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Preface

In this Special Issue, we aim to promote the study of special functions and, particularly the

functions of orthogonal polynomials and their applications, not only in the traditional context

of mathematical physics equations and integro-differential equations, but also in the contexts of

combinatorial theory, analytic number theory and linear analysis. Many articles have recently been

published on special sequences of numbers or polynomials in the context of analytic number theory.

The analysis of fractional calculus through the concepts and formalism of some classes of orthogonal

polynomials (particularly Hermite polynomials) is a further research area for this UIR, as well as

the study of extensions in the case of the fractional index of polynomials of Chebyshev, as well as

the multidimensional case of pseudo-Chebyshev and pseudo-Lucas, and the generalizations of the

numbers of Bernoulli, Euler, Hahn, Bell, etc., also through expressions of polynomials in the form of

determinants.

The relationships of multidimensional orthogonal polynomials (particularly Lucas polynomials)

with linear algebra and the related applications in the study of linear dynamic systems are now well

known and therefore allow for expanding our knowledge in the disciplinary areas considered above.

Clemente Cesarano

Editor
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Article

Stability and Hopf Bifurcation Analysis for a Phage Therapy
Model with and without Time Delay
Ei Ei Kyaw, Hongchan Zheng * and Jingjing Wang

School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710072, China
* Correspondence: zhenghc@nwpu.edu.cn

Abstract: This study proposes a mathematical model that accounts for the interaction of bacteria,
phages, and the innate immune response with a discrete time delay. First, for the non-delayed model
we determine the local and global stability of various equilibria and the existence of Hopf bifurcation
at the positive equilibrium. Second, for the delayed model we provide sufficient conditions for
the local stability of the positive equilibrium by selecting the discrete time delay as a bifurcation
parameter; Hopf bifurcation happens when the time delay crosses a critical threshold. Third, based on
the normal form method and center manifold theory, we derive precise expressions for determining
the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical
simulations are performed to verify our theoretical analysis.

Keywords: phage therapy model; delay; stability; Hopf bifurcation; numerical simulations

MSC: 34K18; 34K20; 34C23

1. Introduction

Phages are viruses that infect prokaryotic organisms, and are important components
of ecological systems [1]. Phages infect bacteria by injecting their genetic material into
cells. When the virus enters the cell, it prevents other phages from attacking it and begins
to reproduce within the host until the number of new viral particles reaches the bacterial
threshold [2,3]. The use of bacteriophages to treat bacterial infections, commonly referred to
as phage therapy, dates back to the early 20th century. Phage treatment can be more effective
than antibiotics in treating various medical conditions [4]. Moreover, phage therapy has
multiple potential applications, and can even be employed in place of antibiotics in certain
circumstances [5]. Clinical research on phage therapy has not shown any of the severe side
effects such as anaphylaxis that are sometimes associated with antibiotics [6].

Mathematical models are widely used in various fields, including biology, epidemi-
ology, engineering, physics, sciences, business, and computer science. They help us to
understand ecosystem dynamics, quantify disease control strategies, and gain new theoret-
ical insights into nature [7]. Nonlinear dynamical systems are commonly used to describe
biological systems and relationships between individuals. Researchers have developed non-
linear dynamical systems for various biological phenomena, including stability, persistence,
and bifurcation. Mathematical modeling of phage therapy is crucial for understanding
bacteria–bacteriophage interactions and their long-term behavior. Various models have
been constructed, resulting in numerous beneficial outcomes [2,8–16].

Considering that the evolution of a system is dependent on its present and previous
states, time delays must be included in the model. Accordingly, authors have focused on
dynamic behaviors such as stability and the existence of Hopf bifurcations in delayed popu-
lation models [17–20]. The above-mentioned references have investigated the existence and
direction of Hopf bifurcations and the stability of positive equilibria. The application of
delay differential equations to the modeling of biological phenomena has gained popularity
in recent years. In particular, several studies have presented bacteria–bacteriophage models

Axioms 2023, 12, 772. https://doi.org/10.3390/axioms12080772 https://www.mdpi.com/journal/axioms1
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by introducing a time delay to generate more realistic models; see for example [21–26] and
references therein. Meanwhile, due to the complexity of the impacts of delay on a system’s
dynamic behavior, researchers have increasingly focused on the dynamic behavior of de-
layed phage therapy models, such as their stability and the occurrence of Hopf bifurcations.
In a model of a delayed marine bacteriophage infection, Beretta et al. [21] analysed the
global and local stability of the equilibrium. Beretta and Solimano [22] expanded upon their
previous research [21] to investigate how delay impacts equilibrium stability. In [23], the au-
thor addressed models of marine phage infection with delay and stage structure achieving
the persistence and extinction of the system under specific conditions. Gakkhar and Sa-
hani [24] proposed a model of bacteria–bacteriophage interaction with a constant delay.
They examined a simple Hopf bifurcation for the non-zero equilibrium point and outlined
the conditions for a susceptible bacteria-free equilibrium and its stability. Casino et al. [27]
identified the optimal lysis time for bacteria–phage interactions in a structured cell popula-
tion model. Additional delayed bacteria–phage models can be found in [28–31] and the
references cited therein. Several significant studies have been published on diffusion-based
bacteriophage models [32–34]. Mathematically rigorous studies of stochastic models for
bacteriophage infection with and without time delay have been published as well [35–39].

Understanding the interactions between bacteria, phages, and the immune system is
essential to developing successful bacteriophage therapeutics. Meanwhile, bacteriophage-
based bacterial elimination has therapeutic potential and is currently utilized to treat
bacterial infections [40,41]. Mathematical models of bacteria–phage interactions that include
immune responses are of growing interest to the authors. Leung and Weitz [42] proposed
a nonlinear ODE phage therapy model involving bacterial, phage, and immune system
interactions: 




Ḃ = rB
(

1− B
KC

)
− φBP− εIB

1 + B/KD
,

Ṗ = βφBP− wP,

İ = αI
(

1− I
KI

)
B

B + KN
,

(1)

where B(t), P(t), and I(t) represent the concentrations of bacteria, phages, and the immune
system at time t, respectively, and r and KC represent the maximum growth rate and
carrying capacity of the bacteria, respectively. The phages attach to and infect the bacteria
with an adsorption rate of φ and release new virus particles with a burst size of β. The phage
particles decay with the death rate w. The presence of bacteria with a maximum growth rate
α activates the immune system. Meanwhile, the immune carrying capacity is KI and the
killing parameter is ε. Finally, KD is the bacterial density when the host immune response is
half-saturated and KN is the bacterial concentration at which the innate immunity growth
rate is at half its maximum.

In [42], Leung and Weitz simplified the above System (1) by employing a quasistatic
approximation in which the innate immune response is represented as a constant. This
simplification is reasonable considering that the concentrations of bacteria and phages are
expected to change more rapidly than the immune response. They applied this approx-
imation when the innate immune response reached its maximum KI . This resembles a
circumstance in which the innate immune response does not control bacterial infection.
Phages are then included as an additional treatment. In this case, the model equation in (1)
reduces to 




Ḃ = rB
(

1− B
KC

)
− φBP− εKI B

1 + B/KD
,

Ṗ = βφBP− wP,
(2)

with the initial conditions
B(0) ≥ 0, P(0) ≥ 0.

In [42], Leung and Weitz discovered a synergistic regime in which the phage and
immune system cooperate to eradicate bacteria. They demonstrated that the interaction

2
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between phages and the immune system is essential in order for phage therapy to effectively
eliminate bacterial infections. However, they did not discuss the dynamic behaviors of (1)
and (2), such as positivity, boundedness, persistence, stability, Hopf bifurcation analysis, etc.
In [43], we examined the mathematical dynamics analysis of the model in (1) formulated
by Leung and Weitz [42], studied the persistence, non-persistence, and local stability of
possible equilibrium solutions, and provided the criteria for the global stability of the
planar and positive equilibria. However, the analysis of such dynamics for the model in (2)
was not completed in our previous paper [43].

Determining how delays influence the system’s stability, dynamics, and bifurcation
is a challenging mathematical problem, and nonlinear dynamical bacteria–bacteriophage
systems with time delays are extremely challenging because of the application of nonlinear
biological phenomena and their dynamic behavior. There are a number of papers in the
literature on modeling bacteria–bacteriophage systems using delay differential equations.
Inspired by this previous literature, it appears that the model can be made more realistic by
incorporating additional terms such as the time delay obtained from the past states of the
system. For example, as noted in [21], the introduction of time delay can induce the system
to exhibit complex dynamic behaviors, a development that is vital for advancing phage
therapy. As far as we know, this model (2) has yet to be studied with the incorporation of a
time delay and analysis of its dynamic behavior, making the present study an important one.

Motivated by the above discussion and based on [33], in this paper we assume that
the recruitment of phages and the infection of bacteria both require discrete time lags and
introduce a discrete time delay into System (2). Such a model is more biologically realistic
than existing models. Based on the work of [42], the delay-induced modified model is
represented by 




Ḃ = rB
(

1− B
KC

)
− φBP− εKI B

1 + B/KD
,

Ṗ = βφB(t− τ)P(t− τ)− wP.
(3)

subject to the initial conditions B0(ν) = χ1(ν) > 0, P0(ν) = χ2(ν) > 0 and ν ∈ [−τ, 0],
where χγ ∈ C([−τ, 0] −→ R+) and (γ = 1, 2) are given functions and τ is a positive con-
stant.

According to other related studies, for example, [21,26,28,33], etc., the delay can
destabilize the coexistence equilibrium and lead to the Hopf bifurcation of the system.
Therefore, in this paper there is a real need to pose the important question of whether
the delay causes System (3) to display these characteristics. Motivated by this fact, we
introduce System (3) by adding a time delay term to System (2), then study the effects of
delay on the dynamics of the system.

The remaining sections of this paper are organized as follows: in Section 2, we examine
results relating to the non-delayed model, including the local and global stability of the
positive equilibrium and the occurrence of Hopf bifurcation; Section 3 discusses similar
results along with the stability and the direction of Hopf bifurcation for the delayed model;
in Section 4, we conduct numerical simulations to verify our analytical results; finally,
Section 5 presents the conclusions of this study.

2. Dynamics of the Non-Delayed Model
2.1. Positivity and Boundedness

In this context, positivity indicates that the population survives and boundedness
represents a natural growth restriction due to limited resources. This subsection analyses
the positivity and boundedness of the model in (2). In theoretical ecology, the biologically
well-behaved nature of a system is established through its positivity and boundedness.
Thus, System (2) has the following outcome.

Lemma 1. System (2) has solutions (B(t), P(t)) in the interval [0, ∞) that satisfy B(t) ≥ 0,
P(t) ≥ 0, and ∀t ≥ 0.

3
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Proof. The model in (2) can be written in matrix form:

Ẋ = G(X),

X = (x1, x2)
T = (B, P)T ∈ R2

where G(X) is provided by

G(X) =

( G1(X)
G2(X)

)
=

(
rB
(

1− B
KC

)
− φBP− εKI B

1+B/KD

βφBP− w P

)
.

Because G(X) and ∂G
∂X are continuous in R2

+, it is the case that G : R2
+ → R2 is locally

Lipschitz. By the standard theory of the ODE system, it follows that model (2) has a unique
solution for any initial condition X(0) = X0 = (B(0), P(0)) ∈ R2

+.
Further, the model in (2) can be rewritten as

dB
dt

= Bφ1(B, P),
dP
dt

= Pφ2(B, P),

where
φ1(B, P) = r− r

KC
B− φP− εKI

1 + B/KD
,

φ2(B, P) = βφB− w.

∴ dB
dt

= Bφ1(B, P)⇒ 1
B

dB = φ1(B, P)

By integrating, we obtain

lnB =
∫

φ1(B, P)dt + lnC

⇒ B = exp[
∫

φ1(B, P)dt + lnC] = Cexp[
∫

φ1(B, P)dt].

It follows that

B(t) = B(0) exp
[∫ t

0
φ1(B(s), P(s))ds

]
,

where C = B(0). Thus, B(t) is always positive, as B(0) > 0. Similarly, from second equation
of System (2) we can find the positivity of P(t), as P(0) > 0. Hence,

B(t) = B(0) exp
[∫ t

0
φ1(B(s), P(s))ds

]
≥ 0,

P(t) = P(0) exp
[∫ t

0
φ2(B(s), P(s))ds

]
≥ 0.

Thus, the solution X(t) = (B(t), P(t)) with initial condition X(0) = X0 = (B(0), P(0)) ∈
R2
+ remains positive throughout the region R2

+.

We next investigate whether the model in (2) is bounded within a particular region of
the dynamical space.

To demonstrate the uniform boundedness of the model in (2), the following compari-
son lemma [44,45] is needed.

Lemma 2 (Comparison lemma). If K(t) is an absolutely continuous function which satisfies the
differential inequality

d(K(t))
dt

+ σ1K(t) ≤ σ2, such that t ≥ 0,

4
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where (σ1, σ2) ∈ R2 and σ1 6= 0, then for all t ≥ T̂ ≥ 0 we have

K(t) ≤ σ2

σ1
−
(

σ2

σ1
− K(T̂)

)
e−σ1(t−T̂).

Remark 1. All solutions of System (2) initiating in R2
+ are subject to the region G = {(B, P) ∈

R2
+ : v(t) ≤ υ

w} with υ := β KC
4r (r + w)2, as t→ ∞ for all positive initial values (B(0), P(0)) ∈

R2
+, where v(t) = βB(t) + P(t). Using Comparison Lemma 2, we establish the outcome for a

delay system. The proof follows in a similar fashion; see Theorem 6 as well.

2.2. Existence of Equilibrium Points

This subsection demonstrates that the model in (2) has different equilibrium solutions.
The following are the probable equilibria of System (2) according to [43] and simple
calculation:

1. Trivial equilibrium: E0 = (0, 0)
2. Boundary equilibrium (phage-free equilibrium): E1 = (B̄, 0), where

B̄ = KC−KD
2 +

√
(KC+KD)2

4 − εKI KCKD
r with KC > KD and r > εKI

3. Interior equilibrium: E2 = (B∗, P∗), where

B∗ =
w
βφ

, P∗ =
1
φ

(
r(1− w

βφKC
)− εKI

1 + w/βφKD

)
(4)

with

r >
εβ2φ2KIKCKD

(βφKC − w)(w + βφKD)
and w < βφKC (5)

2.3. Stability Analysis

Stability refers to a system’s ability to resist small perturbations. Stability analysis is an
acceptable tool for studying the long-term behavior of dynamic systems. In this subsection,
we discuss the local and global stability and bifurcation analysis of System (2).

2.3.1. Stability Analysis of E0 = (0, 0)

Theorem 1.
(i) The equilibrium E0 = (0, 0) is locally asymptotically stable if r < εKI .
(ii) If the parameter r reaches the transcritical threshold r = rtc = εKI , a transcritical bifurcation
arises around E0 for System (2).

Proof. To acquire the local stability outcomes, we employ the Jacobian matrix related to
System (2):

J(B, P) =

(
r− 2r

KC
B− φP− εKI

(1+B/KD)2 −φ B
βφP βφB− w

)
.

(i) The Jacobian matrix of System (2) at E0 is

J(E0) =

(
r− εKI 0

0 −w

)
.

Thus, the trace and determinant of the matrix J(E0) are tr(J(E0)) = r− εKI − w and
det(J(E0)) = −w(r− εKI), respectively. If r < εKI , then tr(J∗(E0)) < 0 and det(J(E0)) > 0,
and E0 is locally asymptotically stable. Hence, E0 is always unstable (saddle) when r > εKI .

(ii) To demonstrate Theorem 1 (ii), we can use the transversality criteria based on
Sotomayor’s theorem [46]. To use Sotomayor’s theorem, one of the eigenvalues of the
matrix J(E0) must be zero at the bifurcation point rtc. One eigenvalue of J(E0) disappears at
r = rtc = εKI , while the other is −w < 0. Let ∆ = (δ1, δ2)

T and Υ = (γ1, γ2)
T represent the

eigenvectors of J(E0) and JT(E0) with zero eigenvalue, respectively. Then, ∆ = Υ = [1, 0]T .
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We define S(B, P) =
[
V(B, P), W(B, P)

]T .
Therefore,

Sr(B, P) =
[

∂V(B, P)
∂r

,
∂W(B, P)

∂r

]T
=
[

B(1− B/KC), 0
]T

,

which provides

ΥT
[
Sr(B, P)

]
= [1, 0]

[
B(1− B/KC), 0

]T
= B(1− B/KC).

Hence, we have ΥT
[
Sr
(
E0; rtc

)]
= 0.

Now,

DSr :=

(
∂Vr
∂B

∂Vr
∂P

∂Wr
∂B

∂Wr
∂P

)
=

(
1− 2B

KC
0

0 0

)
.

Thus, we have ΥT
[

DSr
(
E0; rtc

)
∆
]
= [1, 0][1, 0]T = 1 6= 0, where

DSr
(
E0; rtc

)
=

(
1 0
0 0

)
.

Now, we can check the transversality condition.
Here,

D2S(∆, ∆) =
(

VBBδ1δ1 + VBPδ1δ2 + VPBδ2δ1 + VPPδ2δ2
WBBδ1δ1 + WBPδ1δ2 + WPBδ2δ1 + WPPδ2δ2

)
,

where VBB(0, 0) = − 2r
KC

+ 2εKI
KD

, VBP(0, 0) = VPB(0, 0) = −φ < 0, VPP(0, 0) = 0, WBB(0, 0) =
0, WBP(0, 0) = WPB(0, 0) = βφ > 0, and WPP(0, 0) = 0.

Thus, D2S
(
(0, 0); rtc

)
(∆, ∆) =

[
− 2r

KC
+ 2εKI

KD
, 0
]T

, meaning that we have

ΥT
[

D2S
(
(0, 0); rtc

)
(∆, ∆)

]
= [1, 0]

[
− 2r

KC
+

2εKI
KD

, 0
]T

=

[
− 2r

KC
+

2εKI
KD

]
6= 0.

Hence, the system undergoes a supercritical transcritical bifurcation at E0. The proof
is now complete.

Remark 2. When r < εKI , it is easy to observe that the trivial equilibrium E0 is locally asymptoti-
cally stable and that the phage-free equilibrium E1 does not exist. In contrast, the existence of E1
implies the instability of E0. Furthermore, the above discussion provides information regarding the
experience of transcritical bifurcation around E0.

2.3.2. Stability Analysis of E1 = (B̄, 0)

Theorem 2.
(i) The phage-free equilibrium E1 = (B̄, 0) is locally asymptotically stable if

r <
εKIKCK2

D
(KC − 2B̄)(B̄ + KD)2 and w > βφB̄.

(ii) The equilibrium E1 = (B̄, 0) is globally asymptotically stable in the interior of the first quadrant
of the plane.

6
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Proof. (i) The variational matrix of the equilibrium E1 = (B̄, 0) is

J(E1) =

(
r− 2r

KC
B̄− εKI K2

D
(B̄+KD)2 −φB̄

0 βφB̄− w

)
.

The roots of J(E1) are r− 2r
KC

B̄− εKI K2
D

(B̄+KD)2 , βφB̄−w. Hence, E1 is locally asymptotically

stable if r < εKI KCK2
D

(KC−2B̄)(B̄+KD)2 and w > βφB̄.

(ii) Let (B, P) ∈ R2
+ : {(B, P) ∈ R2 : B > 0, P > 0} and consider the function

L∗ : R2
B −→ R,

L∗(B, P) = b1(B− B̄− B̄ln(B/B̄)). (6)

The derivative of (6) along the solutions of System (2) is

dL∗

dt
= b1

1
B
(B− B̄)

dB
dt

= b1(B− B̄)
[

r
(

1− B
KC

)
− εKI

1 + B/KD

]
. (7)

Because E2(B∗, P∗) satisfies (2), after a simple calculation we obtain

r
(

1− B̄
KC

)
=

εKI

1 + B̄/KD
. (8)

Replacing (7) with (8), we obtain

dL∗

dt
= b1(B− B̄)

[
r
(

1− B
KC

)
− r
(

1− B̄
KC

)]

= b1(B− B̄)
[
− r

KC
(B− B̄)

]

=
−rb1

KC
(B− B̄)2 < 0.

According to the negative coefficients of the square terms, dL∗
dt is less than zero along all

trajectories in the plane except E2(B∗, P∗). Therefore, E2(B∗, P∗) is globally asymptotically
stable.

2.3.3. Stability and Hopf Bifurcation of E2 = (B∗, P∗)

Theorem 3. Assume that r∗ = εβ2φ2KI KCKD
(w+βφKD)2 and that (5) holds. The following assertions are ob-

tained:
(i) The equilibrium E2 of System (2) is locally asymptotically stable if r > r∗ and unstable if

r < r∗.
(ii) If r = r∗, System (2) experiences Hopf bifurcation at E2, and r∗ is the system’s critical

value.

Proof. The Jacobian matrix of System (2) at the interior equilibrium E2 = (B∗, P∗) is

J(E2) =

(
r− 2r

KC
B∗ − φP∗ − εKI

(1+B∗/KD)2 −φB∗

βφP∗ βφB∗ − w

)
.

Substituting the values of B∗ and P∗ described in (4) into J(E2), we obtain

J∗(E2) =




εwβφKI KD
(w+βφKD)2 − rw

βφKC
−w

β

r(βφKC−w)
φKC

− εβ2φKI KD
w+βφKD

0


.

7
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The characteristic equation of J∗(E2) is

λ2 − tr(J∗(E2))λ + det(J∗(E2)) = 0, (9)

tr(J∗(E2)) = − rw
βφKC

+ εwβφKI KD
(w+βφKD)2 ,

det(J∗(E2)) = w
β

[
r(βφKC−w)

φKC
− εβ2φKI KD

w+βφKD

]
.

(i) If r > r∗ = εβ2φ2KI KCKD
(w+βφKD)2 , then tr(J∗(E2)) < 0, and the existence condition (5) of E2

implies det(J∗(E2)) > 0. Thus, the characteristic Equation (9) has negative real parts, as
tr(J∗(E2)) < 0 and det(J∗(E2)) > 0. Hence, E2 = (B∗, P∗) is locally asymptotically stable
in B-P space for r > r∗. Moreover, E2 is unstable in that space for r < r∗.

(ii) It is obvious that if tr(J∗(E2)) = 0 and det(J∗(E2)) > 0, then both of the roots
must be purely imaginary. Thus, from the implicit function theorem a Hopf bifurcation
emerges in which a periodic orbit is generated as the stability of the equilibrium point E2

varies. The critical value of Hopf bifurcation parameter is defined by r = r∗ = εβ2φ2KI KCKD
(w+βφKD)2 .

From the above analysis, it is easy to see that under the given conditions we have the
following: (a) tr(J∗(E2)) = 0, (b) det(J∗(E2)) > 0, and (c) d

dr tr(J∗(E2)) = − w
βφKC

6= 0
at r = r∗. This result guarantees the presence of Hopf bifurcation around the positive
equilibrium E2. The proof is complete.

2.3.4. Non-Existence of Non-Trivial Periodic Solution of System (2)

It is essential to determine whether an ecological system has a periodic solution,
as the existence of such a solution can lead to complex ecological phenomena. On the
one hand, the nonexistence of a periodic solution can convert a locally stable equilibrium
into a globally stable one. In this subsection, using the Dulac–Bendixon criterion [46], we
demonstrate the non-existence of periodic solutions to System (2).

Theorem 4. If there exists a continuously differentiable function Θ(B, P) in the interior of Rn
+

such that
−→∇ · (ΘS) has constant sign and is not identically zero in any subregion, then system (2)

does not possess any limit cycle, and in fact has a closed trajectory which lies entirely within Rn
+.

Proof. Construct the Dulac function as Θ(B, P) = 1
BP and a C1 vector field defined in R20

+

as S(B, P) = (V, W) =
(

rB− r
KC

B2 − φBP− εKI B
1+B/KD

, βφBP− wP
)

. Clearly, Θ ∈ C1(R20
+ ),

where R20
+ is the interior of Rn

+. Moreover, it is clear that Θ(B, P) > 0 in Rn0
+ . We obtain

−→∇ · (ΘS) =
∂

∂B
(ΘV) +

∂

∂P
(ΘW)

=
1
P

∂

∂B

(
r− r

KC
B− φP− εKI

1 + B/KD

)
+

1
B

∂

∂P
(βφB− w)

=
1
P

(
− r

KC
+

εKIKD

(B + KD)2

)

< 0, provided r >
εβ2φ2KIKCKD

(w + βφKD)2 .

Obviously,
−→∇ · (ΘS) is neither zero nor changes its sign in the interior R2

+. Thus,
according to the Dulac–Bendixon criterion, System (2) does not have a closed orbit that lies

entirely in the interior R2
+ if r > εβ2φ2KI KCKD

(w+βφKD)2 .

2.3.5. Global Stability of E2 = (B∗, P∗)

In this subsection, we provide the global asymptotic stability of the positive equilib-
rium E2 by creating a proper Lyapunov function.

8
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Theorem 5. The positive equilibrium E2 = (B∗, P∗) is globally asymptotically stable if β < 1
holds.

Proof. Define the functional L(B, P) : R2
+ → R such that

L(B, P) = L1(B) + L2(P),

where L1(B) = (B− B∗ − B∗ ln(B/B∗)), L2(P) = (P− P∗ − P∗ ln(P/P∗)). Clearly, L(B, P)
is continuous and well-defined on Int(R2

+), while L is positive in the interior of R2
+ except

at E2 = (B∗, P∗) and L(B, P) disappears at E2 = (B∗, P∗). As a result of differentiating the
function L with respect to the time t along the trajectories of (2), we obtain

dL
dt

=
dL1

dt
+

dL2

dt
. (10)

Furthermore, the time derivatives of L1 and L2 along the solutions of (2) are

dL1

dt
= (B− B∗)

[
r
(

1− B
KC

)
− φP− εKI

1 + B/KD

]
, (11)

dL2

dt
= (P− P∗)(βφB− w), (12)

Because E2 = (B∗, P∗) satisfies (2), by using a straightforward calculation we can
obtain

εKI
1 + B∗/KD

= r
(

1− B∗

KC

)
− φP∗, w = βφB∗. (13)

The result of replacing the two values of (13) with (11) and (12) is

dL1

dt
=
−r
KC

(B− B∗)2 − φ(B− B∗)(P− P∗), (14)

dL2

dt
= βφ(B− B∗)(P− P∗). (15)

Using algebraic computation, substituting (14) and (15) into (10) yields

dL
dt

=
−r
KC

(B− B∗)2 − φ(B− B∗)(P− P∗) + βφ(B− B∗)(P− P∗)

≤ 1
2

(
− 2r

KC
− φ + βφ

)
(B− B∗)2 +

1
2
(−φ + βφ)(P− P∗)2.

If the requirement in Theorem 5 is satisfied, then dL
dt < 0 along all trajectories in R2

+

except for E2 = (B∗, P∗). Hence, E2 = (B∗, P∗) is globally asymptotically stable.

3. Dynamics of the Delayed Model
3.1. Positivity and Boundedness

Next, we establish the positivity of the system (3). We can express the first equation of
(3) as

dB
B

=

(
r− rB

KC
− φP− εKI

1 + B/KD

)
dt.

Integrating across the interval [0, t] yields the following result:

B(t) = B(0) exp
[∫ t

0

{
r− r

KC
B(s)− φP(s)− εKI

1 + B(s)/KD

}
ds
]

,

which indicates that B(t) > 0, ∀ t whenever B(0) > 0.

9
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Using the second equation from (3), we can derive

P(t) = P(0) exp
[∫ t

0

{
βφB(s− τ)P(s− τ)

P(s)
−ω

}
ds
]

,

which means that P(t) > 0 ∀ t whenever P(0) > 0. Thus, the interior of the first quadrant
is an invariant set for System (3).

Theorem 6. All solutions of System (3) initiating in R2
+ are subject to the region G∗ = {(B, P) ∈

R2
+ : $(t) ≤ υ

w} with υ := β KC
4r (r + w)2, as t→ ∞ for all positive initial values (B0(θ), P0(θ)) ∈

R2
+, where $(t) = βB(t− τ) + P(t).

Proof. We define $(t) = βB(t− τ) + P(t); when we differentiate $ with respect to t along
the trajectories of the model in (3), we obtain

d$

dt
= β

dB(t− τ)

dt
+

dP(t)
dt

= rβB(t− τ)

(
1− B(t− τ)

KC

)
− βεKI B(t− τ)

1 + B(t− τ)/KD
− wP(t).

Hence,

d$

dt
+ w$ = βB(t− τ)

[
(r + w)− r

KC
B(t− τ)

]
− βεKI B(t− τ)

1 + B(t− τ)/KD

≤ βB(t− τ)

[
(r + w)− r

KC
B(t− τ)

]

≤ β
KC
4r

(r + w)2.

Now, taking υ = β KC
4r (r + w)2, we obtain

d$

dt
+ w$ ≤ υ.

Using Comparison Lemma 2, we obtain

0 ≤ $(t) ≤ υ

w
−
( υ

w
− $(t0)

)
ew(t0−t),

and for t→ ∞ we obtain
0 ≤ $(t) ≤ υ

w
.

Hence, all solutions of System (3) are bounded.

3.2. Stability Analysis

To establish the stability of the delayed model, we linearize (3) by replacing B(t) =
B∗ + v1 and P(t) = P∗ + v2 while retaining the first-order terms [20]. The linearized system
is provided by

dv1

dt
=

[
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2

]
v1 − φB∗v2,

dv2

dt
= βφP∗v1(t− τ) + βφB∗v2(t− τ)− wv2.

(16)

The variational matrix is

J∗(E2) =

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

βφP∗e−λτ βφB∗e−λτ − w

)
.

10
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For τ = 0, the characteristic equation of J∗(E2) is as follows:

λ2 − (c11 + c22)λ + c11c22 − c12c21 = 0, (17)

where

c11 = − r
KC

B∗ +
εKIKDB∗

(B∗ + KD)2 , c12 = −φB∗, c21 = βφP∗, c22 = βφB∗ − w.

Then, Equation (17) is the same as Equation (9) of the non-delayed System (2) exam-
ined previously. Hence, when the first condition of Theorem 3(i) is satisfied the interior
equilibrium E2 = (B∗, P∗) is locally asymptotically stable.

Alternatively, according to the Routh–Hurwitz criteria, the roots of Equation (17) have
a negative real part, meaning that E2 = (B∗, P∗) is locally asymptotically stable if

c11 + c22 = − r
KC

B∗ +
εKIKDB∗

(B∗ + KD)2 + βφB∗ − w < 0,

c11c22 − c12c21 =

(
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2

)
(βφB∗ − w) + βφ2B∗P∗ > 0.

(18)

In the case of positive delay, the characteristic equation is

D(λ) + F(λ)e−λτ = 0, (19)

where
D(λ) = λ2 + c1λ + c2; F(λ) = c3λ + c4, (20)

c1 = w +
r

KC
B∗ − εKIKDB∗

(B∗ + KD)2 ,

c2 = −w
(
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2

)
,

c3 = −βφB∗,

c4 = βφB∗
(
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2 + φP∗
)

.

The characteristic Equation (19) is a transcendental equation with infinite solutions
near the positive equilibrium E2 = (B∗, P∗). As periodic solutions of the system are of
interest, the eigenvalues of (19) must be purely imaginary. Substituting λ = iω(ω > 0) in
(19) yields

−ω2 + ic1ω + c2 + e−iωτ(c3iω) = 0. (21)

Separating the real and imaginary parts, we obtain

c4 cos(ωτ) + c3ω sin(ωτ) = ω2 − c2, c3ω cos(ωτ) + c4 sin(ωτ) = −c1ω, (22)

implying that

cos(ωτ) =
c4ω2 − c2c4 − c1c3ω2

c2
4 + c2

3ω2
, sin(ωτ) =

c3ω3 − c2c3ω + c1c4ω

c2
4 + c2

3ω2
. (23)

Eliminating τ from (22), we obtain

ω4 + ω2(c2
1 − 2c2 − c2

3) + c2
2 − c2

4 = 0. (24)

11
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Equation (24) is a quadratic equation in ω2. If we assume that c2
2 − c2

4 < 0, then (24)
can have a positive root. Hence, we obtain a unique non-negative root ω0 of Equation (24)
as follows:

ω0 =

√√√√−(c2
1 − 2c2 − c2

3) +
√
(c2

1 − 2c2 − c2
3)

2 + 4(c2
4 − c2

2)

2
. (25)

Substituting the value of ω0 in (23) and solving for τ yields

tan(ω0τ) =
c3ω3

0 + (c1c4 − c2c3)ω0

(c4 − c1c3)ω
2
0 − c2c4

. (26)

Thus, the critical magnitude τs of the delay parameter corresponding to ω0 is derived
as follows:

τs =
1

ω0
arctan

[
c3ω3

0 + (c1c4 − c2c3)ω0

(c4 − c1c3)ω
2
0 − c2c4

]
+

2sπ

ω0
(27)

for s = 0, 1, 2, 3, . . .. For τ = 0, E2 is stable provided that c2
2 − c2

4 < 0. Hence, according to
Butler’s Lemma [47], E2 remains stable for τ < τs, where τs = τ0 at s = 0.

3.3. Hopf Bifurcation Analysis

Biologically, all species that coexist exhibit oscillatory balanced behaviour. Meanwhile,
a periodic solution arises in a system when the analyzed equilibrium point changes in
stability as a function of its parameters. To capture the oscillating coexistence of populations,
we establish the Hopf bifurcation analysis around the coexistence equilibrium point with
the discrete delay as a bifurcation parameter. In this subsection, we explore the Hopf
bifurcation of the model, which requires the transversality condition d(Reλ)

dτ

∣∣
τ=τs

> 0 to be
affirmed [48]. Setting λ = iω0 into (19), we obtain |D(iω0)| = |F(iω0)|, which specifies a
probable set of values for ω0. We focus on the direction of motion of λ as τ varies, which
we decide as follows:

Φ = sign
[

d(Reλ)

dτ

]

λ=iω0

= sign

[
Re
(

dλ

dτ

)−1
]

λ=iω0

.

When differentiating (19) with respect to τ, we obtain

[(2λ + c1) + c3e−λτ − τ(c3λ + c4)e−λτ ]
dλ

dτ
= (c3λ + c4)λe−λτ , (28)

(
dλ

dτ

)−1
=

2λ + c1

λe−λτ(c3λ + c4)
+

c3e−λτ

(c3λ + c4)λe−λτ
− τ

λ

=
2λ + c1

−λ(λ2 + c1λ + c2)
+

c3

λ(c3λ + c4)
− τ

λ

=
λ2 − c2

−λ2(λ2 + c1λ + c2)
+

−c4

λ2(c3λ + c4)
− τ

λ
.

12
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Thus,

Φ = sign
{

Re
[

λ2 − c2

−λ2(λ2 + c1λ + c2)
+

−c4

λ2(c3λ + c4)
− τλ

λ2

]}

λ=iω0

=
1

ω2
0

sign

{
Re

[
c2 + ω2

0
ω2

0 − ic1ω0 − c2
+

a4

ic3ω0 + c4

]}

=
1

ω2
0

sign

{[
(c2 + ω2

0)(ω
2
0 − c2)

(ω2
0 − c2)2 + c2

1ω2
0
+

c2
4

c2
4 + c2

3ω2
0

]}

=
1

ω2
0

sign

{
ω4

0 + (c2
4 − c2

2)

c2
4 + c2

3ω2
0

}
> 0 (since c2

2 − c2
4 < 0).

Hence, the transversality criterion is satisfied and the Hopf bifurcation happens at
ω = ω0, τ = τs. The biquadratic Equation (24) has a unique non-negative root; therefore,
the question of stability switching is irrelevant to our model [49]. The delay-induced phage
therapy model provides a periodic solution with a small amplitude that bifurcates from
the positive equilibrium point when the bifurcation parameter τ crosses its critical value
τ = τ0, where τ0 is the smallest positive value provided by Equation (27). The following
theorem summarizes the above results.

Theorem 7. Suppose that the existence condition (5) of E2 and the conditions in (18) hold for the
model in (3). Then,
(i) If τ < τs, then the interior equilibrium E2 is locally asymptotically stable.
(ii) If τ > τs, then the interior equilibrium E2 is unstable.
(iii) At τ = τs, System (3) undergoes a Hopf bifurcation around E2(B∗, P∗).

3.4. Direction and Stability of Hopf-Bifurcating Periodic Solution

In the previous section, we determined the conditions for Hopf bifurcation around
the positive equilibrium point E2(B∗, P∗) at the critical value τ = τs. This section aims to
determine the direction of Hopf bifurcation and the stability of the bifurcating periodic
solutions from the interior equilibrium E2(B∗, P∗) with the help of the center manifold
theorem and the normal form theory created by Hassard et al. [50]. In this section, we
assume that System (3) undergoes Hopf bifurcation around the interior equilibrium E2 at
τ = τs, with ±iω0 denoting the corresponding purely imaginary roots of the characteristic
equation at E2.

First, we employ transformation v1(t) = B(t)− B∗(t), v2(t) = P(t)− P∗(t), τ = τs + ε
of System (3) by Taylor series expansion for the positive equilibrium (B∗, P∗); thus, the
system becomes

dv1

dt
= d10v1(t) + d01v1(t) + ∑

i+j>2
dijBiPj,

dv2

dt
= m01v2(t) + m12v1(t− τ) + m21v2(t− τ) + ∑

i+j+k>2
mijkPiBj(t− τ)Pk(t− τ),

where

H(1) = rB
(

1− B
KC

)
− φBP− εKI B

1 + B/KD
, H(2) = βφB(t− τ)P(t− τ)− wP,

dij =
1

i!j!
∂i+j H(1)

∂Bi∂Pj

∣∣∣
(B∗ ,P∗)

, mijk =
1

i!j!k!
∂i+j+k H(2)

∂Pi∂Bj(t− τ)∂Pk(t− τ)

∣∣∣
(B∗ ,P∗)

,

d10 = − r
KC

B∗ +
εKIKDB∗

(B∗ + KD)2 , d01 = −φB∗, m12 = βφP∗, m21 = βφB∗, m01 = −w,

13
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substituted by the functional differential (FDE) in C = C([−1, 0], R2) as

v̇(t) = Aε(vt) + f (ε, vt), (29)

where v(t) = (v1(t), v2(t))T ∈ R2, vt(ν) = v(t + ν) for ν ∈ [−1, 0), and Aε : C → R,
f : R× C → R are respectively provided by

Aε(ρ) = (τs+ε)

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

0 −w

)

(
ρ1(0)
ρ2(0)

)
+ (τs + ε)

(
0 0

βφP∗ βφB∗

)(
ρ1(−1)
ρ2(−1)

)
,

(30)

f (ε, ρ) = (τs + ε)

( (
− r

KC
+ εKI KD

(B∗+KD)2 − 2εKI KD B∗
(B∗+KD)3

)
ρ2

1(0)− φρ1(0)ρ2(0)
βφρ1(−1)ρ2(−1)

)
. (31)

According to Riesz representation theorem, for ν ∈ [−1, 0) there exists a bounded
variation function η(ν, ε) such that

Aερ =
∫ 0

−τ
dη(ν, 0)ρ(0) for ρ ∈ C1[−1, 0). (32)

In fact, we have a choice:

η(ν, ε) = (τs + ε)

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

0 −w

)
δ(ν)− (τs + ε)

(
0 0

βφP∗ βφB∗

)

δ(ν + 1),

(33)

where δ(ν) is the Dirac delta function. For ρ ∈ C1([−1, 0), R2), we define

M(ε)ρ(ν) =





dρ(ν)

dν
, for ν ∈ [−1, 0);

∫ 0

−1
dη(ν, ε)ρ(ν), for ν = 0,

(34)

and

Y(ε)ρ(ν) =

{
0, for ν ∈ [−1, 0);

f (ε, ρ), for ν = 0.
(35)

Thus, (29) can be recast as

v̇t = M(ε)vt + Y(ε)vt, (36)

where vt(ν) = v(t + ν) for ν ∈ [−1, 0).
For ζ ∈ C1([−1, 0), (R2)∗), the adjoint M∗ of M can be described as

M∗(ε)ζ(κ) =





− dζ

dκ
, for κ ∈ (0, 1];

∫ 0

−1
dηT(t, 0)ζ(−t), for κ = 0.

(37)

For ρ ∈ [−1, 0) and ζ ∈ [0, 1], a bilinear linear form provides

〈ζ(κ), ρ(ν)〉 = ζ̄(0)ρ(0)−
∫ 0

ν=−1

∫ ν

ϕ=0
ζ̄(ϕ− ν)dη(ν)ρ(ϕ)dϕ, (38)

where η(ν) = η(ν, 0). Thus, M(0) and M∗ are adjoint operators. Because ±iω0τs are the
eigenvalues of M(0), ±iω0τs are the the eigenvalues of M∗.

14
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Proposition 1. Assume that q(ν) = (1, s)Teiω0τsν is the eigenvector of M(0) corresponding
to iω0τs and that q∗(ν) = (1, s∗)TQeiω0τsν is the eigenvector of M∗ corresponding to −iω0τs.

Then, 〈q∗, q̄〉 = 0, 〈q∗, q〉 = 1, with s = βφP∗e−iω0τs

w+iω0−βφB∗e−iω0τs , s∗ = φB∗

βφB∗e−iω0τs−w+iω0
, Q̄ =

[1 + s̄∗s + s̄∗τs(βφP∗ + sβφB∗)e−iω0τs ]−1.

Proof. Here, we suppose that q(ν) is the eigenvector of M(0) corresponding to iω0τs,
M(0)q(ν) = iω0τsq(ν). Using the definition of M(0) with (30), (32), and (33), we obtain

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 − iω0 −φB∗

βφP∗e−iω0τs βφB∗e−iω0τs − w− iω0

)
q(0) =

(
0
0

)
.

It is easy to compute that q(0) = (1, s)T , where

q(0) =
(

1
s

)
=

(
1

βφP∗e−iω0τs

w+iω0−βφB∗e−iω0τs

)
.

As q∗(κ) = (1, s∗)Qeiω0τsκ is the eigenvector of M∗ associated with −iω0τs, we obtain

M∗(0)q∗(κ) = −iω0τsq∗(κ).

Through (32), (33), and (37), we have
(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 + iω0 βφP∗e−iω0τs

−φB∗ βφB∗e−iω0τs − w + iω0

)
(q∗(0))T =

(
0
0

)
.

Now,

q∗(κ) = (1, s∗)Qeiω0τsκ =

(
1,

φB∗

βφB∗e−iω0τs − w + iω0

)
Qeiω0τsκ .

To verify 〈q∗(κ), q(ν)〉 = 1, it is necessary to find the expression for Q. From (38), we
obtain

〈q∗(κ), q(ν)〉 = Q̄(1, s̄∗)(1, s)T −
∫ 0

ν=−1

∫ ν

ϕ=0
Q̄(1, s̄∗)e−iω0τs(ϕ−ν)dη(ν)(1, s)Teiω0τs ϕdϕ

= Q̄
{
(1 + s̄∗s)−

∫ 0

ν=−1
(1, s̄∗)νeiω0τsνdη(ν)(1, s)T

}

= Q̄
{

1 + s̄∗s + s̄∗τs(βφP∗ + sβφB∗)e−iω0τs
}

.

Hence, we may decide Q̄ as

Q̄ = [1 + s̄∗s + s̄∗τs(βφP∗ + sβφB∗)e−iω0τs ]−1.

Moreover, using the adjoint property we have 〈ξ, Mρ〉 = 〈M∗ξ, ρ〉.
Thus, −iω0τs〈q∗, q̄〉 = 〈q∗, Mq̄〉 = 〈M∗q∗, q̄〉 = 〈−iω0τsq∗, q̄〉 = iω0τs〈q∗, q̄〉.
Therefore, 〈q∗, q̄〉 = 0 is easy to prove.

Next, we apply the procedures in [50]; we first calculate the coordinates explaining
the center manifold C0 at ε = 0. Suppose that vt represents the solution to (36) if ε = 0. We
denote

g(t) = 〈q∗, vt〉,
N(t, ν) = vt − g(t)q(ν)− ḡ(t)q̄(ν) = vt(ν)− 2Re{g(t)q(ν)}. (39)

15
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On the center manifold C0, we have N(t, ν) = N(g(t), ḡ(t), ν), where

N(g, ḡ, ν) = N20(ν)
g2

2
+ N11(ν)gḡ + N02(ν)

ḡ2

2
+ N30(ν)

g3

6
+ . . . , (40)

where ḡ and g are local coordinates for the central manifold C0 in the directions of q̄∗ and
q∗. Note that if vt is real, then N is real. We only examine real solutions. Using (39) yields

〈q∗, N〉 = 〈q∗, vt − gq− ḡq̄〉 = 〈q∗, vt〉 − g〈q∗, q〉 − ḡ〈q∗, q̄〉 = g− ḡ = 0.

For vt ∈ C0 in (36), as ε = 0, we acquire

ġ(t) = 〈q∗, v̇t〉 = 〈q∗, M(0)vt + Y(0)vt〉 = 〈M∗(0)q∗, vt〉+ q̄∗(0) f (0, vt)

= 〈−iω0τsq∗, vt〉+ q̄∗(0) f0(g, ḡ) = iω0τsg + q̄∗(0) f0(g, ḡ)

= iω0τsg(t) + n(g, ḡ),

where

n(g, ḡ) = q̄∗(0) f0(g, ḡ) = n20
g2

2
+ n11gḡ + n02

ḡ2

2
+ n21

g2 ḡ
2

+ . . . . (41)

According to (39) and (40),

vt(ν) = (v1t(ν), v2t(ν)) = N(t, ν) + 2Re{g(t), q(t)}
= N(g(t), ḡ(t), ν) + gq + ḡq̄

= N20(ν)
g2

2
+ N11(ν)gḡ + N02(ν)

ḡ2

2
+ g(1, s)Teiω0τsν

+ ḡ(1, s̄)Te−iω0τsν + . . . . (42)

Explicitly, we can state this as

(
v1t(ν)
v2t(ν)

)
=

(
N(1)(ν)

N(2)(ν)

)
+ g
(

1
s

)
eiω0τsν + ḡ

(
1
s̄

)
e−iω0τsν ≡

(
Γ1
Γ2

)
,

where

Γ1 = geiω0τsν + ḡe−iω0τsν + N(1)
20 (ν)

g2

2
+ N(1)

11 (ν)gḡ + N(1)
02 (ν)

ḡ2

2
+ o(|(g, ḡ)|3),

Γ2 = sgeiω0τsν + s̄ḡe−iω0τsν + N(2)
20 (ν)

g2

2
+ N(2)

11 (ν)gḡ + N(2)
02 (ν)

ḡ2

2
+ o(|(g, ḡ)|3).

Hence, it follows that

vt(0) =
(

v1t(ν)
v2t(ν)

)
and N(g, ḡ, ν) =

(
N(1)(ν)

N(2)(ν)

)
.
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Then,

v1t(0) = g + ḡ + N(1)
20 (0)

g2

2
+ N(1)

11 (0)gḡ + N(1)
02 (0)

ḡ2

2
+ o(|(g, ḡ)|3),

v2t(0) = sg + s̄ḡ + N(2)
20 (0)

g2

2
+ N(2)

11 (0)gḡ + N(2)
02 (0)

ḡ2

2
+ o(|(g, ḡ)|3),

v1t(−1) = ge−iω0τs + ḡeiω0τs + N(1)
20 (−1)

g2

2
+ N(1)

11 (−1)gḡ + N(1)
02 (−1)

ḡ2

2
+ o(|(g, ḡ)|3),

v2t(−1) = sge−iω0τs + s̄ḡeiω0τs + N(2)
20 (−1)

g2

2
+ N(2)

11 (−1)gḡ + N(2)
02 (−1)

ḡ2

2
+ o(|(g, ḡ)|3),

v2
1t(0) = g2 + 2gḡ + ḡ2 +

(
N(1)

20 (0) + 2N(1)
11 (0)

)
g2 ḡ + h.o.t.,

v1t(0)v2t(0) = sg2 + (s + s̄)gḡ + s̄ḡ2 +
(

N(2)
11 (0) + (1/2)N(2)

20 (0) + sN(1)
11 (0)

+ (s̄/2)N(1)
20 (0)

)
g2 ḡ + h.o.t.,

v1t(−1)v2t(−1) = sg2e−2iω0τs + (s + s̄)gḡ + s̄ḡ2e2iω0τs +
(

N(2)
11 (−1)e−iω0τs

+ (1/2)N(2)
20 (−1)eiω0τs + sN(1)

11 (−1)e−iω0τs

+ (s̄/2)N(1)
20 (−1)eiω0τs

)
g2 ḡ + h.o.t.

From the definition of n and (31), we obtain

n(g, ḡ) = q̄∗(0) f0(g, ḡ) = q̄∗(0) f (0, vt)

= τsQ̄(1, s̄∗)

( (
− r

KC
+ εKI KD

(B∗+KD)2 − 2εKI KD B∗
(B∗+KD)3

)
v2

1t(0)− φv1t(0)v2t(0)
βφv1t(−1)v2t(−1)

)

= τsQ̄

{
g2
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs + ss̄∗βφe−2iω0τs

]

+ gḡ
[
− 2r

KC
+

2εKIKD

(B∗ + KD)2 −
4εKIKDB∗

(B∗ + KD)3 − φ(s + s̄) + s̄∗βφ(s + s̄)
]

+ ḡ2
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs̄ + s̄∗βφs̄e2iω0τs

]

+ g2 ḡ
[(
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3

)(
N(1)

20 (0) + 2N(1)
11 (0)

)

− φ
(

N(2)
11 (0) + (1/2)N(2)

20 (0) + sN(1)
11 (0) + (s̄/2)N(1)

20 (0)
)

+ s̄∗βφ
(

N(2)
11 (−1)e−iω0τs + (1/2)N(2)

20 (−1)eiω0τs + sN(1)
11 (−1)e−iω0τs

+ (s̄/2)N(1)
20 (−1)eiω0τs

)]}
.

Comparing the coefficients of g2, gḡ, ḡ2, and g2 ḡ with (41) yields

17
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n20 = 2τsQ̄
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs + ss̄∗βφe−2iω0τs

]

n11 = 2τsQ̄
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φRe{s}+ s̄∗βφRe{s}
]

n02 = 2τsQ̄
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs̄ + s̄∗βφs̄e2iω0τs

]

n21 = 2τsQ̄
[(
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3

)(
N(1)

20 (0) + 2N(1)
11 (0)

)

− φ
(

N(2)
11 (0) + (1/2)N(2)

20 (0) + sN(1)
11 (0) + (s̄/2)N(1)

20 (0)
)

+ s̄∗βφ
(

N(2)
11 (−1)e−iω0τs + (1/2)N(2)

20 (−1)eiω0τs + sN(1)
11 (−1)e−iω0τs

+ (s̄/2)N(1)
20 (−1)eiω0τs

)]
.

(43)

Because n21 includes N11 and N20, we need to calculate their values. From (36) and
(39), we obtain

Ṅ = v̇t − ġq− ˙̄gq̄ =

{
M(0)N − 2Re{q̄∗(0) f0q(ν)}, ν ∈ [−1, 0),

M(0)N − 2Re{q̄∗(0) f0q(ν)}+ f0(g, ḡ), ν = 0,

which can be expressed as
Ṅ = M(0)N + H(g, ḡ, ν) (44)

with

H(g, ḡ, ν) = H20(ν)
g2

2
+ H11(ν)gḡ + H02(ν)

ḡ2

2
+ . . . . (45)

On the other hand, on C0,
Ṅ = Ng ġ + Nḡ ˙̄g. (46)

Substituting the series of H(g, ḡ, ν) into (44) and comparing the coefficients yields

(M(0)− 2iω0τ0)N20(ν) = −H20(ν), M(0)N11(ν) = −H11(ν), . . . . (47)

For ν ∈ [−1, 0), the result from (41) and (44) is

H(g, ḡ, ν) =− 2Re{q̄∗(0) f0(g, ḡ)q(ν)} = −2Re{n(g, ḡ)q(ν)}
=− n(g, ḡ)q(ν)− n̄(g, ḡ)q̄(ν)

=−
(

n20
g2

2
+ n11gḡ + n02

ḡ2

2
+ n21

g2 ḡ
2

+ · · ·
)
× q(ν)

−
(

n̄20
ḡ2

2
+ n̄11 ḡg + n̄02

g2

2
+ n̄21

ḡ2g
2

+ · · ·
)
× q̄(ν).

(48)

Comparing the coefficients of (48) with (45) reveals

H20(ν) = −n20q(ν)− n̄02q̄(ν) (49)

and
H11(ν) = −n11q(ν)− n̄11q̄(ν). (50)

From (47) and (49) and the definition of M (i.e., from (34)), we obtain
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Ṅ20(ν) = M(0)N20(ν) = 2iω0τsN20(ν)− H20(ν)

= 2iω0τsN20(ν) + n20q(ν) + n̄02q̄(ν).

Now, taking into account that q(ν) = (1, a)Teiω0τsν, we have

Ṅ20(ν) = 2iω0τsN20(ν) + n20q(0)eiω0τsν + n̄02q̄(0)e−iω0τsν.

Solving the above equation, we obtain

N20(ν) =
in20

ω0τs
q(0)eiω0τsν +

in̄02

3ω0τs
q̄(0)e−iω0τsν + U1e2iω0τsν, (51)

where U1 =
(

U(1)
1 , U(2)

1

)
∈ R2 is a constant vector. Similarly, based on (47) and (50)

together with the definition of M (34), we obtain

N11(ν) = −
in11

ω0τs
q(0)eiω0τsν +

in̄11

ω0τs
q̄(0)e−iω0τsν + U2, (52)

where U2 =
(

U(1)
2 , U(2)

2

)
∈ R2 is a two dimensional constant vector.

In the following, we explore relevant U1 and U2. Utilizing the definition of M with
(34) and (47), we obtain

∫ 0

−1
dη(ν)N20(ν) = 2iω0τsN20(ν)− H20(ν), (53)

and ∫ 0

−1
dη(ν)N11(ν) = −H11(ν) (54)

for ν = 0 i.e., η(0, ν) = η(ν).
Now, we can find the formula for H(g, ḡ, ν) by setting ν = 0, which results in

H(g, ḡ, 0) =− n(g, ḡ)q(ν)− n̄(g, ḡ)q̄(ν) + f0(g, ḡ)

=−
(

n20
g2

2
+ n11gḡ + n02

ḡ2

2
+ n21

g2 ḡ
2

+ · · ·
)
× q(0)

−
(

n̄20
ḡ2

2
+ n̄11 ḡg + n̄02

g2

2
+ n̄21

ḡ2g
2

+ · · ·
)
× q̄(0)

+

(
Ω11g2 + Ω12gḡ + Ω13 ḡ2 + Ω14g2 ḡ + · · ·
Ω21g2 + Ω22gḡ + Ω23 ḡ2 + Ω24g2 ḡ + · · ·

)
,

where
Ω11 = − r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs,

Ω12 = − r
KC

+
εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φRe{s},

Ω21 = sβφe−2iω0τs ,

Ω22 = βφRe{s}.
For ν = 0, when we compare the coefficients of the above equation with (45) we obtain

H20(0) = −n20q(0)− n̄20q̄(0) + 2τs

(
Ω11
Ω21

)
(55)

and

H11(0) = −n11q(0)− n̄11q̄(0) + 2τs

(
Ω12
Ω22

)
. (56)
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According to the definition of M together with (34) and (47), we have
(

iω0τs I −
∫ 0

−1
eiω0τsνdη(ν)

)
q(0) = 0,

(
−iω0τs I −

∫ 0

−1
e−iω0τsνdη(ν)

)
q̄(0) = 0.

When (51) and (53) are substituted into (55), we obtain
(

2iω0τs I −
∫ 0

−1
e2iω0τsνdη(ν)

)
U1 = 2τs

(
Ω11
Ω21

)
,

which induces
(

iω0 +
r

KC
B∗ − εKI KD B∗

(B∗+KD)2 φB∗

βφP∗e−iω0τs iω0 + βφB∗e−iω0τs + w

)(
U(1)

1

U(2)
1

)
= 2

(
Ω11
Ω21

)
.

Solving for U1, we find

U(1)
1 =

2
Ψ1

∣∣∣∣
Ω11 φB∗

Ω21 iω0 + βφB∗e−iω0τs + w

∣∣∣∣,

U(2)
1 =

2
Ψ1

∣∣∣∣∣
iω0 +

r
KC

B∗ − εKI KD B∗
(B∗+KD)2 Ω11

βφP∗e−iω0τs Ω21

∣∣∣∣∣,

with

Ψ1 =

∣∣∣∣∣
iω0 +

r
KC

B∗ − εKI KD B∗
(B∗+KD)2 φB∗

βφP∗e−iω0τs iω0 + βφB∗e−iω0τs + w

∣∣∣∣∣.

Similarly, substituting (52) and (54) into (56) yields
(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

βφP∗ βφB∗ − w

)(
U(1)

2

U(2)
2

)
= 2

(
Ω12
Ω22

)
.

Solving for U2, we obtain

U(1)
2 =

2
Ψ2

∣∣∣∣
Ω12 −φB∗

Ω22 βφB∗ − w

∣∣∣∣,

U(2)
2 =

2
Ψ2

∣∣∣∣∣
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 Ω12

βφP∗ Ω22

∣∣∣∣∣,

with

Ψ2 =

∣∣∣∣∣
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

βφP∗ βφB∗ − w

∣∣∣∣∣.

Then, we can assess N20(ν) and N11(ν) from (51) and (52). Further, the parameters
and delay can be used to state n21 in (43). Accordingly, we can determine the values below:

Λ(0) =
i

2ω0τs

(
n20n11 − 2|n11|2 −

|n02|2
3

)
+

n21

2
,

ψ = − Re(Λ(0))
Re(λ′(τs))

,

ϑ = 2Re(Λ(0)),

T = − Im(Λ(0)) + ψIm(λ′(τs))

ω0τs
.

(57)
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Here, ψ determines the direction of Hopf bifurcation, ϑ determines the stability of the
Hopf-bifurcating periodic solutions, and T determines the period of bifurcating periodic
solutions at the critical value of τ = τs. Thus, based on the findings of Hassard et al. [50],
the properties of the Hopf bifurcation at the crucial value of τ = τ0 can be stated as
a theorem.

Theorem 8. In Expression (57), the following outcomes hold:

(a) The Hopf bifurcation is supercritical (subcritical) if ψ > 0 (ψ < 0).

(b) The bifurcating periodic solutions are stable (unstable) if ϑ < 0 (ϑ > 0).

(c) The period of the bifurcated periodic solution increases (decreases) if T > 0 (T < 0).

4. Numerical Simulation

In this section, we validate the theoretical outcomes through numerical simulations.
We consider biologically feasible data in order to demonstrate the analytical outcomes,
and the parameters are chosen as mentioned in Table 1.

Table 1. Parameter interpretations and their values used in numerical simulations.

Parameter Description Data 1 Data 2

φ adsorption rate of phage 0.34 0.34
β burst size of phage 0.38 0.38
ε killing rate of innate immune response 0.19 0.19
w decay rate of phage 0.125 0.125
r intrinsic growth rate of bacteria 0.25 0.5

KC carrying capacity of bacteria 7.29 5
KD bacterial concentration when innate immune

response is half saturated 3.5 3.5
KI carrying capacity of innate immune response 0.48 0.48

We take the set of parameter values in Data 1 of Table 1 to correspond to the non-
delayed System (2). For this dataset, the positive equilibrium is E2 = (0.9675, 0.4276). We
derive c11 + c22 = −0.0177 < 0 and c11c22 − c12c21 = 0.0182 > 0, which means that the
system is locally asymptotically stable (LAS) around E2. It can be seen that E2 is stable
using the first condition of Theorem 3(i). To analyze the existence of Hopf bifurcation in
the case of a non-delayed system, we consider the parameter r as a bifurcation parameter
and obtain the value of r as r∗ = 0.1166 with the same set of parameters stated in Data 1.
We can deduce from the second condition of Theorem 3(i) that the positive equilibrium
E2 is destabilized by a Hopf bifurcation when r = 0.109 < r∗ (Figure 1a). According to
Theorem 3(ii), System (2) undergoes a Hopf bifurcation at E2 when r passes r∗ (Figure 1b),
resulting in a stable limit cycle (Figure 1d). In Figure 1c, taking r = 0.25 > r∗, we conclude
from Theorem 3(i) that E2 is stable.

To verify the theoretical analysis outcomes in the delayed system (3), we consider
the set of parameter values in Data 2 of Table 1. Using these parameter values, we obtain
positive equilibrium E2(B∗, P∗) = (0.9675, 0.9759) and compute c1 = 0.2063, c2 = 0.0102,
c3 = −0.1250, and c4 = 0.0313. Furthermore, we compute ω0 = 0.1628 and τ0 = 3.3270 us-
ing (25) and (27). Thus, we can demonstrate the transversality condition of Hopf bifurcation

Φ = sign
[

Re
(

dλ
dτ

)−1
]

λ=iω0

= 42.7388 > 0 at the critical value of τ = τ0 = 3.3270. Accord-

ing to Theorem 7(i), the positive equilibrium E2(B∗, P∗) is stable when τ < τ0 = 3.3270
(Figure 2). Theorem 7(iii) leads us to deduce that System (3) exhibits a Hopf bifurcation
at E2 = (0.9675, 0.9759) when τ = τ0 = 3.3270, i.e., there is a periodic solution around
E2 = (0.9675, 0.9759) when τ is close to τ0 = 3.3270 (Figure 3). When we determine the
value of τ as τ = 3.5 > τ0 = 3.3270, then E2(B∗, P∗) is unstable through a Hopf bifurca-
tion and periodic orbits are encountered, as depicted in Figure 4. Figure 5 displays the
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phase portrait for various τ values, with τ = τ0 = 3.9 and τ = τ0 = 5.5 producing stable
limit cycles.

(a) (b)

(c) (d)

Figure 1. Oscillatory behavior of System (2) with parameter values stated in Data 1 except for r:
(a) Unstable solution of system when r = 0.109 < r∗; (b) existence of Hopf bifurcation solution for
r = r∗ = 0.1166; (c) stable solution of system when r = 0.25 > r∗; (d) existence of a stable limit cycle
near E2 when r = r∗.

(a) (b)

Figure 2. Cont.
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(c) (d)

Figure 2. E2 is asymptotically stable when τ = 2.3 < τ0: (a,b) time series evolution of bacteria and
phages; (c) phase portrait in B-P plane; (d) phase portrait in t-B-P space.

(a) (b)

(c) (d)

Figure 3. Existence of Hopf bifurcation solution for τ = 3.3270 = τ0 around E2: (a,b) time series
evolution of bacteria and phages; (c) presence of a stable limit cycle; (d) phase portrait in t-B-P space.
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(a) (b)

(c) (d)

Figure 4. E2 is unstable when τ = 3.5 > τ0: (a,b) time series evolution of bacteria and phages;
(c) presence of periodic solution; (d) phase portrait in t-B-P space.

(a) (b)

Figure 5. Phase portraits for various values of time delays: (a) a stable limit cycle emerges at τ = 3.9
due to Hopf bifurcation; (b) a stable limit cycle emerges at τ = 5.5 due to Hopf bifurcation, resulting
in stable periodic solutions.

5. Conclusions

In this paper, we modify and analyze the phage therapy model in (2) by including
a discrete time delay to obtain its delayed version in (3). This modification is carried out
by adding a discrete time delay to the recruitment term of the phages and the infection
term of the bacteria. We investigate the dynamic behaviors of the models in (2) and (3), in
particular in terms of their stability and Hopf bifurcation. In addition, we examine the Hopf
bifurcation properties of System (3), including the bifurcation direction and the stability of
a bifurcating periodic solution. Finally, numerical simulations are provided to prove the
practical use of the theoretical results.
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We consider the positivity and boundedness of both non-delayed and delayed mod-
els. The results demonstrate that all of the system’s solutions are positive and bounded,
indicating that the system is biologically well-behaved.

For the non-delayed model, we explore the necessary conditions for the local stability
of all equilibrium solutions and the occurrence of Hopf bifurcation, taking the bacterial
intrinsic growth rate r as a bifurcation parameter. In Section 2, the Hopf bifurcation of
this model is investigated using Hopf bifurcation theory; it is proved that there exists a
critical value of r∗ for stability. When the value of r passes through the critical value of r∗,
the system loses its stability and Hopf bifurcation occurs. This suggests that the intrinsic
growth rate of bacteria has a stabilizing effect on the dynamics of the system.

In Section 4, we demonstrate numerically that the non-delayed System (2) encounters
Hopf bifurcation when the parameter r passes a critical value r∗ (Figure 1b,d). When
the value of r is gradually increased, the positive equilibrium E2 reaches stability from
instability. (Figure 1a,c). The results of our numerical simulations used to depict the
analytical results are based on biologically feasible data.

We use the Lyapunov functional method to derive the global stability criteria for
the boundary and coexistence equilibrium points in the non-delayed model. The results
indicate that the phage burst size β significantly affects the global stability behaviour of
the coexistence equilibrium in the phage therapy model. The necessary conditions for the
non-existence of periodic solutions to the system are established using the Dulac–Bendixon
criterion. This result can be biologically explained as follows: if the bacterial growth rate is
greater than the threshold value, then System (2) has no limit cycle.

In the second part of this study, we investigate the system’s dynamic behaviour in
the presence of a time delay. We use the discrete delay as a bifurcation parameter in the
Hopf bifurcation analysis to capture the oscillatory behaviour of the delayed model in (3).
In Section 3, using stability theory and Hopf bifurcation theory, the influence of delay on
the stability of the equilibrium point is studied along with the existence of Hopf bifurcation.
Theorems for the stability and existence of Hopf bifurcation are established. The results
show that the time delay destabilizes the system, leading to species coexistence.

It can be inferred from Theorem 7 that Hopf bifurcation arises in System (3) at the
critical value τ = τ0. When the value of τ is increased to τ0 = 3.3270, the system loses
stability and undergoes Hopf bifurcation (Figure 3). When τ > τ0, System (3) enters an
unstable equilibrium via Hopf bifurcation at the interior equilibrium E2, indicating that
the densities of bacteria and phages oscillate periodically (Figure 4). However, the system
achieves a stable equilibrium state when τ < τ0, indicating that the densities of bacteria
and phages tend towards a steady state (Figure 2). Our research indicates that oscillatory
behavior is feasible in certain circumstances and that a delay can cause a stable equilibrium
to evolve into an unstable one.

Furthermore, the direction and stability of the bifurcating periodic solutions are
derived by applying normal form theory and the center manifold theorem. Based on
Theorem 8, we obtain the formulas for determining the attributes of the Hopf bifurcation of
the system. In particular, the Hopf bifurcation is supercritical and the bifurcating periodic
solutions are stable under certain conditions.

In summary, this paper has shown that the addition of delay can destabilize the system
and induce Hopf bifurcation. These results are in agreement with the destabilization
effect that has been observed in previous models when introducing a time delay. From a
biomedical perspective, this means that bacteria and phages can coexist under certain
conditions if the delay required for phage reproduction and bacterial infection is small or
increases to a critical value. This result has a significant effect on determining the most
suitable time to introduce phage therapy.

Stochastic differential equations (SDEs) have become popular in modeling ecolog-
ical and epidemiological models such as the study of population growth and epidemic
transmission, as population dynamics vary concern with random perturbation. Population
individuals struggle with one another for a restricted amount of nourishment and dwelling
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space. Environmental noise frequently influences population systems; therefore, it is crucial
to determine whether this noise has an impact on the results. As far as we know, the phage
therapy population model in (1) has not been studied yet with regard to its stochastic
perturbation and asymptotic behavior. Therefore, in the future we intend to consider the
behavior of the phage therapy model with stochastic perturbation in order to investigate
the impact of random perturbations on model dynamics.
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Abstract: The term convexity and theory of inequalities is an enormous and intriguing domain
of research in the realm of mathematical comprehension. Due to its applications in multiple areas
of science, the theory of convexity and inequalities have recently attracted a lot of attention from
historians and modern researchers. This article explores the concept of a new group of modified
harmonic exponential s-convex functions. Some of its significant algebraic properties are elegantly
elaborated to maintain the newly described idea. A new sort of Hermite–Hadamard-type integral
inequality using this new concept of the function is investigated. In addition, several new estimates
of Hermite–Hadamard inequality are presented to improve the study. These new results illustrate
some generalizations of prior findings in the literature.

Keywords: convex function; m-convexity; Holder’s inequality; Hermite–Hadamard inequality
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1. Introduction

In recent decades, the theory of convexity and inequalities has become an amazing
and deep source of attention and inspiration in different areas of science. The combined
study of these terminologies has had not only interesting and deep results in numerous
subjects of applied and engineering sciences but also contributed equally towards numerical
optimization. The concept of convexity is based and depends on the theory of inequalities
and also plays a prominent and meaningful role in this field. The novel literature on
inequalities always provides an excellent glimpse of the beauty and fascination of science.
Integral inequalities have many applications in probability theory, information technology,
statistics, numerical integration, stochastic processes, optimization theory, and integral
operator theory. For detailed concepts on inequalities, see [1–19]. In [20], İşcan explores
an extended form of convex function, namely the n-polynomial convex function. The
harmonic convex set in 2003 was first defined by Shi in [21]. On this harmonic convex set,
the harmonic convex function was introduced by Anderson et al. [22]. Noor [23] continued
his work on estimations and extensions and investigated the harmonic convex function in a
polynomial version and also made some improvements in the frame variational inequality
(see [24,25]).

Dragomir [26] was the first to define and research the term “exponential convex function”
in the literature. After Dragomir, Awan [27] conducted the study and refined this function.
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Kadakal [28] presented a revised definition of exponential convexity. The remarkable sig-
nificance and applications of exponential convexity are exploited in information sciences,
stochastic optimization, data mining, sequential prediction, and statistical learning.

The construction of this manuscript is as follows. In Section 2, we give some basic
definitions and concepts which will be required throughout the manuscript’s following
sections. In Section 3, we introduce the modified harmonic exp s-convex functions and
discuss some properties of it. In Section 4, using a newly introduced concept, a new sort
of Hadamard-type inequality is achieved. Next, we prove and examine some extensions
of the Hadamard-type inequality regarding the new definition with the help of Holder’s
inequality in Section 5. Finally, in Section 6, future scopes of the present study and a brief
conclusion are provided.

2. Preliminaries

For the reader’s interest and the quality of the manuscript, it will be best to study and
explain some ideas, concepts, definitions, corollaries, theorems, and remarks in this part.
The main aim of this part is to mention and discuss some already published definitions and
ideas, which we require in our study in the following sections. We start by introducing the
convex function and its generalizations in different versions and the Hermite–Hadamard-
type inequality. In addition, some theorems regarding harmonic convex functions are
added. We sum up this part by stating Holder’s and the power mean inequality, which will
be needed in our further investigation.

Definition 1 ([1]). Assume that X is a convex subset of a real vector space R. A function
Q : X→ R is convex if

Q(λv1 + (1− λ)v2) ≤ λQ(v1) + (1− λ)Q(v2), (1)

holds ∀ v1, v2 ∈ X, and λ ∈ [0, 1].

The Hermite–Hadamard-type inequality performs a good role in the literature due
to its importance and popularity. A lot of scientists have worked on numerous ideas and
definitions on the subject of inequalities. In the field of analysis, this inequality has great
interest due to its applications. This inequality states that, if function Q : X→ R is convex
for v1, v2 ∈ X with the condition v1 < v2, then

Q

(
v1 + v2

2

)
≤ 1

v2 − v1

∫ v2

v1

Q(χ)dχ ≤ Q(v1) +Q(v2)

2
. (2)

We recommend that readers refer to [29–32].

Definition 2 ([33]). Let s ∈ (0, 1]. A function Q : [0,+∞)→ R is s-convex in the second sense if

Q(λv1 + (1− λ)v2) ≤ λsQ(v1) + (1− λ)sQ(v2) (3)

holds ∀ v1, v2 ∈ [0,+∞), and λ ∈ [0, 1].

Definition 3 ([28]). Let X be a non-negative real interval. A function Q : X→ R is exponentially
convex if

Q(λv1 + (1− λ)v2) ≤
(

eλ − 1
)
Q(v1) +

(
e(1−λ) − 1

)
Q(v2), (4)

for all v1, v2 ∈ X, and λ ∈ [0, 1].
The notation EXPC(I) represents the family of all exponentially convex functions on the

interval X.
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Definition 4 ([34]). Let X ⊂ R \ {0} be a real interval. A function Q : X ⊆ (0,+∞) → R is
harmonically convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ λQ(v1) + (1− λ)Q(v2), (5)

holds for all v1, v2 ∈ X, and λ ∈ [0, 1].

Theorem 1 ([34]). Assume that a real-valued function Q on X ⊆ (0,+∞)→ R is harmonically
convex. If Q is defined on integrable space, i.e., L[v1, v2], for all v1, v2 ∈ X with v1 < v2, then

Q

(
2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx ≤ Q(v1) +Q(v2)

2
. (6)

Definition 5 ([20]). Let X be a non-negative real interval. A function Q : X→ [0, ∞). Then Q is
m-polynomial convex if

Q(λµ1 + (1− λ)v2) ≤
1
m

m

∑
η=1

[1− (1− λ)η ]Q(v1) +
1
m

m

∑
η=1

[1− λη ]Q(v2), (7)

holds for every v1, v2 ∈ X, m ∈ N, and λ ∈ [0, 1].

Definition 6 ([35]). Assume that Q : X = (0,+∞)→ [0, ∞). Then Q is m-polynomial exponen-
tial s-convex if

Q

(
λv1 + (1− λ)v2

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2), (8)

holds ∀ v1, v2 ∈ X, m ∈ N, s ∈ [ln 2.5, 1], and λ ∈ [0, 1].

Definition 7 ([23]). Let us assume that Q : X→ [0, ∞). Then Q is m-polynomial harmonically
convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

[1− (1− λ)η ]Q(v1) +
1
m

m

∑
η=1

[1− λη ]Q(v2), (9)

holds for every v1, v2 ∈ X, m ∈ N, and λ ∈ [0, 1].

Remark 1. Assume that m = 1; then Definition 7 is referred to Definition 4.

Remark 2. If the following inequalities λ ≤ 1
m ∑m

η=1[1− (1− λ)η ] and 1− λ ≤ 1
m ∑m

η=1[1−
λη ] hold, then every harmonic convex function is an m-polynomial harmonic convex function.

Definition 8 ([36]). Let us assume that Q : X → [0, ∞). Then Q is m-polynomial harmonic
exponential convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
eλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
e1−λ − 1

)η
Q(v2), (10)

holds for every v1, v2 ∈ X, m ∈ N, and λ ∈ [0, 1].

Remark 3 ([36]). Every nonnegative m-polynomial harmonic convex function is also an m-
polynomial harmonic exponential-type convex function. Indeed, for all λ ∈ [0, 1] this case is clear
from the following inequalities:
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1
n ∑m

η=1[1− (1−λ)η ] ≤ 1
m ∑m

η=1
(
eλ − 1

)η and 1
m ∑m

η=1[1−λη ] ≤ 1
m ∑m

η=1
(
e1−λ − 1

)η .

Theorem 2 ([37]). Assume that p > 1 and 1
p + 1

q = 1. If Q1 and Q2 are real functions defined on
Lebesgue measurable space of a and b, i.e., L[a, b], and if |Q1|p and |Q2|q are integrable functions
on [a, b], then

∫ b

a
|Q1(ν)Q2(ν)|dν ≤

( ∫ b

a
|Q1(x)|pdx

) 1
p
( ∫ b

a
|Q2(x)|qdx

) 1
q
. (11)

The equality holds if and only if A|Q1|p = B|Q2|q, almost everywhere, where A and B are constants.

3. Modified Harmonic Exponential s-Convex Function and Its Algebraic Properties

The term convexity has gained an amazing image due to many applications in the
realms of engineering, optimizations, and applied mathematics. Although many outcomes
have been deduced under convexity, the majority of the problems regarding real life
are nonconvex in nature. In the 20th century, many researchers gave attention to the
term convexity, such as Jensen, Hermite, Holder, and Stolz. Throughout this century, an
unprecedented amount of research was carried out, and important results were obtained in
the field of convex analysis.

We will provide our basic definition of the modified harmonic exp s-convex function
and its corresponding features as the main topic of this section.

Definition 9. Assume that Q : X = (0,+∞)→ [0, ∞). Then Q is modified harmonic exponential
s-convex if

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2), (12)

holds ∀ v1, v2 ∈ X, m ∈ N, s ∈ [ln 2.5, 1], and λ ∈ [0, 1].

Remark 4. Assume that m = 1 in the above inequality (12); then

Q

(
v1v2

λv2 + (1− λ)v1

)
≤
(

esλ − 1
)
Q(v1) +

(
es(1−λ) − 1

)
Q(v2). (13)

Remark 5. Assume that m = 2 in the above inequality (12); then

Q

(
v1v2

λv2 + (1− λ)v1

)
≤
(

e2sλ − esλ

2

)
Q(v1) +

(
e2s(1−λ) − es(1−λ)

2

)
Q(v2). (14)

Remark 6. Assume that s = 1 in the above inequality (12); we obtain Definition 8.

Remark 7. Assume that m = 1 and s = 1 in the above inequality (12); we obtain Remark 3 in [36].

Remark 8. Assume that m = 2 and s = 1 in the above inequality (12); we obtain Remark 4 in [36].

That is the best advantage of the novel concept. If we take m and s at their given values,
then we obtain the new inequalities and discover their connections with previous results.

Lemma 1. Let us assume that λ ∈ [0, 1] and s ∈ [ln 2.5, 1]; then 1
m

m
∑

η=1
(esλ − 1)η ≥ λ and

1
m

m
∑

η=1
(es(1−λ) − 1)η ≥ (1− λ) hold.

31



Axioms 2023, 12, 454

Lemma 2. The following inequalities 1
m

m
∑

η=1
(esλ − 1)η ≥ 1

n

m
∑

η=1
[1 − (1 − λ)η ] and

1
m

m
∑

η=1
(es(1−λ) − 1)η ≥ 1

m

m
∑

η=1
[1− λη ] hold, for all λ ∈ [0, 1] and s ∈ [ln 2.5, 1].

Proposition 1. Every harmonic convex function Q : I ⊂ (0,+∞) → [0, ∞) is a modified
harmonic exp s-convex function.

Proof. Since the given function is a harmonic convex, by definition, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ λQ(v1) + (1− λ)Q(v2).

Employing Lemma 1, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2).

Proposition 2. Every m-polynomial harmonically convex function is a modified harmonically exp
s-convex function.

Proof. Since the given function is m-polynomial harmonic convex, by definition, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

[1− (1− λ)η ]Q(v1) +
1
m

m

∑
η=1

[1− λη ]Q(v2).

Employing Lemma 2, we have

Q

(
v1v2

λv2 + (1− λ)v1

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2).

Next, regarding this new definition, we add some examples.

Example 1. Let Q(x) = x2ex2
be a non-decreasing convex function on (0, 1); then it is har-

monic convex (see [38]). Employing Proposition 1, we claim that it is a modified harmonic exp
s-convex function.

Example 2. Let Q(x) = ex be a non-decreasing convex function; then it is harmonic convex
(see [38]). Employing Proposition 1, we claim that it is a modified harmonic exp s-convex function.

Example 3. Let Q(x) = sin(−x) be a non-decreasing convex function on (0, π
2 ); then it is

harmonically convex ∀x ∈ (0, π
2 ) (see [38]). Employing Proposition 1, it is a modified harmonic

exp s-convex function.

Example 4. Let Q(x) = x be a non-decreasing convex function on (0, ∞); then it is har-
monically convex for all x ∈ (0, ∞) (see [38]). Employing Remark 2, we claim that it is m-
polynomial harmonic convex. Employing Proposition 2, we claim that it is a modified harmonic exp
s-convex function.

Example 5. Let Q(x) = ln x be a harmonic convex on the interval (0, ∞) (see [38]). Employing
Remark 2 and Proposition 2, we obtain that Q(x) is a modified harmonic exp s-convex function.
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In addition, we add some properties regarding the newly introduced idea, namely the
modified harmonic exp s-convex function.

Theorem 3. The sum of two modified harmonic exp s-convex functions is a modified harmonic exp
s-convex function.

Proof. Let us assume that the functions Q and H are modified harmonic exp s-convex and
λ ∈ [0, 1]; then

(Q+H)

(
v1v2

λv2 + (1− λ)v1

)

= Q

(
v1v2

λv2 + (1− λ)v1

)
+H

(
v1v2

λv2 + (1− λ)v1

)

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

+
1
m

m

∑
η=1

(
esλ − 1

)η
H(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
H(v2)

=
1
m

m

∑
η=1

(
esλ − 1

)η
[Q(v1) +H(v1)] +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
[Q(v2) +H(v2)]

=
1
m

m

∑
η=1

(
esλ − 1

)η
(Q+H)(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
(Q+H)(v2).

This completes the proof.

Remark 9. If we assume that m = 1, then we obtain Q+H as the harmonic exp s-convex function.

Remark 10. If we assume that s = 1, then we obtain Q + H as a modified harmonic exp
convex function.

Remark 11. If we assume that m = 1 and s = 1, then we obtain Q + H as a harmonic exp
convex function.

Theorem 4. Scalar multiplication of a modified harmonic exp s-convex function is a modified
harmonic exp s-convex function.

Proof. Let assume that the function Q is modified harmonic exp s-convex, λ ∈ [0, 1]; then

(cQ)
(

v1v2

λv2 + (1− λ)v1

)

≤ c
[

1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

]

=
1
m

m

∑
η=1

(
esλ − 1

)η
cQ(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
cQ(v2)

=
1
m

m

∑
η=1

(
esλ − 1

)η
(cQ)(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
(cQ)(v2).

This completes the proof.

Remark 12. If we assume that m = 1, then the scalar multiplication of a harmonic exp s-convex
function is a harmonic exp s-convex function.
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Remark 13. If we assume that s = 1, then the scalar multiplication of the modified harmonic exp
convex function is a modified harmonic exp convex function.

Remark 14. If we assume that m = 1 and s = 1, then scalar multiplication of a harmonically exp
convex function is a harmonic exp convex function.

Theorem 5. Assume that the function Q1 : X → [0,+∞) is harmonic convex and the function
Q2 : [0,+∞) → [0,+∞) is increasing and m-polynomial exp s-convex. Then Q2 ◦ Q1 : X →
[0,+∞) is a modified harmonic exp s-convex function.

Proof. For all v1, v2 ∈ X, and λ ∈ [0, 1], we have

(Q2 ◦Q1)

(
v1v2

λv2 + (1− λ)v1

)

= Q2

(
Q1

(
v1v2

λv2 + (1− λ)v1

))

≤ Q2(λQ1(v1) + (1− λ)Q1(v2))

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
Q2(Q1(v1)) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q2(Q1(v2))

=
1
m

m

∑
η=1

(
esλ − 1

)η
(Q2 ◦Q1)(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
(Q2 ◦Q1)(v2).

Theorem 6. Let 0 < v1 < v2 and assume that non-negative real-valued function Qj is a class
of modified harmonic exp s-convex and Q(u) = supj Qj(u). Then the function Q is a modified
harmonic exp s-convex and U = {u ∈ [v1, v2] : Q(u) < +∞} is an interval.

Proof. Let v1, v2 ∈ U and λ ∈ [0, 1]; then

Q

(
v1v2

λv2 + (1− λ)v1

)

= sup
j

Qj

(
v1v2

(λv2 + (1− λ)v1)

)

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
sup

j
Qj(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
sup

j
Qj(v2)

=
1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2) < +∞.

This shows simultaneously that U is an interval, since it contains every point between any
two of its points, and that Q is a modified harmonic exp s-convex function on U. This is the
required proof.

Theorem 7. If Q : X → [0,+∞) is modified harmonic exp s-convex, then the function Q is
bounded on [v1, v2].
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Proof. Let us assume that x ∈ [v1, v2] and L = max
{
Q(v1),Q(v2)

}
. Then ∃ λ ∈ [0, 1] such

that x = v1v2
λv2+(1−λ)v1

. Here, we clearly know about the obvious following inequalities, i.e.,

esλ ≤ e and es(1−λ) ≤ e; then

Q(x) = Q

(
v1v2

λv2 + (1− λ)v1

)

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

≤ 1
m

m

∑
η=1

(
esλ − 1

)η
L +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
L

≤ 2L
m

m

∑
η=1

(e− 1)η = M.

4. Generalized Form of Hadamard Inequality via Modified Harmonic Exponential
s-Convex Function

Convexity is important and crucial in many branches of the pure and applied sciences.
Massive generalizations of mathematical inequalities for multiple convex functions have
significantly influenced traditional research. Numerous fields, including linear program-
ming, combinatorics, theory of relativity, optimization theory, quantum theory, number
theory, dynamics, and orthogonal polynomials are affected by and use integral inequalities.
This issue has received much attention from researchers. The Hadamard inequality is
the most widely used and popular inequality in the history and literature pertaining to
convex theory.

This purpose of this section is to establish a new kind of the Hadamard inequality
pertaining to modified harmonic exp s-convexity.

Theorem 8. Let non-negative real-valued Q be modified harmonic exp s-convex. If Q ∈ L[v1, v2], then

m

2
m
∑

η=1

(√
es − 1

)η
Q

(
2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx ≤

[
A1Q(v1) +A2Q(v2)

]
, (15)

where

A1 = 1
m

m
∑

η=1

1∫
0

(
esλ − 1

)ηdλ and A2 = 1
m

m
∑

η=1

1∫
0

(
es(1−λ) − 1

)η
dλ.

Proof. Since Q is modified harmonic exp s-convex, then we have

Q

(
xy

λy + (1− λ)x

)
≤ 1

m

m

∑
η=1

(
esλ − 1

)η
Q(x) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(y),

which leads to

Q

(
2xy

x + y

)
≤ 1

m

m

∑
η=1

(√
es − 1

)η
Q(x) +

1
m

m

∑
η=1

(√
es − 1

)η
Q(y).

Employing the change in variables, we have

Q

(
2v1v2

v1 + v2

)
≤ 1

m

m

∑
η=1

[(√
es − 1

)η
][

Q

(
v1v2

(λv2 + (1− λ)v1)

)
+Q

(
v1v2

(λv1 + (1− λ)v2)

)]
. (16)
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Integrating inequality (16) w.r.t. λ on [0, 1] yields

m

2
m
∑

η=1

(√
es − 1

)η
Q

(
2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx.

This is the required inequality.
For the other inequality, first we suppose x = v1v2

λv2+(1−λ)v1
and employ Definition 9 for

the function Q; we have

v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

=
∫ 1

0
Q

(
v1v2

λv2 + (1− λ)v1

)
dλ

≤
∫ 1

0

[
1
m

m

∑
η=1

(
esλ − 1

)η
Q(v1) +

1
m

m

∑
η=1

(
es(1−λ) − 1

)η
Q(v2)

]
dλ

=
Q(v1)

m

m

∑
η=1

∫ 1

0

(
esλ − 1

)η
dλ +

Q(v2)

m

m

∑
η=1

∫ 1

0

(
es(1−λ) − 1

)η
dλ

=
[
A1Q(v1) +A2Q(v2)

]
.

This completes the proof.

Corollary 1. Assume that m = 1 in the above inequality (15); then

1

2
(√

es − 1
)Q
(

2v1v2

v1 + v2

)
≤ v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx ≤

(
es − s− 1

s

)[
Q(v1) +Q(v2)

]
.

Remark 15. Assume that s = 1 in the above inequality (15); then we obtain Theorem 4.1 in [36].

5. Refinements of Hadamard Inequality Involving Modified Harmonic Exponential
s-Convex Function

In recognition of the importance of convexity, various researchers have created numer-
ous generalizations of convexity and validated a lot of features in these new generalized
cases. Convex sequences, their characteristics, and the accompanying inequalities with
applications have received increased attention from researchers. The most viewed and
discussed inequality in history connected with the field of convex analysis is the Hermite–
Hadamard inequality.

Given the following lemma, with the aid of Holder’s inequality and involving the newly
introduced concept, we obtained some extensions of the Hermite–Hadamard inequality.

Lemma 3 ([23]). Let us assume that ρ, σ ∈ [0, 1] and a non-negative real-valued function Q is a
differentiable mapping. If Q′ ∈ L[v1, v2], then the following identity holds:

ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

=
v1v2(v2 − v1)

4

∫ 1

0

[
4(1− ρ− λ)

((1− λ)v2 + (1 + λ)v1)2Q
′
(

2v1v2

(1− λ)v2 + (1 + λ)v1

)
(17)

+
4(σ− λ)

(λv1 + (2− λ)v2)2Q
′
(

2v1v2

λv1 + (2− λ)v2

)]
dλ.

For simplicity, we denote

Av1,v2 = (1− λ)v2 + (1 + λ)v1 and Bv1,v2 = λv1 + (2− λ)v2. (18)
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The following notations will be used in this way:

Γ(v) =
∫ +∞

0
e−λλv−1dλ, v > 0;

β(v1, v2) =
∫ 1

0
λv1−1(1− λ)v2−1dλ, v1, v2 > 0;

This is a hypergeometric function in integral form first introduced by Euler [39]. This
function states that

β(v1, v2) =
Γ(v1)Γ(v2)

Γ(v1 + v2)
, v1, v2 > 0;

2F1(v1, v2; v3; v) =
1

β(v2, v3 − v2)

∫ 1

0
λv2−1(1− λ)v3−v2−1(1− vλ)−v1 dλ,

where v3 > v2 > 0 and |v| < 1.

Theorem 9. Let us assume that ρ, σ ∈ [0, 1] and Q : [v1, v2] ⊆ (0,+∞)→ R is a differentiable
mapping such that Q′ ∈ L[v1, v2]. Suppose |Q′|q is modified harmonic exp s-convex; then for
p, q > 1 with 1

p + 1
q = 1, we have

∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1) (19)

×
[

ϕ
1
p
1
(
T1|Q′(v1)|q + T2|Q′(v2)|q

) 1
q + ϕ

1
p
2
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
,

where

ϕ1 =
∫ 1

0
|1− ρ− λ|pdλ =

(1− ρ)p+1 + ρp+1

p + 1
,

ϕ2 =
∫ 1

0
|σ− λ|pdλ =

(1− σ)p+1 + σp+1

p + 1
,

T1 =
1

2m

n

∑
η=1

∫ 1

0

1

A2q
v1,v2

(es(1−λ) − 1)ηdλ, T2 =
1

2m

m

∑
η=1

∫ 1

0

1

A2q
v1,v2

(es(1+λ) − 1)ηdλ,

T3 =
1

2m

m

∑
η=1

∫ 1

0

1

B2q
v1,v2

(es(2−λ) − 1)ηdλ, T4 =
1

2m

m

∑
η=1

∫ 1

0

1

B2q
v1,v2

(esλ − 1)ηdλ,

and Av1,v2 , Bv1,v2 are defined from (18).

Proof. From Lemma 3, we have
∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

4

[ ∫ 1

0

∣∣∣∣
4(1− ρ− λ)

((1− λ)v2 + (1 + λ)v1)2

∣∣∣∣
∣∣∣∣Q′
(

2v1v2

(1− λ)v2 + (1 + λ)v1

)∣∣∣∣dλ

+
∫ 1

0

∣∣∣∣
4(σ− λ)

(λµ1 + (2− λ)v2)2

∣∣∣∣
∣∣∣∣Q′
(

2v1v2

λv1 + (2− λ)v2

)∣∣∣∣dλ

]
.
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Employing the property of Hölder’s inequality and modified harmonic exp s-convex
function, we have
∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

{( ∫ 1

0
|1− ρ− λ|pdλ

) 1
p

×
[ ∫ 1

0

1

A2q
v1,v2

(
1

2m

m

∑
η=1

(
es(1−λ) − 1

)η
|Q′(v1)|q +

1
2m

m

∑
η=1

(
es(1+λ) − 1

)η
|Q′(v2)|q

)
dλ

] 1
q

+

( ∫ 1

0
|σ− λ|pdλ

) 1
p

×
[ ∫ 1

0

1

B2q
v1,v2

(
1

2m

m

∑
η=1

(
es(2−λ) − 1

)η
|Q′(v1)|q +

1
2m

m

∑
η=1

(
esλ − 1

)η
|Q′(v2)|q

)
dλ

] 1
q
}

=
v1v2(v2 − v1)

4

×
[

ϕ
1
p
1
(
T1|Q′(v1)|q + T2|Q′(v2)|q

) 1
q + ϕ

1
p
2
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

This completes the proof.

Corollary 2. Assume that m = 1 in inequality (19); then
∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

×
[

ϕ
1
p
1
(

D1|Q′(v1)|q + D2|Q′(v2)|q
) 1

q + ϕ
1
p
2
(

D3|Q′(v1)|q + D4|Q′(v2)|q
) 1

q

]
,

where

D1 =
1
2

∫ 1

0

1

A2q
v1,v2

(es(1−λ) − 1)dλ, D2 =
1
2

∫ 1

0

1

A2q
v1,v2

(es(1+λ) − 1)dλ,

D3 =
1
2

∫ 1

0

1

B2q
v1,v2

(es(2−λ) − 1)dλ, D4 =
1
2

∫ 1

0

1

B2q
v1,v2

(esλ − 1)dλ.

Corollary 3. Assume that ρ = σ in inequality (19); then
∣∣∣∣ρ
Q(v1) +Q(v2)

2
+ (1− ρ)Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)ϕ
1
p

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
,

where ϕ1 = ϕ2 = ϕ.
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Corollary 4. Assume that ρ = σ = 0 in inequality (19); then
∣∣∣∣Q
(

2v1v2

v1 + v2

)
− 2v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤
v1v2(v2 − v1)

p
√

p + 1

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Corollary 5. Assume that ρ = σ = 1
2 in inequality (19); then

∣∣∣∣
Q(v1) +Q(v2)

2
+Q

(
2v1v2

v1 + v2

)
− 2v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)
p

√
4

p + 1

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Corollary 6. Assume that ρ = σ = 1
3 in inequality (19); then

∣∣∣∣
Q(v1) +Q(v2)

2
+ 2ψ

(
2v1v2

v1 + v2

)
− 3v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ 3v1v2(v2 − v1)
p

√√√√√4

(( 2
3
)p+1

+
(

1
3

)p+1

p + 1

)

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Corollary 7. Assume that ρ = σ = 1 in inequality (19); then
∣∣∣∣
Q(v1) +Q(v2)

2
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤
v1v2(v2 − v1)

p
√

p + 1

×
[(

T1|Q′(v1)|q + T2|Q′(v2)|q
) 1

q +
(
T3|Q′(v1)|q + T4|Q′(v2)|q

) 1
q

]
.

Theorem 10. Assume that ρ, σ ∈ [0, 1] and Q : [v1, v2] ⊆ (0,+∞) → R is a differentiable
mapping such that Q′ ∈ L[v1, v2]. Suppose |Q′|q is modified harmonic exp s-convex; then for
p, q > 1 with 1

p + 1
q = 1, we have

∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

4
(20)

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

C5|Q′(v1)|q + C6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

C7|Q′(v1)|q + C8|Q′(v2)|q
) 1

q

]
,

where

C5 =
1

2m

m

∑
η=1

∫ 1

0
|1− ρ− σ|q(es(1−λ) − 1)ηdλ,
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C6 =
1

2m

m

∑
η=1

∫ 1

0
|1− ρ− σ|q(es(1+λ) − 1)ηdλ,

C7 =
1

2m

m

∑
η=1

∫ 1

0
|σ− λ|q(es(2−λ) − 1)ηdλ,

C8 =
1

2m

m

∑
η=1

∫ 1

0
|σ− λ|q(esλ − 1)ηdλ.

Proof. According to the Lemma 3, we have
∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

4

[ ∫ 1

0

∣∣∣∣
4(1− ρ− λ)

((1− λ)v2 + (1 + λ)v1)2

∣∣∣∣
∣∣∣∣Q′
(

2v1v2

(1− λ)v2 + (1 + λ)v1

)∣∣∣∣dλ

+
∫ 1

0

∣∣∣∣
4(σ− λ)

(λv1 + (2− λ)v2)2

∣∣∣∣
∣∣∣∣Q′
(

2v1v2

λv1 + (2− λ)v2

)∣∣∣∣dλ

]
.

Employing the property of Hölder’s inequality and modified harmonic exp s-convex
function, we have
∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

4

{
4
( ∫ 1

0

1

A2p
v1,v2

dλ

) 1
p

×
[ ∫ 1

0 |1− ρ− σ|q
(

1
2m ∑m

η=1

(
es(1−λ) − 1

)η
|Q′(v1)|q + 1

2m ∑m
η=1

(
es(1+λ) − 1

)η
|Q′(v2)|q

)
dλ

] 1
q

+ 4
( ∫ 1

0

1

B2p
v1,v2

dλ

) 1
p

×
[ ∫ 1

0
|σ− λ|q

(
1

2m

m

∑
η=1

(
es(2−λ) − 1

)η
|Q′(v1)|q +

1
2m

m

∑
η=1

(
esλ − 1

)η
|Q′(v2)|q

)
dλ

] 1
q
}

=
v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

C5|Q′(v1)|q + C6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

C7|Q′(v1)|q + C8|Q′(v2)|q
) 1

q

]
.

This completes the proof.
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Corollary 8. Assume that m = 1 in inequality (20); then
∣∣∣∣
ρQ(v1) + σQ(v2)

2
+

2− ρ− σ

2
Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

D5|Q′(v1)|q + D6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

D7|Q′(v1)|q + D8|Q′(v2)|q
) 1

q

]
,

where

D5 =
1
2

∫ 1

0
|1− ρ− σ|q(es(1−λ) − 1)dλ,

D6 =
1
2

∫ 1

0
|1− ρ− σ|q(es(1+λ) − 1)dλ,

D7 =
1
2

∫ 1

0
|σ− λ|q(es(2−λ) − 1)dλ, D8 =

1
2

∫ 1

0
|σ− λ|q(esλ − 1)dλ.

Corollary 9. Assume that ρ = σ in inequality (20); then
∣∣∣∣ρ
Q(v1) +Q(v2)

2
+ (1− ρ)Q

(
2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣

≤ v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

E1|Q′(v1)|q + E2|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

E3|Q′(v1)|q + E4|Q′(v2)|q
) 1

q

]
,

where

E1 =
1

2m

m

∑
η=1

∫ 1

0
|1− 2ρ|q(es(1−λ) − 1)ηdλ,

E2 =
1

2m

m

∑
η=1

∫ 1

0
|1− 2ρ|q(es(1+λ) − 1)ηdλ,

E3 =
1

2m

m

∑
η=1

∫ 1

0
|ρ− λ|q(es(2−λ) − 1)ηdλ,

E4 =
1

2m

m

∑
η=1

∫ 1

0
|ρ− λ|q(esλ − 1)ηdλ.

Corollary 10. Assume that ρ = σ = 0 in inequality (20); then
∣∣∣∣Q
(

2v1v2

v1 + v2

)
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤
v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

E5|Q′(v1)|q + E6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

E7|Q′(v1)|q + E8|Q′(v2)|q
) 1

q

]
,
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where

E5 =
1

2m

m

∑
η=1

∫ 1

0
(es(1−λ) − 1)ηdλ,

E6 =
1

2m

m

∑
η=1

∫ 1

0
(es(1+λ) − 1)ηdλ,

E7 =
1

2m

m

∑
η=1

∫ 1

0
λq(es(2−λ) − 1)ηdλ,

E8 =
1

2n

m

∑
η=1

∫ 1

0
λq(esλ − 1)ηdλ.

Corollary 11. Assume that ρ = σ = 1
2 in inequality (20); then

∣∣∣∣
Q(v1) +Q(v2)

2
+Q

(
2v1v2

v1 + v2

)
− 2v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤
v1v2(v2 − v1)

2

×
[

1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

E9|Q′(v1)|q + E10|Q′(v2)|q
) 1

q

]
,

where

E9 =
1

2q+1m

m

∑
η=1

∫ 1

0
|1− 2λ|q(es(2−λ) − 1)ηdλ,

E10 =
1

2q+1m

m

∑
η=1

∫ 1

0
|1− 2λ|q(esλ − 1)ηdλ.

Corollary 12. Assume that ρ = σ = 1
3 in inequality (20); then

∣∣∣∣
Q(v1) +Q(v2)

2
+ 2Q

(
2v1v2

v1 + v2

)
− 3v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤
3v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

G1|Q′(v1)|q + G2|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

G3|Q′(v1)|q + G4|Q′(v2)|q
) 1

q

]
,

where

G1 =
1

3q2m

m

∑
η=1

∫ 1

0
(es(1−λ) − 1)ηdλ,

G2 =
1

3q2m

m

∑
η=1

∫ 1

0
(es(1+λ) − 1)ηdλ,

G3 =
1

3q2m

m

∑
η=1

∫ 1

0
|1− 3λ|q(es(2−λ) − 1)ηdλ,

G4 =
1

3q2m

m

∑
η=1

∫ 1

0
|1− 3λ|q(esλ − 1)ηdλ.
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Corollary 13. Assume that ρ = σ = 1 in inequality (20); then
∣∣∣∣
Q(v1) +Q(v2)

2
− v1v2

v2 − v1

∫ v2

v1

Q(x)
x2 dx

∣∣∣∣ ≤
v1v2(v2 − v1)

4

×
[

4
(v1 + v2)2

(
2F1

(
2p, 1; 2;

v1 − v2

v1 + v2

)) 1
p (

G5|Q′(v1)|q + G6|Q′(v2)|q
) 1

q

+
1
v2

1

(
2F1

(
2p, 1; 2;

v1 − v2

2v1

)) 1
p (

G7|Q′(v1)|q + G8|Q′(v2)|q
) 1

q

]
,

where

G5 =
1

2m

m

∑
η=1

∫ 1

0
(es(1−λ) − 1)ηdλ,

G6 =
1

2m

m

∑
η=1

∫ 1

0
(es(1+λ) − 1)ηdλ,

G7 =
1

2m

m

∑
η=1

∫ 1

0
|1− λ|q(es(2−λ) − 1)ηdλ,

G8 =
1

2m

m

∑
η=1

∫ 1

0
|1− λ|q(esλ − 1)ηdλ.

6. Conclusions

The study of integral inequalities in association with convex analysis presents an
intriguing and stimulating area of study in the domain of mathematical interpretation. Due
to their pivotal role and beneficial importance in many disciplines of science, the subject
of inequalities has been described as an attractive field for mathematicians. Many mathe-
maticians try to use and employ new ideas in order to advance the theory of inequalities.
A great framework for starting and creating numerical tools for solving and researching
challenging mathematical problems is provided by the word inequalities. This work has
shown a new variant of Hadamard inequalities involving a new family of convex functions,
namely the modified harmonic exp s-convex function. A new class of these functions has
been investigated by introducing some algebraic properties. The new family of modified
harmonic exp s-convex functions is an extended and generalized class of functions, includ-
ing convex and harmonically convex functions, which have been proved. Furthermore,
the new type of Hadamard-type inequality and its estimations have been achieved. Many
researchers add efforts to the term inequality hypotheses to reveal a new dimension of
applied analysis because working on this hypothesis has its own importance and wide
scope. It is a fascinating and engrossing field of research for researchers. Now is the
time to explore the significance of convex analysis and inequalities along with innovative
numerical techniques.
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Abstract: We investigated several novel conformable fractional gamma-nabla dynamic Hardy–Hilbert
inequalities on time scales in this study. Several continuous inequalities and their corresponding
discrete analogues in the literature are combined and expanded by these inequalities. Hölder’s
inequality on time scales and a few algebraic inequalities are used to demonstrate our findings.
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1. Introduction

This is a statement of the well-known classical extension of Hilbert’s double-series
theorem [1]:

Theorem 1. If ν, v > 1 are such that 1
ν + 1

v 6 1 and 0 < λ = 2− 1
ν − 1

v = 1
ν′ +

1
v′ 6 1, such

that ν′ and v′ present the exponents’ conjugate; then,

∞

∑
=1

∞

∑
ı=1

ϑπı

( + ı)λ
6 K

( ∞

∑
=1

ϑν


) 1
ν
( ∞

∑
ı=1

πv
ı

) 1
v

, (1)

where K = K(ν, v) depends on ν and v only.

Readers may find the integral analogue of Theorem 1 in [1].

Theorem 2. Let ν, v, ν′, v′ and λ be as in Theorem 1. If ϑ ∈ Lν(0, ∞) and θ ∈ Lv(0, ∞), then

∫ ∞

0

∫ ∞

0

ϑ(ι)θ(ς)

(ι + ς)λ
dιdς 6 K

( ∫ ∞

0
ϑν(ι)dι

) 1
ν
( ∫ ∞

0
θv(ς)dς

) 1
v

, (2)

where K = K(ν, v) depends on ν and v only.

In 2011, Zhao et al. [2] proposed a new inequality similar to Theorem 2.
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Theorem 3. Let hi > 1, νi > 1 be constants and 1
νi
+ 1

vi
= 1. Let the differentiable fun. ϑi(=i)

on [0, ιi), where ιi ∈ (0, ∞), and we use ϑ′i as a differentiation of ϑi. Suppose ϑi(0) = 0 for
(i = 1, . . . , n). Then,

∫ ι1

0

∫ ι2

0
· · ·

∫ ιn

0

∏n
i=1 |ϑ

hi
i (=i)|

(
∑n

i=1
=i
vi

)∑n
i=1

1
vi

d=nd=n−1 . . . d=1

6 K
n

∏
i=1

( ∫ ιi

0
(ιi −=i)

∣∣ϑhi−1
i (=i)ϑ

′
i(=i)

∣∣νi d=i

) 1
νi

,

where

K =

(
n−

n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

hiι
1

vi
i .

Moreover, in 2012, Zhoa and Chung [3] proved the following theorem.

Theorem 4. Let νi > 1, be constants and 1
νi
+ 1

vi
= 1. Let ϑi(τ1i, . . . , τni) be real-valued nth

differentiable functions defined on [0, ι1i)× · · · × [0, ιni), where 0 6 ιji 6 δji, δji ∈ (0, ∞) and
i, j = 1, . . . , n. Suppose

ϑi(ι1i, . . . , ιni) =
∫ ι1i

0
· · ·

∫ ιni

0

∂n

∂τ1i . . . ∂τni
ϑi(τ1i, . . . , τni)dτni . . . dτ1i,

then
∫ δ11

0
· · ·

∫ δn1

0

∫ δ12

0
· · ·

∫ δn2

0
· · ·

∫ δ1n

0
· · ·

∫ δnn

0
(3)

∏n
i=1

( ∫ ι1i
0 · · ·

∫ ιni
0

∣∣∣∣ ∂n

∂τ1i ...∂τni
ϑi(τ1i, . . . , τni)

∣∣∣∣
νi

dτni . . . dτ1i

) 1
νi

(
∑n

i=1

[
ι1i ...ιni

]
vi

)∑n
i=1

1
vi

dι11 . . . dιn1dι12 . . . dιn2 . . . dι1n . . . dιnn

6 N
n

∏
i=1

( ∫ δ1i

0
· · ·

∫ δni

0

n

∏
j=1

(δji − ιji)

∣∣∣∣
∂n

∂ι1i . . . ∂ιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣
νi

dιni . . . dι1i

) 1
νi

,

where

N =

(
n−

n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

[
δ1i . . . δni

] 1
vi .

Pachappte [4] proved the following one:

k

∑
m=1

r

∑
n=1

Φ(am)Ψ(bn)

m + n
6 M(k, r)

( k

∑
m=1

(k−m + 1)
(

pmΦ
(∇am

pm

)2) 1
2
)

(4)

×
( r

∑
n=1

(r− n + 1)
(

qnΨ
(∇bn

qn

)2) 1
2
)

,

where

M(k, r) =
1
2

( k

∑
m=1

(
Φ(Pm)

pm

)2) 1
2
( r

∑
n=1

(
Ψ(Qn)

Qn

)2) 1
2
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∫ ϑ

0

∫ ς

0

Φ(z(s))Ψ(g(=))
s += dsdt 6 L(ϑ, ς)

( ∫ ϑ

0
(ϑ− s)

(
p(s)Φ

(
z′(s)
p(s)

)2

ds
) 1

2
)

×
( ∫ ς

0
(ς−=)

(
q(=)Ψ

(
g′(=)
q(=)

)2

dt
) 1

2
)

(5)

where

L(ϑ, ς) =
1
2

( ∫ ϑ

0

(
Φ(P(s))

P(s)

)2

ds
) 1

2
( ∫ ς

0

(
Ψ(Q(=))

Q(=)

)2

dt
) 1

2

.

Handley et al. [5] extended (4) and (5) as follows:

k1

∑
m1=1

· · ·
kn

∑
mn=1

∏n
`=1 Φ`(a`,m`

)
(

∑n
`=1 γ′`m`

)γ′ 6 M(k1, . . . , kn)
n

∏
`=1

( k`

∑
m`=1

(k` −m` + 1)
(

p`,m`
Φ`

(∇a`,m`

p`,m`

) 1
γ`
)γ`

(6)

where

M(k1, . . . , kn) =
1

(γ′)γ′

n

∏
`=1

( k`

∑
m`=1

(
Φ`(P`,m`

)

P`,m`

) 1
γ′
`

)γ′`
,

and
∫ ϑ1

0
· · ·

∫ ϑn

0

∏n
`=1 Φ`(z(s`))(
∑n
`=1 γ′`s`

)γ′ ds1 . . . dsn

6 L(ϑ1, . . . , ϑn)
n

∏
`=1

( ∫ ϑ`

0
(ϑ` − s`)

(
p`(s`)Φ`

(
z′(s`)
p(s`)

) 1
γ`

ds`

)γ`

, (7)

where

L(ϑ1, . . . , ϑn) =
1

(γ′)γ′

n

∏
`=1

( ∫ ϑ`

0

(
Φ`(P`(s`))

P`(s`)

) 1
γ′
` ds`

)γ′`
.

In 2006, Zhao and Cheung [6] proved the following reverse inequality.
∫ ϑ1

0

∫ ς1

0
· · ·

∫ ϑn

0

∫ ςn

0

n

∏
`=1

Φ`(z`(s`,=`))(
1
γ′ ∑n

`=1 γ′`(s`=`)

)γ′ ds1d=1 . . . dsnd=n (8)

> G(ϑ1ς1, . . . , ϑnyn)

×
n

∏
`=1

( ∫ ϑ`

0

∫ ς`

0
(ϑ` − s`)(ς` −=`)

(
p`(s`)q`(=`)Φ`

(
D2D1z`(s`,=`)

p`(s`)q`(=`)

)) 1
γ`

ds`d=`

)γ`

where

G(ϑ1ς1, . . . , ϑnyn) =
n

∏
`=1

( ∫ ϑ`

0

∫ ς`

0

(
Φ`(P`(s`,=`))

P`(s`,=`)

) 1
γ′
` ds`d=`

)γ′`
.

and

P`(s`,=`) =
∫ =`

0

∫ s`

0
p`(ξ`)q`(τ`)dξ`dτ`. (9)
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In [7], Pachpatte studied the Hilbert version inequalities.

∫ ϑ

0

∫ ς

0

zh(s)Gl(=)
s += dsd= 6 1

2
hl(xy)

1
2

( ∫ ϑ

0
(ϑ− s)

(
zh−1(s)z(s)

)2

ds
) 1

2

×
( ∫ ς

0
(ς−=)

(
Gl−1g(=)

)2

d=
) 1

2

, (10)

and

∫ ϑ

0

∫ ς

0

Φ(z(s))Ψ(G(=))
s += dsd= 6 L(ϑ, ς)

( ∫ ϑ

0
(ϑ− s)

(
p(s)Φ

(
z(s)
p(s)

))2

ds
) 1

2

×
( ∫ ς

0
(ς−=)

(
q(=)Ψ

(
g(=)
q(=)

))2

d=
) 1

2

(11)

where

L(ϑ, ς) =
1
2

( ∫ ϑ

0

(
Φ(P(s))

P(s)

)2

ds
) 1

2
( ∫ ς

0

(
Ψ(Q(=))

Q(=)

)2

d=
) 1

2

,

and

∫ ϑ

0

∫ ς

0

P(s)Q(=)Φ(z(s))Ψ(G(=))
s += dsd= 6 1

2
(xy)

1
2

( ∫ ϑ

0
(ϑ− s)

(
p(s)Φ

(
z(s)

))2

ds
) 1

2

×
( ∫ ς

0
(ς−=)

(
q(=)Ψ

(
g(=)

))2

d=
) 1

2

. (12)

∫ ϑ1

0

∫ ς1

0
· · ·

∫ ϑn

0

∫ ςn

0

∏n
`=1 Φ`(z`(s`,=`))

(
γ ∑n

`=1
1

γ`
(s`)(=`)

) 1
γ

ds1d=1 . . . dsnd=n (13)

> L(ϑ1ς1, . . . , ϑnyn)

×
n

∏
`=1

( ∫ ϑ`

0

∫ ς`

0
(ϑ` − s`)(ς` −=`)

(
p`(s`,=`)Φ`

(
z`(s`,=`)

p`(s`,=`)

))β`

ds`d=`

) 1
β`

.

where

L(ϑ1ς1, . . . , ϑnyn) =
n

∏
`=1

( ∫ ϑ`

0

∫ ς`

0

(
Φ`(P`(s`,=`))

P`(s`,=`)

)γ`

ds`d=`

) 1
γ`

.

In [8–10], Yang et al. established some important extensions of a Hardy–Hilbert-type
inequality by using the weight coefficient method and techniques of real analysis.

All of the aforementioned findings hold true for both continuous and discrete domains.
The purpose of the current research is to provide new, more general conclusions to the
time-scale-based disparities previously established. Supreme outcomes, from which many
other previous and current results may be taken, would be produced in this way. See the
following publications for various dynamic inequalities, integrals of Hilbert’s kind, and
other categories of inequalities on time scales [11–23].

We hope that the reader has a sufficient background on the nabla conformable frac-
tional on time scales. S. Hilger [24] introduced the time scale theory in 1988 as a way to
combine continuous and discrete analysis. A time scale T is an arbitrary nonempty closed
subset of the set of real numbers R. In the manuscript, we use the notation ∇(γ,a) for the
nabla conformable fractional derivative on time scales instead of ∇γ

a for simplification. For
more details on nabla conformable fractionals, please see [25].
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Definition 1 (Conformable nabla derivative). Given a function f : T −→ R and a ∈ T, f is
(γ, a)-nabla differentiable at ξ > a, if it is nabla differentiable at ξ, and its (γ, a)-nabla derivative is
defined by

∇γ
a f (ξ) = Ĝ1−γ(ξ, a) f∇(ξ) ξ > a, (14)

Definition 2 (Conformable nabla integral). Assume that 0 < γ 6 1, a, ξ1, ξ2 ∈ T, a 6 ξ1 6
ξ2 and f ∈ Cld(T), and the function f is called (γ, a)-nabla integrable on [ξ1, ξ2] if

∇−γ
a f (ξ) =

∫ ξ2

ξ1

f (ξ)∇γ
a ξ

=
∫ ξ2

ξ1

f (ξ)Ĝγ−1(σ
γ−1(ξ), a)∇ξ, (15)

exists and is finite.

Lemma 1 (Dynamic Hölder’s Inequality [14]). Let u, v ∈ Twith u < v. If ϑ, θ ∈ CC1
rd([u, v]T×

[u, v]T,R) be integrable functions and 1
ν + 1

v = 1 with ν > 1. Then,

∫ v

u

∫ v

u
|ϑ(r, δ)θ(r, δ)|∇(γ,a)r∇(γ,a)δ ≤

[ ∫ v

u

∫ v

u
|ϑ(r, δ)|ν∇(γ,a)r∇(γ,a)δ

] 1
ν

×
[ ∫ v

u

∫ v

u
|θ(r, δ)|v∇(γ,a)r∇(γ,a)δ

] 1
v

. (16)

This inequality is reversed if 0 < ν < 1 and if ν < 0 or v < 0.

In this study, we prove a few novel conformable fractional dynamic inequalities of the
Hardy–Hilbert type on time scales, which are driven by Theorems 3 and 4 given above. We
will also extract the discrete counterparts of the continuous Hilbert inequalities that are
present in some special situations of our results. We are now prepared to state and support
our key findings.

2. Main Results

Theorem 5. Let T be a time scale with δ0, ιi, =i, δi ∈ T, (i = 1, . . . , n). Let hi > 1, νi, vi > 1 be
constants and 1

νi
+ 1

vi
= 1. Let ∇(γ,a)- differentiable functions ϑi(=i) be decreasing on [δ0, ιi)T,

where ιi ∈ (0, ∞). Suppose ϑi(δ0) = 0. Then,

∫ ι1

δ0

∫ ι2

δ0

· · ·
∫ ιn

δ0

∏n
i=1 |ϑ

hi
i (=i)|

(
∑n

i=1
(=i−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)=n∇(γ,a)=n−1 . . .∇(γ,a)=1

6 K
n

∏
i=1

( ∫ ιi

δ0

(ρ(ιi)− ρ(=i))
∣∣ϑhi−1

i (=i)ϑ
∇(γ,a)

i (=i)
∣∣νi∇(γ,a)=i

) 1
νi

, (17)

where

K = K(ι1, . . . , ιn) =

(
n−

n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

hi(ιi − δ0)
1

vi .

Proof. From Hölder inequality (16), one can see that

n

∏
i=1
|ϑhi

i (=i)| 6
n

∏
i=1

hi

∫ =i

δ0

∣∣ϑhi−1
i (τi)ϑ

∇(γ,a)

i (τi)
∣∣∇(γ,a)τi (18)

6
n

∏
i=1

hi(=i − δ0)
1

vi

( ∫ =i

δ0

∣∣ϑhi−1
i (τi)ϑ

∇(γ,a)

i (τi)
∣∣νi∇(γ,a)τi

) 1
νi

.
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Using the inequality for the means [26]

( n

∏
i=1

λ
1

vi
i

) 1
∑n

i=1
1

vi 6 1

∑n
i=1

1
vi

n

∑
i=1

λi
vi

, λi > 0 (i = 1, . . . , n), (19)

we have

∏n
i=1 |ϑ

hi
i (=i)|

(
∑n

i=1
(=i−δ0)

vi

)∑n
i=1

1
vi

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

hi

( ∫ =i

δ0

∣∣ϑhi−1
i (τi)ϑ

∇(γ,a)

i (τi)
∣∣νi∇(γ,a)τi

) 1
νi

. (20)

Using the integration of (20) on =i from δ0 to ιi (i = 1, . . . , n), employing the inequality
of Hölder’s yields

∫ ι1

δ0

∫ ι2

δ0

· · ·
∫ ιn

δ0

∏n
i=1 |ϑ

hi
i (=i)|

(
∑n

i=1
(=i−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)=n∇(γ,a)=n−1 . . .∇(γ,a)=1

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

hi

∫ ιi

δ0

( ∫ =i

δ0

∣∣ϑhi−1
i (τi)ϑ

∇(γ,a)

i (τi)
∣∣νi∇(γ,a)τi

) 1
νi

6 K
n

∏
i=1

( ∫ ιi

δ0

∫ =i

δ0

∣∣ϑhi−1
i (τi)ϑ

∇(γ,a)

i (τi)
∣∣νi∇(γ,a)τi∇(γ,a)=i

) 1
νi

= K
n

∏
i=1

( ∫ ιi

δ0

(ιi −=i)
∣∣ϑhi−1

i (=i)ϑ
∇(γ,a)

i (=i)
∣∣νi∇(γ,a)=i

) 1
νi

. (21)

By exploiting the fact that ιi 6 ρ(ιi), we find that

∫ ι1

δ0

∫ ι2

δ0

· · ·
∫ ιn

δ0

∏n
i=1 |ϑ

hi
i (=i)|

(
∑n

i=1
(=i−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)=n∇(γ,a)=n−1 . . .∇(γ,a)=1

6 K
n

∏
i=1

( ∫ ιi

δ0

(ρ(ιi)− ρ(=i))
∣∣ϑhi−1

i (=i)ϑ
∇(γ,a)

i (=i)
∣∣νi∇(γ,a)=i

) 1
νi

.

This concludes the evidence.

Remark 1. In Theorem 5, taking T = Z, γ = 1, hi = 1, we obtain the results thanks to the authors
of ([2], Theorem 1.1).

Remark 2. In Theorem 5, taking T = R, γ = 1, we obtain the results thanks to the authors of ([2],
Theorem 1.3).

Corollary 1. In Theorem 5, taking n = 2, and h1 = h2 = 1, if ν1, ν2 > 1 are such that 1
ν1
+ 1

ν2
> 1

and 0 < λ = 2− 1
ν1
− 1

ν2
= 1

v1
+ 1

v2
6 1, inequality (17) reduces to
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∫ ι1

δ0

∫ ι2

δ0

|ϑ1(=1)||ϑ2(=2)|(
v2(=1 − δ0) + v1(=2 − δ0)

)λ
∇(γ,a)=2∇(γ,a)=1 6 1

(λv1v2)λ
(ι1 − δ0)

1
v1 (ι2 − δ0)

1
v2 (22)

×
( ∫ ι1

δ0

(ρ(ι1)− ρ(=1))|ϑ∇
(γ,a)

1 (=1)|ν1∇(γ,a)=1

) 1
ν1
( ∫ ι2

δ0

(ρ(ι2)− ρ(=2))|ϑ∇
(γ,a)

2 (=2)|ν2∇(γ,a)=2

) 1
ν2

.

Remark 3. In a special case, taking T = R, γ = 1, in (22), we have that

∫ ι1

0

∫ ι2

0

|ϑ1(=1)||ϑ2(=2)|(
v2=1 + v1=2

)λ
d=2d=1 6 1

(λv1v2)λ
(ι1)

1
v1 (ι2)

1
v2

×
( ∫ ι1

0
(ι1 −=1)|ϑ′1(=1)|ν1 d=1

) 1
ν1
( ∫ ι2

0
(ι2 −=2)|ϑ′2(=2)|ν2 d=2

) 1
ν2

, (23)

which is an interesting variation of the inequality (2).

Remark 4. In a special case, taking T = Z, γ = 1, in (22), we have that

m1

∑
=1=1

m2

∑
=2=1

|a1(=1)||a2(=2)|(
v2=1 + v1=2

)λ
6 1

(λv1v2)λ
(m1)

1
v1 (m2)

1
v2

×
( m1

∑
=1=1

(m1 −=1 + 1)|∇(γ,a)a1(=1)|ν1

) 1
ν1
( m2

∑
=2=1

(m2 −=2 + 1)|∇(γ,a)a2(=2)|ν2

) 1
ν2

, (24)

which is an interesting variation of the inequality (1).

Corollary 2. In Corollary 1, if λ = 1, then 1
ν1

+ 1
ν2

= 1
v1

+ 1
v2

= 1 and we take ν1 = v2,
ν2 = v1. In this case, inequality (22) reduces to

∫ ι1

δ0

∫ ι2

δ0

|ϑ1(=1)||ϑ2(=2)|
v2(=1 − δ0) + v1(=2 − δ0)

∇(γ,a)=2∇(γ,a)=1 6 1
ν1v1

(ι1 − δ0)
ν1−1

ν1 (ι2 − δ0)
v1−1

v1 (25)

×
( ∫ ι1

δ0

(ρ(ι1)− ρ(=1))|ϑ∇
(γ,a)

1 (=1)|ν1∇(γ,a)=1

) 1
ν1
( ∫ ι2

δ0

(ρ(ι2)− ρ(=2))|ϑ∇
(γ,a)

2 (=2)|v1∇(γ,a)=2

) 1
v1

.

Remark 5. In Corollary 2, if T = R, γ = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 2).

Remark 6. In Corollary 2, if T = Z, γ = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 1).

Theorem 6. Let T be a time scale with δ0, ιi, ςi, =i, δi ∈ T, (i = 1, . . . , n). Let hi > 1, νi, vi > 1
be constants and 1

νi
+ 1

vi
= 1. Let the ∇(γ,a)-differentiable fun. ϑi(=i, δi) be decreasing funs. on

[δ0, ιi)T × [δ0, ςi)T and ϑi(δ0, δi) = ϑi(=i, δ0) = 0, for (i = 1, . . . , n). Partial derivatives of ϑi

are indicated by ϑ
∇(γ,a)

1
i , ϑ

∇(γ,a)
2

i , ϑ
∇(γ,a)

12
i = ϑ

∇(γ,a)
21

i . Let

(
ϑ

hi
i (=i, δi)

)∇(γ,a)
1 ∇(γ,a)

2 6
(
hiϑ

hi−1
i (=i, δi).ϑ

∇(γ,a)
1

i (=i, δi)
)∇(γ,a)

2 = ϑ
∇(γ,a)

12
i (=i, δi).

Then,
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∫ ι1

δ0

∫ ς1

δ0

· · ·
∫ ιn

δ0

∫ ςn

δ0

∏n
i=1 |ϑ

hi
i (=i, δi)|

(
∑n

i=1
(=i−δ0)(δi−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)δn∇(γ,a)=n . . .∇(γ,a)δ1∇(γ,a)=1 (26)

6 C
n

∏
i=1

( ∫ ιi

δ0

∫ ςi

δ0

(ρ(ιi)− ρ(=i))(ρ(ςi)− ρ(δi))|ϑ
∇(γ,a)

12
i (=i, δi)|νi∇(γ,a)δi∇(γ,a)=i

) 1
νi

,

where

C = C(ι1ς1, . . . , ιnςn) =

(
n−

n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

[
(ιi − δ0)(ςi − δ0)

] 1
vi .

Proof. We can write

ϑ
hi
i (=i, δi) = ϑ

hi
i (=i, δi)− ϑ

hi
i (δ0, δi)− ϑ

hi
i (=i, δ0) + ϑ

hi
i (δ0, δ0)

=
∫ =i

δ0

(
ϑ

hi
i (ξi, δi)

)∇(γ,a)
1 ∇(γ,a)

1 ξi −
∫ =i

δ0

(
ϑ

hi
i (ξi, δ0)

)∇(γ,a)
1 ∇(γ,a)ξi

=
∫ =i

δ0

[(
ϑ

hi
i (ξi, δi)

)∇(γ,a)
1 −

(
ϑ

hi
i (ξi, δ0)

)∇(γ,a)
1
]
∇(γ,a)ξi

6
∫ =i

δ0

∫ δi

δ0

(
hiϑ

hi−1
i (ξi, ηi).ϑ

∇(γ,a)
1

i (ξi, ηi)
)∇(γ,a)

2 ∇(γ,a)ηi∇(γ,a)ξi

=
∫ =i

δ0

∫ δi

δ0

ϑ
∇(γ,a)

12
i (ξi, ηi)∇(γ,a)ηi∇(γ,a)ξi. (27)

By (27) applying (16) and (28), we obtain

n

∏
i=1
|ϑhi

i (=i, δi)| 6
n

∏
i=1

∫ =i

δ0

∫ δi

δ0

|ϑ∇
(γ,a)
12

i (ξi, ηi)|∇(γ,a)
1 ηi∇(γ,a)

2 ξi

6
n

∏
i=1

[
(=i − δ0)(δi − δ0)

] 1
vi

( ∫ =i

δ0

∫ δi

δ0

|ϑ∇
(γ,a)
12

i (ξi, ηi)|νi∇(γ,a)ηi∇(γ,a)ξi

) 1
νi

.

(28)

Using inequality (19), we find that

∏n
i=1 |ϑ

hi
i (=i, δi)|

(
∑n

i=1
(=i−δ0)(δi−δ0)

vi

)∑n
i=1

1
vi

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

( ∫ =i

δ0

∫ δi

δ0

|ϑ∇
(γ,a)
12

i (ξi, ηi)|νi∇(γ,a)ηi∇(γ,a)ξi

) 1
νi

. (29)

Integrating (29) with =i and δi, and applying (16) and Fubini’s theorem, yields
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∫ ι1

δ0

∫ ς1

δ0

· · ·
∫ ιn

δ0

∫ ςn

δ0

∏n
i=1 |ϑ

hi
i (=i, δi)|

(
∑n

i=1
(=i−δ0)(δi−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)δn∇(γ,a)=n . . .∇(γ,a)δ1∇(γ,a)=1

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n

×
n

∏
i=1

( ∫ ιi

δ0

∫ ςi

δ0

( ∫ =i

δ0

∫ δi

δ0

|ϑ∇
(γ,a)
12

i (ξi, ηi)|νi∇(γ,a)ηi∇(γ,a)ξi

) 1
νi∇(γ,a)δi∇(γ,a)=i

)

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n

×
n

∏
i=1

[
(ιi − δ0)(ςi − δ0)

] 1
vi

( ∫ ιi

δ0

∫ ςi

δ0

( ∫ =i

δ0

∫ δi

δ0

|ϑ∇
(γ,a)
12

i (ξi, ηi)|νi∇(γ,a)ηi∇(γ,a)ξi

)
∇(γ,a)δi∇(γ,a)=i

) 1
νi

= C
n

∏
i=1

( ∫ ιi

δ0

∫ ςi

δ0

(ιi −=i)(ςi − δi)|ϑ
∇(γ,a)

12
i (=i, δi)|νi∇(γ,a)δi∇(γ,a)=i

) 1
νi

. (30)

By exploiting the fact that ιi 6 ρ(ιi), we obtain

∫ ι1

δ0

∫ ς1

δ0

· · ·
∫ ιn

δ0

∫ ςn

δ0

∏n
i=1 |ϑ

hi
i (=i, δi)|

(
∑n

i=1
(=i−δ0)(δi−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)δn∇(γ,a)=n . . .∇(γ,a)δ1∇(γ,a)=1

6 C
n

∏
i=1

( ∫ ιi

δ0

∫ ςi

δ0

(ρ(ιi)− ρ(=i))(ρ(ςi)− ρ(δi))|ϑ
∇(γ,a)

12
i (=i, δi)|νi∇(γ,a)δi∇(γ,a)=i

) 1
νi

.

This concludes the evidence.

Remark 7. In Theorem 6, if we take T = Z, γ = 1, hi = 1, we obtain the results thanks to the
authors of ([2], Theorem 1.2).

Remark 8. In Theorem 6, supposing that T = R, γ = 1, we obtain the results thanks to the
authors of ([2], Theorem 1.4).

Corollary 3. Taking n = 2 and h1 = h2 = 1 in Theorem 6, we have

ϑ
∇(γ,a)

12
1 (=1, δ1) = ϑ∇

(γ,a)
2 ∇(γ,a)

1 (=1, δ1), ϑ
∇(γ,a)

12
2 (=1, δ1) = ϑ∇

(γ,a)
2 ∇(γ,a)

1 (=2, δ2).

Moreover, if ν1, ν2 > 1 satisfy 1
ν1

+ 1
ν2

> 1 and 0 < λ = 2− 1
ν1
− 1

ν2
= 1

v1
+ 1

v2
6 1,

inequality (26) reduces to
∫ ι1

δ0

∫ ς1

δ0

( ∫ ι2

δ0

∫ ς2

δ0

|ϑ1(=1, δ1)||ϑ2(=2, δ2)|(
ν1(=1 − δ0)(δ1 − δ0) + v1(=2 − δ0)(δ2 − δ0)

)λ
∇(γ,a)=2∇(γ,a)δ2

)
∇(γ,a)=1∇(γ,a)δ1

6 1
(
λv1v2

)λ

[
(ι1 − δ0)(ς1 − δ0)

] 1
v1
[
(ι2 − δ0)(ς2 − δ0)

] v1−1
v1

×
( ∫ ι1

δ0

∫ ς1

δ0

(ρ(ι1)− ρ(=1))(ρ(ς1)− ρ(δ1))|ϑ∇
(γ,a)
2 ∇(γ,a)

1 (=1, δ1)|ν1∇(γ,a)=1∇(γ,a)δ1

) 1
ν1

(31)

( ∫ ι2

δ0

∫ ς2

δ0

(ρ(ι2)− δ0)(ρ(ς2)− δ0)|ϑ∇
(γ,a)
2 ∇(γ,a)

1 (=2, δ2)|ν2∇(γ,a)=2∇(γ,a)δ2

) 1
ν2

.
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Remark 9. In a unique scenario, if we take T = R in Corollary 3, the inequality (31) reduces to

∫ ι1

0

∫ ς1

0

( ∫ ι2

0

∫ ς2

0

|ϑ1(=1, δ1)||ϑ2(=2, δ2)|(
ν1=1δ1 + v1=2δ2

)λ
d=2dδ2

)
d=1dδ1

6 1
(
λv1v2

)λ

[
ι1ς1

] 1
v1
[
ι2ς2

] v1−1
v1

×
( ∫ ι1

0

∫ ς1

0
(ι1 −=1)(ς1 − δ1)|D1D2ϑ1(=1, δ1)|ν1 d=1dδ1

) 1
ν1

(32)

×
( ∫ ι2

0

∫ ς2

0
(ι2 −=2)(ς2 − δ2)|D1D2ϑ2(=2, δ2)|ν2 d=2dδ2

) 1
ν2

,

Remark 10. In a unique scenario, if we take T = Z in Corollary 3, the inequality (31) reduces to

m1

∑
=1=1

n1

∑
δ1=1

( m2

∑
=2=1

n2

∑
δ2=1

|a1(=1, δ1)||a2(=2, δ2)|(
ν1=1δ1 + v1=2δ2

)λ

)

6 1
(
λv1v2

)λ

[
m1n1

] 1
v1
[
m2n2

] v1−1
v1

×
( m1

∑
=1=1

n1

∑
δ1=1

(n1 − δ1)(m1 −=1)|∇(γ,a)
1 ∇(γ,a)

2 a1(=1, δ1)|ν1

) 1
ν1

(33)

×
( m2

∑
=2=1

n2

∑
δ2=1

(n2 − δ2)(m2 −=2))|∇(γ,a)
1 ∇(γ,a)

2 a2(=2, δ2)|ν2

) 1
ν2

,

Corollary 4. In Corollary 3, if λ = 1, then 1
ν1

+ 1
ν2

= 1
v1

+ 1
v2

= 1, and we take ν1 = v2,
ν2 = v1. In this case, the inequality (31) reduces to

∫ ι1

δ0

∫ ς1

δ0

( ∫ ι2

δ0

∫ ς2

δ0

|ϑ1(=1, δ1)||ϑ2(=2, δ2)|(
ν1(=1 − δ0)(δ1 − δ0) + v1(=2 − δ0)(δ2 − δ0)

)∇(γ,a)=2∇(γ,a)δ2

)
∇(γ,a)=1∇(γ,a)δ1

6 1
ν1v1

[
(ι1 − δ0)(ς1 − δ0)

] ν1−1
ν1
[
(ι2 − δ0)(ς2 − δ0)

] v1−1
v1

×
( ∫ ι1

δ0

∫ ς1

δ0

(ρ(ι1)− ρ(=1))(ρ(ς1)− ρ(δ1))|ϑ∇
(γ,a)
2 ∇(γ,a)

1 (=1, δ1)|ν1∇(γ,a)=1∇(γ,a)δ1

) 1
ν1

(34)

( ∫ ι2

δ0

∫ ς2

δ0

(ρ(ι2)− δ0)(ρ(ς2)− δ0)|ϑ∇
(γ,a)
2 ∇(γ,a)

1 (=2, δ2)|ν2∇(γ,a)=2∇(γ,a)δ2

) 1
ν2

.

Remark 11. In Corollary 4, if T = R, γ = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 4).

Remark 12. In Corollary 4, if T = Z, γ = 1, we obtain an equivalent formulation of the inequality
that Pachpatte presented in ([27], Theorem 3).

Theorem 7. Let T be a time scale with δ0, ιij, τij, δij ∈ T, (i, j = 1, . . . , n). Let νi, vi > 1, be
constants and 1

νi
+ 1

vi
= 1. Let ϑi(τ1i, . . . , τni) be real-valued nth ∇(γ,a)-differentiable functions
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also defined on [δ0, ι1i)T × · · · × [δ0, ιni)T, where δ0 6 ιji 6 δji, δji ∈ (0, ∞) and i, j = 1, . . . , n.
Suppose

ϑi(ι1i, . . . , ιni) =
∫ ι1i

δ0

· · ·
∫ ιni

δ0

∂n

∇(γ,a)τ1i . . .∇(γ,a)τni
ϑi(τ1i, . . . , τni)∇(γ,a)τni . . .∇(γ,a)τ1i,

then
∫ δ11

δ0

· · ·
∫ δn1

δ0

∫ δ12

δ0

· · ·
∫ δn2

δ0

· · ·
∫ δ1n

δ0

· · ·
∫ δnn

δ0

(35)

∏n
i=1

( ∫ ι1i
δ0
· · ·
∫ ιni

δ0

∣∣∣∣ ∂n

∇(γ,a)τ1i ...∇(γ,a)τni
ϑi(τ1i . . . τni)

∣∣∣∣
νi

∇(γ,a)τni . . .∇(γ,a)τ1i

) 1
νi

(
∑n

i=1

[
(ι1i−δ0)...(ιni−δ0)

]
vi

)∑n
i=1

1
vi

∇(γ,a)ι11 . . .∇(γ,a)ιn1 . . .∇(γ,a)ι12 . . .∇(γ,a)ιn2 . . .∇(γ,a)ι1n . . .∇(γ,a)ιnn

6 N
n

∏
i=1

( ∫ δ1i

δ0

· · ·
∫ δni

δ0

n

∏
j=1

(ρ(δji)− ιji)

∣∣∣∣
∂n

∇(γ,a)ι1i . . .∇(γ,a)ιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣
νi

∇(γ,a)ι1i . . .∇(γ,a)ιni

) 1
νi

,

where

N = N(δ1i, . . . , δni)

(
n−

n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

[
(δ1i − δ0) . . . (δni − δ0)

] 1
vi .

Proof. From the hypothesis of Theorem 7, we have

|ϑi(ι1i, . . . , ιni)| 6
∫ ι1i

δ0

· · ·
∫ ιni

δ0

∣∣∣∣
∂n

∇(γ,a)τ1i . . .∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣∇(γ,a)τni . . .∇(γ,a)τ1i. (36)

On the other hand, by using (19) and Hölder’s dynamic inequality, we obtain
n

∏
i=1
|ϑi(ι1i, . . . , ιni)|

6
n

∏
i=1

∫ ι1i

δ0

· · ·
∫ ιni

δ0

∣∣∣∣
∂n

∇(γ,a)τ1i . . .∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣∇(γ,a)τni . . .∇(γ,a)τ1i

6
n

∏
i=1

[
(ι1i − δ0) . . . (ιni − δ0)

] 1
vi

×
( ∫ ι1i

δ0

· · ·
∫ ιni

δ0

∣∣∣∣
∂n

∇(γ,a)τ1i, . . . ,∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣
νi

∇(γ,a)τni . . .∇(γ,a)τ1i

) 1
νi

6

(
∑n

i=1

[
(ι1i−δ0)...(ιni−δ0)

]
vi

)∑n
i=1

1
vi

(
n−∑n

i=1
1
νi

)n−∑n
i=1

1
νi

×
n

∏
i=1

( ∫ ι1i

δ0

· · ·
∫ ιni

δ0

∣∣∣∣
∂n

∇(γ,a)τ1i . . .∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣
νi

∇(γ,a)τni . . .∇(γ,a)τ1i

) 1
νi

. (37)

Divide (37) by
(

∑n
i=1

[
(ι1i−δ0)...(ιni−δ0)

]
vi

)∑n
i=1

1
vi

, and then integrate it over ιji from δ0

to δji (i, j = 1, . . . , n), respectively; using the dynamic Hölder inequality and using the
information ρ(n) > n, we obtain
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∫ δ11

δ0

· · ·
∫ δn1

δ0

∫ δ12

δ0

· · ·
∫ δn2

δ0

· · ·
∫ δ1n

δ0

· · ·
∫ δnn

δ0

∏n
i=1

( ∫ ι1i
δ0
· · ·
∫ ιni

δ0

∣∣∣∣ ∂n

∇(γ,a)τ1i ...∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣
νi

∇(γ,a)τni . . .∇(γ,a)τ1i

) 1
νi

(
∑n

i=1

[
(ι1i−δ0)...(ιni−δ0)

]
vi

)∑n
i=1

1
vi

∇(γ,a)ι11 . . .∇(γ,a)ιn1∇(γ,a)ι12 . . .∇(γ,a)ιn2 . . .∇(γ,a)ι1n . . .∇(γ,a)ιnn

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n

×
n

∏
i=1

∫ δ1i

δ0

· · ·
∫ δni

δ0

( ∫ ι1i

δ0

· · ·
∫ ιni

δ0

∣∣∣∣
∂n

∇(γ,a)τ1i, . . . ,∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣
νi

∇(γ,a)τni . . .∇(γ,a)τ1i

) 1
νi ∇(γ,a)ιni . . .∇(γ,a)ι1i

6
(

n−
n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

[
(δ1i − δ0) . . . (δni − δ0)

] 1
vi

( ∫ δ1i

δ0

· · ·
∫ δni

δ0

( ∫ ι1i

δ0

· · ·
∫ ιni

δ0

∣∣∣∣
∂n

∇(γ,a)τ1i . . .∇(γ,a)τni
ϑi(τ1i, . . . , τni)

∣∣∣∣
νi

∇(γ,a)τni . . .∇(γ,a)τ1i

)
∇(γ,a)ιni . . .∇(γ,a)ι1i

) 1
νi

= N
n

∏
i=1

( ∫ δ1i

δ0

· · ·
∫ δni

δ0

n

∏
j=1

(δji − ιji)

∣∣∣∣
∂n

∇(γ,a)ι1i . . .∇(γ,a)ιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣
νi

∇(γ,a)ιni . . .∇(γ,a)ι1i

) 1
νi

6 N
n

∏
i=1

( ∫ δ1i

δ0

· · ·
∫ δni

δ0

n

∏
j=1

(ρ(δji)− ιji)

∣∣∣∣
∂n

∇(γ,a)ι1i . . .∇(γ,a)ιni
ϑi(ι1i, . . . , ιni)

∣∣∣∣
νi

∇(γ,a)ιni . . .∇(γ,a)ι1i

) 1
νi

.

This concludes the evidence.

Remark 13. In Theorem 7, supposing Z = T, andwithγ = 1, we obtain ([3], Theorem 2.1).

Remark 14. In Theorem 7, supposing R = T, andwithγ = 1, we obtain ([3], Theorem 2.2).

Corollary 5. Let ϑi(ι1i, . . . , ιni) change to ϑi(=i) in Theorem 7 and in view of ϑi(δ0) = 0,
(i = 1, . . . , n), and then

∫ ι1

δ0

∫ ι2

δ0

· · ·
∫ ιn

δ0

∏n
i=1 |ϑi(=i)|

(
∑n

i=1
(=i−δ0)

vi

)∑n
i=1

1
vi

∇(γ,a)=n∇(γ,a)=n−1 . . .∇(γ,a)=1

6 R
n

∏
i=1

( ∫ ιi

δ0

(ρ(ιi)− ρ(=i))
∣∣ϑ∇(γ,a)

i (=i)
∣∣νi∇(γ,a)τi∇(γ,a)=i

) 1
νi

, (38)

where

R =

(
n−

n

∑
i=1

1
νi

)∑n
i=1

1
νi
−n n

∏
i=1

(ιi − δ0)
1

vi .

Remark 15. Taking n = 2, in Corollary 5, if ν1, ν2 > 1 are such that 1
ν1
+ 1

ν2
> 1 and 0 < λ =

2− 1
ν1
− 1

ν2
= 1

v1
+ 1

v2
6 1, inequality (38) reduces to inequality (22).

3. Conclusions

In this work, we used Holder’s inequality to prove a number of Hilbert’s inequalities
on the time scale. Some integer and discrete inequalities were obtained as special cases of
the results. This work builds on the multiple inequalities reported by Pachpatte in 1998
and 2000 and by Handley et al. and by Zhao et al. in 2012. Moreover, as a future work,
we intend to extend these inequalities by 123 using a-conformable calculus and also by
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employing alpha-conformable calculus on time scales. Moreover, we will try to obtain the
diamond alpha version for these results.
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Abstract: In this paper, we aim to study the monotonic properties of the solutions of a class of
neutral delay differential equations. The importance of this study lies in the fact that the monotonic
properties largely control the study of the oscillation and asymptotic behaviour of the solutions to
delay differential equations. Then, by using the new properties, we create improved criteria for
testing the oscillation of solutions to the studied equation. We also find new criteria that can be
applied more than once. Moreover, we discuss the importance and novelty of the results through the
application to a special case of the studied equation.

Keywords: delay differential equation; neutral delay; monotonic properties; oscillation

MSC: 34C10; 34K11

1. Introduction

Differential equations are the most important link between mathematics and applied
sciences, biology, engineering and others. Differential equation models that describe differ-
ent phenomena enable us to study, analyse and understand these phenomena. However,
this requires either solving these models or studying the properties of their solutions.
The first aspect is covered by analytical or numerical methods by finding exact or approxi-
mate solutions to these models. As for the other side, it is covered by the qualitative theory,
which is concerned with investigating the qualitative characteristics of solutions such as
oscillation, periodicity, stability, and others.

Oscillation theory is the theory concerned with the investigation of the asymptotic and
oscillatory behaviour of solutions to differential equations. This theory is concerned with
finding conditions that confirm that all solutions of the equation are oscillatory, guarantee
the existence of an oscillatory solution, provide an asymptotic property for non-oscillatory
solutions, or study the distance between the zeros of oscillatory solutions.

Neutral differential equations (NDEs) are one type of delay differential equation
(DDEs) in which the highest derivative appears on the solution with and without delay.
In electrical circuits containing lossless transmission lines and in the study of vibrating
masses, models of NDEs appear, see [1]. With the development of new models and the
significant technical and scientific advancement that the world is currently experiencing in
engineering, biology, and physics, interest in understanding the qualitative properties of
DDEs is growing, see [2–5].

In this work, we investigate the asymptotic behaviour of solutions to the even-order
NDEs of the form

dn

dsnU (s) + φ(s)x(δ(s)) = 0, (1)

where s ≥ s0, n ≥ 4 is even, and U = x + ϕ · (x ◦ β). We also assume the following conditions:

Axioms 2023, 12, 346. https://doi.org/10.3390/axioms12040346 https://www.mdpi.com/journal/axioms59
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(C1) ϕ and φ are continuous on [s0, ∞) and satisfy the conditions: 0 ≤ ϕ(s) ≤ ϕ0, φ(s) > 0,
and φ does not vanish identically on any half-line [s∗, ∞), for s∗ ≥ s0.

(C2) β and δ are continuous delay functions on [s0, ∞) and fulfil the conditions: β(s) ≤ s,
δ(s) ≤ s, δ′(s) ≥ 0 and lims→∞ β(s) = lims→∞ δ(s) = ∞.

For a solution of (1), we mean a real function x ∈ C([s∗, ∞)) for s∗ ≥ s0, which has the
property U ∈ Cn([s∗, ∞)) and x satisfies (1) on [s∗, ∞). We take into account these solutions
x of (1) such that sup{|x(s)| : s ≥ s1} > 0 for s1 ≥ s∗. A solution x of (1) is said to be
non-oscillatoryif it is eventually positive or negative; otherwise, it is said to be oscillatory.

The last decade has witnessed a great development in the study of the oscillatory
behaviour of different-order DDEs. Monographs [6–10] have collected the most important
results in the oscillation theory of DDEs up to the decade before last.

It is easy to notice the great development in the study of oscillations of second-order
DDEs. For example, Bohner et al. [11] and Džurina et al. [12] developed an improved
approach to study the oscillation of NDE

(
r(s)

(
U ′(s)

)α
)′

+ φ(s)xα(δ(s)) = 0, (2)

in the non-canonical case. Later, Grace et al. [13] extended the approach in [11] to the
canonical case of NDE (2). Moaaz et al. [14] presented more efficient criteria for testing
the oscillation of NDE (2) in the canonical case based on the definition of two Riccati
substitutions. Whereas more recently, Bohner et al. [15] and Jadlovská [16] obtained sharp
criteria to ensure the oscillation of NDE (2).

On the other hand, the study of oscillation of higher-order DDEs has also received
great attention recently. Agarwal et al. [17] and Li and Rogovchenko [18] introduced criteria
for the oscillation of NDE (1). Therefore, from [18], we mention the following result:

Theorem 1. Assume that β′(s) ≥ 0 and there are functions κ ∈ C([s0, ∞)) and θ ∈ C1([s0, ∞))
such that θ′(s) ≥ 0, κ(s)→ ∞ and θ(s)→ ∞ as s→ ∞,

max{κ(s), θ(s)} ≤ δ(s) and max{κ(s), θ(s)} < β(s).

If

lim inf
s→∞

∫ s

β−1(δ(s))
φ(l)K1(δ(l))

(
β−1(κ(l))

)n−1
dl >

(n− 1)!
e

(3)

and

lim inf
s→∞

∫ s

β−1(δ(s))

(∫ ∞

l
φ(ν)(l − ν)n−3K2(δ(l))dν

)
β−1(δ(l))dl >

(n− 3)!
e

, (4)

then all solutions of (1) oscillate, where

K1(s) :=
1

ϕ(β−1(s))

[
1−

(
β−1(β−1(s)

))n−1

(β−1(s))n−1
ϕ(β−1(β−1(s)))

]
,

and

K2(s) :=
1

ϕ(β−1(s))

[
1− β−1(β−1(s)

)

β−1(s)ϕ(β−1(β−1(s)))

]
.

The oscillatory behaviour of solutions of the DDE

(
r(s)

(
x(n−1)(s)

)α)′
+ φ(s) f (x(δ(s))) = 0 (5)

has been studied by several techniques. In 2012, Baculikova et al. [19] derived criteria for
oscillation using comparative principles by comparing DDE (5) with three first-order equa-
tions, whereas Zhang et al. [20] and Li and Rogovchenko [21] used the Riccati substitution
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to obtain criteria for the oscillation of DDE (5) when f (x) = xβ. Moaaz and Muhib [22] used
general Riccati substitution to improve the results in [19,20] when n = 4. Moaaz et al. [23]
improved and simplified the oscillation criteria for (5).

In [24–27], the oscillation of NDE

(
r(s)

(
U (n−1)(s)

)α)′
+ φ(s) f (x(δ(s))) = 0, (6)

or special cases of it, has been studied. Zhang et al. [24] considered DDE (6) when r(s) = 1
and α = 1, and obtained conditions for oscillation of all solutions. By using the Riccati
transformation technique, Baculikova and Dzurina [25] studied the oscillatory behaviour
of (6), whereas Baculikova and Dzurina [26] were interested in studying the linear case of (6)
by using the comparison technique. Very recently, Salah et al. [27] presented a comparison
between the different approaches that relied on the comparison technique to study the
oscillation of solutions to (6).

In this article, we find new monotonic properties of a class of positive solutions to
DDE (1). Using these properties, we improve the relationship between the solution x
and its corresponding function U . To increase positive solutions, the traditional relation
x > (1− ϕ)U is usually used which requires that ϕ < 1 be specified. Furthermore,
the works that studied the case ϕ ≥ 1 imposed restrictions on the delay functions in the
form β ◦ δ = δ ◦ β. Our results consider the case ϕ ≥ 1 but do not require the condition
β ◦ δ = δ ◦ β. We use the comparison technique to obtain the oscillation theorems that
provide criteria ensuring that all solutions of DDE (1) oscillate.

2. Monotonic Properties

Before looking at the oscillation of the DDE, it is known that determining the signs of
the derivatives of the solution is necessary. Establishing relationships between derivatives
of various orders is also crucial, although doing so may impose further limitations on the
study. The most influential factor in the relationships between derivatives is the monotonic
properties of the solutions of these equations. Therefore, improving these properties or
finding new properties of an iterative nature greatly affects the qualitative study of solutions
to these equations.

While presenting the results, we will need the following notations:

F[1] := F , F[i+1] = F ◦ F[i], for i = 1, 2, 3, ....

The following lemma can be directly obtained from applying Lemma 2.2.1 in [28].

Lemma 1. Assume that x is one of the eventually positive solutions of (1). Then U (s) > 0,
U (n−1)(s) > 0, U (n)(s) ≤ 0, and one of the following possibilities is satisfied, eventually:

(D1) U (i)(s) > 0 for i = 1, 2, ..., n− 1;
(D2) (−1)i+1U (i)(s) > 0 for i = 1, ..., n− 2.

Notation 1. Solutions x whose corresponding function U satisfy case (D1) are indicated by class
F∗. Moreover, we will use the following condition to prove the main results:

(C) there is a κ > 0 such that (1− ϕ(s))s δn−1(s) φ(s) ≥ (n− 1)! κ.

Lemma 2. Assume that x ∈ F∗. Then, eventually,

U (s) ≥ ε1s
(n− 1)

d
ds
U (s), (7)

and

U (s) ≥ ε2sn−1

(n− 1)!
dn−1

dsn−1U (s), (8)
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for all εi ∈ (0, 1), i = 1, 2.

Proof. By using Lemma 1 in [29] and Lemma 2.2.3 in [28], we directly obtain the proof of
this lemma. Therefore, it has been left out.

Lemma 3. Assume that x ∈ F∗ and (C) holds. Then,

(a) lim U (n−r)

sr−1 = 0,

(b) d
ds
U (n−r)

sr−1 < 0,

for r = 1, 2, ..., n, eventually.

Proof. Using the fact that U (n−1) is a non-increasing positive function, we obtain
lims→∞ U (n−1) = k ≥ 0. Suppose that k > 0. Then, U (n−1) ≥ k, for s ≥ s1. From Lemma 2,
we arrive at

x(s) ≥ (1− ϕ(s))U (s) ≥ kε2(1− ϕ(s))
(n− 1)!

sn−1,

which with (1) and (C) gives

dn

dsnU (s) ≤ − kε2(1− ϕ(s))
(n− 1)!

δn−1(s)φ(s)

≤ − kε2

(n− 1)!
1
s

. (9)

Integrating (9) from s1 to s gives

U (n−1)(s1) ≥ U (n−1)(s) +
kε2

(n− 1)!
ln

s
s1

≥ k +
kε2

(n− 1)!
ln

s
s1
→ ∞ as s→ ∞,

which is a contradiction. Thus, lims→∞ U (n−1) = 0. Now, by applying l’Hôpital’s rule, we
obtain that (a) holds.

Next, we have

U (n−2) = U (n−2)(s1) +
∫ s

s1

U (n−1)(l)dl

≥ U (n−2)(s1) + (s− s1)U (n−1)(s). (10)

Since lims→∞ U (n−1) = 0, there is an s2 ≥ s1 such that U (n−2)(s1)− s1U (n−1)(s) ≥ 0
for s ≥ s2. Thus, (10) becomes U (n−2) ≥ sU (n−1), and so

d
ds
U (n−2)

s
< 0.

Using the fact that U (n−2)/s is positive and decreasing, we obtain

U (n−3)(s) = U (n−3)(s2) +
∫ s

s2

U (n−2)(l)dl

≥ U (n−3)(s2) +
U (n−2)(s)

s

∫ s

s2

ldl

= U (n−3)(s2) +
1
2

(
s2 − s2

2

)U (n−2)(s)
s

. (11)
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Since lims→∞ U (n−2)/s = 0, there is an s3 ≥ s2 such that U (n−3)(s2)− s2
2

2sU (n−2)(s) ≥ 0
for s ≥ s3. Thus, (11) becomes U (n−3) ≥ 1

2 sU (n−2), and hence

d
ds
U (n−3)

s2 < 0.

By repeating the same approach, we obtain (b). The proof is complete.

Lemma 4. Assume that x ∈ F∗ and (C) holds. Then,

x(s) ≥
m

∑
k=1




2k−1

∏
i=1

1

ϕ
(

β−1
[i] (s)

)





1− 1

ϕ
(

β−1
[2k](s)

)




β−1
[2k](s)

β−1
[2k−1](s)




(n−1)

U
(

β−1
[2k−1](s)

)
,

for all ε ∈ (0, 1).

Proof. Let x ∈ F∗. From the definition of U , we arrive at

x(s) =
U
(

β−1(s)
)
− x
(

β−1(s)
)

ϕ(β−1(s))

=
U
(

β−1(s)
)

ϕ(β−1(s))
−
U
(

β−1
[2] (s)

)
− x
(

β−1
[2] (s)

)

ϕ(β−1(s))ϕ
(

β−1
[2] (s)

)

=
U
(

β−1(s)
)

ϕ(β−1(s))
−

U
(

β−1
[2] (s)

)

ϕ
(

β−1
[1] (s)

)
ϕ
(

β−1
[2] (s)

) +
U
(

β−1
[3] (s)

)
− x
(

β−1
[3] (s)

)

ϕ
(

β−1
[1] (s)

)
ϕ
(

β−1
[2] (s)

)
ϕ
(

β−1
[3] (s)

) ,

and so

x(s) =
2m

∑
k=1




k

∏
i=1

1

ϕ
(

β−1
[i] (s)

)


(−1)k+1U

(
β−1
[k] (s)

)
+ x
(

β−1
[2m]

(s)
) 2m

∏
i=1

1

ϕ
(

β−1
[i] (s)

)

≥
m

∑
k=1




2k−1

∏
i=1

1

ϕ
(

β−1
[i] (s)

)




U
(

β−1
[2k−1](s)

)
− 1

ϕ
(

β−1
[2k](s)

)U
(

β−1
[2k](s)

)

. (12)

From Lemma 3 and the fact that β(s) ≤ s, we obtain

U
(

β−1
[2k](s)

)
≤



β−1
[2k](s)

β−1
[2k−1](s)




(n−1)

U
(

β−1
[2k−1](s)

)
,

which in (12) gives

x(s) ≥
m

∑
k=1




2k−1

∏
i=1

1

ϕ
(

β−1
[i] (s)

)





1− 1

ϕ
(

β−1
[2k](s)

)




β−1
[2k](s)

β−1
[2k−1](s)




(n−1)

U
(

β−1
[2k−1](s)

)
.

The proof is complete.
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3. Oscillation Results

Lemma 5. Assume that δ(s) ≤ β(s), β−1 is non-decreasing, and (C) holds. If

lim sup
s→∞

(
β−1(δ(s))

)n−1 m

∑
k=1



∫ s

β−1(δ(s))
φ(l)βk(δ(l))




β−1
[2k−1](δ(l))

β−1
[2k−1](δ(s))




(n−1)

dl +
∫ ∞

s
φ(l)βk(δ(l))dl


 > (n− 1)!, (13)

for any m ∈ N, then F∗ = ∅, where

βk(s) :=




2k−1

∏
i=1

1

ϕ
(

β−1
[i] (s)

)





1− 1

ϕ
(

β−1
[2k](s)

)




β−1
[2k](s)

β−1
[2k−1](s)




(n−1)

. (14)

Proof. Let x ∈ F∗. From Lemma 3, we have (a) and (b) hold. From Lemma 4,
Equation (1) becomes

U (n)(s) + φ(s)
m

∑
k=1

βk(δ(s))U
(

β−1
[2k−1](δ(s))

)
≤ 0, (15)

An integration of (15) yields

U (n−1)(s) ≥
∫ ∞

s

(
φ(l)

m

∑
k=1

βk(δ(l))U
(

β−1
[2k−1](δ(l))

))
dl. (16)

If δ(s) ≤ β(s), then we obtain

U (n−1)
(

β−1(δ(s))
)
≥

∫ ∞

β−1(δ(s))

(
φ(l)

m

∑
k=1

βk(δ(l))U
(

β−1
[2k−1](δ(l))

))
dl

=
∫ s

β−1(δ(s))

(
φ(l)

m

∑
k=1

βk(δ(l))U
(

β−1
[2k−1](δ(l))

))
dl

+
∫ ∞

s

(
φ(l)

m

∑
k=1

βk(δ(l))U
(

β−1
[2k−1](δ(l))

))
dl.

Using (b) and the fact that U ′(s) ≥ 0, we find

U (n−1)
(

β−1(δ(s))
)

≥
m

∑
k=1
U
(

β−1
[2k−1](δ(s))

)


∫ s

β−1(δ(s))
φ(l)βk(δ(l))




β−1
[2k−1](δ(l))

β−1
[2k−1](δ(s))




(n−1)

dl +
∫ ∞

s
φ(l)βk(δ(l))dl




≥ U
(

β−1(δ(s))
) m

∑
k=1



∫ s

β−1(δ(s))
φ(l)βk(δ(l))




β−1
[2k−1](δ(l))

β−1
[2k−1](δ(s))




(n−1)

dl +
∫ ∞

s
φ(l)βk(δ(l))dl


.

From (b), we arrive at

1 ≥
(

β−1(δ(s))
)n−1

(n− 1)!

m

∑
k=1



∫ s

β−1(δ(s))
φ(l)βk(δ(l))




β−1
[2k−1](δ(l))

β−1
[2k−1](δ(s))




(n−1)

dl +
∫ ∞

s
φ(l)βk(δ(l))dl


,
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which contradicts (13). The proof is complete.

Lemma 6. Assume that (C) holds and, for any m ∈ N, the DDE

w′(s) +
ε

(n− 1)!
φ(s)w

(
β−1
[2m−1](δ(s))

) m

∑
k=1

βk(δ(s))
(

β−1
[2k−1](δ(s))

)n−1
= 0, if δ(s) ≤ β[2m−1](s), (17)

or

y′(s) + φ(s)
ε

(n− 1)!

(
β−1(δ(s))

)n−1
y
(

β−1(δ(s))
) m

∑
k=1

βk(δ(s)) = 0., if δ(s) ≤ β(s), (18)

is oscillatory for some ε ∈ (0, 1), then F∗ = ∅, where βk is defined as in (14).

Proof. Let x ∈ F∗. From Lemma 2, we have that (8) holds. Using Lemma 4, Equation (1)
reduces to (15). Thus, from (8), we obtain

U (n)(s) +
ε

(n− 1)!
φ(s)

m

∑
k=1

βk(δ(s))
(

β−1
[2k−1](δ(s))

)n−1
U (n−1)

(
β−1
[2k−1](δ(s))

)
≤ 0,

which, with the facts that U (n) ≤ 0 and β−1
[2k−1](s) ≤ β−1

[2m−1] for k = 1, 2, ..., m, gives

U (n)(s) +
ε

(n− 1)!
φ(s)U (n−1)

(
β−1
[2m−1](δ(s))

) m

∑
k=1

βk(δ(s))
(

β−1
[2k−1](δ(s))

)n−1
≤ 0.

Suppose that w := U (n−1). Then w > 0 is a solution of

w′(s) +
ε

(n− 1)!
φ(s)w

(
β−1
[2m−1](δ(s))

) m

∑
k=1

βk(δ(s))
(

β−1
[2k−1](δ(s))

)n−1
≤ 0.

It follows from Theorem 1 in [30] that Equation (17) also has a positive solution,
a contradiction.

On the other hand, using the fact that U ′ > 0 and β−1(s) ≤ β−1
[2k−1] for k = 1, 2, ..., m,

the inequality in (15) becomes

U (n)(s) + φ(s)U
(

β−1(δ(s))
) m

∑
k=1

βk(δ(s)) ≤ 0.

Thus, from (8), we obtain

U (n)(s) + φ(s)
ε
(

β−1(δ(s))
)n−1

(n− 1)!
U (n−1)

(
β−1(δ(s))

) m

∑
k=1

βk(δ(s)) ≤ 0.

Therefore, it follows from Theorem 1 in [30] that Equation (18) has a positive solution,
a contradiction. The proof is complete.

Corollary 1. Assume that (C) holds,

lim inf
s→∞

∫ s

β−1
[2m−1](δ(s))

(
φ(l)

m

∑
k=1

βk(δ(l))
(

β−1
[2k−1](δ(l))

)n−1
)

dl >
(n− 1)!

e
, if δ(s) ≤ β[2m−1](s), (19)

or
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lim inf
s→∞

∫ s

β−1(δ(s))

(
φ(l)

(
β−1(δ(l))

)n−1 m

∑
k=1

βk(δ(l))

)
dl >

(n− 1)!
e

, if δ(s) ≤ β(s), (20)

is oscillatory, then F∗ = ∅, where βk is defined as in (14).

Proof. From Theorem 2 in [31], conditions in (19) and (20) imply the oscillation of
Equations (17) and (18), respectively.

Theorem 2. Assume that δ(s) ≤ β(s), β−1 is non-decreasing, and (C) and (13) hold. Then,
Equation (1) is oscillatory if (4) holds.

Proof. Assume that x is an eventually positive solution of (1). From Lemma 1, one of the
possibilities (D1) or (D2) is satisfied. Using Lemma 5, we have F∗ = ∅. Then, case (D2)
holds. In exactly the same way as Theorem 2.1 in [18], we obtain a contradiction with (4).
The proof is complete.

Theorem 3. Assume that (C) holds, and one of the conditions in (19) or (20) is satisfied. Then,
Equation (1) is oscillatory if (4) holds.

4. Application and Discussion

Example 1. Consider the NDE

(x(s) + ϕ0x(µs))(4) +
φ0

s4 x(λs) = 0, (21)

where ϕ0 > 0, λ < µ ∈ (0, 1), φ0 > 0, and µ3 ϕ0 > 1. In the following we will apply the
conditions of the theorems in the previous section to check the oscillation of this equation.
Conditions in (13), (19) and (20) reduce to

φ0

(
λ

µ

)3[
ln

µ

λ
+

1
3

][
1− 1

µ3 ϕ0

] m

∑
k=1

1
ϕ2k−1

0

> 3!, (22)

φ0λ3
[

1− 1
µ3 ϕ0

]
ln
(

µ2m−1

λ

) m

∑
k=1

(
1

ϕ2k−1
0

(
1

µ2k−1

)3
)

>
3!
e

, if λ < µ2m−1 (23)

and

φ0

(
λ

µ

)3[
1− 1

µ3 ϕ0

](
ln

µ

λ

) m

∑
k=1

1
ϕ2k−1

0

>
3!
e

, , (24)

respectively. The condition in (4) becomes

φ0
1

3ϕ0

λ

µ

[
1− 1

µϕ0

]
ln

µ

λ
>

1
e

. (25)

By using Theorems 2 and 3, Equation (21) is oscillatory if (25) and one of the conditions
in (22), (23) or (24) are satisfied.

Remark 1. Applying the results in the previous example to the special case of Equation (21), when
ϕ0 = 16, µ = 1/2, and λ = 1/6, we conclude that Equation (21) is oscillatory if

φ0 >
1152

7e ln 3
, [condition (25)]

and one of conditions (22), (23) or (24) is satisfied, see Table 1.
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Table 1. Conditions (22), (23) and (24) when ϕ0 = 16, µ = 1/2, and λ = 1/6.

Condition (22) (23) (24)

φ0 > 3606.1 φ0 > 1736 φ0 > 1729.1

Therefore, Equation (21) is oscillatory if φ0 > 1729.1, while the results of [18] state that (21)
is oscillatory if φ0 > 1736. Thus, our results improve upon those in [18].

Remark 2. In Example 1, we note that criterion (24) often provides the best results. For comparison
between the criteria in (3) and (24), we consider the special case when ϕ0 = 1/µ4, and λ = µ3.
Conditions in (3) and (24) reduce to

φ0 >
3!

eµ10
(

ln 1
µ2

)
(1− µ)

(26)

and
φ0 >

3!

eµ6
(

ln 1
µ2

)
(1− µ)∑50

k=1 µ8k−4
, , (27)

respectively. Figure 1 shows a comparison of the lower bounds for the values of φ0 for the conditions
in (3) and (24) when µ ∈ (0.7, 0.9).

Figure 1. The minimum values of φ0 for which (3) and (24) are satisfied.

5. Conclusions

The study of the oscillatory behaviour of DDEs depends mainly on the monotonic
properties of the solutions. These properties control the relationships between the deriva-
tives as well as the relationship between the solution and its corresponding function.
Therefore, finding new or improving monotonic properties plays an important role in
improving the oscillation parameters.

In this work, we obtained new monotonic properties, through which we were able to
obtain a new and improved relationship linking the solution and its corresponding function.
Then, we used this relationship to obtain oscillation criteria for the studied equation. Finally,
we provided an example and comparisons to illustrate the importance of the results.
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Recently, there has been a lot of research activity focused on studying the properties of
solutions to fractional differential equations. It would be interesting to extend our results
to fractional differential equations.
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Abstract: (1) Background: The aim of the study is to develop a set of models for managing a fleet of
complex technical systems with metrological support, allowing the simulation and management at
all the stages of the life cycle of the complex technical systems, as well as to simulate the functioning
of large fleets of complex technical systems, including up to several hundred thousand samples;
(2) Methods: The authors use methods of mathematical modeling, methods of the theory of Markov
and semi-Markov processes, methods of optimization, methods of reliability theory, and methods
of probability theory and mathematical statistics; (3) Results: an interconnected set of mathematical
models for managing a fleet of complex technical systems with metrological support was developed
and the applied software was developed; (4) Conclusions: The set of models presented in the article
allows for the adequate simulation of all the stages of the life cycle of large complex technical
systems fleets, including up to several hundreds of thousands of samples, to optimize the functioning
processes of a fleet of complex technical systems, to form strategies for fleet development, and to
assess the risks associated with false and undetected failures, as well as the risks associated with the
degradation of complex technical systems.
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1. Introduction

A considerable amount of scientific research is devoted to the problem of modeling
complex technical systems (CTS) [1–28]. We understand complex technical system as
stationary or mobile special-purpose objects with measuring instruments (MI) installed on
them, which should be metrologically maintained during long-term operation. In the last
half of the century, both CTS themselves and their models have undergone a rather rapid
evolution process. Starting from models with 3–5 states and going up to models with up
to several hundreds and thousands of states. At the same time, the theoretical base and
technical capabilities for modeling CTS with several tens of thousands and even hundreds
of thousands of states have been created.

On the qualitative side, simple models allowed modeling only of the basic states of
the CTS, which describe the operation processes. The models have been evolving toward
a more detailed description of the operation processes (taking into account metrological
support technologies, false failure states and undetected failure states), the CTS degra-
dation processes (first degradation level, second degradation level and so on) and the
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CTS updating processes (by purchasing the new CTS samples, by upgrading the existing
CTS samples, by developing the newest modern CTS samples). Thus, by now there is a
need for models that describe all stages of the CTS life cycle. These models should allow
the simulation of large CTS fleets, including up to several hundreds of thousands of STS
samples. The models should make it possible to manage the process of development of
such CTS fleets, taking into account the range of modern tasks to be solved by means of the
CTS and the need to solve promising tasks in the future.

Let us first conduct a retrospective comparative analysis of CTS models, with a sep-
arate description of the main characteristics of each model, as well as the assumptions
underlying their implementation. Let us describe the strengths and weaknesses of the
models. Additionally, we will then formulate the goal of our scientific research and we will
provide a statement on the problem that will be investigated in this article.

2. Scientific Literature Review

Professor L.I. Volkov [1] proposed the semi-Markov model of aircraft operation control,
which has five states: workable status; periodic verifications of the operational status;
recovery after the occurrence of the valid state, false failure state; the hidden failure
state; the unworkable state (including the hidden failure state); and the state of periodic
verifications with hidden failure.

The classical model developed by Professor E.I. Sychev [2], designed to control the
process of operation of the CTS with measuring instruments (MI) installed on them to
provide metrological support, in contrast to the model by Professor L.I. Volkov, already has
six states. Model [2] describes the operation process more correctly. From the fourth un-
workable state (including hidden failure), two states were separately highlighted: the state
of undetected failure and detected failure. The model takes into account the characteristic
features of the CTS with metrological support.

The model [2] assumes the identity of the recovery of the CTS after both a false failure
and a valid failure. In practice, for some types of CTS, after a false failure, repeated control
is carried out according to the failed technical parameter, and after a detected failure,
the system is restored, for example, by adjusting or replacing the faulty element with a
serviceable one. In the model [3] developed by Professor V.I. Mishchenko, which already
includes seven states, the above-mentioned features and limitations have been eliminated.
The model [3] takes into account the intensity of the CTS operation.

Note that the models described above do not take into account the component of
maintenance efficiency, determined by the availability of spare parts and their replenish-
ment strategy.

The further direction for the development of the models for the operation of the
CTS is to take into account the possibilities of reserving the MI and the possibilities of
replenishment with spare parts and tools. In [4], the model of the process for the functioning
of the MI with metrological support for doubly redundant MI is proposed, which allows
for the taking into account of the features of the maintenance associated with the possibility
of providing spare parts, and taking into account the different strategies for replenishing
spare parts, tools and accessories. In the model [4], which takes into account eight states, it
is assumed: that the detection of failures by the MI occurs only during verification; there
are no errors in determining the technical condition of the MI; and the MI in storage do
not fail.

In [5], a new approach has been developed to assess the impact of metrological support
on achieving the goals of the CTS operation: a graph with an arbitrary number of states is
constructed, the edges of the graph that represent possible state transitions are attributed
both probabilistic characteristics of the transitions (values of the distribution functions or
simply the transition probabilities) and the costs associated with the corresponding transi-
tions. The following states are selected: serviceable, faulty, emergency and catastrophic.
The results from the study, on the influence of the volumes of metrological control for
various conditions on the effectiveness of the object for its intended purpose, are presented.
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As a criterion of efficiency in the various solved tasks, both the readiness coefficient and
the technical and economic indicator were used.

It should be noted that all the models analyzed above do not allow modeling and
the taking into account of conditions corresponding to the different levels of degradation
of the CTS (different levels of deterioration of the metrological reliability characteristics),
leading to time and resource costs necessary both for restoring the CTS and bringing it back
into working condition. Further development of the CTS operation models takes place in
terms of taking into account the aging and degradation processes [6–26] of the CTS (or MI
installed on them) and reduction of the metrological reliability.

Thus, in [6] the model with four degradation groups is considered, having one work-
able state and four states corresponding to the different levels of degradation. This model
describes the process of operation of the CTS, for which repair is possible with the restora-
tion of the resource in full. In [7], a model with three degradation groups is considered,
which allows for the modeling of the processes of operation, renewal and degradation of
the CTS fleet. It is assumed that as a result of the repair, the resource of the CTS cannot be
fully restored.

The works analyzed in this section form the basis (starting point) for the research
presented in the article. This article summarizes the results of the work [5–8]: a set of
models describing the processes of operation, renewal and degradation of the CTS are
presented. To describe the operation process, the classical model [2] is used as it is the
most adequate for the CTS class considered in the article. To describe the processes of
degradation and renewal of the CTS fleet, new additions to the classical model developed
by the author are presented (the model of false and undetected failures, the model of
degradation and renewal of the fleet, including CTS with full and incomplete restoration of
the resource during repair and metrological maintenance).

3. Statement on the Research Problem

It is necessary to develop a set of interrelated mathematical models of CTS fleet
management models, allowing for the simulation and management of all stages of the CTS
life cycle. The developed set of interrelated models should allow for the simulation of
the functioning of large fleets of CTS, including up to several hundreds of thousands of
CTS samples. The set of models shall allow for the taking into account of the degradation
processes of CTS sample ageing, processes on park development due to the procurement
of new samples, the modernization of existing samples and the development of new
promising CTS samples. The set of interrelated models should allow for the management
of the process of development of such CTS fleets, taking into account a number of modern
requirements, and the need to solve promising tasks and problems in the future.

4. Materials and Methods

At first in Section 4.1.1, the results of calculating the readiness coefficient for different
failure distribution laws using the classical operation model are presented. The model
of false and undetected failures is described in Section 4.1.2. Section 4.1.3 describes and
analyzes the models of failure and degradation of the CTS (a fan model, a drift model of
the metrological characteristics and two diffusion models). In Section 4.2, the model of
operation of the CTS is described, taking into account the degradation processes and the
full restoration of the resource, and in Section 4.3, the model of the CTS with incomplete
restoration of the resource is described.
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4.1. The Classical Model
4.1.1. Construction and Study of the Classical Model for Different Laws on the Distribution
of Failures of the Complex Technical System

Let us denote {Ei, i = 1, 2, . . . n} as a finite set of states in which a specific sample of
the CTS can be located. The readiness coefficient of the CTS, the operation process of which
is described by the semi-Markov model [2], is calculated by the formula:

KA =
n

∑
i=1

πiwi/
n

∑
i=1

πiψi, (1)

where πi is the relative fraction of the number of steps during which the CTS is in state Ei,
wi is the mathematical expectation of the time of operation of the CTS in state Ei, and ψi is
the mathematical expectation of the time that the CTS stays in state Ei.

At the same time:
n
∑

i=1
πi = 1, ψi =

n
∑

i=1
Pij M(τij) =

n
∑

i=1
Pij

∞∫
0

τijdF(τij),

wi =

{
ψi − for workable conditions of CTS
0− for unworkable conditions of CTS

,

where Pij are the elements of the state transition probability matrix P∗ =
∥∥∥P∗ij

∥∥∥, F∗(τij) is
the transition probability distribution function, and M(τij) is the mathematical expectation
of the transition time.

A continuously operating CTS with periodic verification of the technical condition is
ready for use at that time τ if it is operational at that moment and is not under verification
or repair. The results of the control are used to make a decision on the possibility of further
application of the CTS. If the CTS is recognized as workable, according to the results of
the verification, then it is included in the work. If the CTS is found to have failed, then its
repair is carried out, as a result of which a complete restoration of its operability occurs.
The transition graph is shown in Figure 1.
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Figure 1. Graph of state transitions.

Possible conditions of the CTS: E1 is workable, E2 is unworkable (failure), E3 is
verification of the failed CTS, E4 is recovery, E5 is verification of a workable CTS, and E6 is
undetected failure.
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The transition probability matrix has the following form:

P∗ =




0 F(TK) 0 0 1− F(TK) 0
0 0 1 0 0 0
0 0 0 1− β 0 β
1 0 0 0 0 0

1− α 0 0 α 0 0
0 0 1 0 0 0




,

where F(τ) is the integral function of the distribution of the failure time, F(TK) is the
probability of failure during the time between two verifications, TK is the time interval
between verifications (TIBV) of the technical condition, α is the conditional probability of a
false failure, and β is the conditional probability of an undetected failure.

We assume that the duration of the control (verification of the technical condition)
and the duration of the restoration (repair) are deterministic values equal to tK and
tB, respectively.

The system of equations for finding πi, i = 1, 2, . . . , 6 has the form:

π1 = π4 + (1− α)π5, π2 = F(TK)π1, π3 = π2 + π6, π4 = (1− β)π3 + απ5,
π5 = [1− F(TK)]π1, π6 = βπ3, π1 + π2 + π3 + π4 + π5 + π6 = 1.

The solution of the system has the form:




π1 = 1
A (1− β)

π2 = 1
A F(TK)(1− β)

π3 = 1
A F(TK)

π4 = 1
A{F(TK) + α(1− F(TK)}(1− β)

π5 = 1
A [1− F(TK)](1− β)

π6 = 1
A βF(TK)

, (2)

where A = 2[1− β + F(TK)] + α[1− F(TK)](1− β).
The values vi, i = 1, 2, . . . , 6 are equal to:





v1 =
TK∫
0

τdF(τ) + TK[1− F(TK)]

v2 = TKF(TK)−
TK∫
0

τdF(τ)

v3 = tK
v4 = tB
v5 = tK
v6 = TK

. (3)

Assuming that w1 = v1, w2 = 0, w3 = 0, w4 = 0, w5 = 0, w6 = 0, and substituting (2)
and (3) into (1), we obtain the formula for calculating the CTS readiness coefficient:

KA =
I + TKB

BI + TK

{
B + [F(TK)]

2 + βF(TK)
1−β

}
+ tk

[
B + F(TK)

1−β

]
+ tB[F(TK) + αB]

, (4)

where B = 1− F(TK), I =
TK∫
0

τ · dF(τ).

Next, we will conduct a study of the readiness coefficient for various laws on the
distribution of the failure time. The failure time of the CTS is considered as a random
variable. Analysis of statistical data has shown that the most suitable laws for describing
the failure time are the exponential law, Rayleigh’s law, the Weibull distribution and
the truncated normal distribution, with the appropriate choice of parameters for these
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distributions. The statistical function of the distribution of the failures is located inside the
“curved band” covering the theoretical distribution functions.

In the case of the exponential distribution law, the expression for the readiness coeffi-
cient (4) takes the form:

KΓ =
1− e−λTK

(
λTK
1−β + e−λTK

)
·
(
1− e−λTK

)
+ λtk

(
(1−e−TK )βp

1−β + 1
)
+ λtB

(
1− e−λTK (1− αp)

) .

For Rayleigh’s law, the integral I can be calculated numerically or using the standard
Laplace function, for Weibull’s law it can be calculated numerically or using the gamma
function; and for the truncated normal distribution it can be calculated numerically or
using the standard Laplace function.

The calculations were carried out using the following values from the initial data:
tK = 1, tB = 1, α = 0.1, β = 0.1, and λ = 0.0025 for the different values of TK. Figure 2
shows the dependences of the readiness coefficients KA on the periodicity of the verifi-
cation TK, for the distribution laws described above. The maximum values of KA for the
Rayleigh, normal, exponential and Weibull laws are equal to: 0.976, 0.963, 0.955, and 0.950,
respectively, and reach values equal to 65, 55, 50, and 40. Note that the maximum value
of the coefficient for each distribution law is reached at a single point. It can be seen that
maxKA is “practically insensitive” to TK. So, in a fairly wide range of changes to TK, the
readiness coefficient takes values close to the maximum. In particular, when changes to TK
take place in the range 25 ≤ TK ≤ 60, the variation of KA is no more than 2–3%.
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The low sensitivity of the maximum value of the readiness coefficient to the periodicity
of the technical condition monitoring makes it possible to develop strategies that are “non-
strict” and easy to implement in practice, for carrying out checks on the technical condition
of the CTS with metrological support.

4.1.2. Development of the Classical Model: The Model of False and Undetected Failures

The probabilities of false and undetected failures [8] for the specific samples of the
CTS depend on the corresponding probabilities of false and undetected failures of the
individual components of the CTS (1), (2), on the configuration of the CTS using methods
on the redundancy of the components, nodes and blocks of the CTS.

Let p be the actual value of the measured (controlled) parameter and ε be the measure-
ment error. The measurement result is presented in the form r = p + ε. The general scheme
of the diagnosis and decision-making based on the one-parameter method of tolerance
control is shown in Figure 3.
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Here δ is the tolerance for the controlled parameter, and f (x) and fe(x) are the distribu-
tion density functions of the measured parameter and the measurement error, respectively.
It can be seen that the probability of making the right decision can be increased (within
certain limits) by reducing the total error of the erroneous decision.

The different physical nature and, consequently, the heterogeneous range of the
changes in the measured values leads to the need to introduce dimensionless standardized
operational parameters for the MI. As a normalizing element, we take the mean square
deviation σx of the measured parameter x; δ = ∆/σx is the relative operational tolerance,
where ∆ is the technical tolerance; z = σε/σx is the relative parametric measurement error,
σε is the mean square deviation of the MI error.

The model is based on formulas for the conditional probabilities of false and unde-
tected failures, respectively [8]:

α(δ, z) =





δ∫

−δ
fcu(y)




−δ−y
z∫

−∞

fo(τ)dτ+
∞∫

δ−y
z

fo(τ)dτ


dy





/





δ∫

−δ
fcu(y)dy



, (5)
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β(δ, z) =





−δ∫

−∞

fcu(y)




δ−y
z∫

−δ−y
z

f0(τ)dτ


dy +

∞∫

δ

fcu(y)




δ−y
z∫

−δ−y
z

f0(τ)dτ


dy





/





−δ∫

−∞

fcu(y)dy +

∞∫

δ

fcu(y)dy



, (6)

where f0(τ) and fcu(y) are the functions of the distribution densities of the measured value
and the MI error, respectively.

For normally distributed measured values and MI errors, Formulas (5) and (6) take
the form:

α(δ, z) =
1

2π


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−δ
exp

(
−y2

2

)



−δ−y
z∫

−∞

exp
(
−τ

2

2

)
dτ +

∞∫

δ−y
z

exp
(
−τ

2

2

)
dτ


dy





/P1, (7)

β(δ, z) =
1

2π





−δ∫

−∞

exp
(
− y2

2

)



δ−y
z∫

−δ−y
z

exp
(
− τ

2

2

)
dτ


dy +

∞∫

δ

exp
(
− y2

2

)



δ−y
z∫

−δ−y
z

exp
(
− τ

2

2

)
dτ


dy





/P2, (8)

P1 =
1√
2π

δ∫

−δ
exp

(
−y2

2

)
dy, P2 =

1√
2π





−δ∫

−∞

exp
(
−y2

2

)
dy +

∞∫

δ

exp
(
−y2

2

)
dy





For other distribution laws on the measured value and measurement error, the model
(5), (6) were investigated in [8].

The dependences of the probabilities α(δ, z) and β(δ, z), as well as the probability
α(δ, z) + β(δ, z) of an erroneous decision δ on the tolerance value at z = 0.5 are shown in
Figure 4.
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Figure 4. Dependences of the probability of an erroneous decision (α+β), as well as the probabilities
of false and undetected failures on the value of the reduced tolerance δ on z = 0.5.

Note also that the error solution function reaches its minimum at some internal point
δ ∈ (0; 1), as is the case with the normal distribution of the measured value and the
measurement error.

The two-dimensional dependences of the probabilities of false and undetected fail-
ures on the magnitude of the dimensionless measurement error z and the dimensionless
tolerance for the controlled parameter δ are shown in Figure 5a,b.
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4.1.3. Development of the Classical Model: Models of Failures and Degradation of the
Complex Technical System

All failure models that allow for the taking into account of the degradation pro-
cesses occurring in the CTS can be conditionally divided into probabilistic, empirical, and
probabilistic physical models, that includes among other things, the Markov models of
degradation and failures.

In the fan model [9–11], also called a distribution and belonging to the category of
probabilistic models, the defining parameter (DP) is represented as a linear function of
time, shown in Figure 6a.
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Figure 6. The model of a random degradation process and a scheme for the formation of a
time-to-failure distribution: (a) α distribution (fan process); (b) DN distribution law; (c) DM
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Here, t is the operating time for the failure; X is random variable of the DP; DP* is the
normalized value of the DP at which the failure occurs; and f is the function of density of
the distribution of the operating time for the failure.

The distribution function of the operating time up to a given level DP* is given by the
distribution function [9–11]:

F(t) = Φ
(

t− µ

vt

)
, (9)

where Φ is the normalized normal distribution function; µ = 1/a is the parameter of the
scale of degradation, a is the mathematical expectation of the rate of change of the DP (the
average rate of the degradation process), normalized to the limit value; and ν is the shape
parameter (coefficient of the variation of the degradation process).

The empirical model of the “drift of metrological characteristics” [6,7] is based on
the assumption on a linear law of change of the MI zero mark and an exponential law of
increasing measurement error:

m0(t) = m00 + vmt, σ(t) = σ0 +
vz

az
(exp(azt)− 1), (10)

where σ0 is the value of the initial error, vz is the average initial velocity of the error increase,
az is the parameter characterizing the acceleration of the error increase, m00 is the initial
value of the zero drift (usually assumed to be zero), and vm is the average velocity of the
zero drift.
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Let us now consider the Markov models of degradation and failures, widely used
in applied problems. In these models, it is assumed that the degradation process can be
approximated by a continuous Markov process of the diffusion type [9–11] and is described
by a stochastic differential equation of the Ito type:

dx(t) = A(t)dt + B(t)dη(t), (11)

where x(t) is the value of the DP; A(t) and B(t) are deterministic functions characterizing
the change in the mean value and variance of the DP (drift coefficient and diffusion
coefficient); and η(t) is a random variable of the Gaussian type.

The problem of determining the distribution of time before the first failure of the MI,
in this case, is reduced to solving the problem of the first achievement of the upper limit of
the DP* (see Figure 6b,c). This problem can be solved if the conditional probability density
ω(t, x) of the process transition from one state to another is known.

For a Markov diffusion-type processes, a partial differential equation (the Fokker–
Planck–Kolmogorov equation) follows from (11):

∂ω(t, x)
∂t

+ A(t)
∂ω(t, x)

∂x
− (B(t))2

2
∂2ω(t, x)

∂x2 = 0, (12)

where A(t) and B(t) are the coefficients of the equation depending on the operating
conditions of the MI, and the physical and chemical processes occurring in the materials
from which the MI is made. To solve (12), it is necessary to set boundary conditions
that depend on the type of implementation of a random process, in particular, on their
monotonic nature (Figure 6b) or non-monotonic nature (Figure 6c). You also need to set the
initial conditions: t = t0, x = x0.

After finding the function ω(t0, x0; t, x), satisfying the given initial conditions, the
density function f (t) of the distribution of the time to reach the boundary DP* (the density
function of the distribution of the time to failure) can be calculated by the formula [11]:

f (t) = −
t∫

−∞

∂ω(t0, x0; t, x)
∂t

dx

In case of one DP, Equation (12) can be integrated analytically. The distribution
function for the diffusion monotone distribution (DM distribution) has the form [11]:

F(t) = DM(t; µ, ν) = Φ
(

t− µ

v
√

µt

)
, (13)

Here, µ = 1/a.
The distribution density function f (t) for (13) at µ = 0.1 is shown in Figure 7a.
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The distribution function for the diffusion non-monotonic distribution (DN distribu-
tion) has the form [11]:

F(t) = DN(t; µ, ν) = Φ
(

t− µ

v
√

µt

)
+ exp

(
2
ν2

)
Φ
(
− t− µ

v
√

µt

)
. (14)

The corresponding distribution density functions f (t) for (14) at ν = 0.8 are shown in
Figure 7b.

The failure rates for DM distribution and DN distribution have the form:

λDM(t) =
(t + µ) exp

(
− (t−µ)2

2ν2µt

)

2νt
√

2πµt ·Φ
(

µ−t
v
√

µt

) , λDN(t) =

(
νt
√

2πt
)−1√

µ · exp
(
− (t−µ)2

2ν2µt

)

Φ
(

µ−t
v
√

µt

)
− exp

(
2
ν2

)
·Φ
(
− µ−t

v
√

µt

)

Thus, distribution density functions f (t), distribution functions F(t), and failure rate
functions λ(t), are calculated using finite analytical formulas using the standard Laplace
function Φ(t).

In case of several DP distribution densities f (t), distribution functions F(t), and failure
rates λ(t), can only be calculated numerically.

The process of degradation of the mechanical components of the CTS, due to the
irreversibility of the destruction processes (mechanical wear, fatigue straining, etc.), is
considered to be a process with monotonous realizations of a random variable. DM distri-
bution is used for CTS nodes containing electromechanical elements (relay and connector
contacts, sliding electrical contacts, gears, etc.) [11].

The process of degradation of the CTS, which include integrated circuits and com-
plex electronic devices, also has non-monotonic implementations of a random variable.
Therefore, the degradation of such CTS is described by the DN distribution [11].

We will analyze the models of failures and degradation of the CTS. Degradation and
failures models differ significantly from a physical point of view. In particular, the fan
process assumes that its characteristics are completely determined by the initial state (the
quality of the manufacturing samples of the components of the CTS), and do not depend
on the mechanical, physical and chemical degradation processes occurring in the circuits
and mechanisms of the components of the CTS, under the influence of external conditions
and time.

The drift model of metrological characteristics [10], clearly demonstrates the departure
of the zero mark of the MI and CTS with the increase in measurement error over time. The
model assumes preliminary processing of statistical data in order to determine estimates of
the drift parameters.

The Markov models (12), (13) are based on the use of probabilistic characteristics,
the operating conditions of the CTS, as well as on the use of the physical and chemical
properties of the materials. The advantage of Markov models [12,13] is that they have
accurate analytical expressions for all statistical characteristics, including statistical mo-
ments. In addition, there are no analytical expressions for the statistical moments of the fan
α distribution law. These moments are determined by approximate dependencies, which
complicates the use of a fan distribution in practice.

The density distribution function of the DM distribution occupies an intermediate
position between the, widely used in practice, normal distribution (which is symmetrical)
and the more elongated distribution.

The density curves of the DN distribution have a more significant insensitivity thresh-
old, a more positive kurtosis and are more asymmetric than the DM distribution.

The intensities of the diffusion distributions have finite limits:

lim
t→∞

λDM(t) = lim
t→∞

λDN(t) =
1

2µν2 .
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Here, are some important properties of diffusion distributions for practical application:
1. Where a random variable T is described by a DM distribution of the form DM(t; µ, ν),

then the random variable x = cT (c = const) is also described by a DM distribution of the
form DM(t; cµ, ν).

2. Where a random variable T is described by a DM distribution of the form DM(t; µ, ν),
then the random variable θ = 1

T is also described by a DM distribution of the form

DM
(

t; 1
µ , ν
)

.
3. Where a random variable T is described by a DN distribution of the form DN(t; µ, ν),

then the random variable x = cT (c = const) is also described by a DN distribution of the
form DN(t; cµ, ν).

4. The sum of n random variables obeying the distribution of the form DN(t; µ, νi) is

described by the DN distribution of the form DN

(
t; nµ, 1/

√
n
∑

i=1
ν−2

i

)
.

5. The sum of n random variables obeying a distribution of the form DN(t; µi, ν) is

described by a DN distribution of the form DN
(

t;
n
∑

i=1
µi, ν/

√
n
)

.

6. The sum of n random variables obeying the DN distribution of the form DN(t; µ, ν)

is described by the DN distribution of the form DN
(

t; nµ, ν√
n

)
.

The proof of properties 1–6 can be carried out by replacing the variables and definitions
of functions (13)–(14).

Some additional properties of diffusion distributions are described in [11].
Analysis of the graphs on the distribution functions shows that distributions (9), (12),

(13) have different zones of high reliability. This means that the estimation of small-level
quantiles, i.e., the assignment of a gamma-percent resource, significantly depends on the
selected type of failure model of the CTS.

Diffusion models can be parameterized quite simply in the presence of statistical
information. For example, when parameterizing based on statistical data on the moments
of failure {ti, (i = 1, 2, . . . , N)}, the estimates of the parameters

^
µ and

^
ν calculated using

the maximum likelihood method for the DM distribution have the form:

^
µ =

1
N

N

∑
i=1

ti,
^
ν =

√
^
µ ·

√√√√ 1
N

N

∑
i=1

1
ti
− N

(
N

∑
i=1

ti

)−1

,

and for DN distributions have the form:

^
µ = N

(
N

∑
i=1

1
ti

)−1

+
N
2

(
N

∑
i=1

(
^
µ + ti)

−1
)−1

− N2

4

(
N

∑
i=1

(
^
µ + ti)

−1
)−2

− N

(
N

∑
i=1

1
ti

)−1
√√√√ 1

N

N

∑
i=1

ti − N

(
N

∑
i=1

1
ti

)−1

,

^
ν =

√√√√ 1
^
µ N

N

∑
i=1

ti +

^
µ

N

N

∑
i=1

1
ti
− 2

Thus, diffusion models are more preferable (adequate), since, unlike the fan distri-
bution and the drift model of metrological characteristics, they can be used to control the
degradation and reliability of the CTS, based on the taking into account of the physical pat-
terns implemented through time-dependent variable coefficients A(t) and B(t) in Equation
(12). The task of developing models of physical processes for the purpose of construct-
ing coefficients A(t) and B(t) is an independent scientific task and is not considered in
this article.
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4.2. The Model of Operation of a Complex Technical System Fleet with a Fully Recoverable Resource

The attribution of a set of CTS to one or another degradation group is carried out on
the basis of structural and functional analysis of the metrological reliability indicators [2,6,7],
which includes the types of failures, the consequences of the failures, as well as determination
and analysis of the rational composition of the controlled parameters and an assessment of
the required recovery time of the CTS. In this paper, the controlled states of the CTS will be
evaluated using the probabilities of a false failure α, an undetected failure β and the time tB
required for recovery after the failure is detected (the recovery time depends on the “severity”
of the malfunction detected during monitoring). At low values of these estimated indicators,
we will refer the CTS to the first group of degradation. As the degradation increases (as
these indicators increase), we will refer the CTS to the second, third and fourth groups of
degradation, respectively. Without going into the details of assigning parameters of criteria for
attribution to a particular degradation group, we note that the number of degradation levels
is determined by a set of types and types of CTS under consideration, their characteristic
features, as well as the specific task being solved.

Figure 8a shows a graph with one fully workable state E1 and four states corresponding
to different levels of degradation (malfunction): E2, E3, E4 and E5 [6]. Let us distinguish the
three parts in the classical model [2]: the initial operational state E1, the failure state E2 and
the subgraph corresponding to the control function (highlighted in Figure 8b by rectangle
C2). Then, the classical model can be represented as a “serial connection” E1, C2 and
E2 [14,15]. The states of the subgraph: K3 is verification of a failed MI, K4 is the restoration
of the CTS, K5 is verification of a working MI and K6 is the state of an undetected failure
of the CTS. The probabilistic characteristics of the state transition are the same as in the
classical model [2].
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Figure 8. Graphs and subgraphs of the CTS operation model with full resource recovery: (a) with the
control of four degradation states; (b) with the control of one degradation state (classical model).

Note that if the control subgraph is completely removed from the graph in Figure 8b
and the probabilistic characteristics are set on the edges of the remaining graph, then a
simple model will be obtained that describes the operation of a small gun [6].

Figure 8a uses the notation: E1 is a fully functional state and four states corresponding
to different levels of degradation of the CTS; E2 is the first group of degradation (functional
state with minor deviations of the normalized metrological characteristics); E3 is the second
group of degradation (a state with some deviations of the metrological characteristics, from
which it is possible to return to a fully functional state with small resource costs); E4 is the
third group degradation (a state from which it is possible to return to a fully functional state
with costs associated with sufficiently resource-intensive maintenance); and E5 is the fourth
“heavier” group of degradation. As the degradation group number increases, returning to
the state E1 becomes more and more resource intensive.
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Let us “attach” four metrological control systems, C2, C3, C4 and C5, between the
fully functional state E1 and the other four states, similar to the one shown in Figure 8a
(“fan connection”). We will use the corresponding upper indices for the probabilistic and
deterministic parameters of the model of each subsystem, describing samples of the CTS
with different levels of degradation.

Then, the system of equations describing the semi-Markov stationary model will take
the form [6]:
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Here, αi, (i = 2, 3, 4, 5) is the conditional probability of a false failure, βi is the condi-
tional probability of an undetected failure and γi = Fi(TK)δj, (j = 1, 2, 3) are the probability
of a transition from a state of degradation to the next, more severe, state number j + 1.

Model (15) is a system of 21 equations. The rank of the system is 20. Exclude one of
the equations (for example, the last equation of the system (15)) and add a normalization
condition, as follows:

π1 +
4

∑
i=1

6

∑
j=2

π
(i)
j = 1 (16)

Then, the resulting system of linear inhomogeneous Equations (15) and (16) will have
a unique solution that can be obtained using standard algorithms and methods for solving
the corresponding systems [5,6].

Initial data: the total number of states is 21 and the number of degradation levels is
four. As the CTS degrades, the duration of the verification and recovery time increase, and
reliability decreases.

As generalized parameters characterizing the distribution of the control volumes by
the degradation groups, the duration TIBV T(i)

K for each of the four degradation groups
was selected. As a result of the calculations, the dependence of the readiness coefficient on
the TIBV was constructed:

KA = KA(T
(1)
K , T(2)

K , T(3)
K , T(4)

K ), (17)

and the analysis of the influence of the TIBV of the different degradation groups (i = 1, 2,
3, 4) on the readiness coefficient was carried out. When constructing the dependence (17),
the probabilities of false and undetected failures were set as average values for each of the
degradation groups, namely: α4 > α3 > α2 > α1, β4 > β3 > β2 > β1.

The calculations have shown that if three arguments out of four are fixed in function
(17), for example T(2)

K = c(2)∗, T(3)
K = c(3)∗, T(4)

K = c(4)∗, c(i)∗ = const then the dependence

of function (17) on the remaining variable T(1)
K will have the form shown in Figure 9. If two

arguments out of four are fixed in function (17), for example T(1)
K = c(1)∗ and T(2)

K = c(2)∗

then the readiness coefficient KA, as functions of two variables, will be convex upwards
(Figure 9). The maximum of the readiness coefficient KA is reached at a single internal
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point. Here and further, an asterisk in the upper index means that the corresponding value
is set and fixed.
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Figure 9. Dependence of the readiness coefficient KA on the TIBV for technical conditions E3 and E4.

The calculations have shown that the maximum value of the readiness coefficient is
achieved if the TIBV for the fourth degradation group is about 1.3 times less than for the
third group.

The developed model allows us to calculate the optimal duration of the TIBV for the
CTS of different degradation groups. If it is impossible to provide optimal TIBV values for
some degradation groups in practice, then in (17) “possible” TIBV values should be set
for these groups and local optimum TIBV durations for the remaining degradation groups
should be calculated.

Note that the model of interaction of the CTS with the MI with a simplified form of
technical condition control can be represented as a graph (Figure 8a), if you remove the
control subgraphs C2–C5 and set the probabilistic characteristics of the state transitions
on the edges of the remaining graph. Such a model, supplemented with a formula for
calculating the average total resource costs SUM = S12 p12 + S23 p23 + S34 p34 + S45 p45
(where S12, S23, S34, S45 are unit costs and p12, p23, p34, p45 are probabilities of the state
transitions), was used in [6] when calculating the technical and economic indicators of the
metrological support system, when forming programs for the long-term development of
the CTS fleet.

The models described in Section 4.1 and 4.2 do not allow modeling processes of CTS
fleet renewal, and do not allow for the taking into account of the procurement of new CTS
samples, or the modernization of existing CTS samples and the development of promising
CTS samples. The model presented in Section 4.3 of the article allows modeling for all stages
of the life cycle, including procurement, modernization and development of advanced
CTS samples.

4.3. The Model of Operation of the Complex Technical System Fleet with a Partially Recoverable Resource

Next, we will distribute the CTS into three degradation groups [7]: the first is the start
of operation of the CTS, the sample remains operational and the changes are insignificant;
the second is where the operation and resource consumption of the CTS sample continue,
the changes in characteristics are significant and the rate of change is average; and the third
is a long-term operation, where the changes in characteristics are very significant and the
rate of change is high. The number of degradation groups is determined by a set of types
and the types of CTS under consideration, as well as the specific task being solved.
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Figure 10 presents a graph of the operation model of the updated CTS fleet, with three
degradation groups and two subgraphs modeling the process of updating the CTS fleet.
The upper indices in parentheses indicate the number of the degradation group. Each
degradation group will be modeled using the classical model [2], described in Section 4.1.1.
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Each of the two subgraphs describing the upgrade process include three states:
E(l)

7 , l = 2, 3 are the in-depth diagnostics of the technical condition; E(l)
8 , l = 2, 3 is the

repair of the CTS; and E(l)
9 , l = 2, 3 is the purchase (or development and production) of a

new similar model of the CTS. The probabilistic parameters of the main state transitions are
shown in Figure 10, in Greek letters. Certain shares of the CTS, from the secondω(2) and
thirdω(3) degradation groups, in case of failure of the CTS are sent for in-depth diagnostics
of the technical condition, in order to determine the feasibility of updating (replacing with a
new model of the CTS) or continuing operation after repair. To simplify, some probabilistic
characteristics are not indicated in Figure 10, but they can be easily restored, taking into
account that the sum of the probabilities of the transitions from each vertex of the graph
are equal to one. If one edge comes out of the vertex, then the corresponding transition
probability is one, and if two edges come out of the vertex, and the probability of one
transition is written on the graph, then the probability of the second transition is equal to
the difference of one and the known probability of the first transition.
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Here π(j)i are the stationary probabilities of finding the CTS in the corresponding states;
α(j), j = 1, 2, 3, β(j), j = 1, 2, 3 are the conditional probabilities of false and undetected
failures, respectively; γ(j) = Fj(TK) is the probability of failure during the time interval TK

between the verifications; Fj(T) is exponential distribution function; and (χ(j), η(j), j = 1, 2)
are the probabilities of the transitions of the corresponding states from the j degradation
group to the next (j + 1) group. The first three systems (18) describe the processes of the
CTS operation for the three degradation groups, and the fourth system (18) describes the
process of updating the CTS fleet.

Model (18) is a homogeneous system of 24 linear algebraic equations. The rank of the
system is 23. Exclude one of the equations (for example, the last equation of the system
(18)) and add a normalization condition instead, as follows:
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Then, the resulting system of linear inhomogeneous algebraic equations (18) will have
a unique solution [7].

The readiness coefficient KA of the fleet of the CTS is calculated by the formula [2]:
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(20)

Hereψ(j)
i is the mathematical expectation of the time (average time) of the CTS being in

the corresponding states E(j)
i (assumed to be known). In the numerator (20), summation by

index j is performed for all workable states, and in the denominator (20) is the summation
by both index i and index j for all states (the index i is responsible for unworkable states).

As parameters characterizing the distribution of the metrological control volumes
and the quality of the metrological control by degradation groups, the duration of the
TIVB T(j)

K , j = 1, 2, 3 for each of the three degradation groups, the relative values of
the operational tolerances for the controlled parameters δ(j), j = 1, 2, 3 and the relative
measurement errors z(j), j = 1, 2, 3, were selected.

As a result of the solution for system (18), the dependence of the CTS readiness
coefficient for use on the above metrological parameters, organizational, technical and
technical parameters is constructed:

KA = KA(T
(1)
K , T(2)

K , T(3)
K , α(1), α(2), α(3), β(1), β(2), β(3),ω(2),ω(3), µ(2),µ(3)), (21)

moreover, the functions of the conditional probabilities of false failures and undetected
failures depend on the relative operational tolerance and relative measurement errors:

α(1) = α(1)(δ(1), z(1)), α(2) = α(2)(δ(2), z(2)), α(3) = α(3)(δ(3), z(3)),
β(1) = β(1)(δ(1), z(1)), β(2) = β(2)(δ(2), z(2)), β(3) = β(3)(δ(3), z(3))

that are calculated using Formulas (5)–(8).
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In (21), the following parameters are presented: ω(2), ω(3) are the proportion of
samples sent for in-depth diagnostics of the CTS samples from the number of samples
received for verification; and µ(2), µ(3) are the parameters characterizing the process of
updating the CTS fleet (so, for example, in special cases µ(j) = 0, where all inoperable CTS
samples are changed to new ones, and where µ(j) = 1 they are repaired). The parameters
ω(j), µ(j) are conditionally attributed to the organizational and technical categories. The
readiness coefficient also depends on other technical parameters, for example η(1), η(2), χ(1),
χ(2), which characterize the degradation process of the CTS fleet (operational parameters),
and the average time ψ(j)

i spent by the CTS sample in various states. These parameters are
determined based on the processing of the available statistical information and the relevant
criteria for classifying the CTS into different degradation groups.

Note that the parameters ψ(j)
9 (time spent in the state E(i)

9 ) allow you to model both the
purchase and development of new samples of CTS. To simulate the procurement of new
samples of CTS we have to set ψ(j)

9 sufficiently small, and to simulate the development of
new samples, we have to set the CTS at medium and large.

Note that the constructed dependence (21), like (17), is smooth, so its extreme proper-
ties can be effectively investigated using standard gradient methods.

On the basis of solving a series of problems on the extremum of a function of several
variables (21), the influence of the TIBV T(j)

K of the CTS from different degradation groups
and the relative tolerances on controlled parameters δ(j) on the readiness coefficient are
analyzed KA.

Consider the effect of the duration of the TIBV on the readiness coefficient KA. Let us
fix all the arguments (21), with the exception of three: T(i)

K , i = 1, 2, 3. If we additionally,

fix any two arguments T(i)
K out of three, for example T(2)

K = C(2)∗
TK

, T(3)
K = C(3)∗

TK
, then the

dependence of function (21) on the remaining argument T(1)
K will have the form given in [2]:

convex upwards with a single maximum.
An asterisk in the upper index means that the corresponding value is set and fixed. If

one of the three arguments is fixed in function (21) (for example, T(3)
K = C(3)∗

TK
), then the

readiness coefficient curve KA, as well as the functions of the other two arguments, T(1)
K and

T(2)
K , will be convex upwards (Figure 11). The maximum of the readiness coefficient KA will

be reached at a single internal point in the parameter plane, T(1)
K × T(2)

K . The dependences
of the readiness coefficient KA on the frequency of the control for the first and third groups,
and for the second and third groups of degradation, have a similar form.
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Optimization (21) for three groups of degradation showed that the characteristic ratio
of the TIBV durations is 80:45:30, thus, the higher the degradation group, the more often
CTS verifications are required.

Consider the effect of the relative operating tolerances δ(j), j = 1, 2, 3 on KA. Similarly
to the above, we fix all the arguments (21), with the exception of three δ(j), j = 1, 2, 3. Then,
the dependence of the readiness coefficient KA on relative operational tolerances is similar
to its dependence on the TIBV, T(i)

K , i = 1, 2, 3.
The calculations have shown that the general form of dependence KA on two toler-

ances, at a fixed value of the third tolerance, has the form of surfaces shown in Figure 12.
The surface of the readiness coefficient KA as a function of two arguments will be convex
upwards, where the maximum is reached at a single internal point in the parameter plane,
δ(1) × δ(2), δ(1) × δ(3) or δ(2) × δ(3). Optimization of the KA of three relative tolerances
simultaneously showed that their characteristic ratio is 0.07:0.09:0.13, thus, the higher the
degradation group, the greater the tolerance.
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controlled parameters: (a) on δ(1) and δ(2); (b) on δ(2) and δ(3).

The study of the joint dependence KA on the TIBV and tolerances showed that the
maximum of the function of six variables is achieved at a single internal point of a set of
parameters, T(1)

K × T(2)
K × T(3)

K × δ(1) × δ(2) × δ(3). The optimal values of the arguments

were: T(1)
K = 81.59, T(2)

K = 50.46, T(3)
K = 32.55, δ(1) = 0.072, δ(2) = 0.0872 and δ(3) = 0.128.

At the same time, the optimal values of the probabilities of false and undetected failures
were: α(1) = 0.227, α(2) = 0.267, α(3) = 0.347, β(1) = 0.171, β(2) = 0.222 and β(3) = 0.323.
The calculations have shown that with an increase in the number of the degradation group,
the TIBV decreases, the tolerances for controlled parameters and the probabilities of false
and undetected failures increase. The probabilities of false failures slightly exceed the
corresponding probabilities of undetected failures for each degradation group.

We describe the results of a study on the stationary distribution of the CTS samples
in different degradation groups, depending on the rate of degradation processes. The
rate of degradation is determined using transition probabilities χ(i), η(i). The lower the
corresponding probability, the slower the degradation processes proceed. Four variants
differing in the rate of degradation were investigated: η(1) = 0.25, χ(1) = 0.2, η(2) = 0.35,
χ(2) = 0.3 (option 1); η(1) = 0.025, χ(1) = 0.02, η(2) = 0.35, χ(2) = 0.3 (option 2); η(1) =
0.025, χ(1) = 0.02, η(2) = 0.035, χ(2) = 0.03 (option 3); and η(1) = 0.025, χ(1) = 0.02;
η(2) = 0.035, χ(2) = 0.003 (option 4). Note that the variants are arranged in order of
decreasing degradation rate. The distribution of the proportion of working samples of the
CTS by degradation groups at different values of these parameters is shown in Figure 13.
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The probability of the CTS staying in the first degradation group for option 2 is about
5.5 times higher compared to option 1. At the same time, the ratio of the probability of
being in the third group compared to the probability of being in the first group remains
approximately the same.

The probability of the CTS staying in the first degradation group monotonically
decreases, and the probability of being in the second group monotonically increases with
sequential consideration of options from 2 to 4.

Next, we investigate the dependence KA on the total production capacity of the
metrological units in which the MI and CTS are verified and checked. The production
capacity of a metrological unit may be temporarily limited for one reason or another. The
specified restriction was set in the form of an inequality, ∑

j
π(j)ψ(j) ≤ C(π)∗, where C(π)∗ is

the conditional production capacity of the metrological unit, and the problem of conditional
optimization was solved. In Figure 14 the dependences of the TIBV on the total conditional
production capacity ζ of the metrological units and the readiness coefficient corresponding
to these intervals (in percent) are presented.
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If the production capacities of the metrological division do not allow for the checking
of the required number of CTS, then it is possible to operate a fleet of CTS with increased
TIBV. With a decrease in the production capacity of the metrological unit from 100% to 75%,
the readiness coefficient KA decreases from 0.9514 to 0.8402.

5. Results

A set of interrelated mathematical models of the processes of operation, renewal and
degradation of a fleet of CTS with metrological support was developed. The basis of the
developed set of models consists of:

− A basic model of the CTS operation;
− A set of CTS operation models, having different levels of degradation (for different

levels of CTS degradation a different number of system states and different variants
of system maintenance are used);

− A model of false failures and undetected failures;
− A model of CTS fleet renewal, including such renewal methods as the purchase of

new CTS samples, the modernization of existing CTS samples and the development
of new promising CTS samples;

− A functional dependence model of the CTS availability factor on a number of technical
parameters, organizational and technical parameters, and technological parameters
of the CTS belonging to different degradation groups and different methods of CTS
stock renewal.

On the basis of the set of interrelated mathematical models presented in the article,
the software for modeling the processes of operation, renewal and degradation of the fleet
of CTS with metrological support was developed.

6. Discussions

The models developed and implemented as software allow for the parametrical opti-
mization of the processes of CTS fleet functioning for a number of parameters, including
metrological parameters, organizational and technical parameters, and technical parameters.

If in practice it is impossible to provide the optimal TIBV values or tolerances for the
controlled parameters for some degradation groups, then for these groups the “possible”
values of the TIBV and tolerances for the controlled parameters should be established, and
the developed models should be used for calculation.

The developed set of models include a model for calculating the probabilities of
false failures and undetected failures, for use in cases where the measured parameter
and measurement error have a normal distribution law. The set of models developed
in the article can also be used for different distribution laws of the measured parameter
and measurement error: analytical defined laws, statistical defined laws or analytical and
statistical distribution laws.

The constructed functional dependences of the availability factor on metrological,
technical, organizational, technical and technological parameters have a smooth character,
which makes it possible to effectively investigate the extreme properties of the availability
factor using standard gradient methods.

7. Conclusions

Thus, the research goal has been achieved: a set of interrelated models has been
developed, which solves the current need for end-to-end modeling of all the main stages
of the life cycle of the CTS fleet. The developed set of models makes it possible to ade-
quately simulate large CTS fleets, including those incorporating up to several hundreds of
thousands of CTS samples.
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The developed set of interrelated models allows:

− Management of the process of development of CTS fleets;
− Optimization of the processes of CTS fleet functioning;
− Identification of problematic issues in the development of CTS fleet and the formation

of strategies for CTS fleet development in the presence of various constraints;
− The solving of the problem of conditional optimization in the presence of constraints

on the technological parameters of the CTS fleet development (with constraints on
part of the arguments of the availability factor function);

− Calculation of the technological and technical–economic parameters of the CTS fleet
functioning and development;

− Evaluation of the risks associated with false and undetected failures, as well as the
risks associated with CTS degradation;

A set of models is used in the Main Scientific Metrology Center:

− To classify the designed CTS in order to establish the requirements for their metrologi-
cal support;

− When developing plans for medium-term and long-term development of the
CTS fleet.

A set of models and software can be used by design organizations involved in the
development of modern and advanced CTS with metrological support.

8. Future Works

At present, a set of models continues to develop in the direction of development
and replenishment with models of CTS fleet maintenance; namely, models of work-
places for the verification of MI, taking into account the priorities of the MI samples
coming for verification [27,28], as well as models of CTS fleet functioning under such
modes of functioning as the mode of high readiness for use, the mode of use in extreme
conditions, etc.
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Abstract: By making use of the linearization method, we examine a class of nonterminating 3F2-series
with five free integer parameters that yields twenty summation formulae. Under the Kummer and
Thomae transformations, six classes of exotic 3F2-series are consequently evaluated in closed forms.
There are overall 100 identities recorded in the present paper.
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1. Introduction and Outline

Denote by N and Z, respectively, the sets of natural numbers and integers with
N0 = N∪ {0}. The shifted factorials are given by (x)0 = 〈x〉0 =≡ 1 and

(x)n = x(x + 1) · · · (x + n− 1)

〈x〉n = x(x− 1) · · · (x− n + 1)

}
for n ∈ N.

We can express them, even when n ∈ Z, as the quotients

(x)n =
Γ(x + n)

Γ(x)
and 〈x〉n =

Γ(1 + x)
Γ(1 + x− n)

,

where the Γ-function is defined by the Euler integral

Γ(x) =
∫ ∞

0
ux−1e−udu for <(x) > 0.

For brevity, their fractional forms are concisely shortened as
[

α, β, · · · , γ
A, B, · · · , C

]

n
=

(α)n(β)n · · · (γ)n

(A)n(B)n · · · (C)n
,

Γ
[

α, β, · · · , γ
A, B, · · · , C

]
=

Γ(α)Γ(β) · · · Γ(γ)
Γ(A)Γ(B) · · · Γ(C) .

According to Bailey [1], the generalized hypergeometric series is defined by

1+pFp

[
a0, a1, · · · , ap

b1, · · · , bp

∣∣∣ z
]
=

∞

∑
n=0

(a0)n(a1)n · · · (ap)n

n!(b1)n · · · (bp)n
zn.

When z = 1, this series is convergent only if the “parameter excess” (i.e., the difference
between the sum of the denominator parameters and that of the numerator ones) has a
positive real part.
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There exist many strange evaluations of hypergeometric series (cf. [2–8] for example).
Recently, Campbell, D’Aurizio and Sondow [9,10] discovered two mysterious-looking
formulae (see D1 and D12)

3F2

[
1
4 , 3

4 , 1
2

1, 3
2

∣∣∣ 1

]
=

4 ln(1 +
√

2)
π

,

3F2

[
1
4 , 3

4 , − 1
2

1, 1
2

∣∣∣ 1

]
=

√
2 + ln(1 +

√
2)

π
.

Campbell and Abrarov [11] found, among the others, the following two further ones (see
F10 and G8)

3F2

[
3
2 , 3

4 , − 1
4

1, 7
4

∣∣∣ 1

]
=

3
√

π
{

3
√

2− log(1 +
√

2)
}

2Γ( 1
4 )

2
,

3F2

[
3
2 , 1

4 , 5
4

1, 9
4

∣∣∣ 1

]
=

5
√

π
{

3
√

2− log(1 +
√

2)
}

8Γ( 3
4 )

2
.

These series are said “exotic” because one numerator parameter minus a denominator
parameter results in a negative integer. By examining carefully these seemingly unrelated
series, we find that they are connected, under the Thomae and Kummer transformation
(cf. Bailey [1] §3.2 and Page 98), to the following 3F2-series

F (a, c, e; b, d) := 3F2

[
1 + a, c, 1

2 + e
3
4 + b, 5

4 + d

∣∣∣ 1

]
,
{

∆:= 1
2+b+d−a−c−e>0

σ:=b+d−a−c−e≥0

}
,

where a, b, c, d, e ∈ Z satisfying the conditions a ≥ 0 and c > 0 so that the both series
involved are nonterminating. When σ = b + d− a− c− e ≥ 0, the series is convergent,
because in this case the parameter excess ∆ = σ + 1

2 > 0 (i.e., the sum of the denominator
parameters minus that of the numerator ones).

Classically, there are three typical summation theorems (for the 3F2-series) discovered
by Dixon, Watson and Whipple (cf. Bailey [1] §3.1, §3.3 and §3.4). However, neither of them
can evaluate the afore-displayed series in closed form. In particular, the formulae for the
3F2-series presented in this paper are not present in the recent paper by the author [12], and
two useful compendiums: ([13] §8.1.2 and [14] §7.4.4), where numerous closed formulae
are collected for the 3F2(1) series with numerical parameters.

By applying the linearization method (cf. [15–18]), we shall transform, in the next
section, the evaluation of F -series into the Ωm,n-series treated recently by the author [19].
The main results are summarized in the conclusive theorem as well as twenty closed
formulae for the F -series. Finally in Section 3, analytic formulae for six further classes of
exotic 3F2-series will be provided by employing the Thomae and Kummer transformations
(cf. Bailey [1] §3.2 and Page 98) to the F -series.

In order to ensure the accuracy, all the formulae appearing in this paper have been
checked numerically by appropriately devised Mathematica commands.

2. Linearization Procedure for the F -Series

In this section, we shall reduce, by means of the linearization method (cf. [15–18]),
the F -series to specific instances of a known Ωm,n(x, y) function, that has recently been
examined by the author [19].

2.1. a = 0

According to the Chu–Vandermonde convolution identity on binomial coefficients, it
is routine to establish the following lemma.
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Lemma 1 (Linear relation: m ∈ N0).

(A + n)m =
m

∑
k=0

(B + n)kXk where Xk =

(
m
k

)
(A− B)m−k.

Specifying the above relation to the equality

(1 + n)a =
a

∑
k=0

(c + n)kXk(a) where Xk(a) =
(

a
k

)
(1− c)a−k

and then substituting it into the F -series, we have the double series

F (a, c, e; b, d) =
∞

∑
n=0

[
1 + a, c, 1

2 + e

1, 3
4 + b, 5

4 + d

]

n

a

∑
k=0

(c + n)k
(1 + n)a

Xk(a)

=
a

∑
k=0

(c)k
(1)a

Xk(a)
∞

∑
n=0

[
c + k, 1

2 + e
3
4 + b, 5

4 + d

]

n

.

This results in the reduction formula as below.

Proposition 1 (Reduction formula from a > 0 to a = 0).

F (a, c, e; b, d) =
a

∑
k=0

(−1)a
(−c

k

)(
c− 1
a− k

)
F (0, c + k, e; b, d).

2.2. b = d

The F -series can further be reduced to the case b = d.
When b > d, we can specify Lemma 1 to the equality

( 5
4 + d + n)b−d =

b−d

∑
k=0

(c + n)kYk(b, d) where Yk(b, d) =
(

b− d
k

)
( 5

4 − c + d)b−d−k.

Putting this inside the F -series, we have the double series

F (0, c, e; b, d) =
∞

∑
n=0

[
c, 1

2 + e
3
4 + b, 5

4 + d

]

n

b−d

∑
k=0

(c + n)k

( 5
4 + d + n)b−d

Yk(b, d)

=
b−d

∑
k=0

(c)k

( 5
4 + d)b−d

Yk(b, d)
∞

∑
n=0

[
c + k, 1

2 + e
3
4 + b, 5

4 + b

]

n

.

This yields the following reduction formula.

Proposition 2 (Reduction formula from b > d to b = d).

F (0, c, e; b, d) =
b−d

∑
k=0

(
b− d

k

)
(c)k(

5
4 − c + d)b−d−k

( 5
4 + d)b−d

F (0, c + k, e; b, b).

Alternatively, for b < d, we can specify Lemma 1 to the equality

( 3
4 + b + n)d−b =

d−b

∑
k=0

(c + n)kYk(b, d) where Yk(b, d) =
(

d− b
k

)
( 3

4 + b− c)d−b−k.
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Substituting this into the F -series, we have the double series

F (0, c, e; b, d) =
∞

∑
n=0

[
c, 1

2 + e
3
4 + b, 5

4 + d

]

n

d−b

∑
k=0

(c + n)k

( 3
4 + b + n)d−b

Yk(b, d)

=
d−b

∑
k=0

(c)k

( 3
4 + b)d−b

Yk(b, d)
∞

∑
n=0

[
c + k, 1

2 + e
3
4 + d, 5

4 + d

]

n

.

This gives rise to another reduction formula.

Proposition 3 (Reduction formula from b < d to b = d).

F (0, c, e; b, d) =
d−b

∑
k=0

(
d− b

k

)
(c)k(

3
4 + b− c)d−b−k

( 3
4 + b)d−b

F (0, c + k, e; d, d).

2.3. c = e

The F -series can further be reduced to the case c = e. For this purpose, we have to
show the following linearization lemma.

Lemma 2 (Linear relation: m ∈ N0).

(A + n)m =
m

∑
k=0
〈B + 2n〉kZk where Zk =

k

∑
i=0

(−1)k−i

k!

(
k
i

)
(A− B−i

2 )m.

Proof. By substitution, it suffices to evaluate the double sum

S :=
m

∑
k=0
〈B + 2n〉k

k

∑
i=0

(−1)k−i

k!

(
k
i

)
(A− B−i

2 )m = (A + n)m.

By exchanging the order of summations, we can reformulate it as

S =
m

∑
i=0

〈B + 2n〉i
i!

(A− B−i
2 )m

m

∑
k=i

(−1)k−i
(

B + 2n− i
k− i

)

=
m

∑
i=0

(−1)m−i 〈B + 2n〉i
i!

(A− B−i
2 )m

(
B + 2n− i− 1

m− i

)

=
〈B + 2n〉m+1

m!

m

∑
i=0

(−1)m−i
(

m
i

)
(A− B−i

2 )m

B + 2n− i

=
(B + 2n)m+1

m!
× m!(A + n)m

〈B + 2n〉m+1
= (A + n)m,

where the last line is justified by finite difference calculus (cf. [20,21]).

First for c < e, we have from Lemma 2 the equality

( 1
2 + c + n)e−c =

e−c

∑
k=0

〈
2b + 2n + 1

2

〉
k
Zk(b, c, e),

where Zk(b, c, e) =
k

∑
i=0

(−1)k−i

k!

(
k
i

)
(c− b + 1+2i

4 )e−c.
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By inserting this into the F -series, we obtain the double series below

F (0, c, e; b, b) =
∞

∑
n=0

[
c, 1

2 + e
3
4 + b, 5

4 + b

]

n

e−c

∑
k=0

〈
2b + 2n + 1

2

〉
k

( 1
2 + c + n)e−c

Zk(b, c, e)

=
e−c

∑
k=0

(−1)k (− 1
2 − 2b)k

( 1
2 + c)e−c

Zk(b, c, e)
∞

∑
n=0

[
c, 1

2 + c
3−2k

4 + b, 5−2k
4 + b

]

n

.

Writing the inner sum concerning n in terms of the F -series, we immediately establish the
reduction formula as in the following proposition.

Proposition 4 (Reduction formula from c < e to c = e).

F (0, c, e; b, b) =
e−c

∑
k=0

(−1)k (− 1
2 − 2b)k

( 1
2 + c)e−c

Zk(b, c, e)F (0, c, c; b− k
2 , b− k

2 ).

When c > e and e > 0, we infer from Lemma 2 that

(e + n)c−e =
c−e

∑
k=0

〈
2b + 2n + 1

2

〉
k
Zk(b, c, e),

where Zk(b, c, e) =
k

∑
i=0

(−1)k−i

k!

(
k
i

)
(e− b + 2i−1

4 )c−e. (1)

Putting this inside the F -series, we can analogously treat the double series

F (0, c, e; b, b) =
∞

∑
n=0

[
c, 1

2 + e
3
4 + b, 5

4 + b

]

n

c−e

∑
k=0

〈
2b + 2n + 1

2

〉
k

(e + n)c−e
Zk(b, c, e)

=
c−e

∑
k=0

(−1)k (− 1
2 − 2b)k

(e)c−e
Zk(b, c, e)

∞

∑
n=0

[
e, 1

2 + e
3−2k

4 + b, 5−2k
4 + b

]

n

.

Instead, for c > e and e ≤ 0, reformulate first the F -series by reindexing

F (0, c, e; b, b) = F (0, 1 + c− e, 1; 1 + b− e, 1 + b− e)

×
[

c, 1
2 + e

3
4 + b, 5

4 + b

]

1−e

+
−e

∑
n=0

[
c, 1

2 + e
3
4 + b, 5

4 + b

]

n

.

Then according to Lemma 2, we have another equality

(1 + n)c−e =
c−e

∑
k=0

〈 5
2 + 2b− 2e + 2n

〉
kZk(b, c, e),

where the connection coefficients Zk(b, c, e) coincide with those given by (1). Now, by sub-
stitution, we have another double series

F (0, 1 + c− e, 1; 1 + b− e, 1 + b− e)

=
∞

∑
n=0

[
1 + c− e, 3

2
7
4 + b− e, 9

4 + b− e

]

n

c−e

∑
k=0

〈 5
2 + 2b− 2e + 2n

〉
k

(1 + n)c−e
Zk(b, c, e)

=
c−e

∑
k=0

(−1)k (2e− 2b− 5
2 )k

(c− e)!
Zk(b, c, e)

∞

∑
n=0

[
1, 3

2
7−2k

4 + b− e, 9−2k
4 + b− e

]

n

.

Summing up, we have established the reduction formula to the case c = e.
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Proposition 5 (Reduction formula from c > e to c = e).

e > 0 : F (0, c, e; b, b) =
c−e

∑
k=0

(−1)k (− 1
2 − 2b)k

(e)c−e
Zk(b, c, e)F (0, e, e; b− k

2 , b− k
2 ),

e ≤ 0 : F (0, c, e; b, b) =
−e

∑
n=0

[
c, 1

2 + e
3
4 + b, 5

4 + b

]

n

+
c−e

∑
k=0

(−1)k (2e− 2b− 5
2 )k

(c− e)!
Zk(b, c, e)

×
[

c, 1
2 + e

3
4 + b, 5

4 + b

]

1−e

F (0, 1, 1; 1 + b− e− k
2 , 1 + b− e− k

2 ).

Observe that the parameter excess ∆ ≥ 1
2 for the F -series is not diminished hitherto by

the established reduction formulae. Consequently, all the F -series displayed on the right
hand sides of Propositions 4 and 5 have the parameter excess ∆ ≥ 1

2 , and can be expressed
as the following bisection series

F (0, c, c; b, b) =
∞

∑
n=0

(2c)2n

(2b + 3
2 )2n

=
1
2
× 2F1

[
1, 2c
3
2 + 2b

∣∣∣ 1
]

+
1
2
× 2F1

[
1, 2c
3
2 + 2b

∣∣∣ − 1
]

,

where b, c ∈ N subject to the condition b ≥ c. Therefore, to evaluate the F -series explicitly,
it suffices to do that for the above bisection series.

2.4. Ωm,n-Series

In a recent paper [19], the author examined a more general series

Ωm,n(x, y) := 2F1

[
x, m− x

n + 1
2

∣∣∣ y2
]

where m, n ∈ Z (2)

and proved the following evaluation formula.

Theorem 1 (Chu [19] Theorems 4 and 8: Recurrence formula). For the two natural numbers
m and n satisfying m < n, there holds the following formula

Ωm,n(x, y) =
( 1

2 )n

y2n

n−m

∑
i=0

(
n−m

i

)
(x)i(m− x)n−m−i

(2x− n + i)i(m− 2x− i)n−m−i

×
n

∑
k=0

(−1)n−k
(

n
k

)
2x + 2i− 2k

(2x + 2i− n− k)n+1
Ω0,0(x + i− k, y),

where the series Ω0,0 is evaluated by

Ω0,0(x, y) = 2F1

[
x, −x

1
2

∣∣∣ y2
]
= cos(2x arcsin y).

Hence, the F -series can be evaluated in terms of the Ω-series by the theorem below.

Theorem 2 (b ≥ c : b, c ∈ N).

F (0, c, c; b, b) =
1
2

lim
x→1

Ω2c+1,2b+1(x, 1) +
1
2

lim
x→1

Ω2c+1,2b+1(x,
√
−1)

with Ω0,0(x, 1) = cos(πx) and Ω0,0(x,
√
−1) = cosh

(
2x ln(1 +

√
2)
)
.
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2.5. Conclusive Theorem and Examples (Class-A)

Based on the preceding reduction formulae, we may evaluate, for any quintuple
integers a, b, c, d, e ∈ Z subject to a ≥ 0, c > 0 and σ = b + d− a− c− e > 0, the F -series
by carrying out the following procedure:

• Step-A: If a = 0, go directly to Step-B. Otherwise for a > 0, according to Proposition 1,
express F (a, c, e; b, d) in terms of F (0, c, e; b, d), and then go to Step-B.

• Step-B: By means of Propositions 2 and 3, expressF (0, c, e; b, d) in terms ofF (0, c, e; b, b),
and then go to Step-C.

• Step-C: In virtu of Propositions 4 and 5, expressF (0, c, e; b, b) in terms ofF (0, c, c; b, b),
and then go to Step-D.

• Step-D: Finally by applying Theorems 1 and 2, evaluate F (0, c, c; b, b) explicitly in
terms of the Ω-series.

Therefore, we have validated the conclusive theorem as below.

Theorem 3 (Conclusion). For any quintuple integers

a, b, c, d, e ∈ Z subject to a ≥ 0, c > 0 and σ = b + d− a− c− e > 0,

the nonterminating F (a, c, e; b, d) series can always be evaluated by finitely linear sums of
trigonometric function cos(πx) and hyperbolic function cosh

(
2x ln(1 +

√
2)
)
, where x ∈ Z and

the coefficients are rational numbers.

According to the afore-described procedure, we have written appropriate Mathematica
commands to determine explicitly closed form expressions for F (a, c, e; b, d) series. Twenty
summation formulae are displayed below, where the argument “1” will be suppressed
from the notation of 3F2-series for the sake of brevity. We shall call these series “Class-A”.
Among them, an equivalent form of A5 has been obtained by Campbell and Abrarov ([11]
Equation (18)).

A1. 3F2
[
1, 1, 1

2 ; 5
4 , 7

4
]

= 3√
2

log(1 +
√

2).

A2. 3F2
[
1, 1, 1

2 ; 7
4 , 9

4
]

= −5
{

1−
√

2 log(1 +
√

2)
}

.

A3. 3F2
[
1, 1, 1

2 ; 5
4 , 11

4
]

= −7
15
{

1− 3
√

2 log(1 +
√

2)
}

.

A4. 3F2
[
1, 1, 3

2 ; 5
4 , 11

4
]

= 7
12
{

2 + 3
√

2 log(1 +
√

2)
}

.

A5. 3F2
[
1, 1, 3

2 ; 7
4 , 9

4
]

= 15
4
{

2−
√

2 log(1 +
√

2)
}

.

A6. 3F2
[
1, 1, 3

2 ; 9
4 , 11

4
]

= 35
6
{

4− 3
√

2 log(1 +
√

2)
}

.

A7. 3F2
[
1, 1, − 1

2 ; 3
4 , 5

4
]

= 1
3
{

1−
√

2 log(1 +
√

2)
}

.

A8. 3F2
[
1, 1, − 1

2 ; 1
4 , 7

4
]

= 3
5
{

1− 3
√

2 log(1 +
√

2)
}

.

A9. 3F2
[
1, 1, − 1

2 ; 7
4 , 9

4
]

= −3
7
{

3− 4
√

2 log(1 +
√

2)
}

.

A10. 3F2
[
1, 1, − 3

2 ; 3
4 , 5

4
]

= 1
35
{

3− 4
√

2 log(1 +
√

2)
}

.
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A11. 3F2
[
1, 2, 1

2 ; 7
4 , 9

4
]

= 5
8
{

2 +
√

2 log(1 +
√

2)
}

.

A12. 3F2
[
1, 2, − 1

2 ; 5
4 , 7

4
]

= 3
20
{

2−
√

2 log(1 +
√

2)
}

.

A13. 3F2
[
1, 2, − 1

2 ; 3
4 , 9

4
]

= 5
84
{

2− 5
√

2 log(1 +
√

2)
}

.

A14. 3F2
[
1, 2, − 1

2 ; 7
4 , 9

4
]

= 1
14
{

8 +
√

2 log(1 +
√

2)
}

.

A15. 3F2
[
1, 2, − 3

2 ; 3
4 , 9

4
]

= −5
77
{

1 +
√

2 log(1 +
√

2)
}

.

A16. 3F2
[
2, 2, 1

2 ; 7
4 , 13

4
]

= 135
224
{

6−
√

2 log(1 +
√

2)
}

.

A17. 3F2
[
2, 2, − 1

2 ; 5
4 , 11

4
]

= 7
48
{

2− 3
√

2 log(1 +
√

2)
}

.

A18. 3F2
[
2, 2, − 1

2 ; 9
4 , 11

4
]

= 1
24
{

2 + 9
√

2 log(1 +
√

2)
}

.

A19. 3F2
[
2, 2, − 3

2 ; 7
4 , 13

4
]

= 1
22
{

8− 3
√

2 log(1 +
√

2)
}

.

A20. 3F2
[
2, 2, − 3

2 ; 11
4 , 13

4
]

= −1
13
{

13− 15
√

2 log(1 +
√

2)
}

.

3. The Thomae and Kummer Transformations

In the classical theory of hypergeometric series, the Thomae and Kummer transforma-
tions are fundamental (cf. Bailey [1] §3.2 and Page 98 , where σ = b + d− a− c− e):

3F2

[
a, c, e

b, d

∣∣∣ 1
]
=3F2

[
σ, b− a, d− a

c + σ, e + σ

∣∣∣ 1
]

Γ
[

σ, b, d
a, c + σ, e + σ

]
(3)

3F2

[
a, c, e

b, d

∣∣∣ 1
]
=3F2

[
a, b− c, b− e

σ + a, b

∣∣∣ 1
]

Γ
[

σ, d
σ + a, d− a

]
. (4)

They will be applied to the F -series to evaluete six classes of exotic 3F2-series.

3.1. Class B

Applying the Kummer transformation (4), we can express the following “Class-B”
series in terms of the F -series (where σ = b + d− a− c− e):

3F2

[
1 + a, c + 1

4 , e + 3
4

b + 3
2 , d + 5

4

∣∣∣ 1

]
= Γ

[
b + 3

2 , σ + 3
4

b− a + 1
2 , σ + a + 7

4

]

× 3F2

[
1 + a, d− c + 1, d− e + 1

2

d + 5
4 , σ + a + 7

4

∣∣∣ 1

]
.

Then we can derive the following closed formulae for these series (except for divergent
series) from those displayed in “Class A”.

B1. 3F2
[
1, 1

4 , 3
4 ; 3

2 , 5
4
]

=
√

2 log(1 +
√

2).

B2. 3F2
[
1, 1

4 , 7
4 ; 5

2 , 5
4
]

= 2
5
{

1 + 2
√

2 log(1 +
√

2)
}

.

B3. 3F2
[
1, 1

4 , 7
4 ; 5

2 , 9
4
]

= 3
2
{

2−
√

2 log(1 +
√

2)
}

.

B4. 3F2
[
1, 3

4 , 5
4 ; 3

2 , 9
4
]

= 5
2
{

2−
√

2 log(1 +
√

2)
}

.

B5. 3F2
[
1, 3

4 , 5
4 ; 5

2 , 9
4
]

= 5
{

4− 3
√

2 log(1 +
√

2)
}

.

B6. 3F2
[
1, 7

4 , 9
4 ; 5

2 , 13
4
]

= 9
5
{

8− 5
√

2 log(1 +
√

2)
}

.

B7. 3F2
[
2, 1

4 , 7
4 ; 7

2 , 5
4
]

= 2
9
{

4 + 3
√

2 log(1 +
√

2)
}

.

B8. 3F2
[
2, 3

4 , 5
4 ; 5

2 , 9
4
]

= 5
4
{
− 2 + 3

√
2 log(1 +

√
2)
}

.

B9. 3F2
[
2, 5

4 , 7
4 ; 7

2 , 9
4
]

= 5
{

2−
√

2 log(1 +
√

2)
}

.

B10. 3F2
[
2, 9

4 , 11
4 ; 9

2 , 13
4
]

= 30
{

4− 3
√

2 log(1 +
√

2)
}

.
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3.2. Class C

By means of the Kummer transformation (4), we can express the “Class-C” series
below in terms of the F -series (where σ = b + d− a− c− e):

3F2

[
1 + a, c + 1

4 , e + 3
4

b + 3
2 , d + 3

4

∣∣∣ 1

]
= Γ

[
σ + 1

4 , b + 3
2

σ + a + 5
4 , b− a + 1

2

]

× 3F2

[
1 + a, d− e, d− c + 1

2

d + 3
4 , σ + a + 5

4

∣∣∣ 1

]
.

Then the closed formulae below for these series ( except for divergent series) follow directly
from those recorded in “Class A”.

C1. 3F2
[
1, 1

4 , 3
4 ; 3

2 , 7
4
]

= 3
2
{

2−
√

2 log(1 +
√

2)
}

.

C2. 3F2
[
1, 1

4 , 3
4 ; 5

2 , 7
4
]

= 3
5
{

8− 5
√

2 log(1 +
√

2)
}

.

C3. 3F2
[
1, 3

4 , 5
4 ; 3

2 , 7
4
]

= 3
√

2 log(1 +
√

2).

C4. 3F2
[
1, 3

4 , 9
4 ; 5

2 , 7
4
]

= 6
5
{

1 + 2
√

2 log(1 +
√

2)
}

.

C5. 3F2
[
1, 5

4 , − 1
4 ; 3

2 , 3
4
]

= 2
3
{

1−
√

2 log(1 +
√

2)
}

.

C6. 3F2
[
1, 5

4 , − 1
4 ; 3

2 , 7
4
]

= 1
4
{

2 +
√

2 log(1 +
√

2)
}

.

C7. 3F2
[
1, 5

4 , − 1
4 ; 5

2 , 3
4
]

= 2
7
{

5− 2
√

2 log(1 +
√

2)
}

.

C8. 3F2
[
2, 3

4 , 5
4 ; 5

2 , 7
4
]

= 3
2
{

2 +
√

2 log(1 +
√

2)
}

.

C9. 3F2
[
2, 3

4 , 9
4 ; 7

2 , 7
4
]

= 6
7
{

8 +
√

2 log(1 +
√

2)
}

.

C10. 3F2
[
2, 3

4 , 13
4 ; 7

2 , 11
4
]

= 1
2
{

2 + 9
√

2 log(1 +
√

2)
}

.

3.3. Class D

By virtue of the Thomae transformation (3), we can express the following “Class-D”
series in terms of the F -series (where σ = b + d− a− c− e):

3F2

[
a + 1

2 , c + 1
4 , e + 3

4

b + 1, d + 1
2

∣∣∣ 1

]
= Γ

[
σ, b + 1, d + 1

2

a + 1
2 , σ + c + 1

4 σ + e + 3
4

]

× 3F2

[
σ, d− a, b− a + 1

2

σ + c + 1
4 , σ + e + 3

4

∣∣∣ 1

]
.

(5)

Then we find the closed formulae below for these series ( except for divergent series) as
consequences of those produced in “Class A”.

D1. 3F2
[ 1

4 , 3
4 , 1

2 ; 1, 3
2
]

=
4 log(1+

√
2)

π .

D2. 3F2
[ 1

4 , 7
4 , 1

2 ; 2, 3
2
]

=
8
{√

2+3 log(1+
√

2)
}

9π .

D3. 3F2
[ 1

4 , 7
4 , 1

2 ; 1, 5
2
]

=
2
{√

2+9 log(1+
√

2)
}

5π .

D4. 3F2
[ 1

4 , 7
4 , 3

2 ; 1, 7
2
]

=
8
{

2
√

2+3 log(1+
√

2)
}

9π .

D5. 3F2
[ 3

4 , 5
4 , 1

2 ; 1, 5
2
]

=
2
{√

2+log(1+
√

2)
}

π .
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D6. 3F2
[ 3

4 , 5
4 , 1

2 ; 2, 3
2
]

=
8
{√

2−log(1+
√

2)
}

π .

D7. 3F2
[ 3

4 , 5
4 , 3

2 ; 1, 7
2
]

=
8
{

4
√

2+log(1+
√

2)
}

7π .

D8. 3F2
[ 5

4 , − 1
4 , 1

2 ; 1, 3
2
]

=
4
{

2
√

2−log(1+
√

2)
}

3π .

D9. 3F2
[ 5

4 , − 1
4 , 3

2 ; 1, 5
2
]

=
4
{

5
√

2−4 log(1+
√

2)
}

7π .

D10. 3F2
[ 5

4 , 7
4 , 3

2 ; 2, 7
2
]

=
16
{√

2−log(1+
√

2)
}

π .

Observing that the parameter excess of the 3F2-series displayed on the right hand side
of (5) equals ∆ = 1

2 + a, the equality (5) valid only when a ≥ 0 and σ ≥ 0. It remains a
problem to evaluate, for a < 0, the 3F2-series on the left of (5). This can also be resolved by
the linearization method.

According to the Pfaff–Saalschütz summation theorem (cf. Bailey [1] §2.2), it is not
hard to confirm the linear relation in the following lemma.

Lemma 3 (Linear relation: m ∈ N0).

(A + n)m =
m

∑
k=0
〈n〉k(B + n)m−kXk, where Xk = (−1)k

(
m
k

)
(A)m(A− B)k
(B)m(A)k

.

By specializing this to the equality

(1 + b + n)−a =
−a

∑
k=0
〈n〉k( 1

2 + a + n)−a−kXk
a ,

where Xk(a) =
(−a)!〈
− 1

2

〉
−a

(
a− b− 1

2
k

)(
b− a
−a− k

)

and then substituting it into the 3F2-series, we may manipulate the double sum

3F2

[
1
2 + a, 1

4 + c, 3
4 + e

1 + b, 1
2 + d

∣∣∣ 1

]

=
∞

∑
n=0

[
1
2 + a, 1

4 + c, 3
4 + e

1, 1 + b, 1
2 + d

]

n

−a

∑
k=0

〈n〉k( 1
2 + a + n)−a−k

(1 + b + n)−a
Xk(a)

=
−a

∑
k=0

( 1
2 + a)−a−k

(1 + b)−a
Xk(a)

∞

∑
n=0

〈n〉k
n!

[
1
2 − k, 1

4 + c, 3
4 + e

1− a + b, 1
2 + d

]

n

.

Performing the replacement n→ n + k, we can express the last sum with respect to n as
[

1
2 − k, 1

4 + c, 3
4 + e

1− a + b, 1
2 + d

]

k
3F2

[
1
2 , 1

4 + c + k, 3
4 + e + k

1− a + b + k, 1
2 + d + k

∣∣∣ 1

]
.

Therefore, we have established, after some simplifications, the following transformation
formula.
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Theorem 4 (Reduction formula from a < 0 to a = 0).

3F2

[
1
2 + a, 1

4 + c, 3
4 + e

1 + b, 1
2 + d

∣∣∣ 1

]
=
−a

∑
k=0

[
a, 1

2 − a + b, 1
4 + c, 3

4 + e

1, 1− a + b, 1 + b, 1
2 + d

]

k

× 3F2

[
1
2 , 1

4 + c + k, 3
4 + e + k

1− a + b + k, 1
2 + d + k

∣∣∣ 1

]
.

It should be emphasized that under this transformation, the parameter excess ∆ =
σ = b + d− a− c− e remains invariant for all the 3F2-series. However the 3F2-series on
the right belongs to Class-D and can therefore be evaluated by (5). Ten more formulae are
recorded below.

D11. 3F2
[
− 1

2 , 1
4 , − 1

4 ; 1, 3
2
]

=
13
√

2+log(1+
√

2)
6π .

D12. 3F2
[
− 1

2 , 1
4 , 3

4 ; 1, 1
2
]

=
√

2+log(1+
√

2)
π .

D13. 3F2
[
− 1

2 , 1
4 , 3

4 ; 1, 3
2
]

=
√

2+5 log(1+
√

2)
2π .

D14. 3F2
[
− 1

2 , 1
4 , 7

4 ; 1, 3
2
]

=
5
√

2+9 log(1+
√

2)
6π .

D15. 3F2
[
− 1

2 , 3
4 , 5

4 ; 1, 3
2
]

=
3
√

2−log(1+
√

2)
2π .

D16. 3F2
[
− 1

2 , 3
4 , − 3

4 ; 1, 1
2
]

=
5
√

2+9 log(1+
√

2)
3π .

D17. 3F2
[
− 1

2 , 3
4 , − 3

4 ; 2, 1
2
]

=
34
√

2+42 log(1+
√

2)
21π .

D18. 3F2
[
− 1

2 , 5
4 , 7

4 ; 2, 3
2
]

= 7
√

2+3 ln(1+
√

2)
9π .

D19. 3F2
[
− 1

2 , − 3
4 , 7

4 ; 1 3
2
]

=
43
√

2+87 log(1+
√

2)
30π .

D20. 3F2
[
− 3

2 , − 1
4 , − 3

4 ; 1, 1
2
]

=
31
√

2−37 log(1+
√

2)
8π .

Campbell, D’Aurizio and Sondow [9,10,22] discovered some formulae in Class-D.

• The formula D1 has been found by them in ([9] Equation (10)), where they also
conjectured D12. For this last evaluation, five different proofs have been provided by
the same authors [10].

• By making use of beta integrals, Campbell recoded in ([22] Theorems 2,3,7 and Exam-
ple 12) four formulae. The first one ([22] Theorem 2) is corrected by D18. The second
one ([22] Theorem 3) is incorrect. The third one ([22] Theorem 7) is simplified by D2.
The fourth one ([22] Example 12) is too complicated to reproduce here.

3.4. Class E

Again in view of the Thomae transformation (3), we can express the “Class-E” series
below in terms of the F -series (where σ = b + d− a− c− e):

3F2

[
a + 1

2 , c + 1
4 , e + 3

4

b + 1
2 , d + 3

2

∣∣∣ 1

]
= Γ

[
σ + 1

2 , b + 1
2 , d + 3

2

a + 1
2 , σ + c + 3

4 , σ + e + 5
4

]

× 3F2

[
1 + d− a, b− a, σ + 1

2

σ + c + 3
4 , σ + e + 5

4

∣∣∣ 1

]
.

(6)

Consequently, the closed formulae below for these series ( except for divergent series) can
be deduced from those exhibited in “Class A”. Among them, E2 simplifies a formula of
Campbell ([22] Example 5).
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E1. 3F2
[ 1

4 , 3
4 , 1

2 ; 3
2 , 3

2
]

= 2
√

2− 2 log(1 +
√

2).

E2. 3F2
[ 1

4 , 7
4 , 1

2 ; 3
2 , 3

2
]

= 1
3
{

4
√

2− 2 log(1 +
√

2)
}

.

E3. 3F2
[ 1

4 , 7
4 , 3

2 ; 5
2 , 5

2
]

= 12
25
{

8
√

2− 10 log(1 +
√

2)
}

.

E4. 3F2
[ 3

4 , 5
4 , 1

2 ; 3
2 , 3

2
]

= 2 log(1 +
√

2).

E5. 3F2
[ 3

4 , 5
4 , 3

2 ; 5
2 , 5

2
]

= 4
{

4
√

2− 6 log(1 +
√

2)
}

.

E6. 3F2
[ 3

4 , 9
4 , 1

2 ; 3
2 , 5

2
]

= 1
5
{√

2 + 9 log(1 +
√

2)
}

.

E7. 3F2
[ 5

4 , 7
4 , 1

2 ; 3
2 , 5

2
]

=
√

2 + log(1 +
√

2).

E8. 3F2
[ 5

4 , 11
4 , 1

2 ; 5
2 , 5

2
]

= 9
14
{

3
√

2− log(1 +
√

2)
}

.

E9. 3F2
[ 7

4 , 9
4 , 3

2 ; 5
2 , 7

2
]

= 12
{√

2− log(1 +
√

2)
}

.

E10. 3F2
[ 9

4 , 11
4 , 5

2 ; 7
2 , 9

2
]

= 40
{

4
√

2− 6 log(1 +
√

2)
}

.

Analogous to the series in Class-D, the parameter excess of the 3F2-series displayed
on the right hand side of (6) equals ∆ = 1

2 + a, which converges only when a ≥ 0. We can
also evaluate that 3F2-series by reducing the case a < 0 to a = 0.

By means of Lemma 3, we have the equality

( 1
2 + b + n)−a =

−a

∑
k=0
〈n〉k( 1

2 + a + n)−a−kXk
a ,

where Xk(a) =
(−a)!〈
− 1

2

〉
−a

(
a− b

k

)(
b− a− 1

2
−a− k

)

and then insert it in the 3F2-series, we can handle the double sum

3F2

[
1
2 + a, 1

4 + c, 3
4 + e

1
2 + b, 3

2 + d

∣∣∣ 1

]

=
∞

∑
n=0

[
1
2 + a, 1

4 + c, 3
4 + e

1, 1
2 + b, 3

2 + d

]

n

−a

∑
k=0

〈n〉k( 1
2 + a + n)−a−k

( 1
2 + b + n)−a

Xk(a)

=
−a

∑
k=0

( 1
2 + a)−a−k

( 1
2 + b)−a

Xk(a)
∞

∑
n=0

〈n〉k
n!

[
1
2 − k, 1

4 + c, 3
4 + e

1
2 − a + b, 3

2 + d

]

n

.

Making the replacement n→ n + k, we can express the last sum as
[

1
2 − k, 1

4 + c, 3
4 + e

1
2 − a + b, 3

2 + d

]

k
3F2

[
1
2 , 1

4 + c + k, 3
4 + e + k

1
2 − a + b + k, 3

2 + d + k

∣∣∣ 1

]
.

After some simplifications, we establish the transformation below.

Theorem 5 (Reduction formula from a < 0 to a = 0).

3F2

[
1
2 + a, 1

4 + c, 3
4 + e

1
2 + b, 3

2 + d

∣∣∣ 1

]
=
−a

∑
k=0

[
a, b− a, 1

4 + c, 3
4 + e

1, 1
2 − a + b, 1

2 + b, 3
2 + d

]

k

× 3F2

[
1
2 , 1

4 + c + k, 3
4 + e + k

1
2 − a + b + k, 3

2 + d + k

∣∣∣ 1

]
.

Under this transformation, the parameter excess ∆ = σ = b + d− a− c− e remains
invariant for all the 3F2-series involved. However the 3F2-series on the right belongs to
Class-E and can therefore be evaluated by (6). We record ten more examples.
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E11. 3F2
[
− 1

2 , 1
4 , 3

4 ; 1
2 , 3

2
]

=
6−
√

2 log(1+
√

2)
4
√

2
.

E12. 3F2
[
− 1

2 , 1
4 , 7

4 ; 1
2 , 3

2
]

=
14−5

√
2 log(1+

√
2)

12
√

2
.

E13. 3F2
[
− 1

2 , 3
4 , 5

4 ; 1
2 , 3

2
]

=
2−3
√

2 log(1+
√

2)
4
√

2
.

E14. 3F2
[
− 1

2 , 3
4 , 5

4 ; 3
2 , 3

2
]

=
2+5
√

2 log(1+
√

2)
8
√

2
.

E15. 3F2
[
− 1

2 , 5
4 , 7

4 ; 1
2 , 5

2
]

=
3
{

2+5
√

2 log(1+
√

2)
}

−16
√

2
.

E16. 3F2
[
− 1

2 , 5
4 , 7

4 ; 3
2 , 3

2
]

=
10−7

√
2 log(1+

√
2)

24
√

2
.

E17. 3F2
[
− 3

2 , 3
4 , 5

4 ; 1
2 , 3

2
]

=
10−39

√
2 log(1+

√
2)

128
√

2
.

E18. 3F2
[
− 3

2 , 3
4 , 5

4 ; 1
2 , 5

2
]

=
3
{

62−37
√

2 log(1+
√

2)
}

256
√

2
.

E19. 3F2
[
− 3

2 , 5
4 , 7

4 ; 3
2 , 3

2
]

=
62−37

√
2 log(1+

√
2)

512
√

2
.

E20. 3F2
[
− 3

2 , 5
4 , − 1

4 ; 1
2 , 3

2
]

=
3
{

42+41
√

2 log(1+
√

2)
}

128
√

2
.

3.5. Class F

By invoking the Kummer transformation (4), we can express the “Class-F” series
below in terms of the F -series (where σ = b + d− a− c− e):

3F2

[
a + 1

2 , c + 3
4 , e + 3

4

b + 1, d + 7
4

∣∣∣ 1

]
= Γ

[
b + 1, σ + 3

4

b− a + 1
2 , σ + a + 5

4

]

× 3F2

[
1 + d− c, 1 + d− e, a + 1

2

σ + a + 5
4 , d + 7

4

∣∣∣ 1

]
.

Then the closed formulae below for these series ( except for divergent series) can be
established from those shown in “Class A”. Among them, the formula F10 is due to
Campbell and Abrarov ([11] Corollary 5).

F1. 3F2
[
− 1

2 , − 1
4 , − 1

4 ; 1, 3
4
]

=
2
√

π
{

5
√

2−4 log(1+
√

2)
}

Γ( 1
4 )

2 .

F2. 3F2
[
− 1

2 , 3
4 , − 1

4 ; 1, 7
4
]

=
3
√

π
{

8
√

2+2 log(1+
√

2)
}

5Γ( 1
4 )

2 .

F3. 3F2
[
− 1

2 , 3
4 , 3

4 ; 1, 7
4
]

=
6
√

π
{√

2+4 log(1+
√

2)
}

5Γ( 1
4 )

2 .

F4. 3F2
[
− 1

2 , 3
4 , 7

4 ; 1, 11
4
]

=
7
√

π
{

4
√

2+6 log(1+
√

2)
}

15Γ( 1
4 )

2 .

F5. 3F2
[ 1

2 , − 1
4 , − 1

4 ; 1, 3
4
]

=
2
√

π
{

4
√

2−2 log(1+
√

2)
}

Γ( 1
4 )

2 .

F6. 3F2
[ 1

2 , − 1
4 , − 1

4 ; 1, 7
4
]

=
9
√

π
{

3
√

2−log(1+
√

2)
}

4Γ( 1
4 )

2 .

F7. 3F2
[ 1

2 , 3
4 , − 1

4 ; 1, 7
4
]

=
3
√

π
{√

2+log(1+
√

2)
}

Γ( 1
4 )

2 .

F8. 3F2
[ 1

2 , 3
4 , 3

4 ; 1, 7
4
]

=
12
√

π log(1+
√

2)
Γ( 1

4 )
2 .

F9. 3F2
[ 1

2 , 3
4 , 7

4 ; 1, 11
4
]

=
7
√

π
{√

2+9 log(1+
√

2)
}

5Γ( 1
4 )

2 .

F10 3F2
[ 3

2 , 3
4 , − 1

4 ; 1, 7
4
]

=
3
√

π
{

3
√

2−log(1+
√

2)
}

2Γ( 1
4 )

2 .
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3.6. Class G

Finally, by employing the Kummer transformation (4), we can express the “Class-G”
series below in terms of the F -series (where σ = b + d− a− c− e):

3F2

[
a + 1

2 , c + 1
4 , e + 1

4

b + 1, d + 1
4

∣∣∣ 1

]
= Γ

[
b + 1, σ + 1

4

b− a + 1
2 , σ + a + 3

4

]

× 3F2

[
d− c, d− e, a + 1

2

d + 1
4 , σ + a + 3

4

∣∣∣ 1

]
.

Then the closed formulae below for these series ( except for divergent series) can be shown
from those displayed in “Class A”. Among them, the formula G8 is due to Campbell and
Abrarov ([11] Corollary 4), who evaluated also another similar series ([11] Corollary 6).

G1. 3F2
[
− 3

2 , 5
4 , 5

4 ; 1, 13
4
]

=
5
√

π
{

4
√

2−3 log(1+
√

2)
}

44Γ( 3
4 )

2 .

G2. 3F2
[
− 1

2 , 1
4 , − 3

4 ; 1, 5
4
]

=
√

π
{

2
√

2+3 log(1+
√

2)
}

6Γ( 3
4 )

2 .

G3. 3F2
[ 1

2 , 1
4 , − 3

4 ; 1, 5
4
]

=
√

π
{√

2+9 log(1+
√

2)
}

12Γ( 3
4 )

2 .

G4. 3F2
[ 1

2 , 1
4 , 1

4 ; 1, 5
4
]

=
√

π log(1+
√

2)
Γ( 3

4 )
2 .

G5. 3F2
[ 1

2 , 1
4 , 1

4 ; 2, 5
4
]

=
2
√

π
{
−
√

2+6 log(1+
√

2)
}

9Γ( 3
4 )

2 .

G6. 3F2
[ 1

2 , 1
4 , 5

4 ; 2, 9
4
]

=
5
√

π
{√

2−log(1+
√

2)
}

3Γ( 3
4 )

2 .

G7. 3F2
[ 1

2 , 5
4 , 9

4 ; 2, 13
4
]

=
3
√

π
{
−
√

2+5 log(1+
√

2)
}

7Γ( 3
4 )

2 .

G8. 3F2
[ 3

2 , 1
4 , 5

4 ; 1, 9
4
]

=
5
√

π
{

3
√

2−log(1+
√

2)
}

8Γ( 3
4 )

2

G9. 3F2
[ 3

2 , 5
4 , 5

4 ; 2, 9
4
]

=
5
√

π
{

2
√

2−2 log(1+
√

2)
}

Γ( 3
4 )

2 .

G10. 3F2
[ 3

2 , 5
4 , 9

4 ; 3, 13
4
]

=
6
√

π
{
−6
√

2+10 log(1+
√

2)
}

Γ( 3
4 )

2 .

Concluding Comments

By combining the linearization method with the Kummer and Thomae transforma-
tions, we present 100 explicit formulae for 7 classes of nonterminating 3F2(1)-series. They
may potentially find applications in mathematics and physics as other mathematical formu-
lae. Further explorations are encouraged to enrich this bank database of hypergeometric
series identities.
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Abstract: A new population balance model is introduced, in which a pair of particles can coagulate
into a larger one if their encounter is a completely inelastic collision; otherwise, one of them breaks
into multiple fragments (two or more) due to the elastic collision. Mathematically, coagulation and
breakage models both manifest nonlinearity behavior. We prove the global existence and uniqueness
of the solution to this model for the compactly supported kinetic kernels and an unbounded breakage
distribution function. A further investigation dealt with the volume conservation property (necessary
condition) of the solution.

Keywords: coagulation; collisional breakage; existence and uniqueness; volume conservation;
compact support

MSC: 35Q70; 45K05; 45G05

1. Introduction

Aggregation (coagulation) and fragmentation are fundamental mechanisms that occur
in particulate processes such as granulation and crystallization in the pharmaceutical
industry [1]. When two particles merge to form a larger one, this process is defined as
aggregation. In reverse, fragmentation leads to the formation of smaller particles after the
breakup of the mother particle. The aggregation process is inherently nonlinear, while
fragmentation is of two types (a) linear, and (b) nonlinear. If fragmentation is spontaneous
and driven by an external agent then the process is linear. However, if the process occurs
due to the interactions (collisions) between the particles in the system, then it is recognized
as a nonlinear fragmentation. The byproducts of the original fragmentation undergo
repeated collisions and breakages to drive this process forward. The collisional-induced
fragmentation can also be observed in various fields of science and engineering, including
the formation of raindrops [2], communication systems [3] and milling processes [4]. Both
aggregation and fragmentation mechanisms have been intensively used in the literature for
developing mathematical models corresponding to granulation processes [1].

Mathematically, both aggregation and collisional-induced fragmentation mechanisms
are represented by a nonlinear integro-partial differential equation. The mathematical
expression for tracking the changes in the distribution ϕ(x, t) via these mechanisms can be
written as:

∂ϕ(x,t)
∂t = 1

2

∫ x
0 C (x− y, y)ϕ(x− y, t)ϕ(y, t)dy− ϕ(x, t)

∫ ∞
0 C (x, y)ϕ(y, t)dy

+
∫ ∞

0

∫ ∞
x K (y, z)B(x, y; z)ϕ(y, t)ϕ(z, t)dydz− ϕ(x, t)

∫ ∞
0 K (x, y)ϕ(y, t)dy (1)

with the initial data

ϕ(x, 0) = ϕ0(x)(≥ 0), for all x ∈ R+ = (0, ∞). (2)
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Here, ∂t stands for the partial derivative with respect to the time t. ϕ is the number
density function for particles of volume x at time t. The kernel C (x, y) is the aggregation
rate at which two particles with particle properties x and y combine to form a larger cluster.
K (x, y) is the collision kernel which describes the rate at which particles of properties
x and y are colliding. It is worth noting that both the kernels C (x, y) and K (x, y) are
symmetric,that is, C (x, y) = C (y, x) and K (x, y) = K (y, x). B(x|y; z) is the rate at which
particles of property y breaks into fragments of property x due to its impact with a particle
of property z. The breakage kernel B satisfies the following properties.

(i) B(x, y; z) is non negative and symmetric with respect to y and z, that is

B(x, y; z) = B(x, z; y).

(ii) Volume conservation law

∫ y

0
xB(x, y; z)dx = y and B(x, y; z) = 0 for all y ≤ x; (3)

(iii) Number of particles after fragmentation

∫ y

0
B(x, y; z)dx = ν(y, z) ≤ N̄ < ∞ for all y > 0, z > 0. (4)

The first integral on the right-hand side of Equation (1) represents the formation of the
particle property x due to the merging of particles of properties (x− y) and y. The second
term denotes the disappearance of the particle property x from the system. The third
integral describes the formation of the particle property x from y due to its collision with
another particle z at a specific breakup rate B(x, y; z). In this term, there is no restriction on
the particle property z, which acts as a catalyst, as it collides with the fragmenting particle
property y, which leads to the formation of x. The final term explains the disappearance of
particle property x due to their collision with the other particles present in the system at a
specific collision rate K (x, y).

To represent the full dynamical systems (specifically granulation and crystallization),
it is also required to identify the integral properties such as the total number of particles,
total volume in the system and total area of the particles. For this reason, the moments of
number density ϕ(x, t) must also be defined. LetMk(t) denote the kth order moment of
the number density function ϕ(x, t), and it is defined as follows:

Mk(t) =Mk(ϕ(x, t)) :=
∫ ∞

0
xk ϕ(x, t)dx. (5)

The zeroth order moment gives the total number of particles, whereas the total volume
in the system is given by the first order moment. The property of volume conservation is
expected to hold during both aggregation and fragmentation events.

Smoluchowski [5] was the first to develop an aggregation kinetics discrete model,
now known as the discrete Smoluchowski coagulation equation (SCE). Müller [6] pro-
posed a continuous model for the volume distribution of particles, which included other
phenomena such as particle fragmentation. Dubovskiı̌ and Stewart [7] established the
existence and uniqueness of the solution for this continuous model. In 1988, Cheng and
Redner [8,9] were the first to formulate a model on the nonlinear breakage equation. The
analytical solutions of the general nonlinear breakage equation were studied by Kostoglou
and Karabelas [10]. Ernst and Pagonabarraga [11] studied the collision-induced nonlinear
fragmentations caused by binary interactions. Vigil et al. [12] and Ke et al. [13] provided
the extensive analysis on coagulation with collision-induced fragmentation. Some other ex-
istence and uniqueness studies can also be found in [14,15]. Various numerical approaches
in 1D and 2D for solving these models have been discussed in detail by [16–22].
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In the SCE, the only possibility for the clusters is to continue growing due to the
aggregation mechanism, that is, smaller particles cannot be formed in the system. This
restricts the application of only the coagulation process in the granulation process, however,
it is still useful for polymerization process. This completely eliminates the possibility of the
system to reach a steady state or equilibrium solution. Thus, this presents an opportunity
for studying the Smoluchowski equation along with the fragmentation process, allowing
the system to reach equilibrium. We have highlighted some of the works conducted in this
regard in the above literature review. Our work in this article is another extension of the
previously mentioned articles, albeit with the establishment of a new model.

In the present work, we introduce an entirely new model for continuous coagulation
with collisional breakage. Earlier works have analysed equations with collsional breakage
but this is the first time that such a model has been studied. The model mentioned
includes the coagulation terms from the continuous SCE and the fragmentation process is
represented by the third and fourth terms in (1). This allows us to study the existence of an
equilibrium solution for these mechanisms and discuss the well-posedness of Equation (1).
The current research work is majorly focused on establishing this well-posedness for
compactly supported kernels. Furthermore, it is hypothesized that the breakage distribution
function has the structure of a power law. The volume conservation law and uniqueness of
the solution will also be proven to hold true.

Let us now mention the spaces considered in this article. For a fixed T(> 0), consider
a strip

W := {(x, t) : 0 < x < ∞, 0 ≤ t ≤ T}
and define Ψr,σ(T) to be the space of all continuous functions ϕ with the norm

‖ϕ‖Ψ := sup
0≤t≤T

∫ ∞

0

(
xr +

1
x2σ

)
|ϕ(x, t)|dx, r ≥ 1, σ ≥ 0. (6)

Furthermore, consider Ψ+
r,σ(T) the set of all non-negative functions from Ψr,σ(T). In

this article, we prove the existence of strong solutions for the coagulation fragmentation of
Equation (1) and (2) under the following assumptions over the kinetic kernels;

(A1) K (x, y) is a non-negative and continuous function on R+ ×R+.
(A2) B(x, y; z) is a non-negative, continuous function satisfying the condition

∫ y

0
x−θσB(x, y; z)dx ≤ Φ(y), where Φ(y) = ηy−θσ,

where η and θ are considered to be positive constants.
A breakdown of the various sections of this paper is as follows: In Section 2, we

state and provide a detailed proof of the existence of solutions for the IVP (1) and (2). In
Section 3, the theoretical results for the volume conservation property of the solution is
provided. Meanwhile in Section 4, the uniqueness of the solution is proved. The last section
is devoted to some important remarks and conclusions.

2. Existence of Solutions

Theorem 1. Let the functions C (x, y), K (x, y) and B(x, y; z) be nonnegative and continuous
on R+ ×R+,R+ ×R+ and R+ ×R+ ×R+ respectively, and satisfy the conditions (A1), (A2).
Moreover, the kernel C and K have compact support for each time 0 ≤ t ≤ T. Then, the IVP (1)
and (2) has at least one solution ϕ ∈ Ψ+

r,σ(T).

Proof. We prove the theorem in the following steps;

• Local existence of the solution, that is, there exists a τ > 0 such that the IVP (1) and (2)
has at least one solution ϕ ∈ Ψ+

r,σ(τ);
• Nonnegativity of the local solution;
• Global existence of the unique solution to the space Ψ+

r,σ(T).
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Existence of local solution: Let us consider that there is a fixed R(> 0), the coagulation
and fragmentation kernels C (x, y) and K (x, y) have compact supports in the intervals
[0, R]× [0, R] for each t ∈ [0, T]. Followed from Equation (1), we have

ϕ(x, t) = ϕ0(x) +
∫ t

0

[
1
2

∫ x
0 C (x− y, y)ϕ(x− y, ξ)ϕ(y, ξ)dy−

∫ ∞
0 C (x, y)ϕ(x, ξ)ϕ(y, ξ)dy

+
∫ ∞

0

∫ ∞
x K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dydz− ϕ(x, ξ)

∫ ∞
0 K (x, y)ϕ(y, ξ)dy

]
dξ. (7)

Hence, the solution to (1) and (2) for x > 2R takes the value

ϕ(x, t) = ϕ0(x). (8)

The relation (8) provides an approximate solution function beyond the right hand side
of the compact domain, where the tails of the solution ϕ(x, t), that is, larger size particles,
does not alter at all and matches with the tails of the initial distribution ϕ0(x). Let us now
focus to show that the local existence of a unique solution for 0 < x ≤ 2R.

In this regard, let us define the integral operatorH as follows;

H(ϕ)(x, t) := right hand side of Equation (7).

Since C and K have compact supports and ϕ0 is a nonnegative continuous func-
tion,the integral operatorH is well-defined on Ψr,σ(τ). This result will be proven via the
contraction mapping principle. We began this exercise by showing that for small τ > 0
there exists a closed ball in Ψr,σ(τ), which is invariant relatively to the mapping H. Let
L0(> 0) be a constant such that

‖ϕ‖(τ)Ψ := sup
0≤t≤τ

∫ ∞

0

(
xr +

1
x2σ

)
|ϕ(x, t)|dx ≤ L0. (9)

Multiplying Equation (7), with
(

xr +
1

x2σ

)
on both hand sides and after performing

the integration over x, we reached

‖H(ϕ)‖(τ)Ψ ≤ ‖ϕ0‖(τ)Ψ +
∫ t

0

[
1
2

∫ ∞

0

(
xr +

1
x2σ

) ∫ x

0
C (x− y, y)ϕ(x− y, ξ)ϕ(y, ξ)dydx

+
∫ ∞

0

(
xr +

1
x2σ

) ∫ ∞

0

∫ ∞

x
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dydzdx

−
∫ ∞

0

(
xr +

1
x2σ

)
ϕ(x, ξ)

∫ ∞

0
[C (x, y) +K (x, y)]ϕ(y, ξ)dydx

]
dξ. (10)

Further, we use the application of the Fubini theorem followed by changing the order
of integration and considering µ := max{N̄, η}, then, one can obtain the following

∫ ∞

0

∫ ∞

0

∫ ∞

x

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dydzdx

=
∫ ∞

0

∫ ∞

0

∫ y

0

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dxdydz

≤
∫ ∞

0

∫ ∞

0

∫ y

0
yrB(x, y; z)K (y, z)ϕ(y, ξ)ϕ(z, ξ)dxdydz

+
∫ ∞

0

∫ ∞

0

∫ y

0
x−2σB(x, y; z)K (y, z)ϕ(y, ξ)ϕ(z, ξ)dxdydz

≤
∫ ∞

0

∫ ∞

0

[
N̄yr + ηy−2σ

]
yrK (y, z)ϕ(y, ξ)ϕ(z, ξ)dydz

≤ µ
∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)
K (y, z)ϕ(y, ξ)ϕ(z, ξ)dydz
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Since C and K both have compact support, their supremiums exist. Let κ1 =
sup

σ
R≤x,y≤R

C (x, y) and κ2 = sup
σ
R≤x,y≤R

K (x, y). Applying this inequality in (10), we obtain

‖H(ϕ)‖(τ)Ψ ≤ ‖ϕ0‖(τ)Ψ + (2rκ1 + µκ2)
∫ t

0

∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)(
zr +

1
z2σ

)
ϕ(y, ξ)ϕ(z, ξ)dydzdξ

≤ ‖ϕ0‖(τ)Ψ + (2rκ1 + µκ2)τL2
0 (11)

Further, let ζ1 := max{‖ϕ0‖(τ)Ψ , (2rκ1 + µκ2)}; then, the expression (11) reduces to

‖H(ϕ)‖(τ)Ψ ≤ ζ1

(
1 + τL2

0

)
.

Hence, ‖H(ϕ)‖(τ)Ψ ≤ L0, if ζ1
(
1 + τL2

0
)
≤ L0. This inequality holds if τ < 1

4ζ2
1

and

1−
√

1− 4ζ2
1τ

2ζ1τ
≤ L0 ≤

1 +
√

1− 4ζ2
1τ

2ζ1τ
. (12)

Presently, our focus will be to demonstrate that the mapping ofH is contracting. Using
the relation in (7), we have

‖H(ϕ)−H(ψ)‖(τ)Ψ ≤
∫ t

0

[
1
2

∫ ∞

0

(
xr +

1
x2σ

) ∫ x

0
C (x− y, y)|A(x− y, y, ξ)|dydx

+
∫ ∞

0

∫ ∞

0

∫ ∞

x

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)|A(y, z, s)|dydzdx

+
∫ ∞

0

∫ ∞

0

(
xr +

1
x2σ

)
(C (x, y) +K (x, y))|A(x, y, s)|dydx

]
ds (13)

where A(x, y, s) = ϕ(x, s)ϕ(y, s)− ψ(x, s)ψ(y, s).
The first expression in the above inequality (13) can be estimated, as follows

1
2

∫ ∞

0

(
xr +

1
x2σ

) ∫ x

0
C (x− y, y)|A(x− y, y, ξ)|dydx ≤ 2rκ1‖ϕ− ψ‖(τ)Ψ

[
‖ϕ‖(τ)Ψ + ‖ψ‖(τ)Ψ

]

Furthermore, the second expression in the above inequality (13) is simplified using the
Fubini’s theorem with respect to z and x followed by interchanging the order of integration
with respect to y and x, which gives the following expression

∫ ∞

0

∫ ∞

0

∫ ∞

x

(
xr +

1
x2σ

)
K (y, z)B(x, y; z)|A(y, z, s)|dydzdx

≤
∫ ∞

0

∫ ∞

0

∫ y

0
xrK (y, z)B(x, y; z)|A(y, z, s)|dxdydz

+
∫ ∞

0

∫ ∞

0

∫ y

0

1
x2σ

K (y, z)B(x, y; z)|A(y, z, s)|dxdydz

≤ µ
∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)
K (y, z)|A(y, z, s)|dydz

≤ µκ2

∫ ∞

0

∫ ∞

0

(
yr +

1
y2σ

)
|ϕ(z, s)(ϕ(y, s)− ψ(y, s))

+ g(y, s)(ϕ(z, s)− ψ(z, s))|dydz

≤ κ2µ‖ϕ− ψ‖(τ)Ψ

[
‖ϕ‖(τ)Ψ + ‖ψ‖(τ)Ψ

]
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Using this estimation on the relation (13), the following is obtained

‖H(ϕ)−H(ψ)‖(τ)Ψ ≤ τ(κ1(2r + 1) + κ2(µ + 1))‖ϕ− ψ‖(τ)Ψ

[
‖ϕ‖(τ)Ψ + ‖ψ‖(τ)Ψ

]
(14)

Further, let ζ2 := 2[κ1(2r + 1) + κ2(µ + 1)], then the inequality (14) reduces to

‖H(ϕ)−H(ψ)‖(τ)Ψ ≤ τζ2L0‖ϕ− ψ‖(τ)Ψ . (15)

Thus, the mapping H is contractive on Ψ+
r,σ(τ) for τ < [ζ2L0]

−1. Using this result
together with the inequality (12), there exists an invariant ball of radius L0 for sufficiently
small τ > 0 and in this ball,H is contractive. Consequently, the ball contains a fixed point
ofH.

Nonnegativity: Case I: Consider ϕ0(x) > 0 for all x ∈ (0, R). Since ϕ is continuous,
there exists a small strip {(x, t) : 0 < x < R, t ∈ [0, t0)}, where ϕ is strictly positive. For a
particular t0, we can find an x0 ∈ (0, R) such that (x0, t0) is the point with the property that

ϕ(x0, t0) = 0 and ϕ(x, t) 6= 0 for all 0 < x < max{x0, R}, t ∈ [0, t0) (16)

Since the solution is continuous and satisfies (7) it must be continuously differentiable
with respect to t. Therefore,

∂t ϕ(x, t)|(x0,t0)
=

1
2

∫ x0

0
C (x0 − y, y)ϕ(x0 − y, t0)ϕ(y, t0)dy

+
∫ R

0

∫ R

x0

K (y, z)B(x0, y; z)ϕ(y, t)ϕ(z, t)dydz, (17)

• If x0 ≤ R, then ϕ(x, t) > 0 for all 0 < x ≤ R and 0 ≤ t < t0. The positivity of the right
hand side of (17) implies ∂t ϕ(x, t)|(x0,t0)

> 0.
• If x0 > R, we use the property (3) of the breakage function to obtain

∫ R

0

∫ R

x0

K (y, z)B(x0, y; z)ϕ(y, t)ϕ(z, t)dydz = −
∫ R

0

∫ R

x0

K (y, z)B(x0, y; z)ϕ(y, t)ϕ(z, t)dydz

= 0

Thus, from the Equation (17), we have ∂t ϕ(x, t)|(x0,t0)
> 0.

The positive value of the time derivative establishes that there exists a point (x0, t),
with t < t0 such that ϕ(x0, t) < 0. However, this counters the hypothesis that (x0, t0) is
a point bearing a property provided by relation (16). Hence, the point (x0, t0) where the
solution vanishes does not exist.

Further, when x ≥ R by (7) and the compactly supported kernels C and K , the
solution coincides with the initial data. Hence, again it becomes positive. Consequently,
ϕ(x, t) is strictly positive provided that the initial distribution is strictly positive.

Case II: Suppose ϕ0 is not strictly positive. Then, we construct the sequence {ϕn
0} of

the positive function to satisfy the conditions listed in Theorem 1, which then converges
to ϕ0 uniformly in Ψr,σ(τ) with respect to t ∈ [0, τ]. We have established earlier that the
family of operatorsHn : Ψr,σ(τ)→ Ψr,σ(τ), defined as

Hn(ϕ)(x, t) =ϕn
0 (x) +

∫ t

0

[
1
2

∫ x

0
C (x− y, y)ϕ(x− y, ξ)ϕ(y, ξ)dy−

∫ ∞

0
C (x, y)ϕ(x, ξ)ϕ(y, ξ)dy

∫ ∞

0

∫ ∞

x
K (y, z)B(x, y; z)ϕ(y, ξ)ϕ(z, ξ)dyd− ϕ(x, ξ)

∫ ∞

0
K (x, y)ϕ(y, ξ)dy

]
dξ
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is a contraction mapping. Therefore, as n→ ∞, we have

sup
‖ϕ‖(τ)Ψ ≤L

‖Hn(ϕ)−H(ϕ)‖(τ)Ψ ≤
∫ ∞

0

(
xr +

1
x2σ

)
|ϕn

0 (x)− ϕ0(x)|dx → 0.

Since the mapping is contractive in Ψr,σ(τ), therefore

‖ϕn − ϕ‖(τ)Ψ = ‖Hn(ϕn)−H(ϕ)‖(τ)Ψ ≤‖Hn(ϕn)−H(ϕn)‖(τ)Ψ + ‖H(ϕn)−H(ϕ)‖(τ)Ψ

≤‖Hn(ϕn)−H(ϕn)‖(τ)Ψ + ζ̄‖ϕn − ϕ‖(τ)Ψ ,

which implies

(
1− ζ̄

)
‖ϕn − ϕ‖(τ)Ψ = ‖Hn(ϕn)−H(ϕn)‖(τ)Ψ → 0 whenever n→ ∞.

This shows that for a positive initial data, the solution ϕ is also positive.
Global existence of unique solution: Let us first discuss the boundedness of the moments

Mk(t) =
∫ ∞

0
xk ϕ(x, t)dx; where 0 ≤ k ≤ r and k = −2σ,

for compactly supported kernels. Simple calculations will lead us to the following results:

M1(t) ≤ m̄1, M−2σ(t) ≤ m̄−2σ, M0(t) ≤ m̄0, M2(t) ≤ m̄2, (18)

and so on. Here, terms m̄k, k = −2σ, 0, 1, . . . , r are all constants. Furthermore, it is important
to note that the boundedness of the kth moment ensures the boundedness of the (k + 1)th

moment for k = 2, 3, . . . , r. Thus, using the aforementioned results, we can conclude that the

‖ϕ‖Ψ ≤ m̄r + m̄−2σ.

implies that the solution of IVP (1) and (2) is bounded in the norm ‖.‖Ψ. Taking into account
the positivity/nonnegativity of the local solution, it is easy to extend it for 0 ≤ t ≤ T.
Recalling Theorem 2.2 of [23], the global existence of the unique solution belonging to
Ψ+

r,σ(T) can easily be proved.

3. Conservation of Volume

In order to show the volume conservation law, let us multiply equation (1) by the x by
performing integration over x; the following is obtained

dM(t)
dt

=
d
dt

∫ ∞

0
xϕ(x, t)dx =

1
2

∫ ∞

0

∫ x

0
xC (x− y, y)ϕ(x− y, t)ϕ(y, t)dy

︸ ︷︷ ︸
M1∫ ∞

0

∫ ∞

0

∫ ∞

x
xK (y, z)B(x, y; z)ϕ(y, t)ϕ(z, t)dydzdx

︸ ︷︷ ︸
M2

−
∫ ∞

0

∫ ∞

0
x(C (x, y) +K (x, y))ϕ(x, t)ϕ(y, t)dydx

︸ ︷︷ ︸
M3

(19)

Under a suitable transformation, we can estimate the integral M1, as follows

M1 =
1
2

∫ ∞

0

∫ ∞

0
(x + y)C (x, y)ϕ(x, t)ϕ(y, t)dydx

=
∫ ∞

0

∫ ∞

0
xC (x, y)ϕ(x, t)ϕ(y, t)dydx (20)
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For the integralN1, using the application of the Fubini’s theorem followed by a change
in the order of integration with respect to y and x, and using (3), obtains

M2 =
∫ ∞

0

∫ ∞

0

∫ y

0
xK (y, z)B(x, y; z)ϕ(y, t)ϕ(z, t)dxdydz

=
∫ ∞

0

∫ ∞

0
yK (y, z)ϕ(y, t)ϕ(z, t)dydz

=
∫ ∞

0

∫ ∞

0
xK (x, y)ϕ(x, t)ϕ(y, t)dxdy (21)

Adding the estimations (20) and (21), M1 + M2 = M3 are obtained. Hence, by using
this relation on (19), we can conclude the volume conservation property of the existing
solution.

4. Uniqueness Theory

Theorem 2. Let the assumptions of Theorem 1 hold true, then the IVP (1) and (2) has a unique
solution in Ψ+

r,σ(T).

Proof. Let t 6= 0, ϕ1(x, t) and ϕ2(x, t) be two distinct solutions of (1), (2) along with
ϕ1(x, 0) = ϕ2(x, 0). Further suppose Q(x, t) := ϕ1(x, t)− ϕ2(x, t), and we construct an
auxiliary function

P(t) :=
∫ ∞

0
|Q(x, t)|dx.

Since both the solutions ϕ1(x, t) and ϕ2(x, t) satisfy the Equation (7), we have

P(t) ≤
∫ t

0




1
2

∫ ∞

0

∫ x

0
C (x− y, y)|A(x− y, y, ξ)|dydx

︸ ︷︷ ︸
J0

+
∫ ∞

0

∫ ∞

0

∫ ∞

x
K (y, z)B(x, y; z)|A(y, z, ξ)|dydzdx

︸ ︷︷ ︸
J1

+
∫ ∞

0

∫ ∞

0
(C (x, y) +K (x, y))|A(x, y, ξ)|dydx

︸ ︷︷ ︸
J2


dξ (22)

Further performing the change in the order of integration followed by the application
of Fubini’s theorem, the integrals J0 and J1 can be estimated as

J0 ≤
1
2

k1(‖ϕ1‖Ψ + ‖ϕ2‖Ψ)P(s).
J1 ≤ k2N̄(‖ϕ1‖Ψ + ‖ϕ2‖Ψ)P(s).

Similar operations apply for the integral J2, and when using the relation (22), we obtain

N (t) ≤ Λ(‖ϕ1‖Ψ + ‖ϕ2‖Ψ)
∫ t

0
P(s)ds., (23)

where Λ is a positive constant depending only on k1, k2 and N̄. Since ϕ1 and ϕ2 both belong
to the space Ψ+

r,σ(T), the norms ‖ϕ1‖Ψ and ‖ϕ2‖Ψ are uniformly bounded with respect to
0 ≤ t ≤ T. Then, by applying Grownwall’s inequality on (23), we obtain

P(t) = 0. for all 0 ≤ t ≤ T,

which concludes the proof.
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5. Concluding Remarks

A new population balance model, including the nonlinear coagulation and frag-
mentation, was introduced in this paper. The model accounts for a completely inelastic
collision between a pair of particles, which leads to the formation of a larger particle. If
their encounter is not completely inelastic, then there is a possibility of the formation of
smaller particles when they collide. A proof has been given to obtain the existence and the
uniqueness of a solution to the purely nonlinear model for a set of kernels with compact
support. The results of the existence and uniqueness are further supported by providing
the theoretical outcome of the volume conservation law.
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] and Ω[a, k] as the subclass of Ω(U), which consists of the
form functions

f (w) = a + akwk + ak+1wk+1 + . . . , (a ∈
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, w ∈ U, k ∈ N) . (1)

With Ap as the class of all multivalent functions in open unit disk U of the form

f (w) = wp +
∞

∑
k=1+p

akwk, w ∈ U, p ∈ N. (2)

Additionally, we use A = A1 to denote the class of analytic functions in the open unit
disk U and normalize them with f (0) = 0, f ′(0) = 1.

Additionally, consider S as the class of the univalent function in U,
Let S∗($), C($) and K be the subclasses of A such that:{

f ∈ S∗ : Re
{

w f ′(w)
f (w)

}
> $

}
, w ∈ U, (0 < $ < 1), then f is a starlike function;

{
f ∈ C : Re

{
1 + w f ′′ (w)

f ′(w)

}
> $

}
, w ∈ U, (0 < $ < 1), then f is a convex function;

{
f ∈ K : Re

{
f1
′(w)

g′(w)

}
> 0 : g ∈ C

}
, w ∈ U, then f is a close-to-convex function.

If the functions f and g are analytic in U, then we say f is subordinate to g or f is said
to be superordinate to f in U, written as f ≺ g or f (w) ≺ g(w) if there is a Schwarz function
υ(w) analytic in U, with |υ(w)| < 1, so that f (w) = g(υ(w)) and w ∈ U. In particular, if
the function g is univalent in U, then the subordination f ≺ g is equivalent to f (0) = g(0)
and f (U) ⊂ g(U), (see [1–8]).

If f , g ∈ Ap, where f (w) is provided by (1) and g(w) is defined by

g(w) = wp +
∞

∑
k=1+p

akwk, w ∈ U,
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the Hadamard product (or convolution) of the function f and g is defined by

f (w)× g(w) = wp +
∞

∑
k=1+p

akbkwk, (w ∈ U) = ( f × g)(w). (3)

Let δ > 0, a, c ∈
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such that Re(c− a) ≥ 0 and Rea ≥ −δp, p ∈ N, n ∈ Z, θ ≥ 0
and λ > −p.

El-Ashwah and Drbuk [5] introduced the linear operator Bθ, λ
p,n (a, c, δ) : Ap → Ap

defined by

Bn, p
θ,λ (a, c, δ) f (w)

= wp + Γ(c+δp)
Γ(c+δp)

∞
∑

k=1+p

(
p+λ+θ(k−p)

p+λ

)n Γ(c+δp)
Γ(c+δp) akwk.

(4)

It is readily verified from (4) that

Bn+1, p
θ,λ (a, c, δ) f (w) =

(
1− pθ

p+λ

)
Bn, p

θ,λ (a, c, δ) f (w)

+ θ
p+λ w

(
Bn, p

θ,λ (a, c, δ) f (w)
)′

.
(5)

Putting a = c in (4), we obtain the Prajapat operator Jn
p (θ, λ), see [9].

Additionally, when n = 0, we obtain the Erdelyi-Kober integral operator Ia,c
p,δ, see [10].

Definition 1. Let Y:
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and h (w) be univalent in U. If p (w) is analytic in U, that
fulfils the second-order differential subordination [11]:

Y
(

p(w), wp′(w), w2 p′′ (w); w
)
≺ h(w), (6)

then p(w) is the differential subordination solution of (6).

Definition 2. Let Y1:
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and h(w) be univalent in U. If p(w) and
Y1(p(w), wp′(w), w2 p′′ (w); w) are univalent in U and p(w) fulfill the second-order differential
superordination [11]:

h(w) ≺ Y1

(
p(w), wp′(w), w2 p′′ (w); w

)
, (7)

then p(w) is the differential superordination solution of (7).

Definition 3. Let Q be the collections of functions f that are analytic and injective on U\E( f ),

when E( f ) =
{

ς ∈ ∂U : lim
w→ς

f (w) = ∞
}

and f ′(w) 6= 0 for ς ∈ ∂U\E( f ) [11].

Lemma 1. Let p1(w) be the univalent function in U and let Σ and ϑ be holomorphic in a
domain p1(U) ⊂ D, with ϑ(ω) 6= 0, when ω ∈ p1 (U). Set O(w) = w p1

′(w)ϑ(p1(w))
and }(w) = Σ(p1(w) +O(w). Suppose that [12]

(i) O is starlike in U.
(ii) Re

(
w}′(w)
O(w)

)
> 0, w ∈ U.

If p2(w) is holomorphic in U with p2(0) = p1(0), p2(U) ⊂ D, and Σ(p2(w))+
wp2

′(w)ϑ(p2(w)) ≺ Σ(p1(w)) + wp1
′(w)ϑ(p1(w)), then p2(w) ≺ p1(w).

Lemma 2. Let p1(w) be convex in U and β1 ∈
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, β2 ∈
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∗ with Re
(

1 + p1
′′ (w)

p1
′(w)

)
>

max
{

0,−Re β1
β2

}
. If p2(w) is holomorphic in U and β1 p2(w) + β2wp2

′(w) ≺ β1 p1(w) +

β2wp1
′(w), then p2(w) ≺ p1(w) [11].
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Lemma 3. Let p1(w) be convex univalent in U and let Σ and ϑ be holomorphic in a domain D, p1
(U) ⊂ D. Suppose that [12]

(i) wp1
′(w)ϑ(p1(w) is starlike univalent in U.

(ii) Re
(

Σ ′(p1(w))
ϑ(p1(w))

)
> 0, w ∈ U.

If p2(w) ∈ A[p1(0), 1]
⋂

Q, with p2 (U) ⊂ D, Σ(p2(w) + wp2
′(w)ϑ(p2(w)) is univalent

in U and Σ(p1(w)) + wp1
′(w)ϑ(p1(w)) ≺ Σ(p2(w)) + wp2

′(w)ϑ(p2(w)), then
p1(w) ≺ p2(w).

Lemma 4. Let p1(w) be convex in U and Re(β) > 0.
If p2(w) ∈ A[p1(0), 1]

⋂
Q, p2(w) + βwp2

′(w) is univalent in U and p1(w) + βwp1
′(w)

≺ p2(w) + βwp2
′(w), then p1(w) ≺ p2(w) [12].

2. Subordination Results

Theorem 1. Let b(w) be convex univalent in U, with b(0) = 1, a1 > 0, 0 6= a2 ∈
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and suppose

Re
(

1 +
b′′ (w)

b′(w)

)
> max

{
0,−Re

a1

a2

}
.

If f ∈ A, it satisfies the subordination:

(
1− a2(p + λ)

θ

)(Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

+
a2(p + λ)

θ


B

n+1, p
θ,λ (a, c, δ) f (w)

Bn, p
θ,λ (a, c, δ) f (w)




a1(Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

≺ b(w) +
a2
a1

wb′(w),

then (
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

≺ b(w).

Proof. Consider

q(w) =

(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

.

Then

q′(w) = a1

(
Bn, p

θ,λ (a,c,δ) f (w)

wp

)a1
(

wp

Bn, p
θ,λ (a,c,δ) f (w)

)

(
wp[Bn, p

θ,λ (a,c,δ) f (w)]
′−pwp−1(Bn, p

θ,λ (a,c,δ) f (w))
(wp)2

)

= a1

(
Bn, p

θ,λ (a,c,δ) f (w)

wp

)a1
(
[Bn, p

θ,λ (a,c,δ) f (w)]
′

Bn, p
θ,λ (a,c,δ) f (w)

− p
w

)

We have

wq′(w)

q(w)
= a1




w
[
Bn, p

θ,λ (a, c, δ) f (w)
]′

Bn, p
θ,λ (a, c, δ) f (w)

− p


.
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By using (5) we obtain

wq′(w)
q(w)

= a1

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+p(Bn, p

θ,λ (a,c,δ) f (w))− (p+λ)
θ (Bn, p

θ,λ (a,c,δ) f (w))

(Bn, p
θ,λ (a,c,δ) f (w))

− p

)

= a1
(p+λ)

θ

( (
Bn+1, p

θ,λ (a,c,δ) f (w)
)

(Bn, p
θ,λ (a,c,δ) f (w))

− 1

)
,

and
a2wq′(w)

a1
= a2(p+λ)

θ

( (
Bn+1, p

θ,λ (a,c,δ) f (w)
)

(Bn, p
θ,λ (a,c,δ) f (w))

)(
Bn, p

θ,λ (a,c,δ) f (w)

wp

)a1

− a2(p+λ)
θ

(
Bn, p

θ,λ (a,c,δ) f (w)

wp

)a1

.

By using the hypothesis, we obtain q(w) + a2
a1

wq′(w) ≺ b(w) + a2
a1

wb′(w).
Additionally, apply Lemma 2, when β1 = 1 and β2 = a2

a1
, then

(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

≺ b(w).

�

Corollary 1. Let b(w) be convex univalent in U, with b(0) = 1, a1 > 0, 0 6= a2 ∈
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and suppose

Re
(

1 +
b′′ (w)

b′(w)

)
> max

{
0,−Re

a1

a2

}
.

If f ∈ A, it satisfies the subordination:

(
1− a2(p + λ)

θ

)( Jn
p (θ, λ) f (w)

wp

)a1

+
a2(p + λ)

θ

(
Jn+1
p (θ, λ) f (w)

Jn
p (θ, λ) f (w)

)a1
(

Jn
p (θ, λ) f (w)

wp

)a1

≺ b(w) +
a2

a1
wb′(w),

then (
Jn
p (θ, λ) f (w)

wp

)a1

≺ b(w).

Theorem 2. Let b be convex univalent in, b(0) = 1, and b(w) 6= 0 for all w ∈ U, and suppose
that b satisfies:

Re
{

p +
wtσ
wpa2

+
wε(σ + 1)

wpa2
(w) + (σ− 1)

wb′(w)

b(w)
+

wb′′ (w)

b′(w)

}
> 0, (8)

where σ, ε, t ∈
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, a1 > 0, 0 6= a2 ∈
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and w ∈ U. Suppose that wp(b(w))σ−1b′(w) is a starlike
univalent in U.

If f ∈ A satisfies the subordination:

M(p, n, λ, θ, ε, a1, a2; w) ≺ (t + ε b(w))(b(w))σ + a2(b(w))σ−1b′(w)

122
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where
M(p, n, λ, θ, ε, a1, a2; w)

= t

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1σ

+ε

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1(σ+1)

+a2a1

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1σ




w (p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)′

+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)′

(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
) − p


, (9)

then (
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1

≺ b(w).

Proof. Let H(β) = (t + εβ)βσ and L(β) = a2(β)σ−1, 0 6= β ∈
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, when H(β) and L(β) are
analytic in
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. �

Then, we obtain G(w) = wb′(w)L(b(w)) = a2wp(b(w))σ−1b′(w) and y(w) = H(b(w))

+ G(w) = (t + ε(b(w)))(b(w))σ + a2wp(b(w))σ−1b′(w).
Since wp(b(w))σ−1b′(w) is starlike, then G(w) is starlike in U, and

Re
(

y′(w)
G(w)

)
= Re

{
p + wtσ

wpa2
+ wε(σ+1)

wpa2
(w) + (σ− 1)wb′(w)

b(w)
+ wb′′ (w)

b′(w)

}

> 0

Additionally, consider

q(w)

=

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1

.

Then,
q′(w)

= a1

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1




(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)′

+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)′

(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
) − 1

w


.
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We obtain

t

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1σ

+ε

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1(σ+1)

= t(q(w))σ + ε
[
(q(w))σq(w)

]
= (t + εq(w))(q(w))σ.

Since

a1




w (p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)′

+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)′

(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
) − p


 =

wq′(w)

q(w)
,

That

a2a1

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1σ

(
w (p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)′
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
′

(p+λ)
θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
− p

)

= a2 w(q(w))σ−1q′(w).

From (8) we obtain (t + εq(w))(q(w))σ + a2 w(q(w))σ−1q′(w) ≺ (t + εb(w))(b(w))σ

+ a2(b(w))σ−1b′(w) and using Lemma 1 we obtain q(w) ≺ b(w).

Corollary 2. Let b be convex univalent in, b(0) = 1, and b(w) 6= 0 for all w ∈ U, and suppose
that b satisfies:

Re
{

p +
wtσ
wpa2

+
wε(σ + 1)

wpa2
(w) + (σ− 1)

wb′(w)

b(w)
+

wb′′ (w)

b′(w)

}
> 0,

where σ, ε, t ∈
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and w ∈ U.
Suppose that wp(b(w))σ−1b′(w) is a starlike univalent in U.
If f ∈ A, it satisfies the subordination:

M
(
σ, t, ε, hµ, µ, a1, a2; w

)
≺ (t + ε b(w))(b(w))σ + a2(b(w))σ−1b′(w),

then 


(p+λ)
θ

(
Jn+1
p (θ, λ) f (w)

)
+
(

1− (p+λ)
θ

)(
Jn
p (θ, λ) f (w)

)

wp




a1

≺ b(w).

3. Superordination Results

Theorem 3. Let b(w) be convex in U, with b(0) = 1, a1 > 0, Rea2 > 0, if f ∈ A,

(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

∈ Ω[q(0), 1] ∩Q

and
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(
1− a2(p + λ)

θ

)(Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

+
a2(p + λ)

θ


B

n+1, p
θ,λ (a, c, δ) f (w)

Bn, p
θ,λ (a, c, δ) f (w)




a1(Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

is univalent in U and satisfies the superordination.

b(w) +
a2
a1

wb′(w) ≺
(

1− a2(p + λ)

θ

)(Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

+
a2(p + λ)

θ


B

n+1, p
θ,λ (a, c, δ) f (w)

Bn, p
θ,λ (a, c, δ) f (w)




a1(Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

then

b(w) ≺
(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

.

Proof. Consider

q(w) =

(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

,

then

q′(w) = a1

(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1−1



wp
[
Bn, p

θ,λ (a, c, δ) f (w)
]′

(wp)2 −
pwp−1

(
Bn, p

θ,λ (a, c, δ) f (w)
)
(w)

(wp)2


.

We have

q′(w)

q(w)
= a1




[
Bn, p

θ,λ (a, c, δ) f (w)
]′

(
Bn, p

θ,λ (a, c, δ) f (w)
) − 1

w


,

with the same steps of Theorem 1 and using the hypothesis, we obtain

b(w) +
a2

a1
wb′(w) ≺ b(w) +

a2

a1
wb′(w).

Apply Lemma 4 we obtain

b(w) ≺
(
Bn, p

θ,λ (a, c, δ) f (w)

wp

)a1

.

�

Corollary 3. Let b(w) be convex in U, with b(0) = 1, a1 > 0, Rea2 > 0, if f ∈ A,

(
Jn
p (θ, λ) f (w)

wp

)a1

∈ Ω[q(0), 1] ∩Q

and

(
1− a2(p + λ)

θ

)( Jn
p (θ, λ) f (w)

wp

)a1

+
a2(p + λ)

θ

(
Jn+1
p (θ, λ) f (w)

Jn
p (θ, λ) f (w)

)a1
(

Jn
p (θ, λ) f (w)

wp

)a1

125



Axioms 2023, 12, 169

is univalent in U and satisfies the superordination

b(w) + a2
a1

wb′(w) ≺
(

1− a2(p+λ)
θ

)( Jn
p (θ,λ) f (w)

wp

)a1

+ a2(p+λ)
θ

(
Jn+1
p (θ,λ) f (w)

Jn
p (θ,λ) f (w)

)a1
(

Jn
p (θ,λ) f (w)

wp

)a1

,

then

b(w) ≺
(

Jn
p (θ, λ) f (w)

wp

)a1

.

Theorem 4. Let b be convex univalent in b(0) = 1 and b(w) 6= 0 for all w ∈ U and suppose that
b satisfies:

Re
{

tσ
a2

b′(w) +
ε(σ + 1)

a2
b(w)b′(w)

}
> 0, (10)

where, ε, t ∈
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, 0 6= a2 ∈
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∗, w ∈ U, and w(b(w))σ−1b′(w) are all starlike univalent in U.
If f ∈ A, satisfies the condition:




(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)

wp




a1

∈ Ω[b(0), 1]
⋂

Q,

andM(p, n, λ, θ, ε, a1, a2; w) is univalent in U.
If (t + ε b(w))(b(w))σ + a2(b(w))σ−1b′(w) ≺M

(
σ, t, ε, hµ, µ, a1, a2; w

)
, then

b(w) ≺



(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)

wp




a1

.

Proof. Let H(β) = (t + εβ)βσ and L(β) = a2(β)σ−1, 0 6= β ∈
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, when H(β) is analytic
in
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and L(β) 6= 0 is analytic in
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/0. Then, we obtain G(w) = wpb′(w)L(b(w)) =

a2wp(b(w))σ−1b′(w). �

Since wp(b(w))σ−1b′(w) is starlike, then G(w) is starlike in U, and

Re
(

H′(b(w))

L(b(w))

)
= Re

([
(t + ε(b(w)))(b(w))σ]′

a2(b(w))σ−1

)
= Re

{
tσ
a2

b′(w) +
ε(σ + 1)

a2
b(w)b′(w)

}
> 0;

Now, let
q(w)

=

(
(p+λ)

θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)
)
+
(

1− (p+λ)
θ

)
(Bn, p

θ,λ (a,c,δ) f (w))
wp

)a1

.

From (8) we obtain

(t + ε b(w))(b(w))σ + a2(b(w))σ−1b′(w)

≺ (t + εq(w))(q(w))σ + a2 w(q(w))σ−1q′(w).

Using Lemma 3 we obtain b(w) ≺ q(w).

126



Axioms 2023, 12, 169

Corollary 4. Let b be convex univalent in U, b(0) = 1, and b(w) 6= 0 for all w ∈ U, and suppose
that b satisfies:

Re
{

tσ
a2

b′(w) +
ε(σ + 1)

a2
b(w)b′(w)

}
,> 0, (11)

where, ε, t ∈
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∗, w ∈ U, and w(b(w))σ−1b′(w) are starlike univalent in U.
Let f ∈ A, satisfies the condition:




(p+λ)
θ

(
Jn+1
p (θ, λ) f (w)

)
+
(

1− (p+λ)
θ

)(
Jn
p (θ, λ) f (w)

)

wp




a1

∈ Ω[b(0), 1]
⋂

Q,

andM(p, n, λ, θ, ε, a1, a2; w) is univalent in U.
If (t + ε b(w))(b(w))σ + a2(b(w))σ−1b′(w) ≺M

(
σ, t, ε, hµ, µ, a1, a2; w

)
, then

b(w) ≺



(p+λ)
θ

(
Jn+1
p (θ, λ) f (w)

)
+
(

1− (p+λ)
θ

)(
Jn
p (θ, λ) f (w)

)

wp




a1

.

4. Sandwich Results

By combining the above theories, we obtain the following two sandwich theories.

Theorem 5. Let b1, b2 be convex univalent in U, with b1(0) = b2(0) = 1 Rea2 > 0 and

Re
(

1 +
q′′ (w)

q′(w)

)
> max

{
0,−Re

a1

a2

}
,

where a1 > 0, 0 6= a2 ∈
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.
If f ∈ A and (

Bn, p
θ,λ (a, c, δ) f (w)

wp

)a1

∈ Ω[1, 1]
⋂

Q,

and (
1− a2(p+λ)

θ

)(Bn, p
θ,λ (a,c,δ) f (w)

wp

)a1

+ a2(p+λ)
θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)

Bn, p
θ,λ (a,c,δ) f (w)

)a1(Bn, p
θ,λ (a,c,δ) f (w)

wp

)a1

is univalent in U, it satisfies:

b1(w) + a2
a1

wb′1(w) ≺
(

1− a2(p+λ)
θ

)(Bn, p
θ,λ (a,c,δ) f (w)

wp

)a1

+ a2(p+λ)
θ

(
Bn+1, p

θ,λ (a,c,δ) f (w)

Bn, p
θ,λ (a,c,δ) f (w)

)a1(Bn, p
θ,λ (a,c,δ) f (w)

wp

)a1

≺ b2(w) + a2
a1

wb′2(w),

then b1(w) ≺
(
Bn, p

θ,λ (a,c,δ) f (w)

wp

)a1

≺ b2(w).

Theorem 6. Let b1, b2 be convex univalent in U, with b1(0) = b2(0) = 1, and let f ∈ A satisfy
the condition:



(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)

wp




a1

∈ Ω[1, 1]
⋂

Q,
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andM(p, n, λ, θ, ε, a1, a2; w) is univalent in U.
If
(t + ε b1(w))(b1(w))σ + a2(b1(w))σ−1b1

′(w) ≺M(p, n, λ, θ, ε, a1, a2; w)

≺ (t + ε b2(w))(b2(w))σ + a2(b2(w))σ−1b2
′(w),

then

b1(w) ≺



(p+λ)
θ

(
Bn+1, p

θ,λ (a, c, δ) f (w)
)
+
(

1− (p+λ)
θ

)(
Bn, p

θ,λ (a, c, δ) f (w)
)

wp




a1

≺ b2(w).

5. Conclusions

In this paper, using the convolution (or Hadamard product) we defined the El-Ashwah
and Drbuk linear operator, which is a multivalent function in the unit disk U and satisfied
its specific relationship to derive the subordination, superordination, and some sandwich
results for this operator using the properties of subordination and superordination concepts.
The interesting results can be obtained for other operators using the same techniques of
subordinations and superordinations.
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Abstract: In this article, the transmission dynamical model of the deadly infectious disease named
Ebola is investigated. This disease identified in the Democratic Republic of Congo (DRC) and Sudan
(now South Sudan) and was identified in 1976. The novelty of the model under discussion is the
inclusion of advection and diffusion in each compartmental equation. The addition of these two terms
makes the model more general. Similar to a simple population dynamic system, the prescribed model
also has two equilibrium points and an important threshold, known as the basic reproductive number.
The current work comprises the existence and uniqueness of the solution, the numerical analysis of
the model, and finally, the graphical simulations. In the section on the existence and uniqueness of
the solutions, the optimal existence is assessed in a closed and convex subset of function space. For
the numerical study, a nonstandard finite difference (NSFD) scheme is adopted to approximate the
solution of the continuous mathematical model. The main reason for the adoption of this technique is
delineated in the form of the positivity of the state variables, which is necessary for any population
model. The positivity of the applied scheme is verified by the concept of M-matrices. Since the
numerical method gives a discrete system of difference equations corresponding to a continuous
system, some other relevant properties are also needed to describe it. In this respect, the consistency
and stability of the designed technique are corroborated by using Taylor’s series expansion and Von
Neumann’s stability criteria, respectively. To authenticate the proposed NSFD method, two other
illustrious techniques are applied for the sake of comparison. In the end, numerical simulations are
also performed that show the efficiency of the prescribed technique, while the existing techniques fail
to do so.
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structure preserving

MSC: 35K57; 22F30

Axioms 2023, 12, 79. https://doi.org/10.3390/axioms12010079 https://www.mdpi.com/journal/axioms130



Axioms 2023, 12, 79

1. Introduction

In 1976, the first case of Ebola virus disease was observed in the Democratic Repub-
lic of Congo (DRC). Ebola hemorrhagic fever is considered the most infectious deadly
disease that is a member of the family “Filoviridae” and the genus “Ebola virus”. Ebola
virus infect humans, bats, and monkeys, but species such as fawns and mice can also
contract an infection. There are six types of Ebola virus, including Bundibugyo ebolavirus,
Zaire ebolavirus, Sudan ebolavirus, Tai forest ebolavirus, Reston ebolavirus, and Bombali
ebola virus. But only Bundibugyo ebolavirus, Zaire ebolavirus, Sudan ebolavirus and
Tai forest ebolavirus are the source of infection in people, while Reston ebolavirus infects
non-human primates [1–3].

This deadly disease has affected a large number of people globally. In the first wave
of the disease in the DRC, the mortality rate was 88%, the number of exposed cases was
318, and 280 deaths were recorded. The second wave of the disease occurred in South
Sudan, where the mortality rate, number of exposed cases, and total deaths were 53%, 284,
and 151, respectively. After the first wave, Ebola virus disease occurred in several countries
of the world, including Gabon, Guinea, Liberia, Sierra Leone, South Africa, Spain, Sudan,
Uganda, the United Kingdom and the United States of America [4]. It is endemic in some
parts of Africa.

In 1995, Ebola virus disease emerged again in the DRC with an estimation of 315
cases and 250 expired people. During 2014–2016, this epidemic re-emerged in West African
countries. Approximately 11,300 people lost their lives, and 28,600 people were infected in
Liberia, Guinea and Sierra Leone [5]. The case mortality rates in these countries were 42%,
60%, and 22%, respectively [6]. Approximately 2500 deaths were recorded in Guinea by
May 2018. The Ugandan Ministry of Health confirmed the first case of Ebola virus disease
on 11 June 2019; after that, the number of cases increased day by day. In 2019, about 2763
cases and 1841 deaths were reported in North Ituri and Kivu provinces, as confirmed by the
DRC ministry of health [7]. According to recent figures, in 2020, 130 new infectious cases
and 55 deaths were recorded, with a mortality rate of 42.3% in the Democratic Republic of
Congo. However, the Ministry of Health and WHO declared on 18 November 2020 that
the wave was terminated in the DRC [4]. In July 2016, Liberia was reported as Ebola-free.

The Ebola virus is transmitted to others by direct or indirect contact with infected
individuals and animals. The bats-to-mammals route of transmission occurrs when land
mammals eat fruits that were partially eaten by bats [8]. Initially, domestic and wild
animals spread the virus to people. The human–human transference of the virus occurs
through close contact with the infected person’s blood, tears, saliva, feces, bile, mucus,
sweat, breast milk, urine, vomit, and spinal column fluid. The virus may also be transferred
using needles and syringes contaminated by Ebola patients and by touching patients’ beds
and clothes. People may contract an infection from an infected dead person during funeral
rites without taking suitable precautions [9]. Unprotected healthcare workers may also
contract an infection when treating the affected patients in hospitals and healthcare centers.
The possibility of transmitting the virus increases among those people who look after their
infected relatives.

During the infection period, the virus can be identified by an RT-PCR test or by im-
munological methods (ELISA) [10]. Usually, Ebola virus-infected persons show symptoms
such as fever, fatigue, headache, bloody diarrhea, nausea, abdominal pain, loss of ap-
petite, sore throat, and muscle pain [11]. The time from infection to the first appearance
of symptoms is called the incubation period, which is normally 2 to 21 days for Ebola
virus disease.

Mathematical modeling of the Ebola virus disease has been the concern of many re-
searchers for the recent few years to understand the epidemiological and dynamical features
of this challenging disease [12–17]. Weitz and Dushoff made control strategies to reduce
the transmission of Ebola virus disease from infected dead bodies [18]. The researchers
introduced and analyzed the optimal control mathematical problems by using various
techniques and strategies for Ebola virus disease [19–21]. A. Mhlanga studied the two-patch
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model SIRD to study the dynamics of Ebola virus disease and developed time-dependent
controls in his model. He calculated the basic reproductive number, the equilibrium points,
and two boundary equilibria. He implemented the control measures to reduce the Ebola
virus disease in specific areas [22]. Ahmed et al. [23] proposed the SEIR model with some
new compartments, such as hospitalization, quarantine, and vaccination. In hospitalization
and vaccination cases, optimal control strategies are used to control disease transmis-
sion and give the powerful impact of vaccination to the infected population. Tulu et al.
introduced a mathematical model including quarantine and vaccination to analyze the
disease dynamics [24]. They investigated the model using fractional-order derivatives and
verified the existence and positive solution of their introduced model. They used Euler
and Markov Chain Monte Carlo (MCMC) methods to generate the simulations. Their out-
comes illustrated that the quarantine and vaccinations played an important part to control
the Ebola outbreak. Area et al. presented a mathematical model with the vaccination of
susceptible individuals to control disease transmission [25]. They studied two optimal
control problems associated with Ebola disease transmission with vaccination. They con-
sidered three vaccination constraints to show the impact of vaccination. A SIR model was
constructed with direct and indirect transmissions by Berge et al. [26]. They proved the
local and global asymptotic stability of the endemic equilibrium points and developed
the nonstandard finite difference scheme, which is dynamically consistent with the model.
Kabli et al., in 2018, used the cooperative systems theory to examine the global stability
of the epidemic SEIHR model of Ebola disease [27]. Rafiq et al., in 2020, constructed an
SEIR model of nonlinear differential equations [28]. They obtained the threshold quantity
and equilibrium points and checked the stability of their proposed model. They proved
that the equilibrium points are locally asymptotically stable. The Lyapunov function was
used to check the global stabilities. They developed a fourth-order Runge–Kutta method
and a nonstandard finite difference scheme for the proposed model and demonstrated
that the RK-4 method failed at certain step sizes, while the NSFD scheme conserved all
the dynamical properties of the model at large step sizes. Okyere et al. examined the
optimal control analysis of epidemiological models such as SIR and SEIR using vaccination,
treatment, and educational campaigns as time-dependent control functions [29]. They used
the forward-backward sweep method with the RK-4 method to explain the optimal system
for different control strategies. Ahmed et al. [30], in 2020, established a mathematical model
SVEIR by introducing the new sub-population class of vaccinated people into the SEIR
model [31]. They also presented the equilibrium points and stability analysis of the model.
Both the disease-free and endemic equilibrium points are locally and globally stable. They
justified their concluded theoretical outturn by applying RK-4 and NSFD schemes. Their
work shows that through voluntary vaccinations, the transmission of the Ebola virus can be
controlled. A work regarding a fuzzy epidemic model with an NSFD scheme is presented
by Dayan et al. [32].

Some innovative studies for epidemic models in the set of fractional calculus have been
conducted. The referred articles are of importance in this connection [33,34]. In the existing
theories, advection and diffusion phenomena are considered for the propagation of disease
in the defined population. The existing epidemic models deal with the disease dynamics
depending on time. However, they do not examine the effect of advection and diffusion
factors simultaneously. For that reason, there is no numerical design for this type of model
in the running literature, which is, in this context, the generalized epidemic Ebola model,
namely the advection–diffusion Ebola model. Moreover, the existing numerical schemes
do not preserve the positivity property, which is the essential feature of the solutions to the
population systems. Additionally, they lead toward a false steady state. This was a major
drawback in some of the present numerical designs. The scheme proposed and developed
in this article ensures positive solutions, stability, and convergence toward the true steady
state. Hence, the extended model is productive and enriched with disease dynamics.

As far as the limitations of the research work are concerned, the initial and boundary
conditions of the underlying model should be continuous functions. If these conditions
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are discontinuous, piecewise continuous, or nonlocal conditions, then they cannot be
considered. The other limitation is related to the existence and uniqueness of the solution.
The continuity of the solution lies in a restricted domain. Equivalently, the maximum
length of continuity is short.

2. Modified Ebola Virus Model

A compartmental model of the Ebola virus is designed for the numerical study in
Section 2. The model under study deals with the spatio-temporal dynamics of the Ebola
virus disease. Due to the involvement of space as well as time, the domain for the cur-
rent model is assumed to be Ω = (0, L) × (0, T) ⊆ R2, where L and T are real num-
bers, such that T > 0. Suppose that the state variables for the system are S = S(x, t),
E = E(x, t), I = I(x, t), and R = R(x, t), which are the real functions defined on Ω and are
described as the subpopulation sizes of the compartments susceptible, exposed, infected,
and recovered, respectively, at any time t. Further, let S = S(x, t), E = E(x, t), I = I(x, t),
R = R(x, t) ∈ C2,1[Ω,R]. Additionally, suppose that ζ1(x), ζ2(x) and ζ3(x) are three real-
valued functions such that ζ1(x), ζ2(x), and ζ3(x) ∈ C1[(0, L),R]. The state variables of the
model and parameters used in the prescribed system are stated in Table 1.

Table 1. Values of the parameters.

Notations Description

S(x, t) No. of susceptible individuals at time t and space x

E(x, t) No. of exposed individuals at time t and space x

I(x, t) No. of infected individuals at time t and space x

R(x, t) No. of recovered individuals at time t and space x

p1 Birth rate as well as death rate

p2 Contact rate for the individuals from the susceptible with infected class

p3 Transmission rate of exposed persons to the infected person

p4 Treatment rate

a1 Rate of advection for the susceptible class

a2 Rate of advection for the exposed class

a3 Rate of advection for the infected class

a4 Rate of advection for the recovered class

δ1 Diffusion rate of advection for the susceptible class

δ2 Diffusion rate of advection for the exposed class

δ3 Diffusion rate of advection for the infected class

δ4 Diffusion rate of advection for the recovered class

The spatio-temporal model of Ebola virus disease including advection and diffusion
is given as follows [35]:

∂S(x, t)
∂t

+ a1
∂S(x, t)

∂x
= p1 − p2S(x, t)E(x, t)− p1S(x, t) +

δ1
d2S(x, t)

dx2 , (1)

∂E(x, t)
∂t

+ a2
∂E(x, t)

∂x
= p2S(x, t)E(x, t)− p3E(x, t)− p1E(x, t) +

δ2
d2E(x, t)

dx2 , (2)
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∂I(x, t)
∂t

+ a3
∂I(x, t)

∂x
= p3E(x, t)− (p1 + p4)I(x, t) + δ3

d2 I(x, t)
dx2 , (3)

∂R(x, t)
∂t

+ a4
∂R(x, t)

∂x
= p4 I(x, t)− p1R(x, t) + δ4

d2R(x, t)
dx2 . (4)

Since all of the above equations are independent of R(x, t), thus, the system (1)–(4)
reduces to the system of the first three Equations (1)–(3).

∂S(x, t)
∂t

+ a1
∂S(x, t)

∂x
= p1 − p2S(x, t)E(x, t)− p1S(x, t) +

δ1
d2S(x, t)

dx2 , (5)

∂E(x, t)
∂t

+ a2
∂E(x, t)

∂x
= p2S(x, t)E(x, t)− p3E(x, t)− p1E(x, t) +

δ2
d2E(x, t)

dx2 , (6)

∂I(x, t)
∂t

+ a3
∂I(x, t)

∂x
= p3E(x, t)− (p1 + p4)I(x, t) + δ3

d2 I(x, t)
dx2 . (7)

Additionally, the initial and boundary conditions

S(x, 0) = ζ1(x), for all x ∈ [0, L], (8)

E(x, 0) = ζ2(x), for all x ∈ [0, L], (9)

I(x, 0) = ζ3(x), for all x ∈ [0, L], (10)

and

∂

(
S(x, t)

)

∂η
=

∂

(
E(x, t)

)

∂η
=

∂

(
I(x, t)

)

∂η
= 0, (11)

for every ordered pair (x, t) ∈ ∂Ω, ∂
∂η represent outward normal derivatives on ∂Ω, a

boundary of Ω where η is the outward unit normal vector on the boundary. Further-
more, S(x, t), E(x, t), I(x, t), R(x, t) are Lebesgue-integrable functions in the domain men-
tioned above.

The prescribed system (1)–(4) reflects the dynamical behaviour of the fatal Ebola
virus disease, for which S(x, t), E(x, t), I(x, t) and R(x, t) depict the sub-population sizes of
respective compartments at point x and time t, respectively. Due to biological reasoning, it
is assumed that S, E, I and R are the nonnegative functions of x and t [36–38].

For the equilibrium points, set all instantaneous changes with respect to time and
space equal to zero in (5)–(7).

Thus, the Ebola-free equilibrium point of the continuous system is:

E0 = (1, 0, 0, 0).

Additionally, the endemic equilibrium of the model, obtained by equating all deriva-
tives to zero, is [35]:

Ee = (S̃, Ẽ, Ĩ, R̃),

where
S̃ =

p1 + p3

p2
, Ẽ =

p1(1− S̃)
p2S̃

, Ĩ =
p3Ẽ

p1 + p4
, R̃ =

p4 Ĩ
p1

.
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Additionally, the value of the reproductive number R0 can be evaluated by using a
next-generation matrix.

[
E′

I′

]
=

[
p2S 0
0 0

][
E
I

]
−
[

p3 + p1 0
−p3 p1 + p4

][
E
I

]
.

Since S = 1

F =

[
p2 0
0 0

]
, V =

[
p3 + p1 0
−p3 p1 + p4

]
.

Because R0 is defined as the spectral radius of FV−1, thus,

R0 = ρ(FV−1),

=
p2

p1 + p3
.

To make the dynamical system more realistic, many researchers examined advection
and diffusion phenomena in highly non-linear continuous mathematical models, which
reflect the real significance in the dynamics of the systems [39,40]. The current article
addresses the advection and diffusive impacts of an epidemic model’s compartmental
population.

The approach of the nonstandard finite difference scheme for the model (1)–(4) is
adopted with the defined initial and boundary conditions in the next section with the
supplementary data (8)–(11).

2.1. Optimal Analysis of the Model

The above system (1)–(4) of Ebola disease and its dynamics depend upon the ad-
vection and diffusion properties with respect to each of the state variables S, E, I, and R.
The first three partial differentials are mutually coupled, while the last partial differential
Equation (4) is completely independent of the rest of the coupled system. Since this model
primarily describes the population model, where the sum S + E + I + R = N (the total
population), therefore, physically, if the total population is known, the three components
are computed from the partial differential Equations (1)–(4). Then, obviously, the fourth
tuple of the vector of unknown functions is retained without computing the fourth partial
differential Equation (4). Thus, potentially, Equation (4) can be set aside for the upcoming
existence analysis, the same as it is in the computations. Now, we will consider System
(1)–(3) with the conditions (8)–(11). Without any inconvenience, the first time derivative
appearing in the system can be inverted, and in concise form, the solutions S, E, I can be
written as follows:

S = S0 +
∫ t

0
z1

(
S, E, I,

∂S
∂x

,
∂2S
∂x2

)
(s)ds,

E = E0 +
∫ t

0
z2

(
S, E, I,

∂E
∂x

,
∂2E
∂x2

)
(s)ds,

I = I0 +
∫ t

0
z3

(
S, E, I,

∂I
∂x

,
∂2 I
∂x2

)
(s)ds.

If we set
(

S, E, I
)

=

(
u1, u2, u3

)
, the more compact form of System (1)–(4) and,

consequently, Equations (5)–(7) can be written as:

∂ui

∂t
= zi

(
u1, u2, u3,

∂ui

∂x
,

∂2ui

∂x2

)
, (12)

where u1, u2, u3, i = 1, 2, 3 represent the unknown functions S, E, and I, respectively.
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The classical triple
(

u1, u2, u3
)

needs to be in the function space C1[0,T]× C2[a, b]

for finite numbers a, b and the finite positive number T. The compact embedding of the
function spaces leads to the fact that the function space C1[0,T] is compactly embedded as
C0[0,T]; consequently, we can have the consideration of the space of continuous functions
as our primary Banach space for the solution tuple to be fit in the space C0[0,T], equipped
with the usual supremum norm. Furthermore, we strictly assume that, with respect to the
space variable, this ui ∈ C2[a, b] for i = 1, 2, 3, that is, we invert System (12) with the initial
conditions (8)–(10) in the form of the Volterra integral equation as follows:

ui = ui
0 +

∫ t

0
zi

(
u1, u2, u3,

∂ui

∂x
,

∂2ui

∂x2

)
(s)ds, for i = 1, 2, 3. (13)

The integral Equation (13) can be written in the following operator’s form:

Ui = ui
0 +

∫ t

0
zi

(
u1, u2, u3,

∂ui

∂x
,

∂2ui

∂x2

)
(s)ds, for i = 1, 2, 3. (14)

Since System (1)–(4) reduced to (14) is a physical system, prior to the computational
technique, we can predict the behaviour of the solution. Besides the many advantages of
the existence theory, there is one serious restriction, which is that, in general, the solution
does not exist in the large domain. However, we can construct an a priori condition on the
bound of the solution in a special environment called the Schauder-type estimates. This fact
leads to the nice idea of the optimization of the function space. The following subsection
deals with the important dimension of the analysis.

Fixed-Point Optimization in Banach Spaces

Primarily, we will consider the contraction-mapping principle on the space of continu-
ous functions, and we choose the following balls with arbitrary radii r > 0 (to be bounded
later) defined by

Bri [ui
0] =

{
ui ∈ C0[0, ρ],

∥∥∥∥ui − ui
0 ≤ ri

∥∥∥∥
}

, i = 1, 2, 3. (15)

We choose the initial values as the center of the balls, and we set
∥∥∥∥ui
∥∥∥∥ ≤ ri + ui

0.

Again, considering the operator Equation (14), we examine the following conditions:

(i) Self-mapping; that is, Ui : Br[ui
0]→ Br[ui

0],

(ii) Contractivity; that is,
∥∥∥∥Ui

1 −U2
i

∥∥∥∥ ≤ ki

∥∥∥∥ui
1 − ui

2

∥∥∥∥.

To verify the first condition, we take the norm of Equation (14), and we obtain
∥∥∥∥Ui − ui

0

∥∥∥∥ ≤
∫ t

0

∥∥∥∥zi

∥∥∥∥dr,

≤ Ki(r)
∫ t

0
ds, because zi are bounded and the norm

can be estimated by the radius r.

≤ Ki(r)ρ,

≤ r.
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This implies that

ρ ≤ r
Ki(r)

(16)

The condition (16) is necessary for the existence of a solution and gives explicit bounds
for the length of the continuity of intervals of solutions. For contractivity, we take two
images Ui

1 and Ui
2 for two pre-images ui

1 and ui
2, respectively, from (14), and we can rewrite

this as follows:

Ui
1 −Ui

2 =
∫ t

0
zi

(
ui

1,
∂ui

1
∂t

,
∂2ui

1
∂t2

)
(s)ds−

∫ t

0
zi

(
ui

2,
∂ui

2
∂x

,
∂2ui

2
∂x2

)
(s)ds,

Ui
1 −Ui

2 =
∫ t

0

{
zi

(
ui

1,
∂ui

1
∂x

,
∂2ui

1
∂x2

)
−zi

(
ui

2,
∂ui

2
∂x

,
∂2ui

2
∂x2

)}
(s)ds. (17)

Now, suppose that zi, i = 1, 2, 3 all satisfy the Lipschitz condition of spatial type as
defined by

∥∥∥∥zi(ui
1)−zi(ui

2)

∥∥∥∥ ≤ Li(r)
∥∥∥∥ui

1 − ui
2

∥∥∥∥
C2[a,b]

. (18)

Equation (17) implies
∥∥∥∥Ui

i −Ui
2

∥∥∥∥ ≤ ρLi(r)
∥∥∥∥ui

1 − ui
2

∥∥∥∥
C2[a,b]

,

and for some positive constant Mi, we can always have
∥∥∥∥Ui

i −Ui
2

∥∥∥∥ ≤ ρMiLi(r)
∥∥∥∥ui

1 − ui
2

∥∥∥∥
C2[a,b]

.

For contractivity, we have the following condition:

ρ <
1

MiLi(r)
, (19)

that is, we have more restrictions on the length of the interval of continuity depending on
time. For more precise results, the Lipschitz constant must be small enough.

Hence, the following result has been verified.

Theorem 1. Suppose that the state variables S, E, I and R are in C1[0,T]×C2[a, b]; then, provided
that S, E, I and R satisfy the Lipschitz condition of the type of Equation (18), the initial boundary
value problem (1)–(4) with (8)–(11) is uniquely solvable.

Theorem 2. Suppose that the state variables S, E, I and R are in C1[0,T]× C2[a, b]; then, the
continuity and the uniqueness of the solution of System (1)–(4) is given by the inequality,

ρ <
r

ki(r)
=

1
MiLi(r)

.

Since the epidemic models contain a number of parameters, it becomes an uphill task
to find the exact solutions of these models. In some cases, it even becomes impossible to
evaluate the problem exactly. The numerical solutions then numerical solutions become
inevitable for these types of nonlinear epidemic systems.

In the subsequent section, a non-standardized algebraic scheme is designed to attain
the numerical solutions of the underlying model.
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2.2. Numerical Modeling

Let M and M∗ be two natural numbers and m = L
M , ` = T

M∗ be the positive real
numbers. Additionally, let [0,L] and [0,T] be the spatial and temporal intervals, respectively,
for the proposed problem. Thus, the intervals [0,L] and [0,T] are partitioned into m and `
subintervals, respectively. Suppose also that the partition norm of the interval [0,L] is m,
while the partition norm for the interval [0,T] is `. Define xj = jm and tk = k`, for which
j ∈ {0, 1, 2 . . . , M} and k ∈ {0, 1, 2 . . . , M∗}. Additionally, suppose that Sk

j , Ek
j , Ik

j , and Rk
j

are the approximate values of the exact values of the functions S(xj, tk), E(xj, tk), I(xj, tk),
and R(xj, tk) respectively, at the mesh point (jm, k`) for j ∈ Z and 0 ≤ j ≤ M and k ∈ Z
and 0 ≤ j ≤ M∗. Additionally, if U is the arbitrary function values from the set {S, E, I, R},
then we define

Uk = (Uk
0 , Uk

1 , . . . , Uk
M), k ∈ Z and 0 ≤ j ≤ M∗.

The continuous model (1)–(3) is converted in to a system of difference equations with
the help of some discrete functions. The procedure of conversion is explained as follows:

Sk+1
j − Sk

j

`
+ a1

{Sk+1
j − Sk+1

j−1

m

}
= p1 − p2Sk+1

j Ek
j − p1Sk+1

j +

δ1

{Sk+1
j+1 − 2Sk+1

j + Sk+1
j−1

m2

}
, (20)

Ek+1
j − Ek

j

`
+ a2

{Ek+1
j − Ek+1

j−1

m

}
= p2Sk

j Ek
j − p3Ek+1

j − p1Ek+1
j +

δ2

{Ek+1
j+1 − 2Ek+1

j + Ek+1
j−1

m2

}
, (21)

Ik+1
j − Ik

j

`
+ a3

{ Ik+1
j − Ik+1

j−1

m

}
= p3Ek

j − (p1 + p4)Ik+1
j +

δ3

{ Ik+1
j+1 − 2Ik+1

j + Ik+1
j−1

m2

}
. (22)

After simplifications, (20)–(22) gives

−(λ1 + µ1)Sk+1
j−1 + (1 + λ1 + `p1 + `p2Ek

j + 2µ1)Sk+1
j − µ1Sk+1

j+1 = `p1 + Sk
j , (23)

−(λ2 + µ2)Ek+1
j−1 + (1 + λ2 + `(p1 + p3) + 2µ2)Ek+1

j −
µ2Ek+1

j+1 = Ek
j + p2Sk

j Ek
j , (24)

−(λ3 + µ3)Ik+1
j−1 + (1 + λ3 + `(p1 + p4) + 2µ3)Ik+1

j − µ3 Ik+1
j+1 = Ik

j + p3Ek
j , (25)

where λ1 = a1`
m , µ1 = δ1`

m2 , λ2 = a2`
m , µ2 = δ2`

m2 , λ3 = a3`
m and µ3 = δ3`

m2 for j ∈ {1, 2, . . . , M}
and k ∈ {0, 1, 2, . . . , M∗ − 1}.

The auxiliary data are discretized as:

S0
j = k1(xj),

E0
j = k2(xj),

I0
j = k3(xj), for j ∈ {1, 2, . . . , M},
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and

δSk
1 = δEk

1 = δIk
1 = 0,

δSk
M = δEk

M = δIk
M = 0, for k ∈ {0, 1, 2, . . . , M∗}.

A comparison of numerical scheme (20)–(22) with the other existing methods makes it
clear that (20)–(22) gives us more reliable results. Thus, to see the strength of our proposed
scheme, two well-known schemes are also applied to the proposed system (1)–(3). One is
the up-wind implicit scheme, which is constructed as

−(λ1 + µ1)Sk+1
j−1 + (1 + λ1 + 2µ1)Sk+1

j − µ1Sk+1
j+1 = Sk

j + `p1 −
`p2Sk

j Ek
j − `p1Sk

j , (26)

−(λ2 + µ2)Ek+1
j−1 + (1 + λ2 + 2µ2)Ek+1

j − µ2Ek+1
j+1 = Ek

j +

p2`Sk
j Ek

j − `p3Ek
j − `p1Ek

j , (27)

−(λ3 + µ3)Ik+1
j−1 + (1 + λ3 + 2µ3)Ik+1

j − µ3 Ik+1
j+1 = Ik

j +

p3`Ek
j − p4 Ik

j − p1 Ik
j . (28)

The second is the Crank–Nicolson method, constructed for System (1)–(3):

−
(

λ1

4
+

µ1

2

)
Sk+1

j−1 + (1 + µ1)Sk+1
j +

(
λ1

4
− µ1

2

)
Sk+1

j+1 =

(
λ1

4
+

µ1

2

)
Sk

j−1 +

(
1− `p2Ek

j − `p1 − µ1

)
Sk

j +

(
µ1

2
− λ1

4

)
Sk

j+1 + `p1, (29)

−
(

λ2

4
+

µ2

2

)
Ek+1

j−1 + (1 + µ2)Ek+1
j +

(
λ2

4
− µ2

2

)
Ek+1

j+1 =

(
λ2

4
+

µ2

2

)
Ek

j−1 +

(
1 + `p2Sk

j − `p3 − `p1 − µ2

)
Ek

j +

(
µ2

2
− λ2

4

)
Ek

j+1, (30)

−
(

λ3

4
+

µ3

2

)
Ik+1
j−1 + (1 + µ3)Ik+1

j +

(
λ3

4
− µ3

2

)
Ik+1
j+1 =

(
λ3

4
+

µ3

2

)
Ik
j−1 +

(
1− `p4 − `p1 − µ3

)
Ik
j −

(
µ3

2
− λ3

4

)
Ik
j+1 + `p3Ek

j . (31)

Remark 1. The proposed NSFD scheme can be developed by taking unequal step sizes of both time
and space.

3. Physical Features of the Numerical Method

This portion is fixed for the significant characteristics of System (5)–(7). These features
play a paramount role to attain the numerical solutions of the nonlinear epidemic models.
To discuss these important features, it is important to review some definitions.

Definition 1. A matrix A with real entries is described as a Z-matrix if every element of it is
non-positive except diagonal elements.

Definition 2. A square matrix A with real entries is described as an M-matrix if it satisfies the
following properties:

(i) The matrix A is a Z-matrix;
(ii) Every main diagonal entry of the matrix A is positive;
(iii) The matrix A is diagonally dominated, strictly.
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The theory of the M-matrix plays an important role in proving the positivity of
the state variables involved in the model of various fields of engineering, mathematics,
economics, physics, and many more. The subsequent outcome grantees the non-negativity
of the numerical solutions to the discrete System (20)–(22). This feature of the numerical
scheme can be expressed by applying the M-matrix technique. Moreover, every M-matrix
is inverted with real positive entries.

Remark 2. Every M-matrix has an inversion with positive entries [41].

The following are the important properties of the proposed scheme for the model
under discussion.

3.1. Positivity

For a population dynamical system, the positivity of the state variables plays a vital
role. Thus, it must be preserved after employing the numerical scheme on the model.
The following theorem reflects the positivity property.

Theorem 3. Assume that k1, k2 and k3 are the positive real-valued functions depending on x
defined in the interval (0, L); then, System (20)–(22), with the supportive data (8)–(11), has a
solution ∀ m > 0 and l > 0. Moreover, the solutions are positive.

Proof. Since the left hand sides of (20)–(22) are the implicit relations, we can write it in the
vector representation as:

USk+1 = Sk
j + `p1, (32)

VEk+1 = Ek
j + p2Sk

j Ek
j , (33)

WIk+1 = Ik
j + p3Ek

j , (34)

in which U, V and W are defined as (M + 1)× (M + 1) matrices. By using the initial and
boundary conditions (8)–(11), we can find the matrices U, V and W. Then,

U =




(γ1)
k
0 γ2 0 · · · · · · · · · · · · 0

γ3 (γ1)
k
1 γ4

. . .
...

0 γ3 (γ1)
k
2 γ4

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . γ3 (γ1)

k
M−2 γ4 0

...
. . . γ3 (γ1)

k
M−1 γ4

0 · · · · · · · · · · · · 0 γ3 (γ∗1)
k
M




,
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V =




(ξ1)
k
0 ξ2 0 · · · · · · · · · · · · 0

ξ3 (ξ1)
k
1 ξ4

. . .
...

0 ξ3 (ξ1)
k
2 ξ4

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . ξ3 (ξ1)

k
M−2 ξ4 0

...
. . . ξ3 (ξ1)

k
M−1 ξ4

0 · · · · · · · · · · · · 0 ξ3 (ξ∗1)
k
M




,

and

W =




($1)
k
0 $2 0 · · · · · · · · · · · · 0

$3 ($1)
k
1 $4

. . .
...

0 $3 ($1)
k
2 $4

. . .
...

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . $3 ($1)

k
M−2 $4 0

...
. . . $3 ($1)

k
M−1 $4

0 · · · · · · · · · · · · 0 $3 ($∗1)
k
M




,

where

(γ1)
k
j = 1 + λ1 + `p1 + `p2Ek

j + 2µ1,

(ξ1)
k
j = 1 + λ2 + `(p1 + p3) + 2µ2,

($1)
k
j = 1 + λ3 + `(p1 + p4) + 2µ3,

(γ∗1)
k
M = 1 + λ1 + `p1 + `p2Ek

M + µ1,

(ξ∗1)
k
M = 1 + λ2 + `(p1 + p3) + µ2,

($∗1)
k
M = 1 + λ3 + `(p1 + p4) + µ3,

γ2 = −(λ1 + 2µ1), ξ2 = −(λ2 + 2µ2), $2 = −(λ3 + 2µ3),

γ3 = −(λ1 + µ1), ξ3 = −(λ2 + µ2), $3 = −(λ3 + µ3),

γ4 = −µ1, ξ4 = −µ2, $4 = −µ3.

Now, the method of mathematical induction is applied to prove the positivity of the
corresponding discrete system of Equations (20)–(22). According to the initial data, S0, I0

A
and I0

C are positive, so it is assumed that Sk, Ek and Ik, k ∈ 0, 1, 2, . . . , M∗ − 1 are positive
component vectors. The above calculation indicates that U, V, and W are the M-matrices,
so they are invertible and have positive inverses. Moreover, the expressions that occurred
on the right-hand side of each of the equations in System (20)–(22) are positive. Therefore,

Sk+1 = U−1(`p1 + Sk
j ),

Ek+1 = V−1(Ek
j + p2Sk

j Ek
j ),

Ik+1 = W−1(Ik
j + p3Ek

j ),

all the state variables are positive quantities for every k = 0, 1, 2, · · ·, M∗ − 1.
Hence, the theory of mathematical induction grantees the required solutions.
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Definition 3. Suppose Ωm =

{
xj ∈ R : j ∈ Z | 0 ≤ j ≤ M

}
is the set of mesh points, Γm

contains the real functions defined on Ωm. Also, Γm forms a vector space.
A norm ‖.‖ from Γm to R is defined as:

‖z‖ =
√√√√

M

∑
j=1
|zj|2, for all z ∈ Γm,

and

‖z‖∞ = max
{
|zj| : j ∈ {0, 1, 2, · · ·, M}

}
, ∀ z ∈ Γm.

The consistency of a numerical scheme is an important structural feature since the
consistency determines the relationship between the exact solutions of both continuous
and corresponding discrete systems. To that end, we define the following differential
transformation.

ν1 =
∂S(x, t)

∂t
+ a1

∂S(x, t)
∂x

− p1 + p2S(x, t)E(x, t) + p1S(x, t)−

δ1∇2S(x, t), (35)

ν2 =
∂E(x, t)

∂t
+ a2

∂E(x, t)
∂x

− p2S(x, t)E(x, t) + p3E(x, t) + p1E(x, t)−

δ2∇2E(x, t), (36)

ν3 =
∂I(x, t)

∂t
+ a3

∂I(x, t)
∂x

− p3E(x, t) + (p1 + p4)I(x, t)− δ3∇2 I(x, t). (37)

Moreover, the discrete operator is defined in the following:

ν∗1
k+1 = δtSk+1

j + δxSk+1
j − p1 + p2Sk+1

j Ek
j + p1Sk+1

j − δ1δxxSk+1
j , (38)

ν∗2
k+1 = δtEk+1

j + a2δxEk+1
j − p2Sk

j Ek
j + p3Ek+1

j + p1Ek+1
j − δ2δxxEk+1

j , (39)

ν∗3
k+1 = δt Ik+1

j + a3δx Ik+1
j − p3Ek

j + (p1 + p4)Ik+1
j − δ3δxx Ik+1

j . (40)

3.2. Consistency

The accuracy of the proposed numerical scheme is investigated by Taylor’s theory.
Suppose that

ΦS =
S(x, t + `)− S(x, t)

`
+ a1

S(x, t + `)− S(x−m, t + `)

m
− p1 +

p2S(x, t + `)E(x, t) + p1S(x, t + `)−
δ1

m2 {S(x + m, t + `)− 2S(x, t + `) + S(x−m, t + `)}.

After applying Taylor’s classical theory, we reach the following expression

ΦS →
∂S
∂t

+ a1
∂S
∂x
− p1 + p2SE + p1S− δ1

∂2S
∂x2 as m→ 0, `→ 0,
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and

ΦE =
E(x, t + `)− E(x, t)

`
+ a2

E(x, t + `)− E(x−m, t + `)

m
−

p2S(x, t)E(x, t + `) + p1E(x, t + `) + p3E(x, t + `)−
δ2

m2 {E(x + m, t + `)− 2E(x, t + `) + E(x−m, t + `)},

ΦE →
∂E
∂t

+ a2
∂E
∂x
− p2SE + p1E + p3E− δ2

∂2E
∂x2 as m→ 0, `→ 0.

Similarly,

ΦI →
∂I
∂t

+ a3
∂I
∂x
− p3E + p1 I + p4 I − δ3

∂2 I
∂x2 as m→ 0, `→ 0.

Thus, the designed numerical algorithm is consistent with the underlying model of
differential Equations (5)–(7).

Using Definition 3 and Equations (35)–(40), the following result may be established.

Theorem 4. If the state variables S, E, I, R ∈ C2,2
x,t (Ω̄), then there exists ξ > 0, which is indepen-

dent of ` and m, with the following inequality:

max
{
‖θ − θ′‖∞, ‖φ− φ′‖∞, ‖ψ− ψ′‖∞

}
≤ ξ(m + l).

3.3. Stability

Since the main purpose of this article is to find the numerical solution of the system
of partial differential equations, it is necessary to prove the stability of the numerical
scheme. For the stability of the numerical scheme, we consider the propagation of rounding-
off errors in the approximate solutions. In other words, we can say that a numerical
technique for the system of differential equations is unstable if a minor variation in the initial
data produces an abrupt change in the target variables of the model under consideration.
Likewise, if the negligible change in the state variable does not lead to a gigantic change
in the solution, then the numerical scheme is stable. Von Neumann criteria are applied
to investigate the stability of the designed numerical scheme. To that end, we split the
numerical error that arose in approximate solutions in the form of Fourier series.

Thus, the linearization of the Equations (20)–(22) and some substitutions leads us to
the following expressions:

Sk
j = Ψ1(t)eiωx,

Sk+1
j = Ψ1(t + ∆t)eiωx,

Sk
j+1 = Ψ1(t)eiω(x+∆x),

Sk
j−1 = Ψ1(t)eiω(x−∆x),

We obtain
∣∣∣∣
Ψ1(t + ∆t)

Ψ1(t)

∣∣∣∣ ≤ 1.
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By substituting

Ek
j = Ψ + 2(t)eiωx,

Ek+1
j = Ψ2(t + ∆t)eiωx,

Ek
j+1 = Ψ2(t)eiω(x+∆x),

Ek
j−1 = Ψ2(t)eiω(x−∆x),

we have
∣∣∣∣
Ψ2(t + ∆t)

Ψ2(t)

∣∣∣∣ ≤ 1.

Similarly, from (22), we have
∣∣∣∣
Ψ(t + ∆t)

Φ(t)

∣∣∣∣ ≤ 1.

Hence, the projected scheme is stable in the sense of Von Nuemann.

4. Numerical Illustrations

In the current section, we established two examples: one consists of a model with an
unequal birth rate and death rate. The validity of our proposed scheme with the help of
empirical data about the outbreak of the Ebola virus that appeared in Liberia in 2014 [42]
is performed. In the other example, we consider the equal death rate and birth rate with
general numerical simulations for both disease-free equilibrium and endemic equilibrium.

Example 1. The SEIR advection-reaction-diffusion Ebola model with unequal birth and death rates
with vital dynamics is numerically solved.

∂S(x, t)
∂t

+ a1
∂S(x, t)

∂x
= p0 − p2S(x, t)E(x, t)− p1S(x, t) +

δ1
d2S(x, t)

dx2 ,

∂E(x, t)
∂t

+ a2
∂E(x, t)

∂x
= p2S(x, t)E(x, t)− p3E(x, t)− p1E(x, t) +

δ2
d2E(x, t)

dx2 ,

∂I(x, t)
∂t

+ a3
∂I(x, t)

∂x
= p3E(x, t)− (p1 + p4)I(x, t) + δ3

d2 I(x, t)
dx2 ,

∂R(x, t)
∂t

+ a4
∂R(x, t)

∂x
= p4 I(x, t)− p1R(x, t) + δ4

d2R(x, t)
dx2 ,

with a birth rate of p0 and a death rate of p1.

The threshold quantities for this model are slightly different from Model (1)–(4) and are
presented as:
Disease-free equilibrium:

(
p0

p1
, 0, 0

)
,

Endemic equilibrium:

(S∗, E∗, I∗), where
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S∗ =
p1 + p3

2
, E∗ =

p0 − p1S∗

p2s∗
, I∗ =

p3E∗

p1 + p4
(41)

Note: Since first, three equations of the above model are independent of R, we can solve only
these equations, and also, since the total population is considered bounded, we can estimate the value
of R by subtracting the values of S, E, and I from the total population.

The above model is simulated by using the parameters reported in [43,44]. These parameters are:

p2 = 0.2, p3 = 0.1887, p4 = 0.1.

These parameters are based on the numerical findings of [43,44] in which susceptible indi-
viduals are 88% of the whole population, 7% of the total population is exposed (infected but not
infectious), and the infectious are 5%. Additionally, the initial conditions are recorded as:

S(0) = 0.88, E(0) = 0.07, I(0) = 0.05.

The birth rate p0 and death rate p1 are taken from the empirical data about the population of Liberia
in 2014 are [45]:

p0 = 0.03507, p1 = 0.0099.

4.1. Simulations

The above figures depict the evolution of the sub-population over time and space.
In Figure 1, the graphical resolution of the model gives the value S∗ = 0.99, which is equal
to the theocratical value of S∗ calculated from (41). From Figure 2, the evolution of the
exposed individuals can be visualized over a time t and space x. When we calculate the
value of E∗ from the analytical result of (41), it gives the value E∗ = 0.12. This is exactly
the same as the proposed scheme gives in the graph of E(x, t). Similarly, from Figure 3,
the value of I∗, in the evolution of infected persons at any point (x, t), can be seen which
is equal to 0.217. It coincides with the analytically calculated value from (41). Thus, we
can conclude that the numerical solution of the prescribed model using the efficient non-
standard finite difference scheme converges to the equilibrium point that is calculated
analytically. Finally, Figure 4 reflects the 2-D plot graph of the state variables, and we can
observe their convergence to the true steady state.

Figure 1. Numerical solution of S(x, t) (susceptible individuals) by employing upwind NSFD
technique at endemic equilibrium point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887,
p4 = 0.1.
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Figure 2. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887, p4 = 0.1.

Figure 3. Numerical solution of I(x, t) (infected individuals) by employing upwind NSFD technique
at disease-free point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887, p4 = 0.1.

Figure 4. Numerical solution of S(x, t), E(x, t), and I(x, t) by employing upwind NSFD technique at
disease-free point with p0 = 0.03507, p1 = 0.0099, p2 = 0.2, p3 = 0.1887, p4 = 0.1.

Example 2. The supplementary data are defined as follows:

S(x, 0) =
{

0.4x 0 ≤ x ≤ 1/2,
0.4(1− x) 1/2 ≤ x ≤ 1,
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E(x, 0) =
{

0.3x 0 ≤ x ≤ 1/2,
0.3(1− x) 1/2 ≤ x ≤ 1,

I(x, 0) =
{

0.2x 0 ≤ x ≤ 1/2,
0.2(1− x) 1/2 ≤ x ≤ 1,

The set of parametric values [43,46] chosen in this work are p1 = 0.5, p3 = 0.1887, p4 = 0.1,
δ1 = δ2 = δ3 = 0.02, and a1 = a2 = a3 = 0.01.

For the endemic point, we take p2 = 0.5, and for the infection-free point, we take p2 = 0.9,
where the physical meanings of these parametric constants may be perceived from the parametric
description of the model, stated earlier in Section 2. Now, we present the simulated graphs for
ascertaining the pre-results. In the propagation of an infectious disorder, the value of R0 reflects the
vital role to determine the stability of the numerical at the steady state of the model. The Ebola virus
model with advection and diffusion parameters has two different fixed states, namely the infection-
free and disease-persisting steady states, depending upon the value of the basic reproduction number.

Next, the dynamical behaviour of the state variables at both the steady states is exhibited
graphically using the proposed numerical method.

4.2. Disease-Free Point

Figure 5 shows the graphical behavior of the state variables that are involved in the
reaction–advection–diffusion ebola model. The values of the parameters associated with
the model are selected according to the nature of the disease-free stability point.

The graphical solution illustrated in Figure 5 shows the corresponding values of
susceptible individuals for different values of space and time variables; that is, values of
S(x, t) are obtained against the variables x and t. There is no abrupt change in the graph,
and it converges smoothly toward the true value of the disease-free state. Additionally,
in the infection-free state, the values of other state variables become zero, and the whole
population becomes susceptible at this stage. This fact is in accordance with the biological
procedure of the infection. So, the biological situation strongly supports the numerical
situation, obtained by the hybridized upwind nonstandard finite difference scheme.

Figure 5. Numerical solution of S(x, t) (susceptible individuals) by employing upwind NSFD
technique at disease-free point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Likewise, Figure 6 shows that the graphical solution obtained by the prescribed scheme
ultimately converges towards the acceptable steady state. Additionally, the graph shows
that at a certain time t = 0, the disease exists in the population in a certain region of the
space. However, as time grows, the size of the exposed population gradually becomes zero.
This fact is according to the biological scenario because when the disease dies out from a
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population, the infected individuals become zero. Thus, the numerical solution depicted
by Figure 6 is in line with the physical phenomenon of the disease biologically.

Figure 6. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

The numerical pattern in Figure 7 illustrates the numerical behavior of the infected
individuals at a different moment of time and a certain location of space. Certain parametric
values are selected to draw this pattern. Initially, the infected individuals take some non-
zero values, that is, at t = 0 and x = 0, I(x, t) 6= 0 However, with the passage of time,
the state variable I(x, t) approaches zero for the whole space. This is in accordance with
biological facts. As the disease dies out, the infected populace becomes zero over the whole
space under consideration. Moreover, the proposed design also provides us with the exact
solution as computed analytically [47].

Figure 7. Numerical solution of I(x, t) (infected individuals) by employing upwind NSFD technique
at disease-free points with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

In Figure 8, 2-D templates of the three populaces, that is, S(x, t), E(x, t) and I(x, t),
are presented. Here, space coordinate x is fixed as 1, and the behavior of the different
groups of individuals is studied with respect to time. The curved graph behaves according
to the mathematical results. Thus, this scheme can be used to predict the behavior of the
dynamics of the state variables.
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Figure 8. Numerical behavior of all subpopulations by employing upwind NSFD technique at
disease-free point with x = 1, λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

4.3. Endemic Point

Figure 9 shows the dynamics of the state variable S(x, t) at the endemic point. The val-
ues of the control parameters are selected under specifically defined criteria. One such
criterion is that the value of the basic reproductive number is greater than unity. Other
conditions are mentioned in the relevant sections. The graph shows that in this case, the
whole population is not susceptible, unlike it was in the disease-free case. The mesh graph
of S(x, t) also depicts how the susceptible state variable graphically moves toward the
endemic state. On the basis of this graph, the prediction of disease dynamics can be made
on a certain instant of time and location of space.

Figure 9. Numerical solution of S(x, t) (susceptible individuals) by employing the proposed scheme
at endemic point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Similarly, Figure 10 is the graphical representation of the exposed persons represented
by E(x, t). All the parametric values are kept the same for this state variable E(x, t).
The graph shows that the number of exposed individuals has the same positive value
because, at the endemic equilibrium point, the value of E(x, t) cannot be zero. Additionally,
the graphical value obtained by the numerical scheme coincides with the mathematical
value. This graph also reflects the pattern of exposed populace dynamics. Figure 11 shows
the numerical solution for the infected individuals in the confined area for a certain time.
The graph of the numerical solution is positive and overlaps with the analytical solution.
The values of all the parameters are kept fixed for all the state variables at endemic points.
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The graph hits the true value of the stable endemic point, which shows that the scheme is
quite capable of attaining the exact mathematical value at the infection-free state as well as
the endemic state.

Figure 10. Numerical solution of E(x, t) (exposed individuals) by employing the proposed scheme at
an endemic point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Figure 11. Numerical solution of I(x, t) (infected individuals) by employing the proposed scheme at
an endemic point with λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

Lastly, Figure 12 shows the behavior of the sub-populace for a fixed area over a
particular time duration. All other parameters are kept the same to unveil the facts related
to the infection propagation. Every population in the graph shows positive and bounded
behavior, which are the strong properties of the current numerical scheme. In the end, it is
notable that the projected scheme preserves the structure of the system.
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Figure 12. Numerical behavior of all subpopulations by employing upwind NSFD technique at an
endemic point with x = 1, λ1 = λ2 = λ3 = 0.8 and µ1 = µ2 = µ3 = 0.02.

4.4. Comparison of Proposed Scheme with Crank Nicolson

This section is devoted to the comparison of our proposed scheme with other existing
schemes. Firstly, a comparison of the proposed scheme with the Crank–Nicolson scheme is
made. Here, only the graphs of the expected population are compared at both equilibrium
points. The plot in Figure 13 shows the negative solution, which is physically meaningless in
the current situation. Similarly, Figure 14 reflects the negative behavior at the endemic state
by applying the Crank–Nicolson scheme. On the other hand, graphs in Figures 15 and 16
are plotted with the help of the proposed upwind NSFD method. Both the graphs exhibit
the positivity property at the disease-free and endemic states, respectively.

The value for each of the parameters mentioned for Figures 13–16 are:
p1 = 0.5, p3 = 0.1887, p4 = 0.1, δ1 = δ2 = δ3 = 0.02 and a1 = a2 = a3 = 0.01. Now, for the
endemic point, we take p2 = 0.2, and for the disease-free point, we take p2 = 0.9.

Figure 13. Numerical solution of E(x, t) (exposed individuals) by employing Crank–Nicolson tech-
nique at disease-free point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.
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Figure 14. Numerical solution of E(x, t) (exposed individuals) by employing Crank–Nicolson tech-
nique at endemic point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.

Figure 15. Numerical solution of E(x, t) (exposed individuals) by employing upwind NSFD technique
at disease-free point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.

Figure 16. Numerical behavior of E(x, t) (infected individuals) by employing upwind NSFD tech-
nique at endemic point with λ1 = λ2 = λ3 = 0.16 and µ1 = µ2 = µ3 = 64.

4.5. Comparison of Proposed Scheme with Upwind Scheme

The graphs in Figures 17 and 18 show the numerical behavior of the upwind implicit
and newly designed NSFD method. It is evident in Figure 17 that the upwind implicit
scheme exhibits negative behavior, while the proposed NSFD scheme provides a positive
solution for the same parametric values as chosen for the famous upwind technique.
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Figure 17. Numerical solution of E(x, t) (exposed individuals) by employing upwind implicit
technique at disease-free point with λ1 = λ2 = λ3 = 0.3 and µ1 = µ2 = µ3 = 180.

Figure 18. Numerical solution of E(x, t) (exposed individuals) by employing NSFD technique at
disease-free point with λ1 = λ2 = λ3 = 0.3 and µ1 = µ2 = µ3 = 180.

The following values are chosen for the parameters: p1 = 0.6, p3 = 0.5887, p4 = 0.5,
p2 = 0.01, δ1 = δ2 = δ3 = 0.2, and a1 = a2 = a3 = 0.01.

5. Conclusions

The current study deals with the dynamics of the Ebola virus disease by developing
an advective–diffusive nonlinear physical system. The present article elucidates the conse-
quential dynamics of a nonlinear epidemic model of a murderous disease known as the
Ebola virus disease. The model of this disease is considered in the generic form; that is,
in this model, the advective and diffusive transmission of the virus is kept at a constant
rate. The existing epidemic models do not consider the random and directed motions
simultaneously in their study. Thus, their studies cannot predict the disease dynamics
closely. However, this work seems better for investigating the disease dynamics. Addi-
tionally, some widely used schemes in the literature provide negative solutions to the state
variables, which are physically meaningless. Therefore, it is a novelty of this scheme that it
confirms the positivity as well as the other fundamental traits of the numerical solution.
Hence, the developed scheme is a reliable tool to solve the nonlinear epidemic model
by taking into account the advection and diffusion situation. This article is composed of
two main types of analysis: one is optimal existence analysis and the other is numerical
analysis. The results regarding the feasible solutions for the proposed Ebola virus epidemic
model are formulated. The analysis regarding the solutions to the considered problem is
addressed under some special conditions. The supplementary data (auxiliary data) are also
examined. As in the dynamical models, the associated solutions of the model’s equations
belong to the set of continuous functions, but it is expedient to look at the particular subsets
of the Banach space. A closed subset is considered for the objective optimal values that are
explored. The solutions of the model are guaranteed with the help of Schauder’s fixed-point
theorem under some feasible constraints. The extension of advection and diffusion terms
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with constant rates in the equations of the model under study make the study more useful
and practical. In the second half of the paper, a numerical analysis is studied. First, the nu-
merical solutions are computed by a well-known nonclassical finite difference template.
By adopting the formulas to approximate the derivatives as a function of space and the
derivatives as a function of time, a compatible discrete model is designed. It can be observed
that the used numerical technique is structure-preserving, which is an important property
that should be possessed by the numerical scheme, i.e., the discretized system devised
from the numerical template keeps the same features that the associated continuous set
of differential equations has retained. We also examined whether a projected formulation
is coherent with the planned numerical design. The reliability of the numerical program
is validated by applying the Von Neumann condition. Another significant attribute is the
non-negativity of the solution variables involved in the model under consideration. Thus,
the M-matrix criteria guarantee the positivity of the solutions. Moreover, the assertions
are ascertained by some feasible numerical experiments. Numerical simulations of all
the considered and proposed schemes are also presented. The simulated graphs depict
the various physical features of the relevant scheme. For instance, our scheme provides
positive, bounded, and convergent solutions. Thus, all the results reflected by the simu-
lated graphs are in accordance with the pre-assumptions. The results obtained by applying
different schemes are also used for comparing the efficacy of the schemes. From the future
perspective, this work may be extended to two and three dimensions. The reader should
study the physical system by including the advection–diffusion terms in it and construct
some structure-preserving numerical schemes for such types of systems.
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Abstract: In this paper, we introduce orthogonal multivalued contractions, which are based on the
recently introduced notion of orthogonality in the metric spaces. We construct numerous fixed point
theorems for these contractions. We show how these fixed point theorems aid in the generalization
of a number of recently published findings. Additionally, we offer a theorem that establishes the
existence of a fractional differential equation’s solution.

Keywords: fixed point; (V, W)-orthogonal contractions; O-complete metric space

MSC: 47H10; 26A18; 26D20

1. Introduction and Preliminaries

The core of the metric fixed-point theory is the exploration of generalized contraction
principles to add more applicable fixed-point theorems in the theory. The simplest and
most applicable contraction principle is the Banach contraction principle. This contraction
principle can be applied to show the existence of solutions to equations representing math-
ematical models. The contraction principle that appeared in [1] generalizes the Rakotch [2]
contraction concept. Furthermore, Matkowski [3], Samet et al. [4], Karapinar et al. [5], and
Pasicki [6] have all generalized the Boyd-Wong notion. The concept of F-contraction [7]
is another notable generalization of the Banach contraction principle (BCP), and sev-
eral research articles have been published in the previous decade (see [8–13], and ref-
erences therein).

The role of fixed point theory in solving real-world problems has been described in
many recently published papers. Recently, Turab et al. [14] proposed a generic stochastic
functional equation that can be used to describe several psychological and learning theory
experiments. The existence, uniqueness, and stability analysis of the suggested stochastic
equation are examined by utilizing the notable fixed point theory tools. Khan et al. [15]
proposed a fixed-point technique to investigate a system of fractional order differential
equations. Rezapour et al. [16] proposed a labeling method for graph vertices, and then
presented some existence results for solutions to a family of fractional boundary value
problems (FBVPs) on the methyl propane graph by means of Krasnoselskii’s and Scheafer’s
fixed point theorems.

The use of partial order, admissibility of a mapping, graph theory and binary relation
are all being effectively utilized in metric fixed point theory. Recently, Gordji et al. [17]
presented a special binary relation, termed the orthogonal relation, and presented several
examples to clarify the concept of the orthogonal relation and, hence, orthogonal-set (see Ex
2.2 to Ex 2.11). Gordji et al. also presented a generalization of BCP in the orthogonal metric
space. Later, Baghani et al. [8] generalized the study done in [17] by using the concept of
F-contraction, while Nazam et al. [18] broadened the investigation conducted in [8].

Axioms 2023, 12, 53. https://doi.org/10.3390/axioms12010053 https://www.mdpi.com/journal/axioms157



Axioms 2023, 12, 53

On the other hand, Proinov [19] offered various fixed-point theorems that built on
previous work in [1,3–7]. He introduced a generalized class of contractions by operating
two functions V, W : (0, ∞) → (−∞, ∞) on both sides of the Banach contraction and
obtained several fixed point results. The class of contractions given in [19] encapsulate the
contractions defined in [4,7,20,21].

In this paper, we extend some results of [19] to multivalued mappings subject to
the class of orthogonal contractions. The class of orthogonal contractions generalizes
ordered contractions, graphic contractions and α-admissible contractions. We demonstrate
that every contraction is orthogonal but not vice versa. Along with several examples to
validate the results, we also present an application for solving a fractional differential
equation (FDE).

Let U 6= ∅ and ⊥ ⊂ U × U satisfying the property (P),

(P) :∃ `0 ∈ U : either (∀τ ∈ U ; `0⊥ τ) or (∀τ ∈ U ; τ⊥ `0).

We call the pair (U ,⊥) an orthogonal set (abbreviated as, O-set). The concept of orthogo-
nality in an inner-product space is an example of ⊥.

For the illustration of the orthogonal set, O-sequence, O-Cauchy and its examples, we
suggest the reader read the articles [17,22].

Definition 1. [17] The O-set (U ,⊥) endowed with a metric d is called an O-metric space (in short,
OMS) denoted by (U ,⊥, d).

Definition 2. [17] Let (U ,⊥, d) be an orthogonal metric space. A mapping f : U → U is said to
be an orthogonal contraction if there exists k ∈ [0, 1) such that

d( f x, f y) ≤ kd(x, y) ∀x, y ∈ U with x⊥ y.

Terms such as continuity and orthogonal continuity, completeness and O-completeness,
Banach contraction and orthogonal contraction have been explained in [10,13,17,22]. In the
following, we give some comparisons between fundamental notions.

1. The continuity implies orthogonal continuity but the converse is not true. If f : R→ R
is defined by f (`) = [`], ∀` ∈ R and the relation ⊥ ⊆ R×R is defined by

`⊥ g if `, g ∈
(

i +
1
3

, i +
2
3

)
, i ∈ Z or ` = 0.

Then, f is ⊥-continuous while f is discontinuous on R.
2. The completeness of the metric space implies O-completeness, but the converse is not

true. We know that A = [0, 1) with Euclidean metric d is not a complete metric space.
If we define the relation ⊥ ⊆ A×A by

`⊥ g ⇐⇒ ` ≤ g ≤ 1
2

or ` = 0,

then (A,⊥, d) is an O-complete.
3. The Banach contraction implies orthogonal contraction but the converse is not true.

Let A = [0, 10) with Euclidean metric d so that (A, d) is a metric space. If we define
the relation ⊥ ⊆ A×A by

`⊥ g if `g ≤ ` ∨ g,

then (A,⊥, d) is an O-metric space. Define f : A → A by f (`) = `
2 (if ` ≤ 2) and

f (`) = 0 (if ` > 2). Since d( f (3), f (2)) > kd(3, 2), f is not a contraction; rather, it is an
orthogonal contraction.

Let
P(U )— set of non-empty subsets of U .
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Pcb(U )— set of all non-empty bounded and closed subsets of U .
K(U )—set of non-empty compact subsets of U .

If we let E ∈ Pcb(U ) and g ∈ U , then d(g, E) = inf
i∈E

d(g, i); d is a metric on U . The

mapping H : Pcb(U )× Pcb(U )→ [0, ∞) defined by

H(E1, E2) = max

{
sup
r∈E1

d(r, E2), sup
w∈E2

d(w, E1)

}
for all E1, E2 ∈ Pcb(U ),

defines a metric on Pcb(U ). It is also known as the Pompieu-Hausdorff-metric. In the
following, we define ⊥-admissible mapping, ⊥-preserving mapping and illustrate them
with examples. Let Λ = {(x, y) ∈ U × U : x⊥ y}.

Definition 3. A mapping f : U × U → [1, ∞) is said to be strictly ⊥-admissible if f (a, θ) > 1
for all a, θ ∈ U with a⊥θ and f (a, θ) = 1 otherwise.

Example 1. Let U = [0, 1) and define the relation ⊥ ⊂ U × U by

a⊥ θ if aθ ∈ {a, θ} ⊂ U .

Then, U is an O-set. Define f : U × U → [1, ∞) by

f (a, θ) =

{
a + 2

1+θ if a⊥ θ,
1 otherwise .

Then, f is ⊥-admissible.

Definition 4. Let U be a non-empty set. A set-valued mapping L : U → P(U ) satisfying the
property (O) is called ⊥-preserving.

(O). For each j ∈ U and l ∈ L(j) with j⊥ l or l⊥ j, ∃ g ∈ L(l) with l⊥ g or g⊥ l.

Example 2. Let U = [0, 1) and define a relation ⊥ ⊂ [0, 1)× [0, 1) by

g⊥ h if gh ∈ {g, h} ⊂ [0, 1).

Then, U := [0, 1) is an O-set. Now for a function t : U × U → [1, ∞) defined by

t(g, h) =
{

g + 2
1+h if g⊥ h,

1 otherwise .

Then, t is a ⊥-admissible mapping. The mapping r : U → P(U ) defined by

r(g) =

{ [
g

15 , g+1
7

]
if g ∈ Q∩ U ,

{0} if g ∈ Qc ∩ U ,

is a ⊥-preserving mapping.

The following facts have been stated in [19] and we carry them for our upcoming
results.

Lemma 1. Let {cα} ⊂ (X, d) and it obeys the equation limα→∞ d(cα, cα+1) = 0; then, there are
subsequences {cαl}, {cβl} and q > 0 (whenever {cα} is not Cauchy) following the equations:

lim
l→∞

d(cαl+1 , cβl+1
) = q + . (1)
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lim
l→∞

d(cαl , cβl ) = d(cαl+1 , cβl ) = d(cαl , cβl+1
) = q. (2)

The following result appeared in [23] and is very useful for our upcoming results.

Lemma 2. Let (U, d) and ` > 1, then, for all w ∈ Q1 ⊆ U, there is a g ∈ Q2 ⊆ U following
the inequality:

d(w, g) ≤ `H(Q1, Q2).

2. Multivalued (V , W)⊥-Contractions

This section deals with the multivalued (V, W)⊥-contractions. To guarantee the
presence of fixed points of multivalued (V, W)⊥-contractions, we study a number of
constraints on the real valued nonlinear functions (V, W). The multivalued (V, W)⊥-
contraction is defined as follows.

Definition 5. Let (U ,⊥, d) be an OMS. A mapping S : U → Pcb(U ) is called a multivalued
(V, W)⊥-contraction if there exists a strictly ⊥-admissible function ν such that

V(ν(q, `)H(S(q),S(`))) ≤W(d(q, `)) (3)

for all q, ` ∈ Λ with H(S(q),S(`)) > 0.

Remark 1. The following observations indicate the generality of multivalued (V, W)⊥ contraction
for the specific definitions of the mappings V, W.

1. If V(`) = ` and W(`) = λ`, where 0 ≤ λ < 1, then S is an orthogonal Nadler contrac-
tion [23].

2. If V(`) = `, then S is an orthogonal multivalued Boyd-Wong contraction [1].
3. If V is lower semi-continuous and W is upper semi-continuous, then S is an orthogonal

multivalued variant of the contraction defined in [24].
4. If W(`) = F(V(`)) , then S is an orthogonal multivalued variant of the contraction defined

in [21].
5. If W(`) = α(`)V(`) and V(`) = `, then S is an orthogonal variant of the contraction defined

in [25].
6. If W(`) = λV(`), then S is an orthogonal multivalued variant of the contraction defined

in [26].
7. If W(`) = F(V(`)) and F(`) = `α, then S is an orthogonal multivalued variant of the

contraction defined in [20].
8. If W(`) = V(`)− τ, then S is an orthogonal multivalued variant of the contraction defined

in [7].

Remark 2. It is noted that if W(c) = V(c) − τ for all c ∈ (0, ∞), then the contractive
condition (3) is a multivalued F-contraction [27]. If W(c) = V(c)− τ(c) for all c ∈ (0, ∞),
then it is a multivalued (τ, FT)-contraction [10]. If we set V(c) = ln(c) for all c, then we have
a Nadler contraction [23]. For, if the function V : (0, ∞) → (0, ∞) is non-decreasing and
p(j) ∈ (0, 1) for all j ∈ (0, ∞) with lim supz→ε+ p(z) < 1. Then, defining W(z) = p(z)V(z)
and V(z) = z for all z > 0, we obtain the contraction defined in [28].

Let ⊥RCOMS denote a ⊥-regular complete orthogonal metric space.
The following theorem presents the first formula of this paper for the existence of

fixed points.

Theorem 1. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is a ⊥-preserving and
satisfies (3). If⊥ is transitive and functions V, W : (0, ∞)→ (−∞, ∞) meet the following conditions:

(i) there exists c1 ∈ S(c0) such that c1⊥c0 or c0⊥c1, for any c0 ∈ U ,
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(ii) V is non-decreasing and W(c) < V(c) ∀ c > 0,
(iii) lim supc→γ+ W(c) < V(γ+) (∀ γ > 0).

Then, there exists c∗ ∈ U such that c∗ ∈ S(c∗).

Proof. By (i), for an arbitrary c0 ∈ U , there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0.
Since the mapping S is ⊥-preserving, there exists c2 ∈ S(c1) such that c1⊥ c2 or c2⊥ c1
and, thus, c3 ∈ S(c2) such that c2⊥ c3 or c3⊥ c2. In general, there exists cn+1 ∈ S(cn) such
that cn⊥ cn+1 or cn+1⊥ cn for all n ≥ 0. Hence, ν(cn, cn+1) > 1 for all n ≥ 0. If cn ∈ S(cn)
(for some n ≥ 0), then cn is a fixed-point of S . We assume that cn /∈ S(cn) (∀ n ≥ 0). Then,
H(Scn−1,Scn) > 0. So ν(cn, cn+1) > 1 and S(cn),S(cn+1) ∈ Pcb(U )(∀ n ≥ 0). Hence, there
exists cn 6= cn+1 ∈ S(cn) such that d(cn, cn+1) ≤ ν(cn−1, cn)H(S(cn−1),S(cn))(∀ n ≥ 1)
(see Lemma 2). Since the function V is increasing, by (3), we have

V(d(cn, cn+1)) ≤ V(ν(cn−1, cn)H(S(cn−1),S(cn))) ≤W(d(cn−1, cn)).

Since W(c) < V(c) (∀ c > 0), we have

V(d(cn, cn+1)) ≤W(d(cn−1, cn)) < V(d(cn−1, cn)). (4)

The monotonicity of the function V implies d(cn, cn+1) < d(cn−1, cn) (∀n ≥ 1) and, thus, the
sequence {d(cn−1, cn)} is monotone. Let δ ≥ 0 satisfy limn→∞ d(cn−1, cn) = δ+. If δ > 0, by
(4), we have

V(δ+) = lim
n→∞

V(d(cn, cn+1)) ≤ lim
n→∞

sup W(d(cn−1, cn)) ≤ lim
c→δ+

sup W(c).

This is a contradiction to (iii). Thus, δ = 0 and hence the mapping S is asymptotically-regular.
Now, we show that {cn} is a Cauchy sequence. Contrarily, suppose that the sequence

{cn} is not Cauchy. By Lemma 1, there exist two subsequences {cnk}, {cmk} of {cn} and
ε > 0 such that the equations (1) and (2) hold. By (1), we get that d(cnk+1, cmk+1) > ε.
Since cn⊥ cn+1 (∀n ≥ 0), by transitivity of ⊥, we have cnk ⊥ cmk and, hence, ν(cnk , cmk ) > 1
(∀k ≥ 1). Setting q = cnk and ` = cmk in (3), we have

V(d(cnk+1, cmk+1)) ≤ V(ν(cnk , cmk )H(Scnk ,Scmk )) ≤W(d(cnk , cmk )), for any k ≥ 1.

For if ak = d(cnk+1, cmk+1) and bk = d(cnk , cmk ), we have

V(ak) ≤W(bk), for any k ≥ 1. (5)

By (1) and (2), we have limk→∞ ak = ε+ and limk→∞ bk = ε. By (9), we obtain

lim inf
c→ε+

V(c) ≤ lim inf
k→∞

V(ak) ≤ lim sup
k→∞

W(bk) ≤ lim sup
c→ε

W(c). (6)

But (6) contradicts (iii), thus, {cn} is a Cauchy sequence in U . Since (U ,⊥, d) is a complete
OMS, limn→∞ cn = c∗ for some c∗ ∈ U . Since the space (U ,⊥, d) is ⊥-regular, we have
cn⊥ c∗ or c∗⊥ cn such that ν(cn, c∗) > 1. We need to show that d(c∗,S(c∗)) = 0 and
contrarily suppose that d(c∗,S(c∗)) > 0. Then, there exists n1 ∈ N such that d(cn,S(c∗)) >
0 for all n ≥ n1. By (3)

V(d(cn+1,S(c∗))) ≤ V(ν(cn, c∗)H(S(cn),S(c∗))) ≤W(d(cn, c∗)) < V(d(cn, c∗)). (7)

By monotonicity of V, we obtain that d(cn+1,S(c∗)) < d(cn, c∗). Taking the limit as n→ ∞
in (7), we have d(c∗,S(c∗)) < 0, which is a contradiction. Thus, d(c∗,S(c∗)) = 0. Since
S(c∗) is closed, c∗ ∈ S(c∗).

The following theorem states another set of terms and conditions ensuring the exis-
tence of fixed points of multivalued (V, W)⊥-contractions.
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Theorem 2. Let (U ,⊥, d) be a ⊥RCOMS with transitive ⊥. Suppose that S : U → Pcb(U )
is a ⊥-preserving and satisfies (3) and the functions V, W : (0, ∞) → (−∞, ∞) meet the
following conditions:

(i) there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U ,
(ii) V is non-decreasing and W(y) < V(y) for any y > 0,
(iii) infc>ε V(c) > −∞,
(iv) for the strictly-decreasing sequences {V(cn)} and {W(cn)}, if limn→∞ V(cn) = limn→∞

W(cn) = L, then limn→∞ cn = 0,
(v) lim supc→ε W(c) < lim infc→ε+ V(c) for any ε > 0,
(vi) lim supc→ε1

W(c) < lim infc→ε V(c) for any ε, ε1 > 0.

Then, S admits at least one fixed-point in U .

Proof. By (i), for c0 ∈ U , there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0. Since T is a ⊥-
preserving mapping, there exists c2 ∈ S(c1) such that c1⊥ c2 or c2⊥ c1 and then c3 ∈ S(c2)
such that c2⊥ c3 or c3⊥ c2. In general, there exists cn+1 ∈ S(cn) such that cn⊥ cn+1 or
cn+1⊥ cn (∀ n ≥ 0). Hence, ν(cn, cn+1) > 1 for all n ≥ 0. If cn ∈ S(cn) then cn is a fixed-
point of S (∀ n ≥ 0). If cn /∈ S(cn) (∀n ≥ 0), then H(Scn−1,Scn) > 0. Since ν(cn, cn+1) > 1
and S(cn),S(cn+1) ∈ Pcb(U ), n ≥ 0, by Lemma 2, there exists cn+1 ∈ S(cn) (cn 6= cn+1)
such that d(cn, cn+1) ≤ ν(cn−1, cn)H(S(cn−1),S(cn)) for all n ≥ 1. By monotonicity of V
and (3), we have

V(d(cn, cn+1)) ≤ V(ν(cn−1, cn)H(S(cn−1),S(cn))) ≤W(d(cn−1, cn)) < V(d(cn−1, cn)). (8)

By (8) we get that {V(d(cn−1, cn))} is a strictly decreasing-sequence.
We have two cases:
Case 1. {V(d(cn−1, cn))} is unbounded below.
By (iii), we have infd(cn−1,cn)>ε V(d(cn−1, cn)) > −∞. This implies that

lim inf
d(cn−1,cn)→ε+

V(d(cn−1, cn)) > −∞.

Thus, limn→∞ d(cn−1, cn) = 0, otherwise, we have

lim inf
d(cn−1,cn)→ε+

V(d(cn−1, cn)) = −∞.

This is a contradiction to the assumption (iii).
Case 2. {V(d(cn−1, cn))} is bounded below.
The sequence is convergent and by (8), we have

lim
n→∞
{W(d(cn−1, cn))} = lim

n→∞
{V(d(cn−1, cn))}.

By (iv), we infer limn→∞ d(cn−1, cn) = 0.
Now, contrarily, if we let the sequence {cn} not be Cauchy, then by Lemma 1, there are

subsequences {cnk}, {cmk} of {cn} and ε > 0 such that the Equations (1) and (2) hold. By
(1), we get that d(cnk+1, cmk+1) > ε. Since cn⊥ cn+1 (∀n ≥ 0), by transitivity of ⊥, we have
cnk ⊥ cmk and hence ν(cnk , cmk ) > 1 (∀k ≥ 1). Setting q = cnk and ` = cmk in (3), we have

V(d(cnk+1, cmk+1)) ≤ V(ν(cnk , cmk )H(Scnk ,Scmk )) ≤W(d(cnk , cmk )), for any k ≥ 1.

For if ak = d(cnk+1, cmk+1) and bk = d(cnk , cmk ), we have

V(ak) ≤W(bk), for any k ≥ 1. (9)

By (1) and (2), we have limk→∞ ak = ε+ and limk→∞ bk = ε. By (9), we get that

lim inf
c→ε+

V(c) ≤ lim inf
k→∞

V(ak) ≤ lim sup
k→∞

W(bk) ≤ lim sup
c→ε

W(c). (10)
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But (10) contradicts (v), thus, {cn} is a Cauchy sequence in U . Since U is a complete OMS,
the sequence {cn} converges to c∗ ∈ U .

We show that c∗ is a fixed point of S . There are two possibilities. (P1) If d(cn+1,Sc∗) =
0 for a fixed n, then we have

d(c∗,Sc∗) ≤ d(c∗, cn+1) + d(cn+1,Sc∗) = d(c∗, cn+1).

Taking the limit n → ∞, we get d(c∗,Sc∗) ≤ 0. Thus, d(c∗,S(c∗)) = 0. Since S(c∗) is
closed, c∗ ∈ S(c∗). (P2) If d(cn+1,Sc∗) > 0 for all n ≥ 0, then the ⊥-regularity of the space
U implies cn⊥ c∗ or c∗⊥ cn and, thus, ν(cn, c∗) > 1. By the contractive condition (3), for all
n ≥ 0, we have

V(d(cn+1,Sc∗)) ≤ V(ν(cn, c∗)H(Scn,Sc∗)) ≤W(d(cn, c∗)). (11)

Set an = d(cn+1,Sc∗) and bn = d(cn, c∗). Then, by (11), we have

V(an) ≤W(bn) for all n ≥ 0. (12)

Suppose that ε = d(c∗,Sc∗) such that limn→∞ an = ε and limn→∞ bn = 0. By (12), we have

lim inf
c→ε

V(c) ≤ lim inf
n→∞

V(an) ≤ lim sup
n→∞

W(bn) ≤ lim inf
c→0

W(c). (13)

If ε > 0, then (13) contradicts (vi). Thus, we have d(c∗,Sc∗) = 0. Hence c∗ ∈ Sc∗, that is,
c∗ is a fixed point of S .

Remark 3. If we replace d(c, `) with E(c, `) in the contractive condition (3), then according to
Ćirić [29], Theorems 1 and 2 remain true.

Uniqueness of the fixed point: The following three conditions are essential for the
uniqueness of a fixed point of a multivalued mapping.

(U1). For any multivalued mappingM : Q → P(Q), the set of fixed points ofM
(F(M)) is totally orthogonal (for any w, e ∈ F(M) either w⊥ e or e⊥w).

(U2). Let

YM(`)(q) = {t ∈ M(`)|d(q, t) = d(M(`), q)} for all q ∈ Q.

For any ` ∈ Q, ∃ θ ∈ YM(`)(q) such that `⊥ θ.
(U3). For all i, b, τ ∈ Q, d(τ, i) ≥ d(b, i), whenever i⊥ b⊥ τ.

Theorem 3. Assume that, in addition to conditions stated in Theorem 1 (or Theorem 2), the
conditions (U1)− (U3) hold. Then, the mappingM : Q → Pcb(Q) admits a unique fixed point
in Q.

Proof. Clearly the mapping M admits at least one fixed point in Q (by Theorem 1 (or
Theorem 2)). Let w and e be two fixed points ofM, so that, w ∈ M(w) and e ∈ M(e).
By (U1), for any w, e ∈ (F(M), either w⊥ e or e⊥w. In view of (U2), ∃g ∈ YM(`)(q)
satisfying `⊥ g and d(q, g) = d(M(`), q). By (U3), q⊥ `⊥ g, implies that d(g, q) ≥ d(`, q).
Since ` ∈ M(`) so that d(g, q) ≤ d(`, q), hence, d(M(`), q) = d(q, g) = d(`, q). Now if
` 6= q, then d(`, q) > 0. Moreover,

d(`, q) = d(M(`), q) ≤ H(M(`),M(q)) < ν(`, q)H(M(`),M(q)).

By (ii) stated in Theorem 1 and (3), we deduce that

V(d(`, q)) < V(ν(`, q)H(M(`),M(q))) ≤W(d(`, q)) < V(d(`, q)).
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As V is an increasing mapping, we have d(`, q) < d(`, q), a contradiction, thus, ` = q.
Hence, the multivalued mappingM has a unique fixed point.

Examples for the Explanation of Theory

Example 3. Consider X = {0}∪]3, 7] endowed with usual-metric

d(q, `) = |q− `| for all q, ` ∈ X.

Define the relation ⊥ ⊂ X2 by

a⊥ b if and only if a ∧ b = 0⇒ a ∨ b ∈]5, 7].

Then, ⊥ is an orthogonal relation and (X, d,⊥) is a complete orthogonal metric space. Define
S : X → CB(X) by,

S(q) =
{
{5, 7}, q ∈]3, 7],
{4, 6}, q = 0.

Let A = {5, 7} and B = {4, 6}. Since

H(A, B) = max{d(A, B), d(B, A)}, (14)

d(A, B) = sup{d(q, B) : q ∈ A} = inf{d(q, `) : ` ∈ B}
d(B, A) = sup{d(`, A) : ` ∈ B}.

Consider,

{d(q, B) : q ∈ A} = {d(5, B), d(7, B)}, (15)

where

d(5, B) = inf{d(5, 4), d(5, 6)} = inf{1, 1} = 1.

d(7, B) = inf{d(7, 4), d(7, 6)} = inf{3, 1} = 1.

Thus, by (15), we get

d(A, B) = sup{d(q, B) : q ∈ A} = sup{1, 1} = 1. (16)

Consider

{d(`, A) : ` ∈ B} = {d(4, A), d(6, A)}. (17)

d(4, A) = inf{d(4, 5), d(4, 7)} = inf{1, 3} = 1.

d(6, A) = inf{d(6, 5), d(6, 7)} = inf{1, 1} = 1.

Thus, by (17), we get

d(B, A) = sup{d(`, A) : ` ∈ B} = sup{1, 1} = 1. (18)

By virtue of Equations (16) and (18), Equation (14) implies that H(A, B) = 1 > 0. Define
ν : X2 → [1, ∞) by

ν(a, b) =
{

2 if a⊥ b,
1 otherwise .

Then, ν is ⊥-admissible.
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Case 1: If ` = 0 and q ∈]5, 7], then, `⊥ q and

1
294
− 1

2H(Sq,S`) + 1
≤ 49

294
− 1

3

=− 1
6
< − 1

d(q, `) + 1
. (19)

Case 2: If q = 0 and ` ∈]5, 7], then, `⊥ q and

1
294
− 1

2H(Sq,S`) + 1
≤ 49

294
− 1

3

=− 1
6
< − 1

d(q, `) + 1
. (20)

By (19) and (20), we deduce that

1
294
− 1

2H(Sq,S`) + 1
< − 1

d(q, `) + 1
,

for all q, ` ∈ X with q⊥ `. Thus, by defining V(t) = − 1
t+1 and W(t) = V(t) − τ for all

t ∈ (0, ∞) and τ = 1
294 , we see that V and W satisfy conditions (ii) and (iii) of Theorem 1 and S is

a multivalued (V, W)⊥-contraction:

V(ν(q, `)H(S(q),S(`))) ≤W(d(q, `)).

Here, we note that the fixed point of S is 7, because 7 ∈ S(7).

Example 4. Consider X =]9, 21] endowed with the usual metric:

d(q, `) = |q− `| for all q, ` ∈ X.

Define the relation ⊥ ⊂ X2 by

a⊥ b if and only if a ∧ b = 10⇒ a ∨ b ∈]17, 21].

Then, ⊥ is an orthogonal relation and (X, d,⊥) is a complete orthogonal metric space. Define the
mapping S : X → CB(X) by,

S(q) =
{
{20, 21}, q ∈]9, 21],
{18, 19}, q = 10.

Let A = {20, 21} and B = {18, 19}. We know that

H(A, B) =max{d(A, B), d(B, A)}; d(A, B) = sup{d(q, B) : q ∈ A} and (21)

d(B, A) = sup{d(`, A) : ` ∈ B}.

Consider,

{d(q, B) : q ∈ A} = {d(20, B), d(21, B)}. (22)

d(q, B) = inf{d(q, `) : ` ∈ B}
d(20, B) = inf{d(20, 18), d(20, 19)} = inf{2, 1} = 1.

d(21, B) = inf{d(21, 18), d(21, 19)} = inf{3, 2} = 2.

Thus, by (22), we get

d(A, B) = sup{d(q, B) : q ∈ A} = sup{1, 2} = 2. (23)
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Similarly,

{d(`, A) : y ∈ B} = {d(18, A), d(19, A)}. (24)

d(18, A) = inf{d(18, 20), d(18, 21)} = inf{2, 3} = 2, and d(19, A) = inf{d(19, 20), d(19, 21)}
= inf{1, 2} = 1. Thus, by (24), we get

d(B, A) = sup{d(`, A) : ` ∈ B} = sup{2, 1} = 2. (25)

By Equations (23) and (25), the Equation (21) implies that H(A, B) = 2 > 0. Define ν : X2 →
[1, ∞) by

ν(a, b) =
{

2 if a⊥ b,
1 otherwise .

Then, ν is ⊥-admissible.
Case 1: If q = 10 and ` ∈]17, 21], then, q⊥ ` and

1 + d(10, `) ≥8 ≥ 3
2
(1 + 2H(S10,S`))

3
2
(1 + 2H(S10,S`)) ≤1 + d(10, `)

ln(
3
2
(1 + 2H(S10,S`))) ≤ ln(1 + d(10, `))

ln(
3
2
) + ln(1 + 2H(S10,S`)) ≤ ln(1 + d(10, `)).

Case 2: If ` = 10 and q ∈]17, 21], then, q⊥ ` and

1 + d(q, 10) ≥ 8 ≥ 3
2
(1 + 2H(Sq,S10))

3
2
(1 + 2H(Sq,S10)) ≤ 1 + d(q, 10)

ln(
3
2
(1 + 2H(Sq,S10))) ≤ ln(1 + d(q, 10))

ln(
3
2
) + ln(1 + 2H(Sq,S10)) ≤ ln(1 + d(q, 10)).

Thus, for all q, ` ∈ X with q⊥ `, Thus, by defining V(t) = ln(t + 1) and W(t) = V(t)− τ for
all t ∈ (0, ∞) and τ = ln 3

2 , we see that V and W satisfy conditions (ii)–(vi) of Theorem 2 and S is
a multivalued (V, W)⊥-contraction:

V(ν(q, `)H(S(q),S(`))) ≤W(d(q, `)).

We note that the fixed point of S is 20, because 20 ∈ S(20).

3. Consequences

It is noted that the Nadler fixed point theorem [30] is a particular case of Theorems 1
and 2 (let V(c) = c and W(c) = λc for all c > 0 and λ ∈ [0, 1)). The multivalued version of
the Wordowski Theorem can be derived by defining V(c) = c for all c > 0 in Theorem 1. If
we define W(c) = V(c)− t (t > 0) in Theorems 1 and 2, then we have an improvement of
the results presented in [8,12,27,31] as follows:

Corollary 1. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν and t > 0 such that

H(Sx,Sy) > 0 implies t + V(ν(x, y)H(Sx,Sy)) ≤ V(d(x, y))) for all x, y ∈ U .
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If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U and V : (0, ∞)→ R is nondecreas-
ing, then S admits a fixed point in U .

Defining W(c) = V(c) − τ(c) for all c ∈ (0, ∞) in Theorems 1 and 2, we have the
following improvement of the result presented in [10].

Corollary 2. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies τ(d(x, y)) + V(ν(x, y)H(Sx,Sy)) ≤ V(d(x, y))) for all x, y ∈ U ,

lim inf
c→t+

τ(c) > 0, ∀ t ≥ 0.

If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U and V : (0, ∞)→ R is nondecreas-
ing, then S admits a fixed point in U .

Defining W(c) = g(V(c)) for all c ∈ (0, ∞) in Theorem 1, we have the following
improvement of Moradi’s theorem [21].

Corollary 3. Let (U ,⊥, d) be a ⊥RCOMS. Let B ⊂ R and g : B → [0, ∞) is an upper semi-
continuous function satisfying g(z) < z for all z ∈ B. Suppose that S : U → Pcb(U ) is
⊥-preserving and there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies V(ν(x, y)H(Sx,Sy)) ≤ g(V(d(x, y))) for all x, y ∈ U .

If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U and V : (0, ∞)→ B is nondecreasing,
then S admits a fixed point in U .

Defining g(z) = zω (ω ∈ (0, 1)) in Corollary 3, we have the following conclusion.

Corollary 4. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies V(ν(x, y)H(Sx,Sy)) ≤ (V(d(x, y)))ω for all x, y ∈ U

and V : (0, ∞)→ (0, 1) is nondecreasing. If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0,
c0 ∈ U , then S admits a fixed point in U .

Remark 4. Corollary 4 shows the improvements of fixed point results presented in [20,32].

If we define W(y) = λV(y) in Theorems 1 and 2, then we have the following improve-
ment of the special case of Skof’s fixed point theorem [26].

Corollary 5. Let (U ,⊥, d) be a ⊥RCOMS. Suppose that S : U → Pcb(U ) is ⊥-preserving and
there exists a ⊥-admissible function ν such that

H(Sx,Sy) > 0 implies V(ν(x, y)H(Sx,Sy)) ≤ λV(d(x, y)) for all x, y ∈ U ,

and V is a nondecreasing function that maps positive real numbers to positive real numbers and
λ ∈ (0, 1). If there exists c1 ∈ S(c0) such that c0⊥ c1 or c1⊥ c0, c0 ∈ U , then S has a unique
fixed point in U .

On the other hand, if V is a nondecreasing function that maps positive real numbers to
positive real numbers and χ : (0, ∞)→ (0, 1) meets the condition lim supz→ε+ χ(z) < 1 for
any ε > 0, and W(z) = χ(z)V(z) and V(z) = z for all z > 0 in Theorem 1, then we have an
improvement of a theorem in [25].
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Remark 5. (R1). The ⊥-admissibility of the mapping S can be dropped from all of the aforemen-
tioned results by replacing Pcb(U ) with K(U ) and the Lemma 2 is no more required.

(R2). The condition:

V(inf A) = inf V(A) for all A ⊆ (0, ∞) with inf A > 0,

can be used as an alternative of the ⊥-admissibility of S : U → Pcb(U ) in the above theorems.

The following theorem is a particular case of Theorem 1 and is useful for the upcom-
ing result.

Theorem 4. Let S be a ⊥-preserving self-mapping defined on ⊥RCOMS such that

t + V(ν(c, `)d(S(c),S(`))) ≤ V(E(c, `)) (26)

for all c, ` ∈ Λ with d(S(c),S(`)) > 0 and V : (0, ∞)→ R is nondecreasing and t > 0. If there
exists c1 = S(c0) such that c0⊥ c1 or c1⊥ c0; c0 ∈ U , then S admits a fixed point.

Proof. Setting W(y) = V(y)− t for all y > 0 in Theorem 1, we have the required result.

Remark 6. Define E(c, `) as any one of the following. Then, Theorem 4 is applicable.
(1) max{d(c, `), d(c,S(c)), d(`,S(`))}.
(2) max{d(c,S(c)), d(`,S(`))}.
(3) max

{
d(c, `), d(c,S(c))+d(`,S(`))

2 , d(`,S(c))+d(c,S(`))
2

}
.

(4) a1d(c, `) + a2(d(c,S(c)) + d(`,S(`))) + a3(d(`,S(c)) + d(c,S(`))), ∑3
i=1 ai < 1.

(5) a1d(c, `) + a2d(c,S(c)) + a3d(`,S(`)), ∑3
i=1 ai < 1. (6) d(c, `).

4. Application of Theorem 4 to FDE

Lacroix (1819) proposed and investigated several fractional differential properties. A
number of new Caputo-Fabrizio derivative (CFD) models have recently been discovered
and studied by authors in [33–35]. In this section, we will look at one of these models. The
following notations are required.

Let X =: C[0, 1] = { f |ν : [0, 1]→ (−∞, ∞) and f is continuous}. The function d :
X ×X → [0, ∞), defined by

d( f , g) = ‖ f − g‖∞ = max
x∈[0,1]

| f (x)− g(x)|, for all f , g ∈ C[0, 1],

is a metric on X and (X , d) is a complete metric space. Define an orthogonal relation ⊥ on
X by

c⊥ υ iff cυ ≥ 0, for all c, υ ∈ X .

Then, (X ,⊥, d) is a complete OMS. Let ν : X ×X → (1, ∞) be defined by

ν(r, t) = e‖r+t‖∞ for all r, t ∈ X with r⊥ t.

Then, ν is a strictly ⊥-admissible mapping. Let K1 : [0, 1] × (−∞, ∞) → (−∞, ∞) be
any mapping. We will apply Theorem 4 to show the existence of the solution to the
following FDE:

CFDg(x) = K1(x, g(x)); g ∈ X (27)

g(0) = 0, g
′
(1) = g

′
(0).

Here, CFD
0 denotes the Caputo-Fabrizio derivative (CFD) of order  defined by

CFD
0g(x) =

1
Γ(ζ − )

∫ x

0
(x− θ)ζ−−1g(θ)) dθ,
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where
ζ − 1 <  < ζ and ζ = [] + 1.

The integral operator is defined by

I g(x) =
1

Γ()

∫ x

0
(x− θ)−1g(θ) dθ, with  > 0.

One of the transformations of (27) is as follow:

g(x) =
1

Γ()

∫ x

0
(x− θ)−1K1(θ, g(θ)) dθ +

2x
Γ()

∫ 1

0

∫ θ

0
(θ − u)−1K1(u, g(u)) dudθ.

Let

(I) ∃ α > 0 such that

|K1(θ, g(θ))− K1(θ, `(θ))| ≤ e−αΓ( + 1)
4M

|g(θ)− `(θ)|(M = min{d(g, `)| g, ` ∈ X}),

(II) for an arbitrary g0 ∈ X , we have

g0(x) ≤ 1
Γ()

∫ x

0
(x− θ)−1K1(θ, g0(θ)) dθ +

2x
Γ()

∫ 1

0

∫ θ

0
(θ − u)−1K1(u, g0(u)) dudθ.

Theorem 5. If the conditions (I)–(II) stated above are satisfied, then the Equation (27) admits a
solution in X .

Proof. Define the operator S : X → X , in line with the above information, by

S(g)(x) =
1

Γ()

∫ x

0
(x− θ)−1K1(θ, g(θ)) dθ +

2x
Γ()

∫ 1

0

∫ θ

0
(θ − u)−1K1(u, g(u)) dudθ.

We note that whenever g(x)⊥ g(y) or g(y)⊥ g(x), S(g)(x)⊥S(g)(y). By (II), there is an
arbitrary function g0 ∈ X such that gn = Sn(g0)) with gn⊥ gn+1 or gn+1⊥ gn (∀n ≥ 0).
We establish (26) of Theorem 4 in the next lines.

|S(g)(x)− S(`)(x)| =

∣∣∣∣∣∣∣∣∣∣∣

1
Γ()

∫ x
0 (x− θ)−1K1(θ, g(θ)) dθ

− 1
Γ()

∫ x
0 (x− θ)−1K1(θ, `(θ)) dθ

+ 2x
Γ()

∫ 1
0

∫ θ
0 (θ − u)−1K1(u, g(u)) dudθ

− 2x
Γ()

∫ 1
0

∫ θ
0 (θ − u)−1K1(u, `(u)) dudθ

∣∣∣∣∣∣∣∣∣∣∣

implies
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|S(g)(x)− S(`)(x)|

≤
∣∣∣∣
∫ x

0

(
1

Γ()
(x− θ)−1K1(θ, g(θ))− 1

Γ()
(x− θ)−1K1(θ, `(θ))

)
dθ

∣∣∣∣

+

∣∣∣∣
∫ 1

0

∫ θ

0

(
2

Γ()
(θ − u)−1K1(θ, g(θ))− 2

Γ()
(θ − u)−1K1(u, `(u))

)
dudθ

∣∣∣∣

≤ 1
Γ()

e−αΓ( + 1)
4M

·
∫ x

0
(x− θ)−1(g(θ)− `(θ)) dθ

+
2

Γ()

e−αΓ( + 1)
4M

·
∫ 1

0

∫ θ

0
(θ − u)−1(`(u)− g(u)) dudθ

≤ 1
Γ()

e−αΓ( + 1)
4M

· d(g, `) ·
∫ x

0
(x− θ)−1 dθ

+
2

Γ()

e−αΓ() · Γ( + 1)
4MΓ(s) · Γ( + 1)

· d(g, `) ·
∫ 1

0

∫ θ

0
(θ − u)−1 dudθ

≤
(

e−αΓ() · Γ( + 1)
4MΓ() · Γ( + 1)

)
· d(g, `) + 2e−αB( + 1, 1)

Γ() · Γ( + 1)
4MΓ() · Γ( + 1)

· d(g, `)

≤ e−α

4M
d(g, `) +

e−α

2M
d(g, `) <

e−α

M
d(g, `),

The simplified form is given by

Md(S(g),S(`)) ≤ d(g, `)d(S(g),S(`)) ≤ e−αd(g, `). (28)

Define the mapping V(g(x)) = ln(g(x)) for all g, ` ∈ X . Then, the inequality (28) can be
re-written as

α + V(d(g, `)d(S(g),S(`))) ≤ V(d(g, `)).

By Theorem 4, (27) admits a solution in.

5. Conclusions

The multivalued contractions introduced in this paper encapsulate so many contrac-
tions, including Nadler, F, Boyd-Wong and Geraghty contractions. The results stated in
this paper generalize and improve a number of results on the existence of fixed-points of
the abovementioned contractions. The orthogonal relation is the useful generalization of
binary relation. Fixed point methodology is used to investigate the presence of a solution to
a fractional differential equation. Based on the recently developed concept of orthogonality
in the metric spaces, we introduce orthogonal multivalued contractions in this study. For
these contractions, we derive several fixed point theorems. We demonstrate how these
fixed point theorems help to generalize several newly released findings. In addition, we
provide a theorem that proves the existence of the solution to a fractional differential
equation (FDE).

6. Future Work

The interested readers are suggested to try these results in vector-valued metric spaces
or generalized metric spaces.
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Abstract: This paper considers the steady-state heat transfer process in a fin with a Robin boundary
condition at the base (instead of the usual Dirichlet boundary condition at the base). Robin boundary
condition models the effect of the thermal resistance between the base of the fin and the surface
on which the fin is placed. This work presents an equivalent minimum principle, represented by
a convex and coercive functional, ensuring the solution’s existence and uniqueness. In order to
illustrate the use of the proposed functional for reaching approximations, the heat-transfer process in
a trapezoidal fin considering a piecewise linear approximation is simulated. The Appendix presents
a case in which the exact solution in a closed form has been achieved.

Keywords: fins; thermal resistance at the base; variational formulation; numerical simulation

MSC: 34B99; 80A21; 80A05

1. Introduction

As more components are placed in a chip, the internal heat generation tends to increase.
Since the heat must be rejected to the environment, this increase gives rise to a temperature
increase on the surface (as well as a temperature increase in the whole chip). Nevertheless,
a maximum allowable temperature exists for each chip (approximately 80 ◦C on its surface).

Roughly, the heat dissipation is proportional to the difference between the surface
temperature and the temperature of the surroundings.

One of the most effective ways to optimize the heat transfer from a device is to increase
the effective area of heat transfer. This increase in area is obtained using fins (extended
surfaces) and may allow a dissipation increase without a temperature increase [1–4].

Fins are devices found in almost all situations where an improvement of the heat
exchange between a given surface and the environment is needed. They act as an artificial
enlargement of the original area of a surface, giving rise to a greater actual heat-exchange area.
These devices are often the principal tool for avoiding high temperatures that can damage
the functionality of a part of a system, such as in circuits involving semiconductors [1–4].

In general, the study of fins, solid or porous, is carried out under the assumption that
the temperature of its base is known and coincides with the temperature of the surface in
which we fix the fin, giving rise to a Dirichlet boundary condition.

Nevertheless, contact thermal resistance arises when a fin is placed on a given surface,
as illustrated in Figure 1. In order to take into account this contact resistance, a Robin
boundary condition must replace the previously mentioned Dirichlet boundary condition.
This boundary condition takes into account that the temperature of the surface (in which
the fin is inserted) is different from the temperature of the base of the fin, giving rise
to a relationship between the heat flux and a difference in temperatures caused by the
thermal resistance [1–5].
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Figure 1. Set of cylindrical fins placed on a chip with the aid of a thermal paste (which gives rise to a
thermal contact resistance).

Many studies account for these contact thermal resistances. For instance, Aziz and
Arlen [6] analyzed the performance and design of a rectangular fin with the convective
base condition and contact resistance, using the numerical package Maple to solve the
proposed problem and optimize the geometric parameters to achieve the optimum design.
Xie et al. [7] studied T-shaped fins, considering thermal resistance minimization and
minimizing geometric parameters according to heat transfer parameters. Their results
showed the change of values in the parameters according to the optimization and the
degrees of freedom available for change. Taler and Oclón [8] developed a methodology to
estimate the thermal resistance of plate-and-tube heat exchangers using experimental data
and CFD simulations with ANSYS software. Milman et al. [9] proposed an experimental
model to determine the thermal resistance between the tube and the finned wall, accounting
for possible errors in this computation, such as surface quality, the possibility of contact
corrosion, and welding imperfections.

Fins are designed with the intention of enhancing heat transfer. This heat transfer
is, in turn, considerably enlarged by employing porous fins introduced by Kiwan and
Al-Nimr [10]. Several authors analyzed significant aspects of porous fins subjected to
convection and radiation. For instance, Martins-Costa et al. [11] obtained the temperature
distribution in porous fins by minimizing a convex functional. Martins-Costa et al. [12]
constructed a solution for the nonlinear problem arising from natural convection and
thermal radiation in cylindrical porous fins from a sequence of linear problems, using the
parameters suggested by Gorla and Bakier [13].

This work aims to present a mathematical modeling of the heat-transfer process in a
fin, accounting for the contact thermal resistance between the base of the fin and the surface
in which the fin is placed.

Solid and porous fins are considered to involve convection and radiation heat transfer.
All of them possess the prescribed base temperature as a limiting case.

A general mathematical modeling and an equivalent variational principle are pre-
sented, enabling the authors to demonstrate the solution’s existence and uniqueness.

2. Mathematical Description

The following ordinary differential equation represents the energy balance in a fin:

d
dx

(
k A

dT
dx

)
− p f = 0, p =

dAS
dx

, x0 < x < xL (1)

where x represents a spatial position (counted from fin base), A is the sectional area, AS
is the lateral area between the points x0 and x (for cylindrical fins, p is a constant that
represents the perimeter of the section), f represents a heat loss (per unit time and area),
and k is the thermal conductivity (assumed here a constant). The function f is a strictly
increasing function of the temperature ( f = f̂ (T)), while A and p may depend on the
position, but do not depend on the temperature.

The mathematical description represented by the ordinary differential Equation (1) is
valid when the temperature distribution can be regarded as a function of only one spatial
variable [1].
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For instance, for a solid cylindrical fin that exchanges energy with the environment
following Newton’s law of cooling, the following condition arrives [1–4]:

f = h(T − T∞), A = constant, p = constant, T∞ = constant, h = constant (2)

with p > 0, A > 0 and h > 0.
If it was a solid circular fin (as suggested in Figure 2), with thickness δ, A, AS, and p

would be given by [1–4]:
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Figure 2. A radial fin with constant thickness δ, installed in a tube with radius r = x0.

A = 2πxδ, AS = 2
(

πx2 − πx2
0

)
⇒ p =

d
dx

AS = 4πx (3)

The mathematical structure remains the same as Equation (1) for a porous cylindrical
fin subjected to natural convection. However, the meaning of quantities such as A and p
changes, as it must be taken into account that the actual area and the actual perimeter are
affected by the porosity. In addition, f is not a linear function of T. For a cylindrical porous
fin, considering only natural convection, it becomes [12,13]:

f = β(T − T∞)|T − T∞|, β = constant > 0 (4)

When thermal radiation is taken into account, additional terms must be considered [11–13].
It is important to note that a differential equation such as Equation (1) describes any

one-dimensional heat transfer process in a fin.
In general, the authors consider Equation (1) subjected to the following boundary

conditions:
T = TS at x = x0

−k dT
dx = h(T − T∞) at x = xL, xL = x0 + L

(5)

in which L is the fin length and, many times, the non-negative constant h is assumed to be
zero (insulated tip).

In the current literature, the first condition in Equation (5) (a Dirichlet boundary con-
dition) represents the temperature of the surface on which the fin is installed. Nevertheless,
the temperature TS is not the fin temperature at position x = x0, as there is a contact resis-
tance between the fin and the surface on which the fin is placed. The Dirichlet boundary
condition is a limiting case in which the contact resistance is zero (ideal case).

The adequate boundary condition at x = x0 is a Robin boundary condition consid-
ering the thermal resistance between the fin and the surface. In other words, instead of
Equation (5), the following boundary conditions will be considered:

k dT
dx = γ(T − TS) at x = x0

−k dT
dx = h(T − T∞) at x = xL, xL = x0 + L

(6)

The positive constant γ is the inverse of the thermal resistance. When γ→ ∞ (zero
resistance), there is a Dirichlet boundary condition at x = x0.
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The resulting problem may be expressed as follows:

d
dx

(
k A dT

dx

)
− p f = 0, f or x0 < x < xL, A = Ã(x), p = p̃(x), f = f̂ (T)

k dT
dx = γ(T − TS), at x = x0

−k dT
dx = h(T − T∞), at x = xL, xL = x0 + L

(7)

where TS represents the temperature of the surface (where the fin is placed).
The heat (per unit time) exchanged between the fin and the environment is given by:

Q =

[
−kA

dT
dx

]

x=x0

= [γA(TS − T)]x=x0
(8)

Furthermore, as shown later, this heat transfer is strongly affected by the contact
thermal resistance at the base. The actual temperature at the base of the fin, denoted by T0,
is obtained from Equation (8) after calculating Q, as follows:

T0 = TS −
Q

γA
(9)

When h→ 0 , an insulated tip is characterized. The most common description for fins
considers h→ 0 and γ→ ∞ . In other words, the most common description assumes a
Dirichlet boundary condition at x = x0 and a Neumann boundary condition at x = xL.

It is essential to note that the insulated tip hypothesis (h = 0) is a conservative
approach, as it gives rise to a heat exchange that is smaller than the actual one.

The Appendix presents a linear case’s complete (exact) solution, representing a solid
cylindrical fin, including the mentioned limiting cases.

3. Variational Formulation

Equation (7) is equivalent to the minimization of the functional I[w], defined as:

I[w] =

xL∫

x0





kA
2

(
dw
dx

)2
+ p

w∫

0

f̂ (ξ)dξ



dx +

γ

2

[
A(w− TS)

2
]

x=x0
+

h
2

[
A(w− T∞)2

]
x=xL

(10)

In other words, the function T solution of Equation (7) is such that I[w] ≥ I[T] for any
admissible field w [14].

In order to demonstrate the equivalence between the solution of Equation (7) and the
minimization of I[w], the admissible functions w are defined as follows:

w = T + εη (11)

in which ε is a parameter and the function η is an admissible but arbitrary variation [14].
Hence, the functional I[w] can be rewritten as follows:

I[w] =
xL∫
x0

{
kA
2

(
d(T+εη)

dx

)2
+ p

T+εη∫
0

f̂ (ξ)dξ

}
dx

+ 1
2 γ
[

A(T + εη − TS)
2
]

x=x0
+ 1

2 h
[

A(T + εη − T∞)2
]

x=xL

(12)
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In order to show that w = T corresponds to an extremum of I[w], let us calculate the
derivative with respect to ε, for ε = 0, equaling the result to zero for any η. The derivative
of I[w] is given by:

d
dε{I[w]} = d

dε

xL∫
x0

{
kA
2

(
d(T+εη)

dx

)2
+ p

T+εη∫
0

f̂ (ξ)dξ

}
dx

+ 1
2 γ
[

A d
dε (T + εη − TS)

2
]

x=x0
+ 1

2 h
[

A d
dε (T + εη − T∞)2

]
x=xL

=
xL∫
x0

{
kA
(

d(T+εη)
dx

)
dη
dx + ηp f̂ (T + εη)

}
dx

+γ[Aη(T + εη − TS)]x=x0
+ h[Aη(T + εη − T∞)]x=xL

(13)

So, when ε = 0, this yields:

[
d
dε

I[w]

]

ε=0
=

xL∫

x0

{
kA
(

dT
dx

)
dη

dx
+ ηp f̂ (T)

}
dx + γ[Aη(T − TS)]x=x0

+ h[Aη(T − T∞)]x=xL
(14)

Because [15]:

A
(

dT
dx

)
dη

dx
=

d
dx

(
ηA

dT
dx

)
− η

d
dx

(
A

dT
dx

)
(15)

It becomes:

[
d
dε{I[w]}

]
ε=0

=
xL∫
x0

{
d

dx

(
ηkA dT

dx

)
− η d

dx

(
kA dT

dx

)
+ ηp f̂ (T)

}
dx

+γ[η(T − TS)]x=x0
+ h[η(T − T∞)]x=xL

= −
xL∫
x0

{
d

dx

(
kA dT

dx

)
− p f̂ (T)

}
ηdx

+
[
ηkA dT

dx

]
x=xL

−
[
ηkA dT

dx

]
x=x0

+ γ[Aη(T − TS)]x=x0
+ h[Aη(T − T∞)]x=xL

(16)

Therefore, to ensure that the derivative of I[w] is zero at ε = 0 (corresponding to the
first variation of I[w]), taking into account that the function η is arbitrary, Equation (17)
must take place [14]:

d
dx

(
kA dT

dx

)
− p f̂ (T) = 0 → Euler− Lagrange equation

−
[
kA dT

dx

]
x=x0

+ γ[A(T − TS)]x=x0
= 0 → natural boundary condition at x = x0

[
kA dT

dx

]
x=xL

+ h[A(T − T∞)]x=xL
= 0 → natural boundary condition at x = xL

(17)

It is important to remark that Equation (17) corresponds exactly to Equation (7).
The existence of the functional defined in (10) is a powerful tool for reaching numerical

approximations.

4. Existence and Uniqueness

Calculating the second derivative of I[w] with respect to ε, the following equation is
obtained:

d2

dε2 {I[w]} = d
dε

xL∫
x0

{
kA
(

d(T+εη)
dx

)
dη
dx + ηp f̂ (T + εη)

}
dx

=
xL∫
x0

{
kA
(

dη
dx

)2
+ η2 p d f

dw

}
dx

(18)

Because f is an increasing function of T, the second derivative of I[w] is positive-
valued for any η different from zero. Consequently, I[w] is a strictly convex functional, and
its extremum (if it exists) is a minimum and unique.
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Now, to show the existence of the minimum, it is sufficient to demonstrate the coer-
civeness of I[w]. The coerciveness can be ensured provided that [16]:

lim
λ→∞

I[λw]

λ
= +∞, ‖w‖ = 1 (19)

in which the norm ‖w‖ is defined as (Sobolev space H1(x1, x2) [17]):

‖w‖ =
xL∫

x0

{(
dw
dx

)2
+ w2

}1/2

dx (20)

Evaluating the limit, the following equation is achieved:

lim
λ→∞

I[λw]
λ = lim

λ→∞

xL∫
x0

{
λ kA

2

(
dw
dx

)2
+ 1

λ p
λw∫
0

f̂ (ξ)dξ

}
dx

+ lim
λ→∞

{
1

2λ γ
[

A(λw− TS)
2
]

x=x0
+ 1

2λ h
[

A(λw− T∞)2
]

x=xL

} (21)

Because f̂ (ξ) is a strictly increasing function of ξ, there exist two constants a and b
such that:

T∫

0

f̂ (ξ)dξ > aT + b (22)

Therefore, it may be concluded that there exists a constant C such that:

lim
λ→∞

1
λ

p
λw∫

0

f̂ (ξ)dξ > C (23)

Hence,

lim
λ→∞

xL∫
x0

{
λ kA

2

(
dw
dx

)2
+ 1

λ p
λw∫
0

f̂ (ξ)dξ

}
dx

+ lim
λ→∞

{
1

2λ γ
[

A(λw− TS)
2
]

x=x0
+ 1

2λ h
[

A(λw− T∞)2
]

x=xL

}
= +∞

(24)

Therefore, the functional is coercive [16]. This coerciveness ensures the existence of
the minimum. Because the minimum for the solution to the original problem (Equation (7))
was obtained, the solution’s existence was ensured [16].

5. An Example: Longitudinal Trapezoidal Fin

In addition to the classical solid cylindrical fin (with the constant area and perimeter—
see Appendix A) that exchanges energy following Newton’s law of cooling (the case
in which f = h(T − T∞)), other interesting situations could be considered, such as, for
instance, the longitudinal trapezoidal fin with width W, illustrated in Figure 3.
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In this case, p and A are defined as:

p = d
dx AS = 2W

√
1 +

(
H−δ
2L

)2
+ 2
(

H − x
L (H − δ)

)

A = W
(

H − H−δ
L x

) (25)

and, therefore, the differential equation becomes:

d
dx

(
k W

(
H − H − δ

L
x
)

dT
dx

)
−

2W

√
1 +

(
H − δ

2L

)2
+ 2
(

H − H − δ

L
x
)
 f = 0, 0 < x < L (26)

Clearly, when H = δ, a cylindrical fin is characterized (in which p and A are constants).
Now, the fin will be considered black, with a constant thermal conductivity, sur-

rounded by an atmosphere-free space, and with an insulated tip. Following these hypothe-
ses, only thermal conduction and thermal radiation are present. Under these assumptions,
the process will be described as follows:

k d
dx

(
W
(

H − H−δ
L x

)
dT
dx

)

−
(

2W

√
1 +

(
H−δ
2L

)2
+ 2
(

H − H−δ
L x

))
σ|T|3T = 0, 0 < x < L

k dT
dx = γ(T − TS) at x = 0

dT
dx = 0 at x = L

(27)

In which σ is the classical Stefan–Boltzmann constant [18–20].
In this case, the functional I[w] becomes:

I[w] =
L∫

0

{
k W

2

(
H − H−δ

L x
)(

dw
dx

)2
}

dx

+
L∫

0

{(
2W

√
1 +

(
H−δ
2L

)2
+ 2
(

H − H−δ
L x

))
σ |w|

5

5

}
dx + γ

2

[
HW(w− TS)

2
]

x=0

(28)
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Equation (27) may be conveniently rewritten in a dimensionless form as:

d
dX

(
WH
L2

(
1− H−δ

H X
)

dθ
dX

)

−
(

2

√
1 +

(
H−δ
2L

)2
+ 2 H

W

(
1− H−δ

H X
))

WσT3
S

k |θ|3θ = 0, 0 < X < 1

dθ
dX = γL

k (θ − 1) at X = 0
dθ
dX = 0 at X = 1

(29)

in which the following dimensionless position and temperature are defined:

X = x
L

θ = T
TS

(30)

Hence the functional I[w] presented in Equation (28) can be written as:

I[w] =
1∫

0

{
WH
2L2

(
1− H−δ

H X
)(

dw
dX

)2
}

dX

+
1∫

0

{(
2

√
1 +

(
H−δ
2L

)2
+ 2 H

W

(
1− H−δ

H X
))

WσT3
S

5k |w|5
}

dX + γHW
2kL

[
(w− 1)2

]
X=0

(31)

At this point, the following approximation for the solution θ is considered:

θ = (θi+1 − θi)
X− Xi

Xi+1 − Xi
+ θi, i = 1, 2, . . . , N, Xi ≤ X ≤ Xi+1 (32)

in which the constants θi are those obtained from the minimization of the functional defined
in Equation (31). In other words, the constants θi are obtained from the following system:

5kH
4σL2T3

S

∂
∂θj

(
∑N

i=1
∫ Xi+1

Xi

{(
1− H−δ

H X
)(

θi+1−θi
Xi+1−Xi

)2
}

dX
)
+ 5γH

4LσT3
S

(
∂

∂θj
(θ1 − 1)2

)

+ ∂
∂θj

∑N
i=1
∫ Xi+1

Xi

{(√
1 +

(
H−δ
2L

)2
+ H

W

(
1− H−δ

H X
))∣∣∣(θi+1 − θi)

X−Xi
Xi+1−Xi

+ θi

∣∣∣
5
}

dX = 0

j = 1, 2, 3, . . . , N, N + 1.

(33)

in which:

5kH
4σL2T3

S
=

5
4

(
W
L

)(
H
L

)

(
σT3

SW
k

) and
5γH

4LσT3
S
=

5
4

(
γL
k

)(
W
L

)(
H
L

)

(
σT3

SW
k

) (34)

Figures 4 and 5 present some results obtained with N = 100, considering Xi+1 − Xi =
∆x = constant = 1/N, illustrating the effect of the contact resistance and the effect of the
thermal conductivity.

In both figures, distinct values of the geometric parameters L/H, δ/H, and W/H
and of the parameter associated with radiation and conduction, σT3

SW/k, are considered.
Figures 4 and 5 show the effect of varying the dimensionless thermal resistance inverse
γL/k from 0.1 to 1000.0, along with the distinct geometric parameters and the parameter
associated with radiation and conduction. Regardless of the chosen values for the geometric
parameters and the parameter associated with radiation and conduction, in both figures the
higher the thermal resistance, the smaller the fin’s base temperature and the temperature
along the fin.

The case of the red continuous line (corresponding to γL/k = 1000.0) denotes practi-
cally a Dirichlet boundary condition (θ = 1 at X = 0).
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The main factor leading to smaller temperatures as shown in Figure 5, compared with
those shown in Figure 4, is the parameter associated with radiation and conduction, given
by σT3

SW/k = 50.0 in the former and σT3
SW/k = 1.0 in the latter.
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When comparing this methodology to others, the main advantage of this method
is the equivalence between a minimum principle and the original problem. This equiv-
alence provides a convenient tool for carrying out numerical simulations by means of a
minimization process.

6. Conclusions

The thermal resistance present in real engineering problems involving fins accounts for
the different temperatures of the surface (in which the fin is installed) and the temperature
of the fin’s base. This work studied this problem—namely, a heat-transfer problem with
the Robin boundary condition at the fin’s base. This article presented a general mathe-
matical model that may involve convection and radiation and proposed an equivalent
minimum principle.

A convex and coercive functional represents this minimum principle, ensuring the
solution’s existence and uniqueness.

It is essential to notice that the formulation developed in this work allows a simplified
treatment of realistic heat-transfer problems, because real problems involve thermal resis-
tance between the surface and the fin’s base. In addition, this proposed minimum principle
involves solely natural boundary conditions. In a broad sense, the Dirichlet boundary
condition could be considered a limit of the Robin boundary condition when γ→ ∞ (zero
thermal resistance). When only natural boundary conditions are considered, the space of
functions needs no restriction on the boundaries.

As an example, the proposed functional was employed to study the heat transfer in
a longitudinal trapezoidal fin, accounting for thermal resistance at the fin’s base. This
problem accounted for thermal radiation (non-participant environment and black body
assumption). It was simulated using piecewise linear approximations.

The Appendix presents an exact closed solution for a solid cylindrical fin.
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Appendix A. An Exact Solution

When Equation (2) holds, the problem represented by Equation (7) becomes:

d
dx

(
k A dT

dx

)
− p h(T − T∞) = 0, f or x0 < x < xL

k dT
dx = γ(T − TS), at x = x0

−k dT
dx = h(T − T∞), at x = xL, xL = x0 + L

(A1)

and admits the exact solution:

T = T∞ + (TS − T∞)

{
h
k tanh(mL)+m

m
{

mk
γ tanh(mL)

}
+ h

k

(
mk
γ

)
+ h

k tanh(mL)+m

}
cosh(m(x− x0))

+(TS − T∞)

{
−
(

h
ktanh(mL)+m

)
tanh(mL)

m
{

mk
γ tanh(mL)

}
+ h

k

(
mk
γ

)
+ h

k tanh(mL)+m

}
sinh(m(x− x0))

(A2)

in which m =
√

hp/(kA).
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The heat (per unit time) exchanged between the fin and the environment, in this case,
is given by:

Q =

[
−kA

dT
dx

]

x=x0

(A3)

The contact thermal resistance at the base strongly affects this heat exchange.
Taking into account (A2), Equation (A3) gives rise to:

Q =

[
−kA

dT
dx

]

x=x0

= kA(TS − T∞)





m
(

h
ktanh(mL) + m

)
tanh(mL)

m
{

mk
γ tanh(mL)

}
+ h

k

(
mk
γ

)
+ h

k tanh(mL) + m



 (A4)

The temperature at the base of the fin, denoted by T0, is obtained from:

Q =

[
−kA

dT
dx

]

x=x0

= γA(TS − T0) (A5)

and is given by:

T0 = TS −
Q

γA
= TS −

k
γ
(TS − T∞)





m
(

h
ktanh(mL) + m

)
tanh(mL)

m
{

mk
γ tanh(mL)

}
+ h

k

(
mk
γ

)
+ h

k tanh(mL) + m



 (A6)

In order to illustrate this influence, the case with the fin insulated at the tip is consid-
ered. In such case h→ 0 , and (A2) reduces to:

T = T∞ +
γ(TS − T∞)

mktanh(mL) + γ
{cosh(m(x− x0))− tanh(mL)sinh(m(x− x0))} (A7)

In the classical literature, Equation (A1) is solved assuming γ→ ∞ (no thermal
resistance at the base). When γ→ ∞ , the solution reduces to:

T = T∞ + (TS − T∞) cosh(m(x− x0))

+(TS − T∞)

{
−
(

1
tanh(mL)+

mk
h

)
tanh(mL)

tanh(mL)+ mk
h

}
sinh(m(x− x0))

(A8)

and, consequently, T0 = TS.
When, in addition to γ→ ∞ , it is supposed that h→ 0 (insulated tip), the solution

reduces to one of the most known results in heat transfer, given by:

T = T∞ + (TS − T∞){cosh(m(x− x0))− tanh(mL)sinh(m(x− x0))} (A9)

In this case, the heat flux is given by:

Q =

[
−kA

dT
dx

]

x=x0

= (TS − T∞)
√

hpkAtanh

(√
hp
kA

L

)
(A10)

When, in addition to γ→ ∞ , it is assumed that h→ ∞ (prescribed temperature at
x = xL),the following temperature is obtained:

T = T∞ + (TS − T∞)

{
cosh(m(x− x0))−

1
tanh(mL)

sinh(m(x− x0))

}
(A11)

and the heat flux is given by:

Q =

[
−kA

dT
dx

]

x=x0

= (TS − T∞)
√

hpkA

(
tanh

(√
hp
kA

L

))−1

(A12)
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Equations (A9)–(A12) represent classical results (found in most heat-transfer books [1–4]).
For very long fins (i.e., tanh(mL) ∼= 1), it becomes:

T = T∞ + (TS − T∞)

{
γ

mk + γ

}
exp(−m(x− x0)) (A13)

and:

Q =

[
−kA

dT
dx

]

x=x0

= (TS − T∞)

{
γ

mk + γ

}√
hpkA (A14)
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Abstract: In this article, we defined the generalized intuitionistic P-pseudo fuzzy 2-normed spaces
and investigated the Hyers stability of m-mappings in this space. The m-mappings are interesting
functional equations; these functional equations are additive for m = 1, quadratic for m = 2, cubic for
m = 3, and quartic for m = 4. We have investigated the stability of four types of functional equations
in generalized intuitionistic P-pseudo fuzzy 2-normed spaces by the fixed point method.

Keywords: intuitionistic fuzzy 2-normed space; Hyers–Ulam–Rassias stability; fuzzy mathematics

MSC: 39B82; 39B52; 46S40; 47H10

1. Introduction

Functional equations generalize the subject of a modern branch of mathematics. The
first articles in the field of functional equations were published by J. D’Alembert during
1747–1750. The apparent simplicity and harmonic nature have caused the subject of func-
tional equations to be studied by many mathematicians. In the fall of 1940, Ulam [1]
presented several unsolved problems in his famous speech at the University of Wisconsin.
This lecture became the starting point for the theory of stability of functional equations. The
question raised by Ulam was as follows: When is it true that a function which approximately
satisfies a functional equation D must be close to an exact solution of D? If the problem
admits a solution, we say that equation D is stable.

Ulam’s problem was solved by Hyers [2] for additive mappings in 1941, and Hyers’s
results were generalized by Rassias [3] for linear mappings by various control functions.
The results of Rassias had a great impact on the issue of the stability of functional equations.
Today this type of stability is called the Hyers–Ulam–Rassias stability.

Mathematicians have proposed and proved many other theorems in the field of stability
by changing the type of functional equation, control function, and space in the above theorem.
In some of the articles in this field, the control function ε has been replaced by another function,
and the stability theorem has been re-examined with new conditions. Similarly, by changing
the type of functional equation in the above theorem from additive to quadratic, cubic, Jensen,
etc., or replacing the functional equation with a differential or integral equation, the condi-
tions of the stability theorem have been investigated and proven. We refer readers to [4–13]
references for consideration of the stability of various functional equations in different spaces.

L. Zadeh [14] proposed the concept of fuzzy sets in 1965. The fuzzy metric space was
introduced by Kromosil and Michalek [15]. This space is a generalization of the probabilistic
metric space. In 1986, Atanasos [16] founded the concept of intuitionistic fuzzy sets by
developing fuzzy sets. The idea of intuitionistic fuzzy normed space by Saadati and Park [17]
was introduced in 2006.

Axioms 2023, 12, 28. https://doi.org/10.3390/axioms12010028 https://www.mdpi.com/journal/axioms185
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In 2012, Gordji et al. [4] introduced the following functional equation

f (ru + v)+ f (ru− v) = rm−2[ f (u + v) + f (u− v)]

+2
(

r2 − 1
)[

rm−2 f (u) +
(m− 2)

(
1− (m− 2)2)

6
f (v)

]
(1)

for every fixed integer r with r 6= 0,±1. It is easily proven that f (u) = cum(u ∈ R, m = 1, 2, 3, 4)
satisfies the functional Equation (1). More precisely, if m = 1, the functional Equation (1) is
additive, if m = 2, then it is quadratic, if m = 3, 4, then it is the cubic and quartic functional
equation, respectively. We call a solution of the functional Equation (1) m-mapping.

Theorem 1 ([18]). If (∆, d) is a complete generalized metric space and Z : ∆ → ∆ is a strictly
contractive mapping with Lipschitz constant κ < 1, then for each element u ∈ ∆, either

d(Znu,Zn+1u) = +∞,

for every non-negative integer n, or there exists a n0 ∈ Z+ such that

(1) d(Znu,Zn+1u) < +∞ for every n ≥ n0;
(2) The sequence {Znu} → v∗, where v∗ is a fixed point of Z ;
(3) v∗ is the unique fixed point of Z in the set V = {v ∈ ∆ | d(Zn0 u, v) < +∞}.
(4) d(v, v∗) ≤ 1

1−κ d(v,Zv) for every v ∈ V.

Let ∆ be a linear space over the field F and F be a continuous t-norm and � be a
continuous t-conorm, in the following; we define the concepts of fuzzy and anti-fuzzy
2-norm.

Definition 1 ([19]). A fuzzy subset µ of ∆× ∆×R is said to be a fuzzy 2-norm on ∆ if and only
if for u, v, w ∈ ∆, p, q ∈ R, and α ∈ F the following items hold.

(FT1) µ(u, v, p) = 0 if p ≤ 0.
(FT2) µ(u, v, p) = 1 if and only if u, v are linearly dependent for all p > 0.
(FT3) µ(u, v, p) is invariant under any permutation of u, v.

(FT4) µ(u, αv, p) = µ
(

u, v, p
|α|
)

, for all p > 0 and α 6= 0.

(FT5) µ(u + w, v, p + q) ≥ µ(u, v, p)Fµ(w, v, q) for all p, q > 0.
(FT6) µ(u, v, .) is a non-decreasing function on R and

lim
p→∞

µ(u, v, p) = 1.

In this case, the (∆, µ) is said to be a fuzzy 2-normed space.

Example 1 ([19]). Let (∆, ‖., .‖) be a 2-normed linear space. Define

µ(u, v, p) =

{ p
p+‖u,v‖ p > 0

0 p ≤ 0

where u, v ∈ ∆ and p ∈ R. Then (∆, µ) is a fuzzy 2-normed linear space.

Definition 2 ([20]). A fuzzy subset ν of ∆× ∆×R is said to be an anti fuzzy 2-norm on ∆ if and
only if for all u, v, w ∈ ∆, p, q ∈ R and α ∈ F , the following items hold.

(FN1) ν(u, v, p) = 1, for every p ≤ 0.
(FN2) ν(u, v, p) = 0 if and only if u, v are linearly dependent for all p > 0.
(FN3) ν(u, v, p) is invariant under any permutation of u, v.

(FN4) ν(u, αv, p) = ν
(

u, v, p
|α|
)

for every p > 0, α 6= 0.
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(FN5) ν(u, v + w, p + q) ≤ ν(u, v, p)�ν(u, w, q) for all p, q > 0.
(FN6) ν(u, v, .) is a non-increasing function and

lim
p→∞

ν(u, v, p) = 0.

In this case, the (∆, ν) is said to be an anti-fuzzy 2-normed linear space.

Example 2 ([20]). Let (∆, ‖., .‖) be a 2-normed linear space. Define

ν(u, v, p) =

{ ‖u,v‖
p+‖u,v‖ p > 0

1 p ≤ 0

where u, v ∈ ∆ and p ∈ R. Then (∆, ν) is an anti-fuzzy 2-normed linear space.

Lemma 1 ([20]). We define the set Υ∗ and operation ≤Υ∗ by

Υ∗ =
{
(σ1, σ2) : (σ1, σ2) ∈ [0, 1]2 and σ1 + σ2 ≤ 1

}

(σ1, σ2) ≤Υ∗ (π1, π2)⇐⇒ σ1 ≤ π1, σ2 ≥ π2

for all (σ1, σ2), (π1, π2) ∈ Υ∗. Then (Υ∗,≤Υ∗) is a complete lattice.

Definition 3 ([20]). A continuous t-norm τ on Υ = [0, 1]2 is said to be continuous t-representable
if there is a continuous t-norm F and a continuous t-conorm � on [0, 1] such that, for every
σ = (σ1, σ2), π = (π1, π2) ∈ Υ

τ(σ, π) = (σ1Fπ1, σ2�π2)

2. Main Results
2.1. Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Space

In this section, we introduce generalized intuitionistic P-pseudo fuzzy 2-normed space,
and then we investigate the stability of functional equations in this space.

Definition 4 ([8]). Let ∆ be a linear space over the fieldF , µ and ν be a fuzzy 2-norm and anti fuzzy
2-norm, respectively, such that ν(u, v, p) + µ(u, v, p) ≤ 1, τ is a continuous t−representable, and

ρµ,ν : ∆× ∆×R→ Υ∗

ρµ,ν(u, v, p) = (µ(u, v, p), ν(u, v, p))

is a function satisfying the following condition for all u, v, w ∈ ∆, p, q ∈ R and α ∈ F
(P1) ρµ,ν(u, v, p) = (0, 1) = 0Υ∗ for all p ≤ 0.
(P2) ρµ,ν(u, v, p) = (1, 0) = 1Υ∗ if and only if u, v are linearly dependent for all p > 0.

(P3) ρµ,ν(αu, v, p) = ρµ,ν

(
u, v, p

|α|
)

for all p > 0 and α 6= 0.

(P4) ρµ,ν(u, v, p) is invariant under any permutation of u, v.
(P5) ρµ,ν(u + w, v, p + q) ≥Υ∗ τ

(
ρµ,ν(u, v, p), ρµ,ν(w, v, q)

)
for all p, q > 0.

(P6) ρµ,ν(u, v, .) is continuous and

lim
p→0

ρµ,v(u, v, p) = 0Υ∗ and lim
p→∞

ρµ,v(u, v, p) = 1Υ∗

Then ρµ,ν is said to be an intuitionistic fuzzy 2-norm on a linear space ∆, and the 3-tuple
(
∆, ρµ,ν, τ

)

is called to be an intuitionistic fuzzy 2-normed space (for short IF2NS).
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Example 3. Let (∆, ‖., .‖) be a 2-normed space,

τ(r, s) = (r1s1, min(r2 + s2, 1))

be a continuous t-representable for all r = (r1, r2), s = (s1, s2) ∈ Υ∗ and µ be a fuzzy 2-norm and
ν be an anti fuzzy 2-norm. We put

ρµ,ν(u, v, p) =
(

p
p + m‖u, v‖ ,

‖u, v‖
p + m‖u, v‖

)

for all p ∈ R+ in which m > 1. Then
(
∆, ρµ,ν, τ

)
is an IF2NS.

Definition 5 ([8]). A sequence {un} in
(
∆, ρµ,ν, τ

)
is said to be convergent to a point u ∈ ∆, if

lim
n→∞

ρµ,ν(un − u, v, p) = 1Υ∗ (v ∈ ∆)

for all p > 0.

Definition 6. In Definition (4), we replace condition (P5) with the following condition; in this
case,

(
∆, ρµ,ν, τ

)
is called to be an intuitionistic pseudo fuzzy 2-normed space.

(P5′) ρµ,ν(u + w, v, K(p + q)) ≥Υ∗ τ
(
ρµ,ν(u, v, p), ρµ,ν(w, v, q)

)

for constant K ≥ 1.

Definition 7. The intuitionistic pseudo fuzzy 2-normed space
(
∆, ρµ,ν, τ

)
is called generalized

intuitionistic P-pseudo fuzzy 2-normed space, if for all u, v ∈ ∆, p, q > 0 and 0 < P ≤ 1, the
following inequality holds.

ρµ,ν(u + w, v, P
√

p + q) ≥Υ∗ τ
(

ρµ,ν(u, v, P√t), ρµ,ν(w, v, P
√

s)
)

Example 4. Let (∆, ‖., .‖) be a 2-normed space with conditions of Example (3); we define

ρµ,ν(u, v, p) =
(

p
p + m‖u, v‖ ,

‖u, v‖
p + m‖u, v‖

)
,

then
(
∆, ρµ,ν, τ

)
is a generalized intuitionistic P-pseudo fuzzy 2-normed space.

It follows from (P2) and (P5′) that in a generalized intuitionistic P-pseudo fuzzy
2-normed space

(
∆, ρµ,ν, τ

)
for all q > p > 0 and u, v ∈ ∆, we have

ρµ,ν(u, v, q) = ρµ,ν(u + 0, v, P
√

pP + (qP − pP)) ≥Υ∗ (2)

τ{ρµ,ν(u, v, p), ρµ,ν(0, v, P
√

qP − pP)} = ρµ,ν(u, v, p).

Therefore, ρµ,ν(u, v, .) is a non-decreasing function on R+ for all u, v ∈ ∆. Next, we present
the following concepts of convergence and Cauchy sequences in a generalized intuitionistic
P-pseudo fuzzy 2-normed space

(
∆, ρµ,ν, τ

)
.

Definition 8. A sequence {un} in ∆ is said to be convergent if there exists u ∈ ∆ such that

lim
n→∞

ρµ,ν(un − u, v, p) = 1Υ∗ (v ∈ ∆)

for all p > 0. In this case, we write

un
ρµ,ν−→ u or u := ρµ,ν − lim

n→∞
un.
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Definition 9. A sequence {un} in ∆ is called to be Cauchy sequence, if for each 0 < ε < 1 and
p > 0 there exists n0 ∈ N, such that

ρµ,ν(un − um, v, p) ≥Υ∗ (1− ε, ε) (n, m ≥ n0) (v ∈ ∆)

If any Cauchy sequence is convergent, then generalized intuitionistic P-pseudo fuzzy 2-
normed space

(
∆, ρµ,ν, τ

)
is said to be complete and the complete generalized intuitionistic

P-pseudo fuzzy 2-normed space is said to be a Banach generalized intuitionistic P-pseudo
fuzzy 2-normed space.

2.2. Stability of m-Mapping in Generalized Intuitionistic P-Pseudo Fuzzy 2-Normed Space

In this section, using the fixed point theorem, we investigate the stability of m-mapping
in a generalized intuitionistic P-pseudo fuzzy 2-normed space. We suppose that 0 < P ≤ 1
and Q = 1

P , ∆ is a real vector space, (Θ, ρµ,ν, τ) and is a Banach generalized intuitionistic
P-pseudo fuzzy 2-normed space and (χ, ρ′µ,ν, τ′) is generalized intuitionistic P-pseudo
fuzzy 2-normed space. Furthermore, let f : ∆→ Θ be a mapping. We define

Dm f (u, v) := f (ru + v)+ f (ru− v)− rm−2[ f (u + v) + f (u− v)]

−2
(

r2 − 1
)[

rm−2 f (u) +
(m− 2)

(
1− (m− 2)2)

6
f (v)

]
(3)

for all u, v ∈ ∆, fixed integer number r 6= 0,±1 and 0 < m < 5.

Theorem 2. Let ϕm, ψm : ∆× ∆→ χ be two functions such that for all u, v ∈ ∆ and p > 0, the
following relations are satisfied,

ρ′µ,ν(ϕm(ru, rv), ψm(ru, rv), p) ≥Υ∗ ρ′µ,ν
(

ϕm(u, v), ψm(u, v), p
α

)
(4)

moreover,
lim

n→∞

(
ϕm(rnu, rnu), ψm(rnu, rnu), rmn p

2αn

)
= 1, (5)

where α > 0 and α2 < rm. Let ξ : ∆→ Θ be a function so that

ξ(ru) = 1
α ξ(u), (6)

for all u ∈ ∆ and, f : ∆→ Θ be a mapping such that,

ρµ,ν(Dm f (u, v), ξ(u), p + q) ≥Υ∗ τ′
{

ρ′µ,ν(ϕm(u, u), ψm(u, u), p),

ρ′µ,ν(ϕm(v, v), ψm(v, v), q)
}

. (7)

Then there exists a unique m-mapping F : ∆→ Θ such as that satisfied in (1), and

ρµ,ν( f (u)− F(u), ξ(u), p) ≥ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), (rmP − α2P)Q

)
(8)

Proof. Putting v = 0 and p = q in (7), we have

ρµ,ν(2 f (ru)− 2rm f (u), ξ(u), 2p) ≥Υ∗ τ′
[
ρ′µ,ν(ϕm(u, u), ψm(u, u), p), 1

]
(9)

= ρ′µ,ν(ϕm(u, u), ψm(u, u), p),

therefore,

ρµ,ν( f (ru)− rm f (u), ξ(u), p) ≥Υ∗ ρ′µ,ν(ϕm(u, u), ψm(u, u), p). (10)
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Now, we define the set S and the function d on it as follows

S := {g : g : ∆→ Θ, g(0) = 0}

d(g, h) := inf
{

δ ∈ R+ | ρµ,ν
(

g(u)− h(u), ξ(u), δQt
)
≥Υ∗

ρ′µ,ν(ϕm(u, u), ψm(u, u), p), ∀u ∈ ∆ , ∀p > 0
}

, (11)

where inf ∅ = +∞. The following shows that (S , d) is a complete generalized metric space.

(1) It is obvious that d has a symmetry property, i.e., d(g, h) = d(h, g).
(2) Using Definition (11), we have

d(g, g) := inf
{

δ ∈ R+ | ρµ,ν
(

g(u)− g(u), ξ(u), δQ p
)

︸ ︷︷ ︸
=1Υ∗

≥Υ∗

ρ′µ,ν(ϕm(u, u), ψm(u, u), p), ∀u ∈ ∆ , ∀p > 0
}

(12)

The right side of the above definition is satisfied for every δ ∈ R+, then d(g, g) = 0.
(3) Let d(g, h) = 0, using the definition of d, the following inequality holds, for every

constant u and p > 0.

ρµ,ν
(

g(u)− h(u), ξ(u), p
)
≥Υ∗ ρ′µ,ν

(
ϕm(u, u), ψm(u, u),

p
δQ

)
.

As δ→ 0, by (P6), we have

ρµ,ν
(

g(u)− h(u), ξ(u), p
)
≥Υ∗ 1⇒ g(u) = h(u),

for all u ∈ ∆ and p > 0.
(4) Triangular inequality: Let g, h, j ∈ S such that d(g, h) ≤ η1 and d(j, h) ≤ η2. Using (7),

we have

ρµ,ν
(

g(u)− h(u), ξ(u), ηQ
1 p
)
≥Υ∗ ρµ,ν

(
g(u)− h(u), ξ(u), δQ p

)
(13)

≥Υ∗ ρ′µ,ν(ϕm(u, u), ψm(u, u), p)

and

ρµ,ν
(
h(u)− j(u), ξ(u), ηQ

1 p
)
≥Υ∗ ρµ,ν

(
h(u)− j(u), ξ(u), δQ p

)
(14)

≥Υ∗ ρ′µ,ν(ϕm(u, u), ψm(u, u), p).

Therefore, for all u ∈ ∆ and p > 0, we obtain

ρµ,ν
(

g(u)− j(u), ξ(u), (η1 + η2)
Q p
)
= ρµ,ν

(
g(u)− j(u), ξ(u), P

√
(η1 + η2)pP)

≥L∗ τ

(
ρµ,ν

(
g(u)− j(u), ξ(u), P

√
η1 pP

)
, ρµ,ν

(
g(u)− j(u), ξ(u), P

√
η2 pP

))

= τ

(
ρµ,ν

(
g(u)− j(u), ξ(u), P

√
η1 p
)
, ρµ,ν

(
g(u)− j(u), ξ(u), P

√
η2 p
))

≥ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
,
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by (11), we have

d(g, j) ≤ η1 + η2 ⇒ d(g, j) ≤ d(g, h) + d(h, j), (15)

that is, the property of triangular inequality holds, then d is a generalized metric on S .
Next, we show that (S , d) is a complete generalized metric space. For this, we prove that
every Cauchy sequence {gn} in S is convergent to g ∈ S . Let u ∈ ∆ be fixed and ε > 0,
ε ∈ (0, 1) and p > 0 be given, such that

ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
> 1− ε.

Since {gn} is a Cauchy sequence in S for δQ < ε
p there exists n0 ∈ N such that

d(gn, gm) <
ε
p ∀n, m ≥ n0,

therefore, we have

ρµ,ν

(
gn(u)− gm(u), ξ(u), ε

)
≥Υ∗ ρµ,ν

(
gn(u)− gm(u), ξ(u), δQ p

)

≥Υ∗ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
> 1− ε. (16)

Hence, the sequence {gn(u)} is a Cauchy sequence in Θ since Θ is a Banach space, so
{gn(u)} is a convergent sequence. It means that there exists g : ∆→ Θ such that

lim
n→∞

gn(u) = g(u).

It is enough to show that g ∈ S . Assume that α, β > 0 be given. There is n0 ∈ N such that
the following inequality holds for all n ≥ n0 and m > 0 .

ρµ,ν

(
gn(u)− gn+m(u), ξ(u), αQ p

)
≥Υ∗ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
.

Fix n ≥ n0 and p > 0, we have

ρµ,ν
(

gn(u)− gn+m(u), ξ(u), (α + β)Q p
)

= ρµ,ν
(

gn(u)− gn+m(u), ξ(u), P
√
(α + β)pP

)

≥Υ∗ τ

[
ρµ,ν

(
gn(u)− gn+m(u), ξ(u), αQ p

)
, ρµ,ν

(
gn+m(u)− g(u), ξ(u), βQ p

)]

≥Υ∗ τ

[
ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
, ρµ,ν

(
gn+m(u)− g(u), ξ(u), βQ p

)]
.

By passing m→ ∞, so

ρµ,ν
(

gn(u)− gn+m(u), ξ(u), (α + β)Q p
)
≥Υ∗ τ

[
ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
, 1
]

= ρ′µ,ν
(

ϕm(u, u), ψm(u, u), p
)
. (17)

By (11), we can deduce that g ∈ S . Hence, (S , d) is a complete generalized metric space.
Next, we define the mapping Z : S → S by

Zg(u) :=
1

rm g(ru), ∀g ∈ S , u ∈ ∆.
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Assume that g, h ∈ S , such that d(g, h) < δ, where δ ∈ (0, ∞) is an arbitrary constant. Then,
by (11) we obtain

ρµ,ν
(

g(u)− h(u), ξ(u), δQ p
)
≥Υ∗ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), p

)
, ∀u ∈ ∆, p > 0. (18)

Replacing ru by u in (18), we have

ρµ,ν
(

g(ru)− h(ru), ξ(ru), δQ p
)
≥Υ∗ ρ′µ,ν

(
ϕm(ru, ru), ψm(ru, ru), p

)
. (19)

Therefore, using (P3) and Definition (6), we have

ρµ,ν

(
1

rm g(ru)− 1
rm h(ru),

1
α

ξ(u),
δQ p
rm

)
≥Υ∗ ρ′µ,ν(ϕm(ru, ru), ψm(ru, ru), p). (20)

It means that

ρµ,ν

(
Zg(u)−Zh(u), ξ(u),

α

rm δQ p
)
≥Υ∗ ρ′µ,ν(ϕm(ru, ru), ψm(ru, ru), p)

≥Υ∗ ρ′µ,ν

(
ϕm(u, u), ψm(u, u),

p
α

)
. (21)

Hence,

ρµ,ν

(
Zg(u)−Zh(u), ξ(u),

α2

rm δQ p
)
≥Υ∗ ρ′µ,ν(ϕm(u, u), ψm(u, u), p). (22)

Therefore, by (11), we have

d(Zg,Zh) ≤
(

α2

rm

)P

δ.

It means that Z is a strictly contractive self-mapping on S with the Lipschitz constant

L =
(

α2

rm

)P
< 1.

Moreover, by (10), we obtain

d( f ,Z f ) ≤
(

1
rm

)P
.

It follows from (1) that the {Zn f } converges to a fixed point F of Z . Therefore,

F :∆→ Θ (23)

F(u) := ρµ,ν − lim
n→∞
Zn f (u) = lim

n→∞

1
rmn f (rnu),

for all u ∈ ∆ and p > 0. Furthermore,

F(ru) = rmF(u). (24)

Also, F is the unique fixed point of Z in the set S∗ = {g ∈ S : d( f , g) < ∞}. Hence, there
exists a δ ∈ R+ such that

ρµ,ν

(
g(u)− f (u), ξ(u), δQ p

)
≥Υ∗ ρ′µ,ν

(
ϕm(u, u), ψm(u, u),

p
α

)
(25)

for all u ∈ ∆ and p > 0. Furthermore,

d( f , F) ≤ 1
1− L

d( f ,Z f ) ≤ 1
rmP − α2P .
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It means that (8) holds. It is enough to show that F satisfies (1). Putting p = q, v := rnv and
u := rnu in (7), we obtain

ρµ,ν(Dm f (rnu, rnv), ξ(rnu), 2p) ≥Υ∗

τ′
{

ρ′µ,ν(ϕm(rnu, rnu), ψm(rnu, rnu), p), (26)

ρ′µ,ν(ϕm(rnv, rnv), ψm(rnv, rnv), p)
}

.

According to (P3), we have

ρµ,ν

(
1

rmn Dm f (rnu, rnv),ξ(u), p
)
≥L∗

τ′
{

ρ′µ,ν

(
ϕm(rnu, rnu), ψm(rnu, rnu),

rmn p
2αn

)
,

ρ′µ,ν

(
ϕm(rnv, rnv), ψm(rnv, rnv),

rmn p
2αn

)}
. (27)

By letting n→ ∞ and using (5) and (23), we have

ρµ,ν(DmF(u, v), ξ(u), p) ≥Υ∗ 1
(P2)−→ DmF(u, v) = 0, ∀u, v ∈ ∆, p > 0.

Thus, F satisfies (3) and as a result, F is an m−mapping.

Corollary 1. Let α be a real positive number with α > rm, such that the mappings ϕm, ψm:
∆× ∆→ χ satisfy in the following inequality, for all u, v ∈ ∆ and p > 0.

ρ′µ,ν

(
ϕm

(u
r

,
v
r

)
, ψm

(u
r

,
v
r

)
, p
)
≥Υ∗ ρ′µ,ν(ϕm(u, v), ψm(u, v), αp). (28)

Furthermore, suppose that ξ : ∆→ Θ is a function that satisfies

ξ(ru) =
1
α

ξ(u), (29)

for all u ∈ ∆. If f : ∆ → Θ is a mapping satisfying f (0) = 0 and the inequality (7), then there
exists a unique m−mapping F : ∆→ Θ satisfying (3) such that

ρµ,ν( f (u)− F(u), ξ(u), p) ≥ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), (αP − rmP)Q

)
(30)

for all u ∈ ∆ and p > 0.

Proof. It is similar to the proof of the above theorem.

Corollary 2. Let ϕ, ψ be functions from ∆× ∆ to χ such that for all u, v ∈ ∆ and p > 0, the
following inequality is held.

ρ′µ,ν(ϕ(u, v), ψ(u, v), p) ≥Υ∗ ρ′µ,ν(ϕ(2u, 2v), ψm(2u, 2v), 5p). (31)

Furthermore, assume that ξ : ∆→ Θ is a function satisfying

ξ(u) = 5ξ(2u), (32)
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for all u ∈ ∆. If f : ∆→ Θ is a mapping satisfying f (0) = 0 and the inequality

ρµ,ν
(

f (2x + y)+ f (2x− y)− f (x + y)− f (x− y)− 6 f (x), ξ(u), p + q
)

≥Υ∗ τ′
{

ρ′µ,ν
(

ϕ(u, u), ψ(u, u), p
)
, ρ′µ,ν

(
ϕ(v, v), ψ(v, v), q

)}
. (33)

Then there exists a unique quadratic mapping F : ∆→ Θ such that

ρµ,ν( f (u)− F(u), ξ(u), p) ≥ ρ′µ,ν

(
ϕm(u, u), ψm(u, u), (5P − 4P)Q

)
(34)

for all u ∈ ∆ and p > 0.

Proof. Putting m = r = 2 and α = 5 in the above theorem, we can easily show the
stability of quadratic functional equations in generalized intuitionistic P-pseudo fuzzy
2-normed space.

3. Conclusions

In this paper, we defined the generalized intuitionistic P-pseudo fuzzy 2-normed
space and investigated its features. Furthermore, we defined the convergent and Cauchy
sequences in this space; then, we investigated the stability of m-mapping in this space by
the fixed point method. By changing m and choosing the appropriate r, α from Theorem
2.1, we can prove the stability of the additive, cubic and quartic functional equation.
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Nonhomogeneous Dirichlet Problems with Unbounded
Coefficient in the Principal Part
Dumitru Motreanu

Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France; motreanu@univ-perp.fr

Abstract: The main result of the paper establishes the existence of a bounded weak solution for
a nonlinear Dirichlet problem exhibiting full dependence on the solution u and its gradient ∇u
in the reaction term, which is driven by a p-Laplacian-type operator with a coefficient G(u) that
can be unbounded. Through a special Moser iteration procedure, it is shown that the solution set
is uniformly bounded. A truncated problem is formulated that drops that G(u) be unbounded.
The existence of a bounded weak solution to the truncated problem is proven via the theory of
pseudomonotone operators. It is noted that the bound of the solution for the truncated problem
coincides with the uniform bound of the original problem. This estimate allows us to deduce that for
an appropriate choice of truncation, one actually resolves the original problem.

Keywords: p-Laplacian with unbounded coefficient; convection term; truncated problem; uniform
bound; weak solution; pseudomonotone operator

MSC: 35J70; 35J92; 47H30

1. Introduction

In this paper, we study the following Dirichlet problem:
{ −div(G(u)|∇u|p−2∇u) = F(x, u,∇u) in Ω

u = 0 on ∂Ω
(1)

on a bounded domain Ω in RN with a Lipschitz boundary ∂Ω. In (1) we have a continuous
function G : R → [a0,+∞), with a0 > 0, a number p ∈ (1,+∞) with N > p, and a
Carathéodory function F : Ω×R×RN → R (i.e., F(·, t, ξ) is measurable on Ω for each
(t, ξ) ∈ R×RN and F(x, ·, ·) is continuous on R×RN for almost all x ∈ Ω). The notation
∇u stands for the gradient of u in the distributional sense. It is seen that the driving operator
in Equation (1) is the p-Laplacian with a coefficient G(u) depending on the solution u. The
notation G(u) in Equation (1) means the composition of the functions G : R → R and
u : Ω → R, that is, G(u)(x) = G(u(x)) for x ∈ Ω. The main point is that G(u) can be
unbounded from above, which does not permit to apply any standard method. It is also
worth mentioning that problem (1) is not in variational form.

The space underlying the Dirichlet problem (1) is the Banach space W1,p
0 (Ω) endowed

with the norm

‖u‖ :=
(∫

Ω
|∇u(x)|pdx

) 1
p
, ∀u ∈W1,p

0 (Ω).

The dual space of W1,p
0 (Ω) is denoted W−1,p′(Ω). Since it was supposed that N > p,

the critical Sobolev exponent is p∗ = Np/(N − p). Refer to [1] for the background related
to the space W1,p

0 (Ω).
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The (negative) p-Laplacian is the nonlinear operator −∆p : W1,p
0 (Ω) → W−1,p′(Ω)

(linear for p = 2) defined by

〈−∆p(u), v〉 :=
∫

Ω
|∇u|p−2∇u∇vdx, ∀u, v ∈W1,p

0 (Ω). (2)

Due to the unbounded function G(u), one cannot build a definition as in (2) corre-
sponding to the term −div(G(u)|∇u|p−2∇u) in (1). A major tool in our arguments is the
first eigenvalue λ1 of −∆p, which is positive and isolated in the spectrum of −∆p, and is
given by

λ1 := inf
u∈W1,p

0 (Ω), u 6=0

∫
Ω |∇u|pdx∫

Ω |u|pdx
. (3)

For the the rest of the paper, in order to simplify the notation we make the notational
convention that for any real number r > 1 we denote r′ := r/(r− 1) (the Hölder conjugate
of r).

The Carathéodory function F : Ω × R × RN → R determining the reaction term
F(x, u,∇u) is subject to the following hypotheses.

Hypothesis 1 (H1). There exist constants c1 ≥ 0, c2 ≥ 0, c3 ≥ 0, and r ∈ (p, p∗) such that

|F(x, t, ξ)| ≤ c1|ξ|
p
r′ + c2|t|r−1 + c3 for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN .

Hypothesis 2 (H2). There exist constants d1 ≥ 0 and d2 ≥ 0 with d1 + λ−1
1 d2 < a0, and a

function σ ∈ L1(Ω) such that

F(x, t, ξ)t ≤ d1|ξ|p + d2|t|p + σ(x) for a.e. x ∈ Ω, ∀t ∈ R, ∀ξ ∈ RN ,

where λ1 denotes the first eigenvalue of −∆p.

The main result of this paper is stated as follows.

Theorem 1. Assume that G : R → [a0,+∞), with a0 > 0, is a continuous function and
F : Ω×R×RN → R is a Carathéodory function satisfying the conditions (H1) and (H2). Then
problem (1) has at least a bounded weak solution u ∈W1,p

0 (Ω) in the following sense:
∫

Ω
G(u)|∇u|p−2∇u∇vdx =

∫

Ω
F(x, u,∇u)vdx, ∀v ∈W1,p

0 (Ω). (4)

Under hypothesis (H1), the integrals in (4) exist. The proof of Theorem 1 is presented
in Section 3. In order to see the effective applicability of Theorem 1, we provide an example.

Example 1. On a bounded domain Ω in RN with a Lipschitz boundary ∂Ω, we state the Dirichlet
problem

{
−div(eu2 |∇u|p−2∇u) = b1|u|p−2u + b2

u
u2+1 |∇u| p(r−1)

r in Ω
u = 0 on ∂Ω,

(5)

with constants p ∈ (1,+∞), r ∈ (p, p∗), b1 ≥ 0, b2 ≥ 0, provided that N > p and 1 >
b2 + λ−1

1 b1, where λ1 is given by (3). We readily check that (5) fits into the framework of problem
(1) taking G(t) = et2

for all t ∈ R and

F(x, t, ξ) = b1|t|p−2t + b2
t

t2 + 1
|ξ|

p(r−1)
r , ∀(x, t, ξ) ∈ Ω×R× ∈ RN .
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Indeed, one has G(t) ≥ a0 := 1 for all t ∈ R,

|F(x, t, ξ)| ≤ b1(|t|r−1 + 1) + b2|ξ|
p
r′ , ∀(x, t, ξ) ∈ Ω×R×RN ,

F(x, t, ξ)t ≤ b1|t|p + b2(|ξ|p + 1), ∀(x, t, ξ) ∈ Ω×R× ∈ RN .

Assumption (H1) is verified with c1 = b2, c2 = c3 = b1, while assumption (H2) holds with
d1 = b2, d2 = b1, σ(x) ≡ b2. Theorem 1 applies because a0 > d1 + λ−1

1 d2.

The inspiration for the present work comes from the recent paper [2] that deals with
the Dirichlet problem

{ −div(a(x)g(|u|)|∇u|p−2∇u) = f (x, u,∇u) in Ω
u = 0 on ∂Ω

(6)

for a positive a ∈ L1
loc(Ω), a continuous function g : [0,+∞)→ [a0,+∞), with a0 > 0, and

a Carathéodory function f : Ω×R×RN → R. The standing point in that work was to
use the theory of weighted Sobolev spaces in [3] (see also [4]) with the weight a ∈ L1

loc(Ω)
requiring the condition

a−s ∈ L1(Ω) for some s ∈
(

N
p

,+∞
)
∩
[

1
p− 1

,+∞
)

.

If we consider our problem (1) as a particular case of (6) taking a(x) ≡ 1 on Ω and
apply the result in [2], the issue is that one obtains a solution of (1) belonging to the space
W1,ps

0 (Ω) with

ps =
ps

s + 1
. (7)

and not to the space W1,p
0 (Ω) as it would be natural according to the statement of (1). In this

respect, by (7) we note that ps < p, so W1,p
0 (Ω) is strictly contained in W1,ps

0 (Ω). Moreover,
the assumptions admitted therein for the reaction f (x, u,∇u) in (6) are more restrictive than
here because they are formulated in terms of ps corresponding to some s and not with p as
in conditions (H1)–(H2) for F(x, u,∇u). All of this shows that the treatment in [2] does not
provide the right approach to obtain Theorem 1. For this reason, we develop a direct study
for problem (1) relying just on the classical Sobolev space W1,p

0 (Ω). The present paper is
the first work studying problem (1) with unbounded coefficient G(u) in the Soboleev space
W1,p

0 (Ω). Certainly, we use some previous ideas but with substantial modifications and in
a different functional setting. The technique relies on truncation, which is needed because
the coefficient G(u) in the principal part of Equation (1) is unbounded. Other important
tools in our study are a special version of Moser iteration and the surjectivity theorem for
pseudomonotone operators.

We mention a few relevant works in the area of our paper. A large amount of results
in the field is based on variational smooth or nonsmooth methods for which we refer to the
recent publications [5–7]. They cannot be applied to problem (1) taking into account the
lack of variational structure. Nonvariational problems with convection terms have been
investigated in recent years through theoretic operator techniques, sub-supersolution and
approximation (see, e.g., [8–12]). The main point in these works lies in the dependence
of the reaction term with respect to the gradient of the solution without weakening the
ellipticity condition of the driving operator. In this connection, we also cite papers dealing
with the equations and inclusions driven by the (p, q)-Laplacian operators, such as, for
instance [13,14]. As an extension of this setting, the paper [15] deals with degenerate
(p, q)-Laplacian problems, but without dependence on the solution u in the principal part
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of the equation. An advance in this direction is ref. [2], where there is dependence on
solution u in the principal part of the equation of type (6) subject to a weight a(x). Here,
we drop the dependence on weight a(x) and allow to have a unbounded coefficient G(u)
in problem (1).

Regarding the rest of the paper, Section 2 focuses on the bounded solutions to problem
(1), and Section 3 contains the proof of Theorem 1.

2. Bounded Solutions to Problem (1)

Our first goal is to estimate the solutions in W1,p
0 (Ω).

Lemma 1. Assume that condition (H2) holds. Then the set of solutions to problem (1) is bounded
in W1,p

0 (Ω) with a bound that depends on function G only through the lower bound a0 of G.

Proof. Let u ∈W1,p
0 (Ω) be a solution of (1). Inserting v = u in (4) yields

∫

Ω
G(u)|∇u|pdx =

∫

Ω
F(x, u,∇u)udx.

Invoking hypothesis (H2) and (3), we arrive at

a0‖u‖p ≤ (d1 + d2λ−1
1 )‖u‖p + ‖σ‖L1(Ω).

Since by hypothesis d1 + d2λ−1
1 < a0, the stated result is true.

We are now able to find a uniform bound for the solutions of (1).

Theorem 2. Assume that conditions (H1) and (H2) are satisfied. Then the solution set of problem
(1) is uniformly bounded, that is, there exists a constant C > 0 such that ‖u‖L∞(Ω) ≤ C for every

weak solution u ∈ W1,p
0 (Ω) to problem (1). The dependence of the uniform bound C on the data

in problem (1) and hypotheses (H1) and (H2) is indicated as C = C(N, p, Ω, a0, c1, c2, c3, d1, d2,
‖σ‖L1(Ω)). In particular, the uniform bound C depends on G only through its lower bound a0.

Proof. Given a weak solution u ∈ W1,p
0 (Ω) to problem (1), we have the representation

u = u+ − u− with u+ = max{u, 0} (the positive part of u) and u− = max{−u, 0} (the
negative part of u). We prove the uniform boundedness separately for u+ and u−. We only
give the proof for u+, noting that we can argue similarly in the case of u−.

We proceed by using in (4) the test function v = u+ukp
h ∈ W1,p

0 (Ω), where uh :=

min{u+, h} with arbitrary constants h > 0 and k > 0. The fact that v ∈ W1,p
0 (Ω) follows

from u ∈ Lp(Ω) and uh is bounded, while the distributional partial derivatives

∂v
∂xi

= ukp
h

∂u+

∂xi
+ kpukp−1

h u+ ∂uh
∂xi

, ∀i = 1, · · · , N,

belong to Lp(Ω) because u, ∂uh/∂xi ∈ Lp(Ω) and uh is bounded. This gives
∫

Ω
G(u)|∇u|p−2∇u∇(u+ukp

h )dx =
∫

Ω
F(x, u,∇u)u+ukp

h dx. (8)
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The left-hand side of (8) can be estimated as follows:
∫

Ω
G(u)|∇u|p−2∇u∇(u+ukp

h )dx

=
∫

Ω
G(u)|∇u|p−2∇u(ukp

h ∇(u+) + kpu+ukp−1
h ∇(uh))dx (9)

≥ a0

[∫

Ω
ukp

h |∇(u+)|pdx + kp
∫

{0<u<h}
ukp

h |∇(u+)|pdx
]

.

For the right-hand side of (8), by hypothesis (H1), we obtain
∫

Ω
F(x, u,∇u)u+ukp

h dx (10)

≤ c1

∫

Ω
|∇u|

p
r′ ukp

h u+dx + c2

∫

Ω
|u|r−1ukp

h u+dx + c3

∫

Ω
ukp

h u+dx.

By Young’s inequality, for each ε > 0 there is a constant c(ε) > 0 such that

c1

∫

Ω
|∇u|

p
r′ ukp

h u+dx = c1

∫

Ω
(|∇(u+)|

p
r′ u

kp
r′
h )(u

kp
r

h u+)dx (11)

≤ ε
∫

Ω
ukp

h |∇(u+)|pdx + c(ε)
∫

Ω
ukp

h (u+)rdx.

It is clear that
∫

Ω
|u|r−1ukp

h u+dx =
∫

Ω
ukp

h (u+)rdx (12)

and, since r > 1 and uh ≤ u+,
∫

Ω
ukp

h u+dx =
∫

{u+≥1}
ukp

h u+dx +
∫

{u+<1}
ukp

h u+dx (13)

≤
∫

Ω
ukp

h (u+)rdx + |Ω|,

where |Ω| denotes the Lebesgue measure of Ω.
If ε > 0 is sufficiently small, we deduce from (8), in conjunction with (9), (10), (11),

(12), and (13) that
∫

Ω
ukp

h |∇(u+)|pdx + kp
∫

{0<u<h}
ukp

h |∇(u+)|pdx (14)

≤ b
(∫

Ω
ukp

h (u+)rdx + 1
)

,

with a constant b > 0. The last integral exists because r < p∗.
On the other hand, by Bernoulli’s inequality and since uh = u+ on {0 < u < h}, we

derive ∫

Ω
ukp

h |∇(u+)|pdx + kp
∫

{0<u<h}
ukp

h |∇(u+)|pdx

=
∫

{u≥h}
|∇(uk

hu+)|pdx +
∫

{u<h}
|∇(uk

hu+)|pdx +
kp

(k + 1)p

∫

{0<u<h}
|∇(uk

hu+)|pdx

=
∫

{u≥h}
|∇(uk

hu+)|pdx +
kp + 1
(k + 1)p

∫

{0<u<h}
|∇(uk

hu+)|pdx (15)

≥ kp + 1
(k + 1)p

∫

Ω
|∇(uk

hu+)|pdx.
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Combining (14) and (15) leads to

kp + 1
(k + 1)p

∫

Ω
|∇(uk

hu+)|pdx ≤ b
(∫

Ω
ukp

h (u+)rdx + 1
)

. (16)

At this point, we choose q ∈ (p, r) with

(r− p)q
q− p

< p∗. (17)

The validity of such a choice holds in view of p < r < p∗ as postulated in condition
(H1). Then (17), the Sobolev embedding theorem, Hölder’s inequality with (q− p)/q +
p/q = 1, and Lemma 1 imply

∫

Ω
ukp

h (u+)rdx =
∫

Ω
(u+)r−p(uk

hu+)pdx

≤
(∫

Ω
(u+)

(r−p)q
q−p dx

) q−p
q
(∫

Ω
(uk

hu+)qdx
) p

q
≤ K‖uk

hu+‖p
Lq(Ω)

,

with a constant K > 0.
On the basis of the previous inequality and the Sobolev embedding theorem, we obtain

from (16) that

c0
kp + 1
(k + 1)p ‖uk

hu+‖p
Lp∗ (Ω)

≤ b
(
‖(u+)k+1‖p

Lq(Ω)
+ 1
)

,

with a constant c0 > 0. Then Fatou’s lemma letting h→ +∞ entails

c0
kp + 1
(k + 1)p ‖u+‖p(k+1)

Lp∗(k+1)(Ω)
≤ b

(
‖(u+)k+1‖p

Lq(Ω)
+ 1
)

.

By some arrangements, we obtain for a constant C1 > 0 the estimate

‖u+‖L(k+1)p∗ (Ω) ≤ C
1

k+1
1 (k + 1)

1
k+1

(
‖(u+)k+1‖p

Lq(Ω)
+ 1
) 1

(k+1)p .

Noticing that the sequence (k + 1)
1√
k+1 is bounded, we find a constant C0 > 0 for

which it holds

‖u+‖L(k+1)p∗ (Ω) ≤ C
1√
k+1

0

(
‖u+‖(k+1)p

L(k+1)q(Ω)
+ 1
) 1

(k+1)p . (18)

We claim that there exists a constant C > 0 independent of the solution u to (1) such
that

‖u+‖Ld(Ω) ≤ C, ∀d ≥ 1. (19)

In the case where ‖u+‖L(k+1)q(Ω) ≤ 1 for infinitely many k, it is straightforward to show
the validity of the claim. Therefore, we may suppose that ‖u+‖L(k+1)q(Ω) > 1 for all k ≥ k0,

If ‖u+‖L(k+1)q(Ω) > 1 for all k, we see that (18) takes the form

‖u+‖L(k+1)p∗ (Ω) ≤ C
1√
k+1

1 ‖u+‖L(k+1)q(Ω), (20)
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with a constant C1 > 0. Through (20), we are able to carry on a Moser iteration, setting
inductively (kn + 1)q = (kn−1 + 1)p∗ with the initial step (k1 + 1)q = p∗. Applying
repeatedly (20), it turns out that

‖u+‖L(kn+1)p∗ (Ω) ≤ C
∑1≤i≤n

1√
ki+1

1 ‖u+‖L(k1+1)q(Ω)
, ∀n ≥ 1. (21)

The series ∑n≥1
1√

kn+1
converges because q < p∗ and kn → +∞ as n → ∞. Conse-

quently, we can obtain (19) letting n→ ∞ in (21).
It remains to handle the case when the number k0 is such that ‖u+‖L(k0+1)q(Ω)

≤ 1 and

‖u+‖L(k+1)q(Ω) > 1 for all k > k0. In this case, the Moser iteration reads as (kn + 1)q =

(kn−1 + 1)p∗ with the initial step (k1 + 1)q = k0 if k0 < p∗ and (k1 + 1)q = p∗ if k0 ≥ p∗.
In any case, we are led to (21) from which (19) can be established as before.

We can pass to the limit as d → ∞ in (19) obtaining ‖u+‖L∞(Ω) ≤ C for each weak

solution u ∈W1,p
0 (Ω) to problem (1). Analogously, we can prove that ‖u−‖L∞(Ω) ≤ C for

all weak solutions u ∈ W1,p
0 (Ω) to problem (1). Altogether, we have the uniform bound

‖u‖L∞(Ω) ≤ C for the solution set of problem (1).
A careful reading of the above proof reveals the dependence of the uniform bound

C on the data in problem (1) and on the coefficients, entering assumptions (H1) and (H2).
Precisely, we have to check how the constants b, q, K, c0, C1, and C0 arising in the proof
depend on the data given in (1), (H1), and (H2). Collecting all these renders the dependence
C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)). This completes the proof.

3. Truncation Problem and Proof of Theorem 1

The method of proof relies on the truncation of the coefficient G(u) of the p-Laplacian
in problem (1) to drop its unboundedness. This idea was used in [2] in the context of the
degenerate p-Laplacian. Specifically, for any number R > 0, we introduce the truncation

GR(t) =





G(t) if |t| ≤ R
G(R) if t > R
G(−R) if t < −R.

(22)

By (22), we obtain a continuous function GR : R → [a0,+∞). We also consider the

associated operator AR : W1,p
0 (Ω)→W−1,p′

0 (Ω) given by

〈AR(u), v〉 =
∫

Ω
GR(u)|∇u|p−2∇u∇vdx, ∀u, v ∈W1,p

0 (Ω). (23)

The notation GR(u)| in Equation (23) means the composition of the functions GR :
R → R and u : Ω → R, that is GR(u)(x) = GR(u(x)) for x ∈ Ω. The next proposition
discusses the properties of AR.

Proposition 1. The nonlinear operator AR in (23) is well defined, bounded (i.e., it maps bounded
sets into bounded sets), continuous, and satisfies the S+ property, that is, any sequence {un} ⊂
W1,p

0 (Ω) with un ⇀ u in W1,p
0 (Ω) and

lim sup
n→∞

〈AR(un), un − u〉 ≤ 0 (24)

fulfills un → u in W1,p
0 (Ω).
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Proof. The continuity of the function G combined with (22), (23), and Hölder’s inequality
ensures

|〈AR(u), v〉| ≤ max
t∈[−R,R]

G(t)‖u‖p−1‖v‖.

for all u, v ∈W1,p
0 (Ω). It follows that the operator AR is well-defined and bounded.

In order to show the continuity of AR let un → u in W1,p
0 (Ω). By the continuity of G,

(22), (23), Hölder’s inequality, and (2), we find

|〈AR(un)−AR(u), v〉|

≤
∣∣∣∣
∫

Ω
GR(un)(|∇un|p−2∇un − |∇u|p−2∇u)∇vdx

∣∣∣∣

+

∣∣∣∣
∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇vdx

∣∣∣∣

≤ max
t∈[−R,R]

G(t)|〈−∆p(un)− (−∆p(u)), v〉|

+

(∫

Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx

) p−1
p
‖v‖

for all v ∈W1,p
0 (Ω). We infer that

‖AR(un)−AR(u)‖W−1,p′ (Ω)

≤ max
t∈[−R,R]

G(t)‖ − ∆p(un)− (−∆p(u))‖W−1,p′ (Ω)

+

(∫

Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx

) p−1
p

.

The continuity of the p-Laplacian ∆p implies that −∆p(un)→ −∆p(u) in W−1,p′(Ω).
By Lebesgue’s dominated convergence theorem, we derive

lim
n→∞

∫

Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx = 0,

whence AR(un)→ AR(u) in W−1,p′(Ω), so the continuity of AR is proven.
Now we show the S+ property for the operator AR. Let a sequence {un} satisfy

un ⇀ u in W1,p(a, Ω) and (24). It is seen that

lim sup
n→∞

〈AR(un)−AR(u), un − u〉 ≤ 0. (25)

Taking into account (23) and the monotonicity of −∆p, we have

〈AR(un)−AR(u), un − u〉

=
∫

Ω
GR(un)(|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)dx

+
∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx (26)

≥ a0〈−∆p(un)− (−∆p(u)), un − u〉

+
∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx.
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We claim that

lim
n→∞

∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx = 0. (27)

To this end, by Hölder’s inequality and since the sequence {un} is bounded in W1,p
0 (Ω),

we find a constant C > 0 such that
∣∣∣∣
∫

Ω
(GR(un)− GR(u))|∇u|p−2∇u∇(un − u)dx

∣∣∣∣ (28)

≤ C
(∫

Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx

) p−1
p

.

By Lebesgue’s dominated convergence theorem, it holds

lim
n→∞

∫

Ω
|GR(un)− GR(u)|

p
p−1 |∇u|pdx = 0. (29)

This is true because GR is continuous, un → u in Lp(Ω) and there is the domination

|GR(un)− GR(u)|
p

p−1 |∇u|p ≤ 2
1

p−1 ( max
t∈[−R,R]

G(t))
p

p−1 |∇u|p ∈ L1(Ω).

Then (25), (26), (27), (28), (29), and un ⇀ u in W1,p(Ω) yield

lim
n→∞
〈−∆p(un), un − u〉 = 0. (30)

Since it holds,

‖un‖p = 〈−∆p(un), u〉+ 〈−∆p(un), un − u〉

≤ ‖un‖p−1‖u‖+ 〈−∆p(un), un − u〉,

Equation (30) results in lim supn→∞ ‖un‖ ≤ ‖u‖. Recalling that space W1,p
0 (Ω) is uniformly

convex, we conclude that un → u in W1,p
0 (Ω), which proves the S+ property of the operator

AR. The proof is thus complete.

For any R > 0 and the truncation GR in (22), let us consider the auxiliary problem



−div(GR(u)|∇u|p−2∇u) = F(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(31)

The solvability and a priori estimates for problem (31) are now studied.

Theorem 3. Assume that G : [0,+∞) → [a0,+∞) is a continuous function with a0 > 0, and
that F : Ω×R×RN → R is a Carathéodory function satisfying the conditions (H1) and (H2).
Then, for every R > 0, the auxiliary problem (31) has a weak solution uR ∈W1,p

0 (Ω) in the sense
that ∫

Ω
GR(uR)|∇uR|p−2∇uR∇vdx =

∫

Ω
F(x, uR,∇uR)vdx, ∀v ∈W1,p

0 (Ω). (32)

Moreover, the solution uR is uniformly bounded and fulfills the a priori estimate ‖uR‖L∞(Ω) ≤
C with the constant C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)) provided by Theorem 2.
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Proof. Fix an R > 0. In view of (23), equality (32) reads as

〈AR(uR), v〉 =
∫

Ω
F(x, uR,∇uR)vdx, ∀v ∈W1,p

0 (Ω). (33)

Through hypothesis (H1) and Hólder’s inequality, we find
∣∣∣∣
∫

Ω
F(x, u,∇u)vdx

∣∣∣∣ ≤
∫

Ω
|F(x, u,∇u)||v|dx

≤
∫

Ω
(c1|∇u|

p
r′ |v|+ c2|u|r−1|v|+ c3|v|)dx

≤ c1‖u‖
p
r′ ‖v‖Lr(Ω) + c2‖u‖r−1

Lr(Ω)
‖v‖Lr(Ω) + c3|Ω|

1
r′ ‖v‖Lr(Ω)

for all u ∈W1,p
0 (Ω) and v ∈ Lr(Ω). We deduce that the mapping

u ∈W1,p
0 (Ω) 7→ F(·, u(·),∇u(·)) ∈ Lr′(Ω) (34)

is well-defined and bounded. Furthermore, by Krasnoselskii’s theorem for Nemytskii
operators, the mapping in (34) is continuous from W1,p

0 (Ω) to Lr′(Ω), so continuous from
W1,p

0 (Ω) to W−1,p′(Ω) due to the continuous embedding W1,p
0 (Ω) ⊂ Lr(Ω).

Let us define the mapping BR : W1,p
0 (Ω)→W−1,p′(Ω) by

BR(u) = AR(u)− F(·, u(·),∇u(·)), ∀u ∈W1,p
0 (Ω). (35)

On account of Proposition 1 and on what was said regarding the mapping in (34), we

are entitled to assert that BR : W1,p
0 (Ω) → W−1,p′

0 (Ω) introduced in (35) is well-defined,
bounded and continuous.

The next step in the proof is to show that the mapping BR : W1,p
0 (Ω)→W−1,p′(Ω) is

a pseodomonotone operator, which means that if un ⇀ u in W1,p
0 (Ω) and

lim sup
n→∞

〈BR(un), un − u〉 ≤ 0, (36)

then

〈BR(v), u− v〉 ≤ lim inf
n→∞

〈BR(un), un − v〉 for all v ∈W1,p
0 (Ω). (37)

To this end, let {un} be a sequence as above. By the Rellich–Kondrachov theorem,
we derive from un ⇀ u in W1,p

0 (Ω) that un → u in Lr(Ω). As noted before, the sequence
{F(·, un(·),∇un(·))} is bounded in Lr′(Ω). Therefore, we have

lim
n→∞

∫

Ω
F(x, un(x),∇un(x))(un(x)− u(x))dx = 0.

Then (36) entails that (24) holds true. As Proposition 1 guarantees that AR has the S+

property, we can conclude that un → u in W1,p
0 (Ω). From here, it can be readily shown

(37) thanks to the continuity and boundedness properties stated in Proposition 1 and those
related to (34). This amounts to saying that BR is a pseudomonotone operator.

In the following, we prove that the operator BR : W1,p
0 (Ω) → W−1,p′

0 (Ω) is coercive,
that is

lim
‖u‖→∞

〈BR(u), u〉
‖u‖ = +∞. (38)
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Toward this we infer from (35), (33), (22), (3), Hölder’s inequality and hypothesis (H2)
that

〈BR(u), u〉 =
∫

Ω
GR(u)|∇u|pdx−

∫

Ω
F(x, u,∇u)udx

≥ (a0 − d1 − d2λ−1
1 )‖u‖p − ‖σ‖L1(Ω)

for all u ∈W1,p
0 (Ω). Since p > 1 and a0 − d1 − d2λ−1

1 > 0 as known from hypothesis (H2),
we confirm the validity of (38).

We showed on the reflexive Banach space W1,p
0 (Ω) that the operator BR : W1,p

0 (Ω)→
W−1,p′

0 (Ω) defined in (35) is bounded, pseudomonotone and coercive. According to the
main theorem for pseudomonotone operators (see, for example, [16], Th. 2.99), we can
conclude that the mapping BR is surjective. So, in particular, there exists uR ∈ W1,p

0 (Ω)
such that BR(uR) = 0, which is exactly (32). Therefore uR is a weak solution of auxiliary
problem (31).

Let us point out that the function G and its truncation GR take values in the same
set [a0,+∞), and function F is the same in both problems (1) and the (31). Consequently,
Theorem 2 can be applied to the auxiliary problem (31) and provides the same uniform
bound C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)) of the solution set as for the original
problem (1). This ensures that ‖uR‖L∞(Ω) ≤ C, which completes the proof.

Relying on Theorem 3, we are now able to prove Theorem 1.

Proof of Theorem 1. It was established in Theorem 2 that the solution set of problem (1)
is uniformly bounded by a constant C = C(N, p, Ω, a0, c1, c2, c3, d1, d2, ‖σ‖L1(Ω)), where a0
is a lower bound of the function G. Since the truncated function GR has the lower bound
a0 too for all R > 0 (see (22)) and the reaction term F(x, t, ξ) is unchanged in problems
(1) and (31) and is subject to the same hypotheses (H1)-(H2), Theorem 2 applies to the
truncated problem (31) and provides the same bound C for its solution set whenever R > 0.
In particular, the solution uR ∈W1,p

0 (Ω) of problem (31) provided by Theorem 3 satisfies
the estimate ‖uR‖L∞(Ω) ≤ C.

Owing to the crucial information that C is independent of R > 0, we can choose
R ≥ C. Hence, the estimate ‖uR‖L∞(Ω) ≤ C and (22) render that the functions GR and G

coincide along the values uR(x) for all x ∈ Ω. According to Theorem 3, uR ∈ W1,p
0 (Ω)

solves problem (31), and thus it becomes a bounded weak solution of the original problem
(1). The conclusion of Theorem 1 is achieved.
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Abstract: Our interest in this article is to develop oscillation conditions for solutions of higher order
differential equations and to extend recent results in the literature to differential equations of several
delays. We obtain new asymptotic properties of a class from the positive solutions of an even higher
order neutral delay differential equation. Then we use these properties to create more effective criteria
for studying oscillation. Finally, we present some special cases of the studied equation and apply the
new results to them.

Keywords: oscillatory; nonoscillatory; even-order; neutral; delay; differential equation

1. Introduction

When modeling the length of time required to accomplish some hidden activities, the
concept of delay in systems is considered as playing a crucial role. When the predator
birth rate is influenced by historical levels of predators or prey rather than only present
levels, the predator-prey model exhibits a delay. Sending measured signals to the remote
control center has been much easier because to the quick development of communication
technologies. The primary challenge for engineers, nevertheless, is the inescapable lag
between the measurement and the signal received by the controller. To minimize the
possibility of experimental instability and potential harm, this lag must be taken into
account at the design stage. Delay differential equations (DDE) appear when modeling
such phenomena, and others, see [1,2].

Many biological, chemical, and physical phenomena have mathematical models that
use differential equations of the fourth-order delay. Examples of these applications include
soil settlement and elastic issues. The oscillatory traction of a muscle, which takes place
when the muscle is subjected to an inertial force, is one model that can be modeled by
a fourth-order oscillatory equation with delay, see [3]. Heterogeneity in the Fisher-KPP
reaction term is a research topic of interest. Palencia et al. [4] studied the existence of
solutions, uniqueness, and travelling wave oscillatory properties.

Over the past few years, research has consistently focused on identifying necessary
conditions for the oscillatory and non-oscillatory features of fourth and higher-order differ-
ential equations; see for example [5–9].

Below, we review in more detail some of the works that contributed to the development
of the oscillation theory of higher order DDEs.

In 1998, Zafer [10] presented an oscillation criterion for the neutral differential equation
(NDE)

Axioms 2022, 11, 718. https://doi.org/10.3390/axioms11120718 https://www.mdpi.com/journal/axioms208
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(x(`) + p(`)x(ϑ(`)))(n) + G(`, x(`), x(h(`))) = 0, (1)

where G(`, u, v) ∈ ([0, ∞)×R×R) and vG(`, u, v) > 0 for uv > 0.
Li et al. [11] and Zhang et al. [12] created and developed criteria for oscillation of

the NDE
(x(`) + p(`)x(ϑ(`)))(n) + q(`)H(x(h(`))) = 0, (2)

The results obtained are an improvement and generalization of the results [10].
It is known that studies of the oscillatory behavior of solutions of differential equations

are classified into two types, depending on the convergence or divergence of the integration∫ `
`1

r−1/α(a)da as `→ ∞. This is a result of the effect of this influence on the behavior of the
positive solutions of the equation. In the case of equations with even orders, we find that
the divergence of this integration means that there are no positive decreasing solutions.

Baculikova and Dzurina [13] studied the asymptotic and oscillation behavior of the
solutions of the higher order delay differential equations

(
r(`)

(
x′(`)

)α
)(n−1)

+ q(`)xα(ϑ(`)) = 0, (3)

They set some oscillation conditions for (3) under the canonical condition

∫ `

`1

r−1/α(a)da→ ∞ as `→ ∞. (4)

where α is the ratio of two positive odd integers.
Sun et al. [14] studied the oscillation of NDE

(r(`)(x(`) + p(`)x(ϑ(`))))(n) + q(`) f (x(h(`))) = 0, (5)

under both the canonical condition (4) and non-canonical condition
∫ ∞

`0

1
r1/α(a)

da < ∞, (6)

where f (u)/u ≥ k > 0.
Moaaz et al. [15] investigated the oscillatory properties of NDE

(
r(`)

(
(x(`) + p(`)x(ϑ(`)))(n−1)

)α)′
+ q(`)xα(h(`)) = 0, (7)

in the noncanonical case. They derived criteria for improving conditions that exclude the
decreasing positive solutions of the considered equation.

In this study, we consider the more general neutral differential equation (NDE) of
higher order and with several delays,

d
d`

(
r(`)

(
dn−1

d`n−1 [x(`) + p(`)x(ϑ(`))]
)α
)
+

J

∑
i=1

qi(`)xα(hi(`)) = 0, ` ≥ `0, (8)

which includes many of the previous equations as special cases. We deal with the oscillatory
behavior of the solutions of Equation (8), so that we introduce new criteria that guarantee
the oscillation of all solutions of this equation in the non-canonical condition. For this, we
assume the following for n and α:

(H1) n ∈ N, n ≥ 4, and α ∈ Q+
odd := {a/b : a, b ∈ Z+ and a, b are odd}.

Moreover, r, p and qi are continuous real functions on [`0, ∞), and r is differentiable,
which satisfy the conditions:

(H2) r(`) > 0, r′(`) ≥ 0, 0 ≤ p(`) < 1 and qi(`) ≥ 0 for i = 1, 2, . . . , J.
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Furthermore, ϑ and hi are continuous delay functions on [`0, ∞) and hi is differentiable,
which satisfy the conditions:

(H3) ϑ(`) ≤ `, hi(`) ≤ `, h′i(`) > 0. and lim`→∞ ϑ(`) = lim`→∞ hi(`) = ∞ for i =
1, 2, . . . , J.

For convenience, we define the corresponding function B := x + p · (x ◦ ϑ). A solution
to Equation (8) is defined as a real differentiable function on [`x, ∞), `x ≥ `0, which satisfies
the properties B ∈ C(n−1)([`x, ∞)), r(B(n−1))α ∈ C1([`x, ∞)) and x satisfies (8) on [`x, ∞).
We will consider the eventually non-zero solutions, that is, sup{|x(`)| : ` > `∗} > 0, for
`∗ ≥ `x. A solution of (8) is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory.

This article aims to extend recent previous results from the literature (see for
example [16–19]) to differential equations with even-order and several delays, and to
develop oscillation criteria for solutions of even order differential equations. For a class of
positive solutions of NDE (8), we derive new asymptotic properties. Then, we construct
better criteria for evaluating oscillation using these properties. We then apply the new
results to a some particular cases of the equation under study.

2. Previous Results

In this part, we review some results from the literature.
Below, we review the most important results of paper [10], which studies the oscillatory

behavior of solutions to Equation (1).

Theorem 1 ([10]). Assume that ψ(`) ∈ C([`0, ∞), [0, ∞)) and that F ∈ C1([`0, ∞), [0, ∞)) such
that F′ ≥ 0,

|G(`, u, v)| ≥ ψ(`)F
( |v|
(1− p(h(`)))hn−1(`)

)
,

and ∫ ζ

`0

1
F(a)

da < ∞ for all ζ > 0.

Then, all solutions of Equation (1) are oscillatory if
∫ ∞

`0

ψ(a)da = ∞,

In the following theorem we give the oscillation condition of Equation (2).

Theorem 2 ([12]). Suppose that |H(u)| ≥ |u|, for all |u| ≥ u0 > 0. Then, all solutions of
Equation (2) are oscillatory if there is a λ ∈ (0, 1) such that the first-order DDE

Y′(`) +
λ

(n− 1)!
q(`)hn−1(`)(1− p(h(`)))Y(h(`)) = 0,

is oscillatory.

Now, we present one of the results of the oscillation of the Equation (3).

Theorem 3 ([13]). All solutions of Equation (3) are oscillatory if the first-order DDE

Y′(`) +
ααλα

(n− 2)!(n− 2 + α)α
q(`)ϑn−2+α(`)

r(ϑ(`))
Y(ϑ(`)) = 0,

is oscillatory, for some λ ∈ (0, 1).

In the following two theorems, Sun et al. [14] provide two different criteria for the
volatility of the Equation (5).
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Theorem 4 ([14]). Suppose that (4) holds and

h(`) ≤ ϑ(`), p(`) ≤ p0, ϑ′(`) ≥ ϑ0 > 0 and ϑ ◦ h = h ◦ ϑ. (9)

Then, all solutions of Equation (5) are oscillatory if

lim inf
`→∞

∫ `

ϑ−1(h(`))

hn−1(a)

r(h(a))
Q(a)da > (n− 1)!

(p0 + ϑ0)

kϑ0e
, (10)

where Q(`) = min{q(`), q(ϑ(`))}.

Theorem 5 ([14]). Suppose that (6) and (9) hold. Then, all solutions of Equation (5) are oscillatory
if (10) and

lim sup
`→∞

∫ `

`0

(
λ

(n− 2)!
ξ(a)Q(a)hn−2(a)− 1 + p0/ϑ0

4
1

r(a)ξ(a)

)
da = ∞,

for λ ∈ (0, 1), where ξ(`) :=
∫ ∞
` r−1/α(a)da.

Finally, we present one of the results that guarantees the oscillation of Equation (7) in
the non-canonical case.

Theorem 6 ([15]). Suppose that

lim sup
`→∞

∫ `

`0


q(a)

(
1− p(h(a))R0(a)

λhn−2(a)

(n− 2)!

)α

−
αα+1

(α+1)α+1

r1/α(a)R0(a)


da = ∞,

holds for some constant λ ∈ (0, 1) and

lim sup
`→∞

(
Rα

n−2(`)
∫ `

`1

q(a) p̃α(h(a))da
)
> 1.

Then all solutions of (7) are oscillatory, where

R0(`) :=
∫ ∞

`

1
r1/α(a)

da, Rn−2(`) :=
∫ ∞

`
Rn−3(a)da,

and

p̃(`) = 1− p(`)
Rn−2(ϑ(`))

Rn−2(`)
> 0.

In the next part, we review some lemmas from the literature that we will need in the
proof of our results.

Lemma 1 ([20]). Suppose that Y(`) ∈ Cm([`0, ∞),R+), Y(m)(`) is of constant sign and not iden-
tically zero on [`0, ∞). Assume also that Y(m−1)(`)Y(m)(`) ≤ 0, eventually, and limu→∞ Y(`) 6= 0.
Then, eventually,

Y(`) ≥ λ

(m− 1)!
um−1

∣∣∣Y(m−1)(`)
∣∣∣, for λ ∈ (0, 1).

Lemma 2 ([21]). Assume that $1 and $2 are real numbers, $1 > 0, then,

$1H(α+1)/α − $2H ≥ − αα

(α + 1)α+1
$α+1

2
$α

1
. (11)
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The following lemma classifies the positive solutions depending on the sign of their
derivatives, which is a modification of Lemma 1.1 in [22] for the studied equation.

Lemma 3. Suppose that x ∈ C([`0, ∞),R+) is a solution to (8). Then, B is positive, r ·
(
B(n−1)

)α

is decreasing, and B satisfies one of the following cases:

(N1) B(r)(`) > 0 for r = 1, 2, . . . , n− 1 and B(n)(`) < 0;

(N2) B(r)(`) > 0 for r = 1, 2, . . . , n− 2 and B(n−1)(`) < 0;

(N3) (−1)rB(r)(`) > 0 for r = 0, 1, 2, . . . , n− 1,

eventually.

3. Auxiliary Results

Next, we provide the following notations to help us display the results easily:

h(`) := min{hi(`), i = 1, . . . , J},

R0(`) :=
∫ ∞

`

1
r1/α(a)

da,

Rm(`) :=
∫ ∞

`
Rm−1(a)da, m = 1, 2, . . . , n− 2,

Q(`) :=
J

∑
i=1

qi(`)(1− p(hi(`)))
α

and

Q∗(`) :=
J

∑
i=1

qi(`)

(
1− p(hi(`))

Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)α

.

Further, we denote the set of all eventually positive solutions of (8) which B(`) satisfies
N2 by Ω.

Lemma 4. Assume that x ∈ Ω, then,
(

r(`)
(
B(n−1)(`)

)α)′
≤ −Q(`)Bα(h(`)).

Proof. Assume that x ∈ Ω, we find B′(`) > 0. Since ϑ(`) ≤ `,then we have x(ϑ(`)) ≤
B(ϑ(`)) ≤ B(`), therefore, we get

x(`) = B(`)− p(`)x(ϑ(`)) ≥ B(`)− p(`)B(ϑ(`))
≥ (1− p(`))B(`). (12)

From (8) and (12), we have

(
r(`)

(
B(n−1)(`)

)α)′
= −

J

∑
i=1

qi(`)xα(hi(`)) ≤ −
J

∑
i=1

qi(`)(1− p(hi(`)))
αBα(hi(`))

≤ −Bα(h(`))
J

∑
i=1

qi(`)(1− p(hi(`)))
α ≤ −Bα(h(`))Q(`). (13)

The proof of the lemma is complete.

Lemma 5. Assume that x ∈ Ω, then, B(n−2)(`)/R0(`) is increasing.

Proof. Assume that x ∈ Ω. From (8) we find that r(`)
(
B(n−1)(`)

)α
is decreasing.
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Now, since

B(n−2)(`) ≥ −
∫ ∞

`

r1/α(a)

r1/α(a)
B(n−1)(a)da ≥ −R0(`)r1/α(`)B(n−1)(`), (14)

and so
(
B(n−2)(`)

R0(`)

)′
=

1
r1/α(`)R2

0(`)

(
R0(`)r1/α(`)B(n−1)(`) + B(n−2)(`)

)
≥ 0. (15)

The proof of the lemma is complete.

Lemma 6. Assume that x ∈ Ω, and there are γ > 0 and `1 ≥ `0 such that

1
α

r1/α(`)R1+α
0 (`)

(
hn−2(`)

)α
Q(`) ≥ ((n− 2)!)αγ, (16)

then
lim
`→∞
B(n−2)(`) = 0,

where β0 = µ0γ1/α.

Proof. Assume that x ∈ Ω, using Lemma 1 with f = B and m = n− 1, we have

B(`) ≥ µ0

(n− 2)!
`n−2B(n−2)(`), (17)

for all µ0 ∈ (0, 1). Now, since B(n−2)(`) is a positive decreasing function, we conclude
that lim`→∞ B(n−2)(`) = c1 ≥ 0. We claim that c1 = 0. If not, then B(n−2)(`) ≥ c1 > 0
eventually, which with (17) gives

B(`) ≥ µ0

(n− 2)!
`n−2B(n−2)(`) ≥ µ0c1

(n− 2)!
`n−2,

for all µ0 ∈ (0, 1). Therefore, from (13), we have

(
r(`)

(
B(n−1)(`)

)α)′
≤ −Q(`)Bα(h(`)) ≤ −

(
µ0c1

(n− 2)!
hn−2(`)

)α

Q(`)

≤ −µα
0cα

1

(
hn−2(`)

)α

((n− 2)!)α Q(`),

which with (16) becomes

(
r(`)

(
B(n−1)(`)

)α)′
≤ −αcα

1µα
0γ

1
r1/α(`)R1+α

0 (`)
≤ −αcα

1 βα
0

1
r1/α(`)R1+α

0 (`)
. (18)

Integrating (18) from `2 to `, we have

r(`)
(
B(n−1)(`)

)α
≤ r(`2)

(
B(n−1)(`2)

)α
− αcα

1 βα
0

∫ `

`2

1
r1/α(a)R1+α

0 (a)
da

≤ βα
0cα

1

(
1

Rα
0(`2)

− 1
Rα

0(`)

)
. (19)
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Since R−α
0 (`)→ ∞ as `→ ∞, there is a `3 ≥ `2 such that R−α

0 (`)− R−α
0 (`2) ≥ εR−α

0 (`)
for all ε ∈ (0, 1). Therefore, (19) becomes

B(n−1)(`) ≤ −c1ε1/αβ0
1

r1/α(`)R0(`)
, (20)

for all ` ≥ `3. Integrating (20) from `3 to `, we have

B(n−2)(`) ≤ B(n−2)(`3)− c1ε1/αβ0

∫ `

`3

1
r1/α(a)R0(a)

da

≤ B(n−2)(`3)− c1ε1/αβ0 ln
R0(`3)

R0(`)
→ −∞ as `→ ∞,

which is a contradiction. Then, c1 = 0. The proof of the lemma is complete.

Lemma 7. Assume that x ∈ Ω, and (16) holds, then

B(n−2)(`)/Rβ0
0 (`) is decreasing (21)

and
B(n−2)(`)/R1−β0

0 (`) is increasing (22)

for ` ≥ `0, where β0 = µ0γ1/α, µ0 ∈ (0, 1) and α ≤ 1.

Proof. Assume that x ∈ Ω, from (13), (16) and (17), we obtain

(
r(`)

(
B(n−1)(`)

)α)′
≤ − αβα

0

r1/α(`)R1+α
0 (`)

(
B(n−2)(h(`))

)α
. (23)

By integrating (23) from `1 to ` and using the fact B(n−1)(`) < 0, we have

r(`)
(
B(n−1)(`)

)α
≤ r(`1)

(
B(n−1)(`1)

)α
− αβα

0

∫ `

`1

1
r1/α(a)R1+α

0 (a)

(
B(n−2)(h(a))

)α
da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

(
B(n−2)(`)

)α
∫ `

`1

1
r1/α(a)R1+α

0 (a)
da

≤ r(`1)
(
B(n−1)(`1)

)α
+

βα
0

Rα
0(`1)

(
B(n−2)(`)

)α
− βα

0
Rα

0(`)

(
B(n−2)(`)

)α
.

Since B(n−2)(`)→ 0 as `→ ∞ there is a `2 ≥ `1 such that

r(`1)
(
B(n−1)(`1)

)α
+

βα
0

Rα
0(`1)

(
B(n−2)(`)

)α
≤ 0,

for ` ≥ `2. Therefore, we get

r(`)
(
B(n−1)(`)

)α
≤ − βα

0
Rα

0(`)

(
B(n−2)(`)

)α
,

and so
r1/α(`)B(n−1)(`)R0(`) + β0B(n−2)(`) ≤ 0, (24)

then (
B(n−2)(`)

Rβ0
0 (`)

)′
=

R0(`)r1/α(`)B(n−1)(`) + β0B(n−2)(`)

r1/α(`)R1+β0
0 (`)

≤ 0.

Now, from (13), (16), (17) and (24), we obtain
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(
r(`)

(
B(n−1)(`)

)α)′
≤ −

(
µ0

(n− 2)!
hn−2(`)

)α

Q(`)
(
B(n−2)(h(`))

)α

≤ −αβα
0

1
r1/α(`)R1+α

0 (`)

(
B(n−2)(h(`))

)α
(25)

and

r1/α(`)B(n−1)(`) ≤ −β0
B(n−2)(`)

R0(`)
,

and so
(

r1/α(`)B(n−1)(`)
)1−α

≥
(

β0
B(n−2)(`)

R0(`)

)1−α

, (26)

Now, we find
(

r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`)
)′

=
(

r1/α(`)B(n−1)(`)
)′

R0(`)−B(n−1)(`) + B(n−1)(`)

=
(

r1/α(`)B(n−1)(`)
)′

R0(`)

=
1
α

(
r(`)

(
B(n−1)(`)

)α)′(
r1/α(`)B(n−1)(`)

)1−α
R0(`),

from (25) and (26), we get

(
r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`)

)′
≤ −βα

0

(
B(n−2)(h(`))

)α

r1/α(`)R1+α
0 (`)

(
β0
B(n−2)(`)

R0(`)

)1−α

R0(`)

≤ −βα
0

(
B(n−2)(`)

)α

r1/α(`)Rα
0(`)

(
β0
B(n−2)(`)

R0(`)

)1−α

≤ −β0

r1/α(`)R0(`)
B(n−2)(`).

Integrating the last inequality from ` to ∞ and using (14), we obtain

−r1/α(`)B(n−1)(`)R0(`)−B(n−2)(`) ≤ −β0

∫ ∞

`

1
r1/α(a)R0(a)

B(n−2)(a)da,

and so

r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`) ≥ β0

∫ ∞

`

1
r1/α(a)R0(a)

B(n−2)(a)da

≥ β0
B(n−2)(`)

R0(`)

∫ ∞

`

1
r1/α(a)

da

≥ β0B(n−2)(`),

which means that

r1/α(`)B(n−1)(`)R0(`) + (1− β0)B(n−2)(`) ≥ 0.

Then
(
B(n−2)(`)

R1−β0
0 (`)

)′
=

R0(`)r1/α(`)B(n−1)(`) + (1− β0)B(n−2)(`)

r1/α(`)R2−β0
0 (`)

≥ 0. (27)
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The proof of the lemma is complete.

Lemma 8. Assume that x ∈ Ω, and (16) holds, then

lim
`→∞
B(n−2)(`)/Rβ0

0 (`) = 0.

Proof. SinceB(n−2)(`)/Rβ0
0 (`) is a positive decreasing function, lim`→∞ B(n−2)(`)/Rβ0

0 (`) =

c2 ≥ 0. We claim that c2 = 0. If not, then B(n−2)(`)/Rβ0
0 (`) ≥ c2 > 0 eventually. Now, we

introduce the function

w(`) =
B(n−2)(`) + R0(`)r1/α(`)B(n−1)(`)

Rβ0
0 (`)

.

From (16), we note that w(`) > 0 and

w′(`) =
B(n−1)(`) + R0(`)

(
r1/α(`)B(n−1)(`)

)′
−B(n−1)(`)

Rβ0
0 (`)

+β0
B(n−2)(`) + R0(`)r1/α(`)B(n−1)(`)

r1/α(`)R1+β0
0 (`)

=

(
r1/α(`)B(n−1)(`)

)′

Rβ0−1
0 (`)

+ β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

=
1
α

(
r(`)

(
B(n−1)(`)

)α)′(
r1/α(`)B(n−1)(`)

)1−α

Rβ0−1
0 (`)

+β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

.

using (25) and (26), we have

w′(`) ≤ − βα
0

Rβ0−1
0 (`)

1
r1/α(`)R1+α

0 (`)

(
B(n−2)(h(`))

)α
(

β0
B(n−2)(`)

R0(`)

)1−α

+β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

.

Since B(n−1)(`) < 0, h(`) ≤ `, we find B(n−2)(h(`)) ≥ B(n−2)(`), and then

w′(`) ≤ − βα
0

Rβ0−1
0 (`)

1
r1/α(`)R1+α

0 (`)

(
B(n−2)(`)

)α
(

β0
B(n−2)(`)

R0(`)

)1−α

+β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

≤ −β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−2)(`)

r1/α(`)R1+β0
0 (`)

+ β0
B(n−1)(`)

Rβ0
0 (`)

≤ β0
B(n−1)(`)

Rβ0
0 (`)

.

Since B(n−2)(`)/Rβ0
0 (`) ≥ c2, and (24) holds, we obtain
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w′(`) ≤ β0
B(n−1)(`)

Rβ0
0 (`)

≤ −B
(n−2)(`)

Rβ0
0 (`)

β2
0

r1/α(`)R0(`)

≤ −c2β2
0

r1/α(`)R0(`)
< 0. (28)

The function w(`) converges to a non-negative constant because it is a positive de-
creasing function. Integrating (28) from `3 to ∞, we have

−w(`3) ≤ −β2
0c2 lim

`→∞
ln

R0(`3)

R0(`)
,

and so

w(`3) ≥ β2
0c2 lim

`→∞
ln

R0(`3)

R0(`)
→ ∞,

which is a contradiction and we get that c2 = 0. The proof of the lemma is complete.

If β0 ≤ 1/2, we can improve the properties in Lemma 7, as in the following lemma.

Lemma 9. Assume that x ∈ Ω, and (16) holds. If

lim
`→∞

R0(h(`))
R0(`)

= δ < ∞, (29)

and there exists an increasing sequence {βr}m
r=1 defined as

βr := β0
δβr−1

(1− βr−1)
1/α

,

with α ≤ 1, β0 = µ0γ1/α, βm−1 ≤ 1/2 and βm, µ0 ∈ (0, 1), then,

B(n−2)(`)/Rβm
0 (`) is decreasing. (30)

Proof. Since x ∈ Ω, from Lemma 7, we have that (21) and (22) hold.
Now, assume that β0 ≤ 1/2 and

β1 := β0
δβ0

(1− β0)
1/α

.

Next, we will prove (30) at m = 1. As in the proof of Lemma 7 we find

(
r(`)

(
B(n−1)(`)

)α)′
≤ −αβα

0
1

r1/α(`)R1+α
0 (`)

(
B(n−2)(h(`))

)α
. (31)

Integrating (31) from `1 to `, and using (21) and (29), we have
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r(`)
(
B(n−1)(`)

)α

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

∫ `

`1

(
B(n−2)(h(a))

)α

r1/α(a)R1+α
0 (a)

da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

∫ `

`1

Rαβ0
0 (h(a))

r1/α(a)R1+α
0 (a)

(
B(n−2)(a)

Rβ0
0 (a)

)α

da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0

(
B(n−2)(`)

Rβ0
0 (`)

)α ∫ `

`1

R−1−α+αβ0
0 (a)

r1/α(a)

Rαβ0
0 (h(a))

Rαβ0
0 (a)

da

≤ r(`1)
(
B(n−1)(`1)

)α
− αβα

0δαβ0

(
B(n−2)(`)

Rβ0
0 (`)

)α ∫ `

`1

R−1−α+αβ0
0 (a)

r1/α(a)
da

≤ r(`1)
(
B(n−1)(`1)

)α
− βα

0δαβ0

1− β0

(
B(n−2)(`)

Rβ0
0 (`)

)α(
1

Rα(1−β0)
0 (`)

− 1

Rα(1−β0)
0 (`1)

)

≤ r(`1)
(
B(n−1)(`1)

)α
+ βα

1
1

Rα(1−β0)
0 (`1)

(
B(n−2)(`)

Rβ0
0 (`)

)α

− βα
1

(
B(n−2)(`)

R0(`)

)α

.

Since B(n−2)(`)/Rβ0
0 (`)→ 0 as `→ ∞, we get

r(`1)
(
B(n−1)(`1)

)α
+ βα

1
1

Rα(1−β0)
0 (`1)

(
B(n−2)(`)

Rβ0
0 (`)

)α

≤ 0.

Hence, we have

r(`)
(
B(n−1)(`)

)α
≤ −βα

1

(
B(n−2)(`)

R0(`)

)α

,

and so
r1/α(`)B(n−1)(`)R0(`) + β1B(n−2)(`) ≤ 0,

then (
B(n−2)(`)

Rβ1
0 (`)

)′
=

R0(`)r1/α(`)B(n−1)(`) + β1B(n−2)(`)

r1/α(`)R1+β1
0 (`)

≤ 0.

By repeating the same approach used previously, we can prove that

(
B(n−2)(`)

R1−β1
0 (`)

)′
≥ 0.

Similarly, if βk−1 < βk ≤ 1/2, then we can prove

r1/α(`)B(n−1)(`)R0(`) + βkB(n−2)(`) ≤ 0, (32)

for k = 2, 3, . . . , m. The proof of the lemma is complete.

Lemma 10. Assume that x is a positive solution of (8) and B satisfies N3. Then

( B(`)
Rn−2(`)

)′
≥ 0. (33)

Proof. Assume that x is a positive solution of (8) and B satisfies N3. From (8), we find

r(`)
(
B(n−1)(`)

)α
is decreasing, and so
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r1/α(`)B(n−1)(`)
∫ ∞

`

1
r1/α(a)

da ≥
∫ ∞

`

1
r1/α(a)

r1/α(a)B(n−1)(a)da

= lim
`→∞
B(n−2)(`)−B(n−2)(`). (34)

Since B(n−2)(`) is a positive decreasing function, we have that B(n−2)(`) converges to
a nonnegative constant when `→ ∞. Thus, (34) becomes

−B(n−2)(`) ≤ r1/α(`)B(n−1)(`)R0(`), (35)

from (35), we get

(
B(n−2)(`)

R0(`)

)′
=

(
r1/α(`)R0(`)B(n−1)(`) + B(n−2)(`)

)

r1/α(`)R2
0(`)

≥ 0,

which leads to

−B(n−3)(`) ≥
∫ ∞

`

B(n−2)(a)

R0(a)
R0(a)da ≥

B(n−2)(`)

R0(`)

∫ ∞

`
R0(a)da

=
B(n−2)(`)

R0(`)
R1(a).

This implies

(
B(n−3)(`)

R1(`)

)′
=

R1(`)B(n−2)(`) + B(n−3)(`)R0(`)

R2
1(`)

≤ 0.

Similarly, we repeat the same previous process (n− 4) times, we have

( B′(`)
Rn−3(`)

)′
≤ 0.

Now,

−B(`) ≤
∫ ∞

`

B′(a)
Rn−3(a)

Rn−3(a)da ≤
B′(`)

Rn−3(`)

∫ ∞

`
Rn−3(a)da

=
B′(`)

Rn−3(`)
Rn−2(`).

This implies

( B(`)
Rn−2(`)

)′
=

Rn−2(`)B′(`) + B(`)Rn−3(`)

R2
n−2(`)

≥ 0.

The proof of the lemma is complete.

4. Main Results

In the following theorems, we prove that there are no positive solutions that satisfy
case N2.

Theorem 7. Assume that (16) holds. If

β0 > 1/2, (36)

for some µ0 ∈ (0, 1), then the class Ω is empty, where β0 is defined as in Lemma 7.
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Proof. Assume the contrary that x ∈ Ω. From Lemma 7, we have that the functions
B(n−2)(`)/Rβ0

0 (`) and B(n−2)(`)/R1−β0
0 (`) are decreasing and increasing for ` ≥ `1, respec-

tively. In another meaning, we have

r1/α(`)B(n−1)(`)R0(`) + β0B(n−2)(`) ≤ 0 (37)

and
r1/α(`)B(n−1)(`)R0(`) + (1− β0)B(n−2)(`) ≥ 0. (38)

from (37) and (38), we get

0 ≤ r1/α(`)B(n−1)(`)R0(`) + (1− β0)B(n−2)(`)

= r1/α(`)B(n−1)(`)R0(`) + β0B(n−2)(`) + B(n−2)(`)− 2β0B(n−2)(`)

≤ (1− 2β0)B(n−2)(`).

Since B(n−2)(`) > 0, must be 1− 2β0 ≥ 0, which measn that

β0 ≤ 1/2,

a contradiction. The proof of the theorem is complete.

Theorem 8. Assume that (16) and (29) hold. If there exists a positive integer number m such that

w′(`) +
1
α

µα
0 β1−α

m

((n− 2)!)α(1− βm)

R0(`)

R1−α
0 (h(`))

(
hn−2(`)

)α
Q(`)w(h(`)) = 0, (39)

then the class Ω is empty, where α ≤ 1 and βm is defined as in Lemma 9.

Proof. Assume the contrary, that x ∈ Ω. From Lemma 9, we have that (30) holds.
Now, we define the function

w(`) = r1/α(`)B(n−1)(`)R0(`) + B(n−2)(`).

It follows from (14) that w(`) > 0 for ` ≥ `1. From (30), we obtain

r1/α(`)B(n−1)(`)R0(`) ≤ −βmB(n−2)(`).

Then, from the definition of w(`), we find

w(`) = r1/α(`)B(n−1)(`)R0(`) + βmB(n−2)(`)− βmB(n−2)(`) + B(n−2)(`)

≤ (1− βm)B(n−2)(`). (40)

From (17) and (13), we get

w′(`) =
(

r1/α(`)B(n−1)(`)
)′

R0(`) ≤
1
α

(
r(`)

(
B(n−1)(`)

)α)′(
r1/α(`)B(n−1)(`)

)1−α
R0(`)

≤ − 1
α

Q(`)Bα(h(`))
(

r1/α(`)B(n−1)(`)
)1−α

R0(`)

≤ − 1
α

Q(`)Bα(h(`))

(
βm
B(n−2)(`)

R0(`)

)1−α

R0(`)

≤ − 1
α

β1−α
m Q(`)R0(`)Bα(h(`))

(
B(n−2)(`)

R0(`)

)1−α

≤ − 1
α

β1−α
m Q(`)R0(`)

(
µ0

(n− 2)!
hn−2(`)

)α(
B(n−2)(h(`))

)α
(
B(n−2)(`)

R0(`)

)1−α

,
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from (15), we note that B(n−2)(`)/R0(`) is increasing, then

B(n−2)(h(`))
R0(h(`))

≤ B
(n−2)(`)

R0(`)

and (
B(n−2)(h(`))

R0(h(`))

)1−α

≤
(
B(n−2)(`)

R0(`)

)1−α

,

then, we have

w′(`) ≤ − 1
α

β1−α
m Q(`)R0(`)

(
µ0

(n− 2)!
hn−2(`)

)α(
B(n−2)(h(`))

)α
(
B(n−2)(h(`))

R0(h(`))

)1−α

≤ − 1
α

β1−α
m µα

0
((n− 2)!)α Q(`)

R0(`)

R1−α
0 (h(`))

(
hn−2(`)

)α
B(n−2)(h(`)),

which, from (40), gives

w′(`) +
1
α

µα
0 β1−α

m

((n− 2)!)α(1− βm)

R0(`)

R1−α
0 (h(`))

(
hn−2(`)

)α
Q(`)w(h(`)) ≤ 0. (41)

Hence, w(`) is a positive solution of (41). Using [[23], Corollary 1], we see that (39)
also has a positive solution, a contradiction. This contradiction completes the proof of
the theorem.

Corollary 1. Assume that (16) and (29) hold. If

lim inf
`→∞

∫ `

h(`)

1
α

R0(a)
(
hn−2(a)

)αQ(a)

R1−α
0 (h(a))

da >
βα−1

m (1− βm)((n− 2)!)α

e
, (42)

holds, then the class Ω is empty.

Theorem 9. Assume that (16) and (29) hold. If

lim sup
`→∞

∫ `

`0

[(
λhn−2(a)

(n− 2)!

)α Rαβm
0 (h(a))

R−α(1−βm)
0 (a)

Q(a)− αα+1

(1 + α)1+α

1
R0(a)r1/α(a)

]
da = ∞, (43)

holds for some constant λ ∈ (0, 1), then the class Ω is empty.

Proof. Assume the contrary that x ∈ Ω. Define the function w by

w(`) =
r(`)

(
B(n−1)(`)

)α

(
B(n−2)(`)

)α , ` ≥ `1. (44)

Then w(`) < 0 for ` ≥ `1. Since r(`)
(
B(n−1)(`)

)α
is decreasing, we have

r1/α(a)B(n−1)(a) ≤ r1/α(`)B(n−1)(`),

for a ≥ ` ≥ `1. By dividing the last inequality by r1/α(a) and integrating it from ` to ∞,
we obtain

0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)
∫ l

`

1
r1/α(a)

da,

and so
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0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)R0(`),

which produces

− r1/α(`)B(n−1)(`)

B(n−2)(`)
R0(`) ≤ 1.

Hence, from (44), we find
− w(`)Rα

0(`) ≤ 1. (45)

From (44), we have

w′(`) =

(
r(`)

(
B(n−1)(`)

)α)′

(
B(n−2)(`)

)α − α
r(`)

(
B(n−1)(`)

)α+1

(
B(n−2)(`)

)α+1

≤ −Q(`)Bα(h(`))(
B(n−2)(`)

)α − α
w(α+1)/α

r1/α(`)
.

Using Lemma 1, we get

B(h(`)) ≥ λ

(n− 2)!
hn−2(`)B(n−2)(h(`)),

for every λ ∈ (0, 1) and for all sufficiently large `. Then,

w′(`) ≤ −Q(`)

(
λ

(n− 2)!
hn−2(`)

)α

(
B(n−2)(h(`))

)α

(
B(n−2)(`)

)α − α
w(α+1)/α(`)

r1/α(`)
.

Since B(n−2)(`)/Rβm
0 (`) is decreasing, then

B(n−2)(`) ≤ B
(n−2)(h(`))

Rβm
0 (h(`))

Rβm
0 (`), (46)

for h(`) ≤ `, thus

w′(`) ≤ −Q(`)
Rαβm

0 (h(`))

Rαβm
0 (`)

(
λ

(n− 2)!
hn−2(`)

)α

− α
w(α+1)/α(`)

r1/α(`)
. (47)

Multiplying (47) by Rα
0(`) and integrating it from `1 to `, we obtain

Rα
0(`)w(`)− Rα

0(`1)w(`1) + α
∫ `

`1

Rα−1
0 (a)

r1/α(a)
w(a)da

+
∫ `

`1

Q(a)
Rαβm

0 (h(a))

R−α(1−βm)
0 (a)

(
λhn−2(a)

(n− 2)!

)α

da+ α
∫ `

`1

w(α+1)/α(a)

r1/α(a)
Rα

0(a)da ≤ 0.

Using (11) with

$1 :=
Rα

0(a)

r1/α(a)
, $2 :=

Rα−1
0 (a)

r1/α(a)
and u := −w(a),

we have

∫ `

`1

[(
λhn−2(a)

(n− 2)!

)α Rαβm
0 (h(a))

R−α(1−βm)
0 (a)

Q(a)− αα+1

(1 + α)1+α

1
R0(a)r1/α(a)

]
da

≤ Rα
0(`1)w(`1) + 1,
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due to (45), which contradicts (43). This completes the proof of the theorem.

In the following theorems, we establish new oscillation criteria for (8).

Theorem 10. Let (16) and (29) hold. Assume that

lim inf
`→∞

∫ `

h(`)
Q(a)

(
hn−1(a)

)α

r(h(a))
da >

((n− 1)!)α

e
, (48)

(43) and

lim sup
`→∞

∫ `

`1

[
Q∗(a)Rα

n−2(a)−
αα+1

(α + 1)α+1
Rn−3(a)

Rn−2(a)

]
da = ∞, (49)

hold for some constant λ ∈ (0, 1), then, every solution of (8) is oscillatory.

Proof. Assume that Equation (8) has a non-oscillatory solution x. Without loss of generality,
we may assume that x is eventually positive. It follows from Equation (8) that there exist
three possible cases as in Lemma 3.

Assume that N1 holds. Using Lemma 1, we have

B(`) ≥ λ`n−1

(n− 1)!r1/α(`)

(
r1/α(`)B(n−1)(`)

)
, (50)

for every λ ∈ (0, 1) and for all sufficiently large `. Using (8) and (50), we obtain

(
r(`)

(
B(n−1)(`)

)α)′
= −

J

∑
i=1

qi(`)xα(hi(`))

≤ −Q(`)Bα(h(`))

≤ −Q(`)
λα
(
hn−1(`)

)α

((n− 1)!)αr(h(`))
r(h(`))

(
B(n−1)(h(`))

)α
.

Letting w(`) := r(`)
(
B(n−1)(`)

)α
, we find

w′(`) + Q(`)
λα
(
hn−1(`)

)α

((n− 1)!)αr(h(`))
w(h(`)) ≤ 0. (51)

This is a contradiction because condition (48) guarantees that (51) has no positive
solution according to Theorem 2.1.1 in [24].

Assume that case N2 holds. The proof of the N2 is the same as that of Theorem 9.

Assume that N3 holds. Since r(`)
(
B(n−1)(`)

)α
is decreasing, we have

r1/α(a)B(n−1)(a) ≤ r1/α(`)B(n−1)(`),

for a ≥ ` ≥ `1. By dividing the last inequality by r1/α(a) and integrating it from ` to ∞,
we have

0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)
∫ ∞

`

1
r1/α(a)

da,

and so
0 ≤ B(n−2)(`) + r1/α(`)B(n−1)(`)R0(`),

which leads to
B(n−2)(`) ≥ −r1/α(`)B(n−1)(`)R0(`). (52)
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Integrating (52) from ` to ∞ yields

−B(n−3)(`) ≥ −
∫ ∞

`
r1/α(a)B(n−1)(a)R0(a)da ≥ −r1/α(`)B(n−1)(`)

∫ ∞

`
R0(a)da

≥ −r1/α(`)B(n−1)(`)R1(`). (53)

Similarly, Integrating (53) from ` to ∞ a total of (n− 4) times, we have

−B′(`) ≥ −r1/α(`)B(n−1)(`)Rn−3(`). (54)

Integrating (54) from ` to ∞ provides

B(`) ≥ −r1/α(`)B(n−1)(`)Rn−2(`). (55)

Now, define the function w by

w(`) =
r(`)

(
B(n−1)(`)

)α

Bα(`)
, ` ≥ `1. (56)

Then w(`) < 0 for ` ≤ `1. Differentiating (56), we obtain

w′(`) =

(
r(`)

(
B(n−1)(`)

)α)′

Bα(`)
− α

r(`)
(
B(n−1)(`)

)α
B′(`)

Bα+1(`)
.

It follows from (8) and (56) that

w′(`) ≤ −∑J
i=1 qi(`)xα(hi(`))

Bα(`)
− α

r(`)
(
B(n−1)(`)

)α

Bα(`)

r1/α(`)B(n−1)(`)

B(`) Rn−3(`). (57)

Since
x(`) = B(`)− p(`)x(ϑ(`)) ≥ B(`)− p(`)B(ϑ(`)), (58)

from (33), we see that B(`)/Rn−2(`) is increasing, consequently

B(`)
Rn−2(`)

≥ B(ϑ(`))
Rn−2(ϑ(`))

,

for ϑ(`) ≤ `. From (58), we have

x(`) ≥
(

1− p(`)
Rn−2(ϑ(`))

Rn−2(`)

)
B(`),

and

x(hi(`)) ≥
(

1− p(hi(`))
Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)
B(hi(`))

also

J

∑
i=1

qi(`)xα(hi(`)) ≥
J

∑
i=1

qi(`)

(
1− p(hi(`))

Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)α

Bα(hi(`))

≥ Bα(h(`))
J

∑
i=1

qi(`)

(
1− p(hi(`))

Rn−2(ϑ(hi(`)))

Rn−2(hi(`))

)α

= Q∗(`)Bα(h(`)).

Now, we see that (57) becomes
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w′(`) ≤ −Q∗(`)
Bα(h(`))
Bα(`)

− α
r(`)

(
B(n−1)(`)

)α

Bα(`)

r1/α(`)B(n−1)(`)

B(`) Rn−3(`). (59)

Multiplying (59) by Rα
n−2(`) and integrating it from `1 to `, we have

Rα
n−2(`)w(`)− Rα

n−2(`1)w(`1) + α
∫ `

`1

Rα−1
n−2(a)Rn−3(a)w(a)da

+
∫ `

`1

Q∗(a)Rα
n−2(a)da+ α

∫ `

`1

Rn−3(a)Rα
n−2(a)w

(α+1)/α(a)da ≤ 0.

Using (11) with

$1 := Rn−3(a)Rα
n−2(a), $2 := Rα−1

n−2(a)Rn−3(a) and u := −w(a),

we get
∫ `

`1

[
Q∗(a)Rα

n−2(a)−
αα+1

(α + 1)α+1
Rn−3(a)

Rn−2(a)

]
da ≤ Rα

n−2(`1)w(`1) + 1,

due to (55), which contradicts (49). Therefore, every solution of (8) is oscillatory.

Theorem 11. Let (16) and (29) hold. Assume that (42), (48) and (49) hold for some constant
λ ∈ (0, 1), then, every solution of (8) is oscillatory.

Example 1. Consider the NDE

(
`4α
(
(x(`) + p0x(ϑ0`))

′′′
)α)′

+
J

∑
i=1

q0`
α−1xα(hi`) = 0, ` ≥ 1, (60)

where 0 ≤ p0 < 1, ϑ0, h0 ∈ (0, 1) and q0 > 0. By comparing (8) and (60) we see that n = 4,
r(`) = `4α, qi(`) = q0`

α−1, p(`) = p0, ϑ(`) = ϑ0`, hi(`) = hi`. It is easy to find that

R0(`) =
1

3`3 , R1(`) =
1

6`2 , R2(`) =
1
6`

and
Q(`) = Jq0`

α−1(1− p0)
α.

For (16), we set

γ =
J
α

h2α
0 q0

2α3α+1 (1− p0)
α,

where h0` = min{hi`, i = 1, . . . , J}. From (29), we get

δ =
1
h3

0
.

Now, we define the sequence {βr}m
r=1 as

βr = β0
1

(1− βr−1)
1/α

(
1
h0

)3βr−1

,

with

β0 =
J1/αµ0q1/α

0
6α1/α31/α

h2
0(1− p0).

Then, condition (36) reduces to
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q0 >
3α+1α(

Jµ0h2
0(1− p0)

)α , (61)

and condition (42) becomes

lim inf
`→∞

∫ `

h(`)

1
α

R0(`)
(
hn−2(a)

)αQ(a)

R1−α
0 (h(`))

da

= lim inf
`→∞

∫ `

h0`

1
α

1
3a3 h2α

0 a2α31−αa3−3αh3−3α
0 Jq0a

α−1(1− p0)
αda

=
1
α

J
3α

h3−α
0 q0(1− p0)

α ln
1
h0

,

which leads to
1
α

J
6α

h3−α
0 q0(1− p0)

α ln
1
h0

>
βα−1

m (1− βm)

e
, (62)

while condition (43) becomes

lim sup
`→∞

∫ `

`0

[(
λhn−2(a)

(n− 2)!

)α Rαβm
0 (h(a))

R−α(1−βm)
0 (a)

Q(a)− αα+1

(1 + α)1+α

1
R0(a)r1/α(a)

]
da

= lim sup
`→∞

∫ `

`0

[
λα

2α
h2α

0 a2α 1
3αa3α

1

h3αβm
0

Jq0a
α−1(1− p0)

α − αα+1

(1 + α)1+α
3a3 1

a4

]
da

=

[
λα

6α

J

h3αβm−2α
0

q0(1− p0)
α − 3αα+1

(1 + α)1+α

]
lim sup
`→∞

ln
`

`0
=∞,

which is achieved if
λα

6α

J

h3αβm−2α
0

q0(1− p0)
α >

3αα+1

(1 + α)1+α
. (63)

Using Theorem 7, Corollary 1 and Theorem 9, we note that the class Ω is empty if either (61),
(62) or (63) holds, respectively.

Example 2. Consider the NDE (60) where α = 1, p0 = 1/2, 2ϑ0 > 1 and J = 3, then
(60) becomes

(
`4

((
x(`) +

1
2

x(ϑ0`)

)′′′))′
+ q0(x(h1u) + x(h2u) + x(h3u)) = 0, ` ≥ 1. (64)

Clearly
h(`) = min{hi(`), i = 1, 2, 3} = h0`

and
Q(`) =

3
2

q0.

For (16), we set

γ =
1
12

h2
0q0.

Form (29), we have δ = 1/h3
0. Now, we define the sequence {βr}m

r=1 as

βr = β0
1

(1− βr−1)
1/α

(
1
h0

)3βr−1

,

with
β0 =

1
12

µ0h2
0q0.
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Then, condition (36) reduces to

q0 >
6

µ0h2
0

, (65)

and condition (48) becomes

lim inf
`→∞

1
(n− 1)!

∫ `

h(`)
Q(a)

hn−1(a)

r(h(a))
da = lim inf

`→∞

1
6

∫ `

h0`

3
2

q0
h3

0a
3

h4
0a

4
da

=
1
4

q0

h0
ln

1
h0

,

which leads to
1
4

q0

h0
ln

1
h0

>
1
e

, (66)

while condition (49) is abbreviated to

lim sup
`→∞

∫ `

`1

[
Q∗(a)Rα

n−2(a)−
αα+1

(α + 1)α+1
Rn−3(a)

Rn−2(a)

]
da

= lim sup
`→∞

∫ `

`1

[
3q0

(
1− 1

2
1
ϑ0

)
1
6
− 1

4

]
1
a

da

=

[
1
2

q0

(
1− 1

2
1
ϑ0

)
− 1

4

]
lim sup
`→∞

ln
`

`1
= ∞,

which is achieved when

q0

(
1− 1

2
1
ϑ0

)
>

1
2

. (67)

From Theorem 10 we see that every solution of (64) is oscillatory if (65), (66) and (67) holds.

5. Conclusions

In this paper, we have investigated the asymptotic properties of positive solutions
of even-order neutral differential equations in the non-canonical case. We introduced
several auxiliaries and important results on which our results depend. We used different
techniques, including the Recati technique, and the comparison method to create the
oscillation criteria for the studied equation. Finally, we provided some examples as special
cases of the studied equation to illustrate the possibility of applying the results we obtained.
Our obtained theorems not only generalize the existing results in the literature but also can
be used to plan future research papers in a variety of directions. For example:

(1) One can consider Equation (8) with

B := x + p1 · (x ◦ ϑ) + p2 · (x ◦ τ)

where τ(`) ≤ `.
(2) It would be of interest to extend the results of this paper for higher order equations

of type (8), where n ≥ 3 is an odd natural number.
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Abstract: For a better understanding of the bilevel programming on Riemannian manifolds, a
semivectorial bilevel programming scheme is proposed in this paper. The semivectorial bilevel
programming is firstly transformed into a single-level programming problem by using the Karush–
Kuhn–Tucker (KKT) conditions of the lower-level problem, which is convex and satisfies the Slater
constraint qualification. Then, the single-level programming is divided into two stages: restoration
and minimization, based on which an Inexact Restoration algorithm is developed. Under certain
conditions, the stability and convergence of the algorithm are analyzed.

Keywords: Riemannian manifolds; semivectorial bilevel programming; Inexact Restoration algorithm

MSC: 58C05; 90C25; 90C29

1. Introduction

The bilevel optimization problem on Euclidean spaces has been shown to be NP-hard,
and even the verification of the local optimality for a feasible solution is in general NP-
hard. Bilevel optimization problems are often nonconvex optimization problems, and this
makes the computation of an optimal solution a challenging task. Thus, it is natural to
consider the bilevel optimization problems on Riemannian manifolds. Actually, studying
optimization problems on Riemannian manifolds has many advantages. Some constrained
optimization problems on Euclidean spaces can be seen as unconstrained ones from the
Riemannian geometry viewpoint. Moreover, some nonconvex optimization problems in
the setting of Euclidean spaces may become convex optimization problems by introducing
an appropriate Riemannian metric. See for instance [1,2]. The aim of this paper is to study
the bilevel optimization problem on Riemannian manifolds.

In order to study the bilevel optimization problem on Riemannian manifolds, it is
reasonable to have some idea of solving the bilevel optimization problem in Euclidean
spaces. An approach to investigate bilevel optimization problems on Euclidean spaces is to
replace the lower-level problem by its (under certain necessary and sufficient assumptions)
KKT optimality conditions. In a recent article [3], the authors presented the KKT reformu-
lation of the bilevel optimization problems on Riemannian manifolds. Moreover, it has
been shown that global optimal solutions of the KKT reformulation correspond to global
optimal solutions of the bilevel problem on the Riemannian manifolds provided the lower
level convex problem satisfies Slater’s constraint qualification. On this basis, we consider a
semivectorial bilevel optimization problem on Riemannian manifolds with a multiobjective
problem in the lower-level problem. Since the Inexact Restoration (IR) algorithm [4,5] was
introduced to solve constrained optimization problems and if we transform the semivecto-
rial bilevel optimization problem into a single-level problem, it also can be solved by using
the IR algorithm as a constrained optimization problem.

Axioms 2022, 11, 696. https://doi.org/10.3390/axioms11120696 https://www.mdpi.com/journal/axioms229
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For the convenience of the readers, let us review the IR algorithm on Euclidean
spaces firstly. Each iteration of the IR algorithm consists of two phases: restoration and
minimization. Consider the following nonlinear programming:

min f (x)

s.t. C(x) ≤ 0, x ∈ Ω,
(1)

where f : Rn → R and C : Rn → Rm are continuous differentiable functions and the set
Ω ⊂ Rm is closed convex. The algorithm generates feasible iterates with respect to Ω,
xk ∈ Ω (for all k = 0, 1, 2 . . . ).

In the restoration step, which is executed once per iteration, an intermediate point
yk ∈ Ω is found such that the infeasibility at yk is a fraction of the infeasibility at xk.
Immediately after restoration, we construct an approximation πk of the feasible region
using available information at yk. In the minimization step, we compute a trial point
zki ∈ πk such that f (zki)� f (yk). Here, the symbol�means sufficiently smaller than, and
‖zki − yk‖ ≤ δki, where δki is a trust-region radius. The trial point zki is accepted as a new
iteration one if the value of a nonsmooth (exact penalty) merit function at zki is sufficiently
smaller than its value at xk. If zki is not acceptable, the trust-region radius is reduced.

The IR algorithm is related to classical feasible methods for nonlinear programming,
such as the generalized reduced gradient (GRG) and the family of sequential gradient
restoration algorithms. There are several studies on the numerical characteristics of the IR
algorithm. For example, this method was applied to the general constraint problem in [6],
and good results were obtained. In addition, the IR algorithm using the regularization
strategy was proposed in [7], in which the problem of derivative-free optimization was
effectively solved. The IR algorithms are especially useful when there is some natural way
to restore feasibility. One of the most successful applications of the IR algorithm is electronic
structure calculation, as shown in [8]. Moreover, the IR algorithm has also been successful
applied to optimization problems with the box constraint in [9] and problems with multiob-
jective constraints under weighted-sum scalarization in [10]. For more applications, please
see [11,12].

Since the IR algorithm is so important in applications, many researches have been
trying to improve it from different angles. The restoration phase improves feasibility, and
in the minimization step, optimality is improved as a linear tangent approximation of the
constraints. When a sufficient descent criterion does not hold, the trial point is modified in
such a way that, eventually, acceptance occurs at a point that may be close to the solution
of the restoration (first) phase. The acceptance criterion may use merit functions [4,5]
or filters [13]. The minimization step consists of an inexact (approximate) minimization
of f with linear constraints. In this case, the restoration step represents also an inexact
minimization of infeasibility with linear constraints. Therefore, the available algorithms for
(large-scale) linearly constrained minimization can be fully exploited; see the published
articles [14–16]. Furthermore, IR techniques for constrained optimization were improved,
extended, and analyzed in [7,17–19], among others.

Inspired and motivated by the research works [4,10,20–25], we introduce a kind of
bilevel programming with a multiobjective problem in the lower level on Riemannian
manifolds, the so-called semivectorial bilevel programming. Then, we transform the
semivectorial bilevel programming into a single-level programming by using the KKT
optimality conditions of the lower-level problem, which is convex and satisfies the Slater
constraint qualification. Finally, we divide the single-level programming into two stages:
restoration and minimization, and give an IR algorithm for semivectorial bilevel program-
ming. Under certain conditions, we analyze the well-definiteness and convergence of the
presented algorithm.

The remainder of this paper is organized as follows: In Section 2, some basic concepts,
notations, and important results of Riemannian geometry are presented. In Section 3, we
propose the semivectorial bilevel programming on the Riemannian manifold and give
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the KKT reformulation, and then, we present an algorithm by using the IR technique for
solving the semivectorial bilevel programming on Riemannian manifolds. In Section 4, its
convergence properties are studied. The conclusions are given in Section 5.

2. Preliminaries

An m-dimensional Riemannian manifold is a pair (M, g), where M stands for an
m-dimensional smooth manifold and g stands for a smooth, symmetric positive definite
(0, 2)-tensor field on M, called a Riemannian metric on M. If (M, g) is a Riemannian
manifold, then for any point x ∈ M, the restriction gx : Tx M × Tx M → R is an inner
product on the tangent space Tx M. The tangent bundle TM over M is TM :=

⋃
x∈M Tx M,

and a vector field on M is a section of the tangent bundle, which is a mapping X : M→ TM
such that, for any x ∈ M, X(x) ≡ Xx ∈ Tx M.

We denote 〈·, ·〉x by the scalar product on Tx M with the associated norm ‖.‖x. The
length of a tangent vector v ∈ Tx M is defined by ‖v‖x = 〈v, v〉 1

2 . Given a piecewise smooth
curve γ : [a, b] ⊂ R → M joining x to y, i.e., γ(a) = x and γ(b) = y, then its length is
defined by L(γ) =

∫ b
a ‖γ̇(t)‖γ(t)dt, where γ̇ means the first derivative of γ with respect to

t. Let x and y be two points in Riemannian manifold (M, g) and Γx,y the set of all piecewise
smooth curves joining x and y. The function:

d : M×M→ R, d(x, y) := inf{L(γ) : γ ∈ Γx,y}

is a distance on M, and the induced metric topology on M coincides with the topology of
M as the manifold.

Let∇ be the Levi-Civita connection associated with the Riemannian metric and γ be a
smooth curve in M. A vector field X is said to be parallel along γ : [0, 1]→ M if ∇γ̇X = 0.
If γ̇ itself is parallel along γ joining x to y,

γ(0) = x, γ(1) = y and ∇γ̇γ̇ = 0 on [0, 1],

then we say that γ is a geodesic, and in this case, ‖γ̇‖ is constant. When ‖γ̇‖ = 1, γ is said
to be normalized. A geodesic joining x to y in M is said to be minimal if its length equals
d(x, y).

By the Hopf–Rinow theorem, we know that, if M is complete, then any pair of points
in M can be joined by a minimal geodesic. Moreover, (M, d) is a complete metric space,
and the bounded closed subsets are compact. Furthermore, for the exponential mapping at
x, expx : Tx M → M is well defined on Tx M. Clearly, a curve γ : [0, 1] → M is a minimal
geodesic joining x to y if and only if there exists a vector v ∈ Tx M such that ‖v‖ = d(x, y)
and γ(t) = expx(tv) for each t ∈ [0, 1].

Set p ∈ M and Vp := {v ∈ Tp M : γv defined in [0, 1]}. The exponential mapping
expp : Vp → M is defined by expp(v) = γv(1), ∀v ∈ Vp. The exponential mapping
expp : Tp M → M at p ∈ M is well posed on the tangent space Tp M. Obviously, a curve
γ : [0, 1] → M joining p and q is a minimum geodesic, if and only if there is a vector
v ∈ Tp M such that ‖v‖ = d(p, q) and γ(t) = expp(tv) hold for every t ∈ [0, 1].

The gradient of a differentiable function f : M→ R with respect to the Riemannian
metric g is the vector field grad f defined by g(grad f , X) = d f (X), ∀X ∈ TM, where d f
denotes the differential of the function f .

In this normal coordinate system, the geodesics through p are represented by lines
passing through the origin. Moreover, the matrix (gij) associated with the bilinear form g
at the point p in this orthonormal basis reduces to the identity matrix, and the Christoffel
symbols vanish. Thus, for any smooth function f : M→ R, in normal coordinates around
p, we obtain

grad f (p) = ∑
i

∂ f
∂xi (p)

∂

∂xi .
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Now, consider a smooth function f : M→ R and the real-valued function Tp M 3 v 7→
fp(v) := f (expp v) defined around 0 in Tp M.

It is easy to see that
∂ fp

∂xi (0) =
∂ f
∂xi (p).

The Taylor–Young formula (for Euclidean spaces) applied to fp around the origin can
be written using matrices as

fp(v) = fp(0) + J fp(0)v +
1
2

vTHess fp(0)v + o(‖v‖2),

where

v = [v1 . . . vn]T ,

J fp(0) =
[ ∂ f

∂x1 (p) . . .
∂ f
∂xn (p)

]
,

Hess fp(0) =
( ∂2 f

∂xi∂xj (p)
)
= Hessp f (v, v).

In other words, we have the following Taylor–Young expansion for f around p:

f (expp v) = f (p) + gp(grad f , v) +
1
2

Hessp f (v, v) + o(‖v‖2
p)

which holds in any coordinate system.
The set A ⊂ M is said to be convex if it contains a geodesic segment γ whenever

it contains the end points of γ, that is γ((1− t)a + tb) is in A whenever x = γ(a) and
y = γ(b) are in A, and t ∈ [0, 1]. A function f : M→ R is said to be convex if its restriction
to any geodesic curve γ : [a, b]→ M is convex in the classical sense, such that the one real
variable function f ◦ γ : [a, b]→ R is convex. Let PA denote the projection on A ⊂ M, that
is, for each x ∈ M,

PAx =

{
x̄ ∈ A : d(x, x̄) = inf

z∈A
d(x, z)

}
. (2)

For more details and complete information on the fundamentals in Riemannian geom-
etry, see [1,26–28].

3. Inexact Restoration Algorithm

We study an optimistic bilevel programming on an m-dimensional Riemannian man-
ifold (M, g), where the lower-level problem is a multi-objective problem, the so-called
semivectorial bilevel programming. The problem is formulated below:

min F(x)

s.t. x ∈ Sol(MOP),
(3)

where F : M→ R and Sol(MOP) is the effective solution set of the following multi-objective
problem (MOP):

min { f1(x), . . . , fp(x)}
s.t. h(x) = 0,

x ∈ M,

(4)

where f = { f1(x), . . . , fp(x)} : M → Rp, I := {1, . . . , p}, h : M → Rn, and D = {x ∈ M :
h(x) = 0} denote the feasible solution of the MOP.

232



Axioms 2022, 11, 696

Definition 1. Let f : M → Rp be a vectorial function on Riemannian manifold M. Then, f is
said to be convex on M if, for every x, y ∈ M and every geodesic segment γ : [0, 1]→ M joining x
to y, i.e., γ(0) = x and γ(1) = y, it holds that

f (γ(t)) � (1− t) f (x) + t f (y), t ∈ [0, 1].

The above definition is a natural extension of the definition of convexity in Euclidean
space to the Riemannian context; see [29].

Definition 2. A point x ∈ M is said to be Pareto critical of f on Riemannian manifold M if, for
any v ∈ Tx M, there are an index i ∈ I and u ∈ grad fi(x), such that

〈u, v〉 ≥ 0.

Definition 3. (a) A point x∗ ∈ M is a Pareto-optimal point of f on Riemannian manifold M if
there is no x ∈ M with f (x) � f (x∗). (b) A point x∗ ∈ M is a weak Pareto-optimal point of f on
Riemannian manifold M if there is no x ∈ M with f (x) ≺ f (x∗).

We know that criticality is a necessary, but not a sufficient condition for optimality.
Under the convexity of the vectorial function f , the following proposition shows that
criticality is equivalent to weak optimality.

Proposition 1 ([29]). Let f : M → Rp be a convex function given by f = { f1(x), . . . , fp(x)}.
A point x ∈ M is a critical Pareto-optimal point of the function f if and only if it is a weak
Pareto-optimal point of the function f .

We assume that the functions f = { f1(x), . . . , fp(x)} : M → Rp and h : M → Rn are
twice continuously differentiable and consider the weighted sun scaling problem related to
the MOP, as follows.

Let ωi ≥ 0, i = 1, . . . , p such that
p
∑

i=1
ωi = 1:

min
x

p

∑
i=1

ωi fi(x)

s.t. h(x) = 0,

x ∈ M.

(5)

Note that, if ωi ≥ 0, i = 1, . . . , p such that ∑
p
i=1 ωi = 1, then the weak Pareto-optimal

solution sets of Problem (4) are equivalent to the union of the optimal solution sets of Prob-
lem (5). Meanwhile, if fi : M→ R, i = 1, . . . , p is the convex function on the Riemannian

manifold, then the function
p
∑

i=1
ωi fi(x) is also convex. Thus, the bilevel programming (3)–(4)

can be transformed into the following problem:

min
x,ω

F(x)

s.t.
p

∑
i=1

ωi = 1,

ωi ≥ 0, i ∈ I,

x ∈ arg min





min
p

∑
i=1

ωi fi(x)

s.t. h(x) = 0,

x ∈ M.





.

(6)
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A strategy to solve the bilevel problem (6) on the Riemannian manifolds is to replace
the lower-level problem with the KKT conditions. When the lower-level problem is convex
and satisfies the Slater constraint qualification, the global optimal solutions of the KKT
reformulation correspond to the global optimal solutions of the bilevel problem on the
Riemannian manifolds. See Theorems 4.1 and 4.2 in [3].

In the following, we give the KKT reformulation of the semivectorial bilevel program-
ming on Riemannian manifolds.

min
x,ω

F(x)

s.t. ω ∈W,
p

∑
i=1

ωigradx fi(x) + gradxh(x)µ = 0,

h(x) = 0,

x ∈ M,

(7)

where

W =

{
ω ∈ Rp :

p

∑
i=1

ωi = 1, ωi ≥ 0, i = 1, . . . , p

}

is a convex and compact set, µ ∈ Rn, and M is a complete m-dimensional Riemannian manifold.
We will adopt an IR method to solve the optimization problem in two stages, first

pursuing feasibility and optimality, keeping a certain control over the feasibility that has
been realized. Consequently, the approach exploits the inherent minimization structure
of the problem, especially in the feasibility phase, so that it can obtain better solutions.
Moreover, in the feasibility phase of the IR strategy, the user is free to choose the method of
his/her choice, as long as the recovered iteration satisfies some mild assumptions [4,5].

For simplicity, we introduce the following notations:

C(x, ω, µ) =




p
∑

i=1
ωigradx fi(x) + gradxh(x)µ

h(x)


 ∈ Rm+n (8)

and
L(x, ω, µ, λ) = F(x) + C(x, ω, µ)Tλ, λ ∈ Rm+n. (9)

We write shortly s = (x, ω, µ) ∈ M×W ×Rn and give the Jacobian of C as follows:

C′(s) =




p
∑

i=1
ωiHessx fi +

n
∑

j=1
µjHessxhj gradx f1 · · · gradx fp gradxh

gradxhT 0 · · · 0 0


. (10)

Thus, the semivectorial bilevel programming can be reduced:

min F(s)

s.t. C(s) = 0,

s ∈ M×W ×Rn.

(11)

Before giving a rigorous description of the algorithm, let us start with an overview of
each step.

Restoration step: We apply any globally convergent optimization algorithm to solve
the lower-level minimization problem parameterized by zk = (x̄, ωk, µ̄). Once an approxi-
mate minimizer x̄ and a pair of corresponding estimated Lagrange multiplier vectors are
obtained, then we compute the current set πk and the direction dk

tan.
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Approximate linearized feasible region: The set πk is a linear approximation of the
region described by KKT(x̄) containing zk = (x̄, ωk, µ̄). This auxiliary region is given by

πk = {s ∈ M×W ×Rn : 〈C′(zk), γ̇s,zk (0)〉 = 0}.

Descent direction: Using the projection on Riemannian manifolds, the projection
defined on πk is represented as follows:

Pπk (z
k) = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
,

where η > 0 is an arbitrary scaling parameter independent of k. It turns out that

dk
tan = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
− zk

which is a feasible descent direction on πk.
Minimization step: The objective of the minimization step is to obtain vk,i ∈ πk such

that L(vk,i, λk) < L(zk, λk) and vk,i ∈ Bk,i = {v : d(v, zk) ≤ δk,i}, where δk,i is a trust-region
radius. The first trial point at each iteration is obtained using a trust-region radius δk,0. A
successive trust-region radius is tried until a point vk,i is found such that the merit function
at this point is sufficiently smaller than the merit function at sk.

Merit function and penalty parameter: We decided to use a variant of the sharp
Lagrangian merit function, given by

Ψ(s, λ, θ) = θL(s, λ) + (1− θ)|C(s)|,

where θ ∈ (0, 1] is a penalty parameter used to give different weights to the objective
function and the feasibility objective. The choice of the parameter θ at each iteration
depends on practical and theoretical considerations. Roughly speaking, we wish the merit
function at the new point to be less than the merit function at the current point sk.

That is, we want Aredk,i > 0, where Aredk,i is the actual reduction of the merit function,
defined by

Aredk,i = Ψ(sk, λk, θk,i)−Ψ(vk,i, λk, θk,i).

So,

Aredk,i = θk,i

[
L(sk, λk)− L(vk,i, λk,i)

]
+ (1− θk,i)

[
|C(sk)| − |C(vk,i)|

]
.

However, merely a reduction of the merit function is not sufficient to guarantee
convergence. In fact, we need a sufficient reduction of the merit function, which will be
defined by the satisfaction of the following test:

Aredk,i ≥ 0.1Predk,i,

where Predk,i is a positive predicted reduction of the merit function Ψ(s, λ, θ) between sk

and vk,i. It is defined by

Predk,i =θk,i

[
L(sk, λk)− L(vk,i, λk)− C(zk)T(λk,i − λk)

]
+

(1− θk,i)
[
|C(sk)| − |C(zk)|

]
.

The quantity Predk,i defined above can be nonpositive depending on the value of
the penalty parameter. Fortunately, if θk,i is small enough, Predk,i is arbitrarily close to
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[
|C(sk)| − |C(zk)|

]
, which is necessarily nonnegative. Therefore, we will always be able to

choose θk,i ∈ (0, 1] such that

Predk,i ≥
1
2

[
|C(sk)| − |C(zk)|

]
.

When the criterion Aredk,i ≥ 0.1Predk,i is satisfied, we accept vk,i = zk. Otherwise, we
reduce the trust-region radius.

To establish IR methods for semivectorial bilevel programming on Riemannian mani-
folds, we adapt the IR method presented in [4]. In the presented algorithm, the parameters
η > 0, N > 0, θ−1 ∈ (0, 1), δmin > 0, τ1 > 0, and τ2 > 0 are given. The initial approxima-

tions s0 ∈W ×M×Rn, λ0 ∈ Rm+n, as well as a sequence {ωk} such that
+
∑

k=0
∞ωk < +∞

are also given.

4. Convergence Results

Using the method for studying the convergence of the IR algorithm in Euclidean
spaces [20,22], the convergence results of IR algorithms for semivectorial bilevel program-
ming on Riemannian manifolds are given under the following assumptions. From now on,
we assume that the semivectorial bilevel optimization problems on Riemannian manifolds
satisfy assumptions H1–H3 stated below:

H1 There exists L1 such that, for all (x, ω), (x̄, ω̄) ∈ M×W, µ, µ̄ ∈ Rn, and ξ ∈ [0, ξmax],

|C′(x, ω, µ)− C′(x̄, ω̄, µ̄)| ≤ L1d
(
(x, ω, µ), (x̄, ω̄, µ̄)

)
.

H2 There exists L2 such that, for all x, x̄ ∈ M,

|gardxF(x)− gardxF(x̄)| ≤ L2d
(
(x, x̄)

)
.

H3 There exists r ∈ [0, 1), independently of k, such that the point zk = (x̄, ω̄, µ̄) obtained
at the restoration phase satisfies

|C(zk)| ≤ r|C(sk)|,

where sk = (xk, ωk, µk). Moreover, if C(sk) = 0, then zk = sk.

Theorem 1 (Well-definiteness). Under assumptions H1–H3, IR Algorithm 1 for bilevel pro-
gramming is well defined.

Algorithm 1: Inexact Restoration algorithm

1 Define θmin
k = min{1, θk−1, . . . , θ−1}, θ

large
k = min{1, θmin

k + ωk}, and θk,−1 = θ
large
k .

2 (Restoration phase) Find an approximate minimizer x̄ and multipliers µ̄ ∈ Rn for the
problem:

min
x

p

∑
i=1

ωk
i fi(x)

s.t. h(x) = 0,

x ∈ M,

and define zk = (x̄, ωk, µ̄).

236



Axioms 2022, 11, 696

Algorithm 1: Cont.

3 (Direction) Compute

dk
tan = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
− zk,

where Pk is the projection on

πk = {s ∈ M×W ×Rn : 〈C′(zk), γ̇s,zk (0)〉 = 0},

and Pk

(
expzk

(
−ηgradsL(zk, λk)

))
is a solution of the following problem:

min
y∈M×W×Rn

1
2

∥∥∥y− expzk

(
−ηgradsL(zk, λk)

)∥∥∥
2

s.t. 〈C′(zk), γ̇y,zk (0)〉 = 0.

If zk = sk, dk
tan = 0, then stop and return xk as a solution of Problem (7). Otherwise, we set

i← 0 and choose δk,0 ≥ δmin.

4 (Minimization phase) If dk
tan = 0, then we take vk,i = zk. Otherwise, we take

tk,i
break = min

{
1, δk,i

dk
tan

}
and find vk,i ∈ πk such that, for some 0 < t < tk,i

break, we have

L(vk,i, λk) ≤ max
{

L(zk + tdk
tan, λk), L(zk, λk)− τ1δk,i, L(zk, λk)− τ2

}

and d(vk,i, zk) ≤ δk,i.

5 If dk
tan = 0, define λk,i = λk. Otherwise, we take λk,i ∈ Rn+m such that |λk,i| ≤ N.

6 For all θ ∈ [0, 1], we define

Predk,i(θ) =θ
[

L(sk, λk)− L(vk,i, λk)− C(zk)T(λk,i − λk)
]
+

(1− θ)
[
|C(sk)| − |C(zk)|

]
.

We take θk,i as the maximum θ ∈ [0, θk,i−1] that it satisfies:

Predk,i(θ) ≥
1
2

[
|C(sk)| − |C(zk)|

]
, (12)

and define Predk,i = Predk,i(θk,i).
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Algorithm 1: Cont.

7 Compute

Aredk,i = θk,i

[
L(sk, λk)− L(vk,i, λk,i)

]
+ (1− θk,i)

[
|C(sk)| − |C(vk,i)|

]
.

If

Aredk,i ≥ 0.1Predk,i,

then we take

sk+1 = vk,i, λk+1 = λk,i, θk = θk,i, δk = δk,i,

Aredk = Aredk,i, Predk = Predk,i.

and finish the current kth iteration. Otherwise, we choose δk,i+1 ∈ [0.1δk,i, 0.9δk,i], set

i← i + 1, and go to Step 4.

Proof. According to Step 6 and Step 7 of Algorithm 1, it can be calculated that

Aredk,i − 0.1Predk,i = 0.9Predk,i + (1− θk,i)[|C(zk)| − |C(vk,i)|]
+ θk,i

[
L(vk,i, λk)− L(vk,i, λk,i) + C(zk)T(λk,i − λk)

]

= 0.9Predk,i + (1− θk,i)[|C(zk)| − |C(vk,i)|]
+ θk,i

[
C(vk,i)Tλk − C(vk,i)Tλk,i + C(zk)T(λk,i − λk)

]

= 0.9Predk,i + (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

(
C(zk)− C(vk,i)

)T
(λk,i − λk).

Through the condition (12), we have

Aredk,i − 0.1Predk,i ≥ 0.45
[
|C(sk)| − |C(zk)|

]
+ (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

(
C(zk)− C(vk,i)

)T
(λk,i − λk).

(13)

Then, from the assumption H3,

Aredk,i − 0.1Predk,i = 0.45(1− r)|C(sk)|+ (1− θk,i)[|C(zk)| − |C(vk,i)|]

+ θk,i

(
C(zk)− C(vk,i)

)T
(λk,i − λk).

If C(sk) 6= 0, due to the continuity of C and δk,i → 0, we have |C(zk)| − |C(vk,i)| → 0.
Thus, there exists a positive constant δk,i such that

Aredk,i − 0.1Predk,i ≥ 0.

This means that the algorithm is well defined when C(sk) 6= 0.
If C(sk) = 0, then sk is feasible. Since the algorithm does not terminate at the kth

iteration, we know that dk
tan 6= 0. Therefore, we have

zk = sk and C(zk) = C(sk) = 0.
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Combining the condition (12), it follows that

Predk,i(θ) = θ
[

L(sk, λk)− L(vk,i, λk)
]
≥ 0,

and independent of θ, for all i, θk,i = θk,−1. In terms of the inequality (13), when δk,i is
sufficiently small, we obtain

Aredk,i − 0.1Predk,i ≥ 0.

Therefore, Algorithm 1 is well defined.

The next theorem is an important tool for proving the convergence of Algorithm 1. We
prove that the actual reduction Aredk,i∗ , with i∗ the accepted value of i, achieved at each
iteration necessarily tends to 0.

Theorem 2. Under the assumptions H1–H3, if Algorithm 1 generates an infinite sequence, then

lim
k→+∞

Aredk = 0, lim
k→+∞

|C(sk)| = 0.

The same results above occur when λk = 0, for all k.

Proof. Let us prove that limk→+∞ Aredk = 0, i.e., we need to prove

lim
k→+∞

[
θk

[
L(sk, λk)− L(sk+1, λk+1)

]
+ (1− θk)

[
|C(sk)| − |C(sk+1)|

]]
= 0,

that is

lim
k→+∞

[
θkL(sk, λk) + (1− θk)|C(sk)| −

[
θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|

]]
= 0,

namely
lim

k→+∞

[
Ψ(sk, θk)−Ψ(sk+1, θk)

]
= 0,

where Ψ(sk, θk) = θkL(sk, λk) + (1− θk)|C(sk)|.
By contradiction, suppose that there is an infinite indicator set T1 ⊂ {0, 1, 2 . . . } and a

positive constant ζ > 0 such that, for any k ∈ T1, we have

Ψ(sk+1, θk) ≤ Ψ(sk, θk)− ζ.

Let Ψk = Ψ(sk, θk), then

Ψk+1 = θk+1L(sk+1, λk+1) + (1− θk+1)|C(sk+1)|
= θk+1L(sk+1, λk+1) + (1− θk+1)|C(sk+1)|
− θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|
+ θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|
= (θk+1 − θk)L(sk+1, λk+1) + (θk − θk+1)|C(sk+1)|
+ θkL(sk+1, λk+1) + (1− θk)|C(sk+1)|
≤ (θk − θk+1)

[
‖C(sk+1)‖ − L(sk+1, λk+1)

]

+ θkL(sk, λk) + (1− θk)|C(sk)| − ζk.

Equivalently,

Ψk+1 ≤ (θk − θk+1)
[
|C(sk+1)| − L(sk+1, λk+1)

]
+ Ψk − ζk, (14)
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where ζk > 0 and ζk > ζ > 0, k ∈ T1.
According to the definition of θk,−1,

θk − θk+1 + ωk ≥ 0, k ∈ T1.

There is an upper bound c > 0, such that

|C(sk)| − ‖L(sk+1, λk+1)‖ ≤ c. (15)

Combining the inequalities (14) and (15), it follows that

Ψj+1 ≤ (θj − θj+1 + ωj)
[
|C(sj+1)| − L(sj+1, λj+1)

]

+ Ψj − ζ j −ωj

[
|C(sj+1)| − L(sj+1, λj+1)

]

≤ (θj − θj+1 + ωj)c + Ψj − ζ j + ωjc

≤ (θj − θj+1)c + Ψj − ζ j + 2ωjc.

Then, for all k ≥ 1, we have

Ψk ≤ Ψ0 + (θ0 − θk+1)c +−
k−1

∑
j=0

ζ j +
k−1

∑
j=0

2ωjc

≤ Ψ0 + 2c +−
k−1

∑
j=0

ζ j +
k−1

∑
j=0

2ωjc.

Since ∑k−1
j=0 2ωj is the convergence and ζ j is bounded away from zero, this implies

that Ψk is unbounded. This is a contradiction. Thus, we have that limk→+∞ Aredk = 0. In
addition, in a similar way, we can prove limk→+∞ |C(sk)| = 0.

According to Theorem 2, it means that the point generated by the IR algorithm for the
KKT transformation (7) will converge to a feasible point eventually. Then, we prove that
dk

tan cannot be bounded away from zero under the following assumption H4. This means
that the point generated by the IR algorithm will converge to a weak Pareto solution of
Problem (7):

H4 There exists β > 0, independently of k, such that

d(sk, zk) ≤ β|C(sk)|.

Theorem 3. Suppose that the assumptions H1, H2, H3, and H4 hold. If {sk} is an infinite sequence
generated by Algorithm 1, {zk} is the sequence defined at the restoration phase in Algorithm 1, then:

1
∣∣∣C(sk)

∣∣∣→ 0.

2 There exists a limit point s∗ of {sk}.
3 Every limit point of {sk} is a feasible point of the KKT reformulation (7).
4 If, for all ω, a global solution of the lower-level problem is found, then any limit point (x∗, ω∗)

is feasible for the weighted semivectorial bilevel programming (6).
5 If s∗ is a limit point of {sk}, there exists an infinite set K ⊂ N such that

lim
k∈K

sk = lim
k∈K

zk = s∗, C(s∗) = 0, lim
k∈K

dk
tan = 0.

Proof. We can prove the first two items from Theorem 2 and the assumption H1–H3. Based
on the conclusions of the first two terms, the third and forth items are valid. The fifth item
follows from the assumption H4 and the first item.
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The above conclusions give the well-definiteness and convergence of the algorithm
proposed for semivectorial bilevel programming on Riemannian manifolds. From the point
of view of the assumption put forward in this paper, the assumptions H3 and H4 are related
to the sequences generated by the IR algorithm. Therefore, it is worth studying establishing
sufficient conditions to ensure their effectiveness. Two assumptions about the lower-level
problem are given below to verify the hypotheses H3 and H4:

H5 For every solution s = (x, ω, µ) of C(x, ω, µ) = 0, such that the gradients gradhi(x),
i = 1, . . . , n of the active lower level constraints are linearly independent.

H6 For every solution s = (x, ω, µ) of C(x, ω, µ) = 0 such that the matrix:

H(x, ω, µ) =
p

∑
i=1

ωiHessx fi(x) +
n

∑
i=1

µiHessxhi(x),

is positive definite in the following set:

Z(x) = {d ∈ Rn|gradh(x)Td = 0, dj = 0 for all j}.

For convenience, to verify H3 and H4, we define the following matrix:

D′(s) =




p
∑

i=1
ωiHessx fi +

n
∑

i=1
µiHessxhi gradxh

gradxhT 0


.

Lemma 1. The matrix D′(s) is non-singular for any solution s = (x, ω, µ) of C(x, ω, µ) = 0.

Proof. Assuming that there exist u ∈ Rm and v ∈ Rp such that

D′(s)
(

u
v

)
= 0,

then we have

( p

∑
i=1

ωiHessx fi +
n

∑
i=1

µiHessxhi

)
u + gradxhv = 0, (16)

gradxhu = 0. (17)

According to the assumptions H5–H6 and Equalities (16) and (17), it follows that u = 0
and v = 0. This means that the matrix D′(s) is non-singular for any solution s = (x, ω, µ)
of C(x, ω, µ) = 0.

Let D(s) be defined on M×W ×Rn, for each ω ∈W, a solution u(ω) = (x(ω), µ(ω))
of C(x, ω, µ) = 0 such that the function v(ω) = u(ω) is continuous on W. Now, we fix
the function v(ω), by Lemma 1, and we can define a function Υ(ω) = D′(ω, v(ω))−1 over
the set W. Let V(v(ω), α) = {v ∈ M×Rn : d(v, v(ω)) ≤ α}. Furthermore, the following
lemma can be obtained.

Lemma 2. There exist α > 0 and β > 0, such that, for all ω ∈ W, it holds |Υ(ω)| < β, and for
all v ∈ V(v(ω), α), Υ(ω) coincides with the local inverse operator of D′(ω, ·).

Proof. Since D′(ω, v) is continuous on (ω, v), v(ω) is continuous on W, and Υ(ω) is
continuous with respect to ω ∈W, there exists β > 0, such that, for all ω ∈W, |Υ(ω)| < β.

For each fixed value of ω ∈W, associated with each v, the continuously differentiable
operator of the vector C(ω, v) verifies the assumption of the inverse function theorem at
v(ω). Hence, there exists α > 0 such that C(ω, ·) has a continuously differentiable local
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inverse operator G(ω) : C(ω, V(v(ω), α)) 7→ V(v(ω), α), and the Jacobian matrix [G(ω)]′

is consistent with Υ(ω). This ends the proof.

Finally, we state that H3 and H4 hold under the assumptions H5 to H6. The next
theorem summarizes this fact, and it can be proven as follows.

Theorem 4. Let r ∈ [0, 1), (ω, u) ∈W ×M×Rn be such that C(ω, u) 6= 0. If the assumptions
H5-H6 hold, then there exist β > 0, ω ∈W, and ū = (x̄, µ̄) ∈ M×Rn such that

|C(ω, ū)| ≤ r|C(ω, u)|,

and
d
(
(ω, u), (ω, ū)

)
≤ β|C(ω, u)|.

Proof. According to Lemmas 1 and 2, combining the assumptions H5 and H6, by using
Taylor expansions of the functions on Riemannian manifolds, the statement follows from
the results of [20]. This ends the proof.

Example 1. We consider the particular case M = R2
+ := {(x1, x2) ∈ R2|x1 > 0, x2 > 0} with

the metric g given in Cartesian coordinates (x1, x2) around the point x ∈ M by the matrix:

M 3 y 7→ (gij)y =
(

g
( ∂

∂yi
,

∂

∂yj

))
:= diag

(
x−1

1 , x−1
2

)
.

In other words, for any vectors u = (u1, u2) and v = (v1, v2) in the tangent plane at x ∈ M,
denoted by Ty M, which coincides with R2, we have

g(u, v) =
u1v1

x1
+

u2v2

x2
.

Let a = (a1, a2) ∈ M and v = (v1, v2) ∈ Ta M. It is easy to see that the (minimizing)
geodesic curve t 7→ γ(t) verifying γ(0) = a, γ(0) = v is given by

R 3 t 7→ (a1e
v1
a1

t, a2e
v2
a2

t
).

Hence, M is a complete Riemannian manifold. Furthermore, the (minimizing) geodesic segment
γ : [0, 1]→ M2 joining the points a = (a1, a2) and b = (b1, b2), i.e., γ(0) = a, γ(1) = b is given
by γi(t) = a1−t

1 bt
i , i = 1, 2. Thus, the distance d on the metric space (M2, g2) is given by

d(a, b) =
∫ 1

0
‖γ̇(t)‖γ(t)dt =

∫ 1

0

√
(

γ̇1(t)
γ1(t)

)2 + (
γ̇2(t)
γ2(t)

)2dt

=

√
(ln

a1

b1
)2 + (ln

a2

b2
)2.

It follows easily that the closed ball B(a; R) centered in a ∈ M of radius R ≥ 0 verifies
[

a1e−
R√

2 , a1e−
R√

2

]
×
[

a2e−
R√

2 , a2e−
R√

2

]
⊂ B(a; R);

thus, every closed rectangle [ρ1, η1]× [ρ2, η2] (ρ1 > 0, ρ2 > 0) is bounded in the metric space
(M, g) with the distance d.
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Next, we consider the functions F : M → R, f : M → R2 and h : M → R given for any
x ∈ M by

F(x) = −x1,

f1(x) =
1
2
(x1 − 1)2 − 3

4
ln x1 +

3
8
(x2 − 1)2,

f2(x) =
1
4
(x1 − 1)2 − 3

8
ln x1 +

3
16

(x2 − 1)2,

h(x) =
1
3
(x1 − 1)2 +

1
3
(x2 − 1)2 − 1

3
.

It is easy to see that, for x ∈ M and any geodesic segment γ : [0, 1] → M with γ(0) = a,
γ(1) = b, the functions fi(x), i = 1, 2, and h(x) are all convex on M with the Riemannian metric
g. Moreover, the function h(x) satisfies the Slater constraint qualification.

We then consider the corresponding KKT reformulation of the semivectorial bilevel program-
ming on Riemannian manifolds:

min
x,ω

F(x) = −x2

s.t. ω ∈W,
2

∑
i=1

ωigradx fi(x) + gradxh(x)µ = 0,

h(x) = 0,

x ∈ M.

By the definition of the gradient of a differentiable function with respect to the Riemannian
metric g, let ω1 = 1

3 , ω2 = 2
3 , ω1 + ω2 = 1, and µ = ( 1

2 , 3
4 )

T ∈ R2; we have

min
x,ω

F(x) = −x1

s.t. (x1 −
1
2
)2 + (x2 −

1
2
)2 − 1 = 0,

1
3
(x1 − 1)2 +

1
3
(x2 − 1)2 − 1

3
= 0,

x ∈ M.

It is easy to see that the unique optimal solution of the KKT reformulation is x = ( 3−
√

7
4 , 3+

√
7

4 ).
According to Algorithm 1, we first give the initial approximations s0 ∈ W × M × R2,

λ0 ∈ R2, and a sequence {ωk}. In the restoration phase, find an approximate minimizer x̄ =
(x̄1, x̄2) ∈ M and multiplier µ̄ = (µ̄1, µ̄2) ∈ R2 for the problem:

min
x

ωk
1 f1(x) + ωk

2 f2(x)

s.t. h(x) = 0,

x ∈ M,

and define zk = (x̄, ωk, µ̄).
We then compute the direction by using the exponential mapping and the projection defined on

Riemannian manifold M.

dk
tan = Pk

(
expzk

(
−ηgradsL(zk, λk)

))
− zk,

= Pk


zk

1e
−η

grads L(zk ,λk)

zk
1 , zk

2e
−η

grads L(zk ,λk)

zk
2


− zk,
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where L(zk, λk) = −x1 + λk
1

(
∑2

i=1 ωk
i grads fi(x̄) + gradsh(x̄)µ̄

)
+ λk

2h(x̄).

In the minimization phase, we first find vk,i such that L(vk,i, λk) < L(zk, λk) and vk,i ∈
Bk,i = {v : d(v, zk) ≤ δk,i}. Then, by calculating the actual reduction Aredk,i and positive
predicted reduction Predk,i of the merit function Ψ(s, λ, θ) such that Aredk,i ≥ 0.1Predk,i, we
obtain a sequence {sk}.

According to Theorems 3 and 4, the sequence {sk} generated by the IR method established
in the present paper converges to a solution of the semivectorial bilevel programming on Rieman-
nian manifolds.

5. Conclusions

In this paper, a new algorithm for solving the semivectorial bilevel programming
based on the IR technique was proposed, which preserves the two-stage structure of
the problem. In the feasibility phase, lower-level problems can be solved imprecisely
using their properties, and users are free to use special-purpose solvers. In the optimal
stage, a minimization algorithm with linear constraints was used. Moreover, it was also
proven that the algorithm is well-defined and converges to the feasible point under mild
conditions. Under more stringent assumptions, the convergence of sequences generated
by the presented algorithm was proven. Furthermore, the validity of some conditions
generated by the algorithm was given as well.
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400084 Cluj-Napoca, Romania
* Correspondence: nadeem@mail.qjnu.edu.cn (M.N.); monica.bota@ubbcluj.ro (M.-F.B.)

Abstract: The main goal of this paper is to introduce a new scheme, known as the Aboodh homotopy
integral transform method (AHITM), for the approximate solution of wave problems in multi-
dimensional orders. The Aboodh integral transform (AIT) removes the restriction of variables in
the recurrence relation, whereas the homotopy perturbation method (HPM) derives the successive
iterations using the initial conditions. The convergence analysis is provided to study a wave equation
with multiple dimensions. Some computational applications are considered to show the efficiency of
this scheme. Graphical representation between the approximate and the exact solution predicts the
high rate of convergence of this approach.

Keywords: Aboodh integral transform; homotopy perturbation method; wave problems; series
results

MSC: 35L05; 35A22

1. Introduction

In the real world, partial differential equations (PDEs) are used to analyze a wide
range of physical phenomena that occur in different branches of applied sciences, including
fluid dynamics, mathematical biology, quantum physics, chemical kinetics, and linear
optics [1–3]. Various approaches have been introduced to obtain the analytical solutions
of these PDEs. Although the calculations for these strategies are pretty straightforward,
their limitations are predicated on the assumption of small parameters. As a result, many
researchers developed some novel methods to get around these restrictions. Numerous
scientists have studied multiple innovative and unique methods to obtain analytical so-
lutions that are reasonably close to the precise solutions, such as the homotopy analysis
method [4], modified extended tanh method [5], new Kudryashov method [6], Chun-Hui
He’s iteration method [7], the sub-equation method [8], Exp-function method [9], modified
exponential rational method [10], homotopy asymptotic method [11], modified extended
tanh expansion [12], fractal variational iteration transform method [13], residual power
series (RPS) method [14] and Adomian decomposition method [15]. In the past, many
experts and researchers established the application of the homotopy perturbation method
(HPM) [16–18] in various physical problems and showed the performance of this approach
in consistently transforming the challenging issues into a straightforward resolution.
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The wave equation is a partial differential equation for a scalar function that describes
the propagation phenomenon in different areas of engineering, physics, and scientific
applications [19,20]. Wazwaz [21] studied linear and nonlinear problems in bounded and
unbounded domains using the variational iteration method. Ghasemi et al. [22] employed
the homotopy perturbation method to derive the numerical solution of two-dimensional
nonlinear differential equations. Keskin and Oturanc [23] applied the reduced differential
transform method to various wave equations. Ullah et al. [24] proposed the optimal
homotopy asymptotic method to obtain the analytic series solution of wave equations.
Adwan et al. [25] presented the numerical solutions of multi-dimensional wave equations
and showed the accuracy of the proposed techniques. Jleli et al. [26] studied the framework
of the homotopy perturbation transform method for analytic treatment of wave equations.
Mullen and Belytschko [27] provided the finite element scheme for the examination of
two-dimensional wave equations and considered some semi-discretizations. These schemes
have many limitations and assumptions in finding the approximate solutions of the prob-
lems. To overcome these limitations and restrictions of variables, we introduce a new
iterative strategy for the approximate solutions of multi-dimensional wave problems.

The variational iteration method (VIM), Laplace transform and homotopy analysis
method (HAM) have some limitations, such as the VIM involving integration and produc-
ing the constant of integration, the Laplace transform involving the convolution theorem
and the HAM also considering some assumptions. The Aboodh integral transform is very
easy to implement for differential problems. The purpose of this paper is to apply the
AHITM with a combination of the Abdooh integral transform and the HPM for wave
problems of different dimensions. Less computations, fast convergence and significant
results make this scheme unique and different from other approaches in the literature. This
strategy derives a series of solutions with fast convergence and yields an approximate
solution very close to the precise solution. This paper is structured as follows. In Section 2,
we give brief details about the Abdooh integral transform. In Section 3, we present the
formulation of the AHITM for solving multi-dimension problems. We provide the conver-
gence analysis in Section 4. Some computational applications are demonstrated to show
the effectiveness in Section 5, and finally, we discuss the conclusions in Section 6.

2. Preliminary Definitions of AIT

In this section, we describe a few fundamental characteristics and concepts of AIT that
are very helpful in the formulation of this scheme:

Definition 1. If we let ϑ(φ) be a function precise for σ ≥ 0, then

L{ϑ(φ)} = F(s) = θ
∫ ∞

0
ϑ(φ)e−σφdφ, (1)

is called a Laplace transform.

Definition 2. The AIT of a function ϑ(φ) is defined as [28]

A[ϑ(φ)] = R(σ) =
1
σ

∫ ∞

0
ϑ(φ)e−σφdφ. φ ≥ 0, k1 ≤ σ ≤ k2 (2)

where A represents the symbol of AIT, k1 and k2 are constants and σ is the independent variable of
the transformed function φ. Conversely, since R(σ) is the AIT of function ϑ(φ), then

A−1[R(σ)] = ϑ(φ), A−1

is called the inverse AIT.
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Proposition 1. If we let A{ϑ1(φ)} = R1(σ) and A{ϑ2(φ)} = R2(σ), then [29]

A{au1(φ) + bu2(φ)} = aS{ϑ1(φ)}+ bS{ϑ2(φ)},
⇒ A{au1(φ) + bu2(φ)} = aR1(σ) + bR2(σ).

(3)

Proposition 2. If A{ϑ(φ)} = R(σ), then the differential properties are defined as follows [29,30]:

(1) A{ϑ′(φ)} = σR(σ)− ϑ(0)
σ

;

(2) A{ϑ′′(φ)} = σ2R(σ)− ϑ(0)− ϑ′(0)
σ

;

(3) A{ϑm(φ)} = σmR(σ)− ϑ(0)
σ2−m −

ϑ′(0)
σ3−m − · · · −

ϑm−1(0)
σ

.

(4)

3. Formulation of AHITM

In this segment, we formulate the strategy of the AHITM for finding the approximate
solutions of 1D, 2D and 3D wave equation flows. We observe that this strategy is indepen-
dent of integration and any hypotheses during the formulation of this scheme. We consider
a differential problem such that

ϑ′′(ς, φ) = ϑ(ς, φ) + g(ϑ) + g(ς, φ), (5)

with the initial condition

ϑ(ς, 0) = a1, ϑφ(ς, 0) = a2, (6)

where ϑ denotes the function in a region of time φ and g(ϑ) is considered a nonlinear term
with the source term g(ς, φ) of arbitrary constat a. Employing the AIT in Equation (5) yields

A[ϑ′′(ς, φ)] = A[ϑ(ς, φ) + g(ϑ) + g(ς, φ)].

Using the proposition in Equation (4) for the AIT, we obtain

σ2R(σ)− ϑ(ς, 0)− ϑ′(ς, 0)
σ

= A[ϑ(ς, φ) + g(ϑ) + g(ς, φ)].

Hence, R(σ) is evaluated such that

R[σ] =
ϑ(ς, 0)

σ2 +
ϑ′(ς, 0)

σ3 +
1
σ2A[ϑ(ς, φ) + g(ϑ) + g(ς, φ)]. (7)

By using the inverse AIT on Equation (7), we obtain

ϑ(ς, φ) = ϑ(ς, 0) + φϑ′(ς, 0) +A−1
[ 1

σ2A
{

ϑ(ς, φ) + g(ϑ) + g(ς, φ)
}]

,

Using the initial conditions, we obtain

ϑ(ς, φ) = a1 + φa2 +A−1
[ 1

σ2A
{

ϑ(ς, φ) + g(ϑ) + g(ς, φ)
}]

.

Using the proposition in Equation (3), we obtain

ϑ(ς, φ) = a1 + φa2 +A−1
[ 1

σ2A
{

g(ς, φ)
}]

+A−1

[
1
σ2A

[
ϑ(ς, φ) + g(ϑ)

]]
.
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This implies that

ϑ(ς, φ) = G(ς, φ) +A−1

[
1
σ2A

[
ϑ(ς, φ) + g(ϑ)

]]
(8)

where

G(ς, φ) = a1 + φa2 +A−1
[ 1

σ2A
{

g(ς, φ)
}]

.

Equation (8) is called the recurrence relation, which is now suitable for the implemen-
tation of the HPM such that

ϑ(ς, φ) =
∞

∑
i=0

piϑi(ς, φ) = ϑ0 + p1ϑ1 + p2ϑ2 + · · · , (9)

The nonlinear terms g(ϑ) are evaluated by considering the algorithm

g(ϑ) =
∞

∑
i=0

pi Hi(ϑ) = H0 + p1H1 + p2H2 + · · · , (10)

where the Hn polynomials are derived as follows:

Hn(ϑ0 + ϑ1 + · · ·+ ϑn) =
1
n!

∂n

∂pn

(
g
( ∞

∑
i=0

piϑi

))

p=0

, n = 0, 1, 2, · · · (11)

We use Equations (9)–(11) in Equation (8) to compare the identical power of p such
that

p0 : ϑ0(ς, φ) = G(ς, φ),

p1 : ϑ1(ς, φ) = A−1

[
1
σ2A

{
ϑ0(ς, φ) + H0(ϑ)

}]
,

p2 : ϑ2(ς, φ) = A−1

[
1
σ2A

{
ϑ1(ς, φ) + H1(ϑ)

}]
,

p3 : ϑ3(ς, φ) = A−1

[
1
σ2A

{
ϑ2(ς, φ) + H2(ϑ)

}]
,

...

Proceeding with this process yields

ϑ(ς, φ) = ϑ0 + ϑ1 + ϑ2 + · · · =
∞

∑
i=0

ϑi. (12)

Thus, Equation (12) is the approximate result of the differential problem in Equation (5).

4. Convergence Analysis

Statement: Let P and Q be Banach spaces where X : P→ Q is a nonlinear mapping. If the series
produced by HPM is

ϑn(P, ς) = X(ϑn−1(P, ς)) =
n−1

∑
i=0

ϑi(P, ς), n = 1, 2, 3 . . .
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then the following conditions must be true:

(1) ‖ϑn(P, ς)− ϑ(P, ς)‖ ≤ ϕn‖ϑ(P, ς)− ϑ(P, ς)‖;
(2) ϑn(P, ς) is forever in the neighborhood of ϑ(P, x) meaning ϑn(P, ς) ∈ B(ϑ(P, ς), r) =

{ϑ∗(P, ς)/‖ϑ∗(P, ς)− ϑ(P, ς)‖};
(3) limn→∞ ϑn(P, x) = ϑ(P, ς).

Proof.

(1) Consider condition (1) by recognition of n such that ‖ϑ1 − ϑ‖ = ‖T(ϑ0)− ϑ‖, and the
Banach fixed point theorem states that X has a fixed point ϑ (i.e., X(ϑ) = ϑ). Therefore,
we have

‖ϑ1 − ϑ‖ = ‖G(ϑ0)− ϑ‖ = ‖G(ϑ0)− G(ϑ)‖ ≤ ϕ‖ϑ0 − ϑ‖ = ϕ‖ϑ(P, ς)− ϑ‖.

where X is a nonlinear mapping. By considering that ‖ϑn−1 − ϑ‖ ≤ ϕn−1‖ϑ(P, 0)−
ϑ(P, x)‖ is an induction hypothesis, then

‖ϑn − ϑ‖ = ‖G(ϑn−1)− G(ϑ)‖ ≤ ϕ‖ϑn−1 − ϑ‖ ≤ ϕϕn−1‖ϑ(P, ς)− ϑ‖.

(2) Our initial challenge is to demonstrate ϑ(P, ς) ∈ B(ϑ(P, ς), r), which is attained by
replacing m. Thus, for m = 1, ‖ϑ(P, ς) − ϑ(P, ς)‖ = ‖ϑ(P, 0) − ϑ(P, ς)‖ ≤ r with
ϑ(P, 0) as an initial condition. Consider that ‖ϑ(P, x)− ϑ(P, ς)‖ ≤ r for m− 2 is an
induction theory. Thus, we have

‖ϑ(P, ς)− ϑ(P, ς)‖ = ϑm−2(P, ς)− fm(P)
Γ(δ−m + 1)

xδ−m‖

≤ ‖ϑm−1(P, ς)− ϑ(P, ς)‖+
∥∥∥∥

fm(P)
Γ(δ−m + 1)

xδ−m
∥∥∥∥

= r.

Now, ∀ n ≥ 1, using (1), we obtain

‖ϑn − ϑ‖ ≤ ϕn‖ϑ(P, ς)− ϑ‖ ≤ ϕnr ≤ r.

(3) Using condition (2) and limn→∞ ϕn = 0, it follows that limn→∞‖ϑn − ϑ‖ = 0, and
hence

lim
n→∞

ϑn = ϑ,

Thus, ϑ converges.

5. Computational Applications

We illustrate some computational applications to check the validity and authenticity of
the AHITM. We observe that this strategy is extremely convenient to utilize and generates
the series of convergence much easier than other schemes. We also study the physical
behaviors of the these surface solutions. The error distribution is obtained graphically to
show that the results obtained by the AHITM are very close to the precise results.

5.1. Example 1

Suppose a one-dimensional wave equation

∂2ϑ

∂φ2 =
∂2ϑ

∂ς2 − 3ϑ, (13)
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with the initial condition

ϑ(ς, 0) = 0, ϑφ(ς, 0) = 2 cos(ς), (14)

and boundary condition

ϑ(0, φ) = sin(2φ), ϑς(π, φ) = − sin(2φ). (15)

Using the AIT on Equation (13), we obtain R(σ) such that

R[σ] =
ϑ(ς, 0)

σ2 +
ϑ′(ς, 0)

σ3 +
1
σ2A

[∂2ϑ

∂ς2 − 3ϑ
]
.

Using the inverse AIT yields

ϑ(ς, φ) = ϑ(ς, 0) + φϑφ(ς, 0) +A−1
[ 1

σ2A
{∂2ϑ

∂ς2 − 3ϑ
}]

.

Now, we apply the HPM to obtain a relation such that

∞

∑
i=0

piϑi(ς, φ) = 2φ cos(ς) +A−1
[ 1

σ2A
{ ∞

∑
i=0

pi ∂2ϑi
∂ς2 − 3

∞

∑
i=0

piϑ
}]

. (16)

When evaluating similar components of p, we obtain

p0 : ϑ0(ς, φ) = ϑ(ς, 0) = 2φ cos(ς),

p1 : ϑ1(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ0

∂ς2 − 3ϑ0

}]
= − (2φ)3

3!
cos(ς),

p2 : ϑ2(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ1

∂ς2 − 3ϑ1

}]
=

(2φ)5

5!
cos(ς),

p3 : ϑ3(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ2

∂ς2 − 3ϑ2

}]
= − (2φ)7

7!
cos(ς),

p4 : ϑ4(ς, φ) = A−1

[
1
σ2A

{
∂2ϑ3

∂ς2 − 3ϑ3

}]
=

(2φ)9

9!
cos(ς),

....

In a similar way, we can consider the approximate series such that

ϑ(ς, φ) = ϑ0(ς, φ) + ϑ1(ς, φ) + ϑ2(ς, φ) + ϑ3(ς, φ) + ϑ4(ς, φ) + · · · ,

= cos(ς)

(
2φ− (2φ)3

3!
+

(2φ)5

5!
− (2φ)7

7!
+

(2φ)9

9!

)
+ · · · .

(17)

which can approach

ϑ(ς, φ) = cos(ς) sin(2φ). (18)

Figure 1 contains two diagrams: (a) the AHITM results of ϑ(ς, φ) and (b) the exact
results of ϑ(ς, φ) at−2 ≤ ς ≤ 2 and 0 ≤ φ ≤ 0.5 for a 1D wave problem. Figure 2 represents
the graphical error of the 1D wave equation between the approximate and precise solutions
at 0 ≤ ς ≤ 20 with φ = 0.5. Table 1 presents the absolute error between the approximate
solution obtained by the AHITM and the exact solution at ς = 0.5, 1 and 0.25, 0.50, 0.75, 1.
We observe that the current approach demonstrated strong agreement with a precise answer
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to the problem (Section 5.1) only after a few iterations. The rate of convergence shows that
the AHITM is a relatable approach for ϑ(ς, φ). This means that we can effectively model
any surface in accordance with the desired physical processes appearing in science and
engineering.

(a) (b)

Figure 1. Surface solutions of 1D wave equation. (a) Surface plot for approximate results. (b) Surface
plot for precise results.

Exact

Approximate

5 10 15 20
t

-0.5

0.5

ϑ (ϛ, ϕ)

Figure 2. Graphical error between the approximate and precise results of ϑ(ς, φ).

Table 1. Absolute error between the approximate and exact solutions for Example 1.

ς φ Approximate Exact Absolute Error

0.5

0.25 0.420735 0.420735 1 × 10−8

0.50 0.73846 0.73846 1.7 × 10−7

0.75 0.875386 0.875384 2 × 10−6

1.0 0.798027 0.797984 4.3 × 10−5

1.0

0.25 0.259035 0.259035 1 × 10−9

0.5 0.454649 0.454649 1.5 × 10−8

0.75 0.53895 0.538949 2.3 × 10−7

1.0 0.491323 0.491295 2.8 × 10−6

5.2. Example 2

Suppose a two-dimensional wave equation

∂2ϑ

∂φ2 = 2

(
∂2ϑ

∂ς2 +
∂2ϑ

∂ξ2

)
+ 6φ + 2ς + 4ξ, (19)

with the initial condition

ϑ(ς, ξ, 0) = 0, ϑφ(ς, ξ, 0) = 2 sin(ς) sin(ξ), (20)
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and boundary condition

ϑ(0, ξ, φ) = φ3 + 2φ2ξ, ϑς(π, ξ, φ) = φ3 + πφ2 + 2φ2ξ,

ϑ(ς, 0, φ) = φ3 + φ2ς, ϑς(ς, π, φ) = φ3 + 2πφ2 + φ2ς.
(21)

By using the AIT on Equation (19), we obtain R(σ) such that

R[σ] =
6
σ5 +

2ς

σ4 +
4ξ

σ4 +
ϑ(0)
σ2 +

ϑ′(0)
σ3 +

1
σ2A

[
2
(∂2ϑ

∂ς2 +
∂2ϑ

∂ξ2

]
.

Using the inverse AIT yields

ϑ(ς, ξ, φ) = φ3 + ςφ2 + 2ξφ2 + ϑ(ς, 0) + φϑφ(ς, 0) +A−1
[ 1

σ2A
{

2
(∂2ϑ

∂ς2 +
∂2ϑ

∂ξ2

}]
.

Now, we apply the HPM to obtain a relation such that

∞

∑
i=0

piϑi(ς, ξ, φ) = φ3 + ςφ2 + 2ξφ2 + 2φ sin(ς) sin(ξ) +A−1
[ 1

σ2A
{

2
( ∞

∑
i=0

pi ∂2ϑi
∂ς2 +

∞

∑
i=0

pi ∂2ϑi
∂ξ2

)}]
. (22)

By evaluating similar components of p, we obtain

p0 : ϑ0(ς, ξ, φ) = ϑ(ς, 0) = φ3 + ςφ2 + 2ξφ2 + 2φ sin(ς) sin(ξ),

p1 : ϑ1(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ0

∂ς2 +
∂2ϑ0

∂ξ2

}]
= − (2φ)3

3!
sin(ς) sin(ξ),

p2 : ϑ2(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ1

∂ς2 +
∂2ϑ1

∂ξ2

}]
=

(2φ)5

5!
sin(ς) sin(ξ),

p3 : ϑ3(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ2

∂ς2 +
∂2ϑ2

∂ξ2

}]
= − (2φ)7

7!
sin(ς) sin(ξ),

p4 : ϑ4(ς, ξ, φ) = A−1

[
1
σ2A

{
∂2ϑ3

∂ς2 +
∂2ϑ3

∂ξ2

}]
=

(2φ)9

9!
sin(ς) sin(ξ),

....

In a similar way, we can consider the approximate series such that

ϑ(ς, ξ, φ) = ϑ0(ς, ξ, φ) + ϑ1(ς, ξ, φ) + ϑ2(ς, ξ, φ) + ϑ3(ς, ξ, φ) + ϑ4(ς, ξ, φ) + · · · ,

= φ3 + ςφ2 + 2ξφ2 + sin(ς) sin(ξ)

(
2φ− (2φ)3

3!
+

(2φ)5

5!
− (2φ)7

7!
+

(2φ)9

9!

)
+ · · · .

(23)

which can approach

ϑ(ς, ξ, φ) = φ3 + ςφ2 + 2ξφ2 + sin(ς) sin(ξ) sin(2φ). (24)

Figure 3 contains two diagrams: (a) the AHITM results of ϑ(ς, ξ, φ) and (b) the exact
results of ϑ(ς, ξ, φ) at −1 ≤ ς ≤ 1 and 0 ≤ φ ≤ 0.1 with ξ = 0.5 for the 2D wave
problem. Figure 4 represents the graphical error of the 2D wave equation between the
approximate and precise solutions at 0 ≤ ς ≤ 20 with ξ = 0.01 and φ = 0.01. Table 2
presents the absolute error between the approximate solution obtained by the AHITM and
the exact solution at ς = 0.5, 1 and 0.25, 0.50, 0.75, 1, where ξ = 0.5. We observe that the
current approach demonstrated strong agreement with the precise answer to the problem
(Section 5.2) only after a few iterations. The rate of convergence shows that the AHITM is a

253



Axioms 2022, 11, 665

reliable approach for ϑ(ς, ξ, φ). This means that we can effectively model any surface in
accordance with the desired physical processes appearing in nature.

(a) (b)

Figure 3. Surface solutions of 2D wave equation. (a) Surface plot for approximate results. (b) Surface
plot for precise results.
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Approximate

5 10 15 20
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0.0020

ϑ (ϛ, ξ, ϕ)

Figure 4. Graphical error between the approximate and precise results of ϑ(ς, ξ, φ).

Table 2. Absolute error between the approximate and exact solutions for Example 2.

ς φ Approximate Exact Absolute Error

0.5

0.25 0.365286 0.365286 1 × 10−7

0.50 1.08947 1.08947 1 × 10−7

0.75 2.23054 2.23054 1.5 × 10−6

1.0 3.86685 3.86683 2 × 10−5

1.0

0.25 0.542593 0.542593 1 × 10−8

0.5 1.47082 1.47082 1.2 × 10−7

0.75 2.81568 2.81567 2.3 × 10−6

1.0 4.64388 4.64385 3 × 10−5

5.3. Example 3

Consider the three-dimensional wave problem

∂2ϑ

∂φ2 =
ς2

18
∂2ϑ

∂ς2 +
ξ2

18
∂2ϑ

∂ξ2 +
η2

18
∂2ϑ

∂η2 − ϑ, (25)

with the initial condition

ϑ(ς, ξ, η, 0) = 0, ϑφ(ς, ξ, η, 0) = ς4ξ4η4, (26)
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and boundary condition

ϑ(0, ξ, η, φ) = 0, ϑ(1, ξ, η, φ) = ξ4η4 sinh(φ),

ϑ(ς, 0, η, φ) = 0, ϑ(ς, 1, η, φ) = ς4η4 sinh(φ),

ϑ(ς, ξ, 0, φ) = 0, ϑ(ς, ξ, 1, φ) = ς4ξ4 sinh(φ).

(27)

By using the AIT in Equation (25), we obtain R(σ) such that

R[σ] =
ϑ(ς, 0)

σ2 +
ϑ′(ς, 0)

σ3 +
1
σ2A

[ ς2

18
∂2ϑ

∂ς2 +
ξ2

18
∂2ϑ

∂ξ2 +
η2

18
∂2ϑ

∂η2 − ϑ
]
.

Using the inverse AIT yields

ϑ(ς, ξ, η, φ) = ϑ(ς, 0) + φϑφ(ς, 0) +A−1

[
1
σ2A

{
ς2

18
∂2ϑ

∂ς2 +
ξ2

18
∂2ϑ

∂ξ2 +
η2

18
∂2ϑ

∂η2 − ϑ

}]
.

Now, we apply the HPM to obtain a relation such that

∞

∑
i=0

piϑ(ς, ξ, η, φ) = φς4ξ4η4 +A−1

[
1
σ2A

{
∞

∑
i=0

pi ς2

18
∂2ϑi
∂ς2 +

∞

∑
i=0

pi ξ2

18
∂2ϑi
∂ξ2 +

∞

∑
i=0

pi η2

18
∂2ϑi
∂η2 −

∞

∑
i=0

piϑ

}]
. (28)

By evaluating similar components of p, we obtain

p0 : ϑ0(ς, ξ, η, φ) = ϑ(ς, ξ, η, 0) = φς4ξ4η4,

p1 : ϑ1(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ0

∂ς2 +
ξ2

18
∂2ϑ0

∂ξ2 +
η2

18
∂2ϑ0

∂η2 − ϑ0

}]
=

φ3

3!
ς4ξ4η4,

p2 : ϑ2(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ1

∂ς2 +
ξ2

18
∂2ϑ1

∂ξ2 +
η2

18
∂2ϑ1

∂η2 − ϑ1

}]
=

φ5

5!
ς4ξ4η4,

p3 : ϑ3(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ2

∂ς2 +
ξ2

18
∂2ϑ2

∂ξ2 +
η2

18
∂2ϑ2

∂η2 − ϑ2

}]
=

φ7

7!
ς4ξ4η4,

p4 : ϑ4(ς, ξ, φ) = A−1

[
1
σ2A

{
ς2

18
∂2ϑ3

∂ς2 +
ξ2

18
∂2ϑ3

∂ξ2 +
η2

18
∂2ϑ3

∂η2 − ϑ3

}]
=

φ9

9!
ς4ξ4η4,

....

In a similar way, we can consider the approximate series such that

ϑ(ς, ξ, η, φ) = ϑ0(ς, ξ, η, φ) + ϑ1(ς, ξ, η, φ) + ϑ2(ς, ξ, η, φ) + ϑ3(ς, ξ, η, φ) + ϑ4(ς, ξ, η, φ) + · · · ,

= ς4ξ4η4
(

φ +
φ3

3!
+

φ5

5!
+

φ7

7!
+

φ9

9!

)
+ · · · .

(29)

which can approach

ϑ(ς, ξ, η, φ) = ς4ξ4η4 sinh(φ). (30)

Figure 5 contains two diagrams: (a) the AHITM results of ϑ(ς, ξ, η, φ) and (b) the exact
results of ϑ(ς, ξ, η, φ) at −5 ≤ ς ≤ 5 and 0 ≤ φ ≤ 0.05 with ξ = 0.5 and η = 0.5 for the 3D
wave problem. Figure 6 represents the graphical error of the 3D wave equation between the
approximate and precise solutions at 0 ≤ ς ≤ 10 with ς = 0.5, ξ = 0.5 and φ = 0.1. Table 3
presents the absolute error between the approximate solution obtained by the AHITM and
the exact solution at ς = 0.5, 1 and 0.25, 0.50, 0.75, 1, where ξ = 0.5 and η = 0.5. We observe
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that the current approach demonstrated the strong agreement, with a precise answer to the
problem (Section 5.3) only after a few iterations. The rate of convergence shows that the
AHITM is a reliable approach for ϑ(ς, ξ, η, φ). This means that we can effectively model
any surface in accordance with the desired physical processes appearing in nature.

(a) (b)

Figure 5. Surface solutions of 3D wave equation. (a) Surface plot for approximate results. (b) Surface
plot for precise results.
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Figure 6. Graphical error between the approximate and precise results of ϑ(ς, ξ, η, φ).

Table 3. Absolute error between the approximate and exact solutions for Example 3.

ς φ Approximate Exact Absolute Error

0.5

0.25 0.0157883 0.0157883 1 × 10−9

0.50 0.0325685 0.0325685 1.2 × 10−9

0.75 0.0513948 0.0513948 1.4 × 10−8

1.0 0.0734501 0.0734501 2 × 10−7

1.0

0.25 0.252612 0.252612 1 × 10−9

0.5 0.521095 0.521095 1.8 × 10−8

0.75 0.822317 0.822317 2.5 × 10−7

1.0 1.1752 1.1752 2.9 × 10−6

6. Conclusions

In this paper, we employed the AHITM for obtaining the approximate solutions to
1D, 2D and 3D wave equations. The main advantage of the AIT is that the recurrence
relation produces the iteration without any assumption of a small parameter. The HPM
helps to produce successive iterations in the recurrence relation. The obtained results show
that this approach is very simple to utilize and derives the series solution in convergence
form. The graphical error of plot distortion shows that the AHITM had the best agreement
between the approximate solution and the exact solution. We encourage readers to extend
this scheme for the numerical solution of a nonlinear coupled system of a fractional order
in science and engineering for their future works.
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20. Akinyemi, L.; Şenol, M.; Iyiola, O.S. Exact solutions of the generalized multidimensional mathematical physics models via

sub-equation method. Math. Comput. Simul. 2021, 182, 211–233. [CrossRef]
21. Wazwaz, A.M. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput.

Math. Appl. 2007, 54, 926–932. [CrossRef]

257



Axioms 2022, 11, 665

22. Ghasemi, M.; Kajani, M.T.; Davari, A. Numerical solution of two-dimensional nonlinear differential equation by homotopy
perturbation method. Appl. Math. Comput. 2007, 189, 341–345. [CrossRef]

23. Keskin, Y.; Oturanc, G. Reduced differential transform method for solving linear and nonlinear wave equations. Iran. J. Sci.
Technol. Trans.-Sci. 2010, 34, 113–122.

24. Ullah, H.; Islam, S.; Dennis, L.; Abdelhameed, T.; Khan, I.; Fiza, M. Approximate solution of two-dimensional nonlinear wave
equation by optimal homotopy asymptotic method. Math. Probl. Eng. 2015, 2015, 380104. doi: 10.1155/2015/380104. [CrossRef]

25. Adwan, M.; Al-Jawary, M.; Tibaut, J.; Ravnik, J. Analytic and numerical solutions for linear and nonlinear multidimensional
wave equations. Arab. J. Basic Appl. Sci. 2020, 27, 166–182. [CrossRef]

26. Jleli, M.; Kumar, S.; Kumar, R.; Samet, B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-
Cattani via the homotopy perturbation transform method. Alex. Eng. J. 2020, 59, 2859–2863. [CrossRef]

27. Mullen, R.; Belytschko, T. Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J.
Numer. Methods Eng. 1982, 18, 11–29. [CrossRef]

28. Ojo, G.O.; Mahmudov, N.I. Aboodh transform iterative method for spatial diffusion of a biological population with fractional-
order. Mathematics 2021, 9, 155. [CrossRef]

29. Aggarwal, S.; Chauhan, R. A comparative study of Mohand and Aboodh transforms. Int. J. Res. Advent Technol. 2019, 7, 520–529.
[CrossRef]

30. Aggarwal, S.; Sharma, S.D. Solution of Abel’s integral equation by Aboodh transform method. J. Emerg. Technol. Innov. Res. 2019,
6, 317–325.

258



Citation: Saied, A.I.; AlNemer, G.;

Zakarya, M.; Cesarano, C.; Rezk,

H.M. Some New Generalized

Inequalities of Hardy Type Involving

Several Functions on Time Scale

Nabla Calculus. Axioms 2022, 11, 662.

https://doi.org/10.3390/

axioms11120662

Academic Editor: Chris Goodrich

Received: 17 September 2022

Accepted: 15 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Some New Generalized Inequalities of Hardy Type Involving
Several Functions on Time Scale Nabla Calculus
A. I. Saied 1, Ghada AlNemer 2,*, Mohammed Zakarya 3,4, Clemente Cesarano 5 and Haytham M. Rezk 6

1 Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt
2 Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University,

P.O. Box 84428, Riyadh 11671, Saudi Arabia
3 Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004,

Abha 61413, Saudi Arabia
4 Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
5 Section of Mathematics, Università Telematica Internazionale Uninettuno, 00186 Rome, Italy
6 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
* Correspondence: gnnemer@pnu.edu.sa

Abstract: In this article, we establish several new generalized Hardy-type inequalities involving
several functions on time-scale nabla calculus. Furthermore, we derive some new multidimensional
Hardy-type inequalities on time scales nabla calculus. The main results are proved by applying
Minkowski’s inequality, Jensen’s inequality and Arithmetic Mean–Geometric Mean inequality. As
a special case of our results, when T = R, we obtain refinements of some well-known continuous
inequalities and when T = N, the results which are essentially new.
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1. Introduction

In [1], Hardy proved that

∞

∑
l=1

(
1
l

l

∑
i=1

a(i)

)q

≤
(

q
q− 1

)q ∞

∑
l=1

aq(l), q > 1, (1)

where a(l) ≥ 0 for l ≥ 1 and ∑∞
l=1 aq(l) < ∞.

In [2], Hardy proved the continuous case of (1) in the following form

∫ ∞

0

(
1
θ

∫ θ

0
f (τ)dτ

)q

dθ ≤
(

q
q− 1

)q ∫ ∞

0
f q(θ)dθ, q > 1, (2)

where f ≥ 0 and integrable over any finite interval (0, θ), θ ∈ (0, ∞), f ∈ Lq(0, ∞) and the
constant (q/(q− 1))q in (1) and (2) is sharp.

In [3], Kaijser et al. established that if Φ is a convex function on R+, then

∫ ∞

0
Φ
(

1
λ

∫ λ

0
v(η)dη

)
dλ

λ
≤
∫ ∞

0
Φ(v(λ))

dλ

λ
, (3)

where v : R+ → R+ is a locally integrable positive function. In [4], Čižmešija et al.
generalized (3) in the following form

∫ r

0
κ(λ)Φ

(
1
λ

∫ λ

0
v(η)dη

)
dλ

λ
≤
∫ r

0
ω(λ)Φ(v(λ))

dλ

λ
,
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where κ : (0, r) → R, 0 < r ≤ ∞, is a non-negative function, such that λ → κ(λ)/λ2 is
locally integrable, Φ is a convex function, v : (0, r)→ R ∀λ ∈ (0, r) and

ω(η) = η
∫ r

η

κ(λ)
λ2 dλ, for η ∈ (0, r).

In [5], Kaijser et al. explicated that if κ : (0, r)→ R, $ : (0, r)× (0, r)→ R, 0 < r ≤ ∞
are positive functions, such that 0 < Λ(η) =

∫ η
0 $(η, ϑ)dϑ < ∞, η ∈ (0, r), Φ is a convex

function on I ⊆ R, and

ω(λ) = λ
∫ r

λ
κ(η)$(η, λ)

Λ(η)

dη

η
< ∞, λ ∈ (0, r),

then ∫ r

0
κ(λ)Φ(A$v(λ))

dλ

λ
≤
∫ r

0
ω(λ)Φ(v(λ))

dλ

λ
, (4)

where v : (0, r)→ R is a function with values in I, and

A$v(λ) =
1

Λ(λ)

∫ λ

0
$(λ, ϑ)v(ϑ)dϑ, λ ∈ (0, r).

Additionally, in [5] it is established that if 1 < p ≤ q < ∞, s ∈ (1, p) and 0 < r < ∞,
$ : R+×R+ → R+ is a non-negative kernel, κ(λ) ≥ 0 and ω(λ) ≥ 0 are weighted
functions, and

(∫ r

0

[
Φ
(

A$v(λ)
)]qκ(λ)dλ

λ

) 1
q
≤ C

[∫ r

0
Φp(v(λ))ω(λ)

dλ

λ

] 1
p
, (5)

holds for all v(λ) ≥ 0, λ ∈ [0, r] and C > 0, if

A(s) = sup
0<ϑ<r

[Ω(ϑ)]
s−1

p

(∫ r

ϑ

(
$(λ, ϑ)

Λ(λ)

)q
[Ω(λ)]

q(p−s)
p κ(λ)dλ

λ

) 1
q

< ∞,

where

Ω(ϑ) =
∫ ϑ

0
[ω(η)]

−1
p−1 η

1
p−1 dη.

In the last few decades, researchers discovered the time-scale calculus which unifies
the continuous and discrete calculus. A time scale T is an arbitrary, non-empty closed
subset of the real numbers R. Many authors established some new dynamic inequalities on
T; see the books [6,7] and the papers [8–12].

In [13], Özkan et al. demonstrated that if 0 ≤ r < y ≤ ∞, u ∈ Crd([r, y),R) is a non-
negative function, such that

∫ y
t

u(λ)
(λ−r)(σ(λ)−r)∆λ exists as a finite number, Φ is continuous

and convex, f ∈ Crd([r, y),R) and

v(t) = (t− r)
∫ y

t

u(λ)
(λ− r)(σ(λ)− r)

∆λ, t ∈ [r, y),

then ∫ y

r
u(λ)Φ

(
1

σ(λ)− r

∫ σ(λ)

r
f (t)∆t

)
∆λ

λ− r
≤
∫ y

r
v(λ)Φ( f (λ))

∆λ

λ− r
. (6)

They also proved that if u ∈ Crd([y, ∞),R) is a non-negative function, and

v(t) =
1
t

∫ t

b
u(λ)∆λ, t ∈ [y, ∞),
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then ∫ y

r
u(λ)Φ

(
1

σ(λ)− r

∫ σ(λ)

r
f (t)∆t

)
∆λ

λ− r
≤
∫ y

r
v(λ)Φ( f (λ))

∆λ

λ− r
,

holds for all f ∈ Crd([y, ∞),R).
In [14], the authors proved the time-scale version of (4) as follows. Let k(λ, θ) ∈

Crd([r, y)× [r, y),R), u ∈ Crd([r, y),R) be non-negative functions, f ∈ Crd([r, y),R), Φ is a
continuous and convex function, and

v(t) = (t− r)
∫ y

t

k(λ, t)
K(σ(λ), λ)

u(λ)
∆λ

λ− r
, t ∈ [r, y).

Then, ∫ y

r
u(λ)Φ(Ak f (σ(λ), λ))

∆λ

λ− r
≤
∫ y

r
v(λ)Φ( f (λ))

∆λ

λ− r
, (7)

where

Ak f (t, β) =
1

K(t, β)

∫ t

r
k(β, θ) f (θ)∆θ, K(t, β) :=

∫ t

r
k(β, θ)∆θ.

Our aim in this study is to generalize (4) on time-scale nabla calculus of power η ≥ 1
in the form

∫ y

r
χη
(

A$v(ζ)
) κ(ζ)

ρ(ζ)− r
∇ζ ≤

(
B
A

)η(∫ y

r
χ(v(ϑ))

ω(ϑ)

ρ(ϑ)− r
∇ϑ

)η

,

where A, B are positive constants. We will also establish the last inequality for several
functions. Furthermore, we will prove the last inequality in multidimensions on time-scales
nabla calculus.

The paper proceeds as follows. In Section 2, we state some properties concerning the
time-scales nabla calculus needed in Section 3, where we prove the main results. Our main
results when T→ R, we obtain (4) proved by Kaijser et al. [5] and when T→ N, we obtain
a new discrete inequality.

2. Preliminaries and Basic Lemmas

For a time scale T, we define the backward jump operator as ρ(γ) = sup{s ∈ T : s <
γ}. Additionally, we define a mapping ν : T → R+ by ν(γ) = γ− ρ(γ), such that if v
is nabla differentiable at γ, then ν(γ)v∇(γ) = v(γ)− vρ(γ). For more details about T
calculus, see ([6,7]).

The nabla derivative of κω and κ/ω (where ω(γ)ωρ(γ) 6= 0) are given by

(κω)∇(γ) = κ∇(γ)ω(γ) +κρ(γ)ω∇(γ)

= κ(γ)ω∇(γ) +κ∇(γ)ωρ(γ),

and (κ
ω

)∇
(γ) =

κ∇(γ)ω(γ)−κ(γ)ω∇(γ)
ω(γ)ωρ(γ)

.

Definition 1 ([6]). A function F : T→ R is a nabla antiderivative of v : T→ R if F∇(t) = v(t)
holds ∀t ∈ T. Hence, we have

∫ t

r
v(γ)∇γ = F(t)− F(r) ∀t ∈ T.

Theorem 1 ([6]). 0If r, y ∈ T, α ∈ R and v, λ are ld-continuous functions, then

(1)
∫ y

r [v(γ) + λ(γ)]∇γ =
∫ y

r v(γ)∇γ +
∫ y

r λ(γ)∇γ;
(2)

∫ y
r αv(γ)∇γ = α

∫ y
r v(γ)∇γ;

(3)
∫ r

r v(γ)∇γ = 0.
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The integration by parts formula on time scales nabla calculus [6] is
∫ y

r
κ(γ)ω∇(γ)∇γ = [κ(γ)ω(γ)]yr −

∫ y

r
κ∇(γ)ωρ(γ)∇γ. (8)

The Arithmetic Mean–Geometric Mean inequality is given by

[λ1(ζ)λ2(ζ)...λn(ζ)]
1
n ≤ ∑n

k=1 λk(ζ)

n
. (9)

where λ1(ζ), ..., λn(ζ), n ≥ 1 are non-negative functions.
In 2008, Ferreira et al. [15] proved Minkowski’s inequality on diamond alpha time

scales. As a special case of this inequality (when α = 0), we get Minkowski’s inequality on
time-scale nabla calculus as follows.

Lemma 1 ([15]). Let r, y ∈ T and f , g be non-negative functions. Then,

(∫ y

r
( f (γ) + g(γ))p∇γ

) 1
p
≤
(∫ y

r
f p(γ)∇γ

) 1
p
+

(∫ y

r
gp(γ)∇γ

) 1
p
, (10)

for p ≥ 1.

Lemma 2 ([16]). Let κ, ω and v be non-negative functions on Ω, Υ and Ω× Υ, respectively. If
α ≥ 1, then

(∫

Ω
κ(λ)

(∫

Υ
v(λ, ϑ)ω(ϑ)∇ϑ

)α

∇λ

) 1
α

≤
∫

Υ
ω(ϑ)

(∫

Ω
vα(λ, ϑ)κ(λ)∇λ

) 1
α

∇ϑ. (11)

Theorem 2 ([16]). Let εi, ςi ∈ T, i = 1, 2, .., m, γ ≥ 1, κ : Tm × Tm→ R and w, h : Tm → R
be non-negative rd-continuous functions. Then,

[∫ ς1

ε1

...
∫ ςm

εm
w(y)

(∫ ς1

ε1

...
∫ ςm

εm
h(z)κ(y, z)∇z

)γ

∇y
] 1

γ

≤
∫ ς1

ε1

...
∫ ςm

εm
h(z)

(∫ ς1

ε1

...
∫ ςm

εm
w(y)κγ(y, z)∇y

) 1
γ

∇z, (12)

where ∇y = ∇y1...∇ym, κ(y, z) = κ(y1, ..., ym, z1, ..., zm), w(z) = w(z1, ..., zm) and h(z) =
h(z1, ..., zm).

In [17], Jensen’s inequality is proved for the diamond−α time scale. In the case, α = 0,
this inequality can be written in nabla time-scale calculus as follows.

Lemma 3 ([17]). Let r, y ∈ T, h ∈ Cld([r, y]T,R), u : [r, y]T → (c, d), c, d ∈ R be ld-continuous
and Φ be continuous and convex. Then,

Φ

(
1∫ y

r h(ϑ)∇ϑ

∫ y

r
h(γ)u(γ)∇γ

)
≤ 1∫ y

r h(ϑ)∇ϑ

∫ y

r
h(γ)Φ(u(γ))∇γ. (13)

If Φ is a concave function, then (13) will be reversed.
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Theorem 3 ([17]). Let εi, ςi ∈ T, i = 1, 2, ..., m, g : Tm → (c, d), c, d ∈ R be ld-continuous and
Φ be continuous and convex. Then,

Φ

(
1∫ ς1

ε1
...
∫ ςm

εm
$(y, z)∇z

∫ ς1

ε1

...
∫ ςm

εm
$(y, z)g(z)∇z

)

≤ 1∫ ς1
ε1

...
∫ ςm

εm
$(y, z)∇z

∫ ς1

ε1

...
∫ ςm

εm
$(y, z)Φ(g(z))∇z, (14)

where ∇z = ∇z1...∇zm, $(y, z) = $(y1, ..., ym, z1, ..., zm) and g(z) = g(z1, ..., zm).

3. Main Results

Throughout this section, we will assume that the functions (without mention) are
non-negative ld-continuous functions and the integrals in the statements of the theorems
are convergent. We define the general Hardy operator A$ as follows

A$v(λ) =
1

Λ(λ)

∫ y

r
$(λ, ϑ)v(ϑ)∇ϑ, Λ(λ) =

∫ y

r
$(λ, ϑ)∇ϑ,

where λ > r and v ∈ Cld([r, y]T,R+) and $(λ, ϑ) ∈ Cld([r, y]T × [r, y]T,R+).
Now, we state and prove our main results.

Theorem 4. Let r, y ∈ T, η ≥ 1 and κ, ω be weighted functions, such that

ω(ϑ) = (ρ(ϑ)− r)
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

. (15)

Furthermore, assume that χ, ξ defined on (c, d),−∞ < c < d < ∞ and ξ is a convex function,
such that

Aξ(λ) ≤ χ(λ) ≤ Bξ(λ), c < λ < d, (16)

where A, B are positive constants; then

∫ y

r
χη
(

A$v(λ)
) κ(λ)

ρ(λ)− r
∇λ ≤

(
B
A

)η(∫ y

r
χ(v(ϑ))

ω(ϑ)

ρ(ϑ)− r
∇ϑ

)η

, (17)

holds for the non-negative function v.

Proof. Using (16) and applying (13) (where ξ is convex), we have

∫ y

r
χη
(

A$v(λ)
)
κ(λ) ∇λ

ρ(λ)− r

=
∫ y

r
χη

(
1

Λ(λ)

∫ y

r
$(λ, ϑ)v(ϑ)∇ϑ

)
κ(λ)

ρ(λ)− r
∇λ

≤ Bη
∫ y

r
ξη

(
1

Λ(λ)

∫ y

r
$(λ, ϑ)v(ϑ)∇ϑ

)
κ(λ)

ρ(λ)− r
∇λ

≤ Bη
∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(v(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ. (18)

Applying (11) on the term

∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(v(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ,
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with η ≥ 1, we see that

(∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(v(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

≤
∫ y

r
ξ(v(ϑ))

(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ,

then
∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(v(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ

≤


∫ y

r
ξ(v(ϑ))

(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ




η

=



∫ y

r
ξ(v(ϑ))

1
ρ(ϑ)− r

(ρ(ϑ)− r)
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ




η

. (19)

Substituting (19) into (18), we have from (15) that

∫ y

r
χη
(

A$v(λ)
)
κ(λ) ∇λ

ρ(λ)− r

≤ Bη



∫ y

r
ξ(v(ϑ))

1
ρ(ϑ)− r

(ρ(ϑ)− r)
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ




η

= Bη

[∫ y

r
ξ(v(ϑ))

1
ρ(ϑ)− r

ω(ϑ)∇ϑ

]η

,

and then, we get from (16) that

∫ y

r
χη
(

A$v(λ)
)
κ(λ) ∇λ

ρ(λ)− r
≤
(

B
A

)η[∫ y

r
χ(v(ϑ))

1
ρ(ϑ)− r

ω(ϑ)∇ϑ

]η

,

which is (17).

Corollary 1. If A = B and η = 1, then

∫ y

r
χ
(

A$v(λ)
) κ(λ)

ρ(λ)− r
∇λ ≤

(∫ y

r
χ(v(ϑ))

ω(ϑ)

ρ(ϑ)− r
∇ϑ

)
,

where

ω(ϑ) = (ρ(ϑ)− r)
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)
κ(λ)

ρ(λ)− r
∇λ

)
.

Remark 1. If T = N, r = 0, then ρ(n) = n− 1 and (17) reduces to

N

∑
n=1

χ

(
1

∑n
m=1 $(n, m)

n

∑
m=1

$(n, m)v(m)

)
κ(n)
n− 1

≤
[

N

∑
n=1

χ(v(n))
ω(n)
n− 1

]
, for N ∈ N.

Remark 2. If T = R, r = 0, then ρ(ζ) = ζ, and we have

∫ y

r
χ
(

A$v(λ)
)κ(λ)

λ
dλ ≤

(∫ y

r
χ(v(ϑ))

ω(ϑ)

ϑ
dϑ

)
,
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where

ω(ϑ) = ϑ

(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)
κ(λ)

λ
dλ

)
.

Remark 3. If $(λ, ϑ) =

{
0 , λ ∈ [r, ϑ),

f (λ, ϑ), λ ∈ [ϑ, y].
, we get the inequality (4) proved by Kaijser et al. [5].

The following theorem is proved for several functions.

Theorem 5. Let r, y ∈ T, η ≥ 1 and κ, ω be as in Theorem 4, such that

ω(ϑ) = (ρ(ϑ)− r)
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

. (20)

Furthermore, assume that vk, k = 1, 2, ..., n and χ, ξ are as in Theorem 4, such that

Aξ(λ) ≤ χ(λ) ≤ Bξ(λ), (21)

where A, B are positive constants, then

∫ y

r

[
Πn

k=1χ
(

A$vk(λ)
)] η

n κ(λ) ∇λ

ρ(λ)− r

≤
(

B
nA

)η
(

n

∑
k=1

[∫ y

r
χ(vk(ϑ))

1
ρ(ϑ)− r

ω(ϑ)∇ϑ

])η

, (22)

holds for n ≥ 1.

Proof. Applying (Arithmetic Mean–Geometric Mean) inequality (9), we see that

[
Πn

k=1χ
(

A$vk(λ)
)] 1

n

=
[
χ
(

A$v1(λ)
)
χ
(

A$v2(λ)
)
...χ
(

A$vn(λ)
)] 1

n

≤ ∑n
k=1 χ

(
A$vk(λ)

)

n
.

Then, we obtain
∫ y

r

[
Πn

k=1χ
(

A$vk(λ)
)] η

n κ(λ) ∇λ

ρ(λ)− r

≤
∫ y

r

(
∑n

k=1 χ
(

A$vk(λ)
)

n

)η

κ(λ) ∇λ

ρ(λ)− r

=

(
1
n

)η ∫ y

r

(
n

∑
k=1

χ
(

A$vk(λ)
)
)η

κ(λ) ∇λ

ρ(λ)− r
. (23)
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By applying (10) (where η ≥ 1), we observe that

(∫ y

r

(
n

∑
k=1

χ
(

A$vk(λ)
)
)η

κ(λ) ∇λ

ρ(λ)− r

) 1
η

=

(∫ y

r

κ(λ)
ρ(λ)− r

[
χ
(

A$v1(λ)
)
+ ... + χ

(
A$vn(λ)

)]η∇λ

) 1
η

≤
(∫ y

r

κ(λ)
ρ(λ)− r

χη
(

A$v1(λ)
)
∇λ

) 1
η

+ ... +
(∫ y

r

κ(λ)
ρ(λ)− r

χη
(

A$vn(λ)
)
∇λ

) 1
η

=
n

∑
k=1

(∫ y

r

κ(λ)
ρ(λ)− r

χη
(

A$vk(λ)
)
∇λ

) 1
η

,

and then

∫ y

r

(
n

∑
k=1

χ
(

A$vk(λ)
)
)η

κ(λ) ∇λ

ρ(λ)− r

≤
[

n

∑
k=1

(∫ y

r

κ(λ)
ρ(λ)− r

χη
(

A$vk(λ)
)
∇λ

) 1
η

]η

. (24)

Substituting (24) into (23), we have that

∫ y

r

[
Πn

k=1χ
(

A$vk(λ)
)] η

n κ(λ) ∇λ

ρ(λ)− r

≤
(

1
n

)η
[

n

∑
k=1

(∫ y

r

κ(λ)
ρ(λ)− r

χη
(

A$vk(λ)
)
∇λ

) 1
η

]η

. (25)

Using (21) and applying (13), we get

∫ y

r
χη
(

A$vk(λ)
)
κ(λ) ∇λ

ρ(λ)− r

=
∫ y

r
χη

(
1

Λ(λ)

∫ y

r
$(λ, ϑ)vk(ϑ)∇ϑ

)
κ(λ)

ρ(λ)− r
∇λ

≤ Bη
∫ y

r
ξη

(
1

Λ(λ)

∫ y

r
$(λ, ϑ)vk(ϑ)∇ϑ

)
κ(λ)

ρ(λ)− r
∇λ

≤ Bη
∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(vk(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ. (26)

Applying (11) on the term

∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(vk(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ,

with η ≥ 1, we see that

(∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(vk(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

≤
∫ y

r
ξ(vk(ϑ))

(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ,

266



Axioms 2022, 11, 662

then
∫ y

r

1
Λη(λ)

(∫ y

r
$(λ, ϑ)ξ(vk(ϑ))∇ϑ

)η κ(λ)
ρ(λ)− r

∇λ

≤


∫ y

r
ξ(vk(ϑ))

(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ




η

=

[∫ y

r
ξ(vk(ϑ))

1
ρ(ϑ)− r

(ρ(ϑ)− r)

×
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ




η

. (27)

Substituting (27) into (26) and using (20), we get

∫ y

r
χη
(

A$vk(λ)
)
κ(λ) ∇λ

ρ(λ)− r

≤ Bη

[∫ y

r
ξ(vk(ϑ))

1
ρ(ϑ)− r

(ρ(ϑ)− r)

×
(∫ y

r

(
$(λ, ϑ)

Λ(λ)

)η κ(λ)
ρ(λ)− r

∇λ

) 1
η

∇ϑ




η

= Bη

[∫ y

r
ξ(vk(ϑ))

1
ρ(ϑ)− r

ω(ϑ)∇ϑ

]η

.

From (21), we obtain
∫ y

r
χη
(

A$vk(λ)
)
κ(λ) ∇λ

ρ(λ)− r

≤
(

B
A

)η[∫ y

r
χ(vk(ϑ))

1
ρ(ϑ)− r

ω(ϑ)∇ϑ

]η

.

Substituting the last inequality into (25), we get

∫ y

r

[
Πn

k=1χ
(

A$vk(λ)
)] η

n κ(λ) ∇λ

ρ(λ)− r

≤
(

B
nA

)η
(

n

∑
k=1

[∫ y

r
χ(vk(ϑ))

1
ρ(ϑ)− r

ω(ϑ)∇ϑ

])η

,

which is (22).

Remark 4. If n = 1, we get Theorem 4.

Multidimensional Inequalities on Time Scales

In the following section, we define

A$v(y) =
1

Λ(y)

∫ ε1

ε1

...
∫ εm

εm
$(y, z)v(z)∇z, Λ(y) =

∫ ε1

ε1

...
∫ εm

εm
$(y, z)∇z,

where $(y, z) = $(y1, ..., ym, z1, ..., zm), ∇y =∇y1...∇ym and v(z) = v(z1, ..., zm).
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Theorem 6. Let εi, εi ∈ T, i = 1, 2, ..., m, η ≥ 1 and κ, ω be as in Theorem 4, such that

ω(z) = (ρ(z1)− ε1)...(ρ(zm)− εm)

×
(∫ ε1

ε1

...
∫ εm

εm

(
$(y, z)
Λ(y)

)η κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y
) 1

η

. (28)

In addition, assume that χ, ξ are as in Theorem 4, such that

Aξ(y) ≤ χ(y) ≤ Bξ(y), (29)

where A, B are positive constants, then

∫ ε1

ε1

...
∫ εm

εm
χη
(

A$v(y)
)
κ(y) ∇y

(ρ(y1)− ε1)...(ρ(ym)− εm)

≤
(

B
A

)η[∫ ε1

ε1

...
∫ εm

εm
χ(v(z))

1
(ρ(z1)− ε1)...(ρ(zm)− εm)

ω(z)∇z
]η

, (30)

holds for the non-negative function v.

Proof. Using (29) and applying (14), we get

∫ ε1

ε1

...
∫ εm

εm
χη
(

A$v(y)
)
κ(y) ∇y

(ρ(y1)− ε1)...(ρ(ym)− εm)

=
∫ ε1

ε1

...
∫ εm

εm
χη

(
1

Λ(y)

∫ ε1

ε1

...
∫ εm

εm
$(y, z)v(z)∇z

)

× κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y

≤ Bη
∫ ε1

ε1

...
∫ εm

εm
ξη

(
1

Λ(y)

∫ ε1

ε1

...
∫ εm

εm
$(y, z)v(z)∇z

)

× κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y

≤ Bη
∫ ε1

ε1

...
∫ εm

εm

1
Λη(y)

(∫ ε1

ε1

...
∫ εm

εm
$(y, z)ξ(v(z))∇z

)η

× κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y. (31)

Applying (12) on the term

∫ ε1

ε1

...
∫ εm

εm

1
Λη(y)

(∫ ε1

ε1

...
∫ εm

εm
$(y, z)ξ(v(z))∇z

)η

× κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y,

with η ≥ 1, we see that

[∫ ε1

ε1

...
∫ εm

εm

1
Λη(y)

(∫ ε1

ε1

...
∫ εm

εm
$(y, z)ξ(v(z))∇z

)η

× κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y
] 1

η

≤
∫ ε1

ε1

...
∫ εm

εm
ξ(v(z))

(∫ ε1

ε1

...
∫ εm

εm

(
$(y, z)
Λ(y)

)η
κ(y)

(ρ(y1)−ε1)...(ρ(ym)−εm)
∇y
) 1

η

∇z,

268



Axioms 2022, 11, 662

then
∫ ε1

ε1

...
∫ εm

εm

1
Λη(y)

(∫ ε1

ε1

...
∫ εm

εm
$(y, z)ξ(v(z))∇z

)η

× κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y

≤
[∫ ε1

ε1

...
∫ εm

εm
ξ(v(z))

×
(∫ ε1

ε1

...
∫ εm

εm

(
$(y, z)
Λ(y)

)η κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y
) 1

η

∇z




η

. (32)

Substituting (32) into (31), we have from (28) that

∫ ε1

ε1

...
∫ εm

εm
χη
(

A$v(y)
)
κ(y) ∇y

(ρ(y1)− ε1)...(ρ(ym)− εm)

≤ Bη

[∫ ε1

ε1

...
∫ εm

εm
ξ(v(z))

×
(∫ ε1

ε1

...
∫ εm

εm

(
$(y, z)
Λ(y)

)η κ(y)
(ρ(y1)− ε1)...(ρ(ym)− εm)

∇y
) 1

η

∇z




η

= Bη

[∫ ε1

ε1

...
∫ εm

εm
ξ(v(z))

1
(ρ(z1)− ε1)...(ρ(zm)− εm)

ω(z)∇z
]η

,

and then we have from (29) that
∫ ε1

ε1

...
∫ εm

εm
χη
(

A$v(y)
)
κ(y) ∇y

(ρ(y1)− ε1)...(ρ(ym)− εm)

≤
(

B
A

)η[∫ ε1

ε1

...
∫ εm

εm
χ(v(z))

1
(ρ(z1)− ε1)...(ρ(zm)− εm)

ω(z)∇z
]η

,

which is (30).

Remark 5. If T = R, ρ(ϑ) = ϑ and A = B = 1, then

∫ ε1

ε1

...
∫ εm

εm
χη
(

A$v(y)
) κ(y)
(y1 − ε1)...(ym − εm)

dy

≤
(∫ ε1

ε1

...
∫ εm

εm
χ(v(z))

ω(z)
(z1 − ε1)...(zm − εm)

dz
)η

,

where v(z) = v(z1, z2, ..., zm), $(y, z) = $(y1, ..., ym, z1, ..., zm) and

A$v(y) =
1

Λ(y)

∫ ε1

ε1

...
∫ εm

εm
$(y, z)v(z)dz, Λ(y) =

∫ ε1

ε1

...
∫ εm

εm
$(y, z)dz,

with

ω(z) = (z1 − ε1)...(zm − εm)

×
(∫ ε1

ε1

...
∫ εm

εm

(
$(y, z)
Λ(y)

)η κ(y)
(y1 − ε1)...(ym − εm)

dy
) 1

η

.
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Remark 6. If T = N, ρ(ϑ) = ϑ− 1 and A = B = 1, then

ε1

∑
ε1

...
εm

∑
εm

χη
(

A$v(y)
) κ(y)
(y1 − ε1 − 1)...(ym − εm − 1)

≤
[

ε1

∑
ε1

...
εm

∑
εm

χ(v(z))
1

(z1 − ε1 − 1)...(zm − εm − 1)
ω(z)

]η

,

where v(z) = v(z1, z2, ..., zm), $(y, z) = $(y1, ..., ym, z1, ..., zm) and

A$v(y) =
1

Λ(y)

ε1

∑
ε1

...
εm

∑
εm

$(y, z)v(z), Λ(y) =
ε1

∑
ε1

...
εm

∑
εm

$(y, z),

with

ω(z) = (z1 − ε1 − 1)...(zm − εm − 1)

×
(

ε1

∑
ε1

...
εm

∑
εm

(
$(y, z)
Λ(y)

)η κ(y)
(y1 − ε1 − 1)...(ym − εm − 1)

) 1
η

.

4. Conclusions

In this research, we generalize some new inequalities on time-scale nabla calculus. We
will also establish some dynamic inequalities for several functions. Furthermore, we will
establish these inequalities in multiple dimensions on time-scales nabla calculus. All of
these inequalities can be proved by applying Minkowski’s inequality, Jensen’s inequality
and Arithmetic Mean–Geometric Mean inequality. In the future, we hope to study these
dynamic inequalities via conformable nabla fractional calculus on time scales.
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12. Rashid, S.; Noor, Ṁ.A.; Noor, K̇.I.; Safdar, Ḟ.; Chu, Y.M. Hermite-Hadamard type inequalities for the class of convex functions on
time scale. Mathematics 2019, 7, 956. [CrossRef]

13. Özkan, U.M.; Yildirim, H. Hardy-Knopp type inequalities on time scales. Dyn. Syst. Appl. 2008, 17, 477–486.
14. Özkan, U.M.; Yildirim, H. Time scale Hardy-Knopp type integral inequalities. Commun. Math. 2009, 6, 36–41.
15. Ferreira, R.A.; Ammi, M.R.S.; Torres, D.F. Diamond-alpha integral inequalities on time scales. arXiv 2008, arXiv:0805.0242.
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Abstract: In this paper, we establish some new dynamic inequalities involving C-monotonic functions
with C ≥ 1, on time scales. As a special case of our results when C = 1, we obtain the inequalities
involving increasing or decreasing functions (where for C = 1, the 1-decreasing function is decreasing
and the 1-increasing function is increasing). The main results are proved by applying the properties
of C-monotonic functions and the chain rule formula on time scales. As a special case of our results,
when T = R, we obtain refinements of some well-known continuous inequalities and when T = N,
to the best of the authors’ knowledge, the results are essentially new.

Keywords: C-monotonic functions; time scales; chain rule on time scales; inequalities

MSC: 26D10; 26D15; 34N05

1. Introduction

In 1995, Heinig and Maligranda [1] proved that if −∞ ≤ ε < ε ≤ ∞, ω, v ≥ 0, ω is
decreasing on [ε, ε] and v is increasing on [ε, ε] with v(ε) = 0, then for any δ ∈ (0, 1],

∫ ε

ε
ω(ϑ)dv(ϑ) ≤

(∫ ε

ε
ωδ(ϑ)d

[
vδ(ϑ)

]) 1
δ

. (1)

The inequality (1) is reversed when 1 ≤ δ < ∞. In addition, the authors of [1] proved
that if ω is increasing on [ε, ε] and v is decreasing on [ε, ε] with v(ε) = 0, then for any
δ ∈ (0, 1],

∫ ε

ε
ω(ϑ)d[−v(ϑ)] ≤

(∫ ε

ε
ωδ(ϑ)d

[
−vδ(ϑ)

]) 1
δ

. (2)

We define that if s ≤ θ implies ω(θ) ≤ Cω(s) with C ≥ 1, then ω is C-decreasing and
if s ≤ θ implies ω(s) ≤ Cω(θ), C ≥ 1, then ω is C-increasing. We observe that for C = 1,
the 1-decreasing function is the normal decreasing function and the 1-increasing function is
the normal increasing function.

By using the definition of C-monotonic functions, Pečarić et al. [2] generalized (1) and (2)
for C-monotone functions with C ≥ 1. they proved that if 0 < p < q < ∞, ω is C-decreasing
on [ε, ε] for C ≥ 1 and v is increasing and differentiable on [ε, ε], such that v(ε) = 0, then

(∫ ε

ε
ωq(ϑ)d[vq(ϑ)]

) 1
q
≤ C1−p/q

(∫ ε

ε
ωp(ϑ)d[vp(ϑ)]

) 1
p
. (3)
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In addition, they proved that if 0 < p < q < ∞, ω is C-increasing on [ε, ε] for C ≥ 1
and v is increasing and differentiable on [ε, ε], such that v(ε) = 0, then

(∫ ε

ε
ωq(ϑ)d[vq(ϑ)]

) 1
q
≥ Cp/q−1

(∫ ε

ε
ωp(ϑ)d[vp(ϑ)]

) 1
p
. (4)

The authors of [2] proved that if 0 < p < q < ∞, ω is C-increasing on [ε, ε] with C ≥ 1
and v is decreasing and differentiable on [ε, ε], such that v(ε) = 0, then

(∫ ε

ε
ωq(ϑ)d[−vq(ϑ)]

) 1
q
≤ C1−p/q

(∫ ε

ε
ωp(ϑ)d[−vp(ϑ)]

) 1
p
, (5)

and they also proved that if 0 < p < q < ∞, ω is C-decreasing on [ε, ε] for C ≥ 1 and v is
decreasing and differentiable on [ε, ε], such that v(ε) = 0, then

(∫ ε

ε
ωq(ϑ)d[−vq(ϑ)]

) 1
q
≥ Cp/q−1

(∫ ε

ε
ωp(ϑ)d[−vp(ϑ)]

) 1
p
. (6)

In the last decades, some authors have been interested in finding some discrete results
on lp(N) analogues to Lp(R)-bounds in different fields in analysis and, as a result, this
subject becomes a topic of ongoing research. One reason for this upsurge of interest in the
discrete case is also due to the fact that discrete operators may even behave differently from
their continuous counterparts. In this paper, we obtain the discrete inequalities as special
cases of the results with a general domain called the time scale T. The time scale T is an
arbitrary nonempty closed subset of the real numbers R. These results contain the classical
continuous and discrete inequalities as special cases when T = R and T = N and can be
extended to different inequalities on different time scales such as T = hN, h > 0, T = qN for
q > 1, etc. In recent years, the study of dynamic inequalities on time scales has received a
lot of attention and become a major field in pure and applied mathematics. For more details
about the dynamic inequalities on time scales, we refer the reader to the papers [3–16]. For
example, Saker et al. [17] proved some dynamic inequalities for C-monotonic functions and
proved that if ω is C-decreasing on [ε, ε] ∩ T with C ≥ 1 and v is increasing on [ε, ε] ∩ T,
such that v(ε) = 0, then

ϕ

(
C
∫ ε

ε
ω(ϑ)v∆(ϑ)∆ϑ

)
≤ C

∫ ε

ε
ω(ϑ)v∆(ϑ)ϕ′[ω(ϑ)v(ϑ)]∆ϑ,

and if ω is C-increasing on [ε, ε] ∩ T for C ≥ 1 and v is increasing on [ε, ε] ∩ T, such that
v(ε) = 0, then

ϕ

(
1
C

∫ ε

ε
ω(ϑ)v∆(ϑ)∆ϑ

)
≥ 1

C

∫ ε

ε
ω(ϑ)v∆(ϑ)ϕ′[ωσ(ϑ)vσ(ϑ)]∆ϑ.

In addition, they proved that if ω is C-increasing on [ε, ε] ∩ T with C ≥ 1 and v is
decreasing on [ε, ε] ∩T, such that v(ε) = 0, then

ϕ

(
C
∫ ε

ε
ω(ϑ)[−v(ϑ)]∆∆ϑ

)
≤ C

∫ ε

ε
ω(ϑ)[−v(ϑ)]∆ ϕ′[ωσ(ϑ)vσ(ϑ)]∆ϑ,

and if ω is C-decreasing on [ε, ε] ∩T with C ≥ 1 and v is decreasing on [ε, ε] ∩T, such that
v(ε) = 0, then

ϕ

(
1
C

∫ ε

ε
ω(ϑ)[−v(ϑ)]∆∆ϑ

)
≥ 1

C

∫ ε

ε
ω(ϑ)[−v(ϑ)]∆ ϕ′[ω(ϑ)v(ϑ)]∆ϑ.
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Our aim in this paper is to generalize the inequalities (1)–(6) on time scales by estab-
lishing some new dynamic inequalities involving C-monotonic functions.

The paper is organized as follows. In Section 2, we present some preliminaries
concerning the theory of time scales and the definitions of C-monotonic functions. In
Section 3, we prove the main results using the chain rule on time scales and the properties
of C-monotonic functions. Our results when T = R give the inequalities (1)–(6) proved by
Heinig, Maligranda, Pečarić, Perić and Persson, respectively. Our results for T = N are
essentially new.

2. Preliminaries and Basic Lemmas

In this section, we recall the following concepts related to the notion of time scales.
A time scale T is an arbitrary nonempty closed subset of the real numbers R. For more
details of time scale analysis, we refer the reader to the two books by Bohner and Peter-
son [18,19] which summarize and organize much of the time scale calculus. We define
the time scale interval [ε, ε]T by [ε, ε]T := [ε, ε] ∩ T. A function ω : T → R is said to be
right-dense continuous (rd-continuous) provided that ω is continuous at right-dense points
and at left-dense points in T, left-hand limits exist and are finite. The set of all such rd-
continuous functions is denoted by Crd(T) = Crd(T,R). The product and quotient rules for
the derivative of the product ωv and the quotient ω/v (where vvσ 6= 0, here vσ = v ◦ σ)
of two differentiable functions ω and v are given by

(ωv)∆ = ωv∆ + ω∆vσ = ω∆v + ωσv∆, and
(ω

v

)∆
=

ω∆v−ωv∆

v vσ
.

Let ω : R→ R be continuously differentiable and suppose that v : T→ R is delta-
differentiable. Then, ω ◦ v : T→ R is delta-differentiable and there exists ξ in the real
interval [θ, σ(θ)] with

(ω ◦v)∆(θ) = ω′(v(ξ))v∆(θ).

In addition, the formula

(ω ◦v)∆(θ) =

{∫ 1

0
ω′
(

v(θ) + hµ(θ)v∆(θ)
)

dh
}

v∆(θ), (7)

holds. A special case of (7) is

[
uλ(θ)

]∆
= λ

∫ 1

0
[huσ + (1− h)u]λ−1u∆(θ)dh.

In this paper, we will refer to the (delta) integral which we can define as follows. If
G∆(θ) = v(θ), then the Cauchy (delta) integral of v is defined by

∫ θ
ε v(ϑ)∆ϑ := G(θ)−G(ε).

It can be shown (see [18]) that if v ∈ Crd(T), then the Cauchy integral G(θ) :=
∫ θ

θ0
v(ϑ)∆ϑ

exists, θ0 ∈ T and satisfies G∆(θ) = v(θ), θ ∈ T. The integration on discrete time scales is
defined by

∫ ε
ε v(θ)∆θ = ∑θ∈[ε,ε) µ(θ)v(θ). In case T = R, we have

σ(θ) = ρ(θ) = θ, µ(θ) = 0, ω∆ = ω′, and
∫ ε

ε
ω(θ)∆θ =

∫ ε

ε
ω(θ)dθ,

and in case T = Z, we have

σ(θ) = θ + 1, ρ(θ) = θ − 1, µ(θ) = 1, ω∆ = ∆ω, and
∫ ε

ε
ω(θ)∆θ =

ε−1

∑
θ=ε

ω(θ).

The integration by parts formula on time scale is given by
∫ ε

ε
u∆(θ)vσ(θ) ∆θ = u(θ)v(θ)|εε −

∫ ε

ε
u(θ)v∆(θ)∆θ.
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In addition, we have for ω ∈ Crd and θ ∈ T that

∫ σ(θ)

θ
ω(τ)∆τ = µ(θ)ω(θ).

Definition 1. Assume that T is a time scale and ω : T→ R. If s ≤ θ implies ω(θ) ≤ ω(s), then
ω is decreasing and if s ≤ θ implies ω(s) ≤ ω(θ), then ω is increasing.

We can generalize the definition of the increasing and decreasing function to be C-
increasing and C-decreasing, respectively, which is given in the following.

Definition 2 ([17]). Assume that T is a time scale, ω : T→ R and C ≥ 1. If s ≤ θ implies
ω(θ) ≤ Cω(s), then ω is C-decreasing. If s ≤ θ implies ω(s) ≤ Cω(θ), then ω is C-increasing.

As a special case, when C = 1, we observe that the 1-decreasing function is decreasing and the
1-increasing function is increasing.

Lemma 1. Let 0 < q < ∞. If ω is C-decreasing for C ≥ 1, then ωq is Cq-decreasing and if v is
C-increasing, then vq is Cq-increasing.

Proof. Since ω is C-decreasing, we have for s ≤ θ that ω(θ) ≤ Cω(s), and then, we obtain
(where q > 0) that

ωq(θ) ≤ Cqωq(s).

Thus, ωq is Cq-decreasing.
Since v is C-increasing, we have for s ≤ θ that v(s) ≤ Cv(θ), and then, we see (where

q > 0) that
vq(s) ≤ Cqvq(θ),

which indicates that vq is Cq-increasing. The proof is completed.

3. Main Results

Throughout the paper, we assume that the functions (without mentioning) are rd-
continuous nonnegative and ∆-differentiable functions, locally ∆-integrable on [ε, ∞)T, and
the considered integrals are assumed to exist.

In this section, we state and prove our main results.

Theorem 1. Assume that T is a time scale with ε, ε ∈ T, q > 0 and 0 < δ < 1. Furthermore,
assume that if χ is Cq-decreasing on [ε, ε]T, C ≥ 1 and λ is increasing on [ε, ε]T, such that λ(ε) = 0.
If

λδ−1(σ(θ))λ1−δ(θ) ≥ 1, (8)

then (∫ ε

ε
χ(ϑ)[λ(ϑ)]∆∆ϑ

)
≤ Cq(1−δ)

(∫ ε

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

. (9)

Proof. Since λ is an increasing function with λ(ε) = 0 and χ is Cq-decreasing function, we
have for ϑ ≤ θ that χ(θ) ≤ Cqχ(ϑ), and then,

∫ θ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ ≥
(

1
C

)qδ ∫ θ
ε χδ(θ)

[
λδ(ϑ)

]∆∆ϑ

=
(

1
C

)qδ
χδ(θ)

∫ θ
ε

[
λδ(ϑ)

]∆∆ϑ

=
(

1
C

)qδ
χδ(θ)

[
λδ(θ)− λδ(ε)

]

=
(

1
C

)qδ
χδ(θ)λδ(θ),

(10)
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and then,

χδ(θ)λδ(θ) ≤ Cqδ
∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ. (11)

Consider the function

Λ(θ) = Cq(1−δ)

(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

−
∫ θ

ε
χ(ϑ)[λ(ϑ)]∆∆ϑ. (12)

By applying chain rule formula on the term

(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

we have for ξ ∈ [θ, σ(θ)] that

[(∫ θ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ

]∆

= 1
δ

(∫ ξ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆.

(13)

Again, by applying the chain rule formula on the term λδ(θ), we obtain

[
λδ(θ)

]∆
= δλδ−1(ξ)λ∆(θ), (14)

where ξ ∈ [θ, σ(θ)]. From (12), we observe that

Λ∆(θ) = Cq(1−δ)



(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ




∆

− χ(θ)λ∆(θ). (15)

Substituting (13) and (14) into (15), we get

Λ∆(θ) = 1
δ Cq(1−δ)

(∫ ξ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆ − χ(θ)λ∆(θ)

= Cq(1−δ)λδ−1(ξ)
(∫ ξ

ε χδ(ϑ)
[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)λ∆(θ)− χ(θ)λ∆(θ)

= λ∆(θ)

[
Cq(1−δ)λδ−1(ξ)

(∫ ξ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)− χ(θ)

]
.

(16)

Since ξ ∈ [θ, σ(θ)], 0 < δ < 1 and λ is an increasing function, then

λδ−1(ξ)
(∫ ξ

ε χδ(ϑ)
[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1

≥ λδ−1(σ(θ))
(∫ θ

ε χδ(ϑ)
[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
.

(17)

Substituting (17) into (16), we observe that

Λ∆(θ) ≥ λ∆(θ)


Cq(1−δ)λδ−1(σ(θ))

(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ−1

χδ(θ)− χ(θ)


. (18)
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Substituting (11) into (18), we get

Λ∆(θ) ≥ λ∆(θ)

[
λδ−1(σ(θ))

[
χδ(θ)λδ(θ)

] 1
δ−1

χδ(θ)− χ(θ)

]

= λ∆(θ)
[
λδ−1(σ(θ))λ1−δ(θ)χ(θ)− χ(θ)

]
.

(19)

By using (8) and λ is an increasing function, we have from (19) that

Λ∆(θ) ≥ 0,

and then, the function Λ is increasing on [ε, ε]�.
Since Λ is an increasing function, we have for ε > ε that Λ(ε) ≥ Λ(ε) and then (note

that Λ(ε) = 0),

∫ ε

ε
χ(ϑ)[λ(ϑ)]∆∆ϑ ≤ Cq(1−δ)

(∫ ε

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

which is the desired inequality (9). The proof is completed.

Corollary 1. When T = R, σ(θ) = θ, C = 1, we observe that (8) holds already with equality and
we get the inequality (1) proved by Heinig and Maligranda [1].

As a special case of Theorem 1, when 0 < p < q < ∞ such that 0 < δ = p/q < 1,
χ(ϑ) = ωq(ϑ) and λ(ϑ) = vq(ϑ), we have the following corollary.

Corollary 2. Assume that 0 < p < q < ∞, ω is C-decreasing on [ε, ε]T, C ≥ 1 and v is
increasing on [ε, ε]T, such that v(ε) = 0. If

[vσ(θ)]p−qvq−p(θ) ≥ 1, (20)

then (∫ ε

ε
ωq(ϑ)[vq(ϑ)]∆∆ϑ

) 1
q
≤ C1− p

q

(∫ ε

ε
ωp(ϑ)[vp(ϑ)]∆∆ϑ

) 1
p
. (21)

Corollary 3. In Corollary 2, when T = R, σ(θ) = θ, we observe that (20) holds with equality and
then we obtain the inequality (3) proved by Pečarić et al. [2].

Corollary 4. In Corollary 2, when T = N, σ(n) = n + 1, we have that if ε, ε ∈ N, 0 < p < q <
∞, ω is C-decreasing sequence for C ≥ 1 and v is increasing with v(ε) = 0 such that

[v(n + 1)]p−qvq−p(n) ≥ 1,

then (
ε

∑
n=ε

ωq(n)∆[vq(n)]

) 1
q

≤ C1− p
q

(
ε

∑
n=ε

ωp(n)∆[vp(n)]

) 1
p

.

Theorem 2. Assume that T is a time scale with ε, ε ∈ T, q > 0 and 0 < δ < 1. Furthermore
assume that χ is Cq-increasing on [ε, ε]T with C ≥ 1 and λ is increasing on [ε, ε]T, such that
λ(ε) = 0. If

λδ−1(θ)[λσ(θ)]1−δ[χσ(θ)]1−δχδ(θ) ≤ χ(θ), (22)

then (∫ ε

ε
χ(ϑ)[λ(ϑ)]∆∆ϑ

)
≥ Cq(δ−1)

(∫ ε

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

. (23)
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Proof. Since λ is an increasing function with λ(ε) = 0 and χ is a Cq-increasing function,
we have for ϑ ≤ θ that χ(ϑ) ≤ Cqχ(θ), and thus,

∫ θ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ ≤ Cqδ
∫ θ

ε χδ(θ)
[
λδ(ϑ)

]∆∆ϑ

= Cqδχδ(θ)
∫ θ

ε

[
λδ(ϑ)

]∆∆ϑ

= Cqδχδ(θ)
[
λδ(θ)− λδ(ε)

]

= Cqδχδ(θ)λδ(θ),

(24)

and then,

χδ(θ)λδ(θ) ≥ 1
Cqδ

∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ. (25)

Consider the function

Λ(θ) = Cq(δ−1)
(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

−
∫ θ

ε
χ(ϑ)[λ(ϑ)]∆∆ϑ. (26)

By applying the chain rule formula on the term

(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

we have for ξ ∈ [θ, σ(θ)] that

[(∫ θ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ

]∆

= 1
δ

(∫ ξ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆.

(27)

Again, by applying the chain rule formula on the terms λδ(θ), we obtain

[
λδ(θ)

]∆
= δλδ−1(ξ)λ∆(θ), (28)

where ξ ∈ [θ, σ(θ)]. From (26), we observe that

Λ∆(θ) = Cq(δ−1)



(∫ θ

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ




∆

− χ(θ)λ∆(θ). (29)

Substituting (27) and (28) into (29), we get

Λ∆(θ) = 1
δ Cq(δ−1)

(∫ ξ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆ − χ(θ)λ∆(θ)

= Cq(δ−1)λδ−1(ξ)
(∫ ξ

ε χδ(ϑ)
[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)λ∆(θ)− χ(θ)λ∆(θ)

= λ∆(θ)

[
Cq(δ−1)λδ−1(ξ)

(∫ ξ
ε χδ(ϑ)

[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)− χ(θ)

]
.

(30)
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Since ξ ∈ [θ, σ(θ)], 0 < δ < 1 and λ is an increasing function, then

λδ−1(ξ)
(∫ ξ

ε χδ(ϑ)
[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1

≤ λδ−1(θ)
(∫ σ(θ)

ε χδ(ϑ)
[
λδ(ϑ)

]∆∆ϑ
) 1

δ−1
.

(31)

Substituting (31) into (30), we see that

Λ∆(θ) ≤ λ∆(θ)


Cq(δ−1)λδ−1(θ)

(∫ σ(θ)

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ−1

χδ(θ)− χ(θ)


. (32)

Substituting (25) into (32), we get

Λ∆(θ) ≤ λ∆(θ)

[
λδ−1(θ)

[
χδ(σ(θ))λδ(σ(θ))

] 1
δ−1

χδ(θ)− χ(θ)

]

= λ∆(θ)
[
λδ−1(θ)[λσ(θ)]1−δ[χσ(θ)]1−δχδ(θ)− χ(θ)

]
.

(33)

By using (22) and λ is an increasing function, the inequality (33) becomes

Λ∆(θ) ≤ 0,

and then, the function Λ is decreasing on [ε, ε]�.
Since Λ is a decreasing function, then we have for ε > ε that Λ(ε) ≤ Λ(ε) and then

(note that Λ(ε) = 0),

Cq(δ−1)
(∫ ε

ε
χδ(ϑ)

[
λδ(ϑ)

]∆
∆ϑ

) 1
δ

≤
∫ ε

ε
χ(ϑ)[λ(ϑ)]∆∆ϑ,

which is the desired inequality (23). The proof is completed.

As a special case of Theorem 2, when 0 < p < q < ∞ such that 0 < δ = p/q < 1,
χ(ϑ) = ωq(ϑ) and λ(ϑ) = vq(ϑ), we get the following corollary.

Corollary 5. Assume that T is a time scale with ε, ε ∈ T and 0 < p < q < ∞. Furthermore, if ω
is C-increasing on [ε, ε]T for C ≥ 1 and v is increasing on [ε, ε]T, with v(ε) = 0, such that

vp−q(θ)[vσ(θ)]q−p[ωσ(θ)]q−pωp(θ) ≤ ωq(θ), (34)

then (∫ ε

ε
ωq(ϑ)[vq(ϑ)]∆∆ϑ

) 1
q
≥ Cp/q−1

(∫ ε

ε
ωp(ϑ)[vp(ϑ)]∆∆ϑ

) 1
p
.

Corollary 6. As a special case of Corollary 5, when T = R, σ(θ) = θ, we have that (34) holds
already with equality and we get the inequality (4) proved by Pečarić et al. [2].

Corollary 7. In Corollary 5, when T = N, σ(n) = n + 1, we have that if ε, ε ∈ N, 0 < p < q <
∞, ω is a C-increasing sequence for C ≥ 1 and v is increasing with v(ε) = 0, such that

vp−q(n)vq−p(n + 1)ωq−p(n + 1)ωp(n) ≤ ωq(n),

then (
ε

∑
n=ε

ωq(n)∆vq(n)

) 1
q

≥ Cp/q−1

(
ε

∑
n=ε

∫ ε

ε
ωp(n)∆vp(n)

) 1
p

.
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Theorem 3. Assume that T is a time scale with ε, ε ∈ T, q > 0 and 0 < δ < 1. Furthermore, if χ
is Cq-increasing on [ε, ε]T, C ≥ 1 and λ is decreasing on [ε, ε]T, with λ(ε) = 0 such that

χ(θ) ≤ λδ−1(θ)[λσ(θ)]1−δχδ(θ)[χσ(θ)]1−δ, (35)

then
∫ ε

ε
χ(ϑ)[−λ(ϑ)]∆∆ϑ ≤ Cq(1−δ)

(∫ ε

ε
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

. (36)

Proof. Since λ is a decreasing function with λ(ε) = 0 and χ is a Cq-increasing function, we
have for ϑ ≥ θ that χ(θ) ≤ Cqχ(ϑ), and thus,

∫ ε
θ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ ≥ 1
Cqδ

∫ ε
θ χδ(θ)

[
−λδ(ϑ)

]∆∆ϑ

= 1
Cqδ χδ(θ)

∫ ε
θ

[
−λδ(ϑ)

]∆∆ϑ

= 1
Cqδ χδ(θ)

[
λδ(θ)− λδ(ε)

]

= 1
Cqδ χδ(θ)λδ(θ).

(37)

Consider the function

Λ(θ) = Cq(1−δ)

(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

−
∫ ε

θ
χ(ϑ)[−λ(ϑ)]∆∆ϑ. (38)

By applying the chain rule formula on the term

(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

we have for ξ ∈ [θ, σ(θ)] that

[(∫ ε
θ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ

]∆

= 1
δ

(∫ ε
ξ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆.

(39)

Again by applying the chain rule formula on the terms λδ(θ), we obtain

[
λδ(θ)

]∆
= δλδ−1(ξ)λ∆(θ), (40)

where ξ ∈ [θ, σ(θ)]. From (38), we observe that

Λ∆(θ) = Cq(1−δ)

[(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

]∆

− χ(θ)λ∆(θ). (41)

Substituting (39) and (40) into (41), we get

Λ∆(θ) = 1
δ Cq(1−δ)

(∫ ε
ξ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆ − χ(θ)λ∆(θ)

= Cq(1−δ)λδ−1(ξ)
(∫ ε

ξ χδ(ϑ)
[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)λ∆(θ)− χ(θ)λ∆(θ)

=
[
−λ∆(θ)

][
−Cq(1−δ)λδ−1(ξ)

(∫ ε
ξ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ) + χ(θ)

]
.

(42)
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Since ξ ∈ [θ, σ(θ)], 0 < δ < 1 and λ is a decreasing function, then

λδ−1(ξ)
(∫ ε

ξ χδ(ϑ)
[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1

≥ λδ−1(θ)
(∫ ε

σ(θ) χδ(ϑ)
[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
.

(43)

Substituting (43) into (42), we see that

Λ∆(θ) ≤
[
−λ∆(θ)

][
−Cq(1−δ)λδ−1(θ)

(∫ ε

σ(θ)
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ−1

χδ(θ) + χ(θ)

]
. (44)

Substituting (37) into (44), we get

Λ∆(θ) ≤
[
−λ∆(θ)

][
−λδ−1(θ)[λσ(θ)]1−δχδ(θ)[χσ(θ)]1−δ + χ(θ)

]
. (45)

By using (35) and λ is a decreasing function, we have from (45) that

Λ∆(θ) ≤ 0,

and then, the function Λ is decreasing on [ε, ε]T.
Since Λ is a decreasing function, we have for ε > ε that Λ(ε) ≤ Λ(ε) and then (note

that Λ(ε) = 0),

∫ ε

ε
χ(ϑ)[−λ(ϑ)]∆∆ϑ ≤ Cq(1−δ)

(∫ ε

ε
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

which is the desired inequality (36). The proof is completed.

Corollary 8. As a special case of Theorem 3, when T = R, σ(θ) = θ and C = 1, we observe that
(35) holds with equality, and then, we get the inequality (2) proved by Heinig and Maligranda [1].

As a special case of Theorem 3, when 0 < p < q < ∞ such that 0 < δ = p/q < 1,
χ(ϑ) = ωq(ϑ) and λ(ϑ) = vq(ϑ), we get the following corollary.

Corollary 9. If 0 < p < q < ∞, ω is C-increasing on [ε, ε]T, C ≥ 1 and v is decreasing on
[ε, ε]T with v(ε) = 0 such that

ωq(θ) ≤ vp−q(θ)[vσ(θ)]q−pωp(θ)[ωσ(θ)]q−p, (46)

then (∫ ε

ε
ωq(ϑ)[−vq(ϑ)]∆∆ϑ

) 1
q
≤ C1−p/q

(∫ ε

ε
ωp(ϑ)[−vp(ϑ)]∆∆ϑ

) 1
p
.

Corollary 10. As a special case of Corollary 9, when T = R, σ(θ) = θ, we observe that (46) holds
already with equality and we get the inequality (5) proved by Pečarić et al. [2].

Corollary 11. In Corollary 9, when T = N, σ(n) = n + 1, we have that if ε, ε ∈ N, 0 < p <
q < ∞, ω is C-increasing sequence for C ≥ 1 and v is decreasing with v(ε) = 0, such that

ωq(n) ≤ vp−q(n)vq−p(n + 1)ωp(n)ωq−p(n + 1),

then (
ε

∑
n=ε

ωq(n)∆[−vq(n)]

) 1
q

≤ C1−p/q

(
ε

∑
n=ε

ωp(n)∆[−vp(n)]

) 1
p

.

281



Axioms 2022, 11, 644

Theorem 4. Assume that T is a time scale with ε, ε ∈ T, q > 0 and 0 < δ < 1. Furthermore, if χ
is Cq-decreasing on [ε, ε]T, C ≥ 1 and λ is decreasing on [ε, ε]T with λ(ε) = 0 such that

λ1−δ(θ)[λσ(θ)]δ−1 ≤ 1, (47)

then
∫ ε

ε
χ(ϑ)[−λ(ϑ)]∆∆ϑ ≥ Cq(δ−1)

(∫ ε

ε
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

. (48)

Proof. Since λ is a decreasing function with λ(ε) = 0 and χ is a Cq-decreasing function,
we have for ϑ ≥ θ that χ(ϑ) ≤ Cqχ(θ), and then,

∫ ε
θ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ ≤ Cqδ
∫ ε

θ χδ(θ)
[
−λδ(ϑ)

]∆∆ϑ

= Cqδχδ(θ)
∫ ε

θ

[
−λδ(ϑ)

]∆∆ϑ

= Cqδχδ(θ)
[
λδ(θ)− λδ(ε)

]

= Cqδχδ(θ)λδ(θ).

(49)

Consider the function

Λ(θ) = Cq(δ−1)
(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

−
∫ ε

θ
χ(ϑ)[−λ(ϑ)]∆∆ϑ. (50)

By applying the chain rule formula on the term

(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

we have for ξ ∈ [θ, σ(θ)] that

[(∫ ε
θ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ

]∆

= 1
δ

(∫ ε
ξ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆.

(51)

Again, by applying the chain rule formula on the terms λδ(θ), we obtain

[
λδ(θ)

]∆
= δλδ−1(ξ)λ∆(θ), (52)

where ξ ∈ [θ, σ(θ)]. From (50), we observe that

Λ∆(θ) = Cq(δ−1)

[(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

]∆

− χ(θ)λ∆(θ). (53)

Substituting (51) and (52) into (53), we get

Λ∆(θ) = 1
δ Cq(δ−1)

(∫ ε
ξ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)

[
λδ(θ)

]∆ − χ(θ)λ∆(θ)

= Cq(δ−1)λδ−1(ξ)
(∫ ε

ξ χδ(ϑ)
[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ)λ∆(θ)− χ(θ)λ∆(θ)

=
[
−λ∆(θ)

][
−Cq(δ−1)λδ−1(ξ)

(∫ ε
ξ χδ(ϑ)

[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
χδ(θ) + χ(θ)

]
.

(54)
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Since ξ ∈ [θ, σ(θ)], 0 < δ < 1 and λ is a decreasing function, we obtain

λδ−1(ξ)
(∫ ε

ξ χδ(ϑ)
[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1

≤ λδ−1(σ(θ))
(∫ ε

θ χδ(ϑ)
[
−λδ(ϑ)

]∆∆ϑ
) 1

δ−1
.

(55)

Substituting (55) into (54), we observe that

Λ∆(θ) ≥
[
−λ∆(θ)

][
−Cq(δ−1)λδ−1(σ(θ))

(∫ ε

θ
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ−1

χδ(θ) + χ(θ)

]
. (56)

Substituting (49) into (56), we get

Λ∆(θ) ≥
[
−λ∆(θ)

][
−λδ−1(σ(θ))λ1−δ(θ)χ(θ) + χ(θ)

]
. (57)

By using (47) and λ is a decreasing function, we have from (57) that

Λ∆(θ) ≥ 0,

and then, the function Λ is increasing on [ε, ε]T.
Since Λ is an increasing function, we have for ε > ε that Λ(ε) ≥ Λ(ε) and then (note

that Λ(ε) = 0),

∫ ε

ε
χ(ϑ)[−λ(ϑ)]∆∆ϑ ≥ Cq(δ−1)

(∫ ε

ε
χδ(ϑ)

[
−λδ(ϑ)

]∆
∆ϑ

) 1
δ

,

which is the desired inequality (48). The proof is completed.

As a special case of Theorem 4, when 0 < p < q < ∞ such that 0 < δ = p/q < 1,
χ(ϑ) = ωq(ϑ) and λ(ϑ) = vq(ϑ), we get the following corollary.

Corollary 12. Assume that T is a time scale with ε, ε ∈ T and 0 < p < q < ∞. Furthermore, if
ω is C-decreasing on [ε, ε]T, C ≥ 1 and v is decreasing on [ε, ε]T with v(ε) = 0 such that

vq−p(θ)[vσ(θ)]p−q ≤ 1, (58)

then (∫ ε

ε
ωq(ϑ)[−vq(ϑ)]∆∆ϑ

) 1
q
≥ Cp/q−1

(∫ ε

ε
ωp(ϑ)[−vp(ϑ)]∆∆ϑ

) 1
p
.

Corollary 13. As a special case of Corollary 12, when T = R, σ(θ) = θ, we have that (58) holds
already with equality and we also get the inequality (6) proved by Pečarić et al. [2].

Corollary 14. In Corollary 12, when T = N, σ(n) = n + 1, we have that if ε, ε ∈ N, 0 < p <
q < ∞, ω is a C-decreasing sequence for C ≥ 1 and v is decreasing with v(ε) = 0, such that

vq−p(n)vp−q(n + 1) ≤ 1,

then (
ε

∑
n=ε

ωq(n)∆[−vq(n)]

) 1
q

≥ Cp/q−1

(
ε

∑
n=ε

ωp(n)∆[−vp(n)]

) 1
p

.

4. Conclusions and Future Work

In this paper, we establish some new dynamic inequalities involving C-monotonic
functions with C ≥ 1, on time scales. It is known that if C = 1, then the 1-decreasing
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function is decreasing and the 1-increasing function increasing. Thus, our results are special
cases when C = 1 and give the inequalities involving increasing or decreasing functions.
These results can be proved by applying the properties of C-monotonic functions and the
chain rule formula on time scales. In the future, we hope to study the dynamic inequalities
involving C-monotonic functions via conformable delta fractional calculus on time scales.
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Abstract: Integral inequalities have accumulated a comprehensive and prolific field of research
within mathematical interpretations. In recent times, strategies of fractional calculus have become the
subject of intensive research in historical and contemporary generations because of their applications
in various branches of science. In this paper, we concentrate on establishing Hermite–Hadamard and
Pachpatte-type integral inequalities with the aid of two different fractional operators. In particular, we
acknowledge the critical Hermite–Hadamard and related inequalities for n-polynomial s-type convex
functions and n-polynomial s-type harmonically convex functions. We practice these inequalities
to consider the Caputo–Fabrizio and the k-Riemann–Liouville fractional integrals. Several special
cases of our main results are also presented in the form of corollaries and remarks. Our study offers a
better perception of integral inequalities involving fractional operators.

Keywords: Hermite–Hadamard inequality; convex function; harmonically convex function;
Caputo–Fabrizio fractional operator; fractional integral inequality

1. Introduction

The convex function is a class of significant functions popularly accepted in mathemat-
ical analysis. This class represents prominent parts of the theory of inequality. Moreover,
convex functions have been widely used in many research fields such as optimization,
engineering, physics, financial activities, etc. In optimization, the concept of generalized
convexity along with inequality theory is often used. Hermite–Hadamard integral inequali-
ties containing convex functions are an intense research topic for many mathematicians
because of their relevance and efficiency in use.

Convex functions have a very strong association with integral inequalities. Recently,
several mathematicians have explored the close relationship and correlated work on sym-
metry and convexity. It is also explained that while working on any one of the concepts,
work tends to be applied to the other one too. Many familiar and relevant inequalities are
modifications of convex functions. In the literature, there are some well-known inequalities
such as the Hermite–Hadamard inequality and the Jensen inequality that interpret the
geometrical meaning of convex functions. In this paper, we concentrate on presenting new
versions of fractional integral inequalities through n-polynomial s-type convex functions
and n-polynomial s-type harmonically convex functions. To begin the discussion, let us
recall the definition of a convex function.

In 1905, Jensen presented the meaning of convex function as follows:

Axioms 2022, 11, 618. https://doi.org/10.3390/axioms11110618 https://www.mdpi.com/journal/axioms285
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Definition 1 ([1,2]). A function Φ : [a1, a2]→ R is called convex if

Φ(`x + (1− `)y) ≤ `Φ(x) + (1− `)Φ(y),

holds for every x, y ∈ [a1, a2] and ` ∈ [0, 1].

The well-known Hermite–Hadamard inequality is given as follows:

Theorem 1 (see [3]). Consider Φ : T ⊆ R → R to be a convex function with a1 < a2 and
a1, a2 ∈ T. Then, the following inequality holds:

Φ
(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

2
. (1)

Definition 2 (see [4]). A function Φ : T→ R is said to be a harmonically convex function if

Φ
(

a1a2
`a1 + (1− `)a2

)
≤ `Φ(a2) + (1− `)Φ(a2), (2)

holds for all a1, a2 ∈ T and ` ∈ [0, 1].

2. Preliminaries

The set T ⊆ R \ {0} is called convex if `x + (1− `)y ∈ T for x, y ∈ T and ` ∈ [0, 1] and
the set S ⊆ R \ {0} as harmonically convex if xy

`x+(1−`)y ∈ S for all x, y ∈ S and ` ∈ [o, 1].
From now on, we always assume T to be a convex set and S as a harmonically convex set.

Many researchers have generalized and extended the Hermite–Hadamard inequality
using different convexities. For example, Dragomir et al. [5], Qi et al. [6] and Kirmaci et al. [7]
proved some refinements of Hermite–Hadamard inequality for differentiable functions and
presented some applications of the main results for special means and trapezoidal rules.
Furthermore, the related inequalities for s-convex functions were investigated in articles [8,9].
Özcan et al. [10] improved the refinements of Hermite–Hadamard type inequalities using
improved Holder’s inequality. Moreover, this inequality was also improved for interval-
valued preinvex functions in [11]. Recently, a group of mathematicians, namely Toplu, Kadakal
and İşcan [12], presented a very important class of convex function, i.e., the n-polynomial
convex function, which is given as:

Let n ∈ N. A function Φ : T→ R is said to be an n-polynomial convex function on T, if

Φ(`x + (1− `)y) ≤ 1
n

n

∑
℘=1

[
1− (1− `)℘

]
Φ(x) +

1
n

n

∑
℘=1

[
1− `℘

]
Φ(y),

for all x, y ∈ T and ` ∈ [0, 1].
In the same paper, they also proved the following Hermite–Hadamard inequality

employing this new generalized notion of convexity.

Theorem 2 (see [12]). Suppose Φ : T → R is an n-polynomial convex function, a1, a2 ∈
T with a1 < a2 and Φ is a Lebesgue integrable function on [a1, a2]. Then the following
integral inequality holds:

2−1n
n + 2−n − 1

Φ
(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘

℘+ 1
. (3)

If we set n = 1 in the inequality (3), then the classical Hermite–Hadamard inequality (1) for a
convex function is recovered.
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Inspired by the above-mentioned article, Awan et al. [13], extended the concept of
n-polynomial convexity and presented a generalized version of a harmonically convex
function, i.e., an n-polynomial harmonically convex function, given as:

A function Φ : S→ R+ is said to be an n-polynomial harmonically convex if for all
x, y ∈ S, n ∈ N and ` ∈ [0, 1], the following inequality holds.

Φ
(

a1a2
`a1 + (1− `)a2

)
≤ 1

n

n

∑
℘=1

(1− (1− `)℘)Φ(a2) +
1
n

n

∑
℘=1

[
1− `℘

]
Φ(a1).

In the same paper, the following new version of Hermite–Hadamard inequality
was established.

Theorem 3 (see [13]). Suppose Φ : S → R+ is an n-polynomial harmonically convex function.
If a1, a2 ∈ S with 0 < a1 < a2 and Φ ∈ L[a1, a2], then the following integral inequality holds.

2−1n
n + 2−n − 1

Φ
(

2a1a2
a1 + a2

)
≤ a1a2

a2 − a1

∫ a2

a1

Φ(x)
x2 dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘

℘+ 1
.

Definition 3 ([14]). A function Φ : T→ R is said to be an n-polynomial s-type convex function
for n ∈ N. If for a1, a2 ∈ T with `, s ∈ [0, 1], the following inequality satisfies.

Φ(`x + (1− `)y) ≤ 1
n

n

∑
℘=1

[
1− (s(1− `))℘

]
Φ(x) +

1
n

n

∑
℘=1

[
1− (s`)℘

]
Φ(y). (4)

Theorem 4 (see [14]). Let Φ : S→ R be an n-polynomial s-type convex function. If a1, a2 ∈ T
with a1, a2 ∈ T with a1 < a2. If Φ ∈ L[a1, a2], then the following integral inequality holds.

2−1

n
∑
℘=1

[
1−

( s
2

)℘]
Φ
(
a1 + a2

2

)
≤ 1

a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
℘+ 1− s℘

℘+ 1

]
. (5)

Integral inequalities have been indispensable in establishing the uniqueness of so-
lutions for certain fractional differential equations. Sarikaya et al. [15] introduced the
fractional version of Hermite–Hadamard inequality employing a Riemann–Liouville frac-
tional operator. Motivated by this article many mathematicians used different notions
of fractional operators to generalize inequalities such as Hermite–Hadamard, Ostrowski,
Simpson, Opial, Jensen-Mercer, etc. To carry forward our investigation about fractional
calculus, we start with the notion of the Caputo–Fabrizio fractional operator.

Note: From now on, we will useM(λ) > 0 as a normalization function satisfying
M(0) =M(1) = 1.

Let L2(a1, a2) be the space of square integrable function on the interval (a1, a2) and

H′(a1, a2) =
{

g/g ∈ L2(a1, a2) and g′ ∈ L2(a1, a2)
}

.

If Φ ∈ H′(a1, a2), a1 < a2 and λ) ∈ [0, 1], then the left- and right-sided Caputo–Fabrizio
fractional integral operator CFIλ

a1 and CFIλ
a2 are defined as:

Definition 4 (see [16,17]). Let Φ ∈ H′(a1, a2), a1 < a2, λ ∈ [0, 1], then the definition of the left
fractional integral in the sense of Caputo and Fabrizio becomes

(
CF
a1 IλΦ

)
(ϕ) =

(1− λ)

M(λ)
Φ(ϕ) +

λ

M(λ)

∫ ϕ

a1
Φ(x)dx, (6)

(
CF Iλ

a2Φ
)
(ϕ) =

(1− λ)

M(λ)
Φ(ϕ) +

λ

M(λ)

∫ a2

ϕ
Φ(x)dx, (7)

whereM : [0, 1]→ (0, ∞) is a normalization function satisfyingM(0) =M(1) = 1.
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Gürbüz et al. [16] used Caputo–Fabrizio fractional integrals to establish the following
Hermite–Hadamard inequality.

Theorem 5 (see [16]). Let Φ : T→ R be a convex function onT. If a1, a2 ∈ Twith a1 < a2 and Φ
is a Lebesgue integral function on [a1, a2], then the following double inequality holds:

Φ
(
a1 + a2

2

)
≤ M(λ)

λ(a2 − a1)

[(
CF Iλ

a1Φ
)
(k) +

(
CF Iλ

a2Φ
)
(k)− 2(1− λ)

M(λ)
Φ(k)

]
≤ Φ(a1) + Φ(a2)

2
,

where λ ∈ [0, 1], k ∈ [a1, a2].

Theorem 6. Let Φ : T → R be a Lebesgue integrable function on [a1, a2] with a1 < a2 and
a1, a2 ∈ T. If Φ is an n-polynomial convex function then,

2−1n
n + 2−n − 1

Φ
(
a1 + a2

2

)
≤ M(λ)

λ(a2 − a1)

[
CFIλ

a1Φ(r) +CF Iλ
a2Φ(r)− 2(1− λ)

M(λ)
Φ(r)

]
≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘

℘+ 1
,

where λ ∈ [0, 1], r ∈ [a1, a2] andM(λ) > 0, is a normalization function.

Fractional derivatives and integral operators have recently been used to generalize
existing kernels. Nwaeze et al. [18] proved fractional versions of Hermite–Hadamard
inequality for n-polynomial convex and n-polynomial harmonically convex functions. Sa-
hoo et al. [19] established some new Hermite–Hadamard type fractional inequalities for
(h-m) convex functions. Abdeljawad et al. [20] used local fractional integrals to present
inequalities for generalized (s, m)-convex functions. Ostrowski-type inequalities are also in-
vestigated using fractional operators in [21,22]. Further refinements of Hermite–Hadamard
inequalities are done for Wright-generalized Bessel functions [23], polynomial convex
functions [24] and for strongly convexity via Atangana–Baleanu operators [25].

The Caputo–Fabrizio fractional derivative was introduced by Caputo and Fabrizio [26]
in 2015. The advantage of this proposition was due to the necessity of accepting a
model that describes structures with various scales. Recently, it has been seen that many
mathematicians are showing their interest in using the Caputo fractional derivative and
Caputo–Fabrizio fractional integral to establish fractional integral inequalities such as
Hermite–Hadamard, Ostrowski, etc. The persistence of this article is to employ the Ca-
puto–Fabrizio fractional integral operator and k-Riemann–Liouville fractional operator to
investigate some new types of integral inequalities involving n-polynomial convex and
n-polynomial harmonically convex functions, which have been presented earlier using
various fractional operators such as Riemann–Liouville, Atangana–Baleanu, Katugampola,
generalized fractional operators, etc. The results presented could be remedial to prove the
existence and uniqueness of some fractional differential equations.

Now we recall that the left- and right-side k-Riemann–Liouville fractional operator kIλ
a1+

and kIλ
a2−

of order λ > 0 for a real valued continuous function Φ(x) are defined by (see [27,28]).

kIλ
a1+

Φ(x) =
1

kΓ(λ)

∫ x

a1
(x− t)

λ
k −1Φ(`)dt x > a1,

and

kIλ
a2−Φ(x) =

1
kΓ(λ)

∫ a2

x
(t− x)

λ
k −1Φ(`)dt x < a2.

When k > 0 and Γk is the k-gamma function given by

Γk(x) =
∫ x

0
`x−1 exp

−`k
k d` Re(x) > 0,
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with the properties Γk(x + k) = xΓk(x) and Γk(k) = 1 if k = 1 we simply write 1Iλ
a1+

Φ =

Iλ
a1+

Φ and 1Iλ
a1+

Φ = Iλ
a1+

Φ. The beta function is defined by

β(u, v) =
∫ 1

0
`u−1(1− `)v−1d` f or Re(u) > 0, Re(v) > 0. (8)

The novelty of this article is that it deals with inequalities of Hermite–Hadamard and
Pachpatte type for higher-order convexity, i.e., n-polynomial s-type convex and n-polynomial
s-type harmonically convex functions employing two different types of fractional integral
operators. The rest of the article has the following structure: after studying some necessary
concepts about fractional calculus and Hermite–Hadamard type inequalities, in Section 3, we
present new variants of Hermite–Hadamard-type inequality via Caputo–Fabrizio fractional
operators for n-polynomial s-type convex functions. Next, Section 4 is dedicated to establish-
ing Hermite–Hadamard inequalities for n-polynomial s-type harmonically convex functions
via k-Riemann–Liouville fractional operators. A brief conclusion and future scopes of the
present work is given in the last Section 5.

3. Main Results

Theorem 7. Let Φ : T→ R be an n-polynomial s-type convex function on T with a1 < a2 and
a1, a2 ∈ T. If Φ is a Lebesgue integrable function on [a1, a2], then

2−1n
n
∑
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ M(λ)

λ(a2 − a1)

[
CFIλ

a1Φ(r) +CF Iλ
a2Φ(r)− 2(1− λ)

M(λ)
Φ(r)

]

≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

℘+ 1− s℘

℘+ 1
,

where λ ∈ [0, 1], s ∈ [0, 1], r ∈ [0, 1] andM(λ) > 0 is a normalization function.

Proof. Given that Φ is n-polynomial s-type convex function. It follows from Equation (5) that

n
n
∑
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ 2

a2 − a1

∫ a2

a1
Φ(x)dx

=
2

a2 − a1

[∫ r

a1
Φ(x)dx +

∫ a2

r
Φ(x)dx

]
. (9)

Multiplying both sides of Equation (9) by λ(a2−a1)
2M(λ)

gives

λ(a2 − a1)

2M(λ)

n
n
∑
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ λ

M(λ)

[∫ r

a1
Φ(x)dx +

∫ a2

r
Φ(x)dx

]
. (10)

By adding 2(1−λ)
M(λ)

Φ(r) to both sides of Equation (10), we obtain

2(1− λ)

M(λ)
Φ(r) +

λ(a2 − a1)

2M(λ)

n
∑n
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤ 2(1− λ)

M(λ)
Φ(r)

+
λ

M(λ)

[∫ r

a1
Φ(x)dx +

∫ a2

r
Φ(x)dx

]

=

[
(1− λ)

M(λ)
Φ(r) +

λ

M(λ)

∫ r

a1
Φ(x)dx

]
+

[
(1− λ)

M(λ)
Φ(r) +

λ

M(λ)

∫ a2

r
Φ(x)dx

]

= CFIλ
a1Φ(r) +CF Iλ

a2Φ(r).

This implies that
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2(1− λ)

M(λ)
Φ(r) +

λ(a2 − a1)

2M(λ)

n
∑n
℘=1

[
1−

( s
2
)℘]Φ

(
a1 + a2

2

)
≤CF Iλ

a1Φ(r) +CF Iλ
a2Φ(r). (11)

On the other hand from Equation (5), we also obtain

2
a2 − a1

∫ a2

a1
Φ(x)dx ≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
℘+ 1− s℘

℘+ 1

]
. (12)

If we multiply Equation (12) by λ(a2−a1)
2M(λ)

and then add 2(1−λ)
M(λ)

Φ(r) to the resulting
inequality, we obtain

CFIλ
a1Φ(r) +CF Iλ

a2Φ(r) ≤ λ(a2 − a1)

M(λ)

Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
℘+ 1− s℘

℘+ 1

]
+

2(1− λ)

M(λ)
Φ(r). (13)

Hence, the desired result is obtained by combining Equations (11) and (13).

Remark 1. By taking s = 1, Theorem 7 becomes Theorem 6.

Corollary 1. By taking n = 1, Theorem 7 becomes the following inequality,

Φ
(
a1 + a2

2

)

≤ 2− s
λ

M(λ)

a2 − a1

[
CF
a1 IλΦ(r) +CF Iλ

a2Φ(r)− 2(1− λ)

M(λ)
Φ(r)

]
≤ (2− s)2

2
[Φ(a1) + Φ(a2)].

Remark 2. By taking n = s = 1, then Theorem 7 becomes Theorem 5.

Theorem 8. Suppose Φ, Υ : T → R is functions such that Φ Υ is integrable on [a1, a2] with
a1 < a2 and a1, a2 ∈ T. If Φ is n1-polynomial s-type convex function and Φ is an n2-polynomial
s-type convex function, then the following inequality holds:

M(λ)

λ(a2 − a1)

[
CF
a1 IλΦ(r)Υ(r) +CF Iλ

a2Φ(r)Υ(r)− 2(1− λ)

M(λ)
Φ(r)Υ(r)

]

≤
∫ 1

0
[∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2) + ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2)]d`,

where λ ∈ [0, 1] and r ∈ [a1, a2] andM(λ) > 0 is a normalization function and

∆1(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s(1− `))℘]
n2

∑
℘=1

[1− (s(1− `))℘],

∆2(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s`)℘]
n2

∑
℘=1

[1− (s`)℘],

∆3(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s`)℘]
n2

∑
℘=1

[1− (s(1− `))℘],

∆4(`) =
1
n1

1
n2

n1

∑
℘=1

[1− (s(1− `))℘]
n2

∑
℘=1

[1− (s`)℘].

Proof. Let Φ be n1-polynomial s-type convex function and Υ is n2-polynomial s-type
convex function

Φ
(
`a1 + (1− `)a2

)
≤ 1

n1

n1

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Φ(a1) +
1
n1

n1

∑
℘=1

[
1−

(
s`
)℘
]

Φ(a2). (14)
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Υ
(
`a1 + (1− `)a2

)
≤ 1

n2

n2

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Υ(a1) +
1
n2

n2

∑
℘=1

[
1−

(
s`
)℘
]

Υ(a2). (15)

Multiplying (14) and (15).

Φ
(
`a1 + (1− `)a2

)
Υ
(
`a1 + (1− `)a2

)

≤ 1
n1

1
n2

n2

∑
℘=1

[
1−

(
s(1− `)

)℘
] n1

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Φ(a1)Υ(a1)

+
1
n1

1
n2

n2

∑
℘=1

[
1−

(
s`
)℘
] n1

∑
℘=1

[
1−

(
s`
)℘
]

Φ(a1)Υ(a2)

+
1
n1

1
n2

n1

∑
℘=1

[
1−

(
s`
)℘
] n2

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Φ(a2)Υ(a1)

+
1
n1

1
n2

n1

∑
℘=1

[
1−

(
s`
)℘
] n2

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Φ(a2)Υ(a1). (16)

= ∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2) + ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2).

This implies that

Φ
(
`a1 + (1− `)a2

)
Υ
(
`a1 + (1− `)a2

)

≤ ∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2) + ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2).

Integrating both sides of (16) with respect to over [0, 1] results to

2
a2 − a1

∫ a2

a1
Φ(x)Υ(x)dx ≤ 2

∫ 1

0

[
∆1(`)Φ(a1)Υ(a1) + ∆2(`)Φ(a2)Υ(a2)

+ ∆3(`)Φ(a2)Υ(a1) + ∆4(`)Φ(a1)Υ(a2)
]

d`

= N
(
a1, a2

)
.

Consequently,

2
a2 − a1

[ ∫ r

a1
Φ(x)Υ(x)dx +

∫ a2

r
Φ(x)Υ(x)dx

]
≤ N(a1, a2). (17)

Now, multiplying (17) by λ(a2−a1)
2M(λ)

and then adding 2(1−λ)
M(λ)

Φ(r) to the result, we obtain

λ

M(λ)

[ ∫ r

a1
Φ(x)Υ(x)dx +

∫ a2

r
Φ(x)Υ(x)dx

]
+

2(1− λ)

M(λ)
Φ(r)Υ(r)

≤ λ(a2 − a1)

2M(λ)
N(a1, a2) +

2(1− λ)

M(λ)
Φ(r)Υ(r).

Hence,

CF
a1 IλΦ(r)Υ(r) +CF Iλ

a2Φ(r)Υ(r) ≤ λ(a2 − a1)

2M(λ)
N(a1, a2) +

2(1− λ)

M(λ)
Φ(r)Υ(r).

From which we obtain the intended inequality.

Remark 3. If we put s = 1 in Theorem 8, we get Theorem 6.

Remark 4. If we put n1 = n2 = 1, s = 1 in Theorem 8, we obtain Theorem 4.
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Corollary 2. If we put n1 = n2 = 1, in Theorem 8, then

2M(λ)

λ(a2 − a1)

[
CF
a1 IλΦ(r)Υ(r) +CF Iλ

a2Φ(r)Υ(r)− 2(1− λ)

M(λ)
Φ(r)Υ(r)

]

≤ 2
3
(3(1− s) + s3)[Φ(a1)Υ(a1) + Φ(a2)Υ(a2)]

+
1
3
(6(1− s) + s2)[Φ(a1)Υ(a2) + Φ(a2)Υ(a1)].

4. Further Estimations via n-Polynomial Harmonically s-Type Convex Function

Theorem 9. Suppose Φ : S → R+ be an n-polynomial harmonically s-type convex function on
S with a1 < a2 and Φ ∈ L[a1, a2] and a1, a2 > 0, s ∈ [0, 1]. Then, the following fractional
inequality holds:

1
n
∑
℘=1

[
1−

(
s
2

)℘]

≤ Φ
(

2a1a2
a1 + a2

)
Γk(λ) + k)

n

(
a1a2

a2 − a1

) λ
k
[

k
Iλ

1
a2+

Φ ◦Ψ
(

1
a1

)
+k Iλ

1
a1−

Φ ◦Ψ
(

1
a2

)]

≤ Φ(a1) + Φ(a2)

n2

n

∑
℘=1

[
2− s℘λ

λ + ik
− s℘λ

k
β

(
λ

k
,℘+ 1

)]
,

where Ψ(r) = 1
r and β is the beta function.

Proof. Given that Φ is n-polynomial s-type convex function,

Φ
(

2xy
x + y

)
≤ 1

n

n

∑
℘=1

[
1−

( s
2

)℘]
[Φ(x) + Φ(y)]. (18)

Now, let x = a1a2
`a1+(1−`)a2 and y = a1a2

`a2+(1−`)a1 then (18) becomes,

Φ
(

2a1a2
a1 + a2

)
≤ 1

n

n

∑
℘=1

[
1−

( s
2

)℘]{
Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
. (19)

Multiplying both sides of Equation (19) by `
λ
k −1 and integrating with respect to ` over

[0, 1], we obtain

∫ 1

0
`

λ
k −1Φ

(
2a1a2
a1 + a2

)
d`

≤ 1
n

n

∑
℘=1

[
1−

( s
2

)℘] ∫ 1

0
`

λ
k −1
{

Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
d`

=
1
n

n

∑
℘=1

[
1−

( s
2

)℘]{ ∫ 1

0
`

λ
k −1Φ

(
a1a2

`a1 + (1− `)a2

)
+
∫ 1

0
`

λ
k −1Φ

(
a1a2

`a2 + (1− `)a1

)
d`
}

=
1
n

n

∑
℘=1

[
1−

( s
2

)℘]

×
[(

a1a2
a2 − a1

) λ
k
∫ 1

a1

1
a2

(
1
a1
− r
) λ

k −1
Φ
(

1
r

)
dr +

(
a1a2

a2 − a1

) λ
k
∫ 1

a1

1
a2

(
r− 1

a2

) λ
k −1

Φ
(

1
r

)
dr

]
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=
kΓk(λ)

n

n

∑
℘=1

[
1−

( s
2

)℘]( a1a2
a2 − a1

) λ
k

×
[

1
kΓk(λ)

∫ 1
a1

1
a2

(
1
a1
− r
) λ

k −1
Φ
(

1
r

)
dr +

1
kΓk

(λ)
∫ 1

a1

1
a2

(
r− 1

a2

) λ
k −1

Φ
(

1
r

)
dr

]

=
kΓk(λ)

n

n

∑
℘=1

[
1−

( s
2

)℘]( a1a2
a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−(Φ ◦Ψ)(
1
a2

)

]
,

where Ψ(r) = 1
r , this implies that

1

∑n
℘=1

[
1−

( s
2
)℘]Φ

(
2a1a2
a1 + a2

)

≤ Γk(λ + k)
n

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−(Φ ◦Ψ)(
1
a2

)

]
. (20)

Next, substituting x = a1, y = a2 in (4) gives

Φ
(

a1a2
`a1 + (1− `)a2

)
≤ 1

n

n

∑
℘=1

[1− s(1− `)℘]Φ(a2) +
1
n

n

∑
℘=1

[1− (s`)℘]Φ(a1). (21)

Reversing the role of a1 and a2 in (21)

Φ
(

a1a2
`a2 + (1− `)a1

)
≤ 1

n

n

∑
℘=1

[1− (s(1− `)℘)]Φ(a1) +
1
n

n

∑
℘=1

[1− (s`)℘]Φ(a2). (22)

Adding (20) and (21) and multiplying the resulting inequality by `
λ
k −1, then integrating

with respect to ` ∈ [0, 1], we obtain

∫ 1

0
`

λ
k −1
{

Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
d`

≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

∫ 1

0

[
2`

λ
k −1 − `

λ
k −1(s(1− `))℘ − (s`)℘`

λ
k −1
]
d`

≤ Φ(a1) + Φ(a2)

n

n

∑
℘=1

[
2

k
λ
− s℘k

λ + ik
− s℘β

(
λ

k
,℘+ 1

)]
. (23)

Again from (23), one has

Γk(λ + k)
n

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−(Φ ◦Ψ)(
1
a2

)

]

≤ Φ(a1) + Φ(a2)

n2

n

∑
℘=1

[
2− s℘λ

λ + ik
− s℘λ

k
β

(
λ

k
,℘+ 1

)]
.

Combining (20) and (22) leads us to the desired result.

Remark 5. If we take s = 1 and λ = k = 1, then Theorem 9 reduces to Theorem 3.

Remark 6. If we take λ = k = 1, then Theorem 9 reduces to Theorem 4.

Remark 7. If we take n = 1 , s = 1 λ = k = 1 in Theorem 9, then the classical Hermite–Hadamard
type inequality for harmonic convex function is recovered.
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Remark 8. If we take n = λ = k = 1 in Theorem 9, then the classical Hermite–Hadamard
inequality for harmonic s-type convex function is recovered.

Corollary 3. If we set n = 1 in Theorem 9, then we have the following inequality.

1[
1−

( s
2
)]Φ

(
a1a2

a1 + a2

)

≤ Γk(λ + k)
n

(
a1a2

a2 − a1

) λ
k
[

kIλ
( 1
a2

)+
(Φ ◦Ψ)(

1
a1

) +k Iλ
( 1
a1

)−(Φ ◦Ψ)(
1
a2

)

]

≤ [Φ(a1) + Φ(a2)]

[
2− sλ

λ + k
− sλ

k
β

(
λ

k
, 2
)]

.

Theorem 10. Suppose Φ, Ψ : S→ R+ be two functions such that ΦΨ ∈ L[a1, a2] and a1, a2 >
0, a1, a2 ∈ S. If Φ is an n1-polynomial harmonically s-type convex function and Ψ is an n2-
polynomial harmonically s-type convex function with λ, k > 0, then the following inequality holds:

(
a1a2

a2 − a1

) λ
k
[

kIλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−(ΦΨ ◦ h)(
1
a2

)

]

≤ D(a1, a2)
kΓk(λ)

∫ 1

0
`

λ
k −1[∆1(`) + ∆4(`)]d`+

F(a1, a2)
kΓk(λ)

∫ 1

0
`

λ
k −1[∆2(`) + ∆4(`)]d`,

where D(a1, a2) = Φ(a1)Ψ(a1) + Φ(a2)Ψ(a2), F(a1, a2) = Φ(a1)Ψ(a2) + Φ(a2)Ψ(a1),
h(r) = 1

r and ∆1(`), ∆2(`), ∆3(`) and ∆4(`) are defined in Theorem 8.

Proof. Since Φ is an n1-polynomial harmonically s-type convex function and Ψ is an
n2-polynomial harmonically s-type convex function, we have

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

≤ 1
n1

1
n2

n1

∑
℘=1

[
1− (s(1− `))℘

] n2

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Φ(a2)Ψ(a2)

+
1
n1

1
n2

n1

∑
℘=1

[
1− (s(1− `))℘

] n2

∑
℘=1

[
1−

(
s`
)℘
]

Φ(a2)Ψ(a1)

+
1
n1

1
n2

n2

∑
℘=1

[
1−

(
s`
)℘
] n1

∑
℘=1

[
1−

(
s(1− `)

)℘
]

Φ(a1)Ψ(a2)

+
1
n1

1
n2

n1

∑
℘=1

[
1−

(
s`
)℘
] n2

∑
℘=1

[
1−

(
s`
)℘
]

Φ(a1)Ψ(a1)

= ∆1(`)Φ(a2)Ψ(a2) + ∆2(`)Φ(a2)Ψ(a1) + ∆3(`)Φ(a1)Ψ(a2) + ∆4(`)Φ(a1)Ψ(a1).

This gives

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

≤ ∆1(`)Φ(a2)Ψ(a2) + ∆2(`)Φ(a2)Ψ(a1) + ∆3(`)Φ(a1)Ψ(a2) + ∆4(`)Φ(a1)Ψ(a1). (24)

Similarly, we also have

Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)

≤ ∆1(`)Φ(a1)Ψ(a1) + ∆2(`)Φ(a1)Ψ(a2) + ∆3(`)Φ(a2)Ψ(a1) + ∆4(`)Φ(a2)Ψ(a2). (25)
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Adding (24) and (25)

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)

≤ (Φ(a1)Ψ(a1) + Φ(a2)Ψ(a2))[∆1(`) + ∆4(`)]

+ (Φ(a1)Ψ(a2) + Φ(a2)Ψ(a1))[∆2(`) + ∆3(`)].

Multiplying both sides of (17) by `
λ
k −1 and then integrating with respect to ` over [0,1],

one obtains

kΓk(λ)

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−(ΦΨ ◦ h)(
1
a2

)

]

∫ 1

0
`

λ
k −1Φ

(
a1a2

`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)
d`

+
∫ 1

0
`

λ
k −1Φ

(
a1a2

`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)
d`

≤ (Φ(a1)Ψ(a1) + Φ(a2)Ψ(a2))
∫ 1

0
`

λ
k −1[∆1(`) + ∆4(`)]d`

+ (Φ(a1)Ψ(a2) + Φ(a2)Ψ(a1))
∫ 1

0
`

λ
k −1[∆2(`) + ∆3(`)]d`

= D(a1, a2)
∫ 1

0
`

λ
k −1[∆1(`) + ∆4(`)]d`+ F(a1, a2)

∫ 1

0
`

λ
k −1[∆2(`) + ∆3(`)]d`.

Hence, the proof is completed.

Corollary 4. Suppose Φ, Ψ : S → R+ are functions such that ΦΨ ∈ L[a1, a2] and a1, a2 > 0,
a1, a2 ∈ S. If Φ and Ψ are n1-polynomial harmonically s-type convex functions, then the following
fractional inequality holds:

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−(ΦΨ ◦ h)(
1
a2

)

]

≤ D(a1, a2)
Γk(λ)

[
1 + (1− s)2

λ
+

2s2

λ + 2k
− 2s2

λ + k

]
+

F(a1, a2)
Γk(λ)

[
2(1− s)

λ
+

2s2

λ + k
− 2s2

λ + 2k

]
.

Proof. Let n1 = n2 = 1 ∆1(`) = [1− s(1− `)]2 , ∆4(`) = [1− s`]2 and ∆3(`) = ∆4(`) =
[(1− s) + s2(`− `2)].

The result follows using Theorem 10.

Remark 9. If we put s = 1 in Corollary 4, then Corollary 2 [18] is recovered.

Theorem 11. Suppose Φ, Ψ : S → R+ be functions such that ΦΨ ∈ L[a1, a2] with a1, a2 > 0
and a1, a2 ∈ S. If Φ is n1-polynomial harmonically s-type convex function, Ψ is n2-polynomial
harmonically s-type convex function and λ, k > 0. Then the following fractional inequality holds:

n1n2

∑n1
℘=1

[
1−

( 2
s
)]

∑n2
℘=1

[
1−

( 2
s
)]Φ

(
2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)

≤ Γk(λ + k)
(

a1a2
a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−(ΦΨ ◦ h)(
1
a2

)

]

+
λ

k

∫

01
`

λ
k −1
{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

d`,
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where h is defined as in Theorem 9, Λn = 1
n ∑n

℘=1[1− (s(1− `))℘] and Λ̄n = 1
n ∑n

℘=1[1− (s`)℘].

Proof. Please note that Λ̄n

(
1
2

)
= Λn

(
1
2

)
= En =

∑n
℘=1[1−( s

2 )
℘
]

n .
Now, let ` ∈ [0, 1], hence from (10), one obtains

Φ
(

2a1a2
a1 + a2

)
≤ En1

{
Φ
(

a1a2
`a1 + (1− `)a2

)
+ Φ

(
a1a2

`a2 + (1− `)a1

)}
,

and

Ψ
(

2a1a2
a1 + a2

)
≤ En2

{
Ψ
(

a1a2
`a1 + (1− `)a2

)
+ Ψ

(
a1a2

`a2 + (1− `)a1

)}
.

Now,

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)

≤ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

+ Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}

+ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a2 + (1− `)a1

)

+ Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a1 + (1− `)a2

)}

≤ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

+ Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}

+ En1 En2

{
[Λn1(`)Φ(a2) + Λ̄n1(`)Φ(a2)][Λn2(`)Ψ(a1) + Λ̄n2(`)Ψ(a2)]

+ [Λn1(`)Φ(a1) + Λ̄n1(`)Φ(a2)][Λn2(`)Ψ(a2) + Λ̄n2(`)Ψ(a1)]

}

= En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

+ Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a

)}

+ En1 En2

{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

.

Consequently, we have

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)
≤ En1 En2

{
Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

+ Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}

+ En1 En2

{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

. (26)
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Multiplying both sides of (26) by `
λ
k −1 and integrating the resulting inequality with

respect to ` over [0, 1] one has

k
λ

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)

=
∫ 1

0
`

λ
k −1Φ

(
2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)

≤ En1 En2

∫ 1

0
`

λ
k −1
{

Φ
(

a1a2
`a1 + (1− `)a2

)
Ψ
(

a1a2
`a1 + (1− `)a2

)

+ Φ
(

a1a2
`a2 + (1− `)a1

)
Ψ
(

a1a2
`a2 + (1− `)a1

)}

+ En1 En2

∫ 1

0
`

λ
k −1
{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

.

= En1 En2

{
kΓk(λ)

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−(ΦΨ ◦ h)(
1
a2

)

]}

+ En1 En2

∫

01
`

λ
k −1
{
[Λn1(`)Λ̄n2(`) + Λ̄n1(`)Λn2(`)]D(a1, a2)

+ [Λn1(`)Λn2(`) + Λ̄n1(`)Λ̄n2(`)]F(a1, a2)
}

d`.

The required result follows.

Corollary 5. Let Φ, Ψ : S → R+ be two functions such that ΦΨ ∈ L[a1, a2] and a1, a2 > 0,
a1, a2 ∈ S. If Φ and Ψ are n1-polynomial harmonically s-type convex functions with λ, k > 0, then

Φ
(

2a1a2
a1 + a2

)
Ψ
(

2a1a2
a1 + a2

)

≤
(

1− s
2

)
Γk(λ + k)

(
a1a2

a2 − a1

) λ
k
[

k Iλ
( 1
a2

)+
(ΦΨ ◦ h)(

1
a1

) +k Iλ
( 1
a1

)−(ΦΨ ◦ h)(
1
a2

)

]

+
(

1− s
2

)2
{[

2(1− s) +
2s2λ

λ + k
− 2s2λ

λ + 2k

]
D(a1, a2)

+

[
(1 + (1− s))2 − 2s2λ

λ + k
+

2s2λ

λ + 2k

]
F(a1, a2)

}
.

Proof. Let n1 = n2 = 1, then Λn1(`) = Λn2(`) = 1− s(1− `) and Λ̄n1(`) = Λ̄n2(`) =
1− s`. The intended result follows using Theorem 11.

Remark 10. If we put s = 1 in Corollary 5, then we obtain Corollary 3 [18].

5. Conclusions and Future Scope

As per recent trends, incorporating different fractional operators into the theory of
inequalities is a new area of interest among several researchers. Several mathematicians
have worked on the generalizations of some well-known inequalities to offer new bounds
and new applications using new methods. In this manuscript:

(1) We presented and concentrated several fractional inequalities of the Caputo–Fabrizio
operator for an n-polynomial s-type convex function and k-Riemann–Liouville frac-
tional integral operator for an n-polynomial harmonically s-type convex function.

(2) New version of Hermite–Hadamard inequality and Pachpatte-type inequality are
obtained via Caputo–Fabrizio fractional integral operators.
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(3) Some special cases of the presented results have been in the form of corollaries
and remarks.

In the future, we intend to generalize the theory of inequality for concepts such as interval-
valued analysis, quantum calculus, fuzzy interval-valued calculus and time-scale calculus.
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Abstract: Multidimensional integro-differential equations are obtained when the unknown function
of several independent variable and/or its derivatives appear under an integral sign. When the
differentiation or integration operators or both are of fractional order, the integral equation in this
case is called a multidimensional fractional integro-differential equation. Such equations are difficult
to solve analytically; therefore, as the main objective of this paper, an approximate method—which
is the variational iteration method—will be used to solve this type of equation with conformable
fractional-order derivatives and integrals. First, we drive the iterative sequence of approximate
solutions using the proposed method, and then, under certain conditions over the kernel of the
integro-differential equation, prove its convergence to the exact solution. Two illustrative examples,
linear and nonlinear, are given, and their approximated solutions are simulated using computer
programs in order to verify from the reliability and applicability of the proposed method.

Keywords: multidimensional integro-differential equations; conformable fractional diffrointegra-
tions; variational iteration method; convergence of the iterative method; general Lagrange multiplier

1. Introduction

Recently, fractional differential equations, fractional calculus and fractional differential
integral equations became highly important in several branches of science and engineering
because many mathematical models are used to formulate different phenomena, such as
mechanics, physics, chemical kinetics, astronomy, biology, economics, potential theory and
electrostatistics, which are modeled using integro-differential equations [1–6]. In 2016, Shi [7]
introduced a formula of mild solutions for impulsive fractional evolution equations.

Many academic researchers continue to be interested in the use of fractional differential
equations and/or integral equations, which are based on the development and applications
of fractional calculus [8,9]. Nonlinear fractional integral equations and integro-differential
equations are notoriously difficult to solve analytically. Moreover, accurate solutions for
these equations are extremely rare. As a result, various authors have taken an interest
in numerically solving these problems, particularly after the big revolution in computer
application. Among the techniques used to solve integro-differential equations are the multi-
step methods [10], Adomian decomposition method (ADM) [11], homotopy perturbation
method (HPM) [12–14], homotopy analysis method (HAM) [15], variational iteration
method (VIM) [16] and so on.

The VIM has been successfully applied to solve many problems in different fields of
mathematics and its applications. For example, He was the first researcher to propose the
use of VIM to solve linear and nonlinear differential and integral equations [17]. In 1998,
He used VIM to solve the classical Blasius equation, ref. [18] and in 1999, he provided the
approximate solutions for some well-known nonlinear problems [19]. In 2000, He used
the VIM to solve autonomous ordinary differential equations. Moreover, in 2006, Soliman
applied the VIM to solve the kdv-Burger’s and Lax’s seventh-order kdv equations. In the
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same year, VIM was applied by Abulwafa and Momani [20] to solve a nonlinear coagulation
problem with mass loss and Odibat et al. employed the VIM to solve nonlinear differential
equations of fractional order in 2006. In 2006, the VIM was also utilised by Bildiki et al. to
solve a variety of problems, including nonlinear partial differential equations, Dehghan and
Tateri’s Fokker–Plank equation and quadratic Riccati differential equations with constant
coefficients. Wang [21] used the VIM to solve integro-differential equations in 2009, while
Sweilam used the VIM to solve both linear and nonlinear boundary value problems of the
fourth-order integro-differential equations.

In 2009, Wen-Hua Wang used the VIM to solve certain types of fractional integro-
differential equations [21]. In 2011, Muhammet and Adin used the VIM to solve the problem
of nonlinear fractional integro-differential equations [20].

If an exact solution exists, the VIM provides rapidly convergent consecutive approxi-
mations to the precise solution; otherwise, a few approximations might be employed for
numerical results.

In this paper, we shall present the VIM used to solve integro–differential equations
with conformable fractional order differointegration of the form:

Tα
x u(x, y) = g(x, y) + Iβ

x Iγ
y K(x, y, s, t, u(x, y)) (1)

where K is given continuous function, 0 < α ≤ 1, β, γ > 0, x, y ∈ [a, b]× [c, d] here, Tα is
understood as a conformable fractional derivative of order α, while Iβ and Iγ stands for
conformable fractional-order integrals of order β and γ, respectively.

2. Main Concepts of Factional Calculus

Among the most important definitions of fractional-order derivatives or integrals
which will be used next in this paper is the conformable type, which is more simple than
other definitions and more stable in comparison with the nonfractional (or integer order)
derivatives and integrals.

Definition 1 (Conformable Fractional-Order Derivative [22]). Given a function f : [a, ∞)→
R, then the left conformable fractional derivative of order α can be defined as:

(Ta
α( f ))(x) = lim

ε→0

f
(
x + ε(x− a)1−α

)
− f (x)

ε

for all x > 0, α ∈ (0, 1]. When a = 0, we write Tα. If (Ta
α( f ))(x) exist on the interval (a, b),

then define:
(Ta

α( f ))(a) = lim
x→a+

f (α)(x)

The right conformable fractional derivative of order α ∈ (0, 1] terminating at b of f , is
defined by:

b
αT( f )(x) = lim

f
(
x + ε(b− x)1−α

)
− f (x)

ε

If b
α(T( f )(x)) exist on the interval (a, b), then define:

b
α(T( f ))(b) = lim

x→b−
bTα( f )(x)

Definition 2 (Conformable Fractional-Order Integral [23]). Given a continuous function
f : [a, ∞)→ R, then the left conformable fractional integral of order α of f is:

(Ia
α( f ))(x) =

∫ x

a
f (s)dα(s, a) =

∫ x

a

f (s)
(s− a)1−α

ds (2)
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where the integral is considered as the usual Riemann improper integral and a ≥ 0. On the other
hand, in the right case, we have:

b
α Ix( f )(x) =

∫ b

x
f (s)dα(b, s) =

∫ b

x

f (s)
(b− s)1−α

ds (3)

Among some different properties concerning fractional integrals and derivative which
are very useful in applications are the following, where Tα and Iα refer to fractional-order
conformable and integral, respectively:

1. Tα(c1 f + bc2) = c1Tα( f ) + c2Tα(g), for all c1, c2 ∈ R.
2. Tα(c1 f + c2g) = c1Tα f + c2Tαg.
3. Tα(c1 f + bc2) = c1Tα( f ) + c2Tα(g), for all c1, c2 ∈ R.
4. Tα(xp) = pxp−α, for all p ∈ R.
5. Tα(λ) = 0, for all constant functions f (x) = λ.
6. Tα( f g) = f Tα(g) + gTα( f )

7. Tα
(

f
g

)
= gTα( f )− f Tα(g)

g2 , g 6= 0.

8. If, in addition, f is differentiable, then Tα( f )(x) = x1−α d f
dt (x).

9. Ta
αx Ia

α( f )(x) = f (x), for x > a, where f is any continuous function in the domain of Ia
α

and b
αTb

α Ix( f )(x) = f (x), for x < b, where f is any continuous function in the domain
of b

α I.

3. Variational Iteration Method

The essential aspect of the VIM, as previously stated in the literature, is that the
solution of a mathematical problem under the linearization assumption is utilized as a
starting approximation or trial function for the next successive approximate solution to the
problem under certain conditions [2].

Consider the following general nonlinear equation in operator form to demonstrate
the VIM’s essential concept [3]:

Au(x) = g(x) (4)

and suppose that Equation (1) may be decomposed as:

L(u(x)) + N(u(x)) = g(x), x ∈ [a, b] (5)

where A is any operator that may be decomposed into linear and nonlinear operators L and
N, respectively, and g(x) is any function that is referred to as the nonhomogeneous term.
Equation (5) may be solved iteratively using the VIM by using the correction functional
defined by:

un+1(x) = un(x) +
∫ a

xa
λ(x, s){L(un(s) + N(ũn(s))− g(s)}ds, n = 0, 1, . . . (6)

where λ is the general Lagrange multiplier that may ideally be discovered using variational
theory the nth approximation of the subscript n denotes the solution u, and ũn is considered
a restricted variation, i.e., δũn = 0 where the δ is the first variation [3].

4. Applications of the Vim for Multidimensional Integro-Differential Equations of
Fractional Order

Consider the fractional integro-differential Equation (1), which may be written as:

Tα
x u(x, y)− Iβ

x Iγ
y K(x, y, s, t, u(s, t))− g(x, y) = 0 (7)

Multiplying Equation (7) by a general Lagrange multiplier λ, yields to:

λ(s, t){Tα
x u(x, y)− Iβ

x Iγ
y K(x, y, s, t, u(s, t))− g(x, y)} = 0 (8)
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Now, take Iα
x to both sides of Equation (8), which give:

Iα
x [λ(s, t){Tα

x u(x, y) + Iβ
x Iα

y K(x, y, s, t, u(s, t))} − g(x, y)] = 0 (9)

Then, the correction functional with respect to x will be read as follows:

un+1(x, y) = un(x, y) + Iα
x [λ(w, y){Tα

wu(w, y)− Iβ
w Iγ

y K(w, y, s, t, u(s, t))− g(w, y)}] = 0 (10)

and the problem now is to evaluate λ. The problem of evaluating λ is difficult, since
Equation (10) consists of functional derivatives and integrals, so to avoid this difficulty,
approximate Iα

x and Ta
w for 0 < α 6 1 by the first integral and derivative. Hence:

un+1(x, y) = un(x, y) +
∫ x

a

[
λ

(
x, y)(

∂un

∂w
(w, y)− g(w, y)− Iβ

w Iγ
y k(w, y, s, t, ũn(s, t))

)]
dw (11)

Now, taking the first variation of Equation (11) with respect to un, give:

δun+1(x, y) = δun(x, y) + δ
∫ x

x0

[
λ

(
∂un

∂s
− g− Iβ

x Iy
y k(s, t, un(s, t))

)]
dw (12)

= δun(x, y) + δ
∫ x

xa
λ(w, y)

(
∂un(w, y)

∂w

)
dw (13)

= δun(x, y) +
∫ x

a
λ(w, y)δ

(
∂un(w, y)

∂w

)
dw (14)

Using integration by parts,

δun+1(x, y) = δun(x, y) + δun(w, y)|w=x −
∫

∂λ(w, y)
∂w

δundw (15)

= (1 + λ)δun(w, y)|w=x −
∫

∂λ

∂w
δun(w, y)ds (16)

∂λ

∂w
(w, y)|w=x = 0 (17)

1 + λ(w, y)|w=x = 0 (18)

Solving this equation will give λ(w, y) = −1, and substituting in Equation (10), we
get:

un+1(x, y) = un(x, y)− Iα
x

[
Tα

wun(w, y)− g(w, y)− Iβ
w Iγ

y K
(

w, y, s, t, un(s, t))] (19)

Theorem 1. Let u, un ∈ Cm
x ([a, b]× [c, d]), which is a Banach space with a m-th-order con-

tinuous partial derivative with respect to x, be the exact and approximate solutions of the integro-
differential equation of fractional order (1). If En(x, y) = un(x, y) − u(x, y) and the kernel K
satisfy Lipschitz with respect to u, with constant L satisfying

L <

[
θ(2θ + 1)(3θ + 1) . . . (nθ + 1)γ(2γ + 1)(3γ + 1) . . . (nγ + 1)

(b− a)nθ+1(d− c)nγ+1

]1/n

then, the sequences solutions of approximation {un} converge to the exact solution u.

Proof. Consider the integro-differential equation of fractional order:

Tα
x u(x, y) = g(x, y) + Iβ

x Iγ
y K(x, y, s, t, u(s, t)), where u(0, y) = u0
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The approximate solution using the VIM is given by:

un+1(x, y) = un(x, y)− Iα
x{Tα

wun(w, y)− g(w, y)− Iβ
w Iγ

y k(x, y, s, t, u(s, t)} (20)

Since u is the exact solution of the integro-differential of the fractional order,

u(x, y) = u(x, y)− Iα
x{Tα

wu(w, y)− g(x, y)− Iβ
w Iγ

y k(x, y, s, t, u(s, t)} (21)

Then, subtracting Equation (21) from Equation (20), we get:

En+1(x, y) = En(x, y)− Iα
x Tα

wun(w, y)− g(x, y) + g(x, y) (22)

−Iβ
w Iγ

y kun(x, y, s, t, un(s, t)−Tβ
wu(w, y) + Iβ

w Iγ
y K(x, y, s, t, u(s, t) + g(x, y))

= En(x, y)− Iα
x{Tβ

wEn(w, y)− Iβ
w Iγ

y {K(w, y, s, t, un(s, t)− K(x, y, s, t, un(s, t)}
From property (3), Iα

x Iα
wEn(x, y) = En(x, y)− En(0, y) and since En(0, y) = 0, then

En+1(x, y) = En(x, y)− En(x, y) + Iα
x Iβ

x Iγ
y [K(x, y, s, t, un(s, t))− K(x, y, s, t, un(s, t))]

If θ = α + β, then:

En+1(x, y) = Iθ
x Iγ

y [K(x, y, s, t, un(s, t))− K(x, y, s, t, u(s, t))] (23)

Now, taking the supermum norm for both sides of Equation (23)
∥∥∥En+1(x, y)‖ ≤ Iθ

x Iγ
y ‖K(x, y, s, t, un(s, t)− K(x, y, s, t, u(s, t)‖

where the K (kernel function) satisfies the Lipschitz condition with constant L, then:
∥∥∥En+1(x, y)‖ ≤ LIθ

x Iγ
y ‖un − u‖

= LIθ
x Iγ

y ‖En(x, y)‖ (24)

Using the conformable definition of integrals in Equation (24) implies:
∥∥∥∥En+1(x, y)‖ ≤ L

∫ x

a
(s− a)θ−1

∫ y

c
(t− c)γ−1‖En(s, t)‖dsdt

= L
∫ x

c

∫ y

a
(s− a)θ−1(t− c)γ−1‖En(x, y)‖dsdt (25)

Now, applying mathematical induction over the last inequality:
If n = 0

‖E1(x, y)‖ ≤ L
∫ x

a

∫ y

c
(s− a)θ−1(t− c)γ−1‖E0(x, y)‖dsdt

= L
(s− a)θ

θ

∣∣∣∣∣

x

a

(t− c)γ

γ

∣∣∣∣
y

c
‖E0(x, y)‖

≤ L
(x− a)θ

θ

(y− c)γ

γ
‖E0(x, y)‖

If n = 1, then:

‖E2(x, y)‖ ≤ L
∫ x

a

∫ y

c
(s− a)θ−1(t− c)γ−1‖E1(x, y)‖dsdt
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≤ L
∫ x

a

∫ y

c
(s− a)θ−1(t− c)γ−1L

(s− a)θ

θ

(t− c)γ

γ
‖E0(x, y)‖ dsdt

=
L2

θγ

∫ x

a

∫ y

c
(s− a)2θ(t− c)2γ−1‖E0(x, y)‖dsdt

=
L2

θγ

(s− a)2θ+1

2θ + 1

∣∣∣∣∣

x

a

(t− c)2γ+1

2γ + 1

∣∣∣∣∣

y

c

‖E0(x, y)‖

=
L2

θ(2θ + 1)γ(2γ + 1)
(x− a)2θ+1(y− c)2γ+1‖E0(x, y)‖

If n = 2

‖E3(x, y)‖ ≤ L
∫ x

a

∫ y

c
(s− a)θ−1(t− c)γ−1‖E2(x, y)‖dsdt

≤ L
∫ x

a

∫ y

c
(s− a)θ−1(t− c)γ−1 L2

w(2θ + 1)γ(2γ + 1)
(s− a)2θ+1(t− c)2γ+1‖E0(x, y)‖dsdt

=
L3

θ(2θ + 1)γ(2γ + 1)

∫ x

a

∫ y

c
(s− a)3θ(t− c)3γ ‖E0(x, y)‖dsdt

=
L3

θ(2θ + 1)γ(2γ + 1)
(s− a)3θ+1

3θ + 1

∣∣∣∣∣

x

a

(t− c)3γ+1

3γ + 1

∣∣∣∣∣

y

c

‖E0(x, y)‖

=
L3

θ(2θ + 1)(3θ + 1)γ(2γ + 1)(3γ + 1)
(x− a)3θ+1(y− c)3γ+1‖E0(x, y)‖

Hence, by induction, we have:

‖En+1(x, y)
∥∥ ≤

Ln

θ(2θ + 1)(3θ + 1) . . . (nθ + 1)γ(2γ + 1)(3γ + 1) . . . (nγ + 1)

(x− a)nθ+1(y− c)nγ+1‖E0(x, y)‖

and upon taking the supremum values of x and y, over [a, b]× [c.d], getting:

‖En+1(x, y)
∥∥ ≤

Ln

θ(2θ + 1)(3θ + 1) . . . (nθ + 1)γ(2γ + 1)(3γ + 1) . . . (nγ + 1)

(b− a)nθ+1(d− c)nγ+1‖E0(x, y)‖

Since

Ln(b− a)nθ+1(d− c)nγ+1

θ(2θ + 1)(3θ + 1) . . . (nθ + 1)γ(2γ + 1)(3γ + 1) . . . (nγ + 1)
< 1

Because

L <

[
θ(2θ + 1)(3θ + 1) . . . (nθ + 1)γ(2γ + 1)(3γ + 1) . . . (nγ + 1)

(b− a)nθ+1(d− c)nγ+1

]1/n

Hence as as n→ ∞, we have ‖En(x, y)‖ → 0 , i.e., un(x, y)→ u(x, y) as n→ ∞.
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5. Illustrative Examples

Two examples of using the VIM to solve linear and nonlinear integro-differential
equations with conformable fractional order differo-integration are presented in this section.

Example 1. Consider the linear integral equation of fractional order:

Tα
x u(x, y) = g(x, y) + Iβ

x Iγ
y [(x− y)u(x, y)]

where g(x, y) = Tα
x u(x, y)− Iβ

x Iγ
y [(x− y)u(x, y)].

The exact solution is given for comparison purpose by ue(x, y) = x3y
Hence, starting with the initial guess solution:

u0(x, y) = g(x, y) = 3yx3−α − xβ+4

β + 4
.

yγ+1

γ + 1
+

xβ+3

β + 3
.

yγ+2

γ + 2

then, to find u1(x, y), if n = 1, getting:

u1(x, y) = u0(x, y)− Iα
x [T

α
x u0(x, y)− g(x, y)− Iβ

x Iγ
y [(x− y)u(x, y)]

= 3yx2−α − xβ+4

β+4 . yγ+1

γ+1 + xβ+3

β+3

. yγ+2

γ+2 − Iα
x [(9− 3α)y3−2α − xβ+4−α. yγ+1

γ+1 + xβ+3−α.
yγ+2

γ+2 − 3yx2−α − xβ+4

β+4 . yγ+1

γ+1 + xβ+3

β+3 . yγ+2

γ+2 − Iβ
x Iγ

y[
3yx2−α + xβ+5

β+4 . yγ+1

γ+1 + xβ+4

β+3 . yγ+2

γ+2 + 3y2x3−α + xβ+4

β+4 . yγ+2

γ+1 − xβ+3

β+3 . yγ+3

γ+2

]
(26)

and carrying out recursively fractional-order integrals of the order γ represent to y, of order β with
respect to x and of order of α represent to y, we get the final form of u1(x, y), which is as follows:
when α = 0.8 , β = 0.5 and γ = 0.75 substitution in Equation (26).

We get the following result of u1(x, y) approximate up to six decimals

u1(x, y) ∼= 0.024161885x4.3y2.75+

1.0x3.0y + 0.1029601x4.5y1.75 − 0.0012449424x6.8y2.5 − 0.023959269x5.3y1.75

−0.11544012x3.5y2.75 + 0.0022746821x5.8y3.5 + 2.1684043e−19x2.2y− 0.0012025012x4.8y4.5

Similarly to the calculations u1(x, y), we may find new approximation solution up to three
iterations, which are found to be

u2(x, y) = 9.09495e− 10x4.3y2.75 − 0.000199751x5.6y4.5 + 1.0x3.0y

−0.00000507162x9.1y3.25+2.96859e− 9x4.5y1.75 + 0.00100941x6.8y2.5+

5.67525e− 10x5.3y1.75 + 0.00000595113x6.1y6.25 − 0.0000148071x7.1y5.25 + 4.5693e−
9x3.5y2.75 − 0.000185443x7.6y2.5 − 0.00215173x5.8y3.5 + 0.000359167x6.6y3.5+

0.0000140055x8.1y4.25+9.31323e− 10x2.2y+

0.00133611x4.8y4.5

u3(x, y) = 0.0241619x4.3y2.75+1.0x3.0y + 2.00089e− 11x6.8y2.5 − 0.0239593

x5.3y1.75 + 9.41681e− 12x3.5y2.75 + 6.36646e−12x5.8y3.5 −
(
−0.386473x2.3y0.75 + 0.879121x1.3y1.75

)
.
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(0.00000525264x8.1y3.25+4.0829e− 11x5.8y2.5 − 7.91503e− 7x8.9y3.25

+0.0379687x4.3y1.75 + 0.00000787187x6.1y5.25 − 0.0000113188x7.1y4.25+

5.946e− 12x6.6y2.5 + 6.78554e− 11x4.8y3.5 − 9.03963e− 7x6.9y5.25+

0.00000150668x7.9y4.25−3.86567e− 8x8.4y6 + 9.63085e−
12x5.6y3.5 + 3.465e− 8x9.4y5 − 1.26994e− 8x10.4y4+

1.3112e− 20x3.5y1.75+1.74071e− 8x7.4y7) + 9.31323e− 10x2.2y + 4.77485e−
11x4.8y4.5

Figure 1 shows the comparison between the exact and the approximated solution for different
values of y.

y = 0 y = 0.5

y = 1

Figure 1. Exact and approximate solutions of Example 1.

Example 2. Let the non-linear equation is:

Tα
x u(x, y) = g(x, y) + Iβ

x Iγ
y

[
(xy)eu(x,y

]

When the exact solution ue(x, y) = x2y2.
For the simplicity of calculations and in order to use the properties of conformable and integra-

tions eu by the Tayler series

eu = 1 + u +
u2

2!
+ . . .

After tow terms, we have eu ∼= 1 + u .
By calculus of variation, the initial condition to

u0(x, y) = g(x, y) = 2y2x2−α − xβ+1

β + 1
.

yγ+1

γ + 1
+

xβ+3

β + 3
.

yγ+3

γ + 3

Now, using the variation iteration method to find the next approximation solution as follows:

u1(x, y) = u0(x, y)− Iα
x [T

α
x u0(x, y)− g(x, y)− Iβ

x Iγ
y [xy(1 + u0(x, y)]
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= 2y2x2−α − xβ+1

β + 1
.

yγ+1

γ + 1
+

xβ+3

β + 3

.
yγ+3

γ + 3
− Iα

y [T
α
x 2y2x2−α − xβ+1

β + 1
.

yγ+1

γ + 1
+

xβ+3

β + 3
.

yγ+3

γ + 3
− [2y2x2−α − xβ+1

β + 1
.

yγ+1

γ + 1
+

xβ+3

β + 3
.

yγ+3

γ + 3
]− Iβ

x Iγ
y

[
xy + 2y3x1−α − xβ+2

β + 1
.

yγ+2

γ + 1
+

xβ+4

β + 3
.

yγ+4

γ + 3

]
(27)

Carrying out recursively order integrals of order γ to represent y, of order β to represent x and
of order α to represent y, we get the final from of u1(x, y), which is as follows.

When α = 0.8 , β = 0.5 and γ = 0.75 substitution in Equation (27)
We get the following result of u1(x, y), which is approximate up to six decimals

u1(x, y) = 1.81826e− 8x5.5y5.75 − 0.000477683x5.8y5.5

−0.0177187x4.3y3.75 + 1.0x2.0y2 − 0.00250957x6.3y5.75+

9.31323e−10x1.2y2 + 0.0564374x3.5y3.75 − 0.00954771x3.8y3.5

−0.0000386088x7.8 y7.5

If n = 1, we get

u2(x, y) = 7.27596e− 12x5.5y5.75+0.000353838x5.8y5.5

−0.00000111428x8.1y7.25 − 0.0000562515x6.1y5.25 − 4.65079e− 8x4.3y3.75

−0.00000498821x8.6y7.5 + 1.0x2.0y2 − 0.00250957

x6.3y5.75 − 0.0000841583x6.6y5.5 − 2.42514e−15x1.2y2

+5.82077e−11x3.5y3.75 − 4.94072e−8x9.6y9.25

If n = 2, we get

u3(x, y) = −4.89841e−9x10.9y9.25 − 7.20333e−12x5.5y5.75 + 2.27374e−13

x5.8y5.5 + 8.25388e−7x8.1y7.25 − 1.61021e−7x8.9y7.25 − 7.27596e−12x4.3

y3.75 − 0.00000498821x8.6y7.5+1.0x2.0y2 − 0.00250957x6.3y5.75

−3.03032e−10x6.6y5.5 − 1.25876e−7x8.4y7 − 1.7528e−21x1.2y2−
1.24008e−9x10.4y9 − 3.40038e−11x11.9y11 + 1.77679e−14x7.8y7.5

Figure 2 compares the exact and the approximated solutions for different values of y.

y = 0 y = 0.5

Figure 2. Cont.
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y = 1

Figure 2. Exact and approximate solutions of Example 2.

6. Conclusions

The present study shows that VIM is a very accurate method that gives the exact
solution in a few steps. In some cases, however, it requires more calculations, which will
add some difficulties to the problem under consideration. This work may be improved in
future by including integro-differential equations with kernels including fractional-order
derivatives of the unknown function, in addition to considering fractional-order derivatives
greater than 1.
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Abstract: The main objective of this article is to introduce a new notion of convexity, i.e., modified
exponential type convex function, and establish related fractional inequalities. To strengthen the
argument of the paper, we introduce two new lemmas as auxiliary results and discuss some algebraic
properties of the proposed notion. Considering a generalized fractional integral operator and
differentiable mappings, whose initial absolute derivative at a given power is a modified exponential
type convex, various improvements of the Hermite–Hadamard inequality are presented. Thanks to
the main results, some generalizations about the earlier findings in the literature are recovered.

Keywords: convex function; Hölder’s inequality; power-mean integral inequality; m–type convexity;
exponential convex function

MSC: 26A51; 26A33; 26D07; 26D10; 26D15

1. Introduction

Convexity theory has had a substantial and crucial influence on the development of
numerous disciplines such as economics [1], financial mathematics [2], engineering [3],
and optimization [4] in modern mathematics. This theory gives a fantastic framework for
initiating and developing numerical tools for tackling and studying complex mathemati-
cal problems.

In the current decade, many mathematicians have been merging new ideas with frac-
tional analysis to bring new dimensions with different features to the field of mathematical
analysis. Fractional analysis has many applications in modeling [5,6], epidemiology [7],
fluid flow [8], nanotechnology [9], mathematical biology [10], and control systems [11].
It is particularly crucial while studying optimization problems because it has a variety
of useful inequalities. This explains why convex functions and convex sets have such a
robust theoretical foundation. There are numerous practical uses for convex functions in
optimization, circuit design, controller design, modeling, etc. Because it has gained so
much attention, the concept of “convexity” has developed into a fertile area of research
and inspiration.
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The theory of inequalities has been expanded and generalized during the past few
decades, and this has been made possible by the concept of convex analysis. Inequalities
theory and the theory of convexity are strongly related to one another. Many mathemati-
cians and research scientists have made considerable efforts and contributions to the study
of this inequality over the last few decades. Some authors have also studied dynamic
inequalities [12–17] to further strengthen the theory of convexity and inequality. As a
result, there is a rich and insightful literature on convexity and inequalities; for further
information, see the references at [18–21].

Many mathematicians and scientists in a wide range of applied and scientific areas
have been fascinated and inspired by fractional calculus. Because of its ability to interpo-
late between operators of integer order, fractional integrals and derivatives have a rich
history and are used frequently in practical situations. Given its wide range of appli-
cations in the mathematical modeling of numerous complicated and nonlocal nonlinear
systems, fractional calculus has become a crucial topic of research. The nonlocal nature of
fractional-order operators, which explains the hereditary characteristics of the underlying
phenomena, is an important property of these operators. A macroscopic stress–strain
relation expressed in terms of fractional differential operators results from the interactions
between macromolecules in damping phenomena. Its appeal in modeling different trans-
port characteristics in complicated heterogeneous and disordered media is largely due to
the fact that it offers a suitable context for describing processes with memory and is fractal
or multi-fractal in origin.

We organized the study in the following manner in light of the aforementioned findings
and literature on inequality theory: We review some well-known concepts and definitions
in Section 2. We describe the idea and algebraic characteristics of modified exponential type
convex functions in Section 3. The H–H inequality, whose first derivatives in absolute value
at a given power is of the modified exponential type convex, and additional extensions of
it are developed in Section 4. Finally, we provide a brief conclusion in Section 5.

2. Preliminaries

Because there are so many theorems and definitions in the preliminary section, it will
be advisable to examine and investigate it for the sake of thoroughness. We will review a
few well-known terms, definitions, and findings in this section that we will be required for
our inquiry in subsequent sections. Convex functions, Hermite–Hadamard type inequality,
m-convex functions, and exponential type convex functions are introduced first. We recall
here the Riemann–Liouville fractional integral operator, its k-generalization, and certain
crucial functions, such as the incomplete gamma function and gamma function, which will
be needed in our investigations.

Definition 1 ([22]). If G : X ⊂ R→ R, then an inequality of the form

G(g1$ + (1− $)g2) ≤ $G(g1) + (1− $)G(g2), (1)

is said to be convex if for all g1, g2 ∈ X and $ ∈ [0, 1].

The well-known Hermite–Hadamard inequality must be mentioned in any paper on
Hermite inequalities. This inequality claims that, if G : X ⊂ R → R is convex in X for
g1, g2 ∈ X and g1 < g2, then

G

(
g1 + g2

2

)
≤ 1

g2 − g1

∫ g2

g1

G(χ)dχ ≤ G(g1) + G(g2)

2
. (2)

Interested readers can refer to [23–26].
In 1985, the famous mathematician G. Toader [27] first considered and examined the

new version of convexity, namely the m-convex function.
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Definition 2 ([27]). Let G : [0, b]→ R, b > 0 and m ∈ (0, 1]. An inequality of the form

G($g1 + m(1− $)g2) ≤ $G(g1) + m(1− $)G(g2), (3)

is then said to be m–convex if ∀ g1, g2 ∈ [0, b] and $ ∈ [0, 1]. Otherwise, G is m–concave if (−G)
is m–convex.

Definition 3 ([28]). Let G be a nonnegative function. G : X→ R, is then said to be a exponential
type convex if

G($g1 + (1− $)g2) ≤ (e$ − 1)G(g1) +
(

e(1−$) − 1
)
G(g2) (4)

holds ∀ g1, g2 ∈ X, and $ ∈ [0, 1].

Definition 4 (Hölder Integral Inequality [29]). If G and H be two integrable functions, then the
Hölder inequality is given by

∫ 1

0
|G(ν)H(ν)|dν ≤

( ∫ 1

0
|G(x)|pdx

) 1
p
( ∫ 1

0
|H(x)|qdx

) 1
q
. (5)

Definition 5 (Power-mean integral inequality [30]). If G and H be two integrable functions,
then power mean inequality is given by

∫ 1

0
|G(ν)H(ν)|dν ≤

( ∫ 1

0
|G(x)|dx

)1− 1
q
( ∫ 1

0
|G(x)|dx

∫ 1

0
|H(x)|qdx

) 1
q
. (6)

The concept of fractional integral inequalities have many applications in applied
sciences. Such types of inequalities have always been established and have managed the
uniqueness of solutions to some fractional partial differential equations. Additionally, they
offer upper and lower bounds for the solutions to the fractional boundary value problems.
In order to study specific extensions and generalizations, scholars in the subject of integral
inequalities have used fractional calculus operators; for further information, see [31–34].

Let G ∈ L[g1, g2]. Riemann–Liouville fractional integrals of order α > 0 with g1 ≥ 0
are then defined as follows:

Jα
g+1

G(x) =
1

Γ(α)

∫ x

g1

(x− χ)α−1 G(χ) dχ, x > g1

and

Jα
g−2

G(x) =
1

Γ(α)

∫ g2

x
(χ− x)α−1 G(χ) dχ, x < g2.

For further details, one may see [35–40].
In [41,42], there is a given definition of k—fractional Riemann–Liouville integrals.

Let G ∈ L[g1, g2]. k−fractional integrals of order α, k > 0 with g1 ≥ 0 are then defined
as follows:

k Jα
g+1

G(x) =
1

kΓk(α)

∫ x

g1

(x− χ)
α
k−1 G(χ) dχ x > g1,

and

k Jα
g−2

G(x) =
1

kΓk(α)

∫ g2

x
(χ− x)

α
k−1 G(χ) dχ, x < g2,

where Γk(α) is the k—Gamma function defined as
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Γk(α) =
∫ +∞

0
χα−1e−

χk
k dχ.

We can notice that

Γk(α + k) = αΓk(α)

and

1 J0
g+1

ψ(x) = 1 J0
g−2

ψ(x) = ψ(x).

By choosing k = 1, the above k—fractional integrals yield Riemann–Liouville integrals.
The incomplete gamma function γ(ϑ, $) is defined for ϑ > 0 and $ ≥ 0 by integral

γ(ϑ, $) =
∫ $

0
e−µ µϑ−1 dµ.

The gamma function Γ(ϑ) is defined for ϑ > 0 by integral

Γ(ϑ) =
∫ +∞

0
e−µ µϑ−1 dµ.

3. The Modified Exponential Type Convex Function and Its Associated
Algebraic Properties

There has recently been a rise in interest in information theory involving exponentially
convex functions because of the substantial and valuable research on big data analysis
and extended learning. As a result, other mathematicians, including Antczak (2001),
Pecaric (2013), Dragomir (2015), Pal (2017), Alirezaei (2018), Awan (2018), Saima (2019),
Noor (2019), and Kadakal (2020), worked on the idea of exponential type convexity in
various ways and made contributions to the field of analysis.

The main attention of this section is to present a new definition of modified exponential
type convex function and its associated properties.

Definition 6. Let G be a nonnegative function. G : X→ R, is then said to be a modified exponential
type convex if

G($g1 + m(1− $)g2) ≤ (e$ − 1)G(g1) + m
(

e1−$ − 1
)
G(g2), (7)

holds ∀ g1, g2 ∈ X, m ∈ [0, 1], and $ ∈ [0, 1].

We will denote by MEXPC(X) the class of modified exponential type convex functions
on interval X.

Remark 1. For m = 1, we attain exponential type convexity, which is explored by İşcan in [28].

Remark 2. The range of the MEXP convex functions for m ∈ [0, 1] is [0,+∞).

Proof. The proof is obvious.

We explore some relations between the class of MEXPC functions and other classes of
generalized convex functions.

Lemma 1. The following inequalities (e$ − 1) ≥ $ and (e1−$ − 1) ≥ (1− $) hold ∀$ ∈ [0, 1].

Proof. The proof is obvious, so omitted.
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Proposition 1. If m ∈ [0, 1], then every nonnegative m–convex function is an MEXPC function.

Proof. Since m ∈ [0, 1], by using Lemma 1, we have

G($g1 + m(1− $)g2) ≤ $G(g1) + m(1− $)G(g2)

≤ (e$ − 1)G(g1) + m
(

e1−$ − 1
)
G(g2).

Theorem 1. The sum of two MEXPC functions is an MEXPC function.

Proof. Let G and P be MEXPC functions. It follows that

(G+ P)

[
($g1 + m(1− $)g2)

]

= G($g1 + m(1− $)g2) + P($g1 + m(1− $)g2)

≤ (e$ − 1)G(g1) + m
(

e1−$ − 1
)
G(g2)

+(e$ − 1)P(g1) + m
(

e1−$ − 1
)
P(g2)

= (e$ − 1)[G(g1) + P(g1)] + m
(

e1−$ − 1
)
[G(g2) + P(g2)]

= (e$ − 1)(G+ P)(g1) + m
(

e1−$ − 1
)
(G+ P)(g2),

which implies that G+ P is an MEXP convex function.

Theorem 2. Scalar multiplication of the MEXPC function is also an MEXPC function.

Proof. Let G be an MEXPC function. It follows that

(cG)
[
($g1 + m(1− $)g2)

]

= c
[
G($g1 + m(1− $)g2)

]

≤ c
[
(e$ − 1)G(g1) + m

(
e1−$ − 1

)
G(g2)

]

= (e$ − 1)cG(g1) + m
(

e1−$ − 1
)

cG(g2)

= (e$ − 1)(cG)(g1) + m
(

e1−$ − 1
)
(cG)(g2),

which implies that cG is an MEXPC function.

Theorem 3. Let P : [0, b]→ J be an m–convex function for b > 0 and m ∈ [0, 1], and G : X→ R
is non-decreasing and an MEXPC function. It follows that the function G ◦ P : [0, b] → R is an
MEXPC function.
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Proof. ∀g1, g2 ∈ [0, b], m ∈ [0, 1], and $ ∈ [0, 1], we have

(G ◦ P)($g1 + m(1− $)g2)

= G(P($g1 + m(1− $)g2))

≤ G($P(g1) + m(1− $)P(g2))

≤ (e$ − 1)G(P)(g1) + m
(

e1−$ − 1
)
G(P)(g2)

= (e$ − 1)(G ◦ P)(g1) + m
(

e1−$ − 1
)
(G ◦ P)(g2),

which implies that G ◦ P is an MEXPC function.

Theorem 4. Let Gi : [g1, g2] → R be a class of MEXP convex functions for m ∈ [0, 1] and let
G(g) = supi Gi(g). If E = {g ∈ [g1, g2] : G(g) < +∞} 6= ∅, then E is an interval, and G is an
MEXP convex function on E.

Proof. For all g1, g2 ∈ E, m ∈ [0, 1], and $ ∈ [0, 1], we have

G($g1 + m(1− G)g2) = sup
i

Gi($g1 + m(1− $)g2)

≤ sup
i

[
(e$ − 1)Gi(g1) + m

(
e1−$ − 1

)
Gi(g2)

]

≤ (e$ − 1) sup
i

Gi(g1) + m
(

e1−$ − 1
)

sup
i

Gi(g2)

= (e$ − 1)G(g1) + m
(

e1−$ − 1
)
G(g2) < +∞.

Theorem 5. If the function G : [g1, g2] → R is an MEXPC function for m ∈ [0, 1], then G is
bounded on [g1, mg2].

Proof. Suppose x ∈ [g1, g2] is a point, m ∈ [0, 1], and L = max
{
G(g1), mG(g2)

}
. It follows

that ∃ $ ∈ [0, 1] such that x = $g1 + m(1− $)g2. Thus, since e$ ≤ e and e1−$ ≤ e, we have

G(x) = G($g1 + m(1− $)g2)

≤ (e$ − 1)G(g1) + m
(

e1−$ − 1
)
G(g2)

≤ (e− 1)L + m(e− 1)L = L(m + 1)(e− 1) = M.

4. Refinements of (H–H) Type Inequality for the k-Fractional Integral

Numerous academics across a wide range of fields have been studying fractional
calculus and its applications in depth for a very long time, and interest in this topic has
increased significantly. The notion of fractional derivatives and integrals has been used
to propose numerous extensions of them, and authors have obtained new perspectives
in a variety of fields, including engineering, physics, economics, biology, and statistics.
Here, the term “Riemann–Liouville fractional integral” and its k-generalization are used,
as well as some of the theorems that will be mentioned in this section.

Here, we first introduce and demonstrate two new lemmas. We achieve certain
improvements of the trapezium type inequality for functions whose first derivative in
absolute value at a specific power is an MEXPC function based on these new lemmas.
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Lemma 2. Let 0 < w ≤ 1, and G :
[
mwg1, g2

]
→ R is a differentiable mapping on (mwg1, g2)

with 0 < mg1 < g2 and m ∈ (0, 1]. If G′ ∈ L1[mwg1, g2], then the following equality for
k—fractional integral holds true:

G(mwg1) +
α
kG(g2)

α
k + 1

− Γk(α + k)

(g2 −mwg1)
α
k

k Jα
g−2

G(mwg1)

=

(
g2 −mwg1

α
k + 1

) ∫ 1

0

[(α

k
+ 1
)

$
α
k − 1

]
G′(mw(1− $)g1 + $g2) d$, (8)

where α, k > 0 and Γ(·) is the Euler Gamma function.

Proof. Applying integrating by parts, we have
(
g2 −mwg1

α
k + 1

) ∫ 1

0

[(α

k
+ 1
)

$
α
k − 1

]
G′(mw(1− $)g1 + $g2) d$

=

(
g2 −mwg1

α
k + 1

){ ∫ 1

0

(α

k
+ 1
)

$
α
k G′(mw(1− $)g1 + $g2) d$

−
∫ 1

0
G′(mw(1− $)g1 + $g2) d$

}

=

(
g2 −mwg1

α
k + 1

)[(α

k
+ 1
){$

α
k G(mw(1− $)g1 + $g2)

g2 −mwg1

∣∣∣∣
1

0

−
∫ 1

0

G(mw(1− $)g1 + $g2)

g2 −mwg1

α

k
$

α
k−1 d$

}
− G(mw(1− $)g1 + $g2)

g2 −mwg1

∣∣∣∣
1

0

]

=

(
g2 −mwg1

α
k + 1

)[(α

k
+ 1
)

×
{

G(g2)

g2 −mwa1
− α

k(g2 −mwg1)

∫ 1

0
$

α
k−1G(mw(1− $)g1 + $g2) d$

}

−G(g2)− G(mwg1)

g2 −mwg1

]

=
G(mwg1) +

α
kG(g2)

α
k + 1

− Γk(α + k)

(g2 −mwg1)
α
k

k Jα
g−2

G(mwg1),

which completes the proof.

Lemma 3. Let 0 < w ≤ 1, and G :
[
mwg1, g2

]
→ R is a differentiable mapping on (mwg1, g2)

with 0 < mg1 < g2 and m ∈ (0, 1]. If G′ ∈ L1[mwg1, g2], then the following equality for
k—fractional integral holds true:

G(mwg1) + G(g2)

w + 1
− Γk(α + k)

(w + 1)(g2 −mwg1)
α
k

{
k Jα
g+1

G(g2) +
k Jα
g−2

G(mwg1)

}

=

(
g2 −mwg1

w + 1

) ∫ 1

0

[
$

α
k − (1− $)

α
k
]
G′(mw(1− $)g1 + $g2)d$. (9)
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Proof. Applying integrating by parts, we have
(
g2 −mwg1

w + 1

) ∫ 1

0

[
$

α
k − (1− $)

α
k
]
G′(mw(1− $)g1 + $g2)d$

=

(
g2 −mwg1

w + 1

)[ ∫ 1

0
$

α
k G′(mw(1− $)g1 + $g2)d$

−
∫ 1

0
(1− $)

α
k G′(mw(1− $)g1 + $g2)d$

]

=

(
g2 −mwg1

w + 1

)[
I1 − I2

]
, (10)

where

I1 =
∫ 1

0
$

α
k G′(mw(1− $)g1 + $g2)d$

=
$

α
k G(mw(1− $)g1 + $g2)

g2 −mwg1

∣∣∣∣
1

0
−
∫ 1

0

G(mw(1− $)g1 + $g2)

g2 −mwg1

α

k
$

α
k−1 d$

=
G(g2)

g2 −mwg1
− α

k(g2 −mwg1)

∫ 1

0
$

α
k−1G(mw(1− $)g1 + $g2) d$

=
G(g2)

g2 −mwg1
− Γk(α + k)

(g2 −mwg1)
α
k +1

k Jα
g−2

G(mwg1) (11)

and

I2 =
∫ 1

0
(1− $)

α
k G′(mw(1− $)g1 + $g2)d$

=
(1− $)

α
k G(mw(1− $)g1 + $g2)

g2 −mwg1

∣∣∣∣
1

0

−
∫ 1

0

G(mw(1− $)g1 + $g2)

g2 −mwg1

α

k
(1− $)

α
k−1 (−1) d$

= − G(mwg1)

g2 −mwg1
+

α

k(g2 −mwg1)

∫ 1

0
(1− $)

α
k−1 G(mw(1− $)g1 + $g2) d$

= − G(mwg1)

g2 −mwg1
+

Γk(α + k)

(g2 −mwg1)
α
k +1

k Jα
g+1

G(g2). (12)

Combining Equations (11) and (12) in (10) and multiplying it by g2−wg1
w+1 , we obtain (9),

which completes the proof.

Theorem 6. Let 0 < w ≤ 1, and G :
(
0, g2

mw
]
→ R is a differentiable mapping on

(
0, g2

mw
)

with
0 < g1 < g2. If |G′|q is an MEXPC function on

(
0, g2

mw
]

for q > 1 and q−1 + p−1 = 1, then for
some fixed m ∈ (0, 1] the following inequality for k—fractional integral holds true:

∣∣∣∣∣
G(mwg1) +

α
kG(g2)

α
k + 1

− Γk(α + k)

(g2 −mwg1)
α
k

k Jα
g−2

G(mwg1)

∣∣∣∣∣

≤
(
g2 −mwg1

α
k + 1

)
[U1(α, k, p) + U2(α, k, p)]

1
p
[
(e− 2)

(
m
∣∣G′(wg1)

∣∣q +
∣∣G′(g2)

∣∣q
)] 1

q , (13)
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where

U1(α, k, p) =
∫ 1

α
√
( α

k +1)
k

0

(
1−

(α

k
+ 1
)

$
α
k

)p
d$,

U2(α, k, p) =
∫ 1

1
α
√
( α

k +1)
k

((α

k
+ 1
)

$
α
k − 1

)p
d$.

Proof. Using Lemma 2, with the help of Hölder’s inequality and the MEXPC function of
|G′|q, we obtain

∣∣∣∣∣
G(mwg1) +

α
kG(g2)

α
k + 1

− Γk(α + k)

(g2 −mwg1)
α
k

k Jα
g−2

G(mwg1)

∣∣∣∣∣

≤
(
g2 −mwg1

α
k + 1

) ∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣
∣∣G′(mw(1− $)g1 + $g2)

∣∣ d$

≤
(
g2 −mwg1

α
k + 1

)(∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣
p
d$

) 1
p
(∫ 1

0

∣∣G′(mw(1− $)g1 + $g2)
∣∣qd$

) 1
q

≤
(
g2 −mwg1

α
k + 1

)(∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣
p
d$

) 1
p

×
(∫ 1

0

[
m
(

e1−$ − 1
)∣∣G′(wg1)

∣∣q + (e$ − 1)
∣∣G′(g2)

∣∣q
]
d$

) 1
q

=

(
g2 −mwg1

α
k + 1

)
[U1(α, k, p) + U2(α, k, p)]

1
p
[
(e− 2)

(
m
∣∣G′(wg1)

∣∣q +
∣∣G′(g2)

∣∣q
)] 1

q ,

which completes the proof.

Theorem 7. Let 0 < w ≤ 1, and G :
(
0, g2

mw
]
→ R is a differentiable mapping on

(
0, g2

mw
)

with
0 < g1 < g2. If |G′|q is an MEXPC function on

(
0, g2

mw
]

for q ≥ 1, then for some fixed m ∈ (0, 1]
the following inequality for k—fractional integral holds true:

∣∣∣∣∣
G(mwg1) +

α
k G(g2)

α
k + 1

− Γk(α + k)

(g2 −mwg1)
α
k

k Jα
g−2
G(mwg1)

∣∣∣∣∣

≤
(
g2 −mwg1

α
k + 1

)
 2α

k
(

α
k + 1

) k
α +1




1− 1
q

×
[

m
∣∣G′(wg1)

∣∣q
{
− 2α

k
(

α
k + 1

) k
α +1
− 2e


1− 1

α
√
( α

k +1)k




−
(α

k
+ 1
)

e γ


α

k
+ 1,

1
α

√(
α
k + 1

)k




+
(α

k
+ 1
)

eγ1− 1
α
√
( α

k +1)k


 α

k
+ 1,

1
α

√(
α
k + 1

)k


+ 1

}

+
∣∣G′(g2)

∣∣
{

2e

1
α
√
( α

k +1)k
− 2α

k
(

α
k + 1

) k
α +1

+
(α

k
+ 1
)

γ


α

k
+ 1,

1
α

√(
α
k + 1

)k




−
(α

k
+ 1
)

γ1− 1
α
√
( α

k +1)k


 α

k
+ 1,

1
α

√(
α
k + 1

)k


− e

}] 1
q

. (14)
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Proof. Using Lemma 2, with the help of power mean inequality and the MEXPC function
of |G′|q, we obtain

∣∣∣∣∣
G(mwg1) +

α
k G(g2)

α
k + 1

− Γk(α + k)

(g2 −mwg1)
α
k

k Jα
g−2
G(mwg1)

∣∣∣∣∣

≤
(
g2 −mwg1

α
k + 1

) ∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣
∣∣G′(mw(1− $)g1 + $g2)

∣∣ d$

≤
(
g2 −mwg1

α
k + 1

)(∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣d$

)1− 1
q

×
(∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣
∣∣G′(mw(1− $)g1 + $g2)

∣∣qd$

) 1
q

≤
(
g2 −mwg1

α
k + 1

)(∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣d$

)1− 1
q

×
(∫ 1

0

∣∣∣
(α

k
+ 1
)

$
α
k − 1

∣∣∣
[
m
(

e1−$ − 1
)∣∣G′(wg1)

∣∣q + (e$ − 1)
∣∣G′(g2)

∣∣q
]
d$

) 1
q

=

(
g2 −mwg1

α
k + 1

)
 2α

k
(

α
k + 1

) k
α +1




1− 1
q [

m
∣∣G′(wa1)

∣∣q
{
− 2α

k
(

α
k + 1

) k
α +1
− 2e


1− 1

α
√
( α

k +1)k




−
(α

k
+ 1
)

eγ


 α

k
+ 1,

1
α

√(
α
k + 1

)k


+

(α

k
+ 1
)

eγ1− 1
α
√
( α

k +1)k


α

k
+ 1,

1
α

√(
α
k + 1

)k


+ 1

}

+
∣∣G′(g2)

∣∣
{

2e

1
α
√
( α

k +1)k
− 2α

k
(

α
k + 1

) k
α +1

+
(α

k
+ 1
)

γ


α

k
+ 1,

1
α

√(
α
k + 1

)k




−
(α

k
+ 1
)

γ1− 1
α
√
( α

k +1)k


 α

k
+ 1,

1
α

√(
α
k + 1

)k


− e

}] 1
q

,

which completes the proof.

Theorem 8. Let 0 < w ≤ 1, and G :
(
0, g2

m
]
→ R is a differentiable mapping on

(
0, g2

m
)

with
0 < g1 < g2. If |G′|q is an MEXPC function on

(
0, g2

m
]

for q > 1 and q−1 + p−1 = 1, then for
some fixed m ∈ (0, 1] the following inequality for k—fractional integral holds true:

∣∣∣∣∣
G(mwg1) + G(g2)

w + 1
− Γk(α + k)

(w + 1)(g2 −mwg1)
α
k

{
k Jα
g+1
G(g2) +

k Jα
g−2
G(mwg1)

}∣∣∣∣∣

≤ 2(g2 −mwg1)

w + 1

(
k

αp + k

) 1
p [
(e− 2)

(
m
∣∣G′(wg1)

∣∣q +
∣∣G′(g2)

∣∣q
)] 1

q . (15)
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Proof. Using Lemma 3, with the help of Hölder’s inequality and the MEXPC function of
|G′|q, we obtain

∣∣∣∣∣
G(mwg1) + G(g2)

w + 1
− Γk(α + k)

(w + 1)(g2 −mwg1)
α
k

{
k Jα
g+1
G(g2) +

k Jα
g−2
G(mwg1)

}∣∣∣∣∣

≤
(
g2 −mwg1

w + 1

) ∫ 1

0

∣∣∣$ α
k − (1− $)

α
k

∣∣∣
∣∣G′(mw(1− $)g1 + $g2)

∣∣d$

≤
(
g2 −mwg1

w + 1

)[ ∫ 1

0
$

α
k
∣∣G′(mw(1− $)g1 + $g2)

∣∣d$

+
∫ 1

0
(1− $)

α
k
∣∣G′(mw(1− $)g1 + $g2)

∣∣d$

]

≤
(
g2 −mwg1

w + 1

)[(∫ 1

0
$

α
k pd$

) 1
p
(∫ 1

0

∣∣G′(mw(1− $)g1 + $g2)
∣∣qd$

) 1
q

+

(∫ 1

0
(1− $)

α
k pd$

) 1
p
(∫ 1

0

∣∣G′(mw(1− $)a1 + $g2)
∣∣qd$

) 1
q
]

≤
(
g2 −mwg1

w + 1

)[(∫ 1

0
$

α
k pd$

) 1
p

×
(∫ 1

0

[
m
(

e1−$ − 1
)∣∣G′(wg1)

∣∣q + (e$ − 1)
∣∣G′(g2)

∣∣q
]
d$

) 1
q

+

(∫ 1

0
(1− $)

α
k pd$

) 1
p

×
(∫ 1

0

[
m
(

e1−$ − 1
)∣∣G′(wg1)

∣∣q + (e$ − 1)
∣∣G′(g2)

∣∣q
]
d$

) 1
q
]

=
2(g2 −mwg1)

w + 1

(
k

αp + k

) 1
p [
(e− 2)

(
m
∣∣G′(wg1)

∣∣q +
∣∣G′(g2)

∣∣q
)] 1

q ,

which completes the proof.

Theorem 9. Let 0 < w ≤ 1, and G :
(
0, a2

m
]
→ R is a differentiable mapping on

(
0, g2

m
)

with
0 < g1 < g2. If |G′|q is an MEXPC function on

(
0, g2

m
]

for q ≥ 1, then for some fixed m ∈ (0, 1]
the following inequality for k—fractional integral holds true:

∣∣∣∣∣
G(mwg1) + G(g2)

w + 1
− Γk(α + k)

(w + 1)(g2 −mwg1)
α
k

{
k Jα
g+1
G(g2) +

k Jα
g−2
G(mwg1)

}∣∣∣∣∣

≤
(

a2 −mwg1
w + 1

)(
k

α + k

)1− 1
q
[{

m
∣∣G′(wg1)

∣∣q
(

Γ
(α

k
+ 1
)
− Γ

(α

k
+ 1, 1

)
e− 1

α
k + 1

)

+
∣∣G′(g2)

∣∣q
(

Γ
(α

k
+ 1,−1

)
− Γ

(α

k
+ 1
)
− 1

α
k + 1

)} 1
q

+

{
m
∣∣G′(wg1)

∣∣q
(
(−1)

α
k−1
(

Γ
(α

k
+ 1
)
− Γ

(α

k
+ 1,−1

))
− 1

α
k + 1

)

+
∣∣G′(g2)

∣∣q
((

α
k + 1

)
ek
(
Γ
(

α
k + 1, 1

)
− Γ

(
α
k + 1

))

k + α
− 1

α
k + 1

)} 1
q
]

. (16)
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Proof. Using Lemma 3 with the help of power mean inequality and the MEXPC function
of |G′|q, we obtain

∣∣∣∣∣
G(mwg1) + G(g2)

w + 1
− Γk(α + k)

(w + 1)(g2 −mwg1)
α
k

{
k Jα
g+1

G(g2) +
k Jα
g−2

G(mwg1)

}∣∣∣∣∣

≤
(
g2 −mwg1

w + 1

) ∫ 1

0

∣∣∣$ α
k − (1− $)

α
k

∣∣∣
∣∣G′(mw(1− $)g1 + $g2)

∣∣d$

≤
(
g2 −mwg1

w + 1

)

×
[ ∫ 1

0
$

α
k
∣∣G′(mw(1− $)g1 + $g2)

∣∣d$ +
∫ 1

0
(1− $)

α
k
∣∣G′(mw(1− $)g1 + $g2)

∣∣d$

]

≤
(
g2 −mwg1

w + 1

)[(∫ 1

0
$

α
k d$

)1− 1
q
(∫ 1

0
$

α
k
∣∣G′(mw(1− $)g1 + $g2)

∣∣qd$

) 1
q

+

(∫ 1

0
(1− $)

α
k d$

)1− 1
q
(∫ 1

0
(1− $)

α
k
∣∣G′(mw(1− $)g1 + $g2)

∣∣qd$

) 1
q
]

≤
(
g2 −mwg1

w + 1

)(∫ 1

0
$

α
k d$

)1− 1
q

×
[(∫ 1

0
$

α
k

[
m
(

e1−$ − 1
)∣∣G′(wg1)

∣∣q + (e$ − 1)
∣∣G′(g2)

∣∣q
]
d$

) 1
q

+

(∫ 1

0
(1− $)

α
k
[
m
(

e1−$ − 1
)∣∣G′(wg1)

∣∣q + (e$ − 1)
∣∣G′(g2)

∣∣q
]
d$

) 1
q
]

=

(
a2 −mwg1

w + 1

)(
k

α + k

)1− 1
q

×
[{

m
∣∣G′(wg1)

∣∣q
(

Γ
(α

k
+ 1
)
− Γ

(α

k
+ 1, 1

)
e− 1

α
k + 1

)

+
∣∣G′(g2)

∣∣q
(

Γ
(α

k
+ 1,−1

)
− Γ

(α

k
+ 1
)
− 1

α
k + 1

)} 1
q

+

{
m
∣∣G′(wg1)

∣∣q
(
(−1)

α
k−1
(

Γ
(α

k
+ 1
)
− Γ

(α

k
+ 1,−1

))
− 1

α
k + 1

)

+
∣∣G′(g2)

∣∣q
((α

k
+ 1
)

ek
(

Γ
(α

k
+ 1, 1

)
− Γ

(α

k
+ 1
))

k + α− 1
α
k + 1

)} 1
q
]

,

which completes the proof.

5. Conclusions

In this study, some fresh evaluations of the (H−H) type inequality for a new gen-
eralized convex function are presented. Recently, many mathematicians have worked
on the inequality hypothesis to provide a new dimension to mathematical analysis. To
proceed in this direction, we have generalized a new definition and have established re-
lated inequalities. Since it is simple and convenient to move forward by application of the
expectation, we contend that the novel mathematical thoughts, concepts, and strategies we
have introduced here are more natural than those currently presented in the literature. In
future, we intend to work on concepts such as interval valued analysis, time scale calculus,
and quantum calculus for this new convexity and improve inequalities, including the Opial,
Simpson, Bullen, Newton, Fejé, Mercer, and Ostrowski types.
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Abstract: In the present article, we give analytical solutions for temperature distribution in a rectan-
gular parallelepiped with the help of a multivariable I-function. The results established in this paper
are of a general character from which several known and new results can be deduced. We also give
the special and particular cases of our main findings.

Keywords: multivariable I-function; multivariable H-function; temperature distribution

1. Introduction and Preliminaries

Fractional calculus is three centuries old—as old as conventional calculus. Its impor-
tance has been highlighted by many researchers in recent years.

Fractional calculus is based on integrals and the derivatives of non-integer arbitrary
order, fractional differential equations and methods of their solution, approximations and
implementation techniques. The concept of differentiation and integration to non-integer
order is by no means new. Interest in this subject was evident almost as soon as the ideas
of classical calculus were known. For the past three centuries, this subject was considered
by mathematicians, and only in the last few years has it been applied to the fields of
engineering, science and economics. As is well known, several physical phenomena are
often better described by fractional derivatives. However, recent attempts have been made
to define the fractional derivative as a local operator in fractal science theory.

In recent years, several authors have studied the functions of two or more variables,
for example, see [1–5]. Recent expansion in the theory of I-functions has become important
due to the introduction of the multivariable I-function which has been studied by many
authors (for recent work, see [6,7]). Recently, Kumar & Ayant [8] provided an application
of the Jacobi polynomial and multivariable Aleph-function in heat conduction in a non-
homogeneous moving rectangular parallelepiped. Prasad & Pati [9] used the modified
multivariable H-function and provided the temperature distribution in a rectangular paral-
lelepiped. In the present paper, we provide an application of the multivariable I-function
for temperature distribution in a rectangular parallelepiped.

The multivariable I-function is defined in terms of the multiple Mellin–Barnes-type
integral, and is given in the following manner [10]:
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I(z1, · · · , zr) = I0,n2;0,n3;··· ;0,nr :m′ ,n′ ;··· ;m(r),n(r)

p2,q2,p3,q3;··· ;pr ,qr :p′ ,q′ ;··· ;p(r),q(r)




z1
.
.

zr

∣∣∣∣∣∣∣
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(1)
2j , α
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)
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; · · · ;
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rj , · · · , α

(r)
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:
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a(1)j , α
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j
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1,p(r)(
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(r)
rj

)
1,qr

:
(
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,

=
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(2πω)r

∫
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· · ·
∫

Lr
ξ(s1, · · · , sr)

{
r

∏
i=1

φi(si) zsi
i

}
ds1 · · ·dsr, (1)

where zi 6= 0, ω =
√
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j si
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∏

q(i)
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Γ
(

1− b(i)j + β
(i)
j si

)}{
∏

p(i)

j=n(i)+1
Γ
(

a(i)j − α
(i)
j si

)} (for all i ∈ {1, · · · , r}), (2)

ξ(s1, · · · , sr) =
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k=2

{
∏nk

j=1 Γ
(

1− akj + ∑k
i=1 α

(i)
kj si

)}
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{
∏

pk
j=nk+1 Γ

(
akj −∑k

i=1 α
(i)
kj si

)}

× 1

∏r
k=2

{
∏

qk
j=1 Γ

(
1− bkj + ∑k

i=1 β
(i)
kj si

)} . (3)

For the existence and convergence conditions of (1) (the reader may wish to refer to work
by Prasad [10]).

The absolute convergence condition of the multiple Mellin–Barnes-type contour (1) can
be obtained by extension of the corresponding conditions for the multivariable H-function,
given by

|arg zi| <
1
2

Ωi π,

where

Ωi =
n(i)

∑
k=1

α
(i)
k −

p(i)

∑
k=n(i)+1

α
(i)
k +

m(i)
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β
(i)
3k + · · ·+

qr

∑
k=1

β
(i)
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)
, (4)

where i = 1, · · · , r.
Throughout the present paper, we assume the existence and absolute convergence

conditions of the multivariable I-function.
We may establish the asymptotic expansion in the following convenient form:

I(z1, · · · , zr) = O
(
|z1|α

′
1 , · · · , |zr|α

′
r
)

, max(|z1|, · · · , |zr|)→ 0

I(z1, · · · , zr) = O
(
|z1|β

′
1 , · · · , |zr|β

′
s
)

, min(|z1|, · · · , |zr|)→ +∞

where k = 1, · · · , z; α′k = min
[
<
(

b(k)j /β
(k)
j

)]
, j = 1, · · · , m(k) and

β′k = max
[
<
((

a(k)j − 1
)

/α
(k)
j

)]
, j = 1, · · · , n(k).

326



Axioms 2022, 11, 488

We use the following notations in this paper:

U = p2, q2; p3, q3; · · · ; pr−1, qr−1; V = 0, n2; 0, n3; · · · ; 0, nr−1, (5)

W =
(

p(1), q(1)
)

; · · · ;
(
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; · · · ;
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, (6)
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, (8)

A =
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, (9)

B =
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b(1)k , β
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. (10)

2. Formulation of the Problem

The temperature θ(x, y, z, t) at any point of a rectangular parallelepiped of edges a, b, c,
can be represented by the following partial differential equation:

∂θ

∂t
= K1

(
∂2θ

∂x2 +
∂2θ

∂y2 +
∂2θ

∂z2

)
+ ψ(x, y, z, t) + c0 θ(x, y, z, t), (11)

where t is the time, K1 = K
ρc

, in which K is the thermal conductivity of the rectangular
parallelepiped, ρ is the density, c is the specific heat and ψ is the heat source within it; K, ρ, c
and c0 are constants.

The initial and boundary conditions are taken as

θ(x, y, z, 0) = f (x, y, z), (12)

θ(a, y, z, t) = g1(y, z), (13)

θ(x, b, z, t) = h1(x, z), (14)

θ(x, y, c, t) = r1(x, y), (15)

θ(0, y, z, t) = g2(y, z), (16)

θ(x, 0, z, t) = h2(x, z), (17)

θ(x, y, 0, t) = r2(x, y), (18)

3. Solution of the Problem
Required Integral

We will need the following result:

Lemma 1. ∫ b

0
sin
(nπy

b

)
e−µydy =

πnb
(µ2b2 + n2π2)

[
(−)n+1e−µb + 1

]
. (19)

For the solution of (11) under the conditions (12)–(18), we take the triple finite Fourier
transform which is represented as follows:

θ̄(m, n, q, t) =
∫ a

0

∫ b

0

∫ c

0
θ(x, y, z, t) sin

(mπx
a

)
sin
(nπy

b

)
sin
( qπz

c

)
dx dy dz. (20)
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Now, multiplying both sides of (11) by sin
(mπx

a
)

sin
( nπy

b
)

sin
( qπz

c
)
, and integrating over

the whole rectangular parallelepiped, we get

∫ a

0

∫ b

0

∫ c

0

∂θ

∂t
sin
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a

)
sin
(nπy

b

)
sin
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c

)
dx dy dz

= K1
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0
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0
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By the application of results of (20), (13)–(18) and Sneddon [11], the equation (21) is trans-
formed to

dθ̄

dt
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[
m2

a2 +
n2

b2 +
q2

c2 −
c0

K1

]
θ̄ = K1[K2 F̄1(n, q) + K3 F̄2(m, q) + K4 F̄3(m, n)]

+ K1[K5 F̄4(n, q) + K6 F̄5(m, q) + K7 F̄6(m, n)] + ψ̄(m, n, q, t), (22)

where,
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0
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0
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(nπy
b

)
sin
( qπz

c

)
dy dz, (23)

F̄2(m, q) =
∫ a

0

∫ c

0
h1(x, z) sin
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a

)
sin
( qπz

c

)
dx dz, (24)

F̄3(m, n) =
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0

∫ b

0
r1(x, y) sin
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a

)
sin
(nπy

b

)
dx dy, (25)

F̄4(n, q) =
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0

∫ c

0
g2(y, z) sin

(nπy
b

)
sin
( qπz

c

)
dy dz, (26)

F̄5(m, q) =
∫ a

0

∫ c

0
h2(x, z) sin

(mπx
a

)
sin
( qπz

c

)
dx dz, (27)

F̄6(m, n) =
∫ a

0

∫ b

0
r2(x, y) sin

(mπx
b

)
sin
(nπy

b

)
dx dy, (28)

K2 = (−)m+1 mπ

a
, (29)

K3 = (−)n+1 nπ

b
, (30)

K4 = (−)q+1 qπ

c
, (31)

K5 =
mπ

a
, (32)

K6 =
nπ

b
, (33)

K7 =
nπ

c
. (34)

The Equation (22) can be written as

dθ̄

dt
+ K1Bθ̄ = K1[K2 F̄1(n, q) + K3 F̄2(m, q) + K4 F̄3(m, n)]

+ K1[K5 F̄4(n, q) + K6 F̄5(m, q) + K7 F̄6(m, n)] + ψ̄(m, n, q, t), (35)

where,

B = π2
[

m2

a2 +
n2

b2 +
q2

c2 −
c0

K1

]
, (36)
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here c0 is chosen that B > 0.
Applying the boundary condition (12) on the linear differential equation (35), we get

the following result:

θ̄(m, n, q, t) = f̄ (m, n, q) e−K1Bt +
1
B
[K2 F̄1(n, q) + K3 F̄2(m, q) + K4 F̄3(m, n)]

+ K1[K5 F̄4(n, q) + K6 F̄5(m, q) + K7 F̄6(m, n)]
(

1− e−K1Bt
)

+
∫ t

0
e−K1B(t−τ)ψ̄(m, n, q, τ)dτ, (37)

where,
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0
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( qπz
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)
dx dy dz. (38)

Using the theorem for the finite sine transform and the result of Sneddon [11], we get the
following solution:
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)
sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

+
8

abc

+∞

∑
m,n,q=1

K5

B
F̄4(n, q)

(
1− e−K1Bt

)
sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

+
8

abc

+∞

∑
m,n,q=1

K6

B
F̄5(m, q)

(
1− e−K1Bt

)
sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

+
8

abc

+∞

∑
m,n,q=1

K7

B
F̄6(m, n)

(
1− e−K1Bt

)
sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

+
8

abc

+∞

∑
m,n,q=1

sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

) ∫ t

0
e−K1B(t−τ) ψ̄(m, n, q, τ)dτ. (39)

4. Particular Case

On taking g1(y, z) = g2(y, z) = h1(x, z) = h2(x, z) = r1(x, y) = r2(x, y) = 0, the
six faces of the rectangular parallelepiped are kept at zero temperature, the solution (39)
reduces to

θ(x, y, z, t) =
8

abc

+∞

∑
m,n,q=1

f̄ (m, n, q)e−K1Bt sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

+
8

abc

+∞

∑
m,n,q=1

sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

) ∫ t

0
e−K1B(t−τ) ψ̄(m, n, q, τ)dτ. (40)

Example

Since the multivariable I-function defined by Prasad [10] is the generalized function
in the field of special functions, we are interested in obtaining a particular solution of the
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Equation (40) by assuming both the initial temperature distribution at any point (x, y, z)
and the heat source of general character in terms of the multivariable I-function.

For the first attempt, let us take (variables separation method)

f (x, y, z) = f1(x) f2(y) f3(z), (41)

where, f2(y) = e−µy, f3(z) = e−δz and

f1(x) = IV;0,nr :X
U;pr ,qr :W




c1xm1

...
crxmr

∣∣∣∣∣∣

A;A

B;B


. (42)

We obtain

f̄ (m, n, p)

=
+∞

∑
r1=0

(−)r1 (mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]

× IV;0,nr+1:X
U;pr+1,qr+1:W




c1am1

...
cramr

∣∣∣∣∣∣

A; (−2r1 − 2; m1, · · · , mr),A

B; (−2r1 − 1; m1, · · · , mr),B


, (43)

provided that min{µ, δ, mi} > 0 (i = 1, · · · , r), 2 + ∑r
i=1 mi min

16j6m(i)
<
(

b(i)j

β
(i)
j

)
> 0, and

|arg ci| < 1
2 Ωiπ, where Ωi is defined by (4).

Proof of (43). Considering the relation (41) and applying Lemma 19, according to (39),
we have

f̄ (m, n, q) =
∫ a

0

∫ b

0

∫ c

0
f (x, y, z) sin

(mπx
a

)
sin
(nπy

b

)
sin
( qπz

c

)
dxdydz

=
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]

×
∫ a

0
sin
(mπx

a

)
f1(x)dx. (44)

Now, replacing f1(x) by the multivariable I-function with the help of (42), we have

f̄ (m, n, q) =
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]

×
∫ a

0
sin
(mπx

a

)
IV;0,nr :X
U;pr ,qr :W




c1xm1

...
crxmr

∣∣∣∣∣∣∣

A;A
...

B;B


dz, (45)

using the integrals representation of the multivariable I-function with the help of (1), and
interchanging the order of integrations, which is justified under the conditions mentioned
above, then we arrive at

f̄ (m, n, q) =
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]

× 1
(2πω)r

∫

L1

· · ·
∫

Lr

ξ(s1, · · · , sr)
r

∏
i=1

φi(si)z
si
i csi

i

∫ a

0
sin
(mπx

a

)
x∑r

i=1 cisi dx ds1 · · ·dsr. (46)
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On the other hand, we have the following relation:

sin
(mπx

a

)
=

+∞

∑
r1=0

(−1)2r1+1

(2r1 + 1)!

(mπx
a

)2r1+1
, (47)

By using the above relation and interchanging the order of integration and summation,
which is permissible under the stated validity conditions, then we get

f̄ (m, n, q) =
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]

×
+∞

∑
r1=0

(mπ)2r1+1(−1)2r1+1

a2r1+1(2r1 + 1)!
1

(2πω)r

∫

L1

· · ·
∫

Lr
ξ(s1, · · · , sr)

r

∏
i=1

φi(si)z
si
i csi

i

×
∫ a

0
x∑r

i=1 cisi+2r1+1 dx ds1 · · ·dsr. (48)

Evaluating the inner integral and using the relation 1
a = Γ(a)

Γ(a+1) , then

f̄ (m, n, q) =
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]

×
+∞

∑
r1=0

(−1)2r1+1

(2r1 + 1)!
(mπ)2r1+1 1

(2πω)r

∫

L1

· · ·
∫

Lr
ξ(s1, · · · , sr)

×
r

∏
i=1

φi(si)z
si
i csi

i
Γ(∑r

i=1 cisi + 2r1 + 2)
Γ(∑r

i=1 cisi + 2r1 + 3)
a∑r

i=1 cisi ds1 · · ·dsr. (49)

Now, interpreting the multiple integrals (49) in terms of the I-function of r-variables, we
obtain the required result (43).

Again, for the heat source, let

ψ(x, y, z, t) = e−αtψ′(x, y, z). (50)

For the first attempt, let us take (variables separation method)

ψ′(x, y, z) = ψ1(x)ψ2(y)ψ3(z), (51)

where, ψ2(y) = e−µ′y, ψ3(z) = e−δ′z and

ψ1(x) = IV′ ;0,n′r :X′

U′ ;p′r ,q′r :W ′




c′1xm′1
...

c′rxm′r

∣∣∣∣∣∣

A′;A′

B′;B′


, (52)

where,
U′ = p′2, q′2; p′3, q′3; · · · ; p′r−1, q′r−1; V′ = 0, n′2; 0, n′3; · · · ; 0, n′r−1. (53)

W ′ =
(

p′(1), q′(1)
)

; · · · ;
(

p′(r), q′(r)
)

; X =
(

m′(1), n′(1)
)

; · · · ;
(

m′(r), n′(r)
)

. (54)

A′ =
(

a′2k; α
′(1)
2k , α

′(2)
2k

)
1,p′2

; · · · ;
(

a′(1)
(r−1); α

′(1)
(r−1)k, α

′(2)
(r−1)k, · · · , α

′(r−1)
(r−1)k

)
1,p′r−1

. (55)

B′ =
(

b′2k; β
′(1)
2k , β

′(2)
2k

)
1,q′2

; · · · ;
(

b′(1)
(r−1); β

′(1)
(r−1)k, β

′′(2)
(r−1)k, · · · , β

′(r−1)
(r−1)k

)
1,q′r−1

. (56)

A′ =
(

a′rk; α
′(1)
rk , α

′(2)
rk , · · · , α

′(r)
rk

)
1,p′r

:
(

a′(1)k ; α
′(1)
k

)
1,p′(1)

, · · · ;
(

a′(r)k ; α
′(r)
k

)
1,p′(r)

. (57)
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B′ =
(

b′rk; β
′(1)
rk , β

′(2)
rk , · · · , β

′(r)
rk

)
1,q′r

:
(

b′(1)k ; β
′(1)
k

)
1,q′(1)

, · · · ;
(

β
′(r)
k ; β

′(r)
k

)
1,q′(r)

. (58)

Using the value of ψ(x, y, z, t) in the Equation (20) and integrating ψ with respect to τ
between the limits 0 and t, then we obtain

∫ t

0
e−K1B(t−τ) ψ̄(m, n, q, τ)dτ =

+∞

∑
r1=0

(−)r1 (mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ′2b2 + n2π2)(δ′2c2 + q2π2)

×
[
(−)n+1e−µ′b + 1

][
(−)q+1e−δ′c + 1

] e−K1Bt

K1B− α

(
e(K1B−α)t − 1

)

× IV ′ ;0,n′r+1:X′
U′ ;p′r+1,q′r+1:W ′




c′1am1

...
c′ramr

∣∣∣∣∣∣∣

A′;
(
−2r1 − 2; m′1, · · · , m′r

)
,A′

...
B′;
(
−2r1 − 1; m′1, · · · , m′r

)
,B′


, (59)

provided that min
{

α, µ′, δ′, m′i
}
> 0 (i = 1, · · · , r), 2 + ∑r

i=1 m′i min
16j6m′(i)

<
(

b′(i)j

β
′(i)
j

)
> 0, and

∣∣arg c′i
∣∣ < 1

2 Ω′iπ, where

Ω′i =
n(i)

∑
k=1

α′k
(i) −

p(i)

∑
k=n(i)+1

α′k
(i)

+
m(i)

∑
k=1

β′k
(i) −

q(i)

∑
k=m(i)+1

β′k
(i)

+

(
n2

∑
k=1

α′2k
(i) −

p2

∑
k=n2+1

α′2k
(i)
)

+

(
nr

∑
k=1

α′rk
(i) −

pr

∑
k=nr+1

α′rk
(i)
)
−
(

q2

∑
k=1

β′2k
(i)

+
q3

∑
k=1

β′3k
(i)

+ · · ·+
qr

∑
k=1

β′rk
(i)
)

. (60)

The proof of (59) is similar to (43).
Now, putting the known values of f̄ (m, n, p) and

∫ t
0 e−K1B(t−τ) ψ̄(m, n, q, τ)dτ in

Equation (40), we obtain the solution of our problem, defined as

θ(x, y, z, t) =
8

abc

+∞

∑
m,n,q=1

+∞

∑
r1=0

(−)r1(mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

×
[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]
e−K1Bt sin

(mπx
a

)
sin
(nπy

b

)
sin
( qπz

c

)

× IV;0,nr+1:X
U;pr+1,qr+1:W




c1am1

...
cramr

∣∣∣∣∣∣

A; (−2r1 − 2; m1, · · · , mr),A

B; (−2r1 − 1; m1, · · · , mr),B




+
8

abc

+∞

∑
m,n,q=1

+∞

∑
r1=0

(−)r1(mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ′2b2 + n2π2)(δ′2c2 + q2π2)

×
[
(−)n+1e−µ′b + 1

][
(−)q+1e−δ′c + 1

]

× e−K1Bt

K1B− α

(
e(K1B−α)t − 1

)
sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

× IV′ ;0,n′r+1:X′

U′ ;p′r+1,q′r+1:W ′




c′1am1

...
c′ramr

∣∣∣∣∣∣

A′;
(
−2r1 − 2; m′1, · · · , m′r

)
,A′

B′;
(
−2r1 − 1; m′1, · · · , m′r

)
,B′


, (61)

provided that min{µ, δ, mi} > 0, min{α, µ′, δ′, m′i} > 0 for i = 1, · · · , r, 2+∑r
i=1 mi min

16j6m′(i)

<
(

b(i)j

β
(i)
j

)
> 0, 2 + ∑r

i=1 m′i min
16j6m′(i)

<
(

b′(i)j

β
′(i)
j

)
> 0, |arg ci| < 1

2 Ωiπ, and
∣∣arg c′i

∣∣ < 1
2 Ω′iπ.
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5. Special Cases

If Ur = Vr = A = B = U′r = V′r = A′ = B′ = 0, then the multivariable I-functions
reduce to multivariable H-functions as defined by Srivastava et al. [12–15]. We have the
following result:

Corollary 1.

θ(x, y, z, t) =
8

abc

+∞

∑
m,n,q=1

+∞

∑
r1=0

(−)r1(mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

×
[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]
e−K1Bt sin

(mπx
a

)
sin
(nπy

b

)
sin
( qπz

c

)

× H0,nr+1:X
pr+1,qr+1:W


 c1am1

... cramr

∣∣∣∣∣∣

(−2r1 − 2; m1, · · · , mr),A

(−2r1 − 1; m1, · · · , mr),B




+
8

abc

+∞

∑
m,n,q=1

+∞

∑
r1=0

(−)r1(mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ′2b2 + n2π2)(δ′2c2 + q2π2)

×
[
(−)n+1e−µ′b + 1

][
(−)q+1e−δ′c + 1

]

× e−K1Bt

K1B− α

(
e(K1B−α)t − 1

)
sin
(mπx

a

)
sin
(nπy

b

)
sin
( qπz

c

)

× H0,n′r+1:X′

p′r+1,q′r+1:W ′




c′1am1

...
c′ramr

∣∣∣∣∣∣

(
−2r1 − 2; m′1, · · · , m′r

)
,A′

(
−2r1 − 1; m′1, · · · , m′r

)
,B′


, (62)

under the same conditions that (61) with Ur = Vr = A = B = U′r = V′r = A′ = B′ = 0.

Corollary 2. The heat source ψ(x, y, z, t) vanishes, and the formal solution is given by

θ(x, y, z, t) =
8

abc

+∞

∑
m,n,q=1

+∞

∑
r1=0

(−)r1(mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

×
[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]
e−K1Bt sin

(mπx
a

)
sin
(nπy

b

)
sin
( qπz

c

)

× IV;0,nr+1:X
U;pr+1,qr+1:W




c1am1

...
cramr

∣∣∣∣∣∣∣

A; (−2r1 − 1; m1, · · · , mr),A
...

B; (−2r1 − 2; m1, · · · , mr),B


, (63)

under the conditions (43).

Corollary 3. Consider the above formula, if Ur = Vr = A = B = 0, then we have

θ(x, y, z, t) =
8

abc

+∞

∑
m,n,q=1

+∞

∑
r1=0

(−)r1(mπ)2r1+1

(2r1 + 1)!
π2nqbc

(µ2b2 + n2π2)(δ2c2 + q2π2)

×
[
(−)n+1e−µb + 1

][
(−)q+1e−δc + 1

]
e−K1Bt sin

(mπx
a

)
sin
(nπy

b

)
sin
( qπz

c

)

× H0,n+1:X
p+1,q+1:W




c1am1

...
cramr

∣∣∣∣∣∣∣

(−2r1 − 1; m1, · · · , mr),A
...

(−2r1 − 2; m1, · · · , mr),B


, (64)

under the conditions (43) and Ur = Vr = A = B = 0.
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6. Conclusions

The significance of our findings lies in its generality. By specializing the various
parameters and variables of the multivariable I-function in our results, we can obtain new
results in the form of various special functions of one and several variables. Thus, the
result obtained in this paper can yield a large number of results, involving a large variety
of special functions and polynomials, concerning the problem of temperature distribution
in a rectangular parallelepiped.
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Abstract: The terminal value problem of differential equations has an important application back-
ground. In this paper, we are concerned with the terminal value problem of a first-order differential
equation. Some sufficient conditions are given to obtain the existence and uniqueness results of
solutions to the problem. Firstly, some comparison lemmas are established; secondly, an iterative
technique and fixed point method are used to set up the main results; Finally, an example is provided
to illustrate the application of the main results.

Keywords: terminal value problem; existence; uniqueness; comparison lemma; solution

MSC: 34C99; 34A40; 34A45

1. Introduction

The terminal value problem (also called the final value problem, initial inverse problem,
backward in time problem, abbrev. TVP) is an exciting topic within differential equations.
It has important applications in many fields, such as aerospace science, mathematical
economics, optimal control, and differential games, etc. For example, in aerospace science,
the question of how to design the flight path of a spacecraft given its landing site on a
planet can be reduced to the terminal value problem of a differential equation.

With the development of nonlinear functional analysis, scholars have made significant
progress with the use of the fixed point theory method in the study of the terminal value
problem of differential equations. For example, Wang [1] transformed the terminal value
problem of fractional differential equations into initial value problems based on the shooting
method, and then used the theoretical results of the initial value problem of fractional
differential equations in solving the terminal value problem. Finally, the effectiveness
of this method to solve the final value problem of fractional differential equations was
verified by numerical simulation. Zhang [2] used Monch’s fixed point theorem to study
the terminal value problem of first-order differential equations in Banach space, obtained
a new existence theorem under looser conditions, and improved and generalized some
known results. Wang [3] studied the existence and uniqueness of the solution to the
terminal value problem of first-order differential equations with discontinuous terms in
Banach space by using semi-order theory and the mixed monotone iteration technique,
without involving compact conditions, and presented an error estimate of the iterative
sequence of approximations to the solution. Zhou [4] used the new comparison results
and semi-order theory to study the existence of the minimum and maximum solutions of
the terminal value problem of first-order nonlinear differential equations in Banach space,
and improved and generalized some known results. In [5], combining the generalized
quasi-linearization technique with the upper and lower solutions method, Yakar and Arslan
obtained a unique solution to the fractional causal terminal value problem. In [6], Shah and
Rehman established a sufficient condition for the existence and uniqueness of the solution
of a class of fractional differential equations over infinite intervals. In [7], the authors

Axioms 2022, 11, 435. https://doi.org/10.3390/axioms11090435 https://www.mdpi.com/journal/axioms335



Axioms 2022, 11, 435

discussed the terminal value differential inequality, the existence of extreme value solutions
of differential equations, and the corresponding comparison principle. In [8], Benchohra
et al. presented the existence results and uniqueness of solutions for a class of boundary
value problems of the terminal type for fractional differential equations with the Hilfer–
Katugampola fractional derivative. The reasoning was mainly based upon different types of
classical fixed point theorems, such as the Banach contraction principle and Krasnoselskii’s
fixed point theorem. In [9], Li et al. were concerned with the well-posedness and efficient
numerical algorithm for a terminal value problem with a generalized Caputo fractional
derivative. They investigated the existence and uniqueness of the solution of the terminal
value problem and considered the continuous dependence of the solutions on the given
data. In [10], Babak and Wu tempered fractional differential equations with terminal value
problems. Discretized collocation methods on piecewise polynomial spaces were proposed
for solving these equations. Regularity results were constructed on weighted spaces, and
convergence order was studied.

The above results are mainly based on the properties of compact operators or increas-
ing operators.

In this paper, we are concerned with the following TVP,

u′(t) = f (t, u(t)) t ∈ [0, T], u(T) = uT ,

where T > 0, uT ∈ R are two constants and f : [0, T]× R→ R is continuous.
By the properties of decreasing operators, we obtain the existence and uniqueness of

the solution to this problem. Our contributions are the following:
(1) we present some comparison lemmas for (TVP);
(2) we establish the existence and uniqueness results of solutions for (TVP);
(3) we set up an iterative scheme of approximation solutions for (TVP).
The paper is organized as follows. In Section 2, some comparison lemmas are estab-

lished; the existence and uniqueness results of (TVP) are presented in Section 3 via the
iterative technique and fixed point method; an example shown in Section 4 illustrates the
application of the results obtained.

2. Comparison Lemmas

The following comparison lemmas are of importance throughout this paper.

Lemma 1. If v ∈ C1[0, T] satisfies

v′(t) + λv(t) > 0 v(T) 6 0 t ∈ [0, T]

where λ ∈ R is a constant, then v(t) 6 0 for t ∈ [0, T].

Proof. Since v′(t) + λv(t) > 0, we have

eλt(v′(t) + λv(t)
)
> 0

that is, (
v(t)eλt

)′
> 0

which implies that v(t)eλt is increasing on [0, T]. Hence, for ∀t ∈ [0, T],

v(t)eλt 6 v(T)eλT 6 0

i.e., v(t) 6 0, t ∈ [0, T].

Lemma 2. Let v, w ∈ C1[0, T], and λ ∈ R be a constant. If

w′(t) + λw(t) 6 v′(t) + λv(t) v(T) ≤ uT ≤ w(T) t ∈ [0, T],
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then v(t) 6 w(t) for t ∈ [0, T].

Proof. Let h(t) = v(t)− w(t), then we have

h′(t) + λh(t) > 0 h(T) 6 0 t ∈ [0, T].

By Lemma 1, we know h(t) 6 0, t ∈ [0, T], i.e., v(t) 6 w(t) for t ∈ [0, T].

Lemma 3. Let w ∈ C1[0, T], h ∈ C[0, 1], and λ ∈ R be a constant. If

w′(t) + λw(t) 6 h(t) w(T) ≥ uT t ∈ [0, T],

then

w(t) ≥ uTeλ(T−t) −
∫ T

t
eλ(s−t)h(s) ds

for t ∈ [0, T].

Proof. If v ∈ C1[0, 1] is a solution to the following terminal value problem

v′(t) + λv(t) = h(t) v(T) = uT t ∈ [0, T],

then we have

1.

v(t) = uTeλ(T−t) −
∫ T

t
eλ(T−t)h(s) ds

2.
w′(t) + λw(t) ≤ v′(t) + λv(t), v(T) = uT ≤ w(T) t ∈ [0, T].

By Lemma 2, we obtain

w(t) ≥ v(t) = uTeλ(T−t) −
∫ T

t
eλ(T−t)h(s) ds.

3. Main Results

In this section, we give some sufficient conditions to ensure the existence and unique-
ness of the (TVP).

Firstly, we transform the (TVP) to a fixed point problem; secondly, we construct an
iterative sequence by the integral operator; finally, by using comparison lemmas, we verify
that the sequence is uniformly convergent to the unique solution of the (TVP).

Let u, v ∈ C[0, T]; if u(t) ≤ v(t) for ∀t ∈ [0, T], we denote u ≤ v. The order interval
[u, v] = {x ∈ C[0, T]|u(t) ≤ x(t) ≤ v(t), ∀t ∈ [0, T]}.

The main result of this paper is the following.

Theorem 1. Let us say that there exist v, w ∈ C1[0, T], v 6 w and a constant λ such that

1. for ∀t ∈ [0, T], x, y ∈ [v, w], x 6 y,

f (t, y(t))− f (t, x(t)) > −λ(y(t)− x(t))

2. for ∀t ∈ [0, T], 0 6 ` 6 1 and x, y ∈ [v, w],

f (t, lx(t) + (1− l)y(t)) > l f (t, x(t)) + (1− l) f (t, y(t))
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3. for ∀t ∈ [0, T],
(v + w)′(t) + λ(v− w)(t) > 2 f (t, w(t))

f (t, v(t)) > w′(t) + λ(w− v)(t)
(1)

4. v(T) = uT = w(T).

Then, (TVP) has a unique solution x̃ satisfying v(t) ≤ x̃(t) ≤ w(t), t ∈ [0, T] (abbr. x̃ ∈ [v, w]).

Proof. Let x ∈ C[0, 1]. If h ∈ C1[0, T] be a solution to the following terminal value problem:

h′(t) + λh(t) = f (t, x(t)) + λx(t), h(t) = uT

Then,

h(t) = uTeλ(T−t) −
∫ T

t
eλ(T−t)[ f (s, x(s)) + λx(s)] ds

Define a mapping T on C[0, T] as follows:

(Tx)(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, x(s)) + λx(s)] ds, x ∈ C[0, 1].

It is easy to verify that T maps C[0, T] into C[0, T], and (TVP) has a solution if and only
if T has a fixed point in C[0, T].

By Assumptions (1) and (2), we know that T is decreasing and convex on [v, w].
By the first inequality in (1), we have





(
v + w

2

)′
(t) + λ

(
v + w

2

)
> f (t · w(t)) + λw(t),

(
v + w

2

)
(T) = uT .

Due to the second inequality in (1), we obtain
{

w′(t) + λw(t) 6 f (t, v(t)) + λv(t),
w(T) = uT .

Let x0(t) be a solution to the following terminal value problem:
{

u′(t) + λu(t) = f (t, w(t)) + λw(t),
u(T) = uT ,

Then,

x0(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, w(s)) + λw(s)] ds.

Construct an iterative sequence {xn(t)} as follows:
{

x′n+1(t) + λxn+1(t) = f (t, xn(t)) + λxn(t)
xn+1(T) = uT

n = 0, 1, 2, · · ·

i.e.,

xn+1(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, xn(s)) + λxn(s)] ds.

In what follows, we prove that {xn} is a Cauchy sequence in C[0, T], and converges to
the solution of the (TVP) in C[0, T].
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Step 1. We assert

w(t) > x0(t) >
(

w + v
2

)
(t) > v(t) t ∈ [0, T].

In virtue of (
w + v

2

)′
(t) + λ

(
v + w

2

)
(t) > x′0(t) + λx0(t)

and (
u + v

2

)
(T) = uT = x0(T)

and Lemma 2, we obtain

x0(t) >
(

w + v
2

)
(t).

Moreover,

w′(t) + λw(t) 6 f (t, v(t)) + λv(t)

6 f (t, w(t)) + λw(t)

=x′0(t) + λx0(t),

w(T) =uT = x0(T).

Hence, by Lemma 2, we have x0(t) 6 w(t), and

w > x0 > w + v
2

> v.

Step 2. For n = 0, 1, 2, · · · ,

w(t) > x2n+1(t) > x2n(t) >
(

w + v
2

)
(t) > v(t).

On the one hand, since

x1(t) =uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, x0(s)) + λx0(s)] ds

=(Tx0)(t)

and T is decreasing, we obtain

Tw 6 Tx0 = x1 6 T
(

ω + v
2

)
6 Tv.

Noting that x0 = Tw, we have
x0 6 x1.

On the other hand, by the second inequality in (1), we have

w′(t) + λw(t) 6 f (t, v(t)) + λv(t) 6 x′1(t) + λx1t = f (t1, x0(t)) + λx0(t)

which means
x′1(t) + λx1(t) > w′(t) + λw′(t)

By the comparison Lemma 2, there holds x1(t) 6 w(t). Hence,

x0 6 x1 6 w.

Noting that x0 > w+v
2 , we have w > x1 > x0 > w+v

2 > v, which implies that the
assertion holds for n = 0.
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Suppose that when n = k,

w(t) > x2k+1(t) > x2k(t) >
(

v + w
2

)
(t) > v(t)

then

f (t, w(t)) + λw(t) > f (t, x2k+1(t)) + λx2k+1(t)

> f (t, x2k(t)) + λx2k(t)

> f (t · v(t)) + λv(t).

Hence, we have
(

v + w
2

)′
(t) + λ

(
v + w

2

)
(t) > x′2k+2(t) + λx2k+2(t)

> x′2k+1(t) + λx2k+1(t)

> w′(t) + λw(t).

By the comparison Lemma 2,

v + w
2

6 x2k+2(t) 6 x2k+1(t) 6 w(t).

Repeating this process, we can verify

v + w
2

6 x2k+2(t) 6 x2k+3(t) 6 w(t),

which means the assertion holds for n = k + 1.
Hence, for all n, there holds

w(t) > x2n+1(t) > x2n(t) >
(

v + w
2

)
(t) > v(t)

Step 3. {x2n(t)} is increasing, while {x2n+1(t)} is decreasing.
Since

u(t) 6
(

v + w
2

)
(t) 6 x1(t) 6 w(t),

then
f (t, v(t)) + λv(t) 6 f (t, x1(t)) + λx1(t)

6 f (t, λw(t)) + λw(t))

and
w′(t) + λw(t) 6 x′2(t) + λx2(t) 6 x′0(t) + λx0(t)

By the comparison Lemma 2,

x0(t) 6 x2(t) 6 w(t)

In a similar way to Step 2, we can prove

{x2n(t)} is increasing , {x2n+1(t)} is decreasing.

Step 4. {xn(t)} is uniformly convergent on [0, 1].
By Steps 1–3, we know that {xn(t)} satisfies

v(t) 6
(

v + w
2

)
(t) 6 x0(t) 6 x2(t) 6 · · · 6 x2n(t) 6 · · · 6 x2n+1(t) 6 · · · 6 x1(t) 6 w(t)
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Let Zn(t) = xn(t)− v(t). We have

0 6
(

w− v
2

)
(t) 6 Z0(t) 6 Z2t 6 · · · 6 Z2n(t) 6 · · · 6 Z2n+1(t) 6 · · · 6 Z1(t)

6 (w− v)(t).

Define
rn = sup{r ∈ R | Z2n(t) > rZ2n+1(t)}

Then, the sequence {rn} is well defined, 1
2 6 rn 6 1, and {rn} is increasing.

Since

1.

Z2n(t) >
1
2
(w− v)(t) > 1

2
Z2n+1(t)

we have rn > 1
2

2.
Z2n(t) > Z2n+1(t)

and we obtain rn 6 1.
3. If r satisfies Z2n(t) > rZ2n+1(t), then the monotonicity of {Z2n} and {Z2n+1} implies

Z2n+2(t) > Z2n(t) > rZ2n+1(t) > rZ2n+3(t)

i.e., {r ∈ R | Z2n(t) > rZ2n+1(t)} ⊂ {r ∈ R | Z2n+2(t) > rZ2n+3(t)}.
By (1–3), we know that {rn} is convergent. Denote r0 = lim

n→∞
rn.

By the comparison Lemma 3,

Z2n+3(t) 6 Z2n+1(t) = x2n+1(t)− v(t)

= uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, x2n(s)) + λx2n(s)] ds− v(t)

= uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, Z2n(s) + v(s))) + λ(Z2n + v(s)) ds− v(t)

6 uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, (rnZ2n+1 + v)(s)) + λ(rnZ2n+1 + v)(s)] ds− v(t)

= uTeλ(T−t) −
∫ T

t
eλ(s−t)

[
f (s, (rnx2n+1 + (1− rn)v(s)))+

λ(rnx2n+1 + (1− rn)v(s))

]
ds− v(t)

6 uTeλ(T−t) −
∫ T

t
eλ(s−t)

[
rn( f (s, x2n+1(s)) + λx2n+1(s))+

(1− rn)( f (s, v(s)) + λv(s)))

]
ds− v(t)

= rn

[
uTeλ(T−t) −

∫ T

t
eλ(s−t)[ f (s, x2n+1(s)) + λx2n+1(s) ds− v(t)]

]

+ (1− rn)

[
uTeλ(T−t) −

∫ T

t
eλ(s−t)[ f (s, v(s)) + λv(s)] ds− v(t)

]

6 rn[x2n+2(t)− v(t)] + (1− rn)[w(t)− v(t)]

= rnZ2n+2 + 2(1− rn)(
w− v

2
)(t)

6 rnZ2n+2 + 2(1− rn)Z2n+2

= (2− rn)Z2n+2,

then
rn+1 = sup{r ∈ R | Z2n+3(t) > rZ2n+2(t)} >

1
2− rn

.
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Taking the limit on both sides, we obtain

r0 > 1
2− r0

.

Noting that 1
2 6 r0 6 1, we know r0 = 1.

Then, for an even number p,

0 6 Z2n+p − Z2n 6 Z2n+1 − Z2n 6 (1− rn)Z2n+1 6 (1− rn)(v− u).

Since rn → 1, {Z2n} is convergent. In a similar way, we obtain that {Z2n+1} is
convergent, and

lim
n→∞

Z2n = lim
n→∞

Z2n+1.

Hence, {Zn} is convergent.
Let Z = lim

n→∞
Zn and x̄ = Z + v, and then

lim
n→∞

xn(t) =x̄(t)

= lim
n→∞

xn+1(t)

= lim
n→∞

[
uTeλ(T−t) −

∫ T

t
[ f (s, xn(s)) + λxn(s)] ds

]

=uTeλ(T−t) −
∫ T

t
[ f (s, x̄(s)) + λx̄(s)] ds

=(Tx̄)(t),

which means that x̄(t) is a fixed point of T.
Step 5. x̄ is the unique fixed point of T in [v, w].
In fact, if x̃ is a fixed point of T in [v, w], then

v 6 x̃ 6 w⇒Tv > Tx̃ > Tw

⇒w > Tv > x̃ > x0.

Continuing this process, we have

x2n(t) 6 x̃(t) 6 x2n+1(t).

Taking the limit on both sides, we obtain

x̃(t) = x̄(t).

Hence, x̄ is the unique fixed point of T in [v, w], i.e., x̄ is the unique solution of (TVP)
in [v, w].

Remark 1. Let

y0(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, v(s)) + λv(s)] ds

Define

yn+1(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, yn(s)) + λyn(s)]ds, n = 0, 1, 2, · · ·

In the same way as in Theorem 1, we can prove that {yn} is uniformly convergent to x̄ on [0, 1].
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Corollary 1. Assume that there exist two constants c > 0 and λ ∈ R satisfying the following:

1. f (t, 0)− λc(T − t) > −c > 2 f (t, c(T − t)) + λc(T − t);
2. for ∀t ∈ [0, T], f (t, ·) is concave;
3. for ∀t ∈ [0, T], x, y ∈ [0, c(T − t)], x 6 y,

f (t, y)− f (t, x) > −λ(y− x),

and then (TVP) {
x′(t) = f (t, x(t))
x(T) = 0

has a unique solution x̄(t) satisfying

0 6 x̄(t) 6 c(T − t), t ∈ [0, T].

Proof. Choose v(t) = 0, w(t) = c(T− t), and we can verify that all conditions of Theorem 1
are fulfilled.

Consider the following terminal value problem.
{

x′(t) = t + g(x(t)) t ∈ [0, 1]
x(1) = 0

Corollary 2. Let g ∈ C2[0, 1]. If the following conditions are satisfied

1. g(0) ≥ −2;
2. for ∀x ∈ [0, 1], g(x) ≤ 3

2 x− 3
2 ;

3. for ∀x ∈ [0, 1], g′(x) ≥ 1;
4. for ∀x ∈ [0, 1], g′′(x) ≤ 0.

Then the above (TVP) has a unique solution x̄(t) satisfying

0 6 x̄(t) 6 1− t, t ∈ [0, 1].

Proof. Let
f (t, x) = t + g(x).

and c = T = 1, λ = −1; we can verify that

f (t, 0)− λc(T − t) ≥t + (−2) + 1− t

=− 1 = −c

2 f (t, c(T − t)) + λc(T − t) =2[t + g(1− t)]− (1− t)

≤2[t +
3
2
(1− t)− 3

2
]− (1− t) 6 −1 = −c,

which implies that assumption (1) of Corollary 1 is satisfied.
Moreover,

f ′′xx(t, x) = g′′(x) ≤ 0

means that f (t, .) is concave, i.e., Assumption (2) of Corollary 1 is fulfilled. Noting that

f ′x(t, x) = g′(x) > 1, x ∈ [0, 1],

hence, f meets condition (3) of Corollary 1.
By Corollary 1, we know that this terminal problem has a unique solution x̄(t) satisfying
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0 6 x̄(t) 6 1− t.

4. Application

Example 1. Let g(x) = x + sinx − 2. We can verify that all assumptions of Corollary 2 hold.
Hence, the terminal value problem

{
x′(t) = t + x(t) + sinx(t)− 2
x(1) = 0

has a unique solution x̄(t) satisfying

0 6 x̄(t) 6 1− t.

Let T = 1, λ = −1, v0(t) = 0. Define

vn+1(t) = uTeλ(T−t) −
∫ T

t
eλ(s−t)[ f (s, vn(s)) + λvn(s)]ds, n = 0, 1, 2, · · · .

Then, the approximate solutions of the above TVP are

v1(t) = (t− 2)
[
e(t−1) − 1

]

v2(t) =
{

t + sin
{
(t− 2)

[
e(t−1) − 1

]}
− 2
}
·
[
e(t−1) − 1

]

· · ·

The image of the approximate solutions of v1, v2 is the Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

V1(t)

V2(t)

Figure 1. Image of the approximate solutions of v1, v2.
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5. Discussion

In this paper, we have constructed an iterative monotone sequence and verified that
this sequence is convergent to a solution of problem (TVP). Other assumptions ensure the
uniqueness of this solution. Our uniqueness result is a local result, which means that the
problem may have multiple solutions in the space C[0, T].

6. Conclusions

In this paper, we have used comparison lemmas, an iterative technique and a fixed
point method to obtain the existence and uniqueness results of solutions for a terminal
value problem of the first-order differential equation. Our discussion lies in a bounded
interval. It is an interesting problem to extend the study to an unbounded interval, i.e.,

{
x′(t) = f (t, x(t))
x(∞) = limt→∞ x(t) = u∞

We will try to find appropriate conditions to ensure the existence and uniqueness of
the solution to the above problem.
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Abstract: Let D be a connected bounded domain in R2, S be its boundary, which is closed and
C2-smooth. Consider the Dirichlet problem ∆u = 0 in D, u|S = h, where h ∈ L1(S). The aim of this
paper is to prove that the above problem has a solution for an arbitrary h ∈ L1(S), and this solution
is unique. The result is new. The method of its proof is new. The definition of the L1(S)-boundary
value of a harmonic in the D function is given. No embedding theorems are used. The history of the
Dirichlet problem goes back to 1828. The result in this paper is, to the author’s knowledge, the first
result in the 194 years of research (since 1828) that yields the existence and uniqueness of the solution
to the Dirichlet problem with the boundary values in L1(S).
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1. Introduction

Let D be a connected bounded domain on the complex plane, S be its boundary, which
is closed and C2-smooth.

The aim of this paper is to prove that an arbitrary h ∈ L1(S) can be the boundary
value of a harmonic in the D function. The boundary value h ∈ L1(S) uniquely determines
the harmonic function in D.

There is a large body of literature on the Dirichlet problem for elliptic equations
going back to 1828; see references. There are three basic directions of research: non-
smooth domains, non-smooth coefficients and non-smooth boundary values. This paper
deals with smooth domains, the simplest elliptic operator, the Laplacean and non-smooth
boundary values. In the published papers and books, the boundary values of harmonic
functions were always assumed to be smoother than L1(S). For example, the maximal
non-smoothness, allowed in [1], is bounded continuous function h on S with finitely many
points of discontinuity of the first kind. In [2], the boundary conditions in L1(S) are not
considered at all.

We deal with the smooth two-dimensional domains (n = 2) for definiteness. In the two-
dimensional case, the kernel of the integral equation of the potential theory is continuous,
and the corresponding integral operator A is compact in L1(S). The compactness of A
in L1(S) holds for any finite dimension n ≥ 2, but the kernel A(t, s) of A, defined below
formula (2), is not continuous for n > 2. This does not prevent A from being compact
in L1(S). Our arguments are based on the new definition of the boundary values of a
harmonic function in L1(S); see Definition 1 below. To our knowledge, in this paper, the
L1(S)-boundary values of harmonic functions are considered for the first time.

The problem we study is:

∆u = 0 in D, u|S = h. (1)

This problem has been studied in many papers and books for a long time. We mention only
a few names: G. Green (1828), Gauss, Thomson, Dirichlet (1850), Hilbert (1900). One of the
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methods to solve this problem is based on the potential theory. Let us look for the solution
in the form of the double-layer potential

u(x) =
∫

S

∂g(x, s)
∂N

µ(s)ds, N := Ns. (2)

Here g = − 1
2π ln r, r := rxy = |x− y|, x, y ∈ R2, A(t, s) := ∂g(t,s)

∂N = − 1
2π

Ns ·r0

rts
, r0 = s−t

|s−t| ,
N = Ns is the unit normal to S at the point s, N is directed out of D, µ = µ(s) is the
unknown function. The kernel A(t, s) is a continuous function of t and s on S× S when
D ⊂ R2 and S is C2−smooth. We could assume S to be C1,a− smooth, a ∈ (0, 1], but this is
not important in this paper.

In our case, operator

Aµ =
∫

S
A(t, s)µ(s)ds (3)

is well defined as an operator in L1(S) and is compact in this space, see [3–5] for the
compactness test of L1(S).

Let us check that the kernel A(t, s) is continuous on S× S if n = 2 and S ∈ C2. For
|t − s| > ε this kernel is C1−smooth. Therefore, only its behavior as t → s should be
considered. This behavior is determined by the function Ns ·r0

−2πrts
. Choose the coordinate

system in which the y−axis is directed along Nt, so Nt = j, where i and j are the orthogonal
unit vectors of the coordinate system. The equation of S in a neighborhood of t in this system
is y = f (x), f (0) = f ′(0) = 0, the vector t = (0, 0), the vector s = xi + j f (x), the vector
s − t = xi + j f (x), r0 = xi+ f (x)j

(x2+ f 2(x))1/2 , Ns = f ′(x)i−j
(1+( f ′)2)1/2 , Ns · r0 = x f ′(x)− f (x)

(x2+ f 2(x))1/2(1+( f ′)2)1/2 .

Denote Ns ·r0

rts
:= J. In our coordinate system f (0) = f ′(0) = 0, so f (x) ∼ f ′′(0)x2

2 as

x → 0. Therefore, one gets J(0) = − limx→0
f ′′(0)x2

2x2 = − f ′′(0)
2 . Thus, the kernel A(t, s) is

continuous as t→ s. Therefore, it is continuous on S× S.
If D ⊂ Rn, n > 2, and S is smooth, then the kernel A(t, s) is O( 1

rn−2
ts

). Therefore, if

n > 2, operator A is compact in L1(S), but the kernel is not continuous on S× S.
If one looks for the solution to Equation (1) of the form (2) and µ ∈ C1(S), then the

integral equation for µ is:

h(t) = −µ(t)
2

+
∫

S
A(t, s)µ(s)ds. (4)

Equation (4) holds everywhere with respect to the Lebesgue measure on S if A(t, s) is con-
tinuous. See, for example, [6], where the derivation of Equation (4) under the assumption
µ ∈ C1(S) is given. It is well known that the set C1(S) is dense in L1(S) in the norm of
L1(S). Equation (4) holds almost everywhere with respect to Lebesgue’s measure on S if
h ∈ L1(S).

Let us recall M. Riesz’s compactness criterion for sets in L1(S):

Proposition 1. For a bounded set M ⊂ L1(S) to be compact in L1(S), it is necessary and sufficient
that for an arbitrary small ε > 0 there exists a δ > 0 such that if |σ| ≤ δ, then for any h ∈ M one
has ‖h(s + σ)− h(s)‖ < ε, where s + σ ∈ S.

Here and below, the norm is the L1(S) norm, ‖h‖ =
∫

S |h(s)|ds. Proofs of Proposition 1
can be found in [3,5].

Lemma 1. If A(t, s) is continuous on S× S and a set M ∈ L1(S) is bounded, then the set AM is
compact in L1(S).
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Proof. By Proposition 1, it is sufficient to check that ‖(Ah)(t + σ) − (Ah)(t)‖ ≤ ε for
|σ| ≤ δ, where h ∈ M is arbitrary. Let |S| denote the length of S. One has

‖(Ah)(t + σ)− (Ah)(t)‖ ≤ |S| sup
s,t∈S
|A(t + σ, s)− A(t, s)|‖h‖ ≤ cε, (5)

provided that |σ| ≤ δ. Here c > 0 does not depend on δ, it comes from the bound ‖h‖ ≤ c1
for all h ∈ M, c = |S|c1. We have used the continuity of A(t, s) on S× S to conclude that

sup
s,t
|A(t + σ, s)− A(t, s)| ≤ ε, (6)

if |σ| is sufficiently small. Lemma 1 is proven. 2

We want to make sense of the method of integral equation for solving the Dirichlet
problem (1), assuming that h ∈ L1(S).

Lemma 2. Operator A is compact in L1(S). Operator − I
2 + A is Fredholm-type, where I is the

identity operator. The null-space of operator − I
2 + A is trivial.

Proof. Operator A : L1(S)→ L1(S) is compact by Lemma 1. This is also true if n > 2 and
A(t, s) = O(|t− s|−(n−2)). Operator − I

2 + A, where I is the identity operator, is bounded
and continuous as an operator from L1(S) into itself. It is known (see, e.g., ref. [1]) that the
homogeneous problem (1) has only the trivial solution in the space C(S). We claim that
the same is true in the space L1(S). Indeed, if µ solves the homogeneous Equation (4) and
n = 2, then µ ∈ C(S) because (Aµ) ∈ C(S) if µ ∈ L1(S) since the kernel A(t, s) ∈ C(S× S).
Therefore, the null-space of operator − I

2 + A is trivial in L1(S) as well.
Since A is compact and the null-space of operator − I

2 + A is trivial, the Fredholm
alternative holds: the inverse operator (− I

2 + A)−1 exists, is bounded, and it maps L1(S)
onto itself. This means not only that Equation (4) makes sense for µ ∈ L1(S) and h ∈ L1(S),
but also that µ depends continuously on h in the norm of L1(S).

Lemma 2 is proved. 2

Remark 1. It follows from Lemma 2 that the only solution in L1(S) of the homogeneous problem (1)
is u = 0. This result is new because L1(S) boundary values of harmonic functions were not
considered earlier.

Remark 2. One can find a harmonic function u in the circle D = {x, y : (x − 1)2 + y2 < 1},
which is zero on S = {x, y : (x− 1)2 + y2 = 1}, except at one point x = 0, y = 0, and which is
not zero in D. For example, u = 1− 2Re z−1, z = x + iy. Of course, u|S in this example does not
belong to L1(S).

To check this, write u = (x−y)2

x2+y2 and use the polar coordinates x − 1 = r cos φ,
y = r sin φ. Then S has representation x = 1 + cos φ, y = sin φ and the point (0, 0) has
coordinates r = 1, φ = π. One has

∫ 2π

0

(x− y)2

x2 + y2 dφ =
∫ 2π

0

1− sin(2φ)

2 + 2 cos φ
dφ.

The integrand in the above integral is not absolutely integrable in a neighborhood of the
point φ = π. The function (x− y)2 = 0 on S because the equation (x− 1)2 + y2 = 1 of S is
equivalent to the equation (x− y)2 = 0.

This example shows that the assumption h ∈ L1(S) is necessary for the uniqueness of
the solution to the Dirichlet problem (1).
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Our next step is to define the limx→t Axµ for µ ∈ L1(S), where

Axµ :=
∫

S
A(x, s)µ(s)ds, (7)

and the kernel of operator Ax is A(x, s) := ∂g(x,s)
∂Ns

.
By x → t we mean a non-tangential limit x → t, where x ∈ D and t ∈ S.
Let h ∈ L1(S) be arbitrary. Choose any sequence hδ ∈ C1(S) such that

lim
δ→0
‖h− hδ‖ = 0. (8)

By Lemma 2, Equation (8) implies

lim
δ→0
‖µ− µδ‖ = 0, (9)

where µδ is the unique solution to the equation:

− µδ(t)
2

+
∫

S

∂g(t, s)
∂Ns

µδ(s)ds := hδ. (10)

Definition 1. We define
Axµ := lim

δ→0
Axµδ, x ∈ D, (11)

and

Atµ := lim
δ→0

lim
x→t

∫

S

∂g(x, s)
∂Ns

µδ(s)ds, t ∈ S. (12)

This definition gives meaning to the boundary condition in Equation (1) if h ∈ L1(S).
The existence of the limit

lim
δ→0

∫

S

∂g(x, s)
∂N

µδ(s)ds =
∫

S

∂g(x, s)
∂N

µ(s)ds

is obvious for x ∈ D because of relation (9) and because kernel ∂g(x,s)
∂N is smooth when

x ∈ D.
The existence of the limit

lim
x→t

∫

S

∂g(x, s)
∂N

µδ(s)ds = −µδ(t)
2

+ Aµδ (13)

is known from the potential theory if µδ ∈ C1(S), see, for example, ref. [6], pp. 148–152.
The existence of the limit

lim
δ→0

(
− µδ(t)

2
+ Aµδ

)
= −µ(t)

2
+ Aµ (14)

is clear from relation (9) and Lemma 2.
For the convenience, of the reader we sketch a proof of Equation (13) following [6].

The proof is shorter than in [6] because the kernel ∂g(t,s)
∂N is continuous if n = 2.

Note that J(x) := limx→t
∫

S
∂g(x,s)

∂N ds = −1 if x ∈ D; J(x) = 0 if x ∈ D′, where D′ is
defined by the formula: D′ := R3 \ D̄; J(x) = − 1

2 if x = t ∈ S. This result is well known
and is proven by applying Green’s formula and the equation ∆g(x, y) = −δ(x− y), where
δ(x) is the delta function.

Let µδ ∈ C1(S). Then,

M :=
∫

S

∂g(x, s)
∂N

µδ(s)ds = J(x)µδ(t) +
∫

S

∂g(x, s)
∂N

[µδ(s)− µδ(t)]ds := J(x)µδ(t) + K.
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One has (the + sign denotes the non-tangential to S limit when x ∈ D, x → t ∈ S and the
− sign denotes the similar limit when x ∈ D′, x → t ∈ S):

M+ = −µδ(t) + lim
x→t,x∈D

K := J+, M− = 0 + lim
x→t,x∈D′

K := J−. M0 = −1
2

µδ(t) + K.

If one proves that K is continuous when x passes t along the normal Nt, then M0 =

− 1
2 µδ + K(t) and the desired statement is proven. Here K(t) =

∫
S

∂g(t,s)
∂N [µδ(s)− µδ(t)]ds.

If µδ ∈ C1(S), then |µδ(s)− µδ(t)| ≤ c|s− t|. Therefore,

|K(x)− K(t)| ≤ c
∫

S
|N · r

0
xs

|x− s| −
N · r0

ts
|t− s| ||t− s|ds := L.

The function r0
xs is continuous with respect to x. The function |t− s|/|x− s| is continuous

with respect to x when x → t along the normal Nt. This implies continuity of L when x
crosses t along Nt. Therefore, M is a continuous function of x when x crosses t along Nt, as
we claimed.

Since operator A is compact in L1(S), the Fredholm alternative yields the unique
solution to Equation (4) with an arbitrary h ∈ L1(S), because Equation (4) with h = 0
has only the trivial solution in L1(S). Given an arbitrary h ∈ L1(S), one finds hδ ∈ C1(S)
such that

lim
δ→0
‖hδ − h‖ = 0.

If limδ→0 ‖hδ − h‖ = 0, then limδ→0 ‖µδ − µ‖ = 0 since the inverse operator
(
− I

2 + A
)−1

is continuous and defined on all of L1(S). The function u(x) = Axµ, where µ is the
unique solution to Equation (4), solves the Dirichlet problem (1). We have proven the
following result:

Theorem 1. Assume that h ∈ L1(S) is arbitrary. Then there exists a unique harmonic in the D
function u = Axµ, x ∈ D, such that u = h on S. The boundary value of u on S is defined by
formula (12).

2. Conclusions

The history of the Dirichlet problem goes back to 1828. The result in this paper is, to
the author’s knowledge, the first result in the 194 years of research since 1828 that yields
the existence and uniqueness of the solution to the Dirichlet problem with the boundary
values in L1(S).

It is proven that the Dirichlet problem (1) with the boundary function h ∈ L1(S) has a
solution, and this solution is unique.

Open problem. Let us keep our assumption about D. Given a harmonic function
u(x, y) in D; one can use the Schwarz operator to construct the conjugate harmonic function
v(x, y) (up to an additive constant) and to get the corresponding analytic function f (z) =
u + iv, z = x + iy, in D. The open problem is:

What is the set of boundary values of f (z) on S when the values h of u on S run through all of
L1(S)?

The Schwarz operator is known explicitly if, for example, D is the unit disc; see, for
example, ref. [7]. In [8,9], one can find information about the action of singular integral
operators in Lebesgue’s spaces Lp(S), 1 < p < ∞.
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Abstract: A remarkably large number of polynomials and their extensions have been presented
and studied. In this paper, we consider a new type of degenerate Changhee–Genocchi numbers
and polynomials which are different from those previously introduced by Kim. We investigate some
properties of these numbers and polynomials. We also introduce a higher-order new type of degenerate
Changhee–Genocchi numbers and polynomials which can be represented in terms of the degenerate
logarithm function. Finally, we derive their summation formulae.
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1. Introduction

Carlitz first proposed the idea of degenerate numbers and polynomials which are
associated with Bernoulli and Euler numbers and polynomials (see [1,2]). After Carlitz
introduced the degenerate polynomials, many researchers studied the degenerate polyno-
mials related to unique polynomials in diverse regions (see [3]). Recently, Kim et al. [4–6],
Sharma et al. [7,8], Muhiuddin et al. [9,10] gave same new and thrilling identities of de-
generate special numbers and polynomials which are derived from the non-differential
equation. These identities and technical approach are very useful for reading some is-
sues which can be associated with mathematical physics. This paper aims to introduce
a new type of degenerate version of the Changhee–Genocchi polynomials and numbers,
the so-called new type of degenerate Changhee–Genocchi polynomials and numbers, con-
structed from the degenerate logarithm function. We derive some explicit expressions and
identities for those numbers and polynomials. Additionally, we introduce a new type of
higher-order degenerate Changhee–Genocchi polynomials and establish some properties
of these polynomials.

The ordinary Euler and Genocchi polynomials are defined by (see [3,11–15])

2
eτ + 1

eξτ =
∞

∑
ω=0

Eω(ξ)
τω

ω!
| τ |< π, (1)

and
2τ

eτ + 1
eξτ =

∞

∑
ω=0

Gω(ξ)
τω

ω!
| τ |< π, (2)

respectively.
In the case when ξ = 0, Eω = Eω(0) and Gω = Gω(0) are called the Euler and

Genocchi numbers, respectively.
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We note that

G0(ξ) = 0, Eω(ξ) =
Gω+1(ξ)

ω + 1
(ω ≥ 0).

For any non-zero λ ∈ R (or C), the degenerate exponential function is defined by
(see [14,15])

eξ
λ(τ) = (1 + λτ)

ξ
λ , e1

λ(τ) = (1 + λτ)
1
λ . (3)

By binomial expansion, we obtain

eξ
λ(τ) =

∞

∑
ω=0

(ξ)ω,λ
τω

ω!
, (4)

where (ξ)0,λ = 1, (ξ)ω,λ = (ξ − λ)(ξ − 2λ) · · · (ξ − (ω− 1)λ) (ω ≥ 1).
Note that

lim
λ→0

eξ
λ(τ) =

∞

∑
ω=0

ξω τω

ω!
= eξτ .

In [1], Carlitz considered the degenerate Euler polynomials given by

2

(1 + λτ)
1
λ + 1

(1 + λτ)
ξ
λ =

∞

∑
ω=0

Eω,λ(ξ)
τω

ω!
(λ ∈ R). (5)

When ξ = 0,Eω,λ = Eω,λ(0) are called degenerate Euler numbers. The falling factorial
sequence is given by

(ξ)0 = 1, (ξ)ω = ξ(ξ − 1)...(ξ −ω + 1) (ω ≥ 1). (6)

As is well known, the higher-order degenerate Euler polynomials are considered by L.
Carlitz as follows (see [2]):

(
2

(1 + λτ)
1
λ + 1

)r

(1 + λτ)
ξ
λ =

∞

∑
ω=0

E(r)
ω,λ(ξ)

τω

ω!
. (7)

At the point ξ = 0, E(r)
ω,λ = E(r)

ω,λ(0) are called the higher-order degenerate Euler numbers.

Note that limλ→0 E
(r)
ω,λ(ξ) = E(r)

ω (ξ) (ω ≥ 0).
The degenerate Genocchi polynomials Gω(ξ; λ) are defined by (see [16,17])

2τ

eλ(τ) + 1
eξ

λ(τ) =
∞

∑
ω=0

Gω(ξ, λ)
τω

ω!
. (8)

In the case when ξ = 0, Gω(λ) = Gω(0, λ) are called degenerate Genocchi numbers.
For λ ∈ R, the degenerate logarithm function logλ(1 + τ), which is the inverse of the

degenerate exponential function eλ(τ), is defined by (see [6])

logλ(1 + τ) =
∞

∑
ω=1

λω−1(1)ω,1/λ
τω

ω!
. (9)

It is easy to show that

lim
λ→0

logλ(1 + τ) =
∞

∑
ω=1

(−1)ω−1 τω

ω!
= log(1 + τ).

Note that eλ(logλ(1 + τ)) = logλ(eλ(1 + τ)) = 1 + τ.
The degenerate Stirling numbers of the first kind are defined by (see [5,6,18])

1
ν!
(logλ(1 + τ))ν =

∞

∑
ω=ν

S1,λ(ω, ν)
τω

ω!
(ν ≥ 0). (10)
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Note here that limλ→0 S1,λ(ω, ν) = S1(ω, ν), where S1(ω, ν) are called the Stirling
numbers of the first kind given by

1
ν!
(log(1 + τ))ν =

∞

∑
ω=ν

S1(ω, ν)
τω

ω!
(ν ≥ 0).

The degenerate Stirling numbers of the second kind (see [19]) are given by

1
ν!
(eλ(τ)− 1)ν =

∞

∑
ω=ν

S2,λ(ω, ν)
τω

ω!
(ν ≥ 0). (11)

It is clear that limλ→0 S2,λ(ω, ν) = S2(ω, ν), where S2(ω, ν) are called the Stirling
numbers of the second kind given by

1
ν!
(eτ − 1)ν =

∞

∑
ω=ν

S2(ω, ν)
τω

ω!
(ν ≥ 0).

The Daehee polynomials are defined by (see [13])

log(1 + τ)

τ
(1 + τ)ξ =

∞

∑
ω=0

Dω(ξ)
τω

ω!
. (12)

When ξ = 0, Dω = Dω(0) are called the Daehee numbers.
Recently, Kim et al. [5] introduced the new type degenerate Daehee polynomials

defined by
logλ(1 + τ)

τ
(1 + τ)ξ =

∞

∑
ω=0

Dω,λ(ξ)
τω

ω!
. (13)

When ξ = 0, Dω,λ = Dω,λ(0) are called the degenerate Daehee numbers.
The Changhee polynomials are defined by (see [4])

2
2 + τ

(1 + τ)ξ =
∞

∑
ω=0

Chω(ξ)
τω

ω!
. (14)

When ξ = 0, Chω = Chω(0) are called the Changhee numbers.
The higher-order Changhee polynomials are defined by (see [4])

(
2

2 + τ

)k
(1 + τ)ξ =

∞

∑
ω=0

Ch(k)ω (ξ)
τω

ω!
. (15)

When ξ = 0, Ch(k)ω = Ch(k)ω (0) are called the higher-order Changhee numbers.
The Changhee–Genocchi polynomials are defined by the generating function (see [20])

2 log(1 + τ)

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CGω(ξ)
τω

ω!
. (16)

When ξ = 0, CGω = CGω(0) are called Changhee–Genocchi numbers.
Recently, Kim et al. [20] introduced the modified Changhee–Genocchi polynomials

defined by

2τ

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CG∗ω(ξ)
τω

ω!
. (17)

When ξ = 0, CG∗ω = CG∗ω(0) are called the modified Changhee–Genocchi numbers.
From (1) and (17), we see that

2τ

2 + τ
(1 + τ)ξ =

2τ

elog(1+τ) + 1
eξ log(1+τ)
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= τ
∞

∑
ν=0

Eν(ξ)
1
ν!
(log(1 + τ))ν

= τ
∞

∑
ω=0

(
ω

∑
ν=0

Eν(ξ)S1(ω, ν)

)
τω

ω!
. (18)

Thus, from (17) and (18), we obtain

CG∗ω+1(ξ)

ω + 1
=

ω

∑
ν=0

Eν(ξ)S1(ω, ν) (ω ≥ 0).

The λ-Changhee–Genocchi polynomials are defined by (see [21])

2 log(1 + τ)

(1 + τ)λ + 1
(1 + τ)λξ =

∞

∑
ω=0

CGω,λ(ξ)
τω

ω!
. (19)

In the case ξ = 0, CGω,λ = CGω,λ(0) are called the λ-Changhee–Genocchi numbers.
Motivated by the works of Kim et al. [6,20], we first define a new type of degenerate

Changhee–Genocchi numbers and polynomials. We investigate some new properties of
these numbers and polynomials and derive some new identities and relations between
the new type of degenerate Changhee–Genocchi numbers and polynomials and Stirling
numbers of the first and second kind. We also define a new type of higher-order Changhee–
Genocchi polynomials and investigate some properties of these polynomials.

2. New Type of Degenerate Changhee–Genocchi Polynomials

In this section, we introduce a new type of degenerate Changhee–Genocchi poly-
nomials and investigate some explicit expressions for degenerate Changhee–Genocchi
polynomials and numbers. We begin with the following definition as.

For λ ∈ R, we consider the new type of degenerate Changhee–Genocchi polynomials
as defined by means of the following generating function

2 logλ(1 + τ)

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CGω,λ(ξ)
τω

ω!
. (20)

At the point ξ = 0, CGω,λ = CGω,λ(0) are called the new type of degenerate Changhee–
Genocchi numbers.

It is clear that

∞

∑
ω=0

lim
λ→0

CGω,λ(ξ)
τω

ω!
= lim

λ→0

2 logλ(1 + τ)

2 + τ
(1 + τ)ξ

=
2 log(1 + τ)

2 + τ
(1 + τ)ξ =

∞

∑
ω=0

CGω(ξ)
τω

ω!
, (21)

where CGω(ξ) are called the Changhee–Genocchi polynomials (see Equation (1)).

Theorem 1. For ω ≥ 0, we have

CGω,λ(ξ) =
ω

∑
ν=0

Gν(ξ, λ)S1,λ(ω, ν).

Proof. Using (8), (10) and (20), we note that

∞

∑
ω=0

CGω,λ(ξ)
τω

ω!
=

2 logλ(1 + τ)

eλ

(
logλ(1 + τ)

)
+ 1

eξ logλ(1+τ)
λ
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=
∞

∑
ν=0

Gν(ξ, λ)
1
ν!
(
logλ(1 + τ)

)ν

=
∞

∑
ν=0

Gν(ξ, λ)
∞

∑
ω=ν

S1,λ(ω, ν)
τω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

Gν(ξ, λ)S1,λ(ω, ν)

)
τω

ω!
. (22)

Therefore, by (20) and (22), we obtain the result.

Theorem 2. For ω ≥ 0, we have

CGω,λ(ξ) =
ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
CGω−σ,λ(ξ)ν,λS1,λ(σ, ν).

Proof. By using (4), (10) and (20), we see that

∞

∑
ω=0

CGω,λ(ξ)
τω

ω!
=

2 logλ(1 + τ)

2 + t
eξ logλ(1+τ)

λ (23)

=
∞

∑
ω=0

CGω,λ
τω

ω!

∞

∑
ν=0

(ξ)ν,λ

(
logλ(1 + τ)

)ν

ν!

=
∞

∑
ω=0

GGω,λ
τω

ω!

∞

∑
σ=0

σ

∑
ω=0

(ξ)σ,λS1,λ(σ, ν)
τσ

σ!

=
∞

∑
ω=0

(
ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
CGω−σ,λ(ξ)ν,λS1,λ(σ, ν)

)
τω

ω!
. (24)

Therefore, by (20) and (24), we obtain the result.

Theorem 3. For ω ≥ 0, we have

Gω(ξ, λ) =
ω

∑
ν=0

CGν,λ(ξ)S2,λ(ω, ν).

Proof. By replacing τ by eλ(τ)− 1 in (20) and using (8) and (11), we obtain

∞

∑
ν=0

CGν,λ(ξ)
1
ν!
(eλ(τ)− 1)ν =

2τ

eλ(τ) + 1
eξ

λ(τ)

=
∞

∑
ω=0

Gω(ξ, λ)
τω

ω!
. (25)

On the other hand,

∞

∑
ν=0

CGν,λ(ξ)
1
ν!
(eλ(τ)− 1)τ =

∞

∑
ν=0

CGν,λ(ξ)
∞

∑
ν=ω

S2,λ(ω, ν)
τω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

CGν,λ(ξ)S2,λ(ω, ν)

)
τω

ω!
. (26)

Therefore, by (25) and (26), we obtain the required result.
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Theorem 4. For ω ≥ 0, we have

CGω,λ(ξ) =
ω

∑
ν=0

Gν(ξ, λ)S1,λ(ω, ν).

Proof. Replacing τ by logλ(1 + τ) in (8) and applying (10), we obtain

2 logλ(1 + τ)

2 + τ
(1 + τ)ξ =

∞

∑
ν=0

Gν(ξ, λ)
1
ν!
(
logλ(1 + τ)

)ν

=
∞

∑
ν=0

Gν(ξ, λ)
∞

∑
ω=ν

S1,λ(ω, ν)
τω

ω!

=
∞

∑
ω=0

(
ω

∑
ν=0

Gν(ξ, λ)S1,λ(ω, ν)

)
τω

ω!
. (27)

By using (20) and (27), we acquire the desired result.

Theorem 5. For ω ≥ 0, we have

CGω,λ(ξ) =
ω

∑
ν=0

(
ω

ν

)
CG∗ω−ν(ξ)Dν,λ.

Proof. From (13), (17) and (20), we note that

∞

∑
ω=0

CGω,λ(ξ)
τω

ω!
=

2 logλ(1 + τ)

2 + τ
(1 + τ)ξ

=
2τ

2 + τ
(1 + τ)ξ logλ(1 + τ)

τ

=
∞

∑
ω=0

CG∗ω(ξ)
τω

ω!

∞

∑
ν=0

Dν,λ
τν

ν!

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
CG∗ω−ν(ξ)Dν,λ

)
τω

ω!
. (28)

Therefore, by (20) and (28), we obtain the result.

Theorem 6. For ω ≥ 0, we have

CGω+1,λ(ξ)

ω + 1
=

ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
Eν(ξ)S1(σ, ν)Dω−σ,λ.

Proof. From (1), (13) and (20), we note that

∞

∑
ω=1

CGω,λ(ξ)
τω

ω!
=

2 logλ(1 + τ)

2 + τ
(1 + τ)ξ

=
2τ

elog(1+τ) + 1
eξ log(1+τ) logλ(1 + τ)

τ

= τ
∞

∑
ν=0

Eν(ξ)
(log(1 + τ))ν

ν!

∞

∑
ω=0

Dω,λ
τω

ω!

= τ
∞

∑
σ=0

σ

∑
ν=0

Eν(ξ)S1(σ, ν)
τσ

σ!

∞

∑
ω=0

Dω,λ
τω

ω!
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=
∞

∑
ω=1

(
ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
Eν(ξ)S1(σ, ν)Dω−σ,λ

)
τω

ω!
. (29)

By (20) and (29), we obtain the result.

Theorem 7. For ω ≥ 0, we have

CGω,λ(ξ) =
ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
(ν + 1)(ξ)ν,λ

S1,λ(σ + 1, ν + 1)
σ + 1

CG∗ω−σ.

Proof. By using (10), (17) and (20), we see that

2 logλ(1 + τ)

2 + τ
eξ logλ(1+τ)

λ

=
2 logλ(1 + τ)

2 + τ

∞

∑
ν=0

(ξ)ν,λ
(logλ(1 + τ))ν

ν!

=
2τ

2 + τ

1
τ

∞

∑
ν=0

(ν + 1)(ξ)ν,λ
(logλ(1 + τ))ν+1

(ν + 1)!

=
∞

∑
ω=0

CG∗ω
τω

ω!
1
τ

∞

∑
ν=0

(ν + 1)(ξ)ν,λ

∞

∑
σ=ν+1

S1,λ(σ, ν + 1)
τσ

σ!

=
∞

∑
ω=0

CG∗ω
τω

ω!

∞

∑
σ=0

σ

∑
ν=0

(ν + 1)(ξ)ν,λ
S1,λ(σ + 1, ν + 1)

σ + 1
τσ

σ!

=
∞

∑
ω=0

(
ω

∑
σ=0

σ

∑
ν=0

(
ω

σ

)
(ν + 1)(ξ)ν,λ

S1,λ(σ + 1, ν + 1)
σ + 1

CG∗ω−ν

)
τω

ω!
. (30)

Therefore, by (20) and (30), we obtain the result.

For d ∈ N with d ≡ 1 (mod 2), the following identity is (see [21])

d−1

∑
a=0

(−1)a(1 + τ)a =
1 + (1 + τ)d

2 + τ
. (31)

Theorem 8. For d ∈ N with d ≡ 1 (mod 2), we have the following identity

CGω,λ(ξ) =
d−1

∑
a=0

(−1)aCGω,λ

(
a + ξ

d

)
.

Proof. Thus, for such d ≡ 1 (mod 2), from (19), (20) and (31), we see that

∞

∑
ω=0

CGω,λ(ξ)
τω

ω!
=

2 logλ(1 + τ)

2 + τ
(1 + τ)ξ

=
d−1

∑
a=0

(−1)a 2 logλ(1 + τ)

(1 + τ)d + 1
(1 + τ)d( a+ξ

d )

=
d−1

∑
a=0

(−1)a
∞

∑
ω=0

CGω,λ

(
a + ξ

d

)
τω

ω!

=
∞

∑
ω=0

(
d−1

∑
a=0

(−1)aCGω,λ

(
a + ξ

d

))
τω

ω!
. (32)

By (20) and (32), we obtain the result.
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Theorem 9. For d ∈ N with d ≡ 1 (mod 2), we have the following identity

2
d−1

∑
a=0

(−1)aDω,λ(a) =
CGω+1,λ

ω + 1
+

CGω+1,λ(d)
ω + 1

.

Proof. By using (13), (20) and (31), we see that

2 logλ(1 + τ)
d−1

∑
a=0

(−1)a(1 + τ)a =
2 logλ(1 + τ)

2 + τ
+

2 logλ(1 + τ)

2 + τ
(1 + τ)d

=
2 logλ(1 + τ)

τ

(
d−1

∑
a=0

(−1)a(1 + τ)a

)

=
∞

∑
ω=0

CGω,λ
τω−1

ω!
+

∞

∑
ω=0

CGω,λ(d)
τω−1

ω!

=

(
2

d−1

∑
a=0

(−1)aDω,λ(a)

)
τω

ω!

=
∞

∑
ω=0

(
CGω+1,λ

ω + 1
+

CGω+1,λ(d)
ω + 1

)
τω

ω!
. (33)

By comparing the coefficients of τω on both sides, we obtain the result.

Theorem 10. For ω ≥ 1, we have

ωCGω−1,λ + 2CGω,λ = 2(λ)ω−1(1)ω,1/λ,

with CG0,λ = 0.

Proof. From (20), we note that

2 logλ(1 + τ) =
∞

∑
ω=0

CGω,λ
τω

ω!
(τ + 2)

=
∞

∑
ω=1

CGω,λ
τω+1

ω!
+ 2

∞

∑
ω=0

CGω,λ
τω

ω!

=
∞

∑
ω=2

ωCGω−1,λ
τω

ω!
+ 2

∞

∑
ω=0

CGω,λ
τω

ω!

= 2CG1,λ(τ) +
∞

∑
ω=2

(ωCGω−1,λ + 2CGω,λ)
τω

ω!
. (34)

On the other hand,

2 logλ(1 + τ) = 2
∞

∑
ω=1

(λ)ω−1(1)ω,1/λ
τω

ω!
. (35)

Therefore, by (34) and (35), we obtain the result.

We now consider a new type of higher-order degenerate Changhee–Genocchi polyno-
mials by the following definition.

Let r ∈ N, and we consider that a new type of higher-order degenerate Changhee–
Genocchi polynomials is given by the following generating function

(
2 logλ(1 + τ)

2 + τ

)r

(1 + τ)ξ =
∞

∑
ω=0

CG(r)
ω,λ(ξ)

τω

ω!
. (36)
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When ξ = 0, CG(r)
ω,λ = CG(r)

ω,λ(0) are called the new type of higher-order degenerate
Changhee–Genocchi numbers.

It is worth noting that
lim
λ→0

CG(r)
ω,λ(ξ) = CG(r)

ω (ξ),

are called higher-order Changhee–Genocchi polynomials.

Theorem 11. For ω ≥ 0, we have

CG(r+1)
ω,λ (ξ) =

ω

∑
ν=0

(
ω

ν

)
CGν,λCG(r)

ω−ν,λ(ξ).

Proof. From (20) and (36), we note that

2 logλ(1 + τ)

2 + τ

∞

∑
ω=0

CG(r)
ω,λ(ξ)

τω

ω!
=

2 logλ(1 + τ)

2 + τ

(
2 logλ(1 + τ)

2 + τ

)r

(1 + τ)ξ

(
∞

∑
ν=0

CGν,λ
τω

ω!

)(
∞

∑
ω=0

CG(r)
ω,λ(ξ)

τω

ω!

)
=

∞

∑
ω=0

CG(r+1)
ω,λ (ξ)

τω

ω!

∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
CGν,λCG(r)

ω−ν,λ(ξ)

)
τω

ω!
=

∞

∑
ω=0

CG(r+1)
ω,λ (ξ)

τω

ω!
. (37)

Comparing the coefficients of τ in above equation, we obtain the result.

Theorem 12. For r, k ∈ N, with r > k, we have

CG(r)
ω,λ(ξ) =

ω

∑
σ=0

(
ω

σ

)
CG(r−k)

σ,λ CG(k)
ω−σ,λ(ξ) (ω ≥ 0).

Proof. By (36), we see that
(

2 logλ(1 + τ)

2 + τ

)r

(1 + τ)ξ

=

(
2 logλ(1 + τ)

2 + τ

)r−k(2 logλ(1 + τ)

2 + τ

)k

(1 + τ)ξ

=

(
∞

∑
σ=0

CG(r−k)
σ,λ

τσ

σ!

)(
∞

∑
ω=0

CG(k)
ω,λ(ξ)

τω

ω!

)

=
∞

∑
ω=0

(
ω

∑
σ=0

(
ω

σ

)
CG(r−k)

σ,λ CG(k)
ω−σ,λ(ξ)

)
τω

ω!
. (38)

Therefore, by (36) and (38), we obtain the result.

Theorem 13. For ω ≥ 0, we have

CG(r)
ω,λ(ξ + η) =

ω

∑
ν=0

(
ω

ν

)
CG(r)

ω−ν,λ(ξ)(η)ν.

Proof. Now, we observe that

∞

∑
ω=0

CG(r)
ω,λ(ξ + η)

τω

ω!
=

(
2 logλ(1 + τ)

2 + τ

)r

(1 + τ)ξ+η
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=

(
∞

∑
σ=0

CG(r)
σ,λ(ξ)

τσ

σ!

)(
∞

∑
ν=0

(η)ν
τν

ν!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
CG(r)

ω−ν,λ(ξ)(η)ν

)
τω

ω!
. (39)

Equating the coefficients of τω on both sides, we obtain the result.

Theorem 14. For ω ≥ 0, we have

CG(r)
ω,λ =

ω

∑
ν=0

(
ω

ν

)
CG(∗,r)

ν D(r)
ω−ν,λ.

Proof. By making use of (36), we have

(
2 logλ(1 + τ)

2 + τ

)r

=

(
2t

2 + τ

)r( logλ(1 + τ)

τ

)r

=

(
∞

∑
ν=0

CG(∗,r)
ν

τν

ν!

)(
∞

∑
ω=0

D(r)
ω,λ

τω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
CG(∗,r)

ν D(r)
ω−ν,λ

)
τω

ω!
. (40)

Therefore, by (36) and (40), we obtain the result.

3. Conclusions

Motivated by the research work of [6,20,21], we defined a new type of degenerating
Changhee–Genocchi polynomials which turned out to be classical ones in the special cases.
We also derived their explicit expressions and some identities involving them. Later, we
introduced the higher-order degenerate Changhee–Genocchi polynomials and deduced
their explicit expressions and some identities by making use of the generating functions
method, analytical means and power series expansion.
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Abstract: We address here the space-fractional stochastic Hirota–Maccari system (SFSHMs) derived
by the multiplicative Brownian motion in the Stratonovich sense. To acquire innovative elliptic,
trigonometric and rational stochastic fractional solutions, we employ the Jacobi elliptic functions
method. The attained solutions are useful in describing certain fascinating physical phenomena
due to the significance of the Hirota–Maccari system in optical fibers. We use MATLAB programm
to draw our figures and exhibit several 3D graphs in order to demonstrate how the multiplicative
Brownian motion and fractional derivative affect the exact solutions of the SFSHMs. We prove that
the solutions of SFSHMs are stabilized by the multiplicative Brownian motion around zero.

Keywords: fractional Hirota–Maccari system; stochastic Hirota–Maccari system; Jacobi elliptic
functions method

1. Introduction

Recently, numerous significant phenomena have been represented by fractional deriva-
tives, including electro-magnetic, image processing, acoustics, electrochemistry and anoma-
lous diffusion phenomena [1–6]. One benefit of fractional models is that they may be
stated more specifically than integer models, which encourages us to construct a number of
significant and practical fractional models. On the other hand, the advantages of taking
random influences into account in the analysis, simulation, prediction and modeling of
complex processes have been highlighted in several fields including chemistry, geophysics,
fluid mechanics, biology, atmosphere, physics, climate dynamics, engineering and other
fields [7–10]. Since noise may produce statistical features and significant phenomena, it
cannot be ignored. In general, it is more difficult to obtain exact solutions to fractional
PDEs forced by a stochastic term than to classical ones.

Recently, finding approximate and exact solutions to PDEs using a variety of ap-
proaches has become the main objective for many scientists. Many effective methods,
including the sine-Gordon expansion method [11], the trial equation method [12], (G′/G)-
expansion [13,14], semi-inverse variational principle [15], the ansatz approach [16], per-
turbation methods [17,18], Darboux transformation [19], tanh-sech [20,21], exp(−φ(ς))-
expansion [22] and the Jacobi elliptic function [23,24], have been devised to obtain exact
solutions to PDEs.
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As a result, we study here the following stochastic fractional-space Hirota–Maccari
system (SFSHMs) with multiplicative noise in the Stratonovich sense:

iΦt +Dα
xyΦ + iDα

xxxΦ + ΦΨ− iΦDα
x(|Φ|2) + iσΦ ◦Wt = 0, (1)

3Dα
xΨ +Dα

y(|Φ|2) = 0, (2)

where Ψ(x, y, t) denotes the real field of scalars and Φ(x, y, t) is the complex scalar field,
x, y are independent spatial variables and t is the temporal variable. Dα

x is the conformable
derivative (CD) for α ∈ (0, 1] [25]. Wt =

dW
dt is the time derivative of Brownian motion W(t)

and σ is a noise strength.
The stochastic integral

∫ t
0 Φ(s)dW(s) is called the Stratonovich stochastic integral

(denoted by
∫ t

0 Φ(s) ◦ dW(s)), if we calculate the stochastic integral at the middle, while the
stochastic integral

∫ t
0 Φ(s)dW(s) is called Itô (denoted by

∫ t
0 Φ(s)dW(s)) when we calculate

it at the left end [26]. The relation between the Stratonovich integral and Itô integral is:

∫ t

0
Φ(s, Zs)dW(s) =

∫ t

0
Φ(s, Zs) ◦ dW(s)− 1

2

∫ t

0
Φ(s, Zs)

∂Φ(s, Zs)

∂z
ds. (3)

The conformable derivative for the function φ : (0, ∞)→ R is defined for α ∈ (0, 1] as

Dα
xφ(x) = lim

κ→0

φ(x + κx1−α)− φ(x)
κ

. (4)

The important property of CD is the following chain rule:

Dα
x(φ1 ◦ φ2)(x) = x1−αφ′2(x)φ′1(φ2(x)).

The Hirota–Maccari system (1-2), with σ = 0 and α = 1, was derived by Maccari [27].
There are several physical applications of the integrable Hirota–Maccari system including
the transmission of optical pulses across nematic liquid crystal waveguides and for a certain
parameter regime, the transmission of femtosecond pulses through optical fibers. Due to
the importance of the Hirota–Maccari system, many researchers have examined a lot of
techniques in order to find the exact solutions for this system, such as the extended trial
equation and the generalized Kudryashov [28], tanh-coth, sec-tan, rational sinh-cosh and
sech-csch methods [29], (G′/G)-expansion [30], Hirota bilinear method [31], Weierstrass
elliptic function expansion [32], Painleve approach [33], Painleve test [34], general projective
Riccati equation and improved tan( φ(θ)

2 )-expansion method [35] and complex hyperbolic-
function [36]. While the exact solutions of stochastic Hirota–Maccari system have been
studied in [37] in the Itô sense by using three different methods: Riccati–Bernoulli sub-ODE,
sine-cosine and He’s semi-inverse.

The originality of this paper is to acquire the analytical solutions of the SFSHMs (1-2).
This work is the first to attain the exact solutions of the SFSHMs (1-2). We employ the
Jacobi elliptic functions approach to obtain a broad range of solutions, including hyperbolic,
trigonometric and rational functions. Moreover, to study the effects of Brownian motion on
the solutions of the SFSHMs (1-2), we build 3D graphs for some of the developed solutions
by using MATLAB tools.

This is how the paper is organized: We use a suitable wave transformation in Section 2
to provide the wave equation of SFSHMs. We employ the Jacobi elliptic functions approach
in Section 3 to obtain the analytical solutions of the SFSHMs (1-2). In Section 4, we look at
how the Brownian motion affects the generated solutions. Finally, we state the conclusions
of this paper.
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2. Wave Equation for SFSHMs

To get the wave equation of the SFSHMs (1-2), let us utilize the following transforma-
tion:

Φ(x, y, t) = Q(ζ)eiθ−σW(t)−σ2t, Ψ(x, y, t) = P(ζ)e−2σW(t)−2σ2t, (5)

with
ζ = (

ζ1

α
xα +

ζ2

α
yα + ζ3t), θ =

θ1

α
xα +

θ2

α
yα + θ3t,

where θk, ζk for k = 1, 2, 3 are nonzero constants. We substitute Equation (5) into Equations
(1-2), and use

dΦ
dt

= (ζ3Q′ + iθ3Q− σQWt +
1
2

σ2Q− σ2Q)eiθ−σW(t)−σ2t,

= (ζ3Q′ + iθ3Q− σQWt −
1
2

σ2Q)eiθ−σW(t)−σ2t,

= (ζ3Q′ + iθ3Q− σQ ◦Wt)eiθ−σW(t)−σ2t,

and

Dα
xΦ = (ζ1Q′ + iθ1Q)eiθ−σW(t)−σ2t, Dα

y Φ(|Φ|2) = ζ2(Q2)′e−2σW(t)−2σ2t,

Dα
xxxΦ = (ζ3

1Q′′′ + 3iθ1ζ2
1Q′′ − 2θ2

1ζ1Q′ − θ2
1ζ1Q′ − iθ3

1Q)eiθ−σW(t)−σ2t,

Dα
xyΦ = (ζ1ζ2Q′′ + iζ1θ2Q′ + iζ2θ1Q′ − θ1θ2Q)eiθ−σW(t)−σ2t,

to obtain for the real part

(ζ1ζ2 − θ1ζ2
1)Q

′′ − (θ3 + θ1θ2 − θ3
1)Q + QPe−2σW(t)−2σ2t = 0 , (6)

3ζ1P′ + ζ2(Q2)′ = 0. (7)

Integrating Equation (7), we have

P =
−ζ2

3ζ1
Q2. (8)

Setting Equation (8) into Equation (6) we obtain

Q′′ − A1Q3e−2σW(t)−2σ2t − A2Q = 0, (9)

where

A1 =
ζ2

3ζ1(ζ1ζ2 − θ1ζ2
1)

and A2 =
θ3 + θ1θ2 − θ3

1
ζ1ζ2 − θ1ζ2

1
. (10)

Taking expectation E(·) on both sides for Equation (9), we attain

Q′′ − A1Q3e−2σ2tE(e−2σW(t))− A2Q = 0. (11)

Since W(t) is a normal process, then E(e−2σW(t)) = e2σ2t. Therefore Equation (11)
becomes

Q′′ − A1Q3 − A2Q = 0. (12)

3. The Analytical Solutions of the SFSHMs

In this section, we use the Jacobi elliptic functions method [38] to acquire the solutions
to Equation (12). Consequently, we obtain the analytical solutions of the SFSHMs (1-2).
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3.1. Method Description

Let the solutions of Equation (12) have the form

Q(ζ) =
N

∑
i=1

aiZ i(ζ), (13)

where Z solves

Z ′ =
√

1
2
`1Z4 + `2Z2 + `3, (14)

where `1, `2 and `3 are real parameters and N is a positive integer number.
We notice that Equation (14) has a variety of solutions depending on `1, `2 and `3

as in the following Table 1 :

Table 1. All possible solutions for Equation (14) for different values of `1, `2 and `3.

Case `1 `2 `3 Z(ζ)

1 2m2 −(1 + m2) 1 sn(ζ)

2 2 2m2 − 1 −m2(1−m2) ds(ζ)

3 2 2−m2 (1−m2) cs(ζ)

4 −2m2 2m2 − 1 (1−m2) cn(ζ)

5 −2 2−m2 (m2 − 1) dn(ζ)

6 m2

2
(m2−2)

2
1
4

sn(ζ)
1±dn(ζ)

7 m2

2
(m2−2)

2
m2

4
sn(ζ)

1±dn(ζ)

8 −1
2

(m2+1)
2

−(1−m2)2

4
mcn(ζ)± dn(ζ)

9 m2−1
2

(m2+1)
2

(m2−1)
4

dn(ζ)
1±sn(ζ)

10 1−m2

2
(1−m2)

2
(1−m2)

4
cn(ζ)

1±sn(ζ)

11 (1−m2)2

2
(1−m2)2

2
1
4

sn(ζ)
dn±cn(ζ)

12 2 0 0 c
ζ

13 0 1 0 ceζ

Where dn(ζ) = dn(ζ, m), cn(ζ) = cn(ζ, m), sn(ζ) = sn(ζ, m) are the Jacobi elliptic
functions (JEFs) for 0 < m < 1. If m→ 1, then the JEFs are transformed into the following
hyperbolic functions:

cs(ζ) → csch(ζ), sn(ζ)→ tanh(ζ), cn(ζ)→ sech(ζ),

dn(ζ) → sech(ζ), ds→ csch(ζ).

3.2. Solutions of SFSHMs

Let us balance Q′′ with Q3 in Equation (12) to define N as follows:

N+ 2 = 3N =⇒ N = 1. (15)

Equation (14) is rewritten with N = 1 as

Q(ζ) = a0 + a1Z(ζ). (16)

Differentiating Equation (16) twice, we have, by using (14),

Q′′ = a1`2Z + a1`1Z3. (17)
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Plugging Equation (16) and Equation (17) into Equation (12) we have

(a1`1 − A1a3
1)Z3 − 3a0a2

1 A1Z2 + (a1`2 − 3A1a2
0a1 + A2a1)Z − (A1a3

0 − A2a0) = 0.

Setting each coefficient of Z k for k = 0, 1, 2, 3 equal to zero, we attain

a1`1 − A1a3
1 = 0,

3a0a2
1 A1 = 0,

a1`2 − 3A1a2
0a1 + A2a1 = 0,

and
A1a3

0 − A2a0 = 0.

We obtain by solving these equations

a0 = 0, a1 = ±
√

`1

A1
, `2 = −A2.

Thus, Equation (12) has the following solution

Q(ζ) = ±
√

`1

A1
Z(ζ), for

`1

A1
> 0. (18)

The following are two sets that depend on `1 and A1 :
First set: If `1 > 0 (from Table 1)and A1 > 0, then the wave Equation (12) has the

solution Q(ζ) as in the following Table 2:

Table 2. All possible solutions for wave Equation (12) when `1 > 0.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 2m2 −(1 + m2) 1 sn(ζ) ±
√

`1
A1

sn(ζ)

2 2 2m2 − 1 −m2(1−m2) ds(ζ) ±
√

`1
A1

ds(ζ)

3 2 2−m2 (1−m2) cs(ζ) ±
√

`1
A1

cs(ζ)

4 m2

2
(m2−2)

2
1
4 or m2

4
sn(ζ)

1±dn(ζ)
±
√

`1
A1

sn(ζ)
1±dn(ζ)

5 1−m2

2
(1−m2)

2
(1−m2)

4
cn(ζ)

1±sn(ζ)
±
√

`1
A1

cn(ζ)
1±sn(ζ)

6 (1−m2)2

2
(1−m2)2

2
1
4

sn(ζ)
dn±cn(ζ)

±
√

`1
A1

sn(ζ)
dn±cn(ζ)

7 2 0 0 c
ζ ±

√
`1
A1

c
ζ

If m→ 1, then the previous Table 2 becomes
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Table 3. All possible solutions for wave Equation (12) when `1 > 0 and m→ 1.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 2 −2 1 tanh(ζ) ±
√

`1
A1

tanh(ζ)

2 2 1 0 sech(ζ) ±
√

`1
A1

sech(ζ)

3 2 1 0 csch(ζ) ±
√

`1
A1

csch(ζ)

4 1
2

−1
2

1
4

tanh(ζ)
1±sech(ζ)

±
√

`1
A1

tanh(ζ)
1±sech(ζ)

5 2 0 0 c
ζ ±

√
`1
A1

c
ζ

Now, using the previous Table 2 (or Table 3 when m→ 1) and Equations (5) and (18),
we obtain the exact solutions of the SFSHMs (1-2), for `1

A1
> 0, as follows:

Φ(x, y, t) = Q(ζ)e(iθ−σW(t)−σ2t), (19)

Ψ(x, y, t) =
−ζ2

3ζ1
Q2(ζ)e(−2σW(t)−2σ2t), (20)

where ζ = ( ζ1
α xα + ζ2

α yα + ζ3t), θ = θ1
α xα + θ2

α yα + θ3t.
Second set: If `1 < 0 and A1 < 0, then the solutions Q(ζ) of the wave Equation (12) are

Table 4. All possible solutions for wave Equation (12) when `1 < 0.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 −2m2 2m2 − 1 (1−m2) cn(ζ) ±
√

`1
A1

cn(ζ)

2 −2 2−m2 (m2 − 1) dn(ζ) ±
√

`1
A1

dn(ζ)

3 −1
2

(m2+1)
2

−(1−m2)2

4
mcn(ζ)± dn(ζ) ±

√
`1
A1

[mcn(ζ)± dn(ζ)]

4 m2−1
2

(m2+1)
2

(m2−1)
4

dn(ζ)
1±sn(ζ) ±

√
`1
A1

dn(ζ)
1±sn(ζ)

If m→ 1, then the previous Table 4 becomes

Table 5. All possible solutions for wave Equation (12) when `1 < 0 and m→ 1.

Case `1 `2 `3 Z(ζ) Q(ζ)

1 −2 1 0 sech(ζ) ±
√

`1
A1

sech(ζ)

2 −1
2 2 0 2sech(ζ) ±2

√
`1
A1

sech(ζ)

In this situation, we may obtain the analytical solutions of the SFSHMs (1-2) as reported
in Equations (19) and (20) by utilizing the previous Table 4 (or Table 5 when m→ 1).

4. The Effect of Noise and Fractional Derivative on Solutions

In this article, the impact of noise and fractional derivative on the acquired solutions
of the SFSHMs (1-2) is discussed. We utilize the MATLAB tools to create some graphs, for
various noise strength σ, for the following solutions:

Φ(x, y, t) =

√
`1

A1
sn(

ζ1

α
xα +

ζ2

α
yα + ζ3t)e(iθ−σW(t)−σ2t), (21)
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Ψ(x, y, t) =
−ζ2`1

3ζ1 A1
sn2(

ζ1

α
xα +

ζ2

α
yα + ζ3t)e−2σW(t)−2σ2t. (22)

Fixing the following parameters: ζ1 = ζ2 = θ2 = 1, θ1 = 0.5, θ3 = 0.4, and y = 0.5,
then ζ3 = −2, and A1 = 2

3 . In this case m = 0.5, `1 = 0.5 and ζ = 1
α xα + 1

α (0.5)α − 2t.
Firstly the effect of noise: In the next Figure 1, when σ = 0, we observe that the surface

fluctuates

Equation (21) with σ = 0 Equation (22) with σ = 0

Figure 1. 3D profile of Equations (21) and (22) with σ = 0.

Furthermore, in Figure 2, if the noise intensity is raised, the surface becomes more
planar after small transit behaviors as follows:

Equation (21) with σ = 1 Equation (22) with σ = 1

Equation (21) with σ = 2 Equation (22) with σ = 2

Figure 2. 3D profile of Equations (21) and (22) with σ = 1, 2.

Secondly the effect of fractional order: In Figures 3 and 4, if σ = 0, we can observe that as
α increases, the surface extends:
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σ = 0, α = 0.3 σ = 0, α = 0.5

σ = 0, α = 0.7 σ = 0, α = 1

Figure 3. 3D profile of Equation (21) with σ = 0 and various α.

σ = 0, α = 0.3 σ = 0, α = 0.5

σ = 0, α = 0.7 σ = 0, α = 1

Figure 4. 3D profile of Equation (22) with σ = 0 and various α.

5. Conclusions

The stochastic fractional-space Hirota–Maccari system (1-2) were taken into considera-
tion in this work. To obtain stochastic trigonometric, elliptic, rational solutions, we used the
Jacobi elliptic functions approach. The obtained solutions will be very helpful for further
research in disciplines such as optical fibers and others. Finally, an illustration is provided
of how multiplicative Brownian motion affects the exact solutions of the SFSHMs (1-2). In
future studies, we can consider SDSEs with additive noise.
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Abstract: The goal of this paper is to propose and investigate new iterative methods for examining
an approximate solution of a fixed-point problem, an equilibrium problem, and a finite collection of
variational inclusions in the Hadamard manifold’s structure. Operating under some assumptions,
we extend the proximal point algorithm to estimate the common solution of stated problems and
obtain a strong convergence theorem for the common solution. We also present several consequences
of the proposed iterative methods and their convergence results.
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1. Introduction

Many nonlinear problems, such as equilibrium, optimization, variational inequality,
and fixed-point problems, have recently been transformed from linear spaces to Hadamard
manifolds; see [1–15]. Fan [16] initiated the equilibrium problem (EP), which was later
developed by Blum and Oettli [17] in real Hilbert space. It was Colao [5] who studied
the equilibrium problem for the first time on the Hadamard manifold. For a bi-function
F : K× K → R, such that F(u, u) = 0, ∀u ∈ K, K is a nonempty subset of the Hadamard
manifold X. The equilibrium problem is to locate a point u? ∈ K, such that

F(u?, u) ≥ 0, ∀u ∈ K. (1)

They studied the existence of equilibrium point of equilibrium problem (1), and uti-
lized their results to find the solution of mixed variational inequality problems, fixed-point
problems and Nash equilibrium problems in Hadamard manifolds. They also introduced
the Picard iterative method to approximate a solution of the equilibrium problem (1).
Recently, Khammahawong et al. [10,18] studied the splitting type algorithms for equilib-
rium and inclusion problems on Hadamard manifolds. We denote by EP(F) the set of
equilibrium points of the equilibrium problem (1).

The variational inclusion problem in Hilbert space H is to locate a point u ∈ D,
such that

0 ∈ V(u) + G(u), (2)

Axioms 2022, 11, 352. https://doi.org/10.3390/axioms11070352 https://www.mdpi.com/journal/axioms373
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where V : D → H and G : D → 2H are single valued and set-valued mappings, respectively,
defined on a nonempty subset D of Hilbert space H. The solution set of the problem (2) is
denoted by (V + G)−1(0).

Due to its application-oriented nature, the problem (2) has been investigated exten-
sively by a number of researchers in diverse directions.The proximal point method due
to Martinet [19] is a fundamental approach for solving the inclusion problem u ∈ G−1(0),
and Rockafellar [15] generalized this strategy to solve the variational inclusion problem (2).
Li et al. [11] introduced the proximal point method for the inclusion problem in Hadamard
manifold. Ansari et al. [2] examined Korpelevich’s method to find the solution of the
variational inclusion problem (2) in the structure of the Hadamard manifold X.

Recently, Ansari and Babu [3] investigated the variational inclusion problem (2) using
the proximal point method in the Hadamard manifold, as follows:

Let u0 ∈ X and λk > 0, define uk+1, such that

0 ∈ Puk+1,uk V(uk) + G(uk+1)− 1
λk

exp−1
uk+1

uk, (3)

where Puk+1,uk is the parallel transport of TukX to Tuk+1X on the tangent bundle of TX, exp
is the exponential mapping, V and G are single valued and set-valued monotone vector
fields, respectively defined on K ⊆ X.

Several practical problems can be formulated as a fixed-point problem:

S(u) = u, (4)

where S is a nonlinear mapping. The solutions of this equation are called fixed points of
S, which is denoted by Fix(S). Li et al. [13] extended the Mann and Halpern iteration
scheme to find the fixed point of nonexpansive mappings from Hilbert spaces to Hadamard
manifolds. Recently, Al-Homidan et al. [1] proposed and analyzed the Halpern and
Mann-type iterative methods to find the solution of a variational inclusion problem (2) and
fixed-point problem (4) of self nonexpansive mapping S in the Hadamard manifold, which
is to locate u ∈ K, such that

u ∈ Fix(S) ∩ (V + G)−1(0). (5)

Most of the problems originating in nonlinear science, such as signal processing, image
recovery, signal processing, optimization, machine learning, etc., are switchable to either
variational inclusion, an equilibrium problem or a fixed-point problem. Therefore, many
mathematicians have recently transformed and studied the inclusion problems, equilibrium
problems and fixed-point problems in different directions from linear to nonlinear spaces;
for examples, see [1–3,6,7,9,11–13,20–22] and references cited therein.

As zero of the sum of monotone mapping V + G is the fixed point of resolvent
JG
λ (expx(−λV(x))), λ > 0, following the work of Ansari et al. [2], and Al-Homidan et al. [1],

Chang et al. [4] investigated the problem:

Find u ∈ K such that u ∈ Fix(S)
N⋂

i=1

(Vi + G)−1(0)
⋂

EP(F), (6)

where Fix(S) and EP(F) represent the set of fixed points of the mapping S and equilibrium

points of equilibrium function F, respectively, and
N⋂

i=1
(Vi + G)−1(0) is the set of common

singularities of N variational inclusion problems, defined as:

Find u ∈ K such that 0 ∈ Vi(u) + G(u), ∀ i ∈ {1, 2 · · ·N}.

If Vi = V, for all i = 1, 2, · · ·N, we have

Find u ∈ K such that u ∈ Fix(S)
⋂
(V + G)−1(0)

⋂
EP(F). (7)
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Inspired by the works of Ansari and Babu [3], Al-Homidan et al. [1] and following con-
temporary research work, our motive in this article is to propose new iterative algorithms to
solve problems (5)–(7) in the setting of Hadamard manifold. We also bring out some conse-
quences of proposed iterative algorithms. The following section contains some definitions,
symbols, and useful results on Riemannian manifolds. Section 3 contains the main results
describing the iterative algorithms for the problems (5)–(7). In the last section, we discuss
some of the consequences of the suggested algorithms and their convergence results for
solving variational inequality problems with equilibrium and fixed-point problems.

2. Preliminaries

We consider X to be a differentiable manifold of finite dimension. Let TuX indicate
the tangent space of X at u, and the tangent bundle of X is indicated by TX = ∪u∈XTuX,
which is obviously a manifold. An inner product 〈·, ·〉u on TuX is termed as Riemannian
metric on TuX. A tensor 〈·, ·〉 : u → 〈·, ·〉u is said to be the Riemannian metric on TuX, if
〈·, ·〉u is a Riemannian metric on TuX for each u ∈ X. We denote the Riemannian metric
on X by 〈·, ·〉u and corresponding norm by ‖ · ‖u, which is given by ‖w‖u =

√
〈w, w〉u,

for all w ∈ TuX. We assume that X is equipped with the Riemannian metric 〈·, ·〉u and its
corresponding norm is ‖ · ‖u. For simplicity, we omit the subscript.

The length of a piecewise smooth curve joining u to v (i.e., γ(u) = a and γ(v) = b)
is defined as L(γ) =

∫ b
a ‖γ

′
(x)‖dx. The Riemannian distance d(u, v) yields the original

topology on X, which minimizes the length over the set of all such curves which connect u
and v.

We denote the Levi-Civita connection associated toX byO. We know that ifO
γ
′ (κ)F = 0,

the vector field F is parallel along a smooth curve γ. If γ
′

is parallel along γ, then γ is
said to be geodesic and in this case ‖γ′‖ is constant. γ is called a normalized geodesic, if
‖γ′‖ = 1. A minimal geodesic is a geodesic connecting u to v in X with the length equal
to d(u, v). A complete Riemannian manifold is one in which for any u ∈ X. All geodesics
that originate from u are defined for all real numbers κ ∈ (−∞, ∞). Due to Hopf–Rinow
Theorem [23], it is known to us that in a complete Riemannian manifold X, any u, v ∈ X
can be attached through a minimal geodesic.

Moreover, the exponential map expu : TuX→ X at u is defined by expu(w) = γw(1, u)
for each w ∈ TuX, where γw(·, u) is the geodesic starting from u with velocity w (that
is, γw(0, u) = u and γ

′
w(0, u) = w). We know that expu(tw) = γw(t, u) for each real

number t and expu0 = γw(0; u) = u. It is known to us that for any u ∈ X, the exponential
map expu is differentiable on TuX and the derivative of expu(0) is the identity vector
of TuX. Hence, using inverse mapping theorem, there is an inverse exponential map
exp−1

u : X → TuX. Moreover, for any u, v ∈ X, we have d(u, v) = ‖exp−1
u v‖ = ‖exp−1

v u‖,
where ‖exp−1

u v‖ =
√
〈exp−1

u v, exp−1
u v〉. In particular, if X = Rn the Euclidian space, then

exp−1
u v = v− u for all u, v ∈ Rn.

A Hadamard manifold is a Riemannian manifold with nonpositive sectional curvature
which is complete and simply connected.

Lemma 1 ([23]). Let X be a finite dimensional manifold and γ : [0, 1]→ X be a geodesic joining u
to v. Then,

d(γ(κ1), γ(κ2)) = |κ1 − κ2|d(u, v), for all κ1, κ2 ∈ [0, 1]. (8)

Proposition 1 ([23]). Let X be a Hadamard manifold. Then

(i) The exponential map expu : TuX→ X is a diffeomorphism for all u ∈ X.
(ii) For any pair of point u, v ∈ X, there exists a unique normalized geodesic γ : [0, 1] → X

joining u = γ(0) to v = γ(1), which is in fact a minimal geodesic defined by

γ(κ) = expu κ exp−1
u v, for all κ ∈ [0, 1].
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A subset K of Hadamard manifold X is called a convex set if, for any u, v ∈ K, any
geodesic joining u and v must be in K. In other words, if γ : [a, b]→ X is a geodesic, such
that u = γ(a) and v = γ(b), then γ((1− κ)a + κb) ∈ K, for all κ ∈ [0, 1].

A function h : K → (−∞, ∞] is called a geodesic convex function, if for any geodesic
γ : [a, b]→ X, the composition function h ◦ γ : [a, b]→ R is convex; that is,

(h ◦ γ)(t1κ + (1− κ)t2) ≤ κ(h ◦ γ)(t1) + (1− κ)(h ◦ γ)(t2), ∀ κ ∈ [0, 1] and ∀ t1, t2 ∈ R.

Proposition 2 ([23]). The Riemannian distance d : X × X → R is a convex function with
respect to the product Riemannian metric, i.e., given any pair of geodesics γ1 : [0, 1] → X and
γ2 : [0, 1]→ X, the following inequality holds for all κ ∈ [0, 1] :

d(γ1(κ), γ2(κ)) ≤ (1− κ)d(γ1(0), γ2(0)) + κd(γ1(1), γ2(1)). (9)

In particular, for each u ∈ X, the function d(·, u) : X→ R is a convex function.

For n-dimensional manifold X, we conclude by Proposition 1 that X is diffeomorphic
to the Euclidean space Rn; hence, X and Rn have the same differential structure and
topology. Moreover, Euclidean spaces and Hadamard manifold have certain identical
geometric prospects. Some of these are stated in the following results.

In a Riemannian manifold X, geodesic triangle ∆(r1, r2, r3) is a collection of three points
r1, r2 and r3 and the three minimal geodesics γk joining φk to φk+1, where k = 1, 2, 3 mod (3).

Lemma 2 ([13]). Let ∆(r1, r2, r3) be a geodesic triangle in Hadamard manifold X. Then, r
′
1, r

′
2, r

′
3 ∈

R2, such that

d(r1, r2) = ‖r
′
1 − r

′
2‖, d(r2, r3) = ‖r

′
2 − r

′
3‖, and d(r3, r1) = ‖r

′
3 − r

′
1‖.

The points r
′
1, r2

′, r
′
3 are called the comparison points to r1, r2, r3, respectively. The triangle

∆(r
′
1, r

′
2, r

′
3) is called the comparison triangle of the geodesic triangle ∆(r1, r2, r3), which is unique

to the isometry of X.

Lemma 3 ([13]). Let ∆(r1, r2, r3) be a geodesic triangle in Hadamard manifoldX and ∆(r
′
1, r

′
2, r

′
3) ∈

R2 be its comparison triangle.

(i) Let θ1, θ2, θ3 (respectively, θ
′
1, θ

′
2, θ

′
3) be the angles of ∆(r1, r2, a3) (respectively, ∆(r

′
1, r

′
2, r

′
3))

at the vertices (r1, r2, r3) (respectively, r
′
1, r

′
2, r

′
3). Then, the following inequalities hold:

θ
′
1 ≥ θ1, θ

′
2 ≥ θ2, θ

′
3 ≥ θ3.

(ii) Let v be a point on the geodesic joining r1 to r2 and v
′

be its comparison point in the interval
[r
′
1, r

′
2]. Suppose that d(v, r1) = ‖v

′ − r
′
1‖ and d(v, r2) = ‖v

′ − r
′
2‖. Then,

d(v, r3) ≤ ‖v
′ − r

′
3‖.

Proposition 3 ([23]). (Comparison Theorem for Triangle) Let ∆(r1, r2, r3) be a geodesic trian-
gle. Denote, for each k = 1, 2, 3 mod (3), by γk : [0, lk] → X geodesic joining rk to rk+1 and set
lk = L(γk), θk = ∠(γ

′
k(0)− γ

′
k−1(lk−1)). Then,

θ1 + θ2 + θ3 ≤ π, (10)

l2
k + l2

k+1 − 2lklk+1 cos θk+1 ≤ l2
k−1. (11)

In terms of d and exp, (11) can be expressed as

d2(rk, rk+1) + d2(rk+1, rk+2)− 2
〈
exp−1

rk+1
rk, exp−1

rk+1
rk+2

〉
≤ d2(rk−1, rk), (12)
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since
〈
exp−1

rk+1
rk, exp−1

rk+1
rk+2

〉
= d(rk, rk+1)d(rk+1, rk+2) cos θk+1. (13)

The parallel transport Pγ,γ(d),γ(c) : Tγ(x)X→ Tγ(y)X on the tangent bundle TX along
γ : [c, d]→ R, with respect to ∇, is defined by

Pγ,γ(d)γ(c)(u) = V(γ(d)), ∀ c, d ∈ R, u ∈ Tγ(c)X,

such that ∇
γ
′ (t)V = 0, for all t ∈ [c, d] and Vγ(c)) = u, where V is the unique vector field.

If γ is the minimal geodesic from u to v, then we write Pv,u in place of Pγ,v,u. Moreover, Pv,u
is an isometry from TuX to TvX, which means that parallel transport preserves the inner
product,

〈
Pv,uw, Py,xz

〉
=
〈
w, z

〉
u, ∀ w, z ∈ TuX.

Lemma 4 ([11]). Let u0 ∈ X and {uk} ⊂ X with uk → u0. Then, the following assertions hold:

(i) For any v ∈ X, we have exp−1
uk

v→ exp−1
u0

v and exp−1
v uk → exp−1

v u0.
(ii) If zk ∈ TukX and zk → z0, then z0 ∈ Tu0X
(iii) Let zk, yk ∈ TukX and z0, y0 ∈ Tu0X, if zk → z0 and yk → y0 then 〈zk, yk〉 → 〈z0, y0〉.
(iv) For any z ∈ Tu0X, the function ψ : X → TX, defined by ψ(u) = Pu,u0 z for all u ∈ X, is

continuous on X.

We denote by Ω(X), the set of all single-valued vector fields V : X→ TX, such that
V(u) ∈ Tu(X) for all u ∈ X and by χ(X) the set of all set-valued vector fields, G : X⇒ TX,
such that G(u) ⊆ Tu(X) for all u ∈ dom(G), where dom(G) is the domain of G defined as
dom(G) = {u ∈ X : G(u) 6= ∅}.

Definition 1 ([24]). A single-valued vector field V ∈ Ω(X) is said to be

(i) Monotone if 〈
V(u), exp−1

u v
〉
≤
〈
V(v), − exp−1

v u
〉
, ∀ u, v ∈ X.

(ii) Strongly monotone if there exists a constant η > 0 such that

〈
V(u), exp−1

u v
〉
+
〈
V(v), − exp−1

v u
〉
≤ −ηd2(u, v), ∀ u, v ∈ X.

(iii) ϕ-Lipschitz continuous if there exists a constant ϕ > 0, such that

‖Pu,vV(u)−V(v)‖ ≤ ϕd(u, v), ∀ u, v ∈ X.

Definition 2 ([25]). A set-valued vector field G ∈ χ(X) is said to be

(i) Monotone if for all u, v ∈ D(X),
〈
w, exp−1

u v
〉
≤
〈
z, − exp−1

v u
〉
, ∀w ∈ G(u), ∀z ∈ G(v).

(ii) Maximal monotone if G is monotone and for u ∈ D(G) and w ∈ Tu(X), the condition

〈
w, exp−1

u v
〉
≤
〈
z, − exp−1

v u
〉
,

implies w ∈ G(u).

Definition 3 ([25]). A set-valued vector field G ∈ χ(X) is called upper Kuratowski semicontin-
uous at u ∈ D(G) if, for any sequence {uk} ⊆ D(G) and {vk} ⊆ TX with vk ∈ G(uk), the
relation lim

k→∞
vk = v and lim

k→∞
uk = u imply v ∈ G(u). Moreover, G is called upper Kuratowski

semicontinuous on X if it is Kuratowski semicontinuous at each u ∈ D(G).
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Definition 4. Let (X, d) be a complete metric space and K ⊆ X be a nonempty set. A sequence
{un} in X is called Fejér convergent to K if, for all u ∈ K and k ≥ 0,

d(uk+1, u) ≤ d(uk, u).

Lemma 5 ([8]). Let (X, d) be a complete metric space. If uk ⊂ X is a Fejér convergent to a
nonempty set K ⊆ X, then {uk} is bounded. Moreover, if cluster point u of {uk} belongs to K, then
{uk} converges to u.

Let K ⊆ X and F : K× K → R be a bifunction satisfying the following conditions:

(A) F(u, u) ≥ 0, ∀u ∈ K;
(B) F is monotone; that is, for all u, v ∈ K, F(u, v) + F(v, u) ≤ 0;
(C) For every v ∈ K, u→ F(u, v) is upper semicontinuous;
(D) For all u ∈ K, v→ F(u, v) is geodesic convex and lower semicontinuous;
(E) There exists a compact set C ⊂ X and a point u ∈ C ∩ K, such that

F(u, v) < 0, ∀ v ∈ K\C,

The resolvent TF
t : X ⇒ K of a bifunction F, a set-valued operator introduced by

Colao [5] in the setting of the Hadamard manifold, is defined by

TF
t (u) = {w ∈ K : F(w, v)− 1

t
〈exp−1

w u, exp−1
w v〉 ≥ 0, ∀ v ∈ K}, ∀ u ∈ X.

Lemma 6 ([5]). Let K ⊆ X and F : K × K → R be a bifunction satisfying (A)–(E). Then, for
t > 0,

(a) The resolvent TF
t of F is nonempty and single valued;

(b) The resolvent TF
t of F is firmly nonexpansive;

(c) The fixed point of TF
t is the equilibrium point set of F;

(d) The equilibrium point set EP(F) is closed and geodesic convex.

3. Main Results

The solution to problem (6) is assumed to be consistent, and it is denoted by Γ. We
propose the following iterative procedure to solve the problem (6) in X, based on the
proximal point method (3).

Algorithm 1. Suppose that Vi ∈ Ω(X), (i = 1, · · · , N), G ∈ χ((X), F, S and TF
t are the same

as described above. Choose arbitrary z0 ∈ K, to define the sequences {ui
k}, i ∈ {1, 2, · · · , N}, {vk}

and {zk} as follows:

0 ∈ Pui
k ,zk

Vi(zk) + G(ui
k)−

1
λk

exp−1
ui

k
zk,

vk = expzk
(1− αk)exp−1

zk
TF

t (u
ki
k ),

zk+1 = expzk
(1− $βk)exp−1

zk
S(vk),

where ki ∈ {1, 2, · · ·N} such that d(uki
k , zk) = max

i=1,··· ,N
{d(ui

k, zk)}, αn, βn ∈ (0, 1), 0 < $ < 1

and λk > 0.

If Vi = V for all i ∈ {1, 2, · · ·N}, we have the following iterative algorithm to solve
the problem (7).
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Algorithm 2. For arbitrary z0 ∈ K, obtain the sequences {uk}, {vk} and {zk} as follows:

0 ∈ Puk ,zk V(zk) + G(uk)−
1

λk
exp−1

uk
zk,

vk = expzk
(1− αk)exp−1

zk
TF

t (uk),

zk+1 = expzk
(1− $βk)exp−1

zk
S(vk),

where αk, βk ∈ (0, 1), 0 < $ < 1 and λk > 0.

If Vi = V for all i ∈ {1, 2, · · ·N} and F = 0, then we have the following iterative
algorithm to solve the problem (5).

Algorithm 3. For arbitrary z0 ∈ K, obtain the sequences {uk} and {zk} as follows:

0 ∈ Puk ,zk V(zk) + G(uk)−
1

λk
exp−1

uk
zk,

zk+1 = expzk
(1− $βk)exp−1

zk
S(uk),

where βk ∈ (0, 1), 0 < $ < 1 and λk > 0.

Theorem 1. Let K be the nonempty, closed and geodesic convex subset of X. Suppose that for every
i ∈ {1, 2 · · · , N}, vector field Vi ∈ Ω(X) is ηi-strongly monotone and ϕi-Lipschitz continuous
and G ∈ χ(X) is maximally monotone. Let F : K× K → R be a bifunction enjoying the conditions
(A)− (E) and TF

t be the resolvent of F, S : K → K as a nonexpansive mapping. If Γ 6= ∅ and
η = min

{i=1,2···N}
{ηi}, ϕ = max

{i=1,2···N}
{ϕi}, αn, βn ∈ (0, 1), 0 < $ < 1 and λk > 0 satisfy the

following conditions:

(H1) 0 < λ̄ < λk < λ < 1
2η , and ϕ < 2η.

(H2)
∞
∑

k=0
βk = ∞.

(H3) 0 < b < αk, βk < c < 1.

Then, the sequence {zk} obtained from Algorithm 1 converges to an element in Γ.

Proof. The proof is divided into the following three steps:
Step I. First, we justify that the sequence {zk} is Fejér monotone with respect to Γ.

Let z? ∈ Γ, then −Vi(z?) ∈ G(z?) for each i ∈ {1, 2, · · ·N}. For any arbitrary z0 ∈ K,
from Algorithm 1, we have

−Pui
k ,zk

Vi(zk) +
1

λk
exp−1

ui
k

zk ∈ G(ui
k),

with monotonicity of G, which implies that

〈
− Pui

k ,zk
Vi(zk) +

1
λk

exp−1
ui

k
zk, exp−1

ui
k

z?
〉
≤
〈
−Vi(z?), −exp−1

ui
k

z?
〉
. (14)

Since Vi is ηi-strongly monotone vector field for each i ∈ {1, 2 · · ·N}, then
〈
Vi(z?), exp−1

z? ui
k
〉
≤
〈
−Vi(ui

k), exp−1
ui

k
z?
〉
− ηid2(ui

k, z?). (15)

Combining (14) and (15), we get

〈
− Pui

k ,zk
Vi(zk) +

1
λk

exp−1
ui

k
zk, exp−1

ui
k

z?
〉
≤
〈
−Vi(z?), exp−1

ui
k

z?
〉
− ηid2(ui

k, z?),
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or,
〈
exp−1

ui
k

zk, exp−1
ui

k
z?
〉
≤ λk

〈
Pui

k ,zk
Vi(zk)−Vi(ui

k), exp−1
ui

k
z?
〉
− ηid2(ui

k, z?). (16)

Since Vi is ϕi-Lipschitz continuous monotone vector field for each i ∈ {1, 2 · · ·N} and
ϕ = max

{i=1,2···N}
{ϕi}, using Cauchy–Schwartz inequality, we get

〈
Pui

k ,zk
Vi(zk)−Vi(ui

k), exp−1
ui

k
z?
〉
≤ ‖Pui

k ,zk
Vi(zk)−Vi(ui

k)‖‖exp−1
ui

k
z?‖

≤ ϕid(ui
k, zk)‖exp−1

ui
k

z?‖

= ϕi‖exp−1
ui

k
zk‖‖exp−1

ui
k

z?‖

≤ ϕ

2

{
‖exp−1

ui
k

zk‖2 + ‖exp−1
ui

k
z?‖2

}

≤ ϕ

2

{
d2(zk, ui

k) + d2(ui
k, z?)

}
.

Thus, inequality (16) becomes

2
〈
exp−1

ui
k

zk), exp−1
ui

k
z?
〉
≤ ϕλk

{
d2(zk, ui

k) + d2(ui
k, z?)

}
− 2ηid2(ui

k, z?). (17)

For fixed k ∈ N and i ∈ {1, 2 · · ·N}, let4(zk, ui
k, z?) ⊆ X. Then, using (12), we get

d2(zk, ui
k) + d2(ui

k, z?)− 2
〈
exp−1

ui
k

zk, exp−1
ui

k
z?
〉
≤ d2(zk, z?). (18)

From inequalities (17) and (18), and using η = min
{i=1,2···N}

{ηi}, we have

d2(zk, ui
k) + d2(ui

k, z?) ≤ ϕλkd2(zk, ui
k) + ϕλkd2(ui

k, z?) + d2(zk, z?)− 2ηλkd2(uk, z?).

Since, 0 < λ̄ < λk < λ < 1
2η and ϕ < 2η, we have

d2(zk, ui
k) + d2(ui

k, z?) ≤ ϕλd2(zk, ui
k) + d2(zk, z?),

or

d2(ui
k, z?) ≤ d2(zk, z?)− (1− ϕλ)d2(zk, ui

k). (19)

Since λ < 1
2η and ϕ < 2η, implies that ϕλ < 1, we get

d2(ui
k, z?) ≤ d2(zk, z?), i ∈ {1, 2, · · ·N}, k ∈ N. (20)

Let ki ∈ {1, 2, · · ·N} such that d(uki
k , z?) = max

k∈{1,2··· ,N}
{d(ui

k, z?)} ≤ d(zk, z?). From (20),

Algorithm 1, we have

d(vk, z?) = d(γk(1− αk), z?)

≤ (1− αn)d(γk(0), z?) + αnd(γk(1), z?)

= (1− αk)d(zk, z?) + αnd(TF
t (u

ki
k ), z?)

≤ (1− αk)d(zk, z?) + αnd(uki
k , z?)

≤ (1− αk)d(zk, z?) + αnd(zk, z?)

= d(zk, z?).

(21)
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From Algorithm 1, (21) and using the nonexpansiveness of S, we get

d(zk+1, z?) = d(γk(1− $βn), z?)

≤ (1− $βn)d(γk(0), z?) + $βnd(γk(1), z?)

= (1− $βn)d(zk, z?) + $βnd(S(vk), z?)

≤ (1− $βn)d(zk, z?) + $βnd(vk, z?)

≤ (1− $βn)d(zk, z?) + $βnd(zk, z?)

= d(zk, z?).

(22)

that is, {zk} is Fejér monotone and hence bounded by Lemma 5, and therefore the sequence
{uk}, {vk} all are bounded and limk→∞ d(zk, z?) exists.

Step II. Next, we show that d(zk, uk) = 0, d(zk, vk) = 0 and d(zk+1, zk) = 0, as n → ∞.
Since zk+1 = γk(1− $βk), then applying geodesic convexity of d, we get

d(zk+1, zk) = d(γk(1− $βk), zk)

≤ (1− $βk)d(γk(0), zk) + $βkd(γk(1), zk)

≤ (1− $βk)d(zk, zk) + $βkd(S(vk), zk)

≤ $βkd(S(vk), zk).

(23)

For fixed k ∈ N, let pk = S(vk) and 4(zk, pk, z?) be the geodesic triangle and
4(x̃k, p̃k, x̃) ⊆ X be the comparison triangle. Then, we have

d2(zk+1, z?) ≤ ‖x̃k+1 − x̃‖2

= ‖(1− $βk)x̃ + $βk p̃k − x̃‖2

= ‖(1− $βk)(x̃k − x̃) + $βk‖x̃− p̃k‖2

= (1− $βk)‖x̃k − x̃‖2 + $βk‖ p̃k − x̃‖2 − $βk(1− $βk)‖ p̃k − x̃k‖2

≤ (1− $βk)d2(zk, z?) + $βkd2(pk, z?)− $βk(1− $βk)d2(pk, zk)

≤ (1− $βk)d2(zk, z?) + $βkd2(S(vk), z?)− $βk(1− $βk)d2(S(vk), zk)

≤ (1− $βk)d2(zk, z?) + $βkd2(zk, z?)− $βk(1− $βk)d2(S(vk, zk))

≤ d2(zk, z?)− $βk(1− $βk)d2(S(vk), zk)

or,

d2(S(vk), zk) ≤
1

$βk(1− $βk)

{
d2(zk, z?)− d2(zk+1, z?)

}
. (24)

Further, using condition (H3), we have

d2(zk, S(vk)) ≤
1

$b(1− $c)

{
d2(zk, z?)− d2(zk+1, z?)

}
. (25)

Since {zk} is Fejér monotone with respect to Γ, limk→∞ d(zk, z?) exists; hence, we get

d(zk, S(vk)) = 0, k→ ∞. (26)

Using (23) and (26), we obtain

d(zk+1, zk) = 0, k→ ∞. (27)
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Since {zk}, {vk}, are bounded, there exists N1 > 0 with d(zk, z?) ≤ N1, and for each
k ∈ N, we have

d(zk, z?) ≤ d(γk−1(1− $βk), z?)

≤ (1− $βk−1)d(γk−1(0), z?) + $βk−1d(γk−1(1), z?)

= (1− $βk−1)d(zk, z?) + $βk−1d(S(vk−1), z?)

≤ (1− $βk−1)d(zk, z?) + $βk−1d(vk−1, z?).

(28)

For any integer m ≤ k− 1, we can write

d(zk, z?) ≤ N1

k−1

∑
j=m

{
(1− $β j)

k−1

∏
n=j+1

$βn
}
+ N1

k−1

∏
j=m

$β j. (29)

From (20), (22) and (29), we achieve

d(zk, ui
k) = d(zk, zk+1) + d(zk+1, z?) + d(ui

k, z?)

= d(zk, zk+1) + d(zk+1, z?) + d(zk, z?)

≤ d(zk, zk+1) + d(zk, z?) + d(zk, z?)

= d(zk, zk+1) + 2d(zk, z?)

≤ d(zk, zk+1) + 2N1

k−1

∑
j=m

{
(1− $β j)

k−1

∏
n=j+1

$βn
}
+ 2N1

k−1

∏
j=m

$β j.

Using condition (H2), we have

lim
m→∞

∞

∑
j=m

{
(1− $β j)

∞

∏
n=j+1

$βn
}
= 0, lim

m→∞

∞

∏
j=m

$β j = 0.

Thus, using (27), we get

lim
k→∞

d(zk, ui
k) = 0, k→ ∞ for each i ∈ {1, · · · , N}. (30)

Furthermore, for each i ∈ {1, 2, · · ·N}

d(zk, TF
t (u

i
k)) = d(zk, zk+1) + d(zk+1, z?) + d(TF

t (u
i
k), z?)

≤ d(zk, zk+1) + d(zk+1, z?) + d(ui
k, z?) (31)

≤ d(zk, zk+1) + d(zk+1, z?) + d(zk, z?)→ 0, k→ ∞,

and
d(zk, vk) = d(zk, zk+1) + d(zk+1, z?) + d(vk, z?)

≤ d(zk, zk+1) + d(zk+1, z?) + d(zk, z?)→ 0, k→ ∞.
(32)

Step III. Finally, we show that the limit of a sequence {zk} belongs in Γ.
From step I, we know that the sequence {zk} is bounded, so there is a subsequence

{zkn} of {zk} converging to a cluster point w? of {zk}. From (26), we have vkn → w?,
and (32) implies d(zkn , S(vkn)) → 0 as n → ∞; thus, due to the nonexpansiveness of S,
we get

d(S(w?), w?) = d(S(w?), S(vkn)) + d(S(vkn), zkn) + d(zkn , w?)

≤ d(w?, vkn) + d(S(vkn), zkn) + d(zkn , w?)→ 0, n→ ∞,

Thus, we obtain w? ∈ Fix(S).
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Since TF
t is also nonexpansive, using (31), we get

d(TF
t (w

?), w?) = d(TF
t (w

?), TF
t (u

i
kn
)) + d(TF

t (u
i
kn
), zkn) + d(zkn , w?)

≤ d(w?, ui
kn
) + d(TF

t (u
i
kn
), zkn) + d(zkn , w?)→ 0, n→ ∞,

(33)

which amounts to w? ∈ Fix(TF
t ).

From Algorithm 1, we have

ψkn+1 = −Pui
kn

,zkn
Vi(zkn) +

1
λkn

exp−1
ui

kn
zkn ∈ G(ui

kn
). (34)

From (30), we have lim
k→∞

d(zk, ui
k) = 0 and sine 0 < λ̄ < λk < λ < 1, and we deduce

that lim
k→∞

1
λk

d(zk, ui
k) = 0, for every i ∈ {1, 2, · · ·N}. Thus, we have

lim
n→∞

1
λkn

‖exp−1
ui

kn
zkn‖ = lim

n→∞

1
λkn

d(ui
kn

, zkn) = 0, (35)

and so,

lim
n→∞

1
λkn

exp−1
ui

kn
zkn = 0. (36)

Since Vi is the Lipschitz continuous vector field and zkn → w? as n→ ∞, taking into
account (34) and (36), we get

lim
n→∞

ψkn+1 = −Vi(w?), i ∈ {1, 2, · · ·N}. (37)

G is upper Kuratowski semicontinuous, as it is maximally monotone; then, we have

−Vi(w?) ∈ G(w?), for every i ∈ {1, 2, · · ·N}, that is w? ∈
N⋂

i=1
(Vi + G)−1(0) . Hence,

w? ∈ Γ. This completes the proof by appealing to Lemma 5.

If Vi = V, then we have the following convergence result for Algorithm 2.

Corollary 1. Let K be nonempty, closed and geodesic convex subset of X. Let vector field V ∈ Ω(X)
be a η-strongly monotone and ϕ-Lipschitz continuous; G ∈ χ(X) is maximally monotone. Let
F : K × K → R be a bifunction enjoying the conditions (A) − (E), and TF

t be the resolvent
of F, S : K → K be a nonexpansive mapping. If Fix(S) ∩ (V + G)−1(0) ∩ EP(F) 6= ∅ and
αn, βn ∈ (0, 1), 0 < $ < 1 and λk > 0 satisfy the following conditions (H1)–(H3), then the
sequence {zk} obtained by Algorithm 2 converges to the solution of problem (7).

For Algorithm 3, we have the following result to solve Fix(S) ∩ (V + G)−1(0).

Corollary 2. Let K be a nonempty, closed and geodesic convex subset of X and vector field
V ∈ Ω(X) be η-strongly monotone and ϕ-Lipschitz continuous. G ∈ χ(X) is maximally monotone
and S : K → K is a nonexpansive mapping. If Fix ∩ (S)(V + G)−1(0) 6= ∅ and βn ∈ (0, 1),
0 < $ < 1 and λk > 0 satisfy the following conditions (H1)–(H3), then the sequence {zk} obtained
by Algorithm 3 converges to the solution of problem (5).

4. Consequences

Németh [14], introduced and studied the following variational inequality problem
VI(V, K): Find u ∈ K, such that

〈V(u), exp−1
u v〉 ≥ 0, for all v ∈ K, (38)

where V : K → TX is a single-valued vector field defined on K ⊆ X.
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We know that u ∈ K is a solution of VI(V, K) if and only if u satisfies

0 ∈ V(u) + NK(u), (39)

where NK(u) is the normal cone to K at u ∈ K, defined by

NK(u) = {p ∈ TuX : 〈p, exp−1
u v〉 ≤ 0, for all v ∈ K}.

The indicator function γK of K is defined by

γK(u) =

{
0, i f u ∈ K,
+∞, i f u /∈ K.

Since γK is proper, lower semicontinuous, then the differential ∂γK(u) of γK is maxi-
mally monotone, which is defined by

∂γK(u) = {p ∈ TuX : 〈p, exp−1
u v〉 ≤ γK(v)− γK(u) = 0}.

Thus, we have

∂IK(u) = {p ∈ TuX : 〈p, exp−1
u v〉 ≤ 0}

= NK(u).
(40)

For λ > 0, the resolvent of ∂γK, defined by

J∂γK
λ (u) = {q ∈ X : u ∈ expqλ∂γK(q)} = PK(u), for all u ∈ X.

Thus, for V : K → X and for all u ∈ K, we have

u ∈ (V + ∂γK)
−1(0) = 0 ∈ V(u) + ∂γK(u) = −V(u) ∈ ∂γK(u)

⇐⇒ 〈−V(u), exp−1
u v〉 ≤ 0, for all v ∈ K (41)

⇐⇒ u ∈ VI(V, K).

Let Vi : K → TX, i ∈ {1, 2, · · ·N} be a finite collection of monotone mappings, then
the variational inequality problem for Vi is defined as

〈Vi(u?), exp−1
u? v〉 ≥ 0, ∀v ∈ K and i ∈ {1, 2, · · · , N}, (42)

and the solution set is denoted by
N⋂

i=1
VI(Vi, K).

Algorithm 4. For an arbitrary z0 ∈ K, compute the sequences {ui
k}, i ∈ {1, 2, · · · }, {vk} and

{zk} as follows :

0 ∈ Puk ,zk Vi(zk) + ∂iγK(ui
k)−

1
λk

exp−1
ui

k
zk,

vk = expzk
(1− αk)exp−1

zk
TF

t (u
ki
k ),

zk+1 = expzk
(1− $βk)exp−1

zk
S(vk),

where ki ∈ {1, 2, · · ·N} such that d(uki
k , zk) = max

i=1,··· ,N
{d(ui

k, zk)}, αk, βk ∈ (0, 1), 0 < $ < 1

and λk > 0.

If Vi = V for all i ∈ {1, 2, · · ·N}, then we give the following algorithm to solve
Fix(S)

⋂
VI(V, K)

⋂
EP(F).
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Algorithm 5. For arbitrary z0 ∈ K, compute the sequences {uk}, {vk} and {zk} as follows :

0 ∈ Puk ,zk V(zk) + ∂γK(uk)−
1

λk
exp−1

uk
zk,

vk = expzk
(1− αk)exp−1

zk
TF

t (uk),

zk+1 = expzk
(1− $βk)exp−1

zk
S(vk),

where αk, βk ∈ (0, 1), 0 < $ < 1 and λk > 0.

If Vi = V for all i ∈ {1, 2, · · ·N} and F = 0, then we propose the following algorithm
to solve Fix(S)

⋂
VI(V, K).

Algorithm 6. For arbitrary z0 ∈ K, compute the sequences {uk} and {zk} as follows :

0 ∈ Puk ,zk V(zk) + ∂γK(uk)−
1

λk
exp−1

uk
zk,

zk+1 = expzk
(1− $βk)exp−1

zk
S(uk),

where βk ∈ (0, 1), 0 < $ < 1 and λk > 0.

Corollary 3. Let Vi ∈ Ω(X) be ηi-strongly monotone and ϕi-Lipschitz continuous monotone
vector fields for each i ∈ {1, 2 · · · , N}. Let F : K × K → R be a bifunction satisfying the
conditions (A)–(E) and TF

t be the resolvent of F, S : K → K, which is a nonexpansive mapping. If

Fix(S)
N⋂

i=1
VI(Vi, K)

⋂
EP(F) 6= ∅ and η = min

{i=1,2···N}
{ηi}, ϕ = max

{i=1,2···N}
{ϕi}, αk, βk ∈ (0, 1),

0 < $ < 1 and λk > 0 satisfy the conditions given in Theorem 1. Then, the sequence {zk} obtained

by Algorithm 4 converges to an element in Fix(S)
N⋂

i=1
VI(Vi, K)

⋂
EP(F).

Corollary 4. Let V ∈ Ω(X) be η-strongly monotone and ϕ-Lipschitz continuous monotone vector
field. Let F : K× K → R be a bifunction satisfying the conditions (A)–(E) and TF

t be the resolvent
of F, S : K → K be a nonexpansive mapping. If Fix(S)

⋂
VI(V, K)

⋂
EP(F) 6= ∅, αk, βk ∈ (0, 1),

0 < $ < 1 and λk > 0 satisfy the conditions given in Theorem 1, then the sequence {zk} obtained
by Algorithm 5 converges to an element in Fix(S)

⋂
VI(V, K)

⋂
EP(F).

Corollary 5. Let V ∈ Ω(X) be η-strongly monotone and ϕ-Lipschitz continuous monotone vector
field. Let S : K → K be a nonexpansive mapping. If Fix(S)

⋂
VI(V, K) 6= ∅, βk ∈ (0, 1),

0 < $ < 1 and λk > 0 satisfy the conditions given in Theorem 1. Then the sequence {zk} obtained
by Algorithm 6 converges to an element in Fix(S)

⋂
VI(V, K).

5. Conclusions

This work is concerned with the investigation of the common solution of a fixed-point
problem, an equilibrium problem and a finite collection of variational inclusion problems.
Our proposed algorithms are advanced and can be considered improvements to the meth-
ods discussed in the paper [3]. Several consequences of the suggested algorithms are
discussed for variational inequalities, equilibrium and fixed-point problems. We anticipate
that the methods presented in this paper can be extended to more general settings; for
example, hyperbolic spaces, geodesic spaces and a CAT(0) space.
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Abstract: In this article, we present generalized conditions of three-step iterative schemes for solving
nonlinear equations. The convergence order is shown using Taylor series, but the existence of
high-order derivatives is assumed. However, only the first derivative appears on these schemes.
Therefore, the hypotheses limit the utilization of the schemes to operators that are at least nine times
differentiable, although the schemes may converge. To the best of our knowledge, no semi-local
convergence has been given in the setting of a Banach space. Our goal is to extend the applicability
of these schemes in both the local and semi-local convergence cases. Moreover, we use our idea of
recurrent functions and conditions only on the derivative or divided differences of order one that
appear in these schemes. This idea can be applied to extend other high convergence multipoint and
multistep schemes. Numerical applications where the convergence criteria are tested complement
this article.

Keywords: iterative schemes; Banach space; convergence criterion

MSC: 49M15; 47H17; 65J15; 65G99; 41A25

1. Introduction

Let M and M1 denote Banach spaces, D stand for an open set and F : D ⊂ M→ M1
be a continuous operator.

We denote by x∗ a solution of the nonlinear equation

F(x) = 0. (1)

Iterative schemes are utilized for solving the nonlinear Equation (1). A plethora of iterative
schemes have been employed for approximating x∗ [1,2].

In this article, we study the generalized three-step iterative schemes defined for
n = 0, 1, 2, . . . , by

yn = xn −M−1
1,n F(xn)

zn = yn −M−1
2,n F(yn) (2)

xn+1 = zn −M−1
3,n F(zn),

where M1,n = M1(xn), M1 : D −→ L(M, M1), M2,n = M2(xn, yn), M2 : D × D −→
L(M, M1), M3,n = M3(xn, yn, zn), and M3 : D× D× D −→ L(M, M1).

This scheme generalizes numerous others already in the literature [3–5]. If, e.g.,

M1,n = M2,n = F′(xn), M3,n = O, (3)

Axioms 2022, 11, 307. https://doi.org/10.3390/axioms11070307 https://www.mdpi.com/journal/axioms387
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or
M1,n = M2,n = M3,n = F′(xn) (4)

or
M1,n = F′(xn), M2,n = F′(yn) and M3,n = F′(zn), (5)

then Newton–Traub-type methods are obtained.
The convergence order of the specialized schemes was shown to be three, five,

and eight, respectively, using Taylor expansions. In the case of order three, the fourth
derivative is used. Hence, the assumptions on the ninth derivative reduce the applicability
of these schemes [2,4–6]. In particular, even a simple scalar equation cannot be handled
with the existing results.

For example: Let M = M1 = R, D = [−0.5, 1.5]. Define scalar function λ on D by

λ(t) =
{

t3 log t2 + t5 − t4 i f t 6= 0
0 i f t = 0.

Notice that t∗ = 1 solves equation λ(t) = 0 and the third derivative is given by

λ′′′(t) = 6 log t2 + 60t2 − 24t + 22.

Obviously, λ′′′(t) is not bounded on D. Therefore, the convergence of the scheme (2) is not
guaranteed by the previous analyses in [2,4–8]. A plethora of other choices can be found
in [4–8]. Therefore, it is important to study the local as well as the semi-local convergence
under unifying convergence and weaker than before criteria.

There are two important types of convergence: The semi-local and the local. The semi-
local is based on the information about an initial guess to provide criteria guaranteeing
the convergence of the scheme; while the local one is based on the information around a
solution to find estimates of the radii of the convergence balls.

The local convergence results are important, although the solution is generally un-
known since the convergence order of the scheme can be determined. This type of result
also demonstrates the degree of difficulty in choosing initial guesses. There are cases when
the radius of convergence of the scheme can be found without knowing the solution.

As an example, let M = M1 = R. Suppose that function F satisfies an autonomous
differential [4,6] equation of the form

S(F(t)) = F′(t),

where S is a continuous function. Notice that S(F(t∗)) = F′(t∗) or F′(t∗) = S(0). In the
case of F(t) = et − 1, we can choose S(t) = t + 1 (see also the numerical section).

Moreover, the local results can apply to projection schemes such as Arnoldi’s, the gen-
eralized minimum residual scheme (GMRES), the generalized conjugate scheme (GCS) for
combined Newton/finite projection schemes, and in relation to the mesh independence
principle to develop the cheapest and most efficient mesh refinement techniques [5,7,9].

In this article, we introduce a majorant sequence and also use our idea of recurrent
functions to extend the applicability of the scheme (2). Our analysis includes error bounds
and results on the uniqueness of x∗ based on computable Lipschitz constants not given
before in [2,4–8] and in other similar studies using the Taylor series. Our idea is very
general. Therefore, it applies to other schemes too [9–14].

The rest of the article is set up as follows: In Section 2, we present the results of the
local analysis. Section 3 contains the semi-local analysis, whereas in Section 4, special cases
are discussed. The numerical experiments are presented in Section 5. Concluding remarks
are given in the last Section 6.
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2. Local Analysis

Let `1, `2 and `3 be given positive constants. Define function ϕ1 on the interval [0, 1
`1
) by

ϕ1(t) =
(`0 + 2`1)t
2(1− `1t)

.

Notice that r1 = 2
`0+4`1

solves equation ϕ1(t)− 1 = 0. Set ρ1 = min{ 1
`1

, 1
`2
}. Moreover,

define function ϕ2 on the interval [0, ρ1) by

ϕ2(t) =
`2 +

`0
2 ϕ1(t))t

1− `2t
.

Then, ϕ2(0) = −1 and ϕ2(t) −→ ∞ as t −→ ρ−1 . Denote by r2 the minimal root of function
ϕ2(t) − 1 guaranteed to exist by the intermediate value theorem on the interval (0, ρ1).
Furthermore, define function ϕ3 on the interval [0, ρ2) by

ϕ3(t) =
(`3 +

`0
2 ϕ2(t))t

1− `3t
,

for ρ2 = min{ 1
`3

, ρ1}. It follows that ϕ3(0) = −1 and ϕ3(t) −→ ∞ as t −→ ρ−2 . Denote by
r3 the minimal root of function ϕ3(t)− 1 in the interval (0, ρ2).

We then show that r defined by

r = min{r1, r2, r3} (6)

is a radius of convergence for scheme (2). Set T = [0, r). It then follows that for all t ∈ T

`1t < 1, `2t < 1, `3t < 1, (7)

0 ≤ ϕ1(t) < 1, (8)

0 ≤ ϕ2(t) < 1, (9)

and
0 ≤ ϕ3(t) < 1 (10)

hold.
Denote by U(x, ρ) the open ball with center x ∈ M and of radius ρ > 0. Moreover,

the ball U[x, ρ] denotes the closure of the ball U(x, ρ). Furthermore, by F′, we denote the
Fréchet derivative of operator F.

The following conditions are needed to show the local convergence of scheme (2). Sup-
pose:

(A1) There exists a simple solution x∗ ∈ D of equation F(x) = 0.
(A2) ‖F′(x∗)−1(M1(x) − F′(x∗))‖ ≤ `1‖x − x∗‖ for all x ∈ D and some `1 > 0. Set

D1 = U(x∗, 1
`1
) ∩ D.

(A3) ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ `0‖x− x∗‖ for all x ∈ D1 and some `0 > 0.
(A4) ‖F′(x∗)−1(M2(x, y) − F′(x∗))‖ ≤ `2‖x − x∗‖ for all x ∈ D1, y = x − F′(x)−1F(x),

and some constant `2 > 0.
(A5) ‖F′(x∗)−1(M3(x, y, z)− F′(x∗))‖ ≤ `3‖x− x∗‖ for all x ∈ D1, z = y−M2(x, y)−1F(y),

and some constant `3 > 0.
(A6) U[x∗, r] ⊂ D.

The main local convergence result follows for scheme (2).
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Theorem 1. Suppose conditions (A1)–(A5) hold. Then, sequence {xn} produced by scheme (2) for
x0 ∈ U(x∗, r)− {x∗} exists in U(x∗, r), remains in U(x∗, r) for all n = 0, 1, 2, . . . and converges
to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (11)

‖yn − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (12)

and
‖yn − x∗‖ ≤ ϕ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (13)

where the functions ϕj, j = 1, 2, 3 are previously defined and radius r is given by (6).

Proof. Mathematical induction is employed to show assertions (11)–(13). Let v ∈ U(x∗, r)−
{x∗}. Using (A1) and (A2), we obtain

‖F′(x∗)−1(M1(v)− F′(x∗))‖ ≤ `1‖v− x∗‖ ≤ `1r < 1.

It follows by (7) and the Banach lemma on invertible operators [2] that M1(v)−1 ∈ L(M1, M) and

‖M1(v)−1F′(x∗)‖ ≤ 1
1− `1‖v− x∗‖ . (14)

In particular, iterate y0 is well defined by the first substep of method (2) and (14) for v = x0.
Then, we can write by this substep

y0 − x∗ = x0 − x∗ −M−1
1,0 F(x0)

= M−1
1,0 F′(x∗)F′(x∗)−1

∫ 1

0
[(M1,0(x0)− F′(x∗))

+(F′(x∗)−
∫ 1

0
F′(x∗ + θ(x0 − x∗))dθ](x0 − x∗), (15)

Then, in view of estimate (15) (for v = x0), conditions (A1), (A2), (A3), and identity (15), we
get

‖y0 − x∗‖ ≤ (`1‖x0 − x∗‖+ `0
2 ‖x0 − x∗‖)‖x0 − x∗‖

1− `1‖x0 − x∗‖

=
(`0 + 2`1)‖x0 − x∗‖2

2(1− `1‖x0 − x∗‖)
= ϕ1(‖x0 − x∗‖)‖x0 − x∗‖
≤ ‖x0 − x∗‖ < r, (16)

where we also used identity

F′(x∗)(x0 − x∗)− [F(x0)− F(x∗)] = [F′(x∗)−
∫ 1

0
F′(x0 + θ(x0 − x∗))dθ](x0 − x∗),

since F(x∗) = 0,
‖F′(x∗)−1(M1,0(x0)− F′(x∗))‖ ≤ `1‖x1 − x∗‖,

and

‖F′(x∗)−1(F′(x∗)−
∫ 1

0
F′(x0 + θ(x0 − x∗))dθ‖ ≤ `

2
‖x0 − x∗‖,

and the triangle inequality. It follows from (16), that iterate y0 ∈ U(x∗, r), and (11) holds
for n = 0. Then, using condition (A4),

‖F′(x∗)−1(M2,0 − F′(x∗))‖ ≤ `2‖x0 − x∗‖ ≤ `2r < 1.
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That is M−1
2,0 ∈ L(M1, M),

‖M−1
2,0 F′(x∗)‖ ≤ 1

1− `2‖x0 − x∗‖ , (17)

and iterate z0 exists by the second substep of method (2) for n = 0. Then, similarly to the
derivation of identity (15), we can also write by this substep

z0 − x∗ = y0 − x∗ −M−1
2,0 F(y0)

= M−1
2,0 [(M2,0 − F′(x∗))

+(F′(x∗)−
∫ 1

0
F′(x∗ + θ(y0 − x∗))dθ](x0 − x∗). (18)

Then, as in the derivation of estimate (16) but using (17), (A2) and (A4), we obtain

‖z0 − x∗‖ ≤ (`2‖x0 − x∗‖+ `0
2 ‖y0 − x∗‖)‖x0 − x∗‖

1− `2‖x0 − x∗‖
≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖, (19)

Hence, iterate z0 ∈ U(x0, t∗) and (12) holds for n = 0. Then, by using (A5), we obtain

‖F′(x∗)−1(M3,0 − F′(x∗))‖ ≤ `3‖x0 − x∗‖ ≤ `3r < 1

Therefore, it follows that M−1
3,0 ∈ L(M1, M),

‖M−1
3,0 F′(x∗)‖ ≤ 1

1− `3‖x0 − x∗‖ , (20)

and iterate x1 is well defined by the third substep of scheme (2) for n = 0. Furthermore,
by this substep as in (15), we obtain the identity

x1 − x∗ = M−1
3,0 [(M3,0 − F′(x∗)) + (F′(x∗)−

∫ 1

0
F′(x∗ + θ(z0 − x∗))dθ](x0 − x∗). (21)

Then, using (20), (21), (A3) and (A5) as in (16), we have

‖x1 − x∗‖ ≤ (`3‖x0 − x∗‖+ `0
2 ‖z0 − x∗‖)‖x0 − x∗‖

1− `2‖x0 − x∗‖
= ϕ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖. (22)

It then follows by estimate (22) that iterate x1 ∈ U(x∗, r) and (13) holds for n = 0. Therefore,
the induction for assertions (11)–(13) is completed if xi, yi, zi, xi+1 replace x0, y0, z0, x1,
respectively, in the previous calculations. Finally, from the calculation

‖xi+1 − x∗‖ ≤ λ‖xi − x∗‖ < r, (23)

where λ = ϕ3(‖x0− x∗‖ ∈ [0, 1), we conclude that limi−→∞ xi = x∗ and xi+1 ∈ U(x∗, r).

The uniqueness of the solution’s result follows.

Proposition 1. Suppose that there exists a simple solution x∗ ∈ D of equation F(x) = 0, and
(A3) holds. Set D2 = U(x∗, 2

`0
) ∩ D. Then, element x∗ is the only solution of equation F(x) = 0

in region D2.
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Proof. Consider x̃ ∈ D2 with F(x̃) = 0. Define the linear operator Q =
∫ 1

0 F′(x∗ + θ(x̃−
x∗))dθ. Then, by applying condition (A3)

‖F′(x∗)−1(Q− F′(x∗))‖ ≤ `0

∫ 1

0
‖x∗ + θ(x̃− x∗))− x∗‖dθ

`0

∫ 1

0
θ‖x̃− x∗‖dθ <

`0

2
2
`0

= 1. (24)

It follows that the linear operator Q is invertible. Then, the approximation Q(x̃− x∗) =
F(x̃)− F(x∗) = 0− 0 = 0, gives x̃− x = Q−1(0) = 0. Hence, we conclude that x̃ = x∗.

Remark 1. A similar result was given in ([15], Theorem 1) in the special case when M = M1 =
R and M1,n = F′(xn). However, this non-affine invariant form result is not correct, since it
corresponds to the (11) estimate which is

‖yn − x∗‖ ≤ `1‖xn − x∗‖2

2(1− `1‖xn − x∗‖)

but which is not implied by (A2). Hence, the proof of Theorem 1 in [15] breaks down at this point.
Notice also that in [15] they used M̄1,n = F′(xn)−1, M̄2,n = M−1

2,n and M̄3,n = M−1
3,n .

3. Semi-Local Analysis

The semi-local analysis of iterative scheme (2) is based on some Lipschitz-type conditions
relating operators F, F′, and linear operators Mj,n to some parameters. Moreover, sequence
{xn} is majorized by some scalar sequences depending on some parameters. Suppose:

(H1) There exist x0 ∈ D, η ≥ 0 such that F′(x0)
−1, M−1

1,0 ∈ L(M1, M) and ‖M−1
1,0 F(x0)‖ ≤ η.

(H2) ‖F′(x0)
−1(M1(x)− F′(x0))‖ ≤ a1‖x− x0‖ for all x ∈ D and some a1 > 0. Set D3 =

U(x0, 1
a1
) ∩ D.

(H3) ‖
∫ 1

0 F′(x0)
−1(F′(z + θ(x− z))−M3(x, y, z))dθ‖ ≤ b1

‖
∫ 1

0
F′(x0)

−1(F′(x + θ(y− x))−M1(x))dθ‖ ≤ b2,

‖
∫ 1

0
F′(x0)

−1(F′(y + θ(z− y))−M2(x, y))dθ‖ ≤ b3,

‖F′(x0)
−1(M2(x, y)− F′(x0))‖ ≤ a2‖y− x0‖,

‖F′(x0)
−1(M3(x, y, z)− F′(x0))‖ ≤ a3‖z− x0‖,

where for all θ ∈ [0, 1], x ∈ D3 and y, z are taken from method (26) (or for all y, z ∈ D3),
and b1, b2, b3, a2 and a3 are positive constants depending on operators F, F′ and Mj,n.

(H4) U[x0, ρ] ⊂ D for some ρ > 0 to be given later.

As can be seen by the proof of Theorem 2 that follows the iterates, {xn} lies in the set D3
which is a more accurate domain than D, since D3 ⊂ D. This way, at least as tight constants
are obtained than if conditions (H3) and (H4) hold only in D (see also the numerical section).

We chose the last two conditions in (H3) this way. However, other choices are also
possible [1–4]. Notice that if a1η < 1 and D̃ = U(y0, 1

a1
− η)∩D, then D̃ ⊂ D3,, respectively,

and even smaller constants “a” are obtained, if D̃ replaces D3.
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Moreover, we define the scalar sequence {tn} by

t0 = 0, s0 = η

un = sn +
b2(sn − tn)

1− a2sn
(25)

tn+1 = un +
b3(un − sn)

1− a3un
, (26)

sn+1 = tn+1 +
b1(tn+1 − un)

1− a1tn+1
.

This sequence shall be shown to be majorizing for scheme {xn} in Theorem 2. However,
first, a convergence result for it is needed.

We then develop results on the convergence of sequence {tn}.

Lemma 1. Suppose
a2sn < 1, a3un < 1 and a1tn+1 < 1 (27)

hold for all n = 0, 1, 2, . . . . Then, sequence {tn} is such that sn ≤ un ≤ tn+1 < 1
a1

and
limn−→∞ tn = t∗ ≤ 1

a1
.

Proof. It follows from (26) and (27) that sequence {tn} is nondecreasing, bounded from
above by 1

a1
and as such it converges to its unique least upper bound t∗ ∈ [0, 1

a1
].

The semi-local convergence of method (2) follows next.

Theorem 2. Under conditions (H1)–(H4), further suppose: conditions of Lemma 1 hold and ρ = t∗

in (H4). Then, the sequence {xn} generated by method (2) exists in U(x0, t∗), stays in U(x0, t∗)
and converges to a solution x∗ ∈ U[x0, t∗] of equation F(x) = 0. Moreover, the following estimates
hold

‖yn − xn‖ ≤ sn − tn (28)

‖zn − yn‖ ≤ un − sn, (29)

and
‖xn+1 − zn‖ ≤ tn+1 − un. (30)

Proof. Mathematical induction is used to show (29)–(31). Using (H1) and (27)

‖y0 − x0‖ = ‖M−1
1,0 F(x0)‖ ≤ η = s0 − t0,

so iterate y0 ∈ U(x0, t∗) and (56) holds for n = 0. Let v ∈ U(x0, t∗). It then follows from
(H3) that

‖F′(x0)
−1(M2(x0, y0)− F′(x0))‖ ≤ a2‖y0 − x0‖ < a2t∗ < 1.

That is, M2(x0, y0)
−1 ∈ L(M1, M),

‖M2(x0, y0)
−1F(x0)‖ ≤

1
1− a2‖y0 − x0‖

, (31)

and iterate z0 is well defined by the second substep of method (26) for n = 0. By the first
substep of method (2)

F(y0) = F(y0)− F(x0)−M1,0(y0 − x0),

F′(x0)
−1F(y0) =

∫ 1

0
F′(x0)

−1(F′(x0 + θ(y0 − x0))−M1(x0))dθ(y0 − x0),
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‖F′(x0)
−1F(y0)‖ ≤ b2‖y0 − x0‖ ≤ b2(s0 − t0)

and
‖z0 − y0‖ ≤ ‖M2(x0, y0)

−1F′(x0)‖‖F′(x0)
−1F(y0)‖ ≤ u0 − s0.

Hence, (29) holds for n = 0 and

‖z0 − x0‖ ≤ ‖z0 − y0‖+ ‖y0 − x0‖ ≤ u0 − s0 + s0 − t0 = u0 < t∗.

Therefore, iterate, z0 ∈ U(x0, t∗). As in (31), we obtain

‖M3(x0, y0, z0)
−1F′(x0)‖ ≤

1
1− a3‖z0 − x0‖

.

By the second substep of method (2), we can write

F(z0) = F(z0)− F(y0) + F(y0)

=
∫ 1

0
(F′(y0 + θ(z0 − y0))dθ −M2,0)(z0 − y0).

Consequently
‖F′(x0)

−1F(z0)‖ ≤ b3‖z0 − y0‖ ≤ b3(u0 − s0).

Then, we obtain

‖x1 − z0‖ ≤ ‖M3(x0, y0, z0)
−1F′(x0)‖‖F′(x0)

−1F(z0) ≤ t1 − u0,

and

‖x1 − x0‖ ≤ ‖x1 − z0‖+ ‖z0 − y0‖+ ‖y0 − x0‖
≤ t1 − u0 + u0 − s0 + s0 − t0 = t1 < t∗.

That is, iterate x1 ∈ U(x0, t∗) and (31) holds for n = 0. Moreover, we can write

F(x1) = F(x1)− F(z0)−M3,0(x1 − z0)

=
∫ 1

0
[F′(z0 + θ(x1 − z0))dθ −M3,0](x1 − x0),

‖F′(x0)
−1F(x1)‖ ≤ b1‖x1 − x0 ≤ b1(t1 − u0),

‖y1 − x1‖ ≤ ‖M−1
1,0 (x0)F′(x0)‖‖F′(x0)

−1F(x1)‖ ≤ s1 − t1

and
‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − z0‖ ≤ s1 − t1 + t1 − u0 ≤ s1 < t∗,

so y1 ∈ U(x0, t∗) and (29) holds for n = 0. Simply revisit the preceding estimations
with xk, yk, zk, xk+1 replacing x0, y0, z0, x1, respectively, to terminate the induction for items
(29)–(31). Sequence {tk} is complete as convergent. In view of (29)–(31), sequence {xn}
is also complete and as such, it converges to some x∗ ∈ U[x0, t∗]. By letting k −→ ∞ in
the estimate

‖F′(x0)
−1F(xk)‖ ≤ b1(tk − uk−1)

and using the continuity of F, we conclude that F(x∗) = 0.

A uniqueness result follows.

Proposition 2. Under the conditions of Theorem 2, further suppose that there exists R ≥ t∗

such that
`0

2
(R + t∗) < 1.
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Set D4 = U[x0, t∗] ∩ D. Then, the element x∗ is the only solution of equation F(x) = 0 in the
region D4.

Proof. Let x̃ ∈ D4 be such that F(x̃) = 0. Then, as in Proposition 1, we obtain

‖F′(x0)
−1(Q− F′(x0))‖ ≤ `0

∫ 1

0
((1− θ)‖x0 − x∗‖+ θ‖x0 − x̃‖)dθ

≤ `0

2
(t∗ + R) < 1.

Therefore, we deduce that x̃ = x∗.

4. Special Cases

Let M1,n = F′(xn), M2,n = F′(yn) and M3,n = F′(zn). Then, method (2) reduces to

yn = xn − F′(xn)
−1F(xn)

zn = yn − F′(yn)
−1F(yn) (32)

xn+1 = zn − F′(zn)
−1F(zn).

This is Newton’s three-step method also called by some Traub’s extended three-step method.
It seems to be the most interesting special case of method (2) to consider as an application.
Moreover, the semi-local convergence of it uses our new idea of recurrent functions, and the
resulting convergence criteria are weaker than those in earlier works for method (32) using
the Kantorovich condition 2L1η ≤ 1 [2,4,7,8] (as can also be seen in Example 5.2). Moreover,
the error bounds are tighter and the information on the location of the solution is more
precise than in the aforementioned works. Finally, in Lemma 2, we gave even weaker
convergence criteria for method (32). Hence, this is clearly a most revealing special case to
consider, since it can also be connected to earlier works and improve them too.

The following conditions are used.
Suppose:

(H1) There exists x0 ∈ D, η ≥ 0 such that F′(x0)
−1 ∈ L(M1, M) and

‖F′(x0)
−1F(x0)‖ ≤ η.

(H2)
‖F′(x0)

−1(F′(x)− F′(x0))‖ ≤ L0‖x− x0‖
for all x ∈ D and some L0 > 0. Set D5 = U(x0, 1

L0
) ∩ D.

(H3) For each x, y ∈ D5

‖F′(x0)
−1(F′(u)− F′(v))‖ ≤ L‖u− v‖

for all u ∈ D5 and v = u− F′(u)−1F(u) ∈ D (or all v ∈ D5) and some L > 0.
(H4) U[x0, t∗] ⊂ D for some t∗ to be given later.

Notice that condition (H3) was used for all u, v ∈ D and constants L1 [2,4,7,8] as well
as for all u, v ∈ D5 with constant K [1,3]. That is:

(M1) For each x, y ∈ D

‖F′(x0)
−1(x0)(F′(u)− F′(v))‖ ≤ L1‖u− v‖.

(M2) For each x, y ∈ D5

‖F′(x0)
−1(F′(u)− F′(v))‖ ≤ K‖u− v‖.
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It follows by these definitions that

L ≤ K ≤ L1 and ≤ L1. (33)

Hence, any analysis using L improves earlier ones using L1 or K (see also the numerical
section). The sequence {tn} defined by

t0 = 0, s0 = η,

un = sn +
L(sn − tn)2

2(1− L0sn)
,

tn+1 = un +
L(un − sn)2

2(1− L0un)
, (34)

sn+1 = tn+1 +
L(tn+1 − un)2

2(1− L0tn+1)
,

shall be shown to be majorizing for method (32). However, first we need some
convergence results for it.

Notice that the corresponding sequences are

t̄0 = 0, s̄0 = η

ūn = s̄n +
K(s̄n − t̄n)2

2(1− L0 s̄n)
, (35)

t̄n+1 = ūn +
K(ūn − ūn)2

2(1− L0ūn)
,

s̄n+1 = t̄n+1 +
K(t̄n+1 − ūn)2

2(1− L0 t̄n+1)
,

¯̄t0 = 0, ¯̄s0 = η

¯̄un = ¯̄sn +
L1( ¯̄sn − ¯̄tn)2

2(1− L1 ¯̄sn)
, (36)

¯̄tn+1 = ¯̄un +
L1( ¯̄un − ¯̄un)2

2(1− L1 ¯̄un)
,

¯̄sn+1 = ¯̄tn+1 +
L1( ¯̄tn+1 − ¯̄un)2

2(1− L1
¯̄tn+1)

.

We assume that L0 ≤ K. Otherwise, replace K by L0 in sequence (35). If follows from (34)
and these definitions that

tn ≤ t̄n ≤ ¯̄tn,

sn ≤ s̄n ≤ ¯̄sn,

un ≤ ūn ≤ ¯̄un (37)

and
t∗ = lim

n−→∞
tn ≤ s∗ = lim

n−→∞
sn ≤ u∗ = lim

n−→∞
un

(if these limits exist). Hence, the new majorizing sequence is more precise. The convergence
criteria for sequences (35) [1,3] and (36) [2,4,7,8] are:

2Kη ≤ 1 (38)

and
2L1η ≤ 1, (39)
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respectively. However, the convergence criterion for sequence (34) is

2Lη ≤ 1. (40)

Notice that
2L1η ≤ 1⇒ 2Kη ≤ 1⇒ 2Lη ≤ 1. (41)

Condition (40) is weakened further in Lemma 3. It is worth noticing that these benefits
are obtained under the same computational cost, since in practice, the computation of the
Lipschitz constant L1 requires that of L0, K and L as special cases. Notice that criterion (39)
is due to Kantorovich [2].

Then, two convergence results for sequence (34) are presented.

Lemma 2. Suppose
L0sn < 1, L0un < 1 and L0tn+1 < 1. (42)

Then, sequence {tn} is such that 0 ≤ tn ≤ sn ≤ tn+1 and limn−→∞ tn = t∗ ≤ 1
L0

.

Proof. See Lemma 1.

Next, some stronger conditions than (42) are given but are easier to show. However,
first, we define polynomials on the interval [0, 1) by

f (1)n (t) =
L
2

t2n−1η + L0(1 + t + . . . + t2n)η − 1,

f (2)n (t) =
L
2

t2nη + L0(1 + t + . . . + t2n+1)η − 1,

f (3)n (t) =
L
2

t2n+1η + L0(1 + t + . . . + t2n+2)η − 1,

p(t) = L0t3 + (L0 +
L
2
)t2 − L

2
.

and parameter γ by

γ =
2L

L +
√

L2 + 8L0L
.

Notice that γ ∈ (0, 1), p(γ) = 0, whereas the other two roots of p are negative by the
Descarte’s rule of signs. Define the parameters

a =
Lη

2(1− L0η)
, b =

L(u0 − s0)

2(1− L0u0)
, c =

L(t1 − u0)

2(1− L0t1)
and d = max{a, b, c}.

Then, we show:

Lemma 3. Suppose that
0 ≤ d ≤ δ < 1− L0η. (43)

Then, the sequence {tn} generated by (34) is nondecreasing, bounded from above by t∗∗ = η
1−δ and

converges to its unique least upper bound t∗ ∈ [0, t∗∗]. Moreover, the following items hold

0 ≤ sn − tn ≤ δ(tn − sn−1) ≤ δ2n(s0 − t0), (44)

0 ≤ un − sn ≤ δ(sn − tn) ≤ δ2n+1(s0 − t0), (45)

and
0 ≤ tn+1 − sn ≤ δ(un − sn) ≤ δ2n+2(s0 − t0). (46)
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Proof. Induction is utilized for items

0 ≤ L(sk − tk)

2(1− L0sk)
≤ γ, (47)

0 ≤ L(uk − sk)

2(1− L0uk)
≤ γ, (48)

0 ≤ L(tk+1 − uk)

2(1− L0tk+1)
≤ γ, (49)

and
tk ≤ sk ≤ uk ≤ tk+1. (50)

These estimates hold for k = 0 by (34) and (43). Suppose they hold for all integers smaller
or equal to k. Then, we obtain

tk+1 ≤ uk + γ2k+2η ≤ sk + γ2k+1η + γ2k+2η

≤ tk + γ2kη + γ2k+1η + γ2k+2η

...

≤ t0 + γη + · · ·+ γ2k+2η

=
1− γ2k+3

1− γ
η <

η

1− γ
= t∗∗,

similarly,

sk ≤
1− γ2k+1

1− γ
η and uk =

1− γ2k+2

1− γ
η.

Then, evidently, (47) holds if

L
2

γ2kη + L0γ
1− γ2k+1

1− γ
η − γ ≤ 0

or
f (1)k (t) ≤ 0 at t = γ. (51)

By the definition of f (1)k , we can find a relationship between two consecutive functions:

f (1)k+1(t) = f (1)k+1(t)− f (1)k (t) + f (1)k (t)

= f (1)k (t) +
L
2

t2k+1η + L0(1 + t + . . . + t2k+2)η − 1

− L
2

t2k+1η − L0(1 + t + . . . + t2k)η + 1

= f (1)k (t) + p(t)t2k+1η. (52)

In particular, by the definition of p, we obtain

f (1)k+1 = f (1)k (t) at t = γ. (53)

Let function
f (1)∞ (t) = lim

k−→∞
f (1)k (t). (54)

It follows by the definition of f (1)k and (54) that

f (1)∞ (t) =
L0η

1− t
− 1.
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Consequently, assertion (51) holds if

f (1)∞ (t) ≤ 0 at t = γ,

which is true by the right hand side of inequality (43). Similarly, to show (48)

L
2

γ2k+1η + L0γ
1− γ2k+2

1− γ
η − γ ≤ 0

or
f (2)k (t) ≤ 0 at t = γ.

This time, we also have
f (2)k+1(t) = f (2)k (t) + p(t)t2kη,

and for
f (2)∞ (t) = lim

k−→∞
f (2)k (t) =

L0η

1− t
− 1 ≤ 0

at t = γ. Moreover, (49) holds if

L
2

γ2k+2η + γL0
1− γ2k+3

1− γ
η − γ ≤ 0

or
f (3)k (t) ≤ 0 at t = γ. (55)

However, we have
f (3)k+1(t) = f (3)k (t) + p(t)t2k+1γ,

so
f (3)k+1(t) = f (3)k (t), at t = γ.

That is, (55) holds if f (3)∞ (t) = limk−→∞ f (3)k (t) ≤ 0, at t = γ. However, again, we obtain

f (3)∞ (t) =
L0η

1− t
− 1.

Therefore, assertion (55) holds again by (45). Furthermore, (50) holds by (34) and (47)–(49).
The induction for items (47)–(50) is completed. Hence, we deduce tk ≤ sk ≤ tk+1 and
limk−→∞ tk = t∗.

5. Numerical Example

We verify convergence criteria using method (32). Moreover, we compare Lipschitz
constants L0, L, L1 and K. In particular, the first example is used to show that the ratio L0

L1
can be arbitrarily small.

Example 1. Let M = M1 = R. Define function

ψ(t) = δ0t + δ1 + δ2 sin δ3t, t0 = 0,

where δj, j = 0, 1, 2, 3 are fixed parameters. Then, clearly for δ3 large and δ2 small, L0
L1

can be

(arbitrarily) small, so that L0
L1
−→ 0.

The parameters L0, L, K and L1 are computed in the next example. Moreover, the con-
vergence criteria (46)–(48) and those of Lemma 3 are compared.
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Example 2. Let M = M1 = R. Let us consider a scalar function F defined on the set D = U[x0, 1− q]
for q ∈ (0, 1

2 ) by
F(x) = x3 − q.

Choose x0 = 1. Then, we obtain the estimates η = 1−q
3 ,

|F′(x0)
−1(F′(x)− F′(x0))| = |x2 − x2

0|
≤ |x + x0||x− x0| ≤ (|x− x0|+ 2|x0|)|x− x0|
= (1− q + 2)|x− x0| = (3− q)|x− x0|,

for all x ∈ D, so L0 = 3− q, D0 = U(x0, 1
L0
) ∩ D = U(x0, 1

L0
),

|F′(x0)
−1(F′(y)− F′(x)| = |y2 − x2|

≤ |y + x||y− x| ≤ (|y− x0 + x− x0 + 2x0)||y− x|
= (|y− x0|+ |x− x0|+ 2|x0|)|y− x|

≤ (
1
L0

+
1
L0

+ 2)|y− x| = 2(1 +
1
L0

)|y− x|,

for all x, y ∈ D and so K = 2(1 + 1
L0
).

|F′(x0)
−1(F′(y)− F′(x)| = (|y− x0|+ |x− x0|+ 2|x0|)|y− x|

≤ (1− q + 1− q + 2)|y− x| = 2(2− q)|y− x|,

for all x, y ∈ D and L1 = 2(2− q).
Notice that for all q ∈ (0, 1

2 )
L0 < K < L1.

Next, set y = x− F′(x)−1F(x), x ∈ D. Then, we have

y + x = x− F′(x)−1F(x) + x =
5x3 + q

3x2 .

Define function F̄ on the interval D = [q, 2− q] by

F̄(x) =
5x3 + q

3x2 .

Then, we obtain by this definition that

F̄′(x) =
15x4 − 6xq

9x4

=
5(x− q)(x2 + xq + q2)

3x3 ,

where p = 3
√

2q
5 is the critical point of function F̄. Notice that q < p < 2− q. It follows that

this function is decreasing on the interval (q, p) and increasing on the interval (q, 2− q), since
x2 + xq + q2 > 0 and x3 > 0. So, we can set

K2 =
5(2− q)2 + q

9(2− q)2

and
K2 < L0.
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However, if x ∈ D0 = [1− 1
L0

, 1 + 1
L0
], then

L =
5$3 + q

9$2 ,

where $ = 4−q
3−q and K < K1 for all q ∈ (0, 1

2 ). Then, criterion (39) is not satisfied for all q ∈ (0, 1
2 ).

Hence, there is no guarantee that scheme (34) converges to x∗ = 3
√

q. Moreover, our earlier
criterion (38) holds for q ∈ (0.4620, 1]. Furthermore, the new criterion by solving becomes

2L̄η ≤ 1,

where L̄ = 1
8 (4L0 + L +

√
L2 + 8L0L). This condition holds for q ∈ (0.4047, 1). Clearly, the new

results extend the range of values q for which scheme (34) converges.
This range can be extended even further if we apply Lemma 2. Indeed, choose q = 0.4, and we

have the following Table 1, showing that the conditions of Lemma 2 are satisfied.

Table 1. Sequence (32).

n 1 2 3 4 5 6

ui 0.2330 0.2945 0.3008 0.3009 0.3009 0.3009

si 0.2000 0.2896 0.3008 0.3009 0.3009 0.3009

tn+1 0.2341 0.2946 0.3008 0.3009 0.3009 0.3009

L0si 0.5200 0.7530 0.7820 0.7824 0.7824 0.7824

L0ui 0.6058 0.7658 0.7822 0.7824 0.7824 0.7824

L0ti+1 0.6087 0.7659 0.7822 0.7824 0.7824 0.7824

Example 3. Consider M = M1 = C[0, 1] and D = U[0, 1]. Then, the boundary value problem
(BVP) [4]

ς(0) = 0, ς(1) = 1,

ς′′ = −ς− σς2

can be also given as

ς(s) = s +
∫ 1

0
G(s, t)(ς3(t) + σς2(t))dt

where σ is a constant and G(s, t) is the Green’s function

G(s, t) =
{

t(1− s), t ≤ s
s(1− t), s < t.

Consider F : D −→ M1 as

[F(x)](s) = x(s)− s−
∫ 1

0
G(s, t)(x3(t) + σx2(t))dt.

Let us set ς0(s) = s and D = U(ς0, ρ0). Then, clearly U(ς0, ρ0) ⊂ U(0, ρ0 + 1), since ‖ς0‖ = 1.
If 2σ < 5. Then, conditions (H1)–(H4) are satisfied for

L0 =
2σ + 3ρ0 + 6

8
, L =

σ + 6ρ0 + 3
4

.

Hence, L0 < L1.

The next two examples concern the local convergence of method (34) and the radii rj, r
were computed using Formula (6) and the functions ϕj.
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Example 4. If M = M1 = C[0, 1] is equipped with the max-norm, D = U[0, 1], consider
Q : D −→ M1 given as

Q(λ)(x) = ϕ(x)− 5
∫ 1

0
xτλ(τ)3dτ. (56)

We obtain

Q′(λ(ξ))(x) = ξ(x)− 15
∫ 1

0
xτλ(τ)2ξ(τ)dτ, for each ξ ∈ D.

Then, since x∗ = 0, conditions (A1)–(A5) hold provided that `0 = `1 = `2 = `3 = 7.5. Then, the
radii are:

r1 = 0.0533 = r, r2 = 0.1499, and r3 = 0.1660.

Example 5. Consider the motion system

H′1(w1) = ew1 , H′2(w2) = (e− 1)w2 + 1, H′3(w3) = 1

with H1(0) = H2(0) = H3(0) = 0. Let H = (H1,H2,H3). Let M = M1 = R3, D = U[0, 1],
x∗ = (0, 0, 0)tr. Let functionH on D for w = (w1, w2, w3)

tr given as

H(w) = (ew1 − 1,
e− 1

2
w2

2 + w2, w3)
tr.

The Fréchet derivative is given by

H′(w) =




ex 0 0
0 (e− 1)w2 + 1 0
0 0 1


.

Notice thatH′(x∗) = I. Let w ∈ R3 with w = (w1, w2, w3)
tr. Moreover, the nor for M ∈ R3×R3 is

‖M‖ = max
1≤k≤3

3

∑
i=1
‖mk,i‖.

We need to verify conditions (A1)–(A5). To achieve this, we study G(t) = et − 1 on D = [−1, 1].
We have t∗ = 1, hence G ′(t∗) = 1, and

|G ′(t)− G ′(t∗)| = |t + t2

2
+ . . . +

tn

n!
+ . . . |

= |1 + t− 0
2!

+ . . . +
(t− 0)n−1

n!
+ . . . ||t− o|

so `1 = e− 1. Then, D1 = U(x∗, 1
e−1 ) ∩ D = U(x∗, 1

e−1 ). This time we obtain

|G ′(t)− G ′(t∗)| ≤ `0|t− 0|,

where
`0 = 1 +

1
(e− 1)2!

+ . . . +
1

(e− 1)n−1n!
+ . . . ≈ 1.43 < `1.

Then, we have for t ∈ D1

|s| = |t− G ′(t)−1G(t)| = |t− 1 + e−t|

= | (−t)2

2!
+ . . . +

(−t)n

n!
+ . . . |

= |t|( |t|
2!

+ . . . +
|t|n−1

n!
+ . . .) ≤ `0 − 1

e− 1
.
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Moreover,

|F′(s)− F′(t∗)| = |es − 1|

≤ |s|(1 + |s|
2!

+ . . . +
|s|n−1

n!
+ . . .)

≤ |t| `0 − 1
e− 1

(1 +
`0 − 1

(e− 1)2!
+ . . . +

(
`0 − 1
e− 1

)n−1 1
n!

+ . . .)

= `2(t− 0),

where `2 ≈ 0.49 < `1. We can set `3 = `2.
Then, the radii are:

r1 = 0.2409 = r, r2 = 0.3101, and r3 = 0.3588.

In the last example, we revisit the motivational example given in the introduction,
where we apply scheme (32).

Example 6. The iterates for the motivational example with x0 = 0.85 are given in Table 2.

Table 2. Sequence (32).

n 1 2 3 4 5 6

yi 1.1609 0.2067 0.0846 0.0377 0.0174 0.0081

zi 0.3121 0.1640 0.0695 0.0313 0.0145 0.0068

xi 0.8500 0.3985 0.1399 0.0605 0.0274 0.0127

6. Conclusions

Conditions for the convergence of generalized three-step schemes are presented for
both the local as well as semi-local case. The sequences generated by these schemes
approximate solutions of equation F(x) = 0 that are locally unique. The convergence
conditions depend on the divided difference of the order of one or the derivative, which
appears on the schemes. However, this is not the case with earlier articles utilizing high-
order derivatives, which do not appear in the schemes. Moreover, the error analysis
is tighter because we show that the iterates remain in a stricter domain than in earlier
articles. Hence, the utilization of these schemes is extended with the same or even weaker
conditions. Our process does not depend on these schemes. Therefore, it can be employed
similarly to extend the usage of the other schemes [9,10,15–18].

Author Contributions: Conceptualization, S.R., I.K.A., S.G. and C.I.A.; methodology, S.R., I.K.A.,
S.G. and C.I.A.; software, S.R., I.K.A., S.G. and C.I.A.; validation, S.R., I.K.A., S.G. and C.I.A.; formal
analysis, S.R., I.K.A., S.G. and C.I.A.; investigation, S.R., I.K.A., S.G. and C.I.A.; resources, S.R., I.K.A.,
S.G. and C.I.A.; data curation, S.R., I.K.A., S.G. and C.I.A.; writing—original draft preparation, S.R.,
I.K.A., S.G. and C.I.A.; writing—review and editing, S.R., I.K.A., S.G. and C.I.A.; visualization, S.R.,
I.K.A., S.G. and C.I.A.; supervision, S.R., I.K.A., S.G. and C.I.A.; project administration, S.R., I.K.A.,
S.G. and C.I.A.; funding acquisition, S.R., I.K.A., S.G. and C.I.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to express our gratitude to the reviewers for the constructive
criticism of this article.

403



Axioms 2022, 11, 307

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complex. 2012, 28, 364–387. [CrossRef]
2. Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007,

190, 686–698. [CrossRef]
3. Argyros, I.K. Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications. Mathematics 2021,

9, 1942. [CrossRef]
4. Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; Engineering Series; CRC Press, Taylor and Francis Group:

Boca Raton, FL, USA, 2022.
5. Kou, J.; Wang, X.; Li, Y. Some eight order root finding three-step methods, Commun. Nonlinear Sci. Numer. Simulat. 2010,

15, 536–544. [CrossRef]
6. Argyros, I.K.; Magrenan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018.
7. Grau-Sanchez, M.; Grau, A.; Noguera, M. Ostrowski type methods for solving system of nonlinear equations. Appl. Math. Comput.

2011, 218, 2377–2385. [CrossRef]
8. Homeier, H.H.H. A modified Newton method with cubic convergence: The multivariate case. J. Comput. Appl. Math. 2004,

169, 161–169. [CrossRef]
9. Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982.
10. Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems.

J. Complex. 2010, 26, 3–42. [CrossRef]
11. Sharma, J.R.; Arora, H. Efficient derivative - free numerical methods for solving systems of nonlinear equations. Comp. Appl.

Math. 2016, 35, 269–284. [CrossRef]
12. Xiao, X.; Yin, H. Achieving higher order of convergence for solving systems of nonlinear equations. Appl. Math. Comput. 2017,

311, 251–261. [CrossRef]
13. Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 2009,

57, 101–106. [CrossRef]
14. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Englewood Cliffs, NJ, USA, 1964.
15. Ezquerro, J.A.; Hernandez, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Birkhãuser: Cham, Switzer-

land, 2018.
16. Nashed, M.Z.; Chen, X. Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math.

1993, 66, 235–257. [CrossRef]
17. Shakhno, S.M.; Gnatyshyn, O.P. On an iterative Method of order 1.839... for solving nonlinear least squares problems. Appl. Math.

Appl. 2005, 161, 253–264.
18. Verma, R. New Trends in Fractional Programming; Nova Science Publisher: New York, NY, USA, 2019.

404



Citation: Lee, C.-W.; Tao, F.; Ma, Y.-Y.;

Lin, H.-L. Development of Patent

Technology Prediction Model Based

on Machine Learning. Axioms 2022,

11, 253. https://doi.org/10.3390/

axioms11060253

Academic Editor: Clemente Cesarano

Received: 27 March 2022

Accepted: 24 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Development of Patent Technology Prediction Model Based on
Machine Learning
Chih-Wei Lee 1, Feng Tao 1, Yu-Yu Ma 2 and Hung-Lung Lin 3,*

1 Institute of Industrial Economics, Jinan University, Guangzhou 510632, China;
alanlee99983@gmail.com (C.-W.L.); fengtao@jnu.edu.cn (F.T.)

2 School of Education Science, Minnan Normal University, No. 36 Shì Qian Zhi St., Zhangzhou 363000, China;
misssuperyoyo@gmail.com

3 School of Economics and Management, Sanming University, No. 25 Ching-Tung Rd., Sanming 365004, China
* Correspondence: hsa8936.hsa8936@msa.hinet.net

Abstract: Intellectual property rights have a great impact on the development of the automobile
industry. Issues related to the timeliness of patent applications often arise, such as the inability of
firms to predict new technologies and patents developed by peers. To find the proper direction of
product development, the R&D departments of enterprises need to accurately predict the technology
trends. Machine learning adopts calculation through a large amount of data through mathematical
models and methods and finds the best solution at the fastest speed through repeated simulation
and experiments, to provide decision makers with a reference basis. Therefore, this paper provides
accurate forecasts through established models. In terms of the significance of management, the
planning of future enterprise strategy can be divided into three stages as a short-term plan of
1–3 years, a medium-term plan of 3–5 years, and a long-term plan of 5–10 years. This study will give
appropriate suggestions for the development of automobile industry technology.

Keywords: patent technology; intellectual property; automobile industry; artificial neural network;
machine learning; ensemble learning

MSC: 68Uxx; 68Wxx

1. Introduction

With the development of China’s economy, China’s automobile industry has trans-
formed from original equipment manufacturer (OEM) services between 2000 and 2010, to a
new stage of independent research, development, and production of domestic brand cars
through drawing lessons from the world’s famed factories. According to the survey report
of the China Association of Automobile Manufacturers, the sales volume of China’s brands
has increased year by year from USD 2.943 million in 2011 to USD 7.749 million in 2020,
with an increase rate of about 263% [1]. In addition, the market share of China’s domes-
tic automobile brands has grown year by year from 29% in 2011 to 38.4% in 2020. This
shows that the innovation and R&D achievements of Chinese domestic automobile brands
through OEM and technical cooperation have won the recognition of market consumers.

Because of the progress and development of information technology, many products
have been designed to provide customers with a combination of Internet Plus and the
intellectualized experience of new-generation products. Just like the theory of the product
lifecycle (PLC), every product must go through stages of development, growth, maturity,
and decline [2]. To survive in the competitive environment, every enterprise must launch
new products through innovation and R&D before reaching the final stage of its lifecycle.
As stated by Pryshlakivsky and Searcy, enterprises should adopt different measures to
launch new products or services and give new value to products or services at different
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stages of the product lifecycle to hold advantage in the highly competitive market and
achieve the goal of sustainable operation [3].

Similarly, in the rapidly changing market environment of science and technology, the
automobile industry needs to keep innovating. Based on the analysis of 13 years’ patent
data of 39 innovative enterprises in China’s telecommunications, electrical machinery,
automobile, and pharmaceutical industries, the cooperation breadth of employees has a
positive impact on the innovation performance of enterprises [4]. The development of new
automobile products refers to a series of decision-making processes from the research for
selecting products that meet the needs of the market through to product design, and on to
manufacturing process design, until normal production. Product development involves a
wide range of aspects including design, engineering analysis, trial production, and experi-
mentation with the components or technologies of new vehicles, such as improvement of
automobile engine power, vehicle crash tests, computer-aided AEB automatic brakes, and
so on [5]. Hence, the investment in automobile products must allocate limited resources to
the projects which need to be developed effectively to achieve the best results.

The key process of the development of new automobile products is to accurately
determine the direction of a new product’s development. Automobile products differ from
other products in the characteristics of its products, in addition to both innovation and
science and technology, and the safety requirements are critical. As a consequence, it is very
important to select the right direction to reduce the risks in development. Many studies
have pointed out the risks of new product development, which can be manifested in the
following aspects [6–8]:

(1) Technology development risk:

This refers to the requirement that the developed technology conform to scientific
principles, but the reasons for development failure are complicated. For example, it is
difficult to complete the research or meet technical difficulties because of the immature
technology at the present stage. Chin et al. [9] proposed several new product development
risks, which are described as follows. (a) The production risk refers to the failure to meet
production requirements within a predetermined time. (b) The R&D risks caused by a
person who cannot complete the product specification design within the expected time.
(c) Supplier risk means that the supplier may not provide good materials or may not
provide them within the expected period. (d) Product reliability risk refers to the risk that
the expected performance will not be achieved under normal manufacturing procedures. It
may be that inadequate conditions lead to the failure of the research, or it may be that the
preconceived ideas of the participants turn out to be wrong and unworkable.

(2) Market competition risk:

This refers to the risk caused by market competition in the market. According to
Allayannis et al. [10] and Guay and Kothari [11], the risk of market competition is composed
of the following factors. (a) The scale of market competition: the greater the competitive
power and cost of competitors, the greater the market risk will be (Allayannis et al.,
2001). (b) The intensity of market competition: this is mainly reflected in the competition
for market share to improve sales and profitability (Guay and Kothari, 2003). (c) R&D
competition: this happens when the technology is still in progress and has been successfully
developed by other researchers.

(3) Risk of an objective environment:

Due to changes in the objective social, economic, and technological environment, the
original technological development is out of date or no longer necessary. The automobile
industry is a typical intellectual-property-intensive industry, and its development depends
heavily on intellectual property rights. In particular, the global automobile industry is
at a critical moment of industrial restructuring and technological transformation. As
an important force in the global automobile industry, intellectual property rights are
indispensable.
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Generally speaking, before developing a new technology or innovative products,
the enterprise will first check the patent application data to determine whether there is
similar technologies or products extant in the industry. In the process of patent inquiry, the
timeliness of an application for patent certification is crucial; otherwise, the technology or
product in the certification or research and development process cannot be queried correctly.
For example, it is nearly impossible to know whether other companies are developing
the same innovative technology or product, or whether the competition is still applying
for certification. Finally, after the completion of technology or product development, the
patent application often leads to disputes, thus causing significant damage to enterprises.
According to the State Intellectual Property Office [12], the number of intellectual property
rights and competition dispute cases in the automobile industry showed an increasing
trend year by year from 2009 to 2018, with an average annual increase rate of 28.22%.
Among the intellectual property and improper competition disputes in the automobile
industry (manufacturing) in 2019, intellectual property infringement disputes accounted
for 76.83%, unfair competition disputes accounted for 13.26%, and intellectual property
contract disputes accounted for 9.45%. Presently, the global automobile industry is in
a critical moment of industrial restructuring and technological transformation. As an
important force in the global automobile industry, China’s intellectual property rights of
new patented technologies must be a top priority, whether this involves setting up joint
ventures with famous overseas automobile enterprises, carrying out technology research
and development cooperation projects with all parties, or designing and implementing
OEM models. In the process of new product technology research and development, new
patent disputes are an important issue worthy of attention. For example, in 2020, the
proportion of patent infringement in China is as high as 10.8% [12].

In the automobile industry, many scholars have proposed effective methods to predict
the technology, production, inventory, sales, and market conditions of the automobile
industry, such as Yuan and Cai [13]. The growth curve method and entropy method were
proposed to predict the future situation of vehicle power energy. The research results
show that hybrid electric vehicles have the most promising future development prospects,
followed by battery electric vehicles and traditional internal combustion engine vehicles.
The development of fuel cell electric vehicles is slow. Hanggara [14] used the method of
moving average combined with market supply and demand to forecast the automobile
production in Indonesia, to reasonably estimate the production volume and solve the
problem of overproduction. Babai et al. [15] put forward Bayesian parametric frequency
and non-parametric methods for empirical evaluation of the demand of about 3000 in-
ventory units in the automobile industry, and compared the proposed method with other
methods. The results also proved that the proposed method could provide a more accurate
decision-making reference for the inventory management plan of the automobile industry.
Wan et al. [16] proposed the integration of principal component regression with neural
network, support vector machine, and other methods, aiming to formulate a sales predic-
tion model for electric vehicles. Wan et al., (2021) proposed the integration of principal
component regression with a neural network, a support vector machine, and other methods
for a sales prediction model of electric vehicles (EV). After an example analysis, it was
verified that the integrated model had a good practical forecasting effect. The principal
component regression–back propagation (PCR-BP) model and the principal component
regression–support vector machine (PCR-SVM) model are better than a single model, such
as the support vector machine model alone. Tsang et al. [17] proposed the fuzzy-based
battery lifecycle prediction framework (FBLPF) to effectively manage the automobile mar-
ket. This framework integrated the multi-responses Taguchi method (MRTM) and the
adaptive neuro-fuzzy inference system (ANFIS), and the market forecast of the product
lifecycle of electric vehicles can be carried out through the integrated method. The re-
search results prove the accuracy of the proposed method and put forward corresponding
plans and countermeasures for the sustainable development of energy and environmental
protection in the automobile industry. Although these methods can effectively forecast
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the market profile and development prospects of the automobile industry, they must also
reduce the risk involved in the automobile industry for enterprises in the process of prod-
uct production, sales, and R&D. However, for professional managers or decision makers,
the mathematical calculation process is complicated and tedious. Based on this point of
view, many researchers have adopted machine learning methods to predict the technology
development in the automobile industry. For instance, Lee M. [18] adopted the text mining
model method of machine learning. Research on AI algorithm classification using patent
data submitted from 1980 to 2017 can demonstrate the dynamic change pattern of the fusion
of AI and EV technology. Wang et al. [19] stated that new product development in China’s
automobile industry can be predicted by machine learning methods. From 2001 to 2014,
they obtained 1088 valid sample datasets from the Chinese automobile industry to construct
an evaluation indicator system. Choi et al. [20] raised a hybrid method, which takes into
account expert opinions, patents, and machine learning methods, analyzes the results, and
combines semi-supervised learning with active learning to effectively find emerging and
promising technologies. Lee et al. [21] helped pharmaceutical technology identify emerging
patented technologies through machine learning and multilayer neural network model
calculation and simulation. Teng et al. [22] used a VSM (vector space model) and K-MEAN
to solve the technical problem of batteries developed by new technologies through machine
learning. Suhail et al. [23] used machine learning to integrate random forest and decision
tree to carry out calculations and simulations to help dentists make decisions during tooth
extraction, avoiding errors caused by human judgment. Barrera-Animas et al. [24] used
machine learning to conduct simulation and prediction, employing linear regression and
a support vector model, etc., to solve the expensive and complex problems faced by the
existing five major cities in the UK in meteorological forecasting. Ensafi et al. [25] adopted
machine learning to predict the sales of seasonal goods with ARIMA and convolutional
neural networks (CNN). Its advantage is that it can find out the most accurate trend of
commodity sales through repeated calculation, help enterprises accurately forecast sales
volume, and avoid the problem of overproduction and inventory in order to provide de-
cision makers with a quick method for judgment. Machine learning adopts calculation
through a large amount of data using mathematical models and methods and finds the
best solution at the fastest speed through repeated simulation and experiment, providing
decision makers a reference basis. Many studies also show the practicability and value of
machine learning methods. Therefore, this paper proposes a new prediction method—“The
concept of technology maturity combined with machine learning model”. This method can
model and forecast the status quo of patent technology in the automobile industry, aiming
to provide decision makers and managers in the automobile industry with an accurate
prediction of the trends of new technologies or products in the future market, before in-
vesting in research and development. Finally, the method reduces the significant losses
caused by the patent disputes mentioned above. In addition, this study takes a case study
of patented body technology in China’s automobile industry for modeling and analysis,
and compares the model accuracy of traditional time series and non-traditional machine
learning methods, respectively, to prove that the proposed method is more accurate and
stable than others, thus proving the stability and applicability of the model. Importantly,
the proposed method can provide a systematic and scientific reference for decision makers
and managers in the automobile industry to initiate technology or product R&D plans, and
put forward valuable suggestions for researchers and enterprises.

To sum up, the background and purpose of this study are introduced in the introduc-
tion, and the main research structure and core are specifically divided into the following
four parts. The literature review in Section 2 includes the technology forecasting method
and the research on innovation for R&D and patent market forecasting. Section 3 mainly
concerns the construction of the trend model of the R&D patent market, including a
machine-learning-building, integrated-learning prediction model. Section 4 presents a case
study analysis, including research analysis, model verification and discussion, and predic-
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tion of future development trends. The conclusion, presented in Section 5, summarizes the
management and academic aspects of the proposed method.

2. Literature Review
2.1. Technology Prediction Methods for Innovation and R&D

A prediction is an estimate or calculation made about a future outcome that people
are concerned about, or about an uncertain event that people want to comprehend in
advance [26]. Making predictions is very important for business operations. Through
different forecasting methods, decision makers of enterprises can understand the economic
development or the future changes of the market to form the goals or decisions of their
enterprises. Through scientific management methods, the risks and costs of enterprise
operation can be reduced, and the enterprise objectives can be achieved smoothly [21].
Commonly used innovation and R&D technology forecasting methods can be divided into
the following categories.

(1) Quantitative prediction method [21–27].

Quantitative prediction methods include trend extrapolation, analogies, causal mod-
els, and so on. Trend extrapolation is similar to the autoregressive integrated moving
average model (ARIMA). Analogies are similar to support vector machines (SVM). Causal
models are similar to linear regression (LR). Quantitative analysis has been successfully
applied to different fields and to solve related problems. For example, it has been used
to analyze the new patented technology of mobile communication in South Korea, based
on the ARIMA model, and the information system of the Korean Intellectual Property
Office (KIPO) was adopted for data collection [27]. According to the International Patent
Classification (IPC), 20,294 patents were classified into 152 categories. Finally, Korea’s major
mobile communication technologies were classified into four categories. This provides an
important reference standard for decision makers in government departments and related
industries when investing in R&D. Researchers have used metrology and patent analysis
to analyze the S curve in the logistic growth curve model of hydrogen energy and fuel cell
technology, and they determined the best patent strategy for the fuel cell industry [28]. The
results show that the S curve is an efficient means of quantifying a method of predicting
the technology of cumulative published patent numbers. Researchers have used regression
analysis to evaluate weapons technology in the defense industry, and proposed a method of
constructing a technology map, which divides technologies into four categories according
to their technical effects [29].

These studies confirmed the advantages of quantitative analysis, as follows: (a) dif-
ferent standards or variables can be considered at the same time, that is, an approach can
include different standard variables in experiments and analyses in different environments
to obtain the best results; (b) technology forecasts can be adapted to different industries;
(c) quantitative forecasts can be applied to different products.

(2) Qualitative prediction methods and the combination of qualitative and quantitative
methods [30–32].

Expert group judgment has different applications, such as the Delphi technique,
interview, brainstorming, and nominal group techniques. The Delphi technique is an expert
judgment method often used in technical forecasting, which is especially applicable when
historical data are insufficient and require objectivity and independence of expert judgment
compared with the other three methods.

(3) The combination of qualitative and quantitative methods [30–32].

By and large, the Delphi technique, focus group interviews, and brainstorming are
commonly used to cope with multicriteria decision-making methods of quantitative anal-
ysis, such as analytic hierarchy process (AHP), analytic network process (ANP), entropy,
and the technique for order preference by similarity to an ideal solution (TOPSIS). This
combination has been successfully applied in different fields and solved related prob-
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lems. For example, researchers used the expert interview method and ANP to predict
the warehousing operation of out-stock and in-stock of the logistics center of a chain su-
permarket and optimized its warehousing classification management [30]. Researchers
have used the Delphi technique and AHP to evaluate the factors that affect the success of
start-up companies when rice bran polysaccharide is used in the Taiwan venture capital
industry [31]. Researchers have used expert groups combined with entropy and TOPSIS
to classify and forecast the warehouse management of green plant e-commerce vendors,
and they developed methods for warehouse optimization [32]. These studies confirm the
advantages of combining qualitative and quantitative methods, for example, (a) obtaining
a variety of different but valuable perspectives; (b) being able to apply these perspectives
to long-term and new products’ forecasting.

To sum up, technological innovation prediction is the premise and basis of enterprise
technological innovation decision making. Through the evaluation of innovation or re-
search and development, enterprises can obtain an accurate sense of future technological
development and the changing trends. This provides a scientific basis for enterprises to
reduce subjectivity and blindness in processes of technological innovation decision making.
In the competitive market and complicated environments, an enterprise’s technological
innovation determines its survival and development. Therefore, to ensure the correctness
of technological innovation, enterprises should choose appropriate forecasting methods
according to different environmental factors, such as time and place, to reduce the risks
involved in enterprise operation.

2.2. Research on Innovation, R&D, and Patent Market Prediction

There have been many studies using various forecasting methods in patent R&D
demand or market demand as follows.

(1) Research on traditional forecasting methods in patent technology and market demand.

Researchers have proposed that the future market trend and new patents of the home
appliance industry can be predicted by combining the pearl curve with related indicators
of home appliance isolation technology, and the results showed that the proposed method
is effective in application [33]. Researchers classified and predicted the patent of “coherent
light generator” based on bass and the ARIMA time series model, they and proposed a
new classification standard for this technology (mainly divided into the first class and
subclasses) [34]. Finally, viewpoints and countermeasures have been put forward for the
future trend of first-class patents and subclasses of technologies through the analysis results.
The authors of [35] proposed the use of LR and clustering technology to predict the future
trend of new product development, supply, and demand in many global industries. The
research revealed that the innovation of technology will accelerate the development of PLC
for the uncertainty of products and sales demand, and proved that the proposed method
can be used as an effective tool for decision making. The authors of [36] proposed the
application of patent analysis with the concept of growth curve and technology maturity to
predict the development of spare wind turbine technology.

The results show that the technology of jet engine wind turbines is in the early-
maturity stage, the gearless wind turbine is at the end of its growth curve, and the airborne
wind turbine is at the end of the maturity stage on the growth curve, which proves the
effectiveness of the proposed method. The authors of [37] used support vector machines
(SVMs) to conduct progressive analysis of difficult classification problems of patents. The
results indicated that the proposed method can effectively classify patents and provide an
important reference standard for inventors or lawyers when facing related problems. The
authors of [38] used the S-curve and LR method to analyze the data of the United States
Patent and Trademark Office (USPTO). New patents for unmanned vessel technologies
(UVTs) were studied and the current technology stage of UVT was determined. The result
reflected that UVTs are in the growth stage of their technology lifecycle and represents an
emerging technology with future investment value.
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(2) Research on machine learning in patent technology prediction.

The authors of [39] stated an improved method of machine learning to predict emerg-
ing technologies and verified it with the patent data provided by the United States Patent
and Trademark Office. The research presented that the proposed method can effectively
predict the future development of new technologies with an accuracy of up to 70%, which
helps enterprises reduce costs and risks in the process of innovation and R&D, and enables
enterprises to effectively carry out strategic investment. The authors of [40] applied patent
and machine learning methods to design a new method combining coding and tag coding
based on existing research on patent grant term prediction. The results show that the
proposed method can effectively confirm the patent application grant period in the data
of the Indian Patent Office. The authors of [41] used patent-related data provided by the
United States Patent and Trademark Office to predict patents in the healthcare industry and
classified different technologies by using the standard of cooperative patent classification.
This study assessed the potential of different technology clusters in foreign countries to
provide a reference for decision makers or managers of enterprises or national regulatory
authorities regarding future investment in innovative R&D.

Cho et al., (2021) first constructed a communication network with association rules.
Machine learning methods were then used to predict the future using various link predic-
tion indices, and finally latent Dirichlet assignment (LDA) topic modeling was used to
identify keywords related to the technology that is expected to converge [42]. The analysis
of patent data of 2012–2014 from the US Patent and Trademark Office in the chemical
engineering and environmental technology fields showed that the random forest model
in machine learning has the best prediction effect on a 4-year interval. By predicting the
new technology fields that may emerge in the future, the study could provide direction
suggestions for companies focused on technological advances. The authors of [43] analyzed
complex patent problems by combining self-organizing map (SOM), principal component
analysis (PCA), and support vector machine calculus with machine learning methods, then
compared it with a single machine learning method. The results showed that the proposed
integrated machine learning method was more accurate and saved more resources than the
single machine learning method. Using a machine learning and multilayer neural network
method, researchers selected 18 input and 3 output indicators from the database of the
United States Patent and Trademark Office for pharmaceutical technology and explored the
nonlinear relationship between input and output indicators [21]. The result indicated that
the multiple patent indicators can be used to identify whether a drug is worth developing at
an early stage, before it was developed into a new pharmaceutical technology. The authors
of [44] put forward the method of machine learning and semantic analysis of patented
text information to judge the patented technology of vehicle signal and electronic message
transmission, and to predict the trend of future development.

In summary, traditional patent and market demand forecasting has proved that the
proposed methods can measure the utility value of new products or technologies in the
input process and reduce the risk of enterprises, such as the dispute cases of new patents.
However, these traditional methods also have many disadvantages or deficiencies, such as
cumbersome and slow calculation processes, difficult data collection, uncertain information,
and other problems [45–47]. Therefore, many studies put forward machine learning to
replace traditional prediction methods, and the above research has proved the effectiveness
of machine learning as a prediction method. Based on the existing research, this paper
proposes various prediction and integration algorithms of machine learning, compared the
time series methods, and proposed the feasibility of an innovative patent prediction method
after a comprehensive comparison. Table 1 presents a comparison of the advantages and
disadvantages of the proposed method and other model methods.
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Table 1. Comparison of the advantages and disadvantages of the proposed method and other
model methods.

Aspects Prosed Method Other Methods (Qualitative/Quantitative)

Advantages

(1) It can be combined with other classification and
regression algorithms to improve its accuracy
and stability and avoid overfitting by reducing
the variation of results.

(2) It is composed of processing nodes similar to
human brain neurons. The greatest advantage of
a neural network is that it can accurately predict
complex problems.

(3) The support vector machine method can
effectively solve the classification and regression
problems of high-dimensional features.

(1) A variety of different and valuable points of
view can be gained.

(2) It is suitable for long-term prediction and
prediction of new products, and can be used
when historical data is insufficient.

(3) This method can make up for the lack of
basic information.

Disadvantages

(1) This method is prone to overfitting.
(2) This method is sensitive to missing data.
(3) There are many neural network parameters in

this method.

(1) It is less reliable for product prediction by
region.

(2) Qualitative advice is sometimes incomplete
or impractical.

(3) Generally, it is only applicable to the
prediction of the total amount, but it has
poor reliability when applied to regions,
customers, and product categories.

Summary
After comparison, there are three reasons for choosing this scheme: (1) the calculation will be faster; (2) the
obtained model will be more accurate; (3) it is suitable for a large amount of data and for the method of
applying mathematics to assist in making decisions.

3. Model Construction of R&D Patent Market Trend

This paper will build the model in separate three stages. The first stage is “machine
learning-the construction of the ensemble learning prediction model”. The theory of the
model and the constructing procedure will be explained in this stage. The second stage is
“the model validation”. In this stage, the data of car body patent applications in China’s
automobile industry will be taken as a case study. In this paper, the relevant data collected
by the Chinese Intellectual Property Office are used for modeling and analysis, and the
errors between the proposed model and the traditional prediction model are compared
to prove the accuracy and applicability of the proposed method. The third stage is “the
forecast for future trends”. Some suggestions and countermeasures are put forward for the
analysis of market demand information of the automobile industry, providing a reference
for use by the relevant personnel of the automobile industry and scholars. The construction
process of this research model is described as follows, and the specific research framework
is illustrated in Figure 1.

3.1. Stage 1: Machine Learning—The Construction of the Ensemble Learning Prediction Model

According to the research framework in Figure 1, the first stage, Stage 3.1, is machine
learning—the construction of the ensemble learning prediction model. It includes data
mining and the construction of the ensemble learning model and the ensemble learning
prediction model.

412



Axioms 2022, 11, 253

Figure 1. Research framework diagram.

3.1.1. Data Mining and Machine Learning—Ensemble Learning Model

First proposed by Breiman [46], bagging (bootstrap aggregating) is an ensemble
learning algorithm for machine learning. Bagging combines the prediction results of each
learning model through voting rules to make the final classification prediction. First,
train all the other algorithms with the data, and then take all the predictions of the other
algorithms as additional input. In general, bagging is an isomorphic model, and the same
model is used for training in other learning model algorithms. After that, hard voting or soft
voting rules are used to combine the prediction input of the other algorithms mentioned
above to obtain the final prediction classification result.

Breiman [46] proposed the bagging (bootstrap aggregating) method, which combines
multiple different prediction models by voting or averaging. Although each prediction
model uses the same learning algorithm, they all adopt different training datasets. A
schematic diagram of the bagging algorithm is shown in Figure 2.
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Figure 2. Schematic diagram of the bagging algorithm.

The principle of the bagging algorithm is as follows: Given a training set, D, with size
N, the bagging method selects m subsets Di with size N uniformly, and with the return
(using the self-help sample method) as a new training set. M models can be obtained by
using classification and regression algorithms on m training sets, and then the results of
the bagging method can be obtained by taking average values and majority votes. In the
end, the accuracy and stability are improved, while the variance of results is reduced to
avoid the occurrence of overfitting.

The principle of the Bagging algorithm is described as follows. When a given dataset
is L = {(x1, y1), . . . , (xm, ym)}, the basic learner is h(x, L). If the input is x, then Y is
predicted by h(x, L). Suppose that there is a dataset {Lk} sequence, each consisting of M
independent observations from the same distribution as L. The task was to obtain better
learning results by using {Lk}, which was stronger than learning h(x, L) in a single dataset.
This requires the use of learning {h(x, LK)} sequences. If y is a number, then the process
is to replace {h(x, LK)} with the average of {h(x, LK)} over K, that is, hA(x) = ELh(x, L).
Where EL represents the mathematical expectation of L, and the subscript A of hA represents
a composition. If h(x, L) predicts class j ∈ {1, . . . J}, then one way to synthesize h(x, LK) is
by voting. Let Mj = #{K, h(x, LK) = j} so that will be hA(x) = argjmaxMj.

Step 1: Determining the target objects.

Firstly, the number of global body patents is taken as the target to predict the number
of future patents.

Step 2: Collecting data.

Next, the patent data provided by the Chinese Intellectual Property Office are used to
screen the patent data, patent classification, and the patent pool through retrieval. A total
of 46 years of statistical data from 1974 to 2020 were used to collect and preprocess the data.

Step 3: Analyzing data.

Finally, WEKA software is applied to perform data mining tasks. After the process of
data preprocessing, clustering, classification, and testing the model and the parameters, the
machine learning technology is applied to automatically perform a calculation to obtain
the model and the parameter values.
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3.1.2. On the Basis of Machine Learning—The Construction of the Ensemble Learning
Prediction Model

Ensemble learning, also known as multiple classifier systems, is composed of multiple
base learners whose spirit is to gather the “wisdom of crowds”. The generalization ability
of ensemble learning is usually stronger than that of a base learner. The base learner can be
generated by substituting the base learning algorithm into the training sample, and such
a base algorithm includes a decision tree, a neural network, etc., though most ensemble
learning methods use a single base.

A learning algorithm is used to produce homogeneous base learners; there are still
other methods that use different learning algorithms to produce heterogeneous learners.
Additionally, because there is no single base learning algorithm, basic learners can also be
used as component learners or individual learners.

In principle, ensemble learning is divided into two steps. First, several basic learn-
ers are generated in parallel or sequential patterns. Later, all the basic learners are used
together, and common merging methods include the concept of majority voting (classifica-
tion problems) and the concept of weighted averaging (regression problems). Generally
speaking, to attain a good ensemble learning model, the base learner should be as accurate
as possible, but also as diverse as possible. The accuracy of a learner can be measured using
cross-validation or hold-out tests, but there is no rigorous measure of diversity.

There are many approaches to ensemble learning, three of which are described in
detail here.

1. Leo Breiman proposed bagging, also known as bootstrap aggregation or bootstrap, as
a simple and powerful ensemble learning method. Meanwhile, many homogeneous
weak learners are considered, and these weak learners are independent and parallel-
constructed; their respective results are determined by averaging or voting [46].

2. Boosting, first put forward by Freund [47], is also a weak learner with a good deal of
homogeneity. Unlike bagging, these basic models adapt and learn sequentially and
combine the results in a deterministic strategy.

3. Stacking is a weak learner using heterogeneity. It can construct the respective models
in parallel and combine the prediction results of different weak learners to train a
metamodel and draw conclusions.

Ensemble learning is a kind of supervised learning. This method establishes multiple
hypotheses by multiple learning algorithms, and combines them into a whole hypothesis
by way of weight, so as to make a reasonable prediction of the test data. Many studies have
shown that prediction using ensemble learning is more accurate than a single hypothesis.

In the learning algorithm, the training data need to be set up first. Each training
material is made up of a special vector and a category tag, Y. Secondly, the real function is
computed. Suppose the real function, f, exists, such that the identity y = f (x) is true. Finally,
the learning algorithm and hypothesis are verified. The goal of the learning algorithm is to
find a hypothesis, h, such that h ≈ f formula.

The ensemble learning model consists of a set of hypotheses {h1, h2, . . . , hn} and a set
of hypothesis weights {W1, W2, . . . , Wn}, as shown in Formula (1):

h(x) = W1h1(x) + W2h2(x) + . . . . . . . . . + Wnhn(x) (1)

where h(x) is the ensemble learning model, {h1, h2, . . . , hn} is a set of hypotheses constructed
by multiple learning algorithms, {W1, W2, . . . , Wn} is the corresponding weight of each
hypothesis, and the final prediction is obtained by combining the weight of each hypothesis
and individual hypotheses. For example, first, apply the WEKA software, then select the
decision stump classifier, and select tenfold cross-validation for test option training and
evaluation. Next, select the AdaboostM1 classifier, which is an ensemble learner using
the lifting algorithm. To compare with the decision stump classifier, the base classifier of
AdaboostM1 is set as the decision stump classifier. After confirmation, select the training
button for training, and there are multiple classifiers to choose from. The number of
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iterations in the parameter setting is set to 10 by default, that is, the training will carry out
the decision stump classifier 10 times. The schematic diagram of the ensemble learning
model of this paper is shown in Figure 3.

Figure 3. The schematic diagram of the ensemble learning model.

4. Research Analysis—Car Body Patent Forecasting for the Automobile Industry

The main content of Section 4 includes the following three parts. Section 4.1 is the
research analysis. This part mainly explains the source and basis of the collected data.
Section 4.2 is the model verification and discussion. This part focuses on analyzing each
model based on the data in Section 4.1 to verify the accuracy of the proposed model and
each model. Section 4.3 is the forecast of the future trend.

4.1. The Research Analysis

This paper takes vehicle safety collisions as samples. The main reason is that in
addition to the safety of the car body, it also includes seat belts, airbags, safety seats, and
automatic emergency braking, etc. The development and manufacture of these safety
protection measures will be based on the main consideration of car body safety collision.
For example, when the car body design is not secure, safety belts, airbags, and seats cannot
be functional in protecting life safety [48]. In addition, the body structure has also been
affected by environmental protection policies in recent years. For example, strengthening
the rigid structure of the body will increase the weight of the body, which may cause more
fuel or electricity consumption. Therefore, this paper will take the body collision as the
research sample, and is expected to put forward specific development countermeasures
and suggestions for future patent research and development of the automobile industry
through the examination results.

Step 1: The collection of sample data.

The patent database provided by the Intellectual Property Office of the People’s
Republic of China was used as the basis for data analysis. It is difficult to search for the
correct patent data of safety car bodies. This is mainly because of the large amount of
literature, and the number of preliminarily searched studies reached 30,000. In addition,
the International Patent Classification (IPC) standard used does not classify according to
different models (such as trucks, small buses, buses, etc.), and there is no unified standard
for some key components (such as beams, plates, columns, etc.). Therefore, the classification
systems of Japan and the United States were adopted in this study as the main retrieval

416



Axioms 2022, 11, 253

basis, and then the keywords of IPC classification were used for retrieval (as shown in
Table 2). Finally, the recall rates of the three famous Japanese automobile companies,
including Toyota Auto Corporation, Mazda Motor Corporation, and Mitsubishi Auto
Industry Corporation, were taken as data samples. For American studies, 90 studies were
randomly selected for manual reading, and 83 studies related to the retrieval subject were
obtained, with an accuracy of about 92%. Finally, the accuracy was 100% by manual work.
The scope of patent data is a total of 46 years from 1974 to 2020.

Table 2. Table of automobile crash safety technology.

Level 1 Classification Level 2 Classification Level 3 Classification

Safe car body
(B62D21, B62D23, B62D25)

Car body that reduces front impact damage
(B62D 21/00; B62D 23/00; B62D 25/00)

Front cross member
Front rail
Impact energy absorbing device
A pillar
Upper rail
Door panel
Front floor
Front panel
Subframe
Splash shield stiffener
Combinatorial optimization and others

Car body that reduces side impact damage
(B62D 21/00; B62D 23/00; B62D 25/00)

B pillar
Lower rail
Door panel and guard assay
Floor assembly
Roof member
Combinatorial optimization and others

Car body that reduces rear impact damage
(B62D 21/00; B62D 23/00; B62D 25/00)

C pillar
Back floor
Back rail
Back cross member
Combinatorial optimization and others

Step 2: Pretest the predicted data.

The classification of automobile industry technologies in this study is shown in Table 2.
The first level of classification is the safe car body, and the second level of classification
is subdivided into the front-collision-damage-reduction car body, side-collision-damage-
reduction car body, and rear-collision-damage-reduction car body, and finally corresponds
to the parts of the third level of classification.

The development of the retrieval strategy, using the International Patent Classification
(IPC) as a large category, is coordinated with Table 2. For example, when the keyword
B62D corresponds to the safe car body, it can combine the standard classification with the
actual terms used in the automobile industry.

The data were taken as samples from 1974 to 2011, and the linear regression method
in machine learning was used to establish the mathematical model and judge whether the
fitting was feasible. For example, Rsq > 80%: if the model is established, then patent data
can be further predicted. First, the accumulative number of automobile body patents is
predicted to be 4772 in 2012 and 5484 in 2016. It can be judged that the model is regular and
predictive. Second, the cumulative number of predicted patents for the front collision of the
car body is 2856 in 2012 to 3144 in 2016, showing that the model is regular and predictive.
Third, the accumulative number of side collision patents was 1511 in 2012, but it could
not predict the number in 2016, so it showed that the model did not have regularity and
predictability. For the fourth, the accumulative number of rear collision patents for the car
body was 454 in 2012, but the number in 2016 could not be predicted, so the model can be
considered to not have regularity and predictability.
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Therefore, the car body patent data using International Patent Classification (IPC)
and level 1 classification are regular and predictive. The data of the International Patent
Classification (IPC) and the level 2 classification, such as front, side, or back collision, are
not regular and predictable, so it is easy to misjudge the prediction of the technology
lifecycle. Consequently, the subsequent use of data will mainly be International Patent
Classification (IPC) and level 1 classification of the car body patent.

Step 3: The consistency test.

The model adaptability was tested with the level 1 data of the safe car body according
to the results of the pretest in Step 2 in this paper. The general methods of ensemble learning
include voting, boosting, and bagging. In terms of effect, the AdaBoostM1 algorithm of
boosting is the most effective. The idea of the bagging method is to train multiple classifiers
with random sampling which are put back so that the “lower-level” classifiers pay more
attention to the misclassified data of the “upper level”. Finally, the result of each classifier
is weighed and combined to make the decision. Voting applies multiple classifiers for
optional combinations, but the disadvantage is that the majority rules can only avoid the
worst-case scenarios. Therefore, in this study, boosting and bagging were used to test
adaptability, and voting was excluded.

A decision stump was used as a classifier to verify the adaptability of boosting. The
accuracy rate of the test results of the first training was 76.59%. The higher the accuracy
rate is, the better result it is, and it is considered practical when the accuracy rate is over
80%. If it cannot meet the standard, then data training needs to be redone to improve the
accuracy rate. In the method of improving the accuracy of data, AdaboostM1 was used to
train the data, and the parameters were set to 10 iterations. The final classification accuracy
was 100%, which represented the adaptability of the boosting method in this paper.

In this paper, folding cross-validation was used as the test option for training and
evaluation of bagging adaptability, and the classification accuracy rate was 96.69%. The
accuracy of the bagging method meets the requirements as long as it reaches 80%, but
in this paper, the classifier training was carried out for the second time in pursuit of
higher accuracy and the Automobile WEKA was used to improve the performance of the
ensemble learner. The random forest classifier was used as the comparison standard, and
the final classification accuracy rate was 98.88%, which showed that the results could make
a correct judgment.

In brief, the results of the above two stages showed that the adaptability test of this
paper corresponds to the hypothesis of the theory, so the results can provide a relatively
reliable guarantee for the subsequent prediction results.

Step 4: The error result prediction.

Based on the test results of Step 3, this study used the ensemble bagging method to
make a prediction and compared the errors of each period through the historical data from
2001 to 2020. The prediction results of each period are shown in Table 2. The average
absolute error was 55.25, which was more accurate than other single prediction models. In
order to verify the accuracy of the proposed model, this paper analyzes and compares the
traditional prediction methods in Section 4.2 to prove the feasibility and applicability of the
proposed model in patent prediction.

4.2. Validation and Discussion of the Model

In order to verify the accuracy of the model, this study is explained in three parts, as
follows. The first part is to compare the accuracy with different prediction methods. In
this study, absolute error was used to verify the accuracy of the proposed model and other
methods, such as pearl curve, the ARIMA method, the regression method, the support
vector machine (SVR) method, and the ensemble bagging method of neural networks
(BPR), to prove the validity of the proposed method. The second part is to compare the
accuracy with the posterior error test. In this study, the method proposed by Julong, D [49]
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was used to calculate the error of the prediction results, to judge the reliability of the
prediction model.

The third part is the co-integration test (CI) and the error correction model (ECM). The
CI method was proposed by Engle and Granger [50], and it mainly conducts unit root test
on the residual of the regression equation. If the residual sequence is stationary, then it
indicates that there is a co-integration relationship between the variables of the equation,
otherwise there is no co-integration relationship. The ECM, proposed by Davidson et al. [51],
is mainly the influence of short-term fluctuations of variables. Secondly, variables deviate
from the long-term equilibrium relationship in short-term fluctuations. These three parts
are described below.

(1) The comparison of the accuracy with different prediction methods.

To verify the accuracy of the proposed model, pearl curve, ARIMA, the regression
method, the support vector machine (SVM) method, the neural network (BPR), ensemble
learning (bag method), and other methods are compared, respectively. The actual value,
the theoretical value, the absolute error, and the mean absolute error of each period from
2001 to 2020 are presented in Table 3. According to the mean absolute error analysis, the
ensemble learning (bagging method) is 55 and the pearl curve is 73.8, which shows that the
bagging method model proposed in this paper is more accurate than the other models.

Table 3. Predictive performance and absolute error of global body patents.

Year
Patent Pearl Curve ARIMA Regression

Support
Vector

Machine

Neural
Network

Ensemble
(Bagging)

Actual
Value

Predictive
Value Error Predictive

Value Error Predictive
Value Error Predictive

Value Error Predictive
Value Error Predictive

Value Error

2001 209 206 3 217.5 9 185 24 333 124 217 8 189 20
2002 178 222 44 230.8 53 182 4 251 73 251 73 176 2
2003 241 234 7 244.9 4 180 61 233 8 212 29 181 60
2004 243 243 0 258.1 15 178 65 343 100 215 28 188 55
2005 358 247 111 271.5 87 175 183 246 112 224 134 191 167
2006 304 246 58 284.4 20 173 131 372 68 227 77 232 72
2007 364 240 124 297.2 67 171 193 198 166 250 114 254 110
2008 405 231 174 309.7 95 169 236 256 149 224 181 286 119
2009 368 217 151 321.9 46 167 201 483 115 225 143 320 48
2010 376 201 175 334 42 165 211 322 54 228 148 349 27
2011 219 184 35 345.8 127 163 56 418 199 227 8 165 54
2012 69 221 152 357.3 288 161 92 408 339 240 171 155 86
2013 124 205 81 368.6 245 159 35 421 297 224 100 145 21
2014 89 187 98 379.7 291 157 68 450 361 224 135 168 79
2015 95 170 75 390.6 296 155 60 457 362 224 129 168 73
2016 91 152 61 401.2 310 153 62 444 353 224 133 98 7
2017 110 136 26 411.5 302 151 41 434 324 229 119 102 8
2018 92 120 28 421.7 330 149 57 440 348 225 133 113 21
2019 105 106 1 431.5 327 148 43 438 333 225 120 93 12
2020 164 92 72 441.2 277 146 18 415 251 226 62 100 64

Mean
abso-
lute
error

NA NA 73.8 NA 161.39 NA 92.05 NA 206.8 NA 102.25 NA 55.25

It can be further observed from Figure 4 that the red curve is the number of existing
patents (the actual value). After comparing with the theories predicted by other models,
it can be concluded that ARIMA is more accurate in the early stage (2001–2009), and the
proposed model (ensemble bagging) is more accurate in the middle stage (2010–2012) and
the latter stage (2013–2020). However, they will lose accuracy in different intervals, and the
method proposed in this paper has stronger stability. In addition, from the analysis results
of the trend criterion, it can be observed that the bagging method stage result is better, and
the stability of the three stages will be observed in the following part.
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Figure 4. The trend of the actual patent number and various prediction methods.

As shown in Figure 4, the results of comparing the three intervals from the average
absolute errors of different intervals are as follows. The first interval is from 2001 to 2009,
in which ARIMA is the most accurate, with an error of 44. The second interval is from
2010 to 2012, during which the proposed model (the true ensemble bagging method) is the
most accurate, with an error of 196. The third segment is from 2013 to 2020, which is also
the most accurate model (the true ensemble bagging method), with an error value of 36.
By comprehensive observation of Figures 4 and 5, although each method has its accuracy
interval or period in different intervals or periods, the accuracy of the model proposed in
this study (the true ensemble bagging method) is more accurate than other models in the
overall trend (different intervals or periods).

Figure 5. Mean absolute error (lower means more accurate).

(2) The posterior error test method.

After establishing the integrated bagging model, the usability and reliability of the
model were tested. In this paper, the posterior error test method was adopted. Let

420



Axioms 2022, 11, 253

δi = fi − f i(i = 1, 2, 3, . . . , n), where fi is the number of patent applications in a certain
year, f i is the estimated amount calculated by the integrated bagging model, and δi is the
residual.

f = 1
n

n
∑

i=1
fi; δ = 1

n

n
∑

i=1
δi; Standard deviation of raw data S1 =

√
1
n

n
∑

i=1

(
fi − f

)2
;

Standard deviation of residual S2 =

√
1
n

n
∑

i=1

(
δi − δ

)2
.

Calculate variance ratio c = S2
S1

and small error probability p = p
{∣∣δi − δ

∣∣〈0.6745S1
}

.
According to the values of C index and p index, the model level is determined as

shown in Table 4. According to Table 5 data, f = 210.2, δ = 26.55, S1 = 115.74, S2 = 65.86.
The posterior error ratio C = 0.56 and the small error probability p = 1 were calculated. By
comparing the posterior test table (see Table 4), it can be concluded that the prediction of
patent application volume by the integrated bagging model is level 3 (generally satisfied).
The verification of the actual application data above shows that the bagging model has
high reliability for patent prediction.

Table 4. Posterior error test table.

p Index C Index Model Class

>0.95 <0.35 Level 1 (very satisfied)
>0.8 <0.5 Level 2 (satisfied)
>0.7 <0.65 Level 3 (generally satisfied)
<0.7 ≤0.7 Level 4 (unqualified)

Table 5. Actual and forecast number of patents.

Year Quantity (Actual Value) Forecast Quantity Residual Error

2001 209 189 20
2002 178 176 2
2003 241 181 60
2004 243 188 55
2005 358 191 167
2006 304 232 72
2007 364 254 110
2008 405 286 119
2009 368 320 48
2010 376 349 27
2011 219 165 54
2012 69 155 −86
2013 124 145 −21
2014 89 168 −79
2015 95 168 −73
2016 91 98 −7
2017 110 102 8
2018 92 113 −21
2019 105 93 12
2020 164 100 64

(3) Co-Integration and Error Correction Model (ECM).

The main theoretical basis of CI and ECM is that in many time series studies, the
data fluctuation is not a stationary phenomenon, but a random process. In this method,
difference methods (DM) are used to change the original unstable sequence into a stable
one. For example, the equilibrium degree of short-term and long-term fluctuations is used
to provide the model with higher prediction accuracy [52]. Therefore, this paper will verify
the accuracy of the model again through this method, and the main analysis process is
described below.
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Step 1: The first step is to perform a unit root test on the actual value (variable A).

First of all, the trend chart is made for the actual value (variable A) data, as shown
in Figure 6, from which the phenomenon of data containing the trend can be judged.
Subsequently, augmented Dickey–Fuller (ADF) was used for testing. It can be seen from
Table 6 that the insignificant p-Value in the original sequence test column (0.6869) means
that the actual value (variable A) was non-stationary and there a unit root, so difference
processing was required. Finally, the first-order difference sequence unit root test was
performed on the actual sequence value (variable A). It can be seen from Table 6 that the
p-Value in the column of the first-order difference sequence was significant (0.0430), which
means that the sequence data of the actual value (variable A) was stationary. If the p-Value
of the original sequence test was not significant, then the difference method would continue
to process until the p-Value became significant.

Figure 6. Trend diagram of real values (variable A).

Table 6. Unit root test results of actual values (variable A).

Process Level t-Statistic Prob. *

Original
sequence test

ADFTS
1%

−1.752625
0.6869Test critical values −4.532598

First order
difference sequence

ADFTS
1%

−3.775465
0.0430 *Test critical values −4.571559

Note 1: Augmented Dickey–Fuller Test Statistic (ADFTS). Note 2: * = p < 0.05.

Step 2: The second step is to perform unit root test on the theoretical predicted value
(variable B).

This step was tested in the same way as the previous step, with a unit and test for the
theoretically predicted value (variable B). Figure 7 shows that the data of the theoretically
predicted value has a tendency, so the ADF test was carried out. The results of the ADF test
are shown in Table 7. The insignificant p-Value (0.6280) in the sequence test column indicates
that the theoretically predicted value (variable B) was a non-stationary phenomenon with a
unit root, so differential processing was required. Finally, the first-order difference sequence
unit root test was performed on the predicted value of sequence theory (variable B). It can
be seen from Table 7 that the p-Value in the column of the first-order difference sequence
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was significant (0.0245), which means that the sequence data of the theoretically predicted
value (variable B) was a stationary phenomenon.

Figure 7. Trend diagram of predicted value (variable B).

Table 7. Unit root test results of actual values (variable B).

Process Level t-Statistic Prob. *

Original
sequence test

ADFTS
1%

−1.874321
0.6280Test critical values −4.532598

First order
difference sequence

ADFTS
1%

−4.087372
0.0245 *Test critical values −4.571559

Note 1: Augmented Dickey–Fuller Test Statistic (ADFTS). Note 2: * = p < 0.05.

Step 3: Third step is to test the stationarity of the residual sequence.

First, both the actual value and the theoretical prediction (variable A and variable
B) are first-order differences, so A regression model can be established for co-integration
analysis. Then, the least square method is used to estimate the regression model, and the
residual sequence value can be obtained. Figure 8 shows the trend diagram of residual
sequence values in each period. Finally, the unit root of residual error between the actual
value and the theoretical value (variables A and B) was tested, and the results are shown
in Table 8. It can be seen from Table 8 that the p-Value of ADF test result was significant
(0.0000), which means that the residual sequence data were stable and the co-integration
relationship between variables existed.
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Figure 8. Residual sequence trend diagram of actual value and theoretical value (A and B variables).

Table 8. Residual unit root test results of actual and theoretical values (A and B variables).

Tests

Values
t-Statistic Prob.*

ADFTS −6.740233
0.0000 **Test critical values: 1% level −2.699769

Note 1: Augmented Dickey–Fuller Test Statistic (ADFTS). Note 2: * = p < 0.05, ** = p < 0.01

Step 4: Error correction model (ECM).

It is generated according to the first-order autoregressive distributed lag model (ECM),
which describes the short-term fluctuation ∆yt of the explained variable.(

β0
β1−1 + y + β2+β3

β1−1 xt − 1
)

is the error correction term, and (β1 − 1) is the coefficient of
the error term, also known as the adjustment coefficient, which reflects the degree to which
the short-term fluctuation of the variable deviates from the long-term equilibrium. Since
there was a co-integration relationship between variables A and B, the ECM model could
be established, and the residual sequence of the regression model obtained was the value
of the error correction term ECM. We inputted the variables of the error correction term
model, selected OLS for estimation, and obtained the error correction model results, as
shown in Table 9. The coefficient of the error correction term ECM(−1) was estimated
to be significant at the 20% test level, reflecting the extent to which the short-term error
fluctuation of −0.107 deviates from the long-term equilibrium.

Table 9. Error correction model and equation estimation.

Process Variable Coefficient Std. Error t-Statistic Prob.

EECM
(short-term error level)

C −2.503389 12.14467 −0.206131 0.8397
D(INC02) 0.359942 0.177777 2.024687 0.0624
ECM(−1) −0.107066 0.331128 −0.323337 0.7512

EECM
(long-term error level)

C −3.844246 10.35557 −0.371225 0.7151
D(INC02) 0.354652 0.156139 2.271378 0.0364

Note: estimation of error correction model (EECM).

As shown in Table 9, the coefficient of short-term error correction term [ECM(−1)]
verified in this study was −0.107, taking the absolute value, so the estimated value of test
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error tended to 11%. Similarly, the coefficient with a long-term error level of [D(INC02)]
was 0.354652, so the estimated test error was close to 35%. In summary, according to
Lin et al. [53], as long as the estimated short-term test error value is less than 30% and the
estimated long-term test error value is less than 37%, the model is feasible. However, the
long-term estimated value of this study was 35% and the short-term estimated value was
10%. Therefore, the model error of this study is feasible.

In summary, there are three error verification methods in this study, the first is the
accuracy comparison of different prediction methods, the second is the method using the
posterior error test, and the third is the co-integration and error correction model. The
results of the above three kinds of test errors show that the prediction method proposed in
this study is reliable in error precision determination.

We adopted three error verification methods. The first is the accuracy comparison of
different prediction methods, the second is the method of posterior error test, and the third
is the co-integration and error correction model. According to the analysis results, the first
ensemble (bagging) method was more accurate, the second model was generally satisfied,
and the third model had a short-term fluctuation of −0.10 < −0.30. According to Lin et al.
(2011), as long as <0.3, the model is an adaptation. Therefore, the model error of this paper
is acceptable.

4.3. Forecast the Future Development Trend

In this study, the validity of the proposed method was verified by the accuracy of the
validation results, so the global car body patent was forecast for the next 10 years. It can be
observed from the predicted results that the number of patents decreased year by year from
161 in 2020 to 144 in 2030, with a projected decline rate of 15.28% over the next 10 years
(Figure 9).

Figure 9. Prediction of number of patents by ensemble learning bagging method.

From 161 cases in 2021 to 154 cases in 2024, and to 148 cases in 2027, a decline is
predicted in the rate of every three years. The total number of cases will drop 15.28 per-
cent to 144 cases by 2030. This shows that the product technology lifecycle moves from
maturity period to decline period. The results indicate that the research and development
of rigid strength of car body are in a mature stage. At present, the development patents of
body patent technology mostly take body rigidity as the main research and development
technology. Although the body rigidity is strengthened to meet the requirements of safety
materials (such as steel plates as structural parts and cover parts), it also increases the load
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of the car itself. It may cause problems in environmental protection and energy-saving
that do not conform to economic effects and carbon emissions. Therefore, new and other
technologies (such as energy-saving engines) should be developed at the same time to
overcome such problems. In the research conclusion, this study will put forward future
suggestions on the analysis results.

5. Conclusions

In this study, a new forecasting method, the “concept of technology maturity combined
with machine learning model” was proposed to model and forecast the status quo of
patented technology in the automobile industry. It is expected that the proposed method
can provide decision makers and managers in the automotive industry with an accurate
prediction of the future trend of new technologies or products in the industry market before
investing in new technologies or product research and development, so as to reduce the
significant losses of enterprises caused by patent disputes. In addition, this study was
modeled and analyzed by a case study of body patent technology in China’s automobile
industry, and the results prove that the proposed model has stability and applicability in
patent prediction results. What is important is that this method can provide a systematic
and scientific decision-making reference for decision makers or managers in the automotive
industry to use when making new technology or product research and development plans,
and bring value to academic and practical circles. Finally, according to the results of this
study, suggestions for the industry and academia are put forward as follows.

First, our advice to the industry is as follows: According to the S-curve of the theory
of inventive problem-solving theory (TIPS) [54], the technological evolution of products
can be divided into infancy (initial stage), the growth stage, the maturity stage, and the
decline stage. The lifecycle of the technical system can be judged according to the curve
characteristics of the product.

According to the comparison of patent quantity and the S-shaped curve in Figure 10,
patents in the whole region started between 1980 and 2030. From 1980 to 1990 is the
beginning period. From 2001 to 2010, the number of cases increased from 209 to 376,
belonging to the growth stage. From 2011 to 2020, the number of cases decreased from 219
to 164, belonging to the mature stage. The number of cases is expected to decrease from 164
to 144 between 2020 and 2030. The maturity period is characterized by a slight decrease
in the number of patents every year, and a slight increase in performance parameters and
the invention level, which belong to the first level. Therefore, it is judged that the maturity
period of automobile body technology will gradually decline until 2030. The predicted
value is the same as the PLC theory (S-shaped curve), so specific countermeasures are
proposed for the future. It is suggested to follow the TIPS theory to improve the ideal
degree law, improve the system parameters at the present stage, and reduce the production
cost. Where possible, patents can cross-license patents to other companies and predict the
patented technology and efficiency of other parts of the car. For example, for the front-
body collision technology, the application of the technology route can plan the product
technology blueprint and the layout of key patents in the next 5–10 years, so as to increase
the company’s research and development competitiveness, and can also authorize patents
to increase corporate profits.
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Figure 10. Comparison of patent quantity and S-shaped curve.

Based on the results of the analysis, the load problems related to the current body
rigidity design and research and the development objectives of the automotive industry in
the next 10 years are described as follows.

(1) Strategic objectives for short-term development (1–3 years):

Starting from 2021, the short-term trend is 161–156 patents. It is suggested that
aluminum, magnesium alloy, and fiber-reinforced composite materials should be selected
appropriately for short-term strategic development. In terms of design, optimization design
should be carried out according to material characteristics and performance requirements.
Cold forming should be the main process, and hot forming, roll forming, and laser welding
should be the minor methods. The short-term goal is to reduce body weight by 18%.

(2) Strategic objectives of medium-term development (1–5 years):

In the medium term, the number of patents went from 161 to 152. In the mid-term
strategic development, the application of aluminum, magnesium alloy, and carbon fiber-
reinforced composite materials in the car body should be expanded. Structured materials
with performance-integrated lightweight multi objective collaborative optimization designs
should be adopted. In terms of technology, hot forming, warm forming, and internal high-
pressure forming should be the main processes, and extrusion forming, bending, and
thermosetting fiber material should be supplementary processes. The mid-term goal is to
reduce body weight by 30%

(3) Strategic objectives of long-term development (1–10 years):

In the long term, the number of patents went from 161 to 144. In the long-term
strategic development, the selection of materials should be mainly fiber composite materials,
supplemented by light alloy and high strength steel. The design can be integrated with
the requirements of the manufacturing process and cost control. In terms of technology,
thermoplastic fiber material forming, extrusion forming, bending forming, warm forming,
and hot forming should be considered supplementary. The long-term goal is to reduce body
weight by 40%. Automobile body patent technology may have produced core technologies,
so the number of patent applications will decrease. Hence, patent types will be mainly
related to application methods in the future.

Second, our advice to academics is as follows: In this study, traditional statistical
methods and machine learning were used to predict the number of patents, while contin-
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uous quantification was also used to predict the number of patents. It is suggested that
the application of text-based machine learning to patent analysis could be further studied.
Secondly, in recent years, the growth of new energy vehicles has been substantial, and
the technical problems encountered by the development of traditional fuel vehicles in the
automobile body are worth studying.
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Abstract: Satisfaction is relevant for decision makers (DM, Decision Makers). Satisfaction is the feeling
produced in individuals by executing actions to satisfy their needs, for example, the payment of debts,
jobs, or academic achievements, and the acquisition of goods or services. In the satisfaction literature,
some theories model the satisfaction of individuals from job and customer approaches. However,
considering personality elements to influence satisfaction and define preferences in strategies that
optimize decision making provides the unique characteristics of a DM. These characteristics favor
the scope of solutions closer to the satisfaction expectation. Satisfaction theories do not include
specific elements of personality and preferences, so integrating these elements will offer more
efficient decisions in computable models. In this work, a model of satisfaction with personality
characteristics that influence the preferences of a DM is proposed. The proposed model is integrated
into a preference-based optimizer that improves the decision-making process of a Virtual Decision
Maker (VDM) in an optimization context. The optimization context addressed in this work is the
product selection process within a food product shopping problem. An experimental design is
proposed that compares two configurations that represent the cognitive part of an agent’s decision
process to validate the operation of the proposed model in the context of optimization: (1) satisfaction,
personality, and preferences, and (2) personality and preferences. The results show that considering
satisfaction and personality in combination with preferences provides solutions closer to the interests
of an individual, reflecting a more realistic behavior. Furthermore, this work demonstrates that it
is possible to create a configurable model that allows adapting to different aptitudes and reflecting
them in a computable model.

Keywords: Decision Maker; satisfaction; personality; preferences; Virtual Decision Maker

MSC: 93A30; 68T05

1. Introduction

Satisfaction is a factor that represents the perception of individuals about the final
result of a decision process, where elements such as cognitive effort and level of satisfaction
intervene. Currently, organizations and institutions resort to strategies aimed at recognizing
the expectation of satisfaction that meets the needs of decision makers (DM, Decision
Maker). In this way, it is possible to offer goods and services closer to what the individual
expects to obtain beyond their preferences.

For example, the preference for dark clothing does not imply that any dark garment
meets the individual’s expectations. Said garment may cover all the preferred search criteria
(price, fabric quality, size, among others). However, it may be that the garment is not to
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the individual’s liking when trying it on. The above is related to causes associated with
the individual’s personality, which reflect traits that help define their level of satisfaction.
Knowing this type of characteristics related to satisfaction (personality and preferences)
guarantees suggestions of goods and services with a high expectation of satisfaction.

According to the previous idea, if organizations or institutions adopt this type of
optimization mechanism, the existing link with their established market could be strength-
ened by offering their goods or services personalized. They are even making it possible
to venture into a new potential market due to the new and efficient attention, which can
be interpreted as profits. These gains are the result of addressing the perception of the
preferences of each individual, in particular, considerably reducing results perceived as
unfavorable by the individual.

For example, the authors Cruz-Reyes et al. [1] provide a study focused on the inte-
gration of the perception of individuals through their preferences to optimize decision
processes, reflecting in some way their satisfaction. Another study that can be highlighted
is that of the authors Castro-Rivera et al. [2], where they were not limited to integrating only
the preferences of the individual but also their personality to give a better approximation
to what satisfies them according to a decision context.

In general, profits play an essential role in different works that provide studies in
favor of integrating the perception of individuals through their preferences. Such a link
between profits, perception, and preferences is built to gain an advantage in computable
optimization processes so that better solutions can be achieved [1,2]. Hence, the profits
can be seen as a means of characterizing the impact of a particular individual’s perception
over distinct alternatives, which can vary. For example, from the perspective of some
individuals, it may be healthy to consume coffee with a lot of sugar, but for others, it is a
precursor to disease. The example above is a clear manifestation of preferences and the
influence of satisfaction on them.

Satisfaction modeling is related to decision making, representing DM satisfaction
through conceptual models. These models seek to provide various components that
visualize the decisions of individuals and their agreement on the results. These components
have been grouped into satisfaction models under the job and customer approaches. Both
approaches share a relationship between their main components to represent the satisfaction
of individuals. For example, they share emotional factors, motivation, commitment, equity
factors, and strengthening the quality of goods and services. In addition, these models
can model satisfaction from questionnaires provided by the DM, generating representative
values of their satisfaction expectations.

The job and customer satisfaction approaches aim to reflect the satisfaction of the
DM by providing the degree of satisfaction concerning a decisional context [3,4]. How-
ever, representing the satisfaction of the DM is a problem that requires involving more
characteristics, such as preferences and personality.

The reason for considering personality as a characteristic to achieve the satisfaction of
the DM is that preferences are particularities derived from personality; that is, personality
influences preferences. Additionally, personality distinguishes the DM’s behavior relative
to others in the decision-making process. For example, when buying products, an indi-
vidual with a relaxed personality tends to see product attributes with similar relevance,
regardless of whether the quality is lower than the price. On the other hand, an authoritar-
ian personality emphasizes a preference for one of the product’s attributes over another. To
emulate this type of behavior in decision making, indirect strategies are applied [1,5], and
optimizers are based on preferences and influences of personality [2].

Personality influences not only the DM’s preferences but also their satisfaction. The sat-
isfaction characteristic allows one to observe the influence of personality through satisfac-
tion, showing that each individual expresses what uniquely satisfies them. The DM’s level
or degree of satisfaction indicates if the expectation of satisfaction concerning the results
from a decision-making process has been achieved. Results can be obtained through a
strategy based on preferences, such as HHGA-SPP (Hyper-Heuristic Genetic Algorithm
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for Social Portfolio Problem) [6], RPM (Robust Portfolio Modeling) [7], or NOSGA-II
(Non-Outranking Sorting Genetic Algorithm) [8].

Integrating characteristics such as personality and satisfaction in an optimization
strategy based on preferences from the literature could offer more representative solutions
for the interest of the DM. These alternatives are evaluated to see if they meet the DM’s
expectations or degree of satisfaction. This type of satisfaction indicator, together with the
influence of personality on preferences, is an innovative feature of the proposed satisfaction
model. Furthermore, the integration of satisfaction in metaheuristic algorithms has not
been applied previously.

In this work, a satisfaction model with personality characteristics is proposed to
influence the preferences of the DM seeking to improve the decision-making process of a
VDM under an optimization context. Optimization context addresses the product selection
process within a food product shopping problem. This context will serve to evaluate the
functioning of the proposed satisfaction model. In this case study, the intelligent agent is
virtual and takes on the role of a sales assistant who offers the user food product suggestions
according to interests through an optimization strategy based on preferences.

The configuration of the suggestions was classified according to the elements with
which they were generated. This classification consists of two elements: (1) suggestions
generated with satisfaction, personality, and preferences, and (2) suggestions generated
with personality and preferences. These suggestions will be compared with each other and
evaluated with user satisfaction. It is expected that the suggestions of group 1 meet the
satisfaction expectation of the individual concerning the suggestions of the other group.

The main contributions of this work revolve around a satisfaction model and an
architecture of intelligent agents to facilitate an interaction mechanism with the user.
The proposed satisfaction model uses personality properties to influence an individual’s
preferences through preference-based solution strategies. Influencing an individual’s pref-
erences through these characteristics is the most remarkable contribution of this work.
The developed architecture of intelligent agents integrates into its cognitive process the as-
sisted satisfaction model with personality attributes and a strategy based on preferences in
its deliberative process. Both the personality attributes and the preference-based optimiza-
tion strategy come from the literature. The optimization strategy within the deliberative
process is influenced by the features provided by the satisfaction model. This architecture
is the means to represent the cognitive part of the decision process of an intelligent agent
with the role of a VDM.

This research’s main objective is to model a DM’s preferences influenced by personality
characteristics and satisfaction level to improve the decision-making processes of a virtual
agent in an optimization context. Furthermore, this objective intends to demonstrate
that the integration of a satisfaction model that reflects the degree of satisfaction of an
individual in optimization problems that consider the characteristics of their personality
and preferences will provide better solutions than processes that do not integrate a model
of satisfaction. This hypothesis is discussed extensively in Section 5.6.

The following describes how the sections of this document are organized. Section 2
presents the theoretical foundation that supports the realization of this work. Section 3
shows the general architecture of the VDM project. Section 4 presents the satisfaction
model proposed in this work and the description of its components. Section 5 presents the
formulas involved in the satisfaction model and the evaluation of the model’s performance
through a case study, as well as the experimental design. Section 6 corresponds to the
discussion about the results achieved in the experimentation. Finally, Section 7 corresponds
to the conclusions of this work.

2. Background
2.1. Approaches to Satisfaction in the Literature

The main concepts for developing theories and models of satisfaction are addressed
in the literature from two approaches: the job and customer approach. In most jobs, job
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satisfaction is the most recurrent concerning the satisfaction of individuals. Job satisfaction
is made up of emotional and cognitive processes, and through these, the individual evalu-
ates their experience at work [9,10]. Cognitive job satisfaction arises from evaluating job
characteristics more consciously and comparing them with a cognitive standard [10,11].
On the other hand, affective or emotional job satisfaction represents a positive emotional
response from the employee towards work as a whole [10,12].

In addition to job satisfaction, another recurring concept in the literature is the con-
cept of customer satisfaction. The wealth of companies comes mainly from having their
customers satisfied. According to the above, it is necessary to have robust processes and
qualified personnel who provide the consumer’s service or product quality. Measuring
customer satisfaction allows one to know if the conditions in which said processes and
personnel are carried out are adequate and, in this way, to predict the consumption of sales.
Therefore, it is relevant to know the opinion of consumers about the service provided [13].
The concepts of customer satisfaction are illustrated through customer satisfaction models,
which are based on market research and are classified as macro- and micro-models [4].

Some of the most recurrent theories or models under the approach to job satisfaction
are: the theory of affect [14], the theory of the two factors, the model of expectations of
Porter and Lawler [15], Fit-Job theory [16], among others. On the other hand, customer
satisfaction models are divided into macro-models and micro-models. Macro-models high-
light consumer satisfaction by comparing performance standards of services or products.
Some of these macro-models are the traditional model, the models based on the value
chain, and the perceived quality of the service. On the other hand, micro-models look more
directly at customer satisfaction. The micro-models are listed in seven types [4,17], such as
the model of disconfirmation of expectations, model of perceived performance, model of
norms, model of multiple processes, models of attribution, affective models, and models
of equity.

The job and customer satisfaction theories can be associated with personality the-
ories and agent architectures to develop support models in decision making that make
satisfaction explicit through traits, types, emotions, cognitive elements, and real-world
symbology. According to the above, the models of job satisfaction that, at first glance, show
more similarities at the conceptual level with the theories of personality and the architec-
tures of agents are the Theory of Labor Adjustment or Fit-Job (it belongs to the emotional
approaches) and Comparison Theory (belongs to a Motivational approach). In the case of
customer models, the Traditional Model has more similarities with personality theories
and agent architectures, followed by the Value Chain Model.

The Fit-Job satisfaction models, Comparison Theory, Traditional Model, and the Value
Chain Model are functional for developing a decision-making model in an intelligent
virtual agent that integrates the satisfaction and personality of the individuals in various
decision contexts.

2.2. Personality

Personality is commonly seen as the set of behaviors that make up a person's individ-
uality and is regularly used to describe and classify a person's behavior. The personality
includes the external behavior of the person (gestures, behaviors, and observable events)
and the internal experience of the person (desires, thoughts, feelings, and beliefs), which
will produce observable events in the environment [18].

Studies on personality are supported by Personality Theories based on psychology,
which explain the behavior of humans through two study approaches personality traits
and types [19]. Both approaches seek to describe the personality of individuals through
their strengths, weaknesses, preferences to act, and emotional states.

2.2.1. Personality Traits

In the development of systems that interact with people (simulators of human be-
havior), personality traits cannot be ignored due to their influence. They constitute a
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decisive part of human reasoning and behavior, mainly if one agent’s emotional state can
influence the decisions. Furthermore, some personality traits can influence the definition of
emotions and their intensity, as is the case with neuroticism, which reflects the mood of the
person [20].

In contemporary psychology, a personality model seeks to describe the characteristics
of human behavior that constitute its individuality. In general, some of the most spread
trait-based personality models are: big three [21,22], the big five [23,24], and the Five-
Factor Model (FFM) (also known as OCEAN (Openness, Conscientiousness, Extraversion,
Agreeableness, Neuroticism) [25]. According to McCrae and John [25] and Penn-State [26],
six facets are derived from each of the five dimensions or factors of the OCEAN model,
which are: (1) Extraversion: friendliness, gregariousness, assertiveness, activity level,
excitement-seeking, and cheerfulness. (2) Agreeableness: trust, morality, altruism, coopera-
tion, modesty, and sympathy. (3) Conscientiousness: self-efficacy, orderliness, dutifulness,
achievement-striving, self-discipline, and cautiousness. (4) Neuroticism: anxiety, anger, de-
pression, self-consciousness, immoderation, and vulnerability. (5) Openness: imagination,
artistic interests, emotionality, adventurousness, intellect, and liberalism.

2.2.2. Personality Types

Personality types represent another of the approaches that conceptualize personality.
In this approach, each of the humans presents a different vision of the world, making it
clear that each individual is unique and independent in their behavior [27].

There are models of personality that employ Jung’s theory. This theory consists of
three dichotomies that explain how humans differ in the way they perceive their environ-
ment, interact with others, and how they make their decisions based on these personality
types [27]. Some of these models are MBTI (Myers-Briggs Type Indicator) [28], and the
Keirsey Temperament Sorted (KTS) model of temperaments [29], which is based on MBTI.
Of these two grand theories of personality on human behavior, the FFM and MBTI mod-
els stand out as the most recurrent in the scientific literature. These types of models are
commonly used to model socio-emotional agents. In addition, they could influence deci-
sion making through metaheuristics, mainly those that take into account other behavioral
factors, such as preferences.

2.3. Solution Strategy That Integrates the Preferences of a DM, NOSGA-II

Most current multi-objective evolutionary optimization literature approaches focus on
adopting an evolutionary algorithm to generate an approximation of the Pareto Frontier.
For example, the NOSGA-II (Non-Outranking Sorting Genetic Algorithm) algorithm [8]
characterizes the best compromise solution of a multi-objective optimization problem by
increasing the selective pressure toward the most satisfactory solutions. In this way, it
integrates the preferences of a DM established a priori in a genetic algorithm [8,30].

In this work, NOSGA-II is used to integrate the preferences of a DM and generate
alternatives influenced by a personality profile and satisfaction factors to further facilitate
decision making. The configuration applied in this work for the operation of NOSGA-II is
described in the work of the authors Fernández et al. [8].

In Section 2.4, it is possible to find some works related to strategies that integrate the
preferences of a DM, as well as research that offers a proposal to influence personality
factors in this type of metaheuristics.

2.4. State the Art Analysis

Various investigations reveal the importance of personality and preferences on hu-
man behavior in different situations, particularly decision making. They hypothetically
visualize that these characteristics allow them to reach the expectations of satisfaction of
the individuals through the results of the application of their methodologies. However,
the satisfaction of individuals is an issue whose characteristics must be considered in
decision-making processes.
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The absence of some of the distinctive factors of human behavior mentioned above is
usually observed in the literature. For example, the work of Delgado-Hernández et al. [31]
characterizes a dialogue with personality elements and selects the sentences of the conver-
sation with a preference-based optimizer. However, it does not consider characteristics
of satisfaction.

On the other hand, in the work of Seltzer et al. [32], the characteristics of satisfaction
are considered. They relate personality, life, and job satisfaction to highlight the influence
of personality on satisfaction. However, they do not consider the DM’s preferences and are
relevant to satisfaction. For example, a person whose job is not to their liking is more likely
to harm their satisfaction than someone who performs a job to their liking.

Bradea et al. [33] propose a management tool for the selection of assets that provide
optimal returns in the market. They use the preferences of the DM through an optimizer
for decision making. In this work, characteristics of satisfaction and personality are not
considered, so the results could improve in its experimental simulation when considering
these factors.

According to the reviewed literature, no proposals were found that consider the
three topics of human behavior (personality, preferences, and satisfaction) interacting in a
computable model. For this reason, the proposal of a satisfaction model influenced by a
personality that helps model the preferences of a DM is one of the novel characteristics of
this research work.

3. General Architecture of VDM

This section deals with a proposed architecture of a virtual agent with human-like
behavioral traits [34] through satisfaction, personality, and preference models. This archi-
tecture represents a VDM with the role of a decision maker.

The architecture of this work has a degree of topological and mathematical abstrac-
tion [35]. The VDM and the flow of its components are modeled through a diagram.
The data flow between its components comes from applying models that resort to mathe-
matical formulations, as is the case of the proposed satisfaction model in this work.

In addition, the proposed architecture is based on the structure of a utility-based
agent [36] and on the fundamentals of a BDI (Beliefs, Desires, and Intentions) architec-
ture [37,38]. This work aims to provide a framework [39,40] that facilitates the development
of various decision contexts in which the VDM and a real DM can interact.

Figure 1 shows the general scheme of the VDM, whose structure has been developed
to work in any case study. The operation of the architecture consists of selecting from the
knowledge base the contextual elements, information on personality (through the MBTI [28]
and IPIP-NEO [26] questionnaires), the Corpus Processed representative of the preferences
(with the questionnaire proposed by Castro et al. [2]), and the DM satisfaction profile.
With this information, it will be possible to obtain preferential parameters influenced by
the VDM’s personality and approximate the degree of personal satisfaction.

In this project, the PMUDC-I model (Personality Model Under a Decision Context I) [2]
is responsible for generating personality parameters, as well as preferential parameters.
Therefore, the PMUDC-I is the basis for concluding with the development of the PMUDC-
II model. However, this investigation will not address its calculation procedure until
future investigations.

Satisfaction-based personality traits (detailed in Section 5) are generated by the
PMUDC-II model. Therefore, the satisfaction metric to evaluate the results of the de-
liberative process conformed by NOSGA-II comes from the satisfaction model.

In general terms, the VDM architecture aims to emulate a DM’s characteristics through
a decision context. For example, the emulation of the skills of a laboratory technician,
developing experimentation in a virtual laboratory as if they were the DM. This document
focuses on the blocks within the dotted area of the agent architecture (Figure 1). Section 4
presents the characteristics of the satisfaction model proposed in this work.
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Figure 1. VDM architecture is composed of the satisfaction model, NOSGA-II, and PMUDC-II.

4. Personal Satisfaction Model

The module of the personal satisfaction model is part of the cognitive process of the
agent or VDM. This model provides the parameters that reveal the satisfaction of the
DM. This model comprises the customer satisfaction models, which are the Traditional
Model and the Theory of Value, as well as the theories of job satisfaction, which are the
Comparison Theory and the Fit-Job Theory.

The personal satisfaction model has three process blocks: definition of satisfaction
parameters, parameter update, and satisfaction level validation module. Figure 2 shows
the personal satisfaction model with its process blocks. The interaction with the PMUDC-II
model, the knowledge base, and the agent’s deliberative process (NOSGA-II) is mainly
observed. Sections 4.1–4.3 describe the three process blocks of the personal satisfaction
model proposed in this work.

Figure 2. Proposed satisfaction model and the interaction of its process modules.
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4.1. Definition of Satisfaction Parameters Module

The definition of satisfaction parameters module consists of three internal blocks,
which are: input data, processes, and results, which are composed of a combination
of the approaches of job satisfaction and customer satisfaction for their relationship in
similar processes.

In short, the block input data is responsible for retrieving the information from the sat-
isfaction profile, which contains the attributes of the service-product (s-p). These attributes
are: expected performance, quality, quality-performance standards, emotional value, RI-
ASEC test [41], and the ideal-real expectations of the s-p. The block process compares
quality and performance with quality standards to interpret satisfaction, comparing ideal
and actual expectations, reporting whether or not there is satisfaction with the s-p. Finally,
it retrieves the RIASEC test score. The block process defines satisfaction parameters named
value, equality, and utility.

Specifically, the parameter value is made up of information on the perceived perfor-
mance of the p-s, combining characteristics of the Traditional Model and the Theory of
Value. Furthermore, the parameter equality compares the ideal-real expectations based on
the Comparison Theory. Finally, the utility parameter obtains the evaluation provided by
the RIASEC test, which comes from the Fit-Job theory.

Once the satisfaction parameters are generated, they are sent to the block parameter
update module.

4.2. Parameter Update Module

The block parameter update module is made up of the following blocks: intensify
personality traits, update personality traits, and influence parameters of satisfaction and
preferences with personality. In general terms, the parameter update module readjusts the
parameters of satisfaction, personality traits, and preferences to reflect the DV’s behavior in
more satisfying and personality-influenced decision making.

Personality traits are given by the PMUDC-II model and are based on satisfaction
attributes. These traits come from a set of personality parameters called value, equality,
and utility and are intended to characterize satisfaction attributes, which are supported by
satisfaction models in the literature [3,4].

By way of clarification, from the perspective of satisfaction, the parameter value is
developed from the traditional models, and value theory [4] and represents the sentimental
value of the goods or services that produce well-being. On the other hand, from the
perspective of personality, the parameter value comes from the facets of the OCEAN
dimension agreeableness and represents the moral values of the individual, which can
produce satisfaction and well-being by correctly orienting their actions towards society.

In the case of the satisfaction parameter equality, it is based on the comparison
theory [3,42], and represents the satisfaction or dissatisfaction in the expectation of a service
or product. The personality parameter equality is based on the OCEAN facets of the factor
neuroticism and represents dissatisfaction if conditions of equality with others do not exist.

Finally, the satisfaction parameter utility is based on the Job Fit theory [16] and aims
to highlight the skills of the person in the work areas where they perform best and feel
satisfied. The personality parameter utility is based on the facets of the extraversion,
conscientiousness, neuroticism, and openness factors, reflecting aspects that intervene in
decision making, favoring or limiting the results. For example, a shy person may lose
opportunities in their environment due to self-consciousness; on the contrary, a naive
person could make unreasonable decisions.

Through the personality parameters (value, equality, and utility), a set of personality
traits associated with satisfaction are derived. These traits are quantified through the
intensifies personality traits block described below.

The block intensify personality traits assigns the value of the OCEAN facets (dis-
cussed in Section 5.3) to the set of personality traits proposed in this work (discussed in
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Table 1). This assignment of values gives intensity to personality traits, thus influencing the
representative parameters of satisfaction and preferences.

Table 1. Classification of personality traits.

Updating Cycle Influence of Parameters

Utility Value Equality Utility

Patience Ethic Cruelty Conceit
Desperation Humility Generosity Egoism

Shyness Naivety
Laziness
Bravery

Cowardice

The intensity of personality traits determines how much influence they can provide on
the parameters mentioned above. Intensity is obtained through the IPIP-NEO (International
Personality Item Pool-Neuroticism, Extraversion, and Openness) [26] questionnaire.

The relationship between the OCEAN facets and personality traits is possible through
the similarities in its description’s attributes. In the case of facets, their descriptions
have been taken from the OCEAN model [25,26]. The descriptions or definitions of the
personality traits proposed in this work have been taken from the RAE [43].

For example, according to OCEAN, the gregariousness facet of the extraversion dimen-
sion mentions that gregarious people find the company of others rewarding and enjoy the
excitement of crowds. However, people with low scores tend to feel overwhelmed by large
crowds. This description has similarities to the shyness trait, so the gregariousness facet
score can be assigned to the shyness trait. This assignment of values can be consulted in
Section 5.3, where the assignment of the values obtained from each facet to the personality
traits through the IPIP-NEO questionnaire is observed.

Yet another example of similarity in their descriptions is the facet activity level and
the trait laziness. The facet activity level refers to participation in multiple activities. Low
scores on this facet indicate a very relaxed pace. The personality trait laziness describes a
person as being too lax in carrying out their tasks. The relationship of the rest of the facets
with the personality traits can be consulted in [44].

The block update personality traits receives the intensified personality traits to update
other personality traits, according to the classification presented in Table 1. Personality
traits are classified in two ways: traits that control the update cycle of parameters and traits
that influence preferences, satisfaction, and even other elements of personality. The traits
belonging to the utility parameter, such as patience, desperation, laziness, timidity, bravery,
and cowardice, control the update cycle of the parameters. Other personality traits that also
belong to the utility parameter, as well as to the value and equality parameters, influence
the elements of satisfaction, preferences, and personality.

Once the personality traits are updated, they will be sent to the influence parameters of
satisfaction and preferences with a personality block to influence the satisfaction parameters
(value, equality, and utility) and in the preference thresholds given by PMUDC-I. After the
previous process, the influenced parameters will be sent to the deliberative process (to
NOSGA-II) to integrate the preference thresholds. Solutions given by NOSGA-II will be
evaluated by the Satisfaction level validation module.

4.3. Satisfaction Level Validation Module

The satisfaction level validation module receives the solution alternatives from the
deliberative process and validates them through the satisfaction characteristics, which
make up the DM degree of satisfaction, in addition to the query or request formulated from
the beginning by the DM.

The solution alternatives of the deliberative process and the DM request are composed
of criteria or attributes. Depending on the context, these criteria may be colors, sizes,
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and costs, which may be about selling or offering services. The criteria DM’s request
consists of a value, which must be accumulated to be compared with the accumulated total
of the solution alternatives obtained together with the representative tolerance of the DM.
For example, if a request is made under an element selection context, whose criteria or
attributes are its color and size, assuming that each attribute has a weight, the procedure to
perform to obtain the accumulated total is to add the weights of each criterion. Afterward,
the accumulated total is evaluated with the tolerance, representing the deviation or distance
between the expectation (request) and the reality (alternatives).

If the accumulated value of an alternative received criterion does not exceed the
tolerated percentage, it will be counted as a hit. The more hits an alternative has, the more
satisfaction it will reflect. For example, a received or suggested alternative or list containing
three items governed by two criteria would generate a maximum of six hits and a minimum
of zero. Satisfaction is subjective, so an alternative with three correct answers out of six
may be considered satisfactory if the individual’s tolerance allows it. On the contrary,
an alternative with five correct answers out of six may not be acceptable. The above
depends a lot on the personality profile of the individual.

If the solution alternatives are close to those expected by the DM, they are sent to the
graphical interface. Otherwise, the parameters will be updated again to reach a level of
satisfaction more appropriate for the DM, as the update cycle allows (e.g., iteration < 3).
The iteration limit avoids spending too much time searching for an improvement that may
no longer exist because it has already been achieved. The equations and the procedure
explained above can be consulted in the topic Section 5.7.

Section 5 presents how satisfaction is modeled through the characteristics of four
individuals under a case study. In addition, the experimental design and the analysis of the
results are described.

5. Analysis and Results

This section shows how the satisfaction model works using a food purchase case
study. The calculation of parameters and values of each of the modules or process blocks
presented in Section 4, corresponding to the personal satisfaction model, will be shown.

In Section 5.7, the case study will be addressed through two analysis cases. The first
case analyzes an individual’s satisfaction with a collaborative personality profile. The sec-
ond case analyzes the satisfaction of an individual corresponding to the rest of the person-
ality profiles (optimistic, inquirer, and strict). The food products consider the price and
content criteria in both analysis cases.

The representation of the shopping list is based on the Project Portfolio (PP) prob-
lem [45]. The personality profiles, the preferential parameters, and the tolerance parameter
are based on the work of Castro-Rivera et al. [2].

Table 2 shows the input data for the first case of analysis, belonging to a DM with
a collaborative profile. These data are preference thresholds representative of the food
product shopping context, the tolerance parameter, and the personality parameters from
the perspective of satisfaction (Table 1). In the second case of analysis, the input data will
be detailed in Section 5.7.

Table 2. Collaborative profile individual and its parameters.

Parmeter|Threshold Price Contents Value Personality Parameters

Indifference (q) 23.78 185.37 — Value = 0.4
Preveto (u) 31.81 271.58 — Equality = 0.37

Veto (v) 39.85 357.79 — Utility = 0.65
Credibility (λ) — — 0.71
Asymmetry (β) — — 0.08
Symmetry (ε) — — 0.04
Tolerance (ϕ) — — 0.58125
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The satisfaction parameters, developed from the information provided from the satis-
faction profile, have been used in the experiments of the four individuals under analysis.
The above is to observe the positive impact of the influence of satisfaction on the decision
making regardless of the personality/decision profile of the DM. On the other hand, ob-
serve the contrast of the analysis of the results when there is no influence of satisfaction in
decision making.

The process blocks of the satisfaction model are described through Sections 5.1–5.5. In
Sections 5.1 and 5.2, the modeled satisfaction parameters are described. Sections 5.3 and 5.4
show how personality traits influence satisfaction characteristics. Finally, Section 5.5 presents
the influence of satisfaction parameters and personality traits on preference modeling.

5.1. Interpretation of the Satisfaction Profile

The personal satisfaction model requires a series of input parameters for its operation,
including the satisfaction profile. This profile is obtained from a questionnaire with five
questions structured according to the Linkert scale (Appendix E). Each question represents
the concepts of satisfaction models from the literature.

The description of each question and the satisfaction model supporting it are as
follows: Question 1. The expected performance of the s-p is based on the Traditional Model
and Theory of Value; Question 2. Quality is expected to perceive and is built from the
Theory of Value; Question 3. Emotional value for the s-p is based on the Theory of Value;
Question 4. Finally, the ideal expectation of s-p takes its elements from the Comparison
Theory; Question 5. The fulfillment of realistic expectations of the s-p is based on the
Comparison Theory.

In addition, the satisfaction profile provides quality standards, which are elements
required by the Traditional Model to compare the quality and performance of the s-p. These
standards represent elements of the context previously-stored and evaluated according to
different opinions collected from users. This profile also provides the result of the RIASEC
test (based on Fit-Job Theory) [16] to take into account the capabilities of the individual in
the areas that satisfy him at work.

Through the satisfaction profile, you can obtain a minimum of 1 and a maximum of
5 points. The result of the satisfaction profile is shown in Table 3 as an example, together
with the literals that identify each concept.

Table 3. A hypothetical score of the satisfaction profile questionnaire.

Satisfaction Profile Concept Points

Performance (D) 5
Quality (C) 5
Value (V) 5

Ideal expectation (A) 5
Real expectation (B) 4

RIASEC test (R) 7
RIASEC test (I) 4
RIASEC test (A) 5

Table 4 aims to illustrate the quality and performance standards according to the
decision context or case study (purchase of products). However, the values corresponding
to performance Y and quality Z in the calculations have been proposed and not taken from
a collection of authentic standards. From these data, the perceived disagreement (d) can be
calculated, which is a concept of the traditional model that measures the negative-positive
impact of s-p.

Once the satisfaction profile data is known, it is possible to define the satisfaction
parameters, named as value, equality, and utility.
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Table 4. A hypothetical example of the context element standards.

Item Type Color Contents Availability ... Performance (Y) Quality (Z)

1 Product Coffee 3 pieces — ... 3 5
2 Service — — — ... — —
4 Product ... ... ... ... 3 4
3 Product ... ... ... ... ... ...

5.2. Procedure for Defining Satisfaction Parameters

After obtaining the input data of the satisfaction profile, inside block processes define
the parameter value the performance (Y) and the quality (Z) of the standards for obtain the
perceived disconfirmation (d). This calculation consists of taking only those values closest
to the quality (C) and performance (D) given in the satisfaction profile. The selected Y and
Z values will be averaged. The Equation (1) shows the sum of the average between Y and
Z, as well as the sum between C and D, resulting in d.

d = (Y + Z) + (D + C) (1)

Within the block processes, D, C, V, and d are used to interpret the DM’s satisfaction
(s) with the s-p through Equation (2).

s =
D× C×V

d
(2)

To calculate the equality parameter, the ideal expectation must be compared with the
real expectation of the s-p, according to the Theory of Comparison. The Equation (3) shows
the comparison procedure between A and B.

A = B→ satis f action

A > B→ dissatis f action

A < B→ guilty, inequity, discom f ort

(3)

Within the results block, the level of dissatisfaction or guilt obtained by the Equation (3)
is defined using the absolute difference (k) between the ideal expected A and the real
expectation B of the s-p. Equation (4) shows this operation. The value resulting from
applying Equation (4) is the result of calculating the parameter equality.

k = |A− B| (4)

Finally, within the block results, the utility parameter is defined, taking the values
of the RIASEC test. According to what is specified in the RIASEC test, the highest score
that can be obtained with the three literals (M) is 21; that is, 7 points for each literal.
In Equation (5), a conversion of the total score to a scale of 10 is performed for easier
handling, where it is assumed that each literal has a maximum score of 7. The definition
of the parameter utility can be seen in Equation (6), where the value of L in each literal
corresponds to that of the answered RIASEC test.

m =
M1 + M2 + M3

10
(5)

u =
L1 + L2 + L3

m
(6)

Table 5 shows, in a summarized way, the calculation of the satisfaction parameters
using the equations and tables previously exposed. The data substituted in each equation
(EQ) correspond to those obtained by the satisfaction profile.
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Table 5. Definition of satisfaction parameters named as value, equality, and utility.

Parameter EQ Used Substitution of Values in EQ Result

Value (2) s = (5× 5× 5)÷ 17 7.36
Equality (4) k = |5− 4| 1
Utility (6) u = (7 + 4 + 5)÷ 2.1 7.62

5.3. Procedure for the Intensification or Quantification of Personality Traits

Personality traits are quantified in the intensify personality traits block. This process is
possible through the facets of the OCEAN model and the scores provided by the IPIP-NEO
questionnaire (addressed in Section 4.2). Table 6 shows the quantification of personality
traits through the most similar facet. For example, the values shown in this table represent
an individual with a collaborative decision profile. The value assigned to each trait will be
the representative intensity, how shy, ethical, or desperate the person is, and influence the
parameters in general. There are similarities of a personality trait with more than one facet
in some cases, so it must be averaged to obtain its intensity value.

Table 6. Intensification of personality traits through the OCEAN facets [25] and IPIP-NEO question-
naire [26].

OCEAN Factors Facets Value with IPIP-NEO Personality Trait Value with Facet Personality Parameter

Extraversion
Activity Level 0.80 Laziness 0.80

UtilityGregariousness 0.55 Shyness
Excitement-Seeking 0.17 Bravery 0.17

Agreeableness
Morality 0.89 Ethic 0.89

ValueModesty 0.65 Humility 0.65
Altruism 0.95 Generosity 0.95

Conscient.
Self-Efficacy 0.80 Patience 0.80

Utility
Cautiousness 0.72 Shyness Average: 0.63

Cowardice 0.72

Neuroticism

Anxiety 0.64 Desperation 0.64 Utility

Angry 0.27 Egoism 0.27 Utility
Cruelty Equality

Immoderation 0.48 Conceit 0.48 Utility
Cruelty Average: 0.37 Equality

Openness Imagination 0.50 Naivety 0.50 Utility

5.4. Personality Traits Update Procedure

The module personality traits update procedure is responsible for updating the per-
sonality traits displayed in the Table 1. Updating is possible through the association of the
description between the characteristics of these features (according to [44]). In this case,
the related traits are ethics with patience, which have peaceful and correct behavior in
common; humility and shyness, which recognize their ability; conceit and bravery, which
both emit arrogance. Table 7 shows the value of the intensity of said traits, according to
the quantification presented in Table 6. This intensity value will be used to calculate the
update of the decision and influence characteristics.

Table 7. The intensity of personality traits is classified as decisive.

i Influence Traits (ni) Intensity (ni) Decision Traits (wi) Intensity (wi)

1 Ethic 0.89 Patience 0.80
2 Humility 0.65 Shyness 0.63
3 Conceit 0.48 Bravery 0.17
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Equation (7) shows the rules that must be followed to apply influence to decision traits;
that is, if the intensity of the traits desperation, laziness, and cowardice does not exceed
the intensity of the traits patience, shyness, and bravery, the latter will not be influenced,
keeping their value, otherwise they will be influenced by applying Equation (8). This last
equation increases a small percentage, representing the influence trait update over the
decision trait. For example, the trait of patience increases due to the feedback it has with
the ethics part, so that it can overcome desperation.

w∗i =





wi if patience > desperation ∧
shyness > laziness ∧
bravery > cowardice

(ni × wi) + wi if patience < desperation ∧
shyness < laziness ∧
bravery < cowardice

(7)

w∗2 = (n2 × w2) + w2 = 1.03→ shyness∗ (8)

Updating the egoism, generosity, cruelty, and naivete traits is conducted in a similar
way as explained for the previous traits. The common characteristics of these traits are
intended to update the preference thresholds given by the PMUDC-I model. The relation-
ship between the characteristics of both approaches (decision and influence) is observed as
follows: egoism and laziness, both are interested only in themselves; generosity and cow-
ardice, both have neither humor nor courage to do harm; cruelty and desperation, present a
state of mind altered by anger; naivety and patience handle simplicity without alterations.

Table 8 shows the intensity corresponding to each trait based on Table 6. The influence
traits are updated by applying Equation (9), except for the trait humility, which is calculated
using the Equation (10). The relationship between the traits egoism, generosity, cruelty, and
naivety and preference thresholds will be discussed in the topic Section 5.5.

n∗1 = (n1 × w1) + n1 = 0.48→ Egoism∗ (9)

Humility =
(Egoism∗ + Generosity∗)

2
= 1.05 (10)

Table 8. The intensity of personality traits is classified as influential.

i Influence Traits (ni) Intensity (ni) Decision Traits (wi) Intensity (wi)

1 Egoism 0.27 Laziness 0.80
2 Generosity 0.95 Cowardice 0.72
3 Cruelty 0.37 Desperation 0.64
2 Naivety 0.50 Patience 0.80

In Table 9, the decision traits will be used to control a cycle that will determine if
the influence traits should be updated or not. In addition, influence traits will serve to
update preference thresholds and satisfaction parameters. Table 9 is a summary of the
results of the influence on each of the personality traits. This influence is the result of
applying Equations (7)–(10). Finally, it only remains to send them to the following process
to influence the satisfaction and preference parameters (thresholds).
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Table 9. Results of the influence calculation of the decision and influence traits.

Influenced Decision Traits Intensity Influenced Traits of Influence Intensity

Patience 1.512 Egoism 0.48
Shyness 1.03 Generosity 1.63
Bravery 0.25 Humility 1.05

— — Cruelty 0.60
— — Naivety 0.90

5.5. Procedure of Influence of the Parameters of Satisfaction and Preferences with the Personality

Within the procedure Procedure of influence of the parameters of satisfaction and
preferences with the personality the following elements are required: personality traits
(Table 9), satisfaction parameters (Table 5), personality parameters, and preference thresh-
olds (Table 2).

Equation (11) shows the process of influencing the satisfaction parameters with the
personality parameters (relationship addressed in Section 4.2), where the parameters
belonging to the same group will perform the influence or update.

Equation (12) shows as an example the calculation of the influence of the satisfaction
parameter value (ViSj) by substituting the values from Table 10 in Equation (11) according
to their corresponding group. The satisfaction parameters were taken from Table 5 and the
personality parameters are found in Table 2.

ViS∗j = (ViSj ×ViPj) + ViSj

EiS∗j = (EiSj × EiPj) + EiSj

UiS∗j = (UiSj ×UiPj) + UiSj

(11)

ViS∗j = (ViSj ×ViPj) + ViSj

Parameter Value∗ = (7.36× 0.4) + 7.36 = 10.304
(12)

Table 10. Influence of personality on satisfaction through the parameters value, equality, and utility.

Params. (i) Satisf. Params. (Sj) Pers. Params. (Pj) Influence of Pers. on Satisf.

Value (Vi) 7.36 0.4 10.304
Equality (Ei) 1 0.37 1.37
Utility (Ui) 7.62 0.65 12.573

The influence traits presented in Table 9 influence the preference thresholds. The pref-
erence thresholds indicate the differences between comparisons of alternatives through
a strategy that integrates preferences of a DM, such as NOSGA-II [8]. The preference
thresholds will be provided by the PMUDC-I model preferential impact model [2].

In general terms, the description of the threshold q indicates the minor differences
between one alternative and another to consider them negligible. On the other hand,
the description of the threshold v points out the significant differences between alternatives,
considering one of them preferred over the other. Finally, the description of the threshold
u shows the magnitude of the differences between alternatives when the veto conditions
begin to be observed. These descriptions have been taken from Rivera-Zárate’s work [46]

The description of the trait generosity indicates sensitivity and compassion for the
misfortunes of others. The egoism trait describes excessive attention to oneself without
caring about others. In the case of the humility trait, it indicates the virtue of recognizing
one’s limitations and weaknesses. These definitions or descriptions have been taken from
RAE [43]

Through the provided descriptions of the preference thresholds and the traits gen-
erosity, egoism, and humility, it is possible to visualize a relationship in common and,
in this way, influence thresholds of preference with the personality traits mentioned above.
In the case of the threshold q and the trait generosity, they have in common that they are
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indifferent to minimal situations. The threshold v and the trait egoism reflect a restrictive
character. Finally, the threshold u and the trait humility share that they both recognize their
limitations, but it does not represent any problem.

Table 11 shows the satisfaction parameters and the result of the influence of personality
traits. The threshold-related trait q (generosity) represents the least stringent trait; therefore,
the satisfaction parameter with the least weight will be influenced by generosity, and the
strictest trait egoism, will influence the parameter with the highest weight.

In Table 11, the satisfaction parameters have been ordered in ascending order and
placed with the corresponding personality trait, influencing said parameter through its
intensity, generating a small percentage of equivalent increases of the trait over the param-
eter. Through Equation (13), it is possible to influence the satisfaction parameters with
personality traits to affect the DM preference thresholds later. The Table 11 shows the result
of applying Equation (13).

Equality∗ = (Equality×Generosity Intensity) + Equality
Value∗ = (Value×Humility Intensity) + Value
Utility∗ = (Utility× Egoism Intensity) + Utility
Parameter Equality∗ = (1.37× 1.63) + 1.37 = 3.60

(13)

Table 11. Results of the influence of the satisfaction parameters with personality traits.

Parameter Parameter Value Influence Traits Intensity Result of Influence

Equality 1.37 Generosity 1.63 3.60
Value 10.304 Humility 1.05 21.12
Utility 12.573 Egoism 0.48 18.60

After influencing the parameters of satisfaction with personality, they are converted to
a percentage to affect the preference thresholds consistently and moderately, increasing the
equivalent percentage of each parameter over each of the thresholds. Table 12 shows the
conversion of each parameter to a percentage. Equation (14) shows how the calculation of
the influence of the preference parameters is carried out with the satisfaction parameters
influenced by personality, and Table 13 shows the results of the influence of each threshold.

q∗ = (q× Equality) + q
u∗ = (u×Value) + u
v∗ = (v×Utility) + v
Parameter q∗ = (23.78× 0.036) + 23.78 = 24.63

(14)

Table 12. Conversion of the satisfaction parameters to a percentage fraction.

Parameter Influenced Parameter Value Conversion to % %

Equality 3.60 3.60÷ 100 0.036
Value 21.12 21.12÷ 100 0.2112
Utility 18.60 18.60÷ 100 0.186

Table 13. Preference thresholds influenced by satisfaction parameters from Table 12.

Threshold Threshold Value Satisf. Param. Param. Value Result of Influence

q 23.78 Equality 0.036 24.63
u 31.81 Value 0.2112 38.52
v 39.85 Utility 0.186 47.26

The influence of the preference thresholds λ (credibility), β (asymmetry), and ε (sym-
metry) is completed in the same way as with the thresholds q, u, and v. In this case, the traits
used to influence are cruelty, naivety, and humility.
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According to the description of the threshold λ, it is associated with credibility. The
more value you have, the more credibile and strict the character. The threshold β indicates
a preferential distinction between comparisons of alternatives. Finally, the threshold ε
establishes indifference in comparing alternatives. These descriptions or definitions were
interpreted from the work of Fernández et al. [47].

In the case of personality traits, the trait description or definition of cruelty reflects a
fierce or impious state of mind. The trait naivety indicates sincerity, straightforwardness,
and lack of malice. The humility trait mentions recognizing limitations and weaknesses.
These definitions or descriptions are based on RAE [43].

Through the provided descriptions of the thresholds λ, β, and ε, and of the traits cruelty,
naivety, and humility, it is possible to visualize a common relationship and influence the
aforementioned thresholds with personality traits. The common description between
the threshold λ and the trait cruelty is that they both share a strong and strict character.
The relationship between the threshold β and the trait humility is that they recognize their
limitations. Finally, the threshold ε and the trait naivety share an opening character.

Equation (15) shows how to calculate the influence of the parameters of satisfaction
with personality traits. Finally, Table 14 shows the result of calculating the influence of per-
sonality on satisfaction parameters. According to their standard description, the parameters
have been ordered in descending order and with the corresponding personality trait.

Utility∗ = (Utility×Cruelty Intensity) + Utility
Value∗ = (Value×Humility Intensity) + Value
Equality∗ = (Equality×Naivety Intensity) + Equality
Parameter utility∗ = (12.573× 0.60) + 12.573 = 20.11

(15)

Table 14. Calculation of the influence of the parameters of satisfaction with the traits in order with
the thresholds λ, β, and ε.

Parameter Parameter Value Influence Traits Intensity Result of Influence

Utility 12.573 Cruelty 0.60 20.11
Value 10.304 Humility 1.05 21.12

Equality 1.37 Naivety 0.90 2.60

Table 15 shows the conversion of the satisfaction parameters to generate a moderate
increase in the influence of personality and satisfaction on the thresholds λ, β, and ε.

Table 15. Conversion of satisfaction parameters.

Parameter Influenced Parameter Value Conversion to % %

Utility 20.11 20.11÷ 100 0.2011
Value 21.12 21.12÷ 100 0.2112

Equality 2.60 2.60÷ 100 0.026

Equation (16) shows how to calculate the influence of the thresholds λ, β, and ε
with the satisfaction parameters. Finally, Table 16 shows the thresholds influenced by
the satisfaction parameters ordered from strictest to most relaxed (in the same way as in
Table 14).

λ∗ = (λ×Utility) + λ
β∗ = (β×Value) + β
ε∗ = (ε× Equality) + ε
Parameter λ∗ = (0.71× 0.2011) + 0.71 = 0.85

(16)
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Table 16. Result of preference thresholds influenced by satisfaction.

Threshold Threshold Value Satisf. Param. Param. Value Result of Influence

λ 0.71 Utility 0.2011 0.85
β 0.08 Value 0.2112 0.096
ε 0.04 Equality 0.026 0.041

Table 17 shows the preference thresholds finally calculated and ready to be sent to the
deliberative process. The increase in each parameter can be seen with the naked eye, where
said increase represents the influence of satisfaction and personality on preferences during
the decision-making process.

Table 17. Summary of preference thresholds influenced by satisfaction and personality.

Threshold Threshold Value

Indifference (q) 24.63
Preveto (u) 38.52

Veto (v) 47.26

Credibility (λ) 0.85
Asymmetry (β) 0.096
Symmetry (ε) 0.041

5.6. Experimental Design

The experimental design validates the functioning of the proposed satisfaction model
integrated into the cognitive process of an intelligent agent. Furthermore, the hypothesis to
be validated shows that integrating the degree of satisfaction of an individual in optimiza-
tion problems that take into account personality and preferences generates better solutions
than process solutions that do not incorporate satisfaction. The validation is carried out
through a case study that addresses the purchase of food products.

The solutions that integrate characteristics of satisfaction, personality, and preferences
of the DM, come from the process of applying the satisfaction model proposed in this
work, the NOSGA-II metaheuristic based on preferences [8], and a personality model
(PMUDC -II). On the other hand, the solutions that only integrate personality charac-
teristics and DM preferences come from the application of the PMUDC-I [2] personality
model and the NOSGA-II strategy. These solutions represent a set of shopping lists with
the products desired by the DM, which the VDM suggests. Both sets of shopping lists
(generated with/without satisfaction characteristics) will be compared to validate the
proposed hypothesis.

The hypothesis validation experiment will be applied to four individuals that reflect
different characteristics to contrast the solutions generated. These individuals will be
identified under the optimistic, collaborative, inquirer, and strict personality profiles.
A parameter will indicate their tolerance for solutions differently from their decision, and a
set of parameters will quantify their satisfaction from a personality perspective. To collect
information on the personality of individuals, the questionnaire based on personality types
of the MBTI model is used [28] and the IPIP-NEO [26] questionnaire will be applied, which
is based on personality traits from the FFM-OCEAN model [25]. The personality profiles
and the tolerance parameter will be taken from the PMUDC-I model [2]. The personality
parameters that characterize satisfaction will be taken from the PMUDC-II model, which
uses the PMUDC-I model for its development. The PMUDC-II model will be addressed
in future research. The result of applying the personality questionnaire can be seen in
Appendices B and C.

Information on the preferences of the individuals under experimentation will be col-
lected through a questionnaire based on a specific decision context. In this case, the context
is the purchase of food products. In this way, it will be possible to generate representative
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parameters of the preferences of a DM, which are: indifference, preveto, veto, credibil-
ity, asymmetry, and symmetry. The questionnaire and the preference parameters will be
provided through the preferential impact model of the PMUDC-I model [2]. The result
of applying the preferences questionnaire can be seen in Appendix D, and the product
database can be found in Appendix A.

The information on the satisfaction profile will be obtained through a questionnaire
proposed in this work, whose structure is presented in Section 5.1. The information
from the satisfaction profile (results of the satisfaction questionnaire and the RIASEC
test [16,41]) will be used in the experimentation with the four study subjects to influence the
cognitive and deliberative process. The reason for experimenting with the same set in the
decision process of the four individuals is to observe the positive impact of satisfaction on
preferences regardless of the personality characteristics of the DM. The result of applying
the satisfaction questionnaire can be seen in Appendix E. The result of applying the RIASEC
test can be seen in Appendix F.

Using the information of the individuals mentioned above, the VDM will provide
a set of instances generated with the influence of the satisfaction model and without
the intervention of said influence. Each instance will be evaluated using the degree of
satisfaction metric proposed in this work to determine if it meets its expectations. These
instances are composed of a series of food products requested by the individual. In this
set, it is simulated that the four study subjects want or request to acquire the same type of
products (for example, water, milk, and bread).

The results obtained from evaluating the set of instances of the individuals’ understudy
will be compared through the Wilcoxon non-parametric statistical test. This statistical test
will indicate whether or not there are significant differences between the solutions or
instances generated with the satisfaction model and without the said model. This statistical
test will reinforce the hypothesis that guides this research work.

5.7. The Evaluation Process of the Degree or Level of Satisfaction (Satisfaction Metric)

The satisfaction metric is responsible for evaluating the solution alternatives provided
by the deliberative process. These solutions come from the NOSGA-II solution strategy,
which integrates the preference thresholds influenced by satisfaction and personality.
Therefore, the alternative solutions (decisions) provided by NOSGA-II somehow reflect the
DM’s satisfaction, preferences, and personality. In addition, the satisfaction metric ensures
that the solutions are closest to the DM’s satisfaction expectations imposed, that is, to their
initial request, which, according to the case study of product shopping, is a shopping list
with certain products selected by the user (DM).

The evaluation consists of taking the DM’s initial request or product list as a reference
and comparing it with the solution alternatives given by the NOSGA-II strategy, preventing
them from exceeding the tolerance (ϕ∗) allowed for deviation from their ideal satisfaction.

In the work of Castro-Rivera et al. [2], a method to calculate tolerance (ϕ) allowed
for distance concerning alternative solutions other than your preference has been pro-
posed. However, this tolerance (ϕ) does not reflect the DM’s satisfaction. Equation (17)
shows how to integrate satisfaction into tolerance (ϕ∗), where µ represents the union
of the set of satisfaction parameters and ϕ represents the tolerance of the DM without
reflecting satisfaction.

The calculation of µ is proposed through the union of the satisfaction parameters
calculated in Table 12, whose result is 0.4332. The reason for using the satisfaction parame-
ters to influence q, u, and v, is because these preference parameters represent a less strict
character with respect to the thresholds (λ, β, and ε), according to the description provided
in Section 5.5. The above reason make them more suitable for calculating ϕ∗ since tolerance
indicates relaxation and not restriction. After calculating ϕ∗, it is necessary to know the
accumulated value of each criterion, both the DM’s request and the solution alternatives
given by the deliberative process (NOSGA-II), to compare them with var f i∗.
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ϕ∗ = (ϕ× µ) + ϕ (17)

Table 18 shows the structure of both the query or list of products requested, as well as
the alternative solutions, where R represents the set of suggested alternatives/lists/shopping
baskets, be it the request or the alternatives delivered by the deliberative processes (NOSGA-
II strategy). This set goes from R1 to Rm and is made up of n elements or products x
characterized by benefits, criteria, or attributes b that go from b1 to bp. Table 18 also shows
the total sum of each of the criteria (SbRm p

), which is formally expressed in Equation (18).
The total sum of each criterion, determined by SbRm p

, will be compared with ϕ∗ using
Equation (19) as the first measure of evaluation of the satisfaction.

SbRk|k∈{1,2,...,m} j|j∈{1,2,...,p} =
n

∑
i=1

bRk jxRk
i (18)

Table 18. Structure of the requested shopping list and solution alternatives/suggested shopping lists.

Lists Products Criteria

R1

xR11
, xR12

, . . . , xR1n bR11
bR12

. . . bR1 p

xR11 bR11xR1 1 bR12xR1 1 . . . bR1 pxR11

xR12 bR11xR1 2 bR12xR1 2 . . . bR1 pxR1 2
...

...
...

...
...

xR1 n bR11xR1 n bR12xR1 n . . . bR1 pxR1 n

SbR1 1 SbR1 2 . . . SbR1 p

...
...

...
...

...
...

Rm

xRm1 , xRm2 , . . . , xRmn bRm1 bRm2 . . . bRm p

xRm1 bRm1xRm 1 bRm2xRm 1 . . . bRm pxRm 1
xRm2 bRm1xRm 2 bRm2xRm 2 . . . bRm pxRm 2

...
...

...
...

...
xRmn bRm1xRm n bRm2xRm n . . . bRm pxRm n

SbRm1
SbRm2

. . . SbRm p

Table 19 shows the structure of a list/request/alternative solution (Table 18) with the
accumulated total of each of its criteria (Equation (18)). In this case, said list represents the
query or shopping list of food products requested by the DM. This shopping list comprises
three products and two criteria, the price and the content.

Table 19. DM’s initial shopping list for the VDM.

Product Price Contents

Natural water 5.80 600
Soluble coffee 38 180
Sweetbread 9.90 62

— SbR01
: 53.70 SbR02

: 842

In Table 20, there are alternative solutions or shopping lists suggested by the VDM,
generated with the NOSGA-II strategy. These lists are based on the shopping list requested
by the DM. Suggested lists by VDM try to cover the objectives from the list requested
by DM, improving either in some criterion or in both (price or content). In addition,
the suggested lists reflect the preferences, personality, and satisfaction of the DM due to the
preference thresholds (Table 17) that were provided to NOSGA-II.
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Table 20. Solution alternatives generated with NOSGA-II based on the list in Table 19.

List Product Price Contents

List 1
Natural water 8.50 600
Soluble coffee 41 180
Sweetbread 14 200

SbR11
: 63.50 SbR12

: 980

List 2
Natural water 8.50 600
Soluble coffee 41 180
Sweetbread 9.90 62

SbR21
: 59.40 SbR22

: 842

List 3

Natural water 8.50 600
Natural water 12.60 1500
Soluble coffee 38 180
Sweetbread 14 200

SbR21
: 73.10 SbR22

: 2480

The first strategy is to evaluate what was obtained against what was expected. That
is to say, the requested list with the lists suggested by the VDM. Then, it is necessary to
calculate the proportion that exceeds each criterion of the suggested lists to the criteria of
the requested list. In this work, it is proposed to compare the proportion of differences
between criteria with the tolerance (ϕ∗), ensuring that the total sum of each criterion (SbRm p

)
of the suggested lists does not exceed what is allowed by ϕ∗. It will be counted as a hit (Ab).
The higher the number of hits the set of suggested lists has (R = {1, 2, . . . , m}), the closer
the DM’s satisfaction will be. In Equation (19), the procedure described above is presented.

Ab = Ab + 1 si ϕ∗ ≥
|SbR01

−SbR11
|

SbR01

,
|SbR02

−SbR12
|

SbR02

, . . . ,
|SbR0 p

−SbR1 p
|

SbR0 p

Ab = Ab+1 si ϕ∗ ≥
|SbR01

−SbR21
|

SbR01

,
|SbR02

−SbR22
|

SbR02

, . . . ,
|SbR0 p

−SbR2 p
|

SbR0 p
...

...
...

Ab = Ab + 1 si ϕ∗ ≥
|SbR01

−SbRm1
|

SbR01

,
|SbR02

−SbRm2
|

SbR02

, . . . ,
|SbR0 p

−SbRm p
|

SbR0 p

(19)

In Table 21, Equation (19) is replaced with the values of the suggested shopping lists
(Table 20) and the list requested by the DM (Table 19). In this evaluation, the total hits of
the set of suggested lists have been five hits out of six. Each list can obtain two maximum
hits due to its two criteria and a minimum of zero hits.

Table 21. Substitution of values in Equation (19).

List Criteria Operation Comparison with ϕ∗ Hit (Ab)

List 1 Price |53.70− 63.50| ÷ 53.70 = 0.182 0.8330475 ≥ 0.182 Ab = 1
Contents |842− 980| ÷ 842 = 0.163 0.8330475 ≥ 0.163 Ab = 2

List 2 Price |53.70− 59.40| ÷ 53.70 = 0.106 0.8330475 ≥ 0.106 Ab = 3
Contents |842− 842| ÷ 842 = 0 0.8330475 ≥ 0 Ab = 4

List 3 Price |53.70− 73.10| ÷ 53.70 = 0.361 0.8330475 ≥ 0.361 Ab = 5
Contents |842− 2480| ÷ 842 = 1.945 0.8330475 ≥ 1.945 Ab = 5

After counting the total hits of the solution alternatives (set R), verifying if the said
number of hits comes close to the DM’s ideal satisfaction expectation is necessary. For eval-
uation satisfaction of the lists suggested by the VDM, the proportion represented by the
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hits in the m lists of the set R must first be obtained. Then, with this proportion, it will
be possible to know the percentage of satisfaction that the correct answers cover in the
p criteria. Finally, this percentage should be compared to the satisfaction expectation of
the DM.

If the percentage of correct answers exceeds or equals the satisfaction expectation,
then the set R is accepted; otherwise, it will be necessary to readjust the satisfaction,
preferences, and personality parameters. Equation (20) shows the procedure described
above, in addition to the substitution of the values presented above, where Ab = 5, m = 3,
p = 2 and ϕ∗ = 0.8330475. The result indicates that the set of lists R reaches the satisfaction
expectation so that the solution alternatives are satisfactory and efficient for the interests of
the DM.

There is satisfaction if . . . Ab
m×p ≥ |1− ϕ ∗ |

Substituting . . . 5
(3×2) = 0.84

|1− 0.8330475| = 0.1669525

Yes, there is satisfaction 0.84 ≥ 0.1669525

(20)

Tables 22 and 23 show the data used in each individual to generate the lists and
the evaluation of the results. In Table 23, personality parameters corresponding to each
decision profile are used to influence satisfaction and preferences. The same satisfaction
parameters (Table 10) were applied in the experiments of the three individuals with different
profiles. The above is the purpose of observing the impact of the personality on the results,
despite having the same satisfaction or expectation, and observing how it complements the
satisfaction, producing highly satisfactory results when both factors are present.

In Table 24, the previous experiment has been replicated, only that this time three
different personality-decision profiles are involved than that of the previously analyzed indi-
vidual (cooperative decision profile). In this experiment, the results of six lists with/without
satisfaction for each decision profile (strict, optimistic, and inquirer) have been evaluated.
That is, solutions generated with the presence of satisfaction and without its presence are
evaluated. These lists also consider only two criteria.

Table 22. Information from three individuals under studies with different decision profiles.

Profile Status Criteria Thresholds Tol.

b q u v λ β ε ϕ∗

Strict
WS Price 15.23 18.85 22.14 1.07 0.20 0.08 0.23

Contents 150.72 223.56 298.05

WoS Price 14.88 16.49 18.11 0.92 0.17 0.08 0.166
Contents 147.27 195.53 243.8

Optimistic
WS Price 36.71 47.20 56.28 0.63 0.02 0.01 1.23

Contents 800.54 1039.43 1248.25

WoS Price 35.93 41.63 47.33 0.54 0.02 0.01 0.91
Contents 783.41 916.62 1049.83

Inquirer
WS Price 35.01 44.38 49.28 0.93 0.13 0.06 0.39

Contents 179.95 343.55 483.67

WoS Price 34.39 38.8 43.21 0.8 0.12 0.06 0.30
Contents 176.76 300.4 424.05
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Table 23. Personality parameters corresponding to each decision profile.

Factor Profile Parameters

Personality

— Value Equality Utility
Strict 0.253846154 0.26 0.353846154

Optimistic 0.053076923 0.175384615 0.247692308
Inquirer 0.27 0.2715385 0.4715385

Satisfaction — 7.34 1 7.62

Table 24. Experimentation of the impact of satisfaction in three individuals with different deci-
sion profiles.

Profile Status Lists Hits (Ab) Satisf. (Equation (20))

Prices Contents

Strict

With satisfaction
List 1 57.8 980

5 de 6List 2 65.70 2342 YES
List 3 53.69 842

Without satisfaction
List 1 69.90 1942

0 de 6List 2 70.70 1042 NO
List 3 72.00 2342

Price Contents

Optimistic

With satisfaction
List 1 60.00 1880

4 de 6List 2 65.80 2480 YES
List 3 75.69 1110

Without satisfaction
List 1 62.69 2342

3 de 6List 2 67.70 2842 YES
List 3 67 2380

Price Contents

Inquirer

With satisfaction
List 1 70.40 1042

5 de 6List 2 70.90 2442 YES
List 3 60.50 980

Without satisfaction
List 1 56.40 842

3 de 6List 2 67.00 2880 NO
List 3 75.50 3480

The resulting shopping lists are shown in Table 24; each decision profile presents three
lists for each strategy (with/without satisfaction) with the accumulated values of the price
and content criteria. The lists of each strategy have been selected from the deliberative
process (NOSGA-II) and represent the most optimal set of solutions suggested by the VDM
concerning the satisfaction, preferences, and personality of a DM.

The results of the experiment with three individuals with different profiles in Table 24
indicate that the optimistic profile has a similar performance in both cases (with/without
satisfaction). The above is due to its high tolerance since optimistic or relaxed individuals
are very open to decisions other than their preferred ones. Hence, their satisfaction is
high, possibly in most decision contexts, so lists with the influence of satisfaction meet
the expectations of the optimistic DM. In contrast, in the case of the inquirer and strict
profile, the satisfaction-influenced lists have a more substantial advantage in meeting the
satisfaction expectation.

In Table 25, the same instances of the experiment above (Table 24) have been used,
but evaluating each of the three decision profiles (with/without satisfaction) has. In the said
table, similar behavior is observed concerning the results of Table 24, where an optimistic
individual in both cases (with/without satisfaction) shows a very high tolerance. In the
case of the individual with the strict profile, only the instance I1 was accepted as satisfactory,
and the difference in results can be seen when satisfaction is present and when it is not
present. In the inquirer profile, instances I2 and I5 show that the presence of satisfaction
represents a difference concerning its absence. In Table 25, the terminology used is as

453



Axioms 2022, 11, 232

follows: H (Hits), WS (With satisfaction), WoS (Without satisfaction), S (Satisfaction), Y
(Yes), N (No), and I (Instance).

Table 25. Experimentation with three decision profiles using six data instances.

Profile

Instance Values Strict Optimistic Inquirer

Price Content
WS WoS WS WoS WS WoS

H S H S H S H S H S H S

I1
57.8 980

5 Y 4 N 5 Y 5 Y 5 Y 5 Y65.7 2342
53.69 842

I2
69.9 1942

0 N 0 N 4 Y 4 Y 4 Y 1 N70.70 1042
72.00 2342

I3
60.00 1880

2 N 1 N 4 Y 4 Y 3 N 3 N65.80 2480
75.69 1110

I4
62.69 2342

1 N 0 N 3 Y 3 Y 3 N 3 N67.70 2842
67.00 2380

I5
70.40 1042

2 N 2 N 5 Y 5 Y 5 Y 3 N70.9 2442
60.50 980

I6
56.40 842

2 N 2 N 4 Y 4 Y 3 N 3 N67.00 2880
75.50 3480

The results of Table 25 were subjected to a statistical analysis taking the Hits (H) column
of the WS and WoS groups of the six instances evaluated with the three profiles of the DMs’.
The statistical test applied was Wilcoxon to compare both groups and determine significant
differences between them. The significance level used for the test was 0.05, obtaining a
p-value of 0.0393, which means that the difference in means of both groups is the same,
so the null hypothesis is rejected. The preceding affirms a significant difference when a
satisfaction model is integrated into an optimization problem than when its integration is
not considered.

6. Discussion of Results

In this research work, the satisfaction model proposed was subjected to experimenta-
tion, validating whether the definition of the satisfaction parameters of this model generates
a significant and positive influence on the preferences of a DM, improving the deliberative
process of a virtual agent.

Four types of individuals were required in food product shopping to test the satis-
faction model. The strategy applied to ensure that these individuals provided distinctive
characteristics to the experimentation was through the PMUDC-I model [2]. PMUDC-I
provides a way to identify individuals through personality and decision profiling. These
profiles are optimistic, collaborative, inquirer, and strict. In addition, NOSGA-II [8] was
used like an optimization strategy that acts as the deliberative process of the VDM, produc-
ing the shopping lists requested by individuals according to their preferences, satisfaction,
and personality.

In the results of the experimentation shown in Table 21, carried out with the collabora-
tive profile DM, the comparison between the criteria of the products expected by the DM
and the lists suggested by the VDM could be observed. In said comparison, the level of
correct answers was very significant, achieving a total of five correct answers out of six.
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The more correct answers, the greater the possibility of covering the satisfaction expectation
of the DM. The above could be corroborated by applying Equation (20), showing that
the DM with collaborative characteristics is 84% satisfied with the suggestions given by
the VDM.

The data provided in Tables 22 and 23 were used to replicate the previous experiment,
generating instances or shopping lists suggested by the VDM for three different individuals.
These individuals are identified under the strict, optimistic/relaxed, and inquirer profiles.
The total number of instances generated was six, of which two of them were generated
through the corresponding data of each individual, integrating and restricting the influence
of the satisfaction model.

Table 24 shows the results of the experimentation with the six instances generated with
the three individuals. These results clearly show that integrating a satisfaction model to
influence an agent’s deliberation positively impacts the scope of the satisfaction expectation
concerning when it is not integrated. It is worth mentioning that the optimistic DM was
the only one that managed to reach the satisfaction expectation in both cases due to their
flexible characteristics being satisfied more easily and thus, reflected in a high tolerance. The
correct answers more clearly describe the scope of the satisfaction expectation according
to the profile of each DM. For example, in the case of the strict DM, the hits highlight that
integrating a satisfaction model improves the scope of the satisfaction expectation. When
integrating the characteristics of satisfaction, five out of six correct answers were obtained.
On the contrary, zero of six correct answers were obtained by not integrating satisfaction.

In the experiment presented in Table 25, the six instances of the experiment in Table 24
were used. In this new experiment, the six instances with the three individuals (strict, opti-
mistic, and inquirer) were evaluated using the satisfaction metric proposed in Equation (20).
From this new experimental case, we observed that the optimistic DM reached their satis-
faction expectation regardless of whether or not there was any influence on satisfaction.
In the strict DM, it can be seen that only one instance (I1) covers the level of satisfaction
required by said individual, showing five of six correct answers when satisfaction was
integrated compared to four of six correct answers when satisfaction does not influence.
In the rest of the instances of the strict profile, the number of correct answers did not exceed
two. In the case of the inquirer DM, it was possible to meet the expectation of satisfaction
in three instances, of which instance I2 stands out, due to it showing a clear significant
difference when integrating satisfaction with four of six correct answers concerning one of
six correct answers when satisfaction is not integrated.

To strengthen the results obtained from the experiment presented in Table 25, they were
subjected to the Wilcoxon statistical test. The results reveal the feasibility of considering
the characteristics of satisfaction in a computable model to improve the cognitive process
of a virtual agent.

The experimentation presented in this work confirms that the proposed satisfaction
model is a novel contribution to behavioral simulation. However, despite the results and
the consistent behavior of each individual, it is necessary to strengthen these advantages.
The above could be through the integration of personality traits more representative of
satisfaction or other elements that assist in modeling the satisfaction of individuals more
precisely. The preceding could give rise to future research that generates more significant
advantages in the experimentation results than that reported in this work.

7. Conclusions

In this document, a satisfaction model capable of influencing and improving the
decision-making process of a virtual agent in an optimization context was developed.
The above was possible by integrating models from the literature aimed at assisting in the
simulation of behaviors, such as the NOSGA-II preference-based strategy, the PMUDC-I
model, and its predecessor in the development phase PMUDC-II, as well as models of
satisfaction with work and customer, approaches.
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According to the above, the main objective of this research was achieved by using
the attributes provided by the PMUDC-I, PMUDC-II models, and the satisfaction model
to assist in modeling and influencing the preferences of a DM, managing to improve the
cognitive process of a virtual agent, as observed in the experimentation carried out in
this work.

The integration of parameters and attributes of personality and satisfaction generate
an impact on preferences confirming the hypothesis that arises from the main objective of
this work, demonstrating that better solutions are provided by integrating a satisfaction
model compared to processes that do not consider integrating it.

In addition to contributing to developing a satisfaction model, an intelligent agent
architecture was also developed to facilitate an interaction mechanism with the DM. The sat-
isfaction model was integrated with the personality model and the NOSGA-II metaheuristic
in the deliberative process.

However, despite contributing to a satisfaction model that provides excellent scope for
improving optimization process solutions focused on behavior simulation, there are still
certain unknowns that limit the efficiency of the results in some way. These deficiencies
or unknowns could be resolved by modeling other significant impacts, such as those
addressed. Nevertheless, the above is a reason to continue research and analyze the
emulation of human behavior through computable models that provide credibility in the
development of virtual entities.
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Appendix A. Case of the Study Details

The Table A1 present the products used in the food shopping case study, which consists
of 55 product variants.

Table A1. Table of products used in the experimentation with the case study of foods products.

No. Product Price Content No. Product Price Content

1 Water 5.8 600 29 Milk 21 1000
2 Water 6 1000 30 Milk 28.3 1500
3 Water 8 1500 31 Milkshake 7.2 250
4 Water 12 2000 32 Milkshake 8.5 200
5 Water 8.5 600 33 Milkshake 7.2 250
6 Water 12.6 1500 34 Milkshake 21.5 1000
7 Water 6 500 35 Wholemeal bread 29.5 480
8 Water 9 1500 36 Wholemeal bread 34.5 680
9 Water 9 2000 37 Wholemeal bread 30.7 567

10 Instant coffee 38 180 38 Wholemeal bread 82 540
11 Instant coffee 41 180 39 Wholemeal bread 64 450
12 Instant coffee 63 205 40 Sweetbread 32 240
13 Instant coffee 90 225 41 Sweetbread 9.9 62
14 Instant coffee 155.5 350 42 Sweetbread 32.9 240
15 Instant coffee 399 1200 43 Sweetbread 31.9 330
16 Instant coffee 62 120 44 Sweetbread 14 200
17 Soda 13.1 600 45 Dessert 115 700
18 Soda 12 355 46 Dessert 11 114
19 Soda 29 2000 47 Dessert 24.5 324
20 Soda 30.6 2500 48 Dessert 15.4 14
21 Soda 34.5 3000 49 Instant coffee 47.5 180
22 Soda 10 600 50 Milk 50 1000
23 Soda 8 355 51 Milkshake 50 1000
24 Soda 21.9 2000 52 Instant coffee 41.9 250
25 Soda 24 2500 53 Sweetbread 13.9 125
26 Soda 25 3000 54 Milkshake 8.5 200
27 Milk 19.9 1000 55 Sweetbread 6 100
28 Milk 18.9 1000

Appendix B. Results from the Types-Based Personality Questionnaire

This section presents the results of the MBTI personality model questionnaire based on
personality types [28]. This questionnaire consists of 4 questions that try to recognize the
preference of individuals to act in their environment. These characteristics are represented
by a label consisting of 4 dichotomies or letters that form the individual’s personality profile.
These dichotomies come from a set of 8 letters with which a total of 16 personality profiles
can be formed. The results of the application of this questionnaire are presented in Table A2,
where the MBTI profile of the four individuals or DM with whom the experimentation was
carried out in this work and their decision profile is given by the PMUDC-I model [2] to
identify the DM in decision-making more accurately.

Table A2. According to [2,28], the MBTI questionnaire results were applied to four DM.

No. of DM MBTI Profile PMUDC-I Profile

1 ESFP Optimistic
2 ISFJ Collaborative
3 INTP Inquirer
4 ISTJ Strict

Appendix C. Results from Traits-Based Personality Questionnaire

This section presents the results of the IPIP-NEO questionnaire [26] based on personal-
ity traits from the FFM-OCEAN model [25]. The questionnaire consists of 120 questions
(reduced version) that aim to collect information about the strengths and weaknesses of an
individual. Table A3 presents the results of the questionnaire applied to the four individuals
mentioned in Table A2, where the values of the facets of interest in this work are observed
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according to each DM. In general, this table shows the dimensions or factors of OCEAN, the
value of the dimension (factor value), the facets of each dimension, and the DM identified
through the profile provided by PMUDC-I [2].

Table A3. Results of the IPIP-NEO questionnaire [26] belonging to the four DM under study.

PMUDC-I Profile

OCEAN Factors OCEAN Facets Optimistic (DM 1) Collaborative (DM 2) Inquirer (DM 3) Strict (DM 4)

Extraversion

Activity Level 0.3 0.80 0.27 0.78

Gregariousness 0.75 0.55 0.08 0.17

Excitement-Seeking 0.41 0.17 0.04 0.38

Factor value 0.60 0.70 0.21 0.38

Agreeableness

Morality 0.83 0.89 0.61 0.17

Modesty 0.69 0.65 0.89 0.35

Altruism 0.38 0.95 0.33 0.34

Factor value 0.18 0.88 0.60 0.05

Conscientiousness

Self-Efficacy 0.34 0.8 0.01 0.58

Cautiousness 0.93 0.72 0.64 0.64

Factor value 0.17 0.65 0.18 0.59

Neuroticism

Anxiety 0.3 0.64 0.55 0.3

Anger 0.27 0.27 0.2 0.65

Immoderation 0.42 0.48 0.38 0.31

Factor value 0.30 0.43 0.52 0.42

Openness
Imagination 0.74 0.5 0.19 0.17

Factor value 0.34 0.59 0.51 0.20

Appendix D. Results form Preferences Questionnaire

This section presents the questionnaire proposed by Castro et al. [2], necessary to
generate representative parameters of the preferences of a DM through the PMUDC-I model.
The questionnaire aims to collect information on the preferences of the DM according to
a decision context, which in this work was applied under a context of shopping of food
products. The way in which this shopping context is expressed is through presenting
the DM with a set of food products from which he must select the ones of his preference,
as well as forming shopping lists with said products, according to what is requested.
in the questionnaire. In this way, it is possible to collect the DM’s preferences in this
shopping environment and form parameters representative of the DM’s preferences. The
food products presented in Table A1 are the ones that the questionnaire uses to acquire the
preferential information of the DM. Table A4 shows the results of the questionnaire applied
to the four DM mentioned in Table A2, where the parameters or preference thresholds
given by the PMUDC-I model are presented with the influence of satisfaction (WS) and
without the influence of satisfaction (WoS). The values presented were rounded to two
figures after the point.
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Table A4. Preference thresholds resulting from the application of the preference questionnaire in the
four DM under study

Profile Status Thresholds

Criteria q u v λ β ε

Optimistic (DM 1)
WS Price 36.71 47.20 56.28 0.63 0.02 0.01

Contents 800.54 1039.43 1248.25

WoS Price 35.93 41.63 47.33 0.54 0.02 0.01
Contents 783.41 916.62 1049.83

Collaborative (DM 2)
WS Price 24.63 38.52 47.26 0.85 0.096 0.041

Contents 192.04 328.93 424.33

WoS Price 23.78 31.81 39.85 0.71 0.08 0.04
Contents 185.37 271.58 357.79

Inquirer (DM 3)
WS Price 35.01 44.38 49.28 0.93 0.13 0.06

Contents 179.95 343.55 483.67

WoS Price 34.39 38.8 43.21 0.8 0.12 0.06
Contents 176.76 300.4 424.05

Strict (DM 4)
WS Price 15.23 18.85 22.14 1.07 0.20 0.08

Contents 150.72 223.56 298.05

WoS Price 14.88 16.49 18.11 0.92 0.17 0.08
Contents 147.27 195.53 243.8

Appendix E. Satisfaction Questionnaire (Satisfaction Profile of the DM) and Results

This section presents the questionnaire proposed in this work, which collects informa-
tion on the satisfaction of the DM. This questionnaire consists of five questions that meet
the satisfaction expectation of the DM according to a service or product. Table A5 shows
the satisfaction questionnaire, which gathers the satisfaction characteristics of the DM to
form a satisfaction profile.

Table A5. Satisfaction questionnaire (satisfaction profile of the DM).

No. Question

1 What is the expected performance of your product?
__Very low __low __Medium __Good __Very good

2 What is the quality you expect to perceive from your product?
__Very low __low __Medium __Good __Very good

3 Does the product represent any emotional value to you?
__Very little __Little __Regular __A lot of __Too much

4 In general terms, what is the expectation you expect from the product?
__Very little __Little __Regular __A lot of __Too much

5 Do you think the product will meet your expectations?
__Very little __Little __Regular __A lot of __Too much

Derived from the results of the proposed satisfaction questionnaire, representative
parameters of DM satisfaction are generated. These parameters are calculated using the
strategies shown in Sections 5.1 and 5.2. The values of these parameters are representative
for the four DM under study. The parameters and their values are as follows: value −7.34;
equality −1; and utility −7.62.

Appendix F. Results from RIASEC Test

This Section presents the result of the application of the RIASEC [16,41] test. This
questionnaire consists of 6 dimensions and 42 questions that collect information on the
work areas you perform best. The six dimensions comprise the RIASEC literals, where each
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literal comprises seven questions. The result is a label formed by the three literals with the
highest score.

As in the previous Appendix E, the RIASEC result was used for the four studied
individuals. The RIASEC result and its values are as follows: R (REALISTIC) −7; I
(INVESTIGATIVE) −5 and A (ARTISTIC) −5.

This questionnaire is related to job satisfaction because it exposes the areas where the
individual has a better performance and, therefore, greater satisfaction.
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The Classification of All Singular Nonsymmetric
Macdonald Polynomials
Charles F. Dunkl

Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA; cfd5z@virginia.edu

Abstract: The affine Hecke algebra of type A has two parameters (q, t) and acts on polynomials in N
variables. There are two important pairwise commuting sets of elements in the algebra: the Cherednik
operators and the Jucys–Murphy elements whose simultaneous eigenfunctions are the nonsymmetric
Macdonald polynomials, and basis vectors of irreducible modules of the Hecke algebra, respectively.
For certain parameter values, it is possible for special polynomials to be simultaneous eigenfunctions
with equal corresponding eigenvalues of both sets of operators. These are called singular polynomials.
The possible parameter values are of the form qm = t−n with 2 ≤ n ≤ N. For a fixed parameter, the
singular polynomials span an irreducible module of the Hecke algebra. Colmenarejo and the author
(SIGMA 16 (2020), 010) showed that there exist singular polynomials for each of these parameter
values, they coincide with specializations of nonsymmetric Macdonald polynomials, and the isotype
(a partition of N) of the Hecke algebra module is (dn− 1, n− 1, . . . , n− 1, r) for some d ≥ 1. In the
present paper, it is shown that there are no other singular polynomials.

Keywords: nonsymmetric Macdonald polynomials; the affine Hecke algebra of type A; Young
tableaux; Jucys–Murphy operators

MSC: 33D52; 20C08; 05E10

1. Introduction

Many structures arise from the action of the symmetric group on polynomials in N
variables. Among them are the Hecke algebra and the affine Hecke algebra of type A. This
paper concerns polynomials with noteworthy properties with respect to these algebras.
The symmetric group SN is generated by the simple reflections si, 1 ≤ i < N, where

xsi :=
(

x1, . . . ,
i

xi+1,
i+1
xi , . . . , xN

)
;

they satisfy the braid relations sisi+1si = si+1sisi+1 and sisj = sjsi for |i− j| ≥ 2. Let q, t be
parameters satisfying tn 6= 1 for 2 ≤ n ≤ N and q, t 6= 0. Define P =K[x1, . . . , xN ] where K
is a field containing Q(q, t). The Hecke algebraHN(t) is generated by Demazure operators
(with p ∈ P and 1 ≤ i < N)

Ti p(x) := (1− t)xi+1
p(x)− p(xsi)

xi − xi+1
+ tp(xsi);

they satisfy the same braid relations TiTi+1Ti = Ti+1TiTi+1 and TiTj = TjTi for |i− j| ≥ 2,
as well as the quadratic relations (Ti − t)(Ti + 1) = 0. The affine Hecke algebraHN(t; q) is
obtained by adjoining the q-shift

wp(x) := p(qxN , x1, x2, . . . , xN−1)

Axioms 2022, 11, 208. https://doi.org/10.3390/axioms11050208 https://www.mdpi.com/journal/axioms462
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and defining

T0 p(x) := wT1w−1 p(x) = (1− t)x1
p(x)− p(xs0)

qxN − x1
+ tp(xs0),

xs0 := (qxN , x2, . . . , xN−1, x1/q).

Then wTi+1 = Tiw where the indices are taken mod N. (That is, w2T1 = TN−1w2.) The
quadratic relations imply T−1

i = t−1(Ti + (1− t)). There are two commutative families of
operators inHN(t; q) (each indexed 1 ≤ i ≤ N): the Cherednik operators (see [1])

ξi := ti−1TiTi+1 · · · TN−1wT−1
1 T−1

2 · · · T−1
i−1

and the Jucys–Murphy operators

ωi = ti−NTiTi+1 · · · TN−1TN−1TN−2 · · · Ti.

Note that ξi = t−1Tiξi+1Ti and ωi = t−1Tiωi+1Ti for i < N. The simultaneous eigen-
functions of the Cherednik operators are the nonsymmetric Macdonald polynomials and
the simultaneous eigenvectors of the Jucys–Murphy operators span irreducible represen-
tations of HN(t). Our concern is to determine all polynomials which are simultaneous
eigenfunctions of both sets of operators, more specifically, when q, t satisfy a relation of
the form qmtn = 1 to determine the homogeneous polynomials p such that ξi p = ωi p
for all i. These are called singular polynomials with singular parameter qm = t−n. In a
previous paper [2] Colmenarejo and the author found a large class of such polynomials
associated with tableaux of quasi-staircase shape. In this paper, we will show that there are
no other occurrences.

Affine Hecke algebras were used by Kirillov and Noumi [3] to derive important
results about the coefficients of Macdonald polynomials. Mimachi and Noumi [4] found
double sums for reproducing kernels for series in nonsymmetric Macdonald polynomials.
The paper [5] by Baker and Forrester is a source of some background for the present paper.

In Section 2, we collect the needed definitions and results about the Hecke algebra ac-
tion on polynomials, Cherednik operators, nonsymmetric Macdonald polynomials, and the
representation theory of Hecke algebra of type A. The definition of singular polynomials
and its consequences, that is, necessary conditions, are presented in Section 3. This section
also explains the known existence theorem. Section 4 concerns the method of restriction
to produce singular polynomials with a smaller number of variables and this leads into
Section 5 where our main nonexistence theorem is proved.

2. Preliminary Results

In this section, we present background information and computational results dealing
withHN(t) and the action on polynomials.

Lemma 1. If j > i + 1 or j < i then Tiωj = ωjTi, and Tiωi = (t− 1)ωi + ωi+1Ti,
Tiωi+1 = ωiTi − (t− 1)ωi.

Proof. If j > i + 1 then Ti commutes with each factor of ωi. Suppose j = i− 1 then by the
braid relations

Tiωi−1 = ti−1−NTiTi−1TiTi+1 · · · TiTi−1 = ti−1−NTi−1TiTi−1Ti+1 · · · TiTi−1

= ti−1−NTi−1Ti+1Ti+2 · · · Ti−1TiTi−1

= ti−1−NTi−1TiTi+1 · · · TiTi−1Ti = ωi−1Ti.
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Suppose j < i − 1 then ωj = tj−i+1TjTj+1 · · · Ti−2ωi−1Ti−2 · · · Tj and Ti commutes with
each factor in this product. If j = i then

Tiωi = t−1T2
i ωi+1Ti = t−1{(t− 1)Ti + t}ωi+1Ti

= (t− 1)ωi + ωi+1Ti,

and similarly ωiTi = t−1Tiωi+1T2
i = (t− 1)ωi + Tiωi+1.

Lemma 2. If j > i + 1 or j < i then Tiξ j = ξ jTi, and Tiξi = (t− 1)ξi + ξi+1Ti,
Tiξi+1 = ξiTi − (t− 1)ξi.

Proof. Recall wTi+1 = Tiw, w2T1 = TN−1w2. Suppose j = i− 1 then

Tiξi−1 = ti−1−NTiTi−1TiTi+1 · · · TN−1wT−1
1 · · · T−1

i−2

= ti−1−NTi−1TiTi−1Ti+1 · · · TN−1wT−1
1 · · · T−1

i−2

= ti−1−NTi−1TiTi+1 · · · TN−1Ti−1wT−1
1 · · · T−1

i−2

= ti−1−NTi−1TiTi+1 · · · TN−1wTiT−1
1 · · · T−1

i−2 = ξi−1Ti.

The analogous argument as in the previous lemma shows Tiξ j = ξ jTi for j < i− 1. Suppose
j > i + 1 then

Tiξ j = tj−NTiTjTj+1 · · · TN−1wT−1
1 · · · T−1

j−1 = tj−NTjTj+1 · · · TN−1TiwT−1
1 · · · T−1

j−1

= tj−NTjTj+1 · · · TN−1wTi+1T−1
1 · · · T−1

j−1

= tj−NTj · · · TN−1wT−1
1 · · · Ti−1T−1

i−2T−1
i−1 · · · T−1

j−1.

The modified braid relations aba = bab ⇔ ab−1a−1 = b−1a−1b imply
Ti+1T−1

i T−1
i+1 = T−1

i T−1
i+1Ti and thus Tiξ j = ξ jTi. As before

Tiξi = t−1T2
i ξi+1Ti = t−1{(t− 1)Ti + t}ξi+1Ti = (t− 1)ξi + ξi+1Ti.

ξiTi = (t− 1)ξi + Tiξi+1.

Polynomials are spanned by monomials xα =
N
∏
i=1

xαi
i , α ∈ NN

0 . For α ∈ NN
0 set

siα =

(
α1, . . . ,

i
αi+1,

i+1
αi , . . .

)
for 1 ≤ i < N, and |α| = ∑N

j=1 αj (the degree of xα). Let

NN,+
0 =

{
α ∈ NN

0 : α1 ≥ α2 ≥ . . . ≥ αN
}

, the set of partitions of length ≤ N. Let α+ denote
the nonincreasing rearrangement of α (thus α+ ∈ NN,+

0 ). There is a partial order on NN
0

α ≺ β⇐⇒
i

∑
j=1

αj ≤
i

∑
j=1

β j, 1 ≤ i ≤ N, α 6= β,

α C β⇐⇒ (|α| = |β|) ∧
[(

α+ ≺ β+
)
∨
(
α+ = β+ ∧ α ≺ β

)]
,

and a rank function (1 ≤ i ≤ N)

rα(i) := #
{

j : αj > αi
}
+ #
{

j : 1 ≤ j ≤ i, αj = αi
}

.

Note αi = α+rα(i)
.
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2.1. Nonsymmetric Macdonald Polynomials

The key fact about the Cherednik operators is the triangular property (see [5])

ξixα = qαi tN−rα(i)xα + ∑
βCα

cα,β(q, t)xβ, (1)

where the coefficients cα,β(q, t) are polynomials in q, t. For generic (q, t) (this means qmtn 6= 1, 0
for m ≥ 0 and 1 ≤ n ≤ N) there is a basis of P , for α ∈ NN

0

Mα(x) = qb(α)te(α)xα + ∑
βCα

Aα,β(q, t)xβ

(where Aα,β(q, t) is a rational function of (q, t) with no poles when (q, t) is generic) and for
1 ≤ i ≤ N

ξi Mα = qαi tN−rα(i)Mα.

The exponents are b(α) = 1
2 ∑N

i=1 αi(αi − 1) and e(α) = ∑N
i=1 α+i (N − 2i + 1)− inv(α), with

inv(α) := #
{
(i, j) : 1 ≤ i < j ≤ N, αi < αj

}
; there is an equivalent formula:

e(α) =
1
2 ∑

1≤i<j≤N

(∣∣αi − αj
∣∣+
∣∣αi − αj + 1

∣∣− 1
)
.

These powers arise from the Yang-Baxter graph method of constructing the Mα, and are not
actually needed here. The spectral vector of Mα is [ζα(i)]

N
i=1 with ζα(i) = qαi tN−rα(i). We will

need the formulas for the action of Ti on Mα. Suppose αi < αi+1 and
z = ζα(i + 1)/ζα(i) = qαi+1−αi trα(i)−rα(i+1) then

Ti Mα = Msiα −
1− t
1− z

Mα, (2)

Ti Msiα =
(1− zt)(t− z)

(1− z)2 Mα +
z(1− t)
(1− z)

Msiα. (3)

If αi = αi+1 then Ti Mα = tMα. The quadratic relation appears as
(

Ti +
1− t
1− z

)(
Ti −

z(1− t)
1− z

)
=

(1− zt)(t− z)

(1− z)2 .

2.2. Action of Ti on Polynomials and B-Maximal Terms

The following are routine computations:

Lemma 3. Suppose γ ∈ NN
0 and 1 ≤ i < N . Set x′ = ∏j 6=i,i+1 xγj . Then

(1) γi > γi+1 + 1 implies Tixγ = (1− t)x′
γi−γi+1−1

∑
j=0

xγi−j−1
i xγi+1+j+1

i+1 + txsiγ;

(2) γi = γi+1 + 1 implies Tixγ = xsiγ;
(3) γi = γi+1 implies Tixγ = txγ;
(4) γi = γi+1 − 1 implies Tixγ = txsiγ + (t− 1)xγ;

(5) γi < γi+1 − 1 implies Tixγ = (t− 1)x′
γi+1−γi−1

∑
j=0

xγi+j
i xγi+1−j

i+1 + txsiγ.

Lemma 4. Suppose λ ∈ NN,+
0 , λi > λj + 1 (i > j) and 1 ≤ s < λi − λj, µ ∈ NN

0 such that
µk = λk for k 6= i, j, µi = λi − s, µj = λj + s then λ � µ+.

(The proof is left as an exercise.)
In (1) above let αk = γk for k 6= i, i + 1 and αi = γi − j− 1, αi+1 = γi+1 + j + 1 with

1 ≤ j + 1 < γi − γi+1 then the Lemma with λ = γ+ and µ+ = α+ shows γ+ � a+ (the
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other term in (1) is xsiγ and γ � siγ). Similarly in (5) let αi = γi + j, αi+1 = γi+1 − j with
1 ≤ j ≤ γi+1 − γi − 1, thus γ+ � a+ (the other term in (5) for j = 0 is xγ and siγ � γ.

Proposition 1. Suppose α is B-maximal in p = ∑δ cδxδ (a homogeneous polynomial, |δ| = |α|),
that is, cα 6= 0 and if some δ D α with cδ 6= 0 then δ = α. Furthermore suppose αi+1 > αi for
some i and xβ with β B siα appears in (Ti + c)p then β+ = α+ and β � siα.

Proof. Suppose xβ appears in Tixγ (with cγ 6= 0) in one of the five cases of Lemma 3 and
β+ � (siα)

+ = α+. Every term satisfies γ+ � β+ or γ+ = β+ but then γ+ � β+ � α+ and
γ B α, a contradiction. Suppose β+ = α+ then β B siα implies β � siα.

Corollary 1. If α is B-maximal in p = ∑δ cδxδ and xβ appears in (Ti + c)p with β D siα then
either β = siα or β+ = α+ and β � siα with β = siγ where xγ appears in p.

Proof. If β occurs in case (1) or case (5) of Lemma 3 and β 6= γ, siγ (for xγ appearing
in p) then γ+ � β+ � siα � α which violates the B-maximality of α, this leaves only
β = siγ.

Note β = siγ does not imply siβ � α, for example let β = (4, 1, 3, 2) and s1α =
(3, 2, 1, 4) then β � s1α but s1β = (1, 4, 3, 2) and α = (2, 3, 1, 4) are not B-comparable.

2.3. Irreducible Representations of the Hecke Algebra

Irreducible representations ofHN(t) are indexed by partitions of N (for background
see Dipper and James [6]). Given a partition τ ∈ NN,+

0 with |τ| = N there is a Ferrers
diagram: boxes at (i, j) with 1 ≤ i ≤ `(τ) = max

{
j : τj > 0

}
and 1 ≤ j ≤ τi. The module is

spanned by reverse standard Young tableaux (abbr. RSYT) of shape τ (denoted Yτ): the
numbers 1, . . . , N are inserted into the Ferrers diagram so that the entries in each row and
in each column are decreasing. The module spanK{Y : Y ∈ Yτ} is said to be of isotype τ.
If k is in cell (i, j) of RSYT Y (denoted Y[i, j] = k) then the content c(k, Y) := j− i; the content
vector [c(k, Y)]Nk=1 determines Y uniquely. The action ofHN(t) is specified by the formulas
for TiY:

• If c(i, Y)− c(i + 1, Y) = 1 then TiY = tY;
• If c(i, Y)− c(i + 1, Y) = −1 then TiY = −Y;
• If |c(i, Y)− c(i + 1, Y)| ≥ 2 then let Y(i) denote the RSYT obtained by interchanging i

and i + 1 in Y and set z = tc(i+1,Y)−c(i,Y): if c(i, Y)− c(i + 1, Y) ≥ 2, then

TiY = Y(i) − 1− t
1− z

Y;

if c(i, Y)− c(i + 1, Y) ≤ −2, then

TiY =
(1− zt)(t− z)

(1− z)2 Y(i) − 1− t
1− z

Y.

From these relations it follows that ωiY = tc(i,Y)Y for 1 ≤ i ≤ N. Call the vector[
tc(i,Y)

]N

i=1
the t-exponential content vector of Y, or the tC-vector for short. Note c(N, Y) = 0

always and ωN := 1.
So if one finds a simultaneous eigenfunction of {ωi} then the eigenvalues determine

an RSYT and the isotype (partition) of an irreducible representation.

2.4. Singular Parameters

For integers m and n such that m ≥ 1 and 2 ≤ n ≤ N we consider singular parameters
(q, t) satisfying qmtn = 1 with the property that if qatb = 1 then a = rm, b = rn for some
r ∈ Z.
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Definition 1. Let g = gcd(m, n) and let z = exp
(

2πik
m

)
with gcd(k, g) = 1, that is, zm/g is a

primitive gth root of unity. If g = 1 then set z = 1. Define v := (q, t) =
(

zu−n/g, um/g
)

where
u is not a root of unity and u 6= 0.

Lemma 5. If qatb|v = 1 for some integers a, b then a = rm, b = rn for some r ∈ Z.

Proof. By hypothesis zau−an/g+bm/g = 1 and, since u is not a root of unity, −a n
g + b m

g = 0.

From gcd
(

n
g , m

g

)
= 1, it follows that a = p′ mg and b = p′ ng , for some p′ ∈ Z. Thus,

1 = za = exp
(

2πik
m

mp′
g

)
= exp

(
2πik

g p′
)

. Moreover, since gcd(k, g) = 1, p′ = pg with p ∈ Z.
Hence a = pm and b = pn.

In fact, to describe all the possibilities for v, it suffices to let 1 ≤ k < g. To be precise,
v is not a single point but a variety in (C\{0})2.

3. Necessary Conditions for Singular Polynomials

By using the degree-lowering (q-Dunkl) operators defined by Baker and Forrester [5]
we find another characterization of singular polynomials.

Definition 2. Suppose p ∈ P then

DN p(x) :=
1

xN
(1− ξN)p(x),

Di p(x) :=
1
t

TiDi+1Ti p(x), i < N.

Proposition 2. A polynomial p is singular if and only if Di p = 0 for 1 ≤ i ≤ N.

Proof. The proof is by downward induction on i. Since ωN = 1, it follows that DN p = 0
iff ξN p = p = ωN p. Suppose that Di p = 0 iff ξi p = ωi p for all p and k ≤ i ≤ N.
Then Dk−1 p = 0 iff t−1Tk−1DkTk−1 p = 0 iff DkTk−1 p = 0 iff ξkTk−1 p = ωkTk−1 p iff
t−1Tk−1ξkTk−1 p = t−1Tk−1ωkTk−1 p.

First we show that any singular polynomial generates anHN(t)-module consisting of
singular polynomials. This allows the use of the representation theory ofHN(t).

Proposition 3. Suppose p is singular and 1 ≤ i < N, then Ti p is singular.

Proof. The commutation relations from Lemmas 1 and 2 are used. Suppose j < i or
j > i + 1 then ξ jTi p = Tiξ j p = Tiωj p = ωjTi p. Case j = i:

ξiTi p = {(t− 1)ξi + Tiξi+1}p = (t− 1)ωi p + Tiωi+1 p

= {(t− 1)ωi + Tiωi+1}p = ωiTi p.

Case j = i + 1

ξi+1Ti p = {Tiξi − (t− 1)ξi}p = Tiωi p− (t− 1)ωi p

= {Tiωi − (t− 1)ωi}p = ωi+1Ti p.

Proposition 4. Suppose p is singular thenM = HN(t)p is a linear space of singular polynomials,
and it is closed under the actions of ξi, ωi. for 1 ≤ i ≤ N, and w.
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Proof. By definition of ωi we see that f ∈ M implies ωi f ∈ M, and by definition
ξi f = ωi f ∈ M. Also

ξ1 p = T1T2 · · · TN−1wp

= ω1 p = t1−NT1T2 . . . · · · TN−1TN−1TN−2 · · · T1 p

thus wp = t1−NTN−1TN−2 · · · T1 p.

Note thatM is also a module of the affine Hecke algebra. By the representation theory
of HN(t) the module has a basis of {ωi}-simultaneous eigenfunctions and by definition
these are {ξi}-simultaneous eigenfunctions - note we are not claiming they are specializa-
tions of nonsymmetric Macdonald polynomials at v. Suppose f is such an eigenfunction
and let α be B-maximal in the expression f (x) = ∑β cβxβ. Then
ξi f = qαi tN−rα(i) f because by the triangularity property of ξi (see (1)) xα can only appear in
ξi f in the term ξixα. Furthermore ξi f = ωi f implies qαi tN−rα(i) = tc(i,Y) for some RSYT Y,
at v. As well we can conclude αi = mr, N − rα(i)− c(i, Y) = nr for some r ∈ N (Lemma 5).
The next step is to produce a simultaneous eigenfunction which has a B-maximal term xλ

with λ ∈ NN,+
0 .

Proposition 5. There exists f ∈ M which is a simultaneous {ωi}-eigenfunction and
f = cλxλ + ∑βCλ cβxβ + ∑γ cγxγ where γ is not B-comparable to λ, and λ ∈ NN,+

0 .

Proof. Suppose f = ∑ cαxα is an eigenfunction and there is a B-maximal α with xα (i.e.,
cα 6= 0) appearing in f , and αi < αi+1 then Ti f 6= f and the coefficient of xsiα is tcα; let
ωj f = µj f for 1 ≤ j ≤ N and µi+1 6= µi (because c(i, Y) 6= c(i + 1, Y) for any RSYT) so that

g := Ti f +
t− 1

µi+1/µi − 1
f

is a simultaneous eigenfunction with B-maximal β such that β+ = α+ and β � siα, (by
Proposition 1) and eigenvalues . . . µi+1, µi . . .In general this formula could produce a zero
function g but this does not happen here because the coefficient of xsiα in g is not zero.
Repeating these steps eventually produces a B-maximal term xλ with λ ∈ NN,+

0 (at most
inv(α) steps).

At this point we have shown if there is a singular polynomial then there is a partition
λ ∈ NN,+

0 and an RSYT Y such that qλi tN−i = tc(i,Y) at v, for 1 ≤ i ≤ N. Next we determine

necessary conditions on λ for the existence of Y, in other words, when
[
qλi tN−i]N

i=1 at v is
a valid tC-vector. The equations λi = mri, N − i− c(i, Y) = nri for 1 ≤ i ≤ N show that λ
can be replaced by 1

m λ and v by qtn = 1 (simply q = t−n), also nλi = N − i− c(i, Y).
The following is a restatement of the development in [2] with significant differ-

ences in notation. First there is an informal discussion of the beginning of the pro-
cess of building Y by placing N, N − 1, N − 2, . . . in possible locations and determining
λN , λN−1, λN−2, . . .accordingly. Abbreviate ci = c(i, Y).

Suppose λN−k is the last nonzero entry of λ (λi = 0 for i > N − k) then
k− cN−k = nλN−k (cN−j = j for 0 ≤ j < k implies Y[1, j] = N − j− 1); the entry N − k in
Y is at [1, k + 1] or [2, 1] thus cN−k = k, λN−k = 0 (contra) or cN−k = −1, nλN−k = k + 1.
Set λN−k = d1 and k = nd1 − 1.The entry N − k− 1 in Y is in one of [3, 1], [2, 2], [1, k + 1]
with contents −2, 0, k, respectively, yielding the equations nλN−k−1 = k + 1− cN−k−1 =
k − 1, k + 1, 1 = nd1 − 2, nd1, 1, respectively. If n > 2 then only [2, 2] is possible and
λN−k−1 = d1. If n = 2 then [3, 1], λN−k−1 = d1 + 1 and [2, 2], λN−k−1 = d1 are possible.

Theorem 1. There are numbers d1 ≥ d2 ≥ . . . ≥ dL ≥ 1 such that with γs := ∑s−1
i=1 di and

0 ≤ rL+1 < N − nγL+1 + L ≤ ndL − 1 the entries in row s of Y are Rs := {i : nγs − s + 1 ≤
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N − i ≤ nγs+1 − s − 1} for 1 ≤ s ≤ L, RL+1 = {i : nγL+1 − L ≤ N − i ≤ N − 1} and
λi = γs for i ∈ Rs. The isotype of Y is τ := (nd1 − 1, nd2 − 1, . . . , ndL − 1, rL+1).

Proof. By way of induction suppose there are numbers d1 ≥ d2 ≥ . . . ≥ dk−1 > 0 such
that the entries in row s of Y are Rs = {i : nγs − s + 1 ≤ N − i ≤ nγs+1 − s− 1} and
λi = γs for i ∈ Rs. Assume this has been proven for 1 ≤ s < k and for row k up to
nγk − k + 1 ≤ N − i ≤ nγk − k + ` with ` ≤ ndk−1 − 1 (the length #Rk−1 of row k − 1).
Consider the possible locations for the next entry p = N − (nγk − k + `+ 1). The possible
boxes are (1) [s, nds] (s < k and ds < ds−1 or s = 1), (2) [k, `+ 1], (3) [k + 1, 1] with contents
nds − s, `+ 1− k,−k, respectively. The equations

nλp = N − p− cp = nγk − k + `+ 1− cp

n
(
λp − γk

)
= −k + `+ 1− cp

must hold;
case (1): (note `+ 1 ≤ ndk−1)

n
(
λp − γk

)
= −k + `+ 1− nds + s

n
(
λp − γk + ds

)
= −k + s + 1 + ` ≤ −k + s + ndk−1

n
(
λp − γk + ds − dk−1

)
≤ s− k < 0

λp ≥ γk = λp+1 and ds ≥ dk−1 by inductive hypothesis, so the left side ≥ 0 and there is a
contradiction.
case (2):

n
(
λp − γk

)
= −k + `+ 1− (`+ 1− k) = 0

λp = γk

and the inductive hypothesis is proved for nγk − k + 1 ≤ N − i ≤ nγk − k + `+ 1, entries
in row k.
case (3)

n
(
λp − γk

)
= −k + `+ 1 + k = `+ 1

set ` = ndk − 1 and γk+1 = γk + dk, λp = γk+1. The inductive step has been proven for k
and for k + 1 with Y[k + 1, 1] = N − nγk+1 + k. By induction this uses up all the entries.
Let row L + 1 be the last row of Y and of length rL+1, then N = ∑L

i=1(ndi − 1) + rL+1 and
rL+1 ≤ ndL − 1.

Corollary 2. Suppose v = (q, t) as in Definition 1 and p is singular. Then HN(t)p contains a
{ωi, ξi} simultaneous eigenfunction f = cλxλ + ∑βCλ cβxβ + ∑γ cγxγ with γ not B-comparable
to λ so that λi = mγs if i ∈ Rs, in the notation of the Theorem.

We have shown if α is B-maximal in a simultaneous {ωi, ξi} eigenfunction then there
is an eigenfunction in which α+ is B-maximal. Now the eigenvalues are determined by Y
and it follows that α+ = λ as constructed above. Hence each term xγ in an eigenfunction
satisfies γ E λ. (Suppose at some stage γ is B-maximal then there is a simultaneous
eigenfunction with γ+ being B-maximal and the construction produces an RSYT of the
same isotype τ and the numbers N, N − 1, . . . are entered row-by-row forcing γ+ = λ.)

Theorem 2 ([2]). In the notation of Theorem 1 if di = 1 for i ≥ 2 then Mλ(x) specialized to
v has no poles and is singular. The module HN(t)Mλ is spanned by Mα(Y) where Y ∈ Yτ ,

τ =
(

nd1 − 1, (n− 1)L−1, rL+1

)
and α(Y)i = m(d1 + s− 2) if Y[s, k] = i for s ≥ 2 and some

k, otherwise (Y[1, k] = i) α(Y)i = 0.
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The Ferrers diagram of λ (from Theorem 1) is called a quasi-staircase, the shape
suggested when French notation with row 1 on the bottom is used.

We have reached the main purpose of this paper: to show there are no other singu-
lar polynomials.

4. Restrictions

In this section, we show that the desired nonexistence result can be reduced to the
simpler two-row situation.

Suppose α ∈ NN
0 and rα(1) = 1 (that is, αi ≤ α1 for all i). Let α′ = (α2, . . . , αN) and

Y′ = Y\{1} (the RSYT where the entry 1 is deleted) and f satisfies ξi f = qαi tN−rα(i) f ,
at v. First we will show that fα′ := coeff

(
xα1

1 , f
)

is an eigenfunction of ξ
′
i with eigenvalue

qαi tN−rα(i) for 2 ≤ i ≤ N where

w′p(x) := p(qxN , x2, x3, . . . , xN−1),

ξ ′i p(x) := ti−2TiTi+1 · · · TN−1w′T−1
2 · · · T−1

i−1 p(x)

Lemma 6. Let f = xα1
1 xα2

2 p(x3, . . . , xN) with α1 ≥ α2 then

coeff
(

xα1
1 , wT−1

1 f
)
= t−1w′coeff

(
xα1

1 , f
)
.

Proof. By definition

T−1
1 f =

1− t
t

x1
f (x)− f (xs1)

x1 − x2
+ t−1 f (xs1)

=
1− t

t
x1+α2

1 xα2
2

xα1−α2
1 − xα1−α2

2
x1 − x2

p + t−1xα2
1 xα1

2 p(x3, . . . , xN)

=
1− t

t

α1−α2−1

∑
i=0

xα1−i
1 xα2+i

2 p + t−1xα2
1 xα1

2 p(x3, . . . , xN)

then

wT−1
1 f =

1− t
t

α1−α2−1

∑
i=0

(qxN)
α1−ixα2+i

1 p(x2, x3, . . . , xN−1)

+ xα1
1 (qxN)

α2 t−1 p(x2, x3, . . . , xN−1).

The highest power of x1 in the first term is α1 − 1 thus

coeff
(

xn
1 , wT−1

1 f
)
= (qxN)

α2 t−1 p(x2, x3, . . . , xN−1)

and the right hand side is t−1w′xα2
2 p(x3, . . . , xN).

Let πn f := coeff
(
xn

1 , f
)
.

Theorem 3. Suppose f = ∑α cαxα with maxi αi = n then πnξi f = ξ ′iπn f for 2 ≤ i ≤ N.
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Proof. Let i > 1 then

πnξi f = ti−1πnTiTi+1 · · · TN−1wT−1
1 T−1

2 · · · T−1
i−1 f (x)

= ti−1TiTi+1 · · · TN−1πnwT−1
1 T−1

2 · · · T−1
i−1 f (x)

= ti−2TiTi+1 · · · TN−1w′πnT−1
2 · · · T−1

i−1 f (x)

= ti−2TiTi+1 · · · TN−1w′T−1
2 · · · T−1

i−1πn f (x)

= ξ ′iπn f ;

this uses the Lemma and the fact that ξi f and T−1
2 · · · T−1

i−1 f are sums of monomials xβ with
β j ≤ n for j ≥ 1 (properties of the order B and of T−1

j ). If i = 2 then the empty product

T−1
2 · · · T−1

i−1 reduces to 1.

Suppose α, β ∈ NN−1
0 (indexed 2 ≤ i ≤ N) and |α| = |β|, set α′ = (n, α), β′ := (n, β)

(so that |α′| = |β′|).

Lemma 7. Suppose maxi αi ≤ n and maxi βi ≤ n then α′+ = (n, α+), β′+ = (n, β+) and
α′ � β′ iff α � β, α′ B β′ iff α B β.

Proof. By hypothesis (α′+)1 = n and α′+ = (n, α+), similarly β′+ = (n, β+). Furthermore

α′ � β′ ⇐⇒ n +
i

∑
j=2

αj ≥ n +
i

∑
j=2

β j ∀i ≥ 2

⇐⇒ α � β

Then

α B β⇐⇒
(
α+ � β+

)
∨
(
α+ = β+ ∧ α � β

)

α′ B β′ ⇐⇒
(
α′+ � β′+

)
∨
(
α′+ = β′+ ∧ α′ � β′

)

and α B β⇐⇒ α′ B β′.

Proposition 6. Let f be the {ωi, ξi} simultaneous eigenfunction from Corollary 2 with eigenvalues
qλi tN−i = tc(i,Y) at qmtn = 1 for 1 ≤ i ≤ N and λ2 > 0. Then πλ1 f is a nonzero

{
ωi, ξ ′i : i ≥ 2

}

simultaneous eigenfunction with the same eigenvalues as f for i ≥ 2 with c(i, Y) = c(i, Y\{1}).
Here Y\{1} is the RSYT obtained by removing the box containing 1 from Y.

Proof. We showed that each term xα appearing in f satisfies λ D α and α1 ≤ λ1 for all
i. Apply πλ1 to f then by Lemma 7 β E (λ2, λ3, . . . , λN) for each xβ appearing in πλ1 f .
For i ≥ 2 ωi commutes with πλ1 and by Theorem 3 πλ1 ξi f =ξ ′iπλ1 f . Thus ωiπλ1 f = ξ ′iπλ1 f
for i ≥ 2. Furthermore, (λ2, λ3, . . . , λN) ∈ NN−1,+

0 is B-maximal in πλ1 f .

The definition of RSYT has been slightly modified to allow filling with 2, 3, . . . , N.
The isotype of πλ1 f is τ′ := (nd1 − 1, nd2 − 1, . . . , ndL − 1, rL+1 − 1).

Theorem 4. In the notation of Theorem 1 if d2 ≥ 2 then there is a singular polynomial for the
parameter v in n(d1 + 1)− 1 variables with λ =

(
(md1)

n, 0nd1−1
)

, of isotype (nd1 − 1, n).

Proof. Apply Proposition 6 repeatedly, and by hypothesis nd2 − 1 ≥ 2n− 1 > n. The re-
maining RSYT is

Y′ =
[

N N − 1 . . . . . . . . . N − nd1 + 2
N − nd1 + 1 . . . N − nd1 − n + 2

]
,
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and has the tC-vector
[
tn−2, tn−3, . . . , 1, t−1, tnd1−2, tnd1−3, . . . , t, 1

]
.

5. Concluding Argument

Re-index the variables by replacing d1 ≥ 2 (implied by d2 ≥ 2) by d, N by
N = nd− 1 + n and

Y′′ =
[

nd− 1 + n nd− 2 + n . . . . . . . . . n + 1
n . . . 1

]
.

Proposition 7. Suppose λ =
(

dn, 0nd−1
)

and γ ∈ NK
0 for some K ≥ N satisfies |γ| = nd

and Ci : n(λi − γi) = rγ(i) − i for 1 ≤ i ≤ K (setting λi = 0 for i > N) then γ = λ or

γ = β :=
(

0n, 1nd
)

.

Proof. By condition Cn+1 we have (rγ(n + 1)− n− 1) = −nγn+1 so that γn+1 = 1 −
1
n (rγ(n + 1)− 1) ≤ 1 and thus γn+1 = 1 or γn+1 = 0. If γn+1 = 1 then rγ(n + 1) = 1,
which implies γi = 0 for 1 ≤ i ≤ n and γi ≤ 1 for i > n + 1. If j > n and γj = 0 then
by Cj rγ(j) = j = #{k <= j : γk ≥ 0} + #{k > j : γk > 0} so that k > j implies γk = 0.

Since |γ| = |λ| = nd we see that γn+1 = 1 implies γ+ =
(

1nd
)

and in fact γi = 1 for
n + 1 ≤ i ≤ n(d + 1), since γj = 0 and γj+1 = 1 is impossible for any j > n. If 1 ≤ j ≤ n
then rγ(j) = nd + j and n(λi − γi) = nd = rγ(j) − j, thus satisfying Cj. The other
conditions Ci are verified similarly. Thus, γ = β.

If γn+1 = 0 then rγ(n + 1) = n + 1 and `(γ) = n. Suppose 1 ≤ j ≤ n then Cj states
n
(
λj − γj

)
= rγ(j)− j and the bounds 1 ≤ j, rγ(j) ≤ n imply |rγ(j)− j| ≤ n− 1 and thus

γj = λj.

Corollary 3. Suppose λ =
(
(md)n, 0nd−1

)
∈ NN,+

0 . The coefficients of Mλ(x) have no poles at v.

Proof. Mλ(x) is a nonzero multiple of xλ + ∑βCλ Aλ,βxβ. For each β C λ there is at least

one index jβ such that ζλ

(
iβ

)
6= ζβ

(
iβ

)
at v or else qλi−βi trβ(i)−i = 1 for all i ≤ N. In this

case by Lemma 5 (λi − βi) = msi, rβ(i)− i = nsi for some si ∈ Z. Set λ′ = 1
m λ, β′ = 1

m β

then n
(
λ′i − β′i

)
= rβ(i)− i for all i and by the Proposition β′ = λ′ or β′ =

(
0n, 1nd

)
but

the latter is impossible because
(

0n, 1nd
)

/∈ NN
0 . Finally (this works because there is a

triangular expansion xλ = cMλ + ∑
βCλ

A′β,λ Mβ which holds for generic (q, t))

Mλ(x) = c ∏
βCλ

ξiβ
− ζβ

(
iβ

)

ζλ

(
iβ

)
− ζβ

(
iβ

) xλ.

This shows that the poles of Mλ are of the form qatb − 1 = 0 and v is not a pole.

Proposition 8. Suppose f is as in Theorem 4 then f (x) = cMλ(x) at v for some constant c 6= 0.

Proof. By matching coefficients of xλ find c so that coeff
(
xλ, f − cMλ

)
= 0. If

g := f − cMλ 6= 0 then there exists β such that xβ is B-maximal in g. By B-triangularity
ξig = qβi tN−rβ(i)g (at v) for all i. However, g has the same eigenvalues as Mλ, that is,
qβi tN−rβ(i) = qλi tN−i at v and the proof of the Corollary showed that β = λ , contradicting
g 6= 0.
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Recall the transformation Formula (3) for Mα for αi > αi+1 with z = ζα(i+1)
ζα(z)

Msiα =
(1− z)2

(1− zt)(t− z)

(
Ti +

1− t
1− z

)
Mα.

If Mα has no pole at v and z 6= 1, t, t−1 then Msiα has no pole at v. When α+ = λ

then αi > αi+1 implies αi = md and αi+1 = 0, z = q−mdtrα(i)−rα(i+1) = tnd+rα(i)−rα(i+1)

at v. In the substring (α1, . . . , αi, αi+1) there are rα(i) values md and i + 1− rα(i) zeros,
thus rα(i + 1) = n + i + 1− rα(i). Thus, z = tb with b = nd + 2rα(i)− n− i− 1. Suppose
rα(i) = n, thus i ≥ n and si can act on α without introducing a pole at v if nd+ n− i− 1 > 1,
that is i < nd + n − 2 = N − 1. The last permitted occurrence of md in α is i = N − 2.
Next move the second last occurrence of md in α as far as possible without a pole: set
rα(i) = n− 1 and require nd+ 2(n− 1)− n− i− 1 > 1, that is, i < nd+ n− 4 = N− 3, thus
i = N − 4 is the last permitted value. More generally let rα(i) = n− j (with 0 ≤ j ≤ n− 1)
then require nd + 2(n− j)− n− i− 1 > 1, that is, nd + n− 2j− 2 > i or i < N − 1− 2j;
the last permitted value is i = N − 2(j + 1).

Let

α =
(

0nd−n−1, md, 0, md, 0. . . . , md, 0
)

ζα =
[
tN−n−1, . . . , tn, qmdtN−1, tn−1, . . . , qmdtN−n, 1

]
.

We showed that Mα has no poles at v, and if Mλ at v is singular then so is Mα. The spectral
vector ζα at v coincides with the tC-vector of the RSYT

Y0 =

[
N N − 2 · · · N − 2n + 2 N − 2n · · · 1

N − 1 N − 3 · · · N − 2n + 1

]
,

and thus ωN−1Y0 = t−1Y0; by construction ζα(N − 1) = qmdtN−n = t−nd+N−n = t−1.
If Mα at v is singular then ωN−1Mα = ξN−1Mα = t−1Mα; this means

t−1TN−1TN−1Mα = t−1Mα

((t− 1)TN−1 + t)Mα = Mα

(t− 1)TN−1Mα = (1− t)Mα

(TN−1 + 1)Mα = 0.

For the next step we recall some standard definitions: the q-Pochhammer symbol is

(a; q)k =
k

∏
i=1

(
1− aqi−1) and the generalized (q, t)-Pochhammer symbol for λ ∈ NN,+

0 is

(v; q, t) =
N

∏
i=1

(
vt1−i; q

)
λi

.

In the context of the Ferrers diagram representation of a composition α ∈ NN
0 , {(i, j) :

1 ≤ i ≤ N, 1 ≤ j ≤ αi} (the rows with αi = 0 are empty) define the arm-length and
leg-length of a box in the diagram (λ ∈ NN,+

0 )

arm(i, j; λ) := λi − j,

arm(i, j; α) := αi − j,

leg(i, j; λ) := #{l : i < l ≤ N, j ≤ λl},

leg(i, j; α) := #{r : r > i, j ≤ αr ≤ αi}+ #{r : r < i, j ≤ αr + 1 ≤ αi}.
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The (q, t)-hook product is

hq,t(v; α) = ∏
(i,j)∈α

(
1− vqarm(i,j;α)tleg(i,j;α)

)
.

There is an evaluation at a special point (see [Cor. 7] [7]): let x(0) :=
(
1, t, t2, . . . , tN−1), then

for any β ∈ NN
0

Mβ

(
x(0)

)
= qb(β)te′(β+)

(
qtN ; q, t

)
β+

hq,t(qt; β)
,

where b(β) = ∑N
i=1 (

βi
2 ), e′(β+) = ∑N

i=1 β+
i (N − i).

Theorem 5. (TN−1 + 1)Mα 6= 0 at v and Mα is not singular.

Proof. For any polynomial p let x = x(0) in Ti p(x) = (1− t)xi+1
p(x)−p(xsi)

xi−xi+1
+ tp(xsi) then

Ti p
(

x(0)
)

= t
(

p
(

x(0)
)
− p

(
x(0)si

))
+ tp

(
x(0)si

)
= tp

(
x(0)

)
(since x(0)i+1 = tx(0)i ). Set

b0 = b(α) = n(md
2 ), e0 = e′(α+) = 1

2 mdn(2N − n− 1) then

TN−1Mα

(
x(0)

)
+ Mα

(
x(0)

)
= (t + 1)Mα

(
x(0)

)

= qb0 te0(t + 1)

(
qNt; q, t

)
α+

hq,t(qt; α)
.

The numerator is

(
qNt; q, t

)
α+

=
n

∏
i=1

(
qtN−i+1; q

)
md

=
n

∏
i=1

dm

∏
j=1

(
1− qjtnd+n−i

)
,

where the only term vanishing at v is for i = n, j = dm (for suppose j = rm with
r ≤ d, nd + n − i = rn for some r ∈ N then n ≥ i = n(d− r + 1) and d − r + 1 ≤ 1,
that is, r ≥ d, hence r = d, i = n). For the hook product observe that if 1 ≤ j ≤ n then
leg(α; N − 2j + 1, 1) = nd− 2 because there are nd− 1− j zero values in

(
α1, . . . , αN−2j+1

)

and j− 1 values of md in
(
αN−2j+2, . . . , αN

)
. Since arm(α; N − 2j + 1, 1) = dm− 1 we find

that the boxes {[N − 2j + 1, 1] : 1 ≤ j ≤ n} contribute
(

1− qdmtnd−1
)n

to hq,t(qt; α). This

term becomes
(
1− t−1)n at v. The other boxes in the diagram of α are {[N − 2j + 1, k] :

1 ≤ j ≤ n, 2 ≤ k ≤ md} and leg(α; N − 2j + 1, k) = j− 1, arm(α; N − 2j + 1, k) = dm− k.
Thus

hq,t(qt; α) =
(

1− qdmtnd−1
)n n

∏
j=1

dm

∏
k=1

(
1− qdm−k+1tj

)

=
(

1− qdmtnd−1
)n n

∏
j=1

dm

∏
i=1

(
1− qitj

)
.

The only term in the product vanishing at v is for i = m, j = n. Thus, the term (1− qmtn)

cancels out in

(
qNt; q, t

)
α+

hq,t(qt; α)
and (TN−1 + 1)Mα

(
x(0)

)
6= 0.

Example 1. Let N = 5, n = 2, m = 1, d = 2 then α = (0, 2, 0, 2, 0) and v =
(
t−2, t

)
(that is,

qt2 = 1) The spectral vector of α is
[
t2, q2t4, t, q2t3, 1

]
which equals

[
t2, 1, t, t−1, 1

]
at q = t−2.
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The expression for Mα is too large to display here (32 monomials); the denominators of the coefficients
are factors of qt− 1,

(
q2t3 − 1

)2 and

Mα

(
1, t, t2, t3, t4

)
= q2t14

(
qt2 + 1

)(
qt4 − 1

)(
qt5 − 1

)(
q2t5 − 1

)

(q2t3 − 1)2
(qt− 1)

which does not vanish at q = t−2. However, the same polynomial is singular with n = 4, d = 1,
m = 2 and q = −t−2 (that is, q2t4 = 1 but qt2 6= 1). The singularity can be proven by direct
computation and the vanishing of Mα

(
1, . . . , t4) is only a necessary condition.

We have shown if there is a singular polynomial as described in Theorem 1 and d2 ≥ 2
then by using the restriction Proposition 6 repeatedly there is a singular polynomial of
isotype (nd1 − 1, n), which in turn implies that Mα is singular. This is impossible and we
conclude that d2 = 1 is necessary, and all singular polynomials have been determined.
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