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Preface

In this Special Issue, we aim to promote the study of special functions and, particularly the
functions of orthogonal polynomials and their applications, not only in the traditional context
of mathematical physics equations and integro-differential equations, but also in the contexts of
combinatorial theory, analytic number theory and linear analysis. Many articles have recently been
published on special sequences of numbers or polynomials in the context of analytic number theory.
The analysis of fractional calculus through the concepts and formalism of some classes of orthogonal
polynomials (particularly Hermite polynomials) is a further research area for this UIR, as well as
the study of extensions in the case of the fractional index of polynomials of Chebyshev, as well as
the multidimensional case of pseudo-Chebyshev and pseudo-Lucas, and the generalizations of the
numbers of Bernoulli, Euler, Hahn, Bell, etc., also through expressions of polynomials in the form of
determinants.

The relationships of multidimensional orthogonal polynomials (particularly Lucas polynomials)
with linear algebra and the related applications in the study of linear dynamic systems are now well

known and therefore allow for expanding our knowledge in the disciplinary areas considered above.

Clemente Cesarano
Editor
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Abstract: This study proposes a mathematical model that accounts for the interaction of bacteria,
phages, and the innate immune response with a discrete time delay. First, for the non-delayed model
we determine the local and global stability of various equilibria and the existence of Hopf bifurcation
at the positive equilibrium. Second, for the delayed model we provide sufficient conditions for
the local stability of the positive equilibrium by selecting the discrete time delay as a bifurcation
parameter; Hopf bifurcation happens when the time delay crosses a critical threshold. Third, based on
the normal form method and center manifold theory, we derive precise expressions for determining
the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical
simulations are performed to verify our theoretical analysis.

Keywords: phage therapy model; delay; stability; Hopf bifurcation; numerical simulations

MSC: 34K18; 34K20; 34C23

1. Introduction

Phages are viruses that infect prokaryotic organisms, and are important components
of ecological systems [1]. Phages infect bacteria by injecting their genetic material into
cells. When the virus enters the cell, it prevents other phages from attacking it and begins
to reproduce within the host until the number of new viral particles reaches the bacterial
threshold [2,3]. The use of bacteriophages to treat bacterial infections, commonly referred to
as phage therapy, dates back to the early 20th century. Phage treatment can be more effective
than antibiotics in treating various medical conditions [4]. Moreover, phage therapy has
multiple potential applications, and can even be employed in place of antibiotics in certain
circumstances [5]. Clinical research on phage therapy has not shown any of the severe side
effects such as anaphylaxis that are sometimes associated with antibiotics [6].

Mathematical models are widely used in various fields, including biology, epidemi-
ology, engineering, physics, sciences, business, and computer science. They help us to
understand ecosystem dynamics, quantify disease control strategies, and gain new theoret-
ical insights into nature [7]. Nonlinear dynamical systems are commonly used to describe
biological systems and relationships between individuals. Researchers have developed non-
linear dynamical systems for various biological phenomena, including stability, persistence,
and bifurcation. Mathematical modeling of phage therapy is crucial for understanding
bacteria—bacteriophage interactions and their long-term behavior. Various models have
been constructed, resulting in numerous beneficial outcomes [2,8-16].

Copyright: © 2023 by the authors.

_ _ Considering that the evolution of a system is dependent on its present and previous
Licensee MDPI, Basel, Switzerland.

states, time delays must be included in the model. Accordingly, authors have focused on
dynamic behaviors such as stability and the existence of Hopf bifurcations in delayed popu-
lation models [17-20]. The above-mentioned references have investigated the existence and
Attribution (CC BY) license (https://  direction of Hopf bifurcations and the stability of positive equilibria. The application of
creativecommons.org/licenses /by/ delay differential equations to the modeling of biological phenomena has gained popularity
40/). in recent years. In particular, several studies have presented bacteria-bacteriophage models
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by introducing a time delay to generate more realistic models; see for example [21-26] and
references therein. Meanwhile, due to the complexity of the impacts of delay on a system’s
dynamic behavior, researchers have increasingly focused on the dynamic behavior of de-
layed phage therapy models, such as their stability and the occurrence of Hopf bifurcations.
In a model of a delayed marine bacteriophage infection, Beretta et al. [21] analysed the
global and local stability of the equilibrium. Beretta and Solimano [22] expanded upon their
previous research [21] to investigate how delay impacts equilibrium stability. In [23], the au-
thor addressed models of marine phage infection with delay and stage structure achieving
the persistence and extinction of the system under specific conditions. Gakkhar and Sa-
hani [24] proposed a model of bacteria—bacteriophage interaction with a constant delay.
They examined a simple Hopf bifurcation for the non-zero equilibrium point and outlined
the conditions for a susceptible bacteria-free equilibrium and its stability. Casino et al. [27]
identified the optimal lysis time for bacteria—phage interactions in a structured cell popula-
tion model. Additional delayed bacteria-phage models can be found in [28-31] and the
references cited therein. Several significant studies have been published on diffusion-based
bacteriophage models [32-34]. Mathematically rigorous studies of stochastic models for
bacteriophage infection with and without time delay have been published as well [35-39].

Understanding the interactions between bacteria, phages, and the immune system is
essential to developing successful bacteriophage therapeutics. Meanwhile, bacteriophage-
based bacterial elimination has therapeutic potential and is currently utilized to treat
bacterial infections [40,41]. Mathematical models of bacteria—phage interactions that include
immune responses are of growing interest to the authors. Leung and Weitz [42] proposed
a nonlinear ODE phage therapy model involving bacterial, phage, and immune system
interactions:

‘ B elB
B=rB(1—— ) —¢BP— —————
r( KC) P T Ky
P = BpBP — wP, )

[=ual (1 — I> L,
K;) B+ Ky

where B(t), P(t), and I(t) represent the concentrations of bacteria, phages, and the immune
system at time t, respectively, and r and K¢ represent the maximum growth rate and
carrying capacity of the bacteria, respectively. The phages attach to and infect the bacteria
with an adsorption rate of ¢ and release new virus particles with a burst size of . The phage
particles decay with the death rate w. The presence of bacteria with a maximum growth rate
« activates the immune system. Meanwhile, the immune carrying capacity is K; and the
killing parameter is €. Finally, Kp is the bacterial density when the host immune response is
half-saturated and Ky is the bacterial concentration at which the innate immunity growth
rate is at half its maximum.

In [42], Leung and Weitz simplified the above System (1) by employing a quasistatic
approximation in which the innate immune response is represented as a constant. This
simplification is reasonable considering that the concentrations of bacteria and phages are
expected to change more rapidly than the immune response. They applied this approx-
imation when the innate immune response reached its maximum Kj. This resembles a
circumstance in which the innate immune response does not control bacterial infection.
Phages are then included as an additional treatment. In this case, the model equation in (1)

reduces to
. B eK;B
B=rB|l—— | —¢BP — ————,
( Kc) ¢ 1+ B/Kp )
pP= BpBP — wP,
with the initial conditions
B(0) >0, P(0) > 0.

In [42], Leung and Weitz discovered a synergistic regime in which the phage and
immune system cooperate to eradicate bacteria. They demonstrated that the interaction



Axioms 2023,12,772

between phages and the immune system is essential in order for phage therapy to effectively
eliminate bacterial infections. However, they did not discuss the dynamic behaviors of (1)
and (2), such as positivity, boundedness, persistence, stability, Hopf bifurcation analysis, etc.
In [43], we examined the mathematical dynamics analysis of the model in (1) formulated
by Leung and Weitz [42], studied the persistence, non-persistence, and local stability of
possible equilibrium solutions, and provided the criteria for the global stability of the
planar and positive equilibria. However, the analysis of such dynamics for the model in (2)
was not completed in our previous paper [43].

Determining how delays influence the system’s stability, dynamics, and bifurcation
is a challenging mathematical problem, and nonlinear dynamical bacteria-bacteriophage
systems with time delays are extremely challenging because of the application of nonlinear
biological phenomena and their dynamic behavior. There are a number of papers in the
literature on modeling bacteria—bacteriophage systems using delay differential equations.
Inspired by this previous literature, it appears that the model can be made more realistic by
incorporating additional terms such as the time delay obtained from the past states of the
system. For example, as noted in [21], the introduction of time delay can induce the system
to exhibit complex dynamic behaviors, a development that is vital for advancing phage
therapy. As far as we know, this model (2) has yet to be studied with the incorporation of a
time delay and analysis of its dynamic behavior, making the present study an important one.

Motivated by the above discussion and based on [33], in this paper we assume that
the recruitment of phages and the infection of bacteria both require discrete time lags and
introduce a discrete time delay into System (2). Such a model is more biologically realistic
than existing models. Based on the work of [42], the delay-induced modified model is
represented by

; B eK;B
B—rB(l KC) ¢BP 1T B/Kp’ 3
P = B¢B(t — T)P(t — T) — wP.

subject to the initial conditions By(v)
where x, € C([—7,0] — Ry ) and (y
stant.

According to other related studies, for example, [21,26,28,33], etc., the delay can
destabilize the coexistence equilibrium and lead to the Hopf bifurcation of the system.
Therefore, in this paper there is a real need to pose the important question of whether
the delay causes System (3) to display these characteristics. Motivated by this fact, we
introduce System (3) by adding a time delay term to System (2), then study the effects of
delay on the dynamics of the system.

The remaining sections of this paper are organized as follows: in Section 2, we examine
results relating to the non-delayed model, including the local and global stability of the
positive equilibrium and the occurrence of Hopf bifurcation; Section 3 discusses similar
results along with the stability and the direction of Hopf bifurcation for the delayed model;
in Section 4, we conduct numerical simulations to verify our analytical results; finally,
Section 5 presents the conclusions of this study.

=x1(v) >0, Py(v) = x2(v) > 0and v € [—7,0],
= 1,2) are given functions and 7 is a positive con-

2. Dynamics of the Non-Delayed Model
2.1. Positivity and Boundedness

In this context, positivity indicates that the population survives and boundedness
represents a natural growth restriction due to limited resources. This subsection analyses
the positivity and boundedness of the model in (2). In theoretical ecology, the biologically
well-behaved nature of a system is established through its positivity and boundedness.
Thus, System (2) has the following outcome.

Lemma 1. System (2) has solutions (B(t), P(t)) in the interval [0, 00) that satisfy B(t) > 0,
P(t) > 0,and ¥Vt > 0.
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Proof. The model in (2) can be written in matrix form:
X =g(X),
X = (x,x)" = (BP)" € R
where G(X) is provided by
KB
G(X) = ( 91(X) ) _(rB(1- ) o8P - i
G2(X) B$BP —w P

Because G(X) and % are continuous in R%r, it is the case that G : Ri - R?is locally
Lipschitz. By the standard theory of the ODE system, it follows that model (2) has a unique
solution for any initial condition X(0) = Xy = (B(0), P(0)) € R2.

Further, the model in (2) can be rewritten as

dB dP
E*B(Pl(BIP)/ dt *P(PZ(B/P)/
where K
—y_ T pg_pp_ 1
$1(B,P)=r KCB ¢P 17 B/Kp’

¢2(B, P) = p¢B — w.

dB 1
"2 = B#1(B,P) = 5dB = ¢1(B,P)

By integrating, we obtain
InB = /¢1(B, P)dt + InC
—~ B= exp[/ ¢1(B, P)dt + InC] = Cexp[/gbl(B, P)dt].
It follows that ,
B(t) = B(O) exp | [ 91(5(5), P(s))s]

where C = B(0). Thus, B(t) is always positive, as B(0) > 0. Similarly, from second equation
of System (2) we can find the positivity of P(t), as P(0) > 0. Hence,

B() = B(0) exp| [ n(B(5), P(9)ds]| 20,
P(t) = P(0) exp {/Ot cpz(B(s),P(s))ds] > 0.
Thus, the solution X (t) = (B(t), P(t)) with initial condition X(0) = Xy = (B(0),P(0)) €

R3 remains positive throughout the region R%. O

We next investigate whether the model in (2) is bounded within a particular region of
the dynamical space.

To demonstrate the uniform boundedness of the model in (2), the following compari-
son lemma [44,45] is needed.

Lemma 2 (Comparison lemma). If K(t) is an absolutely continuous function which satisfies the
differential inequality

d(K(t))
dt

+ o K(t) <0y, suchthat t>0,
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where (01,07) € R? and oy # 0, then for all t > T > 0 we have

K(t) < % - <(‘;2 - K(T))Mﬂff).
1 1

Remark 1. All solutions of System (2) initiating in R are subject to the region G = {(B, P) €
R3 :o(t) < L} withv:= %(r +w)?, as t — oo for all positive initial values (B(0), P(0)) €
R%, where @(t) = BB(t) + P(t). Using Comparison Lemma 2, we establish the outcome for a
delay system. The proof follows in a similar fashion; see Theorem 6 as well.

2.2. Existence of Equilibrium Points

This subsection demonstrates that the model in (2) has different equilibrium solutions.
The following are the probable equilibria of System (2) according to [43] and simple
calculation:

1. Trivial equilibrium: Ey = (0,0)

2. Boundary equilibrium (phage-free equilibrium): E; = (B,0), where

B= KCEKD + \/(KCZKD)Z — eKIKrCKD with Kc > Kp and r > €K
3. Interior equilibrium: E; = (B*, P*), where

* ﬂ * l _ w _ €K
o T T (7(1 Bokc) 1+w/5¢KD) @
with [524)21( oK
€ I8CAD
r> (BpKe — w)(w + BpKp) and w < BpKc (5)

2.3. Stability Analysis

Stability refers to a system’s ability to resist small perturbations. Stability analysis is an
acceptable tool for studying the long-term behavior of dynamic systems. In this subsection,
we discuss the local and global stability and bifurcation analysis of System (2).

2.3.1. Stability Analysis of Eg = (0,0)

Theorem 1.

(i) The equilibrium Ey = (0, 0) is locally asymptotically stable if r < K.

(ii) If the parameter r reaches the transcritical threshold r = ry, = €Ky, a transcritical bifurcation
arises around Eg for System (2).

Proof. To acquire the local stability outcomes, we employ the Jacobian matrix related to

System (2):
2 eK
J(B,P) = < ro kB9 - mmge 9B )
poP pyB —w
(i) The Jacobian matrix of System (2) at Ey is

J(Eo) = ( r—OeKI 0 )

—w

Thus, the trace and determinant of the matrix J(Ey) are tr(J(Ep)) = r — eK; — w and
det(J(Eo)) = —w(r — €Ky), respectively. If r < €Kj, then tr(J«(Ep)) < 0and det(J(Ep)) > 0,
and Ej is locally asymptotically stable. Hence, Ey is always unstable (saddle) when r > €Kj.

(ii) To demonstrate Theorem 1 (ii), we can use the transversality criteria based on
Sotomayor’s theorem [46]. To use Sotomayor’s theorem, one of the eigenvalues of the
matrix ] (Ep) must be zero at the bifurcation point ;.. One eigenvalue of J(Ey) disappears at
r = ric = €Ky, while the other is —w < 0. Let A = (1,62)T and Y = (771, 72)" represent the
eigenvectors of J(Eg) and JT(Eg) with zero eigenvalue, respectively. Then, A =Y = [1,0]".
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We define S(B, P) = [V(B,P), W(B,P)]".
Therefore,

T

oV (B, P) 8W(pr)]T: [B(1-B/Kc),0]

o or

5,(B,P) = [
which provides
. T
Y [Sr(B,P)] = [1,0] [3(1 - B/KC),O] — B(1— B/Kc).
Hence, we have YT {Sr (Eo; th)} =0.
Now,
v 9V —_ 2B
DSr = aav\';r a%y = Ke .
9B P o 0

Thus, we have YT [DS, (EO; rtc)A] = [1,0] [1,0]T =1 # 0, where

1 0
DSr(EO?rtc) = ( 0 0 )

Now, we can check the transversality condition.
Here,

D2S(A, A) = ( VBBo161 + VBpd102 + Vppdadi + Vppdads )
’ Wgpd161 + Wppd10; + Wppdady + Wppdada )’
where Vgp(0,0) = — 2= + 5L, Vip(0,0) = Vpp(0,0) = —¢ < 0, Vpp(0,0) = 0, Wpp(0,0) =

0, WBP(O, 0) = Wpp (0, 0) = ‘B(P > (0, and pr(O, O) =0.
T
Thus, DZS((O,O);rtC) (A N) = {_1%2 + %,0} , meaning that we have

YT D25((0,0);1c) (A, A)] = [1,0] [—Zr+2€KIf r - [‘IZ+21iﬂ 7o

Kc ~ Kp
Hence, the system undergoes a supercritical transcritical bifurcation at Ey. The proof
is now complete. O

Remark 2. When r < €Kj, it is easy to observe that the trivial equilibrium Eg is locally asymptoti-
cally stable and that the phage-free equilibrium Eq does not exist. In contrast, the existence of Eq
implies the instability of Eg. Furthermore, the above discussion provides information regarding the
experience of transcritical bifurcation around Ey.

2.3.2. Stability Analysis of E; = (B,0)

Theorem 2.

(i) The phage-free equilibrium E; = (B, 0) is locally asymptotically stable if
eK;KcK3,

(Kc —2B)(B+ Kp)?

r< and w > B¢B.

(ii) The equilibrium E; = (B, 0) is globally asymptotically stable in the interior of the first quadrant
of the plane.
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Proof. (i) The variational matrix of the equilibrium E; = (B, 0) is

w5 €KK} 5
JE) = " RE T me PB )
0 ByB —w
_ 2 _

The roots of ](El)zare r— I%—ZB - %, BB — w. Hence, E; is locally asymptotically

. K{KcK 5

stable if r < (chzé)% and w > B$B.
(ii) Let (B,P) € R2 : {(B,P) € R? : B > 0,P > 0} and consider the function

L*:R2 — R,

L*(B,P) = b,(B— B — BIn(B/B)). (6)

The derivative of (6) along the solutions of System (2) is

dL* 1 _ dB _ B eK;
=BG =h -8 (1) - G| Z
Because E;(B*, P*) satisfies (2), after a simple calculation we obtain
B GKI
l—— ) = ——F——. 8
r( Kc> 1+B/Kp ®)

Replacing (7) with (8), we obtain

According to the negative coefficients of the square terms, % is less than zero along all

trajectories in the plane except Ep(B*, P*). Therefore, E;(B*, P*) is globally asymptotically
stable. [

2.3.3. Stability and Hopf Bifurcation of E; = (B*, P*)
ef’¢?KiKcKp

*
Theorem 3. Assume that r* = (@1 BoKp)?

and that (5) holds. The following assertions are ob-
tained:

(i) The equilibrium Ej of System (2) is locally asymptotically stable if r > r* and unstable if
r<r*

(ii) If r = r*, System (2) experiences Hopf bifurcation at Ep, and r* is the system’s critical
value.

Proof. The Jacobian matrix of System (2) at the interior equilibrium E, = (B*, P*) is
2r px* * eK %
J(E2) = ( G A )
poP* PpB* —w
Substituting the values of B* and P* described in (4) into J(E;), we obtain
EW,B¢KIKD2 . ru]é _w
Jo(Ep) = o (w+BpKp)?  PPKc AN

BpKc—w) _ ef¢KiKp
$Kc w+pPKp
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The characteristic equation of J.(E;) is

A2 —tr(J«(E2))A + det(J«(E2)) =0, )
e((B2) = —poic + (Zufgfélggz'
det(f.(E2)) =[P4 - Tt

OIfr>r = %, then tr(J.(Ez)) < 0, and the existence condition (5) of E;

implies det(](E;)) > 0. Thus, the characteristic Equation (9) has negative real parts, as
tr(J«(Ez2)) < 0 and det(]«(E;)) > 0. Hence, E; = (B*, P*) is locally asymptotically stable
in B-P space for r > r*. Moreover, E; is unstable in that space for r < r*.

(ii) It is obvious that if tr(J«(Ep)) = 0 and det(J«(Ez)) > 0, then both of the roots
must be purely imaginary. Thus, from the implicit function theorem a Hopf bifurcation
emerges in which a periodic orbit is generated as the stability of the equilibrium point Ep
ep*¢*KiKcKp

(w+BpKp)*
From the above analysis, it is easy to see that under the given conditions we have the

following: (a) tr(J«(Ez)) = 0, (b) det(J«(E2)) > 0, and (c) %tr(]*(Ez)) = _WLKC #0
at r = r*. This result guarantees the presence of Hopf bifurcation around the positive
equilibrium E;. The proof is complete. []

varies. The critical value of Hopf bifurcation parameter is defined by r = r* =

2.3.4. Non-Existence of Non-Trivial Periodic Solution of System (2)

It is essential to determine whether an ecological system has a periodic solution,
as the existence of such a solution can lead to complex ecological phenomena. On the
one hand, the nonexistence of a periodic solution can convert a locally stable equilibrium
into a globally stable one. In this subsection, using the Dulac-Bendixon criterion [46], we
demonstrate the non-existence of periodic solutions to System (2).

Theorem 4. If there exists a continuously differentiable function (B, P) in the interior of R’

such that ? - (®S) has constant sign and is not identically zero in any subregion, then system (2)
does not possess any limit cycle, and in fact has a closed trajectory which lies entirely within R’} .

Proof. Construct the Dulac function as ®(B, P) = BlT? and a C! vector field defined in R%

as S(B,P) = (V, W) = (rB — (- B% — ¢BP — KB BpBP — wp). Clearly, ® € C1(RY),

where Rio is the interior of R’} . Moreover, it is clear that @(B, P) > 0 in Rio. We obtain

V. (©S) = %(@)V) + %(@)W)

10 r €K; 10
—paB<"KCB‘4’P‘1+m>>+Bap<ﬁ4’B‘“’>

1 ( r eK IKD )

P\ Kc (B+Kp)

2p*K KK
< 0, provided r > M.
(w+ B¢Kp)

Obviously, ? - (®S) is neither zero nor changes its sign in the interior RZ. Thus,

according to the Dulac-Bendixon criterion, System (2) does not have a closed orbit that lies
ef?P’KiKcKp

. . . : 2
entirely in the interior R if » > (@1 BpKp)? *

2.3.5. Global Stability of E; = (B*, P*)

In this subsection, we provide the global asymptotic stability of the positive equilib-
rium E, by creating a proper Lyapunov function.
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Theorem 5. The positive equilibrium E; = (B*, P*) is globally asymptotically stable if p < 1
holds.

Proof. Define the functional L(B, P) : RZ — R such that

L(B,P) = L1(B) + Lp(P),
where L1(B) = (B—B* — B*In(B/B*)), Ly(P) = (P — P* — P* In(P/P*)). Clearly, L(B, P)
is continuous and well-defined on Int(R? ), while L is positive in the interior of R2 except

at E; = (B*,P*) and L(B, P) disappears at E; = (B*, P*). As a result of differentiating the
function L with respect to the time ¢ along the trajectories of (2), we obtain

dL _dLy,  dl,

@@ 10)
Furthermore, the time derivatives of L; and L, along the solutions of (2) are
dLy . B eK;
dL .
— = (P=P")(BgB —w), (12)

Because E, = (B*, P*) satisfies (2), by using a straightforward calculation we can

obtain
ek I

B* * — BHR*
1+B*/I<D:r(l_l<c>_¢P' w = BPB”. (13)

The result of replacing the two values of (13) with (11) and (12) is

dlLy _ —r 2 * *
W_K—C(B—B) —¢(B—B*)(P - P*), (14)
% = Bp(B — B*)(P — P*). (15)

Using algebraic computation, substituting (14) and (15) into (10) yields

dL —r

dt ~ K¢

<5 (-2 0+ B0) BB+ S+ pUP— PR

(B—B*)> —¢(B—B*)(P— P*) + pp(B — B*)(P — P)

If the requirement in Theorem 5 is satisfied, then % < 0 along all trajectories in R%
except for E; = (B*, P*). Hence, E; = (B*, P*) is globally asymptotically stable. [

3. Dynamics of the Delayed Model
3.1. Positivity and Boundedness

Next, we establish the positivity of the system (3). We can express the first equation of

(3) as
dB rB €K,
B (f‘KC“PP‘%)“

Integrating across the interval [0, ¢] yields the following result:

B() = BO) exp | [ {r = £-B() ~ 90P() = Tt ).

which indicates that B(t) > 0, V t whenever B(0) > 0.
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Using the second equation from (3), we can derive

P(t) = P(0) exp [/Ot{ PeB(s _PZ)P(S -7 _ w}ds],

which means that P(t) > 0V t whenever P(0) > 0. Thus, the interior of the first quadrant
is an invariant set for System (3).

Theorem 6. All solutions of System (3) initiating in R?. are subject to the region G* = {(B, P) €
S

R2 : o(t) < L} withv := BRC(r + w)?, as t — oo for all positive initial values (By (), Py(6))
R2, where o(t) = BB(t — T) + P(¢).

Proof. We define o(t) = BB(t — T) + P(t); when we differentiate ¢ with respect to t along
the trajectories of the model in (3), we obtain

do _ dB(t—1) L dP(t)

dt dt dt

= (e —)(1- 2D) - BB )

Kc ) 1+B(t-1/Kp
Hence,
" ) ) o ] BeKiB(t—1)
R | O R

< BB(t— 1) [(r ) - (- T)}

KC 2
< B— .
<B P (r+w)
Now, taking v = ,3% (r +w)?, we obtain

do
—_ < .
dt+wQ*v

Using Comparison Lemma 2, we obtain

0<0(t) < = — (= —alty) ),

and for t — oo we obtain
0<o(t) <

v
e
Hence, all solutions of System (3) are bounded. [

3.2. Stability Analysis

To establish the stability of the delayed model, we linearize (3) by replacing B(t) =
B* +v; and P(t) = P* + v, while retaining the first-order terms [20]. The linearized system
is provided by
dUl ok EK[KDB* %
R R e R
dvz % %
= = BoP*v1(t — T) + PPB o (t — T) — woy.

The variational matrix is

_r p* eK;K B* _ *
JE) = TR T Ekor 0B,
‘B(Pp*ef/\"r ‘B(PB*ef/\T —w

(16)

10
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For T = 0, the characteristic equation of J*(E;) is as follows:

A% — (c11 4 c)A + c11020 — c12621 = 0, (17)
where
r €K1KDB*
:—7B* 7 = - B*/ - P*/ - B*_ .
11 Ko + (B + Kp)2 €12 ¢B*, c1 = PPP”, cn = B¢ w

Then, Equation (17) is the same as Equation (9) of the non-delayed System (2) exam-
ined previously. Hence, when the first condition of Theorem 3(i) is satisfied the interior
equilibrium E; = (B*, P*) is locally asymptotically stable.

Alternatively, according to the Routh—-Hurwitz criteria, the roots of Equation (17) have
a negative real part, meaning that E; = (B*, P*) is locally asymptotically stable if

r GKIKDB*
=——B"+— B* — 0,
€11 + 22 Ke + B+ Kp )2 + B¢ w <
r GKIKDB* (18)
116 — 1261 = | ——B "+ —— B* —w) 4 B¢*B*P* > 0.
11622 — €12€21 < Ko (B*—i—KD)Z)(’B(’D ) + Bo
In the case of positive delay, the characteristic equation is
D(A) +F(A)e T =0, (19)
where
D(A) = A2 +ciA +cp; F(A) = c3A + ¢y, (20)
r GK]KDB*
= 73* —_—
AR T B k)
r €K1KDB*
= — —7B>’< - - =
= (g8 ko)
3 = _,B(PB*/

ek IKD B*
— B+ ————— +¢P* ).
c (B* +Kp)? 4
The characteristic Equation (19) is a transcendental equation with infinite solutions
near the positive equilibrium E, = (B*, P*). As periodic solutions of the system are of

interest, the eigenvalues of (19) must be purely imaginary. Substituting A = iw(w > 0) in
(19) yields

Cqy =

|
=)
<
&
*
/T\
=

—w? +iciw + ¢y + e 9T (esiw) = 0. (21)

Separating the real and imaginary parts, we obtain

cscos(wT) 4 cawsin(wt) = w? — ¢y, czwcos(wT) + eysin(wt) = —cw,  (22)
implying that
C4w2 — CpCy — clcng . C3w3 — 003w + C104w
cos(wt) = 73 , sin(wTt) = 73 (23)
c;tow c;tw
Eliminating T from (22), we obtain
W+ —2cp-B3)+ 3 -3 =0. (24)

11
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Equation (24) is a quadratic equation in w?. If we assume that c% — cﬁ < 0, then (24)
can have a positive root. Hence, we obtain a unique non-negative root wy of Equation (24)
as follows:

wo = (25)

J—( 2 —2c —c3) —i-\/ 262—C3 2+ 4(cF—c3)

Substituting the value of wy in (23) and solving for 7 yields

C3w8 + (C1C4 - C2C3)(A)0

. 26
(cs — cr03)w3 — cocy (26)

tan(woT) =

Thus, the critical magnitude 7; of the delay parameter corresponding to wy is derived

as follows:
1 3wy + (c104 — C203)w 27T
Ts = — arctan 370 (crc4 263)o + —

27)
wo (cs — cr03)w] — cocy wo

fors =0,1,2,3,.... For T = 0, E; is stable provided that C% — cﬁ < 0. Hence, according to
Butler’s Lemma [47], E; remains stable for T < T;, where 7, = 19 ats = 0.

3.3. Hopf Bifurcation Analysis

Biologically, all species that coexist exhibit oscillatory balanced behaviour. Meanwhile,
a periodic solution arises in a system when the analyzed equilibrium point changes in
stability as a function of its parameters. To capture the oscillating coexistence of populations,
we establish the Hopf bifurcation analysis around the coexistence equilibrium point with
the discrete delay as a bifurcation parameter. In this subsection, we explore the Hopf

bifurcation of the model, which requires the transversality condition d(gi/\) |T . > 0tobe

affirmed [48]. Setting A = iwy into (19), we obtain |D(iwy)| = |F(iwp)|, which specifies a
probable set of values for wy. We focus on the direction of motion of A as T varies, which
we decide as follows:

-1
o — sign |:d(§e/\):| = sign Re (i;/\) ‘|
T )\:1(470 T /\:l(do
When differentiating (19) with respect to T, we obtain
AT —AT d/\ —AT
[(2)\ + Cl) + c3e - T(Cg/\ + C4)e ]E = (C3/\ + C4)/\e , (28)
@ -1 _ 2A + ¢ cye AT T
dt  AeM(csAdcg)  (caAFeg)re AT A

2)L+C1 Cc3 _I
—AA2+ A 4cp)  AlesA+cq) A

B A2 —¢ N —cy T
- A2(A24 At ) A2(aAtcy) AT

12
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Thus,
d =si n{Re{ Moo + —ca - T/\} }
— S8 —A2(A2 4 A +ea)  AXesAtes)  AZ S aiw,
1 c w?
= —sign{ Re| — 2_+ 0 - =
wy wy —iciwy — € 103W0 + C4
1 (c2 + wj) (wf — c2) c
—351811 (wz_c)2+22+2 2 2
0 0 ¢ Ciwy  ¢;+ 3wy
1 w? 2 —¢2
= —sign % >0 (since ¢3 — ¢ < 0).
Wy €3+ 3wy

Hence, the transversality criterion is satisfied and the Hopf bifurcation happens at
w = wy, T = Ts. The biquadratic Equation (24) has a unique non-negative root; therefore,
the question of stability switching is irrelevant to our model [49]. The delay-induced phage
therapy model provides a periodic solution with a small amplitude that bifurcates from
the positive equilibrium point when the bifurcation parameter T crosses its critical value
T = Ty, where T is the smallest positive value provided by Equation (27). The following
theorem summarizes the above results.

Theorem 7. Suppose that the existence condition (5) of Eo and the conditions in (18) hold for the
model in (3). Then,

(i) If T < 7, then the interior equilibrium Ey is locally asymptotically stable.

(ii) If T > s, then the interior equilibrium Ey is unstable.

(iii) At T = 5, System (3) undergoes a Hopf bifurcation around E,(B*, P*).

3.4. Direction and Stability of Hopf-Bifurcating Periodic Solution

In the previous section, we determined the conditions for Hopf bifurcation around
the positive equilibrium point E;(B*, P*) at the critical value T = 7;. This section aims to
determine the direction of Hopf bifurcation and the stability of the bifurcating periodic
solutions from the interior equilibrium E;(B*, P*) with the help of the center manifold
theorem and the normal form theory created by Hassard et al. [50]. In this section, we
assume that System (3) undergoes Hopf bifurcation around the interior equilibrium E; at
T = Ts, with +iwy denoting the corresponding purely imaginary roots of the characteristic
equation at Ej.

First, we employ transformation vy (t) = B(t) — B*(t), va(t) = P(t) — P*(t), T = T +¢
of System (3) by Taylor series expansion for the positive equilibrium (B*, P*); thus, the
system becomes

do i i
7; = dygv1(t) +doro1(t) + ), d;;B'P,
i+]>2
do i pf
dTZ = morvp(t) + mipvy (t— T) + myoa(t —7)+ Y, muP'B/(t—1)P¥(t — 1),
irj k=2
where

HY =B (1 - If) — ¢BP _ KB he) B¢B(t — T)P(t — T) — wP,
C

- 1+B/Kp’
1 9itigM 1 Jititk(2)
Y1t 9BioPi ‘(B*,P*)/ ik = Ttk oPiOBI(t — T)dPk(t — 1) ‘(B*,P*)/
r €eK;KpB*
dig = ——B* + D2 doy = —¢B*, mip = PPP*, my = PPB*, mo; = —w,

Kc (B*+Kp)

13
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substituted by the functional differential (FDE) in C = C([—1,0], R?) as
0(t) = Ae(vr) + f(e,vp), (29)

where v(t) = (v1(t),v2(t))T € R?, v(v) = v(t+v) forv € [-1,0), and A, : C — R,
f : R x C — R are respectively provided by

_ I p* EKIKDB* _ *
Ae(p) = (TS+E)< Ke? T (B*+Kp)? B )

0 —w
(00 ) =@+ por por ) i) )

oo (e R BESIAO 000 )
flep) (Ts+€)< B0 (o Ton( 1) Y

According to Riesz representation theorem, for v € [—1,0) there exists a bounded
variation function 7 (v, €) such that

(30)

Aep = /0 dn(v,0)p(0) for p € C'[—1,0). (32)

In fact, we have a choice:

r *+ SK]KDB* _(PB*

o KpB 0 0
n(v,e)z(rs+e)< e e >5(”)(Ts+€)<ﬁ¢P* ﬁsbB*) (33)
S(v+1),

where §(v) is the Dirac delta function. For p € C'([—1,0), R?), we define

d;;g/v), forv € [-1,0);
M(e)p(v) = 0 (34)
/ dn(v,e)p(v), forv=0,
J-1
and
0, forv e [—1,0);
Y(e)p(v) = [ ) (35)
f(e,p), forv=0.
Thus, (29) can be recast as
Uy = M(E)Ut + Y(S)Ut, (36)
where v;(v) = v(t +v) forv € [-1,0).
For ¢ € C!(]-1,0), (R?)*), the adjoint M* of M can be described as
dC

forx € (0,1];
M*(e)(x) = (37)
/ dnT(t,0)7(—t), forx =D0.

For p € [-1,0) and ¢ € [0,1], a bilinear linear form provides

@w.p)) =200~ [ [" Zlo-vinwp(e)ig, (38)

where 17(v) = n(v,0). Thus, M(0) and M* are adjoint operators. Because +iw(T; are the
eigenvalues of M(0), +iw(T; are the the eigenvalues of M*.

14
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Proposition 1. Assume that q(v) = (1,5)Te/“0%V is the eigenvector of M(0) corresponding
to iwyTs and that g*(v) = (1,5%)TQe“0TY is the eigenvector of M* corresponding to —icwTs.

Then, <q*,q—> — 0/ <q*,q> — 1/ with s = ﬁ‘PP*e*ions gt — ¢B* ) Q— _

w-iwg—BPBre 0T T T BpBre 0T —wiwyg

[1 4 5%s + 575 (BPP* 4 sBpB* e iwoTs] 1,

Proof. Here, we suppose that g(v) is the eigenvector of M(0) corresponding to iwoTs,
M(0)q(v) = iwpTsq(v). Using the definition of M(0) with (30), (32), and (33), we obtain

KiKpB*
—k B+ e ~ W —¢B* q0) = ©
* ,—1WoTs *aTlWTs 7y g
BpPre BpB*e w — iwy 0 )

It is easy to compute that 4(0) = (1,s)T, where

1 L
q(0) = ( s ) = BpPre 0 :
w-+iwy—pPpBre V0T

As g*(x) = (1,5*)Qe/“0T* is the eigenvector of M* associated with —icwgTs, we obtain

M*(0)q° (x) = —icoTsq” (x).

Through (32), (33), and (37), we have

DG Bt o= ()
—¢B* BpB e — 1 + iy 0/
Now,
* — 1, * W TsK 1, _ ¢ ZWOTSK‘
q (K) ( 5 )Qe ( ‘B¢B*e—lw0Ts —w+ ia)())Qe

To verify (4" (x),q(v)) = 1, it is necessary to find the expression for Q. From (38), we
obtain

' 0,900) = QA = [T [ Qe e Dy (v) 1,5 ey

= Q{(l +35%s) — /VO (1,§*)vei‘*’0Tsvd77(1/)(1,s)T}

- Q{l + 5% + 51, (BpP* + sPPpB*)e W0 }
Hence, we may decide Q as
Q = [1+5%s + 5" 1, (BPP* + sppB*)e %] 1.

Moreover, using the adjoint property we have (¢, Mp) = (M*C, p).
Thus, —iwots(q", 7) = (7", M) = (M"q",q) = (~iwoTq", ) = iwoTs(9",4)-
Therefore, (g*,§) = 0is easy to prove. [

Next, we apply the procedures in [50]; we first calculate the coordinates explaining
the center manifold Cj at e = 0. Suppose that v represents the solution to (36) if e = 0. We
denote

g(t) =(q",vt),
N(t,v) = v — g(t)q(v) — g(t)4(v) = vr(v) — 2Re{g(t)q(v)}. (39)

15
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On the center manifold Cy, we have N(t,v) = N(g(t),§(t),v), where

2 52

3
N(g g v) = Nzo(V)% + N1 (v)gg + Noz(V)% + Nso(V)% +..., (40)

where ¢ and g are local coordinates for the central manifold Cy in the directions of §* and
q*. Note that if v; is real, then N is real. We only examine real solutions. Using (39) yields

(0" N)={q" 00 —gq9—87) = (9", vt) —g(q",9) —8(q",9) =¢—§=0.
For v; € Cp in (36), as € = 0, we acquire

§(t) = (g%, o) = (9%, M(0)vt + Y (0)vr) = (M*(0)g",v1) + 4 (0)f(0,v)
= (—iwoTsq",v1) +47(0) fo(g, §) = iwoTsg +47(0)fo(g, §)
= iwoTsg(t) +n(g, 8),

where s X )
-\ =% =\ __ & 5 & gig_ 41
n(g,8) = 3°(0)fo(g, &) = n2o 5 Trmigg s +nat (41)

According to (39) and (40),

vr(v) = (v1t(v), vt (v)) = N(t,v) + 2Re{g(t),q(t)}
= N(g(t),8(t),v) + 89 +3q
2 =2 ,
= Nz()(l/)g? + N11(1/)gg + Noz(l/)% + g(l,s)Te"*’Orsv
+3(1,5)Teiwomv (42)

Explicitly, we can state this as

(28)- (323 e poae ) ()

where
. . 2 52
Iy = gt 4 ge o™ 1 NI (1) &+ N (v)gg + NG ()5 +0(1(2,8)P),
) . 2 52
Iy = sge0™ + sge™ 0™ 1 NI ()£ + NP (v)gg + NG (1) 5 +0(1(2,8))-

Hence, it follows that

1% @y
w0 = () e wiggn = (Vo) )
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Then,
52
ou0) =g+ 3+ MO + N0 >gg+Néz><o>g2 +o(l(2.2)%),
0u0) =55+ 5+ NYOF + NP g7 + NP0 +0(1(5.0P),
. . 2 52
oir(=1) = ge ™0™ 4+ ge 0 4 NI (1) &+ N (—1)gg + N (- D%
+o(l(22)P),
. . 2 )
var(—1) = sge™ 0% + 5ge’o + NI (~1) &+ NP (~1)gg + N (1)
+o(l(22)P),
0%,(0) = & +285 + &+ (Nyy (0) +2N[}(0)) g + hoot,
011(0)021(0) = 5% + (s +5)gg + 58 + (NJ7 (0) + (1/2)N33 (0) + N}y (0)
+(5/2)N}) (o)) ¢’ +hot,
o11(—1)oar(—1) = sge 0™ + (s 4 8)gg + 5g2e2r™ + (NJ7) (~1)e 0™
+ (1/2)NS) (~1)el0® 4 sN{ (—1)e 0
+(5/2)NL) (—1)eiwofs) %3 +hot.

From the definition of n and (31), we obtain

n(g, &) =q°(0)fo(s,8) = q°(0)f(0,0¢)
TSQ(1,§*)< (- KT (Bililﬁg)z %;ﬁﬁDB)s) 1(0) — ¢pv14(0)v2(0) )
Bpo1(—1)vas (1)

- > r GKIKD 2€K[KDB* _ —2i S
Q{ { Ke T B +Kp) (B +Kpyp PR
ZGKIKD 4€K[KDB* _ _ _
|: B* +KD) (B* + KD) (P(S +S) +S*IB¢<S +S)
_ GK[KD 2€K1KDB* _ _ ~ 2 .
e { B +Kp)? (B +Kpp  PTIAE

s [( KL SR s op) (B0 2 0)
—o(N ) +
(2)

+ (1/2)Ng3) (0) + 5Ny (0) + (5/2)Ny (0))
+ §*/34>(

(—1)e 0% 4 (1/2)NS) (=1)ei0® 4 sN{1) (=1)e 0%
+ (§/2)N2((1])(—1)ei‘*’°T5)} }

Comparing the coefficients of g2, ¢g, §%, and g?¢ with (41) yields
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1o = 27:Q — KLC + (BiIiIIIiDD)z - fgfji?:; —¢s+ s§*,3cpe2i“’0“}
n1 =270 - KLC (Bilfilli[;)z — (zgfflgf; — ¢Re{s} + §*ﬁ¢Re{s}]
=250 (~ 1=+ et~ ) (o N o) @

— (NP (0) + (1/2)NG (0) + sN{} (0) + (5/2)Nyy (0) )
+5° B (N} (—1)e 0% 4 (1/2)NL (—1)e0™ 4 sN{}) (1)~ 0%

+ (/2N (-1)et) |.

Because 1,1 includes Ny; and Npj, we need to calculate their values. From (36) and
(39), we obtain

M(0)N — 2Re{7"(0) foq(v)}, v e [-1,0),

N=10—¢q-81= {M(O)N —2Re{7"(0) foq(v)} + fo(g,8), v=0,

which can be expressed as

N = M(0)N + H(g, g v) (44)
with ) R
H(g,§v) = Hao(v)5- + Hn(v)gg + Ho (1) S + ... (45)
On the other hand, on Cy, .
N = Ngg + Ng§. (46)

Substituting the series of H(g, §, v) into (44) and comparing the coefficients yields
(M(0) = 2iwTo) Nao(v) = —Hao(v), M(0)Nn1(v) = —Hn(v),.... (47)
For v € [—1,0), the result from (41) and (44) is

H(g, g v) = —2Re{3"(0)fo(g,§)9(v)} = —2Re{n(g,g)q(v)}
=-n(g,8)q(v) — (g, g)q(v)

2 2
=- (leog2 +n1188 + nozgz + n21g2g + - > xq(v) (48)

52 2
— (ﬁzog2+fl11g_g+ﬁozg2 +n21g28 ) ><l/7(1/).
Comparing the coefficients of (48) with (45) reveals
Hao(v) = —nz0q(v) — fipzq(v) (49)

and
Hyy(v) = —n11q(v) — ing(v). (50)
From (47) and (49) and the definition of M (i.e., from (34)), we obtain
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Nao(v) = M(0)Nao(v) = 2iwoTs Nao(v) — Hao(v)
= 2iwgTsNyg (1/) + nzoq(l/) + ﬁozq(v).
Now, taking into account that q(v) = (1,a)Te/0%", we have

N20 (V) = 2iwyTsNpg (1/) + nzoq(O)ei“JOTs" + 1710217(0)671'“]01—51/.

Solving the above equation, we obtain

Noyg(v) = Z(Z)zﬂi_)sq(o)eiworsv + %q(o)e#wouv + UleZinTSV, (51)

where U; = (U{l), U£ ) € R2? is a constant vector. Similarly, based on (47) and (50)

together with the definition of M (34), we obtain

2)

mqq q(O)eionSV + mi q(o)e—i(uOTsV + Uy, (52)

Nui(v) = "o
0Ts wTs

where U, = (Uél), U2(2)> € R? is a two dimensional constant vector.

In the following, we explore relevant U; and U,. Utilizing the definition of M with
(34) and (47), we obtain

0
./_1 d (v)Nao(v) = 2iwoTsNao(v) — Hao(v), (53)

and
[ N (w) = ~Hu ) o)

forv=0ie.,n(0,v) =nv).
Now, we can find the formula for H(g, g, v) by setting v = 0, which results in

H(g,g,0) n(g,8)q(v) —i(g,8)d(v) + fo(s, 8)

2 ) 2
nzo% +n1188 + ”02% + ”21% o > % q(0)

B 2 2

=2 2 =2
(flzog; +gE + S + 7y S8 4 ) x (0)
+(

01182 + ngg_ + Ql3g_2 + Ql4g2g‘ + - )
Q21g2 + Qz2gg' + nggz + Qz4g2g' +. )
where
. L GKIKD . 2€K[KDB* —bs

Ke T (B 1 Kp)? (B +Kpp ¥

r GKIKD 26‘K[KDB>‘<
- — — — PR

K T B ko (B rkpp  Relsh
021 — Sﬁ¢e_2inTS,
Oy = ﬁ(])Re{s}.

For v = 0, when we compare the coefficients of the above equation with (45) we obtain

O =

Oy =

Hao(0) = —1209(0) — 1207 (0) +2rs< g; ) (55)
and
Hi1(0) = —n119(0) — 7i114(0) +2Ts< gz ) (56)
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According to the definition of M together with (34) and (47), we have

-0 .
<ia)0TSI - / : el‘*’OTS"diy(v))q(O) =0,

0 .
<—iw01’sl —/ elonsvdiy(v)>q(0) =0.
-1

When (51) and (53) are substituted into (55), we obtain

0 .
2iwyTsl —/ eZZ“’OTS”dU(V) U, = 27, Oy ,
-1 Oy

which induces

iwo + £=B* — Rl $B* u ( off )
ﬁQDP* —inTS iw0+‘B¢B*e—ion5 +w ul(Z) 021

Solving for Uj, we find

u® = 2| On $B"
1 Oy iwg + BPBTe 0T 4w |
eK;KpB*
U{Z) _ 2| iwp+ ¢ B” - Brkp? ’
15[’1 IBQDP* e lWoTs 021
with KB
. €
¥, = iwo + g B - (B*I+I[<)D)2 $B* ‘
BgPre~iwot: icwo + PpBe T 4w

Similarly, substituting (52) and (54) into (56) yields

R e () (o),
BpP* AN Oz

Solving for Uy, we obtain

g 2| Q2 —¢B
2 (9% ,34)3* —w |
K, KpB*
Y, BpP* Opo
with KB
. .
¥, | KB e 9B
BoP* BpB* —w

Then, we can assess Nog(v) and Nji(v) from (51) and (52). Further, the parameters
and delay can be used to state 15 in (43). Accordingly, we can determine the values below:

- 2
1 n n
A0) = (”20”11 —2[nyy|* — |02|) +-2

2w T 3 27
P = Re(A(0))
" Re(M (1))’ (57)
¢ = 2Re(A(0)),
__Im(A(0)) + ¢Im(V(x))
woTs ’
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Here, ¢ determines the direction of Hopf bifurcation, ¢ determines the stability of the
Hopf-bifurcating periodic solutions, and T determines the period of bifurcating periodic
solutions at the critical value of T = 7;. Thus, based on the findings of Hassard et al. [50],
the properties of the Hopf bifurcation at the crucial value of T = 7y can be stated as
a theorem.

Theorem 8. In Expression (57), the following outcomes hold:

(a) The Hopf bifurcation is supercritical (subcritical) if p > 0 (¢ < 0).

(b) The bifurcating periodic solutions are stable (unstable) if ¢ < 0 (¢ > 0).

(¢c) The period of the bifurcated periodic solution increases (decreases) if T > 0 (T < 0).

4. Numerical Simulation

In this section, we validate the theoretical outcomes through numerical simulations.
We consider biologically feasible data in order to demonstrate the analytical outcomes,
and the parameters are chosen as mentioned in Table 1.

Table 1. Parameter interpretations and their values used in numerical simulations.

Parameter Description Datal Data2
¢ adsorption rate of phage 0.34 0.34
B burst size of phage 0.38 0.38
€ killing rate of innate immune response 0.19 0.19
w decay rate of phage 0.125 0.125
r intrinsic growth rate of bacteria 0.25 0.5
K¢ carrying capacity of bacteria 7.29 5
Kp bacterial concentration when innate immune
response is half saturated 3.5 3.5
K; carrying capacity of innate immune response 0.48 0.48

We take the set of parameter values in Data 1 of Table 1 to correspond to the non-
delayed System (2). For this dataset, the positive equilibrium is E, = (0.9675, 0.4276). We
derive c11 + ¢p» = —0.0177 < 0 and ¢q1¢02 — 12621 = 0.0182 > 0, which means that the
system is locally asymptotically stable (LAS) around E,. It can be seen that Ej; is stable
using the first condition of Theorem 3(i). To analyze the existence of Hopf bifurcation in
the case of a non-delayed system, we consider the parameter r as a bifurcation parameter
and obtain the value of  as r* = 0.1166 with the same set of parameters stated in Data 1.
We can deduce from the second condition of Theorem 3(i) that the positive equilibrium
E, is destabilized by a Hopf bifurcation when r = 0.109 < r* (Figure 1a). According to
Theorem 3(ii), System (2) undergoes a Hopf bifurcation at E; when r passes * (Figure 1b),
resulting in a stable limit cycle (Figure 1d). In Figure 1c, taking r = 0.25 > r*, we conclude
from Theorem 3(i) that E, is stable.

To verify the theoretical analysis outcomes in the delayed system (3), we consider
the set of parameter values in Data 2 of Table 1. Using these parameter values, we obtain
positive equilibrium E(B*, P*) = (0.9675,0.9759) and compute c; = 0.2063, c; = 0.0102,
c3 = —0.1250, and ¢4 = 0.0313. Furthermore, we compute wy = 0.1628 and 19 = 3.3270 us-
ing (25) and (27). Thus, we can demonstrate the transversality condition of Hopf bifurcation

® = sign [Re(gg) 1} — 42.7388 > 0 at the critical value of T = 1y = 3.3270. Accord-
A=iw
ing to Theorem 7(i), the pgsitive equilibrium E;(B*, P*) is stable when T < 19 = 3.3270
(Figure 2). Theorem 7(iii) leads us to deduce that System (3) exhibits a Hopf bifurcation
at E; = (0.9675,0.9759) when T = 19 = 3.3270, i.e., there is a periodic solution around
E; = (0.9675,0.9759) when 7 is close to 19 = 3.3270 (Figure 3). When we determine the
value of T as T = 3.5 > 19 = 3.3270, then Ey(B*, P*) is unstable through a Hopf bifurca-
tion and periodic orbits are encountered, as depicted in Figure 4. Figure 5 displays the
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phase portrait for various 7 values, with T = 1p = 3.9 and T = 19 = 5.5 producing stable

limit cycles.
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Figure 1. Oscillatory behavior of System (2) with parameter values stated in Data 1 except for r:
(a) Unstable solution of system when 7 = 0.109 < r; (b) existence of Hopf bifurcation solution for
r = ry = 0.1166; (c) stable solution of system when r = 0.25 > r,; (d) existence of a stable limit cycle

near E; when v = 7,.
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Figure 2. E; is asymptotically stable when T = 2.3 < 1p: (a,b) time series evolution of bacteria and
phages; (c) phase portrait in B-P plane; (d) phase portrait in ¢-B-P space.
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Figure 3. Existence of Hopf bifurcation solution for T = 3.3270 = 1y around E;: (a,b) time series
evolution of bacteria and phages; (c) presence of a stable limit cycle; (d) phase portrait in ¢-B-P space.
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Figure 4. E; is unstable when T = 3.5 > 79: (a,b) time series evolution of bacteria and phages;
(c) presence of periodic solution; (d) phase portrait in ¢-B-P space.
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Figure 5. Phase portraits for various values of time delays: (a) a stable limit cycle emerges at T = 3.9
due to Hopf bifurcation; (b) a stable limit cycle emerges at T = 5.5 due to Hopf bifurcation, resulting
in stable periodic solutions.

5. Conclusions

In this paper, we modify and analyze the phage therapy model in (2) by including
a discrete time delay to obtain its delayed version in (3). This modification is carried out
by adding a discrete time delay to the recruitment term of the phages and the infection
term of the bacteria. We investigate the dynamic behaviors of the models in (2) and (3), in
particular in terms of their stability and Hopf bifurcation. In addition, we examine the Hopf
bifurcation properties of System (3), including the bifurcation direction and the stability of
a bifurcating periodic solution. Finally, numerical simulations are provided to prove the
practical use of the theoretical results.
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We consider the positivity and boundedness of both non-delayed and delayed mod-
els. The results demonstrate that all of the system’s solutions are positive and bounded,
indicating that the system is biologically well-behaved.

For the non-delayed model, we explore the necessary conditions for the local stability
of all equilibrium solutions and the occurrence of Hopf bifurcation, taking the bacterial
intrinsic growth rate r as a bifurcation parameter. In Section 2, the Hopf bifurcation of
this model is investigated using Hopf bifurcation theory; it is proved that there exists a
critical value of r* for stability. When the value of r passes through the critical value of r*,
the system loses its stability and Hopf bifurcation occurs. This suggests that the intrinsic
growth rate of bacteria has a stabilizing effect on the dynamics of the system.

In Section 4, we demonstrate numerically that the non-delayed System (2) encounters
Hopf bifurcation when the parameter r passes a critical value r* (Figure 1b,d). When
the value of r is gradually increased, the positive equilibrium E, reaches stability from
instability. (Figure la,c). The results of our numerical simulations used to depict the
analytical results are based on biologically feasible data.

We use the Lyapunov functional method to derive the global stability criteria for
the boundary and coexistence equilibrium points in the non-delayed model. The results
indicate that the phage burst size 8 significantly affects the global stability behaviour of
the coexistence equilibrium in the phage therapy model. The necessary conditions for the
non-existence of periodic solutions to the system are established using the Dulac-Bendixon
criterion. This result can be biologically explained as follows: if the bacterial growth rate is
greater than the threshold value, then System (2) has no limit cycle.

In the second part of this study, we investigate the system’s dynamic behaviour in
the presence of a time delay. We use the discrete delay as a bifurcation parameter in the
Hopf bifurcation analysis to capture the oscillatory behaviour of the delayed model in (3).
In Section 3, using stability theory and Hopf bifurcation theory, the influence of delay on
the stability of the equilibrium point is studied along with the existence of Hopf bifurcation.
Theorems for the stability and existence of Hopf bifurcation are established. The results
show that the time delay destabilizes the system, leading to species coexistence.

It can be inferred from Theorem 7 that Hopf bifurcation arises in System (3) at the
critical value T = 19. When the value of T is increased to 1p = 3.3270, the system loses
stability and undergoes Hopf bifurcation (Figure 3). When T > 1y, System (3) enters an
unstable equilibrium via Hopf bifurcation at the interior equilibrium E, indicating that
the densities of bacteria and phages oscillate periodically (Figure 4). However, the system
achieves a stable equilibrium state when T < 19, indicating that the densities of bacteria
and phages tend towards a steady state (Figure 2). Our research indicates that oscillatory
behavior is feasible in certain circumstances and that a delay can cause a stable equilibrium
to evolve into an unstable one.

Furthermore, the direction and stability of the bifurcating periodic solutions are
derived by applying normal form theory and the center manifold theorem. Based on
Theorem 8, we obtain the formulas for determining the attributes of the Hopf bifurcation of
the system. In particular, the Hopf bifurcation is supercritical and the bifurcating periodic
solutions are stable under certain conditions.

In summary, this paper has shown that the addition of delay can destabilize the system
and induce Hopf bifurcation. These results are in agreement with the destabilization
effect that has been observed in previous models when introducing a time delay. From a
biomedical perspective, this means that bacteria and phages can coexist under certain
conditions if the delay required for phage reproduction and bacterial infection is small or
increases to a critical value. This result has a significant effect on determining the most
suitable time to introduce phage therapy.

Stochastic differential equations (SDEs) have become popular in modeling ecolog-
ical and epidemiological models such as the study of population growth and epidemic
transmission, as population dynamics vary concern with random perturbation. Population
individuals struggle with one another for a restricted amount of nourishment and dwelling
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space. Environmental noise frequently influences population systems; therefore, it is crucial
to determine whether this noise has an impact on the results. As far as we know, the phage
therapy population model in (1) has not been studied yet with regard to its stochastic
perturbation and asymptotic behavior. Therefore, in the future we intend to consider the
behavior of the phage therapy model with stochastic perturbation in order to investigate
the impact of random perturbations on model dynamics.
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Abstract: The term convexity and theory of inequalities is an enormous and intriguing domain
of research in the realm of mathematical comprehension. Due to its applications in multiple areas
of science, the theory of convexity and inequalities have recently attracted a lot of attention from
historians and modern researchers. This article explores the concept of a new group of modified
harmonic exponential s-convex functions. Some of its significant algebraic properties are elegantly
elaborated to maintain the newly described idea. A new sort of Hermite-Hadamard-type integral
inequality using this new concept of the function is investigated. In addition, several new estimates
of Hermite-Hadamard inequality are presented to improve the study. These new results illustrate
some generalizations of prior findings in the literature.

Keywords: convex function; m-convexity; Holder’s inequality; Hermite-Hadamard inequality

MSC: 26A51; 26A33; 26D07; 26D10; 26D15

1. Introduction

In recent decades, the theory of convexity and inequalities has become an amazing
and deep source of attention and inspiration in different areas of science. The combined
study of these terminologies has had not only interesting and deep results in numerous
subjects of applied and engineering sciences but also contributed equally towards numerical
optimization. The concept of convexity is based and depends on the theory of inequalities
and also plays a prominent and meaningful role in this field. The novel literature on
inequalities always provides an excellent glimpse of the beauty and fascination of science.
Integral inequalities have many applications in probability theory, information technology,
statistics, numerical integration, stochastic processes, optimization theory, and integral
operator theory. For detailed concepts on inequalities, see [1-19]. In [20], Iscan explores
an extended form of convex function, namely the n-polynomial convex function. The
harmonic convex set in 2003 was first defined by Shi in [21]. On this harmonic convex set,
the harmonic convex function was introduced by Anderson et al. [22]. Noor [23] continued
his work on estimations and extensions and investigated the harmonic convex function in a
polynomial version and also made some improvements in the frame variational inequality
(see [24,25]).

Dragomir [26] was the first to define and research the term “exponential convex function’
in the literature. After Dragomir, Awan [27] conducted the study and refined this function.
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Kadakal [28] presented a revised definition of exponential convexity. The remarkable sig-
nificance and applications of exponential convexity are exploited in information sciences,
stochastic optimization, data mining, sequential prediction, and statistical learning.

The construction of this manuscript is as follows. In Section 2, we give some basic
definitions and concepts which will be required throughout the manuscript’s following
sections. In Section 3, we introduce the modified harmonic exp s-convex functions and
discuss some properties of it. In Section 4, using a newly introduced concept, a new sort
of Hadamard-type inequality is achieved. Next, we prove and examine some extensions
of the Hadamard-type inequality regarding the new definition with the help of Holder’s
inequality in Section 5. Finally, in Section 6, future scopes of the present study and a brief
conclusion are provided.

2. Preliminaries

For the reader’s interest and the quality of the manuscript, it will be best to study and
explain some ideas, concepts, definitions, corollaries, theorems, and remarks in this part.
The main aim of this part is to mention and discuss some already published definitions and
ideas, which we require in our study in the following sections. We start by introducing the
convex function and its generalizations in different versions and the Hermite-Hadamard-
type inequality. In addition, some theorems regarding harmonic convex functions are
added. We sum up this part by stating Holder’s and the power mean inequality, which will
be needed in our further investigation.

Definition 1 ([1]). Assume that X is a convex subset of a real vector space R. A function
Q : X — R is convex if

Q(Avi + (1 —A)vp) < AQ(vq) + (1 —A)Q(v2), D)
holds ¥ v1,v, € X, and A € [0,1].

The Hermite-Hadamard-type inequality performs a good role in the literature due
to its importance and popularity. A lot of scientists have worked on numerous ideas and
definitions on the subject of inequalities. In the field of analysis, this inequality has great
interest due to its applications. This inequality states that, if function Q : X — R is convex
for v, vp € X with the condition v; < vy, then

viTv 1 V) v v
Q( 1_5 2>§ V) — V1 /‘; Q<X)d%§w (2)

1

We recommend that readers refer to [29-32].

Definition 2 ([33]). Let s € (0,1]. A function Q : [0, +00) — R is s-convex in the second sense if
Q(Avy + (1= A)va) < A°Q(v1) + (1= 2)°Q(v2) ®)

holds ¥ v, vy € [0,400), and A € [0,1].

Definition 3 ([28]). Let X be a non-negative real interval. A function Q : X — R is exponentially
convex if

QAv1 + (1= A)w) < (¢4 =1)Q(w) + (1Y ~1)Q(va), 4)
forallvi,vp € X, and A € [0,1].

The notation EXPC(I) represents the family of all exponentially convex functions on the
interval X.
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Definition 4 ([34]). Let X C R\ {0} be a real interval. A function Q : X C (0,400) — Riis
harmonically convex if

Q V1V2
Avy+ (1= A)vq

holds for all v1,v, € X, and A € [0,1].

) < AQ(w) + (1 - 1)Q(w), )

Theorem 1 ([34]). Assume that a real-valued function Q on X C (0, +o00) — R is harmonically
convex. If Q is defined on integrable space, i.e., L[vy,vy], for all v1,vy € X with vy < vy, then

( 2v1vy ) < V2 V2 Q(x)dx < Q(v1) +Q(V2)_

vitva) T vo—vy vy X2 - 2

(6)

Definition 5 ([20]). Let X be a non-negative real interval. A function Q : X — [0,00). Then Q is
m-polynomial convex if

agE!

QU + (1- 1) ii M) + = Y- MQE), )

n=1

holds for every vi,vo € X, m € N, and A € [0,1].

Definition 6 ([35]). Assume that Q : X = (0, +00) — [0, 00). Then Q is m-polynomial exponen-
tial s-convex if

Q(/\V1+(1—/\)Vz> < ;Ui(eﬂ—l)”@(w ;Hf( s(1- A>—1) Q(v2), (8)

holdsV vy,vy € X, m e N, s € [In2.5,1], and A € [0,1].

Definition 7 ([23]). Let us assume that Q : X — [0, 00). Then Q is m-polynomial harmonically
convex if

_oviva i“‘ l“‘ BPUIIN
Q()\vg—i—(l—)\)vl)_m; mrz:1 A ©)

holds for every vi,vo € X, m € N, and A € [0,1].
Remark 1. Assume that m = 1; then Definition 7 is referred to Definition 4.

Remark 2. If the following inequalities A < L sl =(1=A)" and 1-A < 1 Yyl -
A" hold, then every harmonic convex function is an m-polynomial harmonic convex function.

Definition 8 ([36]). Let us assume that Q : X — [0,00). Then Q is m-polynomial harmonic
exponential convex if

() = m S ) Qe (1) a0

1
holds for every vq,v, € X, m € N, and A € [0,1].
Remark 3 ([36]). Every nonnegative m-polynomial harmonic convex function is also an m-

polynomial harmonic exponential-type convex function. Indeed, for all A € [0, 1] this case is clear
from the following inequalities:
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= (1A < AT =) and TR [1- A < KX ()

n

Theorem 2 ([37]). Assume that p > 1 and % + % = 1. If Q and Qq are real functions defined on

Lebesgue measurable space of a and b, i.e., L{a, b], and if |Qq|F and |Qq|7 are integrable functions
on [a, b], then

b b Loorb 1
[ lQm@ldr < ([ i) rax)" ([ IQa1iax) . (1)
a a a
The equality holds if and only if A|Qq|P = B|Qq2|7, almost everywhere, where A and B are constants.

3. Modified Harmonic Exponential s-Convex Function and Its Algebraic Properties

The term convexity has gained an amazing image due to many applications in the
realms of engineering, optimizations, and applied mathematics. Although many outcomes
have been deduced under convexity, the majority of the problems regarding real life
are nonconvex in nature. In the 20th century, many researchers gave attention to the
term convexity, such as Jensen, Hermite, Holder, and Stolz. Throughout this century, an
unprecedented amount of research was carried out, and important results were obtained in
the field of convex analysis.

We will provide our basic definition of the modified harmonic exp s-convex function
and its corresponding features as the main topic of this section.

Definition 9. Assume that Q : X = (0, +00) — [0, 00). Then Q is modified harmonic exponential
s-convex if

Q(M)S;i(?“l)” (v1) %i( 0 -1)'q), (12

=1 =1

holds ¥ vi,vp € X, m € N,s € [In2.5,1],and A € [0,1].

Remark 4. Assume that m = 1 in the above inequality (12); then

Q(M) < (ESA — 1)Q(v1) + (es(lf/\) _ 1)Q(V2). (13)

Remark 5. Assume that m = 2 in the above inequality (12); then

25A __ ,SA 2s(1—A) _ ,s(1-A)
vViv2 e e e e
(s tiam) < (T2 Jaw+ ( > )mm. (14)

Remark 6. Assume that s = 1 in the above inequality (12); we obtain Definition 8.

Remark 7. Assume that m = 1and s = 1 in the above inequality (12); we obtain Remark 3 in [36].
Remark 8. Assume that m = 2 and s = 1 in the above inequality (12); we obtain Remark 4 in [36].

That is the best advantage of the novel concept. If we take m and s at their given values,
then we obtain the new inequalities and discover their connections with previous results.

Lemma 1. Let us assume that A € [0,1] and s € [In2.5,1]; then (er — 1)1 > Aand

NNl

1
m

n=1

(es(1=2) — 1)1 > (1 — A) hold.
1

1
m

NNE!
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m

Lemma 2. The following inequalities - E (er =11 > Lyn—@-a1 and

n
n=1 n=1

1y (ps(1-A) _ 1 & i 1
aﬂgl(e nr> = g [1— A" hold, forall A € [0,1] and s € [In2.5,1].

Proposition 1. Every harmonic convex function Q : I C (0,400) — [0,00) is a modified
harmonic exp s-convex function.

Proof. Since the given function is a harmonic convex, by definition, we have

V1v2

q <sz+(1—A)V1> < AQ(v1) + (1= 2)Q(v2).

Employing Lemma 1, we have

(i) < m B 1) a1 £ (#0701

}7:

O

Proposition 2. Every m-polynomial harmonically convex function is a modified harmonically exp
s-convex function.

Proof. Since the given function is m-polynomial harmonic convex, by definition, we have

ViV 1 & l
V2 ) = _(1— -
Q<AV2+(1A)V1) - mﬂgl[l (1=A)" rn,7

m

[1—A"TQ

Employing Lemma 2, we have

Q(/\z—i—(llz—/\)1> < =Y (¢ -1)"am) + 4 X (¢0 -1)"aw)

O

Next, regarding this new definition, we add some examples.

Example 1. Let Q(x) = x 26> be a non- decreasing convex function on (0,1); then it is har-
monic convex (see [38]). Employing Proposition 1, we claim that it is a modified harmonic exp
s-convex function.

Example 2. Let Q(x) = e* be a non-decreasing convex function; then it is harmonic convex
(see [38]). Employing Proposition 1, we claim that it is a modified harmonic exp s-convex function.

Example 3. Let Q(x) = sin(—x) be a non-decreasing convex function on (0,75 ); then it is
harmonically convex Vx € (0, %) (see [38]1). Employing Proposition 1, it is a modified harmonic
exp s-convex function.

Example 4. Let Q(x) = x be a non-decreasing convex function on (0,00); then it is har-
monically convex for all x € (0,00) (see [38]). Employing Remark 2, we claim that it is m-
polynomial harmonic convex. Employing Proposition 2, we claim that it is a modified harmonic exp
s-convex function.

Example 5. Let Q(x) = In x be a harmonic convex on the interval (0, 00) (see [38]). Employing
Remark 2 and Proposition 2, we obtain that Q(x) is a modified harmonic exp s-convex function.
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In addition, we add some properties regarding the newly introduced idea, namely the
modified harmonic exp s-convex function.

Theorem 3. The sum of two modified harmonic exp s-convex functions is a modified harmonic exp
s-convex function.

Proof. Let us assume that the functions Q and H are modified harmonic exp s-convex and
A € [0,1]; then

@ (ot )

B V1V V1V

= Q(sz+ (1—A)V1> +H(Avﬁ (1—)\)v1>
1
m

n=1 n=1

= i i (esA — 1)’7[Q(v1) +H(vy)] + % i (esﬂ—A) 1)”[Q(vz) + H(v)]
n=1 n=1

- - 3 (' = 1) @+ ) + o » (0 —1) @+ H)(v)
n=1 n=1

This completes the proof. [
Remark 9. If we assume that m = 1, then we obtain Q + H as the harmonic exp s-convex function.

Remark 10. If we assume that s = 1, then we obtain Q + H as a modified harmonic exp
convex function.

Remark 11. If we assume that m
convex function.

1 and s = 1, then we obtain Q + H as a harmonic exp

Theorem 4. Scalar multiplication of a modified harmonic exp s-convex function is a modified
harmonic exp s-convex function.

Proof. Let assume that the function Q is modified harmonic exp s-convex, A € [0, 1]; then

@ (7w )

IiﬁwAQNWHiﬁwH’Qmm>
- ;Wi(e“ 1)@ m) + é(f»’s“‘“ 1) (¢Q) (v2)

This completes the proof. [J

Remark 12. If we assume that m = 1, then the scalar multiplication of a harmonic exp s-convex
function is a harmonic exp s-convex function.
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Remark 13. If we assume that s = 1, then the scalar multiplication of the modified harmonic exp
convex function is a modified harmonic exp convex function.

Remark 14. If we assume that m = 1 and s = 1, then scalar multiplication of a harmonically exp
convex function is a harmonic exp convex function.

Theorem 5. Assume that the function Q : X — [0, +o0) is harmonic convex and the function
Q2 : [0, +00) — [0, +00) is increasing and m-polynomial exp s-convex. Then Qo0 Qq : X —
[0, +00) is a modified harmonic exp s-convex function.

Proof. For all v, v; € X, and A € [0,1], we have

(Q20Q1)<)w24j’(11\72—)\)\/1)

- <Q1 </\V2 +v(11V2— A)vy ) >
< Q2(AQ1(v1) + (1 = 2A)Q1(v2))
= i <€SA )”Q (Q1(v1)) % i (es ) Q2(Q1(v2))

1

=
= Ly (1) (@ %i(sﬂ Y -1)" (@0 Qn)(w2)

n=1 n=1

Theorem 6. Let 0 < vy < vy and assume that non-negative real-valued function Q; is a class
of modified harmonic exp s-convex and Q(u) = sup; Q;(u). Then the function Q is a modified
harmonic exp s-convex and U = {u € [v1,vp] : Q(u) < 400} is an interval.

Proof. Let vy, vy € Uand A € [0,1]; then

. V1V)
_S“pr( (Ava+ (1= A)v )>

< I;r]i (es’\ ) suP Qj(v1) + 1 é(es(l)‘) - 1>17 SL;p Qj(v2)
= i i(em ) % i( e1=A) )rlQ(vz) < +o0.

This shows simultaneously that U is an interval, since it contains every point between any

two of its points, and that Q is a modified harmonic exp s-convex function on U. This is the
required proof. [

Theorem 7. If Q : X — [0, +o0) is modified harmonic exp s-convex, then the function Q is
bounded on [v1,v5].
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Proof. Let us assume that x € [vq,v5] and L = max {Q(v1),Q(v2)}. Then 3 A € [0,1] such

that x = m Here, we clearly know about the obvious following inequalities, i.e.,

M < eand eS(1=4) < ¢; then

< ;Uil(e“ - 1) Q(v1) + ;;(65(1“ - 1>17Q(V2)
< ;Uzl(e” - l)WL + ;721 (eS“*A) 1)”L
< % Y (-1 =M

O

4. Generalized Form of Hadamard Inequality via Modified Harmonic Exponential
s-Convex Function

Convexity is important and crucial in many branches of the pure and applied sciences.
Massive generalizations of mathematical inequalities for multiple convex functions have
significantly influenced traditional research. Numerous fields, including linear program-
ming, combinatorics, theory of relativity, optimization theory, quantum theory, number
theory, dynamics, and orthogonal polynomials are affected by and use integral inequalities.
This issue has received much attention from researchers. The Hadamard inequality is
the most widely used and popular inequality in the history and literature pertaining to
convex theory.

This purpose of this section is to establish a new kind of the Hadamard inequality
pertaining to modified harmonic exp s-convexity.

Theorem 8. Let non-negative real-valued Q be modified harmonic exp s-convex. If Q € L[vy, v3], then

m Q( 2v1vy ) < V2 V2 Q(x) dx < [AlQ(Vl) Jr_AzQ(VZ)}, (15)

n=1
where . .
Ar=23 8 [(et-1)Tdhand Ay = L T [ (0N 1) an,
1=10 1=10

Q<Ay+<xly—A>X> < =Y (¢ -1) e+ 4 Y (0 -1) )

which leads to

Employing the change in variables, we have

)< ;1; (=)ot ) o o)) (16
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Integrating inequality (16) w.r.t. A on [0, 1] yields

8
— Q< 20172 ) < vz QW)
22(\/;5*1)7] Vit V2 V2 —=vViJvy X

n=1

This is the required inequality.
For the other inequality, first we suppose x = m and employ Definition 9 for

the function Q; we have

viva ("2 Q(x)
V) — V1 Jwvg xz

[t viv2
- /o Q(/\v2+ (1 —/\)V1>d/\

< /01 B y (¢* ~1)"Q(w) +é y (- — 1)’7Q(vz)]dA

dx

n=1 n=1
_ Q) v M) Q(v2) ¢~ /! s(1-A) _ 1\"
_mng/o(e 1)dA+m;§1/(J(e 1)"dA
= [A1Q(v1) + AQ(v2)].

This completes the proof. O

Corollary 1. Assume that m = 1 in the above inequality (15); then

1 2v1Vo V1V v2 Q(x) (es —5— 1>
2(\/675—1)Q<V1+V2> = vy —vy Sy, X2 dx < s [Q(Vl)jLQ(vzﬂ'

Remark 15. Assume that s = 1 in the above inequality (15); then we obtain Theorem 4.1 in [36].

5. Refinements of Hadamard Inequality Involving Modified Harmonic Exponential
s-Convex Function

In recognition of the importance of convexity, various researchers have created numer-
ous generalizations of convexity and validated a lot of features in these new generalized
cases. Convex sequences, their characteristics, and the accompanying inequalities with
applications have received increased attention from researchers. The most viewed and
discussed inequality in history connected with the field of convex analysis is the Hermite—
Hadamard inequality.

Given the following lemma, with the aid of Holder’s inequality and involving the newly
introduced concept, we obtained some extensions of the Hermite-Hadamard inequality.

Lemma 3 ([23]). Let us assume that p,o € [0,1] and a non-negative real-valued function Q is a
differentiable mapping. If Q" € L[vy, v2], then the following identity holds:

PQ(Vl) +0’Q(V2) I 2 —p —(TQ< 2vqvp ) vz V2 Q(x) dx
2 2 V1 + V2 v — V1 Jvy x2

_ vivp(vo —wvy) T 41—-p—A) , 2v1vy
= | [((1—/\)V2+(1+A)v1)2Q ((1—)L)vz+(1+)\)v1> 17

4(0’— )\) ’ 2V1V2
ot @A) (Avl T A)wﬂ‘”

For simplicity, we denote

Avi vy =1 —=A)va+ (1+A)v; and By, v, = Avi+ (2= A)vy. (18)
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The following notations will be used in this way:
+oo
I(v) = / eMATNN, v O;
0

1
B(v1,v2) :/ AT - A2 1A, vy, > 0
0

This is a hypergeometric function in integral form first introduced by Euler [39]. This
function states that

_ I(v)I(v2) _

:B(V1/V2) - F(V] +V2) , V1,V > O/
2Fy(v1,v25v33¥) = 1)\Vrl(l — ATV (1 = yA) VA
1\V1,V2,V3,V ﬁ(Vz Vs — V2) \4 %

where vz > v, > 0and |v| < 1.

Theorem 9. Let us assume that p,o € [0,1] and Q : [v1,v3] C (0, +00) — R is a differentiable
mapping such that Q" € Llvy,vy|. Suppose |Q'|7 is modified harmonic exp s-convex; then for
p,q > 1 with % + % =1, we have

‘PQ(Vl) +0Q(v2) L 2=h —UQ< 2vivy ) vy M Q(x )dx
2 2 v1+ vy vy —vy Jv, X2
< V1V2(V2 *Vl) (19)

[of (@1Q )1 + S0 ()7 + 95 (TIQ )1+ 521 2},

where ) ( e "
1—p)P*™ +p?
= 1—p—AlPdA = ,
1 /0 1—p—Al i
1 _ o)rtl p+1
(PZ:/ |‘7—/\|pd)\:(1 O to ,
Jo p+1
1 1 saa 1§
_ _1)IdA, T, = — / SOH) _1y14,,
S g Ly Y0 s Y y
n= V1,V2 = V1 V2

1T &1 LN
Sy TSN I T

2
n=1"0 BV?,V2 n=1"0 BV?,Vz
and Ay, v,, By, v, are defined from (18).

Proof. From Lemma 3, we have

‘PQ(V1) +(TQ(V2) n 2—p — UQ( 2vqvy > ViV V2 Q(x) dx
2

2

< v1v (v —vyp) {/1
< 1 ;

1 4(c—A)
+ i+ 2= N)v)?

/ 2v1vy
((ESATE +A>vl> < ((1 By +A>vl> ‘””

/ 2v1vy
« (Avl n <2—A>VZ> M'
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Employing the property of Holder’s inequality and modified harmonic exp s-convex
function, we have

PQ(v1) +0Q(v2)  2—p—0 [ 2vivy viva 72 Q(x)
+ Q — .
2 2 Vi + V3 vo—vyJvy, X

1

1 1

< V1V2(V2 — Vl){ </0 |1 —p— )\|pd/\) ’
1

11 1 & 1 1 & 1 q

I s(1-A) _ ! q L s(1+A) ! q

% {/0 A\Zr?,vz <2m E(e 1) IQ (v1)| + 2m Ug(e 1) |Q (v2)| )d/\}
1

1 v
+ </ |(7A”d/\>
JO
m 1

o1 1 &/ oo o, 1 ) ., 7
X /0 5 (Zm g (e @=1) 1> Q" (v1) |7+ m 2 (e A 1) 1Q (vz)|‘7>d/\} }
B n=1 n=1

. V1,V2

dx

viva(vo —vp)
4

r 1 1
X o] (Z1|Q (v1)] +‘52\Q'(V2)|q)% + @) (T3]Q (v1) |7 +T4|Q'(vz)|q);}

This completes the proof. [

Corollary 2. Assume that m = 1 in inequality (19); then

dx

PQ(v1) +0Q(v2)  2—p—0 [ 2nivy )_ vivy (V2 Q(x)
’ 2 A Q<V1 +v2 /v] x2

< vyvp(vp —vy)

V2 — V1

1 1
x [qof (D11Q()|7 + DalQ(v2) )¢ + o] (DsQ’<vl>|q+D4|Q’<v2>|q>5]

where . )
D=1 ! (=Y —1)dA, D, = E ! (1Y) —1)da
1 2 0 Azq ’ 2 2 0 Azq 7
V1,V2 V1,V2
1/ 1 1 /1
D3 = — T(ES(Z_/\) — 1)d/\, D4 = E/ 2 (ES/\ — 1)d)\
2 0 BV]/VZ 0 BVl/VZ

Corollary 3. Assume that p = o in inequality (19); then

‘pQ(vl) +Q(v2) +(1p)Q( 2v1v ) Cwwm T Q(x)dx‘

2 Vi + vy vy — vy Jv, X2

==

<wviva(vp —vi)@

g [(TllQ'(w)Iq +T2IQ (v2)|7) T+ (TaIQ ()| + Ta|Q (v2) ) ;]’

where 1 = @2 = @.
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Corollary 4. Assume that p = o = 0 in inequality (19); then

‘Q( 2v1vy ) B 2vivy V2 Q(X) dx‘ < V1V2(V2 _Vl)

v] + vy vy — vy Jny x? Ypr+1
) [(Tl|QI(V1)|q +‘52|Q/(V2)|q)% + (T5]Q (vy) |7 +‘34|Q/(V2)|q);]'

Corollary 5. Assume that p = o = % in inequality (19); then

‘Q(V1> + Q(v2) +Q( 2vivp ) _ 2vivp (V2 Q(;C) dx
2 vi+ vy vp —vy Jy; X
< vyva(va —vp) pj—l

<[ @@+ R+ (Tl + 5 ).

Corollary 6. Assume thatp =0 = % in inequality (19); then

‘Q(V1)+Q(V2) +2¢( 2v1v) ) _ Bvive Q)

2 v+ Vo v — V1 Jvg x2
2) P+l ( )P“
3
< 3vyvp(vy — Vl) ( ] )

<Jmi +sz|cz’<vz>|q)% I IAIEEASORE

Corollary 7. Assume that p = o = 1 in inequality (19); then

< V1V2(V2 - Vl)

S
- [(31|Q’(V1)|q +Tz|Q/(V2)|q)% + (T|Q (v1) 7 +T4|Q/(vz)|q)[1]]‘

)40l

2 V) — V1 Jwvg X

Theorem 10. Assume that p,c € [0,1] and Q : [vq,v2] € (0,4+00) — R is a differentiable
mapping such that Q' € L[vy,va]. Suppose |Q'|7 is modified harmonic exp s-convex; then for
p,q > 1 with % + % =1, we have

‘PQ(Vl)JFUQ(Vz) " 2—P—UQ( 2vvp ) _viva (2 Q(x )dx
2 2 v1+v2 vo—vy Sy, X2

< niva(va —vi)

- 4

(20)

V2

1
4 — » f
<[ (20 (2123532 ) (@0 o + )’

1
1 - G 1
+ (2F1 (2p,1;2; V12VlV2)> (C71Q" (v1) |7 + Cs|Q' (v2)]7) q} ,

1

where

_ 9(e s(1-A) _ 1)1
Cs = Zmz/u p—ol1(e1Y —1)da,
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Ce = L i/l 11— p— o7+ —1)14A
6 2m 2 s ,
1 m
72/ o — AJ7(e@2N —1)14,
m :

1 m
= Z/ o — A[T(eS — 1)1dA.
n=1"0

Proof. According to the Lemma 3, we have

‘pQ(vl) +0Q(v2) Z—p—UQ< 2v1vy > A /Vz Q(x)

2 + 2 vi+vo Vo — Vg x2 dx
< V1V2(V2*V1) I:/l 4(1*()*/\) Q,< 2v1vy )‘d)\
4 0 [(T=A)va+ (1+A)vy)? (1=A)v2+(1+A)n

4lc—A)
(Avi+(2-— )\)Vz)2

/ 2v1vy
Q (m n (z—Am) “”]'

Employing the property of Holder’s inequality and modified harmonic exp s-convex
function, we have

’PQ(Vl) +0Q(v2)  2-p —‘TQ( 2vivy ) vy (2 Q(x)dx
A’

> + 2 v+ V2
1
§V1"2("2—"1){4</1 E dA)p
4 0 A,
[ 43 1= =t (g e () =1) ")+ g g (049 = 1) Q) ) |
1
s [ )’
o B

X {/01 U-Mq(z; i(es(Z—A)_1> Q' (v1) |7 + % i( 1)’7|Q’(v2)|q>¢mr}

n=1

2 — V1 Jwng Xz

1

_ vivo(v2 —vq)
4
V2

4 v, —
x| —2 (,r(2p,1:2;
{(V1+V2)2(2 1( P vi+vo

1
1 — [ 1
+2<2F1<2P,1;2;V12 Vz)) (C7|Q’(vl)lq+Cng’(Vz)|q)‘f]
vy V1

))”<c5|o’<vl>|ﬂ + ColQ (v2)]1) 7

This completes the proof. [
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Corollary 8. Assume that m = 1 in inequality (20); then

Qi) +0Q(v2)  2-p—0( 2uiva ) _ w2 /vz Q) ;.
2 2 V1 + Vo vy — vy v, X2

< vivp(vp — vp)

- 4

vi—v2

1
4 ? 1
) [w@ﬁ(”’“ vlm)) (Ds[Q"(v1)1" + Dl Q' (v2)|) 1

1
1 — i 1
+ (2R (2222 ) ) (071Q )l + el ()1,

1

where .
Ds = %/ 1= p—of?(e1Y _1)d,
0

1
D¢ = 1/ 11— p— o7 —1)da,
2 Jo
1 /1 1t
D = E/ o — A[9(52D) —1)dA, Dg = E/ o — A9(e™ — 1)dA.
0 0

Corollary 9. Assume that p = o in inequality (20); then

'pQ(Vl)""Q(Vz) el —p)Q( 2vivp )  vivg [ Q(x)dx

2 V1 + Vo vy — V1 Jvg x2

S V1V2(Vi — V1)

— vy

4 A%
X | ——= | 2F1( 2p,1,2;
{(Vl +V2)2(2 1( P V1 + V2

1
1 - G 1
+ (2F1 <2P, 12 v12V1V2>) (Es|Q'(v1)|" + E4|Q'(v2)|7) q}

1

)) "(BQ ()17 + EalQ (v2) 1)

where .
1 m "
- —2pl7(e5S(1-A) _ 1\
Eq 5 ,72_1/0 |1 —2p|7(e 1)7dA,

Br= o 3o [ 2pf1(2 ) —1y7an
2m =170 ’
L i /1 o — AJ1(e@N —1)1dA
3= 5 2 Jy ,

E —if/1| —AJ(e —1)TdA
4—2m;7:1 ) p :

Corollary 10. Assume that p = o = 0 in inequality (20); then

‘Q( 2v1vy ) v V2 Q(X) dx‘ < V1V2(V2 _Vl)

v+ Vo v — V1 Jvg x2 4

1
1)) (B0 ()l + Bl ()l

4
x [m ) (2F1 (2p' b2

1
1 — [ 1
+ (ZH <2p, 1,2; V12V1V2>) (E7|Q (v1)|7 + Es|Q' (v2)|7) 7 |,

1
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where
o L i /1( s(1-0) _qy14)
5 — 2m — 0 e 7
n=1
E. = 1 i /1(65(1+A) 1)7dA
6 2m ~ Jo ’
n=1
Er — 1 i /1 Aq(es(Z—A) —1)1dA
7 2m ~ Jo
n=1
Ly~ M TdA
Eg = m ;7;1 /0 (e )

Corollary 11. Assume that p = o = % in inequality (20); then

Q(v1) + Q(v2) +Q( 2vyvp ) _ 2uv /"2 Q(x)dx‘ < 1va(va —v1)

2 V1 + Vo V) — V1 x2 2

1
1 B v ! / 1
<[ (2R (2012752 ) (Bl ol + Eul@ ()1
1

where

1 m 1
- - oA (e5(2A) 1y
Fy= s ,72_:1/0 11— 277 1)7d),

1 oo
_ - o q(,SA _ 1\1
Epo = 2q+1m,72_1/() 11— 227} — 1)7dA.

Corollary 12. Assume that p = o = % in inequality (20); then

Q(vy) + Q(v2) +2Q( 2vvy ) ~ 3vivp /"2 Q(x)dx‘ < Sviva(va = vi)

2 v+ Vo V) — V1 x? 4

1
4 — ? / ’ 1
X [W(za(zm;z;ﬁz» (G11Q (v1)]7 4 G2|Q' (v2)|7) 7

1
1 — P 1
+ (oA (202772 ) ) (GlQ el + Gl ),
vy V1

where

s(1—-A) _ 17
G = 3qzm Z/ aA,
s(1+A) _ 17
G2 = 3‘72m 2/ aA,
1 m
— Z/ 11 —3A11(e52M) —1)1d],
m = /o

_ ‘i Ui
Gy = 3‘72m2/ 11— 3A)7(e — 1)7dA.
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Corollary 13. Assume that p = o = 1 in inequality (20); then

Q(Vl) + Q(Vz) V1V2 /Vz Q(x) dx‘ < V1V2(V2 — Vl)

2 vy —vi Ju, X2 = 4
4 1
(v1 +v,)2 2, V2 ) ) ! q / 17
X [(V1+v2)z<zFl (ZP,1,2, v1+v2)) (G5\Q (v)|7 + G| Q' (v2)] )

1
1 Vi —V v 1
+v2<2Fl (2P/1;2; 12v1 2)) (G7|Q (v1)]7 + Gs| Q' (v2)[T) 7 |,

1

where

n=1
1
Ge = ﬁ / (1) _ 1y140
=170
Gy = 1 i /'1 11— A|q(es(2—A) —1)7dA
7= 5m Lo ,

G —ii/lu—w(eﬂ—mm
872rr1,7:1 0 ’

6. Conclusions

The study of integral inequalities in association with convex analysis presents an
intriguing and stimulating area of study in the domain of mathematical interpretation. Due
to their pivotal role and beneficial importance in many disciplines of science, the subject
of inequalities has been described as an attractive field for mathematicians. Many mathe-
maticians try to use and employ new ideas in order to advance the theory of inequalities.
A great framework for starting and creating numerical tools for solving and researching
challenging mathematical problems is provided by the word inequalities. This work has
shown a new variant of Hadamard inequalities involving a new family of convex functions,
namely the modified harmonic exp s-convex function. A new class of these functions has
been investigated by introducing some algebraic properties. The new family of modified
harmonic exp s-convex functions is an extended and generalized class of functions, includ-
ing convex and harmonically convex functions, which have been proved. Furthermore,
the new type of Hadamard-type inequality and its estimations have been achieved. Many
researchers add efforts to the term inequality hypotheses to reveal a new dimension of
applied analysis because working on this hypothesis has its own importance and wide
scope. It is a fascinating and engrossing field of research for researchers. Now is the
time to explore the significance of convex analysis and inequalities along with innovative
numerical techniques.
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1. Introduction

This is a statement of the well-known classical extension of Hilbert’s double-series
theorem [1]:
<land0< A=2-1_

Theorem 1. If v, @ > 1 are such that % + & 3 % -

that v' and @' present the exponents’ conjugate; then,

1

00 00 19]7.[1 (o] v (o] %
Ly otek(ne) (5) g

where K = K(v, @) depends on v and @ only.
Readers may find the integral analogue of Theorem 1 in [1].

Theorem 2. Let v, @, v/, @' and A be as in Theorem 1. If ¢ € LY(0,00) and 6 € L®(0,00), then
1

7 T (/Omﬂ”(om)i(/Owe‘%gwg)w, @

where K = K(v, @) depends on v and @ only.

In 2011, Zhao et al. [2] proposed a new inequality similar to Theorem 2.

Axioms 2023, 12, 449. https:/ /doi.org/10.3390/axioms12050449 46

https:/ /www.mdpi.com/journal/axioms



Axioms 2023, 12, 449

Theorem 3. Let h; > 1, v; > 1 be constants and vl, + @% = 1. Let the differentiable fun. 9;(3;)
n [0,1;), where 1; € (0,00), and we use O, as a differentiation of ©;. Suppose 9;(0) = 0 for

(i=1,...,n). Then,
! n 19
/1/ / DS/ N
zlw
< i= 1(Dz>

<KIT( [0 alot oo as)

where

Moreover, in 2012, Zhoa and Chung [3] proved the following theorem.

Theorem 4. Let v; > 1, be constants and - 7 + = 1. Let 8;(1y;, ..., Tyi) be real-valued nth
differentiable functions defined on [0, 11;) X [O Lni), where O < 1j; < dji, 0j; € (0,00) and
i,j=1,...,n. Suppose

B;( ) / / - Bi( )d d
i(Miyeeolni) = —— (i, Tni)ATyi - - - AT
1 17 7Nt 0 0 aTli o aTni 1 1% 7 *ni ni 17

then
011 Ou1 12 On2 01 Onn
A S L 5
JO 0 JO 0 0 0
. 1
n 1 Lni o" : Vi
im ( Jo S0 | amae 0T Tai) | AT d T
PR S
n [lliwlm'] i=1 @
i=1 [
dlll ce dlnldllz ce dlnz ce dlln e dl;m
i ni n Vi 1/%
NH(/ / H ]1*1]1 M o LAAGTI dlni”-dlli) ’
L l lnl
where

n 1 Z?:lv%fn n 1
NZ(TZ—Z) H[(sli...(sni]‘ﬂi.

i—1 Vi

Pachappte [4] proved the following one:

y Z@(”’”)W<M(k,r)( i(km+1)(pm®(wm>2>%) @)

where
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/019 '/Og qD(f(s)i‘Yég(%))dsdt < L(ﬁ/€)</j(l9—s)<p(s)cb

S

where

=3[ (285 4) ([ (2§52 )’

Handley et al. [5] extended (4) and (5) as follows:

k k =\ e
n H agm, n 4 Vﬂ,m, e ¢
3 - Z““Lw(kl,...,kn)H(Z(ke 1) (pome (S ) )

my= =1 my=1 (=1 Wl[:l
" ( 24:1 'ngé)

where )
1 (kP )\ 7\
Mky, .. k) = —— <Z( zéémﬁ)%)
(,)/ )7 /=1 my=1 Lmy
and
¥ 9, n
/]/ Hé:1¢E(F(S£>,)d51...dSn
70 0 n / !
(Ez—l’mslé
1
n ) F/(Sg) 7 Yt
< L(%,...,9 (/ 19—5( SCD( ) ds),
(% ")g A (8¢ —se)| pe(se) Dy o (5) ‘
where

L(ﬁllm,ﬁn):(ly})yﬁ(/om (W}idw)%'

In 2006, Zhao and Cheung [6] proved the following reverse inequality.

* C1 O Qn F 56,3
/ / / /O é 1% Z)) ’y,dsldgl...dSnd%n

(=1
(1 Zg 173(5630
2 G(ﬂlglr---/ﬂnyn)
1

* zlﬁ[1 (/oﬁé 092(19[ —s¢)(6e — ) (Pz(se)w(gz)q% <D2D1F€<S€@?)0) ) ”dsedgz) "

pe(se)qe(Sy

where
!

1
L 0 ree (Dp(Py(se,S0)) \ 7% T
G(dicr,..., Ontin) = (/ /( >‘dsd%).
(%161 nYn) L P50, S0) 043y

Py(se,S¢) = /OJ[ /056 Pe(Ce)qe(Te)dS d,.

and
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In [7], Pachpatte studied the Hilbert version inequalities.

/ /g Fh U s < lhl(xy)% (/019(19 —5) (Fhl(s)F(s)>2dS)%
* (/OIg(g -9 (Gl_lg(%)fd%) %, (10)

and
/0 /OG @(F(S))‘YéG( ) dsds (9 g)(/f(ﬁ—s)(p(s)q) ';((s))))zds)z
([e-o(aor(E)ae)
wher
T e R ()
and

o [e-9 (s (s@) ) )’ )

/191 /Ql /1971 /Qn HZ 1®£(F5(Sg,\5‘g>> dsld\jl dsnd\sn (13)
(723 17; L)

P L(l91Q1, .- -rﬁn}/n)

X H (/ﬂ/ /g/ 0 —s0)(6e — ) (W(Sh \f/)@/('; ((S::\w ))ﬁédsﬁd%) i

1
O 160 (Dy(Py(se, S e 7
L(dxcr,..., Buyn) — ( I ( fp/séfm"))) dsed%z)

In [8-10], Yang et al. established some important extensions of a Hardy-Hilbert-type
inequality by using the weight coefficient method and techniques of real analysis.

All of the aforementioned findings hold true for both continuous and discrete domains.
The purpose of the current research is to provide new, more general conclusions to the
time-scale-based disparities previously established. Supreme outcomes, from which many
other previous and current results may be taken, would be produced in this way. See the
following publications for various dynamic inequalities, integrals of Hilbert’s kind, and
other categories of inequalities on time scales [11-23].

We hope that the reader has a sufficient background on the nabla conformable frac-
tional on time scales. S. Hilger [24] introduced the time scale theory in 1988 as a way to
combine continuous and discrete analysis. A time scale T is an arbitrary nonempty closed
subset of the set of real numbers R. In the manuscript, we use the notation V(7% for the
nabla conformable fractional derivative on time scales instead of V) for simplification. For
more details on nabla conformable fractionals, please see [25].

\_/

where
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Definition 1 (Conformable nabla derivative). Given a function f : T — Randa € T, f is
(y,a)-nabla differentiable at > a, if it is nabla differentiable at &, and its (vy, a)-nabla derivative is
defined by R

Vif@) =GiEaf @) ¢>a (14)

Definition 2 (Conformable nabla integral). Assume that 0 <y <1,a4,81,82€ T, a <& <
&y and f € C1y(T), and the function f is called (vy, a)-nabla integrable on (&1, G2] if

ViR = 'ézf@)vzf:
= f() _1(07 ), a)VE, (15)

exists and is finite.

Lemma 1 (Dynamic Holder’s Inequality [14]). Letu, v € Twithu < v.If8,0 € CCL,([u, v]1 x
[u,v] 1, R) be integrable functions and 1 + L = 1 with v > 1. Then,

1
/ / |l9(1’, 5)9(],/ 5)|v('y,a)rv('y,a)5 < [/ / |19(1,,(5)|Vv(%ﬂ)rv(%a)5:|
u Ju u Ju

o[ @ (1.0) 37 (70)
XM /u 16(r,6)[©V10) v 5} . (16)

This inequality is reversed if 0 < v < land if v < 0or @ < 0.

8=

In this study, we prove a few novel conformable fractional dynamic inequalities of the
Hardy-Hilbert type on time scales, which are driven by Theorems 3 and 4 given above. We
will also extract the discrete counterparts of the continuous Hilbert inequalities that are
present in some special situations of our results. We are now prepared to state and support
our key findings.

2. Main Results

Theorem 5. Let T be a time scale with 6y, 1;, 3, 6; € T, (i=1,...,n). Let h; > 1, v;,@; > 1be
constants and L + 1 = 1. Let V() differentiable functions 9; (\sl) be decreaszng on [6o, L),

where 1; € (0, oo) Suppose 9;(dg) = 0. Then,

/ / / 1 |19 ( )‘ . v(y,ﬂ)snv(’y,ﬂ)snil . v(%ﬂ)gl
6 4o 5 n (Si—5) 1:1 @;
(zos)

“nl(./f(pui) 30)[ol Sy " (3)

1
v

RAVARZDNE ) , (17)

where

noq i ,/%.—" n 1
KIK(ll,...,ln): (1’12) Hhi(lifdo)wi.
: ,
Proof. From Holder inequality (16), one can see that

gl [ e (1)

[Tiers0l < Tm [ 1o el ™ () [voe)s (18)
i=1 i=1 0

1

Hh i—0)° </§ |l9?i_l(fi)l9iv(w(Ti)\wv(%”)fi> ;
0
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Using the inequality for the means [26]

(H)\ ) i i% (i=1,...,n), (19)
1 1@, i=1

we have

hi
izt |9 (“‘)l

- 1 L Vliin - Si hi—1 v (7.2) Vi (y,a) ‘171
<(n-xro Hhi /50 97 (w)ey () [V ) L (20)
1=

i1 Vi

Using the integration of (20) on 3 from éy to 4; (i = 1,.. ., n), employing the inequality
of Holder’s yields

/11 / / i1 |l9 i I)Jl - V(’Y,a)%nv('y,ﬂ)%nil . V(,y,a)%l
do Jéo ) . Zi:l o

n 1 1
v

no\ =ty " n L Si hi—1 V() Vi (7.4) ‘
< n— va hl/§ /5 |l91' (71)191 (Ti)| Vi
i i i=1 0 0

i=1 i=
1
n i S a Vi
<KIT( [ [ 10 e ) wiring s, )
i=1 \ 7% /%
1
n 1 ,71
=K (/( AR CHMCATE W)%z-) : @1)
i=1 \7/d
By exploiting the fact that t; < p(1;), we find that
/”/ / LA v, voag, . vy,
b Jdo % n (Si=8) i-13;
( z'—l - )
z Li —1 v (714) v, ”17
<KIT (0o = ponlel ™ (3067 ™ (3w 105, )
i=1 0

This concludes the evidence. O

Remark 1. In Theorem 5, taking T = Z,v = 1, h; = 1, we obtain the results thanks to the authors
of ([2], Theorem 1.1).

Remark 2. In Theorem 5, taking T = R,y = 1, we obtain the results thanks to the authors of ([2],
Theorem 1.3).

Corollary 1. In Theorem 5, takzngn =2,and hy = hy = 1,ifvy, vo > laresuch that ; 1 172 >1
amd0<A=2-L1-L1 1,41 wz < 1, inequality (17) reduces to

V2 @
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nop & & 1 1
/1 /2 [%:(SVI1%2(32)] /\V(%”)%zv(%“)gn < _ (11— 80) 1 (12 — 69) ®2 (22)
b /o (A@1@3)
(@2(%1 — o) + @1 (32— 50))
1 1
I (7.) n 2 (v.a) 2
([0t =puloT @0 ) ([ p0) — p(a)Ief " (B)2V 1, )
0 0
Remark 3. In a special case, taking T = R,y = 1, in (22), we have that

L 3 1 1
/1 /2 [91(S1)[]82( \52)|d%2d%1 < 1 (1) (1) ™
(@291 +col\s2) (A@1@)

1 1
! v L Ty
X </01(11 — %)Wﬁ(%ﬂvld%l) ] </02(12— %2)|19§(32)|V2d%2> Y, @)

which is an interesting variation of the inequality (2).

Remark 4. In a special case, taking T = 7,y = 1, in (22), we have that

. a1 (S1)la2(S2)| _ 1 (ml)w%(mz)w%
$1=13,=1 ((Dle +c@1§2)A (/\6'01092)/\
1 1
myq ﬁ my E
(X 0m =90+ DT @)1 )" (L m - 92 + DIV ()1 ) 24
S1=1 [p=1

which is an interesting variation of the inequality (1).

Corollary 2. In Corollary 1, if A = 1, then % +1 =14

1 _ —
[ . : o ot = 1 and we take v; = @»,
vy = @1. In this case, inequality (22) reduces to

e [91(S1)[182(S2)| ( 1 u-l @ -1
VIS, v, —380) 1 (1p—38p) @ 25
/00 sy @2(I1 — o) + @1(S2 — do) V2 ~1 V101 (11— do) (12— o) (25)
7 1

([0t =puloT @019 ) " ([ pl12) — p(3)1ef (3] VI, )

5[] 0

Remark 5. In Corollary 2, if T = R,y = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 2).

Remark 6. In Corollary 2, if T = Z,y = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 1).

Theorem 6. Let ']I‘ be a time scale with (50, ll, i, Sy, 0, €T, (i=1,...,n).Leth; > 1,v;,@; > 1
be constants and - + = 1. Let the V() differentiable fun. o; (\sl, d;) be decreasmg fums. on
[00, Li)T X [Jg,gl)qr and 19 (60,0;) = 9;(S3,60) = 0, for (i =1,...,n). Partial derivatives of 9;

(7.a) (7.2) (7.a) vira)
D v v v
are indicated by ¢, ', 9, % ,0, > =10, Vo . Let

i

(1.8) o (1.a) o
NV (S, 6).8) 0 (S5,6) V2
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L S Gn 19 i, 0
/1/1 / / 1 1% Gl Gy, g, | yomg g, 26)
e e o e R W
(5 s
1
Tl viz” I AN
<CIT( [ [ et = et ~ pole™ (3891w, ),
i=1 0 0
where
no1 znu —n n 1
C =C(1161,---,tnGn) —( Zv> 111G —60)(gi —0)] @
=1 i=1
Proof. We can write
o(S,,8) = ﬂ?i(%i,@)—ﬂ?%é 6‘)—19’11'(“«5)%9“(50,50)

= (ﬁ?i(gi,@')) W)C / hi(&:,60)) (Wv(%a)gi
i 7“> ) (1)
= [T = (@ @00 Vg,

1 (va) (v.)
s /5 / (A (T AR (%) R LA
do

= [ [T gy g, @)
s 1o
By (27) applying (16) and (28), we obtain
n
[T 180" (S6)1 < / 107 @ e
i=1 %
1
n 1 Si oyl ) Vi
<H[(%i—5o)(5i—5o)]wf(/5 /5 9, (gi/77i)|vlv(%ﬂ)77iv(%a)§i> -
i=1 0 0
(28)
Using inequality (19), we find that
1?7 ﬂhl @‘/5' n Zln:1 Vli*fl n %1‘ (51‘ (7.a) Vlz
Lot <(n—23) H( L[ (@-,m)|”fv<w>mv<%“>a) @
i=1"1t i=1 0 0

1
n (Si—=do)(%i—do) 1
i=1 @;

Integrating (29) with 3; and ¢;, and applying (16) and Fubini’s theorem, yields
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n 1

( n —50)(5i—50)> e
i=1 @;

/ll/gl / /g" 1|l9( 9i)l viras, voag, | vras v g
% /o b Jéo

S

X

VL (o Gmromnsins) Fongonns)

1

no1 Elnlv —n
<(n-x3)

i=1
1

n Ci i (7.a) vi
TG - 60)es — 80)] (/5/ (/ / 07" )|v1v(wUv(w)g)v(w)(sv(Wk\)

L1 :

l 1

n i [Gi v(7a) ) Vi

—cIT( [ [ 6=l @0 1mv s vons,) 7, 30)

i=1 \ 7% J

By exploiting the fact that ;; < p(1;), we obtain

/11 /gl / /gn 1|19 (i, 0| g, v, L v s i) g
e e o I R S
()
n gl V('V:“) Vli
<cC ( [ [0 - o0t - o187 (30T s v s, )
i= 90 /0o

This concludes the evidence. [

Remark 7. In Theorem 6, if we take T = Z,v = 1, h; = 1, we obtain the results thanks to the
authors of ([2], Theorem 1.2).

Remark 8. In Theorem 6, supposing that T = R,y = 1, we obtain the results thanks to the
authors of ([2], Theorem 1.4).

Corollary 3. Taking n = 2 and hy = hy = 1 in Theorem 6, we have

(v.a) (v.a)

\V4 (7.8) o (7.a) v (v.8) o (1.a)

191 12 (C\\fl, (51) = l9v2 Vi (%1,51), 192 12 (991, (51) = l9v2 Vi (%2, (52)
Moreover, if vy, vy > 1satisfyvl—l+v land 0 < A —2———3—2 = wil—i-w% <1,

inequality (26) reduces to

/11 / (/ / [91(S1,61)[[82(S2,62) | Av(w)gzv(w)(b)V(W)%lv(w)(sl
do Yoo (11(S1—80) (61 — ) + @1(S2 — 60) (62 — &o))

1 @11
1 @1 oy
ST {(ll —d0)(61 — 50)} 1 {(lz —d0) (g2 — o) 1
()\C’Dl(Dz)
1

u o6 (1) o (1.0) v
" (/5 [ (o) = p(31)) (p(e1) = p(00)) 672 (%1,51>Vlv”ﬂ)slvw'“)él) 1 (31)

0 90

1
V2

L a .
(/2/ p(12) — o) (p(62) —50)|l9v£% vy )(%2,52)|V2V(7’a)%zv(7'“)52>
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Remark 9. In a unique scenario, if we take T = R in Corollary 3, the inequality (31) reduces to

b re 62 |[91(q,0 0(Sy, 6
/0 /0 (/0 /o 181(S1,01)[62(S2 2,)\|d%zd52>d%1d51

(1/1 101 + @015207

1 1 @ -1
< 7[1191} @1 [1pgo] @
(Awlwz)
! ¢ <
1 1 V1
X (/0 /0 (1 —S1)(61— 51)|D1D2191(31,51)|V1d%1d51) (32)

1

2 rG2 v
(/o /0 (lz%2)(9'252)|D1D2192(32,52)|V2d%2d52) ,

Remark 10. In a unique scenario, if we take T = Z in Corollary 3, the inequality (31) reduces to

% i ( ﬁ "Zz |ﬂ1(%1/51)||ﬂ2(32,52)|)
A
S=16=1 \Sy=16,=1 <v1%151+w1%252>
1 @-1

< M[mlnl]wﬂ[mznz] o
0107

1

my ny i
x ( Y Y (= 61)(my — %n)|V§”"’>v;”'”>a1<%l,&)l“l) 1 (33)
1

my ny Vy
x (2 2(”2—52)("12—%2))|V§W)V§W)Hz(%2,52)|V2) ’,

=101

Corollary 4. In Corollary 3, if A = 1, then Vl—l + % = w% + @% = 1, and we take vi = @y,
vy = @1. In this case, the inequality (31) reduces to

2 I3 Cx Cx
/1/ (/2/ |191(\s1,51)||192(\:3,52)| v(y,a)gzv(w)(b)v(y,u)glv(y,a)(sl
o Jdo (11(S81 = 80) (61 — do) + @1(S2 — 60) (62 — bp))

v -1 @1

1 v @1
S (R I RIS
1
norel (10) 7 (1) n
([ 0t = ) plen) = pl@) 1™ T (@, )T 1, 700, ) | (34)
0 0

1
1/2

(v.a)

L R )
</2/ 12 — (50 (GZ) — (50)|l9v§% )V] (SZ,52)|V2V(7/”)%2v(7/”)52>

Remark 11. In Corollary 4, if T = R,y = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 4).

Remark 12. In Corollary 4, if T = Z,y = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 3).

Theorem 7. Let T be a time scale with dy, v, Tij, 6;j € T, (i,j =1,...,n). Let vj, ; > 1, be
constants and Vl’ + @% = 1. Let 9;(Ty;, . . ., Tyi) be real-valued nth V7% differentiable functions
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also defined on [8y, 11;)T % iir Oji
Suppose

X [00, tni)T, where 8y < 1j; < 6j;, 6;; € (0,00) and i,j=1,...,n

an
(T v (a4 (v.a)
O (i, -y tni) /50 A VW)Th v(w)rmﬁ,(rh,...,Tm)V Tyi-.- V1

then

/511 / nl /512 /5n2 /51;1 /5nn
s Jo 5
( hi | flm

Vi 1

V(W‘)Tm- e V(V’”)Tll) i

no 1
( " kmé@«wéﬂ)21@

—a RV 19 (Tli'--Tni)

i=1 @;

V(%a) 1... V(’Y’ﬂ)lnl . V(,Y’a)llz . V(,y’a)lnz . V(’Yﬂ)lln . V(’)‘,ﬂ)lnn

< Nﬁ (/5;5“- --A:niﬁ(9(5ji) — Lji)

where

an
\VAYCZOPPNRR vAGZD) ,191‘(111‘, ce s bni)

Ini

7

1
vwmhb”vwm%o”

n Z;’=1 %—n n 1
= N((Sli,...,ém) (71— 21> l U [(511‘ _50) (5711 _(50)}5

i=1 Vi
Proof. From the hypothesis of Theorem 7, we have
l1j Lyj on
(i) e )] < i(Ttiy oo r T
|l91(llz/ ,lnl)| /{50 ‘/50 V(W’”)Tli - v(%u)’rm' 191(7'11 Tm)
On the other hand, by using (19) and Hélder’s dynamic inequality, we obtain

n
H|l9 (Lll/ . [Yll)|

/ /lm

v g, Vg,

n

191'(1'11', . ,Tm') V(%’J)Tni . V(’y’a)Tll‘

(v, ... V),

s 1
< [(11i = 60) . (tni — 60)]
i=1
11 Lni " 9 v (7,4) (7,a) vll
X</§O /{50 V('Y/ﬂ)Tli,...,V(’)‘,a)Tni i(Tli/-..,Tni) v Tm‘...v Tli)
n 1
( n [(lliffso)...(Lni—()“O)] )Zil @;
=1 e
S 1
1 n=Yi, i
(” gy w)
n y Vl

i

AL Lz

- — Y
Divide (37) by( " [(11i=80)-(tui 50)])

@;

Oi(This - Tui)

(v.a) . (va) ¢, .
W”le V(’V'”)Tm- v\, ..V Tl,)

to (5]1 (1,] = 1,...,1’1

information p(n) > n, we obtain
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, and then integrate it over ¢;; from &

), respectively; using the dynamic Holder inequality and using the
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/1511 / ol /512 / 2 /bln /&m
) b0 o do ) do

to (e gy

1
vi

Vi

Wé‘(ﬁi,mﬁm‘) VW’“)Tm---V(W)Tu)

< n I:(Ll,’flsg)...(Ln,‘*éo)] )Zy] %

i=1 @;

V(,y’a)lll e V(V'”)znlv(w)qz e V(W’)zng e V<7’“>11n A V(W’)z,m

ni e [ o s o g ) v, gl
x . (Tl ) Ti Wi VI, i VA g
lljl/(so 5 (/50 /50 v('y,a)rli’.”,v(%a)_[ni z( 1i m) ni 11) Lnj 5T
no1 ):?:1 %_n n 1
< (” - Z 17) H [(61i = 0) - - (8ni — 0)]
i=1 "1
5 i Lyi o 9 Viv('y a) v (1) v (14) v (1.4) VlT
(/00 /50 </50 /50 \vACZOr . v(ry,g)Tm i(Tli,...,Tm’) Tni - T1i> bpjeee lli>
n ‘sli 5m a” Y %
_ _ (g . (va), . (ra),..
Ng (/50 5o j:1(5]1 l]l) v('y,a)lli”.v(%u)lni 19l(‘llw"/“m) \% lpi-V llr)
n i Oni 1 a" " (v.a) (7.2) %’
< . ) — g 1T i ! 1
< N,‘:1 (/50 s E(p(éﬂ) Li) SRR i (t1is s tni)| VIV 1.0V 111>

This concludes the evidence. [
Remark 13. In Theorem 7, supposing Z = T, andwithy = 1, we obtain ([3], Theorem 2.1).
Remark 14. In Theorem 7, supposing R = T, andwithy = 1, we obtain ([3], Theorem 2.2).

Corollary 5. Let 0;(ty;,...,ty;) change to 8;(S;) in Theorem 7 and in view of 8;(6y) = O,
(i=1,...,n),and then

/‘1 / / i=1 |9 (JZ)L vy, viag, | vieg,
& 4o %) " (50) i=1 @;
(2 555)
1
n L a , Vi
<R < /5 (1) —p(37)) 67" )<%i>|”'v<%”>riv<%”><si> , (38)
i=1 \ /%
where
noq ):?:1 .,li*n n 1
R:(I’l—zv> H(li—(S())‘Di.
i=1"i i=1
Remark 15. Taking n = 2, in Corollary 5, if v1, vo > 1 are such that % Vl 1land0 < A =

2-L1_1- (D% + w% < 1, inequality (38) reduces to inequality (22).

41 V2

3. Conclusions

In this work, we used Holder’s inequality to prove a number of Hilbert’s inequalities
on the time scale. Some integer and discrete inequalities were obtained as special cases of
the results. This work builds on the multiple inequalities reported by Pachpatte in 1998
and 2000 and by Handley et al. and by Zhao et al. in 2012. Moreover, as a future work,
we intend to extend these inequalities by 123 using a-conformable calculus and also by
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employing alpha-conformable calculus on time scales. Moreover, we will try to obtain the
diamond alpha version for these results.
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Abstract: In this paper, we aim to study the monotonic properties of the solutions of a class of
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1. Introduction

Differential equations are the most important link between mathematics and applied
sciences, biology, engineering and others. Differential equation models that describe differ-
ent phenomena enable us to study, analyse and understand these phenomena. However,
this requires either solving these models or studying the properties of their solutions.
The first aspect is covered by analytical or numerical methods by finding exact or approxi-
mate solutions to these models. As for the other side, it is covered by the qualitative theory,
which is concerned with investigating the qualitative characteristics of solutions such as
oscillation, periodicity, stability, and others.

Oscillation theory is the theory concerned with the investigation of the asymptotic and
oscillatory behaviour of solutions to differential equations. This theory is concerned with
finding conditions that confirm that all solutions of the equation are oscillatory, guarantee
the existence of an oscillatory solution, provide an asymptotic property for non-oscillatory
solutions, or study the distance between the zeros of oscillatory solutions.

Neutral differential equations (NDEs) are one type of delay differential equation
(DDEs) in which the highest derivative appears on the solution with and without delay.
In electrical circuits containing lossless transmission lines and in the study of vibrating
masses, models of NDEs appear, see [1]. With the development of new models and the
significant technical and scientific advancement that the world is currently experiencing in
engineering, biology, and physics, interest in understanding the qualitative properties of
DDE:s is growing, see [2-5].

In this work, we investigate the asymptotic behaviour of solutions to the even-order
NDEs of the form 4

g (s) +(s)x(3(s)) =0, )

wheres > sp, n > 4iseven,and U = x + ¢ - (x o §). We also assume the following conditions:

Axioms 2023, 12, 346. https:/ /doi.org/10.3390/axioms12040346 59

https:/ /www.mdpi.com/journal/axioms



Axioms 2023, 12, 346

(C1) ¢ and ¢ are continuous on [sg, o) and satisfy the conditions: 0 < ¢(s) < ¢o, ¢(s) > 0,
and ¢ does not vanish identically on any half-line [s,, o), for s, > so.

(C2) B and ¢ are continuous delay functions on [sy, c0) and fulfil the conditions: B(s) <s,
5(s) <s,6'(s) > 0and lims_,e0 () = limg_s00 6(8) = oo0.

For a solution of (1), we mean a real function x € C([sx, )) for s, > sg, which has the
property U € C"([s, o)) and x satisfies (1) on [s,, 00). We take into account these solutions
x of (1) such that sup{|x(s)| : s >s1} > 0 for s; > s.. A solution x of (1) is said to be
non-oscillatoryif it is eventually positive or negative; otherwise, it is said to be oscillatory.

The last decade has witnessed a great development in the study of the oscillatory
behaviour of different-order DDEs. Monographs [6—10] have collected the most important
results in the oscillation theory of DDEs up to the decade before last.

It is easy to notice the great development in the study of oscillations of second-order
DDEs. For example, Bohner et al. [11] and DZurina et al. [12] developed an improved
approach to study the oscillation of NDE

(M @'()") + o) (3(s)) = 0, @

in the non-canonical case. Later, Grace et al. [13] extended the approach in [11] to the
canonical case of NDE (2). Moaaz et al. [14] presented more efficient criteria for testing
the oscillation of NDE (2) in the canonical case based on the definition of two Riccati
substitutions. Whereas more recently, Bohner et al. [15] and Jadlovska [16] obtained sharp
criteria to ensure the oscillation of NDE (2).

On the other hand, the study of oscillation of higher-order DDEs has also received
great attention recently. Agarwal et al. [17] and Li and Rogovchenko [18] introduced criteria
for the oscillation of NDE (1). Therefore, from [18], we mention the following result:

Theorem 1. Assume that B'(s) > 0 and there are functions > € C([sp,0)) and 6 € C!([sp, %))
such that 6'(s) > 0, »(s) — coand 6(s) — coass — oo,

max{(s), 0(s)} < d(s) and max{(s), 6(s)} < B(s).

If
N _ n—1 (n—1)!
timinf [ @KW (BHD))dl > T Q)
and . - ( 3)
imin V) (1 —v)"3 v)|p1 n—3)t
it [*([Towu- v Kt ema> 2,
then all solutions of (1) oscillate, where
S SR PR U V) O 1
BRARTCRIC) [1 (51D (B (B ) )
and 1( ) )
_ 1 BB
) = L6 [1 ﬁl(s)qo(ﬁl(ﬁl(sm]‘
The oscillatory behaviour of solutions of the DDE
(&) (x"()") + 9(s)f(x(6(5))) = 0 ®

has been studied by several techniques. In 2012, Baculikova et al. [19] derived criteria for
oscillation using comparative principles by comparing DDE (5) with three first-order equa-
tions, whereas Zhang et al. [20] and Li and Rogovchenko [21] used the Riccati substitution
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to obtain criteria for the oscillation of DDE (5) when f(x) = xf. Moaaz and Muhib [22] used
general Riccati substitution to improve the results in [19,20] when n = 4. Moaaz et al. [23]
improved and simplified the oscillation criteria for (5).

In [24-27], the oscillation of NDE

(&) (U™ 9)") +9s)fx(6() =0, (©)

or special cases of it, has been studied. Zhang et al. [24] considered DDE (6) when r(s) =1
and & = 1, and obtained conditions for oscillation of all solutions. By using the Riccati
transformation technique, Baculikova and Dzurina [25] studied the oscillatory behaviour
of (6), whereas Baculikova and Dzurina [26] were interested in studying the linear case of (6)
by using the comparison technique. Very recently, Salah et al. [27] presented a comparison
between the different approaches that relied on the comparison technique to study the
oscillation of solutions to (6).

In this article, we find new monotonic properties of a class of positive solutions to
DDE (1). Using these properties, we improve the relationship between the solution x
and its corresponding function I/. To increase positive solutions, the traditional relation
x > (1 —¢)U is usually used which requires that ¢ < 1 be specified. Furthermore,
the works that studied the case ¢ > 1 imposed restrictions on the delay functions in the
form B oé = o B. Our results consider the case ¢ > 1 but do not require the condition
Bod = 6o p. We use the comparison technique to obtain the oscillation theorems that
provide criteria ensuring that all solutions of DDE (1) oscillate.

2. Monotonic Properties

Before looking at the oscillation of the DDE, it is known that determining the signs of
the derivatives of the solution is necessary. Establishing relationships between derivatives
of various orders is also crucial, although doing so may impose further limitations on the
study. The most influential factor in the relationships between derivatives is the monotonic
properties of the solutions of these equations. Therefore, improving these properties or
finding new properties of an iterative nature greatly affects the qualitative study of solutions
to these equations.

While presenting the results, we will need the following notations:

F[l] =F IF[i+l] =Fo F[i]/ fori = 1,2,3,....
The following lemma can be directly obtained from applying Lemma 2.2.1 in [28].

Lemma 1. Assume that x is one of the eventually positive solutions of (1). Then U(s) > 0,
U (s) > 0,U"(s) < 0, and one of the following possibilities is satisfied, eventually:

(Dy) U (s) > Ofori=1,2,..,n—1;
(D2) (=)D (s) > 0fori=1,.,n—2.

Notation 1. Solutions x whose corresponding function U satisfy case (Dy ) are indicated by class
Fx. Moreover, we will use the following condition to prove the main results:

(C) thereisax > 0such that (1 — ¢(s))s8" 1(s) p(s) > (n—1)!x.
Lemma 2. Assume that x € F.. Then, eventually,

€18 d

U(S) > (i’l — 1) deZ/{(S), (7)
and | gt
ers'™ n—

U(s) (nz_ 1)!FZ/{(5), ®)
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foralle; € (0,1),i=1,2.

Proof. By using Lemma 1 in [29] and Lemma 2.2.3 in [28], we directly obtain the proof of
this lemma. Therefore, it has been left out. [

Lemma 3. Assume that x € F, and (C) holds. Then,
(a) lm% =o,
(b) Lur’ <o,

forr=1,2,...,n, eventually.

Proof. Using the fact that &/("~1) is a non-increasing positive function, we obtain
limg_seo U1 =k > 0. Suppose that k > 0. Then, U1 >k fors > s;. From Lemma 2,
we arrive at ren(1

(s) 2 (1- pous) > 28Dy,

which with (1) and (C) gives

Su) < U200 s

)

Integrating (9) from s; to s gives

ke S
u (s1) > U (s) + ( 1! In 5

k€2 S
—~ _In— — o as s — oo,
(7’1—1)! S1

which is a contradiction. Thus, lims_,c ("~ = 0. Now, by applying 1'Hépital’s rule, we
obtain that (a) holds.

Next, we have

k+

U = U A+ Uty
S1
> UM (s1) + (s —s)UMD(s). (10)

Since limg_seo ("1 = 0, there is an s, > s; such that /("2 (s1) — slu(”_l)(s) >0
fors > s,. Thus, (10) becomes U ("2) > s/("~1) and so

d U2
ds s

<0.
Using the fact that U ("~2) /s is positive and decreasing, we obtain

Uy = U (sy) + [ U 1ydl

s2
(1172) S
> u<"—3>(sz)+u/ 1di
S Sy

n— 1 Uur=2(s
= u(@@g+iﬁﬁﬁag—gil (11)
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2
Since lims_,o ("2 /s = 0, there is an s3 > s, such that 2/("—3) (s2) — %U(”_z) (s)>0
for s > s3. Thus, (11) becomes Uumn=3) > %s U™2) and hence

d y-3)

s 2 < 0.

By repeating the same approach, we obtain (b). The proof is complete. [

Lemma 4. Assume that x € F, and (C) holds. Then,

_ (n—1)
m [ 2k—1 1 1 .3[2]1](5) )
x(s) > — | |1— -
k;<11 4’(‘3[1'11(5)>> { o(Bay()) (ﬁ e

foralle € (0,1).

U(Bpt 4 ().

Proof. Let x € F,. From the definition of U, we arrive at

ro — UEE) —x(67)
p(B1(5))

U H(Eae) ~x(Bae)
PEE) p(B )0 (B (9)

_ute)  UEe) U e) (k)
PEE) o) e(Bal)  o(Bul))e(Ba ) o(Ba )
and so

s = 3 (ﬁ : )(—1>k+lu(ﬁk1<s>)+x(ﬁ; ©) 11—
i\t g () g 2 (B )
m [ 2k—1 1 B 1 B
- k_zl(q W) [’/’ (5[211—11(S>)‘W“ (ﬁpi}@)]- (12)

From Lemma 3 and the fact that B(s) < s, we obtain

pan® )"
U(Bah(®) < (ﬁ—[fk](s)) U(Paiy®).

[2k—1]

which in (12) gives

_ (n-1)
m [ 2k—1 1 1 .3[2]1](5) )
x(s) > —— | |1- -
s ’;(H (”(/3[?11(5))) { ?(Bah®) (ﬁ e

The proof is complete. [

U(Bpi)(®))-
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3. Oscillation Results
Lemma 5. Assume that 5(s) < B(s), B! is non-decreasing, and (C) holds. If

- (n-1)
imsu “1(5(s "y ’ 7'8[2’171](5(1)) _
tim sup (' (5(5)) ) kzl{/ﬁ1(5(5))¢<z>ﬁk<(s<z>>(ﬁpi”(5(5)) di+ [T pmpomdl| > -1 @3

forany m € N, then F,, = @, where

B (n-1)
2%—1 1 1 [3[2;1](5) )
Be(s) = | [T ——— | |1- - - @
¢ (H qo(ﬁml(S))) { ?(Bah(s)) (ﬁ[zllcl](s)

Proof. Let x € F,. From Lemma 3, we have (a) and (b) hold. From Lemma 4,
Equation (1) becomes

u' Zan ( 2k 1](‘5( ))) <0, (15)

An integration of (15) yields

U > [° (cp(l) kmzl Br@)U (Bt <5<l>>)>dl- 16)

If (s) < B(s), then we obtain

U (p1(e(s))) = /:1(5(5))<4>(l)iﬁk(é(l))u(ﬁ[zi_u@(l))))C”

Using (b) and the fact that U’ (s) > 0, we find

U (p7(0(s)))

m B s ﬁ[}i,l} (5(1)) n—1)
k=1 B ]WS))) {/ﬁl(a(s))qb(l)ﬁk((s(l)) (1(5(5))) dl+/

v
g
<

/N
=
R

Plok—1]

_ (n—1)
: Blai_1(6(1) .
franc] {/51(5(5)) ¢(1)Br(6(1)) (W) dl +/S ¢(l)[3k(5(l))dl] )

From (b), we arrive at

v
Ny
~
=
L
>
O
N
1=

_ (n—1)
T Z{/ﬁ1(5(5))¢<l>ﬁk<6<l>>(ﬁpi1](5(8)) di+ [ gl |,
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which contradicts (13). The proof is complete. [J

Lemma 6. Assume that (C) holds and, for any m € N, the DDE

W/(8) + gy (8 (B 1) 86 )Zﬁk DBty ()" =0, if6(s) < pa-1(s), (17)

or

y(5)+005) 557 (F60) w57 609)) z 0, if5(s) < B(s), 18)

is oscillatory for some € € (0,1), then Fy = @, where By, is defined as in (14).

Proof. Let x € F.. From Lemma 2, we have that (8) holds. Using Lemma 4, Equation (1)
reduces to (15). Thus, from (8), we obtain

U E) + g9 f () (B (@s) " U D (B (6(s)) <0,

which, with the facts that /(") < 0 and [3[*2,171]( s) < ,8[2 for k=1,2,..m,gives

-1

u(")(5)+ﬁ¢( siu"- 1)(182m 1] )i ( Pk 1](5(5)))n <0.

Suppose that w := U(*~1). Then w > 0 is a solution of

€

W (8) + G o) (Bt O )Zﬁk D (Bahy @) <o.

It follows from Theorem 1 in [30] that Equation (17) also has a positive solution,
a contradiction.
On the other hand, using the fact that i/’ > 0 and B~1(s) < ﬁlel—l] fork=1,2,..,m

the inequality in (15) becomes

U(s) + (U (70(9) 1 pel

Thus, from (8), we obtain

e(B-1 n—1
u(n)(s) +(P(S) (5 (n((s_(sl)))') u(n 1) ( ) Z,Bk

Therefore, it follows from Theorem 1 in [30] that Equation (18) has a positive solution,
a contradiction. The proof is complete. [

Corollary 1. Assume that (C) holds,

lim inf : (~(S))<‘P(Z)Z,Bk(5(l))<ﬁ[2i1](5(1)))n >d1>( L)! ,if0(s) < Bm-1)(8), (19)

Bom—1)(0
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B1(8(s))

(4’(1)(!31(5(1)))”1Iiﬁk(5(l))>dl > D! ) < o), 0)

is oscillatory, then F,. = @, where By is defined as in (14).

Proof. From Theorem 2 in [31], conditions in (19) and (20) imply the oscillation of
Equations (17) and (18), respectively. [

Theorem 2. Assume that 6(s) < B(s), B~ is non-decreasing, and (C) and (13) hold. Then,
Equation (1) is oscillatory if (4) holds.

Proof. Assume that x is an eventually positive solution of (1). From Lemma 1, one of the
possibilities (D;) or (D) is satisfied. Using Lemma 5, we have F, = @. Then, case (D)
holds. In exactly the same way as Theorem 2.1 in [18], we obtain a contradiction with (4).
The proof is complete. [

Theorem 3. Assume that (C) holds, and one of the conditions in (19) or (20) is satisfied. Then,
Equation (1) is oscillatory if (4) holds.

4. Application and Discussion
Example 1. Consider the NDE

(x(5) + gox ()@ + Dx(1s) = 0, el

where g > 0, A < u € (0,1), ¢po > 0, and upg > 1. In the following we will apply the
conditions of the theorems in the previous section to check the oscillation of this equation.
Conditions in (13), (19) and (20) reduce to

w(3) [k 3]l B @

5 1 p2m=y L 1 \’\_ 3 . m—1
Pl {1_}13400 In A ) N\ gt \ At —ry A <p™ @3

and s
A 1 o= 1 3!
-] [1———|(In< Y 24
¢O<ﬂ> { H?’q’o}( /\>k_21<p3k_1 e @)
respectively. The condition in (4) becomes
1A 1 w1
—(In% > —. 25
¢03<P0#[ V(PO] Ae %)

By using Theorems 2 and 3, Equation (21) is oscillatory if (25) and one of the conditions
in (22), (23) or (24) are satisfied.

Remark 1. Applying the results in the previous example to the special case of Equation (21), when
@o =16,y =1/2,and A = 1/6, we conclude that Equation (21) is oscillatory if

S 1152
Po 7eln3’

and one of conditions (22), (23) or (24) is satisfied, see Table 1.

[condition (25)]
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Table 1. Conditions (22), (23) and (24) when ¢g =16, y =1/2,and A = 1/6.

Condition (22) (23) (24)
¢o > 3606.1 ¢o > 1736 $o > 1729.1

Therefore, Equation (21) is oscillatory if ¢ > 1729.1, while the results of [18] state that (21)
is oscillatory if ¢g > 1736. Thus, our results improve upon those in [18].

Remark 2. In Example 1, we note that criterion (24) often provides the best results. For comparison
between the criteria in (3) and (24), we consider the special case when g = 1/u*, and A = u>.
Conditions in (3) and (24) reduce to

3!
> 26
(PO eylo(ln#)(]—y) ( )

and 31
$o > ' (27)

ep (In k) (1 — o) 32, w4
respectively. Figure 1 shows a comparison of the lower bounds for the values of ¢g for the conditions

in (3) and (24) when p € (0.7,0.9).

9|

350

300

0.75 0.80 0.85 0.90 M

Figure 1. The minimum values of ¢ for which (3) and (24) are satisfied.

5. Conclusions

The study of the oscillatory behaviour of DDEs depends mainly on the monotonic
properties of the solutions. These properties control the relationships between the deriva-
tives as well as the relationship between the solution and its corresponding function.
Therefore, finding new or improving monotonic properties plays an important role in
improving the oscillation parameters.

In this work, we obtained new monotonic properties, through which we were able to
obtain a new and improved relationship linking the solution and its corresponding function.
Then, we used this relationship to obtain oscillation criteria for the studied equation. Finally,
we provided an example and comparisons to illustrate the importance of the results.
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Recently, there has been a lot of research activity focused on studying the properties of
solutions to fractional differential equations. It would be interesting to extend our results
to fractional differential equations.
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Abstract: (1) Background: The aim of the study is to develop a set of models for managing a fleet of
complex technical systems with metrological support, allowing the simulation and management at
all the stages of the life cycle of the complex technical systems, as well as to simulate the functioning
of large fleets of complex technical systems, including up to several hundred thousand samples;
(2) Methods: The authors use methods of mathematical modeling, methods of the theory of Markov
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models for managing a fleet of complex technical systems with metrological support was developed
and the applied software was developed; (4) Conclusions: The set of models presented in the article
allows for the adequate simulation of all the stages of the life cycle of large complex technical
systems fleets, including up to several hundreds of thousands of samples, to optimize the functioning
processes of a fleet of complex technical systems, to form strategies for fleet development, and to
assess the risks associated with false and undetected failures, as well as the risks associated with the
degradation of complex technical systems.
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1. Introduction

A considerable amount of scientific research is devoted to the problem of modeling
complex technical systems (CTS) [1-28]. We understand complex technical system as
stationary or mobile special-purpose objects with measuring instruments (MI) installed on
them, which should be metrologically maintained during long-term operation. In the last
half of the century, both CTS themselves and their models have undergone a rather rapid
evolution process. Starting from models with 3-5 states and going up to models with up
to several hundreds and thousands of states. At the same time, the theoretical base and
technical capabilities for modeling CTS with several tens of thousands and even hundreds
of thousands of states have been created.

On the qualitative side, simple models allowed modeling only of the basic states of
the CTS, which describe the operation processes. The models have been evolving toward
a more detailed description of the operation processes (taking into account metrological
support technologies, false failure states and undetected failure states), the CTS degra-
dation processes (first degradation level, second degradation level and so on) and the
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CTS updating processes (by purchasing the new CTS samples, by upgrading the existing
CTS samples, by developing the newest modern CTS samples). Thus, by now there is a
need for models that describe all stages of the CTS life cycle. These models should allow
the simulation of large CTS fleets, including up to several hundreds of thousands of STS
samples. The models should make it possible to manage the process of development of
such CTS fleets, taking into account the range of modern tasks to be solved by means of the
CTS and the need to solve promising tasks in the future.

Let us first conduct a retrospective comparative analysis of CTS models, with a sep-
arate description of the main characteristics of each model, as well as the assumptions
underlying their implementation. Let us describe the strengths and weaknesses of the
models. Additionally, we will then formulate the goal of our scientific research and we will
provide a statement on the problem that will be investigated in this article.

2. Scientific Literature Review

Professor L.I. Volkov [1] proposed the semi-Markov model of aircraft operation control,
which has five states: workable status; periodic verifications of the operational status;
recovery after the occurrence of the valid state, false failure state; the hidden failure
state; the unworkable state (including the hidden failure state); and the state of periodic
verifications with hidden failure.

The classical model developed by Professor E.I. Sychev [2], designed to control the
process of operation of the CTS with measuring instruments (MI) installed on them to
provide metrological support, in contrast to the model by Professor L.I. Volkov, already has
six states. Model [2] describes the operation process more correctly. From the fourth un-
workable state (including hidden failure), two states were separately highlighted: the state
of undetected failure and detected failure. The model takes into account the characteristic
features of the CTS with metrological support.

The model [2] assumes the identity of the recovery of the CTS after both a false failure
and a valid failure. In practice, for some types of CTS, after a false failure, repeated control
is carried out according to the failed technical parameter, and after a detected failure,
the system is restored, for example, by adjusting or replacing the faulty element with a
serviceable one. In the model [3] developed by Professor V.I. Mishchenko, which already
includes seven states, the above-mentioned features and limitations have been eliminated.
The model [3] takes into account the intensity of the CTS operation.

Note that the models described above do not take into account the component of
maintenance efficiency, determined by the availability of spare parts and their replenish-
ment strategy.

The further direction for the development of the models for the operation of the
CTS is to take into account the possibilities of reserving the MI and the possibilities of
replenishment with spare parts and tools. In [4], the model of the process for the functioning
of the MI with metrological support for doubly redundant MI is proposed, which allows
for the taking into account of the features of the maintenance associated with the possibility
of providing spare parts, and taking into account the different strategies for replenishing
spare parts, tools and accessories. In the model [4], which takes into account eight states, it
is assumed: that the detection of failures by the MI occurs only during verification; there
are no errors in determining the technical condition of the MI; and the MI in storage do
not fail.

In [5], a new approach has been developed to assess the impact of metrological support
on achieving the goals of the CTS operation: a graph with an arbitrary number of states is
constructed, the edges of the graph that represent possible state transitions are attributed
both probabilistic characteristics of the transitions (values of the distribution functions or
simply the transition probabilities) and the costs associated with the corresponding transi-
tions. The following states are selected: serviceable, faulty, emergency and catastrophic.
The results from the study, on the influence of the volumes of metrological control for
various conditions on the effectiveness of the object for its intended purpose, are presented.
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As a criterion of efficiency in the various solved tasks, both the readiness coefficient and
the technical and economic indicator were used.

It should be noted that all the models analyzed above do not allow modeling and
the taking into account of conditions corresponding to the different levels of degradation
of the CTS (different levels of deterioration of the metrological reliability characteristics),
leading to time and resource costs necessary both for restoring the CTS and bringing it back
into working condition. Further development of the CTS operation models takes place in
terms of taking into account the aging and degradation processes [6-26] of the CTS (or MI
installed on them) and reduction of the metrological reliability.

Thus, in [6] the model with four degradation groups is considered, having one work-
able state and four states corresponding to the different levels of degradation. This model
describes the process of operation of the CTS, for which repair is possible with the restora-
tion of the resource in full. In [7], a model with three degradation groups is considered,
which allows for the modeling of the processes of operation, renewal and degradation of
the CTS fleet. It is assumed that as a result of the repair, the resource of the CTS cannot be
fully restored.

The works analyzed in this section form the basis (starting point) for the research
presented in the article. This article summarizes the results of the work [5-8]: a set of
models describing the processes of operation, renewal and degradation of the CTS are
presented. To describe the operation process, the classical model [2] is used as it is the
most adequate for the CTS class considered in the article. To describe the processes of
degradation and renewal of the CTS fleet, new additions to the classical model developed
by the author are presented (the model of false and undetected failures, the model of
degradation and renewal of the fleet, including CTS with full and incomplete restoration of
the resource during repair and metrological maintenance).

3. Statement on the Research Problem

It is necessary to develop a set of interrelated mathematical models of CTS fleet
management models, allowing for the simulation and management of all stages of the CTS
life cycle. The developed set of interrelated models should allow for the simulation of
the functioning of large fleets of CTS, including up to several hundreds of thousands of
CTS samples. The set of models shall allow for the taking into account of the degradation
processes of CTS sample ageing, processes on park development due to the procurement
of new samples, the modernization of existing samples and the development of new
promising CTS samples. The set of interrelated models should allow for the management
of the process of development of such CTS fleets, taking into account a number of modern
requirements, and the need to solve promising tasks and problems in the future.

4. Materials and Methods

At first in Section 4.1.1, the results of calculating the readiness coefficient for different
failure distribution laws using the classical operation model are presented. The model
of false and undetected failures is described in Section 4.1.2. Section 4.1.3 describes and
analyzes the models of failure and degradation of the CTS (a fan model, a drift model of
the metrological characteristics and two diffusion models). In Section 4.2, the model of
operation of the CTS is described, taking into account the degradation processes and the
full restoration of the resource, and in Section 4.3, the model of the CTS with incomplete
restoration of the resource is described.
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4.1. The Classical Model
4.1.1. Construction and Study of the Classical Model for Different Laws on the Distribution
of Failures of the Complex Technical System

Let us denote {E;,i = 1,2,...n} as a finite set of states in which a specific sample of
the CTS can be located. The readiness coefficient of the CTS, the operation process of which
is described by the semi-Markov model [2], is calculated by the formula:

Ka= Xn: ﬂiwi/Xn: TiYi, 1)

i=1 i=1

where 71, is the relative fraction of the number of steps during which the CTS is in state E;,
w; is the mathematical expectation of the time of operation of the CTS in state E;, and v; is
the mathematical expectation of the time that the CTS stays in state E;.

n n n ©
At the same time: Z Tt = 1, 1’b1’ = Z PZ]M(Tl]) = Z PZ]f Tl]dP<TZ]),
i=1 i=1 i=1 "0

1

i — p; — for workable conditions of CTS
Y71 0— for unworkable conditions of CTS ’

P, P (1) is

the transition probability distribution function, and M(T; ]-) is the mathematical expectation

where P, are the elements of the state transition probability matrix P* = ‘

of the transition time.

A continuously operating CTS with periodic verification of the technical condition is
ready for use at that time 7 if it is operational at that moment and is not under verification
or repair. The results of the control are used to make a decision on the possibility of further
application of the CTS. If the CTS is recognized as workable, according to the results of
the verification, then it is included in the work. If the CTS is found to have failed, then its
repair is carried out, as a result of which a complete restoration of its operability occurs.
The transition graph is shown in Figure 1.

Figure 1. Graph of state transitions.

Possible conditions of the CTS: E; is workable, E; is unworkable (failure), E3 is
verification of the failed CTS, E4 is recovery, Es is verification of a workable CTS, and Eg is
undetected failure.
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The transition probability matrix has the following form:

0 F(Tx) 0 0 1—F(Tg) 0

0 0 1 0 0 0

pe_| 0 0 0 1-p 0 B
1 0 0 0 0 ol

-« 0 0 « 0 0

0 0 1 0 0 0

where F(7) is the integral function of the distribution of the failure time, F(Tk) is the
probability of failure during the time between two verifications, Tk is the time interval
between verifications (TIBV) of the technical condition, « is the conditional probability of a
false failure, and S is the conditional probability of an undetected failure.

We assume that the duration of the control (verification of the technical condition)
and the duration of the restoration (repair) are deterministic values equal to fx and
tp, respectively.

The system of equations for finding 77;,i = 1,2, ..., 6 has the form:

m =my+ (1 —a)ms, mp = F(Tx)my, w3 = 1y + 16, 714 = (1 — B) 713 + arts,
s = [1— F(Tx)]m, e = Bris, 1 + 7o + 713 + 714 + 715 + 716 = 1.

The solution of the system has the form:

m = z(1-p)
My = 1 F(Tx)(1 - B)
3 = %F(TIO (2)
iy = 5 {F(Tx) +a(1 - F(Tx)}(1 - B)
5 = 1[1—F(Tx)](1— B
e = % BF(Tk)
where A = 2[1 — B+ F(Tx)] +«[1 — F(Tx)](1 — B).
The values v;,i =1,2,...,6 are equal to:
Tx
v1 = [ TdF(7) + Tg[1 - F(Tk)]
0
Tk
vy = TxF(Tx) — [ TdF(7)
0 . 3)
vz = tg
vy = tp
U5 = tg
ve = Tk

Assuming that wy = vy, wp =0, w3 = 0, wy = 0, ws = 0, we = 0, and substituting (2)
and (3) into (1), we obtain the formula for calculating the CTS readiness coefficient:

I+ TyB
Ky = + Ik

Bl TK{B +[F(TR)]? + 55%%)} + b [B + Fl(_Tf[g)] + tg[F(Tx) +aB]

(4)

Tk
where B=1—F(Tx), I = [ 7-dF(1).
0

Next, we will conduct a study of the readiness coefficient for various laws on the
distribution of the failure time. The failure time of the CTS is considered as a random
variable. Analysis of statistical data has shown that the most suitable laws for describing
the failure time are the exponential law, Rayleigh’s law, the Weibull distribution and
the truncated normal distribution, with the appropriate choice of parameters for these
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distributions. The statistical function of the distribution of the failures is located inside the
“curved band” covering the theoretical distribution functions.

In the case of the exponential distribution law, the expression for the readiness coeffi-
cient (4) takes the form:

1 _ e*)\TK

Kr = 7 :
(% + e—’\TK> (1= e Mk) + Aty ((1i;)ﬁp + 1) + Atp(1—eMr(1-ap))

For Rayleigh’s law, the integral I can be calculated numerically or using the standard
Laplace function, for Weibull’s law it can be calculated numerically or using the gamma
function; and for the truncated normal distribution it can be calculated numerically or
using the standard Laplace function.

The calculations were carried out using the following values from the initial data:
tk =1t =1, =01, =0.1,and A = 0.0025 for the different values of Tx. Figure 2
shows the dependences of the readiness coefficients K4 on the periodicity of the verifi-
cation Tk, for the distribution laws described above. The maximum values of K 4 for the
Rayleigh, normal, exponential and Weibull laws are equal to: 0.976, 0.963, 0.955, and 0.950,
respectively, and reach values equal to 65, 55, 50, and 40. Note that the maximum value
of the coefficient for each distribution law is reached at a single point. It can be seen that
maxK 4 is “practically insensitive” to Tk. So, in a fairly wide range of changes to Tk, the
readiness coefficient takes values close to the maximum. In particular, when changes to Tk
take place in the range 25 < Tx < 60, the variation of K4 is no more than 2-3%.

K,
1
0.96 : s 2
" -3
0.92 p
0.88
0.84
0 20 40 60 80 100

Figure 2. Dependences of the readiness coefficients on the periodicity of the control for various
distribution laws: Rayleigh’s law (1), normal law (2), exponential law (3), and Weibull’s law (4).

The low sensitivity of the maximum value of the readiness coefficient to the periodicity
of the technical condition monitoring makes it possible to develop strategies that are “non-
strict” and easy to implement in practice, for carrying out checks on the technical condition
of the CTS with metrological support.

4.1.2. Development of the Classical Model: The Model of False and Undetected Failures

The probabilities of false and undetected failures [8] for the specific samples of the
CTS depend on the corresponding probabilities of false and undetected failures of the
individual components of the CTS (1), (2), on the configuration of the CTS using methods
on the redundancy of the components, nodes and blocks of the CTS.

Let p be the actual value of the measured (controlled) parameter and ¢ be the measure-
ment error. The measurement result is presented in the form r = p + ¢. The general scheme
of the diagnosis and decision-making based on the one-parameter method of tolerance
control is shown in Figure 3.
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Input data: fix),
felx), N, &
Controlled parameter p >
Measuring device
Measurement error e >
r=p+e
yes

— lpl=6 |r|=4

False defect

Undetected defect

workable product
recognized as
workable

Inoperative product
declared as inoperative

Wrong decision

Figure 3. General scheme of diagnostics and decision-making based on the tolerance control method.

Here ¢ is the tolerance for the controlled parameter, and f(x) and f.(x) are the distribu-
tion density functions of the measured parameter and the measurement error, respectively.
It can be seen that the probability of making the right decision can be increased (within

Right decision

certain limits) by reducing the total error of the erroneous decision.

The different physical nature and, consequently, the heterogeneous range of the
changes in the measured values leads to the need to introduce dimensionless standardized
operational parameters for the MI. As a normalizing element, we take the mean square
deviation oy of the measured parameter x; § = A/ 0y is the relative operational tolerance,
where A is the technical tolerance; z = 0./ oy is the relative parametric measurement error,

o, is the mean square deviation of the MI error.

The model is based on formulas for the conditional probabilities of false and unde-

tected failures, respectively [8]:

«(5,2) = / Fouly

76

/fo dT~|—/fo Wit |dy b/ /fcu Yy ',
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B(s,2) = ]6fcu(y) 7fo(T)dT i+ [ 5| | otorie |ay /{./bfcu(y)dyf]o fcu(y)dy}, ©)
—co —5-y 5 —o0 5

—5-y
z

where fo(7) and f.,(y) are the functions of the distribution densities of the measured value
and the MI error, respectively.
For normally distributed measured values and MI errors, Formulas (5) and (6) take

the form:
5 76;]{ 0o
a(8,z) = ! /ex —y—z / ex —ﬁ dT+/ex —ﬁ dt |dy y/P1, (7)
Y= PL72 P{72 ) Y '
-8 —00 S~y

Sy 5y

ﬁ(é,z):% /exp<f§> /Texp(fﬂ[;)d’t dy+/exp(fy;) / exp<f§>d’r dy 3 /P2, (8)

—0o —5-y 5 —5-y
z z

13 -5 5]
_ 1 v _ 1 U v
P1 = \/TTTJ’ exp(—2>dy, P2 = Tom [o exp(—2 dy+6/exp -5 dy

For other distribution laws on the measured value and measurement error, the model
(5), (6) were investigated in [8].

The dependences of the probabilities a(d,z) and B(5,z), as well as the probability
o(d,z) 4+ B(8,z) of an erroneous decision J on the tolerance value at z = 0.5 are shown in
Figure 4.
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Figure 4. Dependences of the probability of an erroneous decision (x + 3), as well as the probabilities
of false and undetected failures on the value of the reduced tolerance 6 on z = 0.5.

Note also that the error solution function reaches its minimum at some internal point
6 € (0;1), as is the case with the normal distribution of the measured value and the
measurement error.

The two-dimensional dependences of the probabilities of false and undetected fail-
ures on the magnitude of the dimensionless measurement error z and the dimensionless
tolerance for the controlled parameter 6 are shown in Figure 5a,b.
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Figure 5. Probability of false failures (a); probability of undetected failures (b).

4.1.3. Development of the Classical Model: Models of Failures and Degradation of the
Complex Technical System

All failure models that allow for the taking into account of the degradation pro-
cesses occurring in the CTS can be conditionally divided into probabilistic, empirical, and
probabilistic physical models, that includes among other things, the Markov models of
degradation and failures.

In the fan model [9-11], also called a distribution and belonging to the category of
probabilistic models, the defining parameter (DP) is represented as a linear function of
time, shown in Figure 6a.
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Figure 6. The model of a random degradation process and a scheme for the formation of a
time-to-failure distribution: (a) a distribution (fan process); (b) DN distribution law; (c¢) DM
distribution law.

Here, t is the operating time for the failure; X is random variable of the DP; DP* is the
normalized value of the DP at which the failure occurs; and f is the function of density of
the distribution of the operating time for the failure.

The distribution function of the operating time up to a given level DP* is given by the

distribution function [9-11]:
F(t) = @(H‘) )

ot

where & is the normalized normal distribution function; 4 = 1/a is the parameter of the
scale of degradation, a is the mathematical expectation of the rate of change of the DP (the
average rate of the degradation process), normalized to the limit value; and v is the shape
parameter (coefficient of the variation of the degradation process).

The empirical model of the “drift of metrological characteristics” [6,7] is based on
the assumption on a linear law of change of the MI zero mark and an exponential law of
increasing measurement error:

mo(t) = mog + vmt, o(t) = 0p + 2= % (exp(azt) — 1), (10)
az
where 0y is the value of the initial error, v, is the average initial velocity of the error increase,
a; is the parameter characterizing the acceleration of the error increase, myy is the initial
value of the zero drift (usually assumed to be zero), and v,, is the average velocity of the
zero drift.
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Let us now consider the Markov models of degradation and failures, widely used
in applied problems. In these models, it is assumed that the degradation process can be
approximated by a continuous Markov process of the diffusion type [9-11] and is described
by a stochastic differential equation of the Ito type:

dx(t) = A(t)dt + B(t)dn(t), (11)

where x(t) is the value of the DP; A(t) and B(t) are deterministic functions characterizing
the change in the mean value and variance of the DP (drift coefficient and diffusion
coefficient); and #(t) is a random variable of the Gaussian type.

The problem of determining the distribution of time before the first failure of the MI,
in this case, is reduced to solving the problem of the first achievement of the upper limit of
the DP* (see Figure 6b,c). This problem can be solved if the conditional probability density
w(t, x) of the process transition from one state to another is known.

For a Markov diffusion-type processes, a partial differential equation (the Fokker—
Planck-Kolmogorov equation) follows from (11):

ow(t, x)
ot

2
A (t)awgix) B (B(2t>> azcgigﬂ _o, (12)

where A(t) and B(t) are the coefficients of the equation depending on the operating
conditions of the MI, and the physical and chemical processes occurring in the materials
from which the MI is made. To solve (12), it is necessary to set boundary conditions
that depend on the type of implementation of a random process, in particular, on their
monotonic nature (Figure 6b) or non-monotonic nature (Figure 6¢). You also need to set the
initial conditions: t = ty, x = x.

After finding the function w(ty, xo; t, x), satisfying the given initial conditions, the
density function f(t) of the distribution of the time to reach the boundary DP* (the density
function of the distribution of the time to failure) can be calculated by the formula [11]:

t

£(t) = _/ aw(to,aaio;t,x)dx

—00

In case of one DP, Equation (12) can be integrated analytically. The distribution
function for the diffusion monotone distribution (DM distribution) has the form [11]:

E(t) = DM(t; i, v) = @(2\}%) (13)

Here, y =1/a.
The distribution density function f(t) for (13) at u = 0.1 is shown in Figure 7a.
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Figure 7. Diffusion distribution functions: (a) DM distribution; (b) DN distribution.
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The distribution function for the diffusion non-monotonic distribution (DN distribu-

tion) has the form [11]:
Joom(Bal L) o

The corresponding distribution density functions f(t) for (14) at v = 0.8 are shown in
Figure 7b.
The failure rates for DM distribution and DN distribution have the form:

LR I o I
/- o(i) T o) ew(2) o(25)

Thus, distribution density functions f(t), distribution functions F(t), and failure rate
functions A(t), are calculated using finite analytical formulas using the standard Laplace
function ®(¢).

In case of several DP distribution densities f(t), distribution functions F(t), and failure
rates A(t), can only be calculated numerically.

The process of degradation of the mechanical components of the CTS, due to the
irreversibility of the destruction processes (mechanical wear, fatigue straining, etc.), is
considered to be a process with monotonous realizations of a random variable. DM distri-
bution is used for CTS nodes containing electromechanical elements (relay and connector
contacts, sliding electrical contacts, gears, etc.) [11].

The process of degradation of the CTS, which include integrated circuits and com-
plex electronic devices, also has non-monotonic implementations of a random variable.
Therefore, the degradation of such CTS is described by the DN distribution [11].

We will analyze the models of failures and degradation of the CTS. Degradation and
failures models differ significantly from a physical point of view. In particular, the fan
process assumes that its characteristics are completely determined by the initial state (the
quality of the manufacturing samples of the components of the CTS), and do not depend
on the mechanical, physical and chemical degradation processes occurring in the circuits
and mechanisms of the components of the CTS, under the influence of external conditions
and time.

The drift model of metrological characteristics [10], clearly demonstrates the departure
of the zero mark of the MI and CTS with the increase in measurement error over time. The
model assumes preliminary processing of statistical data in order to determine estimates of
the drift parameters.

The Markov models (12), (13) are based on the use of probabilistic characteristics,
the operating conditions of the CTS, as well as on the use of the physical and chemical
properties of the materials. The advantage of Markov models [12,13] is that they have
accurate analytical expressions for all statistical characteristics, including statistical mo-
ments. In addition, there are no analytical expressions for the statistical moments of the fan
« distribution law. These moments are determined by approximate dependencies, which
complicates the use of a fan distribution in practice.

The density distribution function of the DM distribution occupies an intermediate
position between the, widely used in practice, normal distribution (which is symmetrical)
and the more elongated distribution.

The density curves of the DN distribution have a more significant insensitivity thresh-
old, a more positive kurtosis and are more asymmetric than the DM distribution.

The intensities of the diffusion distributions have finite limits:

1
- 2uv?’

— . _ t—p
F(t) =DN(t;p,v) = q)(v i

Apm(t) =

limAppm(t) = lim Apn(#)
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Here, are some important properties of diffusion distributions for practical application:

1. Where a random variable T is described by a DM distribution of the form DM(t; u, v),
then the random variable x = cT (c = const) is also described by a DM distribution of the
form DM(t; cp,v).

2. Where arandom variable T is described by a DM distribution of the form DM(t; j, v),
then the random variable § = % is also described by a DM distribution of the form
DM(51,v).

3. Where a random variable T is described by a DN distribution of the form DN (¢; u, v),
then the random variable x = ¢T (¢ = const) is also described by a DN distribution of the
form DN (t; cu,v).

4. The sum of n random variables obeying the distribution of the form DN(¢; u, v;) is

n
described by the DN distribution of the form DN (t; nu, 1/ % v;z
i=1
5. The sum of n random variables obeying a distribution of the form DN (t; y;,v) is

n
described by a DN distribution of the form DN (t; Y ou,v/ ﬁ) .
i=1

6. The sum of n random variables obeying the DN distribution of the form DN (; u, v)
is described by the DN distribution of the form DN (t; ny, ﬁ)

The proof of properties 1-6 can be carried out by replacing the variables and definitions
of functions (13)—(14).

Some additional properties of diffusion distributions are described in [11].

Analysis of the graphs on the distribution functions shows that distributions (9), (12),
(13) have different zones of high reliability. This means that the estimation of small-level
quantiles, i.e., the assignment of a gamma-percent resource, significantly depends on the
selected type of failure model of the CTS.

Diffusion models can be parameterized quite simply in the presence of statistical
information. For example, when parameterizing based on statistical data on the moments

of failure {t;, (i =1,2,...,N)}, the estimates of the parameters }4/ and v calculated using
the maximum likelihood method for the DM distribution have the form:

_ N o1\ N SN\ 2 /N S\ 72 N o1\ ! N N o1\
ros(fl) o2 (Ewe) () (8 rEo(E)

Thus, diffusion models are more preferable (adequate), since, unlike the fan distri-
bution and the drift model of metrological characteristics, they can be used to control the
degradation and reliability of the CTS, based on the taking into account of the physical pat-
terns implemented through time-dependent variable coefficients A(t) and B(t) in Equation
(12). The task of developing models of physical processes for the purpose of construct-
ing coefficients A(t) and B(t) is an independent scientific task and is not considered in
this article.
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4.2. The Model of Operation of a Complex Technical System Fleet with a Fully Recoverable Resource

The attribution of a set of CTS to one or another degradation group is carried out on
the basis of structural and functional analysis of the metrological reliability indicators [2,6,7],
which includes the types of failures, the consequences of the failures, as well as determination
and analysis of the rational composition of the controlled parameters and an assessment of
the required recovery time of the CTS. In this paper, the controlled states of the CTS will be
evaluated using the probabilities of a false failure &, an undetected failure § and the time ¢
required for recovery after the failure is detected (the recovery time depends on the “severity”
of the malfunction detected during monitoring). At low values of these estimated indicators,
we will refer the CTS to the first group of degradation. As the degradation increases (as
these indicators increase), we will refer the CTS to the second, third and fourth groups of
degradation, respectively. Without going into the details of assigning parameters of criteria for
attribution to a particular degradation group, we note that the number of degradation levels
is determined by a set of types and types of CTS under consideration, their characteristic
features, as well as the specific task being solved.

Figure 8a shows a graph with one fully workable state E; and four states corresponding
to different levels of degradation (malfunction): Ej, E3, E4 and Es [6]. Let us distinguish the
three parts in the classical model [2]: the initial operational state E;, the failure state E; and
the subgraph corresponding to the control function (highlighted in Figure 8b by rectangle
C2). Then, the classical model can be represented as a “serial connection” E;, C2 and
E; [14,15]. The states of the subgraph: K3 is verification of a failed MI, Ky is the restoration
of the CTS, Kj5 is verification of a working MI and Kg is the state of an undetected failure
of the CTS. The probabilistic characteristics of the state transition are the same as in the
classical model [2].

S |

Figure 8. Graphs and subgraphs of the CTS operation model with full resource recovery: (a) with the
control of four degradation states; (b) with the control of one degradation state (classical model).

Note that if the control subgraph is completely removed from the graph in Figure 8b
and the probabilistic characteristics are set on the edges of the remaining graph, then a
simple model will be obtained that describes the operation of a small gun [6].

Figure 8a uses the notation: E; is a fully functional state and four states corresponding
to different levels of degradation of the CTS; E, is the first group of degradation (functional
state with minor deviations of the normalized metrological characteristics); E3 is the second
group of degradation (a state with some deviations of the metrological characteristics, from
which it is possible to return to a fully functional state with small resource costs); E4 is the
third group degradation (a state from which it is possible to return to a fully functional state
with costs associated with sufficiently resource-intensive maintenance); and Es is the fourth
“heavier” group of degradation. As the degradation group number increases, returning to
the state E1 becomes more and more resource intensive.
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Let us “attach” four metrological control systems, C2, C3, C4 and C5, between the
fully functional state E; and the other four states, similar to the one shown in Figure 8a
(“fan connection”). We will use the corresponding upper indices for the probabilistic and
deterministic parameters of the model of each subsystem, describing samples of the CTS
with different levels of degradation.

Then, the system of equations describing the semi-Markov stationary model will take
the form [6]:

=y (1) +(1- uq)né1> + niz) +(1- zxz)néz) + ﬁis) +(1- D(3)7'(é3) + 7'[‘(14) +(1- uc4)7ré4)

[1 - 71]
51”3 g
néz) = Y271, + 01 nél) ngs) =737 + (527r£2) ; ) = = Y471y + (53n£ )
néz) (1 52)7'(2 + 7'(( ) ﬂ§3) =(1- 53)7'(? + né3) ( ) = 4) 4)
niz) (1- [52)7‘[3 + 0&27'[( ), nia) =(1- ‘Bg)ﬂéa) +lX37Té3) , ( (1 — Ba)my ( ) 4 tX47‘(é4> (15)
) =11 = ) = 1= pa)m = i
né2> _ ﬁ2n§2) néS) _ [327r§3) (4) = B4 7.[

Here, «;, (i = 2,3,4,5) is the conditional probability of a false failure, §; is the condi-
tional probability of an undetected failure and «y; = F;(Tk)J;, (j = 1,2,3) are the probability
of a transition from a state of degradation to the next, more severe, state number j + 1.

Model (15) is a system of 21 equations. The rank of the system is 20. Exclude one of
the equations (for example, the last equation of the system (15)) and add a normalization
condition, as follows:

4 6 .
m+Yy Yo =1 (16)
i=1j=2

Then, the resulting system of linear inhomogeneous Equations (15) and (16) will have
a unique solution that can be obtained using standard algorithms and methods for solving
the corresponding systems [5,6].

Initial data: the total number of states is 21 and the number of degradation levels is
four. As the CTS degrades, the duration of the verification and recovery time increase, and
reliability decreases.

As generalized parameters characterizing the distribution of the control volumes by
the degradation groups, the duration TIBV TI(J) for each of the four degradation groups
was selected. As a result of the calculations, the dependence of the readiness coefficient on
the TIBV was constructed:

Ka=Ka(TH, T2, 78, 1Y), 17)

and the analysis of the influence of the TIBV of the different degradation groups (i=1, 2,
3, 4) on the readiness coefficient was carried out. When constructing the dependence (17),
the probabilities of false and undetected failures were set as average values for each of the
degradation groups, namely: a4 > a3 > ay > ay, By > B3 > P2 > B1.

The calculations have shown that if three arguments out of four are fixed in function
(17), for example TI(<2) = c(z)*, TI(<3) = c(3)*, TI(<4) = c(4)*, c* = const then the dependence
(1)

of function (17) on the remaining variable T, will have the form shown in Figure 9. If two

arguments out of four are fixed in function (17), for example TI(<1) = c(* and TI(<2) =@
then the readiness coefficient K4, as functions of two variables, will be convex upwards
(Figure 9). The maximum of the readiness coefficient K, is reached at a single internal
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point. Here and further, an asterisk in the upper index means that the corresponding value
is set and fixed.
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Figure 9. Dependence of the readiness coefficient K4 on the TIBV for technical conditions E3 and E4.

The calculations have shown that the maximum value of the readiness coefficient is
achieved if the TIBV for the fourth degradation group is about 1.3 times less than for the
third group.

The developed model allows us to calculate the optimal duration of the TIBV for the
CTS of different degradation groups. If it is impossible to provide optimal TIBV values for
some degradation groups in practice, then in (17) “possible” TIBV values should be set
for these groups and local optimum TIBV durations for the remaining degradation groups
should be calculated.

Note that the model of interaction of the CTS with the MI with a simplified form of
technical condition control can be represented as a graph (Figure 8a), if you remove the
control subgraphs C2—C5 and set the probabilistic characteristics of the state transitions
on the edges of the remaining graph. Such a model, supplemented with a formula for
calculating the average total resource costs SUM = Sipp12 + Sa3p23 + Szapss + Saspas
(where 513, 523, 534, S45 are unit costs and p1, p23, P34, pas are probabilities of the state
transitions), was used in [6] when calculating the technical and economic indicators of the
metrological support system, when forming programs for the long-term development of
the CTS fleet.

The models described in Section 4.1 and 4.2 do not allow modeling processes of CTS
fleet renewal, and do not allow for the taking into account of the procurement of new CTS
samples, or the modernization of existing CTS samples and the development of promising
CTS samples. The model presented in Section 4.3 of the article allows modeling for all stages
of the life cycle, including procurement, modernization and development of advanced
CTS samples.

4.3. The Model of Operation of the Complex Technical System Fleet with a Partially Recoverable Resource

Next, we will distribute the CTS into three degradation groups [7]: the first is the start
of operation of the CTS, the sample remains operational and the changes are insignificant;
the second is where the operation and resource consumption of the CTS sample continue,
the changes in characteristics are significant and the rate of change is average; and the third
is a long-term operation, where the changes in characteristics are very significant and the
rate of change is high. The number of degradation groups is determined by a set of types
and the types of CTS under consideration, as well as the specific task being solved.
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Figure 10 presents a graph of the operation model of the updated CTS fleet, with three
degradation groups and two subgraphs modeling the process of updating the CTS fleet.
The upper indices in parentheses indicate the number of the degradation group. Each
degradation group will be modeled using the classical model [2], described in Section 4.1.1.

Figure 10. Graph of the model of operation, degradation and renewal of the CTS fleet with incomplete
resource recovery.

Each of the two subgraphs describing the upgrade process include three states:
E;l), I = 2,3 are the in-depth diagnostics of the technical condition; Eél), | = 2,3 is the

repair of the CTS; and Eél), I =2, 3 is the purchase (or development and production) of a
new similar model of the CTS. The probabilistic parameters of the main state transitions are
shown in Figure 10, in Greek letters. Certain shares of the CTS, from the second w® and
third w® degradation groups, in case of failure of the CTS are sent for in-depth diagnostics
of the technical condition, in order to determine the feasibility of updating (replacing with a
new model of the CTS) or continuing operation after repair. To simplify, some probabilistic
characteristics are not indicated in Figure 10, but they can be easily restored, taking into
account that the sum of the probabilities of the transitions from each vertex of the graph
are equal to one. If one edge comes out of the vertex, then the corresponding transition
probability is one, and if two edges come out of the vertex, and the probability of one
transition is written on the graph, then the probability of the second transition is equal to
the difference of one and the known probability of the first transition.

R R A (< R ] P I O P AP
V) =y rV ) = y@rl? 47V

ﬁél) - X(l))ﬁgl) " Wél) ﬂgz) =(1- X(z))ﬂ;Z) + néz)

ﬂil) — (- B<1))ﬂ§1) n (X<l)7té1> , 7tz<12) =(1- B(Z) — w(Z))T[gZ) + (X,(Z)']Té2>

O A n(l)]n(l) n? = {1 —4@) n<z>]ﬂ§z>
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85



Axioms 2023, 12, 300
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Here ni(J) are the stationary probabilities of finding the CTS in the corresponding states;
oc(f), i=1,273, B(j ), j =1, 2, 3 are the conditional probabilities of false and undetected
failures, respectively; y(/) = F;(Tx) is the probability of failure during the time interval Tx
between the verifications; F;(T) is exponential distribution function; and ()((j ), r](f ), i=1,2)
are the probabilities of the transitions of the corresponding states from the j degradation
group to the next (j + 1) group. The first three systems (18) describe the processes of the
CTS operation for the three degradation groups, and the fourth system (18) describes the
process of updating the CTS fleet.

Model (18) is a homogeneous system of 24 linear algebraic equations. The rank of the
system is 23. Exclude one of the equations (for example, the last equation of the system
(18)) and add a normalization condition instead, as follows:

™=

1

3 . 9 3 .
Yl 41y Yl =1 (19)
1j=1

i=7 j=2

Then, the resulting system of linear inhomogeneous algebraic equations (18) will have
a unique solution [7].
The readiness coefficient K4 of the fleet of the CTS is calculated by the formula [2]:

K, — (Zﬂmg)) y (Zﬂlmwzg)) 20)
) L]

Here 11)10 ) is the mathematical expectation of the time (average time) of the CTS being in
the corresponding states E l«(] ) (assumed to be known). In the numerator (20), summation by
index j is performed for all workable states, and in the denominator (20) is the summation
by both index i and index j for all states (the index i is responsible for unworkable states).

As parameters characterizing the distribution of the metrological control volumes

and the quality of the metrological control by degradation groups, the duration of the
TIVB TI(<] ), j = 1, 2,3 for each of the three degradation groups, the relative values of
the operational tolerances for the controlled parameters 50, j =1, 2,3 and the relative
measurement errors z(/), j=1, 2,3, were selected.

As a result of the solution for system (18), the dependence of the CTS readiness
coefficient for use on the above metrological parameters, organizational, technical and
technical parameters is constructed:

K = Ko (T, T, 70,4, 6@, 40), g1 ) g6 ), 0@, 4@ Gy (21

moreover, the functions of the conditional probabilities of false failures and undetected
failures depend on the relative operational tolerance and relative measurement errors:

al) = ,,((1)(5(1),2(1)), a@ = a(2>(6(2),z(2)), a®) = a(3)(6(3),z(3>),
/3(1) = /3(1)(6(1),2(1)), ﬁ(2) = 5(2)(5(2)12(2)), 5(3) = 5(3)(5(3)12(3))

that are calculated using Formulas (5)—(8).
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In (21), the following parameters are presented: w(®, w(® are the proportion of

samples sent for in-depth diagnostics of the CTS samples from the number of samples
received for verification; and 1(2), u(®) are the parameters characterizing the process of
updating the CTS fleet (so, for example, in special cases /) = 0, where all inoperable CTS
samples are changed to new ones, and where pl) =1 they are repaired). The parameters
w'), ui) are conditionally attributed to the organizational and technical categories. The
readiness coefficient also depends on other technical parameters, for example 17(1), 17(2), )((1),
x®, which characterize the degradation process of the CTS fleet (operational parameters),

and the average time 1 l(j ) spent by the CTS sample in various states. These parameters are
determined based on the processing of the available statistical information and the relevant
criteria for classifying the CTS into different degradation groups.

Note that the parameters d)gj ) (time spent in the state Eéi)) allow you to model both the
purchase and development of new samples of CTS. To simulate the procurement of new

samples of CTS we have to set d)g] ) sufficiently small, and to simulate the development of
new samples, we have to set the CTS at medium and large.

Note that the constructed dependence (21), like (17), is smooth, so its extreme proper-
ties can be effectively investigated using standard gradient methods.

On the basis of solving a series of problems on the extremum of a function of several

variables (21), the influence of the TIBV TI(<j ) of the CTS from different degradation groups
and the relative tolerances on controlled parameters (/) on the readiness coefficient are
analyzed K 4.

Consider the effect of the duration of the TIBV on the readiness coefficient K 4. Let us
fix all the arguments (21), with the exception of three: T(i), i =1, 2,3. If we additionally,
fix any two arguments TI(<i ) out of three, for example TI(<2) = C(Ti)*, T1(<3) = C(Ti)*, then the

dependence of function (21) on the remaining argument TI(<1) will have the form given in [2]:
convex upwards with a single maximum.
An asterisk in the upper index means that the corresponding value is set and fixed. If

one of the three arguments is fixed in function (21) (for example, TI(<3) = C(Ti)*), then the

readiness coefficient curve K4, as well as the functions of the other two arguments, TI(<1) and

TI(<2), will be convex upwards (Figure 11). The maximum of the readiness coefficient K4 will
be reached at a single internal point in the parameter plane, TI(<1) X T1(<2)- The dependences
of the readiness coefficient K4 on the frequency of the control for the first and third groups,

and for the second and third groups of degradation, have a similar form.

Figure 11. Dependence of the readiness coefficient K4 on the TIBV for the first and second degrada-
tion groups.
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Optimization (21) for three groups of degradation showed that the characteristic ratio
of the TIBV durations is 80:45:30, thus, the higher the degradation group, the more often
CTS verifications are required.

Consider the effect of the relative operating tolerances s4), j=1,2,30nK,. Similarly
to the above, we fix all the arguments (21), with the exception of three U ), j=1, 2,3. Then,
the dependence of the readiness coefficient K4 on relative operational tolerances is similar

to its dependence on the TIBV, T(Z), i=1,2,3.

The calculations have shown that the general form of dependence K4 on two toler-
ances, at a fixed value of the third tolerance, has the form of surfaces shown in Figure 12.
The surface of the readiness coefficient K4 as a function of two arguments will be convex
upwards, where the maximum is reached at a single internal point in the parameter plane,
51 x 5@, 8(1) % 5() or §2) x §6). Optimization of the K4 of three relative tolerances
simultaneously showed that their characteristic ratio is 0.07:0.09:0.13, thus, the higher the
degradation group, the greater the tolerance.
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Figure 12. The dependence of the readiness coefficient K4 on the relative operating tolerances for the
controlled parameters: (a) on 5(1) and 5); (b) on 5() and 5.

The study of the joint dependence K4 on the TIBV and tolerances showed that the
maximum of the function of six variables is achieved at a single internal point of a set of
parameters, T1(<1) X TI(<2) X T1(<3) x 81 % 52 % §0). The optimal values of the arguments
were: T = 81.59, TZ) = 50.46, T = 3255, 5(1) = 0.072, 6 = 0.0872 and 53 = 0.128.
At the same time, the optimal values of the probabilities of false and undetected failures
were: a() = 0.227, a®) = 0.267, a3 = 0.347, g1 = 0.171, B? = 0.222 and B = 0.323.
The calculations have shown that with an increase in the number of the degradation group,
the TIBV decreases, the tolerances for controlled parameters and the probabilities of false
and undetected failures increase. The probabilities of false failures slightly exceed the
corresponding probabilities of undetected failures for each degradation group.

We describe the results of a study on the stationary distribution of the CTS samples
in different degradation groups, depending on the rate of degradation processes. The
rate of degradation is determined using transition probabilities x(!), (). The lower the
corresponding probability, the slower the degradation processes proceed. Four variants
differing in the rate of degradation were investigated: 71) = 0.25, ) = 0.2, #(?) = 0.35,
x? = 0.3 (option 1); M) = 0.025, ) = 0.02, ¥ = 0.35, x(?) = 0.3 (option 2); (V) =
0.025, x = 0.02, y® = 0.035, x = 0.03 (option 3); and 1) = 0.025, x(!) = 0.02;
7 = 0.035, ! = 0.003 (option 4). Note that the variants are arranged in order of
decreasing degradation rate. The distribution of the proportion of working samples of the
CTS by degradation groups at different values of these parameters is shown in Figure 13.
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Figure 13. Distribution of workable CTS samples by degradation levels at different values of parame-
ters determining the rate of degradation.

The probability of the CTS staying in the first degradation group for option 2 is about
5.5 times higher compared to option 1. At the same time, the ratio of the probability of
being in the third group compared to the probability of being in the first group remains
approximately the same.

The probability of the CTS staying in the first degradation group monotonically
decreases, and the probability of being in the second group monotonically increases with
sequential consideration of options from 2 to 4.

Next, we investigate the dependence K4 on the total production capacity of the
metrological units in which the MI and CTS are verified and checked. The production
capacity of a metrological unit may be temporarily limited for one reason or another. The
specified restriction was set in the form of an inequality, " 7t/ Jpl) < €+, where C(™* is

the conditional production capacity of the metrological un]it, and the problem of conditional
optimization was solved. In Figure 14 the dependences of the TIBV on the total conditional
production capacity { of the metrological units and the readiness coefficient corresponding
to these intervals (in percent) are presented.
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Figure 14. Dependence of the readiness coefficient and the TIBV on the total production capacity of
metrological units.
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If the production capacities of the metrological division do not allow for the checking
of the required number of CTS, then it is possible to operate a fleet of CTS with increased
TIBV. With a decrease in the production capacity of the metrological unit from 100% to 75%,
the readiness coefficient K 4 decreases from 0.9514 to 0.8402.

5. Results

A set of interrelated mathematical models of the processes of operation, renewal and
degradation of a fleet of CTS with metrological support was developed. The basis of the
developed set of models consists of:

— A basic model of the CTS operation;

— A set of CTS operation models, having different levels of degradation (for different
levels of CTS degradation a different number of system states and different variants
of system maintenance are used);

— A model of false failures and undetected failures;

— A model of CTS fleet renewal, including such renewal methods as the purchase of
new CTS samples, the modernization of existing CTS samples and the development
of new promising CTS samples;

— A functional dependence model of the CTS availability factor on a number of technical
parameters, organizational and technical parameters, and technological parameters
of the CTS belonging to different degradation groups and different methods of CTS
stock renewal.

On the basis of the set of interrelated mathematical models presented in the article,
the software for modeling the processes of operation, renewal and degradation of the fleet
of CTS with metrological support was developed.

6. Discussions

The models developed and implemented as software allow for the parametrical opti-
mization of the processes of CTS fleet functioning for a number of parameters, including
metrological parameters, organizational and technical parameters, and technical parameters.

If in practice it is impossible to provide the optimal TIBV values or tolerances for the
controlled parameters for some degradation groups, then for these groups the “possible”
values of the TIBV and tolerances for the controlled parameters should be established, and
the developed models should be used for calculation.

The developed set of models include a model for calculating the probabilities of
false failures and undetected failures, for use in cases where the measured parameter
and measurement error have a normal distribution law. The set of models developed
in the article can also be used for different distribution laws of the measured parameter
and measurement error: analytical defined laws, statistical defined laws or analytical and
statistical distribution laws.

The constructed functional dependences of the availability factor on metrological,
technical, organizational, technical and technological parameters have a smooth character,
which makes it possible to effectively investigate the extreme properties of the availability
factor using standard gradient methods.

7. Conclusions

Thus, the research goal has been achieved: a set of interrelated models has been
developed, which solves the current need for end-to-end modeling of all the main stages
of the life cycle of the CTS fleet. The developed set of models makes it possible to ade-
quately simulate large CTS fleets, including those incorporating up to several hundreds of
thousands of CTS samples.
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The developed set of interrelated models allows:

— Management of the process of development of CTS fleets;

— Optimization of the processes of CTS fleet functioning;

—  Identification of problematic issues in the development of CTS fleet and the formation
of strategies for CTS fleet development in the presence of various constraints;

—  The solving of the problem of conditional optimization in the presence of constraints
on the technological parameters of the CTS fleet development (with constraints on
part of the arguments of the availability factor function);

— Calculation of the technological and technical-economic parameters of the CTS fleet
functioning and development;

— Evaluation of the risks associated with false and undetected failures, as well as the
risks associated with CTS degradation;

A set of models is used in the Main Scientific Metrology Center:

—  To classify the designed CTS in order to establish the requirements for their metrologi-
cal support;

— When developing plans for medium-term and long-term development of the
CTS fleet.

A set of models and software can be used by design organizations involved in the
development of modern and advanced CTS with metrological support.

8. Future Works

At present, a set of models continues to develop in the direction of development
and replenishment with models of CTS fleet maintenance; namely, models of work-
places for the verification of MI, taking into account the priorities of the MI samples
coming for verification [27,28], as well as models of CTS fleet functioning under such
modes of functioning as the mode of high readiness for use, the mode of use in extreme
conditions, etc.
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1. Introduction and Outline

Denote by N and Z, respectively, the sets of natural numbers and integers with
No = NU {0}. The shifted factorials are given by (x)g = (x), == 1 and

(X)p=x(x+1)--(x+n-1)

<x>n—X(x—1)...(x_n+1)} for neN.

We can express them, even when n € Z, as the quotients

I'(x+n) I'(1+x)

(x)n = Tho and (x), = TAtx—n)

where the I'-function is defined by the Euler integral
I'(x) = / wlem"du for R(x) > 0.
0

For brevity, their fractional forms are concisely shortened as

52 - 34

ArB/"'/C (An )n' C)}’l’
AB,---,C T(A)I(B)---I(C)

According to Bailey [1], the generalized hypergeometric series is defined by

ap, 4y, -+, Ap e (aO)n(al)n"'(“p)n n
F z| = 2 z".
1+p P[ b, -, by ‘ } = nl(by)u - (bp)n

When z = 1, this series is convergent only if the “parameter excess” (i.e., the difference
between the sum of the denominator parameters and that of the numerator ones) has a
positive real part.
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There exist many strange evaluations of hypergeometric series (cf. [2-8] for example).
Recently, Campbell, D’Aurizio and Sondow [9,10] discovered two mysterious-looking
formulae (see D1 and D12)

33 4In(1+v/2)
3b 3M =
1, 3
[L T -3 ] V2 +1n(1 + v2)
55 ‘1 - .
L, 3 4

Campbell and Abrarov [11] found, among the others, the following two further ones (see
F10 and G8)

- 5, 3 -1 ’1 _ 3ym{3v2—log(1+v2)}
32 1 % - 21"(%)2 !

5, 1 3 5¢{3v2 —log(1+ v2)}
BT 1| = 8T(3)2 '

These series are said “exotic” because one numerator parameter minus a denominator
parameter results in a negative integer. By examining carefully these seemingly unrelated
series, we find that they are connected, under the Thomae and Kummer transformation
(cf. Bailey [1] §3.2 and Page 98), to the following 3 F,-series

1+4a, c, %+e

F(a,c,eb,d) =35
S+b, 34d

A::%+b+d7u7cfe>0
4 o:=b+d—a—c—e>0 4

h

where a,b,¢,d, e € 7Z satisfying the conditions 2 > 0 and ¢ > 0 so that the both series
involved are nonterminating. When o =b+d —a — c —e > 0, the series is convergent,
because in this case the parameter excess A = o + % > 0 (i.e., the sum of the denominator
parameters minus that of the numerator ones).

Classically, there are three typical summation theorems (for the 3 F,-series) discovered
by Dixon, Watson and Whipple (cf. Bailey [1] §3.1, §3.3 and §3.4). However, neither of them
can evaluate the afore-displayed series in closed form. In particular, the formulae for the
3F,-series presented in this paper are not present in the recent paper by the author [12], and
two useful compendiums: ([13] §8.1.2 and [14] §7.4.4), where numerous closed formulae
are collected for the 3F,(1) series with numerical parameters.

By applying the linearization method (cf. [15-18]), we shall transform, in the next
section, the evaluation of F-series into the (), »-series treated recently by the author [19].
The main results are summarized in the conclusive theorem as well as twenty closed
formulae for the F-series. Finally in Section 3, analytic formulae for six further classes of
exotic 3F,-series will be provided by employing the Thomae and Kummer transformations
(cf. Bailey [1] §3.2 and Page 98) to the F-series.

In order to ensure the accuracy, all the formulae appearing in this paper have been
checked numerically by appropriately devised Mathematica commands.

2. Linearization Procedure for the F-Series

In this section, we shall reduce, by means of the linearization method (cf. [15-18]),
the F-series to specific instances of a known ), , (x,y) function, that has recently been
examined by the author [19].

21.a=0

According to the Chu—Vandermonde convolution identity on binomial coefficients, it
is routine to establish the following lemma.

95



Axioms 2023, 12,291

Lemma 1 (Linear relation: m € Ny).

m
(A+n)y =Y (B+n)X, where Xg= <r;c1> (A—B)y_k-
k=0
Specifying the above relation to the equality
a
(1 + n)a = Z(C + n)ka(a) where Xk(a) = (i) (1 — C)u—k
k=0

and then substituting it into the F-series, we have the double series

| 1+a, c, %+e a + 1)k
Fla,c,e;b,d) = Xi(a
( ) ,1;0 1, 3+4b 2+d ,;)(1+n)a (4)
a © | c+k, 1+e
=y Dy |2
=0 (La n—ol 1 tb 1+4d],

This results in the reduction formula as below.

Proposition 1 (Reduction formula from a > 0 to a = 0).
F(a,ce;b d)—f(—l)” N (T FO,c+k 00, d)
rerer Yy - k ﬂ*k 7 rer Yy .

22.b=d
The F-series can further be reduced to the case b = d.
When b > d, we can specify Lemma 1 to the equality

b—d
b—d
(3+d+n)y—a= Y (c+n)Yi(bd) where Yi(bd)= ( P )( —ct+d)p gk
k=0
Putting this inside the F-series, we have the double series
1 .
- ¢,y te (c+mn)
F(0,ce;b,d) = ’ ————K (b
( nZO $+b3 k; (3 +d+n)pq Yl )
b—d © [ ct+ki+te
P I el CCTD W P
k=0 +d)bd n=0 Z‘i‘b/q-i-b

This yields the following reduction formula.

Proposition 2 (Reduction formula from b > d to b = d).

b=t b —d\ (O)k(3 —c+d)p gk .
Z( k ) (2_‘_11)[7 i *F(O/C+k,€,b,b).

F(0,c,e;b,d) =
k=0

Alternatively, for b < d, we can specify Lemma 1 to the equality

d—b B
(b ms = L+ k(o) where Yylbd) = (13 ") (340 0o

k=0
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Substituting this into the F-series, we have the double series

1 _
o0 ,7_|_e
F(0,c,e;b,d) = 2 ———————(b,d)
nzo 240,°2 k‘;(i+b+n)d b
_dg (o)« i ctkgte
k=0 ( +b)db =0 4+d,4—|—d

This gives rise to another reduction formula.

Proposition 3 (Reduction formula from b < d to b = d).

d—b 3

d—b\ ()e(3+b—c)aprk

F0,ce;b,d) =) ( r > ?Q—i—b) F(0,c+kedd).
k=0 1 d—b

23.c=e

The F-series can further be reduced to the case ¢ = e. For this purpose, we have to
show the following linearization lemma.

Lemma 2 (Linear relation: m € Ny).

3 £ (_1)k_l k B—i
(A+n)m :I;)<B+2”>kzk where Zy = Z(:) o i (A— B,
= =

Proof. By substitution, it suffices to evaluate the double sum

m k (_1\k—i .

k=0 i=0 !

By exchanging the order of summations, we can reformulate it as

B+2n d i(B+2n—i
5= 3 A=,y (P2
- — —i

i=0 k=i
m (B +2 : —i-
—y (- +2n); (A By, B+2n i 1
i! 2 m—i
i=0
<B+2” AP T2y Z m\ (A= E)m
i) B+2n—i

(3 +2n>m+1 . (A 4 )
m! (B+2n),, .4

= (A + n)m/

where the last line is justified by finite difference calculus (cf. [20,21]). O

First for c < e, we have from Lemma 2 the equality

( +c+n), C—Z<2b+2n+ >Zk(b,c,e),

k (_ k—l k
where Zi(b,c,e) Z ( ) —b+ %), ..
i=0
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By inserting this into the F-series, we obtain the double series below

) C,l te —c 2b+21’l+
FO,cebb)=Y |, "%, <::>;zk(b )
n Z-i-b,g‘f'b 1 k=0 ( +C+Tl)
e —1—2b & ¢3+c
B N Nl N RS ol s g o
k=0 (3 +C)e—c =0 +b,22 1+ p

Writing the inner sum concerning # in terms of the F-series, we immediately establish the
reduction formula as in the following proposition.

Proposition 4 (Reduction formula from c < e to c = e).

F(0,c,e;b,b) = gic(_l)k(li%)

Zi(b,c,e)F(0,c,c;b — kp—
k=0 ( +C)e c 2

NI
~—

When ¢ > e and e > 0, we infer from Lemma 2 that

c—e

(e+n)e—e = <2b+2n+ %>ka(b,c,e),
k=0

ko[ 1yk—i ,
where Zi(bce) =) ( }(? (llc) (e—b+ 21 .. 1)

i=0

Putting this inside the F-series, we can analogously treat the double series

+

Zi(b,c,e)

%“rb,%ﬁ‘b 2 k=0 (€+n)0—€
(-3 - zw w[ e3+e

Zi(b,c,e
)y O el aap sa |

F(0,c,e;b,b) Z

Instead, for ¢ > e and e < 0, reformulate first the F-series by reindexing

F(0,c,e;b,b) = F(0,14+c—e1;1+b—¢,1+b—e¢)

1 _ 1
c,5+e £ ¢, 5te
2 + Z ; 2
S4+b,3+D S+b,3+0b
Then according to Lemma 2, we have another equality
c—e
(1+n)c—e = 2@ +2b — 2e +2n), Zi(b, c,e),

k=0

where the connection coefficients Z;(b, c, e) coincide with those given by (1). Now, by sub-
stitution, we have another double series

]:(O,l—l-c—e,l;l—i-b—e,l—l-b—e)

1+C_€, — +2b 2 +2
fz 2 Z ¢ n>ka(b,c,e)
TH+b—eg+b—e| (= (1+1)c—
e (2e—2b—3) w 1 3
= —1———————<abce
kg(:)( ) (c—e)! ( >y§)[7742k+b—e,912k+b—e Y

Summing up, we have established the reduction formula to the case c = e.
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Proposition 5 (Reduction formula from ¢ > e to ¢ = ¢).

o —1-2b
e>0: F(0,c,e;b,b) = 2(—1)7‘wzk(b,c,e)f(o,e,e;b— %,b— %),
k=0 c—e
[ cl+e e (2e —2b — 3);
e<0: F(0,c,eb,b) = 2 + Y (—D)FE 2 Z (b, ce)
,;) S4+b,3+0b ], ,§0 (c—e)!
1
c,5+e
. 2 FO,L,L1+b—e—51+b—e—5).
4+b,4+b 1—e

Observe that the parameter excess A > % for the F-series is not diminished hitherto by
the established reduction formulae. Consequently, all the F-series displayed on the right
hand sides of Propositions 4 and 5 have the parameter excess A > l, and can be expressed
as the following bisection series

F(0,¢,:b,b) = Z%_lxﬁl[l, 2 1}

3
= @b+ 3, 2 3420
1 1, 2¢c
2 X2F1[§+2b | 1}’

where b, ¢ € N subject to the condition b > c. Therefore, to evaluate the F-series explicitly,
it suffices to do that for the above bisection series.

2.4. Oy n-Series

In a recent paper [19], the author examined a more general series
Qumn(x,y) :=2F [x, " _f ‘yﬂ where m,n€Z (2)
n+ 3

and proved the following evaluation formula.

Theorem 1 (Chu [19] Theorems 4 and 8: Recurrence formula). For the two natural numbers
m and n satisfying m < n, there holds the following formula

Qn(x,y) = (3)n "in (n - m) ; ()i (M = %)

yZn i=0 1 x—n+0)i(m—2x—1)y_pm_i
n .
_yn—k (M 2x +2i — 2k .
ng%)( D (k)(2x+2i—n_k)n+100,0(x+l k,y),

where the series () is evaluated by
Qoo(x,y) =2k {x' 0 ’y2] = cos(2xarcsiny).
2

Hence, the F-series can be evaluated in terms of the ()-series by the theorem below.

Theorem 2 (b > ¢ : b,c € N).

1.. 1..
F(0,¢,c;b,b) = 3 }CIE} Mpet10+1(x,1) + 3 }clg% Doey1p41(x, V1)

with Qop(x,1) = cos(rtx) and Qgo(x,v/—1) = cosh (2xIn(1 + v2)).
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2.5. Conclusive Theorem and Examples (Class-A)

Based on the preceding reduction formulae, we may evaluate, for any quintuple
integers a,b,c,d,e € Z subjecttoa > 0,c > 0and o =b+d —a—c—e > 0, the F-series
by carrying out the following procedure:

¢  Step-A:Ifa = 0, go directly to Step-B. Otherwise for a > 0, according to Proposition 1,
express F(a,c,e;b,d) in terms of F(0,c,e;b,d), and then go to Step-B.

e Step-B: By means of Propositions 2 and 3, express F (0, ¢, ¢; b, d) in terms of (0, ¢, e; b, b),
and then go to Step-C.

e Step-C: In virtu of Propositions 4 and 5, express F (0, ¢, e; b, b) in terms of F(0,¢c,c; b, b),
and then go to Step-D.

e Step-D: Finally by applying Theorems 1 and 2, evaluate F(0,c,c; b, b) explicitly in
terms of the ()-series.

Therefore, we have validated the conclusive theorem as below.
Theorem 3 (Conclusion). For any quintuple integers
a,b,c,dje € Z subjectto a>0,¢>0 and c=b+d—a—c—e>0,

the mnonterminating F(a,c,e;b,d) series can always be evaluated by finitely linear sums of
trigonometric function cos(rtx) and hyperbolic function cosh (2xIn(1+ v/2)), where x € Z and
the coefficients are rational numbers.

According to the afore-described procedure, we have written appropriate Mathematica
commands to determine explicitly closed form expressions for F(a,c,e; b, d) series. Twenty
summation formulae are displayed below, where the argument “1” will be suppressed
from the notation of 3F,-series for the sake of brevity. We shall call these series “Class-A”.
Among them, an equivalent form of A5 has been obtained by Campbell and Abrarov ([11]
Equation (18)).

AL 3R[1 1, 5§ f] = J5leg(1+V2).

A2. 3R[1, 1, L 7 9] =-5{1-+2log(1+v2)}.
A3. B[, 1, L 5, U] =Z7{1-3V2log(1+v2)}.
A4 B[, 1, 3 3, U] =F5{2+3V2log(1+Vv2)}.
A5. 3R[1, 1, 3 7 9] =B{2-V2log(1+V2)}.
A6. B[, 1, 3 3, U] =3B{4-32log(1+Vv2)}.
A7. 3B[1, 1, -1 3 3] =l1-V2log(1+Vv2)}.
A8. B[, 1, L L 7] =3{1-3V2log(1+V2)}.
A9. sR[1, 1, -1 7 9] =2{3-4v2log(1+V2)}.
A10. B[, 1, -3 3, 3] =£{3-4V2log(1+Vv2)}.
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A1l B[, 2, L 1 3] =3{2+V2log(1+V2)}.
A12. 3R[1, 2, -1 3, 7 =3{2-V2log(l+V2)}.
A13. 3B[1, 2, -1 % 9] =2{2-5V2log(1+V2)}.
A14. ;R[1, 2, -L 7 9] :ﬁ{8+flog 1+v2)}.
A15. 3B[1, 2, =3 3, 9] ==2{1+V2log(1+Vv2)}.
A16. 3R[2, 2, L 7 B :%{6—\[1033 1+v2)}.
A17. 3B[2, 2, =1 3, U] =Z{2-3V2log(1+V2)}.
A18. 3R[2, 2, -3 3 4] =4{2+9vV2log(1+Vv2)}.
A19. ;B[2, 2, -3 I, B] =L{8-3V2log(1+v2)}.
A20. 3R[2, 2, -3; U, B =71113-15\2log(1+Vv2)}.

3. The Thomae and Kummer Transformations

In the classical theory of hypergeometric series, the Thomae and Kummer transforma-
tions are fundamental (cf. Bailey [1] §3.2 and Page 98 , whereoc =b+d —a—c—e):

31_,2{11,;,2 1} :3F2{U,b—u,d—u‘l}r{ o, b d } 3)

ctoe+o act+oe+o
a,c,e _ ab—cb—e o, d
3F2{ b,d 1} 3F2{ c+a,b ‘qr{cﬂra,da} @)

They will be applied to the F-series to evaluete six classes of exotic 3 F,-series.

3.1. Class B

Applying the Kummer transformation (4), we can express the following “Class-B”
series in terms of the F-series (Where c = b+d —a —c —e):

3b 1

l1+a, c+i, e+3 _rl b+3,0+3
b+3, d+307 | |b-a+lo+at]

1+a, d—c+1, d—e—l—%‘l
d+3, o+a+]

X 35

Then we can derive the following closed formulae for these series (except for divergent
series) from those displayed in “Class A”.

Bl R[1, i, % 3, 3] =V2log(1+V2).

B2. B[, i1, T 3 3] =E#{1+2vV2log(1+v2)}
B3. h[1, i L 3 3] =3{2-V2log(1+v2)}.
B4 B[l 3, % 3, 7] =3{2-V2log(1+Vv2)}.
B5. 3b6[1, 3, 3 3, 3] =5{4-3V2log(1+v2)}.
B6. sh[1, 7, 3 3 B] =2%{8-5V2log(1+v2)}.
B7. b2 1 L 4 3] =3{4+3V2log(1+Vv2)}.
BS. R[22, 3 3, 7] =3{-2+3V2log(1+Vv2)}.
BY. b2 3 4 %, 3] =5{2—V2log(1+v2)}.
B10. 3K[2, 3, i 3, B] =30{4-3v2log(1+v2)}.
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3.2. Class C

By means of the Kummer transformation (4), we can express the “Class-C” series
below in terms of the F-series (Wherec =b+d —a—c—e):

l1+a, c+1, e+3 c+ib+3
3h2 3 3‘1 - 5 1
b+35, d+73 ct+a+yg,b—a+3
1+a, d—e, d—c+%
X F2 1].
3 3 5
d+3, o+a+y

Then the closed formulae below for these series ( except for divergent series) follow directly
from those recorded in “Class A”.

Cl. B[, L 3 3, I =3{2-V2log(1+v2)}.
C2. 5R[1, L % 3, 7 =32{8-5V2log(1+V2)}.
C3. B[, 3, % 3, 7] =3v2log(1+V2).

Ca. B[L 3 3 3 1] =§&{1+2v2log(1+Vv2)}.
Cs. sR[1, 3, -1 3, 3] =2{1-V2log(1+Vv2)}.
co. B[ 5 -k 3 i =12+ valg(+ VD)
C7. sR[L, 3, -L 3, 3] =2%{5-2v2log(1+v2)}.
Cc8. R[2 3 3 3 I =3{2+V2log(1+Vv2)}.
Co. b2, 3, % % I =8{8+V2log(1+Vv2)}.
C10. ;R[2, 3, B; 7, U] =1{2+9V2log(1+v2)}.

3.3. Class D

By virtue of the Thomae transformation (3), we can express the following “Class-D”
series in terms of the F-series (Wherec =b+d —a —c —e):

o, b+1, d+%
a+%a+c+%a+e+%
X3B[m d—a, b—a+%

a+c+£ 0+e+%

1 1 3
at+s5, ¢c+3, e+3
55 2 4 4 ’1]

b+1, d+3

©)

1].

Then we find the closed formulae below for these series ( except for divergent series) as
consequences of those produced in “Class A”.

I B b

D2. ;B[ 712, 3] :8{ﬁ+31§§(1+\/§)}'
D3. sR[L 7, 11, 3] :2{\/§+91§§(1+\/§)}‘
Da sB[L 5 31 3 =T
Ds. R[], 3 L 1, § - LEtesina)

102



Axioms 2023, 12,291

8{\f log 1+\f)}

Dé. B[}, § % 2 3] =

D7. sR[3, 3 %L o1, :8{%fﬂ%1+¢j}

D8. sh([3, -1, 11, 3] _ 4{ava- 1;ng+\/)}

D9. R[5 -1 %1, 3] = 4{5\[74;2? 1+\f2)}.
D10. 5[5 1, % 2 3] = 16{ﬁ_1o71g(1+@}.

Observing that the parameter excess of the 3F,-series displayed on the right hand side
of (5) equals A = % + a, the equality (5) valid only when a > 0 and ¢ > 0. It remains a
problem to evaluate, for a < 0, the 3F,-series on the left of (5). This can also be resolved by
the linearization method.

According to the Pfaff-Saalschtitz summation theorem (cf. Bailey [1] §2.2), it is not
hard to confirm the linear relation in the following lemma.

Lemma 3 (Linear relation: m € Ny).

B m . m (A)m(AiB)
(A+n)y = k;)<n>k(B + 1)k Xy, where X = (1)k<k) W

By specializing this to the equality
—a

(I+b+n)—a= Y (Mp(3+a+n) X,
k=0

o = (T ()

2

and then substituting it into the 3F,-series, we may manipulate the double sum

JF) %—l-a, }I+c, z—i-e‘l
1+b, +d
:i %+a,}1+c,%+e i”:(n)k(%—i—a—}-n),u,kx(a)
=0 11+b +d | = (+b+n) ¢
= (n), f—k,}1+c,4+e
_Z: 1+m Z:-[l—a+b lid

Performing the replacement n — n + k, we can express the last sum with respect to 7 as

l_k,%+c,%+€
l—a+b +d

: ;1+c+h2+e+k‘1
L |l-a+b+ki+d+k

Therefore, we have established, after some simplifications, the following transformation
formula.
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Theorem 4 (Reduction formula from a < 0 to a = 0).

—a

-z

m%—a+h%+a%+e
1,1- a+b1+b +d
2/4+C+k14+e+k ’1
1—a+b+k +d+k

1 1 3
s+a, 7+c F+e
3B 2 1 4 ’1

1+b, 3+d

><3F2[

It should be emphasized that under this transformation, the parameter excess A =
0 =b+d—a— c— eremains invariant for all the 3F,-series. However the 3F,-series on
the right belongs to Class-D and can therefore be evaluated by (5). Ten more formulae are
recorded below.

D1l. 3h[-3 1 -1 1 3] = w.
D12 ;B[-1, 1 3 1, 1] = Y2slnvd)
D13. ;5[—-3, L 3 1, 3] = w'
Dl4. 3K[-3 1 ©» 1 3] = %.
D15. ;K[-3, 3 3 1 3] = W.
Di6. sh[-1 3, -3 1, 1] =32lelnvd)
D17. ;5[-1, 3, -3 2, 1] = ¥vZri2logliva)
D18, ;5[—1, 5 I 2 3] = Zv2dlh(ivd)
D19. ;B[-1, -3 I 1 3] = Lv2s7logleyd)
D20. ;K[-3 -1 -3 L 4] = %'

Campbell, D’Aurizio and Sondow [9,10,22] discovered some formulae in Class-D.

e  The formula D1 has been found by them in ([9] Equation (10)), where they also
conjectured D12. For this last evaluation, five different proofs have been provided by
the same authors [10].

* By making use of beta integrals, Campbell recoded in ([22] Theorems 2,3,7 and Exam-
ple 12) four formulae. The first one ([22] Theorem 2) is corrected by D18. The second
one ([22] Theorem 3) is incorrect. The third one ([22] Theorem 7) is simplified by D2.
The fourth one ([22] Example 12) is too complicated to reproduce here.

3.4. Class E

Again in view of the Thomae transformation (3), we can express the “Class-E” series
below in terms of the F-series (wWherec =b+d —a—c—e):

a+3, c+i e+3 c+3b+3,d+3

F 1] =
. b+3i, d+3 a+30+c+3,0+e+3
27 2 2 4 4 (6)
1
1+d—a, b—a, o+ 5
x 3b 3 5'
oct+c+y otet+3

Consequently, the closed formulae below for these series ( except for divergent series) can
be deduced from those exhibited in “Class A”. Among them, E2 simplifies a formula of
Campbell ([22] Example 5).
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El. 3R[L, 3, L 3, 3] =2v2-2log(1+V2).

B2 B[l §ob 3 3] =342 215014 VD)),
E3. sR[} 1 3 3 3] =#{8V2-10log(1+Vv2)}.
E4. 3F2[%, %, %; %, %} = 2log(1+V/2).

E5. sR[3, 3, 3 5, 3] =4{4v2-6log(1+v2)}.
B B[} 3 b 3 3] = L{VZ+ologl+va).
E7. R[4 0L 3, 3] =v2+log(l+v2).

ES8. 3F2[%, %, %; g/ %} _14{3\[ logl—i—f)}
E9. R[% 2, 3 3, 7] =12{v2-log(1+v2)}.
E10. R[5, 1, 3 7, 3] =40{4v2-6log(1+V2)}.

Analogous to the series in Class-D, the parameter excess of the 3F,-series displayed
on the right hand side of (6) equals A = % + a, which converges only when a > 0. We can
also evaluate that 3F,-series by reducing the casea < 0toa = 0.

By means of Lemma 3, we have the equality

—a
(% +b+n)_,= Z(n)k(% +a+n)_,_ XK,
k=0

 (—a) fa—b\(b—a—1
where Xi(a) = ? k ik
2/ a
and then insert it in the 3F,-series, we can handle the double sum

%—l-a, %-’-C, %+e

3b ) ; 1
- %+a/411+c/%+6 —a <n>k(%+a+n)—u_k
-1 Y5 Xy (a)
n=0 3+b3+d | S (Gtbtn)
) 1 1 3
:Za% k(a)ZM[z_k,4+C,4+e
=0 (3+b)- Sl | J—atbied |

Making the replacement n — n + k, we can express the last sum as

1—h%+a%+e
l—a+b3+4d

o[ atetks +e+k’1
A -atbtk3rdtk

After some simplifications, we establish the transformation below.

Theorem 5 (Reduction formula from a < 0 to a = 0).
:—Z“: a,b—a,%—l—c,%—i—e

ol L i-a+bi+b3+4d ],
;i+c+hi+e+k‘1
l—a+b+k3+d+k

F %4—(1, %+c, Z+e‘
32

1 3
l1ib, 344

Xstl

Under this transformation, the parameter excess A = ¢ = b +d — a — ¢ — e remains
invariant for all the 3F>-series involved. However the 3F,-series on the right belongs to
Class-E and can therefore be evaluated by (6). We record ten more examples.
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E1l. RB[-3% 1 3 1 3] =zéilzf§;iﬁ@,
E12. ;RB[-4%, L L % 3] ::yggg%;§§53§§
E13. sh[-3 3 % 3 3 ::3155%%%1iigl
El4. ;h[-1 3, % 3, 3] = ;ga@%%%gjgg_
E15. 31:2[_%/ % %; %, %] :3{2+5\/7§llzf/(§1+\/§)}'
Ble. sB[-} § b 3 §) -LTZuind)
E17. sR[-3, 3, 5 1 3] =Ebﬁ%¥¥ﬂ@
E18. sh[—3, 3, 3 1 3] :3{&7yzigguwggl
E19. ;RK[-3, 3, L 3 3] ::gggz%%g%gjlgg
E20. 3F2[_%/ 45, _%; %, %] :3{42+41\1/;1\(;g§(1+ﬁ)}.
3.5. Class F

By invoking the Kummer transformation (4), we can express the “Class-F” series
below in terms of the F-series (wWherec =b+d —a—c —e):

3b 1

a+3 c+i, e+i’ T b+1,0+43
b+1, d+7 b—a+io+a+3
1+d—c, 1+d—e, a+§’
(T+€l+%, d—i—%

x 35

Then the closed formulae below for these series ( except for divergent series) can be
established from those shown in “Class A”. Among them, the formula F10 is due to
Campbell and Abrarov ([11] Corollary 5).

2y/7{5v2-4log(1+v2) }

Fl. 3h[-3 -} -L 1 3 = =
RosB[-L § b1 f) =)
F3. sh[-3 % ¥ 1 ] :6ﬁ%ﬁﬁﬁ?ﬂ@}
Fa. sR[-1 3 7,1, 1 :7\/%{4\/15;;6(1}10)%(1%/5)}'
R e R -
o mb by g )
F7. B[y, 3 -§ 1 ] —3ﬁ{ﬁr+(?§(l+ﬁ)}.
F9. sh[3, 3,71, 4 ::7¢E{¢?§E§u+¢a}'
F10 35[3, A TR ::W%{&fmﬁéuwﬁg.
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References

3.6. Class G
Finally, by employing the Kummer transformation (4), we can express the “Class-G”
series below in terms of the F-series (Wherec =b+d —a—c—e):
at3, c+1i e+}1’ b+1lo+4
b+1, d+1 b—a+to+a+3
d—c, d-—e, a+ %
% 3F X \ ’ 1
d+ i 0 +a+ 1

3b

Then the closed formulae below for these series ( except for divergent series) can be shown
from those displayed in “Class A”. Among them, the formula G8 is due to Campbell and
Abrarov ([11] Corollary 4), who evaluated also another similar series ([11] Corollary 6).

_ 5y{4v2-3log(1+v2) }

[ay
w»
31

I
NI
<
W1
<
H=1U1
~

—_

~
e

[ } 441(3)2 :
G2 SB[~} § 1 ) = VIRESs0nD)
G3. 3L(3, o301, 3] :\/E{\/Elzilég)(zlh/i)}.
G4 sh[3, 1 © L 3] :%1;\@‘
Gs. sR[L, L 12 8 2\/5{—\/3:(621;);5(1—1—\/5)}'
G6. 3h[3 1 3 2 3 :5\/5{\/2;(12%”\/5)}‘
o7 L I 3 o2 ) = ECEmea)
Gs. R[3 1 3 1§ ZSﬁ{W;—(lS%H@}
GY. sR[3 § ¥ 2 i ZSﬁ{m{({lﬁg(H@}.
G10. sR[3, 5, % 3 1] _6ﬁ{—6\/§r%§(;;og(l+\/§)}.

Concluding Comments

By combining the linearization method with the Kummer and Thomae transforma-
tions, we present 100 explicit formulae for 7 classes of nonterminating 3F,(1)-series. They
may potentially find applications in mathematics and physics as other mathematical formu-
lae. Further explorations are encouraged to enrich this bank database of hypergeometric
series identities.
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of the solution to this model for the compactly supported kinetic kernels and an unbounded breakage
distribution function. A further investigation dealt with the volume conservation property (necessary
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Keywords: coagulation; collisional breakage; existence and uniqueness; volume conservation;
compact support

MSC: 35Q70; 45K05; 45G05

1. Introduction

Aggregation (coagulation) and fragmentation are fundamental mechanisms that occur
in particulate processes such as granulation and crystallization in the pharmaceutical
industry [1]. When two particles merge to form a larger one, this process is defined as
aggregation. In reverse, fragmentation leads to the formation of smaller particles after the
breakup of the mother particle. The aggregation process is inherently nonlinear, while
fragmentation is of two types (a) linear, and (b) nonlinear. If fragmentation is spontaneous
and driven by an external agent then the process is linear. However, if the process occurs
due to the interactions (collisions) between the particles in the system, then it is recognized
as a nonlinear fragmentation. The byproducts of the original fragmentation undergo
repeated collisions and breakages to drive this process forward. The collisional-induced
fragmentation can also be observed in various fields of science and engineering, including
the formation of raindrops [2], communication systems [3] and milling processes [4]. Both
aggregation and fragmentation mechanisms have been intensively used in the literature for
developing mathematical models corresponding to granulation processes [1].

Mathematically, both aggregation and collisional-induced fragmentation mechanisms
are represented by a nonlinear integro-partial differential equation. The mathematical
expression for tracking the changes in the distribution ¢(x, t) via these mechanisms can be
written as:

PG =} [ (x — v, )9 — v, Dy, dy — (x1) [ (x, )y, t)dy
+fo J& o v)Bxy2)ey, ez Hdydz — ¢(x,t) i # (v, y)ey,Hdy (1)

(
3

with the initial data

@(x,0) = go(x)(>0), forall xe Ry =(0,00). ()
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Here, 9; stands for the partial derivative with respect to the time t. ¢ is the number
density function for particles of volume x at time ¢. The kernel ¢'(x, y) is the aggregation
rate at which two particles with particle properties x and y combine to form a larger cluster.
J (x,y) is the collision kernel which describes the rate at which particles of properties
x and y are colliding. It is worth noting that both the kernels ¢ (x,y) and ¢ (x,y) are
symmetric,that is, € (x,y) = € (y,x) and # (x,y) = # (y, x). B(x|y; z) is the rate at which
particles of property y breaks into fragments of property x due to its impact with a particle
of property z. The breakage kernel B satisfies the following properties.

(i) B(x,y;z) is non negative and symmetric with respect to y and z, that is
B(x,y;z) = B(x,zy).

(i) Volume conservation law

/Oy xB(x,y;z)dx =y and B(x,y;z) =0 forall y<x; 3)
(iii) Number of particles after fragmentation

/Oyl’j’(x,y;z)dx:v(y,z)gN<oo forall y>0,z>0. (4)

The first integral on the right-hand side of Equation (1) represents the formation of the
particle property x due to the merging of particles of properties (x — i) and y. The second
term denotes the disappearance of the particle property x from the system. The third
integral describes the formation of the particle property x from y due to its collision with
another particle z at a specific breakup rate B(x, y;z). In this term, there is no restriction on
the particle property z, which acts as a catalyst, as it collides with the fragmenting particle
property y, which leads to the formation of x. The final term explains the disappearance of
particle property x due to their collision with the other particles present in the system at a
specific collision rate % (x, y).

To represent the full dynamical systems (specifically granulation and crystallization),
it is also required to identify the integral properties such as the total number of particles,
total volume in the system and total area of the particles. For this reason, the moments of
number density ¢(x, t) must also be defined. Let M(t) denote the k' order moment of
the number density function ¢(x, t), and it is defined as follows:

M (t) = Mi(o(x,t)) = /OOQ xkgo(x,t)dx. (5)

The zeroth order moment gives the total number of particles, whereas the total volume
in the system is given by the first order moment. The property of volume conservation is
expected to hold during both aggregation and fragmentation events.

Smoluchowski [5] was the first to develop an aggregation kinetics discrete model,
now known as the discrete Smoluchowski coagulation equation (SCE). Miiller [6] pro-
posed a continuous model for the volume distribution of particles, which included other
phenomena such as particle fragmentation. Dubovskii and Stewart [7] established the
existence and uniqueness of the solution for this continuous model. In 1988, Cheng and
Redner [8,9] were the first to formulate a model on the nonlinear breakage equation. The
analytical solutions of the general nonlinear breakage equation were studied by Kostoglou
and Karabelas [10]. Ernst and Pagonabarraga [11] studied the collision-induced nonlinear
fragmentations caused by binary interactions. Vigil et al. [12] and Ke et al. [13] provided
the extensive analysis on coagulation with collision-induced fragmentation. Some other ex-
istence and uniqueness studies can also be found in [14,15]. Various numerical approaches
in 1D and 2D for solving these models have been discussed in detail by [16-22].
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In the SCE, the only possibility for the clusters is to continue growing due to the
aggregation mechanism, that is, smaller particles cannot be formed in the system. This
restricts the application of only the coagulation process in the granulation process, however,
it is still useful for polymerization process. This completely eliminates the possibility of the
system to reach a steady state or equilibrium solution. Thus, this presents an opportunity
for studying the Smoluchowski equation along with the fragmentation process, allowing
the system to reach equilibrium. We have highlighted some of the works conducted in this
regard in the above literature review. Our work in this article is another extension of the
previously mentioned articles, albeit with the establishment of a new model.

In the present work, we introduce an entirely new model for continuous coagulation
with collisional breakage. Earlier works have analysed equations with collsional breakage
but this is the first time that such a model has been studied. The model mentioned
includes the coagulation terms from the continuous SCE and the fragmentation process is
represented by the third and fourth terms in (1). This allows us to study the existence of an
equilibrium solution for these mechanisms and discuss the well-posedness of Equation (1).
The current research work is majorly focused on establishing this well-posedness for
compactly supported kernels. Furthermore, it is hypothesized that the breakage distribution
function has the structure of a power law. The volume conservation law and uniqueness of
the solution will also be proven to hold true.

Let us now mention the spaces considered in this article. For a fixed T(> 0), consider
a strip

Wi={(x1):0<x<00,0<t<T}

and define ¥, ,(T) to be the space of all continuous functions ¢ with the norm

b 1
|@|ly := sup (xr + 2) lo(x,t)|dx, r>1,0>0. (6)
0<t<T /0 X<

Furthermore, consider ¥;/,(T) the set of all non-negative functions from ¥, +(T). In
this article, we prove the existence of strong solutions for the coagulation fragmentation of
Equation (1) and (2) under the following assumptions over the kinetic kernels;

(A1) # (x,y) is a non-negative and continuous function on R, x R.
(Az) B(x,y;z) is a non-negative, continuous function satisfying the condition

Y
/o xB(x,y;z)dx < @(y), where ®(y) =1y~

where 7 and 6 are considered to be positive constants.

A breakdown of the various sections of this paper is as follows: In Section 2, we
state and provide a detailed proof of the existence of solutions for the IVP (1) and (2). In
Section 3, the theoretical results for the volume conservation property of the solution is
provided. Meanwhile in Section 4, the uniqueness of the solution is proved. The last section
is devoted to some important remarks and conclusions.

2. Existence of Solutions

Theorem 1. Let the functions € (x,y), # (x,y) and B(x,y;z) be nonnegative and continuous
on Ry xRy, Ry xRy and Ry x Ry x Ry respectively, and satisfy the conditions (A1), (Az).
Moreover, the kernel € and % have compact support for each time 0 < t < T. Then, the IVP (1)
and (2) has at least one solution ¢ € ¥, (T).

Proof. We prove the theorem in the following steps;

*  Local existence of the solution, that is, there exists a T > 0 such that the IVP (1) and (2)
has at least one solution ¢ € ¥/, (7);

*  Nonnegativity of the local solution;

*  Global existence of the unique solution to the space ¥, (T).
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Existence of local solution: Let us consider that there is a fixed R(> 0), the coagulation
and fragmentation kernels % (x,y) and ¢ (x,y) have compact supports in the intervals
[0,R] x [0, R] for each t € [0, T]. Followed from Equation (1), we have

9(xt) = @olx) + 3 [ 1 J3 6 (x =y, 1)e(x =y, ey, O)dy — J3° € (x,y)9(x, &) p(y, )dy
+o fx H (y,2)B(x,y:2)9(y, §)9(z,§)dydz — 9(x,€) [~ A (x,y)p(y, )dy]dE. ?)

Hence, the solution to (1) and (2) for x > 2R takes the value
¢(x,t) = @o(x). (8)

The relation (8) provides an approximate solution function beyond the right hand side
of the compact domain, where the tails of the solution ¢(x, t), that is, larger size particles,
does not alter at all and matches with the tails of the initial distribution ¢ (x). Let us now
focus to show that the local existence of a unique solution for 0 < x < 2R.

In this regard, let us define the integral operator H as follows;

H(p)(x,t) ;= right hand side of Equation (7).
Since ¢ and %" have compact supports and ¢q is a nonnegative continuous func-
tion,the integral operator H is well-defined on ¥, (7). This result will be proven via the
contraction mapping principle. We began this exercise by showing that for small T > 0

there exists a closed ball in ¥, »(7), which is invariant relatively to the mapping H. Let
Lo(> 0) be a constant such that

ol = sup [*(x + 37 )lgtx nldr < Lo ©)

0<t<t

Multiplying Equation (7), with <xr + x;) on both hand sides and after performing

the integration over x, we reached

s < ool + ['5 [ (v + 3¢ /j%(xfy,wgo(xfy,@qo(y,a)dydx
() [ A B0, etz dudzdn
[ (¥ o [T + A et Odvds]az. o

Further, we use the application of the Fubini theorem followed by changing the order
of integration and considering y := max{N, 77}, then, one can obtain the following

///(x+) (v, 2)B(x,y;2)9(y, §) p(z, §)dydzdx
_/ / /( + za) (y,2)B(x,y;2)p(y, ) (2, §)dxdydz
S/O /0 /0yrB(x'y;Z)%(%Z)(P(%@)?(Zfé)dXdydz
" /ooo /ooo /oy X2 B(x,y;2) (y,2)9(y, ) p(z,¢)dxdydz
= /ooo /ooo [Nyr +Wy_za}yr%(}/ﬂ)cv(y,é‘)qo(zfC)dydz

<u " [C(v + gz ) H Aol et v
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Since ¥ and %Z both have compact support, their supremiums exist. Let k1 =
sup ¢(x,y)andk, = sup . (x,y). Applying this inequality in (10), we obtain

7 <xy<R ®<xy<R

. t poo poo . 1 . 1
I < ool + @ity [ 7 [7 (42 ) (2 + 27 ) olo D)oz 2)ayezag
< llgolly” + (2 + pra) LS an
Further, let {7 := max{||¢q H\(; ), (2" + prxy) }; then, the expression (11) reduces to
1) < & (1+7L3).
Hence, ||7-l(qo)||\(I,T> < Ly, if g1 (1 + 7TL3) < Lo. This inequality holds if T < 41?% and

—J1—437 1+,/1—4g§r. W

2T B 2017

Presently, our focus will be to demonstrate that the mapping of H is contracting. Using
the relation in (7), we have

e =1l <[5 [T (v ) [ 96wl -8 dyde
+/0°°/0°°/x°o<x’+xl>%(y, z)B(x,y;2)|A(y, z,5)|dydzdx
+ N / N ( + i) (€(x,y) + %(x,w)m(x,y,s)dydx] ds (13)

where A(x,,5) = ¢(x,5)9(y,5) = $(x,5)$(y,5)-
The first expression in the above inequality (13) can be estimated, as follows

X
3 () [ o vl - v ldvdx < 2elo = gl [lol5 + 191
Furthermore, the second expression in the above inequality (13) is simplified using the

Fubini’s theorem with respect to z and x followed by interchanging the order of integration
with respect to y and x, which gives the following expression

() [e’s] o'e) . 1
/o /o /x <x +x2<7)%(V'Z)B(XIV;Z)M(%Z,S)|dydzdx

/// B(x,y;z)|A(y, z,5)|dxdydz

+/o /0 /HT%/ (v,2)B(x,y;2)|A(y, 2, 5)|dxdydz

< Pl/ooo /Ooo(yr—i-;)%(y,zﬂfl(y,z,s)dydz
< [T [T (v )|¢ 29)(0(05) ~ 9(1,9))

+8(y.5) (9 ) ¥(z,5))|dydz
<wopllg— Iy [Hm +u¢||q/}
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!

Halg)(x,

R

0

Using this estimation on the relation (13), the following is obtained

1#(9) = H@IE < w0 @ + D) +xa(u+ D)o =l [l +90] 14

Further, let { := 2[x1(2" + 1) + x2(p + 1)], then the inequality (14) reduces to

1H(9) = HW)IY < tCaLolle —yly- (15)

Thus, the mapping H is contractive on ¥, (1) for T < [CaLo] . Using this result
together with the inequality (12), there exists an invariant ball of radius L for sufficiently
small T > 0 and in this ball, H is contractive. Consequently, the ball contains a fixed point

of H.

Nonnegativity: Case I: Consider @o(x) > 0 for all x € (0,R). Since ¢ is continuous,
there exists a small strip {(x,¢) : 0 < x < R,t € [0, tp) }, where ¢ is strictly positive. For a
particular ty, we can find an xg € (0, R) such that (xo, tp) is the point with the property that

¢(x0,t0) = 0and ¢(x,t) # 0 forall 0 < x < max{xp, R}, t € [0, t9) (16)

Since the solution is continuous and satisfies (7) it must be continuously differentiable
with respect to t. Therefore,

1 [*o
P )| (x10) =5 / % (x0 — v, y)(x0 — Y, to) ¢(y, to)dy
+ / / B(xo,y:2)p(y, t)p(z,)dydz, (17)

e Ifxg <R, then ¢(x,t) >0forall0 < x < Rand 0 <t < t. The positivity of the right
hand side of (17) implies 9;(x, )|y, ;) > 0.
e Ifxp > R, we use the property (3) of the breakage function to obtain

H(1,2)B(x0,;2)9(y, 1)z, 1) dydz = — / [ (2B, i) gy, (et

Thus, from the Equation (17), we have 0;¢(x, t)] (voko) > 0.

The positive value of the time derivative establishes that there exists a point (xo, t),
with t < tg such that ¢(xp,t) < 0. However, this counters the hypothesis that (x, to) is
a point bearing a property provided by relation (16). Hence, the point (x, to) where the
solution vanishes does not exist.

Further, when x > R by (7) and the compactly supported kernels ¢ and %, the
solution coincides with the initial data. Hence, again it becomes positive. Consequently,
¢(x, t) is strictly positive provided that the initial distribution is strictly positive.

Case II: Suppose ¢y is not strictly positive. Then, we construct the sequence { ¢} of
the positive function to satisfy the conditions listed in Theorem 1, which then converges
to ¢ uniformly in ¥, ,(7) with respect to t € [0, T]. We have established earlier that the
family of operators H, : ¥, (T) = ¥, (7), defined as

0+ [ / ~y ol w08y — [ ¢ y)o( oty E)dy
/ | 2B w2)e(, 2otz Ddyd — p(x8) [ (xy)o(y, E)dy | dE
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is a contraction mapping. Therefore, as n — oo, we have
sup [[Halg) = oI < [ (¥ + 37 ) o) — gul)lx — 0.
ol <L '
Since the mapping is contractive in ¥, ,(7), therefore
lo" = @ll¥) = 1Ha(e") = H(@)IE <[Hale") = H(g" I + 17 (") — H ()Y
<[ Hul@™) = H(@E +Clg" - ol

which implies
(1 — C_) o™ — ‘PHEFT) = [[Hn(9") — H((p”)Hl(I,T) — 0 whenever n — co.

This shows that for a positive initial data, the solution ¢ is also positive.
Global existence of unique solution: Let us first discuss the boundedness of the moments

M (t) = /0 x*o(x,t)dx; where 0<k<r and k= —20,

for compactly supported kernels. Simple calculations will lead us to the following results:
My(t) <y, Moge(t) Sthge, Mo(t) <o, Mo(t) < 1, (18)

and so on. Here, terms 11, k = —20,0,1, ..., r are all constants. Furthermore, it is important
to note that the boundedness of the k! moment ensures the boundedness of the (k + 1)
moment fork = 2,3,...,r. Thus, using the aforementioned results, we can conclude that the

llolly < ity + 1m_n.

implies that the solution of IVP (1) and (2) is bounded in the norm ||.||y. Taking into account
the positivity /nonnegativity of the local solution, it is easy to extend it for 0 < t < T.
Recalling Theorem 2.2 of [23], the global existence of the unique solution belonging to
¥,/ (T) can easily be proved. [

3. Conservation of Volume

In order to show the volume conservation law, let us multiply equation (1) by the x by
performing integration over x; the following is obtained

dM(t
dt( dt/ xp(x,t)d 2/ /x%x—y, ¢(x =y, oy t)dy

/ / / x A (y,2)B(x,y;2)9(y, t) p(z, t)dydzdx

M,

[ [T @ )+ s etx Dol v (19)

M;

Under a suitable transformation, we can estimate the integral M, as follows

B % /000 /Ow(x +Y)C(xy)p(x,t)p(y, t)dydx

= ./000 ./(;00 x€ (x,y)@(x, 1)@y, t)dydx 0)
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For the integral A\, using the application of the Fubini’s theorem followed by a change
in the order of integration with respect to y and x, and using (3), obtains

M; = '/000 /000 /oy x X (y,2)B(x,y;2)9(y, t)p(z,t)dxdydz
- /0 /0 y A (y,2)9(y, t)p(z,t)dydz
- ,/Ow /000 XA (x,y)p(x,t)p(y, t)dxdy -

Adding the estimations (20) and (21), M1 + My = M3 are obtained. Hence, by using
this relation on (19), we can conclude the volume conservation property of the existing
solution.

4. Uniqueness Theory

Theorem 2. Let the assumptions of Theorem 1 hold true, then the IVP (1) and (2) has a unique
solution in ¥, (T).

Proof. Let t # 0, ¢1(x,t) and ¢2(x,t) be two distinct solutions of (1), (2) along with
¢1(x,0) = ¢2(x,0). Further suppose Q(x,t) := ¢1(x,t) — ¢2(x, t), and we construct an
auxiliary function

P(t) = /0°°|Q(x,t)|dx.

Since both the solutions ¢1 (x, ) and @2 (x, t) satisfy the Equation (7), we have

£ 1 00 X
P <[5 ] €= nnlAG =y, 0)ldydx
Jo
- /000 /ooo /xw H (y,2)B(x,y:2)|A(y, 2, ) |dydzdx
h

—i—/ooo/o‘”(‘zf(x,y)—i—c%/(x,y))\A(x,y,g)‘dydx dz 22)

J2

Further performing the change in the order of integration followed by the application
of Fubini’s theorem, the integrals Jy and J; can be estimated as

1
Jo < Ski(ll@illy + ll@2llg)P(s)-
Ji < k2N([[@1lly + [l @2ll¢)P(s)-

Similar operations apply for the integral J,, and when using the relation (22), we obtain

t
N(©) < Allorlly + llgzlly) [ Pls)ds, @)

where A is a positive constant depending only on ky, k; and N. Since @1 and ¢, both belong
to the space ¥, (T), the norms || ¢ ||y and /@2 ||y are uniformly bounded with respect to
0 <t < T. Then, by applying Grownwall’s inequality on (23), we obtain

P(t)=0. forall 0<t<T,

which concludes the proof. [
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5. Concluding Remarks

A new population balance model, including the nonlinear coagulation and frag-
mentation, was introduced in this paper. The model accounts for a completely inelastic
collision between a pair of particles, which leads to the formation of a larger particle. If
their encounter is not completely inelastic, then there is a possibility of the formation of
smaller particles when they collide. A proof has been given to obtain the existence and the
uniqueness of a solution to the purely nonlinear model for a set of kernels with compact
support. The results of the existence and uniqueness are further supported by providing
the theoretical outcome of the volume conservation law.
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1. Introduction and Definitions

The set Q(U) denotes the class of all analytic functions in the open unit disk
U= [w:|w <langw € ¢] and Q[a, k] as the subclass of Q)(U), which consists of the
form functions

f(w) =a+aquw* + a0+, (ae¢, wel, keN). 1)

With A, as the class of all multivalent functions in open unit disk U of the form

flw)=wl+ ) awk, we U,p e N. )
k=1+p

Additionally, we use A = A; to denote the class of analytic functions in the open unit
disk U and normalize them with f(0) =0, f/(0) = 1.

Additionally, consider S as the class of the univalent function in U,

Let S*(0), C(0) and K be the subclasses of A such that:

{f €S Re{ wf/(w)} > Q},w € U, (0 < o < 1), then f is a starlike function;

flw
{f eC: Re{l + w}ri/(%)} > Q},w € U, (0 < g < 1),then fisa convex function;
{ fek: Re{?,,(%) } >0:g¢€ C},w € U, then f is a close-to-convex function.

If the functions f and g are analytic in U, then we say f is subordinate to g or f is said
to be superordinate to f in U, written as f < g or f(w) < g(w) if there is a Schwarz function
v(w) analytic in U, with |v(w)| < 1, so that f(w) = g(v(w)) and w € U. In particular, if
the function g is univalent in U, then the subordination f < g is equivalent to f(0) = g(0)
and f(U) C g(U), (see [1-8]).

If f,g € Ap, where f(w) is provided by (1) and g(w) is defined by

gw)=w’+ Y st wel,
k=1+p

Axioms 2023, 12, 169. https:/ /doi.org/10.3390/axioms12020169 119
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the Hadamard product (or convolution) of the function f and g is defined by

f(w) x g(w) = wP + i abwk, (wel)=(fxg)(w). 3)
k=1+p

Leté > 0, a,c € ¢ such that Re(c—a) > 0and Rea > —6p, p € N, n € Z,6 >0
and A > —p.

El-Ashwah and Drbuk [5] introduced the linear operator ng,{\(a, c,0): Ay = Ay
defined by

Bg”)\p(a,c,é)f(w)
o n 4)
o I'(c+dp) p+A+0(k—p) \ " I'(c+dp) k
= WP+ T k:lzﬂi( A ) T(crop) kW

It is readily verified from (4) that

By P(a,c,0)f(w) = (1- 5 ) Byl (a,c,0)f (w)
/ ©)
+5rw(Byl (a,¢,0)f(w)) -

Putting a = c in (4), we obtain the Prajapat operator [} (6, 1), see [9].
Additionally, when n = 0, we obtain the Erdelyi-Kober integral operator I;’g, see [10].

Definition 1. Let Y: ¢ x U — ¢ and h (w) be univalent in U. If p (w) is analytic in U, that
fulfils the second-order differential subordination [11]:

Y (p(w), wpl (w), w?p (w);w) < h(w), @)
then p(w) is the differential subordination solution of (6).

Definition 2. Let Y;: ¢3xU— ¢ and h(w) be univalent in U. If p(w) and
Yi(p(w), wp'(w), w?p" (w); w) are univalent in U and p(w) fulfill the second-order differential
superordination [11]:

h(w) < ¥i (p(w), wp/ (@), wp" (w);w), %)

then p(w) is the differential superordination solution of (7).

Definition 3. Let Q be the collections of functions f that are analytic and injective on U\E(f),
when E(f) = {g €ou : lim f(w) = oo} and f'(w) # 0 for ¢ € QU\E(f) [11].
w—6

Lemma 1. Let p1(w) be the univalent function in U and let X and & be holomorphic in a
domain p1(U) C D, with 9(w) # 0, when w € p1 (U). Set O(w) = w p1’(w)d(p1(w))
and h(w) = X(p1(w) + O(w). Suppose that [12]

(i) O is starlike in U.
y i
(if) Re(“5 ) > 0,we U,
If pa(w) is holomorphic in U with p(0) = p1(0), po(U) C D, and L(p2(w))+

wps' (w)d(pa(w)) < E(p1(w)) +wpr' (w)d(p1(w)), then pa(w) < p1(w).

Lemma 2. Let pi(w) be convex in U and B; € ¢,By € ¢* with Re<1—|— %) >

max{O, —Re%}. If pa(w) is holomorphic in U and B1pa(w) + Brwpy' (w) < Prp1(w) +
Bowpy' (w), then pa(w) < p1(w) [11].
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p+A)

Lemma 3. Let p1(w) be convex univalent in U and let X and © be holomorphic in a domain D, p;
(U) C D. Suppose that [12]

(i) wpr (w)O(p1(w) is starlike univalent in U.

(MR4%%%%)>QwEM

If pa(w) € A[p1(0),1] N Q, with po (U) C D, Z(pa(w) + wp' (w)d(pa2(w)) is univalent
in U and E(pi(w)) + wpy (@)8(pr1(w) < E(pa(w)) + wp(@)8(pa(aw)), then
pi(w) < pa(w).

Lemma 4. Let p1(w) be convex in U and Re(B) > 0.
If p2(w) € A[p1(0),1]1 N Q, p2(w) + Bwpy (w) is univalent in U and py(w) + pwp:’ (w)
=< pa(w) + Bwpy' (w), then p1(w) < pa(w) [12].

2. Subordination Results

Theorem 1. Let b(w) be convex univalent in U, with b(0) =1, a1 > 0,0 # a, € ¢ and suppose

Re(l + b”(w)) > max{O, —Real}.

b (w) ap

If f € A, it satisfies the subordination:

<1_ as(

0

I

By Y (a,c,6)f (w) ) RNSPEDY (B’;,Xl' P(a,c,6)f(w) ) : <BZ;A”<a, ¢,8)f ()

wP

) < b(w) + Z—zwh'(w),

0 1

wP

Bg:Ap(a, ¢, 0)f(w)

then

(BZ:J’(a, 6,5)f(w)>”” <b(w)

wP

Proof. Consider

wP

o) = g [ Boa (@ed)f @)\ v
q (w) =m ( wP ) Bg”)\p(ﬂ-‘,{i,‘s)f(w)

(w” [Bg/’)‘p(a,c,é)f(w)],7pwp_1 (Bg:Ap(a,c,é)f(w)) )

(w)?

q(w) = (BZ,'AP(% ¢, 8)f(w) ) ﬂ1.

Then

wP Bgr’)\p(a,c,é)f(w) Tw

s (B;‘:f’w/cmf(w ) “ ( [ (@) ()] p)
We have )
wq' (w) w [Bg,’f(a, c, (S)f(w)}

=m ; P
BZ’Ap(a, c,0)f(w)
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By using (5) we obtain

. (pA) (B’gf' P(a,c,0) f(w))+p(Bg,’Ap(a,c,§) F(w))— 25 (By P (a,cd)f(w)) ,
1 (By 7 (a,c0)f (w))

— T (B (e) f(w)

(pA) ((BZ#' Pacd)f@) 1)

and

ay 0

nwq' (w) _ a(pt+A) (Bg:\rl/ p(“/cr5)f(w)> (Bg,’)‘p(a,c,ﬁ)f(w) ) n
(B3 (a,co)f (w)) wr

_ a(p+A) (BZ;A”(a,c,(s)f(w) ) o

0 wP .

By using the hypothesis, we obtain g(w) + %wq’(w) j b(w) + %wb’(w).
2

Additionally, apply Lemma 2, when f; = 1 and B, = 22, then

l/

(BS,’J’(a, aé)f(w))‘” <b(w)

wP
O

Corollary 1. Let b(w) be convex univalent in U, with b(0) =1, ay > 0,0 # ay € ¢ and suppose

Re (1 + ZI,,((;U))> > max{O, —Reg}.

If f € A, it satisfies the subordination:

ng, A 1 n+1(g ) I 0, a
(1 B ﬂz(PG-i- /\)) <]p( wzf(w)> n 612(199+ A) (]r}g(e(/)\)}](;(;;’)> (IF’( wr)]f(w)> < b(w) + Z—iwb’(w,

then

wP

(f;f(e, A)f(w))‘“ o)

Theorem 2. Let b be convex univalent in, b(0) = 1, and b(w) # 0 for all w € U, and suppose
that b satisfies:

wb' (w)  wb’ (w)

wto wS(U—l-l)(w)_'_(U_l) bw) + e } >0, (8)

wPay wPay

Re{p +
where 7, ¢,t € ¢,a1 > 0,0 # ay € ¢ and w € U. Suppose that wP (b(w))" '’ (w) is a starlike

univalent in U.
If f € A satisfies the subordination:

M(p,n,A,0,¢,a1,a0;w) < (t+eb(w))(b(w))” +az(b(w))” v (w)
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where
.M(p/ n, /\/ 6/ € a1,0az, w)
_, ( w3 (B3 P (e flw))+ (1= ) (B3 (a0 f(w)) ) "
= wP
ay(c+1
W<B$Lp(a,c,é)f(w))+<1—(pZA))(Bg,'AP(“ICr‘S)f(w)) oy
+e w?
) a o
. < (B M) ) + (1050 (85 e )>>
; / n, !
w5 (B3 (e c,0)f(w)) + (1= 52 (By! (@.c.0)f (w) ©
n o B p ,
(e2) (BQ,KL P(a,c,0)f (w)) + (1 - (p?)) (BG,AP(”f ¢0)f (w)>
then

wP

( WA (Bt Plaed)f(w) )+ (1- T (B (a,c0)f () ) m

=< b(w).

Proof. Let H(B) = (t+¢B)B” and L(B) = ax(B)° ', 0 # B € ¢, when H(pB) and L(B) are
analyticin ¢. [

Then, we obtain G(w) = wb'(w)L(b(w)) = ayw? (b(w))° ¥ (w) and y(w) = H(b(w))
+G(w) = (t+e(b(w ))) ()7 + agwP (b(w))" ' (w).

(
Since w” (b(w))” '’ (w) is starlike, then G(w) is starlike in U, and

(% > { zf,”ptf; W;gzl)(w)+<g_1) ))_i_wbh,((zs;)}
>0

Additionally, consider

q(w)
_ ( (F?;M (Bg’;\rl’ p(u,c,é)f(w)) + (17W) (Bgr’)‘p(a,c,é)f(w)) ) n
- wP .
Then,
q'(w)

. ( WD (B0 P (ac8)f(w) )+ (1- 25 (B (aco) f(w)) ) “
— a8

) (Bt P(a,c,0)f(w) + (1- E42) (By P (@ c0)f@) 4
EE (B P (a,c,0)f(w)) + (1- 52 (Bl (@ c o) f(w)) @
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We obtain

t( (p;)\ ( B p(uc&)f(w)) ( (P;A))(Bg,’/\p(a,cxﬂf(w)) > e

wP

a1(oc+1)

wP

» ( 5 (B " (@ed)f @)+ (1- U5 ) (B3 (@eh)f(w) )

Since
) w(P;M( BV P (a,¢,6) f(w )) +(1_ (P;A))(Be/\ (a,¢,8)f(w )> e
e (Bg/jl"”(a ¢, 8)f( )) +(1— W;“)(BM”(a ¢, 8)f(w )) —gq(w)
That

E30 (B3t P(aeo) f(w))+ (1= B2 ) (By (a.c.0)f (w))

(w“’?) (Bo @) >)’+(1—<'J+ ) (By (@,c)f(w))' )

= ay w(q(w))"q (w).

From (8) we obtain (t+ eq(w))(q(w))” + az w(q(w))” ¢ (w) < (t+eb(w))(b(w))”
+ a3 (b(w))” 'V (w) and using Lemma 1 we obtain g(w) < b(w).

Corollary 2. Let b be convex univalent in, b(0) = 1, and b(w) # 0 for all w € U, and suppose
that b satisfies:

wtoe we(o+1) wb' (w) ~ wb” (w)
Re{p+wpﬂz+ whay w)+{7=1) b(w) " b'(w) }>0'

where o, e,t € ¢,a1 > 0,0 #a; € ¢Candw € U.
Suppose that wP (b(w))" b’ (w) is a starlike univalent in U.
If f € A, it satisfies the subordination:

M (0, t 8, hy, a1, a0;w) < (E+eb(w)) (b(w))7 + ax(b(w))” 'V (w),

( () (]n+1(9 M) f(w )) + (1— (pt )(IP(B M) f(w )))ul < b(w).

then

wP

3. Superordination Results
Theorem 3. Let b(w) be convex in U, with b(0) = 1,a; > 0, Reay > 0,if f € A,

(%f(ﬂ ¢,0)f (w ))al

wP

€ Qq(0),1]NQ

and
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(1 - az(p—l—/\)) Byl (a,¢,8)f(w) " L ma(p+2) By P (a,c,0)f )\ [ By (a,c,8)f(w))"
0 wP 0 Bg/\p(ﬂ c,0)f(w) wP

is univalent in U and satisfies the superordination.

52y ) (B @@\ ) (B M wad)f@)\" (Bl e d)f))"
b(w) + —=wb' (w) < (1 ) ) ( w?P ) + 0 ( Bg/\p(u ¢, 0)f(w) wp

then

a

() < (Bm ¢, 8)f (w)

wP

Proof. Consider

N———— N

dw _ [ [Beearw] o
glw)y ~ (83 (@.co)fw) @)

with the same steps of Theorem 1 and using the hypothesis, we obtain

b(w) + wa’(w) =< b(w) + a—jwb’(w).
a1 a

Apply Lemma 4 we obtain

O

Corollary 3. Let b(w) be convex in U, with b(0) =1, a7 > 0, Reay > 0, if f € A,

9, A) f(w) ™

<]”(wf,f()> €0q(0),1]NQ
and
L ap )\ (BOM@NT aap+a) (O @)\ T T0,A)f () )"
( 0 ) wp T T5(0, M) f () wP
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is univalent in U and satisfies the superordination

b(w) + 2wl (w) < (1 _ az(;?eJr/\)) (]p(ei) (w)>
o) (RO ) (e )"
6 TN (@) wr ,

o < (2"

then

wP

Theorem 4. Let b be convex univalent in b(0) = 1 and b(w) # 0 for all w € U and suppose that
b satisfies:

Re{wb’(w) PG 1)b(w)b’(w)} >0, (10)

a ap

where, g,t € ¢,0 # ap € ¢*, w € U, and w(b(w))”ilb’(w) are all starlike univalent in U.
If f € A, satisfies the condition:

( (rHéA) (ngl, P(a, c,é)f(w)) + (1 _ (PJBrA)) (Bg,')f’(a, ¢, 8)f(w

wP

N\
) € Q[p(0),1]1) Q,
and M(p,n, A, 0,¢,ay,a;w) is univalent in U.

If (E+ e b(w)) (b(w))” + az(b(w)) "'V (w) < M(0,t,€ hy, ji, ar,a2;w), then
) - ( (1) (ngl, P(a, c,5)f(w)) i (1 - @) (BZ,'AP(% C,5)f(w)) ) m‘

wP

Proof. Let H(B) = (t+¢B)p” and L(B) = a»(B)” ', 0 # B € ¢, when H(B) is analytic
in ¢ and L(B) # 0 is analytic in ¢/0. Then, we obtain G(w) = w’V'(w)L(b(w)) =
ayw (b(w))” Y (w). O

Since w” (b(w))" b (w) is starlike, then G(w) is starlike in U, and
H(b@)) _ g, (Lt e@@)O@NTY g [ty | o0ty ,
®( Tt ) ‘Re< a2 (b)) ) = ref b @) + @ ) | >0
Now, let
q(w) ]
_ ( W20 (B3t P (a,e0) f(w)) +(1- 52 ) (B P (a,c.0)f () ) 1'

From (8) we obtain

(t+ € b(w)) (b(w))” + az(b(w))"'b' (w)
=< (t+eq(w))(9(w))” +a2 w(q(w))"'q (w).

Using Lemma 3 we obtain b(w) < g(w).
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Corollary 4. Let b be convex univalent in U, b(0) = 1, and b(w) # 0 for all w € U, and suppose
that b satisfies:

Re{t”b’(w) + E(J+1)b(w)b’(w)},> 0, (11)

a ap

where, &,t € ¢,0 # ay € ¢*, w € U, and w(b(w))” b (w) are starlike univalent in U.
Let f € A, satisfies the condition:

g

wP

))) € Qb(0),1]) Q

and M(p,n, A, 0,¢,a1,a;w) is univalent in U.
If (t+ € b(w)) (b(w))” + az(b(w))” 0 (w) < M(0,t, & hy, 4, a1, a2;w), then

" ( ) (et e, 4) f(w)) + (1= B2 (6,4 f(w )))ﬂl_

wP

4. Sandwich Results

By combining the above theories, we obtain the following two sandwich theories.

Theorem 5. Let by, by be convex univalent in U, with by (0) = by(0) = 1 Reay > 0 and

Re (1 + q/,l (w)) > max{O, —Real},
q'(w) a

(%f(ﬂ ¢, 6)f (w ))”1

whereay > 0,0 # a € (.
If fe Aand

€eQL1] Q

wP

and

(1 . az(p+/\)) (Bg"}‘p(u,c,é)f(w)>a1
[Z] wP

L aap+A) Byt P(a,e8)f(w) \ ! [ By (a,c8)f(w) \ ™
J B",”(a,c,znf(w) wr

is univalent in U, it satisfies:

a BY.P(a,c,6 ay
by (w) + Zwb'y (w) < (1 - ﬂz(r’GJrA)) ( o0 (ﬂ;p )f(w)>

n+l p m
a (a,¢,6)f (w) W (a.c0)f(w)
B MQM)( B e f w) ) ( o ) = ba(w) + gt (w),

n, p ay
then by (w) < (B‘“WW> < by(w).

wP

Theorem 6. Let by, by be convex univalent in U, with b1(0) = by(0) = 1, and let f € A satisfy
the condition:

(W(Bgf%a,c,é)f(w)) + (12052 (85 (@ e 0)f )))ul cOML1 Q

wP
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and M(p,n, A, 0,¢,a1,a;w) is univalent in U.
If
(t+eby(w))(by(w))” + az(bl(w))gflbl’(w) < M(p,n,A,0,¢a,aw)

< (t+ e by(w)) (ba(w))° + az(by(w))” by (w),

a1

7 ) + (1 - 252) (B89 )

by (w) < P

< bz(w)

5. Conclusions

In this paper, using the convolution (or Hadamard product) we defined the El-Ashwah
and Drbuk linear operator, which is a multivalent function in the unit disk U and satisfied
its specific relationship to derive the subordination, superordination, and some sandwich
results for this operator using the properties of subordination and superordination concepts.
The interesting results can be obtained for other operators using the same techniques of
subordinations and superordinations.
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Abstract: In this article, the transmission dynamical model of the deadly infectious disease named
Ebola is investigated. This disease identified in the Democratic Republic of Congo (DRC) and Sudan
(now South Sudan) and was identified in 1976. The novelty of the model under discussion is the
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makes the model more general. Similar to a simple population dynamic system, the prescribed model
also has two equilibrium points and an important threshold, known as the basic reproductive number.
The current work comprises the existence and uniqueness of the solution, the numerical analysis of
the model, and finally, the graphical simulations. In the section on the existence and uniqueness of
the solutions, the optimal existence is assessed in a closed and convex subset of function space. For
the numerical study, a nonstandard finite difference (NSFD) scheme is adopted to approximate the
solution of the continuous mathematical model. The main reason for the adoption of this technique is
delineated in the form of the positivity of the state variables, which is necessary for any population
model. The positivity of the applied scheme is verified by the concept of M-matrices. Since the
numerical method gives a discrete system of difference equations corresponding to a continuous
system, some other relevant properties are also needed to describe it. In this respect, the consistency
and stability of the designed technique are corroborated by using Taylor’s series expansion and Von
Neumann'’s stability criteria, respectively. To authenticate the proposed NSFD method, two other
illustrious techniques are applied for the sake of comparison. In the end, numerical simulations are
also performed that show the efficiency of the prescribed technique, while the existing techniques fail
to do so.
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1. Introduction

In 1976, the first case of Ebola virus disease was observed in the Democratic Repub-
lic of Congo (DRC). Ebola hemorrhagic fever is considered the most infectious deadly
disease that is a member of the family “Filoviridae” and the genus “Ebola virus”. Ebola
virus infect humans, bats, and monkeys, but species such as fawns and mice can also
contract an infection. There are six types of Ebola virus, including Bundibugyo ebolavirus,
Zaire ebolavirus, Sudan ebolavirus, Tai forest ebolavirus, Reston ebolavirus, and Bombali
ebola virus. But only Bundibugyo ebolavirus, Zaire ebolavirus, Sudan ebolavirus and
Tai forest ebolavirus are the source of infection in people, while Reston ebolavirus infects
non-human primates [1-3].

This deadly disease has affected a large number of people globally. In the first wave
of the disease in the DRC, the mortality rate was 88%, the number of exposed cases was
318, and 280 deaths were recorded. The second wave of the disease occurred in South
Sudan, where the mortality rate, number of exposed cases, and total deaths were 53%, 284,
and 151, respectively. After the first wave, Ebola virus disease occurred in several countries
of the world, including Gabon, Guinea, Liberia, Sierra Leone, South Africa, Spain, Sudan,
Uganda, the United Kingdom and the United States of America [4]. It is endemic in some
parts of Africa.

In 1995, Ebola virus disease emerged again in the DRC with an estimation of 315
cases and 250 expired people. During 2014-2016, this epidemic re-emerged in West African
countries. Approximately 11,300 people lost their lives, and 28,600 people were infected in
Liberia, Guinea and Sierra Leone [5]. The case mortality rates in these countries were 42%,
60%, and 22%, respectively [6]. Approximately 2500 deaths were recorded in Guinea by
May 2018. The Ugandan Ministry of Health confirmed the first case of Ebola virus disease
on 11 June 2019; after that, the number of cases increased day by day. In 2019, about 2763
cases and 1841 deaths were reported in North Ituri and Kivu provinces, as confirmed by the
DRC ministry of health [7]. According to recent figures, in 2020, 130 new infectious cases
and 55 deaths were recorded, with a mortality rate of 42.3% in the Democratic Republic of
Congo. However, the Ministry of Health and WHO declared on 18 November 2020 that
the wave was terminated in the DRC [4]. In July 2016, Liberia was reported as Ebola-free.

The Ebola virus is transmitted to others by direct or indirect contact with infected
individuals and animals. The bats-to-mammals route of transmission occurrs when land
mammals eat fruits that were partially eaten by bats [8]. Initially, domestic and wild
animals spread the virus to people. The human-human transference of the virus occurs
through close contact with the infected person’s blood, tears, saliva, feces, bile, mucus,
sweat, breast milk, urine, vomit, and spinal column fluid. The virus may also be transferred
using needles and syringes contaminated by Ebola patients and by touching patients’ beds
and clothes. People may contract an infection from an infected dead person during funeral
rites without taking suitable precautions [9]. Unprotected healthcare workers may also
contract an infection when treating the affected patients in hospitals and healthcare centers.
The possibility of transmitting the virus increases among those people who look after their
infected relatives.

During the infection period, the virus can be identified by an RT-PCR test or by im-
munological methods (ELISA) [10]. Usually, Ebola virus-infected persons show symptoms
such as fever, fatigue, headache, bloody diarrhea, nausea, abdominal pain, loss of ap-
petite, sore throat, and muscle pain [11]. The time from infection to the first appearance
of symptoms is called the incubation period, which is normally 2 to 21 days for Ebola
virus disease.

Mathematical modeling of the Ebola virus disease has been the concern of many re-
searchers for the recent few years to understand the epidemiological and dynamical features
of this challenging disease [12-17]. Weitz and Dushoff made control strategies to reduce
the transmission of Ebola virus disease from infected dead bodies [18]. The researchers
introduced and analyzed the optimal control mathematical problems by using various
techniques and strategies for Ebola virus disease [19-21]. A. Mhlanga studied the two-patch
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model SIRD to study the dynamics of Ebola virus disease and developed time-dependent
controls in his model. He calculated the basic reproductive number, the equilibrium points,
and two boundary equilibria. He implemented the control measures to reduce the Ebola
virus disease in specific areas [22]. Ahmed et al. [23] proposed the SEIR model with some
new compartments, such as hospitalization, quarantine, and vaccination. In hospitalization
and vaccination cases, optimal control strategies are used to control disease transmis-
sion and give the powerful impact of vaccination to the infected population. Tulu et al.
introduced a mathematical model including quarantine and vaccination to analyze the
disease dynamics [24]. They investigated the model using fractional-order derivatives and
verified the existence and positive solution of their introduced model. They used Euler
and Markov Chain Monte Carlo (MCMC) methods to generate the simulations. Their out-
comes illustrated that the quarantine and vaccinations played an important part to control
the Ebola outbreak. Area et al. presented a mathematical model with the vaccination of
susceptible individuals to control disease transmission [25]. They studied two optimal
control problems associated with Ebola disease transmission with vaccination. They con-
sidered three vaccination constraints to show the impact of vaccination. A SIR model was
constructed with direct and indirect transmissions by Berge et al. [26]. They proved the
local and global asymptotic stability of the endemic equilibrium points and developed
the nonstandard finite difference scheme, which is dynamically consistent with the model.
Kabli et al., in 2018, used the cooperative systems theory to examine the global stability
of the epidemic SEIHR model of Ebola disease [27]. Rafiq et al., in 2020, constructed an
SEIR model of nonlinear differential equations [28]. They obtained the threshold quantity
and equilibrium points and checked the stability of their proposed model. They proved
that the equilibrium points are locally asymptotically stable. The Lyapunov function was
used to check the global stabilities. They developed a fourth-order Runge-Kutta method
and a nonstandard finite difference scheme for the proposed model and demonstrated
that the RK-4 method failed at certain step sizes, while the NSFD scheme conserved all
the dynamical properties of the model at large step sizes. Okyere et al. examined the
optimal control analysis of epidemiological models such as SIR and SEIR using vaccination,
treatment, and educational campaigns as time-dependent control functions [29]. They used
the forward-backward sweep method with the RK-4 method to explain the optimal system
for different control strategies. Ahmed et al. [30], in 2020, established a mathematical model
SVEIR by introducing the new sub-population class of vaccinated people into the SEIR
model [31]. They also presented the equilibrium points and stability analysis of the model.
Both the disease-free and endemic equilibrium points are locally and globally stable. They
justified their concluded theoretical outturn by applying RK-4 and NSFD schemes. Their
work shows that through voluntary vaccinations, the transmission of the Ebola virus can be
controlled. A work regarding a fuzzy epidemic model with an NSFD scheme is presented
by Dayan et al. [32].

Some innovative studies for epidemic models in the set of fractional calculus have been
conducted. The referred articles are of importance in this connection [33,34]. In the existing
theories, advection and diffusion phenomena are considered for the propagation of disease
in the defined population. The existing epidemic models deal with the disease dynamics
depending on time. However, they do not examine the effect of advection and diffusion
factors simultaneously. For that reason, there is no numerical design for this type of model
in the running literature, which is, in this context, the generalized epidemic Ebola model,
namely the advection-diffusion Ebola model. Moreover, the existing numerical schemes
do not preserve the positivity property, which is the essential feature of the solutions to the
population systems. Additionally, they lead toward a false steady state. This was a major
drawback in some of the present numerical designs. The scheme proposed and developed
in this article ensures positive solutions, stability, and convergence toward the true steady
state. Hence, the extended model is productive and enriched with disease dynamics.

As far as the limitations of the research work are concerned, the initial and boundary
conditions of the underlying model should be continuous functions. If these conditions
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are discontinuous, piecewise continuous, or nonlocal conditions, then they cannot be
considered. The other limitation is related to the existence and uniqueness of the solution.
The continuity of the solution lies in a restricted domain. Equivalently, the maximum
length of continuity is short.

2. Modified Ebola Virus Model

A compartmental model of the Ebola virus is designed for the numerical study in
Section 2. The model under study deals with the spatio-temporal dynamics of the Ebola
virus disease. Due to the involvement of space as well as time, the domain for the cur-
rent model is assumed to be QO = (0,L) x (0,T) € R?, where L and T are real num-
bers, such that T > 0. Suppose that the state variables for the system are S = S(x, 1),
E = E(x,t),I = I(x,t),and R = R(x,t), which are the real functions defined on Q) and are
described as the subpopulation sizes of the compartments susceptible, exposed, infected,
and recovered, respectively, at any time t. Further, let S = S(x,t), E = E(x,t), I = I(x,t),
R = R(x,t) € C¥'[Q, R]. Additionally, suppose that {1 (x),{2(x) and 3(x) are three real-
valued functions such that {1(x), {2(x), and {3(x) € C'[(0, L), R]. The state variables of the
model and parameters used in the prescribed system are stated in Table 1.

Table 1. Values of the parameters.

Notations Description

S(x,t) No. of susceptible individuals at time t and space x
E(x,t) No. of exposed individuals at time t and space x
I(x,t) No. of infected individuals at time ¢ and space x
R(x,t) No. of recovered individuals at time t and space x

121 Birth rate as well as death rate

P2 Contact rate for the individuals from the susceptible with infected class

p3 Transmission rate of exposed persons to the infected person

Pa Treatment rate

a Rate of advection for the susceptible class

ap Rate of advection for the exposed class

as Rate of advection for the infected class

ay Rate of advection for the recovered class

0 Diffusion rate of advection for the susceptible class

& Diffusion rate of advection for the exposed class

o3 Diffusion rate of advection for the infected class

Oy Diffusion rate of advection for the recovered class

The spatio-temporal model of Ebola virus disease including advection and diffusion
is given as follows [35]:

dS(x,t) n dS(x,t)
1

ot M =P p2S(x, t)E(x,t) — p1S(x, t) +
d?S(x,t)
A M
OE(x, ¢ 9E(x, ¢t
(83; ) + ay é’; ) _ p2S(x, t)E(x,t) — p3E(x, t) — pE(x,t) +
d?E(x,t)
N N 2
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al(x,t) ol(x,t) d?I(x,t)
5 T = peE(x ) = (pr+pa)l(xt) + &~ 5, ®)
OR(x,t) OR(x,t) d’R(x,t)
9t +ay E = p41(x, t) —PlR(x, t)+547 (4:)

Since all of the above equations are independent of R(x, t), thus, the system (1)—(4)
reduces to the system of the first three Equations (1)—(3).

dS(x,t) n dS(x,t)

= Gm— =P p2S(x,t)E(x,t) — p1S(x,t) +
d?S(x,t)
a5, ©)
JE(x,t O0E(x,t
WD) 4 0?20 s 0E (e 1) — paE(e t) — prEGr, ) +
d?E(x,t)
527, (6)
al(x,t) dl(x,t) d?1(x,t)
o as e = p3E(x, t) — (Pl + p4)I(x, f) + d3 2 (7)
Additionally, the initial and boundary conditions
S(x,0) = {1(x), forall x € [0, L], (8)
E(x,0) = a(x), forallx € [0, L], 9)
I(x,0) = C3(x), forallx € [0, L], (10)
and
B<S(x,t)> E)(E(x, t)) E)(I(x,t))
- = 0, (1)

for every ordered pair (x,t) € 9Q), % represent outward normal derivatives on 9d(), a
boundary of () where 7 is the outward unit normal vector on the boundary. Further-
more, S(x,t),E(x,t),I(x,t), R(x,t) are Lebesgue-integrable functions in the domain men-
tioned above.

The prescribed system (1)—(4) reflects the dynamical behaviour of the fatal Ebola
virus disease, for which S(x, t), E(x, t),I(x,t) and R(x,t) depict the sub-population sizes of
respective compartments at point x and time ¢, respectively. Due to biological reasoning, it
is assumed that S, E, I and R are the nonnegative functions of x and ¢ [36-38].

For the equilibrium points, set all instantaneous changes with respect to time and
space equal to zero in (5)—(7).

Thus, the Ebola-free equilibrium point of the continuous system is:

Eo = (1,0,0,0).

Additionally, the endemic equilibrium of the model, obtained by equating all deriva-
tives to zero, is [35]:

where N — -
P1+P3’ £ p1(1-S5) i
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Additionally, the value of the reproductive number Ry can be evaluated by using a
next-generation matrix.

=1 o -5 w ]

F:[Pz 0}/V:[;ﬂ3+m 0 }
0 0 —p3 p1tpa

Since S =1

Because Ry is defined as the spectral radius of FV !, thus,

Ro = p(FVY),
p2
p1+p3

To make the dynamical system more realistic, many researchers examined advection
and diffusion phenomena in highly non-linear continuous mathematical models, which
reflect the real significance in the dynamics of the systems [39,40]. The current article
addresses the advection and diffusive impacts of an epidemic model’s compartmental
population.

The approach of the nonstandard finite difference scheme for the model (1)-(4) is
adopted with the defined initial and boundary conditions in the next section with the
supplementary data (8)—(11).

2.1. Optimal Analysis of the Model

The above system (1)—(4) of Ebola disease and its dynamics depend upon the ad-
vection and diffusion properties with respect to each of the state variables S, E, I, and R.
The first three partial differentials are mutually coupled, while the last partial differential
Equation (4) is completely independent of the rest of the coupled system. Since this model
primarily describes the population model, where the sum S+ E + I + R = N (the total
population), therefore, physically, if the total population is known, the three components
are computed from the partial differential Equations (1)—(4). Then, obviously, the fourth
tuple of the vector of unknown functions is retained without computing the fourth partial
differential Equation (4). Thus, potentially, Equation (4) can be set aside for the upcoming
existence analysis, the same as it is in the computations. Now, we will consider System
(1)—(3) with the conditions (8)-(11). Without any inconvenience, the first time derivative
appearing in the system can be inverted, and in concise form, the solutions S, E, I can be
written as follows:

26
S = So+/F1<SEIaS J )(s)ds

9x’ 9x2
oE 0°E

E = E0+/ F2<SE18 ax2>()ds,
ol 921

I = IO+/F3<SE18 82>()ds

If we set <S, E, I) = (ul,uz, u3>, the more compact form of System (1)—(4) and,

consequently, Equations (5)—(7) can be written as:

ou' 2 .8 aul 0%u
oF =F; <u us,u 8x2> (12)

where ul,u2,u3,i=1,2,3 represent the unknown functions S, E, and I, respectively.
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The classical triple (u u?, u3> needs to be in the function space C'[0, 7] x C?[a, b]

for finite numbers 4, b and the finite positive number T. The compact embedding of the
function spaces leads to the fact that the function space C[0, 7] is compactly embedded as
CP[0, 7]; consequently, we can have the consideration of the space of continuous functions
as our primary Banach space for the solution tuple to be fit in the space C°[0, 7], equipped
with the usual supremum norm. Furthermore, we strictly assume that, with respect to the
space variable, this ut e C2 [a,b] fori =1,2,3, that is, we invert System (12) with the initial
conditions (8)—(10) in the form of the Volterra integral equation as follows:

2
Ut _u0+/ Fl(u u?,ud, aau aa 2)(s)ds, fori =1,2,3. (13)

The integral Equation (13) can be written in the following operator’s form:

2,,
- u0—|—/ <u u?,ud, %M aa 5 >(s)ds, fori =1,2,3. (14)

Since System (1)—(4) reduced to (14) is a physical system, prior to the computational
technique, we can predict the behaviour of the solution. Besides the many advantages of
the existence theory, there is one serious restriction, which is that, in general, the solution
does not exist in the large domain. However, we can construct an a priori condition on the
bound of the solution in a special environment called the Schauder-type estimates. This fact
leads to the nice idea of the optimization of the function space. The following subsection
deals with the important dimension of the analysis.

Fixed-Point Optimization in Banach Spaces

Primarily, we will consider the contraction-mapping principle on the space of continu-
ous functions, and we choose the following balls with arbitrary radii » > 0 (to be bounded
later) defined by

Bolub) = {uf < o) ol v <

}, i=1,2,3. (15)
We choose the initial values as the center of the balls, and we set

i
<7+,

Again, considering the operator Equation (14), we examine the following conditions:
(i)  Self-mapping; thatis, U : B [uf] — By [ul],

(ii) Contractivity; that is, ug — <k uil — ué .

To verify the first condition, we take the norm of Equation (14), and we obtain

Hu’—uo Fi||dr,

< Ki(r) / ds, because F ; are bounded and the norm
0

can be estimated by the radius r.

K (r)p,
T.

IN A

136



Axioms 2023,12,79

This implies that

Xi(r)

p=< (16)

The condition (16) is necessary for the existence of a solution and gives explicit bounds
for the length of the continuity of intervals of solutions. For contractivity, we take two
images Uj and U} for two pre-images 1} and u5, respectively, from (14), and we can rewrite
this as follows:

‘ ' f ; ouf 9%ul t - oul, 0%ul
U ¢ A . i 1 1 o . i 2 2
ul uZ ‘/O Fl <u1/ at 7 8t2 )(S)ds /0 Fl (uz, ax 7 ax2 )(S)ds,
. . t Coul 92ut Coul 9%ul
U N A . 1 1 1) _ . 1 2 2
Uy — U /0 {Fl (ul, 7 92 ) Fi (uz, o o > }(s)ds. (17)

Now, suppose that [ i, i =1,2,3 all satisfy the Lipschitz condition of spatial type as
defined by

(18)

Equation (17) implies

and for some positive constant M', we can always have

For contractivity, we have the following condition:

Wy — Uy || < p&!(r) ||uy — 11y

C2[a,b]

W — U || < oML (r) || — udf

C2[a,b] '

1

P= Mizi(r)

(19)

that is, we have more restrictions on the length of the interval of continuity depending on
time. For more precise results, the Lipschitz constant must be small enough.
Hence, the following result has been verified.

Theorem 1. Suppose that the state variables S, E, I and R are in C'[0,T] x C?[a, b]; then, provided
that S, E, I and R satisfy the Lipschitz condition of the type of Equation (18), the initial boundary
value problem (1)-(4) with (8)—(11) is uniquely solvable.

Theorem 2. Suppose that the state variables S, E, I and R are in C'[0,T] x C2[a,b]; then, the
continuity and the uniqueness of the solution of System (1)—(4) is given by the inequality,

r 1

%o ~ M)

Since the epidemic models contain a number of parameters, it becomes an uphill task
to find the exact solutions of these models. In some cases, it even becomes impossible to
evaluate the problem exactly. The numerical solutions then numerical solutions become
inevitable for these types of nonlinear epidemic systems.

In the subsequent section, a non-standardized algebraic scheme is designed to attain
the numerical solutions of the underlying model.
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2.2. Numerical Modeling

Let M and M* be two natural numbers and m = %, { = % be the positive real
numbers. Additionally, let [0, £] and [0, T] be the spatial and temporal intervals, respectively,
for the proposed problem. Thus, the intervals [0, £] and [0, T] are partitioned into m and ¢
subintervals, respectively. Suppose also that the partition norm of the interval [0, £] is m,
while the partition norm for the interval [0, 7] is £. Define x; = jm and f; = k¢, for which
j€{0,1,2...,M}and k € {0,1,2..., M*}. Additionally, suppose that S;-‘, E;-‘, I]’f, and R;‘
are the approximate values of the exact values of the functions S(x;, t), E(xj, t), [(xj, ti),
and R(xj, t) respectively, at the mesh point (jm, k¢) for j € Zand 0 < j < Mand k € Z
and 0 < j < M*. Additionally, if U is the arbitrary function values from the set {S, E, I, R},
then we define

uk = (uk,uk,...,uk), keZand0<j< M*.

The continuous model (1)—(3) is converted in to a system of difference equations with
the help of some discrete functions. The procedure of conversion is explained as follows:

SkJrl _ gk Sk+1 _ Sk+1
14 { m

-1
j I j }_pl_pzs;gHE;g_plS;gHJr

Gk+1 _ g+l + Gk+1
+1 —1
51{ / ﬂ]17- ! }r (20)
EI'(+1 o Ek E’-H_l o E’-H_l
i -1 krk k k
—7 +“2{ o } = P2S{Ef — p3E[TT - pET +
gkl _ opk+1 + Ek+1
s T T, e
m
I]f+1 _ Ik Ik+1 _ Il‘(Jrl
-1
L7 7 : +ﬂ3{]m]} = p3Ef — (p1 + P4)1]k+1 +
I]‘(Jrl _ 21k+1 4 I’f+l
+1 -1
53{ / 11’1 — } (22)

After simplifications, (20)—(22) gives

—(M 4 p)SEH + (L A+ fpy + LpEf +2u0) ST — i SEH = tpr 8, (23)

—(Aa+ p2) Y+ (14 Ag + £(p1 + pa) + 2u2) EF —

WESH = Ef + paSFES, (24)
—(As + ) I + (L4 As + €(py + pa) + 2p3) [ — s = IF + pEf, (25)

¢ 50 ¢ S50 ¢ N -
where Ay = 25y = #,Azz%,yzzﬁ,)g: %andygzﬁforje {1,2,...,M}

and k € {0,1,2,..., M* —1}.
The auxiliary data are discretized as:

S? = kl<x])r
E]O = kZ(x])/
[]Q = ka(xj), for je{1,2,...,M},
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and

88f = OEf=4If =0,
oSk, = OEK, =61k, =0, for ke {0,1,2,...,M*}.
A comparison of numerical scheme (20)—(22) with the other existing methods makes it
clear that (20)—-(22) gives us more reliable results. Thus, to see the strength of our proposed

scheme, two well-known schemes are also applied to the proposed system (1)—(3). One is
the up-wind implicit scheme, which is constructed as

—(A 4 ) S (L A+ 200)S5 = SE =S+ epr -

fpzskE" p1S%, (26)
— (Ao p2) BT 4 (14 A + 20 EXY! — puEXH = EF +
palSSEf — (p3Ef — EplEk, (27)

—(As+ pa) I+ (14 As +2u3) [T — s ISH = I +
p3lES — palf — plljk. (28)

The second is the Crank-Nicolson method, constructed for System (1)—(3):

B M\ ki ket (M g
(4+2>S +(1+m)S; <4 2>Sj+1

M
<4+Vzl ka1+<1_€’°2’5k - ”1>Sk ( )S}(“M’”’ @
A p2 ) pki k1, (A2 M2\ okt
<4 Z)E SRR R St LA
ey EF )+ (14 0paSE—tps — tpy — o | EF + 2 A2k (30)
1 > 1 P25; p3 —tp1— M2 | L 5 g )R+

)\7 B3\ 1k+1 k+1 ﬁ_& k+1
(4+2>I + (I +us) ;7 + ) I =
H3

A
( 5 >1k (1—€p4—€p1 y3>l]’-‘— (”23 - 43)1]’-;1 +(p3Ef. (31)

Remark 1. The proposed NSFD scheme can be developed by taking unequal step sizes of both time
and space.

3. Physical Features of the Numerical Method

This portion is fixed for the significant characteristics of System (5)—(7). These features
play a paramount role to attain the numerical solutions of the nonlinear epidemic models.
To discuss these important features, it is important to review some definitions.

Definition 1. A matrix A with real entries is described as a Z-matrix if every element of it is
non-positive except diagonal elements.

Definition 2. A square matrix A with real entries is described as an M-matrix if it satisfies the
following properties:

(i)  The matrix A is a Z-matrix;
(ii)  Every main diagonal entry of the matrix A is positive;
(iii) The matrix A is diagonally dominated, strictly.
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The theory of the M-matrix plays an important role in proving the positivity of
the state variables involved in the model of various fields of engineering, mathematics,
economics, physics, and many more. The subsequent outcome grantees the non-negativity
of the numerical solutions to the discrete System (20)—(22). This feature of the numerical
scheme can be expressed by applying the M-matrix technique. Moreover, every M-matrix
is inverted with real positive entries.

Remark 2. Every M-matrix has an inversion with positive entries [41].

The following are the important properties of the proposed scheme for the model
under discussion.

3.1. Positivity

For a population dynamical system, the positivity of the state variables plays a vital
role. Thus, it must be preserved after employing the numerical scheme on the model.
The following theorem reflects the positivity property.

Theorem 3. Assume that ki,ky and ks are the positive real-valued functions depending on x
defined in the interval (0,L); then, System (20)—(22), with the supportive data (8)—(11), has a
solution ¥ m > 0 and [ > 0. Moreover, the solutions are positive.

Proof. Since the left hand sides of (20)—(22) are the implicit relations, we can write it in the
vector representation as:

Usk+l  — s;.<+gp1, (32)
VESL = Ef+ ppSPES, (33)
WIKFL = IF+ psEf, (34)

in which U, V and W are defined as (M + 1) x (M + 1) matrices. By using the initial and
boundary conditions (8)—(11), we can find the matrices U, V and W. Then,

3 (71)? Y4

0 7 (1) ™

U - 7
3 (M, m 0
: ' 3 (’71)15/1_1 Y4
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V= ,
& () Ca 0
& G G
0 0 & @Dy
and
(1) @ 0 0
o5 (a)f o
0 o3 (01)5 o
. . |
o (el o 04 0
1 e (e)y o
0 0 03 (QT)]ICVI
where
(M)f = 14+ A+ Lpr+ EpEf +2m,
(G0)F = 1+ A+ Lp1+ps) +2p2,
(0)f = T+A3+L(p1+pa) + 2013,
(M = 1+A+Lp1+LpESy + i,
@M = 1+da+Lp1+ps)+
@) = 1+A3+0(p1+ps) + 1,
T2 = —(M+2m), Go=—(A2+2m2), 02 =—(A3+2pu3),
13 = —(M+m) G3=—(Aa+p2), 03=—(A3+ps3),
T4 = —HL Ga = —p2, 04 = —H3.

Now, the method of mathematical induction is applied to prove the positivity of the
corresponding discrete system of Equations (20)-(22). According to the initial data, S°, I9
and Ig are positive, so it is assumed that Sk Ekand I¥, k € 0,1,2,..., M* — 1 are positive
component vectors. The above calculation indicates that U, V, and W are the M-matrices,
so they are invertible and have positive inverses. Moreover, the expressions that occurred
on the right-hand side of each of the equations in System (20)—(22) are positive. Therefore,

Sk+1 _ u—l (gpl + S;(),
k+1 _ y—1(pk kpk
I = W1 + psEf),

all the state variables are positive quantities for every k =0,1,2,-- -, M* — 1.
Hence, the theory of mathematical induction grantees the required solutions. [J
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Definition 3. Suppose )y, = {xj €ER:jeZ|0<j< M} is the set of mesh points, I',

contains the real functions defined on Q)y,. Also, I'yy, forms a vector space.
A norm ||| from Ty, to R is defined as:

M
IFIl = | Y_|FjI% forall F €Ty,
j=1

|F||oo:max{|F]-|:je{O,l,Z,---,M}}, vV F el

and

The consistency of a numerical scheme is an important structural feature since the
consistency determines the relationship between the exact solutions of both continuous
and corresponding discrete systems. To that end, we define the following differential

transformation.
v = E)Sé};, ) +a BSE()J;,t) — p1+ paS(x, t)E(x, t) + p1S(x,t) —
51V2S(x,t), (35)
vy — BE(;: b, aza’fé’;f) — paS(x, ) E(x, 1) + p3E(x, 1) + prE(x, t) —
5 VZE(x, t), (36)
vy = aI(z;xt/t) + ﬂsalgjc’t> — p3E(x,t) + (p1 + pa)[(x, 1) — 8 V2I(x, 1), (37)
Moreover, the discrete operator is defined in the following:
*k+1 — 5 S"“ +(stkﬂ i+ p25k+1Ek + p15k+1 515xx5;g+1, (38)
U = G £ ap0 B pySKER 4 psER 4 py BN — 66 BN, (39)
v = S 4 a8 I — paEf o+ (py + pa) I — G50 40

3.2. Consistency
The accuracy of the proposed numerical scheme is investigated by Taylor’s theory.
Suppose that
S(x,t+0)—S(x,t)  S(x,t4+€)—S(x —m, t+ 1)

Dg = 7 +a - —-p1+

p2S(x,t +L)E(x,t) + p1S(x, t +£) —
5
m—lz{S(x+m,t+€) —2S(x, t+£) +S(x —m, t+0)}.

After applying Taylor’s classical theory, we reach the following expression

2

af+algs P1+PQSE+P1S*5187§ as m—0,¢—0,

Ps = 3 ox
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and

E(x,t+/¥)— E(x,t E(x,t+¥¢)—E(x —m,t+/¢
<I>E:( é ()+a2( )m( )

p2S(x, t)E(x,t 4+ £) + p1E(x,t 4+ £) + p3E(x,t + £) —

5
m—zz{E(x+m,t+€) —2E(x,t+ )+ E(x —m, t+10)},

oE oE 9%E
Similarly,
ol ol 0?1

Thus, the designed numerical algorithm is consistent with the underlying model of
differential Equations (5)—(7).

Using Definition 3 and Equations (35)—-(40), the following result may be established.

Theorem 4. If the state variables S,E, I, R € sz( Q)), then there exists ¢ > 0, which is indepen-
dent of £ and m, with the following inequality:

maX{Ilﬂ =00, 19— ¢'lleos lI9 — ¢’|oo} <¢(m+1).

3.3. Stability

Since the main purpose of this article is to find the numerical solution of the system
of partial differential equations, it is necessary to prove the stability of the numerical
scheme. For the stability of the numerical scheme, we consider the propagation of rounding-
off errors in the approximate solutions. In other words, we can say that a numerical
technique for the system of differential equations is unstable if a minor variation in the initial
data produces an abrupt change in the target variables of the model under consideration.
Likewise, if the negligible change in the state variable does not lead to a gigantic change
in the solution, then the numerical scheme is stable. Von Neumann criteria are applied
to investigate the stability of the designed numerical scheme. To that end, we split the
numerical error that arose in approximate solutions in the form of Fourier series.

Thus, the linearization of the Equations (20)—(22) and some substitutions leads us to
the following expressions:

SE o= ¥i(t)er,

S = (4 Ab)eT,
Sk — ‘I"l(t) iw( x+Ax
Sk . = 1P1<t) 1wx Ax

We obtain
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By substituting
Ef = ¥42(1)e,
E;F“ = Wy(t+ At)e'wF,
E;g+1 _ Tz(t)eiw(HAx)l
Ef ;= Ya(t)e2),
we have
"I’Z(H—At)‘ <1
o) [T
Similarly, from (22), we have

Hence, the projected scheme is stable in the sense of Von Nuemann.

4. Numerical Illustrations

In the current section, we established two examples: one consists of a model with an
unequal birth rate and death rate. The validity of our proposed scheme with the help of
empirical data about the outbreak of the Ebola virus that appeared in Liberia in 2014 [42]
is performed. In the other example, we consider the equal death rate and birth rate with
general numerical simulations for both disease-free equilibrium and endemic equilibrium.

Example 1. The SEIR advection-reaction-diffusion Ebola model with unequal birth and death rates
with vital dynamics is numerically solved.

dS(x,t) n dS(x,t)

o 4 — - = Po— p2S(x,t)E(x,t) — p1S(x,t) +
5 d?S(x,t)
1 dxz 7
JE(x,t 0E(x,t
g’; ) 4o, é’; ) paS(x, E(e ) — psE(x,t) — prE(x ) +
5 d?E(x,t)
2 dx2 7
al(x,t) dl(x,t) d?1(x,t)
Y + a3 o = p3E(x,t) — (p1+ pa)I(x,t) + &3 2
OR(x,t) oR(x,t) d’R(x,t)
o T pal(x,t) — p1R(x, t) + (547,

with a birth rate of pg and a death rate of p;.

The threshold quantities for this model are slightly different from Model (1)—(4) and are

presented as:
Disease-free equilibrium:
(’”0, 0, 0) :
P1
(S*,E*, I*), where

Endemic equilibrium:
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S*:P1+P3, E*:Po—Pjsl I — p3E (1)
2 p2s p1+ pa

Note: Since first, three equations of the above model are independent of R, we can solve only
these equations, and also, since the total population is considered bounded, we can estimate the value
of R by subtracting the values of S, E, and I from the total population.

The above model is simulated by using the parameters reported in [43,44]. These parameters are:

p2 =02, p3=0.1887, p,=0.1.

These parameters are based on the numerical findings of [43,44] in which susceptible indi-
viduals are 88% of the whole population, 7% of the total population is exposed (infected but not
infectious), and the infectious are 5%. Additionally, the initial conditions are recorded as:

S(0) =0.88, E(0) =0.07, I(0)=0.05.

The birth rate po and death rate pq are taken from the empirical data about the population of Liberia
in 2014 are [45]:

po = 0.03507, p1 = 0.0099.

4.1. Simulations

The above figures depict the evolution of the sub-population over time and space.
In Figure 1, the graphical resolution of the model gives the value §* = 0.99, which is equal
to the theocratical value of §* calculated from (41). From Figure 2, the evolution of the
exposed individuals can be visualized over a time t and space x. When we calculate the
value of E* from the analytical result of (41), it gives the value E* = 0.12. This is exactly
the same as the proposed scheme gives in the graph of E(x, t). Similarly, from Figure 3,
the value of I*, in the evolution of infected persons at any point (x, f), can be seen which
is equal to 0.217. It coincides with the analytically calculated value from (41). Thus, we
can conclude that the numerical solution of the prescribed model using the efficient non-
standard finite difference scheme converges to the equilibrium point that is calculated
analytically. Finally, Figure 4 reflects the 2-D plot graph of the state variables, and we can
observe their convergence to the true steady state.

Upwind NSFD finite difference scheme

1.15
X05

11 Y 300
Z 0.993876

=105 o

0.95

09 -
300

~

Figure 1. Numerical solution of S(x,t) (susceptible individuals) by employing upwind NSFD
technique at endemic equilibrium point with pg = 0.03507, p; = 0.0099,p, = 0.2,p3 = 0.1887,
ps = 0.1.
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Upwind NSFD finite difference scheme

X04
Y 300
Z0.126483
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Figure 2. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with py = 0.03507, p; = 0.0099, p, = 0.2, p3 = 0.1887,p4 = 0.1.

Upwind NSFD finite difference scheme

X 0.6
Y 296.7
Z0.217318

Figure 3. Numerical solution of I(x, f) (infected individuals) by employing upwind NSFD technique
at disease-free point with pg = 0.03507, p; = 0.0099, p» = 0.2, p3 = 0.1887, p4 = 0.1.

12 Upwind NSFD finite difference scheme (x=1)
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Figure 4. Numerical solution of S(x,t), E(x,t), and I(x, t) by employing upwind NSFD technique at
disease-free point with py = 0.03507, p; = 0.0099, po = 0.2, p3 = 0.1887, p4 = 0.1.

Example 2. The supplementary data are defined as follows:

5(x,0) = | 04x 0<x<1/2
T 04(1—-x) 1/2<x <1,
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[ 0.3x 0<x<1/2,
E(x'o)_{ 03(1—x) 1/2<x<1,

I(x,0) = 0.2x 0<x<1/2,
1 02(1—x) 1/2<x<1,

The set of parametric values [43,46] chosen in this work are p; = 0.5, p3 = 0.1887, py = 0.1,
51 = 52 = (53 = 0.02, and a) =day = az = 0.01.

For the endemic point, we take py = 0.5, and for the infection-free point, we take py = 0.9,
where the physical meanings of these parametric constants may be perceived from the parametric
description of the model, stated earlier in Section 2. Now, we present the simulated graphs for
ascertaining the pre-results. In the propagation of an infectious disorder, the value of Ry reflects the
vital role to determine the stability of the numerical at the steady state of the model. The Ebola virus
model with advection and diffusion parameters has two different fixed states, namely the infection-
free and disease-persisting steady states, depending upon the value of the basic reproduction number.

Next, the dynamical behaviour of the state variables at both the steady states is exhibited
graphically using the proposed numerical method.

4.2. Disease-Free Point

Figure 5 shows the graphical behavior of the state variables that are involved in the
reaction—advection—diffusion ebola model. The values of the parameters associated with
the model are selected according to the nature of the disease-free stability point.

The graphical solution illustrated in Figure 5 shows the corresponding values of
susceptible individuals for different values of space and time variables; that is, values of
S(x, t) are obtained against the variables x and t. There is no abrupt change in the graph,
and it converges smoothly toward the true value of the disease-free state. Additionally,
in the infection-free state, the values of other state variables become zero, and the whole
population becomes susceptible at this stage. This fact is in accordance with the biological
procedure of the infection. So, the biological situation strongly supports the numerical
situation, obtained by the hybridized upwind nonstandard finite difference scheme.

Upwind NSFD finite difference scheme

Figure 5. Numerical solution of S(x,t) (susceptible individuals) by employing upwind NSFD
technique at disease-free point with Ay = Ay = A3 = 0.8 and y; = pp = 3z = 0.02.

Likewise, Figure 6 shows that the graphical solution obtained by the prescribed scheme
ultimately converges towards the acceptable steady state. Additionally, the graph shows
that at a certain time ¢ = 0, the disease exists in the population in a certain region of the
space. However, as time grows, the size of the exposed population gradually becomes zero.
This fact is according to the biological scenario because when the disease dies out from a

147



Axioms 2023,12,79

population, the infected individuals become zero. Thus, the numerical solution depicted
by Figure 6 is in line with the physical phenomenon of the disease biologically.

Upwind NSFD finite difference scheme

0.15

E(x,t)

Figure 6. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with Ay = Ay = A3 = 0.8 and yj = pp = p3 = 0.02.

The numerical pattern in Figure 7 illustrates the numerical behavior of the infected
individuals at a different moment of time and a certain location of space. Certain parametric
values are selected to draw this pattern. Initially, the infected individuals take some non-
zero values, thatis, at t = 0 and x = 0, I(x,t) # 0 However, with the passage of time,
the state variable I(x, t) approaches zero for the whole space. This is in accordance with
biological facts. As the disease dies out, the infected popula<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>