interest. Detrended elevations below 0.02 m are not shown
to help with figure comprehension. The colorbar is same for all DEMs.

4. Discussion and Conclusions

This study has tested the possibility of using SfM photogrammetry augmented with
an RTK quadcopter for monitoring coastal topographic complexity at the beach-scale. The
survey method had to respond to both resolution and time constraints, with final DEM
resolutions of 0.1 m for a realistic representation of the topo-morphological features from
submeter dimensions and a survey completed in two hours around low tide to cover
the intertidal zone. The method implemented had to achieve effective measurements in
a challenging environment characterized, for instance, by large topographic variations,
differences in bed cover, such as rough surfaces alternating with textureless and reflective
surfaces, such as sand, and the presence of water as thin patches or deeper puddles and
channels, which can all represent important difficulties for photogrammetry.

To evaluate the effective measurement resolutions and precisions achieved by the
survey method, and, hence, to be able to identify suitable protocols for collecting and
processing the data that surpassed the above constraints, purpose-built SfM workflows
were applied to aerial images collected at two coastal field sites (La Palue and the breach at
Sillon de Talbert) and tested against different ground truths. Of interest for this application,
because of their impact on the data collection time and DEM quality, we specifically assessed
the effect of image resolution and using GCPs in addition to camera information during
BBA. As much as possible, the error evaluations were diversified to enhance the spatial

111



Remote Sens. 2022, 14, 1679

coverage and the level of error detection afforded and, hence, to increase the chance of
obtaining reliable error statistics.

Ideally, complete DEM comparisons should be undertaken to fully characterize the
error magnitude and spatial distribution as it is now well-known that photogrammetric
measurements can be affected by complex 3D deformations (e.g., the dome effect), which
may remain undetected when using sparse ground controls [67,68]. In the absence of
suitable ground truth at this scale, we analyzed the DoDs for different processing scenarios.
This strategy proved effective for assessing the DEM reliability due to variations in the GCP
number and distribution, showing that, in addition to aerial controls, at least five GCPs were
necessary at Sillon de Talbert to achieve optimum quality that minimized measurement
bias and random errors. Under this configuration, the global vertical precision (RMSE)
improved two-fold in comparison to a processing workflow using all the targets as GCPs
(n = 21) but no aerial controls. The benefit resulting from using RTK image positioning
resided principally in an improved 3D geometry of the model, particularly at zones with
limited to no ground controls. Using aerial controls only (akin to direct georeferencing), our
results showed that the photogrammetric results were affected by vertical bias, explaining
most of the error. The presence of vertical bias in models obtained using DG has been
reported before and was explained by inaccurate IOP calibration (e.g., Refs. [49,52,56,69,70]).
Likewise, our results showed that the addition of a single GCP was enough to reduce the
vertical bias to the GSD level together with RMSE ~2 GSD, but the addition of other GCPs
during BBA further improved the photogrammetric quality until a plateau was attained
from 5 GCPs, with the RMSE mostly below 1 GSD.

Using ChkPts measured with RTK-GNSS enabled the assessment of both the horizontal
and vertical error in RTK-assisted photogrammetry, showing a similar tendency to the
DoD analysis, whereby 5 GCPs were necessary to achieve optimum accuracy and precision.
Under this configuration, the global 3D precision (RMSE) remained below 0.05 m (3.6 GSD).
We observed larger horizontal error over vertical error (ratios as large as 1:4), which is
contrary to most previous research, where, generally, horizontal error is the lower bound
(e.g., Refs. [46,56]). A reason may be the use of suboptimal photogrammetric targets for
the present study. The targets we used had no marks at the center point where RTK-
GNSS measurement is carried out, meaning that the target geolocation in the images can
be prone to large horizontal uncertainties. The targets have been upgraded recently to
include a chequerboard-like pattern, which has been recommended for pinpoint accuracy
in RTK-GNSS measures and image positioning [71]. Nevertheless, we showed that error
evaluation using ground targets can produce optimistic estimates, particularly when the
error is evaluated at GCPs (used for photogrammetric processing). A difference in the error
estimates between GCPs and ChkPts was also identified in Sanz-Ablanedo et al. [46], where
it was suggested using a magnification coefficient to artificially inflate the error measures
in the absence of independent ground controls (i.e., ChkPts). Although it may prove useful
for guessing the precision within results (SDE), we showed, however, that using GCPs
failed at detecting bias in the measurements, thus reinforcing that, ideally, numerous and
well-distributed independent ChkPts should be used to characterize the DEM error.

Larger-scale experiments were conducted at La Palue field site to validate the work-
flow. Three operators were necessary to carry out the field operations, which included
GNSS measurements of ~20 photogrammetric targets distributed over the whole beach
(~2500 × 400 m2), using the bike-mounted GNSS to acquire ground truth data near the
water line, performing all the flights, for finally removing the targets, all within a two-hour
window around low tide. Five “permanent targets” were prepared before the September
survey, consisting of red-painted crosses. They were created over flat and stable areas of the
study site, all man-made and localized above the highest high tides so as not to introduce
error in photogrammetry, which could otherwise arise due to imprecise identification in
images or terrain changes. This means, however, that the spatial distribution of these
permanent targets was limited to the landward side of the site.
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Between 177 and 1381 RTK-GNSS survey points were used to assess the photogram-
metric reconstruction for different processing scenarios (e.g., varying image resolution)
both before and after model densification. In comparison to Sillon de Talbert, the best-case
vertical precision achieved at La Palue was slightly worse, which may be related to an
increased flying height and the different error evaluation methods used. Larger DEM error
was measured at peripheral zones where the effective overlap index (i.e., apparition in
images) is reduced, which is consistent with previous observations (e.g., Refs. [44,46,72]).
Although of a small magnitude, the effect was increasing measurement noise and po-
tentially centimeter-scale deformations of the photogrammetric model. Enlarging the
survey area, especially on the seaward side (e.g., by adding an additional alongshore
flight track), could strengthen the photogrammetric block and reduce the error at these
distant locations. Regardless of the model densification, the DEM errors showed a similar
pattern (Figure 5), reinforcing the fact that the DEM shape is essentially the result of image
alignment and photogrammetric optimization taking place before dense point matching.
The image resolution used for initial tie point detection and 3D reconstruction played a
large role in mitigating or inflating the error, with a ratio of 1:3 depending on the setting.
The best results were obtained using “High” alignment accuracy, followed by “Medium”
and “Highest”, with the same order also observed in terms of the number of tie points
retained. This suggests that the alignment accuracy setting is not fully representative of
the tie point quality (e.g., density and precision). With our findings, we also suggest using
RTK image positions (pair pre-selection) for speeding up image alignment, with two orders
of magnitude improvement together with enhanced tie point quantity and quality. The
final evaluation using four repeat surveys demonstrated a very good reproducibility of
the complete workflow for DEM collection, shown by a large number of surface cells over
hypothetical stable zones (~5870 m2) characterized by a range between repeat elevations
below 3.5 cm and a standard deviation of 1.1 cm on average.

Using the measurement workflow enabled characterizing the submeter beach topo-
graphic roughness, creating realistic maps of bedform arrangement at the beach scale,
whose interpretation is eased further through the provision of very-high-resolution or-
thophotos (0.1 m). This small-scale topographic complexity (e.g., patches of ripples and
megaripples) was found to be widespread and represented a large volume of sediment not
represented in the DEMs with metric resolutions and, hence, not accounted for in typical
beach surveys. Through pursuing surveys, follow-up studies will be looking at bedform
classification and interpreting the spatial patterns observed and their temporal evolution in
relation to driving hydrodynamic processes. For dynamic environments such as beaches,
this study further exemplified that photogrammetry has the potential to help characterizing
morphological changes across a wide range of spatial and temporal scales.
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Abstract: Sea ice is an important part of the global cryosphere and an important variable in the
global climate system. Sea ice also presents one of the major natural disasters in the world. The
automatic and accurate extraction of sea ice extent is of great significance for the study of climate
change and disaster prevention. The accuracy of sea ice extraction in the Yellow River Estuary is
low due to the large dynamic changes in the suspended particulate matter (SPM). In this study, a set
of sea ice automatic extraction method systems combining image spectral information and textural
information is developed. First, a sea ice spectral information index that can adapt to sea areas with
different turbidity levels is developed to mine the spectral information of different types of sea ice.
In addition, the image’s textural feature parameters and edge point density map are extracted to
mine the spatial information concerning the sea ice. Then, multi-scale segmentation is performed on
the image. Finally, the OTSU algorithm is used to determine the threshold to achieve automatic sea
ice extraction. The method was successfully applied to Gaofen-1 (GF1), Sentinel-2, and Landsat 8
images, where the extraction accuracy of sea ice was over 93%, which was more than 5% higher than
that of SVM and K-Means. At the same time, the method was applied to the Liaodong Bay area, and
the extraction accuracy reached 99%. These findings reveal that the method exhibits good reliability
and robustness.

Keywords: Yellow River Estuary; turbid area; spectral information; textural features; sea ice extension;
automatic extraction

1. Introduction

Sea ice refers to saltwater ice that is directly frozen from seawater, and also includes
continental glaciers (icebergs and Iceland), river ice, and lake ice that enter the ocean. Sea
ice greatly inhibits the heat and steam exchange between the ocean and atmosphere and
alters the radiation budget and energy balance of the ocean’s surface. These changes have
an important impact on oceanic hydrological conditions, atmospheric circulation, and
ocean climate [1]. In addition, the production and disappearance of sea ice greatly affects
human marine activities. For example, sea ice significantly affects the development of
marine resources and marine transportation [2]. Moreover, sea ice presents a potential
freshwater resource [3]. Therefore, accurate real-time monitoring of sea ice bears an
important application value and theoretical significance.

The bottom of the Yellow River Delta contains a small flat slope, shallow water low
salinity, as a result of which seawater is easily frozen [4]. The development of conditions
conducive to ice formation and persistence in this sea area is unstable; that is, the ice
disappears as the temperature rises and reappears as the temperature drops [5]. Sea ice
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is formed at a rapid rate and responds more closely to the local climate. Sea ice disasters
frequently occur in the waters of the Yellow River Delta, and sea ice often has a major
impact on fishing ports, wharves, shallow beach aquaculture, and offshore infrastructure [6].
For example, the operation area of the Shengli Oilfield, China’s second-largest oilfield,
is mainly concentrated in the Yellow River Delta, the Bohai Sea and its adjacent waters.
Sea ice severely affects and threatens offshore oilfield production operations and various
engineering facilities in the winter [7]. According to statistics, severe and relatively serious
sea ice disasters occur roughly once every five years in China, and in some sea areas, sea
ice disasters occur almost every year [8]. In the winter of 2009–2010, the Bohai Sea and the
northern part of the Yellow Sea experienced the worst ice conditions in nearly 30 years. The
severe ice conditions had a significant impact on the society and economy of the provinces
(cities) along the Yellow Sea and the Bohai Sea. According to statistics, sea ice disasters
caused economic losses totaling nearly USD 900 million [9]. Therefore, in the context of
global warming, it is entirely possible that continuous low temperatures and severe sea
ice disasters will occur in some areas. In particular, with the rapid economic development
of the Bohai Rim region, the losses suffered by sea ice disasters are increasing year by
year [10]. In the new era, the country should promote the understanding of the ocean,
rationally develop and utilize marine resources, protect the rights and interests of the
ocean, and insist on the harmonious coexistence of man and the ocean. Faced with the new
requirements as China enters a new era and accelerates the building of its maritime power,
the existing sea ice disaster prevention and mitigation capabilities can no longer fully meet
the actual needs of the economic and social development in icy sea areas, and sea ice
monitoring capabilities remain relatively weak [11]. It is the trend of future development to
improve the three-dimensional marine disaster observation network that combines coastal
observation, offshore platform and satellite remote sensing, so as to improve the ability of
marine disaster observation [12]. Therefore, the precise extraction of sea ice provides the
basis for strengthening the analysis of and research on sea ice conditions, and is necessary
for improving early sea ice warning technology, as well as ice prevention and disaster
reduction capabilities.

Traditional sea ice monitoring methods, such as shore-based observations and ice-
breaker observations, cannot obtain large-scale sea ice information in a timely and accurate
manner. Remote sensing monitoring technology has a high timeliness, can obtain repeated
observations on a large scale, and is relatively inexpensive, providing long-term data
support for dynamic and efficient sea ice monitoring [13–15].

Large-scale monitoring of sea ice in high latitudes can be carried out using remote
sensing technologies such as microwave and optical remote sensing. Passive microwave
and synthetic aperture radar (SAR) imagery enables all-weather observations and the
ability to penetrate through clouds [16,17]. The automatic segmentation algorithm based
on statistical distance realizes the classification of C-band fully polarized sea ice data [18].
A sea ice classification method is proposed for X-band, C-band and L-band fully polarized
synthetic aperture radar images. By extracting the polarized features of sea ice classification,
the feature vector provides input into the neural network classifier to realize the extraction
of sea ice [19]. However, it is challenging to obtain due to the high cost and the long
revisit period for most of them [20]. Optical remote sensing data, although limited by
weather conditions, usually delivers better spatial resolution, lower cost, and shorter revisit
times. For example, satellites such as Moderate Resolution Imaging Spectroradiometer
(MODIS) [21], Advanced Very High-Resolution Radiometer (AVHRR), Geostationary Ocean
Color Imager (GOCI) [22], and Feng Yun 3 (FY-3) [23] has a high time resolution and can be
used for continuous monitoring of sea ice in a large-scale area and a long time sequence.
The disadvantage is that the spatial resolution is low, and it is difficult to perform refined
regional sea ice monitoring. High spatial resolution remote sensing data represented by
GF1 [24], Landsat [25], and Sentinel-2 [26] can be used to achieve refined sea ice monitoring
through data mining, and the effective combination of multi-source medium and high-
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resolution satellite data compensates for the low time resolution of the data and further
improves its sea ice monitoring capabilities.

Three main types of feature parameters are used for sea ice extraction: spectral features,
spatial features, and temperature features. The spectrum processing methods commonly
used for sea ice extraction include the band ratio, band difference, and various normalized
indexes, which highlight the sea ice information [27]. In addition, the sample point selection
and machine learning methods have also been used to extract spectral information about
sea ice. The second concerns the spatial features. The spatial feature commonly used
for sea ice extraction is the textural feature based on the gray-level co-occurrence matrix.
Generally, the surface of sea ice is rough and has conspicuous irregular and unstable
textural characteristics; while the surface of sea water is smooth and has constant textural
characteristics [28]. The third refers to the temperature feature. This parameter is used to
retrieve the surface temperature through the thermal infrared band of the remote sensing
image. The temperature feature is simple and easy to use, but has fewer data sources and a
low spatial resolution; the accuracy of the temperature retrieval algorithm is also not very
high, limiting its application [29].

Current sea ice extraction methods can be divided into threshold segmentation meth-
ods, machine learning methods, and digital image processing methods. The threshold
segmentation method mainly involves setting the threshold value of the sea ice’s spectral,
textural, temperature, and other parameters and determining the threshold values using an
artificial or bimodal histogram, scatter plots, and other methods, such as using the red band
and the ratio threshold of the near-infrared band to achieve rapid extraction of sea ice [27].
Su et al. used the red and near-infrared bands of Sentinel-3 images to establish a sea ice
information index that highlights the spectral information of sea ice, and employed the
Jenks method to determine the segmentation threshold of ice water [30]. Hayashi et al. used
reflectance scatter plots of MODIS bands 1 and 2 to derive a formula suitable for extracting
the area of thin ice [31]. Ice conditions in the Gulf of Riga in the Baltic Sea were counted by
a bimodal histogram method, the statistical results were limited by the spatial resolution of
MODIS [32]. The threshold segmentation method is simple and fast, but it is difficult to de-
termine the threshold value using this method, and the threshold value of different images
will be slightly different. Machine learning methods such as support vector machines and
Classification and Regression Trees (CART) decision trees select certain sample points and
then classify the sea ice and seawater areas [33]. The machine learning method is simple
and easy to use, but the classification process is unclear, and the sample points need to be
manually selected, making it difficult to achieve automation. In addition, the final accuracy
depends entirely on the selected sample points. The digital image processing method is to
highlight the sea ice information by processing and transforming the image. For example,
Li et al. proposed a linear spectral decomposition method based on MODIS images with
multiple constrained end members [34]. The pixels are decomposed to extract the range
of the sea ice. Liu et al. used a wavelet transform to extract the textural information from
a SAR image, converted a China–Brazil Earth Resources Satellite (CBERS-02B) optical
image from Red-Green-Blue space to Hue-Saturation-Intensity space, and finally employed
Principal Component Analysis (PCA) to fuse the HSI image and the texture images [35].
Digital image processing methods can highlight sea ice information more intuitively, but
the process is more complicated and difficult to automate.

The seawater turbidity of the Yellow River Delta is high, and the changes are quite
drastic, which intensifies the distinction between sea ice and seawater. Aiming at the
problems of the low accuracy and efficiency of the current sea ice extraction methods used
in the Yellow River Delta and based on multi-source remote sensing images, in this study, a
set of sea ice automatic extraction method systems suitable for the Yellow River Delta was
developed and the spatial and textural information about the sea ice was fully excavated.
The automatic extraction method will be further extended to other areas such as Liaodong
Bay in order to provide important technical support for the rational development of sea ice
resources and to improve the early warning capabilities of sea ice disaster prevention and
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mitigation systems. This method explores the spectral information and texture information
of different ice types. The spectral information, texture information and edge information
of sea ice are used to extract sea ice, and the completeness and accuracy of sea ice extraction
results are improved through multi-scale segmentation of images. This method can provide
a reliable method for extracting sea ice extent from high-resolution optical remote sensing
data such as GF1.

2. Materials and Methods

2.1. Study Area and Data

The Yellow River Delta is located in the southeastern part of Bohai Bay and the
northwestern part of Laizhou Bay (Figure 1). The sea area is located in a typical monsoon
climate zone. The winter is controlled by the Eurasian continental high pressure system.
The north and northwest winds are dominant, and the weather is dry and cold. When
strong cold air invades, it is often accompanied by processes such as strong winds, snowfall,
and sharp temperature drops. The coastline is more than 100 km long, and the sea water
near the coast mostly contains suspended sediment from the mouth of the Yellow River.
Therefore, the sea area has a wide intertidal bandwidth, a small and flat bottom slope,
and shallow water depths. In winter, this area is greatly affected by the meteorological
conditions and the continent. In addition, affected by the runoff from the Yellow River and
other rivers entering the sea, the salt content of the seawater in this sea area is relatively low.
The aforementioned special geographical environment and climatic conditions provide
sufficient and necessary conditions for the freezing of seawater in this sea area. Sea ice
often has a significant impact on fishing ports, wharves, shallow beach aquaculture, and
marine infrastructure in this area. With the gradual expansion of the economic scale of the
marine aquaculture industry in this area, the impact of sea ice on production activities has
become more significant.

Figure 1. The study area.

According to the development stage of sea ice, the sea ice in the Yellow River Delta
can be divided into new ice (NI), ice rind, nilas (NL), grey ice (GR), grey-white ice (GW),
and white ice. New ice is formed by direct freezing of seawater or snow falling when the
temperature is low, and the sea surface is not melted. It is mostly needle-like, flake-like,
grease-like, or sponge-like. Ice rind is formed by the freezing of new ice or direct freezing of
the calm sea surface. The surface of the ice crust is smooth, moist, and shiny. Its thickness
is about 5 cm. It can fluctuate with the wind and is easily broken by wind and waves. Nilas
ice is a thin, elastic ice crust with a thickness of less than 10 cm. It easily bends and breaks
under external forces and can produce a finger-like overlapping phenomenon. Grey ice is
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an ice cap layer with a thickness of 10–15 cm. It is developed from nilas. The surface is flat
and moist. It is mostly grey. It is less elastic than nilas ice. It is easily broken by swells and
overlaps when squeezed. Grey-white ice is an ice layer with a thickness of 15–30 cm, and is
developed from grey ice. It has a rough surface, is greyish-white, and mostly forms when
ice ridges are squeezed. White ice describes an ice layer with a thickness of greater than
30 cm. It develops from grey-white ice, has a rough surface, and is mostly white [36].

In this study, Sentinel-2 and Landsat8 images from 2017–2019 were selected to verify
the applicability of the method. The time phase and image quality information obtained
from the data is presented in Table 1.

Table 1. Image information table.

Area Date Image Band Number Resolution Cloud Cover

Yellow River Delta 21 January 2017 GF1 4 16 m 1%
Yellow River Delta 12 January 2018 GF1 4 16 m 1%
Yellow River Delta 12 January 2018 Sentinel-2 10 10 m 0%
Yellow River Delta 23 January 2019 Landsat8 7 30 m 0%
Yellow River Delta 21 January 2017 Planet 4 3 m 1%
Yellow River Delta 12 January 2018 Planet 4 3 m 2%
Yellow River Delta 23 January 2019 Planet 4 3 m 1%

Liaodong Bay 17 February 2019 Landsat8 7 30 m 0%
Liaodong Bay 17 February 2019 Planet 4 30 m 0%

The GF1 data used in this article were obtained from the China Resources Satellite
Application Center (http://www.cresda.com/CN/, accessed on 21 January 2017). The PIE-
Basic software was used for geometric correction, atmospheric correction, orthorectification,
image clipping, and other pre-processing work. The Sentinel-2 data were obtained from the
European Space Agency’s (ESA) data sharing website (https://scihub.Coppe-rnicus.eu/,
accessed on 12 January 2018). The Sentinel-2 data released is a product of the Top-of-
Atmosphere (TOA) reflectance that has been geometrically corrected and radiometrically
corrected, so it was only necessary to perform atmospheric correction of this dataset.
The SNAP software officially provided by the ESA was used to perform the atmospheric
correction on the downloaded data. The Landsat data were obtained from https://landlook.
usgs.gov/ (accessed on 23 January 2019) and the ENVI software was used to perform the
FLAASH atmospheric correction. In order to facilitate the subsequent statistical analysis,
calculations, and other operations and to reduce the data storage space, all of the reflectance
data were expanded by 10,000 times and rounded.

2.2. Sea–Land Separation

In order to avoid interference from land information, the sea and land need to be
separated before the sea ice extraction. The Normalized Difference Vegetation Index (NDVI)
and the Normalized Difference Water Index (NDWI) are the most commonly used indexes
for water and land separation. They both use the normalized ratio of the reflectance
between visible and near-infrared light. The difference is that the NDVI uses the green and
near-infrared bands; while the NDWI uses the red and near-infrared bands. In the Yellow
River Delta, the concentration of suspended sediment in some of the seawater is extremely
high, which improves the reflectivity of the seawater in the near-infrared band. Figure 2
shows the spectral curve of the seawater and sea ice in the GF1 image. The reflectivity of
the clean seawater is significantly higher in the visible light range than in the near-infrared
band, while the reflectivity of the highly turbid seawater is higher in the near-infrared
band than in the blue-green band. However, it is still lower than the reflectivity in the red
band since the reflectivity in the blue and green bands will gradually become saturated as
the concentration of suspended sediment increases, while the reflectivity in the red and
near-infrared bands will continue to increase as the concentration of suspended sediment
increases [37]. However, the near-infrared reflectivity is always lower than the red-band
reflectivity. Sea ice 1 and sea ice 2 are defined as sea ice in clean water and turbid water,
respectively, and the reflectivity in the near-infrared band is also lower than that in the
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red band. Therefore, the effect of using the NDVI for sea–land separation is better. Pixels
with NDVI values of less than 0 are classified as seawater, and pixels with NDVI values of
greater than 0 are classified as land. In addition, after separation, it is necessary to filter out
discrete areas such as rivers and lakes on the land and ultimately to only retain the ocean
area. The results of the sea–land separation are shown in Figure 3.

Figure 2. The reflectance of the ice and water in the GF1 image.

Figure 3. (a) True color GF1 image acquired on 12 January 2018; and (b) the results of the sea–land separation.

2.3. Sea Ice Spectral Information Extraction

Spectral information is the most commonly used feature for extraction. In this section,
a sea ice spectral information index suitable for different suspended particulate matter
concentrations based on the spectral characteristics of sea ice is developed. Generally,
the reflectance of seawater in clear seas is higher than that of seawater. However, the
suspended particulate matter (SPM) in the Yellow River Estuary increases the reflectance of
the seawater. The reflectance of seawater with a high SPM content is even higher than that
of sea ice with a lower SPM content (Figure 4). As can be seen from the box plot in Figure 4,
as the wavelength increases, the reflectivity of the seawater fluctuates more widely, and
the blue band is relatively less affected by the SPM content. This is due to the fact that as
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the SPM content increases, the blue band reaches saturation first, followed by the green
and red bands. From the perspective of the type of sea ice, in addition to grey ice and
grey-white ice, a considerable part of the new ice and ice rind has the same reflectance as
seawater. This is because grey ice and grey-white ice are thicker and have a much higher
reflectivity than seawater, whereas new ice and ice rind are thin ice with a thickness of less
than 10 cm and have a lower reflectivity. Therefore, a single waveband cannot distinguish
all types of sea ice from seawater. The difficulty of sea ice extraction in the Yellow River
Estuary is mainly the extraction of the new ice and ice rind from seawater with different
SPM contents.

Figure 4. Sea ice and water reflectance box plot.

The commonly used spectral index such as the NDVI and NDSI, cannot eliminate the
influence of SPM on sea ice extraction. Therefore, in this study, the spectral information
concerning the sea ice was extracted by searching for an optimal band combination method.
Since the visible light and near-infrared bands are the most important bands for extracting
sea ice, these four bands were selected as the best band combination from the data source.
The scatter plot can intuitively reflect the separation of the different samples. As shown
in Figures 3 and 4, each point in the scatter plot formed by any two bands represents the
position of the sea ice or seawater in this two-dimensional space. If the points of sea ice and
seawater are scattered together (Figure 5a), then the separation of the sea ice and seawater
in the two-dimensional space formed by these two wavebands is poor; and if the sea ice
and seawater each gather in one location, it indicates that the sea ice and seawater can be
separated well using this waveband combination (Figure 5b). In this way, a straight line
separating the sea ice and seawater can be drawn in this two-dimensional space.
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Figure 5. (a) Band 1 and Band 2 exhibit good separation in this scatter plot; (b) Band 1 and Band 2
display poor separation in this scatter plot.

In order to test all of the band combinations as much as possible, in this study, com-
binations of the four red, green, blue, and near-infrared bands were tested first. The
results of these combinations are presented in Table 2. There are 28 results in total. Two
of these 28 bands were chosen to construct a two-dimensional scatter plot, with a total of
378 combinations. For example, if the NDVI can better distinguish between sea ice and
seawater, then the scatter plots constructed with the NIR − R and NIR + R bands will
exhibit better separation. Finally, the reflectivity of grey ice and grey-white ice is much
higher than that of primary ice and ice skins, and the extraction is relatively simple. In
order to make the scatter plot show the separation of new ice, ice rind, and seawater better,
first only the sample points of new ice, ice rind, and seawater were selected to construct
the scatter plot. The optimal band combination was selected by averaging the Euclidean
distance and inter-class variance combined with visual interpretation.

Table 2. First band combination list.

R G R + G R + B R + NIR G + B G + NIR

B NIR R * G R * B R * NIR G * B G * NIR

B + NIR R − G R – B R − NIR G − B G − NIR B − NIR

B * NIR R/G R/B R/NIR G/B G/NIR B/NIR

The average Euclidean distance is

x =
1
n ∑n

i=1 xi, (1)

where x(y) is the average Euclidean distance of the sea ice or seawater on the x-axis or y-axis,
n is the number of sea ice or seawater sample points, and xi is the reflectivity of sea ice
or seawater.

U =

√
(xice − yice)

2 + (xsea − ysea)
2, (2)

where U is the average Euclidean distance between the sea ice and seawater in two-
dimensional space, x and y are the average Euclidean distances of the sea ice sample points
on the x-axis and y-axis, respectively, and x and y are the sea ice sample points on the x-axis
and y-axis, respectively.

The variance between classes is

σ =
n

∑
i=1

(xi − x )2, (3)
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where σ is the between-class variance of sea ice or seawater, and xi is the number of sample
points of sea ice or seawater. The larger the average Euclidean distance and the smaller the
variance between classes, the higher the degree of separation is.

According to the principle of a larger average Euclidean distance and a smaller vari-
ance between classes, the top 12 band combinations were selected and their scatter plots
were examined. As shown in Figure 6, the abscissas and ordinates of the scatter plots are
the reflectance of the band after a band combination, for example, B is the reflectance of
the green band, and R/B is the ratio of the reflectance of the red band to the green band.
It was found that in the scatter plots of B and R/B, sea ice and seawater can basically be
separated by a straight line. The mixing of seawater is more serious. Therefore, the band
combination with the best reflectivity ratio between the green band and the red band was
finally selected.

Figure 6. Scatter plots of band combinations for seawater and sea ice.

R/B and B were used as the x-axis and y-axis, respectively, to draw the scatter plots of
the seawater and different ice types (Figure 7). The seawater reflectance samples exhibit
good linearity in the scatter plots. The different types of sea ice are located above the
straight line. Therefore, the linear equation of seawater was obtained through linear fitting
as the dividing line.
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Figure 7. Scatter plot of the reflectivity of the different types of sea ice and seawater.

The dividing line equation is

y = 269x + 611, (4)

where x is the reflectance ratio of the red band to the green band, and y is the reflectance of
the green band.

In order to make the value of the sea ice a positive number to facilitate subsequent sta-
tistical analysis and the determination of the threshold, only the slope of the seawater linear
fitting line was used, and finally the sea ice spectral information index was constructed:

y = B − 269 × (R/B), (5)

where y is the calculated reflectance value of each pixel in the image (sea ice has a larger
value and seawater has a relatively small value); B is the reflectance value of the green
band; and R/B is the ratio of the reflectance in the red band to that in the green band.

2.4. Sea Ice Spatial Information Extraction

As shown in Figure 8, in optical images, such as GF1, Landsat, and Sentinel-2 images,
some thin ice such as new ice and ice rind exhibits spectra very similar to that of seawater
containing suspended particles. Sea ice in seawater with a higher concentration of sus-
pended particulate matter cannot be extracted using spectral information alone. Therefore,
it is necessary to distinguish this part of the sea ice from the seawater based on the spatial
information concerning the sea ice. Compared with the smooth spatial characteristics of
the seawater surface, the surface of sea ice is generally rough, with conspicuous irregular
and unstable textural characteristics. In this section, three different spatial information
extraction schemes are designed to explore the applicability of the textural features and
edge features of the gray-level co-occurrence matrix to the extraction of various types of ice;
and through comparison of these schemes, the best method for extracting sea ice spatial
information is determined.
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Figure 8. The similarity of the sea ice and seawater spectral curves for the different sensors.

The textural features represent the surface conditions of the object, such as smooth or
rough, which helps to distinguish homogeneous and heterogeneous regions. Since sea ice
has irregular and unstable textural characteristics, the textural characteristics of the image
were added when the sea ice was extracted in order to solve the problem of sea ice and
seawater bearing similar spectra. At present, the commonly used method of extracting
sea ice textural features is the gray-level co-occurrence matrix method. The gray-level co-
occurrence matrix is a matrix that counts the gray-level relationship between pixels within a
certain interval in a local area of an image. The factors affecting the gray level co-occurrence
matrix are the image quantization level, the size of the moving window, the movement
direction, and the movement step length. The gray-level co-occurrence matrix provides
information about the image’s gray direction, interval, and change range. Based on the
gray-level co-occurrence matrix, the statistical attributes that quantitatively describe the
textural features are extracted. Haralick et al. (1973) defined 14 textural features [38]. The
feature statistics commonly used to extract textural information from remote sensing images
mainly include the mean, variance, homogeneity, contrast, dissimilarity, entropy, angular
second moment, and correlation. Recently, many related studies have been conducted
on the extraction of sea ice information based on the textural features of the gray level
co-occurrence matrix, but there remains a lack of research on the applicability of textural
features to various types of ice. Therefore, the applicability and advantages of the different
textural features in extracting sea ice types were explored.

Sea ice has conspicuous edge characteristics under different SPM contents. The Sobel
edge detection operator has the advantage of easy calculations and a strong anti-noise
ability. The edge detection image value of the Sobel operator represents the gradient value
of the pixels in the region, and the edge of the sea ice has a higher gradient value. Therefore,
the edge points of the sea ice were extracted using the Sobel operator, and the edge point
density map is generated with the number of sea ice edge points in a certain range. The
edge point density map represents the density of the sea ice edges in a local area. The
higher the sea ice density, the greater the number of sea ice edge points. The edge point
density map was used to explore the edge characteristics of the sea ice.

In order to further explore the best scheme for extracting the spatial information about
the sea ice and to delve deeper into the sea ice spatial information, Scheme 3 combines the
edge point density map and the statistics of each textural feature through multiplication, and
further explores the ability to combine the edge and textural features to extract the sea ice.
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2.5. Object-Oriented Extraction of Sea Ice Extent

Object-oriented classification refers to the segmentation of images to form objects with
adjacent homogeneous pixels, which overcomes the limitations of traditional remote sens-
ing image classification methods that use pixels as the basic classification and processing
unit to contain more semantic information [39]. The object is the processing unit, which can
achieve a higher level of remote sensing image classification. The object-oriented remote
sensing image classification method is not only based on the spectral features but also uses
the textural features of the image to segment and classify the image. The classification
results avoid speckle noise and have good integrity. Image segmentation is the most basic
and critical step in the object-oriented classification method, which directly determines the
accuracy of the classification results and the workload of the classification process. In order
to improve the accuracy and efficiency of the segmentation, in this paper study, the edge
detection segmentation algorithm and the full lambda schedule merge algorithm in ENVI
were used.

The blue band is less affected by a high SPM content, and the texture and edge
information about the sea ice is clearer. Therefore, the blue band of the image was selected as
the reference image to segment the sea ice spectral information and the spatial information
in the image. The mean attribute of the segmented object was used to extract the sea ice.
Figure 9 shows that the object-oriented method can not only reduce the speckle noise in
the classification results, but also limit the influence of the spatial feature window factor
when using the spatial features to extract the sea ice and can improve the accuracy of the
classification results.

Figure 9. Object-oriented segmentation results.

2.6. Determination of Segmentation Threshold Based on OTSU

The automatic determination of the object-oriented segmentation threshold affects the
final classification result and the automatic process of sea ice range extraction. In this study,
the OTSU method was used to automatically determine the threshold. The principle of the
OTSU method is to continuously iteratively determine an optimal threshold to maximize
the variance between the target and the background. Before conducting the OTSU threshold
segmentation, the terrestrial mask pixels need to be removed. This is because the OTSU
determines the segmentation threshold based on histogram statistics. Land pixels will
affect the structure of the histogram and cause the predicted threshold to deviate. After
removing the land pixels, the double peaks in the histogram are clearer. This improves the
accuracy of the threshold.
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2.7. Accuracy Verification

In order to better evaluate the robustness and applicability of the method developed
in this study, the proposed method was compared with the extraction results of the Support
Vector machine (SVM) and K-Means methods, and the three methods were applied to GF1,
Landsat-8, and Sentinel-2 images. In order to quantitatively evaluate the accuracy of the sea
ice extraction, ArcGIS was used to randomly generate 800 test points in the sea area, and
the type was marked based on a planet satellite image with a resolution of 3 m. To ensure
that the test points were evenly distributed in the study area and that all types of sea ice
and seawater were present, their total accuracy and kappa coefficient (κ) were calculated.

3. Results

3.1. Analysis of Sea Ice Spectral Information Index

Based on a GF1 image acquired on 12 January 2018, 800 sea ice and seawater sample
points were selected, and the sea ice spectral information index was used to plot the distri-
bution ranges of the different types of sea ice and seawater reflectance values (Figure 10).
The results revealed that after the sea ice spectral information index was constructed, the
reflectance values of the different types of sea ice were larger, while the reflectance values of
the seawater were concentrated within a small interval, indicating that the sea ice spectral
information index can effectively extract the sea ice spectral information.

Figure 10. The range of sea ice spectral information index of sea ice and sea water.

The sea ice can be initially extracted by selecting a suitable threshold. Figure 11 shows
the sea ice extraction results. It can be seen that the sea ice spectral information index can
effectively extract the sea ice in seawater with different suspended sediment concentrations.
The new ice and ice rind in the high suspended sediment area can also be extracted more
accurately. However, there are still some problems in the classification results. First,
there is the salt and pepper phenomenon, which is a common problem in pixel-based
classification methods. This will be solved by object segmentation and extraction. Second,
there is still a small amount of confusion between seawater and sea ice in area c, which is
mainly concentrated in the areas where the concentration of suspended particles changes
drastically. This is because the seawater in these areas display spectral curves that are
extremely similar to those of some of the types of sea ice such as new ice and ice rind,
and this phenomenon is present in the GF1, Landsat, and Sentinel-2 images (Figure 8).
Therefore, it is not possible to completely distinguish between sea ice and seawater using
only the spectral characteristics of the image, thus necessitating the addition of the spatial
characteristics of the image.
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Figure 11. Sea ice extraction results using spectral information. (a) GF1 image (R/G/B); (b–d) The
three sub-areas of the study area; (e–h) The extraction results using spectral information, respectively.

3.2. Optimization of Spatial Feature Extraction Scheme

Scheme 1: The textural feature parameters based on the gray-level co-occurrence
matrix mainly include the quantization level, the size of the moving window, and the
movement direction and step length. Since the directional characteristics of sea ice are not
evident, default values (0,1) were used for the movement directions of the x-axis and y-axis.
Moreover, the movement step length was set to a default value of 1. The following section
only discusses the quantization level of the gray-level co-occurrence matrix and the moving
window size in detail.

Without compressing the gray level of the original image, the size of the gray level
co-occurrence matrix is the square of the gray level of the original image, which will greatly
increase the calculation load of the gray level co-occurrence matrix. Therefore, in practical
applications, in order to improve the efficiency of the calculation of the textural features,
the gray level of the original image is usually compressed, and quantization levels of 64, 32,
and 16 are generally used.

Figure 12 shows the characteristics of the sea ice and seawater in the GF1 images
under different quantitative levels. It can be observed that the images with 64 quantization
levels maintain the textural characteristics of the original images better; the images with
32 quantization levels display a reduced ability to maintain details; and the images with
16 quantization levels have lost a significant amount of textural information. Therefore,
the higher the quantization level, the better the textural details of the original image are
preserved. However, images with high quantization levels are not suitable for the extraction
of sea ice textural information. Figure 13 shows the four textural feature indexes of the
homogeneity, dissimilarity, entropy, and second moment under different quantization
levels. Due to the drastic changes in the concentration of the suspended sediment in the
Yellow River Delta, the images with 64 quantization levels exhibit a large amount of speckle
noise in the seawater area. In the 32 quantization level images, this speckle noise is greatly
suppressed. In addition, since the calculation load increases with increasing quantization
level, the calculation efficiency is lower. Therefore, the quantization level of the gray-level
co-occurrence matrix was finally set to 32.
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Figure 12. Image features at different quantization levels. (a) Sea ice areas in GF1 images; (b–d) sea
ice images at 64, 32, and 16 quantization levels, respectively; (e) Sea water areas in GF1 images;
(f–h) sea water images at 64, 32, and 16 quantization levels, respectively.

Figure 13. Images with different textural feature parameters under different quantization levels.
(a–d) Texture image of homogeneity, dissimilarity, entropy, second moment at 64 quantization levels;
(e–h) Texture image of homogeneity, dissimilarity, entropy, second moment at 32 quantization levels.

The moving window is an important factor that affects the textural feature extraction of
the gray-level co-occurrence matrix. Figure 14 shows the distribution range of the textural
feature values of various types of sea ice and seawater for different window sizes. It can
be seen that the size of the window has little effect on the textural characteristics of the
sea ice and seawater, but as the texture window increases, the calculation load increases
greatly, thus the window size selected in this study was 3. Based on the statistical results
of the textural feature index values of the various types of sea ice and seawater, grey ice
and grey-white ice have a higher degree of discrimination from seawater in terms of each
textural feature value. The types of thin ice such as new ice, ice rind, and nilas cannot
be completely distinguished from the textural characteristics of seawater. This is because
the surfaces of the ice rind and nilas are relatively smooth, which is similar to the textural
characteristic value of seawater. The surfaces of grey ice and grey-white ice are rough, and
the textural characteristic value of seawater is quite different.
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Figure 14. Cont.
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Figure 14. Plots of the ice water textural characteristic indicators for different window sizes. (a) Ice
and water texture value distribution in 3 window sizes; (b) Ice and water texture value distribution
in 5 window sizes; (c) Ice and water texture value distribution in 7 window sizes; (d) Ice and water
texture value distribution in 11 window sizes.

Scheme 2 uses the Sobel operator to generate an edge point density map to highlight
the edge features of the sea ice. The distribution ranges of the edge density values of
the different types of sea ice and the seawater for different window sizes were calculated
(Figure 15), and the optimal calculation window size for the sea ice edge points was
compared and analyzed.
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Figure 15. The effect of the window size on sea ice extraction using an edge point density map.

When the window was small, the edge density value of the seawater basically ap-
proached 0, and the edge density values of the grey ice, grey-white ice, and seawater were
significantly different. The edge density values of the new ice, ice rind, nilas, and seawater
partially overlapped. The overlapping area mainly contained the inner smooth sea ice. As
the window size increased, the number of edge points that were detected inside the thin
ice region such as new ice, ice rind, and nilas increased, and the edge point density value
gradually increased. When the window size reached 45, the edge point density values of
the various types of sea ice were significantly different from those of the seawater. As the
window continued to grow, it greatly increased the amount of calculation load, thus 45 was
selected as the best window size.

In Scheme 3, the texture feature window size was set to 3 × 3, and the quantization
level was set to 32. After the edge point density map was combined with the various
textural feature indicators, the distribution ranges of the various types of sea ice and the
seawater were determined (Figure 16). It can be seen from Figure 16 that the combination
of textural feature indicators such as the variance, homogeneity, and contrast with the
edge point density map failed to produce a better extraction effect. After the mean textural
feature was combined with the edge point density map, the range of the seawater decreased
further and became more concentrated, and the distinction between the various types of
sea ice and the seawater increased further. Therefore, the edge point density map combined
with the mean textural feature index was selected as the final solution for extracting the sea
ice spatial information.
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Figure 16. Box plots for the combinations of the edge density map and textural feature.

Figure 17 shows the comparison between the edge texture information extraction
results and the spectral information extraction results. The edge texture image can extract
the extent of the sea ice as a whole and can extract the types of ice such as new ice, nilas, grey
ice, and grey-white ice. The most important factor is that the texture images at the edges
can compensate for the similarity between the spectra of the sea ice and the seawater. As
shown in Figure 17j,o, the extraction accuracy of the spectral information is lower in areas
where the concentration of the suspended particulate matter changes drastically. The edge
texture images solve this problem. Although the seawater in the crevices between portions
of ice can also be identified as sea ice, it can be combined with the spectral information to
achieve a more accurate sea ice extraction.

3.3. Accuracy Verification

Figure 18 shows the sea ice extraction results obtained using the different methods for
a GF1 image acquired on 12 January 2018. Four scenes including new ice, ice rind, nilas,
grey ice, and grey-white ice were selected to illustrate the results of the sea ice extraction.
In addition, the results were compared with the sea ice extraction results obtained using
the K-Means and SVM methods. Taking into account the complexity of the changes
between the various types of sea ice in the seawater with different suspended particulate
matter concentrations in the Yellow River Delta, in order to improve the accuracy of the
K-Means and SVM methods as much as possible, the K-Means method categories were
set to 2–10 categories, and then, the classification post-processing was performed. The
image was finally divided into two categories, namely, sea ice and seawater. When the
SVM method was employed to select the sample points, the sample points were selected
according to the types of ice in the Yellow River delta, turbid seawater, and clear seawater
in order to improve the accuracy of the sea ice extraction.
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Figure 17. Comparison of edge texture results and spectral results. (a–e) GF1 true color images;
(f–j) results of sea ice extraction from spectral information; and (k–o) results of the sea ice extraction
from edge texture information.

Figure 18. Comparison of the sea ice extraction results obtained using different methods.
(a,e,i,m) True color images of the GF1 image acquired on 12 January 2018; (b,f,j,n) Classification
results for the method proposed in this paper; (c,g,k,o) K-Means classification results; (d,h,l,p) SVM
classification results.
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It can be observed from Figure 18c,h that the K-Means method cannot completely
extract the sea ice when extracting thin ice such as new ice and ice rind in seawater with
a high suspended particulate matter concentration. As Figure 18g,o shows, most of the
seawater was classified as sea ice in the areas with high suspended particulate matter
concentrations near the shore and in the clear water areas. This demonstrates that the K-
Means method is greatly affected by suspended sediment. The results of the SVM method
of extracting sea ice were generally better than those of the K-Means method, but most of
the seawater remained classified as sea ice in the areas with high suspended particulate
matter concentrations. In addition, there is a significant salt and pepper phenomenon
present in the extraction results. The method proposed in this paper can accurately extract
the various types of sea ice in both turbid seas and clean seas. It also greatly reduces the
salt and pepper phenomenon and improves the integrity of the sea ice extraction.

In order to quantitatively evaluate the accuracy of the sea ice extraction, the overall
accuracies and kappa coefficients of the classification results for the GF1, Landsat 8, and
Sentinel-2 images were compared and analyzed and additionally compared with those of
the K-Means and SVM methods. In addition, the method was applied to the Yellow River
Delta and Liaodong Bay. The results are presented in Table 3. The overall accuracy of the
method proposed in this paper is basically >95%, the kappa coefficient is > 80%, and the
accuracy is 5% higher than those of the SVM and K-Means methods. On 21 January 2017,
there were mixed pixels of clouds and water in some areas, which affected the accuracy
of the final sea ice extraction. In Liaodong Bay, the accuracy of the SVM was close to
that of the method proposed in this paper. This is because the sea ice in Liaodong Bay
is predominantly thick ice such as grey ice and grey-white ice, and is less affected by
suspended sediment. Therefore, both the proposed method and the SVM method achieved
better accuracies.

Table 3. Accuracy evaluation table.

Area Date Image Method OA k

Yellow River Delta 12 January 2018 GF1 This method 0.98 0.96
GF1 SVM 0.93 0.86
GF1 K-Means 0.78 0.55

21 January 2017 GF1 This method 0.93 0.81
GF1 SVM 0.84 0.59
GF1 K-Means 0.77 0.45

12 January 2018 Sentinel-2 This method 0.99 0.98
Sentinel-2 SVM 0.9 0.95
Sentinel-2 K-Means 0.81 0.60

23 January 2019 Landsat-8 This method 0.94 0.88
Landsat-8 SVM 0.89 0.77
Landsat-8 K-Means 0.76 0.46

Liaodong Bay 17 February 2019 Landsat-8 This method 0.99 0.98
Landsat-8 SVM 0.96 0.95
Landsat-8 K-Means 0.91 0.82

The final results show that the accuracy of the K-Means method was the lowest
among the three methods. This is due to the similarity between the spectra of the highly
turbid seawater and thin ice sheets in the Yellow River Delta and the complexity of the
various types of sea ice in the different turbid seawater regions. This led to the relatively
low classification accuracy of the K-Means method. The SVM method exhibited a better
classification accuracy than the K-Means method overall, but it only used the spectral
information, thus the classification accuracy of the ice types, such as in the high suspended
sediment areas and for ice rind, was lower. In addition, the SVM method is reliant on
prior knowledge. It is a time-consuming process to manually select sample points, and
the quality of the sample points directly affects the accuracy of the final classification. The
method proposed in this paper attained good accuracy in both the turbid water and clear
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water areas, and achieved automation of the sea ice extraction. All processing methods were
carried out in ENVI. The ENVI functions are called using IDL and can be easily automated.

4. Discussion

In recent years, extreme weather such as high temperatures, droughts and floods
have occurred frequently, and climate anomalies have become the norm, which has led to
people’s cognitive thinking on global climate change and human living environment [40,41].
As an indicator of global climate change, sea ice change is related to global warming, rises
in sea levels and other issues [42,43]. The development of ice conditions in the Yellow River
Delta waters in China is unstable, and the formation of sea ice is rapid, which responds
more closely to local regional climates. Accurate monitoring of sea ice extent is therefore
crucial. Suspended sediment in the mouth of the Yellow River significantly affects the
accuracy of sea ice extent extraction. This paper proposes an automatic extraction method of
sea ice that combines texture, edge and spectral information, which improves the accuracy
of sea ice extraction under highly dynamic suspended sediment changes. Compared with
SVM and K-Means, the accuracy is improved by more than 5%. This method provides a
basis for accurate sea ice identification using GF1 images, and also offers a method for other
optical remote sensing data. High-resolution satellite data based on multiple sources can
compensate for the lack of data time resolution and further improve its sea ice monitoring
capabilities. Therefore, sea ice monitoring based on multi-source remote sensing data will
be the key direction of future development. Moreover, this method provides an approach
for other optical remote sensing data, which is of great significance for making full use of
multi-source remote sensing data to study the law of sea ice change. Accurate identification
of sea ice extent is of great significance to sea ice monitoring, sea ice prediction, disaster
prevention and mitigation, and climate research in the Yellow River Delta region. Although
this paper discusses the characteristics of various sea ices in detail and enables higher-
precision sea ice extraction, it does not distinguish between various sea ice types. Accurate
identification of sea ice types is of great significance to the study of sea ice production,
ablation and migration. Most of the sea ice in the Yellow River Delta is less than 30 cm
thick, and it remains difficult to classify them with greater precision. In addition, the
spectrum, texture, and edge information of coastal ice and floes such as grey and white
ice are relatively close, and it is difficult to distinguish between coastal ice and floating ice.
Therefore, in the future, we will study the distinction of various sea ice types and realize
the identification methods of different types of sea ice.

5. Conclusions

The automatic and accurate extraction of sea ice is essential for studying the laws of
sea ice generation and migration, improving sea ice disaster prevention and mitigation, and
monitoring climate change. Accurate real-time observations of sea ice bear an important
application value and is of theoretical significance.

In order to solve the problem of the low sea ice extraction accuracy caused by the
influence of the suspended sediment in the Yellow River Delta, in this study, an auto-
matic sea ice extraction method combining sea ice spectral, texture and edge information
is proposed, where the sea ice extraction accuracy can reach over 93%, which is more
than 5% higher than SVM and K-means. Compared with previous studies, the sea ice
spectral information index suitable for different suspended sediment concentrations is
constructed by a two-dimensional scatter diagram of characteristic bands, which improves
the applicability of sea ice spectral information index. In changing from discussing the
texture characteristics of sea ice as a whole in the past, this study discusses the texture
characteristics and edge characteristics of various sea ice types in the Yellow River Delta in
detail, laying a foundation for the classification of sea ice types. In addition, the automatic
determination of threshold based on OTSU can realize the automatic extraction of sea ice.
The method in this paper uses only four bands of visible light and near-infrared to extract
sea ice, thus providing a method to be extended to other high-resolution optical remote
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sensing data and is of great significance to maximally utilize multi-source remote sensing
data for real-time monitoring of sea ice.

In future research, we may expand the research area to the Bohai Sea in China, and
realize real-time observation of sea ice through Landsat, Sentinel-2, GF1 and other optical
remote sensing data. In terms of data sources, in order to improve the frequency of sea
ice monitoring, SAR data may also be applied. We hope to conduct high-precision and
high-frequency sea ice monitoring, so as to make a certain contribution to preventing
disasters and studying climate change around the Bohai Sea.
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Abstract: Coastal areas host highly valuable ecosystems that are increasingly exposed to the threats of
global and local changes. Monitoring their evolution at a high temporal and spatial scale is therefore
crucial and mostly possible through remote sensing. This article demonstrates the relevance of
topobathymetric lidar data for coastal and estuarine habitat mapping by classifying bispectral data
to produce 3D maps of 21 land and sea covers at very high resolution. Green lidar full waveforms
are processed to retrieve tailored features corresponding to the signature of those habitats. These
features, along with infrared intensities and elevations, are used as predictors for random forest
classifications, and their respective contribution to the accuracy of the results is assessed. We find
that green waveform features, infrared intensities, and elevations are complimentary and yield the
best classification results when used in combination. With this configuration, a classification accuracy
of 90.5% is achieved for the segmentation of our dual-wavelength lidar dataset. Eventually, we
produce an original mapping of a coastal site under the form of a point cloud, paving the way for 3D
classification and management of land and sea covers.

Keywords: topobathymetric lidar; full-waveform lidar; classification; coastal habitats; habitat
mapping

1. Introduction

Monitoring coastal areas is essential to the preservation of the land-water contin-
uum’s habitats and the services they provide, particularly in a context of local and global
changes [1]. Seagrasses, salt marshes, mangroves, macroalgae, sandy dunes, or beaches are
examples of such habitats that continually interact with the tide levels. They can be found
along the temperate shorelines and play key roles in the ecological equilibrium of these
ecotones. Seagrasses ensure water quality and are a significant carbon sink, along with
salt marshes and mangroves [1,2]. Coastal habitats also provide protection from marine
hazards to coastal communities and infrastructures and supply many recreational activities
such as snorkeling, fishing, swimming, and land sailing [1–3]. Finally, they support a wide
range of endemic species by offering them nurseries, food, and oxygen [1,2]. However,
coastal (including estuarine) habitats are exposed to a plethora of natural and anthropic
threats that may be amplified by global changes. Thorough observation of coastal processes
is necessary to identify the trends of evolution of these fragile environments. It requires
regular data acquisition along the shoreline with spatial resolution and time spacing both
adapted to the task. However, the surveying complexities inherent to land-water contin-
uum areas hinder their monitoring at a time scale relevant to their fast evolution, and over
large, representative extents. Remote sensing can adequately address this issue.
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Due to the presence of water, coastal surveys are conventionally split between topo-
graphic and bathymetric campaigns, both constrained to the tide and the field accessibility.
Subtidal areas can be surveyed with waterborne acoustic techniques, while supratidal
domains are documented with passive or active imagery using satellite, airborne, or un-
manned aerial vehicles (UAV) [4–6]. Boats being unable to reach very shallow areas and
imagery being limited by the water surface, intertidal, and shallow water areas are harder
to accurately monitor [7]. Distinct terrestrial and marine surveying campaigns can also be
difficult to merge, considering they might rely on different reference systems, and their
thin overlapping area can be challenging to sample thoroughly with ground control points.
Existing seamless surveying techniques over land-water interface areas are summarized in
the following section.

Multispectral or superspectral imagery can be used for coastal habitat mapping. In
clear and shallow water, traditional image classification techniques can be applied [7]. A
more accurate approach consists in suppressing the effects of water on light refraction and
diffusion by using inversion models on superspectral imagery. Using such models, it is pos-
sible to obtain satellite-derived bathymetry [8] or satellite-derived topobathymetry [9,10],
which are proven to improve the classification of coastal covers obtained [11]. Bathymetry
can also be extracted using multispectral imagery, as demonstrated in [12]. Multispectral
imagery has the advantage of being accessible with different platforms: UAVs, planes, or
satellites nowadays all benefit from multiband sensors. The cost of acquisition can therefore
be lowered depending on the chosen source, and the revisit time can allow high temporal
resolution monitoring.

Hyperspectral imagery is the last passive imagery-based method to map the land-
water continuum [13,14]. The key principle of methods using hyperspectral imagery to
study submerged areas is to model the interactions of light with the water column and
correct them to obtain imagery unaffected by these processes. By inversing a radiative
transfer model of the water column, it is possible to derive the seafloor reflectance and
estimate the bathymetry [15]. These products are adapted to the characterization of sea
bottom types and can be used for benthic classification tasks.

Although satellite passive imagery overcomes the issue of accessibility and temporal
resolution, its spatial resolution is sometimes too coarse to spot specific changes (depending
on the sensor and the quality of pan-sharpening), and it only penetrates water in shallow,
clear areas [16]. The main issue with passive imagery remains the depth range in which it
is usable. Due to optical phenomena, past a certain depth threshold that varies with water
clarity, passive imagery can no longer give information on what lies beneath the water
surface. Bathymetry extraction via active imaging then becomes the only way to gather
information on these areas. Furthermore, even in shallow waters, bathymetry derived from
active sensors gives access to the seabed covers’ elevation but also to the seabed’s elevation
itself, providing 3D information on these covers, which enables biomass estimation or
other structural assessments [17–20]. The bathymetry measurements obtained with active
sensors (airborne bathymetric lidar or waterborne acoustic soundings) also leverage a
higher vertical precision, useful for ecological structural assessments [12].

Airborne topobathymetric lidar is a reliable alternative: it ensures information con-
tinuity between land and water, covers vast areas quickly, penetrates a depth of up to
dozens of meters and has a higher spatial resolution than satellite imagery [21,22]. Current
approaches to map coastal interfaces using airborne lidar mostly make use of the digital
terrain models or digital surface models derived from the lidar point clouds (PCs), includ-
ing those obtained for the water bottoms after removing points corresponding to the water
bodies [17]. Fewer studies rely on the 3D PCs of the lidar surveys to generate coastal or
riverside habitats maps. Directly processing the PCs and avoiding rasterization has the
advantage of preserving the dense spatial sampling provided by lidar sensors. It also opens
possibilities for 3D rendering of the results, and structural analysis thanks to the rich spatial
information contained in PCs. Indeed, the vertical repartition of the points offers useful
information on scene architecture, providing relevant features to determine their origin,
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namely for vegetation or building identification. Analysis of this geometrical context is the
most frequently used method to produce maps of land and water covers [23–25]. Research
works conducted on PCs processing mostly rely on the computation of geometrical features
using spherical neighborhoods [23] and, more recently, on deep neural networks [26].

Another possibility with airborne lidar is to exploit the spectral details contained in
the backscattered signals. These can be recorded under the form of time series of inten-
sities received by the sensor: lidar waveforms. Each object of the surveyed environment
illuminated by the sensor’s laser reflects light in a specific way, generating a characteris-
tic signature in the signal. Waveforms consequently provide additional information on
the structure and physical attributes of the targets. The shape, width, and amplitude of
their spectral signature—a peak—are information that can be used for land and water
covers mapping [27–29]. Waveforms are therefore a useful indicator of the diversity of
coastal areas. Though many methods have been proposed to process airborne topographic
lidar full-waveforms, airborne bathymetric lidar full-waveforms are, to the best of our
knowledge, much less explored. They are even less employed for classification tasks, and
often only analyzed to retrieve bathymetry. There are currently three main approaches
to waveform processing. The first consists in decomposing the waveforms to isolate each
element of the train of echoes in the signal [30,31]. The second consists in reconstructing
the signal by fitting statistical models to the waveforms [32]. Knowing how to approximate
the sensed response allows to extract the position and the attributes of each component.
The last approach is to analyze waveforms straightforwardly as any 1D signal to detect
their peaks [27], using first derivative thresholding for example. Identifying waveform
components is useful in order to localize the objects populating the scene, but also to extract
features to describe them and prepare their automatic classification [27,33,34].

Classification of land or water covers using lidar data has been well explored recently.
Even when using waveform data, most of the published research is based on 2D data
classification [17,25,27,29,33] while fewer articles exploit PCs [24,34,35]. Many studies
researching ways to classify lidar data used machine learning algorithms such as support
vector machine (SVM), maximum likelihood (ML), or random forests. The maximum
likelihood is mostly used for 2D lidar data, while SVM and random forests have been
proofed on PCs. SVM and random forest seem to have similar classification performances
on 3D lidar data [36]. However, with these algorithms, the spatial context around each
point is not considered and does not impact the prediction [36]. Research papers show that
conditional random field (CRF) and Markov random field (MRF) classifications produce
better results in that way [36,37]. However, these require heavier computation and are
more difficult to apply to large datasets. Currently, there is a consensus on the efficiency
of random forest on that aspect [36]. Contrary to SVM, CRF, or MRF, it is easy to apply to
large datasets. Random forest is, furthermore, robust to overfitting issues and offers the
possibility to retrieve predictors contribution easily. In this article, we therefore wish to
implement a hand-crafted features’ random forest classification to map coastal habitats.
Although machine learning classification of lidar waveform features has been explored
previously, we have found no point-based studies dedicated to mapping a large number of
habitats both marine and terrestrial. Previously cited studies such as [24,34,35] classified
either only marine or only terrestrial habitats from PCs and [27] processed 2D data to
produce their map of coastal habitats.

The present study aims at mapping an array of 21 habitats of the 3D land-water
continuum seamlessly using exclusively airborne topobathymetric bispectral lidar. Our
objective is to bridge the gap between marine and terrestrial surveys, demonstrate that
efficient methods can be developed to automatically map the land-water interface, and
show that an integrated vision of coastal zones is feasible and advised. Our contributions
consist in (1) developing a point-based approach to exploit full-waveform data acquired
during topobathymetric surveys for subtidal, intertidal, and supratidal habitats mapping,
(2) quantifying the contribution of green waveform features, infrared (IR) intensities, and
relief information to the classification accuracy based on a random forest machine learner.
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We improve an experimental method presented in a previous work [29] and test it on a
wider area including both emerged and submerged domains to determine the suitability of
full-waveform lidar data for coastal zone mapping. UAV data, inexpensive to implement,
is used to estimate the accuracy of the resulting very high spatial resolution maps, which
are produced under the form of PCs, paving the way for 3D classification of land and sea
covers using solely topobathymetric lidar data.

2. Materials

2.1. Study Area

The study location was chosen along the northern coasts of Brittany, France, for its
ecological diversity and due to the availability of full-waveform lidar data acquired by
the French Hydrographic Office (Shom) as part of the Litto3D® project [38]. The study
area, presented in Figure 1, features typical coastal habitats such as fine sand or pebble
beaches, a sandy dune, rocky areas provided with macroalgae, seagrass meadows, and
salt marshes at the estuary of a local river. It also hosts a small resort town, Sables d’Or les
Pins (48◦38′27′′N: 2◦24′24′′W). Buildings, tar or concrete-covered paths, boats in mooring,
vehicles in parking lots, wooded areas populated with evergreen pine trees or deciduous
species, and crop fields are also present in the selected zone. All these habitats are home to
a rich variety of species: shellfish; dune plant vegetation; green, red, and brown seaweed;
eelgrasses; evergreen and deciduous trees; crops; and salt marsh plants such as glasswort,
common soda, sea purslane, or sea lavender.

2.2. Full-Waveform Airborne Topobathymetric Lidar

Airborne lidar is an active remote sensing technique that uses the backscatter of laser
light in the environment to compute ranges to the ground cover and produce 3D maps
of the environment, knowing the absolute position of the sensor. Topobathymetric lidar
relies on two different lasers with distinct wavelengths: a green laser is added to the usual
IR laser to detect the seabed or riverbed [21,22,39]. It exploits the physical properties of
the green spectrum that penetrates the water surface, whereas the IR light does not. Lidar
waveform is the recording of the full backscattered signal on the surveyed environment. A
waveform consists in samples of recorded backscattered intensities over time. Since laser
light is reflected by objects standing on its path, each element illuminated by the lidar laser
backscatters a fraction of the emitted beam, which results in a peak in the waveform. Peaks
are theoretically more or less intense depending on the object’s albedo, its geometry and
the laser incidence angle [40]. Due to the different layers of coverage in the environment
(tree canopy, tree branches, bushes, soils, for example), there can be several peaks in the
same waveform, all corresponding to a different layer in the reality. A typical topographic
waveform (i.e., resulting from a laser beam hitting the land) has as many peaks as there
are objects of different elevation in its way [28,39]. A bathymetric waveform usually has
three main components: the first is the water surface return, the second is the water column
return (originating from the backscatter of photons on particles suspended in the water
such as sediments or nutrients), and the third is the return originating from the reflection
on the seabed or riverbed [21,22,39]. Since all objects present in the cone illuminated by the
laser reflect some light towards the sensor, they all contribute to the recorded waveform’s
shape [28]. Each element of the landscape/seascape is therefore characterized by the shape
of its component in the waveform, which can be used for land or sea cover detection
and classification [27,29,34,41]. In this work, backscattered intensities are converted into
pseudo-reflectances by dividing them with the emitted pulse’s intensity. Examples of
a typical bathymetric waveform and a typical topographic waveform are presented in
Figure 2.
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Figure 1. Study area (datum: WGS 84; projection: UTM 30N).

 

(a) (b) 

Figure 2. Examples of typical lidar waveforms (for a green laser with a wavelength of 515 nm).
(a) Bathymetric waveform acquired in a coastal area; (b) topographic waveform acquired in a
vegetated area. A sample corresponds to 556 picoseconds.
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2.3. Datasets

The lidar data [42] used for this research were acquired over the coast of Sables d’Or
les Pins in September 2019 by the Shom as part of the Litto3D® project [38], using a Leica
HawkEye 4X sensor. The HawkEye 4X produces laser pulses at wavelengths of 515 nm and
1064 nm on three different channels. Depths under 10 m have a dedicated shallow green
laser, while a more powerful laser, the deep channel, is used to detect deeper seabed. These
two channels provide PCs with a density of at least five points per m2 and one point per m2

and they have a laser spot size diameter of 1.8 m and 3.4 m, respectively. The IR laser has a
laser spot size of 0.2 m and a point density of at least 10 points per m2. For green channels
only, backscattered intensities are recorded with a time frequency of 1.8 GHz, providing
waveforms with a sample every 556 picoseconds. This information is not available for the
IR laser.

The survey was conducted with a constant laser amplification. Due to the power
needed to penetrate through several meters of water, the shallow laser’ backscattered
intensities tend to be saturated over highly reflective land surfaces, but they are still usable.
The deep channel’s returned intensities, however, are systematically saturated and do
not provide usable information for land cover classification. In this study, only shallow
full waveforms were used, considering the selected area’s range of depths. The green
waveforms used were available for every shallow green laser shot. Over the studied
area, their average density was 3.75 waveforms per m2. Reanalyzed echo PCs for both
shallow green and IR wavelengths were also used: the IR PC brought additional spectral
information, while the green PC was used to accurately position the raw waveforms, since
this PC underwent refraction correction before delivery. The effects of refraction were not
corrected in the raw waveform files.

To provide knowledge on the environment on site, ground truth data (presented in
Figure 3) were acquired in the form of photoquadrats and UAV imagery. They helped label
the lidar data to perform habitat classification. UAV imagery was acquired over five smaller
areas of interest, each representing typical coastal habitats, in March and April 2021 using
an RGB DJI Phantom 4 Pro V2, and a Parrot Sequoia+ including a near IR nadiral sensor
(770 nm to 810 nm) with a zenithal irradiance sensor. These flights were calibrated with a
total of 55 ground control points. An array of 150 photoquadrats were captured with RGB
cameras and georeferenced, to seize the ecological diversity of the study area. Over marine
parts of the study site, a PowerVision unmanned surface vehicle (USV) was used to gather
knowledge of the seabed covers. The underwater images were acquired in September
2021. An RGB orthoimage acquired in 2014 over the whole area was also used to give extra
information on the habitats present on site four years prior to the data acquisition.
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Figure 3. Ground truth data spatial coverage (datum: WGS 84; projection: UTM 30N).

3. Methodology

The algorithm developed in this study was first introduced in [29] to identify marine
habitats using green full-waveform spectral features. In [29], only seagrasses and sediments
(two classes) at few meters’ depths were classified. We significantly improved this algorithm
and adapted it to the classification of 21 habitats across the land-water interface, to test its
abilities in supratidal and intertidal environments.

The enhanced version presented here was tailored to the identification of land and
sea covers: the seabed or riverbed type was considered in the presence of water while we
focused on the surface cover over terrestrial areas (i.e., if there were two layers of surface
covers, such as a trees and grass beneath it, the land cover was labelled as tree). It used a
supervised point-based classification algorithm trained on various sets of input features
and evaluated on a test dataset. Classified PCs of the whole area were also produced to
observe the ability of each predictor sets to produce a map of the habitats in the study area
using this approach.

3.1. Classes of Land and Sea Covers Investigated

A total of 21 classes of land and sea covers has been designed based on on-site
observations and photo-interpretation. These classes are illustrated in Table 1.
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Table 1. Classes of land and sea covers identified in the study area.

Class Name Illustration Waveform Class Name Illustration Waveform

Fleshy
macroalgae

 
 

Evergreen tree

 
 

Submerged
rock

 
 

Lawn/grass/
crop field

 
 

Emerged rock

 
 

Wet sand

 
 

Seagrasses

 
 

Shrub

 
 

Pebble/cobble/
boulder

 
 

Dry sand

 
 

Concrete

 
 

Deciduous tree

 
 

Submerged
sand

 
 

Roof

 

 

Soil

 
 

Low salt marsh
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Table 1. Cont.

Class Name Illustration Waveform Class Name Illustration Waveform

Tar

 
 

Mid salt marsh

 

 

Boat

 
 

High salt marsh

 
 

Car

 
 

3.2. Data Pre-Processing

The classification algorithm developed for this research aimed at processing bispectral
lidar data. Two PCs were therefore used, but full-waveforms were available only for the
green wavelength. IR data were thus incorporated as reflected intensities only. Due to
the sensor’s configuration, IR and green lasers of the topobathymetric lidar used are not
co-focal. They also do not have the same swath, density, and precision. The two resulting
PCs are consequently different, and the points acquired do not have identical locations. A
preprocessing step was therefore required to obtain the IR backscattered intensity at each
green waveform’s location. Intensities of the IR PC were matched with each point of the
green waveforms PC, which was kept as the reference PC, using the median IR intensity
of the 10 nearest neighbors of each green waveform’s location in the IR PC, which was
computed and assigned to the waveform as an attribute. To this end, we used the PC
processing software “CloudCompare” [43], in which the neighborhood search is performed
by computing the 3D Euclidean distance between each point of the reference PC and the
points of the compared PC. The coordinates of the waveforms’ cover component were used
to locate each waveform and obtain a green waveform PC. Consequently, each waveform
was synthesized as a point, and we obtained a green waveforms PC. The IR PC was cleaned
manually beforehand, to ensure all noise points, significantly above the surface, were
removed from the data.

The median intensity of the 10 closest neighbors in the IR PC was chosen for two
reasons. First, the number of 10 neighbors was relevant considering the difference of the
two lasers’ spot sizes and the resulting density of the PCs. Second, the use of the median
intensity was more suited to the task than the mean intensity to avoid outliers’ artefacts in
spheres located at the interface of two habitats.

3.3. Training and Testing Datasets

Two main datasets were designed to perform the data classifications and assess their
quality, called the training dataset and test dataset. We collected 1000 training and 500 test-
ing samples of each class. To do so, we first drew polygons over representative areas of
the 21 land and water covers, based on the ground-truth data, and made sure none of the
polygons intersected. We used these to segment the PC and extract points located within
representative areas of each class. For each class, we then randomly selected 1000 of them
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for the training datasets and 500 others for testing, which resulted in training and test
datasets of 21,000 and 10,500 items, respectively. This draw without replacement ensured
that no training and testing points were the same and that they were all independent. We
chose to use the same areas for random drawing of training and testing points in order to
account for the widest diversity possible in the training and testing samples. The resulting
training and test points have a mean distance of 1.6 m; their repartition is presented in
Figure 4.

  
(a) (b) 

Figure 4. Repartition of the training and test data over the study area (datum: WGS 84; projection:
UTM 30N). (a) Training data distribution; (b) test data distribution. S. = submerged, Ev. = evergreen,
Dec. = deciduous. The size of the points in the illustration may give a false impression of overlapping,
but all points have distinct locations.

Each array of coordinates, IR intensities, and waveform features was associated to one
integer label between 1 and 21, forming a dataset with the structure illustrated in Figure 5.

Figure 5. Structure of the dataset obtained after waveform and infrared intensities processing.

The point-based classification method is described in the following paragraphs.
It relied on the interpolated IR intensities and on spectral features extracted from the
green waveforms.
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3.4. Waveform Processing Method

The waveform processing steps are presented in Figure 6 and detailed in the follow-
ing paragraphs. All these steps were performed using tailored scripts developed with
Python 3.8.8.

Figure 6. Flowchart of the overall methodology.

The base concept consists in extracting tailored features from the relevant part of
the waveforms. Here, we considered this part to be any return detected after the water
surface component in submerged domains, and the part of the waveform encompassing
the backscattered signal in terrestrial zones. In these zones, the sole processing was to
isolate the useful part of the green waveform by identifying where the backscatter begins
and the noise ends. This was made by evaluating the mean level of noise observable at the
beginning and at the end of the waveform and extracting the part of the wave where the
intensity was above this noise level.

To distinguish marine and terrestrial waveforms, we relied on a flag attributed by the
Leica survey software Leica LIDAR Survey Studio (LSS) to points in the PC that correspond
to an interpolated water surface under which refraction correction is made. Since waveform
files integrate this information, it was possible to use it to differentiate submerged and
emerged areas. This step is a pre-classification made by LSS before the data was delivered
to us.

In submerged areas, further processing was required to detect the different peaks and
isolate the parts of the signal that correspond to the water surface and the water column
components. All green waveforms were first filtered using the Savitzky–Golay piecewise
polynomial functions estimation method to remove the noise. As explained in [29], a
threshold was then applied to the first derivative of the smoothed waveforms to bring out
the peaks. This step was well suited to the detection of the most significant peaks; however,
depending on local conditions affecting the reflection of light, some bottom returns may be
less intense and hard to expose. We therefore included a second thresholding: when only
one peak was identified with the first threshold, another derivative thresholding step was
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introduced to try to detect peaks after the water surface (i.e., the peak already detected).
This second threshold had a lower value, which would exacerbate noise if it were used on
the whole waveform, but it was adapted to the detection of more attenuated returns when
used on the underwater part of the waveform. If no additional return was identified with
this first derivative thresholding, we concluded that no seabed was retrieved and discarded
the waveform since there was no return to compute features on.

The same correction of the signal’s attenuation in water as the one in [29] was applied
to bathymetric waveforms; it relied on the fitting of an exponential function on the water
column component to compensate for the effects of water absorption and diffusion in
water on the bottom return. This was based on the estimation of the diffuse attenuation
coefficient [21,22] through the evaluation of the intensity gradient at the end of the surface
return. However, since there were mathematical limitations to this approach in very shallow
water areas, no correction was applied in depths under 0.125 m since the optimization was
impossible on a water column component containing less than two waveform samples (one
sample corresponds to 0.063 m in that scenario). In places where depths were smaller than
0.125 m and over land, the attenuation was fixed at 0.

The waveform processing is summarized and illustrated in Figure 7.

Figure 7. Waveform processing method flowchart and illustration on two different waveforms: one
acquired over the sea, the other over land.
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3.5. Waveform Features’ Extraction

Once all waveform components corresponding to ground or seabed covers were
isolated, these intensities time series were converted into pseudo-reflectance series by
dividing them with the emitted laser pulse intensity. This allowed us to remove potential
bias induced by slightly varying emitted laser intensity. Statistical parameters were then
computed on these truncated and normalized waveforms. They were selected based
on [27,29,44] and are described in Table 2.

Table 2. Name and definition of the features extracted from the green waveforms during processing
and used as input variables to the random forest model.

Name Definition

Z Elevation of the ground (beneath any surface cover)

Diffuse attenuation coefficient
estimated value

Value of the coefficient of attenuation of light in water
(=0 for depths < 0.125 m and on land)

Complexity of the peak Number of sign changes of the peak’s first derivative

Mean Mean pseudo-reflectance of the peak
(after attenuation correction)

Median Median pseudo-reflectance of the peak
(after attenuation correction)

Maximum Maximum pseudo-reflectance of the peak
(after attenuation correction)

Standard deviation Standard deviation of the pseudo-reflectance of the peak
(after attenuation correction)

Variance Variance of the pseudo-reflectance of the peak
(after attenuation correction)

Skewness Skewness of the peak
(after attenuation correction)

Kurtosis Kurtosis of the peak
(after attenuation correction)

Area under curve Area under the curve formed by the peak
(after attenuation correction)

Amplitude Amplitude of the pseudo-reflectance of the peak
(after attenuation correction)

Time range Time duration of the peak
(in number of samples)

Total Sum of pseudo-reflectance values forming the peak
(after attenuation correction)

Height Difference of altitude between the peak of the first layer
of cover and the last peak.

Maximum before correction Maximum pseudo-reflectance of the peak (without
attenuation correction)

Position of the maximum in the peak Position of the maximum in the peak (in sample indices)

The terrain’s elevation value was also extracted: for topographic waveforms, it cor-
responds to the last return’s altitude (computed using traditional time of flight range
measurement, extracted from the PC). For bathymetric waveforms, it was computed using
the depth of the last return identified by our algorithm and withdrew to the altitude of
our detected surface return, positioned with the PC. The vertical reference was the IGN
1969 system.

The spectral features computed on the truncated green waveforms, the IR intensities
associated with the points and the elevations were then used as predictors for random
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forest classifications of ground covers over the study area. The 21,000 items of the dedicated
dataset were used for the algorithm’s training, and the 10,500 items of the testing dataset
were used to assess the quality of the predictions.

3.6. Random Forest Classification

Contrary to [29], the data were not rasterized but features were directly classified to
produce a 3D habitat map so as to avoid information loss. We also relied on a different
classifier to predict data labels. A random forest model with 150 trees was used for the
classification step. Considering that we wished to apply it to a dataset containing 24.5
million items after fitting, we chose a high number of trees to populate the forest, knowing
that more trees theoretically equal to better classification accuracy and that the number of
trees needs to be adapted to the complexity of the dataset. We also based our choice on the
observation made in [45] on several different datasets that state that past 128 trees in the
forest, classification accuracy gains become negligible for each additional tree, compared to
computational demands. The maximum tree depth was not fixed so that nodes expanded
until the leaves were pure. We relied on impurity to determine whether a leaf has to be split
or not using the Gini impurity criterion, which was calculated using the following formula:

GiniIndex = 1 − ∑
j

p2
j , (1)

where pj is the probability of class j. This criterion is close to 0 when the split is optimal.
We controlled the generalizability and over-fitting of the model by monitoring the

generalization score obtained on random out-of-bag samples at each fitting step. The
random forest implementation of the Python library scikit-learn was used.

3.7. Comparative Study

Random forest classifications were launched on several sets of predictors that were
clustered based on their conceptual similarity. The performance metrics of each group of
features were then retrieved. This allowed us to evaluate the contribution of each family of
feature to the classification accuracy. The feature sets were the following:

• Statistical features: mean, median, maximum, standard deviation, variance, amplitude,
and total;

• Peak shape features: complexity, skewness, kurtosis, area under curve, time range,
and height;

• Lidar return features: diffuse attenuation coefficient estimated value, maximum,
maximum before attenuation correction, position of the maximum in the peak, and
associated IR intensity;

• Green spectral features: all features extracted from the green waveforms, except
elevation (which is later referred to as Z).

We also performed importance variable contribution analysis by dropping green
waveform features one by one and computing the classification accuracy difference between
the reduced set of 15 predictors and the full 16 attributes.

3.8. Results’ Quality Assessment

Classification performances were assessed by considering the values obtained on
the test dataset by the random forest classifier for the following metrics: overall accuracy
(OA, ratio of correct predictions, best when its value is 1), precision (fraction of correct
predictions among each ground truth classes, best when its value is 1), recall (fraction
of correct estimation for each predicted classes, best when its value is 1), and F-score
(combination of precision and recall, best when its value is 1). The precision, recall, and
F-score were computed for each label, and their unweighted mean was used to compare
the results obtained. Confusion matrixes presenting the producer’s accuracies (PA) were
also created to analyze the performances of classification on each of the 21 classes.
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3.9. Spatialization of the Random Forest Predictions

Although coordinates were not used during classification, the arrays of features were
geolocated with the position of the waveform’s last echo, as illustrated by Figure 5. To
visualize our classification results as PCs, we associated the predictions’ vector to these
coordinates. This allowed us to obtain the result under the form of a classified PC. The fact
that we did not rasterize our data had the advantage of preserving the spatial density and
therefore the spatial resolution, while also avoiding the critical issue of mixed pixels [46].

Each waveform was localized with the planar coordinates of its last return using the
PC coordinates. For bathymetric waveforms, this ensured that the effects of refraction of
the laser beam on the air/water interface were considered, since the green PC was corrected
before data delivery.

4. Results

4.1. Random Forest Classifications’ Performances on the Test Dataset

Ten random forest models were trained on the training dataset—one for each configu-
ration of predictors defined in Section 3.7. Their performances were evaluated using four
metrics computed on the predictions made on the test dataset. Four of them were then
used to predict labels for the complete study area and produce habitat maps under the
form of PCs.

Fitting the models to the 21,000 items training dataset took on average 0.4 s. Predictions
on the test dataset (which contains 10,500 items) required a mean computing time of 0.2 s.
The complete area, representing a total of more than 24.5 million items, was covered in 17
to 18 min. All computations were made on a machine equipped with an AMD Ryzen 9
5900X 12-Core CPU and an NVIDIA GeForce RTX 3080 GPU.

The classification metrics obtained on each set of features defined in Section 3.7. are
presented in Table 3. The very close values observed between the four criteria for each
feature set are due to the averaging of each metric’s value obtained for each classification
label. They are also explained by the fact that all classes are balanced. The scores obtained
show that our method does not have a systematic tendency to over- or under-estimate
some classes.

When using only subsets of green waveform features, the random forest predictions
were more often false than they were correct. However, grouping the waveform variable
families improved the accuracy by at least 4%. The best configuration—composed of peak
shape features and lidar return features—provided a classification accuracy of 69%. Glob-
ally, coupling statistical features with peak shapes features tended to result in accuracy loss
while using combinations where they were not mixed resulted in classification performance
gains. Indeed, the complete set of features obtained through green waveform processing
predicted the habitat type with an OA of 56%, while the output of the classification of
statistical and lidar return features was correct in 67% of cases (see Table 3).

The addition of IR intensity values to the full set of green waveform parameters
improved the OA of 13%, which is 5% above the best OA obtained on a subset of green
waveform attributes. The contribution of the elevation to the classification accuracy was
even higher: there was a 31.5% gain in OA between the green spectral features’ classification
and the classification of green spectral features and elevations. Gathering the three sources
of information produced the most accurate result, with an OA of 90.5% (Table 3).
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Table 3. Performance metrics obtained by each random forest experiment.

Features Set
Overall

Accuracy
Recall Precision F-Score

Statistical features 0.45 0.45 0.444 0.444
Peak shape features 0.463 0.463 0.452 0.455
Lidar return features 0.479 0.479 0.471 0.474

Statistical features + Peak shape features 0.519 0.519 0.512 0.513
Peak shape features + Lidar return features 0.686 0.686 0.681 0.681
Statistical features + Lidar return features 0.662 0.662 0.657 0.657

Green spectral features 0.559 0.559 0.552 0.552
Z 0.551 0.551 0.549 0.549

IR intensity 0.241 0.241 0.238 0.238
Green spectral features and IR intensity 0.691 0.691 0.687 0.687

IR intensity + Z 0.75 0.75 0.745 0.746
Green spectral features + Z 0.874 0.874 0.875 0.873

Green spectral features + IR intensity + Z 0.905 0.905 0.905 0.905

4.2. Green Waveform Features’ Contribution to the Classification Accuracy

Figure 8 illustrates the contribution of each predictor to the accuracy of the classi-
fication of green waveform features. It sheds light on the value-added of each attribute
computed on the truncated waveforms. This assessment reveals that 9 of the 16 features
extracted on each waveform contributed positively to the classification performance. The
seven others had a negative impact on the quality of the random forest predictions. They
were mostly parameters of the “statistical features” set, although each type of waveform
parameter—statistical, peak shape-related, or lidar return-related—was represented in the
nine positively contributing attributes.

Figure 8. Predictors’ contribution to the green waveform features’ classification accuracy (in fraction
of accuracy).

An in-depth analysis of the four last random forest experiments is provided in the
following sections.
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4.3. Land-Water Continuum Habitat 3D Modelling

By running the waveform processing algorithm and the classifiers on the whole
study area, we obtained a 21-class semantic segmentation of our complete bathymetric
lidar dataset.

As expected, when dealing with PCs and not rasters, the results were noisy, but some
areas had lower speckle than others. The observable ratio between information and noise
gradually improved with the addition of IR intensity and elevations. The best output
was obtained by combining green waveform features, IR intensities, and elevations; it is
presented in Figure 9. The other results are presented in Appendix A (Figures A1–A3).

 

Figure 9. Projected 3D map of the habitats obtained with the predictions of a random forest classifier
on green spectral features, infrared intensities, and elevation values; orthoimage of the study area.
The orthoimage was captured in 2014, while lidar data are not contemporaneous as they date from
2019. S. = submerged, Ev. = evergreen, Dec. = deciduous.

The main strength of this result was the distinction between submerged and emerged
domains: except for boat false-positives on the water surface, marine classes were rarely
detected over land, and vice versa. Globally, this map showed better definition of the
considered habitats than the others (see Figures A1–A3), and fewer classification errors,
although improvements on some classes coexisted with poorer performance on other
classes. Figures 10–13 gave a more detailed insight into the classification in specific areas.
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Figure 10. Urban area and sand beach classification: Extract of the projected 3D map of the habitats
obtained with the predictions of a random forest classifier on green spectral features, infrared
intensities, and elevation values, and extract of an orthoimage of the same area. The orthoimage was
captured in 2014, while lidar data are not contemporaneous as they date from 2019. S. = submerged,
Ev. = evergreen, Dec. = deciduous.

 

Figure 11. Salt marsh classification: Extract of the projected 3D map of the habitats obtained with the
predictions of a random forest classifier on green spectral features, infrared intensities, and elevation
values, and extract of an orthoimage of the same area. The orthoimage was captured in 2014,
while lidar data are not contemporaneous as they date from 2019. S. = submerged, Ev. = evergreen,
Dec. = deciduous.
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Figure 12. Seagrass meadow classification: Extract of the projected 3D map of the habitats obtained
with the predictions of a random forest classifier on green spectral features, infrared intensities, and
elevation values, and extract of an orthoimage of the same area. The orthoimage was captured in 2014,
while lidar data are not contemporaneous as they date from 2019. S. = submerged, Ev. = evergreen,
Dec. = deciduous.

 

Figure 13. Confusion matrix obtained by the random forest classification of the green waveforms’
features, infrared intensities, and elevations. The three highest and three lowest class accuracy values
are highlighted in green and orange, respectively. S. = submerged, Ev. = evergreen, Dec. = deciduous.

4.3.1. Urban Area and Sand Beach Classification

As Figure 10 shows, the detection of planar, highly reflective surfaces such as tar and
concrete was accurate, but their specific type was sometimes misidentified. Although the
pier located north of Figure 10 was correctly mapped as concrete, there was confusion
between soil and tar on the sandy dune (southeast of the same figure).

The classification of roof was satisfactory both west and east of the area presented in
Figure 10 but showed cases of overdetection. In the urban area developed on the sandy
dune (southeast of Figure 10), tar, rooves, trees, and shrubs were distinguished precisely,
but sandy dune vegetation, shrubs, and trees were sometimes confused for rooves or tar.
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A weaker aspect of this result was the classification of the sand beaches: patches of
wet sand were well defined, but the borders between wet and dry sand featured many false
detections of pebble. Confusion between pebble and sand was high, as shown in the wide
area of sand beach that is classified as pebble in the northeast in Figure 10.

4.3.2. Salt Marsh Classification

Figure 11 presented a closer look at the classification obtained in the salt marsh area.
The three types of salt marsh distinguished—low, mid, and high marsh—appeared to be
well identified.

The classification of the salt marsh channels was less correct: instead of wet sand and
submerged sand, the classifier predicted rock and submerged rock in various areas.

4.3.3. Seagrass Meadow Classification

In Figure 12, the focus was set on the seagrass meadow located in the north of the
study site. Emerged and submerged parts of the rocky island were well mapped, even
though submerged rock was detected in places where the seabed is sandy. The two types
of underwater vegetation we attempted to map were very precisely defined: the patches of
seagrass meadow and macroalgae were mapped with very low confusion with submerged
sand or rock. However, the type of underwater vegetation (macroalgae or seagrass) was
not correct in all places. There were classification errors in the seagrass meadow, where
macroalgae was detected. Seagrasses were also found in macroalgae-covered areas.

Figure 12 also showed the precision of the classification of boats: boats mooring in
the seagrass meadow were correctly labelled even though no training or test data were
collected in that area for the boats class.

4.4. Confusion Matrix Obtained with Green Waveform Features, Infrared Intensities and
Elevations on the Test Dataset

The confusion matrix obtained using green waveform features, IR intensities, and
elevations on the test dataset is presented in Figure 13. It confirmed the observations made
on the visual results. All classes were predicted with at least 70% of correctness. The most
frequent confusions were between seagrasses and macroalgae, deciduous and evergreen
trees, and submerged rock and submerged sand, which corroborated the observations
made on the application of the model to the broader dataset.

The other confusion matrixes can be found in Appendix B (Figures A4–A6).

5. Discussion

We improved an approach initially designed to distinguish two seabed covers—fine
sediment and seagrass—to map all land and sea covers present in our study scene in 3D.
The findings showed lidar waveforms can be used to classify and map habitats of the
coastal fringe and bridge the gap between marine and terrestrial surveys. All 21 selected
classes were classified with at least 70% of accuracy in the best configuration obtained,
which had an OA of 90%. Here, we discuss the results obtained regarding the classification
predictors and the methodology employed. We also provide potential explanations for the
performances of the algorithm.

5.1. Green Waveform Features

Our research partially aimed at exploring whether green lidar waveforms can be
relevant for coastal habitat mapping. We defined 16 features to extract from the portions
of the waveforms that correspond to layers of ground or seabed covers. These were
efficiently retrieved both on land and underwater. However, our approach did not handle
extremely shallow waters, where the surface component and the bottom return overlap in
the waveforms. In these cases, the peak detection employed did not distinguish the seabed
from the water surface and no features were retrieved. There was consequently a 24 m
wide band without data in the surf zone on the sand beaches in our processed lidar dataset.
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We also noticed cases of confusion between seabed return and noise in the water column
component of the waveform, which resulted in a mis-located detected seabed. These issues
could be handled by improving the way the different waveform components are isolated:
using waveform decomposition [31] or deconvolution [47,48] could produce better results
on that aspect.

The features defined to describe the spectral signatures of coastal habitats seemed to
be equally relevant for land and sea covers mapping. However, they did not provide a
highly accurate classification (56% of OA). This can be explained by analyzing the green
waveforms obtained with the HawkEye III on land. Since this sensor was particularly
designed for bathymetry extraction, its green lasers are set to be powerful enough to reach
the seabed up to several dozens of meters in coastal waters. Over land, the laser power is so
high that most of the waveforms originating from highly reflective surfaces are saturated.
The green wavelength alone might consequently not encompass a fine enough range of
intensities over land to allow separation of similar environments such as plane habitats,
different types of herbaceous vegetation, etc. The shapes of the saturated waveform returns
are also affected: there is lacking information on the shape of the peak around its maximum.
This can explain why there was a lot of confusion between topographic habitats when
using green waveforms only.

Though green information alone may not be enough to distinguish the 21 habitats
accurately, our findings suggested that a finer selection of the waveform attributes used for
classification could enhance the green waveform feature predictions. The results presented
in Table 3 and Figure 8 revealed negative interactions between some of the features chosen.
Combining the full sets of statistical and peak shape features (defined in Section 3.7) resulted
in lower accuracy than using them separately. Furthermore, the predictors’ contribution
assessment (Figure 8) showed that out of the 16 predictors, only nine contributed positively
to the classification accuracy. This might be due to information redundancy between
features relying on similar concepts such as mean and median intensity, for example. It
could be due to the correction of attenuation performed on bathymetric waveforms. This
exponential correction produced extremely high values of backscattered intensities under
water, which made little sense physically. On the other hand, topographic waveforms were
not corrected: their typical intensity order of magnitude was several times smaller, which
might have disrupted the classifier. Fixing the issue of attenuation correction and using
only a selected set of waveform predictors based on an assessment of their contribution
would certainly result in better results when using the green wavelength alone.

The three different types of waveform features appeared to be complimentary: the
nine predictors with a positive influence on the OA (Figure 8) represented each feature
family defined in Section 3.7. This was consistent: the shape of the waveform return is
characteristic of its nature, and the complexity, length, shape, maximum, and position of its
maximum sum up the essential information differentiating one waveform from another.

5.2. Infrared Data

The addition of the IR wavelength increased the OA by 13%. The classification results
certainly benefited from IR light’s interaction with water and chlorophyll pigments, which
provided essential information for the labelling of vegetation and other topographic classes
such as wet sand. Considering that the green wavelength was less adapted to land cover
classification, the performance increase obtained by using both lasers was expected.

Our research showed the added value of topobathymetric lidar: on top of providing
quasi-continuity between land and water, both wavelengths provided complementary
information for land covers’ classification. The IR PC alone could not provide a coastal
habitat map since it did not reach the seabed and riverbed; the OA obtained using only this
wavelength (24%, presented in Table 3) confirmed that. They also showed that green lidar
features alone do not provide a sufficient basis for classification either, reaching an OA of
only 56%. Coupling both wavelengths improved the overall result significantly, bringing
together the strengths of IR data on land covers, and the ability of green lidar to penetrate
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the water surface. The matrixes presented in Figures A4 and A5 show that the addition
of IR intensities to green waveform features resulted in an accuracy increase for all but
two of the 21 classes. The gain ranged between 0% (submerged sand) and 39% (tar). The
minimum accuracy observed over the 21 labels rose from 21% to 29%. Water covers classes
such as seagrass and submerged rock also benefited from the addition of IR intensities,
as their accuracy showed an improvement of 1% and 6%, respectively. As HawkEye III
is tailored for bathymetry, its green laser’s power was set to be high, which resulted in
saturated intensities over land. The IR channel provided complimentary information
in places when the green channel was weaker, which partially explains the algorithm’s
performances we observe. The classification accuracies obtained for land covers confirm
that; for example, the classification of soil, wet sand, and lawn was significatively enhanced:
+28%, +34%, and +23% of OA, respectively. Our future work will focus on exploiting both
IR and green waveforms for habitat classification, to maximize the accuracy attainable with
full-waveform topobathymetric lidar.

5.3. Ground and Seabed Elevation

Similarly to the IR data, elevations contributed greatly to the improvement of the
OA of the habitat classification, but could not be separated from spectral predictors and
used alone to provide accurate detection of land and sea covers. Indeed, Table 3 revealed
that elevations produced a classification with an OA of 55%, which is less than what can
be achieved with spectral predictors. This was expected since many different habitats
coexist at similar altitudes and are mainly differentiated by their reflectance. However, for
some others, mainly salt marsh types, elevation is an intrinsic quality and the base of their
definition. This explains why those are the type of classes that benefited the most from
the addition of elevation to a set of spectral predictors in terms of classification accuracy.
Respectively, the classification accuracy of low salt marsh, mid salt marsh, and high salt
marsh rose from 71%, 76%, and 21% by adding elevations to the green waveform features
in the set of predictors (see Figures A4 and A6).

Even though elevation combined with spectral information already provided high
classification accuracy (90%, see Table 3), the values extracted with our approach were
not always consistent with those provided by the original PCs in marine areas, as ex-
plained above. To remove artifacts due to water quality, a post-processing step could be
implemented, and the neighboring elevations could be used to regularize the processed
PC obtained.

5.4. Classification Approach

Our results showed that topobathymetric lidar is fitted to the classification of coastal
habitats. Although elevations, IR intensities, and green waveform features did not produce
high accuracy classifications of the land-water continuum, they were complimentary and
achieved high-precision results when combined. To the best of our knowledge, no similar
papers proposing point-based land and water covers mapping from bispectral lidar data
were published, so no direct comparisons of results are possible. However, our observations
corroborate those made in [35], which successfully used random forest algorithms to classify
full-waveform lidar data over urban areas and obtained an overall accuracy of over 94%
when identifying four types of land covers. This paper only focuses on terrestrial areas but
confirms the high accuracy we observe when using waveform features without rasterization
for mapping purposes. Class-wise, our results seem more homogeneous for the land covers
we have in common, although this means that our approach performs less accurately than
theirs on some urban classes. Indeed, ref. [35] presents a PA of 94.8% for buildings, which
is higher than we observe on our roof class (89%), but our vegetation classes (trees and
shrubs) have an average PA of 82.6%, while theirs is 68.9%, and our natural ground classes
(soil, lawn, salt marsh) reach an average PA of 91.6%, higher than the 32.7% presented
in [35]. Our approach and the method introduced in [35] perform similarly on artificial
ground (for us, tar and concrete), with PAs of 96% and 96.4%, respectively.
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Although we found no other research performing point-based classification of subtidal,
intertidal, and supra-tidal habitats, we can compare our findings to those in [34], where the
authors also observed that the use of waveform data improves seabed maps and obtained
an OA of 86% for their classification of seabed substrates and aquatic macrovegetation.
Their approach provides a better mapping of low underwater vegetation on soft substrate
(100% versus 85% of PA in our case) but a less accurate detection of hard seabed substrate
(68% versus 90% of PA in our study). Again, although we have less accurate results for
some classes, our method seems to provide more balanced and homogeneous performances
among different classes.

Our results also confirm those from [27], where 19 land-water continuum habitats
were classified with an OA of 90%, and in which the authors concluded that the best
classification results were obtained when combining spectral information and elevation.
However, in [27], the authors used digital models of waveform features that they obtained
by rasterizing their data, and they relied on an ML classifier. Although our metrics are
similar, our classification has the advantage of preserving the spatial density and repartition
of the data.

Other studies such as [49–51] used 2D lidar-derived data and imagery along with
machine learning classifiers to map similar coastal habitats as the ones we attempted to
map. They obtained performance scores in the same range as ours, with OA between
84% and 92%. The authors did not use waveform data in these studies and observed
low accuracy when classifying only digital elevation models obtained with lidar surveys,
therefore requiring the additional processing of imagery. Our approach has the advantage
of requiring only one source of data out of the two sources often used in existing literature,
which facilitates both acquisition procedures and processing.

Globally, our results are in line with [27,35,52], which all state that bathymetric lidar
waveforms are well suited for benthic habitats mapping and observe the same complemen-
tarity between spectral and elevation information for habitat mapping. Our method offers
an OA similar to existing research in lidar data classification for habitat mapping, while
extending the application to a wider range of habitats—both marine and terrestrial—and
avoiding information loss through rasterization. Although the PAs obtained for some
classes are lower than results previously presented in other studies [34,35], this method
also has the advantage of offering homogeneous performances and low inter classes PA
differences, contrary to other existing research results [34,35].

The random forest models trained showed low overfitting, as the extended application
results illustrated. The classification of boats located outside of the training and test data
collection area, for example, illustrated that the classifiers obtained could be applied to
other datasets accurately. Natural, semi-natural and anthropic habitats were well distin-
guished, and vegetation was precisely isolated, which opened perspectives for ecological
assessments of those coastal areas. The remaining errors often involved classes that were
close semantically. For example, there was confusion between salt marsh and high natural
grasses but low confusion between lawns and low marsh. A potential improvement could
be to review the classes defined initially and distinguish vegetation by layers (herbaceous,
arbustive, arborescent) and by their natural, semi-natural, or anthropic nature.

Besides the quality of the training and test datasets established, a source of explanation
for remaining classification errors could be found in the technical specifications of the
sensor. The diameter of the HawkEye III’s green laser’s footprint is 1.80 m, which means
that the returned waveform condensates information in a 2.5 m2 area. This parameter may
have had an influence on the ability of a given array of features to describe pebble or sand,
mostly at interfaces between habitats. This could partially explain the confusion between
deciduous and evergreen trees: in a mixed-species forest, two different trees can coexist in
a 2.5 m2 patch.

Although the main issues identified visually reflected in the metrics computed on the
test dataset, there was a gap between the estimated quality of the map and the statistics
computed. For example, the classification of portions of sandy beaches as pebble was
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not as obvious in the confusion matrix as it is in the map. This showed the influence of
the way the test dataset is built. Further work should try to incorporate validation maps
in addition to test datasets to qualify the output on the complete study site. A finer tree
species inventory could also be integrated to better assess the results obtained.

Nonetheless, our results highlighted a strong classification approach, leveraging the
strengths of 3D bispectral data. Working at the PC scale and not in 2D opens perspectives
for 3D classifications, identifying all layers of land and sea cover, mostly in vegetated
areas, by using waveform segmentation instead of waveform PC segmentation, as experi-
mented in [53]. It also shows possibilities for post-processing and neighbor-based result
regularization, as well as the exploitation of spatial information through the addition of
geometrical features such as roughness or local density. Lastly, the accurate classification
of habitats through 3D data offers opportunities for structural ecology assessments and
communication of these results to environmental managers through virtual reality or more
relatable 3D visualizations, for the implementation of sustainable integrated management
of coastal areas. Figure 14 provides a 3D view of the 3D habitat mapping achieved in the
present study.

 

Figure 14. 3D map of the habitats obtained over the complete study area by the random forest
classifier trained on green waveform features, infrared intensities, and elevations. S. = submerged,
Ev. = evergreen, Dec. = deciduous.

6. Conclusions

In this article, we proposed an approach to map coastal habitats exclusively using
topobathymetric lidar, including both full waveforms and reanalyzed echoes. We produced
results under the form of PCs and extended the application of our best classifier—which
obtained 90% of OA on the test dataset—to a dataset of 24.5 million points covering a
very diverse coastal area. A total of 21 classes of land and sea covers were defined and
mapped in 3D. We found that green waveforms and IR intensities complement each other:
while green data provided strong results in submerged areas, the IR wavelength improved
the distinction of land covers. Elevations further increased the classification accuracy by
perfecting the classification of plane classes and classes, such as low, mid, and high salt
marsh, which were principally differentiated by their elevation. It is of special interest to
note that green waveforms alone produced better results than IR intensities or elevations
alone. However, the combination of the three sources of information yielded the best result,
highlighting that they each bring a specific contribution to the result. Our research showed
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how fit topobathymetric lidar is to the classification of such numerous land-water interface
habitats. We enhanced a waveform processing method to apply it to topo-bathymetric
environments. The use of PCs instead of rasters and the addition of a second wavelength
provided an original 3D map of 21 coastal habitats at very high spatial resolution. This
provides encouraging perspectives for 3D mapping and ecological assessment of the land-
water interface and paves the way to integrated management of coastal areas, bridging the
gap between marine and terrestrial domains.
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Appendix A

Appendix A contains the projected 3D maps of the habitats obtained for 3 random
forest experiments: the classification of green waveform features only, the classification
of green waveform features and IR intensities, and the classification of green waveform
features and elevations.
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Figure A1. Projected 3D map of the habitats obtained with the predictions of a random forest classifier
on green spectral features; orthoimage of the study area. The orthoimage was captured in 2014,
while lidar data are not contemporaneous as they date from 2019. S. = submerged, Ev. = evergreen,
Dec. = deciduous.

Figure A2. Projected 3D map of the habitats obtained with the predictions of a random forest classifier
on green spectral features and infrared intensities; orthoimage of the study area. The orthoimage was
captured in 2014, while lidar data are not contemporaneous as they date from 2019. S. = submerged,
Ev. = evergreen, Dec. = deciduous.
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Figure A3. Projected 3D map of the habitats obtained with the predictions of a random forest classifier
on green spectral features and elevation values; orthoimage of the study area. The orthoimage was
captured in 2014, while lidar data are not contemporaneous as they date from 2019. S. = submerged,
Ev. = evergreen, Dec. = deciduous.

Appendix B

Appendix B contains the confusion matrix or difference matrixes obtained for 3 ran-
dom forest experiments: the classification of green waveform features only, the classification
of green waveform features and IR intensities, and the classification of green waveform
features and elevations.

 

Figure A4. Confusion matrix obtained by the random forest classification of the green waveforms’
features. The three highest and three lowest class accuracy values are highlighted in green and orange,
respectively. S. = submerged, Ev. = evergreen, Dec. = deciduous.
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Figure A5. Difference of the confusion matrixes obtained for the classification of green waveforms’
features plus infrared intensities, and green waveforms’ features only. The three highest and three
lowest class accuracy values are highlighted in green and orange, respectively. S. = submerged,
Ev. = evergreen, Dec. = deciduous.

 

Figure A6. Difference of the confusion matrixes obtained for the classification of green waveforms’
features plus elevations, and green waveforms’ features only. The three highest and three low-
est values are highlighted in green and orange, respectively. S. = submerged, Ev. = evergreen,
Dec. = deciduous.
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Abstract: The evolution of the coastal fringe is closely linked to the impact of climate change,
specifically increases in sea level and storm intensity. The anthropic pressure that is inflicted on
these fragile environments strengthens the risk. Therefore, numerous research projects look into the
possibility of monitoring and understanding the coastal environment in order to better identify its
dynamics and adaptation to the major changes that are currently taking place in the landscape. This
new study aims to improve the habitat mapping/classification at Very High Resolution (VHR) using
Pleiades–1–derived topography, its morphometric by–products, and Pleiades–1–derived imageries.
A tri–stereo dataset was acquired and processed by image pairing to obtain nine digital surface
models (DSM) that were 0.50 m pixel size using the free software RSP (RPC Stereo Processor) and
that were calibrated and validated with the 2018–LiDAR dataset that was available for the study area:
the Emerald Coast in Brittany (France). Four morphometric predictors that were derived from the
best of the nine generated DSMs were calculated via a freely available software (SAGA GIS): slope,
aspect, topographic position index (TPI), and TPI–based landform classification (TPILC). A maximum
likelihood classification of the area was calculated using nine classes: the salt marsh, dune, rock,
urban, field, forest, beach, road, and seawater classes. With an RMSE of 4 m, the DSM#2–3_1 (from
images #2 and #3 with one ground control point) outperformed the other DSMs. The classification
results that were computed from the DSM#2–3_1 demonstrate the importance of the contribution
of the morphometric predictors that were added to the reference Red–Green–Blue (RGB, 76.37% in
overall accuracy, OA). The best combination of TPILC that was added to the RGB + DSM provided a
gain of 13% in the OA, reaching 89.37%. These findings will help scientists and managers who are
tasked with coastal risks at VHR.

Keywords: Pleiades–1; photogrammetry; RSP; topography; classification; maximum likelihood;
landscape

1. Introduction

1.1. Global Change

Coastal landscapes have faced significant changes over billions of years, and their
evolution is concomitant with major climatic upheavals. In its sixth and most recent report,
the Intergovernmental Panel on Climate Change (IPCC) indicates that climate change is
occurring more rapidly than originally predicted, with unprecedented increases in sea
levels, heat waves, and the faster melting of polar ice caps [1]. Currently, mankind is trying
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to cope with and adapt to rapid climate changes that influence ocean currents, winds,
precipitations, temperatures, and strongly re–shaped landscapes [2].

1.2. Landuse/Landcover Observation Techniques

Observation techniques for tracking landscape changes are many and varied. At
local–scale and very–high (VH) spatial resolution, unmanned aerial vehicles (UAV) are
useful for the VH temporal resolution monitoring of coastal socio–ecosystems [3]. UAVs
are cost–efficient and easily deployable for shoreline detection [4] and for the identification
of seasonal variations in saltmarsh meadows [5]. They are, however, not well suited for
monitoring areas at the landscape scale (several km2) due to not only the restrictions that
are imposed by legislation but also the technical limitations that are enforced by the number
of flight times that are permitted by the battery capacity. In addition, in coastal areas, the
meteorological and marine conditions require a maximum time of presence on the site due
to the tides (±one hour after low water slack).

Manned aerial vehicles (MAV) serve as a robust alternative that leverages passive sen-
sors with a basic red–green–blue (RGB) spectrum and sometimes the infrared spectrum [6]
or an active light detection and ranging (LiDAR) sensor [7]. The complete solution makes
it difficult to plan missions, and sensors such as LiDAR are rather expensive.

1.3. Spaceborne Acquisition and Stereoscopy

Yet, the analysis of the environment at the landscape scale is made possible by satellites
which have a VH spatial, a multispectral, and even a hyperspectral resolution for the best–
equipped satellites [8].

A spaceborne solution exists to obtain multispectral VH resolution images that are
0.50 m and 0.30 m pixels in size, which are provided by Pleiades–1 or WorldView–3
and 4, respectively. Satellite–based multispectral VH resolution mapping of the coastal
fringe has been successfully performed in studies focusing on tropical [9] or temperate
environments [10].

Since 2000, some remote sensing satellites that are specialized in stereo acquisition
have been launched into orbit around the Earth, such as the Worldview–1, –2, –3, –4
constellations, GeoEye–1 and –2, the Pleiades–1 and, –1B constellations, and the 2021–
launched Pleiades Neo, whose images are not yet available for research at the time of this
submission [11]. The operating principle of stereoscopy is to photograph an object or a
landscape from two different angles in the same way as human vision is able to, with a
specific overlap for determining the 3D information of the obtained images. Sometimes
a third angle (nadir) of view can be available as a redundant observation to increase the
accuracy when producing a digital elevation or surface model.

Satellite–based stereo topography has the capability of improving coastal mapping by
improving the spectral discrimination of eco–geo–morphological objects [12]. However,
when a tri–stereo product is used, do they augment/boost this coastal mapping? Do the
morphometric parameters that are derived from the topography contribute to a better
classification of coastal ecosystems than basic spectral information? This paper along with
the experimental results that are presented in it will seek to answer these two questions.

2. Materials and Methods

2.1. The Study Site

The entire study site (76 km2 terrestrial part) is located on the Emerald Coast in
Brittany (France) along the Channel Sea (48.60◦ N, 2.00◦ W; Figure 1). It is characterized by
a diversity of ecosystems that are shaped by the proximity of a megatidal sea and is one
of the six areas with the highest tidal ranges in the world (up to 14 m) [13]. The Rance, a
coastal river, ends its course in the bay of Saint Malo, dividing the area in two sub–sites. In
terms of land cover, this study area is composed of temperate zone coastal vegetation, salt
marshes, rocks, dunes, and fine sand beaches. The coastline is strongly indented, leaving
multiple sandy beaches surrounded by rocky points and islets a little further offshore.
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Bays are also common on this coastal fringe and are featured by the presence of salt marsh
meadows. In terms of urbanism, this Brittany coastal fringe is subject to strong anthropic
pressures. The small fishing villages of the past have evolved into resort urban areas that
now attract tourists in search of iodized air and marine landscapes.

 

Figure 1. Location of the study on the Emerald Coast (France).

As with all coastal areas in the world, the Emerald Coast is not exempted from coastal
risks. Its highly populated coastline increases the vulnerability of lowland populations.

2.2. Pleiades–1 Satellite Imageries

The Pleiades–1A and 1B constellation multispectral satellites were launched on
16 December 2011 and 2 December 2012, respectively [14]. The Pleiades–1 constellation
acquires images of the Earth daily and can cover up to 1,000,000 km2 per day. The radio-
metric spectrum of the sensor extends from 430 nm to 940 nm (B: 430–550 nm; G: 500–620
nm; R: 590–710 nm; and NIR: 740–940 nm).

Data collection is based on tri–stereo images from the Pleiades–1 satellite sensor
(Table 1; Figure 2a). The satellite orbited over the study area on 28 November 2020 to
collect three images at 11 h 26 min 14 s (UTC), then at 11 h 26 min 24 s (UTC), and finally
at 11 h 26 min 32 s (UTC; Table 1). Each dataset of images contains panchromatic and
multi–spectral images (R, G, B, NIR) that are 0.5 m and 2 m pixels in size, respectively
(Table 1, Figure 2b,c). The images were delivered without initial geometric processing
(primary level) and without radiometric processing.

Table 1. Pleiades–1 specificities of the tri–stereo acquisitions over the study site.

Parameters Image #1 Image #2 Image #3

Acquisition date 28 November 2020 28 November 2020 28 November 2020

Time 11 h 26 min 14 s 11 h 26 min 24 s 11 h 26 min 32 s

Image orientation angle (in degree) 180.01 180.03 180.01

Incidence angle (in degrees) 16.41 15.35 16.05

Sun azimuth (in degree) 172.60 172.60 172.60

Sun elevation (in degree) 19.77 19.77 19.77
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(b) 

 

(a) (c) 

Figure 2. Viewing directions with respect to the target area of the tri–stereo Pleiades–1 images (a);
natural–coloured nadiral imagery at 2 m pixel size (b), and panchromatic nadiral imagery at 0.5 m
pixel size (c) of the study site.

2.3. LiDAR Airborne Dataset

Thanks to multiple LiDAR data acquisition campaigns on the French territory by the
French Navy’s Hydrographic and Oceanographic Department (SHOM), a LiDAR point
cloud was available for the study site. The land/sea continuum is guaranteed by the
precision of the topo–bathymetric dataset (horizontal and vertical topographic accuracy of
0.20 m), which was acquired with a Leica HawkEye–3 sensor (Chiroptera + Deep channel).

The 2018 LiDAR point cloud was used to calibrate and validate the digital elevation
model (DEM) using 36 validation points that were evenly distributed over the study area.
The coordinates in XY (WGS84 UTM 30N) and Z (ellipsoidal height) were extracted for
each point (Figure 3).

2.4. Coastal Landscape Classes

Nine classes that are representative of the coastal landscape were identified (Table 2,
Figure 4): dune (white dune vegetation Ammophila arenaria), salt marsh (salt marsh vegeta-
tion composed mainly of Spartina, Salicornia, Suaeda, and Halimione portulacoides), rock,
urban (building roof), forest (mix of deciduous and coniferous), field (cultivated and un-
cultivated), beach (wet and dry sand of grain of 0.06 to 2 mm), road (mainly asphalt), and
seawater (shallow to deep salt water). A sub–study site was extracted for the classification
tests (red rectangle in Figure 3).
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Figure 3. 2018 LiDAR of Emerald Coast with evenly distributed calibration points (black circle) and
validation points (black triangle); the red rectangle corresponds to the sub–study site.

 

Figure 4. Natural–coloured nadiral Pleaide–1 imagery with the calibration/validation class locations.

2.5. Satellite–Derived Topography: Photogrammetry Reconstruction

Three couples of panchromatic images, which were characterized by three intersection
angles, were processed using the opensource software RSP (RPC stereo processor, [15],
Figure 5) from the tri–stereo images from Pleiades–1. RSP was used to process stereo
satellite images so as to create point dense clouds and then to create a Digital Surface
Model (DSM) using the photogrammetry technique. For each pair of images, RSP used
the Rational Polynomial Coefficients (RPC) files, which were delivered with the Pleiades–1
images, which contain the geometric parameters for the same images to build the projection
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relationship between the 3D and 2D space. The additional Ground Control Points (GCP)
increased the accuracy of the reconstruction horizontally and vertically.

Table 2. Pleiades–1 natural–coloured thumbnail of the nine coastal landscape classes.

Class Name Thumbnail

Dune

 

Salt marsh

 

Rock

 

Urban

 

Forest

 

Field

 

Beach

 

Road

 

Seawater

 

Three image pairs (1) without, (2) with 1, or (3) with 3 GCP (DSM#2–3_0, DSM#2–3_1,
DSM#2–3_3, DSM#1–2_0, DSM#1–2_1, DSM#1–2_3, DSM#1–3_0, DSM#1–3_1, DSM#1–3_3)
were computed using RSP, and nine DSM were evaluated using the root mean square error
(RMSE). The lowest RMSE was the factor that identified what the best photogrammetry–
based DSM was.

RMSE =

√
∑n

i=1(Pi − Oi)2

n
, (1)

where P is the value of the calculated DSM ellipsoidal height; O is the value of the LiDAR
ellipsoidal height; and n is the number of observations.
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Figure 5. Flowchart describing methodology for coastal landscape classification from Pleiades–
derived topography and morphometry.

In addition, the DSMs were also evaluated at the ecosystem scale by referring to the
nine identified classes. A mean of the ellipsoidal heights per class was calculated, and a
dispersion parameter such as standard deviation was determined to show the homogeneity
or heterogeneity of the statistical series.

The MS images underwent three pre–processing stages before they were integrated
into the analyses:

ENVI’s FLAASH tool was used to correct the influence of the atmosphere (top of
atmosphere, TOA) for each pixel in the images. The radiometric correction of the MS
images consisted of converting the numerical radiance values into TOA reflectance values.
The reflectance was calculated according to the radiance/irradiance (solar) ratio.

The MS images were also geometrically corrected using both the RPC files and the
DSMs, which had been created previously from the panchromatic stereo images. This pre–
processing stage corrected the distortions in the images that were related to the positioning
of the satellite or the structure of the landform.

The MS images were pan–sharpened using the Gram–Schmidt algorithm. It resampled
the 2 m pixel size of the MS image to be of the 0.5 m pixel size of the panchromatic images
(see James et al., 2021).
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2.6. Satellite–Derived Morphometry

The morphometric features such as slope, aspect, topographic position index (TPI),
and TPI–based landform classification (TPILC) were calculated from the best DSMs using
the SAGA GIS opensource software (Figure 5) [16]. These indicators that were related to
the topography of the study site were coupled with the basic RGB spectral information to
reveal the contributions of each predictor. The near–infrared band of the image was also
compared to the morphometric predictors.

The slope highlights the inclination of a pixel, and this aspect defines the orientation
of the slope from a compass direction. The slope and aspect predictors generate raster
images that are computed from the DSM. The percentage of slope is the ratio between the
difference in altitude and the horizontal distance. A 3 × 3 pixel moving window compares
the values of a pixel around its neighbors to define the slope percentage.

TPI computes the elevation or altitude of each pixel and subtracts it from the mean
elevation or altitude of a neighborhood of that pixel of a grid raster [17]. Values that
are lower than 0 correspond to valleys. Values higher than 0 are ridges, and those that
are around 0 are flat areas. TPI–based landform classification was founded on the same
principle as the basic TPI. Two different scales were combined to allow for the better
identification of the topographic differences [18].

2.7. Classification Algorithm

A supervised machine learning classifier algorithm was tested: maximum likelihood
(ML) with ENVI® software (Figure 5) [19]. ML is a probabilistic method that calculates the
variance and covariance of each class by assuming that the statistics of each class in each
band are normally distributed. A pixel is then assigned to the class with the most likely
probability of membership.

An array of 500 calibration pixels and 500 validation pixels per class were extracted
from the satellite–derived products (Table 2). Overall accuracy (OA) is determined as
the sum of the correctly classified pixels divided by the number of pixels. The producer
accuracy (PA) corresponds to the accuracy of the map from the producer’s point of view, i.e.,
from the algorithm. The result expressed in % indicates the fraction of correctly classified
pixels of those that are known to belong to the class [20]. The OA of each by–product
combination was evaluated through the calibration/validation pixels that were calculated
with the confusion matrix.

3. Results

After the DSMs were derived and evaluated, the best one was further investigated
to build topographic by–products. A ML algorithm was applied to this DSM using nine
representative landscape classes from the study site. The contribution of each derived
topographic band was evaluated at the landscape (OA) and class (PA) level.

3.1. Pleiades–1 Digital Surface Model
3.1.1. Global Evaluation

The results of the overall DSM evaluation showed a slight increase in the overall
accuracy of the DSMs with the addition of GCPs (Figure 6). Thus, without GCP, with 1 GCP,
and with 3 GCPs, the results were 4.03 m, 4 m, and 4.01 m for DSM#2–3 (Figures 6 and 7a).
DSM#1–2 and DSM#1–3 increased their accuracy by 0.04 m and 0.02 m, respectively, as
soon as a GCP was added (Figures 6 and 7b,c). However, image pairs #1–#2 and #1–#3
gave unsatisfactory results compared to image pair #2–#3.
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Figure 6. Bar plot of the root mean square error from Pleiades–1 DSM computed by pairs without,
with 1, or with 3 ground control points.

At the global scale, the analysis of the three best DSMs (DSM#2–3_1, DSM#1–2_3, and
DSM#1–3_3) can be compared to the validation points that were extracted from the LiDAR–
2018 (Figure 7a–c). The distribution of the DSM#2–3_1 points shows a low dispersion
and therefore a positive correlation between the LiDAR–2018 dataset and DSM#2–3_1
(Figure 7a). The DSM#1–3_3 appeared to be sparsely correlated to the LiDAR–2018 dataset.

3.1.2. Class Level DSM Evaluation

The analysis of the DSM results from the Pleiades–1 images can also be examined at
the class level (Figure 8) on the sub–study site. Based on the validation polygons from the
classes, each DSM was evaluated.

 
(a) 

Figure 7. Cont.

179



Remote Sens. 2022, 14, 219

 

(b) 

 
(c) 

Figure 7. Comparison of ellipsoidal height of the LiDAR dataset and the three best digital surface
models: DSM#2–3_1 (a), DSM#1–2_3 (b) and DSM#1–3_3 (c).

 

Figure 8. Ellipsoidal mean and standard deviation height at the class level on the sub–study site from
the three best digital surface models.
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Depending on the ecosystem, the mean heights between the DSMs within the same
class can vary. This is the case for almost all of the classes if the three DSMs are compared
to each other.

However, when DSM#2–3_1 and DSM#1–3_3 are compared to each other (due to
their performance at the landscape scale), the mean differences in heights were: +10.35 m,
+10.22 m, +13.16 m, +15.24 m, +15.11 m, +13.95 m, +10.83 m, +7.71, and +6.15 m for the salt
marsh, dune, rock, urban, forest, beach, road, and seawater classes, respectively.

3.2. Morphometric Derivatives

Four main morphometric by–products were calculated:

• The slope values ranged from 0 to 89◦, with 0◦ corresponding to a flat surface such
as the seawater or flatland (in green) and 89◦ corresponding to a steep cliff (in red in
Figure 9a).

• The aspect is categorized in 10 classes from 0 to 360◦, according to the main cardinal
points (north, south, east, west; Figure 9b). A value of −1 corresponds to flat areas
such as those for seawater.

• TPI is the third morphometric contributor (Figure 9c).
• Finally, TPILC (Figure 9d) groups the landscapes into 10 classes (1 to 10).

  
(a) (b) 

  
(c) (d) 

Figure 9. Morphometric variables derived form the best Pleiades–1 DSM#2–3_1: slope in degrees (a);
aspect (b); topographic position index, (TPI) (c); TPI–based landform classification (d).

181



Remote Sens. 2022, 14, 219

3.3. Pixel–Based Classification
3.3.1. Overall Accuracy at the Landscape Scale

At the landscape scale, each band combination was assessed. To test individual
contribution, the RGB spectral composite was used as a basis, achieving an OA of 76.37%
(Figure 10).

 

Figure 10. Overall accuracy of the eight classifications performed with the maximum likelihood classifier.

The NIR band was also tested and obtained a score of 84.34% combined with the RGB.
Thus, in addition to the RGB, the DSM significantly enhanced the OA by +12.51%,

but RGB + DSM + slope decreased the score (−11.23%) compared to the RGB + DSM
combination (Figure 10).

The morphometric predictor combinations provided a strong contribution to the
classification, with +9.05%, +11.45%, and +12.52% for the RGB + DSM + TPI and RGB +
DSM + morphometric predictors and for RGB + DSM + aspect, respectively.

Finally, the best combination was the TPILC predictor combined with RGB + DSM,
with a classification score of 89.37%, namely an augmentation of +13%.

3.3.2. Evaluation at the Class Level

The analysis of the confusion matrix of each morphometric predictor added to the
basic RGB highlights a heterogeneity between the classes (Table 3, Figures 11 and 12).

Table 3. Producer accuracy (in %) from confusion matrix using the maximum likelihood classifier for
the salt marsh, dune, rock, urban, field, forest, beach, road, and seawater classes.

Salt Marsh Dune Rock Urban Field Forest Beach Road Seawater

RGB 84.47 58.67 64.8 62.27 87.67 57 80.27 92.27 100
RGB + NIR 89.13 68.93 75.07 71 90.27 73.67 99.4 91.67 100
RGB + DSM 95.2 94.67 70.8 73 88.6 89.27 97.67 92.33 98.47
RGB + DSM + slope 82 61.47 65.8 64.73 87.47 59.47 86.13 92.47 99.4
RGB + DSM + aspect 95.2 95.13 70.8 72.93 88.4 89.53 97.33 92.33 98.4
RGB + DSM + TPI 98.6 99.07 13.27 80.4 93.6 94.6 98.07 91.47 99.73
RGB + DSM + TPILC 96.67 96.27 75.27 70.13 89.67 87.93 97.6 92.4 98.47
RGB + DSM +
morphometric predictors 98.33 98.67 26.33 84.13 92.93 97.2 99.13 94.2 99.53
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Figure 11. Bar plot of the producer accuracy of the morphometric predictor on the basis RGB at the
class level (salt marsh, dune, rock, field, forest, beach, road, and seawater).

RGB RGB + NIR 

  

(a) (b) 
RGB + DSM RGB + DSM + aspect 

  
(c) (d) 

Figure 12. Cont.
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RGB + DSM + slope RGB + DSM + TPILC 

  
(e) (f) 

RGB + DSM + TPI RGB + DSM + morphometric predictors 

  
(g) (h) 

 

Figure 12. Coastal mapping classification at the class level computed with the maximum likelihood
classifier: Basis RGB (a); RGB + NIR (b); RGB + DSM (c); RGB + DSM + slope (d); RGB + DSM + aspect
(e); RGB + DSM + TPI (f); RGB + DSM + TPILC (g); RGB + DSM + morphometric predictors (h).

Thus, the urban class obtained the worst results with the RGB and increased in
terms of classification performance when another predictor was added. The slope pre-
dictor increased by 2.46. The addition of a morphometric predictor allowed the 70.13%
of classification performance to increase until the threshold of 84.13% as reached with
the combination RGB + DSM + morphometric predictor. The NIR predictor holds up
reasonably, achieving a score of with 71% (Table 3, Figures 11 and 12).

The trend for the forest class seems to be the same as the trend observed for the urban
class. The slope provides a modest contribution of 2.47%, followed by the NIR predictor
with a contribution of 16.67%, and then by the DSM contribution with a contribution of
32.27%. When added to the RGB + DSM, morphometric predictors aspect, TPILC, TPI, and
the entire combination obtain values of +30.93%, +30.97%, +37.6%, and +40.2%, respectively.

The salt marsh, beach, and dune classes increased in classification accuracy when
a morphometric variable was added to the reference RGB: +10.73%, +17.4%, and +36%,
respectively with the RGB + DSM combination until the addition of TPI variable at 98.6%
and 99.07% for the salt marsh and dune classes. The beach class obtained the best result
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with RGB + NIR, achieving results of 99.4%. In contrast to the salt marsh and beach classes,
the rock class performed worst, with 13.27% and 26.33% with the RGB + TPI combinations
and the complete combination of morphometric variables added to the RGB, respectively.

The road class obtained linear classification scores between 91.47% for RGB + DSM + TPI
and 94.2% for the RGB + DSM + morphometric predictors.

The field class follows a slightly different pattern than the other classes since the worst
result, which was still very acceptable, is achieved by the combination RGB + DSM + slope,
with a score of 86.47%. The RGB combination increased the classification performance
by only +0.2% and +0.93% for the RGB + DSM + aspect and +1.13% for the RGB + DSM
combination. The RGB + DSM + TPILC, RGB + NIR, and RGB + DSM + morphometric
predictors increased the classification performance by +2.2%, 2.8%, and +5.46%. The best
combination for the field class was obtained by RGB + DSM + TPI, with a score of 93.6%.

The seawater class achieved high scores of almost 100% PA, regardless of the predictor
(Table 3, Figures 11 and 12).

4. Discussion

4.1. Pleiades–1 Digital Surface Model
4.1.1. The Intersection Angle as a Key Determinant

At the global scale, nine DSM were computed via RSP from three Pleiades–1 satellite
images captured at three different angles of incidence: 16.41◦ for image #1, 15.35◦ for image
#2, and 16.05◦ for image #3 (Figure 2a and Table 1). DSM#2–3_1, which was derived from
the stereo reconstruction of images #2 and #3 outperformed, the other DSMs. According to
the results of the satellite photogrammetry, reconstructions with the closest intersection
angles (5.13◦) produced better point–measurement accuracy compared to the the 2018–
LiDAR altimetric reference. Another answer can also be provided by focusing on the solar
angle [21]. Moreover, close or near–similar intersection angles increase the risk of “hidden
sides” because of their proximity [22,23].

However, many studies have shown interest in using tri–stereo satellite images to
benefit, when possible, from a nadir view [24]. The benefit of such a tri–stereo enables a
reduction in the shadows that are created by trees or buildings. This approach is highly
valued by urban planners, as it limits the risk of shadows and hidden areas [25].

As for photogrammetric reconstructions from UAV images, a deficient RMSE could
be explained by reconstruction artifacts related to the algorithm or to the images them-
selves [26].

4.1.2. Ground Control Point Effect

At a more local scale, three scenarios can explain the results that were obtained. The
first is the number of GCP that were extracted from the 2018–LiDAR as calibration points
for our topographic models. The tests that were performed without GCP, with one, or
with three GCP, showed that when we added GCP points, the model is more accurate [27].
However, The RPC files that were delivered with the Pleiades–1 images could be more
powerful. The RPC files integrate all of the parameters that are related to the photographs
in order to correct for the satellite images. This approach could be investigated in a
future study.

4.1.3. Information Reflected by the LiDAR Wavelengths

Two laser sensors were used for the whole LiDAR dataset: a mixed topo–bathymetric
laser in the NIR and green spectra, and a stronger bathymetric laser in the green spec-
trum, which was specifically used for deeper areas. Depending on the nature (albedo) of
the coastal habitat, the wavelength that is used by the LiDAR does not return the same
information, being more or less reflected. Thus, the reflectance in the NIR is strong for
eco–geo–systems with high chlorophyll dominance, and conversely, it is fully absorbed by
habitats with a high water content, such as seawater, for example [28].
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The density of the LiDAR points may also play a crucial role. The intertidal and coastal
land area is denser in a number of points per square meter than marine area (deep water
area) is. The detection of features such as trees is easy when the density of measured points
is high [29].

4.2. Topographic Contribution to Habitat Classification

At the landscape scale, the contribution of the morphometric predictors surpassed the
classification performance. Although the basic RGB performs well, as soon as morphomet-
ric predictors are added, the OA increases (from +1.28% to +13%). The positive effect of the
slope raster and its by–products on the landscape classification were evidenced in several
studies based on satellite sensors [30] as well as in UAV studies [31]. The classification test
with the addition of the NIR band showed the relevance of a classification with morpho-
metric variables. Indeed, when these variables were added to the RGB, the classification
performance on the coastal fringe increased considerably contrary to the multispectral
RGB + NIR combination without any other predictors.

At the ecosystem class level, the morphometric predictors produced different results
depending on the coastal habitat type. For example, the topographic variables provided
successful results for salt marshes. This particular ecosystem is located in a geographical
area that is sheltered from strong prevailing marine currents. Coastal erosion has minimal
or no impact on the meadows, allowing the different plant species to grow.

5. Conclusions

This research study on satellite photogrammetry with Pleiades–1 tri–stereo images is
meaningful for the classification of coastal landscapes at VHR, especially in the context of
climate change and increasing anthropic pressure on the coastal fringe.

Three pairs of Pleiades–1 panchromatic images at the 0.5 m pixel size were tested for
DSM generation, and nine DSM were evaluated from 36 2018 LiDAR validation points.

The best DSM was derived from images #2 and #3 (DSM#2–3_1), which featured,
respectively, with incidence angles of 15.35◦ and 16.05◦ and an intersection angle of 5.13◦.
From this new DSM, four morphometric by–products were calculated: slope, aspect,
topographic position index (TPI), and TPI–based landform classification (TPILC).

A pixel–based classifier, the probabilistic maximum likelihood, was applied to the
0.5 m pansharpened RGB images, which initially had a pixel side of 2 m. Nine classes
(dune, salt marsh, rock, urban, field, forest, beach, road, and seawater) were examined to
map the study site (Figure 13). The best combination of morphometric predictors provided
a gain of 13% in the OA, reaching 89.37%, when added to the RGB + DSM. These findings
will help scientists and managers who tasked with the coastal risks at VHR.

 

Figure 13. Best map classification draped over the best digital surface model.

In a study that will be published in the near future, photogrammetric reconstruction
from a Pleiades–Neo panchromatic triplet at the 0.30 m spatial resolution will be evaluated,
given that this new sensor benefits from six bands (purple, blue, green, red, red edge, NIR),
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meaning that it has two additional bands compared to Pleiades–1. Moreover, the purple
band will be interesting to investigate for the sake of bathymetry extraction.
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Abstract: Accurate and reliable bathymetric data are needed for a wide diversity of marine research
and management applications. Satellite-derived bathymetry represents a time saving method to
map large shallow waters of remote regions compared to the current costly in situ measurement
techniques. This study aims to create very high-resolution (VHR) bathymetry and habitat mapping in
Mayotte island waters (Indian Ocean) by fusing 0.5 m Pleiades-1 passive multispectral imagery and
active ICESat-2 LiDAR bathymetry. ICESat-2 georeferenced photons were filtered to remove noise
and corrected for water column refraction. The bathymetric point clouds were validated using the
French naval hydrographic and oceanographic service Litto3D® dataset and then used to calibrate
the multispectral image to produce a digital depth model (DDM). The latter enabled the creation of a
digital albedo model used to classify benthic habitats. ICESat-2 provided bathymetry down to 15 m
depth with a vertical accuracy of bathymetry estimates reaching 0.89 m. The benthic habitats map
produced using the maximum likelihood supervised classification provided an overall accuracy of
96.62%. This study successfully produced a VHR DDM solely from satellite data. Digital models of
higher accuracy were further discussed in the light of the recent and near-future launch of higher
spectral and spatial resolution satellites.

Keywords: bathymetry; Mayotte; marine habitat; coral reefs; ICESat-2; Pleiades-1; LiDAR; VHR
multispectral imagery

1. Introduction

Mapping coastal areas is essential to tackle a broad range of environmental and social
issues [1–3]. Therefore, a wide variety of scientific research disciplines could benefit from a
better knowledge of this interface, especially regarding the monitoring and protection of
coral reefs in archipelagos or the production of navigational charts [4].

Numerous reliable and accurate techniques exist to acquire bathymetric soundings.
Data are often obtained through marine surveys equipped with multibeam or single-beam
echosounders [5]. However, these approaches are usually impracticable in remote and
shallow areas as well as time consuming and limited in terms of spatial coverage, and
therefore remain costly. As an alternative, remote sensing is increasingly used to retrieve
coastal bathymetry. Airborne data acquired with bathymetric LiDAR are useful to map
larger areas but remain costly and limited spatially [6,7].

Over the past few years, satellite-derived bathymetry (SDB) has been increasingly
used as it offers a more affordable and time saving alternative. Scientific studies have
demonstrated the possibility of obtaining reliable bathymetric data through hyperspectral
and multispectral (MS) imagery at various spatial resolutions, due to a correlation between
water depth and reflectance data [8–11]. Nevertheless, SDB mostly relies on passive imagery,
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which strongly constrains its use to clear and shallow water areas [12,13]. Depth can be
retrieved from satellite MS imagery using physics-based or empirical models. Physics-
based models rely on the physics or the radiative transfer of light in the water column and
the physical properties of the water constituents that can be estimated with or without field
measurements of depth for calibration. Some physics-based models are entirely based on
the inversion of the radiative transfer model, such as WASI and BOMBER, but they can
be complex to implement [14–16]. On the other hand, empirical models are limited by the
need to calibrate the MS imagery with in situ measurements [17,18].

There is a real need for producing bathymetric data solely from satellite images. In
this context, the launch of the NASA Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2)
in September 2018 offered new prospects [19]. This satellite aims to monitor the cryosphere
and terrestrial biosphere using the green 532 nm LiDAR with photon-counting capability.
Pre-launch studies highlighted its potential to penetrate the upper part of the water column
and reach the bottom [20]. A pioneer study has recently validated accurate ICESat-2
bathymetry retrieval at 38 m depth in very clear waters [21]. A second relevant study
used ICESat-2 bathymetric measurements, down to 18 m depth, to calibrate and validate
Sentinel-2 imagery at 10 m pixel size [17]. This spatial resolution nonetheless remains
limiting for some applications (e.g., marine ecology, navigation).

Our paper aims to create a higher resolution digital depth model (DDM) by fusing
active ICESat-2 bathymetric soundings and 0.5 m Pleiades-1 passive MS imagery in order
to provide very high-resolution (VHR) satellite-based bathymetry and habitat maps of the
coral reefscapes in Mayotte. First, a density-based algorithm was implemented on ICESAt-2
ATL03 L2 dataset to remove the noise in photon data and detect the water surface. The noise
arises from several sources, including the laser pulse being scattered by the atmosphere,
the solar background noise effects, and the detector dark noise. In our study, the main noise
source is associated with photons that are scattered by particles in the water column [22].
Based on this first clustering, photons from the seabed were identified and corrected for the
refraction effect occurring at the air-water interface. Producing bathymetric maps requires
finding a function that describes the relationship between bathymetry measurements and
the remotely sensed spectral values of the satellite image [8]. In this study, we used the band
ratio model developed by [23]. First, we derived the above water surface reflectance log
ratio of two spectral bands. Then, we characterized the relationship between the ratio and
ICESat-2 water depth measurements [17]. Therefore, this study innovatively produces a
VHR DDM and VHR benthic habitats map of the area from satellite data without a need for
in situ measurements. Bathymetric data were used to remove the effect of the water column
and generate a digital albedo model (DAM) to classify benthic habitats [24–27]. Finally, the
vertical accuracy of the predicted depths was assessed by comparing the bathymetric data
to the French naval hydrographic and oceanographic service SHOM bathymetric LiDAR
and multibeam echosounder reference dataset (Litto3D®). Classification performances
were evaluated using a confusion matrix.

2. Materials and Methods

2.1. Study Site and Data
2.1.1. Study Site

The study site is located in the northwest of the island of Mayotte (latitude: 12.63◦−12.68◦S,
longitude: 45.10◦−45.15◦E), a French overseas territory located in the southwest Indian
Ocean (Figure 1). This site is partially sheltered from wind and wave influence, factors
known to affect the quality of SDB estimates. Mayotte coasts offer a wide variety of marine
fauna and flora strongly affected by global climate and local anthropogenic changes, requir-
ing environmental monitoring [1,3]. This region was also selected due to the availability of
high-resolution airborne bathymetric LiDAR and multibeam echosounder data necessary
for validation.
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Figure 1. Map of the ground tracks of ICESat-2 over Mayotte collected on 14 May 2020. The satellite
multispectral imagery was acquired by Pleiades-1A on 25 May 2020. The red square identifies the
study area.

Water clarity is a key parameter in SDB estimation. Clarity is related to light ray
penetration in the water column, thus impacting the quality and quantity of the available
bathymetric soundings [27–31]. This variable can be estimated using a diffuse attenuation
coefficient of 490 nm measured at 4 km resolution by the moderate-resolution imaging
spectroradiometer (MODIS-Aqua, publicly accessible from https://oceancolor.gsfc.nasa.
gov/l3/, last accessed: 28 December 2021) [32]. A diffuse attenuation coefficient value of
0.0615 m−1 was obtained for the month of May 2020 for the study site, indicating a very
clear water type. Previous studies using ICESat-2 for bathymetric estimations had a diffuse
attenuation coefficient ranging from 0.032 m−1 for the Virgin Island to 0.123 m−1 for the
Bahamas, both known to be areas with very clear water [21,33].

2.1.2. Litto3D® Reference Dataset

The French Oceanographic and Hydrographic Marine Service (SHOM) and the French
National Institute for Geographical and Forest Information (IGN) conducted a joint altimet-
ric and hydrographic survey of Mayotte from 2003 to 2010. Most of the island was mapped
using the airborne topographic and bathymetric LiDAR and multibeam echosounder. The
resulting Litto3D® product provides soundings located in a three-dimensional geometric
reference system with high spatial resolution and a land-sea continuum (data are available
for free from https://diffusion.shom.fr/, last accessed: 28 December 2021). Data extracted
from this dataset, corresponding to the ICESat-2 ground track, and used for compari-
son, include bathymetric points acquired using the bathymetric LiDAR and multibeam
echosounder.

Litto3D® soundings are provided in a cartesian coordinate system in the horizontal
plane and with orthometric heights. The point cloud density is constrained by the ac-
quisition method over a specific area and the gridded model is provided with a spatial
spacing of either 1 m or 5 m. Specification regarding the positioning and the geodesy of
the Litto3D® dataset are presented in Table 1 [34]. A local geoid, RGM04, was used as a
reference for this dataset.
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Table 1. Specifications of the Litto3D® dataset acquired over Mayotte.

Geodetic system RGM04
Ellipsoid IAG GRS80
Projection UTM 38 S

Vertical frame Orthometric heights (MAYO53)

This dataset was used during the validation phase to measure the accuracy of the SDB,
but Litto3D® data were not used as calibration points for the models.

2.1.3. Pleiades-1A Multispectral Satellite Imagery

A MS Pleiades-1A imagery acquired on 25 May 2020, at 07 h 24 min UTC, was
provided by the French space agency CNES through the data platform DINAMIS (https:
//dinamis.data-terra.org/, last accessed: 28 December 2021). Pleiades-1A imagery is
delivered with four MS bands at 2 m pixel size, with an 11-bit dynamic range: Blue
(430–550 nm), green (500–620 nm), red (590–710 nm), and near infrared (740–940 nm).
Moreover, a panchromatic band at 0.5 m pixel size (470–830 nm) is included, with the
same radiometric resolution [35]. The four-band imagery is geometrically projected with
the WGS84/UTM38S coordinate system and radiometrically corrected to units of top of
atmosphere (TOA) reflectance.

2.1.4. ICESat-2 LiDAR Satellite Soundings

ICESat-2 is in a near-polar orbit at an altitude of 496 km and operates with a re-
visit period of 91 days over oceans [19,36]. ICESat-2 was mainly designed to measure
icesheet topography, sea ice, and various inherent properties of the atmosphere and ter-
restrial vegetation, although ocean and inland surface waters are also observed. The
Advanced Topographic Laser Altimeter (ATLAS), a photon-counting LiDAR, is the only
sensor onboard the satellite, emitting a green laser beam at a wavelength of 532 nm.
ATLAS enhances spatial sampling by splitting the laser beam into three pairs of beams
separated by 3.3 km. Each pair, separated by 90 m, consists of a “weak” energy beam
and a “strong” beam with a four-fold higher pulse energy [19,36]. ICESat-2 data can be
downloaded with different degrees of processing, depending on the users’ needs. This
study uses the 3rd version of the L2 ATL03 georeferenced photons (data publicly available
at https://search.earthdata.nasa.gov/search, last accessed: 28 December 2021) [37]. Data
about each photon are provided with the latitude, the longitude, and the height relative to
the WGS84 ellipsoid as well as other ancillary information. Considering that ICESat-2 was
not designed to study the sub-surface water or the bottom topography, it is necessary to
include in the analyses a correction for refraction bias induced by the water column.

We selected the ICESat-2 track acquired on the date closest to the acquisition date of
the MS imagery. The two datasets were acquired 10 days, 10 h and 33 min apart. Then,
the specific study area in Mayotte was selected based on the range of depths for which
calibration data were available. ICESat-2 passed over Mayotte on 14 May 2020, at 20 h
51 min UTC, and collected bathymetric data down to a depth of 15 m.

2.2. Data Processing

Most of the ICESat-2 photons that reach the oceans penetrate into the water. However,
compared to the water surface returns, only a small fraction is returned from the water
column backscatter and bottom reflectance. Therefore, ICESat-2 signal photons correspond
primarily to the water surface reflectance, water column backscatter, seabed reflectance,
and noise.

ICESat-2 ATL03 data are provided with a preliminary classification of every photon
regarding how likely it is to be signal or noise (confidence levels are: Noise, Low, Medium,
High, and Buffer). Photons classified as “Buffer” are identified after all the signal photons
are clustered. These are the photons for which doubt remains, which are at the limit to be
identified as part of the signal. Therefore, this category has been created to ensure that all of
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the photons identified as signal are present in the corrected product [37]. Figure 2 presents
the transect used in this study, indicating the original classification of the georeferenced
photons. In this figure, photon positions (latitude and longitude) were projected onto a local
geographic plane. Therefore, the horizontal axis corresponds to the along track distance.
The origin point corresponds to the northernmost location of the trajectory. However, this
clustering is not suited to underwater environments as it considers a considerable amount
of the seafloor as noise. Therefore, all of the photons were considered and a modified
density-based spatial clustering of application with noise (DBSCAN) algorithm was used
to separate the photons characterizing the noise and the sea surface from those related to
the seabed [17,38–40].

Figure 2. Photon point clouds of the transect along ICESat-2 gt1l (strong beam), acquired on 14 May
2020. The confidence levels provided by ATL03 are displayed.

2.2.1. Noise Removal and Detection of the Sea Surface

In the dataset, noise corresponds to sparse points with a low spatial density compared
to the sea surface and seabed clusters. Georeferenced photons likely to be noise were
removed, and photons associated with the sea surface were identified.

Here, a density-based spatial clustering method was used, which is an unsupervised
learning method used to identify clusters in a dataset. The method is based on the premise
that each cluster is defined as a region of points with a given density and spatially isolated
from other groups by areas of lower density. The DBSCAN algorithm used scanned
the entire dataset and established a search radius on each point successively. The point
considered during a given step is a “core point”. DBSCAN allows the users to specify a
search radius size according to two criteria: The search circle radius ε and the minimum
number of points MinPts. Once a criterion is no longer satisfied, the algorithm begins a
new classification group [41].

Previous studies successfully implemented DBSCAN on the ICESat-2 dataset of islands
located in the south of China and in the Bahamas. One particular study provides formulas
to configure the MinPts and the ε radius parameters of the DBSCAN algorithm [17]. In
the present research, the search radius was manually chosen by the user to guide the
clustering process and optimize the results. In addition, the MinPts parameter is defined
by Equation (1) [17] (this formula is suited for a study of a water column whose depth is
not expected to exceed 60 m).

MinPts =
2SN1 − SN2

ln
(

2SN1
SN2

) , (1)
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where SN1 is the number of expected photons corresponding to signal and noise and
defined by Equation (2):

SN1 =
πε2N1

hl
, (2)

where N1 is the total number of photons (both signal and noise), h is the vertical range and
l is the along track range. SN2 is the expected noise photons number and is defined by
Equation (3):

SN2 =
πε2N2

h2l
, (3)

where N2 corresponds to the number of photons in the layer with the fewer bathymetric
photons, while h2 is the height of the corresponding layer [17].

The variable MinPts is constrained to a value no lower than 3. If the previous formula
provides a value lower than this threshold, then MinPts was set to 3 [17]. This algorithm
might not be optimal in the present situation, since the dataset contains isolated photons
from the seabed which could be identified as noise. Considering the small number of
photons from the seabed, it was decided not to optimize the noise cleaning process, even if
it meant that some manual cleaning had to be done. Therefore, the remaining noise points
were removed manually using GlobalMapper software 22.1.0 (Blue Marble Geographics,
Hallowell, ME, USA).

2.2.2. Detection of the Seabed

The sea surface is the cluster with the highest number of photons. It is a high-density
group of photons spread over a continuous line, depending on the state of the sea. The sea
surface cluster is clearly visible in blue in Figure 2.

According to [17], after removing the noise, the seabed is defined as every signal
photon below a threshold value underneath the water surface. Therefore, every photon
whose elevation is lower than LMS-3SV (where LMS is the Local Mean Sea level and SV
the Surface Variance), was identified as a return signal from the seabed [17].

2.2.3. Correction for the Refraction Bias

Geolocated signal photons located below the water surface are not corrected for the
refraction effect that redirects the light, and thus the LiDAR beams. It induces a positioning
bias for photons in the water layer that would impact the bathymetry estimate.

A relevant coordinate system is important to compute simple correction formulas.
In this paper, the results presented were obtained using the coordinate system defined
by [21] and the correction formulas were recomputed from this point. Corrections were
applied in a satellite-centered coordinate system, where Z is the vertical direction (opposite
to the direction of local gravity), and Y is orthogonal to Z (in the horizontal plane) and
oriented along the azimuth of the pointing vector [21]. The resulting geometry is presented
in Figure 3.

2.2.4. Validation of ICESat-2 Seabed Ellipsoidal Heights

The Litto3D® dataset was used to validate the seabed photon ellipsoidal heights cor-
rected from the refraction bias. While the ICESat-2 photons’ geographic coordinates are
projected onto a local tangent plane (ENU) during the refraction bias correction, the vertical
references are different. Soundings measured by the SHOM bathymetric LiDAR are pro-
vided with orthometric heights. The latter were converted into ellipsoidal heights (relative
to the IAG GRS 80 ellipsoid) using Circe 5.2.1 (IGN free software). Data visualization and
extraction were conducted in GlobalMapper software, and the points were processed using
Spyder 4.15 python interpreter (an open-source MIT environment) to qualify the accuracy.
The point density from Litto3D® is considerably higher compared to the ICESat-2 dataset,
it was interpolated to allow a comparison with the ICESat-2 dataset.
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(a) (b) (c) 

Figure 3. (a) Schematic diagram for the change of coordinate systems and the computation of the
refraction bias in the horizontal plane; (b) in the vertical plane (figure adapted from [21]); and
(c) correction formulas.

2.3. Satellite-Derived Bathymetry
2.3.1. Ratio Transform Method

The SDB ratio transform algorithm provided by ENVI 5.3 (L3Harris Geospatial Solu-
tions, Broomfield, CO, USA) was used to retrieve the relative DDM of the study area. The
DDM is based on the relationship between reflectance and bathymetry, which is described
by [23]. The semi-empirical model provides values of relative bathymetry by computing
the logarithmic ratio of the reflectance of two spectral bands from a MS imagery. First, the
2 m pixel size imagery was converted into TOA reflectance values and was geometrically
projected to the WGS84/UTM38S. At this point, the spatial resolution was enhanced using
the Gram-Schmidt pan-sharpening method [42,43]. Second, the MS image was cropped
with a spatial subset tool to isolate the geographical area of interest. Finally, the ratio
transform was implemented with the algorithm developed by [23]. A map of the relative
water depth (i.e., log ratio of the spectral bands) was derived from the log ratio between
the green and blue spectral bands [44–49].

This method is one of the most commonly used methods in SDB studies, as it proved to
provide accurate results and does not require many points for the calibration phase [18,23].
The advantages are that only two parameters need to be set and it works on all types of
albedos. This method is also mainly suited for clear case 1 water, which is the case in this
study [18,23].

Working with spectral band ratios is a way to compensate for the variability of ocean
bottom type, since changes in the albedo values will affect approximately equally both
spectral bands. On the contrary, a variation of depth has a higher impact on the spectral
band, which is the most intensely absorbed in the water column. Therefore, depth is
expected to be retrieved by this method independently of bottom albedo and can be
obtained by inverting the radiative transfer equation as follows [23]:

z = m1
ln
(
nRw

(
λj
))

ln(nRw(λi))
− m0, (4)

where z is the depth, n is a constant needed for the ratio to stay positive, Rw is the reflectance
of the water, m0 is the offset for a depth of 0 m, and m1 is the gain coefficient.

195



Remote Sens. 2022, 14, 133

Each pixel of the MS imagery was assigned a value between 0 and 1. The final
DDM was obtained by calibrating the relative bathymetry product with field-based depth
measurements.

The final DDM was produced by finding the equation that best fits (i.e., lowest RMSE
and higher R2 with a simple equation formula) the relationship between the relative
bathymetric values and the ground truth depth measurements. If bathymetric sound-
ings measured by ICESat-2 are reliable and accurate enough, they could be used as a
calibration/validation dataset to produce bathymetry solely from satellite observations.

2.3.2. Calibration with ICESat-2 Soundings

During the calibration phase, pixels from the relative DDM were matched to bathy-
metric points measured by ICESat-2.

To produce a DDM, i.e., a map of the water height at the acquisition date of the satellite
MS imagery, ICESat-2 vertical heights were converted into the appropriate datum. First,
the ellipsoidal heights measured by the ICESat-2 satellite were referenced to the IAG GRS
80 ellipsoid and had to be referenced to the chart datum. The SHOM (https://data.shom.fr/,
last accessed: 28 December 2021) provides accurate altimetric information over Mayotte
island, including the distance between the ellipsoid and the chart datum in Dzaoudzi
locality (distance of −21.74 m). Second, the water height above the chart datum, at the
acquisition time of the MS satellite imagery, was added. The closest tide gauge from the
study site was also located at Dzaoudzi and the measurements were available from the
SHOM website. The tide gauge recorded a water height of 1.02 m above the chart datum
on 25 May 2020, at 07 h 24 min UTC. Figure 4 illustrates the different variables involved to
compute the bathymetry from ICESat-2 ellipsoidal heights.

Figure 4. Variables involved in the process of retrieving ICESat-2 bathymetry at the acquisition time
of Pleiades-1A.

Relative bathymetry points from the MS imagery were collected at the exact same
location as the measurement points of ICESat-2 and an equation linking the two datasets
was determined. Finally, the equation was applied to the relative DDM using the ENVI
band math tool to generate the final DDM.

2.3.3. Digital Depth Model Validation

We compared different regression models. The aim was to find the model that best
matches the bathymetry measurements of ICESat-2 with the remotely sensed spectral
values of Pleiades-1A. The best regression was chosen based on the RMSE and based
on the coefficient of determination, R2. The final DDM was validated in comparison to
the Litto3D® reference dataset by computing the root mean square error (RMSE) and the
maximum absolute error (MAE) statistical indicators.
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2.4. Benthic Habitats Mapping
2.4.1. Processing of the Multispectral Imagery

This paper further intends to classify the seabed into five general types: Sand, sand
with coral rubble, rock with coral rubble, corals and algae, and deep water. The classification
is based upon a DAM obtained from the MS imagery and the DDM.

In theory, it would be feasible to train the classification algorithm directly on the MS
imagery, without any preliminary corrections. It would also be conceivable to add a fifth
spectral band, corresponding to the bathymetry, to add extra information for the algorithm
to get better results. However, this method was not optimal as classifying MS imagery
without correcting the image for the decay of light rays in the water column might induce
confusion between the spectral signatures of benthic habitats [50]. A better solution was to
generate a DAM. Bathymetric data are necessary to quantify the loss of light in the water
column, to compensate for this loss, and finally to obtain a DAM [25,50]. Benthic albedo
values were obtained with Equation (5) [25]:

Ab = (Rw − R∞)e2Kdz + R∞ (5)

where Ab is the bottom albedo, Rw is the water column reflectance, R∞ is the reflectance in
deep water, and Kd is the diffuse attenuation coefficient.

The TOA reflectance value for each spectral band was obtained after processing. First,
the 2 m pixel size MS imagery was cropped to the area of interest and then orthorectified.
Second, the image was converted into bottom of atmosphere (BOA) reflectance values
using the FLAASH algorithm (see [50] for further details). At this point, it was possible
to enhance the spatial resolution using pan-sharpening. These reflectance values were
applied in Equation (5) to remove the water column contribution and obtain a bottom of
hydrosphere (BOH) reflectance imagery from the BOA reflectance imagery.

The diffuse attenuation coefficient Kd was estimated for every spectral band of the
visible range using values from a previous study on case 1 waters [51]. Values were given
for a wide range of wavelength and were weighed with the appropriate factor found
according to the wavelength sensitivities of Pleiades-1A sensor. Finally, an average value
of Kd was computed for the three spectral bands in the visible range (Table 2).

Table 2. Diffuse attenuation coefficient (Kd) for every spectral band of Pleiades-1A sensor in the
visible range.

Spectral Band λ [nm] Kd [m−1]

Blue (430–550) 0.0211
Green (500–620) 0.0659
Red (590–710) 0.2635

2.4.2. Supervised Classification Process

Similar to most coastal areas worldwide, the study area is lacking high-resolution
benthic habitat data. Therefore, the supervised classification process was based on a visual
identification of marine habitats assisted by two local marine scientists familiar with the
area. The visual mapping by these experts was performed using the 0.5 m MS BOH
reflectance imagery and the 0.5 m MS TOA reflectance imagery in parallel. Five benthic
habitats were identified on several areas of the MS imagery (see Figure 5).
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Figure 5. Maps of the five benthic habitats identified on the 0.5 m Pleiades-1A TOA reflectance
imagery.

Corals are often visible on the edges of patch reefs. They appear in the form of brown
and dark slender spots on the MS imagery and they are often colonized by algae. Sand areas
are very bright areas often found on the border of the patch reefs, alongside corals. Two
other main categories of benthic habitats can be distinguished. The first one corresponds
to a mix of sand and coral rubbles. It appears as bright areas with dark brown spots. The
other group contains mainly rocks and coral rubbles and appears as dark areas. While coral
colonies are found on the edges, these two areas are often located towards the inner parts
of the patch reefs. Coral rubbles are often transported towards the inner part of patch reefs
by waves. Finally, both deep water areas, where the bottom was not visible, and land areas
were masked.

In an attempt to enhance the classification accuracy, the albedo imagery was separated
according to depth ranges. A first mask was created to suppress the depth values higher
than the highest depth value measured by ICESat-2 over the area (i.e., 15 m). Then, the
extinction depth of every spectral band was computed based on [50,51] (see Table 3 for
results).

Table 3. Extinction depths for every spectral band of Pleiades-1A in the visible range.

Spectral Band [nm] Average for Kd [m−1] Extinction Depth (1/Kd) [m]

Blue (430–550) 0.211 47.4
Green (500–620) 0.0659 15.2
Red (590–710) 0.263 3.8

A first DAM was created for depths in the range of 0–3.8 m using three spectral bands
(Red, Green, and Blue). A second DAM was created for depths in the range of 3.8–15 m
using two spectral bands (Green and Blue), as the extinction depth of the red band was
exceeded. Due to the fact that some habitats are not present in the studied depth range,
two sets of regions of interest (ROI) were created for each DAM. The DAM with the lower
depth range was classified using four ROIs, namely: Sand, coral and algae, sand and coral
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rubble, and rocks and coral rubble. The DAM with the higher depth range was classified
using three ROIs, namely: Sand, coral and algae, and deep water.

Moreover, a choice of three morphological predictors was made to complement the MS
bands of the DAM in order to enhance the classification results. The first predictor added
was the slope before adding the aspect and the profile convexity all together. Classifications
were computed using a 3 × 3 pixel kernel size.

Three classification algorithms were compared in this study: Neural network (NN),
maximum likelihood (ML), and support vector machine (SVM).

2.4.3. Validation of the Supervised Classification

A validation dataset based on the MS imagery was produced with the same knowledge
as for the calibration phase. A post-classification accuracy assessment using a confusion
matrix provided information on overall accuracy (OA) and the kappa coefficient (κ) [52,53].

The ML and the SVM classifiers were set with the default parameters. A neural
network classification was implemented with one and three hidden neurons in one hidden
layer, in order to test the depth of the neuronal architecture.

3. Results

3.1. DDM
3.1.1. Correction of ICESat-2 Dataset

The ICESat-2 gt1l transect from the 2020 dataset corresponds to the strong beam and
presents some variability in the depth range. The results obtained in this study, after
removing the noise photons and correcting the signal for refraction bias, are presented in
Figure 6. For comparison, the official signal detection and classification provided with the
downloaded L2 ATL03 dataset were presented in Figure 2.

Figure 6. Point clouds of the ICESat-2 signal acquired on 14 May 2020. The signal was processed
to remove the noise, correct for refraction, and identify the seafloor. Uncorrected seafloor photons
appear in red, while corrected photons are in green.

In Figure 6, photon positions (latitude and longitude) were projected onto a local
geographic plane. Therefore, the horizontal axis corresponds to the along track distance.
The origin point corresponds to the northernmost location of the trajectory. For the current
study, the analysis indicates that (1) points from the seabed detected in this study are
following the bottom topography, distinguishable on the satellite imagery; (2) while the
ATL03 data classified with a high and medium confidence level (corresponding to the
blue and green points in Figure 2) are located at or close to the surface, our bathymetry
algorithm correctly identifies the bottom topography from low and buffer confidence points,
a much smaller portion of the returned signal; and finally (3) the ATL03 dataset removed
only a small fraction of the noise photons in comparison to the results generated with the
DBSCAN.

The DBSCAN algorithm was configured based on an empirical approach with the
value ε = 0.65 m. This value, valid for our study area, allowed us to retrieve a majority of
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the seabed signal while eliminating most of the noise photons. The remaining noise points
can be manually removed during the validation phase.

3.1.2. Validation of ICESat-2 Data

The comparison between ICESat-2 ellipsoidal heights and the Litto3D® ellipsoidal
heights is presented in Figure 7.

 
Figure 7. Point clouds of Litto3D® dataset (blue), and ICESat-2 raw (yellow) and corrected (red)
seabed photons.

Figure 7 highlights the importance of correcting for the refraction bias, as a vertical
bias is clearly visible between the corrected (red) and non-corrected (yellow) data. The
error generated by refraction alone can reach up to 2 m in shallower waters and 5 m for
deeper waters with a RMSE of 0.89 m and a MAE of 0.73 m. A vertical bias of about 1 m is
visible on Figure 7 between the reference dataset and the corrected ICESat-2 data close to
the surface.

3.1.3. Digital Depth Model

ICESat-2 corrected and validated data were used to calibrate the relative DDM. The
calibration required the identification of a good model to bound the ICESat-2 dataset to the
relative water depth values from the 0.5 m MS imagery.

Scaled pixel values were extracted from the relative water depth map derived from the
0.5 m MS imagery at the same location than ICESat-2 bathymetric points using QGIS 3.18.3
(open-source geographic information system). Several regression models were tested, and
the corresponding equations and their performance (in terms of the RMSE) are presented in
Figure A1 (Appendix A). The regression chosen is a 2nd degree polynomial (Equation (6)).
The expression of the latter is simple and performs well, with a RMSE of 0.895 m (see
Figure 8).

y = −45.87x2 + 74.567x − 31.581 (6)

Figure 9 shows the final DDM obtained using ENVI through the application of the
model to the relative DDM. The hatched areas correspond to depths greater than the
maximum calibration depth.
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(a) (b) 

Figure 8. (a) Relative DDM with superposition of ICESat-2 bathymetric points; (b) 2nd degree
polynomial regression.

Figure 9. Digital depth model at the acquisition time of Pleiades-1A, calibrated with the ICESat-2
dataset.

3.1.4. Digital Depth Model Validation

The reliability of the DDM was quantified by comparing the estimated bathymetry
to the Litto3D® reference dataset. Points from the bathymetric LiDAR point clouds were
extracted, along the path of ICESat-2, from the DDM. The predicted RMSE was 0.895 m and
the observed RMSE was 0.874 m along the ICESat-2 path. The predicted R2 coefficient was
0.931 and the observed R2 coefficient was 0.97. In addition, we report a MAE of 0.701 m.
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3.2. Benthic Habitat Classification

Results from the four classifiers tested using different combinations of predictors are
summarized in Figure 10, presenting both the overall accuracy and the kappa coefficient
values.

 
(a) (b) 

Figure 10. Performances of the different classifiers using different geomorphological predictors.
(a) Overall accuracy; (b) Kappa coefficient.

The NN algorithm configured with three hidden neurons for one layer systematically
provided the lowest accuracy and the lowest kappa score with an overall accuracy which
does not exceed 33.33% and kappa coefficient values that are all null. The neural network
using only one hidden neuron produced better, yet inconclusive results, except for the
combination of predictors “2”.

The ML and the SVM algorithms generally produced the best classification results. The
ML algorithm allows for a global accuracy of 96.62% and a kappa coefficient of 0.94 when
using two spectral bands (Green and Blue) and with the addition of the three geomorphic
predictors.

The SVM results were not as affected by the absence of the red spectral band. The
results are constant and reached an overall accuracy of 96.50% and a kappa coefficient of
0.95 when using a DAM with three spectral bands and the slope as the only geomorphic
predictor.

Maps of the benthic habitats with the best classification results for each depth range,
are presented in Figure 11.

These results, compared to the 0.5 m MS imagery and the DAM, are consistent with
the classification presented in Figure 5, except for a bias in the classification of corals and
algae, appearing in Figure 11a. The green band on the right of the image is an error in the
classification process.
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(a) (b) 

Figure 11. Maps of benthic habitats in the study area. (a) Classification map generated using the
SVM with the slope geomorphic predictor. This map corresponds to depths shallower than 3.8 m
and is based on all three spectral bands (R, G, and B); (b) classification map generated with the ML
classifier and the three geomorphic predictors. This map corresponds to depths in the range of 3.8–15
m and is based on two spectral bands (G and B).

4. Discussion

4.1. Bathymetric Errors

RMSE values comparing the DDM to the Litto3D® dataset were obtained along the
ICESat-2 ground track, thus at the same place used for the calibration. Here, we discuss the
impact of both the depth values and the location of the validation transect on the results.

Figure 12 shows the DDM from the Litto3D® dataset. While the DDM produced in
our study reaches 33 m depth, the Litto3D® survey of this area indicated depths reaching
at least 82 m.

The map of the differences between the Litto3D® and the DDM calibrated with ICESat-
2 dataset is shown in Figure 13. The extrapolation works very well over the range of depths
used in the calibration. However, the error increases at deeper depths. Once again, in this
figure, the hatched areas correspond to depths greater than the maximum calibration depth
of the model.

Large error values seem to appear in deeper waters (over 15 m depth), probably due to
the fact that the bathymetry was calibrated with a limited depth range (the ICESat-2 dataset
does not exceed a depth of 15 m). On the other hand, the fact data sampling was restricted
to the ICESat-2 track is not ideal for the calibration. Most of the soundings represent a depth
lower than 5 m (this concerns nearly 85% of the total amount of points for the 2020 dataset).
The dataset only has a few points representing higher depth values. This was confirmed by
the study of three other transects, taken at different places over the area (a transect along
the ICESat-2 swath, a transect perpendicular to the swath, and a transect extracted far from
the swath). The results of those tests are visible in Figures A2–A4 (Appendix B), showing
that depth strongly affects the quality of the bathymetry. Consequently, errors increase for
depth exceeding around 15 m. However, for shallower depth values, the results are similar,
regardless of the transect location.
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Figure 12. Digital depth model generated from the Litto3D® dataset acquired over Mayotte and
centered on the study site. The land area is masked.

Figure 13. Map of the differences between the DDM derived from the Litto3D® and the ICESat-
2/Pleiades-1 fusion.

The 10-year difference in the time of acquisition between Litto3D® and ICESat-2 could
also induce a systematic error, due to a change in the bottom topography caused, for
instance, by erosion or a change in the mean sea level (MSL), although those changes are
likely to be well beyond the vertical accuracy provided by the method.

Mayotte has been prone to a succession of earthquakes since May 2018. The origin of
these earthquakes is located to the east of the island. There are four permanent GPS stations
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in Mayotte and their rigorous monitoring has allowed experts to observe a displacement
of all the stations by several centimeters towards the East and a subsidence of several
centimeters since the beginning of the events [54–56].

In addition, the conversion of datums, using CIRCE software, could be a source of
error. The grid used for the calculation is the GGM04V1 and the resulting vertical accuracy
is estimated by the software at 10/20 cm.

On the other hand, during the correction of the refraction effect, n1 and n2 refractive
indices were assumed and could therefore contribute to a small bias.

The method used to retrieve the map of the relative water depth could be improved to
obtain more accurate DDM by implementing more recent and innovative approaches, such
as IMBR, OBRA, MODPA or SMART-SDB [11,24,57–59].

4.2. Impact of the Spatial Resolution of the Multispectral Imagery

In this study, the DDM was generated at the VHR of 0.5 m. However, other stud-
ies used sensors providing a spatial resolution of 10 m (Sentinel-2) or 30 m (Landsat-
8) [17,39,60]. The spatial resolution drawn from the Pleiades-1A sensor was degraded in
order to compare the RMSE. This process was done in ENVI with the “Resize Data” tool.
The pixel size of the output was set according to the desired spatial resolution. The results
are presented in Figure 14 and Table 4.

Figure 14. Performances of the DDMs obtained from different spatial resolutions of Pleiades-1A and
calibrated with ICESat-2.

Table 4. Accuracy using the original image resolution and lower spatial resolution.

Spatial Resolution [m] RMSE [m]

0.5 0.89
1 0.89
2 0.91
4 0.95
6 1.03
8 1.20

10 1.36

Figure 14 highlights the importance of the imagery spatial resolution on the accuracy
of the bathymetry. RMSE remained under 1 m when the spatial resolution remained below
5 m, but increased rapidly after.

In other studies, the RMSE reached between 1.5 and 2 m for the Yongle atoll, located
in South China [17]. It was 1.2 m on average in the Acklins islands in the Bahamas based
on the Sentinel-2 MS satellite with a 10 m spatial resolution [17]. The RMSE was 0.96 m
with the MS satellite Sentinel-2B (10 m spatial resolution) and 1.54 m using the Landsat-8
satellite (30 m spatial resolution) in the Virgin Islands [33]. Moreover, these study areas
had a diffuse attenuation coefficient (Kd) similar to the Mayotte study area.
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One of these studies obtained different results using Sentinel-2 observations and
ICESat-2 observations from multiple swaths [60]. The DDM was produced with an extrap-
olation process conducted over the entire area with a RMSE of 3.36 m. However, when
the study area was constrained between the two ICESat-2 swaths, the RMSE decreased to
0.35 m. This study area had a higher turbidity of Kd = 1.68 m−1 [60].

During the acquisition time of some of these studies, meteorological events such as
hurricanes occurred and could have impacted the topography of the bottom and affected
the results. However, the evaluation of possible episodic events was not reported for this
study or investigated.

4.3. Benthic Classification

Classification algorithms performed very differently. It is difficult to assess the impact
of the geomorphic predictors on the results. It seems that adding extra information did
not impact the SVM and ML classifications, but could have degraded the NN (+1HL)
classification. A large amount information could have undermined the results due to a
redundancy in the information. The major change seems to be related to the use of the red
spectral band. The results were sometimes better without the red spectral band, probably
due to the fact that the corresponding maps were in the depth range of 3.7–15 m, for which
benthic classes, such as sand and coral rubble and rocks and coral rubble, are not present.
A reduced number of groups tends to enhance the algorithm performance.

The benthic classification is based on a visual recognition of general benthic classes
based on experts’ knowledge. Although, commonly done, identifying benthic classes on
MS imagery is not as reliable as direct underwater observations. Living corals could have
been confused for dead corals colonized by algae. As a matter of fact, the classification
presented in Figure 11a presented very good results, while having a major bias in the
classification of coral and algae in areas of deep water. Some regions selected both to train
the algorithm and for further validation presented corals which were distinguishable but
very dark, due to the depth. Those were confused with deep and dark water areas.

Moreover, Mayotte is a complex area. The tidal range reaches 4 m. Therefore, when
the tide is the lowest, corals can be above the water surface and bleached. Dead corals are
theoretically recognizable by their bright color, but they can get darker as they are often
colonized by algae. The winds and the waves have the effect to break coral colonies and to
create coral rubble areas which are difficult to identify, as they get mixed with sand and
rocks and can be mixed up with areas of isolated corals.

5. Conclusions

This study aimed to evaluate the quality of VHR DDM and DAM generated from
satellite data. A DDM calibrated with data from the satellite ICESat-2 presented a RMSE
of 0.89 m along ICESat-2 ground track, i.e., around 6% of the maximum depth retrieved
by ICESat-2. Bathymetric results were generally satisfying down to a depth of around
15 m, which is close to the maximum depth of the calibration data used. Marine habitat
classification results were very heterogeneous, depending on the number of predictors
used, the type of predictors, and the algorithm used. However, some combinations of
parameters provided satisfactory results. The classification with the ML classification using
Blue and Green spectral bands with the three geomorphic predictors provided an overall
accuracy of 96.62% and a κ coefficient of 0.94. In addition, the SVM classification using
Blue, Green, and Red spectral bands with the addition of the slope geomorphic predictor
presented an overall accuracy of 96.50% and a κ coefficient of 0.95. This approach can be of
strong interest to map coastal areas lacking bathymetry and marine habitat maps and for
which field observations are difficult.

While the quality of the results obtained in this study can support coastal management
and conservation, the accuracy of bathymetry predictions remains limited for applications,
such as navigation, that require higher spatial accuracy. It would be interesting to pursue
this research to get more accurate DDMs.
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Further work, implementing this method on diverse study sites, would confirm the
robustness of the method implemented. In the prospect of future studies, it would be
relevant to consider several ICESat-2 ground tracks from the area of interest and even to
add the points from other times that ICESat-2 surveyed the area. This would provide a
better variability of depths and a better spatial distribution of the data for the calibration
process. Moreover, this increase in the number of points opens prospects for the use of
deep learning methods to generate DDMs.

Developing an algorithm dedicated to the processing of seafloor data generated from
ICESat-2 datasets would be important. The correction for the refraction effect has proven
necessary and reliable, but could be further enhanced. The water column properties are
changing with depth and the refraction correction should also adapt according to the water
column properties.

It would be relevant to also improve the seabed signal correction by considering the
state of the sea (for instance, presence of waves on the water surface), in helping to develop
a method that could be used in less sheltered areas [17].

In this study, the results presented were obtained using a MS imagery acquired by the
Pleiades-1A sensor with four spectral bands and a VHR of 0.5 m using the panchromatic
band. The correlation between spatial resolution and the quality of the resulting bathymetry
has been demonstrated in this paper. Therefore, future studies could consider generating
better quality DDMs using the WV3 sensor (eight spectral bands at 0.30 m using the
panchromatic band) or even the sensor of the new Pleiades Neo constellation launched in
early 2021 (six spectral bands at 0.3 m with the panchromatic band).

The ICESat-2 products produced by NASA are constantly enhanced and one can be
very optimistic regarding the future quality of DDMs and by-products obtained using
ICESat-2 measurements.
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Appendix A

(a) (b) 

 
(c) (d) 

Figure A1. Different regression models tested to link the relative bathymetry points to ICESat-2
bathymetric measurements. (a) Second degree polynomial regression; (b) third degree polynomial
regression; (c) linear regression; (d) logarithmic regression.

Appendix B

Figure A2. Evolution of the absolute error with depth on a transect along the ICESat-2 ground track.
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Figure A3. Evolution of the absolute error with depth on a transect across the ICESat-2 ground track.

Figure A4. Evolution of the absolute error with depth on a transect far from the ICESat-2 ground track.
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Abstract: Hyper-DRELIO (Hyperspectral DRone for Environmental and LIttoral Observations) is
a custom, mini-UAV (unmanned aerial vehicle) platform (<20 kg), equipped with a light push
broom hyperspectral sensor combined with a navigation module measuring position and orientation.
Because of the particularities of UAV surveys (low flight altitude, small spatial scale, and high resolu-
tion), dedicated pre-processing methods have to be developed when reconstructing hyperspectral
imagery. This article presents light, easy-implementation, in situ methods, using only two Spectralon®

and a field spectrometer, allowing performance of an initial calibration of the sensor in order to
correct “vignetting effects” and a field standardization to convert digital numbers (DN) collected by
the hyperspectral camera to reflectance, taking into account the time-varying illumination conditions.
Radiometric corrections are applied to a subset of a dataset collected above mudflats colonized by
pioneer mangroves in French Guiana. The efficiency of the radiometric corrections is assessed by
comparing spectra from Hyper-DRELIO imagery to in situ spectrometer measurements above the
intertidal benthic biofilm and mangroves. The shapes of the spectra were consistent, and the spectral
angle mapper (SAM) distance was 0.039 above the benthic biofilm and 0.159 above the mangroves.
These preliminary results provide new perspectives for quantifying and mapping the benthic biofilm
and mangroves at the scale of the Guianese intertidal mudbanks system, given their importance in
the coastal food webs, biogeochemical cycles, and the sediment stabilization.

Keywords: drone; hyperspectral imaging; radiometric calibration; reflectance; pioneer mangroves;
intertidal sediments

1. Introduction

Mangroves are highly productive ecosystems, which dominate the intertidal zone of
tropical and subtropical coasts. Mangroves fulfil numerous ecological functions (habitats,
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breeding grounds, nursery, carbon sink, water filtration, sediment retention) [1]. Man-
groves grow on fine sand to silty sediments in areas protected from high-energy wave
action, mainly found in depositional coastal environments, such as the deltaic, lagoon, or
mudflat systems. However, these ecosystems are more and more threatened by global
changes, which include anthropogenic pressures (i.e., pollution, urbanization, fisheries,
aquaculture . . . ) as well as climate change (i.e., increase of temperatures and sea level,
high-intensity cyclones . . . ) [2,3]. This is even truer on the coasts of countries with rapidly
increasing human demography. Management and restoration of these ecosystems has
become highly necessary. An initial step toward adequate management is monitoring,
which can be done using different techniques. Remote sensing appears to be a valuable
approach for field observations given the practical difficulties to access and carry out in
situ measurements in those complex and dynamical systems (for reviews, see, for exam-
ple, [4–6]). Indeed, remote sensing offers synoptic information, allowing the detection,
classification, or mapping of mangroves and the monitoring of their spatial organization
and temporal evolution. In Amazon-influenced coastal areas, as in large tropical deltaic
coasts, mangroves grow over vast intertidal mudflats. Thus, mangroves ecosystems cannot
be characterized only through the spatial coverage of mangrove trees. Indeed, they also
include a variety of geomorphological forms, such as the creeks, ridges, runnels, sediment
platforms, and depressions—that can be observed from aerial view—and, depending on
pixel resolution of the imaging sensors, the spatial coverage and density of the trees and
the age of the forests. This spatial heterogeneity of habitats increases the complexity in
signal processing of remote sensing data, concerning the identification and quantification
of the trees and intertidal benthic constituents.

Over the last decades, remote sensing has undergone major developments result-
ing from a combination of technological progress in platforms, sensors, data processing,
and data availability. Among all the possible remote sensing issues (e.g., meteorology,
military applications, cartography, topography, oceanography, geology, natural hazards,
etc.), several applications make use of the radiometric properties of the scene, such as
computation of classification indices, spectral unmixing, or radiative transfer modelling [7].
Indeed, each substrate has a specific spectral signature (i.e., the reflectance as a function
of wavelength), which can be used for material identification or classification. This re-
quires a high spectral fidelity and the measurement of a wide spectrum at high resolution,
which are only offered by hyperspectral sensors [8]. Until then, hyperspectral data were
mainly collected from airborne or satellite platforms, as the Hyperion satellite imaging
spectrometer, with a spatial resolution from about 50 cm for low altitude (<1500 m) airborne
surveys [9] to dozens of meters for high altitude surveys [10]. VNIR (visible and near
infrared) hyperspectral sensors provide hundreds of continuous spectral bands between
400 nm and 1100 nm. Such a spectral richness allows accurate mapping and classification
of complex environments, such as vegetation and ground features. The development of
airborne sensors and high spatial resolution hyperspectral images meets a large audience
in environmental research and particularly in forestry. Numerous studies over a significant
range of forest types, using various classification algorithms, have emerged during this
decade [11–14]. That underlines the applicability and potential of hyperspectral images for
mapping vegetation over various spatial footprints and spatial resolutions. Hyperspectral
monitoring of mangrove forests has mostly been developed since the early 2000s from
aircraft vessels along the southeastern coast of the USA [15], the Indian coast [16–18], the
Australian coast [12], and the southeastern coast of Asia [19–21].

Considering their ability to provide quick and cost-effective observations with great
flexibility in survey planning, the use of unmanned aerial vehicles (UAVs) or drones has
boomed over the last decade. Because of limited payload, small UAVs are mostly equipped
with RGB or VNIR multispectral cameras. Nevertheless, drone-based hyperspectral sensing
solutions also arose in the last few years [22]. These hyperspectral–UAV systems can now
complement airborne and satellite approaches for hyperspectral imaging and bridge the gap
in resolution and spatial coverage between remote data and ground-based measurements.
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In flying at low altitude (below 150 m), UAVs offer the opportunity to collect very high
spatial resolution data, capturing a larger number of details. Furthermore, hyperspectral–
UAV systems also allow a great flexibility regarding devices configuration and flight plan
adjustments or times at which surveys are carried out. Surveys of mangrove forests by
drones equipped with a hyperspectral camera mark a recent turning point in terms of image
resolution and survey repeatability. The studies involving hyperspectral–UAV surveys
of mangrove forests mostly took place on the southeastern coast of China [19,23,24]. To
our knowledge, there has been no previous study, involving a hyperspectral–UAV camera,
conducted over mangrove forests in South America and French Guiana.

These drone platforms offer interesting capabilities, provided one has adequate algo-
rithms for georeferencing and radiometric corrections. Several studies refer mainly to heli-
copters or fixed-wing UAVs, designed to support large and heavy (>5 kg) payloads [25–28].
However, helicopters generate high frequency vibrations and require specially trained
operators. Fixed-wing platforms provide long and smooth flights but are wide UAVs,
which require a large area, suitable for take-off and landing. On the contrary, multi-rotor
UAVs have a shorter autonomy and generate high-frequency vibrations; however, being
able to take-off and land vertically and fly at a steady altitude, they are more suited to
field areas of few hectares [22]. Usually considered as “mini-UAVs” (<20 kg), they support
lighter payloads (<5 kg) [29–31]. Stuart et al. [22] propose a review of relatively low-cost,
field-deployable hyperspectral devices, particularly UAV-based devices, for environmental
monitoring. These drone-based technologies include point-based spectrometers, push
broom sensors, and, more recently, hyperspectral frame cameras. These systems differ
in their spatial coverage, in the tradeoff between spatial and spectral resolutions, and
in how easy image reconstruction and georeferencing are with their use. Dedicated pre-
processing methods usually have to be developed for data georeferencing and radiometric
corrections. Specific algorithms for radiometric corrections also need to be elaborated,
given that classical models for geometric, atmospheric, and radiometric corrections are
not suited to UAV data, considering the flight height and temporal and spatial scales of
UAV surveys [8,29,32–34].

The electromagnetic radiation received by the sensor is referred to as the spectral
radiance. In reality, the sensor records raw digital numbers (DN). In many studies, the pa-
rameter of interest is the ratio of upwelling radiation in a given direction toward the sensor
(radiance) to downwelling radiation (irradiance), known as remote sensing reflectance. The
latter is a key parameter, sometimes denoted as the spectral signature, which theoretically
allows a description of the nature of the studied surface, independently of the sensor,
viewing geometry, sun azimuth, elevation, or the weather conditions. Thus, radiometric
corrections, consisting in converting the DN recorded by the sensor into ground reflectance
values, can rely on different approaches, often requiring the acquisition of complementary
field data. This process is necessary for data interpretation or diachronic comparisons. The
geometric, radiometric, and spectral properties of the instruments can be partly charac-
terized and calibrated through laboratory tests, but this requires having a dedicated test
bed [34]. Regarding radiometric corrections, Saari et al. [32] proposed a drone equipped
with downwelling and upwelling irradiance sensors to record illumination conditions
during the flight. However, adding embedded sensors increases the payload, which is
generally the main limit of UAV systems [29,34]. Another approach consists of using
additional systems on the ground, especially white reference panels, to convert the sensor’s
digital number (DN) to reflectance [8,33–35].

Drone monitoring has proven particularly useful as a non-destructive data acquisition
technic in dynamic and complex coastal and estuarine systems where ground-based field
surveys are very difficult, especially for monitoring purposes in unconsolidated temper-
ate mudflats [36] and along the French Guiana (FG) littoral zone, for sandy beaches and
mangrove-colonized mudbanks [37,38]. Belonging to the largest mudflat in the world, the
French Guianese coastline, dominated by mangroves, is indeed experiencing extremely
rapid morphological changes in response to the large amounts of Amazonian sedimentary
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inputs [39]. Mangrove ecosystems development or disappearance accompanies the alterna-
tion of Amazonian mudbanks accretion and erosion phases along the north coast of South
America between the Amazon and Orinoco Rivers [40,41]. At a regional scale, geomor-
phology changes rapidly and becomes favorable to the development of different mangrove
stand ages [40,41] and specific benthic biodiversity, which in turn modify the geomorpho-
logical evolution of the mudbanks. Indeed, as the mud consolidates, the substrate elevation
increases and the flooding time during each tidal cycle decreases. As results of such dynam-
ics, biological processes within sediments are intense, enhanced by both benthic biofilm
development and bioturbation by crabs [37,42]. In these geographical areas, the benthic
biofilm is as important as the mangrove trees in terms of carbon biomass and as a source of
organic matter for the coastal food webs and regional biogeochemical cycles [43–46].

In this natural and complex context, it is necessary to explore the spatial and spectral
richness of hyperspectral–UAV data. A reliable analysis of these data requires a first step
of radiometric pre-processing. The present study describes and implements a radiometric
correction method on UAV in situ data, collected along a gradient of pioneer mangroves in
French Guiana, using the Hyper-DRELIO drone. Radiometric corrections here encompass
calibration and in situ standardization. The method we propose is easy to implement,
without adding embedded sensors and with limited additional equipment.

2. Study Area and Survey Setup

The field campaign took place in the northwestern part of French Guiana (Awala-
Yalimapo; Figure 1a,b), during the dry season in September 2018. Besides the natural
dynamics of mudbanks, this region is submitted to additional anthropogenic pressure
following polder erosion, making the area unstable [47]. Preliminary results showed that
mangroves colonized the consolidated part of the mudbank in 2015 and the oldest trees
were about 3 years old at the time of our field measurements campaign. The northwestern
part of the mudbank was characterized by unconsolidated bare mud.

 

Figure 1. (a) Localization of the study area in Awala-Yalimapo in the western part of French Guiana.
(b) UAV flight plans above the study area, designed to capture the various mud facies (from bare
mud to mangrove stages). (c) Diagram of a survey setup and the physical variables to be measured.
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Tides at this location are semidiurnal in the study area with high spring tide ranges
up to 3.5 m and a mean tidal range of 1.68 m (https://maree.shom.fr for “Les Hattes”
site—access on 1 April 2020).

Taking advantage of the flexibility of drone-based systems, we tailored the survey
to examine benthic biofilm development in relation to the tidal cycle, carrying out the
flights at low tide during spring tide. As depicted in Figure 1c, hyperspectral drone
surveys were synchronized with in situ measurements for radiometric correction and
validation purposes.

3. Materials and Methods

3.1. Hyperspectral UAV

The integration of the light push broom hyperspectral sensor onboard the multiro-
tor UAV, called Hyper-DRELIO (Hyperspectral DRone for Environmental and LIttoral
Observations), is described in Jaud et al. (2018). The system is composed of an electric
octocopter platform (Figure 2a,b), an imaging module, and a navigation module, synchro-
nized via CPU (central processing unit) timestamps. To complement this system, a ground
segment allows sensor parametrization, data quality control during the flight, and flight
parameter control.

 
Figure 2. (a,b) Hyper-DRELIO (Hyperspectral DRone for Environmental and LIttoral Observations) platform, unmanned
aerial vehicle (UAV) for hyperspectral imagery. IMU: inertial motion unit; RTK GNSS: real time kinematic global navigation
satellite system. (c) White Spectralon panel (reflectivity: 99%). (d) Grey Spectralon panel (reflectivity: 20%).

The drone has a diameter of 1.2 m, weighs 13.4 kg, and can handle a payload of 5 kg
(including batteries, cables, navigation modules, and imagery modules). Considering
the duration of ascent and descent phases and a safety cushion, the programmed flight
plan duration must not exceed 7–8 min [30]. The onboard flight control system of the
drone is composed of a global navigation satellite system (GNSS) and an autopilot, run by
DJI® iOSD® software. The navigation module, which measures position and orientation
during the flight, is composed of a dual-antenna RTK (real time kinematics) GNSS receiver
with a baseline of 85 cm and an Ekinox-D® (SBG System®) inertial motion unit (IMU).
The hyperspectral camera, a Micro-Hyperspec® VNIR (Headwall®), is a push broom (or
line-scanning) system, collecting reflected light through an image slit. The principle of
operation of this camera relies on holographic diffraction, using gratings and mirrors to
split monochromatic light into 250 spectral bands, ranging between 400 nm and 1000 nm,
with 1.85 nm of spectral resolution. The manufacturer carried out a wavelength calibration
beforehand, in order to determine the correspondence relationship between imaging
spectrometer probe elements and the central wavelength. On the CCD sensor matrix,
rows collect spatial, across-track information and columns record the spectral content of
the signal. Values for each element of the matrix are expressed as 12-bit DN (i.e., values
between 0 and 4096). The camera is equipped with a fixed focus lens, focused to infinity.
Aperture and sensor gain G were adjusted before the flight, depending on the illumination
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conditions, in order to avoid saturation of the CCD cells. The integration time remained
fixed during the flight, which required that there is no major variation of the illumination
conditions during the flight (around 12 min duration).

The acquisition frame rate was parametrized to 50 Hz, which is compatible with a
UAV speed of around 3–4 m/s (close to the lower boundary for drone stability). At 50 m
above ground level, the configuration chosen for this study, the swath was 45 m wide and
the across-track ground resolution was 4.5 cm. With a speed of 3 m/s, the along-track
ground sampling was about 6 cm.

A line-by-line geo-registration procedure was proposed in [30] for geometrical pre-
processing of hyperspectral data. The accuracy of this direct georeferencing method is on
the order of 1 m for a flight at 50 m of altitude. The quality of the georeferencing process
is limited by several factors: mechanical stability of the platform, the timing accuracy,
and more particularly, the resolution and accuracy of the proprioceptive sensors (GNSS
receivers and IMU). This geo-registration to realign and geo-reference the push broom
data is non-intrusive and preserves fragile substrates, such as mud. Ground control points
would have allowed a more accurate estimation of the geo-registration error, but their
installation would have been very destructive to the substrate.

With such characteristics, the Hyper-DRELIO system is adequate to cover areas of
approximately 10,000 m2 and to study objects ranging from 10 centimeters to several
meters. The main advantage of the drone is that it can perform repeated overflights over
an area that changes over time (such as the mudflat during a tidal cycle). However, push
broom technology is not suitable for imaging moving objects, such as waves or animals.
In addition, the drone platform is dependent on weather conditions and flights cannot be
performed in rain or strong winds. Cloudy skies are the preferred conditions to avoid sun
glint effects; however, all flights during the mission took place in sunny conditions.

3.2. Ground-Based Measurements

Ground positioning measurements were performed using RTK-differential GNSS,
achieving centimetric accuracy after post-processing of the base station. The device used
for this study was a Topcon® HiPer V GNSS receiver. The same base receiver was used
both for ground measurements and for the navigation module of Hyper-DRELIO.

The in situ data for radiometric standardization and validation were measured with
a GER 1500 field spectrometer (developed by Spectra Vista Corporation®), providing
fast, at-target radiance measurements from 350 nm to 1050 nm. Each measurement was
triplicated and averaged. A white SpectralonTM panel with a reflectivity of 99% allowed an
indirect measurement of the irradiance. This Spectralon (Figure 2c) was a 40 × 40 cm white
reference panel made of a fluoropolymer, which is highly reflective (the highest diffuse
reflectance of any known material) and has Lambertian behavior [48]. This SpectralonTM

panel is placed on flat ground near the take-off area. For the initial calibration, a grey
SpectralonTM (Figure 2d), with a reflectivity of 20%, was also used. As 20% reflectivity is
closed to the reflectance of bare mud, this grey SpectralonTM was also used to adjust the
parametrization of the hyperspectral camera (aperture and sensor gain G) before the flight.

The spectrometer measurements were carried out in a flight-synchronous manner on
different types of substrates. In order to limit the movements of the operators, which were
very slow, difficult, and very destructive for the mudflat, these measurements were carried
out around a fixed platform placed on the mud.

3.3. Radiometric Correction Method

Radiometric corrections aim to convert the raw digital numbers (DN) recorded by the
sensor into remote sensing reflectance. Once the reflectance is computed, hyperspectral
images can be exploited in different ways, such as computation of spectral indices for clas-
sification (e.g., [49,50]), study of the red edge position (e.g., [51]), or spectral unmixing [52].

For hyperspectral measurements acquired with drones, radiometric corrections were
realized using complementary in situ data. Given the practical challenges in carrying out
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surveys in mangrove or mudflat areas, the proposed method must be easy to implement,
without adding embedded sensors and with as little equipment as possible. Computational
routines to apply corrections were implemented in Matlab®, including several steps, which
are summarized in Figure 3. During the acquisition, the signal was impacted by noise,
called the dark current (DC) [53], which is partly function of sensor temperature and partly
integration time. In our case, this DC is assumed steady. Furthermore, as the survey was
focused on mudflats, the topographic effects could be neglected. Finally, as the flight
altitude remained low (<150 m), we hypothesized that the at-target radiance was equal
to the at-sensor radiance at 50 m height [54]. To validate this hypothesis, raw spectra (in
DN) were measured by the hyperspectral camera above the white SpectralonTM panel,
both from the ground and in flight. The mean difference between the “on ground” spectra
and “on flight” spectra was about 7.5% with a standard deviation of 5.3% and a preserved
shape of spectra.

 
Figure 3. Processing steps performed for radiometric corrections (“i” is the index of the pixel along the sensor array, in the
across-track spatial dimension).

3.3.1. Initial Calibration

Hyperspectral images suffer from variations or distortions of the spectrogram along
the CCD array (possibly caused by the quality of the dispersive element or misalignments
of the light from the slit). This results in vertical “stripes” in our push broom images. This
spatial dependence of DN, and particularly its decrease towards the image edges, is called
the “vignetting effect” for frame sensors [53] and corresponds rather to the “lining effect”
for push broom sensors.

The calibration parameters aim to compensate for this effect and to convert DN to
physical units of radiance. We chose an image-based calibration method, and we assumed
a linear relationship between the DN and the at-sensor radiance [54,55], according to the
following empirical transfer function (Equation (1)):

RadC(λ, i) = a(λ, i) × DNC(λ, i)/GC + b(λ, i) (1)

With the following:

λ: wavelength (nm);
i: index of the pixel in the sensor array;
RadC: at-sensor radiance (W·m−2·sr−1) during calibration step;
GC: sensor gain during calibration step;
DNC: digital number collected during calibration step;
a, b: calibration coefficients.
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To calculate a and b coefficients, we considered the radiance measured by the field
spectrometer above both white and grey Spectralon panels, and the DN measured simulta-
neously by the hyperspectral camera. Each Spectralon was thus targeted simultaneously by
the GER1500 field spectrometer and by the hyperspectral camera, while the drone was on
the ground, in such a way that the field spectrometer and the hyperspectral camera were at
the same distance from the Spectralon panel and the measurements were synchronized.
The a and b coefficients were calculated per pixel and per spectral band, according to the
following equations (Equation (2)):⎧⎨

⎩ a(λ, i) = GC × RadSp1(λ, i)−RadSp2(λ, i)

[DNSp1(λ, i)−DNSp2(λ, i)]
b(λ, i) = RadSp1(λ, i)− a

GC
DNSp1(λ, i)

(2)

With the following:

Sp1, Sp2: ID of each Spectralon used for the calibration;
RadSp1, Sp2: radiance (W·m−2·sr−1) measured by the field spectrometer above the Sp1
(respectively, Sp2) Spectralon;
DNSp1, Sp2: digital number collected by the hyperspectral camera above the Sp1 (respec-
tively, Sp2) Spectralon.

To avoid local effects due to possible wear marks on the Spectralon surface, several
hyperspectral lines were recorded by the hyperspectral camera (500 lines were selected and
averaged) and 8 spectra were measured by the field spectrometer from various directions
and averaged. To visually confirm the efficiency of this calibration, a and b coefficients were
applied to DNSp1 (respectively, DNSp2), measured above the white Spectralon (respectively,
the grey Spectralon). The results above the white Spectralon, before and after calibration,
are depicted in Figure 4, representing, in natural colors, the hyperspectral lines collected by
the camera.

Figure 4. Hyperspectral lines collected above the white Spectralon by the hyperspectral camera before (a,c) and after
(b,d) calibration. (a,b) represent, in natural colors, the hyperspectral lines collected by the camera; (c,d) represent the values
of digital number (DN) (c) and radiance (d) along the sensor line for each spectral band (in colors).
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This calibration step was carried out once (at least for the entire field campaign) and the
coefficients were then applied to all the different following surveys. The a and b coefficients
are exported to a “calibration file”, which will be reused in the in situ standardization step.

3.3.2. In Situ Standardization

For each in situ survey, the collected data DNIS are calibrated using the a and b
coefficients (Equation (1)). Applying Equation (1) enables compensation for the lining
effects and provides a result with physical units of radiance; however, this is not the real in
situ at-target radiance. Indeed, considering Equation (2), the a and b coefficients are related
to the illumination conditions at the moment of the dual Spectralon measurements with
both hyperspectral sensors during the calibration step. Therefore, Equation (1) needs to be
standardized to the in situ atmospheric conditions at the time of the survey.

For each survey, before the flight, the irradiance was indirectly measured on the
white 99% Spectralon panel, by the hyperspectral camera, held about 30 cm above the
Spectralon. During this step, the operators had to be careful not to create shade on the
Spectralon, which can be complicated when placing the drone-borne camera above it. As
for the calibration step, to avoid local effects due to possible wear marks on the Spectralon
surface, several hyperspectral lines recorded by the camera were selected and averaged.
The irradiance before the flight was also measured with the field spectrometer, which was
targeted to the white 99% Spectralon almost simultaneously with the hyperspectral camera,
and from the same distance of about 30 cm, to serve as a reference for temporal variations
of irradiance.

The sensor gain (GIS) at the time of the survey also needed to be taken into account.
The in situ sensor gain (GIS) is adjusted before the flight, according to the illumination
conditions, to avoid signal saturation. Therefore, it can be different from the gain GC
used during the calibration step. Besides, if the flown-over area is expected to have a low
reflectivity, the in situ gain in flight (GIS_Fl) can also be parametrized differently from the in
situ gain used, above the 99% Spectralon GIS_Sp.

The in situ reflectance was calculated by forming the ratio of the upwelling radiation
to the downwelling radiation. This is given by Equation (3):

R(λ, i) =
a(λ, i)× DNISFl

(λ, i, t)
GISFl

+ b(λ, i)

a(λ, i)× DNISSp (λ, i)

GISSp
+ b(λ, i)

(3)

With the following:

GIS Sp: sensor gain used during in situ measurements of the 99% Spectralon;
GIS Fl: sensor gain used during the in situ flight;
DNIS Sp: digital number collected in situ by the hyperspectral camera of the 99% Spectralon;
DNIS Fl: digital number collected in situ by the hyperspectral camera during the flight;
R: resulting remote-sensing reflectance.

3.3.3. Taking Temporal Variations of Irradiance into Account

The illumination changes during data acquisition are generally pointed as a source of
difficulties in hyperspectral surveys [22,56]. Our approach to addressing this issue is almost
comparable to the “dual-spectrometer” method, proposed for a ground-based system in
Bachmann et al. [48], and consists of monitoring illumination change using a reference
panel, simultaneously with data acquisition [22].

To mitigate the variations of ambient light, the field spectrometer regularly recorded
the irradiance above the white Spectralon (with a time-step from 10 s to 20 s) (Figure 5a).
The internal clock of the field spectrometer was synchronized with the GPS time (used
in the header file of the hyperspectral camera). We hypothesized that the shape of the
irradiance spectra would vary linearly over time, mainly according to a single, time-
dependent multiplying coefficient called τ (Figure 5b). The τ coefficients, calculated for
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each field spectrometer record, were then interpolated over time to obtain a coefficient for
irradiance evolution (τ(t)) throughout the survey (Figure 5c). This dimensionless coefficient
represents the percentage of irradiance variation in comparison to the irradiance measured
just when the in situ standardization was performed (t0). Therefore, τ is equal to 1 when
the illumination does not change, greater than 1 if the illumination increases, and lower
than 1 if it decreases. To take into account the variations of irradiance, Equation (3) is
changed into Equation (4):

R(λ, i) =
a(λ, i)× DNISFl

(λ, i, t)
GISFl

+ b(λ, i)

τ(t)× a(λ, i)× DNISSp (λ, i)

GISSp
+ b(λ, i)

(4)

where the τ coefficient represents the percentage of irradiance variation during the flight.

Figure 5. (a) Field spectrometer (GER 1500) measuring the irradiance variability above the white
Spectralon. (b) Example of variability of the spectra measured by the field spectrometer during a
flight. (c) Example of the τ coefficient interpolated (green line) from the percentage of irradiance
variations measured (red dots) during the flight.

To complete this procedure of radiometric corrections, a signal enhancement was
performed, using a minimum noise fraction (MNF) transform, as implemented in ENVI®

software (modified from [57]). A forward transform is performed to manually identify
the bands containing the coherent images and those containing noise-dominated images.
Noise is removed from the data by performing an inverse transform using a spectral subset
which only includes the bands with a high signal-to-noise ratio.
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4. Results

With the configuration used, a flight of about 10 minutes can collect usable hyperspec-
tral images (i.e., excluding take-off, landing, and turning phases) over an area of about
2.6 × 104 m2 (2.6 ha), with a resolution of 4.5 cm × 6 cm. The reflectance spectra obtained
at each pixel are inherent signatures of the targeted surfaces, resulting from the presence,
the shape, and the position/orientation of specific absorption features, such as pigments,
which compose the surface. For identification and classification purposes, the spectrum of
each class of targets has to be uniquely characterized by its general shape, combined with
local absorption or reflectance peaks.

The quality of the results is assessed in two ways:
(i) Firstly, by comparing the spectra obtained from Hyper-DRELIO imagery with spectra,

measured by the field spectrometer on the same types of substrates or sediment coverage.
(ii) Secondly, by comparing spectra from Hyper-DRELIO imagery acquired at two

different times on a surface assumed to be stable over time—in this case, sand.

4.1. Comparison to Field Spectrometer

Hyper-DRELIO imagery and field spectrometer control measurements are not exactly
synchronous (separated by a few minutes to an hour). In addition, since the field spectrom-
eter measurements are performed from the fixed platform, they can be separated from the
Hyper-DRELIO images by several tens of meters. Differences between the spectra may
appear, depending on the type/concentration of the benthic biofilm, which is related to the
tidal time or on local variations of the targeted materials (concentration, structure, spectral
mixing, or surface orientation).

Figures 6 and 7 show the spectra obtained over the sediment surface covered by
benthic biofilm and over the pioneer mangroves, respectively. For a given class of targets,
the characteristics of the spectra are globally similar between the field spectrometer and
Hyper-DRELIO imagery, with local minima and maxima being clearly identifiable, both for
the benthic biofilm and the pioneer mangroves. Thus, Hyper-DRELIO imagery succeeds in
spatially capturing the spectral specificities of each target class. However, Hyper-DRELIO
data are noisier for wavelengths higher than 800 nm. To evaluate the degree of similarity
between the Hyper-DRELIO reflectance spectra and the field spectrometer reflectance
spectra, we used a correlation coefficient to compare the reflectance levels and the spectral
angle mapper (SAM) method [58]. The SAM “distance” assesses the similarity between the
shape of two spectra by calculating the angle between these spectra and is, therefore, less
sensitive to multiplicative noise. The smaller the SAM distance, the higher the similarity
(two exactly similar spectra would have a zero SAM distance). We compare the mean
value of three spectra measured by the field spectrometer (Figures 6b and 7c) and the mean
value of eight spectra extracted from Hyper-DRELIO images (Figures 6c and 7d) for the
two biota. Above the benthic biofilm, a SAM distance of 0.039 and a correlation coefficient
of 0.96 were found. Above the pioneer mangrove, the SAM distance was 0.159 and the
correlation coefficient was 0.97.

With a small pixel size, the probability of capturing different class of targets in a pixel
is limited. Nevertheless, a very high spatial resolution also captures some complexities that
are not visible at lower resolutions, such as the structure of the foliage. Figures 6c and 7d
show a disparity between the spectra extracted from Hyper-DRELIO imagery (mean
standard deviation of 0.004 for the biofilm, and 0.061 for the mangrove, respectively). In
the visible spectrum, the spectral signature is mainly influenced by pigment composition.
In NIR (near infrared), the spectrum is rather influenced by the structure and water content
of the target. That explains the higher disparity (particularly in NIR) obtained among
mangrove spectra, extracted from Hyper-DRELIO imagery.
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Figure 6. Spectra comparison above the benthic biofilm. (a) Biofilm patch on the Hyper-DRELIO image (in natural colours)
where the spectra are pointed (red crosses). The image was acquired on 2018-09-12 at 13:15. (b) Biofilm spectra measured by
GER1500 spectrometer. (c) Biofilm spectra extracted from Hyper-DRELIO imagery (mean standard deviation between the
reflectance spectra: 0.004).

 

Figure 7. Spectra comparison above the pioneer mangroves. (a) Aerial oblique photograph of the pioneer mangroves.
(b) Mangrove patch on the Hyper-DRELIO image (in natural colours) where the spectra are pointed (red crosses). The image
was acquired on 12 September 2018 at 11:08. (c) Mangrove spectra measured by GER1500 spectrometer. (d) Mangrove
spectra extracted from Hyper-DRELIO imagery (mean standard deviation between the reflectance spectra: 0.061).

4.2. Relative Comparison over the Sandy Beach

As the flights were conducted at different times of the day, one way of checking the
effectiveness of the radiometric corrections is to compare the spectra acquired several
hours apart over the same substrate. Since the surface texture of the mudflat may change
during the tidal cycle because of biofilm development, desiccation, and/or bioturbation
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processes, the part of the study area assumed to change the least over time was the upper
sandy beach.

Two sets of five spectra were extracted on the supra-tidal part of the beach for the
flight on 12 September 2018 at 11:30 (Flight 1) and for the flight on 12 September 2018
at 13:30 (Flight 2). From these spectra (Figure 8), the intra-set variability (for the same
flight) was evaluated from the standard deviation (averaged over all wavelengths). For
the spectra of Flight 1 (respectively, Flight 2), the standard deviation was 0.024 (or 5.48%),
respectively, 0.037 (or 8.81%) for Flight 2. The quality of the radiometric corrections was
assessed by comparing the average spectra from the two data sets (Vol 1 and Vol 2). The
average difference between these average spectra was 0.026 (or 5.64%). This deviation was
considered satisfactory as it was of the same order of magnitude as the intra-set variability.

 

Figure 8. Spectra comparison above the supra-tidal sandy beach. (a,b) Sandy beach on the Hyper-DRELIO images (in
natural colours) where the spectra are pointed (red crosses). The images were acquired on 12 September 2018 at 11:08
(Flight 1) (a) and on 12 September 2018 at 13:14 (Flight 2) (b). (c) Sand spectra extracted from Hyper-DRELIO imagery for
Flight 1 (orange colour) and Flight 2 (green colour). The mean spectrum for each data set is depicted in bold.

5. Discussion

As previously mentioned, the goal of this study was to propose an efficient and easily
implemented method to perform radiometric corrections of UAV-borne hyperspectral
imagery—without adding embedded sensors and with minimum equipment (i.e., only
two Spectralon panels and a field spectrometer)—which is adequate for “hard-to-access”
ecosystems, such as the huge intertidal mudbanks along the Amazon-influenced, northeast
coast of South America. Smith and Milton [55] reported that the empirical line method
allows the calibration of remotely sensed data to reflectance with errors of only a few
percent. This efficiency was confirmed for our UAV data by the obtained SAM distances
and correlation scores. Here, we calculated a higher SAM distance for the pioneer mangrove
forest than for the benthic biofilm. This result is coherent with the higher diversity observed
among the mangroves spectra (both with the field spectrometer and with the UAV-borne
camera—Figure 7c,d). Indeed, point-wise measurement (with the field spectrometer) and
very high spatial resolution hyperspectral images (with UAV-borne camera) reflect the
complex morphology induced by the mangroves canopy. On the contrary, a slightly lower
correlation coefficient was obtained for the benthic biofilm. This could be due to the
higher disparity, both spatially and temporally, of the biofilm concentration at the sediment
surface, alongside local changes in sediment elevation and bioturbation activities [37].
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This method of radiometric corrections, especially the initial calibration step, can also
be used to monitor the drift of the manufacturer’s calibration. As previously mentioned,
Hyper-DRELIO data are noisier for wavelengths higher than 800 nm. Proctor and He [8]
explained that this effect is common and is due to the combination of a sharp decrease of
quantum efficiency in the NIR, the lower solar output in the NIR, and reduced sensitivity
of the imager resulting in lower signal and greater noise. The proposed radiometric
correction process relies on simplifying assumptions, which are likely to cause some errors.
For instance, remaining noise can be due to DC, which has been considered steady here.
Besides, as the “sun–target–sensor” geometry varies for all the pixels recorded by the
camera, bidirectional reflectance effects can also influence the signal [33]. As mentioned by
Garzonio et al. [34], light intensity could be optimized by placing neutral filters to avoid
saturation for very high light intensities. Lastly, the proposed approach to take into account
temporal variations of irradiance suits for the variations of ambient light but fails to take
into account local effects, which are not captured by the field spectrometer above the 99%
Spectralon panel. Therefore, some parts of the images can be affected by spatial changes in
the illumination fields, due to isolated clouds or shadows originating from the geometrical
configuration of the scene (e.g., presence of trees).

Moreover, as the Spectralons panels are of great importance in this method for radio-
metric corrections, the results would be sensitive to defects in Spectralon surfaces. For
that matter, Bachmann et al. [48] mention that white Spectralon panels are subject to re-
peated handling and exposed to various environmental factors. Therefore, their calibration
coefficients drift over time.

The methodology proposed can be extended to other types of areas, provided that
topography-induced illumination differences are taken into account [59].

For now, we have not assessed the impact of platform vibrations on the radiometric
and spectral stability of the hyperspectral camera (shift, band broadening, etc.). According
to Garzonio et al. [34], however, the impact of platform mechanical vibrations would be
almost insignificant in terms of band centre, width, and radiometric response.

Field access in the mangroves developing under Amazonian influence is particularly
difficult. Thus, in this particular rapidly evolving ecosystem, future work should aim
to assess the extent to which the very high spatial and spectral resolution provided by
hyperspectral UAV can capture the biological complexity of the substrate. The good
correlations found in this study between drone imagery after radiometric corrections and
the in situ spectrometer measurements for the benthic biofilm and pioneer mangroves
should allow simultaneous mapping of mangrove forests and benthic biofilm distribution
at the mudbank scale, integrating small-scale heterogeneity, caused by the combined
effects of geomorphology, tides, and biology (e.g., bioturbation). This method, tested
in mangroves under limited human impacts, shows new possibilities for monitoring
mangrove ecosystems facing different levels of pressure and subsequent alteration along
the nearby coastline (Guyana and Surinam), as well as in other biogeographic regions with
other mangrove species and dynamics.

6. Conclusions

Hyper-DRELIO allowed hyperspectral data to be collected above few hectares of
mangrove forests and mudbanks in French Guiana, with both high spatial resolution and
high spectral resolution in the VNIR domain. One of the main advantages of drones being
their flexibility, the associated imagery calibration procedures have to be as simple as
possible to keep the latter. This study proposes an easy, in situ radiometric calibration
method, dedicated to drone-based hyperspectral surveys, without adding embedded
sensors and with minimum equipment, using only two Spectralon (white and grey) and a
ground spectrometer. The proposed procedure enables to calibrate the sensor, by correcting
lining effects and transforming the raw relative DN generated by the hyperspectral camera
into reflectance values standardized to in situ illumination conditions.
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The radiometric corrections were applied to a small subset of a dataset collected
above mudbanks colonised by benthic biofilm and a pioneer mangrove forest. Besides
the fact that the shapes of spectra are globally consistent between the radiometrically
corrected Hyper-DRELIO spectra and the in situ typical spectra, their degree of similarity
was assessed using the SAM distance and correlation coefficient. SAM distance values of
0.039 above biofilm and 0.159 above pioneer mangrove forest, together with associated
correlation coefficients (of 0.96 and 0.97, respectively), are greatly satisfying for substrate
classification. Future work will consist of applying this method to the entire study area, in
order to spatialize the results, and comparing hyperspectral and in situ data in order to
obtain the finest possible classification of the various detectable elements.
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Abstract: Coastal urbanisation is a widespread phenomenon throughout the world and is often
linked to increased erosion. Small Pacific islands are not spared from this issue, which is of great
importance in the context of climate change. The French Polynesian island of Bora Bora was used as
a case study to investigate the historical evolution of its coastline classification and position from
1955 to 2019. A time series of very high-resolution aerial imagery was processed to highlight the
changes of the island’s coastline. The overall length of natural shores, including beaches, decreased
by 46% from 1955 to 2019 while human-made shores such as seawalls increased by 476%, and as
of 2019 represented 61% of the coastline. This evolution alters sedimentary processes: the time
series of aerial images highlights increased erosion in the vicinity of seawalls and embankments,
leading to the incremental need to construct additional walls. In addition, the gradual removal of
natural shoreline types modifies landscapes and may negatively impact marine biodiversity. Through
documenting coastal changes to Bora Bora over time, this study highlights the impacts of human-
made structures on erosional processes and underscores the need for sustainable coastal management
plans in French Polynesia.

Keywords: coast; erosion; urbanisation; airborne imagery; spaceborne imagery; French Polynesia

1. Introduction

Since the end of the 19th century, coastal areas have become increasingly sought-after
worldwide, and are now largely urbanised [1]. Human populations have grown, with
numerous urban centres and cities located along the shore. Infrastructures such as harbours,
marinas, and seaside roads have been developed to support local development as well
as global maritime trade and transport. This phenomenon is particularly widespread
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in Europe, Asia, Australia, and the USA, where up to 50% of coastlines are modified by
engineering works [2]. However, the tropical Pacific Ocean, and the French Polynesian
island of Bora Bora in particular, have not been spared. In French Polynesia, coastlines have
been strongly modified for a range of reasons, mostly since the mid-1900s, from acquiring
more land through infilling shallow reef areas to building walls to protect constructions
from waves [3–6]. These modifications alter sediment transport processes. Along with
the dredging of fringing reefs to open navigation channels, sea level rise, and background
sediment transport, these modifications lead to changes in shoreline position [7].

These changes, beyond altering coastal landscapes, have impacts on local livelihoods
as well as on economic activities. Many urban centres and residential areas are located
along the coastline in French Polynesia, notably due to the lack of inland space, either due
to steep topographies (e.g., for the volcanic Society islands such as Bora Bora) or simply
to the limited size of the islands (e.g., in the case of the Tuamotu atolls). Furthermore,
increased urbanisation and erosion pose a threat to beaches, which are a major resource for
tourism activities. On Bora Bora, coastal erosion was already noted as a serious issue at
the southern beach of Matira, a major tourism spot, in the 1990s [8]. Characterising coastal
urbanisation and erosion in the coral reef islands of the tropical Pacific Ocean at a very
high spatial resolution (VHR) can shed light on human impacts on sedimentary processes
and provide key knowledge to better manage coastlines in the future, in the context of local
urbanisation, global climate change-induced sea level rise, and more frequent and intense
storm surges.

On Bora Bora, the availability of imagery from 1955 to 2019 enables long-term monitor-
ing of changes through manual photointerpretation of VHR aerial and satellite imagery [9].
This article aims at addressing the issue of coastal modification and its impacts on the
shoreline classification and position on Bora Bora from 1955 to 2019 through an original
long-term and very high-resolution approach. This study adds to the growing awareness
of the vulnerability of shorelines due to urbanisation and its effects in French Polynesia
(e.g., [3]).

2. Materials and Methods

2.1. Study Site
2.1.1. Physical Setting

Bora Bora (16◦29′ S, 151◦44′ W, highest summit: 727 m) is a ~20 km2 tropical volcanic
island circled by a 70 km2 barrier reef, in the Society archipelago of French Polynesia in
the South Pacific (Figure 1). It has an approximately 40 km complex coastline forming
numerous bays and peninsulas that are bordered by 50 to 150 m-wide fringing reefs [8].
There are multiple motu (sandy islands) on the reef margin around the island which hinder
water circulation in and out of the lagoon as well as constrain sediment transport from
the barrier reef crest and from lagoonal sand accumulations to the island [10]. There are a
few shallow channels (hoa) through which oceanic water enters the lagoon. A 48 m deep
pass connects the lagoon to the ocean to the west of the island [10]. The general water
circulation in the lagoon is south to north [8] but depends on tides (spring tidal range:
0.4 m [11]), wind conditions, and temperature-related water column stratification [12]. The
only available wave height data for Bora Bora is based on a record from a sensor located
outside the lagoon near Bora Bora’s only pass on the western side of the island [13]. The
main island is sheltered from the waves by the barrier reef and it is, hence, difficult to
estimate its wave climate as well as the variability around the island; outside of the lagoon,
the main wave direction is East to West, parallel to the trade wind direction [13].
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Figure 1. Geographical location of Bora Bora in French Polynesia and satellite imagery of Bora Bora (image from 20 July
2019) highlighting the main topological locations discussed in the article. The white rectangle on the image of Bora Bora
above Vaitape corresponds to the location of the images of Figure 2. Letters A–E indicate the location of the coastal habitats
featured in Figure 3. Imagery from CNES/Airbus 2019 and Google Earth 2021.

Bora Bora’s lagoon is characterised by a majority of medium to coarse sediments in the
shallow areas near the barrier reef (over 98% of the total fraction is >125 μm) and fringing
reefs (30% of the total fraction > 125 μm), and a larger fraction of fine sediments at depth,
below 22 m (>95% of fine grains of sizes < 125 μm). Most sediments are derived from
the breakdown of skeletal fragments from reef organisms [10]; a fraction of sediments are
modern cemented non-skeletal grains such as ooids that arise from the precipitation of
calcium carbonate on the shallow areas between the motu and the lagoon where currents
are weak and allow for carbonate super-saturation [10].

The absence of sustained riverine input of sediments (no permanent rivers on Bora
Bora apart from a stream in the north-western Faanui bay) leads to a mostly carbonate
sedimentology with few siliciclastic components (mostly clay) derived from the volcanic
island [10].
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Figure 2. Very high-resolution imagery of the same location at the centre of Vaitape in 1955 (aerial
photograph) and 2019 (CNES/Airbus imagery), highlighting the infilling of fringing reefs for con-
structions and urban development of the area.
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Figure 3. Examples of ground view of coastal classes. (A) sandy beach, (B) grass, (C) mangrove, (D) road embankment,
(E) trees.

2.1.2. Human Presence

Bora Bora’s first infrastructures were constructed during the 1940s, with an airport,
roads, quays, embankments. Since then, Bora Bora has been the stage of an important
demographic boom (2215 inhabitants in 1971, 10,549 in 2017 [14]; average population
density in 2017: 350/km2) and economic development, most notably through tourism and
recreational activities (over 80% of international tourists coming to French Polynesia visit
the island [15]).

This demographic and economic development is associated with the rapid urbani-
sation of the coastline, as most of the inner island is constituted of steep cliffs and dense
forest. Faanui and Vaitape (Figure 2), on the western side, house more than two thirds
of the island’s population while Anau in the east has a population of around 2000. This
urbanisation is accompanied by coastal modifications (dredging and removal of sand to
build roads, authorised and unauthorised land fillings to extend gardens and houses over
the fringing reef) and structures (roads, quays, embankments, seawalls).

2.2. Data Acquisition

The study is based on a time series of images of Bora Bora obtained through vertical
aerial photographs taken from a plane, provided by the Urbanism service of French
Polynesia (1955, 1977, 1987, and 1999) and satellite imagery extracted from Google Earth
(2006, 2010, 2019), as detailed in Table 1. These dates were selected for their negligible
or absent cloud cover. The satellite imagery was extracted at very high spatial resolution
(<0.5 m) from Google Earth following the method from [16]; by adjusting the eye altitude
to match the satellite spatial resolution, putting the nadir at 90◦, and positioning the view
northward, over 60 images of the island were saved at maximum resolution for each
date, with an overlap of around 30% between each subsequent image; these images were
then assembled into orthomosaics similarly to the aerial images taken from a plane (see
Section 2.3.1. Image preparation). Furthermore, a ground-based survey of the coastal
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typology was performed in 2019 using a GPS, by walking and sailing around the island
and recording the location of different coastal types (similar methodology to [3]).

Table 1. Year, type of image, and spatial resolution of the time series of images of Bora Bora.

Year Acquisition Method Source Image Type Spatial Resolution (m)

1955 Plane Aerial photographs Singleband grey 1.58

1977 Plane Aerial photographs Singleband grey 0.64

1987 Plane Aerial photographs Singleband grey 0.52

1999 Plane Aerial photographs Multiband colour 0.41

2006 Satellite Maxar Technologies Multiband colour 0.48

2010 Satellite Maxar Technologies Multiband colour 0.50

2019 Satellite CNES/Airbus Multiband colour 0.48

2.3. Data Processing
2.3.1. Image Preparation

The images were assembled using Agisoft Metashape to obtain orthomosaics for
each acquisition year. These were georeferenced with ArcGIS 10.8.1 using ground control
points (geospatial reference: tefenua.gov.pf (accessed on 15 January 2021)) with either
adjust or 2nd polynomial transformations. Fixed geomorphological features such as lagoon
pinnacles were used along with anthropogenic features as ground control points (similarly
to [17]).

2.3.2. Shoreline Tracing

The shoreline was manually traced based on the sea-side edge of vegetation (includ-
ing the sea-side edge of mangroves and grass/reed areas), as per previous publications
(similarly to the stability line used in [17]), with the Editor tool on ArcGIS. When sparse
coastal vegetation (i.e., spaced-out trees) had dense canopies, the middle of the canopy, in
the alignment of non-vegetated areas with a clear shoreline position, was used to position
the shoreline. For sandy beaches, the line of first vegetation was used and not the sea-sand
boundary for two reasons:

1. The time of acquisition and, hence, tidal stage of the images is unknown; although
the tidal range in the Society Islands is typically below 0.4 m [13], beaches tend to
have shallow slopes and, hence, the sea-sand boundary may change by over 1 m
throughout a daily tidal cycle.

2. The images are separated by multiple years—the position and extent of sand accu-
mulations may be variable on daily to monthly timescales, which cannot be resolved
with the dataset used in this article due to the lack of regular aerial imaging in the
years before the start of satellite imagery.

Clouds were present over a few tens of meters of the coastline in 2019 in the urban
area of Vaitape, in a zone with embankments and no natural shoreline. A ground survey
confirmed the lack of further constructions or changes compared to the previous image of
2016. The shoreline was, hence, traced in the same position as for 2016. No other clouds
were present over the coastline at any date.

The total error (Etot) of the shoreline positioning is taken as the square root of the sum
of the squares (cf. [18]) of the three sources of error identified for this study: the spatial
resolution (Eres), the georeferencing error (provided by the forward error of the ground
control points on ArcGIS, Egeo) and the shoreline tracing inaccuracies (Etra) (Equation (1)).

Etot (in m) =
√

E2
res + E2

geo + E2
tra (1)

The shoreline error (total and yearly) is provided in Table 1 for each date.

236



Remote Sens. 2021, 13, 4692

2.3.3. Shoreline Classification

The coastline was classified into the eight categories that were discernible on aerial
images: sandy beaches, mangroves, trees (tall vegetation on a muddy substrate), grass (or
reeds), natural rocky shores, road embankments (and seawalls, necessary for urbanisation
purposes), private embankments (to consolidate lands), and quays (cf. Figures 3 and 4;
“method similar to [3]). The coastal classification for 2019 was performed first using the
ground-based survey of the different coastal typologies to identify the bird-eye aspect of
each category (Figure 3) and obtain a baseline from which to work backward in time and
classify previous images through photointerpretation. The classification was performed by
splitting the shoreline (Editor tool on ArcGIS). The length of each segment was calculated,
and the percentage of the shoreline belonging to each category was extracted (cf. Figure 3
for examples of each category on aerial images).

 

Figure 4. Examples of aerial view of coastal classes. (A) road embankment (red) and private
embankment (pink); (B) quay; (C) sandy beach; (D) mangrove (dark green), grass (clear green),
private embankment (pink); (E) trees.

2.3.4. Shoreline Position

The Digital Shoreline Analysis System (DSAS [19]) plug-in on ArcGIS was used to
study erosion and accretion phenomena along the shoreline. The baseline was placed 25 m
inland with respect to the innermost shoreline at any given position. Transects were cast
every 5 m, with a maximum search distance from the baseline of 250 m and a smoothing
distance of 200 m. The shorelines were set to have a default data uncertainty of 5 m (linked
to the uncertainty of the determination of dark reef flat features vs. coastal bushes). Two
parameters were calculated between each date and over the whole period (1955 to 2019)
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with the DSAS plug-in on ArcGIS, with a confidence interval of 95.5 (2σ): the Net Shoreline
Movement (NSM)—total distance between the earliest and most recent shorelines for each
transect, in meters—and the End Point Rate (EPR)—NSM divided by the number of years
between the earliest and the most recent shorelines, in meters per year.

These statistics were studied in relation to the categories obtained beforehand to
identify which categories were responsible for the most change in shoreline position
around the island since the mid-1950s. For selected parts of the island, the average EPR
was calculated for each 10◦ change in azimuth (i.e., average from 0 to 10◦, 10 to 20◦) and
time interval. To identify temporal changes in sedimentary dynamics, linear correlation
coefficients were calculated by comparing the average EPR at each 10◦ azimuth change
between each pair of year intervals. For instance, a hypothetical net erosion of −1 m
between 0 and 10◦ and accretion of 1 m between 10◦ and 20◦ for a given time interval, and
net erosion of −0.5 m at 0–10◦ and accretion of 0.5m at 10–20◦ for another time interval
would yield a linear correlation coefficient r of 1 between those two time intervals.

3. Results

3.1. Evolution of the Shoreline Classification from 1955 to 2019

Using aerial images of Bora Bora, the maps below (Figure 5) were produced to display
the evolution in coastal categories (sandy beaches, rocks, trees, grass, road embankments,
private embankments, quays, cf. Figures 3 and 4) from 1955 to 2019. Sandy beaches have
remained constrained to the southern part of the island, but the southernmost tip was
altered from a sandy beach to a private embankment in the 2000s. Along the rest of the
island, the dominant coastal category has switched from trees to private embankments.
Most changes occurred between the 1970s and 1990s, and the coastline classification has
remained relatively similar since 2006.

In detail, the natural (sandy beaches, rocks, trees, grass areas, and mangroves) shore-
line length has decreased by over 46% from 1955 to 2019, from 32.2 km to 17.2 km out of
over 40 km of shoreline (varying length depending on the year and human-made changes;
Figure 6). At the same time, the human-made shoreline length (quay, road embankment,
and private embankment) has increased by 476%. The percentage of the shoreline trans-
formed into embankments to stabilise public roads has remained relatively constant on
Bora Bora, at 8–10% (total length: 2979 m in 1955, 4273 m in 2019), while the percentage of
the shoreline as quays has increased slightly (1% to 5%). The extent of mangroves and grass
areas have remained limited (<0.5 to 1% throughout). Overall, Bora Bora’s coastline has
undergone strong changes, transitioning from natural to mostly human-made categories
from 1955 to 2019.

3.2. Evolution of the Shoreline Position from 1955 to 2019
3.2.1. Shoreline Positioning Error

To investigate the relationship between shoreline classification and positioning in Bora
Bora over time, the position of the shoreline was estimated manually using the available
VHR imagery. The error of the shoreline position determined for each year is detailed
by Table 2. The tracing error was estimated to be two meters for each date, notably due
to uncertainties in the determination of the position of the shoreline in vegetated areas
due to treetops, but also in the case of low spatial resolution leading to difficulties in
distinguishing the land from the sea. The georeferencing error ranges from 0 (2019 is used
as the reference) to 4.02 m (for 1955). The total error (Equation (1)) is maximum for 1955
(4.76 m) and minimum for 2019 (2.06 m), and is between 3.20 and 3.95 m for the other dates.
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Figure 5. Cont.
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Figure 5. Map of the coastline classification (sandy beaches, rocks, trees, grass areas, mangroves, road embankments, private
embankments, quays) of the main island of Bora Bora for (A) 1955, (B) 1977, (C) 1987, (D) 1999, (E) 2006, (F) 2010, and
(G) 019.
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Figure 6. Percentage of the coastline as sandy beaches, rocks, trees, grass areas, mangroves, road embankments, private
embankments, and quays, as well as overall percentage of natural (sandy beach, rocks, grass areas, and mangrove) for 1955,
1977, 1987, 1999, 2006, 2010, and 2019 on the main island of Bora Bora. A conservative error on these percentages, caused by
coastline tracing subjectivity and classification uncertainty for older images, may be estimated as approximately 10% of
their value (i.e., 46 ± 5% of the coastline is a private embankment and 1 ± 0.1% is a mangrove on Bora Bora in 2019).

Table 2. Spatial resolution, georeferencing error, tracing error, and total error (based on Equation (1)) of the shoreline
position for each date.

Year Spatial Resolution (m) Georeferencing Error (m) Tracing Error (m) Total Error (m)

1955 1.58 4.02 2 4.76

1977 0.64 3.26 2 3.88

1987 0.52 3.37 2 3.95

1999 0.41 2.46 2 3.20

2006 0.48 2.58 2 3.30

2010 0.50 2.85 2 3.52

2019 0.48 0 2 2.06

3.2.2. Overall Changes in Shoreline Position

The changes in shoreline position on Bora Bora between 1955 and 2019 (for transects
every 5 m) have a median of 5.6 m (positive values correspond to net accretion) and an
interquartile range of [−0.09, 19.5]: approximately 25% of the shoreline has undergone
erosion, and 50% have experienced accretion of up to 19.5 m, while the remaining 25%
have gained more than 19.5 m over the sea. In detail, the construction of embankments
and quays has led to strong ‘artificial’ accretion in the most densely populated parts of the
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island (Vaitape, Faanui, and Anau; often over 15 m, and up to 220 m gained over the sea;
Figure 7). Neighbouring natural sections (most often corresponding to the tree category,
which is the most common natural category) have undergone erosion, most commonly
of 2 to 5 m, from 1955 to 2019 (cf. the red erosion zones interspersed by green ‘artificial’
accretion zones on Figure 7A). On the southern beaches, the East-exposed portions have
undergone erosion (over 2 m of landward net sea movement from 1955 to 2019) while
the other portions have undergone accretion (Figure 7B), either naturally or due to the
construction of embankments at the southernmost tip (Figure 5).

 

Figure 7. Map of the Net Sea Movement between 1955 and 2019 extracted from the DSAS module on ArcGIS 10.8.1.
(A) mostly urbanised section in Faanui, with alternating accretion (linked to the construction of seawalls) and erosion (in
the nearby natural areas); (B) sandy beach zone of Matira.

Overall, Bora Bora has, hence, increased in size due to the construction of embank-
ments and quays; natural shoreline areas that persisted from 1955 to 2019 have mostly
undergone erosion (e.g., natural zones with trees near embankments).

3.2.3. Changes in Shoreline Position on the Southern Beaches

Placing a focus on the southern beaches, End Point Rate values (change in shoreline
position in meters per year) were averaged over 10◦ intervals. In detail, between 1955 and
1999, accretion mostly occurred on the south-west facing beaches (azimuths between 0 and
90◦; Figure 8) and erosion on the east- and north-east facing beaches (azimuths between
220 and 0◦). Between 1999 and 2006, there was limited erosion on the north-facing beaches
and accretion was predominant on all other azimuths. In 2006–2010, erosion occurred on the
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south-west facing beaches with relatively important rates (up to 1.27 ± 0.10 m y−1 between
10 and 20◦, the maximum rate across all azimuths and time periods) while accretion was
limited (with one outlier at 1.02 ± 0.40 m y−1 corresponding to an additional seawall).
Lastly, from 2010 to 2019, only one averaged azimuth experienced erosion (−0.53 ± 0.22
between 220 and 230◦), while accretion was limited elsewhere (mostly below 0.5 m y−1).

Figure 8. Radar plot of the average (dot) and standard error (whiskers) of the End Point Rate (in
meters per year, from 0 to 1.4 m y−1 on the plot) for 10◦—averaged azimuths on the southern beaches
of Bora Bora. Blue colours indicate accretion (positive EPR) and orange colours indicate erosion
(negative EPR). An azimuth of 0◦ corresponds to a south-facing beach (land on the north side, sea
on the south side of the shoreline). The values below the date intervals correspond to the overall
average and standard error of the End Point Rate across the beaches.

There were significant contrasts between some years (Table 3). There notably are sig-
nificant negative linear correlations between 2006–2010 (after the construction of the large-
scale embankment) and each time range before 1999 (1955–1977, 1977–1987, 1987–1999).
There is also a strong positive linear correlation (0.78) between 1955–1977 and 1987–1999,
which may indicate a lack of sedimentary regime change between those dates. There are
no significant differences between the other dates.
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Table 3. Linear correlation coefficients r for the 10◦ average End Point Rate values calculated for Bora Bora’s southern
beaches of Matira.

Year Interval 1977–1987 1987–1999 1999–2006 2006–2010 2010–2019

1955–1977 0.06 0.78 −0.19 −0.45 0.36

1977–1987 0.27 0.19 −0.52 0.27

1987–1999 −0.24 −0.64 0.03

1999–2006 0.00 0.24

2006–2010 −0.04

Threshold for 5% significance: r = ±0.43.

4. Discussion

4.1. Drivers of the Evolution of the Shoreline Classification and Potential Impacts on Sedimentary
Processes on Bora Bora from 1955 to 2019

Throughout the second part of the 20th century, infillings to build public and private
properties onto the fringing reef (notably on the densely populated western side of the
island; Figures 2 and 5) have been the prominent factor of shoreline category and position
changes on Bora Bora. Trees and vegetation were removed and replaced by private
embankments to consolidate infillings (from 3% or 1.2 km in 1955 to 46% or 20.3 km in
2019). Similar evolutions have been noted on other French Polynesian islands, notably
an increase from 12% in 1977 to 57% in 2018 of embankments on the island of Moorea,
which has similar geological, geomorphological, and socio-economical characteristics [3].
Through interviews with long-term Bora Bora residents performed in March 2021, it
emerged that these embankments were initially linked to a drive to extend the island’s land
surface outwards and construct houses on the highly sought-after seaside, notably until
the 1990s. For instance, a large fraction of the houses as well as public infrastructure on the
west side of Bora Bora, most notably in Vaitape, is constructed on infilled fringing reefs
(Figures 2 and 5). However, since the 2000s, the main reason for embankment construction
(with or without building licences) has been the reinforcement of private land boundaries.
This reinforcement is perceived as necessary in the face of continuous coastal erosion,
linked to background swell, storms and cyclones (notably in reaction to the passage of
cyclone Oli in 2010), and to anticipate future sea level changes (which are forecasted to
be up to 0.76 m higher in 2080–2100 with respect to 1986–2005 for an intermediate global
warming scenario [20]).

Modifying Bora Bora’s coastline may have had strong impacts on the island’s sedi-
mentary regimes and, along with drainage canals and other land features altering sediment
transport from the island to the sea, it may be a factor leading to heightened erosional
effects [3]. Infillings and walls may reroute and strengthen currents and waves, leading
neighbouring zones to experience stronger erosion [17] (Figure 7A). As visible on the aerial
images and confirmed by interviews with residents, landowners in the vicinity of newly
constructed coastal structures eventually have to build embankments as well to protect
their gardens from erosion, leading to a ripple effect and a progressive artificialisation of
the shoreline (Figure 5).

On a larger scale, a stark example of the impact of urbanisation on coastal sedimenta-
tion is the effect of a large protective embankment in Matira (southern tip of Bora Bora)
on the neighbouring sandy beaches. This protective embankment to stabilise the shore-
line position at the tip of the peninsula was first built on a small scale before 1999 and
then extended to most of the peninsula between 2005 and 2006. It may have modified
currents and sedimentary processes and altered the erosional regime in the area (Figure 8,
Table 2), leading to enhanced erosion on previously stable sections of the beaches. Before
the construction, the sandy beaches underwent net erosion on the northeast-facing side
and accretion on the southwest-facing side. This movement corresponded to the average
wind-driven surface currents (the main wind regime is West to East in Bora Bora [13]) and,
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hence, may have been mostly of natural causes. During the construction, the signal was
blurred (1999 to 2006), and was then inversed after 2006. However, the development of
hotels, seaside gardens, and planting of coconut trees has artificially led to a net accretion
between 2010 and 2019 on the beaches due to the definition of the shoreline position used in
this study (sea-side edge of vegetation). Overall, these erosional processes remain limited
(generally under 1 m y−1) and may partly be noise due to the shoreline positioning error of
this study (2.06 to 4.76 m).

The time series used here enables the assessment of overall long-term changes in
coastal typology and position, which can be linked to human activities, as sea level rise
was small (~2 cm) between 1955 and 2019 in Bora Bora. However, the temporal resolution
of the time series used here (4 to 22-year gaps between each image) is too broad to assess
changes due to most intense short-term events. An exception is the passage of Cyclone Oli
in February 2010, two months before Bora Bora was imaged by satellite (Table 1). Although
the island of Bora Bora is protected from strong swells by a barrier reef and circled by a
wide lagoon, extreme weather events can have damaging impacts along the shoreline of
the main island. The passage of this storm may notably have led to the strong erosion of
the sandy beaches of Matira (Figure 8) and additional erosion in other natural sections of
the coastline, although this cannot be certain in the absence of other images between 2006
and 2010.

The recent availability of data from satellites with daily and high spatial resolution
imaging capacity (e.g., [21]) as well as the LiDAR campaign conducted on Bora Bora
in 2015 [22] could be combined for future high-resolution 2D or 2.5D monitoring (see
review by [9]) of the evolution of the coastline of the island and help to disentangle
the individual effects of various factors (background waves, storms, constructions) on
sedimentary processes.

4.2. Further Consequences of Coastal Urbanisation and Perspectives for Management

Beyond impacting coastal erosion, infillings and embankments are costly and can
lead to economic and biological issues. Firstly, infillings and embankments are built
over shallow fringing reef ecosystems, which typically house numerous juvenile fish and
invertebrate organisms [23]. These constructions and the associated modified currents and
sedimentology are, hence, accompanied with a removal and degradation of ecosystems.
This could have wide-reaching impacts on marine communities throughout Bora Bora’s
lagoon and, hence, impact local fisheries and livelihoods. Furthermore, requesting building
permits is a lengthy administrative process, which nowadays most often results in a refusal.
In addition, using adequate building materials, such as volcanic rocks, leads to additional
expenses. As a result, many private infillings and embankments are built illegally [24]
using tyres, construction rubble, or rusty metal spikes. Beyond altering seascapes on an
island that is famous worldwide for its scenery, these may spread pollutants into the nearby
marine ecosystems [25].

In addition to the numerous private embankments, public infrastructure, most notably
roads and quays, are associated with seawalls. In particular, the main road of Bora Bora
is a belt road which, in many areas, is located only a few meters away from the shoreline.
This road is protected from the sea by embankments that represent approximately 10% of
the island’s shoreline (Figures 5 and 6). This road, hence, plays a non-negligible role in the
artificialisation of the coastline, damage to coastal ecosystems, and changes in sedimentary
regimes. In some areas, no wall has yet been constructed to protect the belt road, but there
are projects to implement some (e.g., along the high school of Bora Bora located between
Vaitape and Matira), notably because the road can be flooded during strong swell events.
Instead of seeking to protect a belt road located close to the sea, building a new road further
inland wherever possible, and restoring natural shoreline types by removing the walls,
could be efficient solutions to mitigate the impact of urbanisation on Bora Bora’s shoreline.

Indeed, in opposition to human-made constructions enhancing erosion, natural shore-
line types such as mangroves and grass have widely acknowledged ecological functions [26]
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and act as sediment accumulation zones on Bora Bora (Figures 5 and 7). This is partially
due to the geographical position of these areas: mangroves and grass areas are located
within bays on Bora Bora and directly receive sediment-rich runoff from the surrounding
land following rainfall. Net accretion is enabled by the presence of plant roots slow-
ing down currents and leading to sediment deposition [27]. Coastal management and
restoration projects on Bora Bora could aim at removing erosion-inducing walls and reveg-
etating the shoreline to consolidate it. There are numerous plants that can stabilise the
shoreline: low-lying vegetation (grass, bushes), strong-rooted trees (local varieties such as
aito—Casuarina equisetifolia, purau—Hibiscus tiliaceus, miki miki—Pemphis acidula, or even
coconut trees—Cocos nucifera, although they are less efficient at trapping sediments). In
addition, promoting coral growth on the fringing reefs—leading to hard structures that
attenuate wave energy—could also be a positive management solution [28]. Expanding
mangroves (Rhizophora stylosa) due to their efficient sediment-trapping roots, however, is
debatable in the context of French Polynesian islands. Indeed, mangroves were absent from
French Polynesia until the 1930s and were only introduced in the 1930s to promote oyster
and crab production [29]. They are often viewed negatively, as invasive species (notably
taking over adjacent grass areas, cf. Figure 4), and are actively removed by local inhabitants.
Nevertheless, there are numerous alternative nature-based solutions available to replace
walls without compromising shoreline stability. However, although most residents that
were interviewed were aware of and suggested natural methods to prevent coastal erosion,
a strong majority was opposed to removing walls and planting trees on their private lands.
This opposition was mostly due to the costs involved and uncertainty in the resulting
shoreline stability. Performing experiments in various parts of the island by removing
walls and monitoring shoreline stability, communicating with the public about the results,
and financially contributing to coastal restoration could provide incentives to remove
private embankments around the island.

The important impact of embankments and seawalls on shoreline stability throughout
Bora Bora underscores the sensitivity of the island’s sedimentary regime to human-made
structures. This type of human-induced shoreline destabilisation is common in French
Polynesia (e.g., in the atolls of the Tuamotu Archipelago [17]; in Moorea, of similar geo-
morphology to Bora Bora [3]). The urbanisation of coastlines has profound impacts on
physical processes around the islands, from modifying sedimentary processes to increasing
vulnerability to coastal erosion, storm surges, and sea level rise [17]. Geologically younger
volcanic islands such as Bora Bora [10] may be assessed as less vulnerable to coastal erosion
than low-lying atolls such as in the Tuamotu Archipelago or even the motu dotted along
the barrier reef of Bora Bora (Figure 1). However, shorelines with hard volcanic lithology,
which are spared from erosion and accretion on decadal time scales, are rare on Bora Bora
(rock category, under 3%, Figure 6). In addition, most seawalls and embankments on Bora
Bora have a height of less than one meter. If the island’s coastal lifestyle continues in the
future, in the absence of sustainable coastal management solutions, there will be a need to
keep infilling land and elevate seawalls to cope with rising sea levels. As demonstrated
by the imagery timeline used in this study, increasing the artificialisation of the coastline
may lead to even more coastal erosion in a positive feedback loop, and is not a sustainable
solution. Lastly, beyond the economic importance of preserving white sandy beaches on
the tourist island of Bora Bora, the strong human density and rarity of inhabitable areas in
the steep inner parts of the island make coastal erosion a major challenge on Bora Bora,
especially in the context of increasing human populations on the island [14]. There is a
need to adapt lifestyles and public infrastructures to the changing climate, sea level rise,
and more frequent and intense storm surges and swell [20]. There must be incentives to
encourage islanders to move further inland when possible and revegetate the shorelines
rather than fight a losing fight against erosion and aggravate the problem. Communi-
cating with the public, developing management plans, and stabilising the coastline with
nature-based solutions are required to tackle the issue head-on in Bora Bora and in similar
contexts worldwide.
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5. Conclusions

High-resolution aerial images of Bora Bora obtained from 1955 to 2019 highlighted the
extensive coastal urbanisation undergone by the island since the mid-20th century. While
quays and embankments were scarce in the 1950s, they represent 61% of the shoreline
nowadays. This transition away from natural shorelines is accompanied by modified
sedimentary regimes, and results in enhanced coastal erosion. In the context of climate
change and increasing demographic pressure, preserving shoreline stability on small
Pacific islands, where most constructions are located within meters of the sea, is crucial
for livelihoods. The long-term impact of coastal modifications on erosional processes on
Bora Bora indicated by the aerial imagery series highlight the need for proactive local
management, with the removal of embankments and restoration of natural shoreline types,
notably of vegetation possessing robust root systems capable of stabilising sediments.

Author Contributions: Conceptualization, E.G., A.C., D.J. and D.L.; formal analysis, E.G.; funding
acquisition, D.L.; investigation, E.G.; methodology, E.G., A.C., D.J. and F.D.; resources, T.M., Y.R. and
L.L.; software, A.C. and D.J.; supervision, A.C., D.J. and D.L.; validation, A.C., D.J., T.M., Y.R., L.L.
and D.L.; writing—original draft, E.G.; writing—review and editing, E.G., A.C., F.D., M.J. and D.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work has received several grants: Fondation de France (2019-08602), Ministère de
l’Economie verte et du domaine-Délégation à la recherche de Polynésie française (contrat N3622
MED-EPHE), Office Français de la Biodiversité (AFB/2019/385-OFB.20.0888), Polynésienne des Eaux,
ANR-19-CE34-0006-Manini, ANR-19-CE14-0010-SENSO, the Rāhui Forum and Ressource Center
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Abstract: Kelp forests provide key habitat on the Pacific Coast of Canada; however, the long-term
changes in their distribution and abundance remain poorly understood. With advances in satellite
technology, floating kelp forests can now be monitored across large-scale areas. We present a method-
ological framework using an object-based image analysis approach that enables the combination of
imagery from multiple satellites at different spatial resolutions and temporal coverage, to map kelp
forests with floating canopy through time. The framework comprises four steps: (1) compilation
and quality assessment; (2) preprocessing; (3) an object-oriented classification; and (4) an accuracy
assessment. Additionally, the impact of spatial resolution on the detectability of floating kelp forests is
described. Overall, this workflow was successful in producing accurate maps of floating kelp forests,
with global accuracy scores of between 88% and 94%. When comparing the impact of resolution on
detectability, lower resolutions were less reliable at detecting small kelp forests in high slope areas.
Based on the analysis, we suggest removing high slope areas (11.4%) from time series analyses using
high- to medium-resolution satellite imagery and that error, in this case up to 7%, be considered
when comparing imagery at different resolutions in low–mid slope areas through time.

Keywords: kelp forests; multispectral; satellite; time series; spatial resolution; object-based image
analysis; remote sensing

1. Introduction

Kelp, brown algae in the order Laminariales, are dominant habitat-forming organisms
found in cool waters across approximately one-third of the Earth’s coastlines [1–3]. Kelp
create extensive aquatic forests that provide shelter and food for ecologically and economi-
cally important species [1,4,5]. Additionally, kelp provide myriad ecosystem goods and
services, such as fisheries production, nutrient cycling and carbon removal, estimated at
USD 684 billion per year worldwide [6,7]. However, climate change, overfishing, pollution
and increasing harvest threaten the health and persistence of kelp forests globally [1,5,8].
Recent work highlights the negative impacts of heatwaves on kelp forests [9–14] and the
loss of key predators, such as sea otters and sea stars, leading to overgrazing-induced
regime shifts from kelp forests to urchin barrens [6,15–17].

Kelp forests are dynamic by nature and show high interannual variability [18–20].
Considering that kelp forests are threatened globally, but are highly variable through
time, it is important to establish long-term time series to understand how kelp forests
are responding to environmental conditions in a time of global change [5,10,20]. His-
torically, kelp forest research is based on physical field data collection, such as surveys
by boats, snorkeling, or SCUBA (self-contained underwater breathing apparatus)
diving [5,8,18,21–23]. These survey techniques generally cover small areas and are difficult
to maintain long-term because of intensive labor requirements and high operating costs.
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Furthermore, these techniques remain logistically difficult due to the seasonality and inter-
annual variability of kelp forests and their extensive distribution along complex remote
coastlines with highly variable and sometimes extreme conditions, such as the Pacific Coast
of Canada [8,14,24,25].

Specifically on the Pacific Coast of Canada (British Columbia, BC), floating canopy-
forming kelp, Nereocystis luetkeana and Macrocystis pyrifera, support a variety of commer-
cially, recreationally and culturally important species [26,27]. Kelp forests with floating
canopies are produced by kelp that grow from the bottom of the ocean up to the surface,
which then aggregate in beds, henceforth referred to as floating kelp forests [28]. Only a
few local areas of floating kelp forests on the BC coast have been mapped at singular time
points by aerial surveys [23,29–31,31–36]. Some local-scale studies have measured kelp
forests through time, but show variable patterns of change [17,23,37–40]. This highlights
the need for large-scale, long-term monitoring initiatives to understand threats and assess
floating kelp forest dynamics. In other areas of the Pacific Coast, some successful aerial
surveys have quantified floating kelp forest trends [41–43], but these aerial surveys remain
operationally cost prohibitive at the scale of the BC coast.

With the enhancement of satellite imagery technology, the ability to monitor floating
kelp forests has dramatically improved, specifically with the increasing availability of
high-resolution (≤10.0 m) satellite imagery in the 21st century. Differences in the spectral
properties of floating kelp and water allow multispectral satellite sensors to distinguish
kelp canopies at or near the surface of the ocean, due mainly to kelp’s high reflectance in
the near-infrared range of the electromagnetic spectrum [25,44]. Many different methods
of classification have been applied for mapping floating kelp forests, including manual,
pixel-based (supervised, unsupervised, thresholds, spectral unmixing) and object-oriented
approaches (see summary by [24]). However, no standardized practices for mapping have
been developed and broadly accepted in the literature, making the monitoring of floating
kelp forests at large-scales difficult for non-remote sensing experts [8].

Multiple factors influence accuracy when using satellite imagery to map floating kelp
forests, such as glint, clouds, tide, bathymetry, coastline morphology, shadow, currents,
waves, phytoplankton blooms and adjacency impacts [25,45–47]. In particular, many of
these challenges increase in severity from south to north along the West Coast of North
America, such as increasing cloud cover, tidal amplitude and coastal complexity [47].
Considering these challenges, the mapping of floating kelp forests using satellite imagery
has been largely developed in California, where extensive offshore Macrocystis kelp forests
are mapped using medium spatial resolution satellites, including Landsat and SPOT
imagery from the 1980s onwards (e.g., [13,19,20,48–50]). Several studies have adopted the
methods developed in California to map floating kelp forests in other areas of the world,
e.g., South Africa [51], Oregon [52], the Falkland Islands [53] and Canada [46]. However,
using medium-resolution satellites to map floating kelp forests in BC remains challenging,
due to the presence of small fringing kelp forests and the high topographical complexity of
the BC shoreline [25,46].

Over the last 50 years, the spatial resolution of Earth observation satellite imagery has
rapidly evolved from 80 m to submeter resolutions. Even though satellite data (archived
and new) at different spatial resolutions are available globally, no large-scale, long-term
study has taken advantage of data from multiple sensors to reconstruct floating kelp
forest trends. Here, we present a methodological framework for mapping floating kelp
forests from archived medium- to high-resolution satellite imagery, using an object-oriented
analysis approach. We discuss the advantages and limitations of combining these data to
reconstruct trends. Specifically, the impact of using satellite imagery acquired at different
spatial resolutions to detect floating kelp forests are explored, and suggestions for drawing
appropriate conclusions when using multiple sensors, are described. Here, we use a test
site that supports both small fringing and large kelp forests located on the East Coast of
Haida Gwaii, BC, Canada, as a case study to develop a multi-satellite mapping framework
for detecting floating canopy of kelp forests. We focus on the methodological framework for
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creating this time series, not the time series analysis [54]. This framework will contribute
to advancements in the remote sensing of floating kelp forests, not only in BC, Canada,
but will allow for trends to be understood in remote regions and ultimately help inform
effective management strategies for the protection and longevity of floating kelp forest
ecosystems globally.

2. Materials and Methods

2.1. Study Area

The test site for defining the multi-satellite mapping framework is located in Haida
Gwaii on the West Coast of Canada, in the unceded territory of the Haida Nation; whose
relationship to the land and sea long predates colonial settlement and still exists to this
day [27,55]. Haida Gwaii is a large archipelago with a complex coastline of approximately
4660 km, situated in the Northeast Pacific Ocean (Figure 1A,B [56,57]). Specifically, the
study site spans roughly 800 km2 on the Northeast Coast of Moresby Island, just west of
Hecate Strait (Figure 1C). Both dominant floating canopy-forming kelp species, Macrocystis
and Nereocystis, are found in this region. Macrocystis grows year round and Nereocystis is
a perennial species; however, peak biomass occurs in the summer to early fall for both
species [22,58,59]. Haida highlight this region’s importance for the harvest of Macrocystis
kelp for the spawn on kelp herring roe fishery, but remark on the significant decline
of kelp forests in recent history [60]. In this region, the complex bathymetry supports
dense kelp forests of various sizes, from small fringing forests to large offshore forests
that span kilometers. Large areas are characterized by very gradual sloping ocean floors,
supporting some of the most extensive kelp forests found in BC, which are easily detectable
with Landsat imagery of 60.0 m (resampled from 80.0 m) spatial resolution, or better
(Figure 1E,F). In contrast, this region also includes smaller, less detectable kelp forests that
grow in narrow fringing beds along the steep slopping coastline (Figure 1F). These fringing
kelp forests are generally characteristic of kelp forests found across the remainder of the
BC coast [38,46,47,61]. This range in kelp forest size makes this region an ideal area to
define a framework for using different resolution satellites to map floating canopy area
through time.

2.2. Methodological Framework

The framework is a workflow that allows researchers to compile robust temporal
datasets of floating kelp canopy area through the evolution of medium- to high-resolution
satellites. The workflow consists of four main steps, including: (1) imagery compila-
tion and quality assessment; (2) preprocessing and enhancements; (3) object-oriented
image classification; and (4) an accuracy assessment (Figure 2). To compare floating
canopy area derived from multiple satellites, we analyzed kelp’s detectability at different
spatial resolutions.
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Figure 1. An overview of: (A) the Northwest Coast of North America; (B) the location of Haida Gwaii
in reference to the British Columbia coast; and (C) the Cumshewa Inlet study area. The study site
includes: (D) large offshore; (E) large nearshore; and (F) small fringing nearshore kelp forests. Image
source: (D,E) Lianna Gendall; (F) Environment and Climate Change Canada.
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Figure 2. The workflow of the methodological framework.

2.2.1. Step 1: Imagery Dataset

Archived high- to medium-resolution (0.5–60.0 m) multispectral satellite imagery was
compiled from 20 satellite sensors spanning from 1973 to 2021 through diverse sources,
including open data, private data sharing agreements, and commercial acquisition (Table 1).
Archived imagery is not necessarily collected during optimal conditions for mapping, and
therefore special consideration should be given to any factors that may lead to inaccurate
maps of floating kelp forests, such as clouds, tidal height, glint, shadow, haze, water
turbidity, waves, algal blooms and time of imagery acquisition [19,25,43,45,47]. To minimize
possible inaccuracies, a set of criteria were developed, and images were visually assessed
considering: glint, waves, shadows, clouds, the month and tidal height of acquisition.
Each category was scored from 0 to 3, where the lower the score, the better the quality.
For instance, the criteria for ideal conditions (score of 0) consisted of an acquisition time
between June and October, a low tidal height (<3 m above lower low-water large tide chart
datum) and the minimal presence (<5%) of glint, waves, shadow and cloud within the
nearshore areas where floating kelp forests are found within the imagery [25,38]. Once
combined, images showing suboptimal conditions for detection (overall criteria score ≥ 7)
were removed from the dataset. Importantly, the quality score results should be framed
within the context that more recent imagery is intrinsically more reliable for mapping
floating kelp forests due to their higher spatial resolutions.
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Table 1. Medium- to high-resolution satellite imagery used to develop the methodological framework
(NDVI: the normalized difference vegetation index. G-NDVI: NDVI with green instead of red. RE/G:
band ratio between red and green. R/Y: band ratio between red and yellow. R/G: band ratio between
red and green. NIR/G: band ratio between near-infrared and green).

Sensor Dates Ground
Resolution

Swath Revisit Bands and
Wavelengths
(NM)

Atmospheric
Correction

Band
Inputs

Source of
Imagery

Sources
for
Indices

LS-8 30 m
multispectral

170 km 16 days Blue 450–520 NDVI

2013–
present

15 m
panchromatic

Green 540–600 Green,

Red 630–690 Red,
NIR 770–900 NIR
SWIR 1550–1750
SWIR II
2110–2290
Pan 520–680

LS-4–7
1984–
present

30 m
multispectral

170 km 16 days Blue 450–520

15 m
panchromatic

Green 520–600

Red 630–690
NIR 770–900
NIR 1550–1750
MIR 2080–23500

LS-1–3 Pan 520–900
1972–1983

Surface
reflectance
ready
product

60 m
multispectral

170 km 18 days Green 500–600 NDVI

(Resampled
from 80 m)

Red 600–700 Green,

NIR 700–800 Red,

Landsat
Series

NIR 800–1100

Rayleigh
correction

NIR

Freely
Available from
United States
Geological
Survey (USGS)

[13,19,20,
46,53,62–
64]

Sentinel–2 2015–
present

60 m–10 m
multispectral

290 km 5 days Coastal 443–463 Surface
reflectance
ready
product
from
SNAP
Sen2Cor
processor

NDVI Freely
Available from
United States
Geological
Survey (USGS)

[65]
Blue 490–555 Green,
Green 560–595 Red,
Red 665–695 NIR
Red Edge I
705–720
Red Edge II
740–755
Red Edge 1
783–803
NIR1 842–957
NIR2 865–885
SWIR 1380–1410
SWIR I 1910–2000
SWIR II
2190–2370
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Table 1. Cont.

Sensor Dates Ground
Resolution

Swath Revisit Bands and
Wavelengths
(NM)

Atmospheric
Correction

Band
Inputs

Source of
Imagery

Sources
for
Indices

SPOT 4 20 m
multispectral

5 days Green: 500–590 NDVI

1989–2013 10 m
panchromatic

Red: 610–680 Green,

Near IR: 790–890 Red,
SWIR 1530–1750 NIR
Pan 610–680

SPOT 5
2002–
present

10 m
multispectral

2–3
days

Green: 500–590

5 m
panchromatic

Red: 610–680

Near IR: 780–890
SPOT 6–7 SWIR 1580–1750
2012–
present

Pan 480–710

Data sharing
available to
researchers
through the
Centre
National
d’Études
Spatiales
(CNES)

6 m
multispectral

1–3
days

1.5 m
Panchromatic

Blue 450–520

Green 530–590
Red 625–695
NIR 760–890

Spot
Series

60–80
km

Pan 450–745

Rayleigh
correction

Purchased
through Apollo
Mapping with
academic
discount

[50,65,66]

Geoeye–
1

2008–
present

1.84 m
multispectral

15.2
km

2.6
days

Blue 450–510 Rayleigh
correction

G–NDVI Private data
Sharing
agreement

Determined
using
m–statistic0.46 m

panchromatic
Green 510–580 Green,

Red 630–690 Red,
NIR 780–920 NIR
Pan 450–800

2.62 m
multispectral

Blue 450–520 G–NDVI

0.65
panchromatic

Green 520–600 Green,

Red 630–690 Red,
NIR 760–900 NIR

Quick-
Bird–2

2001–2015 15.2
km

2–3
days

Pan 450–800

Rayleigh
correction

Private data
sharing
agreement

Determined
using
m-statistic

Rapid-
Eye
Series

2009–
present

5 m
multispectral

77 km 1–6
days

Blue 440–510 Surface
reflectance
ready
product

RE/G Available to
researchers
through Planet
Labs Inc.

Determined
using
m-statistic

Green 520–590 Green,
Red 630–685 Red,
Red edge 690–730 RedEdge
NIR 760–850 NIR

WV-3–4 1.24 m
multispectral

13.1
km

Coastal 400–450 RE/Y

2014–
present

0.31 m
panchromatic

Blue 450–510 Green,

Green 510–580 Red,
Yellow 585–625 NIR

WV-2 1.84 m
multispectral

16.4
km

Red 630–690

Determined
using
m-statistic

2009–
present

0.46 m
panchromatic

Red Edge
705–745
NIR1 770–895

Pansharpened
without
NIR

NIR2 860–1040 R/G
Pan 450–800 Green

World-
view
Series

1–3
days

Rayleigh
correction

Blue

Private data
sharing
agreement

[25,38,46]

Plan-
etscope
Series

2018–
present

3.7 m
multispectral

24 km–
32.5
km

Daily Blue: 455–515 Surface
reflectance
ready
product

NIR/G Available to
researchers
through Planet
Labs Inc.

Determined
using
m-statistic

Green: 500–590 Green,
Red: 590–670 Red,
NIR: 780–860 NIR
Blue: 464–517
Green: 547–585
Red: 650–682
NIR: 846–888
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2.2.2. Step 2: Preprocessing

After selecting the optimal images for mapping, the following techniques were applied
to reduce geometric and radiometric uncertainties and enhance the spectral signal of
floating kelp to improve classification accuracies [25]. Geometric distortions occur in
imagery due to errors during acquisition, such as variations in altitude, attitude, the
velocity of the satellite, earth curvature, atmospheric refraction, and nonlinearities in
the satellite path [44,67]. All selected images were checked for geometric distortions
against the ESRI satellite base map in the WGS 1984 coordinate system, and those with
distortions were georectified in ArcGIS using ground control points and a nearest neighbor
interpolation [44,68]. However, where overlaps between imagery occurred, the overlapping
images were georectified to the previous images to ensure the best match. The root mean
squared error (RMSE) was calculated to evaluate the quality of the georectification, and a
threshold of less than two pixels was deemed acceptable, except for the Landsat imagery,
which was given an allowance of one pixel due to the coarser spatial resolution.

Following the georectification, images were evaluated for radiometric/atmospheric
issues, which may impact the band indices used and, consequently, the imagery classi-
fication outputs [69,70]. When possible, we obtained atmospherically corrected images
from suppliers (Table 1). For the other imagery, a simple approach considering a histogram
shift determined by the Rayleigh scattering factor was applied [71], hereafter referred to as
the Rayleigh correction. This approach considers that the scattering intensity is inversely
proportional to the fourth power of the wavelength (λ−4), and assumes that the darkest
pixels in an image, corresponding to shadowed or offshore deep-water areas, should have
null reflectance; however, because of Rayleigh scattering, nonzero values are recorded [71].
To account for the Rayleigh scattering, these nonzero values are subtracted from the spectral
signal of each specific satellite band, considering the spectral relationship between bands
according to the Rayleigh factor (λ−4) [71]. The initial step is to define the lowest reflectance
value in the blue band acquired from the darkest (lowest reflectance) pixels within the
image (Bc), which is consequently subtracted from each pixel in the blue band. If no blue
band was available (i.e., SPOT 4 and 5, Landsat-1 to 3), the value from the darkest pixels
in the green band was divided in half to account for the lower proportion of Rayleigh
scattering occurring and used in place of the blue Bc. Then, for each remaining visible band,
the following equation is used to calculate the Rayleigh correction value (Rc):

Rc = ((1/
(

λ4
b

)
/
(

1/
(

λ4
vis

))
× Bc,

where λb represents the mean wavelength (nm) of the blue band, and λvis represents the
mean wavelength (nm) of whichever visible band the equation is being used to calculate the
correction for (e.g., 560 nm when correcting the green band of Geoeye-1). To ensure images
were properly corrected, we evaluated the corrected reflectance of water and floating kelp
for a subset of imagery from each sensor and compared them to the known reflectance for
floating kelp and water from the literature [25,44,62].

Following the required corrections, images were subjected to: (i) a lowest tide land
mask; (ii) a deep-water mask; and (iii) a soft substrate mask to eliminate areas where
floating kelp forests are not found, and to minimize processing time and false positives.
Vegetation and intertidal seaweed on land have a high near-infrared (NIR) reflectance
compared to kelp [72,73], and therefore removing these features enhances the ability to
digitally differentiate floating kelp from water through contrast enhancement [25]. We
created the land mask using an object-based segmentation (Trimble eCognition Developer
V8.64) on the imagery with the lowest tide. For each resolution of imagery used in this study,
we added a buffer of one pixel to minimize land reflectance adjacency impacts from the
shoreline. To eliminate any areas where floating kelp forests were unable to grow [74,75],
a 20-m deep-water mask was created using a bathymetry dataset from the Canadian
Hydrographic Service [38,46,76]. Lastly, we masked shallow-soft sediment bottom, which
is uninhabitable to kelp [77], using overlapping areas defined as soft sediment in the BC
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Marine Conservation Analysis (BCMCA) benthic classes dataset [78] and the DFO bottom
patch model [77].

The final task in the preprocessing workflow was to select the combination of bands,
and band indices and/or band ratios, that perform best in the classification step. The
normalized difference vegetation index (NDVI, i.e., the normalized difference between
the reflectance of the near-infrared and red bands [79]) was used since it is commonly
used to enhance floating kelp canopies in imagery from the Sentinel-2, Landsat and SPOT
satellites [19,25,46,48,50,62–66] (Table 1). Additionally, for any imagery acquired by a
sensor that had not been readily used for floating kelp forest detection in the literature, the
M-statistic, a measure of class separability [80], was calculated for defining other possible
band indices and ratios. A high M-statistic represents high separability between two classes
with significant separation when M is larger than 1.0 [80,81]. For each sensor, we combined
the two to three highest scoring band indices, or ratios, with the visible bands and visually
assessed the combinations to choose which provided the best overall classification results
(Table 1). The selected bands, band indices and ratios, were then linearly enhanced to
maximize the spectral signal of floating kelp for the final input into the classification.

2.2.3. Step 3: Classification

An object-based image analysis (OBIA) was used based on the recommendation for
classifying dense floating kelp forests [25]. The OBIA approach combined a multiresolution
segmentation followed by a supervised nearest neighbor classification using the Trimble
eCognition Developer (V8.64) software to classify floating kelp forests within the imagery.
The OBIA classification offers several advantages over pixel-based classification methods.
OBIA has shown better accuracy than pixel-based methods when compared across a range
of spatial resolutions and ecosystems [82–86] and allows for the size of objects to be scaled,
so that object size remains relatively constant across different resolutions [84]. As part
of the eCognition software, OBIA allows for the definition of features beyond the pixel
values of the input data, including the mean and standard deviation of object radiometry,
object size and shape, and the spatial relationships of objects. This is not considered in
pixel-based classification, thus increasing separability among classes and reducing the
contribution of noise to the classification comparatively to pixel-based methods [87]. In
the OBIA, the final enhanced bands, band indices and/or band ratios for each image were
subjected to a multiresolution segmentation (Scale: Table 2; Shape: 0.3; Compactness: 0.5)
to group similar pixels into objects. From those objects, training classes corresponding to
floating kelp, submerged kelp/understory seaweed, water, glint/waves, cloud, shadow
and shallow water, were defined using expert knowledge. Figure 3 shows examples of
the most common classes used in the OBIA. Of note, not all classes were present in all
imagery. In particular, some classes, such as glint/waves and submerged kelp/understory
seaweed were indistinguishable in the medium-resolution satellite imagery. Because classes
varied by image, the feature space optimization tool in the eCognition software was used
to mathematically calculate the best number and combination of object features, such as
the spatial, spectral and contextual information (e.g., the mean of bands/band indices,
the standard deviation of bands/band indices, the maximum difference across all values
of all bands/band indices), to separate classes based on training samples [88]. This tool
compares features of different sample classes to find the optimal combination that produces
the largest average minimum distance between samples, to be used when categorizing
the remaining image objects into those given classes [88]. The ability of the feature space
optimization tool chosen features to separate classes was evaluated based on the analysis of
boxplots and three-axis scatter plots of the top three selected features for a subset of images.
Following this evaluation, we performed a nearest neighbor classification, using the optimal
features defined by the feature space optimization tool, to categorize the remaining image
objects into their respective classes. Before validation, the outputs were visually subjected
to a quality assessment using a knowledge-based approach where erroneous classifications
were manually reclassified in ArcGIS. Lastly, for the validation step, the outputs of the
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classification were turned into two binary classes: floating kelp forests (1) and all other
classes (0).

Figure 3. The most common class types used in the object-based image classification for high-
resolution (QuickBird-2 images from 2013 and 2017 at 2.6 m resolution) and medium-resolution
(Landsat image from 1990 at 30.0 m resolution) satellite imagery.
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Table 2. The different scale factors used to determine object size in the segmentation step of
the classification.

Resolution Sensor Scale

0.5 Aerial Imagery, Pansharpened
Worldview 40

2–3 QuickBird, Worldview 30
4 PlanetScope 28
5 Rapid Eye 25
6 Spot 20

10 Spot 10
20 Sentinel-2 7
30 Landsat-4–8 5
60 Landsat-1–3 5

2.2.4. Step 4: Quality Assessment

For the classification validation, in situ kelp data and historical survey data for the
region were compiled. Ideally, ground-truth data should be collected at the time of satellite
imagery acquisition [25]. However, if no ground-truth data are available, other forms of data
can be used, such as past surveys showing the location of floating kelp forests [38,50,89],
or expert knowledge based on reflectance values [35]. For our dataset, we compiled two
forms of validation data: (i) in situ and (ii) archived data (Figure 4). The in situ data,
including drone images, photoquadrats (camera mounted above a 1 m quadrat lowered to
the seafloor), above water oblique photos from a boat, and remotely operated underwater
vehicle footage, were acquired in August 2021, a day after PlanetScope imagery acquisition.
Archived surveys were obtained, comprised of oblique photos from an aerial survey
performed by Environment and Climate Change Canada (ECCC) in 2015, multiple years of
SCUBA surveys (1990, 1994, 2007, 2012, 2017) from the Department of Fisheries and Oceans
Canada (DFO) [90] and kelp shoreline classifications from an aerial survey conducted in
1997 by ShoreZone. All validation data were combined into a dataset of spatial points and
classified as either floating kelp present or absent. Specifically, the DFO Scuba surveys and
ShoreZone data were simplified from species specific data (Macrocystis and Nereocystis)
to presence and absence. For the archived aerial images from ECCC, a random subset of
images was visually assessed for presence or absence. All validation data were compared
to the classification produced from imagery in the matching year to produce measurements
of accuracy corresponding to users’, producers’ and global accuracy, meaning errors of
commission (false-positives), omission (false-negatives) and overall accuracy [91]. No
archived validation data were available during the years of acquisition for the three highest
resolution satellites, so in order to validate products from the QuickBird-2, Geoeye-1 and
Worldview-2 satellites, the ECCC oblique photos were used with the assumption that some
errors would be associated with yearly variability.

2.2.5. Resolution Analysis

Here, we evaluate the impact of spatial resolution on the detectability of floating
kelp forests in satellite imagery at different scales. This analysis allowed us to define an
independent variable (ocean floor slope) to be used as an indicator of kelp forest size,
highlighting areas of uncertainty. The following steps were adopted in this analysis:

Step 1: Images from QuickBird (2.6 m), RapidEye (5.0 m) and Sentinel-2 (10.0 m), with
their original spatial resolutions, were resampled using bilinear interpolation to the different
resolutions matching the satellite database (6.0 m, 10.0 m, 20.0 m, 30.0 m, 60.0 m; Table 1)
following [92,93]. Sentinel-2 was included in the analysis to address possible interpolation
errors [94] associated with resampling high-resolution imagery from QuickBird-2 and
RapidEye to 20.0 m, 30.0 m and 60.0 m resolutions. The original and resampled images
were classified using the OBIA method described in Sections 2.2.2 and 2.2.3. To ensure that
images from the same sensor remained comparable, we used the same areas to train the
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classifier for each set of down-sampled images. After the classification of the resampled
images, the overall detectability across the study region was measured as the total amount
of floating canopy area (m2) detected in the downgraded resolution, divided by the total
floating canopy area (m2) detected in the original image, and presented as the percentage
of floating canopy area.

Step 2: A 1 km segment-based approach was used as the areal unit to evaluate the
impact of resolution (see Figure 5 for the delineation of segments). Due to the complex
bathymetry and presence of large offshore and nearshore floating kelp forests in our study
area, ocean floor slope was used to delineate these segments, as adapted from [95]. To
achieve segments that could extend kilometers offshore, segments were created in two
categories, along the shoreline (ocean floor slope greater than 3%) and out across the low
slope areas extending offshore (ocean floor slope of less than or equal to 3%), using 20
m bathymetry data from CHS [76]. These ocean floor slope categories were only used to
construct the segments and were not used in further analyses.

Step 3: Ocean floor bathymetry often limits the size of kelp forests by reducing the
available area to grow [46,96]; therefore, we assume it can be used as a proxy for kelp forest
size. For example, in high slope areas, the bottom quickly becomes too deep, limiting the
availability of light needed for kelp to establish and grow. In these conditions kelp only
grows in narrow fringing forests, which are more difficult to detect in satellite imagery.
Consequently, ocean floor slope was used to define areas where we would expect larger
inaccuracies of the classification at different resolutions. However, first we tested the
assumption that high slope areas support small fringing kelp forests [46].

For this, the relationship between ocean floor slope and kelp forest size was ex-
plored (classified from the original QuickBird-2, RapidEye and Sentinel-2 images and
measured in m2). For each segment, we defined the mean ocean floor slope based on
the 20 m bathymetry data from CHS [70], where a single kelp ‘forest’ was defined as a
continuous patch of attached floating kelp where kelp objects in the classification were
connected. Based on the relationship of floating kelp forest size and ocean floor slope, we
divided the segments into two broad categories: low–mid slope areas (0–11.3%), which
support large and small kelp forests, and high slope areas (11.4–37.0%), which support only
small kelp forests. Next, floating canopy area percentage was compared between the two
slope categories.
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Figure 4. Examples of in situ and archived data for the accuracy assessment of the classification. The
DFO SCUBA surveys are not shown.
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Figure 5. A map of approximately 1 km segments categorized into two main groups based on
segment mean slope: low–mid (0–11.3%) shown in greyscale and high (11.4–37.0%) shown in red.

3. Results

3.1. Imagery Quality Assessment

Out of hundreds of archived images examined across many different sources (Table 1),
a total of 52 images (from 1973 to 2021) were selected after the quality assessment step.
No good-quality images were found for a total of 12 years, including 1975, 1978–1981,
1983, 1987, 1993, 1995, 1996, 2003 and 2004. Landsat was the only freely available satellite
imagery provider before 2004 and thus the preferred choice for imagery; in particular,
Landsat-7’s scan line corrector failure in 2003 [97] led to no available images for 2003 and
2004. For years following 2005, the preferential choice was for high-resolution imagery
(2.0–20.0 m). Imagery from a single Spot 4 image (20.0 m) to numerous images from Sentinel-
2 (10.0 m), QuickBird-2 (2.6 m), Geoeye-1 (1.8 m), Worldview (1.2 m and 1.8 m), PlanetScope
(3.0 m resampled from 3.7 m) and RapidEye (5.0 m) satellites were compiled. In addition to
the high-resolution satellite imagery, we included a single nadir RBG aerial image (0.5 m
spatial resolution) from the Canadian Hydrographic Service in the dataset because of the
lack of good-quality high-resolution satellite imagery in 2007.

The 52 archived images selected through the criteria were acquired in various con-
ditions, leading to a range in quality scores (Table 3). The largest proportion of imagery
(46%) were acquired during ‘optimal’ conditions for floating kelp forest mapping, followed
by the second largest proportion (37%) acquired during ‘good’ conditions. Together, the
‘good’ and ‘optimal’ imagery account for 83% of the total imagery. Among the defined
criterion, more often, high tides or the presence of glint and cloud in imagery led to lower
scores than waves and haze (Table 3). Notably, in some years, no optimal low tide (<3 m
above chart datum) imagery was available because of the high tidal exchange that occurs
in Haida Gwaii (up to 7.8 m above chart datum) [98], leading to 33% of images ranked in
the lowest category for tides (5.0 to 6.0 m). These images were still included in the time
series dataset because floating kelp forests were readily visible upon inspection.
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Table 3. A summary of image quality criteria where percent (%) is the proportion of the 52 images
that fall into each category.

Quality Cloud (%) Tide (%) Glint (%) Waves (%) Timing (%) Haze (%) Quality Score Percent (%)

0 79 31 52 96 92 77 Optimal <1 46
1 10 17 42 4 8 12 Good 2 to 3 37
2 10 19 4 0 0 6 Medium 4 to 5 15
3 2 33 2 0 0 6 Acceptable 6 2

3.2. Preprocessing

Considering the selected imagery used for further analysis, a total of six images needed
geometric correction: one from Landsat-1, and all imagery from QuickBird-2 and Geoeye-1,
resulting in a RMSE within the two pixel threshold (average RMSE: QuickBird-2: 4.49 m,
Geoeye-1:3.61 m, Landsat-1: 16.48 m). For the next step, Rayleigh correction was applied
to imagery from Landsat-1–3, QuickBird-2, SPOT 5–7 and Geoeye-1; images acquired by
the other sensors (Sentinel-2, RapidEye, PlanetScope and Landsat-5) were provided in
atmospherically corrected products. After Rayleigh correction, our results showed that
compared to the original values, floating kelp and dark water pixels in the blue band
were reduced to zero or just slightly above, in the green band, pixels values decreased by
approximately half, and by approximately a third in the red band (Figure 6). This conforms
with the shape of kelp spectra and water spectra from in situ hyperspectral measurements
of floating kelp and water, in literature [25,44,62].

After geometric and Rayleigh corrections, the different spectral indices were evaluated
based on the M-statistics. Among the available spectral indices, the M-statistic results
showed different optimal indices for the different satellites (Table 4). For Geoeye-1 and
QuickBird-2, a normalized vegetation index with the green band (G-NDVI) instead of the
red band had the highest separability (>1.44). Meanwhile, for PlanetScope imagery, a simple
ratio combination of the near-infrared and green bands showed the highest separability
(>11.34). Lastly, for satellites that included a red-edge band, RapidEye and Worldview, a
simple band ratio of red-edge over green (>1.69), and red-edge over yellow (>2.72), was
best at separating kelp from water, respectively. The statistically selected indices and bands
were used as the input data for the object-oriented classification.

Table 4. A summary of the M-statistic of different band indices and ratios for kelp and non-kelp
classes observed in the imagery during band selection (R: red, Y: yellow, G: green, B: blue, RE: red-
edge, NIR: near-infrared, G-NDVI: NDVI with green instead of red, RE-NDVI: NDVI with red-edge
instead of NIR, B-NDVI: NDVI with blue instead of red, B-RE-NDVI: NDVI with blue instead of red
and red-edge instead of NIR, G-RE-NDVI: NDVI with green instead of red and red-edge instead of
NIR). Indices selected for input into classification are bolded.

Satellite Kelp-Water Kelp-Shallow Water Kelp-Shadow Kelp-Glint/Waves

Worldview-2
RE/Y

RE-NDVI
NIR2/Y

3.19
2.96
2.51

NIR1/B
NDVI

G-NDVI

4.91
4.63
4.43

RE/Y
RE-NDVI

RE/R

2.72
2.32
1.99

-
-
-

-
-
-

Geoeye-1
G-NDVI
NIR/G
B-NDVI

6.58
6.52
1.44

B-NDVI
NDVI

G-NDVI

6.58
6.52
1.44

-
-
-

-
-
-

B-NDVI
NDVI

G-NDVI

28.59
13.66
4.74

Quickbird-2
G-NDVI
NIR/R
NIR/G

9.81
7.34
7.24

NIR/R
G-NDVI
NIR/G

15.80
9.85
7.08

G-NDVI
NIR/G
NDVI

7.46
6.95
5.02

-
-
-

-
-
-

Planetscope
NIR/G
NIR/R
NDVI

14.02
8.55
7.55

NIR/G
NIR/R
NDVI

11.34
7.53
7.32

-
-
-

-
-
-

NIR/G
NIR/R
NDVI

19.63
8.81
7.39

Rapideye
RE/G

B-RE-NDVI
G-RE-NDVI

1.69
1.46
1.42

NIR/R
NIR/G
RE/R

31.74
11.23
9.11

-
-
-

-
-
-

NIR/R
NIR/G
RE/R

12.00
10.81
10.17
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Figure 6. Examples of spectra before and after performing the Rayleigh correction using the
(A) Rayleigh scattering curve to atmospherically correct imagery. (B,C) show a QuickBird-2 im-
age before and after correction and (D,E) show a Worldview-3 image before and after correction. Of
note, the magnitude of the digital number and wavelengths varies between sensors.

3.3. Classification & Accuracy Assessment

Here, the results are presented according to the order of the various decision processes
for the classification and validation. In an object-oriented classification approach, after
the initial segmentation step (see Methodological Framework Step 3: Classification), the
feature space optimization tool of eCognition defined the combination of object features
that best differentiate classes. Specifically, the feature space optimization function de-
fines the best combination of object features that gives the highest possible separability
between classes, as illustrated by the example of features chosen to classify a QuickBird-2
image (Figure 7). In this particular case, the feature space optimization tool chose the
standard deviation of G-NDVI, the mean G-NDVI, and the maximum difference between
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all bands and band indices to differentiate floating kelp canopy from submerged sea-
weed/kelp, glint/waves and water sample classes. Mean G-NDVI alone can differentiate
kelp from all other classes present in the image. However, the feature space optimization
chose both the standard deviation of G-NDVI and the maximum difference between all
bands and band indices because, when combined, they can differentiate among all classes
(Figure 7). For the majority of the dataset, the feature space optimization tool selected
between three and 10 features depending on the image, with, generally, the mean of the
red-edge band (when available), the mean of the near-infrared band and/or the mean of
the band indices selected.

Figure 7. A three-axis scatter plot of the top three features chosen by the Feature Space Optimization
tool showing the separability of classes: the standard deviation (St. Dev) of G-NDVI; mean G-NDVI;
and the maximum difference between all (G, R, NIR and G-NDVI) input bands. The example was
done with a QuickBird-2 image.

After selecting the optimal features, we ran the classification according to the nearest
neighbor algorithm, followed by an evaluation of the classification results, considering user,
producer, and global accuracies (Table 5). The overall global accuracy for all sensors ranged
from 88% to 94% (Table 5). Generally, producers’ and users’ accuracy for kelp was high
(from 83% to 96% and from 90% to 100%, respectively; Figure 8C,D). Producers’ accuracy
for non-kelp classes were also high (from 89% to 100%). The lowest scores occurred
within the non-kelp users’ accuracy (from 64% to 100%) with errors occurring where
floating kelp was misclassified as water (see example in Figure 8A,B). Lastly, we found no
apparent differences when comparing the accuracy assessments that used concurrent and
non-concurrent validation data for QuickBird-2, Geoeye-1 and Worldview-2 (Table 5).

We used, on average, 124 validation points (85 kelp points and 39 non-kelp points),
except for with the classification of RapidEye and the aerial imagery. For these, only
nine validation data points were available for each, and thus even though high accuracy
was achieved, caution about the results is recommended. The lowest resolution satellite,
Landsat-5 (30.0 m), included in the validation, had similar accuracy to the higher-resolution
satellites (Table 5); however, it produced the lowest measure of users’ accuracy for non-kelp
targets (64%). Upon inspection, smaller thin fringing forests in steep nearshore areas were
misclassified as water or omitted due to the lowest tide land mask’s coarse resolution.

265



Remote Sens. 2023, 15, 1276

Table 5. A summary of the accuracy assessment where users’ accuracy (%) refers to how often classes
(non-kelp and kelp) on the map are present in situ, and producers’ accuracy (%) refers to how often
real features (non-kelp and kelp) on the ground are correctly classified on the maps.

Timing Satellite
Kelp
Users’
Accuracy

Kelp
Producers’
Accuracy

n=
Non-Kelp
Users’
Accuracy

Non-Kelp
Producers’
Accuracy

n=
Global
Accuracy

n=

Concurrent

PlanetScope 100 92 171 70 100 30 94 201

Spot 7 100 88 64 86 100 48 93 112

Landsat-5 97 82 113 64 92 39 89 152

Aerial 100 83 6 75 100 3 88 9

Rapid Eye 100 88 7 100 100 1 88 9

Non-
concurrent

QuickBird-2 90 96 47 95 89 45 92 92

Geoeye-1 95 89 64 77 89 27 89 91

Worldview-2 98 84 50 85 98 46 91 96

 

Figure 8. Examples of (A,B) kelp that was misclassified as water, and examples of (C,D) kelp that
was correctly classified during the accuracy assessment. Image sources: (A,D) Environment and
Climate Change Canada; (B,C) Gendall, L.

3.4. Resolution Analysis

Figure 9 illustrates the relationship between pixel size and the mixing of the spectral
signature of different features within a pixel. Specifically, within a pixel resolution (for
instance, 30.0 by 30.0 m for Landsat-5), the kelp spectral signature is averaged with the
spectral signature of other classes in close proximity (e.g., water), decreasing the ability
to accurately map floating kelp forests as pixel size increases. In particular, as resolution
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decreases, floating kelp and water spectrum are mixed, and the reflectance in the near-
infrared wavelengths decrease (Figure 9G). At the sample location shown in Figure 9, the
object-based classification can no longer differentiate the floating kelp signal from water at
60.0 m (Figure 9G).

Pixel mixing decreases the ability to correctly classify floating kelp when using
medium-resolution imagery. We show that at downgraded resolution, images gener-
ally produced a floating canopy area within 9% of their image’s original kelp forest area
(Figure 10). For instance, at 6.0 m resolution, the mapped floating kelp canopy area is 93%,
i.e., 7% lower than the mapped area at the original 2.6 m resolution. This can be assumed up
to a certain downgraded resolution because the further an image is downgraded away from
its original resolution, the more likely artifacts or errors from the interpolation methods
may occur, such as blurring and edge halos [94]. This possible issue is minimized by avoid-
ing data analysis of downgraded high- to medium-resolution, and instead, considering a
downgraded Sentinel-2 image from 10.0 m (SE10) to 20.0 m, 30.0 m and 60.0 m (SE20, SE30
and SE60, respectively). In this case, the results show that the floating kelp canopy area
remained almost unchanged when downgrading the medium-resolution Sentinel-2 image
from 10.0 m to 20.0 m, 30.0 m and 60.0 m (Figure 10C).

Figure 9. Cont.
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Figure 9. Clips of the same location of (A) the QuickBird-2 image (2.6 m) down sampled to
(B) 6.0 m, (C) 10.0 m, (D) 20.0 m, (E) 30.0 m and (F) 60.0 m, with (G) showing the spectra mea-
sured at the sample location. Floating kelp forest classification is shown as a pink outline. Images
are false color infrared showing land vegetation and seaweeds (including kelp) as red, rock/sand as
light blue and water as dark blue to black.

Figure 10. The change in kelp area as a percentage of the kelp area (dark grey bars) derived from
the original image’s resolution (light grey bar) plotted by resolution for (A) QuickBird-2 (original
resolution: 2.6 m), (B) RapidEye (original resolution: 5.0 m) and (C) Sentinel-2 (original resolution:
10.0 m).

Figure 11 shows the relationship between floating kelp forest size (produced from
the three original images) and ocean floor slope. Generally, areas of low–mid slope
(0–11.3%) were associated with both small (<17,000 m2) and large kelp forests (≥17,000 m2),
whereas high slope (>11.4%) areas were only associated with small fringing kelp forests
(<17,000 m2). The low–mid slope areas exhibited a lower percent difference (within 7%)
of floating kelp forest area between the various imagery resolutions than the high slope
areas (up to 50%) overall (Figure 12). In particular, the differences in floating canopy area
in high slope regions were much more pronounced in the downgraded medium-resolution
imagery (SE20, SE30 and SE60) than the high-resolution imagery (QB6, QB10, RE6 and
RE10). These results allowed us to restrict the use of medium-resolution imagery to map
floating kelp forests only in areas of mid–low slope, i.e., imagery resolution between
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20.0 and 60.0 m is not recommended for high slope areas where fringing small kelp forests
dominantly occur.

Figure 11. Kelp forest size (m2) by segment slope where blue represents all kelp forests found within
the low–mid slope category (0–11.3%) and orange represents high slope area (11.4–37.0%).
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Figure 12. The change in floating canopy area as a percentage of that derived from the original
image plotted by resolution separated into (A,C,D) low–mid and (B,D,F) high slope categories for
(A,B) QuickBird-2 (original resolution: 2.6 m), (C,D) RapidEye (original resolution: 5.0 m) and
(E,F) Sentinel-2 (original resolution: 10.0 m).

4. Discussion

With advances in remote sensing technology, opportunities to map and monitor im-
portant ecosystems across large scales through time are increasing. The Landsat series
offers the best tool to map floating kelp forests at a single resolution (30.0 m) back through
time [13,19,46,62,63,99]. However, the ability to use medium-resolution imagery to accu-
rately map changes in floating kelp canopy area through time remains difficult in regions
with small fringing kelp forests, such as the Pacific Coast of Canada and Oregon [46,52].
Here, we developed a framework combining standardized practices and adaptable meth-
ods to produce a long time series of accurate maps of floating kelp forests from satellite
imagery acquired at various spatial resolutions. We show that the ability to map floating
kelp forests at different imagery resolutions can vary spatially based on ocean floor slope,
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and thus this metric can be used to highlight areas of uncertainty. Herein, we make a case
for the workflow, discuss the impact of spatial resolution on kelp detection, summarize rec-
ommendations for researchers when using the multi-satellite mapping framework (Table 6)
and more broadly consider the limitations and applications of the research.

Table 6. A summary of the recommendations outlined in the discussion for researchers applying
the multi-satellite floating kelp mapping framework to create a long-term time series of kelp forest
canopy area.

The Multi-Satellite Kelp Mapping Framework Recommendations

Quality Criteria

Have a set of quality criteria adapted for the specific area of interest when choosing what images to
use to minimizes the time and cost associated with building an archived imagery time series.
Things to consider in the development of criteria for a given area:
Peak biomass for acquisition timing;
Aim for low tidal heights;
Minimize cloud cover and haze;
Minimize glint and waves;
Minimize low sun angles and shadows;
Minimize adjacency effects.

Geometric and
Atmospheric
Corrections

When possible, attain imagery as atmospherically and geometrically corrected products and when
not possible use simple approaches such as a first-order polynomial shift for geometric correction
and the Rayleigh correction method to adjust atmospheric scattering and attenuation.

Band Indices/Ratios

Use a measure of class separability such as the M-statistic to determine the best combination of band
indices and ratios to use for each sensor. The most common band index used in floating kelp forest
remote sensing is NDVI. However, we found G-NDVI, as well as band indices using the RedEdge
band, often produced higher M-statistic scores.

Classification

To classify floating kelp area within different imagery from different satellites, use an adaptable OBIA
classification with the help of the feature space optimization tool to minimize errors and attain
high-accuracy scores. In this case, the feature space optimization tool often selected between three
and 10 features depending on the image, with, generally, the mean of the red-edge band, the mean of
the near-infrared band and/or the mean of the band indices selected. Of note, expert knowledge is
required to choose samples to train the classifier and a visual quality assessment of the classification
should be performed to minimize erroneous classifications prior to the accuracy assessment.

Accuracy Assessment
When possible, collect in situ validation data. However, if no ground-truth data are available, other
forms of data can be used to validate the classification, such as past surveys that show the location of
kelp forests, or expert knowledge based on reflectance values.

Resolution

The ability to map floating kelp forests at different imagery resolutions can vary spatially based on
ocean floor slope, and thus this metric can be used to highlight areas of uncertainty.
Based on the Haida Gwaii test area:
We suggest that regions with slopes higher than 11.4% should either be mapped only with the
high-resolution imagery or excluded from comparisons between high- and medium-resolution
imagery. We suggest that changes up to 7% be taken into consideration when comparing kelp
distributions from imagery at different resolutions in low–mid slope areas.
Special attention should be given to the detection limits at different resolutions when applying the
framework in new areas, thus we suggest performing similar resolution analyses and adjusting the
ocean floor slope threshold accordingly, especially if segment size and kelp forest density and species
vary significantly from those presented in this study.

4.1. Methodological Framework: Standardization and Adaptability

In remote sensing, Earth observation satellite data has become readily available, and
users often face confusion when trying to determine which satellites to use to produce
the best results for their given application [100]. In this paper, we highlighted some of the
most well-known sensors for mapping floating kelp forests, such as the Landsat, SPOT
and Sentinel-2 satellites (e.g., [19,46,62,65]), while also presenting some new cost-effective
high-resolution options such as imagery from RapidEye, Worldview and PlanetScope
satellites, which add valuable data into the kelp mapping field with their coverage since
2008, 2009 and 2018, respectively. In addition to the choice of satellites, having a specific set
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of criteria when choosing what images to use is crucial in minimizing the time and cost
associated with building a time series (Table 6) [38,100,101]. We demonstrated one possible
set of criteria that can be used to minimize errors associated with environmental conditions
and the timing of satellite imagery acquisition. Of note, the criterion should always be
selected based on the specific areas of interest. In particular, other factors that could lead to
the erroneous classification of floating kelp forests in satellite imagery are land adjacency
effects, high currents independent from tides, water turbidity and the presence of algal
blooms [47]. Our analysis did not consider these because they were largely absent in our
study region. However, in our case, clouds and higher amplitude tides often limited the
availability of good quality images. As such, some mid- to high-tide images (3.0–5.0 m
above chart datum) were included, based on a visual assessment of the imagery. A loss of
floating canopy area up to 42% when comparing a 2.0 m tidal height difference was found
on the Central Coast of BC [46]. In California, where Macrocystis kelp forms large offshore
forests similar to those found within the study area, increases in tidal height of 1 m in UAV
imagery reduced the floating canopy area from 15% to 30%, but was site dependent [102].
However, little to no difference was detected in Landsat satellite-derived kelp biomass
measurements across a 2.0 m tidal difference, likely related to the coarse resolution [19,50].
Consequentially, researchers should be aware of the impact that tides can have on detection
when determining their tide criterion and using this framework for time series analyses.
The impact of tides can be site, species, density and kelp forest size dependent [102,103].
Upon visual comparison we found no major difference between tidal heights used in this
study; however, more analyses are needed to understand and quantify the impact of tides
in this region.

Once a good quality imagery database is created, users are faced with many inconsis-
tent and complex approaches to correct systematic errors, such as atmospheric attenuation
and geometric distortions in imagery [25,104]. In order to keep the workflow streamlined
and easy to use, we propose a simple geometric and atmospheric correction method that
can be applied to imagery from various sensors (Table 6). For georectification, we found
that a simple first-order polynomial shift, which considers systematic and random distor-
tions in images [44,67,105], properly addressed any geometric distortions present. There
are numerous atmospheric correction methods that range from simple techniques like
the Rayleigh correction method [63] to the more complex algorithms that need supple-
mental data, including atmospheric models and, ideally, in situ measurements [106,107].
Other researchers, for instance, have effectively used models such as the Fast line-of-
sight Atmospheric Analysis of Hypercubes (FLAASH) [35] and the Atmospheric and
Topographic Correction (ATCOR) [46]. Nonetheless, these methods can often under- or
overcorrect values when parameters are not adequately chosen, making it challenging for
non-remote sensing experts to use, and problematic when applied over large bodies of
water [108–110]. When possible, imagery should be downloaded as already corrected
products, such as in [52,53,62,65]. For example, the United States Geological Survey (USGS)
provides Landsat Analysis Ready Data (ARD) products [111] and the Planet provides
Surface Reflectance (SR) products [112]. However, when these products are not avail-
able, adhering to a simple method that only requires within-image information is recom-
mended to prevent errors related to inconsistent methods or data input. We found that the
adopted Rayleigh correction method resulted in similar floating kelp and water spectra
as those from the literature [25,44,62]. More importantly, the shape of the floating kelp
and water spectra from the corrected images were akin to those of the atmospherically
corrected products.

Numerous band ratios and vegetative indices have been used to enhance floating kelp
forests in satellite imagery [25]. Most notably, NDVI, which was initially used to detect healthy
land vegetation [113], has been co-opted for floating kelp forests [19,25,46,48,50,52,53,63,114].
Based on the literature, NDVI has been effectively applied to Sentinel-2, Landsat and SPOT
satellite imagery to differentiate kelp from other classes. Alternatively, based on M-statistic
analysis, and similar to [25], we found that the NDVI with the green band (G-NDVI)
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instead of the red band performed better, most likely because less noise was visible in the
green band than in the red band. Additionally, indices that included the red-edge band
outperformed other indices, likely associated with the ability to detect slightly deeper
kelp better than the near-infrared band [115]. Considering these factors, within an image
pixel, there is likely a spectral signal mixture of submerged and floating kelp canopy with
water; consequently, users should consider that the red-edge indices may produce a higher
reflectance signal or slightly more kelp area than nonred-edge indices, depending on the
properties of the kelp forest (percentage submerged, depth, size, density, species, object
size). Although different band indices were chosen in our analysis, the overall accuracy
of the kelp maps produced remained high across all satellites regardless of chosen index,
indicating the viability of using different band indices to enhance the detection of floating
kelp forests.

Among the many different forms of classification, a commonly used method, the
Multiple Endmember Spectral Mixture Analysis (MESMA), has been effectively used
for mapping kelp forests in Landsat imagery. The MESMA is a pixel-based approach,
which linearly models the amount of kelp and seawater in each pixel using one kelp pixel
endmember and multiple water pixel endmembers [19,19,50,62,99,116,117]. In comparison,
the OBIA approach presented herein and first used by [25,38] to map kelp forests, is based
on clustering pixels into objects before the classification. The advantages of using the
OBIA approach proposed in this framework are related to less computational power, less
consideration of imagery noise commonly found in pixel-based classifications, the ability
to mimic the visual interpretation of features in an image, and the ability to scale object
sizes to remain similar across different resolution imagery [25,83,84,84,85,118,119]. Most
importantly, the feature space optimization tool allows for the classification to be optimized
on a per image basis. With an OBIA approach, single kelp plants are not being detected, but
the aggregates of plants floating at the surface, with the inclusion or some submerged kelp
and water gaps between patches, depending on the size of objects selected by the user. This
gives users the ability to define the best object size based on forests in their region and the
resolution of imagery used. Additionally, when users are trying to detect very small and
sparse fringing forests in high-resolution imagery, that result in single pixels needing to be
classified as kelp, a pixel-based classification has shown to outperform OBIA [25]. In this
case, users should be cognizant of the limitations of OBIA and should test the performance
of pixel-based methods described in [25].

Across all sensors, the multi-satellite mapping framework resulted in high overall
global accuracy (from 88% to 94%) when compared to the range (from 59% to 94%) doc-
umented in the literature [25,38,46,52,66]. It is important to note that different sources of
validation data were used to evaluate the classification results, including field observations
concurrent with imagery acquisition, data acquired from airplane and SCUBA surveys,
matched for the same year, and some not matching the same year. However, for using
all the different data sources, expert knowledge was always embedded prior to the accu-
racy assessment to minimize the use of erroneous classification outputs when comparing
with validation data. Generally, the errors of omission and commission showed that most
errors occurred at medium-resolutions where sparse, and narrow fringing forests along
steep shorelines were misclassified as water or omitted due to the coarse resolution low
water mask, similar to [46]. This indicates that the relationship between imagery spatial
resolution and floating canopy area has to be considered to highlight mapped areas with
high uncertainties.

4.2. The Impact of Resolution and Drawing Appropriate Conclusions

The framework presented here incorporated the analysis of a large range of satellite
imagery with spatial resolutions ranging from 2.5 to 60.0 m (except for the one aerial image
with a resolution of 0.5 m). Generally, although the imagery resolutions differed by one
order of magnitude, the mapped floating canopy area at the regional level did not largely
differ among resolutions. However, at a finer spatial scale, we found that the floating
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canopy area mapped in high slope areas (associated with fringing kelp forests) were more
impacted at coarser resolutions, indicating that these areas are prone to higher classification
errors. As such, we propose the addition of a new parameter, ocean floor slope, to define the
limitations of mapping floating kelp forests from different resolution imagery. Particularly,
the comparison between floating kelp forest size and slope showed that high slope areas
support small kelp forests, leading to more uncertainty when mapping with medium-
resolution imagery (up to 50%). Based on these factors, we suggest that regions with
slopes higher than 11.4% should either be mapped only with the high-resolution imagery
or excluded from comparisons between high-resolution and medium-resolution imagery
(Table 6). Additionally, for the time series of floating kelp forest change, we recommend
that users consider that a certain percentage of differences among years can be attributed
to errors due to resolution, and not be attributed to true changes in floating canopy area.
Within our region, we suggest that changes up to 7% (with high slope areas removed from
the analysis) be taken into consideration when comparing area from imagery at different
resolutions (Table 6).

4.3. The Challenges and Broad Applications of the Methodological Framework

A few challenges and limitations remain when using this proposed framework. Unfor-
tunately, the remote sensing of kelp canopies in this framework are currently limited to
those floating on or close to the surface, due to water’s high-absorption of the near-infrared
signal [115]. The detection of subsurface kelp forest canopy from aerial and satellite im-
agery remains difficult, is limited to shallow depths, generally necessitates clear waters and
often requires the use of high-resolution imagery or hyperspectral data [66,120–122]. More
work would be needed to expand these methods to subsurface kelp forests. Additionally,
environmental impacts (e.g., tides and currents) are challenging to isolate because they
largely differ based on location, species type, density and the time of imagery acquisition.
We were able to minimize the impact that different environmental conditions have on
imagery through criteria; however, we were unable to quantify or create correction factors
for the impact of tides or currents. Of note, given our goal to produce highly accurate
floating kelp forest maps, the approach suggested here is a supervised classification method
and needs some expert knowledge to determine good training samples for the classifier in
any given area. Moreover, when using the multi-satellite mapping framework, researchers
should consider the species and density of kelp forests present within their region. In our
case, floating kelp forests were generally dense, regardless of the forest size and species,
thus conforming with the presented framework. For other regions where sparse kelp forests
dominate or areas containing solely Nereocystis kelp forests, special attention should be
given to the detection limits at different resolutions, the use of OBIA versus pixel-based
classifications for very small sparse forests [25] and the ocean floor slope threshold.

The spatial resolution analysis and subsequent recommendations were conducted
with rigorous methodological criteria; however, the analysis was limited to samples
of imagery from three satellites. We acknowledge that the sample size is limited, and
other satellite-associated variables beyond spatial resolution, including spectral
resolution, signal-to-noise ratio, and satellite vicarious calibration, also play a role in
detectability [25,123,124]. However, the resolution analysis allows for a conservative ap-
proach when drawing conclusions from the time series of floating kelp forests. Additional
research in the future may include defining correction factors, similar to the tidal correction
factor applied by [62], to minimize the effects of the different spatial resolutions. For this,
we recommend multiple replicates of comparisons between satellite images collected at
different spatial resolutions in similar conditions over the same location, within a short time
frame. Furthermore, it is important to note that our unit of analysis was ~1 km segments.
In the literature, the size of segments for kelp time series analyses vary substantially (e.g.,
100 m in [38], 8 km in [43] and 1 km in [125]), and as such, special consideration should be
given to the scale of future analyses. We advise that further explorations of the resolutions’
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impact on kelp detectability be made if the unit of analysis (segments length) significantly
differs from the 1 km segment size presented in this study.

Many methods exist to detect floating kelp forests from satellite imagery; however,
most focus on compiling a time series using a single type of sensor, which can limit either
the spatial resolution of imagery available (i.e., 30.0 m Landsat imagery from 1984 onwards),
or with the use of high-resolution satellite imagery the length of the time. The MESMA
approach, used with Landsat imagery from 1984 onwards to detect large offshore forests of
kelp in California [19,50,62,117], has been used to map Macrocystis in the southernmost part
of Argentina [108] and Nereocystis off the coast of Northern California [91] and Oregon [52].
However, when this approach was used to map kelp forests on the Central Coast of
BC, between 28% and 75% of kelp that was present in the shoreline areas was missed
due to the medium-resolution of the Landsat imagery [43]. Recently, a similar method
using 10.0 m Sentinel-2 data was created [65], and although this method uses higher-
resolution imagery, the Sentinel-2 data repository only dates back to 2015. In contrast,
the methodology presented here enables trends to be understood with high-resolution
data back to the early 2000s, and medium-resolution data back to the 1970s. The methods
proposed by [25,46,50,65], and the one shown here, when integrated with the growing
availability of higher-resolution imagery such as the Planetscope satellite series (available
since 2018), will streamline the monitoring of floating kelp forests into the future. It will also
continue to allow scientists to better understand large-scale trends in floating kelp forests in
a time of unprecedented kelp forest loss, such as those documented in California [117,126],
Baja California [12], Japan [127,128], Australia [9,10,129–132], Oman [133], Norway [134],
Spain [135,136], Chile [137] and the Atlantic Coast of Canada [11].

5. Conclusions

Globally, threats to kelp forests are on the rise; however, locally, kelp forests show
highly variable patterns of change [1,3]. This study highlights that with the advancement
in Earth observation satellite technology, archived satellite imagery can be leveraged for
the monitoring of crucial floating kelp forest ecosystems using medium-resolution imagery
from the 1970s onwards, and more recently, using high-resolution imagery from the early
2000s onwards. The multi-satellite mapping framework allows for the creation of a floating
kelp canopy area time series using medium- to high-resolution satellite imagery through
standardized practices (i.e., the image quality criteria, geometric and Rayleigh correction)
and adaptable image-to-image methods (i.e., band index/ratio selection and OBIA). We
acknowledge that differing resolutions have an impact on kelp detection, and that when
using this framework we suggest using ocean floor slope (removing areas of slope > 11.4%)
as a metric to highlight areas of uncertainty in kelp detectability. Creating these long
time series of floating kelp forests using the framework can facilitate the monitoring and
protection of these important nearshore habitats from emerging threats. Additionally,
when coupled with environmental driver data and/or climate prediction modelling, it can
highlight the regions of risk and resilience of floating kelp forests globally.
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