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Editorial on the Research Topic

Artificial Neural Networks as Models of Neural Information Processing

INTRODUCTION

In artificial intelligence (AI), new advances make it possible that artificial neural networks (ANNs)
learn to solve complex problems in a reasonable amount of time (LeCun et al., 2015). To the
computational neuroscientist, ANNs are theoretical vehicles that aid in the understanding of
neural information processing (van Gerven). These networks can take the form of the rate-based
models that are used in AI or more biologically plausible models that make use of spiking neurons
(Brette, 2015). The objective of this special issue is to explore the use of ANNs in the context of
computational neuroscience from various perspectives.

BIOLOGICAL PLAUSIBILITY

Biological plausibility is an important topic in neural networks research. That is, are ANNs simply
convenient computational models or do they also inform about the computations that take place in
our own brains?

Marblestone et al. carefully lay out the rapid advances in deep learning and contrast these
developments with current practice and views in neuroscience. Their main insight is that biological
learningmay be driven by the optimization of cost functions using successive neural network layers.

A classic question that has haunted ANNs for years is whether backpropagation is biologically
plausible (Crick, 1989). Scellier and Bengio introduce Equilibrium Propagation as a new learning
framework for energy-based models. The algorithm computes the gradient of an objective function
without relying on separate circuits for error propagation that integrate non-local signals.

While acetylcholine (Ach) and dopamine (DA) are neuromodulators that are known to have
profound and lasting effects on the neural responses to stimuli, it is unknown what their respective
functional roles are. Holca-lamarre et al. develop a neural network model that is combined with the
physiological release schedules of ACh and DA.
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IMPROVING PERFORMANCE

Several papers propose new mechanisms to improve the
perfomance of ANNs.

Li et al. investigate chunking, which is a phenomenon
referring to the grouping of items when performing a memory
task, leading to improvements in task performance. The authors
show that chunking can have computational benefits as it allows
the use of synapses with narrow dynamic range and low precision
when performing a memory task.

An important limitation of Hopfield networks is their limited
storage capacity. Folli et al. show that by allowing non-zero
diagonal elements on the weight matrix, maximal storage
capacity is obtained when the number of stored memory patterns
exceeds the network size.

McClure and Kriegeskorte introduce representational
distance learning (RDL) as a stochastic gradient descent method
that drives the representational space of a student model to
approximate the representational space of a teacher model.

SPIKING NEURAL NETWORKS

An important endeavor in computational neuroscience is to
further our understanding of biological and artificial spiking
neural networks.

How sensory stimuli relate to the activity of neurons is one
of the big open questions in neuroscience, and determining
this relationship between the input a neuron receives and the
outgoing spike-train has remained a challenge. Zeldenrust et al.
propose a newANN-basedmethod tomeasure in vitro howmuch
information a neuron transfers in this process.

The rate with which spikes are emitted is often mapped to the
analog activation values of artificial neurons, but it is well-known
that this relationship captures only part of the information
processing in real neurons. Carrillo-medina and Latorre develop
networks of spiking neurons that operate based on the principles
developed for so-called signature neural networks.

How does the central nervous system develop the hierarchy of
sensory maps that reflect different internal or external patterns
and/or states? Chen shows how simple recurrent and reentrant

neuronal networks can discriminate different inputs and generate
sensory maps.

Understanding Brain Function
ANNs have also been embraced as a new tool for understanding
neural information processing in the brain. In this special issue, a
number of advances in this area are put forward.

One question is whether supervised or unsupervised neural
networks provide better explanations of neural information
processing. Testolin et al. taught neural networks to learn an
explicit mapping between different spatial reference frames. They
show that both network architecture and the employed learning
paradigm affect neural coding properties.

An elusive property of our own brains is that we engage in
dreaming during sleep. Horikawa and Kamitani used deep neural
networks in an effort to decode what people dream about. They
found that decoded features from dream fMRI data positively
correlated with those associated with the object categories that
related to the dream content.

An important question in neuroscience is how neural
representations to sensory input are functionally organized.
Güçlü and van Gerven show that neural responses to sensory
input can be modeled using recurrent neural networks that can
be trained end-to-end.

CONCLUSION

Neural networks are experiencing a revival that not only
transforms AI but also provides new insights about neural
computation in biological systems. The contributions in this
special issue describe new advances in neural networks that
increase their efficacy or plausibility from a biological point
of view. A closer interaction between the AI and neuroscience
communities is expected to lead to various other theoretical and
practical breakthroughs in the years to come.
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Computational Foundations of
Natural Intelligence
Marcel van Gerven*

Computational Cognitive Neuroscience Lab, Department of Artificial Intelligence, Donders Institute for Brain, Cognition and

Behaviour, Radboud University, Nijmegen, Netherlands

New developments in AI and neuroscience are revitalizing the quest to understanding

natural intelligence, offering insight about how to equip machines with human-like

capabilities. This paper reviews some of the computational principles relevant for

understanding natural intelligence and, ultimately, achieving strong AI. After reviewing

basic principles, a variety of computational modeling approaches is discussed.

Subsequently, I concentrate on the use of artificial neural networks as a framework for

modeling cognitive processes. This paper ends by outlining some of the challenges that

remain to fulfill the promise of machines that show human-like intelligence.

Keywords: natural intelligence, strong AI, cognition, artificial neural networks, machine learning

1. INTRODUCTION

Understanding how mind emerges from matter is one of the great remaining questions in science.
How is it possible that organized clumps of matter such as our own brains give rise to all of
our beliefs, desires and intentions, ultimately allowing us to contemplate ourselves as well as the
universe from which we originate? This question has occupied cognitive scientists who study the
computational basis of themind for decades. It also occupies other breeds of scientists. For example,
ethologists and psychologists focus on the complex behavior exhibited by animals and humans
whereas cognitive, computational and systems neuroscientists wish to understand the mechanistic
basis of processes that give rise to such behavior.

The ambition to understand natural intelligence as encountered in biological organisms can be
contrasted with the motivation to build intelligent machines, which is the subject matter of artificial
intelligence (AI). Wouldn’t it be amazing if we could build synthetic brains that are endowed with
the same qualities as their biological cousins? This desire to mimic human-level intelligence by
creating artificially intelligent machines has occupied mankind for many centuries. For instance,
mechanical men and artificial beings appear in Greek mythology and realistic human automatons
had already been developed in Hellenic Egypt (McCorduck, 2004). The engineering of machines
that display human-level intelligence is also referred to as strong AI (Searle, 1980) or artificial
general intelligence (AGI) (Adams et al., 2012), and was the original motivation that gave rise to
the field of AI (Newell, 1991; Nilsson, 2005).

Excitingly, major advances in various fields of research now make it possible to attack the
problem of understanding natural intelligence from multiple angles. From a theoretical point
of view we have a solid understanding of the computational problems that are solved by
our own brains (Dayan and Abbott, 2005). From an empirical point of view, technological
breakthroughs allow us to probe and manipulate brain activity in unprecedented ways, generating
new neuroscientific insights into brain structure and function (Chang, 2015). From an engineering
perspective, we are finally able to build machines that learn to solve complex tasks, approximating
and sometimes surpassing human-level performance (Jordan andMitchell, 2015). Still, these efforts
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have not yet provided a full understanding of natural intelligence,
nor did they give rise to machines whose reasoning capacity
parallels the generality and flexibility of cognitive processing in
biological organisms.

The core thesis of this paper is that natural intelligence
can be better understood by the coming together of multiple
complementary scientific disciplines (Gershman et al., 2015).
This thesis is referred to as the great convergence. The advocated
approach is to endow artificial agents with synthetic brains
(i.e., cognitive architectures, Sun, 2004) that mimic the thought
processes that give rise to ethologically relevant behavior in
their biological counterparts. A motivation for this approach
is given by Braitenberg’s law of uphill analysis and downhill
invention, which states that it is much easier to understand a
complex system by assembling it from the ground up, rather than
by reverse engineering it from observational data (Braitenberg,
1986). These synthetic brains, which can be put to use in virtual
or real-world environments, can then be validated against neuro-
behavioral data and analyzed using a multitude of theoretical
tools. This approach not only elucidates our understanding of
human brain function but also paves the way for the development
of artificial agents that show truly intelligent behavior (Hassabis
et al., 2017).

The aim of this paper is to sketch the outline of a research
program which marries the ambitions of neuroscientists to
understand natural intelligence and AI researchers to achieve
strong AI (Figure 1). Before embarking on our quest to build
synthetic brains as models of natural intelligence, we need to
formalize what problems are solved by biological brains. That
is, we first need to understand how adaptive behavior ensues in
animals and humans.

2. ADAPTIVE BEHAVIOR IN BIOLOGICAL
AGENTS

Ultimately, organisms owe their existence to the fact that
they promote survival of their constituent genes; the basic
physical and functional units of heredity that code for
an organism (Dawkins, 2016). At evolutionary time scales,
organisms developed a range of mechanisms which ensure
that they live long enough such as to produce offspring. For
example, single-celled protozoans already show rather complex
ingestive, defensive and reproductive behavior, which is regulated
by molecular signaling (Swanson, 2012; Sterling and Laughlin,
2016).

2.1. Why Do We Need a Brain?
About 3.5 billion years ago, multicellular organisms started to
appear. Multicellularity offers several competitive advantages
over unicellularity. It allows organisms to increase in size without
the limitations set by unicellularity and permits increased
complexity by allowing cellular differentiation. It also increases
life span since an organism can live beyond the demise of a single
cell. At the same time, due to their increased size and complexity,
multicellular organisms require more intricate mechanisms for
signaling and regulation.

FIGURE 1 | Understanding natural intelligence and achieving strong AI are

seen as relying on the same theoretical foundations and require the

convergence of multiple scientific and engineering disciplines.

In multicellular organisms, behavior is regulated at multiple
scales, ranging from intracellular molecular signaling all the way
up to global regulation via the interactions between different
organ systems. Hence, the nervous system allows for fast
responses via electrochemical signaling and for slow responses
by acting on the endocrine system. Nervous systems are found in
almost all multicellular animals, but vary greatly in complexity.
For example, the nervous system of the nematode roundworm
Caenorhabditis elegans (C. elegans) is made up of 302 neurons
and 7,000 synaptic connections (White et al., 1986; Varshney
et al., 2011). In contrast, the human brain contains about 20
billion neocortical neurons that are wired together via as many
as 0.15 quadrillion synapses (Pakkenberg and Gundersen, 1997;
Pakkenberg et al., 2003).

In vertebrates, the nervous system can be partitioned into
the central nervous system (CNS), consisting of the brain and
the spinal cord, and the peripheral nervous system (PNS),
which connects the CNS to every other part of the body. The
brain allows for centralized control and efficient information
transmission. It can be partitioned into the forebrain, midbrain
and hindbrain, each of which contain dedicated neural circuits
that allow for integration of information and generation of
coordinated activity. The spinal cord connects the brain to the
body by allowing sensory and motor information to travel back
and forth between the brain and the body. It also coordinates
certain reflexes that bypass the brain altogether.

The interplay between the nervous system, the body and the
environment is nicely captured by Swanson’s four system model
of nervous system organization (Swanson, 2000), as shown in
Figure 2. Briefly, the brain exerts centralized control on the body
by sending commands to the motor system based on information
received via the sensory system. It exerts this control by way of the
cognitive system, which drives voluntary initiation of behavior,
as well as the state system, which refers to the intrinsic activity
that controls global behavioral state. The motor system can also
be influenced directly by the sensory system via spinal cord
reflexes. Output of the motor system induces visceral responses
that affect bodily state as well as somatic responses that act
on the environment. It is also able to drive the secretion of
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FIGURE 2 | The four system model of nervous system organization. CO, Cognitive system; EN, Environment; ES, Environmental stimuli; MO, Motor system; SE,

Sensory system; SR, Somatic responses; ST, Behavioral state system; VR, Visceral responses; VS, Visceral stimuli. Solid arrows show influences pertaining to the

nervous system. Dashed arrows show interactions produced by the body or the environment1.

hormones that act more globally on the body. Both the body
and the environment generate sensations that are processed by
the sensory system. This closed-loop system, tightly coupling
sensation, thought and action, is known as the perception-action
cycle (Dewey, 1896; Sperry, 1952; Fuster, 2004).

Summarizing, the brain, together with the spinal cord and
the peripheral nervous system, can be seen as an organ that
exploits sensory input such as to generate adaptive behavior
through motor outputs. This ensures an organism’s long-term
survival in a world that is dominated by uncertainty, as a result
of partial observability, noise and stochasticity. The upshot of
this interpretation is that action, which drives the generation of
adaptive behavior, is the ultimate reason why we have a brain
in the first place. Citing Sperry (1952): “the entire output of
our thinking machine consists of nothing but patterns of motor
coordination.” To understand how adaptive behavior ensues, we
therefore need to identify the ultimate causes that determine an
agent’s actions (Tolman, 1932).

2.2. What Makes us Tick?
In biology, ultimately, all evolved traits must be connected to
an organism’s survival. This implies that, from the standpoint of
evolutionary psychology, natural selection favors those behaviors
and thought processes that provide the organism with a selective
advantage under ecological pressure (Barkow et al., 1992). Since
causal links between behavior and long-term survival cannot be
sensed or controlled directly, an agent needs to rely on other,
directly accessible, ways to promote its survival. This can take the
form of (1) evolving optimal sensors and effectors that allow it
to maximize its control given finite resources and (2) evolving
a behavioral repertoire that maximizes the information gained
from the environment and generates optimal actions based on
available sensory information.

1Figure modified from http://larrywswanson.com/?page_id=1523 with

permission.

In practice, behavior is the result of multiple competing needs
that together provide an evolutionary advantage. These needs
arise because they provide particular rewards to the organism.
We distinguish primary rewards, intrinsic rewards and extrinsic
rewards.

Primary Rewards
Primary rewards are those necessary for the survival of one’s
self and offspring, which includes homeostatic and reproductive
rewards. Here, homeostasis refers to the maintenance of optimal
settings of various biological parameters (e.g., temperature
regulation) (Cannon, 1929). A slightly more sophisticated
concept is allostasis, which refers to the predictive regulation
of biological parameters in order to prevent deviations rather
than correcting them post hoc (Sterling, 2012). An organism can
use its nervous system (muscle signaling) or endocrine system
(endocrine signaling) to globally control or adjust the activities of
many systems simultaneously. This allows for visceral responses
that ensure proper functioning of an agent’s internal organs as
well as basic drives such as ingestion, defense and reproduction
that help ensure an agent’s survival (Tinbergen, 1951).

Intrinsic Rewards
Intrinsic rewards are unconditioned rewards that are attractive
and motivate behavior because they are inherently pleasurable
(e.g., the experience of joy). The phenomenon of intrinsic
motivation was first identified in studies of animals engaging in
exploratory, playful and curiosity-driven behavior in the absence
of external rewards or punishments (White, 1959).

Extrinsic Rewards
Extrinsic rewards are conditioned rewards thatmotivate behavior
but are not inherently pleasurable (e.g., praise or monetary
reward). They acquire their value through learned association
with intrinsic rewards. Hence, extrinsic motivation refers to
our tendency to perform activities for known external rewards,
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whether they be tangible or psychological in nature (Brown,
2007).

Summarizing, the continual competition between multiple
drives and incentives that have adaptive value to the organism
and are realized by dedicated neural circuits is what ultimately
generates behavior (Davies et al., 2012). In humans, the
evolutionary and cultural pressures that shaped our own intrinsic
and extrinsic motivations have allowed us to reach great
achievements, ranging from our mastery of the laws of nature
to expressions of great beauty as encountered in the liberal arts.
The question remains how we can gain an understanding of how
our brains generate the rich behavioral repertoire that can be
observed in nature.

3. UNDERSTANDING NATURAL
INTELLIGENCE

In a way, the recipe for understanding natural intelligence and
achieving strong AI is simple. If we can construct synthetic
brains that mimic the adaptive behavior displayed by biological
brains in all its splendor then our mission has succeeded. This
entails equipping synthetic brains with the same special purpose
computing machinery encountered in real brains, solving those
problems an agent may be faced with. In practice, of course,
this is easier said than done given the incomplete state of
our knowledge and the daunting complexity of biological
systems.

3.1. Levels of Analysis
The neural circuits that make up the human brain can be seen
as special-purpose devices that together guarantee the selection
of (near-)optimal actions. David Marr in particular advocated
the view that the nervous system should be understood as a
collection of information processing systems that solve particular
problems an organism is faced with (Marr, 1982). His work
gave rise to the field of computational neuroscience and has
been highly influential in shaping ideas about neural information
processing (Willshaw et al., 2015). Marr and Poggio (1976)
proposed that an understanding of information processing
systems should take place at distinct levels of analysis, namely
the computational level, which specifies what problem the system
solves, the algorithmic level, which specifies how the system solves
the problem, and the implementational level, which specifies how
the system is physically realized.

A canonical example of a three-level analysis is prey
localization in the barn owl (Grothe, 2003). At the computational
level, the owl needs to use auditory information to localize
its prey. At the algorithmic level, this can be implemented
by circuits composed of delay lines and coincidence detectors
that detect inter-aural time differences (Jeffress, 1948). At the
implementational level, neurons in the nucleus laminaris have
been shown to act as coincidence detectors (Carr and Konishi,
1990).

Marr’s levels of analysis sidestep one important point, namely
how a system gains the ability to solve a computational problem
in the first place. That is, it is also crucial to understand how

FIGURE 3 | Levels of analysis. Left column shows Poggio’s extension of

Marr’s levels of analysis, emphasizing learning at various timescales. Right

column shows Sun’s levels of analysis, emphasizing individual beliefs and

socio-cultural processes.

an organism (or species as a whole) is able to learn and evolve
the computations and representations that allow it to survive in
the natural world (Poggio, 2012). Learning itself takes place at
the level of the individual organism as well as of the species.
In the individual, one can observe lasting changes in the brain
throughout its lifetime, which is referred to as neural plasticity.
At the species level, natural selection is responsible for evolving
the mechanisms that are involved in neural plasticity (Poggio,
2012). As argued by Poggio, an understanding at the level of
learning in the individual and the species is sufficiently powerful
to solve a problem and can thereby act as an explanation of
natural intelligence. To illustrate the relevance of this revised
model, in the prey localization example it would be imperative
to understand how owls are able to adapt to changes in their
environment (Huo and Murray, 2009), as well as how owls were
equipped with such machinery during evolution.

Sun et al. (2005) propose an alternative organization of
levels of cognitive modeling. They distinguish sociological,
psychological, componential and physiological levels. The
sociological level refers to the collective behavior of agents,
including interactions between agents as well as their
environment. It stresses the importance of socio-cultural
processes in shaping cognition. The psychological level
covers individual behaviors, beliefs, concepts, and skills. The
componential level describes inter-agent processes specified in
terms of Marr’s computational and algorithmic levels. Finally,
the physiological level describes the biological substrate which
underlies the generation of adaptive behavior, corresponding
to Marr’s implementational level. It can provide valuable input
about important computations and plausible architectures at a
higher level of abstraction.

Figure 3 visualizes the different interpretations of levels of
analysis. Without committing to a definitive stance on levels of
analysis, all described levels provide important complementary
perspectives concerning the modeling and understanding of
natural intelligence.
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FIGURE 4 | Example of the Game of Life, where each cell state evolves according to a set of deterministic rules that depend on the states of neighboring cells.

Depicted is a breeder pattern that moves across the universe (here from left to right), leaving behind debris. The breeder produces Gosper guns which periodically

emit gliders; the small patterns that together form the triangular shape on the left-hand side.

3.2. Modeling approaches
The previous section suggests that different approaches to
understanding natural intelligence and developing cognitive
architectures can be taken depending on the levels of analysis one
considers. We briefly review a number of core approaches.

Artificial Life
Artificial life is a broad area of research encompassing various
different modeling strategies which all have in common that they
aim to explain the emergence of life and, ultimately, cognition in
a bottom-up manner (Steels, 1993; Bedau, 2003).

A canonical example of an artificial life system is the cellular
automaton, first introduced by von Neumann (1966) as an
approach to understand the fundamental properties of living
systems. Cellular automata operate within a universe consisting
of cells, whose states change over multiple generations based on
simple local rules. They have been shown to be capable of acting
as universal Turingmachines, thereby giving them the capacity to
compute any fixed partial computable function (Wolfram, 2002).

A famous example of a cellular automaton is Conway’s Game
of Life. Here, every cell can assume an “alive” or a “dead” state.
State changes are determined by its interactions with its eight
direct neighbors. At each time step, a live cell with fewer than two
ormore than three live neighbors dies and a dead cell with exactly
three live neighbors will become alive. Figure 4 shows an example
of a breeder pattern which produces Gosper guns in the Game of
Life. Gosper guns have been used to prove that the game of life is
Turing complete (Gardner, 2001). SmoothLife (Rafler, 2011), as a
continuous-space extension of the Game of Life, shows emerging
structures that bear some superficial resemblance to biological
structures.

In principle, by virtue of their universality, cellular automata
offer the capacity to explain how self-replicating adaptive
(autopoeietic, Maturana and Varela, 1980) systems emerge from
basic rules. This bottom-up approach is also taken by physicists

who aim to explain life and, ultimately, cognition purely from
thermodynamic principles (Dewar, 2003, 2005; Grinstein and
Linsker, 2007; Wissner-Gross and Freer, 2013; Perunov et al.,
2014; Fry, 2017).

Biophysical Modeling
A more direct way to model natural intelligence is to presuppose
the existence of the building blocks of life which can be used to
create realistic simulations of organisms in silico. The reasoning
is that biophysically realistic models can eventually mimic the
information processing capabilities of biological systems. An
example thereof is the OpenWorm project which has as its
ambition to understand how the behavior of C. elegans emerges
from its underlying physiology purely via bottom-up biophysical
modeling (Szigeti et al., 2014) (Figure 5A). It also acknowledges
the importance of including not only a model of the worm’s
nervous system but also of its body and environment in the
simulation. That is, adaptive behavior depends on the organism
being both embodied and embedded in the world (Anderson,
2003). If successful, then this project would constitute the first
example of a digital organism.

It is a long stretch from the worm’s 302 neurons to the 86
billion neurons that comprise the human brain (Herculano-
Houzel and Lent, 2005). Still, researchers have set out to develop
large-scale models of the human brain. Biophysical modeling
can be used to create detailed models of neurons and their
processes using coupled systems of differential equations. For
example, action potential generation can be described in terms
of the Hodgkin-Huxley equations (Figure 5B) and the flow of
electric current along neuronal fibers can be modeled using cable
theory (Dayan and Abbott, 2005). This approach is used in the
Blue Brain project (Markram, 2006) and its successor, the Human
Brain Project (HBP) (Amunts et al., 2016). See de Garis et al.
(2010) for a review of various artificial brain projects.
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FIGURE 5 | Biophysical modeling. (A) Body plan of C. elegans2. The OpenWorm project aims to provide an accurate bottom-up simulation of the worm acting in its

environment. (B) Example of action potential generation via the Hodgkin-Huxley equations in the presence of a constant input current.

Connectionism
Connectionism refers to the explanation of cognition as arising
from the interplay between basic (sub-symbolic) processing
elements (Smolensky, 1987; Bechtel, 1993). It has close links
to cybernetics, which focuses on the development of control
structures from which intelligent behavior emerges (Rid,
2016).

Connectionism came to be equated with the use of artificial
neural networks that abstract away from the details of biological
neural networks. An artificial neural network (ANN) is a
computational model which is loosely inspired by the human
brain as it consists of an interconnected network of simple
processing units (artificial neurons) that learns from experience
by modifying its connections. Alan Turing was one of the first
to propose the construction of computing machinery out of
trainable networks consisting of neuron-like elements (Copeland
and Proudfoot, 1996). Marvin Minsky, one of the founding
fathers of AI, is credited for building the first trainable ANN,
called SNARC, out of tubes, motors, and clutches (Seising, 2017).

Artificial neurons can be considered abstractions of
(populations of) neurons while the connections are taken
to be abstractions of modifiable synaptic connections (Figure 6).
The behavior of an artificial neuron is fully determined by the
connection strengths as well as how input is transformed into
output. Contrary to detailed biophysical models, ANNs make
use of basic matrix operations and nonlinear transformations as
their fundamental operations. In its most basic incarnation, an

2Figure by K. D. Schroeder, CC BY-SA 3.0, https://commons.wikimedia.org/w/

index.php?curid=26958836. Used with permission.

artificial neuron simply transforms its input x into a response
y through an activation function f , as shown in Figure 6. The
activation function operates on an input activation which is
typically taken to be the inner product between the input x and
the parameters (weight vector) w of the artificial neuron. The
weights are interpreted as synaptic strengths that determine how
presynaptic input is translated into postsynaptic firing rate. This
yields a simple linear-nonlinear mapping of the form

y = f (wTx) . (1)

By connecting together multiple neurons, one obtains a neural
network that implements some non-linear function y = f(x; θ),
where the fi are nonlinear transformations and θ stands for
the network parameters (i.e., weight vectors). After training a
neural network, representations become encoded in a distributed
manner as a pattern which manifests itself across all its
neurons (Hinton et al., 1986).

Throughout the course of their history ANNs have fallen in
and out of favor multiple times. At the same time, each next
generation of neural networks has yielded new insights about
how complex behavior may emerge through the collective action
of simple processing elements. Modern neural networks perform
so well on several benchmark problems that they obliterate
all competition in, e.g., object recognition (Krizhevsky et al.,
2012), natural language processing (Sutskever et al., 2014), game
playing (Mnih et al., 2015; Silver et al., 2017) and robotics (Levine
et al., 2015), often matching and sometimes surpassing human-
level performance (LeCun et al., 2015). Their success relies on
combining classical ideas (Widrow and Lehr, 1990; Hochreiter
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FIGURE 6 | Artificial neural networks (Yuste, 2015). (A) Feedforward neural networks map inputs to outputs using nonlinear transformations. (B) Recurrent neural

networks implement dynamical systems by feeding back output activity to the input layer, where it is combined with external input.

and Schmidhuber, 1997; LeCun et al., 1998) with new algorithmic
developments (Hinton et al., 2006; Srivastava et al., 2014; He
et al., 2015; Ioffe and Szegedy, 2015; Zagoruyko and Komodakis,
2017), while using high-performance graphical processing units
(GPUs) to massively speed up training of ANNs on big
datasets (Raina et al., 2009).

Cognitivism
A conceptually different approach to the explanation of cognition
as emerging from bottom-up principles is the view that cognition
should be understood in terms of formal symbol manipulation.
This computationalist view is associated with the cognitivist
program which arose in response to earlier behaviorist theories.
It embraces the notion that, in order to understand natural
intelligence, one should study internal mental processes rather
than just externally observable events. That is, cognitivism asserts
that cognition should be defined in terms of formal symbol
manipulation, where reasoning involves the manipulation of
symbolic representations that refer to information about the
world as acquired by perception.

This view is formalized by the physical symbol system
hypothesis (Newell and Simon, 1976), which states that “a
physical symbol system has the necessary and sufficientmeans for
intelligent action.” This hypothesis implies that artificial agents,
when equipped with the appropriate symbol manipulation
algorithms, will be capable of displaying intelligent behavior.
As Newell and Simon (1976) wrote, the physical symbol system
hypothesis also implies that “the symbolic behavior of man arises
because he has the characteristics of a physical symbol system.”
This also suggests that the specifics of our nervous system are not
relevant for explaining adaptive behavior (Simon, 1996).

Cognitivism gave rise to cognitive science as well as artificial
intelligence, and spawned various cognitive architectures such as
ACT-R (Anderson et al., 2004) (see Figure 7) and SOAR (Laird,
2012) that employ rule-based approaches in the search for a
unified theory of cognition (Newell, 1991).3

3In fact, ACT-R also uses some subsymbolic elements and can therefore be

considered a hybrid architecture.

FIGURE 7 | ACT-R as an example cognitive architecture which employs

symbolic reasoning. ACT-R interfaces with different modules through buffers.

Cognition unfolds as a succession of activations of production rules as

mediated by pattern matching and execution4.

Probabilistic Modeling
Modern cognitive science still embraces the cognitivist program
but has since taken a probabilistic approach to the modeling of
cognition. As stated by Griffiths et al. (2010), this probabilistic
approach starts from the notion that the challenges faced by
the mind are often of an inductive nature, where the observed
data are not sufficient to unambiguously identify the process that
generated them. This precludes the use of approaches that are
founded on mathematical logic and requires a quantification of
the state of the world in terms of degrees of belief as afforded
by probability theory (Jaynes, 1988). The probabilistic approach
operates by identifying a hypothesis space representing solutions
to the inductive problem. It then prescribes how an agent should
revise her belief in the hypotheses given the information provided

4Figure modified from http://act-r.psy.cmu.edu/about with permission.
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by observed data. Hypotheses are typically formulated in terms
of probabilistic graphical models that capture the independence
structure between random variables of interest (Koller and
Friedman, 2009). An example of such a graphical model is shown
in Figure 8.

Belief updating in the probabilistic sense is realized by solving
a statistical inference problem. Consider a set of of hypotheses
H that might explain the observed data. Let p(h) denote our
belief in a hypothesis h ∈ H, reflecting the state of the world,
before observing any data (known as the prior). Let p(x | h)
indicate the probability of observing data x if h were true (known
as the likelihood). Bayes’ rule tells us how to update our belief
in a hypothesis after observing data. It states that the posterior
probability p(h | x) assigned to h after observing x should be

p(h | x) =
p(x | h)p(h)

∑

h∈H p(x | h)p(h)
(2)

where the denominator is a normalizing constant known as the
evidence or marginal likelihood5. Importantly, it can be shown
that degrees of belief are coherent only if they satisfy the axioms
of probability theory (Ramsey, 1926).

The beauty of the probabilistic approach lies in its generality.
It not only explains how our moment-to-moment percepts
change as a function of our prior beliefs and incoming sensory
data (Yuille and Kersten, 2006) but also places learning, as
the construction of internal models, under the same umbrella
by viewing it as an inference problem (MacKay, 2003). In
the probabilistic framework, mental processes are modeled
using algorithms for approximating the posterior (Koller and
Friedman, 2009) and neural processes are seen as mechanisms
for implementing these algorithms (Gershman and Beck, 2016).

The probabilistic approach also provides a basis for making
optimal decisions under uncertainty. This is realized by
extending probability theory with decision theory. According
to decision theory, a rational agent ought to select that action
which maximizes the expected utility (von Neumann and
Morgenstern, 1953). This is known as the maximum expected
utility (MEU) principle. In real-life situations, biological (and
artificial) agents need to operate under bounded resources,
trading off precision for speed and effort when trying to attain
their objectives (Gigerenzer and Goldstein, 1996). This implies
that MEU calculations may be intractable. Intractability issues
have led to the development of algorithms that maximize a
more general form of expected utility which incorporates the
costs of computation. These algorithms can in turn be adapted
so as to select the best approximation strategy in a given
situation (Gershman et al., 2015). Hence, at the algorithmic level,
it has been postulated that brains use approximate inference
algorithms (Andrieu et al., 2003; Blei et al., 2016) such as to
produce good enough solutions for fast and frugal decision
making.

Summarizing, by appealing to Bayesian statistics and decision
theory, while acknowledging the constraints biological agents

5Beliefs over continuous quantities can be expressed by replacing summation with

integration.

FIGURE 8 | Example of a probabilistic graphical model capturing the statistical

relations between random variables of interest. This particular plate model

describes a smoothed version of latent Dirichlet allocation as used in topic

modeling (Blei et al., 2003). Here, α and β are hyper-parameters, θm is the

topic distribution for document m, φk is the word distribution for topic k, znm is

the topic for the n-th word in document m and wmn is a specific word. Capital

letters K, M and N denote the number of topics, documents and words,

respectively. The goal is to discover abstract topics from observed words. This

general approach of inferring posteriors over latent variables from observed

data is common to the probabilistic approach.

are faced with, cognitive science arrives at a theory of bounded
rationality that agents should adhere to. Importantly, this
normative view dictates that organisms must operate as Bayesian
inference machines that aim to maximize expected utility. If
they do not, then, under weak assumptions, they will perform
suboptimally. This would be detrimental from an evolutionary
point of view.

3.3. Bottom-up Emergence vs. Top-down
Abstraction
The aforementioned modeling strategies each provide an
alternative approach toward understanding natural intelligence
and achieving strong AI. The question arises which of these
strategies will be most effective in the long run.

While the strictly bottom-up approach used in artificial life
research may lead to fundamental insights about the nature of
self-replication and adaptability, in practice it remains an open
question how emergent properties that derive from a basic set of
rules can reach the same level of organization and complexity as
can be found in biological organisms. Furthermore, running such
simulations would be extremely costly from a computational
point of view.

The same problem presents itself when using detailed
biophysical models. That is, bottom-up approaches must either
restrict model complexity or run simulations for limited periods
of time in order to remain tractable (O’Reilly et al., 2012).
Biophysical models additionally suffer from a lack of data. For
example, the original aim of the Human Brain Project was to
model the human brain within a decade (Markram et al., 2011).
This ambition may be hard to realize given the plethora of
data required for model estimation. Furthermore, the resulting
models may be difficult to link to cognitive function. Izhikevich,
reflecting on his simulation of another large biophysically
realistic brain model (Izhikevich and Edelman, 2008), states:
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“Indeed, no significant contribution to neuroscience could be
made by simulating one second of a model, even if it has the size
of the human brain. However, I learned what it takes to simulate
such a large-scale system6.”

Connectionist models, in contrast, abstract away from
biophysical details, thereby making it possible to train large-
scale models on large amounts of sensory data, allowing
cognitively challenging tasks to be solved. Due to their
computational simplicity, they are also more amenable to
theoretical analysis (Hertz et al., 1991; Bishop, 1995). At the
same time, connectionist models have been criticized for their
inability to capture symbolic reasoning, their limitations when
modeling particular cognitive phenomena, and their abstract
nature, restricting their biological plausibility (Dawson and
Shamanski, 1994).

Cognitivism has been pivotal in the development of intelligent
systems. However, it has also been criticized using the argument
that systems which operate via formal symbol manipulation
lack intentionality (Searle, 1980)7. Moreover, the representational
framework that is used is typically constructed by a human
designer. While this facilitates model interpretation, at the
same time, this programmer-dependence may bias the system,
leading to suboptimal solutions. That is, idealized descriptions
may induce a semantic gap between perception and possible
interpretation (Vernon et al., 2007).

The probabilistic approach to cognition is important given its
ability to define normative theories at the computational level.
At the same time, it has also been criticized for its treatment of
cognition as if it is in the business of selecting some statistical
model. Proponents of connectionism argue that computation-
level explanations of behavior that ignore mechanisms associated
with bottom-up emergence are likely to fall short (McClelland
et al., 2010).

The different approaches provide complementary insights
into the nature of natural intelligence. Artificial life informs
about fundamental bottom-up principles, biophysical models
make explicit how cognition is realized via specific mechanisms
at the molecular and systems level, connectionist models show
how problem solving capacities emerge from the interactions
between basic processing elements, cognitivism emphasizes the
importance of symbolic reasoning and probabilistic models
inform how particular problems could be solved in an optimal
manner.

Notwithstanding potential limitations, given their ability to
solve complex cognitively challenging problems, connectionist
models are taken to provide a promising starting point for
understanding natural intelligence and achieving strong AI. They
also naturally connect to the different modeling strategies. That
is, they connect to artificial life principles by having network
architectures emerge through evolutionary strategies (Real et al.,
2016; Salimans et al., 2017) and connect to the biophysical level
by viewing them as (rate-based) abstractions of biological neural
networks (Dayan and Abbott, 2005). They also connect to the

6From: https://www.izhikevich.org/human_brain_simulation/why.htm
7Intentionality or “aboutness” refers to the quality of mental states as being

directed toward an object or state of affairs.

computational level by grounding symbolic representations in
real-world sensory states (Harnad, 1990) and connect to the
probabilistic approach through the observation that emergent
computations effectively approximate Bayesian inference (Gal,
2016; Orhan and Ma, 2016; Ambrogioni et al., 2017; Mandt et al.,
2017). It is for these reasons that, in the following, we will explore
how ANNs, as canonical connectionist models, can be used to
promote our understanding of natural intelligence.

4. ANN-BASED MODELING OF COGNITIVE
PROCESSES

We will now explore in more detail the ways in which ANNs can
be used to understand and model aspects of natural intelligence.
We start by addressing how neural networks can learn from data.

4.1. Learning
The capacity of brains to behave adaptively relies on their ability
to modify their own behavior based on changing circumstances.
The appeal of neural networks stems from their ability to mimic
this learning behavior in an efficientmanner by updating network
parameters θ based on available data D = {z(1), . . . , z(N)},
allowing the construction of large models that are able to solve
complex cognitive tasks.

Learning proceeds by making changes to the network
parameters θ such that its output starts to agree more and more
with the objectives of the agent at hand. This is formalized by
assuming the existence of a cost function J (θ) which measures
the degree to which an agent deviates from its objectives. J
is computed by running a neural network in forward mode
(from input to output) and comparing the predicted output with
the desired output. During its lifetime, the agent obtains data
from its environment (sensations) by sampling from a data-
generating distribution pdata. The goal of an agent is to reduce
the expected risk

J
∗(θ) = Ez∼pdata

[

ℓ(z, θ)
]

(3)

where ℓ is the incurred loss per datapoint z. In practice, an
agent only has access to a finite number of datapoints which the
agent experiences during its lifetime, yielding a training set D.
This training set can be represented in the form of an empirical
distribution p̂(z) which equals 1/N if z is equal to one of the N
examples and zero otherwise. In practice, the aim therefore is to
minimize the empirical risk

J (θ) = Ez∼p̂

[

ℓ(z, θ)
]

(4)

as an approximation of J ∗. In reality, the brain is thought to
optimize a multitude of cost functions pertaining to the many
objectives it aims to achieve in concert (Marblestone et al., 2016).

Risk minimization can be accomplished by making use of a
gradient descent procedure. Let θ be the parameters of a neural
network (i.e., the synaptic weights). We can define learning as a
search for the optimal parameters θ

∗ based on available training
data D such that

θ
∗ = argmin

θ

J (θ) . (5)
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A convenient way to approximate θ
∗ is by measuring locally the

change in slope of J (θ) as a function of θ and taking a step in the
direction of steepest descent. This procedure, known as gradient
descent, is based on the observation that if J is defined and
differentiable in the neighborhood of a point θ , then J decreases
fastest if one goes from θ in the direction of the negative gradient
−∇θJ (θ). In other words, if we use the update rule

θ ← θ − ǫ∇θJ (θ) (6)

with small enough learning rate ǫ then θ is guaranteed to
converge to a (local) minimum of J (θ)8. Importantly, the
gradient can be computed for arbitrary ANN architectures
by running the network in backward mode (from output
to input) and computing the gradient using automatic
differentiation procedures. This forms the basis of the widely
used backpropagation algorithm (Widrow and Lehr, 1990).

One might argue that the backpropagation algorithm fails to
connect to learning in biology due to implausible assumptions
such as the fact that forward and backward passes use the
same set of synaptic weights. There are a number of responses
here. First, one might hold the view that backpropagation is
just an efficient way to obtain effective network architectures,
without committing to the biological plausibility of the learning
algorithm per se. Second, if biologically plausible learning is the
research objective then one is free to exploit other (Hebbian)
learning schemes that may reflect biological learning more
closely (Miconi, 2017). Finally, researchers have started to
put forward arguments that backpropagation may not be that
biologically implausible after all (Roelfsema and van Ooyen,
2005; Lillicrap et al., 2016; Scellier and Bengio, 2017).

4.2. Perceiving
One of the core skills any intelligent agent should possess is
the ability to recognize patterns in its environment. The world
around us consists of various objects that may carry significance.
Being able to recognize edible food, places that provide shelter,
and other agents will all aid survival.

Biological agents are faced with the problem that they need
to be able to recognize objects from raw sensory input (vectors
in R

n). How can a brain use the incident sensory input to learn
to recognize those things that are of relevance to the organism?
Recall the artificial neuron formulation y = f (wTx). By learning
proper weights w, this neuron can learn to distinguish different
object categories. This is essentially equivalent to a classicalmodel
known as the perceptron (Rosenblatt, 1958), which was used to
solve simple pattern recognition problems via a simple error-
correction mechanism. It also corresponds to a basic linear-
nonlinear (LN) model which has been used extensively to model
and estimate the receptive field of a neuron or a population of
neurons (van Gerven, 2017).

8In practice, it is more efficient to iterate over subsets of datapoints, known asmini-

batches, in sequence. That is, training is organized in terms of epochs in which

all datapoints are processed by iterating over mini-batches. Note that, whenever

we are not processing all data points in parallel, we are not exactly following the

gradient. Therefore, any such procedure is known as stochastic gradient descent.

Single-layer ANNs such as the perceptron are capable of
solving interesting learning problems. At the same time, they
are limited in scope since they can only solve linearly separable
classification problems (Minsky and Papert, 1969). To overcome
the limitations of the perceptron we can extend its capabilities by
relaxing the constraint that the inputs are directly coupled to the
outputs. Amultilayer perceptron (MLP) is a feedforward network
which generalizes the standard perceptron by having a hidden
layer that resides between the input and the output layers. We
can write an MLP with multiple output units as

y = g (Wf (Vx)) (7)

where V denotes the hidden layer weights and W denotes the
output layer weights. By introducing a hidden layer, MLPs gain
the ability to learn internal representations (Rumelhart et al.,
1986). Importantly, an MLP can approximate any continuous
function to an arbitrary degree of accuracy, given a sufficiently
large but finite number of hidden neurons (Cybenko, 1989;
Hornik, 1991).

Complex systems tend to be hierarchical and modular
in nature (Simon, 1962). The nervous system itself can be
thought of as a hierarchically organized system. This is
exemplified by Felleman & van Essen’s hierarchical diagram of
visual cortex (Felleman and Van Essen, 1991), the proposed
hierarchical organization of prefrontal cortex (Badre, 2008),
the view of the motor system as a behavioral control
column (Swanson, 2000) and the proposition that anterior and
posterior cortex reflect hierarchically organized executive and
perceptual systems (Fuster, 2001). Representations at the top
of these hierarchies correspond to highly abstract statistical
invariances that occupy our ecological niche (Quian Quiroga
et al., 2005; Barlow, 2009). A hierarchy can be modeled by
a deep neural network (DNN) composed of multiple hidden
layers (LeCun et al., 2015), written as

y = fL+1
(

WL+1fL
(

WL · · · f1
(

W1x
)

· · ·
)

= fθ (x) (8)

where Wl is the weight matrix associated with layer l. Even
though an MLP can already approximate any function to an
arbitrary degree of precision, it has been shown that many classes
of functions can be represented much more compactly using thin
and deep neural networks compared to shallow and wide neural
networks (Bengio and LeCun, 2007; Bengio, 2009; Le Roux and
Bengio, 2010; Delalleau and Bengio, 2011; Mhaskar et al., 2016).

A DNN corresponds to a stack of LN models, generalizing the
concept of basic receptive field models. They have been shown
to yield human-level performance on object categorization
tasks (Krizhevsky et al., 2012). The latest DNN incarnations
are even capable of predicting the cognitive states of other
agents. One example is the prediction of apparent personality
traits from multimodal sensory input (Güçlütürk et al., 2016).
Deep architectures have been used extensively in neuroscience
to model hierarchical processing (Selfridge, 1959; Fukushima,
1980, 2013; Riesenhuber and Poggio, 1999; Lehky and Tanaka,
2016). Interestingly, it has been shown that the representations
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encoded in DNN layers correspond to the representations that
are learned by areas that make up the sensory hierarchies of
biological agents (Güçlü and van Gerven, 2015, 2017a; Güçlü
et al., 2016). Multiple reviews discuss this use of DNNs in sensory
neuroscience (Cox andDean, 2014; Kriegeskorte, 2015; Robinson
and Rolls, 2015; Marblestone et al., 2016; Yamins and DiCarlo,
2016; Kietzmann et al., 2017; Peelen and Downing, 2017; van
Gerven, 2017; Vanrullen, 2017).

4.3. Remembering
Being able to perceive the environment also implies that agents
can store and retrieve past knowledge about objects and events
in their surroundings. In the feedforward networks considered in
the previous section, this knowledge is encoded in the synaptic
weights as a result of learning. Memories of the past can
also be stored, however, in moment-to-moment neural activity
patterns. This does require the availability of lateral or feedback
connections in order to enable recurrent processing (Singer,
2013; Maass, 2016). Recurrent processing can be implemented by
a recurrent neural network (RNN) (Jordan, 1987; Elman, 1990),
defined by

yn = f
(

Wyn−1 + Uxn
)

(9)

such that the neuronal activity at time n depends on the activity at
time n−1 as well as instantaneous bottom-up input. RNNs can be
interpreted as numerical approximations of differential equations
that describe rate-based neural models (Dayan and Abbott, 2005)
and have been shown to be universal approximators of dynamical
systems (Funahashi andNakamura, 1993)9. Their parameters can
be estimated using a variant of backpropagation, referred to as
backpropagation through time (Mozer, 1989).

When considering perception, feedforward architectures may
seem sufficient. For example, the onset latencies of neurons
in monkey inferior-temporal cortex during visual processing
are about 100 ms (Thorpe and Fabre-Thorpe, 2001), which
means that there is ample time for the transmission of just
a few spikes. This suggests that object recognition is largely
an automatic feedforward process (Vanrullen, 2007). However,
recurrent processing is important in perception as well since
it provides the ability to maintain state. This is important
in detecting salient features in space and time (Joukes et al.,
2014), as well as for integrating evidence in noisy or ambiguous
settings (O’Reilly et al., 2013). Moreover, perception is strongly
influenced by top-down processes, as mediated by feedback
connections (Gilbert and Li, 2013). RNNs have also been used to
model working memory (Miconi, 2017) as well as hippocampal
function, which is involved in a variety of memory-related
processes (Willshaw et al., 2015; Kumaran et al., 2016).

A special kind of RNN is the Hopfield network (Hopfield,
1982), where W is symmetric and U = 0. Learning in a
Hopfield net is based on a Hebbian learning scheme. Hopfield
nets are attractor networks that converge to a state that is a local

9 The ability of simple RNNs to integrate information over time remains limited,

which led to the introduction of various extensions that performmore favorably in

this regard (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Neil et al., 2016;

Wu et al., 2016).

minimum of an energy function. They have been used extensively
as models of associative memory (Wills et al., 2005). It has even
been postulated that dreaming can be seen as an unlearning
process which gets rid of spurious minima in attractor networks,
thereby improving their storage capacity (Crick and Mitchison,
1983).

4.4. Acting
As already described, the ability to generate appropriate actions
is what ultimately drives behavior. In real-world settings, such
actions typically need to be inferred from reward signals rt
provided by the environment. This is the subject matter of
reinforcement learning (RL) (Sutton and Barto, 1998). Define
a policy π(s, a) as the probability of selecting an action a
given a state s. Let the return R =

∑∞
t=0 γ trt+1 be the total

reward accumulated in an episode, with γ a discount factor that
downweighs future rewards. The goal in RL is to identify an
optimal policy π∗ that maximizes the expected return

π∗ = argmax
π

E[R | π] . (10)

Reinforcement learning algorithms have been crucial in training
neural networks that have the capacity to act. Such networks
learn to generate suitable actions purely by observing the
rewards entailed by previously generated actions. RL algorithms
come in model-free and model-based variants. In the model-
free setting, optimal actions are learned purely based on the
reward that is gained by performing actions in the past. In
the model-based setting, in contrast, an explicit model of the
environment is used to predict the consequences of actions that
are being executed. Importantly, model-free and model-based
reinforcement learning approaches have clear correspondences
with habitual and goal-directed learning in neuroscience (Daw,
2012; Buschman et al., 2014).

Various model-free reinforcement learning approaches have
been used to develop a variety of neural networks for
action generation. For example, Q-learning was used to
train networks that play Atari games (Mnih et al., 2015)
and policy gradient methods have been used to play board
games (Silver et al., 2017) and solve problems in (simulated)
robotics (Silver et al., 2014; Schulman et al., 2015), effectively
closing the perception-action cycle. Evolutionary strategies
are also proving to become an useful approach for solving
challenging control problems (Salimans et al., 2017). Similar
successes have been achieved using model-based reinforcement
learning approaches (Schmidhuber, 2015; Mujika, 2016; Santana
and Hotz, 2016).

Another important ingredient required for generating optimal
actions is recurrent processing, as described in the previous
section. Action generationmust depend on the ability to integrate
evidence over time since, otherwise, we are guaranteed to act
suboptimally. That is, states that are qualitatively different can
appear the same to the decision maker, leading to suboptimal
policies. Consider for example the sensation of a looming object.
The optimal decision depends crucially on whether this object
is approaching or receding, which can only be determined by
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taking past sensations into account. This phenomenon is known
as perceptual aliasing (Whitehead and Ballard, 1991).

A key ability of biological organisms which requires recurrent
processing is their ability to navigate in their environment, as
mediated by the hippocampal formation (Moser et al., 2015).
Recent work shows that particular characteristics of hippocampal
place cells, such as stable tuning curves that remap between
environments, are recovered by training neural networks on
navigation tasks (Kanitscheider and Fiete, 2016). The ability to
integrate evidence also allows agents to selectively sample the
environment, such as to maximize the amount of information
gained. This process, known as active sensing, is crucial for
understanding perceptual processing in biology (Yarbus, 1967;
Regan and Noë, 2001; Friston et al., 2010; Schroeder et al., 2010;
Gordon andAhissar, 2012). Active sensing, in the form of saccade
planning, has been implemented using a variety of recurrent
neural network architectures (Larochelle and Hinton, 2010;
Gregor et al., 2014; Mnih et al., 2014). RNNs that implement
recurrent processing have also been used to model various other
action-related processes such as timing (Laje and Buonomano,
2013), sequence generation (Rajan et al., 2015) and motor
control (Sussillo et al., 2015).

Recurrent processing and reinforcement learning are also
essential in modeling higher-level processes, such as cognitive
control as mediated by frontal brain regions (Fuster, 2001;
Miller and Cohen, 2001). Examples are models of context-
dependent processing (Mante et al., 2013) and perceptual
decision-making (Carnevale et al., 2015). In general, RNNs that
have been trained using RL on a variety of cognitive tasks
have been shown to yield properties that are consistent with
phenomena observed in biological neural networks (Song et al.,
2016; Miconi, 2017).

4.5. Predicting
Modern theories of human brain function appeal to the idea that
the brain can be viewed as a prediction machine, which is in the
business of continuously generating top-down predictions that
are integrated with bottom-up sensory input (Lee and Mumford,
2003; Yuille and Kersten, 2006; Clark, 2013; Summerfield and
de Lange, 2014). This view of the brain as a prediction machine
that performs unconscious inference has a long history, going
back to the seminal work of Alhazen and Helmholtz (Hatfield,
2002). Modern views cast this process in terms of Bayesian
inference, where the brain is updating its internal model
of the environment in order to explain away the data that
impinge upon its senses, also referred to as the Bayesian
brain hypothesis (Jaynes, 1988; Doya et al., 2006). The same
reasoning underlies the free-energy principle, which assumes that
biological systems minimize a free energy functional of their
internal states that entail beliefs about hidden states in their
environment (Friston, 2010). Predictions can be seen as central
to the generation of adaptive behavior, since anticipating the
future will allow an agent to select appropriate actions in the
present (Schacter et al., 2007; Moulton and Kosslyn, 2009).

Prediction is central in model-based RL approaches since
it requires agents to plan their actions by predicting the
outcomes of future actions (Daw, 2012). This is strongly

related to the notion of preplay of future events subserving
path planning (Corneil and Gerstner, 2015). Such preplay has
been observed in hippocampal place cell sequences (Dragoi
and Tonegawa, 2011), giving further support to the idea
that the hippocampal formation is involved in goal-directed
navigation (Corneil and Gerstner, 2015). Prediction also allows
an agent to prospectively act on expected deviations from optimal
conditions. This focus on error-correction and stability is also
prevalent in the work of the cybernetic movement (Ashby,
1952). Note further that predictive processing connects to the
concept of allostasis, where the agent is actively trying to predict
future states such as to minimize deviations from optimal
homeostatic conditions. It is also central to optimal feedback
control theory, which assumes that the motor system corrects
only those deviations that interfere with task goals (Todorov and
Jordan, 2002).

The notion of predictive processing has been very influential
in neural network research. For example, it provides the
basis for predictive coding models that introduce specific
neural network architectures in which feedforward connections
are used to transmit the prediction errors that result from
discrepancies between top-down predictions and bottom-up
sensations (Rao and Ballard, 1999; Huang and Rao, 2011). It
also led to the development of a wide variety of generative
models that are able to predict their sensory states, also referred
to as fantasies (Hinton, 2013). Such fantasies may play a role
in understanding cognitive processing involved in imagery,
working memory and dreaming. In effect, these models aim to
estimate a distribution over latent causes z in the environment
that explain observed sensory data x. In this setting, the most
probable explanation is given by

z∗ = argmax
z

p(z | x)

= argmax
z

[

p(x | z)p(z)
]

. (11)

Generative models also offer a way to perform unsupervised
learning, since if a neural network is able to generate predictions
then the discrepancy between predicted and observed stimuli can
serve as a teaching signal. A canonical example is the Boltzmann
machine, which is a stochastic variant of a Hopfield network that
is able to discover regularities in the training data using a simple
unsupervised learning algorithm (Hinton and Sejnowski, 1983;
Ackley et al., 1985). Another classical example is the Helmholtz
machine, which incorporates both bottom-up and top-down
processing (Dayan et al., 1995). Other, more recent examples of
ANN-based generative models are deep belief networks (Hinton
et al., 2006), variational autoencoders (Kingma and Welling,
2014) and generative adversarial networks (Goodfellow et al.,
2014). Recent work has started to use these models to predict
future sensory states from current observations (Lotter et al.,
2016; Mathieu et al., 2016; Xue et al., 2016).

4.6. Reasoning
While ANNs are now able to solve complex tasks such as acting in
natural environments or playing difficult board games, one could
still argue that they are “just” performing sophisticated pattern
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recognition rather than showing the symbolic reasoning abilities
that characterize our own brains. The question of whether
connectionist systems are capable of symbolic reasoning has a
long history, and has been debated by various researchers in
the cognitivist (symbolic) program (Pinker and Mehler, 1988).
We will not settle this debate here but point out that efforts
are underway to endow neural networks with sophisticated
reasoning capabilities.

One example is the development of “differentiable computers”
that learn to implement algorithms based on a finite amount
of training data (Graves et al., 2014; Weston et al., 2015;
Vinyals et al., 2017). The resulting neural networks perform
variable binding and are able to deal with variable length
structures (Graves et al., 2014), which are two objections that
were originally raised against using ANNs to explain cognitive
processing (Fodor and Pylyshyn, 1988).

Another example is the development of neural networks
that can answer arbitrary questions about text (Bordes et al.,
2015), images (Agrawal et al., 2016) and movies (Tapaswi et al.,
2015), thereby requiring deep semantic knowledge about the
experienced stimuli. Recent models have also been shown to be
capable of compositional reasoning (Johnson et al., 2017; Lake
et al., 2017; Yang et al., 2017), which is an important ingredient
for explaining the systematic nature of human thought (Fodor
and Pylyshyn, 1988). These architectures often make use of
distributional semantics, where words are encoded as real vectors
that capture word meaning (Mikolov et al., 2013; Ferrone and
Zanzotto, 2017).

Several other properties characterize human thought
processes, such as intuitive physics, intuitive psychology,
relational reasoning and causal reasoning (Kemp and
Tenenbaum, 2008; Lake et al., 2017). Another crucial hallmark
of intelligent systems is that they are able to explain what they
are doing (Brachman, 2002). This requires agents to have a
deep understanding of their world. These properties should be
replicated in neural networks if they are to serve as accurate
models of natural intelligence. New neural network architectures
are slowly starting to take steps in this direction (e.g., Louizos
et al., 2017; Santoro et al., 2017; Zhu et al., 2017).

5. TOWARD STRONG AI

We have reviewed the computational foundations of natural
intelligence and outlined how ANNs can be used to model
a variety of cognitive processes. However, our current
understanding of natural intelligence remains limited and
strong AI has not yet been attained. In the following, we
will touch upon a number of important topics that will be of
importance for eventually reaching these goals.

5.1. Surviving in Complex Environments
Contemporary neural network architectures tend to excel at
solving one particular problem well. However, in practice, we
want to arrive at intelligent machines that are able to survive in
complex environments. This requires the agent to deal with high-
dimensional naturalistic input, be able to solve multiple tasks

depending on context, and devise optimal strategies to ensure
long-term survival.

The research community has embraced these desiderata by
creating virtual worlds that allow development and testing of
neural network architectures (e.g., Todorov et al., 2012; Beattie
et al., 2016; Brockman et al., 2016; Kempka et al., 2016; Synnaeve
et al., 2016)10. While most work in this area has focused on
environments with fully observable states, reward functions with
low delay, and small action sets, research is shifting toward
environments that are partially observable, require long-term
planning, show complex dynamics and have noisy and high-
dimensional control interfaces (Synnaeve et al., 2016).

A particular challenge in these naturalistic environments is
that networks need to be able to exhibit continual (life-long)
learning (Thrun and Mitchell, 1995), adapting continuously
to the current state of affairs. This is difficult due to the
phenomenon of catastrophic forgetting (McCloskey and Cohen,
1989; French, 1999), where previously acquired skills are
overwritten by ongoing modification of synaptic weights. Recent
algorithmic developments attenuate the detrimental effects of
catastrophic forgetting (Kirkpatrick et al., 2015; Zenke et al.,
2015), offering a (partial) solution to the stability vs. plasticity
dilemma (Abraham and Robins, 2005). Life-long learning is
further complicated by the exploration-exploitation dilemma,
where agents need to decide on whether to accrue either
information or reward (Cohen et al., 2007). Another challenge
is the fact that reinforcement learning of complex actions is
notoriously slow. Here, progress is being made using networks
that make use of differentiable memories (Santoro et al., 2016;
Pritzel et al., 2017). Survival in complex environments also
requires that agents learn to perform multiple tasks well.
This learning process can be facilitated through multitask
learning (Caruana, 1997) (also referred to as learning to
learn Baxter, 1998 or transfer learning Pan and Fellow,
2009), where learning of one task is facilitated by knowledge
gained through learning to solve another task. Multitask
learning has been shown to improve convergence speed and
generalization to unseen data (Scholte et al., 2017). Finally,
effective learning also calls for agents that can generalize to cases
that were not encountered before, which is known as zero-shot
learning (Palatucci et al., 2009), and can learn from rare events,
which is known as one-shot learning (Fei-Fei et al., 2006; Vinyals
et al., 2016; Kaiser and Roy, 2017).

While the use of virtual worlds allows for testing the
capabilities of artificial agents, it does not guarantee that the
same agents are able to survive in the real world (Brooks, 1992).
That is, there may exist a reality gap, where skills acquired
in virtual worlds do not carry over to the real world. In
contrast to virtual worlds, acting in the real world requires
the agent to deal with unforeseen circumstances resulting from
the complex nature of reality, the agent’s need for a physical
body, as well as its engagement with a myriad of other
agents (Anderson, 2003). Moreover, the continuing interplay
between an organism and its environment may itself shape
and, ultimately, determine cognition (Gibson, 1979; Maturana

10See SHRDLU for an early example of such a virtual world (Winograd, 1972).
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and Varela, 1987; Brooks, 1996; Edelman, 2015). Effectively
dealing with these complexities may not only require plasticity
in individual agents but also the incorporation of developmental
change, as well as learning at evolutionary time scales (Marcus,
2009). From a developmental perspective, networks can be
more effectively trained by presenting them with a sequence
of increasingly complex tasks, instead of immediately requiring
the network to solve the most complex task (Elman, 1993).
This process is known as curriculum learning (Bengio et al.,
2009) and is analogous to how a child learns by decomposing
problems into simpler subproblems (Turing, 1950). Evolutionary
strategies have also been shown to be effective in learning to solve
challenging control problems (Salimans et al., 2017). Finally, to
learn about the world, we may also turn toward cultural learning,
where agents can offload task complexity by learning from each
other (Bengio, 2014).

As mentioned in section 2.2, adaptive behavior is the result
of multiple competing drives and motivations that provide
primary, intrinsic and extrinsic rewards. Hence, one strategy
for endowing machines with the capacity to survive in the real
world is to equip neural networks with drives and motivations
that ensure their long-term survival11. In terms of primary
rewards, one could conceivably provide artificial agents with
the incentive to minimize computational resources or maximize
offspring via evolutionary processes (Stanley and Miikkulainen,
2002; Floreano et al., 2008; Gauci and Stanley, 2010). In terms
of intrinsic rewards, one can think of various ways to equip
agents with the drive to explore the environment (Oudeyer,
2007). We briefly describe a number of principles that have
been proposed in the literature. Artificial curiosity assumes
that internal reward depends on how boring an environment
is, with agents avoiding fully predictable and unpredictably
random states (Schmidhuber, 1991, 2003; Pathak et al., 2017). A
related notion is that of information-seeking agents (Bachman
et al., 2016). The autotelic principle formalizes the concept
of flow where an agent tries to maintain a state where
learning is challenging, but not overwhelming (Csikszentmihalyi,
1975; Steels, 2004). The free-energy principle states that an
agent seeks to minimize uncertainty by updating its internal
model of the environment and selecting uncertainty-reducing
actions (Friston, 2009, 2010). Empowerment is founded on
information-theoretic principles and quantifies how much
control an agent has over its environment, as well as its ability
to sense this control (Klyubin et al., 2005a,b; Salge et al., 2013).
In this setting, intrinsically motivated behavior is induced by
the maximization of empowerment. Finally, various theories
embrace the notion that optimal prediction of future states drives
learning and behavior (Der et al., 1999; Kaplan and Oudeyer,
2004; Ay et al., 2008). In terms of extrinsic rewards, one can think

11The notion of wanting agents was already present in the writings of Thurstone

(1923), who wrote: “My main thesis is that conduct originates in the organism

itself and not in the environment in the form of a stimulus. [...] All mental life

may be looked upon as incomplete behavior which is in the process of being

formed. [...] Perception is the discovery of the suitable stimulus which is often

anticipated imaginally. The appearance of the stimulus is one of the last events

in the expression of impulses in conduct. The stimulus is not the starting point for

behavior.”

of imitation learning, where a teacher signal is used to inform
the agent about its desired outputs (Schaal, 1999; Duan et al.,
2017).

5.2. Bridging the Gap between Artificial
and Biological Neural Networks
To reduce the gap between artificial and biological neural
networks, it makes sense to assess their operation on similar
tasks. This can be done either by comparing the models at
a neurobiological level or at a behavioral level. The former
refers to comparing the internal structure or activation patterns
of artificial and biological neural networks. The latter refers
to comparing their behavioral outputs (e.g., eye movements,
reaction times, high-level decisions). Moreover, comparisons
can be made under changing conditions, i.e., during learning
and development (Elman et al., 1996). As such, ANNs can
serve as explanatory mechanisms in cognitive neuroscience
and behavioral psychology, embracing recent model-based
approaches (Forstmann and Wagenmakers, 2015).

From a psychological perspective, ANNs have been compared
explicitly with their biological counterparts. Connectionist
models were widely used in the 1980’s to explain various
psychological phenomena, particularly by the parallel distributed
processing (PDP) movement, which stressed the parallel
nature of neural processing and the distributed nature of
neural representations (McClelland, 2003). For example, neural
networks have been used to explain grammar acquisition (Elman,
1991), category learning (Kruschke, 1992) and the organization
of the semantic system (Ritter and Kohonen, 1989). More
recently, deep neural networks have been used to explain
human similarity judgments (Peterson et al., 2016). With new
developments in cognitive and affective computing, where
neural networks become more adept at solving high-level
cognitive tasks, such as predicting people’s (apparent) personality
traits (Güçlütürk et al., 2016), their use as a tool to explain
psychological phenomena is likely to increase. This will also
require embracing insights about how humans solve problems at
a cognitive level (Tenenbaum et al., 2011).

ANNs have also been related explicitly to brain function.
For example, the perceptron has been used in the modeling
of various neuronal systems, including sensorimotor learning
in the cerebellum (Marr, 1969) and associative memory in
cortex (Gardner, 1988), sparse coding has been used to
explain receptive field properties (Olshausen and Field, 1996),
topographic maps have been used to explain the formation of
cortical maps (Obermayer, 1990; Aflalo, 2006), Hebbian learning
has been used to explain neural tuning to face orientation (Leibo
et al., 2017), and networks trained by backpropagation have
been used to model the response properties of posterior parietal
neurons (Zipser and Andersen, 1988). Neural networks have
also been used to model central pattern generators that drive
behavior (Duysens and Van de Crommert, 1998; Ijspeert, 2008)
as well as the perception of rhythmic stimuli (Torras i Genís,
1986; Gasser, Eck and Port, 1999). Furthermore, reinforcement
learning algorithms used to train neural networks for action
selection have strong ties with the brain’s reward system (Schultz
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et al., 1997; Sutton and Barto, 1998). It has been shown that RNNs
trained to solve a variety of cognitive tasks using reinforcement
learning replicate various phenomena observed in biological
systems (Song et al., 2016; Miconi, 2017). Crucially, these efforts
go beyond descriptive approaches in that they may explain
why the human brain is organized in a certain manner (Barak,
2017).

Rather than using neural networks to explain certain observed
neural or behavioral phenomena, one can also directly fit neural
networks to neurobehavioral data. This can be achieved via
an indirect approach or via a direct approach. In the indirect
approach, neural networks are first trained to solve a task
of interest. Subsequently, the trained network’s responses are
fitted to neurobehavioral data obtained as participants engage
in the same task. Using this approach, deep convolutional
neural networks trained on object recognition, action recognition
and music tagging have been used to explain the functional
organization of visual as well as auditory cortex (Güçlü and
van Gerven, 2015, 2017a; Güçlü et al., 2016). The indirect
approach has also been used to train RNNs via reinforcement
learning on a probabilistic categorization task. These networks
have been used to fit the learning trajectories and behavioral
responses of humans engaged in the same task (Bosch et al.,
2016). Mante et al. (2013) used RNNs to model the population
dynamics of single neurons in prefrontal cortex during a
context-dependent choice task. In the direct approach, neural
networks are trained to directly predict neural responses. For
example, Mcintosh et al. (2016) trained convolutional neural
networks to predict retinal responses to natural scenes, Joukes
et al. (2014) trained RNNs to predict neural responses to motion
stimuli, and Güçlü and van Gerven (2017b) used RNNs to
predict cortical responses to naturalistic video clips. This ability
of neural networks to explain neural recordings is expected
to become increasingly important (Sompolinsky, 2014; Marder,
2015), given the emergence of new imaging technology where
the activity of thousands of neurons can be measured in
parallel (Ahrens et al., 2013; Churchland and Sejnowski, 2016;
Lopez et al., 2016; Pachitariu et al., 2016; Yang and Yuste, 2017).
Better understanding will also be facilitated by the development
of new data analysis techniques to elucidate human brain
function (Kass et al., 2014)12, the use of ANNs to decode neural
representations (Schoenmakers et al., 2013; Güçlütürk et al.,
2017), as well as the development of approaches that elucidate
the functioning of ANNs (e.g., Nguyen et al., 2016; Kindermans
et al., 2017; Miller, 2017)13.

5.3. Next-Generation Artificial Neural
Networks
The previous sections outlined how neural networks can be made
to solve challenging tasks and provide explanations of neural and

12But see Jonas and Kording (2017) for a critical appraisal of the informativeness

of such techniques.
13These techniques aim to overcome the interpretability problem raised by Mozer

and Smolensky (1989), who state: ”One thing that connectionist networks have in

common with brains is that if you open them up and peer inside, all you can see is

a big pile of goo.”

behavioral responses in biological agents. In this final section, we
consider some developments that are expected to fuel the next
generation of ANNs.

First, a major driving force in neural network research
will be theoretical and algorithmic developments that inform
why ANNs work so well in practice, what their fundamental
limitations are, as well as how to overcome these. From a
theoretical point of view, substantial advances have already been
made pertaining to, for example, understanding the nature of
representations (Anselmi and Poggio, 2014; Lin and Tegmark,
2016; Shwartz-Ziv and Tishby, 2017), the statistical mechanics
of neural networks (Sompolinsky, 1988; Advani et al., 2013),
as well as the expressiveness (Pascanu et al., 2013; Bianchini
and Scarselli, 2014; Kadmon and Sompolinsky, 2016; Mhaskar
et al., 2016; Poole et al., 2016; Raghu et al., 2016; Weichwald
et al., 2016), generalizability (Kawaguchi et al., 2017) and
learnability (Dauphin et al., 2014; Saxe et al., 2014; Schoenholz
et al., 2017) of DNNs.

From an algorithmic point of view, great strides have been
made in improving training of deep (Srivastava et al., 2014;
He et al., 2015; Ioffe and Szegedy, 2015) and recurrent neural
networks (Hochreiter and Schmidhuber, 1997; Pascanu et al.,
2012), overcoming the reality gap (Tobin et al., 2017), adding
modularity to neural networks (Fernando et al., 2017), as
well as on improving the efficacy of reinforcement learning
algorithms (Schulman et al., 2015; Mnih et al., 2016; Pritzel et al.,
2017).

Second, it is expected that as neural network models become
more plausible from a biological point of view, model fit and
task performance will further improve (Cox and Dean, 2014).
This is important in driving new developments in model-
based cognitive neuroscience but also in developing intelligent
machines that show human-like behavior. One example is to
match the object recognition capabilities of extremely deep
neural networks with more biologically plausible RNNs of
limited depth (O’Reilly et al., 2013; Liao and Poggio, 2016) and
achieving category selectivity in a more realistic manner (Peelen
and Downing, 2017; Scholte et al., 2017). Another example is
to incorporate predictive coding principles in neural network
architectures (Lotter et al., 2016). Furthermore, more human-
like perceptual systems can be arrived at by including attentional
mechanisms (Mnih et al., 2014) as well as mechanisms for
saccade planning (Najemnik and Geisler, 2005; Larochelle and
Hinton, 2010; Gregor et al., 2014).

In general, ANN research can benefit from a close interaction
between the AI and neuroscience communities (Yuste, 2015;
Hassabis et al., 2017). For example, neural network research
may be shaped by general guiding principles of brain function
at different levels of analysis (O’Reilly, 1998; Maass, 2016;
Sterling and Laughlin, 2016). We may also strive to incorporate
more biological detail. For example, to obtain accurate models
of neural information processing we may need to embrace
spike-based rather than rate-based neural networks (Brette,
2015)14. Efforts are underway to effectively train spiking neural

14While there surely exists neurobiological evidence for temporal coding with

spikes (Segundo et al., 1966; Barrio and Buno, 1990; Bohte, 2004), it remains an

Frontiers in Computational Neuroscience | www.frontiersin.org December 2017 | Volume 11 | Article 112 | 21

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


van Gerven Computational Foundations of Natural Intelligence

networks (Maass, 1997; Gerstner and Kistler, 2002; Gerstner
et al., 2014; O’Connor and Welling, 2016; Huh and Sejnowski,
2017) and endow them with the same cognitive capabilities as
their rate-based cousins (Thalmeier et al., 2015; Abbott et al.,
2016; Kheradpisheh et al., 2016; Lee et al., 2016; Zambrano and
Bohte, 2016).

In the same vein, researchers are exploring how probabilistic
computations can be performed in neural networks (Nessler
et al., 2013; Pouget et al., 2013; Gal, 2016; Orhan and Ma, 2016;
Ambrogioni et al., 2017; Heeger, 2017; Mandt et al., 2017) and
deriving new biologically plausible synaptic plasticity rules (Brea
and Gerstner, 2016; Brea et al., 2016; Schiess et al., 2016).
Biologically-inspired principles may also be incorporated at a
more conceptual level. For instance, researchers have shown that
neural networks can be protected from adversarial attacks (i.e.,
the construction of stimuli that cause networks tomakemistakes)
by integrating the notion of nonlinear computations encountered
in the branched dendritic structures of real neurons (Nayebi and
Ganguli, 2016).

Finally, research is invested in implementing ANNs in
hardware, also referred to as neuromorphic computing (Mead,
1990). These brain-based parallel chip architectures hold the
promise of devices that operate in real time and with very
low power consumption (Schuman et al., 2017), driving new
advances in cognitive computing (Modha et al., 2011; Neftci
et al., 2013; Van de Burgt et al., 2017). On a related note,
nanotechnology may 1 day drive the development of new
neural network architectures whose operation is closer to the
molecular machines that mediate the operation of biological
neural networks (Drexler, 1992; Strukov, 2011). In the words
of Feynman (1992): “There’s plenty of room at the bottom.”

6. CONCLUSION

As cognitive scientists, we live in exciting times. Cognitivism
offers an interpretation of agents as information processing
systems that are engaged in formal symbol manipulation. The
probabilistic approach to cognition extends this interpretation
by viewing organisms as rational agents that need to act in the
face of uncertainty under limited resources. Finally, emergentist
approaches such as artificial life and connectionism indicate
that concerted interactions between simple processing elements
can achieve human-level performance at certain cognitive tasks.
While these different views have stirred substantial debate
in the past, they need not be irreconcilable. Surely we are
capable of formal symbol manipulation and decision making
under uncertainty in real-life settings. At the same time, these
capabilities must be implemented by the neural circuits that make
up our own brains, which themselves rely on noisy long-range
communication between neuronal populations.

The thesis of this paper is that natural intelligence can
be modeled and understood by constructing artificial agents

open question if temporal coding is absolutely necessary for the generation of

adaptive behavior. In the end, computing with spikes may have emerged chiefly

to promote efficiency and allow long-distance neuronal communication (Laughlin

and Sejnowski, 2003).

whose synthetic brains are composed of (rate-based) neural
networks. To act as explanations of natural intelligence, these
synthetic brains should show a functional correspondence with
their biological counterparts. To identify such correspondence
we can embrace the rich sources of data provided by
biology, neuroscience and psychology, providing a link to
Marr’s implementational level. At the same time, we can use
sophisticated machinery developed in mathematics, computer
science and physics to gain a better understanding of these
systems. Ultimately, these synthetic brains should be able to
show the capabilities that are prescribed by normative theories
of intelligent behavior, providing a link to Marr’s computational
level.

The supposition that artificial neural networks are sufficient
for modeling all of cognition may seem premature. For
example, state-of-the-art question-answering systems such as
IBM’s Watson (Ferrucci et al., 2010) use ANN technology as
a minor component within a larger (symbolic) framework and
the AlphaGo system (Silver et al., 2017), which learns to play
the game of Go beyond grandmaster level without any human
intervention, combines neural networks with Monte Carlo tree
search. While it is true that ANNs remain wanting when it
comes to logical reasoning, inferring causal relationships or
planning, the pace of current research may very well bring
these capabilities within reach in the foreseeable future. Such
neural networks may turn out to be quite different from
current neural network architectures and their operation may
be guided by complementary yet-to-be-discovered learning
rules.

The quest for natural intelligence can be contrasted with a
pure engineering approach. From an engineering perspective,
understanding natural intelligence may be considered irrelevant
since the main interest is in building devices that do the job.
To quote Edsger Dijkstra, “the question whether machines can
think [is] as relevant as the question whether submarines can
swim.” At the same time, our quest for natural intelligence
may facilitate the development of strong AI given the proven
ability of our own brains to generate intelligent behavior.
Hence, biologically inspired architectures may not only provide
new insights into human brain function but could also
in the long run yield superior curious and perhaps even
conscious machines that surpass humans in terms of intelligence,
creativity, playfulness, and empathy (Boden, 1998; Moravec,
2000; Der and Martius, 2011; Modha et al., 2011; Harari,
2017).
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Neuroscience has focused on the detailed implementation of computation, studying

neural codes, dynamics and circuits. In machine learning, however, artificial neural

networks tend to eschew precisely designed codes, dynamics or circuits in favor of

brute force optimization of a cost function, often using simple and relatively uniform

initial architectures. Two recent developments have emerged within machine learning

that create an opportunity to connect these seemingly divergent perspectives. First,

structured architectures are used, including dedicated systems for attention, recursion

and various forms of short- and long-term memory storage. Second, cost functions and

training procedures have become more complex and are varied across layers and over

time. Here we think about the brain in terms of these ideas. We hypothesize that (1) the

brain optimizes cost functions, (2) the cost functions are diverse and differ across brain

locations and over development, and (3) optimization operates within a pre-structured

architecture matched to the computational problems posed by behavior. In support

of these hypotheses, we argue that a range of implementations of credit assignment

through multiple layers of neurons are compatible with our current knowledge of neural

circuitry, and that the brain’s specialized systems can be interpreted as enabling efficient

optimization for specific problem classes. Such a heterogeneously optimized system,

enabled by a series of interacting cost functions, serves to make learning data-efficient

and precisely targeted to the needs of the organism. We suggest directions by which

neuroscience could seek to refine and test these hypotheses.

Keywords: cost functions, neural networks, neuroscience, cognitive architecture

1. INTRODUCTION

Machine learning and neuroscience speak different languages today. Brain science has discovered
a dazzling array of brain areas (Solari and Stoner, 2011), cell types, molecules, cellular states,
and mechanisms for computation and information storage. Machine learning, in contrast, has
largely focused on instantiations of a single principle: function optimization. It has found that
simple optimization objectives, like minimizing classification error, can lead to the formation of
rich internal representations and powerful algorithmic capabilities in multilayer and recurrent
networks (LeCun et al., 2015; Schmidhuber, 2015). Here we seek to connect these perspectives.

The artificial neural networks now prominent in machine learning were, of course, originally
inspired by neuroscience (McCulloch and Pitts, 1943). While neuroscience has continued to play
a role (Cox and Dean, 2014), many of the major developments were guided by insights into the
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mathematics of efficient optimization, rather than neuroscientific
findings (Sutskever and Martens, 2013). The field has
advanced from simple linear systems (Minsky and Papert,
1972), to nonlinear networks (Haykin, 1994), to deep and
recurrent networks (LeCun et al., 2015; Schmidhuber, 2015).
Backpropagation of error (Werbos, 1974, 1982; Rumelhart
et al., 1986) enabled neural networks to be trained efficiently,
by providing an efficient means to compute the gradient with
respect to the weights of a multi-layer network. Methods of
training have improved to include momentum terms, better
weight initializations, conjugate gradients and so forth, evolving
to the current breed of networks optimized using batch-wise
stochastic gradient descent. These developments have little
obvious connection to neuroscience.

We will argue here, however, that neuroscience and machine
learning are again ripe for convergence. Three aspects of machine
learning are particularly important in the context of this paper.
First, machine learning has focused on the optimization of cost
functions (Figure 1A).

Second, recent work in machine learning has started
to introduce complex cost functions, those that are not
uniform across layers and time, and those that arise from
interactions between different parts of a network. For example,
introducing the objective of temporal coherence for lower
layers (non-uniform cost function over space) improves feature
learning (Sermanet and Kavukcuoglu, 2013), cost function
schedules (non-uniform cost function over time) improve1

generalization (Saxe et al., 2013; Goodfellow et al., 2014b;
Gülçehre and Bengio, 2016) and adversarial networks—an
example of a cost function arising from internal interactions—
allow gradient-based training of generative models (Goodfellow
et al., 2014a)2. Networks that are easier to train are being used to
provide “hints” to help bootstrap the training of more powerful
networks (Romero et al., 2014).

Third, machine learning has also begun to diversify
the architectures that are subject to optimization. It has
introduced simple memory cells with multiple persistent
states (Hochreiter and Schmidhuber, 1997; Chung et al., 2014),
more complex elementary units such as “capsules” and other
structures (Delalleau and Bengio, 2011; Hinton et al., 2011;
Tang et al., 2012; Livni et al., 2013), content addressable (Graves
et al., 2014; Weston et al., 2014) and location addressable
memories (Graves et al., 2014), as well as pointers (Kurach et al.,
2015) and hard-coded arithmetic operations (Neelakantan et al.,
2015).

These three ideas have, so far, not received much attention in
neuroscience. We thus formulate these ideas as three hypotheses
about the brain, examine evidence for them, and sketch how
experiments could test them. But first, let us state the hypotheses
more precisely.

1Hyper-parameter optimization shows that complicated schedules of training,

which differ across parts of the network, lead to optimal performance (Maclaurin

et al., 2015).
2In adversarial networks, a generator network is trained to fool a discriminator

network into being unable to distinguish generated samples from real data samples,

while the discriminator network is trained to prevent the generator network from

fooling it in this way.

1.1. Hypothesis 1 – The Brain Optimizes
Cost Functions
The central hypothesis for linking the two fields is that biological
systems, like many machine-learning systems, are able to
optimize cost functions. The idea of cost functions means that
neurons in a brain area can somehow change their properties,
e.g., the properties of their synapses, so that they get better at
doing whatever the cost function defines as their role. Human
behavior sometimes approaches optimality in a domain, e.g.,
during movement (Körding, 2007), which suggests that the
brain may have learned optimal strategies. Subjects minimize
energy consumption of their movement system (Taylor and
Faisal, 2011), and minimize risk and damage to their body, while
maximizing financial and movement gains. Computationally,
we now know that optimization of trajectories gives rise to
elegant solutions for very complex motor tasks (Harris and
Wolpert, 1998; Todorov and Jordan, 2002; Mordatch et al., 2012).
We suggest that cost function optimization occurs much more
generally in shaping the internal representations and processes
used by the brain. Importantly, we also suggest that this requires
the brain to have mechanisms for efficient credit assignment in
multilayer and recurrent networks.

1.2. Hypothesis 2 – Cost Functions Are
Diverse across Areas and Change over
Development
A second realization is that cost functions need not be global.
Neurons in different brain areas may optimize different things,
e.g., the mean squared error of movements, surprise in a visual
stimulus, or the allocation of attention. Importantly, such a cost
function could be locally generated. For example, neurons could
locally evaluate the quality of their statistical model of their inputs
(Figure 1B). Alternatively, cost functions for one area could be
generated by another area. Moreover, cost functions may change
over time, e.g., guiding young humans to understanding simple
visual contrasts early on, and faces a bit later3. This could allow
the developing brain to bootstrap more complex knowledge
based on simpler knowledge. Cost functions in the brain are likely
to be complex and to be arranged to vary across areas and over
development.

1.3. Hypothesis 3 – Specialized Systems
Allow Efficient Solution of Key
Computational Problems
A third realization is that structure matters. The patterns
of information flow seem fundamentally different across
brain areas, suggesting that they solve distinct computational
problems. Some brain areas are highly recurrent, perhaps
making them predestined for short-termmemory storage (Wang,
2012). Some areas contain cell types that can switch between
qualitatively different states of activation, such as a persistent
firing mode vs. a transient firing mode, in response to
particular neurotransmitters (Hasselmo, 2006). Other areas, like

3Psychologists have been quantifying the subtleties of many such developmental

stagings, e.g., of our perceptual and motor performance, e.g., Nardini et al. (2010),

Dekker and Nardini (2015), and McKone et al. (2009).
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FIGURE 1 | Putative differences between conventional and brain-like neural network designs. (A) In conventional deep learning, supervised training is based

on externally-supplied, labeled data. (B) In the brain, supervised training of networks can still occur via gradient descent on an error signal, but this error signal must

arise from internally generated cost functions. These cost functions are themselves computed by neural modules specified by both genetics and learning. Internally

generated cost functions create heuristics that are used to bootstrap more complex learning. For example, an area which recognizes faces might first be trained to

detect faces using simple heuristics, like the presence of two dots above a line, and then further trained to discriminate salient facial expressions using representations

arising from unsupervised learning and error signals from other brain areas related to social reward processing. (C) Internally generated cost functions and error-driven

training of cortical deep networks form part of a larger architecture containing several specialized systems. Although the trainable cortical areas are schematized as

feedforward neural networks here, LSTMs or other types of recurrent networks may be a more accurate analogy, and many neuronal and network properties such as

spiking, dendritic computation, neuromodulation, adaptation and homeostatic plasticity, timing-dependent plasticity, direct electrical connections, transient synaptic

dynamics, excitatory/inhibitory balance, spontaneous oscillatory activity, axonal conduction delays (Izhikevich, 2006) and others, will influence what and how such

networks learn.

the thalamus appear to have the information from other areas
flowing through them, perhaps allowing them to determine
information routing (Sherman, 2005). Areas like the basal ganglia
are involved in reinforcement learning and gating of discrete
decisions (Doya, 1999; Sejnowski and Poizner, 2014). As every
programmer knows, specialized algorithms matter for efficient
solutions to computational problems, and the brain is likely to
make good use of such specialization (Figure 1C).

These ideas are inspired by recent advances in machine
learning, but we also propose that the brain has major differences
from any of today’s machine learning techniques. In particular,
the world gives us a relatively limited amount of information
that we could use for supervised learning (Fodor and Crowther,
2002). There is a huge amount of information available for
unsupervised learning, but there is no reason to assume that a
generic unsupervised algorithm, no matter how powerful, would
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learn the precise things that humans need to know, in the order
that they need to know it. The evolutionary challenge of making
unsupervised learning solve the “right” problems is, therefore, to
find a sequence of cost functions that will deterministically build
circuits and behaviors according to prescribed developmental
stages, so that in the end a relatively small amount of information
suffices to produce the right behavior. For example, a developing
duck imprints (Tinbergen, 1965) a template of its parent, and
then uses that template to generate goal-targets that help it
develop other skills like foraging.

Generalizing from this and from other studies (Minsky,
1977; Ullman et al., 2012), we propose that many of the
brain’s cost functions arise from such an internal bootstrapping
process. Indeed, we propose that biological development and
reinforcement learning can, in effect, program the emergence
of a sequence of cost functions that precisely anticipates the
future needs faced by the brain’s internal subsystems, as well
as by the organism as a whole. This type of developmentally
programmed bootstrapping generates an internal infrastructure
of cost functions which is diverse and complex, while simplifying
the learning problems faced by the brain’s internal processes.
Beyond simple tasks like familial imprinting, this type of
bootstrapping could extend to higher cognition, e.g., internally
generated cost functions could train a developing brain to
properly access its memory or to organize its actions in ways
that will prove to be useful later on. The potential bootstrapping
mechanisms that we will consider operate in the context of
unsupervised and reinforcement learning, and go well beyond
the types of curriculum learning ideas used in today’s machine
learning (Bengio et al., 2009).

In the rest of this paper, we will elaborate on these hypotheses.
First, we will argue that both local and multi-layer optimization
is, perhaps surprisingly, compatible with what we know about
the brain. Second, we will argue that cost functions differ across
brain areas and change over time and describe how cost functions
interacting in an orchestrated way could allow bootstrapping of
complex function. Third, we will list a broad set of specialized
problems that need to be solved by neural computation, and
the brain areas that have structure that seems to be matched
to a particular computational problem. We then discuss some
implications of the above hypotheses for research approaches
in neuroscience and machine learning, and sketch a set of
experiments to test these hypotheses. Finally, we discuss this
architecture from the perspective of evolution.

2. THE BRAIN CAN OPTIMIZE COST
FUNCTIONS

Much of machine learning is based on efficiently optimizing
functions, and, as we will detail below, the ability to use
backpropagation of error (Werbos, 1974; Rumelhart et al., 1986)
to calculate gradients of arbitrary parametrized functions has
been a key breakthrough. In Hypothesis 1, we claim that
the brain is also, at least in part4, an optimization machine.

4Our point in this section will not be that all learning in the brain can be

captured by cost function optimization, but rather, somewhat more narrowly,

But what exactly does it mean to say that the brain can
optimize cost functions? After all, many processes can be
viewed as optimizations. For example, the laws of physics
are often viewed as minimizing an action functional, while
evolution optimizes the fitness of replicators over a long
timescale. To be clear, our main claims are: that (a) the
brain has powerful mechanisms for credit assignment during
learning that allow it to optimize global functions in multi-
layer networks by adjusting the properties of each neuron to
contribute to the global outcome, and that (b) the brain has
mechanisms to specify exactly which cost functions it subjects
its networks to, i.e., that the cost functions are highly tunable,
shaped by evolution and matched to the animal’s ethological
needs. Thus, the brain uses cost functions as a key driving
force of its development, much as modern machine learning
systems do.

To understand the basis of these claims, we must now
delve into the details of how the brain might efficiently
perform credit assignment throughout large, multi-layered
networks, in order to optimize complex functions. We argue
that the brain uses several different types of optimization
to solve distinct problems. In some structures, it may use
genetic pre-specification of circuits for problems that require
only limited learning based on data, or it may exploit local
optimization to avoid the need to assign credit through many
layers of neurons. It may also use a host of proposed circuit
structures that would allow it to actually perform, in effect,
backpropagation of errors through a multi-layer network, using
biologically realistic mechanisms—a feat that had once been
widely believed to be biologically implausible (Crick, 1989; Stork,
1989). Potential such mechanisms include circuits that literally
backpropagate error derivatives in the manner of conventional
backpropagation, as well as circuits that provide other efficient
means of approximating the effects of backpropagation, i.e.,
of rapidly computing the approximate gradient of a cost
function relative to any given connection weight in the network.
Lastly, the brain may use algorithms that exploit specific
aspects of neurophysiology—such as spike timing dependent
plasticity, dendritic computation, local excitatory-inhibitory
networks, or other properties—as well as the integrated nature
of higher-level brain systems. Such mechanisms promise to
allow learning capabilities that go even beyond those of current
backpropagation networks.

our claim is that the algorithms for optimization like backpropagation in deep

learning may have correspondences in biological brains. We feel that it is an

important task for neuroscience to determine whether and how brains implement

these algorithms. The brain may also disclose dynamics that are unlike these

algorithms, so we are not disclaiming the possibility of broader theories. In

machine learning, many useful algorithms are not explicitly formulated as cost

function optimization; for example, many algorithms are based on linear algebra

procedures like singular value decomposition, rather than explicit optimization.

Such methods can be made nonlinear by using nonlinear kernels—relatedly, some

brain circuits run specialized computations using fixed nonlinear basis functions

(e.g., in cerebellum). Moreover, while an implicit cost function can be attributed

to account for many dynamical processes, as well as many popular learning

algorithms, our claim is not merely that the brain uses other learning procedures

that lead to solutions which implicitly minimize a cost function, but rather that it

actually finds its solutions by performing a powerful form of optimization as such.
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2.1. Local Self-organization and
Optimization without Multi-layer Credit
Assignment
Not all learning requires a general-purpose optimization
mechanism like gradient descent5. Many theories of
cortex (George and Hawkins, 2009; Kappel et al., 2014)
emphasize potential self-organizing and unsupervised
learning properties that may obviate the need for multi-
layer backpropagation as such. Hebbian plasticity, which
adjusts weights according to correlations in pre-synaptic and
post-synaptic activity, is well established6. Various versions
of Hebbian plasticity (Miller and MacKay, 1994), e.g., with
nonlinearities (Brito and Gerstner, 2016), can give rise to
different forms of correlation and competition between neurons,
leading to the self-organized formation of ocular dominance
columns, self-organizing maps and orientation columns (Miller
et al., 1989; Ferster and Miller, 2000). Often these types of
local self-organization can also be viewed as optimizing a cost
function: for example, certain forms of Hebbian plasticity
can be viewed as extracting the principal components of the
input, which minimizes a reconstruction error (Pehlevan and
Chklovskii, 2015).

To generate complex temporal patterns, the brain may also
implement other forms of learning that do not require any
equivalent of full backpropagation through a multilayer network.
For example, “liquid-” (Maass et al., 2002) or “echo-state
machines” (Jaeger and Haas, 2004) are randomly connected
recurrent networks that form a basis set (also known as a
“reservoir”) of random filters, which can be harnessed for
learning with tunable readout weights. Variants exhibiting
chaotic, spontaneous dynamics can even be trained by feeding
back readouts into the network and suppressing the chaotic
activity (Sussillo and Abbott, 2009). Learning only the readout
layer makes the optimization problem much simpler (indeed,
equivalent to regression for supervised learning). Additionally,
echo state networks can be trained by reinforcement learning as
well as supervised learning (Bush, 2007; Hoerzer et al., 2014).
Reservoirs of random nonlinear filters are one interpretation
of the diverse, high-dimensional, mixed-selectivity tuning
properties of many neurons, e.g., in the prefrontal cortex (Enel
et al., 2016). Other variants of learning rules that modify only
a fraction of the synapses inside a random network are being

5Of course, some circuits may also be heavily genetically pre-specified to minimize

the burden on learning. For instance, particular cell adhesion molecules (Hattori

et al., 2007) expressed on particular parts of particular neurons defined by a genetic

cell type (Zeisel et al., 2015), and the detailed shapes and placements of neuronal

arbors, may constrain connectivity in some cases, though in other cases local

connectivity is thought to be only weakly constrained (Kalisman et al., 2005).

Genetics is sufficient to specify complex circuits involving hundreds of neurons,

such as central pattern generators (Yuste et al., 2005) which create complex self-

stabilizing oscillations, or the entire nervous systems of small worms. Genetically

guided wiring should not be thought of as fixed “hard-wiring” but rather as

a programmatic construction process that can also accept external inputs and

interact with learning mechanisms (Marcus, 2004).
6Hebbian plasticity even has a well-understood biological basis in the form of the

NMDA receptors, which are activated by the simultaneous occurrence of chemical

transmitter delivered from the pre-synaptic neuron, and voltage depolarization of

the post-synaptic neuron.

developed as models of biological workingmemory and sequence
generation (Rajan et al., 2016).

2.2. Biological Implementation of
Optimization
We argue that the above mechanisms of local self-organization
are likely insufficient to account for the brain’s powerful learning
performance (Brea and Gerstner, 2016). To elaborate on the
need for an efficient means of gradient computation in the
brain, we will first place backpropagation into its computational
context (Hinton, 1989; Baldi and Sadowski, 2015). Then we will
explain how the brain could plausibly implement approximations
of gradient descent.

2.2.1. The Need for Efficient Gradient Descent in

Multi-layer Networks
The simplest mechanism to perform cost function optimization
is sometimes known as the “twiddle” algorithm or, more
technically, as “serial perturbation.” This mechanism works
by perturbing (i.e., “twiddling”), with a small increment, a
single weight in the network, and verifying improvement by
measuring whether the cost function has decreased compared
to the network’s performance with the weight unperturbed. If
improvement is noticeable, the perturbation is used as a direction
of change to the weight; otherwise, the weight is changed in the
opposite direction (or not changed at all). Serial perturbation is
therefore a method of “coordinate descent” on the cost, but it is
slow and requires global coordination: each synapse in turn is
perturbed while others remain fixed.

Weight perturbation (or parallel perturbation) perturbs all
of the weights in the network at once. It is able to optimize
small networks to perform tasks but generally suffers from high
variance. That is, the measurement of the gradient direction is
noisy and changes drastically from perturbation to perturbation
because a weight’s influence on the cost is masked by the changes
of all other weights, and there is only one scalar feedback
signal indicating the change in the cost7. Weight perturbation is
dramatically inefficient for large networks. In fact, parallel and
serial perturbation learn at approximately the same rate if the
timemeasure counts the number of times the network propagates
information from input to output (Werfel et al., 2005).

Some efficiency gain can be achieved by perturbing neural
activities instead of synaptic weights, acknowledging the fact that
any long-range effect of a synapse is mediated through a neuron.
Like weight perturbation and unlike serial perturbation, minimal
global coordination is needed: each neuron only needs to receive
a feedback signal indicating the global cost. The variance of node
perturbation’s gradient estimate is far smaller than that of weight
perturbation under the assumptions that either all neurons or all
weights, respectively, are perturbed and that they are perturbed
at the same frequency. In this case, node perturbation’s variance
is proportional to the number of cells in the network, not the
number of synapses.

7The variance can be mitigated by averaging out many perturbations before

making a change to the baseline value of the weights, but this would take significant

time for a network of non-trivial size as the variance of weight perturbation’s

estimates scales in proportion to the number of synapses in the network.
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All of these approaches are slow either due to the time
needed for serial iteration over all weights or the time needed
for averaging over low signal-to-noise ratio gradient estimates.
To their credit however, none of these approaches requires more
than knowledge of local activities and the single global cost signal.
Real neural circuits in the brain have mechanisms (e.g., diffusible
neuromodulators) that appear to code the signals relevant to
implementing those algorithms. In many cases, for example in
reinforcement learning, the cost function, which is computed
based on interaction with an unknown environment, cannot be
differentiated directly, and an agent has no choice but to deploy
clever twiddling to explore at some level of the system (Williams,
1992).

Backpropagation, in contrast, works by computing the
sensitivity of the cost function to each weight based on the layered
structure of the system. The derivatives of the cost function with
respect to the last layer can be used to compute the derivatives
of the cost function with respect to the penultimate layer, and
so on, all the way down to the earliest layers8. Backpropagation
can be computed rapidly, and for a single input-output pattern, it
exhibits no variance in its gradient estimate. The backpropagated
gradient has no more noise for a large system than for a small
system, so deep and wide architectures with great computational
power can be trained efficiently.

2.2.2. Biologically Plausible Approximations of

Gradient Descent
To permit biological learning with efficiency approaching
that of machine learning methods, some provision for more
sophisticated gradient propagation may be suspected. Contrary
to what was once a common assumption, there are now
many proposed “biologically plausible” mechanisms by which a
neural circuit could implement optimization algorithms that, like
backpropagation, can efficiently make use of the gradient. These
include Generalized Recirculation (O’Reilly, 1996), Contrastive
Hebbian Learning (Xie and Seung, 2003), random feedback
weights together with synaptic homeostasis (Lillicrap et al.,
2014; Liao et al., 2015), spike timing dependent plasticity
(STDP) with iterative inference and target propagation (Bengio
et al., 2015a; Scellier and Bengio, 2016), complex neurons with
backpropagating action-potentials (Körding and König, 2000),
and others (Balduzzi et al., 2014). While these mechanisms differ
in detail, they all invoke feedback connections that carry error
phasically. Learning occurs by comparing a prediction with a
target, and the prediction error is used to drive top-down changes
in bottom-up activity.

As an example, consider O’Reilly’s temporally eXtended
Contrastive Attractor Learning (XCAL) algorithm (O’Reilly et al.,
2012, 2014b). Suppose we have a multilayer neural network
with an input layer, an output layer, and a set of hidden
layers in between. O’Reilly showed that the same functionality
as backpropagation can be implemented by a bidirectional
network with the same weights but symmetric connections.
After computing the outputs using the forward connections

8If the error derivatives of the cost function with respect to the last layer of unit

activities are unknown, then they can be replaced with node-perturbation-like

correlations, as is common in reinforcement learning.

only, we set the output neurons to the values they should have.
The dynamics of the network then cause the hidden layers’
activities to evolve toward a stable attractor state linking input to
output. The XCAL algorithm performs a type of local modified
Hebbian learning at each synapse in the network during this
process (O’Reilly et al., 2012). The XCAL Hebbian learning rule
compares the local synaptic activity (pre x post) during the
early phase of this settling (before the attractor state is reached)
to the final phase (once the attractor state has been reached),
and adjusts the weights in a way that should make the early
phase reflect the later phase more closely. These contrastive
Hebbian learning methods even work when the connection
weights are not precisely symmetric (O’Reilly, 1996). XCAL has
been implemented in biologically plausible conductance-based
neurons and basically implements the backpropagation of error
approach.

Approximations to backpropagation could also be enabled by
the millisecond-scale timing of of neural activities (O’Reilly et al.,
2014b). Spike timing dependent plasticity (STDP) (Markram
et al., 1997), for example, is a feature of some neurons in
which the sign of the synaptic weight change depends on
the precise millisecond-scale relative timing of pre-synaptic
and post-synaptic spikes. This is conventionally interpreted as
Hebbian plasticity that measures the potential for a causal
relationship between the pre-synaptic and post-synaptic spikes:
a pre-synaptic spike could have contributed to causing a
post-synaptic spike only if it occurs shortly beforehand9. To
enable a backpropagation mechanism, Hinton has suggested an
alternative interpretation: that neurons could encode the types
of error derivatives needed for backpropagation in the temporal
derivatives of their firing rates (Hinton, 2007, 2016). STDP then
corresponds to a learning rule that is sensitive to these error
derivatives (Xie and Seung, 2000; Bengio et al., 2015b). In other
words, in an appropriate network context, STDP learning could
give rise to a biological implementation of backpropagation10.

9Interestingly, STDP is not a unitary phenomenon, but rather a diverse collection

of different rules with different timescales and temporal asymmetries (Sjöström

and Gerstner, 2010; Mishra et al., 2016). Effects include STDP with the inverse

temporal asymmetry, symmetric STDP and STDP with different temporal window

sizes. STDP is also frequency dependent, which can be explained by rules that

depend on triplets rather than pairs of spikes (Pfister and Gerstner, 2006).

In some cortical neurons, STDP even switches its sign as the synapse moves

away from the neuron’s soma into the dendritic tree (Letzkus et al., 2006).

While STDP is often included explicitly in models, biophysical derivations of

STDP from various underlying phenomena are also being attempted, some

of which involve the post-synaptic voltage (Clopath and Gerstner, 2010) or a

local dendritic voltage (Urbanczik and Senn, 2014). Meanwhile, other theories

suggest that STDP may enable the use of precise timing codes based on

temporal coincidence of inputs, the generation and unsupervised learning of

temporal sequences (Abbott and Blum, 1996; Fiete et al., 2010), enhancements

to distal reward processing in reinforcement learning (Izhikevich, 2007),

stabilization of neural responses (Kempter et al., 2001), or many other higher-level

properties (Nessler et al., 2013; Kappel et al., 2014).
10Hinton has suggested (Hinton, 2007, 2016) that this could take place in

the context of autoencoders and recirculation (Hinton and McClelland, 1988).

Bengio and colleagues have proposed (Bengio, 2014; Bengio and Fischer, 2015;

Scellier and Bengio, 2016) another context in which the connection between

STDP and plasticity rules that depend on the temporal derivative of the post-

synaptic firing rate can be exploited for biologically plausible multilayer credit

assignment. This setting relies on clamping of outputs and stochastic relaxation in

energy-based models (Ackley et al., 1958), which leads to a continuous network
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Another possible mechanism, by which biological neural
networks could approximate backpropagation, is “feedback
alignment” (Lillicrap et al., 2014; Liao et al., 2015). There,
the feedback pathway in backpropagation, by which error
derivatives at a layer are computed from error derivatives
at the subsequent layer, is replaced by a set of random
feedback connections, with no dependence on the forward
weights. Subject to the existence of a synaptic normalization
mechanism and approximate sign-concordance between the
feedforward and feedback connections (Liao et al., 2015), this
mechanism of computing error derivatives works nearly as well
as backpropagation on a variety of tasks. In effect, the forward
weights are able to adapt to bring the network into a regime
in which the random backwards weights actually carry the
information that is useful for approximating the gradient. This
is a remarkable and surprising finding, and is indicative of the
fact that our understanding of gradient descent optimization,
and specifically of the mechanisms by which backpropagation
itself functions, are still incomplete. In neuroscience, meanwhile,
we find feedback connections almost wherever we find feed-
forward connections, and their role is the subject of diverse
theories (Callaway, 2004; Maass et al., 2007). It should be noted
that feedback alignment as such does not specify exactly how
neurons represent and make use of the error signals; it only
relaxes a constraint on the transport of the error signals. Thus,
feedback alignment is more a primitive that can be used in fully
biological (approximate) implementations of backpropagation,
than a fully biological implementation in its own right. As such, it
may be possible to incorporate it into several of the other schemes
discussed here.

The above “biological” implementations of backpropagation
still lack some key aspects of biological realism. For example,
in the brain, neurons tend to be either excitatory or inhibitory
but not both, whereas in artificial neural networks a single
neuron may send both excitatory and inhibitory signals to its
downstream neurons. Fortunately, this constraint is unlikely to
limit the functions that can be learned (Parisien et al., 2008;
Tripp and Eliasmith, 2016). Other biological considerations,
however, need to be looked at in more detail: the highly recurrent
nature of biological neural networks, which show rich dynamics
in time, and the fact that most neurons in mammalian brains
communicate via spikes. We now consider these two issues in
turn.

2.2.2.1. Temporal credit assignment:
The biological implementations of backpropagation proposed
above, while applicable to feedforward networks, do not give
a natural implementation of “backpropagation through time”
(BPTT) (Werbos, 1990) for recurrent networks, which is widely
used in machine learning for training recurrent networks
on sequential processing tasks. BPTT “unfolds” a recurrent

dynamics (Hopfield, 1984) in which hidden units are perturbed toward target

values (Bengio and Fischer, 2015), loosely similar to that which occurs in XCAL.

This dynamics then allows the STDP-based rule to correspond to gradient descent

on the energy function with respect to the weights (Scellier and Bengio, 2016). This

scheme requires symmetric weights, but in an autoencoder context, Bengio notes

that these can arise spontaneously (Arora et al., 2015).

network across multiple discrete time steps and then runs
backpropagation on the unfolded network to assign credit to
particular units at particular time steps11. While the network
unfolding procedure of BPTT itself does not seem biologically
plausible, to our intuition, it is unclear to what extent temporal
credit assignment is truly needed (Ollivier and Charpiat, 2015)
for learning particular temporally extended tasks.

If the system is given access to appropriate memory
stores and representations (Buonomano and Merzenich, 1995;
Gershman et al., 2012, 2014) of temporal context, this could
potentially mitigate the need for temporal credit assignment
as such—in effect, memory systems could “spatialize” the
problem of temporal credit assignment12. For example, memory
networks (Weston et al., 2014) store everything by default
up to a certain buffer size, eliminating the need to perform
credit assignment over the write-to-memory events, such that
the network only needs to perform credit assignment over the
read-from-memory events. In another example, certain network
architectures that are superficially very deep, but which possess
particular types of “skip connections,” can actually be seen as
ensembles of comparatively shallow networks (Veit et al., 2016);
applied in the time domain, this could limit the need to propagate
errors far backwards in time. Other, similar specializations or
higher-levels of structure could, potentially, further ease the
burden on credit assignment.

Can generic recurrent networks perform temporal credit
assignment in in a way that is more biologically plausible
than BPTT? Indeed, new discoveries are being made about the
capacity for supervised learning in continuous-time recurrent
networks with more realistic synapses and neural integration
properties. In internal FORCE learning (Sussillo and Abbott,
2009), internally generated random fluctuations inside a chaotic
recurrent network are adjusted to provide feedback signals that
drive weight changes internal to the network while the outputs
are clamped to desired patterns. This is made possible by a
learning procedure that rapidly adjusts the network output to
a state where it is close to the clamped values, and exerts
continuous control to keep this difference small throughout the
learning process13. This procedure is able to control and exploit
the chaotic dynamical patterns that are spontaneously generated
by the network.

Werbos has proposed in his “error critic” that an online
approximation to BPTT can be achieved by learning to predict
the backward-through-time gradient signal (costate) in a manner
analogous to the prediction of value functions in reinforcement

11Even BPTT has arguably not been completely successful in recurrent networks.

The problems of vanishing and exploding gradients led to long short termmemory

networks with gated memory units. An alternative is to use optimization methods

that go beyond first order derivatives (Martens and Sutskever, 2011). This suggests

the need for specialized systems and structures in the brain to mitigate problems

of temporal credit assignment.
12Interestingly, the hippocampus seems to “time stamp” memories by encoding

them into ensembles with cellular compositions and activity patterns that change

gradually as a function of time on the scale of days (Rubin et al., 2015; Cai et al.,

2016), and may use “time cells” to mark temporal positions within episodes on a

timescale of seconds (Kraus et al., 2013).
13Control theory concepts also appear to be useful for simplifying optimization

problems in certain other settings (Todorov, 2009; Hennequin et al., 2014).
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learning (Werbos and Si, 2004). This kind of idea was recently
applied in (Jaderberg et al., 2016) to allow decoupling of
different parts of a network during training and to facilitate
backpropagation through time. Broadly, we are only beginning
to understand how neural activity can itself represent the
time variable (Xu et al., 2014; Finnerty et al., 2015)14, and
how recurrent networks can learn to generate trajectories of
population activity over time (Liu and Buonomano, 2009).
Moreover, as we discuss below, a number of cortical models
also propose means, other than BPTT, by which networks could
be trained on sequential prediction tasks, even in an online
fashion (O’Reilly et al., 2014b; Cui et al., 2015; Brea et al., 2016).
A broad range of ideas can be used to approximate BPTT inmore
realistic ways.

2.2.2.2. Spiking networks:
It has been difficult to apply gradient descent learning
directly to spiking neural networks15,16, although there do
exist learning rules for doing so in specific representational
contexts and network structures (Bekolay et al., 2013). A
number of optimization procedures have been used to generate,
indirectly, spiking networks which can perform complex tasks,
by performing optimization on a continuous representation
of the network dynamics and embedding variables into high-
dimensional spaces withmany spiking neurons representing each
variable (Thalmeier et al., 2015; Abbott et al., 2016; DePasquale
et al., 2016; Komer and Eliasmith, 2016). The use of recurrent
connections with multiple timescales can remove the need for
backpropagation in the direct training of spiking recurrent
networks (Bourdoukan and Denève, 2015). Fast connections
maintain the network in a state where slow connections have
local access to a global error signal.While the biological realism of
these methods is still unknown, they all allow connection weights
to be learned in spiking networks.

These and other novel learning procedures illustrate the
fact that we are only beginning to understand the connections
between the temporal dynamics of biologically realistic networks,
and mechanisms of temporal and spatial credit assignment.
Nevertheless, we argue here that existing evidence suggests that
biologically plausible neural networks can solve these problems—
in other words, it is possible to efficiently optimize complex
functions of temporal history in the context of spiking networks
of biologically realistic neurons. In any case, there is little
doubt that spiking recurrent networks using realistic population
coding schemes can, with an appropriate choice of connection
weights, compute complicated, cognitively relevant functions17.

14In one intriguing study of interval timing, single neurons exhibited response

patterns over time which were scaled to the interval duration, and cooling the

brain to slow down neural dynamics led to longer intervals being computed by

the brain (Xu et al., 2014).
15Analogs of weight perturbation and node perturbation are known for spiking

networks (Seung, 2003; Fiete and Seung, 2006). Seung (2003) also discusses

implications of gradient based learning algorithms for neuroscience, echoing some

of our considerations here.
16A related, but more general, question is how to learn over many layers of non-

differentiable structures. One option is to perform updates via finite-sized rather

than infinitesimal steps, e.g., via target-propagation (Bengio, 2014).
17Eliasmith and others have shown (Eliasmith and Anderson, 2004; Eliasmith

et al., 2012; Eliasmith, 2013) that complex functions and control systems can be

The question is how the developing brain efficiently learns such
complex functions.

2.3. Other Principles for Biological
Learning
The brain has mechanisms and structures that could support
learning mechanisms different from typical gradient-based
optimization algorithms employed in artificial neural networks.

2.3.1. Exploiting Biological Neural Mechanisms
The complex physiology of individual biological neuronsmay not
only help explain how some form of efficient gradient descent
could be implemented within the brain, but also could provide
mechanisms for learning that go beyond backpropagation. This
suggests that the brainmay have discoveredmechanisms of credit
assignment quite different from those dreamt up by machine
learning.

One such biological primitive is dendritic computation, which
could impact prospects for learning algorithms in several ways.
First, real neurons are highly nonlinear (Antic et al., 2010), with
the dendrites of each single neuron implementing18 something
computationally similar to a three-layer neural network (Mel,
1992)19. Individual neurons thus should not be regarded as single
“nodes” but as multi-component sub-networks. Second, when a
neuron spikes, its action potential propagates back from the soma
into the dendritic tree. However, it propagates more strongly into
the branches of the dendritic tree that have been active (Williams
and Stuart, 2000), potentially simplifying the problem of credit
assignment (Körding and König, 2000). Third, neurons can have
multiple somewhat independent dendritic compartments, as well
as a somewhat independent somatic compartment, which means
that the neuron should be thought of as storing more than one
variable. Thus, there is the possibility for a neuron to store both
its activation itself, and the error derivative of a cost function
with respect to its activation, as required in backpropagation,
and biological implementations of backpropagation based on this
principle have been proposed (Körding and König, 2001; Schiess
et al., 2016)20. Overall, the implications of dendritic computation
for credit assignment in deep networks are only beginning to

compiled onto such networks, using nonlinear encoding and linear decoding of

high-dimensional vectors.
18Dendritic computation may also have other functions, e.g., competitive

interactions between dendrites in a single neuron could also allow neurons to

contribute to multiple different ensembles (Legenstein and Maass, 2011).
19Localized activity in dendrites drives localized plasticity, with inhibitory

interneurons, and interactions between inputs at different parts of the dendritic

tree, controlling the local sign and spatial distribution of this plasticity (Sjöström

and Häusser, 2006; Cichon and Gan, 2015).
20In the model of Körding and König (2001), single spikes are used to transmit

activations and burst spikes are used to transmit error information. In other

models, including the dendritic voltage in a plasticity rule leads to error-

driven and predictive learning that can approximate backpropagation inside a

single complex neuron (in effect backpropagating from the net somatic output,

through nonlinearities at the dendritic branch points, all the way back to the

individual input synaptic weights) and that generalize to a reinforcement learning

context (Urbanczik and Senn, 2014; Schiess et al., 2016). Single neurons with

active dendrites and many synapses may also embody learning rules of greater

complexity, such as the storage and recall of temporal patterns (Hawkins and

Ahmad, 2016).
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be considered21. But it is clear that the types of bi-directional,
non-linear, multi-variate interactions that are possible inside a
single neuron could support gradient descent learning or other
powerful optimization mechanisms.

Beyond dendritic computation, diverse
mechanisms (Marblestone and Boyden, 2014) like
retrograde (post-synaptic to pre-synaptic) signals using
cannabinoids (Wilson and Nicoll, 2001), or rapidly-diffusing
gases such as nitric oxide (Arancio et al., 1996), are among many
that could enable learning rules that go beyond conventional
conceptions of backpropagation. Harris has suggested (Harris,
2008; Lewis and Harris, 2014) how slow, retroaxonal (i.e., from
the outgoing synapses back to the parent cell body) transport
of molecules like neurotrophins could allow neural networks to
implement an analog of an exchangeable currency in economics,
allowing networks to self-organize to efficiently provide
information to downstream “consumer” neurons that are trained
via faster and more direct error signals. The existence of these
diverse mechanisms may call into question traditional, intuitive
notions of “biological plausibility” for learning algorithms.

Another potentially important biological primitive is
neuromodulation. The same neuron or circuit can exhibit
different input-output responses and plasticity depending on a
global circuit state, as reflected by the concentrations of various
neuromodulators like dopamine, serotonin, norepinephrine,
acetylcholine, and hundreds of different neuropeptides such
as opiods (Bargmann, 2012; Bargmann and Marder, 2013).
These modulators interact in complex and cell-type-specific
ways to influence circuit function. Interactions with glial cells
also play a role in neural signaling and neuromodulation,
leading to the concept of “tripartite” synapses that include a
glial contribution (Perea et al., 2009). Modulation could have
many implications for learning. First, modulators can be used
to gate synaptic plasticity on and off selectively in different
areas and at different times, allowing precise, rapidly updated
orchestration of where and when cost functions are applied.
Furthermore, it has been argued that a single neural circuit can
be thought of as multiple overlapping circuits with modulation
switching between them (Bargmann, 2012; Bargmann and
Marder, 2013). In a learning context, this could potentially allow
sharing of synaptic weight information between overlapping
circuits. Dayan (2012) discusses further computational aspects
of neuromodulation. Overall, neuromodulation seems to
expand the range of possible algorithms that could be used for
optimization.

2.3.2. Learning in the Cortical Sheet
A number of models attempt to explain cortical learning on
the basis of specific architectural features of the 6-layered
cortical sheet. These models generally agree that a primary
function of the cortex is some form of unsupervised learning
via prediction (O’Reilly et al., 2014b; Brea et al., 2016)22.

21Interestingly, some connectomic studies are finding more obvious connectivity

structure at the level of dendritic organization than at the cellular level (Morgan

et al., 2016).
22An interesting recent study explored this idea in the context of a model of

modular cortical-column-like units (Piekniewski et al., 2016). Local units are

Some cortical learning models are explicit attempts to map
cortical structure onto the framework of message-passing
algorithms for Bayesian inference (Lee and Mumford, 2003;
Dean, 2005; George and Hawkins, 2009), while others start
with particular aspects of cortical neurophysiology and seek to
explain those in terms of a learning function, or in terms of a
computational function, e.g., hierarchical clustering (Rodriguez
et al., 2004). For example, the nonlinear and dynamical properties
of cortical pyramidal neurons—the principal excitatory neuron
type in cortex (Shepherd, 2014)—are of particular interest here,
especially because these neurons have multiple dendritic zones
that are targeted by different kinds of projections, which may
allow the pyramidal neuron to make comparisons of top-down
and bottom-up inputs23.

Other aspects of the laminar cortical architecture could be
crucial to how the brain implements learning. Local inhibitory
neurons targeting particular dendritic compartments of the L5

multi-layer perceptrons trained tominimize a prediction error by gradient descent.

Within each unit, predictive autoencoders form a data compression in their middle

layers, which is then fed up to higher levels as well as laterally. This system

is suggestive of the power of using modular units of intermediate complexity,

each of which minimizes a prediction error locally, e.g., in a local few-layer

network. The system currently uses a fixed format for transmission of vectors

from one unit to another, but ideally the inter-module connections should also be

trained by gradient descent as well or by reinforcement learning rather than being

fixed. The cortical-column-like modules could also be made more complex and

could be organized into higher-order structures like Minsky’s semantic networks,

frames and K-lines (Minsky, 1988) rather than in simple hierarchies, or such an

architecture could self-organize via reinforcement learning or other mechanisms

for defining inter-column connections. Such a system also needs connections with

specific kinds of memory and long-range information routing systems.
23This idea has been used by Hawkins and colleagues to suggest mechanisms

for continuous online sequence learning (Cui et al., 2015; Hawkins and Ahmad,

2016) and by Larkum and colleagues for comparison of top-down and bottom-up

signals (Larkum, 2013). The Larkum model focuses on the layer 5 (L5) pyramidal

neuron type. The cell body of this neuron lies in L5 but extends its “apical”

dendritic tree all the way up to a tuft at the top of the cortex in layer 1 (L1), which is

a primary target of feedback projections. In the model, interactions between local

spiking in these different dendritic zones, which are targeted by different kinds of

projections, are crucial to the learning function. The model of Hawkins (Cui et al.,

2015; Hawkins and Ahmad, 2016) also focused on the unique dendritic structure

of the L5 pyramidal neuron, and distinguishes internal states of the neuron, which

impact its responsiveness to other inputs, from activation states, which directly

translate into spike rates. Three integration zones in each neuron, and dendritic

NMDA spikes (Palmer et al., 2014) acting as local coincidence detectors (Shai

et al., 2015), allow temporal patterns of dendritic input to impact the cell’s internal

state. Intra-column inhibition is also used in this model. Other cortical models

pay less attention to the details of dendritic computation, but still provide detailed

interpretations of the inter-laminar projection patterns of the neocortex. For

example, in O’Reilly et al. (2014b), an architecture is presented for continuous

learning based on prediction of the next input. Time is discretized into 100 ms

bins via an alpha oscillation, and the deep vs. shallow layers maintain different

information during these time bins, with deep layers maintaining a record of the

previous time step, and shallow layers representing the current state. The stored

information in the deep layers leads to a prediction of the current state, which

is then compared with the actual current state. Periodic bursting locked to the

oscillation provides a kind of clock that causes the current state to be shifted into

the deep layers for maintenance during the subsequent time step, and recurrent

loops with the thalamus allow this representation to remain stable for sufficiently

long to be used to generate the prediction. Other theories utilize the biophysics

of dendritic computation and spike timing dependent plasticity to explain how

neurons could learn to make predictions (Brea et al., 2016) on a timescale of

seconds using neurons with intrinsic plasticity time constants of a few tens of

milliseconds.
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pyramidal could be used to exert precise control over when and
how the relevant feedback signals and associative mechanisms
are utilized. Notably, local inhibitory networks could also give
rise to competition (Petrov et al., 2010) between different
representations in the cortex, perhaps allowing one cortical
column to suppress others nearby, or perhaps even to send
more sophisticated messages to gate the state transitions of
its neighbors (Bach and Herger, 2015). Moreover, recurrent
connectivity with the thalamus, structured bursts of spiking,
and cortical oscillations (not to mention other mechanisms like
neuromodulation) could control the storage of information over
time, to facilitate learning based on temporal prediction. These
concepts begin to suggest preliminary, exploratory models for
how the detailed anatomy and physiology of the cortex could
be interpreted within a machine-learning framework that goes
beyond backpropagation. But these are early days: we still lack
detailed structural/molecular and functional maps of even a
single local cortical microcircuit.

2.3.3. One-shot Learning
Human learning is often one-shot: it can take just a single
exposure to a stimulus to never forget it, as well as to generalize
from it to new examples. One way of allowing networks
to have such properties is what is described by I-theory, in
the context of learning invariant representations for object
recognition (Anselmi et al., 2015). Instead of training via gradient
descent, image templates are stored in the weights of simple-
complex cell networks while objects undergo transformations,
similar to the use of stored templates in HMAX (Serre et al.,
2007). The theories then aim to show that you can invariantly and
discriminatively represent objects using a single sample, even of
a new class (Anselmi et al., 2015)24.

Additionally, the nervous system may have a way of quickly
storing and replaying sequences of events. This would allow
the brain to move an item from episodic memory into a long-
term memory stored in the weights of a cortical network (Ji and
Wilson, 2007), by replaying the memory over and over. This
solution effectively uses many iterations of weight updating to
fully learn a single item, even if one has only been exposed to
it once. Alternatively, the brain could rapidly store an episodic
memory and then retrieve it later without the need to perform
slow gradient updates, which has proven to be useful for
fast reinforcement learning in scenarios with limited available
data (Blundell et al., 2016).

Finally, higher-level systems in the brain may be able to
implement Bayesian learning of sequential programs, which is a

24I-theory can perhaps be viewed as a generalized alternative paradigm to the

online optimization of cost functions via multi-layer gradient descent, as used

in deep learning. It exploits similar network architectures as conventional deep

learning, e.g., hierarchical convolutional networks for the case of feedforward

vision, but rather than backpropagating errors, it uses local circuits and learning

rules to store templates against which new inputs are compared. This relies on a

theory of generalization in learning based on combinations of tuned units (Poggio

and Bizzi, 2004), which has been applied to both vision and motor control.

Neurons with the required Gaussian-like tunings to stored templates could

be obtained through canonical, local, normalization-based circuits (Kouh and

Poggio, 2008), which can also be tweaked to implement other aspects of a vision

architecture like softmax operations and pooling.

powerful means of one-shot learning (Lake et al., 2015). This type
of cognition likely relies on an interaction betweenmultiple brain
areas such as the prefrontal cortex and basal ganglia.

These potential substrates of one-shot learning rely on
mechanisms other than simple gradient descent. It should be
noted, though, that recent architectural advances, including
specialized spatial attention and feedback mechanisms (Rezende
et al., 2016), as well as specialized memory mechanisms (Santoro
et al., 2016), do allow some types of one-shot generalization to be
driven by backpropagation-based learning.

2.3.4. Active Learning
Human learning is often active and deliberate. It seems likely
that, in human learning, actions are chosen so as to generate
interesting training examples, and sometimes also to test
specific hypotheses. Such ideas of active learning and “child
as scientist” go back to Piaget and have been elaborated more
recently (Gopnik et al., 2000). We want our learning to be based
on maximally informative samples, and active querying of the
environment (or of internal subsystems) provides a way route to
this.

At some level of organization, of course, it would seem useful
for a learning system to develop explicit representations of its
uncertainty, since this can be used to guide the system to actively
seek the information that would reduce its uncertainty most
quickly. Moreover, there are population coding mechanisms that
could support explicit probabilistic computations (Zemel and
Dayan, 1997; Sahani and Dayan, 2003; Rao, 2004; Ma et al.,
2006; Eliasmith and Martens, 2011; Gershman and Beck, 2016).
Yet it is unclear to what extent and at what levels the brain
uses an explicitly probabilistic framework, or to what extent
probabilistic computations are emergent from other learning
processes (Orhan and Ma, 2016)25,26.

25One alternative picture that contrasts with straightforward cost function

optimization emphasizes the types of computation that appear most naturally

suited to heterogeneous, stochastic, noisy, continually changing neural

circuitry (Maass, 2016). On this view, network plasticity is viewed as a

sampling-based approximation to Bayesian inference (Kappel et al., 2015)

where transiently changing synapses sample from a posterior distribution of

network configurations, rather than as gradient descent on a cost function. This

view emphasizes Monte-Carlo sampling procedures, rather than cost function

optimization.
26Sampling based inference procedures are used widely in Bayesian statistics,

and efforts have been made to connect these procedures with circuit-based

models of computations (Mansinghka and Jonas, 2014). It currently appears

difficult, however, to reconcile generic Marcov Chain Monte Carlo (MCMC)

dynamics, which mix slowly, with the fast time scales of human psychophysics.

But Bayesian methods are powerful and come with a methodology for model

comparison (Ghahramani, 2005). In machine learning, variational Bayesian

methods have recently become popular precisely because they are capable of fast

though approximate posterior inference (inferring causes from observables), but

seem to be powerful enough to create strong models. For example, stochastic

gradient descent optimization is beginning to be used for variational Bayesian

inference (Kingma and Welling, 2013). Restricted Boltzmann Machines (RBMs)

also achieve fast inference in shallow architectures—with only a small number

of iterations of mixing required—but they do not mix quickly when stacked into

deep hierarchies as deep Boltzmann machines. The greedy, layer-wise pre-training

of a deep belief network (Hinton et al., 2006) provides a heuristic way to stack

the RBMs by auto-encoding, but these have achieved less competitive results than

current variational Bayesian models. The problem of fast inference in MCMC

models is the subject of current research, including at the interface with biologically
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Standard gradient descent does not incorporate any such
adaptive sampling mechanism, e.g., it does not deliberately
sample data so as to maximally reduce its uncertainty.
Interestingly, however, stochastic gradient descent can be used
to generate a system that samples adaptively (Alain et al., 2015;
Bouchard et al., 2015). In other words, a system can learn, by
gradient descent, how to choose its own input data samples in
order to learn most quickly from them by gradient descent.

Ideally, the learner learns to choose actions that will lead to
the largest improvements in its prediction or data compression
performance (Schmidhuber, 2010). In Schmidhuber (2010),
this is done in the framework of reinforcement learning, and
incorporates amechanisms for the system tomeasure its own rate
of learning. In other words, it is possible to reinforcement-learn a
policy for selecting the most interesting inputs to drive learning.
Adaptive sampling methods are also known in reinforcement
learning that can achieve optimal Bayesian exploration ofMarkov
Decision Process environments (Sun et al., 2011; Guez et al.,
2012).

These approaches achieve optimality in an arbitrary, abstract
environment. But of course, evolution may also encode its
implicit knowledge of the organism’s natural environment, the
behavioral goals of the organism, and the developmental stages
and processes which occur inside the organism, as priors or
heuristics27 which would further constrain the types of adaptive
sampling that are optimal in practice. For example, simple
heuristics like seeking certain perceptual signatures of novelty,
or more complex heuristics like monitoring situations that other
people seem to find interesting, might be good ways to bias
sampling of the environment so as to learn more quickly. Other
such heuristics might be used to give internal brain systems the
types of training data that will be most useful to those particular
systems at any given developmental stage.

We are only beginning to understand how active learning
might be implemented in the brain. We speculate that multiple
mechanisms, specialized to different brain systems and spatio-
temporal scales, could be involved. The above examples suggest
that at least some such mechanisms could be understood from
the perspective of optimizing cost functions.

2.4. Differing Biological Requirements for
Supervised and Reinforcement Learning
We have suggested ways in which the brain could implement
learning mechanisms of comparable power to backpropagation.
But in many cases, the system may be more limited by the
available training signals than by the optimization process itself.
In machine learning, one distinguishes supervised learning,
reinforcement learning and unsupervised learning, and the
training data limitation manifests differently in each case.

Both supervised and reinforcement learning require some
form of teaching signal, but the nature of the teaching signal

plausible models (Bengio et al., 2016).When these models are made to perform fast

inference, they actually become somewhat similar to variational Bayesianmethods,

since they rely on feedforward approximate inference, at least to initialize the

system.
27Heuristics are widely used to simplify motor planning and control, e.g., McLeod

and Dienes (1996).

in supervised learning is different from that in reinforcement
learning. In supervised learning, the trainer provides the entire
vector of errors for the output layer and these are back-
propagated to compute the gradient: a locally optimal direction
in which to update all of the weights of a potentially multi-layer
and/or recurrent network. In reinforcement learning, however,
the trainer provides a scalar evaluation signal, but this is not
sufficient to derive a low-variance gradient. Hence, some form of
trial and error twiddlingmust be used to discover how to increase
the evaluation signal. Consequently, reinforcement learning is
generally much less efficient than supervised learning.

Reinforcement learning in shallow networks is simple to
implement biologically. For reinforcement learning of a deep
network to be biologically plausible, however, we need a more
powerful learning mechanism, since we are learning based on a
more limited evaluation signal than in the supervised case: we
do not have the full target pattern to train toward. Nevertheless,
approximations of gradient descent can be achieved in this
case, and there are cases in which the scalar evaluation signal
of reinforcement learning can be used to efficiently update a
multi-layer network by gradient descent. The “attention-gated
reinforcement learning” (AGREL) networks of Stanisor et al.
(2013), Brosch et al. (2015), and Roelfsema and van Ooyen
(2005), and variants like KickBack (Balduzzi, 2014), give a
way to compute an approximation to the full gradient in a
reinforcement learning context using a feedback-based attention
mechanism for credit assignment within themulti-layer network.
The feedback pathway, together with a diffusible reward signal,
together gate plasticity. For networks with more than three
layers, this gives rise to a model based on columns containing
parallel feedforward and feedback pathways (Roelfsema and
van Ooyen, 2005), and for recurrent networks that settle into
attractor states it gives a reinforcement-trained version (Brosch
et al., 2015) of the Almeida/Pineda recurrent backpropagation
algorithm (Pineda, 1987). The process is still not as efficient
or generic as backpropagation, but it seems that this form
of feedback can make reinforcement learning in multi-layer
networks more efficient than a naive node perturbation or weight
perturbation approach.

The machine-learning field has recently been tackling the
question of credit assignment in deep reinforcement learning.
Deep Q-learning (Mnih et al., 2015) demonstrates reinforcement
learning in a deep network, wherein most of the network is
trained via backpropagation. In regular Q learning, we define
a function Q, which estimates the best possible sum of future
rewards (the return) if we are in a given state and take a given
action. In deep Q learning, this function is approximated by a
neural network that, in effect, estimates action-dependent returns
in a given state. The network is trained using backpropagation
of local errors in Q estimation, using the fact that the return
decomposes into the current reward plus the discounted estimate
of future return at the next moment. During training, as the
agent acts in the environment, a series of loss functions is
generated at each step, defining target patterns that can be used
as the supervision signal for backpropagation. As Q is a highly
nonlinear function of the state, tricks are needed to make deep
Q learning efficient and stable, including experience replay and
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a particular type of mini-batch training. It is also necessary
to store the outputs from the previous iteration (or clone the
entire network) in evaluating the loss function for the subsequent
iteration28.

This process for generating learning targets provides a
kind of bridge between reinforcement learning and efficient
backpropagation-based gradient descent learning29. Importantly,
only temporally local information is neededmaking the approach
relatively compatible with what we know about the nervous
system.

Even given these advances, a key remaining issue in
reinforcement learning is the problem of long timescales, e.g.,
learning the many small steps needed to navigate from London
to Chicago. Many of the formal guarantees of reinforcement
learning (Williams and Baird, 1993), for example, suggest that
the difference between an optimal policy and the learned policy
becomes increasingly loose as the discount factor shifts to take
into account reward at longer timescales. Although the degree
of optimality of human behavior is unknown, people routinely
engage in adaptive behaviors that can take hours or longer to
carry out, by using specialized processes like prospective memory
to “remember to remember” relevant variables at the right times,
permitting extremely long timescales of coherent action.Machine
learning has not yet developed methods to deal with such a wide
range of timescales and scopes of hierarchical action. Below we
discuss ideas of hierarchical reinforcement learning that may
make use of callable procedures and sub-routines, rather than
operating explicitly in a time domain.

As we will discuss below, some form of deep reinforcement
learning may be used by the brain for purposes beyond
optimizing global rewards, including the training of local
networks based on diverse internally generated cost functions.
Scalar reinforcement-like signals are easy to compute, and easy
to deliver to other areas, making them attractive mechanistically.
If the brain does employ internally computed scalar reward-like
signals as a basis for cost functions, it seems likely that it will
have found an efficient means of reinforcement-based training of
deep networks, but it is an open question whether an analog of
deep Q networks, AGREL, or some other mechanism entirely, is
used in the brain for this purpose. Moreover, as we will discuss
further below, it is possible that reinforcement-type learning is
made more efficient in the context of specialized brain systems
like short term memories, replay mechanisms, and hierarchically
organized control systems. These specialized systems could
reduce reliance on a need for powerful credit assignment

28Many other reinforcement learning algorithms, including

REINFORCE (Williams, 1992), can be implemented as fully online algorithms

using “eligibility traces,” which accumulate the sensitivity of action distributions

to parameters in a temporally local manner (Sutton and Barto, 1998).
29Zaremba and Sutskever (2015) also bridges reinforcement learning and

backpropagation learning in the same system, in the context of a neural network

controlling discrete interfaces, and illustrates some of the challenges of this

approach: compared to an end-to-end backpropagation-trained Neural Turing

Machine (Graves et al., 2014), reinforcement based training allows training of

only relatively simple algorithmic tasks. Special measures need to be taken to

make reinforcement efficient, including limiting the number of possible actions,

subtracting a baseline reward, and training the network using a curriculum

schedule.

mechanisms for reinforcement learning. Finally, if the brain uses
a diversity of scalar reward-like signals to implement different
cost functions, then it may need to mediate delivery of those
signals via a comparable diversity of molecular substrates. The
great diversity of neuromodulatory signals, e.g., neuropeptides, in
the brain (Bargmann, 2012; Bargmann and Marder, 2013) makes
such diversity quite plausible, and moreover, the brain may have
found other, as yet unknown,mechanisms of diversifying reward-
like signaling pathways and enabling them to act independently
of one another.

3. THE COST FUNCTIONS ARE DIVERSE
ACROSS BRAIN AREAS AND TIME

In the last section, we argued that the brain can optimize
functions. This raises the question of what functions it optimizes.
Of course, in the brain, a cost function will itself be created
(explicitly or implicitly) by a neural network shaped by the
genome. Thus, the cost function used to train a given sub-
network in the brain is a key innate property that can be built into
the system by evolution. It may be much cheaper in biological
terms to specify a cost function that allows the rapid learning of
the solution to a problem than to specify the solution itself.

In Hypothesis 2, we proposed that the brain optimizes not
a single “end-to-end” cost function, but rather a diversity of
internally generated cost functions specific to particular brain
functions30. To understand how and why the brain may use
a diversity of cost functions, it is important to distinguish
the differing types of cost functions that would be needed
for supervised, unsupervised and reinforcement learning. We
can also seek to identify types of cost functions that the
brain may need to generate from a functional perspective, and
how each may be implemented as supervised, unsupervised,
reinforcement-based or hybrid systems.

3.1. How Cost Functions May Be
Represented and Applied
What additional circuitry is required to actually impose a
cost function on an optimizing network? In the most familiar
case, supervised learning may rely on computing a vector of
errors at the output of a network, which will rely on some
comparator circuitry31 to compute the difference between the
network outputs and the target values. This difference could
then be backpropagated to earlier layers. An alternative way
to impose a cost function is to “clamp” the output of the
network, forcing it to occupy a desired target state. Such
clamping is actually assumed in some of the putative biological
implementations of backpropagation described above, such as
XCAL and target propagation. Alternatively, as described above,
scalar reinforcement signals are attractive as internally-computed
cost functions, but using them in deep networks requires special
mechanisms for credit assignment.

30This is distinct from a game-theoretic scenario in which multiple actors can

achieve an equilibrium, e.g., Gemp and Mahadevan (2015).
31Single neurons act as comparators in the motor system, e.g., Brownstone et al.

(2015), and networks in the retina adapt so as to report local differences in space or

time rather than absolute values, a form of predictive coding (Hosoya et al., 2005).
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In unsupervised learning, cost functions may not take the
form of externally supplied training or error signals, but rather
can be built into the dynamics inherent to the network itself,
i.e., there may be no need for a separate circuit to compute and
impose a cost function on the network. For example, specific
spike-timing-dependent and homeostatic plasticity rules have
been shown to give rise to gradient descent on a prediction error
in recurrent neural networks (Galtier and Wainrib, 2013). Thus,
specific unsupervised objectives could be implemented implicitly
through specific local network dynamics32 and plasticity rules
inside a network without explicit computation of cost function,
nor explicit propagation of error derivatives.

Alternatively, explicit cost functions could be computed,
delivered to an optimizing network, and used for unsupervised
learning, following a variety of principles being discovered in
machine learning (e.g., Radford et al., 2015; Lotter et al., 2015).
These networks rely on backpropagation as the sole learning
rule, and typically find a way to encode the desired cost
function into the error derivatives which are backpropagated.
For example, prediction errors naturally give rise to error
signals for unsupervised learning, as do reconstruction errors
in autoencoders, and these error signals can also be augmented
with additional penalty or regularization terms that enforce
objectives like sparsity or continuity, as described below. Then
these error derivatives can be propagated throughout the network
via standard backpropagation. In such systems, the objective
function and the optimization mechanism can thus be mixed and
matched modularly. In the next sections, we elaborate on these
and other means of specifying and delivering cost functions in
different learning contexts.

3.2. Cost Functions for Unsupervised
Learning
There are many objectives that can be optimized in an
unsupervised context, to accomplish different kinds of functions
or guide a network to form particular kinds of representations.

3.2.1. Matching the Statistics of the Input Data Using

Generative Models
In one common form of unsupervised learning, higher brain
areas attempt to produce samples that are statistically similar
to those actually seen in lower layers. For example, the
wake-sleep algorithm (Hinton et al., 1995) requires the sleep
mode to sample potential data points whose distribution
should then match the observed distribution. Unsupervised
pre-training of deep networks is an instance of this (Erhan

32Beginning with Hopfield’s definition of an energy function for inference in

certain classes of symmetric network (Hopfield, 1982), researchers have discovered

networks with inherent dynamics that implicitly optimizes certain objectives

even while the connection weights are fixed, such as statistical reconstruction

of the input via stochastic relaxation in Boltzmann machines (Ackley et al.,

1958). Fast approximations of some of these inference procedures are perhaps

biologically plausible and could rely on dendritic computation (Bengio et al., 2016).

Iterative local Hebbian-like learning rules are often used to train the weights of

such networks, without explicitly propagating error derivatives in the manner of

backpropagation. In an appropriate network context, many other combinations

of network dynamics and plasticity rules can give rise to inference and learning

procedures that implicitly descend cost functions in activity space and/or weight

space.

and Manzagol, 2009), typically making use of a stacked auto-
encoder framework. Similarly, in target propagation (Bengio,
2014), a top-down circuit, together with lateral information, has
to produce data that directs the local learning of a bottom-
up circuit and vice-versa. Ladder autoencoders make use of
lateral connections and local noise injection to introduce an
unsupervised cost function, based on internal reconstructions,
that can be readily combined with supervised cost functions
defined on the networks top layer outputs (Valpola, 2015).
Compositional generative models generate a scene from discrete
combinations of template parts and their transformations (Wang
and Yuille, 2014), in effect performing a rendering of a scene
based on its structural description. Hinton and colleagues have
also proposed cortical “capsules” (Hinton et al., 2011; Tang
et al., 2012, 2013) for compositional inverse rendering. The
network can thus implement a statistical goal that embodies
some understanding of the way that the world produces
samples33.

Learning rules for generative models have historically
involved local message passing of a form quite different
from backpropagation, e.g., in a multi-stage process that
first learns one layer at a time and then fine-tunes via
the wake-sleep algorithm (Hinton et al., 2006). Message-
passing implementations of probabilistic inference have also
been proposed as an explanation and generalization of deep
convolutional networks (Chen et al., 2014; Patel et al., 2015).
Various mappings of such processes onto neural circuitry have
been attempted (George and Hawkins, 2009; Lee and Yuille,
2011; Sountsov and Miller, 2015), and related models (Makin
et al., 2013, 2016) have been used to account for optimal
multi-sensory integration in the brain. Feedback connections
tend to terminate in distinct layers of cortex relative to the
feedforward ones (Felleman and Van Essen, 1991; Callaway,
2004) making the idea of separate but interacting networks for
recognition and generation potentially attractive34. Interestingly,

33Dreams arguably illustrate that the brain uses generative models which also

involve selective recall and recombination of episodic memories.
34Much is known about the architecture of cortical feedback vs. feedforward

connections. For example, canonically, feedforward connections project from

superficial cortical layers to layer 4 of the recipient layer, while feedback

connections terminate outside layer 4 and often originate in deeper layers.

These types of relationships can be used anatomically to define the hierarchical

organization of visual areas, as in Felleman and Van Essen (1991), although the

original studies were performed in primates and the precise generalization to

rodent cortex is not fully clear (Berezovskii et al., 2011), and there may be various

alternate or overlapping anatomical pathways (Callaway, 2004), e.g., with some

pathways involved in specific functions like gain control, others routed through

specific gating mechanisms, and so forth. Advances in connectomics should allow

this architecture to be studied more directly. The study of receptive field properties

in the visual cortical hierarchy has led to many insights into this hierarchical

system. For example, while each neuron in V1 has a classical local receptive

field, neural responses at a given location in V1 also depend on visual locations

far from the classical receptive field, e.g., through various forms of surround

suppression. These studies have allowed an understanding of the spatial scales over

which feedback connections operate in the early visual system (Angelucci et al.,

2002). In particular, feedback connections are invoked to account for longer-range

receptive field interactions, whereas horizontal connections are invoked to account

for shorter-range receptive field interactions (Schwabe et al., 2006). Feedforward

and feedback pathways are also distinguished dynamically, e.g., by propagating

different oscillatory frequencies (Van Kerkoerle et al., 2014; Bastos et al., 2015),

and moleculary, e.g., with NMDA receptors playing an important role in feedback

processing.
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such sub-networks might even be part of the same neuron and
map onto “apical” vs. “basal” parts of the dendritic tree (Körding
and König, 2001; Urbanczik and Senn, 2014).

Generative models can also be trained via backpropagation.
Recent advances have shown how to perform variational
approximations to Bayesian inference inside backpropagation-
based neural networks (Kingma and Welling, 2013), and how
to exploit this to create generative models (Goodfellow et al.,
2014a; Gregor et al., 2015; Radford et al., 2015; Eslami et al.,
2016). Through either explicitly statistical or gradient descent
based learning, the brain can thus obtain a probabilistic model
that simulates features of the world.

3.2.2. Cost Functions That Approximate Properties of

the World
A perceiving system should exploit statistical regularities in
the world that are not present in an arbitrary dataset or
input distribution. For example, objects are sparse, at least in
certain representations: there are far fewer objects than there
are potential places in the world, and of all possible objects
there is only a small subset visible at any given time. As such,
we know that the output of an object recognition system must
have sparse activations. Building the assumption of sparseness
into simulated systems replicates a number of representational
properties of the early visual system (Olshausen and Field,
1997; Rozell et al., 2008), and indeed the original paper on
sparse coding obtained sparsity by gradient descent optimization
of a cost function (Olshausen and Field, 1996). A range of
unsupervised machine learning techniques, such as the sparse
autoencoders (Le et al., 2012) used to discover cats in YouTube
videos, build sparseness into neural networks. Building in such
spatio-temporal sparseness priors should serve as an “inductive
bias” (Mitchell, 1980) that can accelerate learning.

But we know much more about the regularities of objects.
As young babies, we already know (Bremner et al., 2015) that
objects tend to persist over time. The emergence or disappearance
of an object from a region of space is a rare event. Moreover,
object locations and configurations tend to be coherent in time.
We can formulate this prior knowledge as a cost function, for
example by penalizing representations which are not temporally
continuous. This idea of continuity is used in a great number
of artificial neural networks and related models (Wiskott and
Sejnowski, 2002; Földiák, 2008; Mobahi et al., 2009). Imposing
continuity within certain models gives rise to aspects of the
visual system including complex cells (Körding et al., 2004),
specific properties of visual invariance (Isik et al., 2012), and
even other representational properties such as the existence of
place cells (Wyss et al., 2006; Franzius et al., 2007). Unsupervised
learning mechanisms that maximize temporal coherence or
slowness are increasingly used in machine learning35.

35Temporal continuity is exploited in Poggio (2015), which analyzes many

properties of deep convolutional networks with respect to their biological

plausibility, including their apparent need for large amounts of supervised training

data, and concludes that the environment may in fact provide a sufficient number

of “implicitly,” though not explicitly, labeled examples to train a deep convolutional

network for object recognition. Implicit labeling of object identity, in this case,

arises from temporal continuity: successive frames of a video are likely to have

the same objects in similar places and orientations. This allows the brain to derive

We also know that objects tend to undergo predictable
sequences of transformations, and it is possible to build this
assumption into unsupervised neural learning systems (George
and Hawkins, 2009). The minimization of prediction error
explains a number of properties of the nervous system (Friston
and Stephan, 2007; Huang and Rao, 2011), and biologically
plausible theories are available for how cortex could learn using
prediction errors by exploiting temporal differences (O’Reilly
et al., 2014b) or top-down feedback (George and Hawkins,
2009). In one implementation, a system can simply predict
the next input delivered to the system and can then use the
difference between the actual next input and the predicted next
input as a full vectorial error signal for supervised gradient
descent. Thus, rather than optimization of prediction error
being implicitly implemented by the network dynamics, the
prediction error is used as an explicit cost function in the
manner of supervised learning, leading to error derivatives
which can be back-propagated. Then, no special learning rules
beyond simple backpropagation are needed. This approach has
recently been advanced within machine learning (Lotter et al.,
2015, 2016). Recently, combining such prediction-based learning
with a specific gating mechanism has been shown to lead to
unsupervised learning of disentangled representations (Whitney
et al., 2016). Neural networks can also be designed to learn to
invert spatial transformations (Jaderberg et al., 2015). Statistically
describing transformations or sequences is thus an unsupervised
way of learning representations.

Furthermore, there are multiple modalities of input to the
brain. Each sensory modality is primarily connected to one part
of the brain36. But higher levels of cortex in each modality
are heavily connected to the other modalities. This can enable
forms of self-supervised learning: with a developing visual
understanding of the world we can predict its sounds, and then
test those predictions with the auditory input, and vice versa.
The same is true about multiple parts of the same modality:
if we understand the left half of the visual field, it tells us
an awful lot about the right. Indeed, we can use observations
of one part of a visual scene to predict the contents of other
parts (Noroozi and Favaro, 2016; van den Oord et al., 2016),
and optimize a cost function that reflects the discrepancy.
Maximizing mutual information is a natural way of improving
learning (Becker and Hinton, 1992; Mohamed and Rezende,
2015), and there are many other ways in which multiple
modalities or processing streams could mutually train one

an invariant signature of object identity which is independent of transformations

like translations and rotations, but which does not yet associate the object

with a specific name or label. Once such an invariant signature is established,

however, it becomes basically trivial to associate the signature with a label for

classification (Anselmi et al., 2015). Poggio (2015) also suggests specific means,

in the context of I-theory (Anselmi et al., 2015), by which this training could

occur via the storage of image templates using Hebbianmechanisms among simple

and complex cells in the visual cortex. Thus, in this model, the brain has used its

implicit knowledge of the temporal continuity of object motion to provide a kind

of minimal labeling that is sufficient to bootstrap object recognition. Although not

formulated as a cost function, this shows how usefully the assumption of temporal

continuity could be exploited by the brain.
36Although, some multi-sensory integration appears to occur even in the early

sensory cortices (Cappe et al., 2012).
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another. This way, each modality effectively produces training
signals for the others37. Evidence from psychophysics suggests
that some kind of training via detection of sensory conflicts may
be occurring in children (Nardini et al., 2010).

3.3. Cost Functions for Supervised
Learning
In what cases might the brain use supervised learning, given
that it requires the system to “already know” the exact target
pattern to train toward? One possibility is that the brain can
store records of states that led to good outcomes. For example,
if a baby reaches for a target and misses, and then tries again
and successfully hits the target, then the difference in the neural
representations of these two tries reflects the direction in which
the system should change. The brain could potentially use a
comparator circuit to directly compute this vectorial difference in
the neural population codes and then apply this difference vector
as an error signal.

Another possibility is that the brain uses supervised learning
to implement a form of “chunking,” i.e., a consolidation of
something the brain already knows how to do: routines that are
initially learned as multi-step, deliberative procedures could be
compiled down to more rapid and automatic functions by using
supervised learning to train a network tomimic the overall input-
output behavior of the original multi-step process. Such a process
is assumed to occur in cognitive models like ACT-R (Servan-
Schreiber and Anderson, 1990), and methods for compressing
the knowledge in neural networks into smaller networks are
also being developed (Ba and Caruana, 2014). Thus supervised
learning can be used to train a network to do in “one step”
what would otherwise require long-range routing and sequential
recruitment of multiple systems.

3.4. Repurposing Reinforcement Learning
for Diverse Internal Cost Functions
Certain generalized forms of reinforcement learning may be
ubiquitous throughout the brain. Such reinforcement signals may
be repurposed to optimize diverse internal cost functions. These
internal cost functions could be specified at least in part by
genetics.

Some brain systems such as in the striatum appear to
learn via some form of temporal difference reinforcement
learning (Tesauro, 1995; Foster et al., 2000). This is reinforcement
learning based on a global value function (O’Reilly et al., 2014a)
that predicts total future reward or utility for the agent. Reward-
driven signaling is not restricted to the striatum, and is present
even in primary visual cortex (Chubykin et al., 2013; Stanisor
et al., 2013). Remarkably, the reward signaling in primary
visual cortex is mediated in part by glial cells (Takata et al.,
2011), rather than neurons, and involves the neurotransmitter

37Other brain-inspired unsupervised objectives are being developed for

unsupervised visual learning. One recent paper (Higgins et al., 2016) uses an

objective function that seeks representations of statistically independent factors in

images, by introducing a regularization term that pushes the distribution of latent

factors learned in a generative model to be close to a unit Gaussian. This is based

on a theory that the ventral visual stream is optimized to disentangle factors of

variation in images.

acetylcholine (Chubykin et al., 2013; Hangya et al., 2015). On
the other hand, some studies have suggested that visual cortex
learns the basics of invariant object recognition in the absence of
reward (Li and Dicarlo, 2012), perhaps using reinforcement only
for more refined perceptual learning (Roelfsema et al., 2010).

But beyond these well-known global reward signals, we
argue that the basic mechanisms of reinforcement learning
may be widely re-purposed to train local networks using a
variety of internally generated error signals. These internally
generated signals may allow a learning system to go beyond what
can be learned via standard unsupervised methods, effectively
guiding or steering the system to learn specific features or
computations (Ullman et al., 2012).

3.4.1. Cost Functions for Bootstrapping Learning in

the Human Environment
Special, internally-generated signals are needed specifically for
learning problems where standard unsupervised methods—
based purely on matching the statistics of the world, or
on optimizing simple mathematical objectives like temporal
continuity or sparsity—will fail to discover properties of the
world which are statistically weak in an objective sense but
nevertheless have special significance to the organism (Ullman
et al., 2012). Indigo bunting birds, for example, learn a template
for the constellations of the night sky long before ever leaving
the nest to engage in navigation-dependent tasks (Emlen, 1967).
This memory template is directly used to determine the direction
of flight during migratory periods, a process that is modulated
hormonally so that winter and summer flights are reversed.
Learning is therefore a multi-phase process in which navigational
cues are memorized prior to the acquisition of motor control.

In humans, we suspect that similar multi-stage bootstrapping
processes are arranged to occur. Humans have innate
specializations for social learning. We need to be able to
read one another’s expressions as indicated with hands and faces.
Hands are important because they allow us to learn about the
set of actions that can be produced by agents (Ullman et al.,
2012). Faces are important because they give us insight into what
others are thinking. People have intentions and personalities that
differ from one another, and their feelings are important. How
could we hack together cost functions, built on simple genetically
specifiable mechanisms, to make it easier for a learning system to
discover such behaviorally relevant variables?

Some preliminary studies are beginning to suggest specific
mechanisms and heuristics that humans may be using to
bootstrap more sophisticated knowledge. In a groundbreaking
study, Ullman et al. (2012) asked how could we explain hands,
to a system that does not already know about them, in a cheap
way, without the need for labeled training examples? Hands are
common in our visual space and have special roles in the scene:
they move objects, collect objects, and caress babies. Building
these biases into an area specialized to detect hands could
guide the right kind of learning, by providing a downstream
learning system with many likely positive examples of hands
on the basis of innately-stored, heuristic signatures about how
hands tend to look or behave (Ullman et al., 2012). Indeed, an
internally supervised learning algorithm containing specialized,
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hard-coded biases to detect hands, on the basis of their typical
motion properties, can be used to bootstrap the training of
an image recognition module that learns to recognize hands
based on their appearance. Thus, a simple, hard-coded module
bootstraps the training of a much more complex algorithm for
visual recognition of hands.

Ullman et al. (2012) then further exploits a combination
of hand and face detection to bootstrap a predictor for gaze
direction, based on the heuristic that faces tend to be looking
toward hands. Of course, given a hand detector, it also becomes
much easier to train a system for reaching, crawling, and so forth.
Efforts are underway in psychology to determine whether the
heuristics discovered to be useful computationally are, in fact,
being used by human children during learning (Yu and Smith,
2013; Fausey et al., 2016).

Ullman refers to such primitive, inbuilt detectors as innate
“proto-concepts” (Ullman et al., 2012). Their broader claim is
that such pre-specification of mutual supervision signals can
make learning the relevant features of the world far easier, by
giving an otherwise unsupervised learner the right kinds of
hints or heuristic biases at the right times. Here we call these
approximate, heuristic cost functions “bootstrap cost functions.”
The purpose of the bootstrap cost functions is to reduce the
amount of data required to learn a specific feature or task, but
at the same time to avoid a need for fully unsupervised learning.

Could the neural circuitry for such a bootstrap hand-detector
be pre-specified genetically? The precedent from other organisms
is strong: for example, it is famously known that the frog
retina contains circuitry sufficient to implement a kind of
“bug detector” (Lettvin et al., 1959). Ullman’s hand detector,
in fact, operates via a simple local optical flow calculation to
detect “mover” events. This type of simple, local calculation
could potentially be implemented in genetically-specified and/or
spontaneously self-organized neural circuitry in the retina or
early dorsal visual areas (Bülthoff et al., 1989), perhaps similarly
to the frog’s “bug detector.”

How could we explain faces without any training data? Faces
tend to have two dark dots in their upper half, a line in the lower
half and tend to be symmetric about a vertical axis. Indeed, we
know that babies are very much attracted to things with these
generic features of upright faces starting from birth, and that
they will acquire face-specific cortical areas38 in their first few
years of life if not earlier (McKone et al., 2009). It is easy to
define a local rule that produces a kind of crude face detector

38In the visual system, it is still unknown why a clustered spatial pattern of

representational categories arises, e.g., a physically localized “area” that seems to

correspond to representations of faces (Kanwisher et al., 1997), another area for

representations of visual word forms (McCandliss et al., 2003), and so on. It is

also unknown why this spatial pattern seems to be largely reproducible across

individuals. Some theories are based on bottom-up correlation-based clustering or

neuronal competition mechanisms, which generate category-selective regions as a

byproduct. Other theories suggest a computational reason for this organization,

in the context of I-theory (Anselmi et al., 2015), involving the limited ability to

generalize transformation-invariances learned for one class of objects to other

classes (Leibo et al., 2015b). Areas for abstract culture-dependent concepts, like the

visual word form area, suggest that the decomposition cannot be “purely genetic.”

But it is conceivable that these areas could at least in part reflect different local cost

functions.

(e.g., detecting two dots on top of a horizontal line), and indeed
some evidence suggests that the brain can rapidly detect faces
without even a single feed-forward pass through the ventral
visual stream (Crouzet and Thorpe, 2011). The crude detection
of human faces used together with statistical learning should be
analogous to semi-supervised learning (Sukhbaatar et al., 2014)
and could allow identifying faces with high certainty.

Humans have areas devoted to emotional processing, and
the brain seems to embody prior knowledge about the structure
of emotional expressions and how they relate to causes in the
world: emotions should have specific types of strong couplings
to various other higher-level variables such as goal-satisfaction,
should be expressed through the face, and so on (Phillips et al.,
2002; Skerry and Spelke, 2014; Baillargeon et al., 2016; Lyons and
Cheries, 2016). What about agency? It makes sense to describe,
when dealing with high-level thinking, other beings as optimizers
of their own goal functions. It appears that heuristically specified
notions of goals and agency are infused into human psychological
development from early infancy and that notions of agency are
used to bootstrap heuristics for ethical evaluation (Hamlin et al.,
2007; Skerry and Spelke, 2014). Algorithms for establishing more
complex, innately-important social relationships such as joint
attention are under study (Gao et al., 2014), building upon more
primitive proto-concepts like face detectors and Ullman’s hand
detectors (Ullman et al., 2012). The brain can thus use innate
detectors to create cost functions and training procedures to
train the next stages of learning. This prior knowledge, encoded
into brain structure via evolution, could allow learning signals to
come from the right places and to appear developmentally at the
right times.

It is intuitive to ask whether this type of bootstrapping poses
a kind of “chicken and egg” problem: if the brain already has
an inbuilt heuristic hand detector, how can it be used to train a
detector that performs any better than those heuristics? After all,
isn’t a trained system only as good as its training data? The work
of Ullman et al. (2012) illustrates why this is not the case. First, the
“innate detector” can be used to train a downstream detector that
operates based on different cues: for example, based on the spatial
and body context of the hand, rather than its motion. Second,
once multiple such pathways of detection come into existence,
they can be used to improve each other. In Ullman et al. (2012),
appearance, body context, and mover motion are all used to
bootstrap off of one another, creating a detector that is better than
any of its training heuristics. In effect, the innate detectors are
used not as supervision signals per se, but rather to guide or steer
the learning process, enabling it to discover features that would
otherwise be difficult. If such affordances can be found in other
domains, it seems likely that the brain would make extensive
use of them to ensure that developing animals learn the precise
patterns of perception and behavior needed to ensure their later
survival and reproduction.

Thus, generalizing previous ideas (Ullman et al., 2012;
Poggio, 2015), we suggest that the brain uses optimization
with respect to internally generated heuristic39 detection signals

39Psychologists have postulated other innate heuristics, e.g., in the context of object

tracking (Franconeri et al., 2012). That infant object concepts are trainable but only
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to bootstrap learning of biologically relevant features which
would otherwise be missed by an unsupervised learner. In one
possible implementation, such bootstrapping may occur via
reinforcement learning, using the outputs of the innate detectors
as local reinforcement signals, and perhaps using mechanisms
similar to Stanisor et al. (2013), Rombouts et al. (2015), Brosch
et al. (2015), and Roelfsema and van Ooyen (2005) to perform
reinforcement learning through a multi-layer network. It is
also possible that the brain could use such internally generated
heuristic detectors in other ways, for example to bias the inputs
delivered to an unsupervised learning network toward entities
of interest to humans via an attentional process (Joscha Bach,
personal communication), to bias hippocampal replay (Kumaran
et al., 2016) or other aspects of memory access, or to directly train
simple classifiers (Ullman et al., 2012).

3.4.2. Cost Functions for Learning by Imitation and

through Social Feedback
It has been widely observed that the capacity for imitation
and social learning may be a feature that is uniquely human,
and that enables other human traits (Ramachandran, 2000).
Humans need to learn more from the environment by than
trial and error can provide for, and more than genetically
orchestrated internal bootstrapping signals can effectively guide.
Hence, babies spend a long time watching adults, especially
adults they are attached to Meltzoff (1999), and later use
specific kinds of social cues from their parents to shape their
development. Babies and children learn about cause and effect
through models based on goals, outcomes and agents, not
just pure statistical inference. For example, young children
make inferences about causality selectively in situations where
a human is trying to achieve an outcome (Meltzoff et al.,
2012, 2013). Minsky (2006) discusses how we derive not just
skills but also goals from our attachment figures, through
socially induced emotions like pride and shame. To do all
this requires a powerful infrastructure of mental abilities: we
must attribute social feedback to particular aspects of our
goals or actions, and hence we need to signal to each other
positively and negatively, to draw attention to these aspects.
Minsky speculates (Minsky, 2006) that the development of
such “learning by being told” led to language by selecting for
the development of increasingly precise parsing of synatatic
structures in relation to our representations of agents and action-
plans.

How does this connect with cost functions? The idea of goals
is central here, as we need to be able to identify the goals of
others, update our own goals based on feedback, and measure
the success of actions relative to goals. It has been proposed that
human intrinsically use a model based on abstract goal and costs
to underpin learning about the social world (Jara-Ettinger et al.,
2016). Perhaps we even learn about our “selves” by inferring a
model of our own goals and cost functions. Relatedly, machine
learning in some settings can infer their cost functions from
samples of behavior (Ho and Ermon, 2016).

along certain dimensions (Scholl, 2004) also suggests the notion of a heuristically

“guided” or “bootstrapped” learning process in this context.

3.4.3. Cost Functions for Story Generation and

Understanding
It has been widely noticed in cognitive science and AI that the
generation and understanding of stories are crucial to human
cognition. Researchers such as Winston have framed story
understanding as the key to human-like intelligence (Winston,
2011). Stories consist of a linear sequence of episodes, in
which one episode refers to another through cause and effect
relationships, with these relationships often involving the implicit
goals of agents.Many other cognitive faculties, such as conceptual
grounding of language, could conceivably emerge from an
underlying internal representation in terms of stories.

Perhaps the ultimate series of bootstrap cost functions
would be those which would direct the brain to utilize its
learning networks and specialized systems so as to construct
representations that are specifically useful as components of
stories, to spontaneously chain these representations together,
and to update them through experience and communication.
How could such cost functions arise? One possibility is that
they are bootstrapped through imitation and communication,
where a child learns to mimic the story-telling behavior of others.
Another possibility is that useful representations and primitives
for stories emerge spontaneously from mechanisms for learning
state and action chunking in hierarchical reinforcement learning
and planning. Yet another is that stories emerge from
learned patterns of saliency-directed memory storage and recall
(e.g., Xiong et al., 2016). In addition, priors that direct the
developing child’s brain to learn about and attend to social agency
seem to be important for stories.

In this section, we have seen how cost functions can
be specified that could lead to the learning of increasingly
sophisticated mental abilities in a biologically plausible manner.
Importantly, however, cost functions and optimization are not
the whole story. To achieve more complex forms of optimization,
e.g., for learning to understand complex patterns of cause and
effect over long timescales, to plan and reason prospectively,
or to effectively coordinate many widely distributed brain
resources, the brain seems to invoke specialized, pre-constructed
data structures, algorithms and communication systems, which
in turn facilitate specific kinds of optimization. Moreover,
optimization occurs in a tightly orchestrated multi-stage process,
and specialized, pre-structured brain systems need to be invoked
to account for this meta-level of control over when, where and
how each optimization problem is set up. We now turn to
how these pre-specialized systems may orchestrate and facilitate
optimization.

4. OPTIMIZATION OCCURS IN THE
CONTEXT OF SPECIALIZED STRUCTURES

Optimization of initially unstructured “blank slate” networks is
not sufficient to generate complex cognition in the brain, we
argue, even given a diversity of powerful genetically-specified
cost functions and local learning rules, as we have posited
above. Instead, in Hypothesis 3, we suggest that specialized,
pre-structured architectures are needed for at least two purposes.
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First, pre-structured architectures are needed to allow the
brain to find efficient solutions to certain types of problems.
When we write computer code, there are a broad range of
algorithms and data structures employed for different purposes:
we may use dynamic programming to solve planning problems,
trees to efficiently implement nearest neighbor search, or stacks
to implement recursion. Having the right kind of algorithm and
data structure in place to solve a problem allows it to be solved
efficiently, robustly and with a minimum amount of learning or
optimization needed. This observation is concordant with the
increasing use of pre-specialized architectures and specialized
computational components in machine learning (Graves et al.,
2014; Weston et al., 2014; Neelakantan et al., 2015). In particular,
to enable the learning of efficient computational solutions,
the brain may need pre-specialized systems for planning
and executing sequential multi-step processes, for accessing
memories, and for forming and manipulating compositional and
recursive structures40.

Second, the training of optimization modules may need to
be coordinated in a complex and dynamic fashion, including
delivering the right training signals and activating the right
learning rules in the right places and at the right times. To
allow this, the brain may need specialized systems for storing
and routing data, and for flexibly routing training signals such
as target patterns, training data, reinforcement signals, attention
signals, and modulatory signals. These mechanisms may need to
be at least partially in place in advance of learning.

Looking at the brain, we indeed seem to find highly conserved
structures, e.g., cortex, where it is theorized that a similar
type of learning and/or computation is happening in multiple
places (Braitenberg and Schutz, 1991; Douglas andMartin, 2004).
But we also see a large number of specialized structures, including
thalamus, hippocampus, basal ganglia and cerebellum (Solari and
Stoner, 2011). These structures evolutionarily pre-date (Lee et al.,
2015) the cortex, and hence the cortex may have evolved to work
in the context of such specialized mechanisms. For example, the
cortex may have evolved as a trainable module for which the
training is orchestrated by these older structures.

Even within the cortex itself, microcircuitry within different
areas may be specialized: tinkered variations on a common
ancestral microcircuit scaffold could potentially allow different
cortical areas, such as sensory areas vs. prefrontal areas, to
be configured to adopt a number of qualitatively distinct
computational and learning configurations (Yuste et al.,
2005; Marcus et al., 2014a,b), even while sharing a common
gross physical layout and communication interface. Within
cortex, over forty distinct cell types—differing in such
aspects as dendritic organization, distribution throughout
the six cortical layers, connectivity pattern, gene expression,
and electrophysiological properties—have already been
found (Markram et al., 2015; Zeisel et al., 2015). Central

40Of course, specialized architecture also enters the picture at the level of the

pre-structuring of trainable/optimizable modules themselves. Just as in deep

learning, convolutional networks, LSTMs, residual networks and other specific

architectures are used tomake learning efficient and fast, even thoughmore generic

architectures like multilayer perceptrons or generally RNNs are universal function

approximators.

pattern generator circuits provide an example of the kinds of
architectures that can be pre-wired into neural microcircuitry,
and may have evolutionary relationships with cortical
circuits (Yuste et al., 2005). Thus, while the precise degree
of architectural specificity of particular cortical regions is still
under debate (Marcus et al., 2014a,b), various mechanisms could
offer pre-specified heterogeneity.

In this section, we explore the kinds of computational
problems for which specialized structures may be useful, and
attempt to map these to putative elements within the brain.
Our preliminary sketch of a functional decomposition can be
viewed as a summary of suggestions for specialized functions
that have beenmade throughout the computational neuroscience
literature, and is influenced strongly by the models of O’Reilly,
Eliasmith, Grossberg, Marcus, Hayworth and others (Marcus,
2001; O’Reilly, 2006; Eliasmith et al., 2012; Hayworth, 2012;
Grossberg, 2013). The correspondence between these models and
actual neural circuitry is, of course, still the subject of extensive
debate.

Many of the computational and neural concepts sketched here
are preliminary and will need to be made more rigorous through
future study. Our knowledge of the functions of particular brain
areas, and thus our proposed mappings of certain computations
onto neuroanatomy, also remains tentative. Finally, it is still
far from established which processes in the brain emerge from
optimization of cost functions, which emerge from other forms
of self-organization, which are pre-structured through genetics
and development, and which rely on an interplay of all these
mechanisms41. Our discussion here should therefore be viewed
as a sketch of potential directions for further study.

4.1. Structured Forms of Memory
One of the central elements of computation is memory.
Importantly, multiple different kinds of memory are
needed (Squire, 2004). For example, we need memory that
is stored for a long period of time and that can be retrieved in a
number of ways, such as in situations similar to the time when
the memory was first stored (content addressable memory). We
also need memory that we can keep for a short period of time
and that we can rapidly rewrite (working memory). Lastly, we
need the kind of implicit memory that we cannot explicitly recall,
similar to the kind of memory that is classically learned using

41It is interesting to consider how standard neural network models of vision

would fit into this categorization. Consider convolutional neural networks, for

example, with the convolutional filters optimized via supervised backpropagation.

This is by no means a completely unstructured prior to backpropagation-based

training. Indeed, these networks typically contain max-pooling and normalization

layers with fixed computations that are not altered during learning, as well as

fixed architectural features such as number and arrangement of layers, size and

stride of the sliding window, and so forth. Likewise “hierarchical max-pooling”

(HMAX) models (Serre et al., 2007) of the ventral stream are so-named because of

these fixed architectural aspects. Thus, in a hypothetical biological implementation

of such systems, these aspects would be pre-structured by genetics even if

the convolutional weights would be trained via some kind of gradient descent

optimization. There are some plausible neural circuits that would implement these

standardized normalization andmax pooling operations (Kouh and Poggio, 2008).

Moreover, in a biological implementation, the machinery necessary to carry out

the optimization itself would need to be embodied by appropriate, genetically

structured circuitry.
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gradient descent on errors, i.e., sculpted into the weight matrix
of a neural network.

4.1.1. Content Addressable Memories
Content addressable memories42 are classic models in
neuroscience (Hopfield, 1982). Most simply, they allow us
to recognize a situation similar to one that we have seen
before, and to “fill in” stored patterns based on partial or
noisy information, but they may also be put to use as sub-
components of many other functions. Recent research has
shown that including such memories allows deep networks
to learn to solve problems that previously were out of reach,
even of LSTM networks that already have a simpler form
of local memory and are already capable of learning long-
term dependencies (Graves et al., 2014; Weston et al., 2014).
Hippocampal area CA3 may act as an auto-associative memory43

capable of content-addressable pattern completion, with
pattern separation occurring in the dentate gyrus (Rolls,
2013). If no similar pattern is available, an unfamiliar input
will be stored as a new memory (Kumaran et al., 2016). Such
systems could permit the retrieval of complete memories
from partial cues, enabling networks to perform operations
similar to database retrieval or to instantiate lookup tables of
historical stimulus-response mappings, among numerous other
possibilities.

Of course, memory systems may be organized—through
cost function optimization or other mechanisms—into higher-
order structures. Cost functions might be used to bias memory
representations to adopt particular structures, e.g., to be
organized into data structures like like Minskys frames and
trans-frames (Minsky, 2006).

4.1.2. Working Memory Buffers
Cognitive science has long characterized properties of the
working memory. Its capacity is somewhat limited, with the
old idea being that verbal working memory has a capacity of
“seven plus or minus two” (Miller, 1956), while visual working
memory has a capacity of four (Luck and Vogel, 1997) (or,
other authors defend, one). There are many models of working
memory (O’Reilly and Frank, 2006; Singh and Eliasmith, 2006;

42Attractor models of memory in neuroscience tend to have the property that

only one memory can be accessed at a time (although a brain can have many

such memories that can be accessed in parallel). Recent machine learning systems,

however, have constructed differentiable addressable memory (Graves et al., 2014)

and gating (Whitney et al., 2016) systems by allowing weighted superpositions of

memory registers or gates to be queried—it is unclear whether the brain uses such

mechanisms.
43Computational analogies have also been drawn between associative memory

storage and object recognition (Leibo et al., 2015a), suggesting the possibility of

closely related computations occurring in parts of neocortex and hippocampus.

Indeed, the hippocampus and olfactory cortex (a more ancient and simpler

structure than the neocortex Shepherd, 2014; Fournier et al., 2015) are few-layer

structures described in comparative anatomy as “allocortex,” as opposed to the six-

layered “neocortex,” and both types of cortex have some anatomical similarities

(particularly for CA1 and subiculum, though less so for CA3 and dentate gyrus)

such as the presence of pyramidal neurons. It has been suggested that the

hippocampus can be thought of as the top of the cortical hierarchy (Hawkins

and Blakeslee, 2007), responsible for handling and remembering information that

could not be fully explained by lower levels of the hierarchy. These computational

connections are still tentative.

Warden and Miller, 2007; Wang, 2012; Buschman and Miller,
2014), some of which attribute it to persistent, self-reinforcing
patterns of neural activation (Goldman et al., 2003) in the
recurrent networks of the prefrontal cortex. Prefrontal working
memory appears to be made up of multiple functionally distinct
subsystems (Markowitz et al., 2015). Neural models of working
memory can store not only scalar variables (Seung, 1998), but
also high-dimensional vectors (Eliasmith and Anderson, 2004;
Eliasmith et al., 2012) or sequences of vectors (Choo and
Eliasmith, 2010). Working memory buffers seem crucial for
human-like cognition, e.g., reasoning, as they allow short-term
storage while also—in conjunction with other mechanisms—
enabling generalization of operations across anything that can fill
the buffer.

4.1.3. Storing State in Association with Saliency
Saliency, or interestingness, measures can be used to tag the
importance of a memory (Gonzalez Andino and Grave de Peralta
Menendez, 2012). This can allow removal of the boring data
from the training set, allowing a mechanism that is more like
optimal experimentation. Moreover, saliency can guide memory
replay or sampling from generative models, to generate more
training data drawn from a distribution useful for learning (Ji
and Wilson, 2007; Mnih et al., 2015). Conceivably, hippocampal
replay could allow a batch-like training process, similar to
how most machine learning systems are trained, rather than
requiring all training to occur in an online fashion. Plasticity
mechanisms in memory systems which are gated by saliency
are starting to be uncovered in neuroscience (Dudman et al.,
2007). Importantly, the notions of “saliency” computed by the
brain could be quite intricate and multi-faceted, potentially
leading to complex schemes by which specific kinds of memories
would be tagged for later context-dependent retrieval. As
a hypothetical example, representations of both timing and
importance associated with memories could perhaps allow
retrieval only of important memories that happened within a
certain window of time (MacDonald et al., 2011; Kraus et al.,
2013; Rubin et al., 2015). Storing and retrieving information
selectively based on specific properties of the information itself,
or of “tags” appended to that information, is a powerful
computational primitive that could enable learning of more
complex tasks. Relatedly, we know that certain pathways become
associated with certain kinds of memories, e.g., specific pathways
for fear-related memory in mice.

4.2. Structured Routing Systems
To use its information flexibly, the brain needs structured
systems for routing data. Such systems need to address multiple
temporal and spatial scales, and multiple modalities of control.
Thus, there are several different kinds of information routing
systems in the brain which operate by different mechanisms and
under different constraints.

4.2.1. Attention
If we can focus on one thing at a time, we may be able to
allocate more computational resources to processing it, make
better use of scarce data to learn about it, and more easily
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store and retrieve it from memory44. Notably in this context,
attention allows improvements in learning: if we can focus on
just a single object, instead of an entire scene, we can learn about
it more easily using limited data. Formal accounts in a Bayesian
framework talk about attention reducing the sample complexity
of learning (Chikkerur et al., 2010). Likewise, in models, the
processes of applying attention, and of effectively making use
of incoming attentional signals to appropriately modulate local
circuit activity, can themselves be learned by optimizing cost
functions (Jaramillo and Pearlmutter, 2004; Mnih et al., 2014).
The right kinds of attention make processing and learning more
efficient, and also allow for a kind of programmatic control over
multi-step perceptual tasks.

How does the brain determine where to allocate attention,
and how is the attentional signal physically mediated? Answering
this question is still an active area of neuroscience. Higher-
level cortical areas may be specialized in allocating attention.
The problem is made complex by the fact that there seem
to be many different types of attention—such as object-based,
feature-based and spatial attention in vision—that may be
mediated by interactions between different brain areas. The
frontal eye fields (area FEF), for example, are important in
visual attention, specifically for controlling saccades of the eyes
to attended locations. Area FEF contains “retinotopic” spatial
maps whose activation determines the saccade targets in the
visual field. Other prefrontal areas such as the dorsolateral
prefrontal cortex and inferior frontal junction are also involved
in maintaining representations that specify the targets of
certain types of attention. Certain forms of attention may
require a complex interaction between brain areas, e.g., to
determine targets of attention based on higher-level properties
that are represented across multiple areas, like the identity
and spatial location of a specific face (Baldauf and Desimone,
2014).

There are many proposed neural mechanisms of attention,
including the idea that synchrony plays a role (Baldauf
and Desimone, 2014), perhaps by creating resonances that
facilitate the transfer of information between synchronously
oscillating neural populations in different areas45. Other
proposed mechanisms include specific circuits for attention-
dependent signal routing (Anderson and Van Essen, 1987;
Olshausen et al., 1993). Various forms of attention also have
specific neurophysiological signatures, such as enhancements in
synchrony among neural spikes and with the ambient local field
potential, changes in the sharpness of neural tuning curves, and
other properties. These diverse effects and signatures of attention
may be consequences of underlying pathways that wire up to

44Attention also arguably solves certain types of perceptual binding

problem (Reynolds and Desimone, 1999).
45The precise roles of synchrony in information routing and other processes, and

when it should be viewed as a causal factor vs. as an epiphenomenon of other

mechanisms, is still being worked out. In some theories, oscillations occur as

consequences of certain recurrent processing loops, e.g., thalamo-cortico-striatal

loops (Eliasmith et al., 2012). In other models, so-called “dynamic circuit motifs,”

involving specific combinations of cellular and synaptic sub-types, both generate

synchronies (e.g., in part via intrinsically rhythmic pacemaker neurons) and

exploit them for specific computational roles, particularly in the rapid dynamic

formation of communication networks (Womelsdorf et al., 2014).

particular elements of cortical microcircuits to mediate different
attentional effects (Bobier et al., 2014).

4.2.2. Buffers
One possibility is that the brain uses distinct groups of neurons,
which we can call “buffers,” to store distinct variables, such as
the subject or object in a sentence (Frankland and Greene, 2015).
Having memory buffers allows the abstraction of a variable.

Once we establish that the brain has a number of memory
buffers, we need ways for those buffers to interact. We need to
be able to take a buffer, do a computation on its contents and
store the output into another buffer. But if the representations in
each of two groups of neurons are learned, and hence are coded
differently, how can the brain “copy and paste” information
between these groups of neurons? Malsburg argued that such
a system of separate buffers is impossible because the neural
pattern for “chair” in buffer 1 has nothing in common with
the neural pattern for “chair” in buffer 2—any learning that
occurs for the contents of buffer 1 would not automatically be
transferable to buffer 2. Various mechanisms have been proposed
to allow such transferability, which focus on ways in which all
buffers could be trained jointly and then later separated so that
they can work independently when they need to46.

4.2.3. Discrete Gating of Information Flow between

Buffers
Dense connectivity is only achieved locally, but it would be
desirable to have a way for any two cortical units to talk to
one another, if needed, regardless of their distance from one
another, and without introducing crosstalk47. It is therefore
critical to be able to dynamically turn on and off the transfer
of information between different source and destination regions,
in much the manner of a switchboard. Together with attention,
such dedicated routing systems can make sure that a brain area
receives exactly the information it needs. Such a discrete routing
system is, of course, central to cognitive architectures like ACT-
R (Anderson, 2007). The key feature of ACT-R is the ability to
evaluate the IF clauses of tens of thousands of symbolic rules

46One idea for achieving such transferability is that of a partitionable (Hayworth,

2012) or annexable (Bostrom, 1996) network. These models posit that a large

associative memory network links all the different buffers. This large associative

memory network has a number of stable attractor states. These are called “global”

attractor states since they link across all the buffers. Forcing a given buffer into an

activity pattern resembling that of its corresponding “piece” of an attractor state

will cause the entire global network to enter that global attractor state. During

training, all of the connections between buffers are turned on, so that their learned

contents, though not identical, are kept in correspondence by being part of the

same attractor. Later, the connections between specific buffers can be turned off to

allow them to store different information. Copy and paste is then implemented

by turning on the connections between a source buffer and a destination

buffer (Hayworth, 2012). Copying between a source and destination buffer can also

be implemented, i.e., learned, in a deep learning system using methods similar to

the addressing mechanisms of the Neural Turing Machine (Graves et al., 2014).
47Micro-stimulation experiments, in which an animal learns to behaviorally report

stimulation of electrode channels located in diverse cortical regions, suggest that

many areas can be routed or otherwise linked to behavioral “outputs” (Histed

et al., 2013), although the mechanisms behind this—e.g., whether this stimulation

gives rise to a high-level percept that the animal then uses to make a decision—

are unclear. Likewise, it is possible to reinforcement-train an animal to control the

activity of individual neurons (Fetz, 1969, 2007).
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(called “productions”), in parallel, approximately every 50 ms.
Each rule requires equality comparisons between the contents of
many constant and variable memory buffers, and the execution
of a rule leads to the conditional routing of information from one
buffer to another.

What controls which long-range routing operations occur
when, i.e., where is the switchboad and what controls it? Several
models, including ACT-R, have attributed such parallel rule-
based control of routing to the action selection circuitry (Gurney
et al., 2001; Terrence Stewart, 2010) of the basal ganglia
(BG) (O’Reilly and Frank, 2006; Stocco et al., 2010), and its
interaction with working memory buffers in the prefrontal
cortex. In conventional models of thalamo-cortico-striatal loops,
competing actions of the direct and indirect pathways through
the basal ganglia can inhibit or disinhibit an area of motor
cortex, thereby gating amotor action48. Models like (O’Reilly and
Frank, 2006; Stocco et al., 2010; Terrence Stewart, 2010) propose
further that the basal ganglia can gate not just the transfer of
information from motor cortex to downstream actuators, but
also the transfer of information between cortical areas. To do
so, the basal ganglia would dis-inhibit a thalamic relay (Sherman,
2005, 2007) linking two cortical areas. Dopamine-related activity
is thought to lead to temporal difference reinforcement learning
of such gating policies in the basal ganglia (Frank and
Badre, 2012). Beyond the basal ganglia, there are also other,
separate pathways involved in action selection, e.g., in the
prefrontal cortex (Daw et al., 2006). Thus, multiple systems
including basal ganglia and cortex could control the gating of
long-range information transfer between cortical areas, with
the thalamus perhaps largely constituting the switchboard
itself.

How is such routing put to use in a learning context?
One possibility is that the basal ganglia acts to orchestrate
the training of the cortex. The basal ganglia may exert tight
control49 over the cortex, helping to determine when and how
it is trained. Indeed, because the basal ganglia pre-dates the
cortex evolutionarily, it is possible that the cortex evolved as a
flexible, trainable resource that could be harnessed by existing
basal ganglia circuitry. All of the main regions and circuits of
the basal ganglia are conserved from our common ancestor with

48Conventionally, models of the basal ganglia involve all or none gating of

an action, but recent evidence suggests that the basal ganglia may also have

continuous, analog outputs (Yttri and Dudman, 2016).
49It has been suggested that the basic role of the BG is to provide tonic inhibition

to other circuits (Grillner et al., 2005). Release of this inhibition can then activate

a “discrete” action, such as a motor command. A core function of the BG is thus

to choose, based on patterns detected in its input, which of a finite set of actions to

initiate via such release of inhibition. In manymodels of the basal gangliaâĂŹs role

in cognitive control, the targets of inhibition are thalamic relays (Sherman, 2005),

which are set in a default “off” state by tonic inhibition from the basal ganglia.

Upon disinhibition of a relay, information is transferred from one cortical location

to another—a form of conditional “gating” of information transfer. For example,

the BGmight be able to selectively “clamp” particular groups of cortical neurons in

a fixed state, while leaving others free to learn and adapt. It could thereby enforce

complex training routines, perhaps similar to those used to force the emergence

of disentangled representations in (Kulkarni et al., 2015). The idea that the basal

ganglia can train the cortex is not new, and already appears to have considerable

experimental and anatomical support (Pasupathy and Miller, 2005; Ashby et al.,

2007, 2010; Turner and Desmurget, 2010).

the lamprey more than five hundred million years ago. The
major part of the basal ganglia even seems to be conserved
from our common ancestor with insects (Strausfeld and Hirth,
2013). Thus, in addition to its real-time action selection and
routing functions, the basal ganglia may sculpt how the cortex
learns.

4.3. Structured State Representations to
Enable Efficient Algorithms
Certain algorithmic problems benefit greatly from particular
types of representation and transformation, such as a grid-
like representation of space. In some cases, rather than just
waiting for them to emerge via gradient descent optimization of
appropriate cost functions, the brain may be pre-structured to
facilitate their creation.

4.3.1. Continuous Predictive Control
We often have to plan and execute complicated sequences of
actions on the fly, in response to a new situation. At the
lowest level, that of motor control, our body and our immediate
environment change all the time. As such, it is important for us
to maintain knowledge about this environment in a continuous
way. The deviations between our planned movements and
those movements that we actually execute continuously provide
information about the properties of the environment. Therefore,
it seems important to have a specialized system, optimized for
high-speed continuous processing, that takes all our motor errors
and uses them to update a dynamical model of our body and
our immediate environment that can predict the delayed sensory
results of our motor actions (McKinstry et al., 2006).

It appears that the cerebellum is such a structure, and lesions
to it abolish our way of dealing successfully with a changing
body. Incidentally, the cerebellum has more connections
than the rest of the brain taken together, apparently in a
largely feedforward architecture, and the tiny cerebellar granule
cells, which may form a randomized high-dimensional input
representation (Marr, 1969; Jacobson and Friedrich, 2013),
outnumber all other neurons. The brain clearly needs a dedicated
way of quickly and continuously correcting movements to
minimize errors, without needing to rely on slow and complex
association learning in the neocortex in order to do so.

Newer research shows that the cerebellum is involved in
a broad range of cognitive problems (Moberget et al., 2014)
as well, potentially because they share computational problems
with motor control. For example, when subjects estimate time
intervals, which are naturally important for movement, it appears
that the brain uses the cerebellum even if no movements
are involved (Gooch et al., 2010). Even individual cerebellar
Purkinjie cells may learn to generate precise timings of their
outputs (Johansson et al., 2014). The brain also appears to
use inverse models to rapidly predict motor activity that
would give rise to a given sensory target (Hanuschkin et al.,
2013; Giret et al., 2014). Such mechanisms could be put to
use far beyond motor control, in bootstrapping the training
of a larger architecture by exploiting continuously changing
error signals to update a real-time model of the system
state.
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4.3.2. Hierarchical Control
Importantly, many of the control problems we appear to be
solving are hierarchical. We have a spinal cord, which deals with
the fast signals coming from our muscles and proprioception.
Within neuroscience, it is generally assumed that this system
deals with fast feedback loops and that this behavior is learned
to optimize its own cost function. The nature of cost functions in
motor control is still under debate. In particular, the timescale
over which cost functions operate remains unclear: motor
optimizationmay occur via real-time responses to a cost function
that is computed and optimized online, or via policy choices
that change over time more slowly in response to the cost
function (Körding, 2007). Nevertheless, the effect is that central
processing in the brain has an effectively simplified physical
system to control, e.g., one that is far more linear. So the spinal
cord itself already suggests the existence of two levels of a
hierarchy, each trained using different cost functions.

However, within the computational motor control literature
(see e.g., DeWolf and Eliasmith, 2011), this idea can be pushed
far further, e.g., with a hierarchy including spinal cord, M1, PMd,
frontal, prefrontal areas. A low level may deal with muscles, the
next level may deal with getting our limbs to places or moving
objects, a next layer may deal with solving simple local problems
(e.g., navigating across a room) while the highest levels may deal
with us planning our path through life. This factorization of
the problem comes with multiple aspects: First, each level can
be solved with its own cost functions, and second, every layer
has a characteristic timescale. Some levels, e.g., the spinal cord,
must run at a high speed. Other levels, e.g., high-level planning,
only need to be touched much more rarely. Converting the
computationally hard optimal control problem into a hierarchical
approximation promises to make it dramatically easier.

Does the brain solve control problems hierarchically? There
is evidence that the brain uses such a strategy (Botvinick et al.,
2009; Botvinick and Weinstein, 2014), beside neural network
demonstrations (Wayne and Abbott, 2014). The brain may use
specialized structures at each hierarchical level to ensure that
each operates efficiently given the nature of its problem space and
available training signals. At higher levels, these systems may use
an abstract syntax for combining sequences of actions in pursuit
of goals (Allen et al., 2010). Subroutines in such processes could
be derived by a process of chunking sequences of actions into
single actions (Graybiel, 1998; Botvinick and Weinstein, 2014).
Some brain areas like Broca’s area, known for its involvement
in language, also appear to be specifically involved in processing
the hierarchical structure of behavior, as such, as opposed to its
detailed temporal structure (Koechlin and Jubault, 2006).

At the highest level of the decision making and control
hierarchy, human reward systems reflect changing goals and
subgoals, and we are only beginning to understand how goals
are actually coded in the brain, how we switch between goals,
and how the cost functions used in learning depend on goal
state (Buschman and Miller, 2014; O’Reilly et al., 2014b; Pezzulo
et al., 2014). Goal hierarchies are beginning to be incorporated
into deep learning (Kulkarni et al., 2016).

Given this hierarchical structure, the optimization algorithms
can be fine-tuned. For the low levels, there is sheer unlimited

training data. For the high levels, a simulation of the world may
be simple, with a tractable number of high-level actions to choose
from. Finally, each area needs to give reinforcement to other
areas, e.g., high levels need to punish lower levels for making
planning complicated. Thus this type of architecture can simplify
the learning of control problems.

Progress is being made in both neuroscience and machine
learning on finding potential mechanisms for this type of
hierarchical planning and goal-seeking. This is beginning to
reveal mechanisms for chunking goals and actions and for
searching and pruning decision trees (O’Reilly et al., 2014a;
Huys et al., 2015; Balaguer et al., 2016; Krishnamurthy et al.,
2016; Tamar et al., 2016). The study of model-based hierarchical
reinforcement learning and prospective optimization (Sejnowski
and Poizner, 2014), which concerns the planning and evaluation
of nested sequences of actions, implicates a network coupling the
dorsolateral prefontral and orbitofrontal cortex, and the ventral
and dorsolateral striatum (Botvinick et al., 2009). Hierarchical
RL relies on a hierarchical representation of state and action
spaces, and it has been suggested that error-driven learning of
an optimal such representation in the hippocampus50 gives rise
to place and grid cell properties (Stachenfeld, 2014), with goal
representations themselves emerging in the amygdala, prefrontal
cortex and other areas (O’Reilly et al., 2014a).

The question of how control problems can be successfully
divided into component problems remains one of the central
questions in neuroscience (Wolpert and Flanagan, 2016) and
machine learning (Kulkarni et al., 2016), and the cost functions
involved in learning to create such decompositions are still
unknown. These considerations may begin to make plausible,
however, how the brain could not only achieve its remarkable
feats of motor learning—such as generating complex “innate”
motor programs, like walking in the newborn gazelle almost
immediately after birth—but also the kind of planning that allows
a human to prepare a meal or travel from London to Chicago.

4.3.3. Spatial Planning
Spatial planning requires solving shortest-path problems subject
to constraints. If we want to get from one location to another,
there are an arbitrarily large number of simple paths that could
be taken. Most naive implementations of such shortest paths
problems are grossly inefficient. It appears that, in animals, the
hippocampus aids—at least in part through “place cell” and
“grid cell” systems—in efficient learning about new environments
and in targeted navigation in such environments (Brown et al.,
2016). Interestingly, once an environment becomes familiar, it
appears that areas of the neocortex can take over the role of
navigation (Hasselmo and Stern, 2015).

In some simple models, targeted navigation in the
hippocampus is achieved via the dynamics of “bump attractors”
or propagating waves in a place cell network with Hebbian
plasticity and adaptation (Hopfield, 2009; Buzsáki and Moser,
2013; Ponulak and Hopfield, 2013), which allows the network
to effectively chart out a path in the space of place cell

50Like many brain areas, the hippocampus is richly innervated by a variety of

reward-related and other neuromodulatory systems (Verney et al., 1985; Colino

and Halliwell, 1987; Hasselmo and Wyble, 1997).
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representations. Other navigation models make use of the grid
cell system. The place cell network may51 take input from a grid
cell network that computes precise distances and directions,
perhaps by integrating head direction and velocity signals—grid
cells fire when the animal is on any node of a regularly spaced
hexagonal grid. Different parts of the entorhinal cortex contain
grid cells with different grid spacings, and place cells may
combine information from multiple such grids in order to build
up responses to particular single positions. These systems are
highly structured temporally, e.g., containing nested gamma and
theta oscillation structures that are phased locked to sequences
of place-cell responses, interfering oscillators frequency-shifted
by the animal’s motion velocity (Zilli and Hasselmo, 2010),
tuned cellular resonances (Giocomo et al., 2007; Buzsáki, 2010),
and other neural phenomena that lie far outside a conventional
artificial neural network description. It seems that an intricate
interplay of spatial and temporal network structures may be
essential for encoding sequences of spatiotemporal events
across multiple scales, and using them to drive multiple forms
of learning, e.g., supporting forward and reverse sequence
replay with various temporal compression factors (Buzsáki,
2010).

Higher-level cognitive tasks such as prospective planning
appear to share computational sub-problems with path-
finding (Hassabis and Maguire, 2009)52. Interaction between
hippocampus and prefrontal cortex could perhaps support a
more abstract notion of “navigation” in a space of goals and
sub-goals. Interestingly, there is preliminary evidence from fMRI
that abstract concepts are also represented according to grid-cell-
like hexagonal grid structures in humans (Constantinescu et al.,
2016), as well as preliminary evidence that social relationships
may also be represented through a hippocampal map (Tavares
et al., 2015). Having specialized structures for path-finding could
thus simplify a variety of computational problems at different
levels of abstraction.

4.3.4. Variable Binding
Language and reasoning appear to present a problem for neural
networks (Minsky, 1991; Marcus, 2001; Hadley, 2009): we seem
to be able to apply common grammatical rules to sentences
regardless of the content of those sentences, and regardless of
whether we have ever seen even remotely similar sentences in the
training data. While this is achieved automatically in a computer
with fixed registers, location addressable memories, and hard-
coded operations, how it could be achieved in a biological brain,
or emerge from an optimization algorithm, has been under
debate for decades.

As the putative key capability underlying such operations,
variable binding has been defined as “the transitory or permanent
tying together of two bits of information: a variable (such as
an X or Y in algebra, or a placeholder like subject or verb

51It remains unclear whether place cells take input from the grid cell system or vice

versa (Hasselmo, 2015).
52Other spatial problems such as mental rotation may require learning

architectures specialized for geometric coordinate transformations (Hinton et al.,

2011; Jaderberg et al., 2015) or binding mechanisms that support structural,

compositional, parametric descriptions of a scene (Hayworth et al., 2011).

in a sentence) and an arbitrary instantiation of that variable
(say, a single number, symbol, vector, or word)” (Marcus et al.,
2014a,b). A number of potential biologically plausible binding
mechanisms (Eliasmith et al., 2012; Hayworth, 2012; Kriete et al.,
2013; Goertzel, 2014) are reviewed in Marcus et al. (2014a)
and Marcus et al. (2014b). Some, such as vector symbolic
architectures53, which were proposed in cognitive science (Plate,
1995; Stewart and Eliasmith, 2009; Eliasmith, 2013), are also
being considered in the context of efficiently-trainable artificial
neural networks (Danihelka et al., 2016)—in effect, these systems
learn how to use variable binding.

Variable binding could potentially emerge from simpler
memory systems. For example, the Scrub-Jay can remember the
place and time of last visit for hundreds of different locations, e.g.,
to determine whether high-quality food is currently buried at any
given location (Clayton and Dickinson, 1998). It is conceivable
that such spatially-grounded memory systems enabled a more
general binding mechanism to emerge during evolution, perhaps
through integration with routing systems or other content-
addressable or working memory systems.

4.3.5. Hierarchical Syntax
Fixed, static hierarchies (e.g., the hierarchical organization of
cortical areas Felleman and Van Essen, 1991) only take us so
far: to deal with long chains of arbitrary nested references,
we need dynamic hierarchies that can implement recursion on
the fly. Human language syntax has a hierarchical structure,
which Berwick et al described as “composition of smaller forms
like words and phrases into larger ones” (Berwick et al., 2012;
Miyagawa et al., 2013). The extent of recursion in human
language and thought may be captured by a class of automata
known as higher-order pushdown automata, which can be
implemented via finite state machines with access to nested
stacks (Rodriguez and Granger, 2016). Specific fronto-temporal
networks may be involved in representing and generating such
hierarchies (Dehaene et al., 2015), e.g., with the hippocampal
system playing a key role in implementing some analog of a
pushdown stack (Rodriguez and Granger, 2016)54.

Little is known about the underlying circuit mechanisms for
such dynamic hierarchies, but it is clear that specific affordances
for representing such hierarchies in an efficient way would be
beneficial. This may be closely connected with the issue of
variable binding, and it is possible that operations similar to
pointers could be useful in this context, in both the brain and
artificial neural networks (Kriete et al., 2013; Kurach et al., 2015).
Augmenting neural networks with a differentiable analog of a

53There is some direct fMRI evidence for anatomically separate registers

representing the contents of different sentence roles in the human

brain (Frankland and Greene, 2015), which is suggestive of a possible anatomical

binding mechanism, but also consistent with other mechanisms like vector

symbolic architectures. More generally, the substrates of symbolic processing in

the brain may bear an intimate connection with the representation of objects in

working memory in the prefrontal cortex, and specifically with the question of

how the PFC represents multiple objects in working memory simultaneously. This

question is undergoing extensive study in primates (Warden and Miller, 2007,

2010; Siegel et al., 2009; Rigotti et al., 2013).
54There is controversy around claims that recursive syntax is also present in

songbirds (Van Heijningen et al., 2009).
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push-down stack is another such affordance being pursued in
machine learning (Joulin and Mikolov, 2015).

4.3.6. Mental Programs and Imagination
Humans excel at stitching together sub-actions to form larger
actions (Verwey, 1996; Acuna et al., 2014; Sejnowski and Poizner,
2014). Structured, serial, hierarchical probabilistic programs have
recently been shown to model aspects of human conceptual
representation and compositional learning (Lake et al., 2015). In
particular, sequential programs were found to enable one-shot
learning of new geometric/visual concepts (Lake et al., 2015).
Generative programs have also been proposed in the context of
scene understanding (Battaglia et al., 2013). The ability to deal
with problems in terms of sub-problems is central both in human
thought and in many successful algorithms.

One possibility is that the hippocampus supports the
rapid construction and learning of sequential programs, e.g.,
in multi-step planning. An influential idea—known as the
“complementary learning systems hypothesis”—is that the
hippocampus plays a key role in certain processes where learning
must occur quickly on the basis of single episodes, whereas
the cortex learns more slowly by aggregating and integrating
patterns across large amounts of data (Herd et al., 2013; Leibo
et al., 2015a; Blundell et al., 2016; Kumaran et al., 2016). The
hippocampus appears to explore, in simulation, possible future
trajectories to a goal, even those involving previously unvisited
locations (Ólafsdóttir et al., 2015). Hippocampal-prefrontal
interaction has been suggested to allow rapid, subconscious
evaluation of potential action sequences during decision-making,
with the hippocampus in effect simulating the expected outcomes
of potential actions that are generated and evaluated in the
prefrontal (Mushiake et al., 2006; Wang et al., 2015). The role of
the hippocampus in imagination, concept generation (Kumaran
et al., 2009), scene construction (Hassabis and Maguire, 2007),
mental exploration and goal-directed path planning (Hopfield,
2009; Ólafsdóttir et al., 2015; Brown et al., 2016) suggests that
it could help to create generative models to underpin more
complex inference such as program induction (Lake et al.,
2015) or common-sense world simulation (Battaglia et al., 2013).
For example, a sequential, programmatic process, mediated
jointly by the basal ganglia, hippocampus and prefrontal cortex
might allow one-shot learning of a new concept, as in the
sequential computations underlying a process like Bayesian
Program Learning (Lake et al., 2015).

Another related possibility is that the cortex itself
intrinsically supports the construction and learning of sequential
programs (Bach and Herger, 2015). Recurrent neural networks
have been used for image generation through a sequential,
attention-based process (Gregor et al., 2015), although their
correspondence with the brain is unclear55.

55The above mechanisms are spontaneous and subconscious. In conscious

thought, too, the brain can clearly visit the multiple layers of a program one after

the other. We make high-level plans that we fill with lower-level plans. Humans

also have memory for their own thought processes. We have some ability to put

“on hold” our current state of mind, start a new train of thought, and then come

back to our original thought. We also are able to ask, introspectively, whether we

have had a given thought before. The neural basis of these processes is unclear,

although one may speculate that the hippocampus is involved.

4.4. Other Specialized Structures
Importantly, there are many other specialized structures known
in neuroscience, which arguably receive less attention than
they deserve, even for those interested in higher cognition.
In the above, in addition to the hippocampus, basal ganglia
and cortex, we emphasized the key roles of the thalamus
in routing, of the cerebellum as a fast and rapidly trainable
control and modeling system, of the amygdala and other
areas as a potential source of utility functions, of the retina
or early visual areas as a means to generate detectors for
motion and other features to bootstrap more complex visual
learning, and of the frontal eye fields and other areas as a
possible source of attention control. We ignored other structures
entirely, whose functions are only beginning to be uncovered,
such as the claustrum (Crick and Koch, 2005), which has
been speculated to be important for rapidly binding together
information from many modalities. Our overall understanding
of the functional decomposition of brain circuitry still seems very
preliminary.

4.5. Relationships with Other Cognitive
Frameworks Involving Specialized Systems
A recent analysis (Lake et al., 2016) suggested directions
by which to modify and enhance existing neural-net-based
machine learning toward more powerful and human-like
cognitive capabilities, particularly by introducing new structures
and systems which go beyond data-driven optimization. This
analysis emphasized that systems should construct generative
models of the world that incorporate compositionality (discrete
construction from re-usable parts), inductive biases reflecting
causality, intuitive physics and intuitive psychology, and the
capacity for probabilistic inference over discrete structured
models (e.g., structured as graphs, trees, or programs) (Tervo
et al., 2016) to harness abstractions and enable transfer learning.

We view these ideas as consistent with and complementary
to the framework of cost functions, optimization and specialized
systems discussed here. One might seek to understand how
optimization and specialized systems could be used to implement
some of the mechanisms proposed in Lake et al. (2016)
inside neural networks. Lake et al. (2016) emphasize how
incorporating additional structure into trainable neural networks
can potentially give rise to systems that use compositional, causal
and intuitive inductive biases and that “learn to learn” using
structured models and shared data structures. For example,
sub-dividing networks into units that can be modularly and
dynamically combined, where representations can be copied and
routed, may present a path toward improved compositionality
and transfer learning (Andreas et al., 2015). The control flow for
recombining pre-existing modules and representations could be
learned via reinforcement learning (Andreas et al., 2016). How
to implement the broad set of mechanisms discussed in Lake
et al. (2016) is a key computational problem, and it remains
open at which levels (e.g., cost functions and training procedures
vs. specialized computational structures vs. underlying neural
primitives) architectural innovations will need to be introduced
to capture these phenomena.
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Primitives that are more complex than those used in
conventional neural networks—for instance, primitives that act
as state machines with complex message passing (Bach and
Herger, 2015) or networks that intrinsically implement Bayesian
inference (George and Hawkins, 2009)—could potentially be
useful, and it is plausible that some of these may be found in the
brain. Recent findings on the power of generic optimization also
do not rule out the idea that the brain may explicitly generate and
use particular types of structured representations to constrain
its inferences; indeed, the specialized brain systems discussed
here might provide a means to enforce such constraints. It
might be possible to further map the concepts of Lake et al.
(2016) onto neuroscience via an infrastructure of interacting
cost functions and specialized brain systems under rich genetic
control, coupled to a powerful and generic neurally implemented
capacity for optimization. For example, it was recently shown that
complex probabilistic population coding and inference can arise
automatically from backpropagation-based training of simple
neural networks (Orhan and Ma, 2016), without needing to be
built in by hand. The nature of the underlying primitives in the
brain, on top of which learning can operate, is a key question for
neuroscience.

5. MACHINE LEARNING INSPIRED
NEUROSCIENCE

Hypotheses are primarily useful if they lead to concrete,
experimentally testable predictions. As such, we now want to go
through the hypotheses and see to which level they can be directly
tested, as well as refined, through neuroscience.

5.1. Hypothesis 1– Existence of Cost
Functions
There are multiple general strategies for addressing whether and
how the brain optimizes cost functions. A first strategy is based
on observing the endpoint of learning. If the brain uses a cost
function, and we can guess its identity, then the final state of the
brain should be close to optimal for the cost function. We could
thus compare (Güçlü and van Gerven, 2015) receptive fields that
are optimized in a simulation, according to a particular cost
function, with the measured receptive fields. Various techniques
exist to carry out such comparisons in fRMI studies, including
population receptive field estimation (Dumoulin and Wandell,
2008; Güçlü and van Gerven, 2015) and representational
dissimilarity matrices (Kriegeskorte et al., 2008; Khaligh-Razavi
and Kriegeskorte, 2014). This strategy is only beginning to be
used at the moment, perhaps because it has been difficult to
measure the receptive fields or other representational properties
across a large population of individual neurons (fMRI operates at
a much coarser level), but this situation is beginning to improve
technologically with the emergence of large-scale recording
methods (Hasselmo, 2015).

A second strategy could directly quantify how well a cost
function describes learning. If the dynamics of learning minimize
a cost function then the underlying vector field should have a
strong gradient descent type component and a weak rotational

component, i.e., weight changes will primarily move down the
gradient rather than drifting in the nullspace. If we could
somehow continuously monitor the synaptic strengths, while
externally manipulating them, then we could, in principle,
measure the vector field in the space of synaptic weights, and
calculate its divergence as well as its rotation. For at least the
subset of synapses that are being trained via some approximation
to gradient descent, the divergence component should be strong
relative to the rotational component. This strategy has not been
developed yet due to experimental difficulties with monitoring
large numbers of synaptic weights56.

A third strategy is based on perturbations: cost function based
learning should undo the effects of perturbations which disrupt
optimality, i.e., the system should return to local minima after
a perturbation, and indeed perhaps to the same local minimum
after a sufficiently small perturbation. If we change synaptic
connections, e.g., in the context of a brain machine interface, we
should be able to produce a reorganization that can be predicted
based on a guess of the relevant cost function. This strategy is
starting to be feasible in motor areas.

Lastly, if we knew structurally which cell types and
connections mediated the delivery of error signals vs. input data
or other types of connections, then we could stimulate specific
connections so as to impose a user-defined cost function. In
effect, we would use the brain’s own networks as a trainable deep
learning substrate, and then study how the network responds
to training. Brain machine interfaces can be used to set up
specific local learning problems, in which the brain is asked to
create certain user-specified representations, and the dynamics
of this process can be monitored (Sadtler et al., 2014). Likewise,
brain machine interfaces can be used to give the brain access
to new datastreams, and to investigate how those datastreams
are incorporated into task performance, and whether such
incorporation is governed by optimality principles (Dadarlat
et al., 2015). In order to do this kind of experiment fully and
optimally, we must first understand more about how the system
is wired to deliver cost signals. Much of the structure that
would be found in connectomic circuit maps, for example, would
not just be relevant for short-timescale computing, but also for
creating the infrastructure that supports cost functions and their
optimization.

Many of the learning mechanisms that we have discussed
in this paper make specific predictions about connectivity or
dynamics. For example, the “feedback alignment” approach
to biological backpropagation suggests that cortical feedback
connections should, at some level of neuronal grouping, be
largely sign-concordant with the corresponding feedforward
connections, although not necessarily of concordant weight (Liao
et al., 2015), and feedback alignment also makes predictions
for synaptic normalization mechanisms (Liao et al., 2015). The
Kickback model for biologically plausible backpropagation has
a specific role for NMDA receptors (Balduzzi et al., 2014).
Some models that incorporate dendritic coincidence detection
for learning temporal sequences predict that a given axon should
make only a small number of synapses on a given dendritic

56Fluorescent techniques like (Hayashi-Takagi et al., 2015) might be helpful.
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segment (Hawkins and Ahmad, 2016). Models that involve STDP
learning will make predictions about the dynamics of changing
firing rates (Hinton, 2007, 2016; Bengio et al., 2015a,b; Bengio
and Fischer, 2015), as well as about the particular network
structures, such as those based on autoencoders or recirculation,
in which STDP can give rise to a form of backpropagation.

It is critical to establish the unit of optimization. We want
to know the scale of the modules that are trainable by some
approximation of gradient descent optimization. How large are
the networks which share a given error signal or cost function?
On what scales can appropriate training signals be delivered?
It could be that the whole brain is optimized end-to-end, in
principle. In this case we would expect to find connections that
carry training signals from each layer to the preceding ones.
On successively smaller scales, optimization could be within
a brain area, a microcircuit57, or an individual neuron (Mel,
1992; Körding and König, 2000, 2001; Hawkins and Ahmad,
2016). Importantly, optimizationmay co-exist across these scales.
There may be some slow optimization end-to-end, with stronger
optimization within a local area and very efficient algorithms
within each cell. Careful experiments should be able to identify
the scale of optimization, e.g., by quantifying the extent of
learning induced by a local perturbation.

The tightness of the structure-function relationship is the
hallmark of molecular and to some extent cellular biology, but
in large connectionist learning systems, this relationship can
become difficult to extract: the same initial network can be driven
to compute many different functions by subjecting it to different
training58,59. It can be hard to understand the way a neural
network solves its problems.

57The use of structuredmicrocircuits rather than individual neurons as the units of

learning can ease the burden on the learning rules possessed by individual neurons,

as exemplified by a study implementing Helmholtz machine learning in a network

of spiking neurons using conventional plasticity rules (Roudi and Taylor, 2015;

Sountsov and Miller, 2015). As a simpler example, the classical problem of how

neurons with only one output axon could communicate both activation and error

derivatives for backpropagation ceases to be a problem if the unit of optimization is

not a single neuron. Similar considerations hold for the issue of weight symmetry,

or approximate sign-concordance in the case of feedback alignment (Liao et al.,

2015).
58Within this framework, networks that adhere to the basic statistics of neural

connectivity, electrophysiology and morphology, such as the initial cortical

column models from the Blue Brain Project (Markram et al., 2015), would

recapitulate some properties of the cortex, but—just like untrained neural

networks—would not spontaneously generate complex functional computation

without being subjected to a multi-stage training process, naturalistic sensory data,

signals arising from other brain areas and action-driven reinforcement signals.
59Not only in applied machine learning, but also in today’s most advanced neuro-

cognitive models such as SPAUN (Eliasmith et al., 2012; Eliasmith, 2013), the

detailed local circuit connectivity is obtained through an optimization process

of some kind to achieve a particular functionality. In the case of modern

machine learning, training is often done via end-to-end backpropagation through

an architecture that is only structured at the level of higher-level “blocks” of

units, whereas in SPAUN each block is optimized (Eliasmith and Anderson,

2004) separately according to a procedure that allows the blocks to subsequently

be stitched together in a coherent way. Technically, the Neural Engineering

Framework (Eliasmith and Anderson, 2004) used in SPAUN uses singular value

decomposition, rather than gradient descent, to compute the connections weights

as optimal linear decoders. This is possible because of a nonlinear mapping into a

high-dimensional space, in which approximating any desired function can be done

via a hyperplane regression (Tapson and van Schaik, 2013).

How could one tell the difference, then, between a gradient-
descent trained network vs. untrained or random networks
vs. a network that has been trained against a different kind
of task? One possibility would be to train artificial neural
networks against various candidate cost functions, study the
resulting neural tuning properties (Todorov, 2002), and compare
them with those found in the circuit of interest (Zipser
and Andersen, 1988). This has already been done to aid
the interpretation of the neural dynamics underlying decision
making in the PFC (Sussillo, 2014), working memory in the
posterior parietal cortex (Rajan et al., 2016) and object or
action representation in the visual system (Tacchetti et al., 2016;
Yamins and DiCarlo, 2016a,b). Some have gone on to suggest a
direct correspondence between cortical circuits and optimized,
appropriately regularized (Sussillo et al., 2015), recurrent neural
networks (Liao and Poggio, 2016). In any case, effective
analytical methods to reverse engineer complexmachine learning
systems (Jonas and Kording, 2016), and methods to reverse
engineer biological brains, may have some commonalities.

Does this emphasis on function optimization and trainable
substrates mean that we should give up on reverse engineering
the brain based on detailed measurements and models of its
specific connectivity and dynamics? On the contrary: we should
use large-scale brain maps to try to better understand (a)
how the brain implements optimization, (b) where the training
signals come from and what cost functions they embody, and
(c) what structures exist, at different levels of organization, to
constrain this optimization to efficiently find solutions to specific
kinds of problems. The answers may be influenced by diverse
local properties of neurons and networks, such as homeostatic
rules of neural structure, gene expression and function (Marder
and Goaillard, 2006), the diversity of synapse types, cell-type-
specific connectivity (Jiang et al., 2015), patterns of inter-laminar
projection, distributions of inhibitory neuron types, dendritic
targeting and local dendritic physiology and plasticity (Markram
et al., 2015; Bloss et al., 2016; Morgan et al., 2016; Sandler
et al., 2016) or local glial networks (Perea et al., 2009). They
may also be influenced by the integrated nature of higher-
level brain systems, including mechanisms for developmental
bootstrapping (Ullman et al., 2012), information routing (Gurney
et al., 2001; Stocco et al., 2010), attention (Buschman and
Miller, 2010) and hierarchical decision making (Lee et al., 2015).
Mapping these systems in detail is of paramount importance
to understanding how the brain works, down to the nanoscale
dendritic organization of ion channels and up to the real-time
global coordination of cortex, striatum and hippocampus, all of
which are computationally relevant in the framework we have
explicated here. We thus expect that large-scale, multi-resolution
brain maps would be useful in testing these framework-level
ideas, in inspiring their refinements, and in using them to guide
more detailed analysis.

5.2. Hypothesis 2– Biological
Fine-Structure of Cost Functions
Clearly, we can map differences in structure, dynamics and
representation across brain areas. When we find such differences,
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the question remains as to whether we can interpret these
as resulting from differences in the internally-generated cost
functions, as opposed to differences in the input data, or
from differences that reflect other constraints unrelated to cost
functions. If we can directly measure aspects of the cost function
in different areas, then we can also compare them across areas.
For example, methods from inverse reinforcement learning60

might allow backing out the cost function from observed
plasticity (Ng and Russell, 2000).

Moreover, as we begin to understand the “neural correlates”
of particular cost functions—perhaps encoded in particular
synaptic or neuromodulatory learning rules, genetically-guided
local wiring patterns, or patterns of interaction between brain
areas—we can also begin to understand when differences in
observed neural circuit architecture reflect differences in cost
functions.

We expect that, for each distinct learning rule or cost function,
there may be specificmolecularly identifiable types of cells and/or
synapses. Moreover, for each specialized system there may be
specific molecularly identifiable developmental programs that
tune it or otherwise set its parameters. This would make sense if
evolution has needed to tune the parameters of one cost function
without impacting others.

How many different types of internal training signals does
the brain generate? When thinking about error signals, we are
not just talking about dopamine and serotonin, or other classical
reward-related pathways. The error signals that may be used to
train specific sub-networks in the brain, via some approximation
of gradient descent or otherwise, are not necessarily equivalent
to reward signals. It is important to distinguish between cost
functions that may be used to drive optimization of specific sub-
circuits in the brain, and what are referred to as “value functions”
or “utility functions,” i.e., functions that predict the agent’s
aggregate future reward. In both cases, similar reinforcement
learning mechanisms may be used, but the interpretation of the
cost functions is different. We have not emphasized global utility
functions for the animal here, since they are extensively studied
elsewhere (e.g., O’Reilly et al., 2014a; Bach, 2015), and since we
argue that, though important, they are only a part of the picture,
i.e., that the brain is not solely an end-to-end reinforcement
trained system.

Progress in brain mapping could soon allow us to classify
the types of reward signals in the brain, follow the detailed
anatomy and connectivity of reward pathways throughout the
brain, and map in detail how reward pathways are integrated into
striatal, cortical, hippocampal and cerebellar microcircuits. This
program is beginning to be carried out in the fly brain, in which
twenty specific types of dopamine neuron project to distinct
anatomical compartments of the mushroom body to train
distinct odor classifiers operating on a set of high-dimensional

60There is a rich tradition of trying to estimate the cost function used by human

beings (Ng and Russell, 2000; Finn et al., 2016; Ho and Ermon, 2016). The idea

is that we observe (by stipulation) behavior that is optimal for the human’s cost

function. We can then search for the cost function that makes the observed

behavior most probable and simultaneously makes the behaviors that could have

been observed, but were not, least probable. Extensions of such approaches could

perhaps be used to ask which cost functions the brain is optimizing.

odor representations (Caron et al., 2013; Aso et al., 2014a,b;
Cohn et al., 2015). It is known that, even within the same
system, such as the fly olfactory pathway, some neuronal wiring
is highly specific and molecularly programmed (Hattori et al.,
2007; Hong and Luo, 2014), while other wiring is effectively
random (Caron et al., 2013), and yet other wiring is learned (Aso
et al., 2014a). The interplay between such design principles
could give rise to many forms of “division of labor” between
genetics and learning. Likewise, it is believed that birdsong
learning is driven by reinforcement learning using a specialized
cost function that relies on comparison with a memorized
version of a tutor’s song (Fiete et al., 2007), and also that it
involves specialized structures for controlling song variability
during learning (Aronov et al., 2011). These detailed pathways
underlying the construction of cost functions for vocal learning
are beginning to be mapped (Mandelblat-Cerf et al., 2014).
Starting with simple systems, it should become possible to map
the reward pathways and how they evolved and diversified, which
would be a step on the way to understanding how the system
learns.

These types of mapping efforts would be a first step
toward the ability to create a concrete model of the brain’s
optimization architecture. Our discussion here has focused on
trying to anticipate, based on known neuroscience knowledge
and on approaches becoming successful in machine learning,
the kinds of local cost functions that the brain may rely
on, and how specialized brain systems may enable efficient
solutions to optimization problems. However, this framework-
level discussion is not a formal specification, either of the
architecture, or of a notion of biologically applied cost function
that could be directly measured based on neural data. In order to
move toward a more formal specification of the kind of model we
are proposing here, it would be useful to map the architecture
of the brain’s reward systems and to identify other biological
pathways that may mediate the generation and delivery of error
signals. Based on such maps, one could identify regions which
are proposed to be subject to a single cost function. Otherwise,
the problem of inference of the cost function, e.g., based on
neural dynamics becomes ill-posed: one can define a local cost
function for an arbitrary dynamics by integrating the trajectory
of the system, but this approach in general lacks explanatory
power and also, crucially, lacks any circuit-level relationship
with the brain’s actual neural mechanisms of optimization, i.e.,
such a defined cost function does not necessarily correspond
to the cost functions that the biological machinery is actually
organized to optimize. Notably, some of the relevant biological
pathways mediating cost functions and error signals may involve
key biomolecular or gene expression aspects, not just real-time
patterns of neural activity.

Another related consideration, in trying to formalize this type
approach and to infer cost functions from neural measurements,
is that not all neurons in the circuit may be subject to
optimization: after all, some neurons may be needed to generate
the error signals themselves, or to mediate the optimization
process for other neurons, or to perform other unrelated
functions. Furthermore, within a given region, there may be
multiple sub-circuits subject to different optimization pressures.
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It is the claim that the brain actually has structured biological
machinery to generate, route and apply specific cost functions
that gives substance to our proposal, over and above the
trivial claim that many kinds of dynamics can be viewed as
optimizations, but our knowledge of this machinery is still
limited. This is not to mention the difficulties involved in
inferring cost functions in the presence of noise or constraints
on the dynamics. Thus, one cannot blindly collect the neurons in
an arbitrary region, measure their dynamics, and hope to infer
their cost function by solving an inverse problem—instead, a
rich interplay between structural mapping, dynamic mapping,
hypothesis generation, modeling and perturbation is likely to be
necessary in order to gain a detailed knowledge of which cost
functions the brain uses and how it does so.

5.3. Hypothesis 3– Embedding within a
Pre-structured Architecture
If different brain structures are performing distinct types of
computations with a shared goal, then optimization of a joint cost
function will take place with different dynamics in each area. If
we focus on a higher level task, e.g., maximizing the probability
of correctly detecting something, then we should find that basic
feature detection circuits should learn when the features were
insufficient for detection, that attentional routing structures
should learn when a different allocation of attention would have
improved detection and that memory structures should learn
when items that matter for detection were not remembered.
If we assume that multiple structures are participating in a
joint computation, which optimizes an overall cost function (but
see Hypothesis 2), then an understanding of the computational
function of each area leads to a prediction of the measurable
plasticity rules.

6. NEUROSCIENCE INSPIRED MACHINE
LEARNING

Machine learning may be equally transformed by neuroscience.
Within the brain, a myriad of subsystems and layers work
together to produce an agent that exhibits general intelligence.
The brain is able to show intelligent behavior across a broad
range of problems using only relatively small amounts of data.
As such, progress at understanding the brain promises to
improve machine learning. In this section, we review our three
hypotheses about the brain and discuss how their elaboration
might contribute to more powerful machine learning systems.

6.1. Hypothesis 1– Existence of Cost
Functions
A good practitioner of machine learning should have a broad
range of optimization methods at their disposal as different
problems ask for different approaches. The brain, we have
argued, is an implicit machine learning mechanism which has
been evolved over millions of years. Consequently, we should
expect the brain to be able to optimize cost functions efficiently,
across many domains and kinds of data. Indeed, across different
animal phyla, we even see convergent evolution of certain brain

structures (Shimizu and Karten, 2013; Güntürkün and Bugnyar,
2016), e.g., the bird brain has no cortex yet has developed
homologous structures which—as the linguistic feats of the
African Gray Parrot demonstrate—can give rise to quite complex
intelligence. It seems reasonable to hope to learn how to do truly
general-purpose optimization by looking at the brain.

Indeed, there are multiple kinds of optimization that we
may expect to discover by looking at the brain. At the
hardware level, the brain clearly manages to optimize functions
efficiently despite having slow hardware subject to molecular
fluctuations, suggesting directions for improving the hardware
of machine learning to be more energy efficient. At the level
of learning rules, the brain solves an optimization problem
in a highly nonlinear, non-differentiable, temporally stochastic,
spiking system with massive numbers of feedback connections,
a problem that we arguably still do not know how to efficiently
solve for neural networks. At the architectural level, the brain can
optimize certain kinds of functions based on very few stimulus
presentations, operates over diverse timescales, and clearly uses
advanced forms of active learning to infer causal structure in the
world.

While we have discussed a range of theories (O’Reilly, 1996;
Körding and König, 2001; Hinton, 2007, 2016; Roelfsema et al.,
2010; Balduzzi et al., 2014; Lillicrap et al., 2014; O’Reilly et al.,
2014a; Bengio et al., 2015a) for how the brain can carry out
optimization, these theories are still preliminary. Thus, the first
step is to understand whether the brain indeed performs multi-
layer credit assignment in a manner that approximates full
gradient descent, and if so, how it does this. Either way, we
can expect that answer to impact machine learning. If the brain
does not do some form of backpropagation, this suggests that
machine learning may benefit from understanding the tricks that
the brain uses to avoid having to do so. If, on the other hand, the
brain does do backpropagation, then the underlying mechanisms
clearly can support a very wide range of efficient optimization
processes across many domains, including learning from rich
temporal data-streams and via unsupervised mechanisms, and
the architectures behind this will likely be of long-term value
to machine learning61. Moreover, the search for biologically

61Successes of deep learning are already being used, speculatively, to rationalize

features of the brain. It has been suggested that large networks, with many

more neurons available than are strictly needed for the target computation,

make learning easier (Goodfellow et al., 2014b). In concordance with this,

visual cortex appears to be a 100-fold over-complete representation of the

retinal output (Lewicki and Sejnowski, 2000). Likewise, it has been suggested

that biological neurons stabilized (Turrigiano, 2012) to operate far below their

saturating firing rates mirror the successful use of rectified linear units in

facilitating the training of artificial neural networks (Roudi and Taylor, 2015).

Hinton and others have also suggested a biological motivation (Roudi and Taylor,

2015) for “dropout” regularization (Srivastava et al., 2014), in which a fraction

of hidden units is stochastically set to zero during each round of training: such

a procedure may correspond to the noisiness of neural spike trains, although

other theories interpret spikes as sampling in probabilistic inference (Buesing

et al., 2011), or in many other ways. Randomness of spiking has some support in

neuroscience (Softky and Koch, 1993), although recent experiments suggest that

spike trains in certain areas may be less noisy than previously thought (Hires et al.,

2015). The key role of proper initialization in enabling effective gradient descent is

an important recent finding (Saxe et al., 2013; Sutskever and Martens, 2013) which

may also be reflected by biological mechanisms of neural homeostasis or self-

organization that would enforce appropriate initial conditions for learning. Retinal
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plausible forms of backpropagation has already led to interesting
insights, such as the possibility of using random feedback weights
(feedback alignment) in backpropagation (Lillicrap et al., 2014),
or the unexpected power of internal FORCE learning in chaotic,
spontaneously active recurrent networks (Sussillo and Abbott,
2009). This and other findings discussed here suggest that
there are still fundamental things we don’t understand about
backpropagation—which could potentially lead not only to more
biologically plausible ways to train recurrent neural networks, but
also to fundamentally simpler and more powerful ones.

6.2. Hypothesis 2– Biological
Fine-structure of Cost Functions
A good practitioner of machine learning has access to a broad
range of learning techniques and thus implicitly is able to
use many different cost functions. Some problems ask for
clustering, others for extracting sparse variables, and yet others
for prediction quality to be maximized. The brain also needs to
be able to deal with many different kinds of datasets. As such, it
makes sense for the brain to use a broad range of cost functions
appropriate for the diverse set of tasks it has to solve to thrive in
this world.

Many of the most notable successes of deep learning, from
language modeling (Sutskever et al., 2011), to vision (Krizhevsky
et al., 2012), to motor control (Levine et al., 2015), have been
driven by end-to-end optimization of single task objectives.
We have highlighted cases where machine learning has opened
the door to multiplicities of cost functions that shape network
modules into specialized roles. We expect that machine learning
will increasingly adopt these practices in the future.

In computer vision, we have begun to see researchers re-
appropriate neural networks trained for one task (e.g., ImageNet
classification) and then deploy them on new tasks other than the
ones they were trained for or for which more limited training
data is available (Oquab et al., 2014; Yosinski et al., 2014;
Noroozi and Favaro, 2016). We imagine this procedure will be
generalized, whereby, in series and in parallel, diverse training
problems, each with an associated cost function, are used to shape
visual representations. For example, visual data streams can be
segmented into elements like foreground vs. background, objects
that can move of their own accord vs. those that cannot, all
using diverse unsupervised criteria (Ullman et al., 2012; Poggio,
2015). Networks so trained can then be shared, augmented, and
retrained on new tasks. They can be introduced as front-ends for
systems that perform more complex objectives or even serve to
produce cost functions for training other circuits (Watter et al.,
2015). As a simple example, a network that can discriminate
between images of different kinds of architectural structures
(pyramid, staircase, etc.) could act as a critic for a building-
construction network.

Scientifically, determining the order in which cost functions
are engaged in the biological brain will inform machine

fixation has been tentatively connected with robustness of convolutional networks

to adversarial perturbations in images (Luo et al., 2015). But making these

speculative claims of biological relevance more rigorous will require researchers

to first evaluate whether biological neural circuits are performing multi-layer

optimization of cost functions in the first place.

learning about how to construct systems with intricate and
hierarchical behaviors via divide-and-conquer approaches to
learning problems, active learning, and more.

6.3. Hypothesis 3– Embedding within a
Pre-structured Architecture
A good practitioner of machine learning should have a broad
range of algorithms at their disposal. Some problems are
efficiently solved through dynamic programming, others through
hashing, and yet others through multi-layer backpropagation.
The brain needs to be able to solve a broad range of learning
problems without the luxury of being reprogrammed. As such, it
makes sense for the brain to have specialized structures that allow
it to rapidly learn to approximate a broad range of algorithms.

The first neural networks were simple single-layer systems,
either linear or with limited non-linearities (Rashevsky,
1939). The explosion of neural network research in the
1980s (Rumelhart et al., 1986) saw the advent of multilayer
networks, followed by networks with layer-wise specializations
as in convolutional networks (Fukushima, 1980; LeCun and
Bengio, 1995). In the last two decades, architectures with
specializations for holding variables stable in memory like the
LSTM (Hochreiter and Schmidhuber, 1997), the control of
content-addressable memory (Graves et al., 2014; Weston et al.,
2014), and game playing by reinforcement learning (Mnih et al.,
2015) have been developed. These networks, though formerly
exotic, are now becoming mainstream algorithms in the toolbox
of any deep learning practitioner. There is no sign that progress
in developing new varieties of structured architectures is halting,
and the heterogeneity and modularity of the brain’s circuitry
suggests that diverse, specialized architectures are needed to
solve the diverse challenges that confront a behaving animal.

The brain combines a jumble of specialized structures in a way
that works. Solving this problem de novo in machine learning
promises to be very difficult, making it attractive to be inspired
by observations about how the brain does it. An understanding
of the breadth of specialized structures, as well as the architecture
that combines them, should be quite useful.

7. DID EVOLUTION SEPARATE COST
FUNCTIONS FROM OPTIMIZATION
ALGORITHMS?

Deep learning methods have taken the field of machine learning
by storm. Driving the success is the separation of the problem
of learning into two pieces: (1) An algorithm, backpropagation,
that allows efficient distributed optimization, and (2) Approaches
to turn any given problem into an optimization problem, by
designing a cost function and training procedure which will result
in the desired computation. If we want to apply deep learning to
a new domain, e.g., playing Jeopardy, we do not need to change
the optimization algorithm—we just need to cleverly set up the
right cost function. A lot of work in deep learning, perhaps the
majority, is now focused on setting up the right cost functions.

We hypothesize that the brain also acquired such a separation
between optimization mechanisms and cost functions. If neural
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circuits, such as in cortex, implement a general-purpose
optimization algorithm, then any improvement to that algorithm
will improve function across the cortex. At the same time,
different cortical areas solve different problems, so tinkering with
each area’s cost function is likely to improve its performance.
As such, functionally and evolutionarily separating the problems
of optimization and cost function generation could allow
evolution to produce better computations, faster. For example,
common unsupervised mechanisms could be combined with
area-specific reinforcement-based or supervisedmechanisms and
error signals, much as recent advances in machine learning have
found natural ways to combine supervised and unsupervised
objectives in a single system (Rasmus and Berglund, 2015).

This suggests interesting questions62: When did the division
between cost functions and optimization algorithms occur? How
is this separation implemented? How did innovations in cost
functions and optimization algorithms evolve? And how do our
own cost functions and learning algorithms differ from those of
other animals?

There are many possibilities for how such a separation
might be achieved in the brain. Perhaps the six-layered cortex
represents a common optimization algorithm, which in different
cortical areas is supplied with different cost functions. This
claim is different from the claim that all cortical areas use a
single unsupervised learning algorithm and achieve functional
specificity by tuning the inputs to that algorithm. In that case,
both the optimization mechanism and the implicit unsupervised
cost function would be the same across areas (e.g., minimization
of prediction error), with only the training data differing between
areas, whereas in our suggestion, the optimization mechanism
would be the same across areas but the cost function, as
well as the training data, would differ. Thus the cost function
itself would be like an ancillary input to a cortical area, in
addition to its input and output data. Some cortical microcircuits

62It would be interesting to study these questions in specific brain systems.

The primary visual cortex, for example, is still only understood very

incompletely (Olshausen and Field, 2004). It serves as a key input modality to

both the ventral and dorsal visual pathways, one of which seems to specialize

in object identity and the other in motion and manipulation. Higher-level areas

like STP draw on both streams to perform tasks like complex action recognition.

In some models (e.g., Jhuang et al., 2007), both ventral and dorsal streams are

structured hierarchically, but the ventral stream primarily makes use of the spatial

filtering properties of V1, whereas the dorsal stream primarily makes use of

its spatio-temporal filtering properties, e.g., temporal frequency filtering by the

space-time receptive fields of V1 neurons. Given this, we can ask interesting

questions about V1. Within a framework of multilayer optimization, do both

dorsal and ventral pathways impose cost functions that help to shape V1’s response

properties? Or is V1 largely pre-structured by genetics and local self-organization,

with different optimization principles in the ventral and dorsal streams only

having effects at higher levels of the hierarchy? Or, more likely, is there some

interplay between pre-structuring of the V1 circuitry and optimization according

to multiple cost functions? Relatedly, what establishes the differing roles of the

downstream ventral vs. dorsal cortical areas, and can their differences be attributed

to differing cost functions? This relates to ongoing questions about the basic

nature of cortical circuitry. For example, DiCarlo et al. (2012) suggests that visual

cortical regions containing on the order of 10000 neurons are locally optimized to

perform disentangling of the manifolds corresponding to their local views of the

transformations of an object, allowing these manifolds to be linearly separated by

readout areas. Yet, DiCarlo et al. (2012) also emphasizes the possibility that certain

computations such as normalization are pre-initialized in the circuitry prior to

learning-based optimization.

could then, perhaps, compute the cost functions that are to be
delivered to other cortical microcircuits. Another possibility is
that, within the same circuitry, certain aspects of the wiring
and learning rules specify an optimization mechanism and
are relatively fixed across areas, while others specify the cost
function and are more variable. This latter possibility would be
similar to the notion of cortical microcircuits as molecularly
and structurally configurable elements, akin to the cells in a
field-programmable gate array (FPGA) (Marcus et al., 2014a,b),
rather than a homogenous substrate. The biological nature of
such a separation, if any exists, remains an open question. For
example, individual parts of a neuron may separately deal with
optimization and with the specification of the cost function, or
different parts of a microcircuit may specialize in this way, or
there may be specialized types of cells, some of which deal with
signal processing and others with cost functions.

8. CONCLUSIONS

Due to the complexity and variability of the brain, pure
“bottom up” analysis of neural data faces potential challenges
of interpretation (Robinson, 1992; Jonas and Kording, 2016).
Theoretical frameworks can potentially be used to constrain
the space of hypotheses being evaluated, allowing researchers
to first address higher-level principles and structures in the
system, and then “zoom in” to address the details. Proposed
“top down” frameworks for understanding neural computation
include entropy maximization, efficient encoding, faithful
approximation of Bayesian inference, minimization of prediction
error, attractor dynamics, modularity, the ability to subserve
symbolic operations, and many others (Pinker, 1999; Marcus,
2001; Bialek, 2002; Knill and Pouget, 2004; Bialek et al., 2006;
Friston, 2010). Interestingly, many of the “top down” frameworks
boil down to assuming that the brain simply optimizes a single,
given cost function for a single computational architecture.
We generalize these proposals assuming both a heterogeneous
combination of cost functions unfolding over development, and
a diversity of specialized sub-systems.

Much of neuroscience has focused on the search for “the
neural code,” i.e., it has asked which stimuli are good at driving
activity in individual neurons, regions, or brain areas. But, if the
brain is capable of generic optimization of cost functions, then
we need to be aware that rather simple cost functions can give
rise to complicated stimulus responses. This potentially leads to
a different set of questions. Are differing cost functions indeed a
useful way to think about the differing functions of brain areas?
How does the optimization of cost functions in the brain actually
occur, and how is this different from the implementations of
gradient descent in artificial neural networks? What additional
constraints are present in the circuitry that remain fixed while
optimization occurs? How does optimization interact with a
structured architecture, and is this architecture similar to what
we have sketched? Which computations are wired into the
architecture, which emerge through optimization, and which
arise from a mixture of those two extremes? To what extent
are cost functions explicitly computed in the brain, vs. implicit
in its local learning rules? Did the brain evolve to separate the
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mechanisms involved in cost function generation from those
involved in the optimization of cost functions, and if so how?
What kinds of meta-level learning might the brain apply, to learn
when and how to invoke different cost functions or specialized
systems, among the diverse options available, to solve a given
task? What crucial mechanisms are left out of this framework?
A more in-depth dialog between neuroscience and machine
learning could help elucidate some of these questions.

Much of machine learning has focused on finding ever faster
ways of doing end-to-end gradient descent in neural networks.
Neuroscience may inform machine learning at multiple levels.
The optimization algorithms in the brain have undergone a
couple of hundredmillion years of evolution.Moreover, the brain
may have found ways of using heterogeneous cost functions that
interact over development so as to simplify learning problems
by guiding and shaping the outcomes of unsupervised learning.
Lastly, the specialized structures evolved in the brain may inform
us about ways of making learning efficient in a world that requires
a broad range of computational problems to be solved over
multiple timescales. Looking at the insights from neuroscience
may help machine learning move toward general intelligence
in a structured heterogeneous world with access to only small
amounts of supervised data.

In some ways our proposal is opposite to many popular
theories of neural computation. There is not one mechanism
of optimization but (potentially) many, not one cost function
but a host of them, not one kind of a representation but a
representation of whatever is useful, and not one homogeneous
structure but a large number of them. All these elements are
held together by the optimization of internally generated cost
functions, which allows these systems to make good use of one
another. Rejecting simple unifying theories is in line with a
broad range of previous approaches in AI. For example, Minsky
and Papert’s work on the Society of Mind (Minsky, 1988)—

and more broadly on ideas of genetically staged and internally
bootstrapped development in connectionist systems (Minsky,

1977)—emphasizes the need for a system of internal monitors
and critics, specialized communication and storage mechanisms,
and a hierarchical organization of simple control systems.

At the time these early works were written, it was not yet
clear that gradient-based optimization could give rise to powerful
feature representations and behavioral policies. One can view
our proposal as a renewed argument against simple end-to-end
training and in favor of a heterogeneous approach. In other
words, this framework could be viewed as proposing a kind of
“society” of cost functions and trainable networks, permitting
internal bootstrapping processes reminiscent of the Society of
Mind (Minsky, 1988). In this view, intelligence is enabled by
many computationally specialized structures, each trained with
its own developmentally regulated cost function, where both the
structures and the cost functions are themselves optimized by
evolution like the hyperparameters in neural networks.
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We introduce Equilibrium Propagation, a learning framework for energy-based models.

It involves only one kind of neural computation, performed in both the first phase (when

the prediction is made) and the second phase of training (after the target or prediction

error is revealed). Although this algorithm computes the gradient of an objective function

just like Backpropagation, it does not need a special computation or circuit for the

second phase, where errors are implicitly propagated. Equilibrium Propagation shares

similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving

the theoretical issues of both algorithms: our algorithm computes the gradient of a

well-defined objective function. Because the objective function is defined in terms of

local perturbations, the second phase of Equilibrium Propagation corresponds to only

nudging the prediction (fixed point or stationary distribution) toward a configuration

that reduces prediction error. In the case of a recurrent multi-layer supervised network,

the output units are slightly nudged toward their target in the second phase, and the

perturbation introduced at the output layer propagates backward in the hidden layers.

We show that the signal “back-propagated” during this second phase corresponds to

the propagation of error derivatives and encodes the gradient of the objective function,

when the synaptic update corresponds to a standard form of spike-timing dependent

plasticity. This workmakes it more plausible that amechanism similar to Backpropagation

could be implemented by brains, since leaky integrator neural computation performs both

inference and error back-propagation in our model. The only local difference between the

two phases is whether synaptic changes are allowed or not. We also show experimentally

that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be

trained by Equilibrium Propagation on the permutation-invariant MNIST task.

Keywords: artificial neural network, backpropagation algorithm, biologically plausible learning rule, contrastive

hebbian learning, deep learning, fixed point, Hopfield networks, spike-timing dependent plasticity

1. INTRODUCTION

The Backpropagation algorithm to train neural networks is considered to be biologically
implausible. Among other reasons, one major reason is that Backpropagation requires a special
computational circuit and a special kind of computation in the second phase of training. Here,
we introduce a new learning framework called Equilibrium Propagation, which requires only
one computational circuit and one type of computation for both phases of training. Just like
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Backpropagation applies to any differentiable computational
graph (and not just a regular multi-layer neural network),
Equilibrium Propagation applies to a whole class of energy based
models (the prototype of which is the continuous Hopfield
model).

In Section 2, we revisit the continuous Hopfield model
(Hopfield, 1984) and introduce Equilibrium Propagation as a
new framework to train it. The model is driven by an energy
function whose minima correspond to preferred states of the
model. At prediction time, inputs are clamped and the network
relaxes to a fixed point, corresponding to a local minimum of the
energy function. The prediction is then read out on the output
units. This corresponds to the first phase of the algorithm. In the
second phase of the training framework, when the target values
for output units are observed, the outputs are nudged toward
their targets and the network relaxes to a new but nearby fixed
point which corresponds to slightly smaller prediction error. The
learning rule, which is proved to perform gradient descent on
the squared error, is a kind of contrastive Hebbian learning rule
in which we learn (make more probable) the second-phase fixed
point by reducing its energy and unlearn (make less probable)
the first-phase fixed point by increasing its energy. However, our
learning rule is not the usual contrastive Hebbian learning rule
and it also differs from Boltzmann machine learning rules, as
discussed in Sections 4.1 and 4.2.

During the second phase, the perturbation caused at the
outputs propagates across hidden layers in the network. Because
the propagation goes from outputs backward in the network,
it is better thought of as a “back-propagation.” It is shown by
Bengio and Fischer (2015) and Bengio et al. (2017) that the
early change of neural activities in the second phase corresponds
to the propagation of error derivatives with respect to neural
activities. Our contribution in this paper is to go beyond the early
change of neural activities and to show that the second phase
also implements the (back)-propagation of error derivatives with
respect to the synaptic weights, and that this update corresponds
to a form of spike-timing dependent plasticity, using the results
of Bengio et al. (2017).

In Section 3, we present the general formulation of
Equilibrium Propagation: a newmachine learning framework for
energy-based models. This framework applies to a whole class
of energy based models, which is not limited to the continuous
Hopfield model but encompasses arbitrary dynamics whose fixed
points (or stationary distributions) correspond to minima of an
energy function.

In Section 4, we compare our algorithm to the existing
learning algorithms for energy-based models. The recurrent
back-propagation algorithm introduced by Pineda (1987) and
Almeida (1987) optimizes the same objective function as ours
but it involves a different kind of neural computation in
the second phase of training, which is not satisfying from a
biological perspective. The contrastive Hebbian learning rule for
continuous Hopfield nets described by Movellan (1990) suffers
from theoretical problems: learning may deteriorate when the
free phase and clamped phase land in different modes of the
energy function. The Contrastive Divergence algorithm (Hinton,
2002) has theoretical issues too: the CD1 update rule may cycle

indefinitely (Sutskever and Tieleman, 2010). The equivalence of
back-propagation and contrastive Hebbian learning was shown
by Xie and Seung (2003) but at the cost of extra assumptions: their
model requires infinitesimal feedback weights and exponentially
growing learning rates for remote layers.

Equilibrium Propagation solves all these theoretical issues
at once. Our algorithm computes the gradient of a sound
objective function that corresponds to local perturbations. It
can be realized with leaky integrator neural computation which
performs both inference (in the first phase) and back-propagation
of error derivatives (in the second phase). Furthermore, we do
not need extra hypotheses such as those required by Xie and
Seung (2003). Note that algorithms related to ours based on
infinitesimal perturbations at the outputs were also proposed by
O’Reilly (1996) and Hertz et al. (1997).

Finally, we show experimentally in Section 5 that our model
is trainable. We train recurrent neural networks with 1, 2, and
3 hidden layers on MNIST and we achieve 0.00% training error.
The generalization error lies between 2 and 3% depending on the
architecture. The code for the model is available1 for replicating
and extending the experiments.

2. THE CONTINUOUS HOPFIELD MODEL
REVISITED: EQUILIBRIUM PROPAGATION
AS A MORE BIOLOGICALLY PLAUSIBLE
BACKPROPAGATION

In this section, we revisit the continuous Hopfield model
(Hopfield, 1984) and introduce Equilibrium Propagation, a novel
learning algorithm to train it. Equilibrium Propagation is similar
in spirit to Backpropagation in the sense that it involves the
propagation of a signal from output units to input units backward
in the network, during the second phase of training. Unlike
Backpropagation, Equilibrium Propagation requires only one
kind of neural computations for both phases of training, making
it more biologically plausible than Backpropagation. However,
several points still need to be elucidated from a biological
perspective. Perhaps the most important of them is that the
model described in this section requires symmetric weights, a
question discussed at the end of this paper.

2.1. A Kind of Hopfield Energy
Previous work (Hinton and Sejnowski, 1986; Friston and
Stephan, 2007; Berkes et al., 2011) has hypothesized that, given a
state of sensory information, neurons are collectively performing
inference: they are moving toward configurations that better
“explain” the observed sensory data.We can think of the neurons’
configuration as an “explanation” (or “interpretation”) for the
observed sensory data. In the energy-basedmodel presented here,
that means that the units of the network gradually move toward
lower energy configurations that are more probable, given the
sensory input and according to the current “model of the world”
associated with the parameters of the model.

1https://github.com/bscellier/Towards-a-Biologically-Plausible-Backprop
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We denote by u the set of units of the network2, and by θ =

(W, b) the set of free parameters to be learned, which includes
the synaptic weights Wij and the neuron biases bi. The units
are continuous-valued and would correspond to averaged voltage
potential across time, spikes, and possibly neurons in the same
minicolumn. Finally, ρ is a non-linear activation function such
that ρ(ui) represents the firing rate of unit i.

We consider the following energy function E, a kind of
Hopfield energy, first studied by Bengio and Fischer (2015),
Bengio et al. (2015a,b), and Bengio et al. (2017):

E(u) :=
1

2

∑

i

u2i −
1

2

∑

i 6= j

Wijρ(ui)ρ(uj)−
∑

i

biρ(ui). (1)

Note that the network is recurrently connected with symmetric
connections, that is Wij = Wji. The algorithm presented
here is applicable to any architecture (so long as connections
are symmetric), even a fully connected network. However, to
make the connection to backpropagation more obvious, we will
consider more specifically a layered architecture with no skip-
layer connections and no lateral connections within a layer
(Figure 1).

In the supervised setting studied here, the units of the network
are split in three sets: the inputs x which are always clamped
(just like in other models such as the conditional Boltzmann
machine), the hidden units h (which may themselves be split in
several layers) and the output units y. We use the notation d
for the targets, which should not be confused with the outputs
y. The set of all units in the network is u = {x, h, y}. As usual
in the supervised learning scenario, the output units y aim to
replicate their targets d. The discrepancy between the output
units y and the targets d is measured by the quadratic cost
function:

C :=
1

2
‖y− d‖2. (2)

The cost function C also acts as an external potential energy for
the output units, which can drive them toward their target. A
novelty in our work, with respect to previously studied energy-
based models, is that we introduce the “total energy function” F,
which takes the form:

F := E+ βC, (3)

where β ≥ 0 is a real-valued scalar that controls whether the
output y is pushed toward the target d or not, and by how much.
We call β the “influence parameter” or “clamping factor.” The
total energy F is the sum of two potential energies: the internal
potential E that models the interactions within the network,
and the external potential βC that models how the targets
influence the output units. Contrary to Boltzmann Machines
where the visible units are either free or (fully) clamped, here
the real-valued parameter β allows the output units to be weakly
clamped.

2For reasons of convenience, we use the same symbol u to mean both the set of

units and the value of those units.

FIGURE 1 | The input units x are always clamped. The state variable s

includes the hidden units h and output units y. The targets are denoted by d.

The network is recurrently connected with symmetric connections. Left.

Equilibrium Propagation applies to any architecture, even a fully connected

network. Right. The connection with Backpropagation is more obvious when

the network has a layered architecture.

2.2. The Neuronal Dynamics
We denote the state variable of the network by s = {h, y} which
does not include the input units x since they are always clamped.
We assume that the time evolution of the state variable s is
governed by the gradient dynamics:

ds

dt
= −

∂F

∂s
. (4)

Unlike more conventional artificial neural networks, the model
studied here is a continuous-time dynamical system described by
the differential equation of motion (Equation 4). The total energy
of the system decreases as time progresses (θ , β , x, and d being
fixed) since:

dF

dt
=

∂F

∂s
·
ds

dt
= −

∥

∥

∥

∥

ds

dt

∥

∥

∥

∥

2

≤ 0. (5)

The energy stops decreasing when the network has reached a
fixed point:

dF

dt
= 0 ⇔

ds

dt
= 0 ⇔

∂F

∂s
= 0. (6)

The differential equation of motion (Equation 4) can be seen as a
sum of two “forces” that act on the temporal derivative of s:

ds

dt
= −

∂E

∂s
− β

∂C

∂s
. (7)

The “internal force” induced by the internal potential (the
Hopfield energy, Equation 1) on the i-th unit is:

−
∂E

∂si
= ρ′(si)





∑

j 6=i

Wijρ(uj)+ bi



− si, (8)
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while the “external force” induced by the external potential
(Equation 2) on hi and yi is, respectively:

− β
∂C

∂hi
= 0 and − β

∂C

∂yi
= β(di − yi). (9)

The form of Equation (8) is reminiscent of a leaky integrator
neuron model, in which neurons are seen as performing leaky
temporal integration of their past inputs. Note that the hypothesis
of symmetric connections (Wij = Wji) was used to derive
Equation (8). As discussed in Bengio and Fischer (2015), the
factor ρ′(si) would suggest that when a neuron is saturated [firing
at the maximal or minimal rate so that ρ′(si) ≈ 0], its state is not
sensitive to external inputs, while the leaky term drives it out of
the saturation regime, toward its resting value si = 0.

The form of Equation (9) suggests that when β = 0, the output
units are not sensitive to the outside world d. In this case, we
say that the network is in the free phase (or first phase). On the
contrary, when β > 0, the “external force” drives the output unit
yi toward the target di. In this case, we say that the network is in
the weakly clamped phase (or second phase).

Finally, a more likely dynamics would include some form
of noise. The notion of fixed point is then replaced by that of
stationary distribution. In Appendix C, we present a stochastic
framework that naturally extends the analysis presented here.

2.3. Free Phase, Weakly Clamped Phase,
and Backpropagation of Errors
In the first phase of training, the inputs are clamped and β = 0
(the output units are free). We call this phase the free phase and
the state toward which the network converges is the free fixed
point u0. The prediction is read out on the output units y at the
fixed point.

In the second phase (which we call weakly clamped phase), the
influence parameter β is changed to a small positive value β > 0
and the novel term βC added to the energy function (Equation 3)
induces a new “external force” that acts on the output units
(Equation 9). This force models the observation of d: it nudges
the output units from their free fixed point value in the direction
of their target. Since this force only acts on the output units,
the hidden units are initially at equilibrium at the beginning of
the weakly clamped phase, but the perturbation caused at the
output units will propagate in the hidden units as time progresses.
When the architecture is a multi-layered net (Figure 1, Right),
the perturbation at the output layer propagates backwards across
the hidden layers of the network. This propagation is thus better
thought of as a “back-propagation.” The net eventually settles to
a new fixed point (corresponding to the new positive value of β)
which we call weakly clamped fixed point and denote by uβ .

Remarkably, the perturbation that is (back-)propagated
during the second phase corresponds to the propagation of error
derivatives. It was first shown by Bengio and Fischer (2015)
that, starting from the free fixed point, the early changes of
neural activities during the weakly clamped phase (caused by
the output units moving toward their target) approximate some
kind of error derivatives with respect to the layers’ activities.

They considered a regular multi-layer neural network with no
skip-layer connections and no lateral connections within a layer.

In this paper, we show that the weakly clamped phase also
implements the (back)-propagation of error derivatives with
respect to the synaptic weights. In the limit β → 0, the update
rule:

1Wij ∝
1

β

(

ρ

(

u
β
i

)

ρ

(

u
β
j

)

− ρ
(

u0i
)

ρ

(

u0j

))

(10)

gives rise to stochastic gradient descent on J := 1
2

∥

∥y0 − d
∥

∥

2
,

where y0 is the state of the output units at the free fixed point.
We will state and prove this theorem in a more general setting in
Section 3. In particular, this result holds for any architecture and
not just a layered architecture (Figure 1) like the one considered
by Bengio and Fischer (2015).

The learning rule (Equation 10) is a kind of contrastive
Hebbian learning rule, somewhat similar to the one studied by
Movellan (1990) and the Boltzmann machine learning rule. The
differences with these algorithms will be discussed in Section 4.

We call our learning algorithm Equilibrium Propagation. In
this algorithm, leaky integrator neural computation (as described
in Section 2.2), performs both inference (in the free phase), and
error back-propagation (in the weakly clamped phase).

2.4. Connection to Spike-Timing
Dependent Plasticity
Spike-Timing Dependent Plasticity (STDP) is believed to be a
prominent form of synaptic change in neurons (Markram and
Sakmann, 1995; Gerstner et al., 1996), and see Markram et al.
(2012) for a review.

The STDP observations relate the expected change in synaptic
weights to the timing difference between post-synaptic and pre-
synaptic spikes. This is the result of experimental observations
in biological neurons, but its role as part of a learning algorithm
remains a topic where more exploration is needed. Here, is an
attempt in this direction.

Experimental results by Bengio et al. (2015b) show that if the
temporal derivative of the synaptic weightWij satisfies:

dWij

dt
∝ ρ(ui)

duj

dt
, (11)

then one recovers the experimental observations by Bi and Poo
(2001) in biological neurons. Xie and Seung (2000) have studied
the learning rule:

dWij

dt
∝ ρ(ui)

dρ(uj)

dt
. (12)

Note, that the two rules (Equations 11, 12) are the same up to a
factor ρ′(uj). An advantage of Equation (12) is that it leads to a
more natural view of the update rule in the case of tied weights
studied here (Wij = Wji). Indeed, the update should take into
account the pressures from both the i to j and j to i synapses, so
that the total update under constraint is:

dWij

dt
∝ ρ(ui)

dρ(uj)

dt
+ ρ(uj)

dρ(ui)

dt
=

d

dt
ρ(ui)ρ(uj). (13)
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By integrating Equation (13) on the path from the free fixed point
u0 to the weakly clamped fixed point uβ during the second phase,
we get:

1Wij ∝

∫

dWij

dt
dt =

∫

d

dt
ρ(ui)ρ(uj)dt =

∫

d
(

ρ(ui)ρ(uj)
)

= ρ

(

u
β
i

)

ρ

(

u
β
j

)

− ρ
(

u0i
)

ρ

(

u0j

)

, (14)

which is the same learning rule as Equation (10) up to a factor
1/β . Therefore, the update rule (Equation 10) can be interpreted
as a continuous-time integration of Equation (12), in the case of
symmetric weights, on the path from u0 to uβ during the second
phase.

We propose two possible interpretations for the synaptic
plasticity in our model.

First view. In the first phase, a anti-Hebbian update occurs

at the free fixed point 1Wij ∝ −ρ
(

u0i
)

ρ

(

u0j

)

. In the second

phase, a Hebbian update occurs at the weakly-clamped fixed

point 1Wij ∝ + ρ

(

u
β
i

)

ρ

(

u
β
j

)

.

Second view. In the first phase, no synaptic update occurs:
1Wij = 0. In the second phase, when the neurons’ state move
from the free fixed point u0 to the weakly-clamped fixed point uβ ,
the synaptic weights follow the “tied version” of the continuous-

time update rule
dWij

dt
∝ ρ(ui)

dρ(uj)

dt
+ ρ(uj)

dρ(ui)
dt

.

3. A MACHINE LEARNING FRAMEWORK
FOR ENERGY BASED MODELS

In this section we generalize the setting presented in Section 2.
We lay down the basis for a newmachine learning framework for
energy-based models, in which Equilibrium Propagation plays
a role analog to Backpropagation in computational graphs to
compute the gradient of an objective function. Just like the Multi
Layer Perceptron is the prototype of computational graphs in
which Backpropagation is applicable, the continuous Hopfield
model presented in Section 2 appears to be the prototype of
models which can be trained with Equilibrium Propagation.

In our new machine learning framework, the central object
is the total energy function F: all quantities of interest (fixed
points, cost function, objective function, gradient formula) can
be defined or formulated directly in terms of F.

Besides, in our framework, the “prediction” (or fixed point) is
defined implicitly in terms of the data point and the parameters of
the model, rather than explicitly (like in a computational graph).
This implicit definition makes applications on digital hardware
(such as GPUs) less practical as it needs long inference phases
involving numerical optimization of the energy function. But we
expect that this framework could be very efficient if implemented
by analog circuits, as suggested by Hertz et al. (1997).

The framework presented in this section is deterministic,
but a natural extension to the stochastic case is presented in
Appendix C.

3.1. Training Objective
In this section, we present the general framework while making
sure to be consistent with the notations and terminology
introduced in Section 2. We denote by s the state variable of the
network, v the state of the external world (i.e., the data point
being processed), and θ the set of free parameters to be learned.
The variables s, v, and θ are real-valued vectors. The state variable
s spontaneously moves toward low-energy configurations of an
energy function E(θ , v, s). Besides that, a cost function C(θ , v, s)
measures how “good” is a state is. The goal is to make low-energy
configurations have low cost value.

For fixed θ and v, we denote by s0θ ,v a local minimum of E, also
called fixed point, which corresponds to the “prediction” from
the model:

s0θ ,v ∈ argmin
s

E(θ , v, s). (15)

Here, we use the notation argmin to refer to the set of local
minima. The objective function that we want to optimize is:

J(θ , v) := C
(

θ , v, s0θ ,v
)

. (16)

Note the distinction between the cost function C and the
objective function J: the cost function is defined for any state s,
whereas the objective function is the cost associated to the fixed
point s0θ ,v.

Now that the objective function has been introduced, we
define the training objective (for a single data point v) as:

find argmin
θ

J(θ , v). (17)

A formula to compute the gradient of J will be given in Section
3.3 (Theorem 1). Equivalently, the training objective can be
reformulated as the following constrained optimization problem:

find argmin
θ ,s

C(θ , v, s) (18)

subject to
∂E

∂s
(θ , v, s) = 0, (19)

where the constraint ∂E
∂s (θ , v, s) = 0 is the fixed point condition.

For completeness, a solution to this constrained optimization
problem is given in Appendix B as well. Of course, both
formulations of the training objective lead to the same gradient
update on θ .

Note that, since the cost C(θ , v, s) may depend on θ , it can
include a regularization term of the form λ� (θ), where �(θ)

is a L1 or L2 norm penalty for example.
In Section 2 we had s =

{

h, y
}

for the state variable, v =
{

x, d
}

for the state of the outside world, θ = (W, b) for the set of learned
parameters, and the energy function E and cost function C were
of the form E (θ , v, s) = E

(

θ , x, h, y
)

and C (θ , v, s) = C
(

y, d
)

.

3.2. Total Energy Function
Following Section 2, we introduce the total energy function:

F(θ , v,β , s) := E(θ , v, s)+ β C(θ , v, s), (20)
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where β is a real-valued scalar called “influence parameter.” Then
we extend the notion of fixed point for any value of β . The fixed

point (or energy minimum), denoted by s
β
θ ,v, is characterized by:

∂F

∂s

(

θ , v,β , s
β
θ ,v

)

= 0 (21)

and ∂2F
∂s2

(

θ , v,β , s
β
θ ,v

)

is a symmetric positive definite matrix.

Under mild regularity conditions on F, the implicit function

theorem ensures that, for fixed v, the funtion (θ ,β) 7→ s
β
θ ,v is

differentiable.

3.3. The Learning Algorithm: Equilibrium
Propagation
Theorem 1 (Deterministic version). The gradient of the objective
function with respect to θ is given by the formula:

∂J

∂θ
(θ , v) = lim

β→0

1

β

(

∂F

∂θ

(

θ , v,β , s
β
θ ,v

)

−
∂F

∂θ

(

θ , v, 0, s0θ ,v
)

)

,

(22)
or equivalently

∂J

∂θ
(θ , v) =

∂C

∂θ

(

θ , v, s0θ ,v
)

+ lim
β→0

1

β

(

∂E

∂θ

(

θ , v, s
β
θ ,v

)

−
∂E

∂θ

(

θ , v, s0θ ,v
)

)

.

(23)

Theorem 1 will be proved in Appendix A. Note that the
parameter β in Theorem 1 need not be positive (We only need
β → 0). Using the terminology introduced in Section 2, we

call s0θ ,v the free fixed point, and s
β
θ ,v the nudged fixed point (or

weakly-clamped fixed point in the case β > 0). Moreover, we
call a free phase (resp. nudged phase or weakly-clamped phase)
a procedure that yields a free fixed point (resp. nudged fixed
point or weakly-clamped fixed point) by minimizing the energy
function F with respect to s, for β = 0 (resp. β 6= 0). Theorem
1 suggests the following two-phase training procedure. Given a
data point v:

1. Run a free phase until the system settles to a free fixed point
s0θ ,v and collect ∂F

∂θ

(

θ , v, 0, s0θ ,v
)

.
2. Run a nudged phase for some β 6= 0 such that |β| is “small,”

until the system settles to a nudged fixed point s
β
θ ,v and collect

∂F
∂θ

(

θ , v,β , s
β
θ ,v

)

.

3. Update the parameter θ according to

1θ ∝ −
1

β

(

∂F

∂θ

(

θ , v,β , s
β
θ ,v

)

−
∂F

∂θ

(

θ , v, 0, s0θ ,v
)

)

. (24)

Consider the case β > 0. Starting from the free fixed point s0θ ,v
(which corresponds to the “prediction”), a small change of the
parameter β (from the value β = 0 to a value β > 0) causes
slight modifications in the interactions in the network. This
small perturbation makes the network settle to a nearby weakly-

clamped fixed point s
β
θ ,v. Simultaneously, a kind of contrastive

update rule for θ is happening, in which the energy of the

free fixed point is increased and the energy of the weakly-
clamped fixed point is decreased. We call this learning algorithm
Equilibrium Propagation.

Note that in the setting introduced in Section 2.1 the total
energy function (Equation 3) is such that ∂F

∂Wij
= −ρ(ui)ρ(uj),

in agreement with Equation (10). In the weakly clamped phase,

the novel term 1
2β

∥

∥y− d
∥

∥

2
added to the energy E (with β > 0)

slightly attracts the output state y to the target d. Clearly, the
weakly clamped fixed point is better than the free fixed point in
terms of prediction error. The following proposition generalizes
this property to the general setting.

Proposition 2 (Deterministic version). The derivative of the
function

β 7→ C
(

θ , v, s
β
θ ,v

)

(25)

at β = 0 is non-positive.

Proposition 2 will also be proved in Appendix A. This
proposition shows that, unless the free fixed point s0θ ,v is already
optimal in terms of cost value, for β > 0 small enough,

the weakly-clamped fixed point s
β
θ ,v achieves lower cost value

than the free fixed point. Thus, a small perturbation due to a
small increment of β would nudge the system toward a state
that reduces the cost value. This property sheds light on the
update rule (Theorem 1), which can be seen as a kind of
contrastive learning rule (somehow similar to the Boltzmann
machine learning rule) where we learn (make more probable) the

slightly better state s
β
θ ,v by reducing its energy and unlearn (make

less probable) the slightly worse state s0θ ,v by increasing its energy.
However, our learning rule is different from the Boltzmann

machine learning rule and the contrastive Hebbian learning rule.
The differences between these algorithms will be discussed in
section 4.

3.4. Another View of the Framework
In Sections 3.1 and 3.2 (as well as in Section 2) we first defined
the energy function E and the cost function C, and then we
introduced the total energy F := E + βC. Here, we propose an
alternative view of the framework, where we reverse the order in
which things are defined.

Given a total energy function F (which models all interactions
within the network as well as the action of the external world on
the network), we can define all quantities of interest in terms of F.
Indeed, we can define the energy function E and the cost function
C as:

E(θ , v, s) := F (θ , v, 0, s) and C(θ , v, s) :=
∂F

∂β
(θ , v, 0, s) ,

(26)
where F and ∂F

∂β
are evaluated with the argument β set to 0.

Obviously the fixed points s0θ ,v and s
β
θ ,v are directly defined in

terms of F, and so is the objective function J(θ , v) := C
(

θ , v, s0θ ,v
)

.
The learning algorithm (Theorem 1) is also formulated in terms
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of F3. From this perspective, F contains all the information about
the model and can be seen as the central object of the framework.
For instance, the cost C represents the marginal variation of the
total energy F due to a change of β .

As a comparison, in the traditional framework for Deep
Learning, a model is represented by a (differentiable)
computational graph in which each node is defined as a
function of its parents. The set of functions that define the nodes
fully specifies the model. The last node of the computational
graph represents the cost to be optimized, while the other nodes
represent the state of the layers of the network, as well as other
intermediate computations.

In the framework for machine learning proposed here (the
framework suited for Equilibrium Propagation), the analog of the
set of functions that define the nodes in the computational graph
is the total energy function F.

3.5. Backpropagation vs. Equilibrium
Propagation
In the traditional framework for Deep Learning (Figure 2, left),
each node in the computational graph is an explicit differentiable
function of its parents. The state of the network ŝ = fθ (v) and
the objective function J(θ , v) = C

(

θ , v, fθ (v)
)

are computed
analytically, as functions of θ and v, in the forward pass.
The Backpropagation algorithm (a.k.a automatic differentiation)
enables to compute the error derivatives analytically too, in the
backward pass. Therefore, the state of the network ŝ = fθ (v)
(forward pass) and the gradient of the objective function ∂J

∂θ
(θ , v)

(backward pass) can be computed efficiently and exactly4.
In the framework for machine learning that we propose here

(Figure 2, right), the free fixed point ŝ = s0θ ,v is an implicit

function of θ and v, characterized by ∂E
∂s (θ , v, s

0
θ ,v) = 0. The

free fixed point is computed numerically, in the free phase

(first phase). Similarly the nudged fixed point s
β
θ ,v is an implicit

function of θ , v, and β , and is computed numerically in the
nudged phase (second phase). Equilibrium Propagation estimates
(for the particular value of β chosen in the second phase)
the gradient of the objective function ∂J

∂θ
(θ , v) based on these

two fixed points. The requirement for numerical optimization
in the first and second phases make computations inefficient
and approximate. The experiments in Section 5 will show that
the free phase is fairly long when performed with a discrete-
time computer simulation. However, we expect that the full
potential of the proposed framework could be exploited on
analog hardware (instead of digital hardware), as suggested by
Hertz et al. (1997).

4. RELATED WORK

In Section 2.3, we have discussed the relationship between
Equilibrium Propagation and Backpropagation. In the weakly
clamped phase, the change of the influence parameter β creates a

3The proof presented in Appendix A will show that E, C, and F need not satisfy

Equation (20) but only Equation (26).
4Here, we are not considering numerical stability issues due to the encoding of real

numbers with finite precision.

FIGURE 2 | Comparison between the traditional framework for Deep

Learning and our framework. Left. In the traditional framework, the state of

the network fθ (v) and the objective function J(θ , v) are explicit functions of θ

and v and are computed analytically. The gradient of the objective function is

also computed analytically thanks to the Backpropagation algorithm (a.k.a

automatic differentiation). Right. In our framework, the free fixed point s0
θ ,v is

an implicit function of θ and v and is computed numerically. The nudged fixed

point s
β
θ ,v and the gradient of the objective function are also computed

numerically, following our learning algorithm: Equilibrium Propagation.

perturbation at the output layer which propagates backwards in
the hidden layers. The error derivatives and the gradient of the
objective function are encoded by this perturbation.

In this section, we discuss the connection between our
work and other algorihms, starting with Contrastive Hebbian
Learning. Equilibrium Propagation offers a new perspective
on the relationship between Backpropagation in feedforward
nets and Contrastive Hebbian Learning in Hopfield nets and
Boltzmann machines (Table 1).

4.1. Link to Contrastive Hebbian Learning
Despite the similarity between our learning rule and the
Contrastive Hebbian Learning rule (CHL) for the continuous
Hopfield model, there are important differences.

First, recall that our learning rule is:

1Wij ∝ lim
β→0

1

β

(

ρ

(

u
β
i

)

ρ

(

u
β
j

)

− ρ
(

u0i
)

ρ

(

u0j

))

, (27)

where u0 is the free fixed point and uβ is theweakly clamped fixed
point. The Contrastive Hebbian Learning rule is:

1Wij ∝ ρ
(

u∞i
)

ρ

(

u∞j

)

− ρ
(

u0i
)

ρ

(

u0j

)

, (28)

where u∞ is the fully clamped fixed point (i.e., fixed point with
fully clamped outputs). We choose the notation u∞ for the fully
clamped fixed point because it corresponds to β → +∞ with
the notations of our model. Indeed Equation (9) shows that in the
limit β → +∞, the output unit yi moves infinitely fast toward
yi, so yi is immediately clamped to yi and is no longer sensitive
to the “internal force” (Equation 8). Another way to see it is by
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TABLE 1 | Correspondence of the phases for different learning algorithms: Back-propagation, Equilibrium Propagation (our algorithm), Contrastive

Hebbian Learning (and Boltzmann Machine Learning) and Almeida-Pineida’s Recurrent Back-Propagation.

Backprop Equilibrium Prop Contrastive Hebbian Learning Almeida-Pineida

First Phase Forward Pass Free Phase Free Phase (or Negative Phase) Free Phase

Second Phase Backward Pass Weakly Clamped Phase Clamped Phase (or Positive Phase) Recurrent Backprop

considering Equation (3): as β → +∞, the only value of y that
gives finite energy is d.

The objective functions that these two algorithms optimize
also differ. Recalling the form of the Hopfield energy (Equation 1)
and the cost function (Equation 2), Equilibrium Propagation
computes the gradient of:

J =
1

2

∥

∥y0 − d
∥

∥

2
, (29)

where y0 is the output state at the free phase fixed point u0, while
CHL computes the gradient of:

JCHL = E
(

u∞
)

− E
(

u0
)

. (30)

The objective function for CHL has theoretical problems: it may
take negative values if the clamped phase and free phase stabilize
in different modes of the energy function, in which case the
weight update is inconsistent and learning usually deteriorates, as
pointed out by Movellan (1990). Our objective function does not
suffer from this problem, because it is defined in terms of local
perturbations, and the implicit function theorem guarantees that
the weakly clamped fixed point will be close to the free fixed point
(thus in the same mode of the energy function).

We can also reformulate the learning rules and objective
functions of these algorithms using the notations of the general
setting (Section 3). For Equilibrium Propagation we have:

1θ ∝ − lim
β→0

1

β

(

∂F

∂θ

(

θ , v,β , s
β
θ ,v

)

−
∂F

∂θ

(

θ , v, 0, s0θ ,v
)

)

and

J(θ , v) =
∂F

∂β

(

θ , v, 0, s0θ ,v
)

. (31)

As for Contrastive Hebbian Learning, one has

1θ ∝ −

(

∂F

∂θ

(

θ , v,∞, s∞θ ,v
)

−
∂F

∂θ

(

θ , v, 0, s0θ ,v
)

)

and

JCHL(θ , v) = F(θ , v,∞, s∞θ ,v)− F(θ , v, 0, s0θ ,v), (32)

where β = 0 and β = ∞ are the values of β corresponding to
free and (fully) clamped outputs, respectively.

Our learning algorithm is also more flexible because we are
free to choose the cost function C (as well as the energy funtion
E), whereas the contrastive function that CHL optimizes is fully
determined by the energy function E.

4.2. Link to Boltzmann Machine Learning
Again, the log-likelihood that the Boltzmann machine optimizes
is determined by the Hopfield energy E, whereas we have the
freedom to choose the cost function in the framework for
Equilibrium Propagation.

As discussed in Section 2.3, the second phase of Equilibrium
Propagation (going from the free fixed point to the weakly
clamped fixed point) can be seen as a brief “backpropagation
phase” with weakly clamped target outputs. By contrast, in the
positive phase of the Boltzmann machine, the target is fully
clamped, so the (correct version of the) Boltzmann machine
learning rule requires two separate and independent phases
(Markov chains), making an analogy with backprop less obvious.

Our algorithm is also similar in spirit to the CD algorithm
(Contrastive Divergence) for Boltzmannmachines. In ourmodel,
we start from a free fixed point (which requires a long relaxation
in the free phase) and then we run a short weakly clamped phase.
In the CD algorithm, one starts from a positive equilibrium
sample with the visible units clamped (which requires a long
positive phase Markov chain in the case of a general Boltzmann
machine) and then one runs a short negative phase. But there
is an important difference: our algorithm computes the correct
gradient of our objective function (in the limit β → 0), whereas
the CD algorithm computes a biased estimator of the gradient
of the log-likelihood. The CD1 update rule is provably not the
gradient of any objective function and may cycle indefinitely in
some pathological cases (Sutskever and Tieleman, 2010).

Finally, in the supervised setting presented in Section 2, a
more subtle difference with the Boltzmann machine is that the
“output” state y in our model is best thought of as being part of
the latent state variable s. If we were to make an analogy with the
Boltzmann machine, the visible units of the Boltzmann machine
would be v =

{

x, d
}

, while the hidden units would be s =
{

h, y
}

.
In the Boltzmann machine, the state of the external world is
inferred directly on the visible units (because it is a probabilistic
generative model that maximizes the log-likelyhood of the data),
whereas in our model we make the choice to integrate in s special
latent variables y that aim to match the target d.

4.3. Link to Recurrent Back-Propagation
Directly connected to ourmodel is the work by Pineda (1987) and
Almeida (1987) on recurrent back-propagation. They consider
the same objective function as ours, but formulate the problem
as a constrained optimization problem. In Appendix B, we
derive another proof for the learning rule (Theorem 1) with the
Lagrangian formalism for constrained optimization problems.
The beginning of this proof is in essence the same as the one
proposed by Pineda (1987); Almeida (1987), but there is a major
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difference when it comes to solving Equation (75) for the costate
variable λ∗. The method proposed by Pineda (1987) and Almeida
(1987) is to use Equation (75) to compute λ∗ by a fixed point
iteration in a linearized form of the recurrent network. The
computation of λ∗ corresponds to their second phase, which
they call recurrent back-propagation. However, this second phase
does not follow the same kind of dynamics as the first phase
(the free phase) because it uses a linearization of the neural
activation rather than the fully non-linear activation5. From a
biological plausibility point of view, having to use a different kind
of hardware and computation for the two phases is not satisfying.

By contrast, like the continuous Hopfield net and the
Boltzmann machine, our model involves only one kind of neural
computations for both phases.

4.4. The Model by Xie and Seung
Previous work on the back-propagation interpretation of
contrastive Hebbian learning was done by Xie and Seung (2003).

The model by Xie and Seung (2003) is a modified version of
the Hopfield model. They consider the case of a layered MLP-
like network, but their model can be extended to a more general
connectivity, as shown here. In essence, using the notations of
our model (Section 2), the energy function that they consider is:

EX&S(u) :=
1

2

∑

i

γ
iu2i −

∑

i<j

γ
jWijρ(ui)ρ(uj)−

∑

i

γ
ibiρ(ui).

(33)
The difference with Equation (1) is that they introduce a
parameter γ, assumed to be small, that scales the strength of
the connections. Their update rule is the contrastive Hebbian
learning rule which, for this particular energy function, takes the
form:

1Wij ∝ −

(

∂EX&S

∂Wij

(

u∞
)

−
∂EX&S

∂Wij

(

u0
)

)

= γ
j
(

ρ
(

u∞i
)

ρ

(

u∞j

)

− ρ
(

u0i
)

ρ

(

u0j

))

(34)

for every pair of indices (i, j) such that i < j. Here, u∞ and
u0 are the (fully) clamped fixed point and free fixed point,
respectively. Xie and Seung (2003) show that in the regime
γ → 0 this contrastive Hebbian learning rule is equivalent to
back-propagation. At the free fixed point u0, one has ∂EX&S

∂si
(u0) =

0 for every unit si
6, which yields, after dividing by γ

i and
rearranging the terms:

s0i = ρ′
(

s0i
)





∑

j< i

Wijρ

(

u0j

)

+
∑

j>i

γ
j− iWijρ

(

u0j

)

+ bi



 .

(35)

In the limit γ → 0, one gets s0i ≈ ρ′(s0i )
(

∑

j< iWijρ(u
0
j )+ bi

)

,

so that the network almost behaves like a feedforward net in this
regime.

5Reccurent Back-propagation corresponds to Back-propagation Through Time

(BPTT) when the network converges and remains at the fixed point for a large

number of time steps.
6Recall that in our notations, the state variable s does not include the clamped

inputs x, whereas u includes x.

As a comparison, recall that in our model (Section 2) the
energy function is:

E(u) :=
1

2

∑

i

u2i −
∑

i< j

Wijρ(ui)ρ(uj)−
∑

i

biρ(ui), (36)

the learning rule is:

1Wij ∝ − lim
β→0

1

β

(

∂E

∂Wij

(

uβ
)

−
∂E

∂Wij

(

u0
)

)

(37)

= lim
β→0

1

β

(

ρ

(

u
β
i

)

ρ

(

u
β
j

)

− ρ
(

u0i
)

ρ

(

u0j

))

,

and at the free fixed point, we have ∂E
∂si

(u0) = 0 for every unit si,
which gives:

s0i = ρ′
(

s0i
)





∑

j 6= i

Wijρ

(

u0j

)

+ bi



 . (38)

Here, are the main differences between our model and theirs.
In our model, the feedforward and feedback connections
are both strong. In their model, the feedback weights are
tiny compared to the feedforward weights, which makes the
(recurrent) computations look almost feedforward. In our second
phase, the outputs are weakly clamped. In their second phase,
they are fully clamped. The theory of our model requires a unique
learning rate for the weights, while in their model the update rule
forWij (with i < j) is scaled by a factor γ

j (see Equation 34). Since
γ is small, the learning rates for the weights vary on many orders
of magnitude in their model. Intuitively, these multiple learning
rates are required to compensate for the small feedback weights.

5. IMPLEMENTATION OF THE MODEL AND
EXPERIMENTAL RESULTS

In this section, we provide experimental evidence that our
model described in Section 2 is trainable, by testing it on the
classification task ofMNIST digits (LeCun andCortes, 1998). The
MNIST dataset of handwritten digits consists of 60,000 training
examples and 10,000 test examples. Each example x in the dataset
is a gray-scale image of 28 by 28 pixels and comes with a label
d ∈ {0, 1, . . . , 9}. We use the same notation y for the one-hot
encoding of the target, which is a 10-dimensional vector.

Recall that our model is a recurrently connected neural
network with symmetric connections. Here, we train multi-
layered networks with 1, 2, and 3 hidden layers, with no skip-layer
connections and no lateral connections within layers. Although
we believe that analog hardware would be more suited for our
model, here we propose an implementation on digital hardware
(a GPU). We achieve 0.00% training error. The generalization
error lies between 2 and 3% depending on the architecture
(Figure 3).

For each training example (x, d) in the dataset, training
proceeds as follows:

1. Clamp x.
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FIGURE 3 | Training and validation error for neural networks with one hidden layer of 500 units (top left), two hidden layers of 500 units (top right), and

three hidden layers of 500 units (bottom). The training error eventually decreases to 0.00% in all three cases.

2. Run the free phase until the hidden and output units settle to

the free fixed point, and collect ρ
(

u0i
)

ρ

(

u0j

)

for every pair of

units i, j.
3. Run the weakly clamped phase with a “small” β > 0 until

the hidden and output units settle to the weakly clamped fixed

point, and collect ρ
(

u
β
i

)

ρ

(

u
β
j

)

.

4. Update each synapseWij according to

1Wij ∝
1

β

(

ρ

(

u
β
i

)

ρ

(

u
β
j

)

− ρ
(

u0i
)

ρ

(

u0j

))

. (39)

The prediction is made at the free fixed point u0 at the end of
the first phase relaxation. The predicted value ypred is the index of
the output unit whose activation is maximal among the 10 output
units:

ypred := argmax
i

y0i . (40)

Note that no constraint is imposed on the activations of the
units of the output layer in our model, unlike more traditional
neural networks where a softmax output layer is used to constrain
them to sum up to 1. Recall that the objective function that we
minimize is the square of the difference between our prediction
and the one-hot encoding of the target value:

J =
1

2

∥

∥d − y0
∥

∥

2
. (41)

5.1. Finite Differences
5.1.1. Implementation of the Differential Equation of

Motion
First we clamp x. Then the obvious way to implement
Equation (4) is to discretize time into short time lapses of
duration ǫ and to update each hidden and output unit si
according to

si ← si − ǫ
∂F

∂si
(θ , v,β , s). (42)

This is simply one step of gradient descent on the total energy F,
with step size ǫ.

For our experiments, we choose the hard sigmoid activation
function ρ(si) = 0 ∨ si ∧ 1, where ∨ denotes the max and ∧ the
min. For this choice of ρ, since ρ′(si) = 0 for si < 0, it follows
from Equations (8) and (9) that if hi < 0 then ∂F

∂hi
(θ , v,β , s) =

−hi > 0. This force prevents the hidden unit hi from going in the
range of negative values. The same is true for the output units.
Similarly, si cannot reach values above 1. As a consequence si
must remain in the domain 0 ≤ si ≤ 1. Therefore, rather than
the standard gradient descent (Equation 42), we will use a slightly
different update rule for the state variable s:

si ← 0 ∨

(

si − ǫ
∂F

∂si
(θ , v,β , s)

)

∧ 1. (43)

This little implementation detail turns out to be very important: if
the i-th hidden unit was in some state hi < 0, then Equation (42)
would give the update rule hi ← (1 − ǫ)hi, which would imply
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again hi < 0 at the next time step (assuming ǫ < 1). As a
consequence hi would remain in the negative range forever.

5.1.2. Choice of the Step Size ǫ

We find experimentally that the choice of ǫ has little influence as
long as 0 < ǫ < 1. What matters more is the total duration of the
relaxation1t = niter×ǫ (where niter is the number of iterations).
In our experiments we choose ǫ = 0.5 to keep niter = 1t/ǫ as
small as possible so as to avoid extra unnecessary computations.

5.1.3. Duration of the Free Phase Relaxation
We find experimentally that the number of iterations required
in the free phase to reach the free fixed point is large and
grows fast as the number of layers increases (Table 2), which
considerably slows down training. More experimental and
theoretical investigation would be needed to analyze the number
of iterations required, but we leave that for future work.

5.1.4. Duration of the Weakly Clamped Phase
During the weakly clamped phase, we observe that the relaxation
to the weakly clamped fixed point is not necessary. We only
need to “initiate” the movement of the units, and for that we
use the following heuristic. Notice that the time constant of the
integration process in the leaky integrator equation (Equation 8)
is τ = 1. This time constant represents the time needed for a
signal to propagate from a layer to the next one with “significant
amplitude.” So the time needed for the error signals to back-
propagate in the network is Nτ = N, where N is the number
of layers (hiddens and output) of the network. Thus, we choose
to perform N/ǫ iterations with step size ǫ = 0.5.

5.2. Implementation Details and
Experimental Results
To tackle the problem of the long free phase relaxation and speed-
up the simulations, we use “persistent particles” for the latent
variables to re-use the previous fixed point configuration for a
particular example as a starting point for the next free phase
relaxation on that example. This means that for each training
example in the dataset, we store the state of the hidden layers
at the end of the free phase, and we use this to initialize the
state of the network at the next epoch. This method is similar in
spirit to the PCD algorithm (Persistent Contrastive Divergence)
for sampling from other energy-based models like the Boltzmann
machine (Tieleman, 2008).

We find that it helps regularize the network if we choose
the sign of β at random in the second phase. Note that the

weight updates remain consistent thanks to the factor 1/β in

the update rule 1Wij ∝
1
β

(

ρ

(

u
β
i

)

ρ

(

u
β
j

)

− ρ
(

u0i
)

ρ

(

u0j

))

.

Indeed, the left-derivative and the right-derivative of the function

β 7→ ρ

(

u
β
i

)

ρ

(

u
β
j

)

at the point β = 0 coincide.

Although the theory presented in this paper requires a unique
learning rate for all synaptic weights, in our experiments we
need to choose different learning rates for the weight matrices
of different layers to make the algorithm work. We do not have a
clear explanation for this fact yet, but we believe that this is due
to the finite precision with which we approach the fixed points.
Indeed, the theory requires to be exactly at the fixed points,
but in practice we minimize the energy function by numerical
optimization, using Equation (43). The precision with which we
approach the fixed points depends on hyperparameters such as
the step size ǫ and the number of iterations niter.

Let us denote by h0, h1, · · · , hN the layers of the network
(where h0 = x and hN = y) and byWk the weight matrix between
the layers hk−1 and hk. We choose the learning rate αk forWk so

that the quantities
‖1Wk‖
‖Wk‖

for k = 1, · · · ,N are approximately

the same in average (over training examples), where ‖1Wk‖

represents the weight change ofWk after seeing a minibatch.
The hyperparameters chosen for each model are shown in

Table 2 and the results are shown in Figure 3. We initialize the
weights according to the Glorot-Bengio initialization (Glorot
and Bengio, 2010). For efficiency of the experiments, we use
minibatches of 20 training examples.

6. DISCUSSION, LOOKING FORWARD

From a biological perspective, a troubling issue in the Hopfield
model is the requirement of symmetric weights between the
units. Note that the units in our model need not correspond
exactly to actual neurons in the brain (it could be groups of
neurons in a cortical microcircuit, for example). It remains
to be shown how a form of symmetry could arise from
the learning procedure itself (for example from autoencoder-
like unsupervised learning) or if a different formulation could
eliminate the symmetry requirement. Encouraging cues come
from the observation that denoizing autoencoders without tied
weights often end up learning symmetric weights (Vincent et al.,
2010). Another encouraging piece of evidence, also linked to
autoencoders, is the theoretical result from Arora et al. (2015),
showing that the symmetric solution minimizes the autoencoder
reconstruction error between two successive layers of rectifying

TABLE 2 | Hyperparameters.

Architecture Iterations Iterations ǫ β α1 α2 α3 α4

(first phase) (second phase)

784-500-10 20 4 0.5 1.0 0.1 0.05

784-500-500-10 100 6 0.5 1.0 0.4 0.1 0.01

784-500-500-500-10 500 8 0.5 1.0 0.128 0.032 0.008 0.002

The learning rate ǫ is used for iterative inference (Equation 43). β is the value of the clamping factor in the second phase. αk is the learning rate for updating the parameters in layer k.
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(ReLU) units, suggesting that symmetry may arise as the result
of an additional objective function making successive layers
form an autoencoder. Also, Lillicrap et al. (2014) show that
the backpropagation algorithm for feedforward nets also works
when the feedback weights are random, and that in this case the
feedforward weight tend to “align” with the feedback weights.

Another practical issue is that we would like to reduce the
negative impact of a lengthy relaxation to a fixed point, especially
in the free phase. A possibility is explored by Bengio et al. (2016)
and was initially discussed by Salakhutdinov and Hinton (2009)
in the context of a stack of RBMs: by making each layer a
good autoencoder, it is possible to make this iterative inference
converge quickly after an initial feedforward phase, because the
feedback paths “agree” with the states already computed in the
feedforward phase.

Regarding synaptic plasticity, the proposed update formula
can be contrasted with theoretical synaptic learning rules
which are based on the Hebbian product of pre- and post-
synaptic activity, such as the BCM rule (Bienenstock et al.,
1982; Intrator and Cooper, 1992). The update proposed here
is particular in that it involves the temporal derivative of the
post-synaptic activity, rather than the actual level of postsynaptic
activity.

Whereas our work focuses on a rate model of neurons,
see Feldman (2012) for an overview of synaptic plasticity that
goes beyond spike timing and firing rate, including synaptic
cooperativity (nearby synapses on the same dendritic subtree)
and depolarization (due to multiple consecutive pairings or
spatial integration across nearby locations on the dendrite, as well
as the effect of the synapse’s distance to the soma). In addition,
it would be interesting to study update rules which depend
on the statistics of triplets or quadruplets of spikes timings, as
in Froemke and Dan (2002) and Gjorgjievaa et al. (2011). These
effects are not considered here but future work should consider
them.

Another question is that of time-varying input. Although this
work makes back-propagation more plausible for the case of a
static input, the brain is a recurrent network with time-varying
inputs, and back-propagation through time seems even less
plausible than static back-propagation. An encouraging direction
is that proposed by Ollivier et al. (2015) and Tallec and Ollivier
(2017), which shows that computationally efficient estimators of
the gradient can be obtained using a forward method (online
estimation of the gradient), which avoids the need to store all past
states in training sequences, at the price of a noisy estimator of the
gradient.
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Biological and artificial neural networks (ANNs) represent input signals as patterns

of neural activity. In biology, neuromodulators can trigger important reorganizations

of these neural representations. For instance, pairing a stimulus with the release

of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the

responses of neurons to the paired stimulus. The functional roles of ACh and DA in

rearranging representations remain largely unknown. Here, we address this question

using a Hebbian-learning neural network model. Our aim is both to gain a functional

understanding of ACh and DA transmission in shaping biological representations and

to explore neuromodulator-inspired learning rules for ANNs. We model the effects of

ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater

neuromodulator activation are over represented in the network. We then simulate

the physiological release schedules of ACh and DA. We measure the impact of

neuromodulator release on the network’s representation and on its performance on

a classification task. We find that ACh and DA trigger distinct changes in neural

representations that both improve performance. The putative ACh signal redistributes

neural preferences so that more neurons encode stimulus classes that are challenging

for the network. The putative DA signal adapts synaptic weights so that they better match

the classes of the task at hand. Our model thus offers a functional explanation for the

effects of ACh and DA on cortical representations. Additionally, our learning algorithm

yields performances comparable to those of state-of-the-art optimisation methods in

multi-layer perceptrons while requiring weaker supervision signals and interacting with

synaptically-local weight updates.

Keywords: acetylcholine, dopamine, neuromodulator, sensory representations, neural networks, biology-inspired

learning, representation learning

1. INTRODUCTION

Neurons in the cortex represent countless features of sensory signals, from the frequencies of
photons falling on the retina to high-level attributes like quantities and numbers. The particular
form a sensory representation takes is critical to perception. For instance, experienced musicians
display enhanced sensory representations which putatively explain their finer perceptual abilities
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(Elbert et al., 1995; Pantev et al., 1998, 2001). This view is further
supported by the observation that, following discrimination
training, improvements in perceptual sensitivity correlate
with the degree of reorganization in cortical representations
(Recanzone et al., 1992, 1993; Weinberger, 2003; Polley et al.,
2006). On the other hand, perceptual disorders like phantom
limb pain (Ramachandran et al., 1992; Halligan et al., 1993; Flor
et al., 2006) or tinnitus (Eggermont and Roberts, 2004) appear to
be correlates of degenerate sensory representations.

In animals, sensory representations undergo modifications
in various circumstances, for instance following extensive
perceptual training (Weinberger and Bakin, 1998; Harris et al.,
2001; Schoups et al., 2001; Fletcher and Wilson, 2002; Fritz et al.,
2003;Wang et al., 2003; Bao et al., 2004; Yang andMaunsell, 2004;
Polley et al., 2006; Poort et al., 2015), repeated sensory exposure
(Han et al., 2007; Kim and Bao, 2009), cortical stimulation,
(Godde et al., 2002; Dinse et al., 2003; Tegenthoff et al., 2005),
or sensory deprivation (Calford and Tweedale, 1988; Allard
et al., 1991; Gambino and Holtmaat, 2012). Additionally, the
neuromodulators acetylcholine (ACh) and dopamine (DA) bear
potent effects on cortical representations. In particular, repeated
efflux of either ACh (Kilgard and Merzenich, 1998a; Froemke
et al., 2007, 2013; Gu, 2003; Weinberger, 2003) or DA (Bao et al.,
2001; Frankó et al., 2010) coinciding with a stimulus strengthens
the responses of neurons to this stimulus and enlarges its cortical
representation.

ACh and DA are critical to forms of learning which require
modifications of sensory representations. For instance, lesion of
the cholinergic (Butt and Hodge, 1995; Fletcher and Wilson,
2002; Conner et al., 2003; Wilson et al., 2004; Conner et al.,
2010) or dopaminergic (Kudoh and Shibuki, 2006; Molina-Luna
et al., 2009; Hosp et al., 2011; Luft and Schwarz, 2009; Schicknick
et al., 2012) system disrupts perceptual andmotor learning as well
as the associated plasticity in cortical maps. These observations
suggest that the neuromodulators orchestrate plastic changes that
refine cortical representations and give rise to perceptual and
motor learning.

In physiological conditions, ACh transmission appears to
signal attentional effort, a construct reflecting both the relevance
and difficulty of a task (Himmelheber et al., 2000; Arnold
et al., 2002; Kozak et al., 2006; Sarter et al., 2006). DA
carries information relative to reward-prediction errors (RPEs)
(Schultz et al., 1997; Schultz, 2007, 2010). Although their
release properties are relatively well defined, the functional
roles these signals serve in shaping neural representations is
unclear.

Much like the cortex, artificial neural networks (ANNs)
represent input data in the form of neural activation. As
for other machine learning algorithms, the performance of
ANNs critically depends on the representation data take. The
most widely used learning rule for ANNs, the error back-
propagation algorithm (Werbos, 1974; Rumelhart et al., 1985),
learns representations optimised for specific tasks. Although, the
back-propagation algorithm yields remarkable performances, it
is unlikely to be implemented in biological neural structures
and it also bears its own limitations. For instance, in order to
compute the error function, a target output must be specified

for each training example, making training data expensive to
acquire. Additionally, weight updates require information not
available locally at the weights which limits the use of the back-
propagation algorithm in physical devices like neuromorphic
chips.

In the present work we explore the use of signals inspired
from ACh and DA for learning in a neural network model.
This effort serves two aims: first, to shed light on the functional
roles of ACh and DA in shaping cortical representations and,
second, to provide inspiration for novel training methods
for ANNs.

Previous studies examine the roles of ACh and DA in
neural information processing. Weinberger and Bakin (1998)
develop a model of ACh signaling to investigate its function
in classical conditioning. Li and Cleland (2013) present a
detailed biophysical model of ACh neuromodulation in the
olfactory bulb. However, these studies do not see to the
perceptual benefits of long-term plasticity induced by ACh.
Other work tackle the question of DA-modulated plasticity
in neural networks. Roelfsema and colleagues show that a
signal inspired from DAergic signaling allows a network to
learn various classification tasks (Roelfsema and Ooyen, 2005;
Roelfsema et al., 2010; Rombouts et al., 2012). Similarly,
other models make use of DA-like reinforcement signals
to learn stimulus-response associations (e.g., Law and Gold,
2009; Liu et al., 2010). In these cases, however, the models
for the plastic effects of DA were chosen to carry out
reinforcement learning rather than to tally with experimental
observations.

In contrast with previous work, we base our modeling
effort on the well-documented observation that pairing ACh
or DA release with a stimulus boosts neural responses to
the stimulus. We use this model to study the perceptual
benefits of ACh- and DA-induced plasticity under natural
release conditions. In more details, we make use of a Hebbian-
learning neural network and simulate the physiological release
schedules of ACh and DA. In the model, ACh activation
approximates attentional demand while DA activation arises
from RPEs. We find that the neuromodulators trigger distinct
changes in representations that both improve the network’s
classification performance. Specifically, ACh leads to changes
in synaptic weights such that more neurons are dedicated
to stimuli that are challenging for the network. DA adapts
synaptic weights to the reward contingencies of a task, thereby
sharpening neural tuning with respect to the classes of the
task. These results provide a functional explanation for the
roles of cholinergic and dopaminergic signals in refining cortical
representations.

Our learning algorithm offers several advantages from a
practical perspective. First, the network achieves performances
comparable to those of state-of-the-art optimisation methods
used to train multi-layer perceptrons (MLPs) while requiring
weaker supervision signals. Second, learning takes place
even in the absence of environmental feedback. And third,
weight updates are based on synaptically-local information
and on two signals broadcasted identically to all neurons.
These features may make the algorithm interesting for
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functional applications such as learning in neuromorphic
processors.

2. METHODS

2.1. Hebbian Network Model
For our study, we make use of a Hebbian-learning neural
network model introduced by Keck et al. (2012). The learning
mechanisms implemented in this model achieve approximately
optimal learning in terms of maximum likelihood estimation (see
original publication for a detailed discussion). As a theoretically
well-founded and biologically realistic model, this network is a
natural starting point for our work. In this section, we briefly
present the original model and then describe our simulation of
the neuromodulators ACh and DA.

The network consists of three layers, an input, a
representation, and a classification layer (Figure 1). Input
values activate neurons in the first layer; activity then propagates
through the network in the following steps.

2.1.1. Feedforward Inhibition
In mammals, the responses of sensory neurons are largely
invariant to contrast in sensory stimuli (Sclar et al., 1990; Stopfer
et al., 2003; Mante et al., 2005; Assisi et al., 2007; Olsen and
Wilson, 2008), in part due to rapid feedforward inhibition
(Pouille and Scanziani, 2001; Swadlow, 2003; Mittmann et al.,
2005; Wehr and Zador, 2005; Pouille et al., 2009; Isaacson and
Scanziani, 2011). To emulate this process, neural activations in
the input layer are normalized:

yd = (A− D)
ỹd

∑D
d′=1 ỹd′

+ 1 , (1)

where Ẽy are input data, A is a normalization constant, and D is
the number of input neurons. This form of normalization yields
contrast-invariant responses in representation neurons. For the
dataset used in this work, D = 28 × 28 = 784 input neurons.

FIGURE 1 | Network architecture. The network contains three layers: an input,

a representation, and a classification layer. For the MNIST dataset, the input

and classification layers contain D = 28× 28 = 784 and K = 10 neurons,

respectively. The number of representation neurons is variable; for most results

we use C = 7× 7 = 49 neurons.

For other hyper-parameters, values are determined through grid
search to maximize classification performance (see Table A1 in
Appendix section).

2.1.2. Input Integration
Neurons in the representation layer integrate their input through
a weighted sum:

Ic =

D
∑

d=1

S(Wcd)yd , (2)

where W is the weight matrix between the input and
representation layers and S(·) is a linearised logarithm function
given by:

S(Wcd) =

{

Wcd ifWcd < 1

log(Wcd)+ 1 ifWcd ≥ 1 .
(3)

Taking the logarithm of Wcd guarantees approximate optimal
learning of the weights, with the linearisation ensuring that the
function is never negative forWcd ≥ 0.

2.1.3. Lateral Inhibition
The integrated input is fed through a softmax function that
models global lateral inhibition:

sc =
exp(Ic)

∑

c′ exp(Ic′ )
. (4)

2.1.4. Hebbian Learning
Hebbian learning takes place between the input and
representation neurons:

1Wcd = ǫ · (scyd − scWcd) , (5)

where ǫ is the learning rate.

2.1.5. Classification
We subject the network to a classification task of images of hand-
written digits from the MNIST dataset (LeCun et al., 1998b).
These input images provide stimuli of intermediate complexity
and high-dimensionality akin to natural sensory stimuli, making
them a popular dataset to study neural information processing
(Nessler et al., 2013; Schmuker et al., 2014). These data consist
of gray-scale images with pixel values in the range [0, 255] fed as

input Ẽy to the first layer.
In the classification layer, we use statistical inference to decode

activity in the representation layer. Given an input pattern Ey and
the model parameters 2, we want to infer the class of the input
pattern, that is, to compute the posterior Pr(k | Ey,2). Here, we
approximate the posteriors using the labels of the input images.
We first compute a value Bkc:

Bkc :=
1

Nm

Nm
∑

n=1

Pr(c|Ey(n),W) =
1

Nm

Nm
∑

n=1

s(n)c , (6)

with Nm input patterns Ey(n) bearing a label m = k. The matrix
B can be interpreted as the weights between the representation
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and classification layers. This matrix is updated after every
presentation of 100 images, or roughly 600 times during one
iteration over the dataset. The posteriors are approximated as:

Pr(k | Ey,2) ≈ tk =

C
∑

c=1

Bkcsc
∑K

k′=1 Bk′c
. (7)

As a classification result m̂, we take the unit with the largest value
of approximation to the posterior:

m̂ =
K

argmax
k=1

(tk) . (8)

This hierarchical formulation allows to decode activity in the
representation layer, providing a probabilistic classification of the
input images.

Previous work based on a fully probabilistic description of the
Hebbian-learning network model (Forster et al., 2016; Forster
and Lücke, 2017) shows that local Hebbian learning converges to
the weight matrix B without requiring the non-local summation
over k. This is true also when using a small fraction (≈ 1%) of
labeled training examples. Learning the classification weights can
therefore be achieved while respecting biological constraints. For
this work, we mainly focus on the standard fully labeled setting,
as is customary (Keck et al., 2012; Nessler et al., 2013; Schmuker
et al., 2014; Diehl and Cook, 2015; Neftci et al., 2015), but also
provide results for experiments with very few labels.

2.2. Model of the Neuromodulators
2.2.1. Effects on Plasticity
We extend the network model described above to emulate the
effects of ACh and DA on neural representations. Specifically, we
simulate the impact of the neuromodulators as a modulation of
the network’s learning rate:

acetylcholine: 1Wcd = ǫ · ACh · (scyd − scWcd) , (5a)

dopamine: 1Wcd = ǫ · DA · (scyd − scWcd) , (5b)

where ACh andDA represent the activation of the corresponding
neuromodulatory system. This model is in general agreement
with experimental observations in that both ACh (Bröcher et al.,
1992; Chun et al., 2013) and DA (Blond et al., 2002; Sun et al.,
2005; Matsuda et al., 2006) are reported to promote synaptic
plasticity. This model for the neuromodulators was chosen so as
to reproduce the results of pairing experiments in mammals (see
Results section).

2.2.2. Acetylcholine and Attentional Efforts
ACh release in the mammalian neocortex is tightly linked with
attentional processes. For instance, as rats detect a behaviorally
meaningful sensory cue, a spike in cortical ACh accompanies the
reorientation of their attention towards the cue (Parikh et al.,
2007). Additionally, when rats perform a task requiring sustained
attention, the concentration of ACh in their prefrontal cortices
more than doubles compared to control (Arnold et al., 2002;
Kozak et al., 2006). In the course of such tasks, distractors that
further tax the animals’ attentional systems trigger supplemental

ACh release (Himmelheber et al., 2000; Kozak et al., 2006). These
observations indicate that the cholinergic system responds to
events demanding an animal’s attention such as relevant stimuli
or challenging tasks. In this sense, ACh transmission reflects the
cognitive construct of attentional effort defined as a subject’s
motivated effort to maintain performance under challenging
conditions (Sarter et al., 2006).

In the present work, we model ACh activation to approximate
attentional demand. To quantify how demanding a stimulus is
for the network, we use the network’s classification confidence.
Classification confidence is measured as the classifier’s maximal
posterior over the digit classes, κ = maxK

k=1
(tk). Classification

confidence strongly correlates with classification accuracy
(r = 0.89, Figure 2A) indicating that this measure is suitable to
quantify stimulus demand. For each stimulus, the value of the
ACh variable is given by:

ACh =
α

1.0+ exp(β · (κ̄m̂/κ̄ − 1.0))
(10)

where κ̄m̂ is the network’s average classification confidence for
the inferred class of the current stimulus, κ̄ is the average
classification confidence for all stimuli, and α and β are
hyper-parameters of the sigmoid function whose values are
determined through grid search (Figure 2). According to this
formulation, the lower the classification confidence (i.e., the
greater the stimulus difficulty), the larger the ACh activation.
Note that, to compute the average classification confidence over
the digit classes, we use the network’s inferred classification
(m̂) and not the stimulus label. Thus, for a given stimulus,
ACh activation is evaluated without requiring immediate
environmental information. Also note that the classification
confidence for the same stimulus may vary during training as the
network’s weight matricesW and B are updated.

2.2.3. Dopamine and Reward Prediction Errors
DA efflux in animals follows RPEs (Schultz et al., 1997; Satoh
et al., 2003; Tobler et al., 2005; Schultz, 2010). We reproduce
this release schedule in the model as follows. First, we allow
explorative decision making by injecting additive noise in the
activation of representation neurons (Figure 3):

Ic =

D
∑

d=1

S(Wcd)yd + ηc ,

ηc ∼ N (0, υ) ,

where N is a normal distribution with zero mean and variance
υ . This method for exploration approximates the softmax rule
for action selection in reinforcement learning (Sutton and Barto,
1998). Following this rule, actions are selected stochastically with
the probability of selecting an action proportional to its expected
reward. The parameter υ corresponds to the temperature
parameter of the softmax rule: for υ → ∞, all classification
decisions have equal probabilities; for υ → 0+, classification is
purely exploitative. We find the optimal value for υ through grid
search.

Frontiers in Computational Neuroscience | www.frontiersin.org June 2017 | Volume 11 | Article 54 | 88

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Holca-Lamarre et al. Neuromodulator-Based Representation Learning

FIGURE 2 | (A) Classification confidence strongly correlates with classification

accuracy. Here, we measure the network’s classification confidence for the

test images of the MNIST dataset, bin the classification confidence (bin size of

0.02%) and calculate the average correct classification for each bin.

(B) Average classification confidence κ̄m̂ for the 10 digit classes, with the

mean confidence over all classes κ̄ indicated as a dashed line. Data are the

mean of 10 runs, error bars indicate the standard deviation across runs.

(C) Parameter exploration for the α and β parameters of the ACh release

function. A star indicates the parameter set yielding maximal accuracy.

(D) ACh activation function (Equation 10) taking as input the relative

confidence κ̄m̂/κ̄. This ratio quantifies the demand of the current stimulus.

We then compute the classification output for each Ey with
and without the addition of noise η. If noise addition results
in a classification decision that is different from the decision
without noise addition, the classification is labeled as explorative;
otherwise it is labeled as exploitative. If the network takes
an exploitative decision it is said to predict a reward (+pred);
if it takes an explorative decision it is said to not predict a
reward (−pred). The network is rewarded for taking correct
classification decisions (+rew) and not rewarded for incorrect
decisions (−rew). The difference between the predicted and
delivered rewards gives rise to a RPE. There are four possible RPE
scenarios. In each of these cases, the DA variable in Equation 5b
takes a distinct value:

DA =



















δ+/+ if + pred and + rew

δ+/− if + pred and − rew

δ−/+ if − pred and + rew

δ−/− if − pred and − rew

(12)

where δ./. are constants whose values are determined through
4-dimensional parameter search to maximize classification
performance.

2.2.4. Critical period
We are interested in changes in sensory representations triggered
by neuromodulators in adult animals. Adult animals possess
stable neural representations of their environment learned in
early life during a brief window of heightened plasticity. During

FIGURE 3 | Noisy neural activation in the representation layer allows

explorative classification decisions. (A) Activations of input neurons (yd ),

weights of a subset of representation neurons with their corresponding

activations prior to noise injection (sc, gray highlights), and activations of

classification neurons (tk ) with the network’s classification output indicated as

a bold colored outline. The example input images are correctly (top) and

incorrectly classified (bottom). (B) Noise addition in the activations of

representation neurons leads to incorrect (top) and correct (bottom) explorative

classification decisions. In these two different outcomes of exploration, the

variable DA in Equation 5b takes a distinct value (δ−/− and δ−/+, respectively).

this so-called critical period, the response properties of neurons
rapidly adjust to the statistical structure of sensory stimuli
(Sengpiel et al., 1999; de Villers-Sidani et al., 2007; Han et al.,
2007; Barkat et al., 2011).

As a model of this critical period, we pre-train the network
solely through Hebbian learning (Equation 5). The network then
learns synaptic weights based on correlations in the activation
of input neurons, with weights that resemble the different digit
classes. The weights in the representation layer are then learned
solely through the statistics of the input images and do not reflect
the task to be performed. As learning progresses, performance
on the classification task increases and eventually saturates. Once
performance reaches a plateau, we allow the release of ACh
or DA. As an additional control condition, we also continue
training the network through Hebbian learning. Omitting the
pre-training results in the same functional performance but,
without it, the optimal DA activation values found through
parameter search differ (see Figure 6).

3. RESULTS

3.1. Pairing Experiment
In animals, coupling a stimulus with the release of either ACh
(Kilgard and Merzenich, 1998a; Weinberger, 2003; Froemke
et al., 2007, 2013) or DA (Bao et al., 2001; Frankó et al.,
2010) triggers long-lasting changes in sensory representations.
Specifically, sensory neurons increase their responses to the
paired stimulus, resulting in more neurons preferring this
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stimulus. To test whether our model of ACh and DA is
in agreement with this observation, we perform a similar
experiment. The experiment consists of coupling all stimuli of a
target class with ACh or DA = ρ in Equations 5a or 5b, where
ρ is a constant > 1 (Figure 4A). Stimuli of all other classes
have ACh and DA = 1. We then examine the distribution of
class preferences in the network. The preferred digit class of
a neuron is determined by taking argmaxK

k=1
(Bkc) which gives

the class to which neuron c maximally responds to. We find
that the pairing protocol increases the responses of individual
neurons to the paired stimulus class and augments the number
of neurons preferring this class, in agreement with experimental
data (Figures 4B–G). Furthermore, the procedure reduces the
number of units tuned to classes close to the paired one (class
closeness is measured as the Euclidean distance between the
averages of all training examples of each class). These findings
are in line with pairing experiments with DA showing that
the cortical representations of frequencies neighboring a paired
tone shrink as a result of the pairing procedure (Figure 4G;
Bao et al., 2001). This observation however contrasts with
pairing experiments with ACh which result in enlargements of
the cortical representations of both the paired frequency and
adjacent ones (Kilgard and Merzenich, 1998a). For this work,
this difference in the effects of ACh and DA is not taken into
account.

3.2. Physiological Release Schedule
3.2.1. Optimal Release Values
With our model in general agreement with the results of
pairing experiments, we can now study the effects of the
natural release schedules of ACh and DA. We first pre-train
the network through Hebbian learning. As training progresses,
performance saturates (Figure 5, inset). After this point, we
allow the release of ACh or DA. We perform parameter search
to identify the optimal values for parameters α and β in
Equation 10 (Figure 2C) and for the δ./. constants in Equation 12
(Figure 6). In the case of the δ./. constants, we find that for
surprising rewards (−pred, +rew) the optimal δ−/+ is positive
while in the absence of an expected reward (+pred, −rew)
the optimal δ+/− is negative. For correctly predicted rewards
(either +pred, +rew or -pred, −rew) the optimal δ+/+ and δ−/−

are close to zero. This optimal activation profile matches that
observed in primates (Schultz et al., 1997; Tobler et al., 2005),
Figures 6B–C).

3.2.2. Effects of ACh
Visual inspection of the weights of the network (Figure 7A)
indicates that ACh alters the number of neurons dedicated
to the different digit classes. For instance, there are more
neurons resembling a “4” and fewer neurons resembling a “1”
after training with ACh. We quantify this redistribution by
determining the preferred class of a representation neuron.
For Hebbian learning, the distribution of preferred classes is
close to uniform but not entirely so (Figure 7B). There is a
positive correlation between the number of neurons dedicated
to a class and the network’s performance on this class (r = 0.22,

FIGURE 4 | Stimulus pairing with ACh or DA enhances the stimulus’

representation. (A) Simulation of the neuromodulator-stimulus pairing protocol.

The ACh or DA variables in Equations 5a or 5b is set to a constant value ρ > 1

for stimuli of the paired class (“2”, in this case) and to 1 for all other classes.

(B) Mean responses of a neuron to the digit classes. Traces are before and

after pairing images labeled as “2” (arrow) with neuromodulator activation

ρ = 20. Classes are ordered with their distance from class “0” (see text for

details). Error bars are a standard deviation. (C) Synaptic tuning curves of a

neuron in the rat primary auditory cortex. Traces are before and after a 2 kHz

tone (arrow) is paired with high-frequency electrical stimulation of the nucleus

basalis triggering ACh release. Error bars are the standard error of the mean.

Reproduced from Froemke et al. (2007), with permission. In the model and in

animals, the pairing procedure boosts responses of individual neurons to the

paired stimulus. (D,F) Histogram of class preferences in the network model

before (D) and after (F) the pairing manipulation. Classes are ordered with their

distance from the paired class. Dashed line is a uniform distribution, data are

the mean of 10 runs, error bars indicate a standard deviation. Inset: weights of

the representation neurons for an example network; highlights indicate

neurons whose preferred classes are “2”. (E,G) Histogram of best frequencies

in the auditory cortices of rats before (E) and after (G) a 9 kHz tone is paired

with stimulation of midbrain dopaminergic neurons. Frequencies are ordered

to their difference from the paired tone. Modified from Bao et al. (2001), with

permission. In the simulation as in biology, the pairing protocol enhances the

representation of the paired stimulus and suppresses that of neighboring ones.

Figure 7D), suggesting that representing a class with more
neurons is beneficial to performance.

Training with ACh redistributes class preferences in the
network, leading to a less uniform distribution. Specifically,
ACh increases the number of neurons dedicated to challenging
classes while easier classes are represented with fewer units.
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FIGURE 5 | Neuromodulator release improves the network’s classification

performances. Left bar plots: error rates on the MNIST test dataset in networks

with 49 representation neurons. All approaches with neuromodulators lead to

significant improvements over Hebbian learning alone. “ACh stim.” is for

stimulus-wise ACh activation, “DA greedy” is for a network without exploration,

“DA post.” is for a network using the classifier’s posteriors as an approximation

to the expected value of the reward (see text for details). DA alone and DA with

ACh yield the best performance. Right bar plots: comparison with other

training methods for MLPs. All results are for networks of the same

architecture, namely a single hidden layer with 300 units. LeCun ‘98 are the

original results from LeCun et al. (1998a) on the MNIST dataset. L-BFGS and

Adam are optimisation methods for MLPs (see Appendix for details). Inset:

progression of the test performance for the networks with 49 neurons. Darker

traces are averages over 20 runs, lighter traces are individual runs. Data for the

bar plots are the mean of 20 runs, error bars indicate a standard deviation.

FIGURE 6 | The model’s optimal DA activation profile matches the one

reported in mammals. (A) We explore different values for the four δ./.

constants through grid search and report the classification performance of the

network (colored axis, data are averages over 10 runs). A star indicates the

best parameter set, dots indicate parameter sets yielding performances not

statistically significantly different from that of the best set (p > 0.01). (B) Firing

of dopaminergic neurons in monkeys in RPE scenarios equivalent to those of

the model (modified from Schultz et al. (1997), with permission). (C) Bar plot of

the best parameter set (dark red) and sets not significantly different from best

(light red). The parameter sets are sorted in decreasing order of their

classification accuracies, from left to right.

Consider for example the classes “1” and “4,” the stimuli
on which the network performs best and worst, respectively
(Figure 7C, top row). ACh release leads to a respective decrease
and increase in the number of neurons preferring these classes

(Figure 7B). The redistribution of neurons elicited by ACh raises
the network’s accuracy on the difficult classes (e.g., “4”) and
lowers performance on the easy classes (e.g., “1,” Figure 7C,
middle row). ACh thus reverses the correlation between neuron
count and performance (r = −0.79, Figure 7D). On average
over all classes, performance rises from 83.5 ± 0.7% with
Hebb’s rule alone to 85.0 ± 0.6% when supplemented with
ACh, corresponding to a relative decrease of 12% in the error
rate.

In addition to ACh activation computed as an average
over the classes m̂, we experiment with stimulus-wise ACh
activation. Here, the value of the ACh variable is determined
for each individual stimulus based on the classifier’s posterior
for this stimulus (specifically, we use the term κ instead
κ̄m̂ in Equation 10). Although this approach also improves
performance, the gains in accuracy are of smaller magnitude than
if ACh activation is computed as an average over the classes
(Figure 5, “ACh stim.”). We explain this outcome as the learning
mechanism attributing a too great representational importance
to demanding but detrimental data, for instance miss-labeled or
outlier data points.

3.2.3. Effects of DA
In contrast with ACh signalling, DA bears little effect on
the number of neurons responsive to the different classes
(Figure 7B). For both Hebbian and DA-based learning, the
distribution of the neurons’ preferred digit class is close to
uniform. The positive correlation between neuron count and
classification performance also remains after training with DA
(Hebbian: r = 0.22, DA: r = 0.20).

Visual inspection of the weights suggests that DA makes
neurons’ weights more selective to specific digit classes. Consider
the example weights shown in Figure 8A. Weights in one column
are for corresponding neurons in aHebbian andDAnetwork (the
networks were initialised with the same random seed). Weights
in the Hebbian model are rather poorly tuned to the digit classes
(e.g., the neuron resembling a “3,” “5,” and “8” in the second
column of Figure 8A). On the other hand, DA-based learning
leads to weights that more closely correspond to specific digits.
This observation can be quantified by measuring the average
responses of neurons to the different classes (first and third
rows in Figure 8A). The measure shown indicates that Hebbian
learning yields neurons exhibiting strong responses to multiple
stimulus classes, i.e., with a broad tuning. Training withDA yields
more sharply tuned weights as units respond almost exclusively
to a single digit category.

On average over all neurons, DA generates a 17%
increase in neurons’ activations to their preferred classes,
accompanied by a 84% reduction to non-preferred classes
(Figure 7E). These modifications amount to neuron
weights being more selective to specific digits, or having a
sharper tuning. We quantify such neural selectivity as the
difference between a neuron’s mean response to stimuli of its
preferred class and its mean response to stimuli of all other
classes:

ζc =
s̄•c − s̄◦c
s̄•c

, (13)
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FIGURE 7 | Network changes following neuromodulator release. (A) Weights of a subset of representation neurons (25 out of 49). (B) Histogram of class preferences.

Dashed line is a uniform distribution. ACh increases the number of neurons preferring the more challenging classes. (C) Performance of the network on the different

classes. Dashed line is average over all classes. (D) Performance on a class as a function of the number of neurons preferring this class. There is a positive correlation

for Hebbian and DA-based learning. The learning mechanism in ACh reverses this correlation. (E) Average responses of neurons to the digit classes, with the classes

ordered by the neurons’ preference. ζ indicates mean neural selectivity (see text). DA sharpens the responses of neurons, enhancing their activations to their preferred

classes and reducing their activations to non-preferred classes. Data are for 20 runs, error bars indicate a standard deviation. Gray overlaid bars in (B,C, and E) are

values for Hebbian learning for comparison.

where s̄•c and s̄◦c are the average responses of neuron c to stimuli
of its preferred and non-preferred classes, respectively. Here,
ζc = [0, 1], where ζc = 0 is a neuron that responds equally
strongly to all stimuli and ζc = 1 is a neuron that responds
exclusively to one digit category. Selectivities of individual
neurons are indicated on Figure 8A; selectivities averaged over
all neurons of a network, ζ , are indicated on Figure 7E. We
can also quantify a neural network’s selectivity for a specific
digit class m as the sum of the selectivity of the neurons whose
preferred stimulus class is m, ζm (see Figure 8-B,C). Training
with DA statistically significantly boosts neural selectivity
(p < 0.001).

DA induces large improvements in classification accuracy
(95.53 ± 0.05% for DA compared to 83.5 ± 0.7% for Hebbian
learning, p < 0.0001), corresponding to a 72.7% reduction in
the error rate. Performance for a class strongly correlates with
neural selectivity for this class, for both the Hebbian and DA
networks (r = 0.996 and r = 0.920, respectively, Figures 8B,C).
These strong correlations suggest that enhanced neural selectivity
explains the rise in correct responses following training with DA.

We can further visualize the outcome of DA learning by
reducing the dimensionality of input images to 2 features (using
t-SNE, Maaten and Hinton, 2008) and train the network on
these data (Figure 9). In Hebbian learning, the neural network
acts as a clustering algorithm and, as the learning mechanism
is agnostic to the labels of the stimuli, the classification
boundaries miss some aspects of the data classes. In particular,
boundaries are poorly defined between close-by clusters such
as “3,” “5,” and “8.” Following DA signalling, weights adjust to

match the boundaries for the conditions for reward delivery of
the task.

In the model for DA activation presented above, reward
predictions are binary, reflecting solely whether a decision is
explorative or not. An alternative approach is to use the classifier’s
posterior for the output class (i.e., its classification confidence)
as an approximation to the expected value of the predicted
reward. This posterior probability strongly correlates with the
empirically-measured reward probability (r = 0.98), validating
the approximation. However, we find that this approach does not
improve the network’s accuracy over binary reward predictions
(Figure 5, “DA post”).

In order to assess the role of exploration in DA-based learning,
we train a network without allowing explorative decisionmaking.
This greedy network achieves a classification score of 92.51 ±

0.07% (Figure 5, “DA greedy”), compared with 95.53 ± 0.05%
with exploration. Exploration thus accounts for a further 18%
relative drop in the error rate.

3.2.4. Learning on Non-uniformly Distributed Data
For the results on the MNIST dataset, ACh yields modest
reductions in error rates relative to DA. This less important
effect may be explained in part by the almost even distribution
of training examples over the classes in the dataset. In more
natural settings, some classes may contain many more examples
than others while a high classification performance is equally
important on all classes. For instance, a gatherer may see
many more examples of “green leaves” than “berries” but
still requires a low error rate for both classes. We test the
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FIGURE 8 | DA enhances class selectivity in neurons. (A) 1st and 3rd rows:

average responses of example neurons to the different integer classes. 2nd

and 4th rows: depictions of the neurons’ weights. The color axis represents

weight strength. While neurons in the Hebbian network respond to stimuli of

multiple classes, those trained with DA respond almost exclusively to a single

class. This observation is quantified as the selectivity ζc of neurons

(Equation 13). (B,C) Difference between rates of true and false positives for

each digit class as a function of a network’s selectivity for this class. (B) Data

are for a single Hebbian neural network. (C) Data are for 20 networks for both

Hebbian- and DA-based learning. DA enhances neural selectivity which

translates to greater classification accuracy.

impact of ACh in a modified version of MNIST in which a
subset of the classes are over-represented. Here, the training
dataset contains the classes “0,” “2,” “3,” “5,” and “8,” and
there are 60 times more “0” and “2” (the “leaves”) than the
other classes (the “berries”). To model equal importance of the
classes, we take the test dataset to be uniformly distributed
over the classes. For Hebbian learning, the network performs
poorly on the under-represented classes as it dedicates only few
neurons to these classes (Figure 10, top row). Neuromodulation
significantly improves accuracy and, on these data, ACh yields
gains comparable in size to those of DA. As with the standard
MNIST dataset, ACh carries its effect by attributing more
neurons to classes on which performance is low (those that
are under-represented). DA only has minimal effects on the
distribution of class preference; increases in performance derive
from boosting neural selectivity.

In addition to training the network with ACh and DA
separately, we combine the two neuromodulators by allowing

FIGURE 9 | 2-dimensional visualization of the outcome of DA learning. The

dimensionality of input images are reduced from 784 to 2 features and a

network is trained on these data. The input stimuli are depicted as colored

dots, the weights of representation neurons as black crosses, and the

classification boundaries as colored outlines. Hebbian learning performs

density estimation: weights represent clusters of data points agnostic to the

points’ labels. For classes that are well separated from others, the network

retrieves close to perfect boundaries (e.g., “1” or “0”). However, for close-by

classes (e.g., “3”, “5”, and “8”, magnified in the bottom row), the boundaries

poorly match the true labels. DA transmission adapts weights so that they

better agree with the class boundaries of the task.

first ACh release and then DA. This procedure leads to a
redistribution of the class preferences (due to ACh) followed
by an enhancement in neural selectivity (due to DA). The
combined activations of ACh and DA result in a further decrease
in error rates compared to either modulator alone, indicating
that the effects of ACh and DA can successfully combine
(Figure 10).

3.2.5. Impact of Code Sparseness
Lateral inhibition sparsifies the network’s neural code so
that inputs activate only one or a few neurons at a time
(Figure 11A). Such a strong sparse code facilitates learning with
neuromodulators as it avoids the credit-assignment problem.
Additionally, the global neuromodulator signals are then
essentially computed for a single neuron at a time. To examine
the extent of the impact of the code’s sparseness on learning, we
introduce a temperature parameter τ to the softmax function
determining the strength of the lateral competition:

sc =
exp(Ic/τ )

∑

c′ exp(Ic′/τ )
. (14)
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FIGURE 10 | On non-uniformly distributed data, ACh and DA yield gains in

accuracy of similar magnitudes. (A) Weights of the networks. (B) Distribution

of the neurons’ preferred digit classes. Dashed line is a uniform distribution.

(C) Rates of correct classification on the test dataset. Dashed line is the mean

over classes. (D) Progression of the test error for Hebbian, ACh, and DA.

Lighter traces are individual runs, darker traces are the mean of 10 runs.

(E) Error rates of the different methods. Data are the mean of 10 runs, error

bars indicate the standard deviation, gray overlaid bars in (B,C) are data for

the Hebbian network for comparison. On non-uniformly distributed data, ACh

and DA bear effects of comparable magnitudes. The refinements in weights

brought by the two modulators can combine to bring further decrease in error

rates.

For τ → 0+, the softmax function gives rise to a winner-
take-all competition with a single active neuron; for τ → ∞,
neural responses are uniformly distributed. We train networks
with different τ values on the non-uniform MNIST dataset (we
use the non-uniform dataset to better discern the effects on

FIGURE 11 | Neuromodulator-based learning improves performance also for

low code sparseness. (A) Impact of the temperature parameter τ of the

softmax function (Equation 14) on the sparseness of the neural code. The

neuron indices are ordered from highest to lowest neural responses; the five

most active neurons are shown. (B) Rate of correct classification for different τ

values. Performance is on the non-uniform MNIST dataset. Data are mean of 3

runs, error bars are the standard deviation. Although performances drop with

weaker competition, neuromodulators boost accuracy even for low code

sparseness.

FIGURE 12 | Comparison of label reliance for ACh and DA. Network

performance as a function of the percentage of training labels used. For “DA

full reinforcement” we use the indicated portion of labels to train the classifier

but use all labels to provide the reward feedback. The size of the gains deriving

from ACh are not statistically different from each others for any label fractions

(p > 0.01). Data are the mean of 3 runs, error bars indicate the standard

deviation.

ACh-based learning). We find that the networks’ performance
drops as code sparseness decreases (Figure 11B). However, the
neuromodulators give rise to large and statistically significant
improvements even for low code sparseness, indicating that
strong competition is not required for effective neuromodulator-
based learning.

3.2.6. Impact of Label Availability
We examine the impact of label availability on learning
by training networks with a varying fraction of labels,
from 100% down to 0.1%. The accuracies of the networks
decrease with label scarcity, both for learning with Hebb’s
rule and with neuromodulators (Figure 12). For the Hebbian
network, labels only affect the classification layer; the decay in
performance therefore derives exclusively from lower classifier
accuracy.

For the neuromodulators, while label scarcity affects them
both, the consequences aremore substantial for DA. In particular,
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when less than 1% of labels is used, the benefits of DA drop
below those of ACh, this for both versions of the MNIST dataset.
In error-based learning, labels are necessary to determine the
correctness of an output. Reducing the ratio of labeled data
consequently substantially hinders DA learning. On the other
hand, the ACh signal yields gains in performance that are not
statistically significantly different for all label fractions (p > 0.01).
The constant improvements over declining label availability
suggest that ACh learning relies effectively only minimally on
labels, making ACh signaling beneficial even for scarcely labeled
data.

DA-based learning does not require labels per se but only
indications of whether outputs are right or wrong. We train
an additional network using a fraction of the labels for the
classifier but all labels for the reward feedback. The results show
that performance remains high even for small label fractions,
indicating that DA performs well in scenarios where true labels
are in short supply but reinforcement feedback is available.

3.2.7. Performance Benchmark
In order to benchmark the functional performance of our
algorithm, we compare it to MLPs trained with error back-
propagation. We use the same architecture for our network and
the MLPs (in this case, 784 input, 300 hidden, and 10 output
neurons) and report the test error rate on the MNIST data. We
train the MLPs using two state-of-the-art optimisation methods,
the L-BFGS (Zhu et al., 1997) and Adam algorithms (Kingma
and Ba, 2014) (see Appendix). In the original publication of
benchmark results on the MNIST dataset, LeCun et al. (1998a)
report a test error of 4.7% for an MLP of the architecture
described above. Our biology-inspired algorithm yields a mean
error rate of 2.88 ± 0.05%, outperforming this original result.
The MLPs with the L-BFGS and Adam optimisers yield an error
rate of 2.15± 0.04% and 1.88± 0.02%, respectively (Figure 5). In
comparison, spiking neural networks intended for neuromorphic
systems reach error rates of 5.0% (6,400 hidden spiking neurons,
Diehl and Cook, 2015) and 4.4% (500 hidden spiking neurons,
Neftci et al., 2015).

4. DISCUSSION

4.1. Learning Mechanisms
We study the effects of two modulatory signals on the
representation and classification performance of a neural
network. In our model, both signals act identically on synaptic
plasticity but follow different release schedules, putatively those
of ACh and DA. We find that these two signals give rise
to distinct modifications in neural representations that both
improve classification performance. Our model allows us to
formulate hypotheses regarding the functional roles of ACh
and DA in cortical representation learning. These roles can be
explained as follows.

Consider the input Ey(n) and the weights EWc as vectors in
a high-dimensional space. The activation of a neuron sc is
computed as the dot product between an input and the weight
vectors. Lateral inhibition introduces a soft winner-take-all
competition resulting in a few neurons having strong responses

and other neurons being silent. Hebbian learning then induces
weight modifications E1Wc = ǫ · sc(Ey − EWc) (Equation 5). We
note that, for each weight, E1Wc points from the weight towards
the current input. Both the variables ACh and DA modulate the
magnitude of E1Wc, ‖ E1Wc‖ (Equations 5a and 5b).

Hebbian learning in the network performs density estimation:
the distribution of the weights is determined by the density of
data points in the input space. Modulating the learning rate of
the network is similar to modifying data point density in that
presenting a training image twice is comparable to presenting this
image once but with a twice larger learning rate. For ACh-based
learning, input images that are more challenging will trigger
greater ACh activation, or have a larger learning rate. A cluster
of data points associated with greater ACh activation is thus
similar to having more data points in this cluster, inducing more
neurons to represent the cluster. Or in other words, data points
with ACh > 1 will have ‖ E1Wc‖ of a greater magnitude, thereby
exerting an increased “pull” on the weights.

For DA-based learning, the variable DA takes a value
δ./. specified by the current RPE scenario. According to the
parameter search, for correct reward predictions (+pred,+rew or
−pred,−rew), the optimal δ+/+ and δ−/− are of approximatively

zero. In both cases, ‖ E1Wc‖ ≈ 0; all the network’s weights
remain unchanged. When the network takes an exploitative
decision that turns out to be wrong (+pred, −rew), the optimal
δ+/− is inferior to zero. The vector E1Wc is negated so that
it points away from the current input (Figure 13A). Active
neurons will have their weights move away from the current
input and are then less likely to win the softmax competition at
future presentations of this input. When the network takes an
explorative decision that is surprisingly correct (-pred, +rew),
the optimal δ−/+ is positive. The weights of active neurons
move towards the input (Figure 13B). The explorative decision
(expected incorrect) turned out to be right; this decision should
be taken again on future presentation of the same stimulus. DA-
based learning can be understood as reinforcement learning at
the level of sensory representations.

These learning mechanisms are related to several known
machine learning algorithms. In the purely Hebbian case, the
network is akin to a Kohonen map (Kohonen, 1982) in that
learning proceeds iteratively through neural competition and
weight adaptation (without however the cooperation aspect
which confers the topological organization to Kohonen maps).
The ACh learning mechanism is reminiscent of boosting
methods, for instance AdaBoost (Freund et al., 1999), which
attribute greater weights to misclassified training examples.
The DA learning mechanism is closely related to algorithms
such as REINFORCE (Williams, 1992) which make use of a
reinforcement signal acting on the learning rate of a neural
network’s weight update rule. It is interesting to note that,
despite this close correspondence, the decision to model DA as a
modulation of the network’s learning rate was made not to match
those rules but rather to mirror biology. Indeed, our model of
DA (and ACh) emulates the observation that stimuli coinciding
with release of the neuromodulators are over-represented in
animal sensory cortices (Figure 4). The close similarity between
our model of DA and REINFORCE’s learning rule can thus
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FIGURE 13 | Cartoon explanation of DA-based learning. The plots depict a

toy example of a two-dimensional input space with dots as training examples

and crosses as neuron weights, the colors of which indicate classes. The

highlighted blue training example is the current input to the network. The black

arrow depicts the weight change vector E1W. The red arrow depicts the same

vector E1W after modification by the DA variable. As a scalar multiplier, DA only

affects the magnitude (and sign) of E1W and leaves its direction unchanged.

(A) The network makes an incorrect exploitative decision: the blue input

activates the yellow cross. The network expected a reward but none is

delivered. In this case, DA < 0, negating E1W and moving the weight away

from the training example (red arrow). (B) The networks makes a correct

explorative decision: the exploitative scenario would have activated the yellow

weight near the current input but noise injection in the activation of neurons led

to another (blue) neuron being more active. This decision is surprisingly correct

and the network is rewarded. In this case, the value of DA is positive, moving

the weight towards the current input (red arrow).

be taken as further support for the biological realism of the
latter.

4.2. Acetylcholine
Activation of the cholinergic system in mammals appears to
follow attentional efforts. Sarter et al. (2006) review evidence
suggesting that deteriorating performances, as indicated by a
rise in error rates and a decline in reward rates, trigger effortful
cognitive control to prevent erroneous behavior. Attentional
efforts are paralleled by a heightened activation of cholinergic
neurons in the basal forebrain (Himmelheber et al., 2000; Passetti
et al., 2000; Dalley et al., 2001; Arnold et al., 2002; McGaughy
et al., 2002; Kozak et al., 2006) which in turn broadcast this signal
to the cortical mantle (Hasselmo and Sarter, 2011). For instance,
engaging in a demanding motor (Conner et al., 2010) or tactile
(Butt et al., 1997) task enhances ACh release in the motor and
somatosensory cortices, respectively.

There is broad evidence that ACh acts as a permissive
plasticity agent at its projection sites (Buchanan et al., 2010;
Giessel and Sabatini, 2010), for instance promoting alterations
of neural representations in sensory cortices (Greuel et al., 1988;
Bröcher et al., 1992; Kilgard and Merzenich, 1998a,b; Ji et al.,
2001; Ma and Suga, 2005; Suga, 2012; Chun et al., 2013). The
scientific literature contains several hypotheses regarding the
functional role of the modifications elicited by ACh. Froemke
et al. (2007) suggest that shifts in neural tunings toward a
stimulus paired with ACh activation serves as a long-term
enhancement of attention to this stimulus. Others postulate that
this modification stores the behavioral relevance of the stimulus
(Kilgard and Merzenich, 1998a; Weinberger, 2003) or generally
improves signal processing (Gu, 2003; Froemke et al., 2013).

Here, we show that a signal modulating synaptic plasticity as
a function of task difficulty improves the quality of a neural
representation with respect to a classification task. The gains in
performance result from assigning more neurons to challenging
stimulus classes. Our model suggests that ACh serves this role in
mammalian cortices.

Experimental evidence offer support for this hypothesis.
For instance, motor skill acquisition and the accompanying
enlargement of relevant representations in the motor cortex
require ACh activation (Conner et al., 2003, 2010). Conversely,
discrimination abilities rise for a tone whose representation is
expanded as a result of repeated pairing with ACh activation
(Reed et al., 2011). More generally, ACh antagonists or lesion
of the cholinergic system impairs perceptual (Butt and Hodge,
1995; Fletcher and Wilson, 2002; Wilson et al., 2004; Leach
et al., 2013) and motor skill learning (Conner et al., 2003). These
results indicate that the cholinergic system is crucial for forms
of learning involving modifications in sensory maps, especially
those affecting the relative extent of cortical representations, as
suggested in this work.

Our model of ACh is in line with a previous simulation study
by Weinberger and Bakin (1998). The authors make use of a
modified version of Hebb’s rule and simulate the action of ACh as
an amplification in the post-synaptic activation of target neurons.
An in vivo micro-stimulation study validates this model. For
the Hebbian rule used in this work, the two models of ACh are
mathematically equivalent; this previous work thus offers support
to the simulation employed here.

4.3. Dopamine
Dopaminergic neurons of the midbrain encode various features
of rewards (Satoh et al., 2003; Tobler et al., 2005) and, in
particular, strongly respond to the difference between predicted
and received rewards (Schultz et al., 1997; Schultz, 2010).
Midbrain neurons project to the entire cortex (Haber and
Knutson, 2010) and the reward signals they carry modulate
neural activity in most cortical areas (Vickery et al., 2011)
including primary sensory cortices (Pleger et al., 2009; Brosch
et al., 2011; Arsenault et al., 2013).

DA affects plasticity at the sites where it is released, as
measured both at the level of synapses (Otani et al., 1998;
Centonze et al., 1999; Blond et al., 2002; Bissière et al., 2003;
Li et al., 2003; Sun et al., 2005; Matsuda et al., 2006; Calabresi
et al., 2007; Navakkode et al., 2007) and behaviorally (Brembs
et al., 2002; Wise, 2004; Graybiel, 2005; Kudoh and Shibuki,
2006; Klein et al., 2007; Luft and Schwarz, 2009; Molina-Luna
et al., 2009; Hosp et al., 2011; Schicknick et al., 2012; Ott et al.,
2014). In sensory cortices, DA efflux, triggered either by electric
stimulation of the midbrain or by reward delivery, elicits plastic
changes in the responses of primary sensory neurons (Bao et al.,
2001, 2003; Beitel et al., 2003; Frankó et al., 2010; Poort et al.,
2015).

The role of the plastic modifications induced by DA are
usually understood in terms of reinforcement learning, for
instance to learn the appetitive value of stimuli (Brembs et al.,
2002; Wise, 2004; Frankó et al., 2010) or to learn reward-directed
behaviors (Watkins and Dayan, 1992; Dayan and Balleine,
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2002; Wise, 2004; Schicknick et al., 2012; Ott et al., 2014).
In sensory representations, the changes brought forth by DA
were previously hypothesized to enhance the saliency of stimuli
predictive of rewards (Bao et al., 2001) and to adapt cortical
representations to task requirements (Brosch et al., 2011).

Here, we show that a signal modulating plasticity as a function
of RPEs adapts synaptic weights to the reward contingencies of
a task, thereby improving performance on the task. Specifically,
in our model, the responses of neurons become matched to
the boundaries in conditions for reward delivery. In the digit
classification task, this results in neurons being better tuned to
the distinct digit classes, in this way improving classification
performance. We suggest that, in mammals, dopamine carries
this role of adapting sensory representations to the reward
contingencies of a task.

After training monkeys on a visual discrimination task,
neural responses become matched to the stimulus features
that discriminate between the reward conditions of the task
(Sigala and Logothetis, 2002). This process is comparable
to the effect of DA in our model. We thus postulate that
DA orchestrates these changes and predict that lesioning the
dopaminergic system would prevent this form of learning.
Animal experiments show that interfering with DA signaling
impairs sensory discrimination learning (Kudoh and Shibuki,
2006; Schicknick et al., 2012), supporting this prediction.

The optimal values of the δ./. constants we find through
parameter exploration are in close qualitative agreement with
the release properties of DA observed in primates (Schultz
et al., 1997; Tobler et al., 2005) (Figure 6). Both in animals
and in the present model, unpredicted rewards lead to a rise in
dopaminergic activation while the absence of predicted rewards
lead to a reduction in activation. Correctly predicted rewards
leave dopaminergic activation essentially unchanged. The release
values in the model were selected to maximize performance on
a discrimination task. It is conceivable that the dopaminergic
activation schedule in animals was similarly selected through
evolutionary pressures to maximize perceptual abilities.

We tested the effect of explorative decision-making while
training with DA and found that exploration yields an additional
relative reduction of 18% in error rates. Studies show that human
subjects actively engage in exploratory behavior when making
decisions (Daw et al., 2006). Explorative decision-making is
usually understood as a method to sample available choices with
the prospect of discovering an option richer than the current
optimum. Our model suggests that, in perceptual decision
making, such explorative behavior may additionally serve the
purpose of refining cortical sensory representations.

4.4. Comparing Acetylcholine and
Dopamine
On the non-uniform dataset, ACh gives rise to improvements
comparable in size to those of DA. This result highlights the
relevance of ACh in scenarios where training examples are
largely non-uniformly distributed over the classes, as is often the
case in natural conditions. Furthermore, in contrast to DA, the
ACh signal yields gains in accuracy of constant magnitude over

decreasing label availability. This finding points to a particularly
beneficial role for ACh when environmental feedback is scarce.

On the non-uniform dataset, the combined effects of the two
neuromodulators are greater than either one separately. This
result indicates that the weight modifications brought by ACh
and DA are distinct and complimentary, and that they can
successfully combine.

4.5. Functional Performances and Outlook
The learning mechanisms presented in this work yield error
rates close to that of state-of-the-art optimisation methods
used to train MLPs for comparable network architectures.
Since evolutionary pressures must have favored well performing
learning mechanisms in the brain, any candidate model of
cortical learning must offer strong functional performances. Our
model meets this criteria, making it a suitable model for learning
in biological neural structures.

In line with recent studies of biologically-plausible learning
(Keck et al., 2012; Nessler et al., 2013; Schmuker et al., 2014; Diehl
and Cook, 2015; Neftci et al., 2015), we used correct classification
as a measure of performance. This measure facilitates the
study of the functional roles of neuromodulators and the
comparison with previous work. Our neuromodulator-based
learning method can be extended to tasks beyond classification,
for instance by generaliz ing the softmax competition to k-
winner-take-all (O’reilly, 2001) or soft-k-winner-take-all (Lücke,
2009) competition.

Even in the sole context of classification, however, our
approach offers several interesting advantages. For instance,
compared to the traditional approach of gradient descent on
a classification error, neuromodulator-based learning requires
a weaker supervision signal, making use of binary rewards
instead of explicit labels. Additionally, our model learns even
in the absence of environmental feedback through Hebbian
learning. Finally, weight modifications are based on synaptically-
local information and on two signals broadcasted identically
to all neurons, which matches capabilities of biological neural
networks.

On the functional side, learning with DA and ACh has been
shown to decisively improve classification performance in our
model system. Although it was not the main focus of this study,
we note that very high classification performances even for
relatively small networks (compare sizes in Diehl and Cook, 2015;
Neftci et al., 2015) could be achieved using neuromodulation.
The use of neuromodulation in spiking neural systems for
neuromorphic chips (Diehl and Cook, 2015; Neftci et al., 2015)
is therefore likely to result in performance gains. Similarly,
neuromodulation is expected to further improve performance of
novel hierarchical networks with Hebbian learning (Forster et al.,
2016) which have a functional focus on learning from data with
very few labels.

It is interesting to note that, since the initial publication
of the MNIST dataset, advances in gradient-based learning
resulted in continuous and substantial decreases in error rates.
The biologically-inspired method presented in this work is at a
relatively early stage and we may expect similar improvements
from future research.
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A. APPENDIX

A.1. Code and data
Themodel was written in the Python programming language and
was run on a computer cluster. The code for the neural network
is available at https://github.com/raphaelholca/hebbianRL. The
original MNIST dataset is available at http://yann.lecun.com/
exdb/mnist/. The dataset is randomly split into training and
testing sets; the network’s performance is reported on the testing
images not seen during training. The network with 300 hidden
units used for performance comparison with other work was
trained with the full (unbalanced) dataset. For all other results,
the datasets were balanced so that they contain the same number
of examples for each digit class. This balancing has negligible
effects on the results.

A.2. Weight initialisation
We pre-compute the activation of input neurons Ey through
Equation 1 for the whole training dataset. Learning proceeds
through full iterations over the dataset during which Ey are
presented in a random order to the network. Weights of
representation neurons are initialised using the statistics of the
input images. Specifically, we initialise the weights with the mean
activation of input neurons taken over the whole dataset, with the
addition of noise to break symmetry:

Wcd = µ(yd)− σ 2(yd) · ηinit , (A1)

where µ(·) and σ 2(·) are the mean and variance taken over all
training images N, respectively, and ηinit is noise drawn from
a uniform distribution in the interval [0,0, 2.0). Activations
propagate through the network as a succession of Equations 2, 4,
5. Values for all hyper-parameters were found through grid search
(see Table A1).

A.3. Batch learning
To speed up computation, we train the network using mini-
batches; weight updates are computed over batches of 50
training examples. Using mini-batches only negligibly affects
representation learning and the network’s performance.

In the case of DA-based learning, negative learning rates (for
absent expected rewards, +pred −rew) could potentially result
in negative weights. For biological realism and computational
stability, we prevent this by excluding weight updates for a
representation neuron c if any weight Wcd would become
negative after the weight update. For the parameter set presented
in Table A1 in Supplementary Methods, this rule only rarely
prevents learning (∼ 0.1% of all batch updates). However,

TABLE A1 | Hyper-parameters used in training the network. Values were

determined through parameter exploration.

Parameter Description Value

α Amplitude of the sigmoid function for ACh release 2.0

β Slope of the sigmoid function for ACh release 20.0

δ+/+ DA activation for correctly predicted reward 0.01

δ+/− DA activation for incorrectly predicted reward −1.0

δ−/+ DA activation for unexpected reward 4.0

δ−/− DA activation for correctly predicted absence of reward −0.25

A Normalization constant for feedforward inhibition 1.0×103

ǫ Learning rate 5.0×10−3

υ Variance of the normal distribution of noise η 0.3

TABLE A2 | Hyper-parameters for the benchmarking algorithms, as implemented

in the Scikit-learn module.

Parameter Description Value

hidden_layer_sizes Number of neurons in the hidden layer 300

activation Activation function for the hidden layer ‘relu’

algorithm Algorithm for weight optimisation ‘adam’ or

‘l-bfgs’

alpha Regularisation term (L2 penalty) 1e-06

batch_size Size of mini-batches for stochastic optimisation 200

learning_rate_init Initial learning rate (Adam) 0.001

beta_1 Exp. decay for estimates of 1st moment (Adam) 0.8

beta_2 Exp. decay for estimates of 2nd moment (Adam) 0.9

epsilon Value for numerical stability (Adam) 1e-08

when performing parameter exploration of the δ./. variables,
some parameter sets lead to rapid decay to negative weight
values, and this rule is then necessary to ensure computational
stability.

A.4. Comparison benchmarks
The MLP algorithm was obtained from the Scikit-learn module
Pedregosa et al., 2011) (version 18.dev0, downloaded on
04/29/16). We used 3-fold cross-validation and grid search to
determine the values of the hyper-parameters (see Table A2).
The two optimisation methods used to train the MLP were
the Adam and L-BFGS algorithms. Adam is a first-order
stochastic optimisation method that uses individual adaptive
learning rates for the different parameters. L-BFGS (Limited-
memory Broyden-Fletcher-Goldfarb-Shanno) is a quasi-Newton
method.
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Chunking refers to a phenomenon whereby individuals group items together when

performing a memory task to improve the performance of sequential memory. In this

work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM)

model to explain why such improvement happens. We address this issue by linking

hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover

that a chunking mechanism reduces the requirements of synaptic plasticity since it

allows applying synapses with narrow dynamic range and low precision to perform a

memory task. We validate a hardware version of the model through simulation, based

on measured memristor behavior with narrow dynamic range in neuromorphic circuits,

which reveals how chunking works and what role it plays in encoding sequential memory.

Our work deepens the understanding of sequential memory and enables incorporating

it for the investigation of the brain-inspired computing on neuromorphic architecture.

Keywords: chunking, synaptic plasticity, sequential memory, neuromorphic engineering, memristor

1. INTRODUCTION

The word “Chunking,” a phenomenon whereby individuals group items together when performing
a memory task, was initiated by (Miller, 1956). (Lindley, 1966) showed that groups produced by
chunking have concept meanings to the participant. Therefore, this strategy makes it easier for an
individual to maintain and recall information in memory. For example, when recalling a number
sequence 01122014, if we group the numbers as 01, 12, and 2014, mnemonic meanings for each
group as a day, a month and a year are created. Furthermore, studies found evidence that the firing
event of a single cell is associated with a particular concept, such as personal names of Bill Clinton
or Jennifer Aniston (Kreiman et al., 2000, 2001).

Psychologists believe that chunking plays as an essential role in joining the elements of amemory
trace together through a particular hierarchical memory structure (Tan and Soon, 1996; Edin et al.,
2009). At a time when information theory started to be applied in psychology, Miller claimed
that short-term memory is not rigid but amenable to strategies (Miller, 1956) such as chunking
that can expand the memory capacity (Gobet et al., 2001). According to this information, it is
possible to increase short-term memory capacity by effectively recoding a large amount of low-
information-content items into a smaller number of high-information-content items (Cowan,
2001; Chen and Cowan, 2005). Therefore, when chunking is evident in recall tasks, one can expect a
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higher proportion of correct recalls. Patients with Alzheimer’s
disease typically experience working memory deficits; chunking
is also an effective method to improve patients’ verbal working
memory performance (Huntley et al., 2011).

However, to this day, the mechanism why chunking improves
human memory is unclear. This is mainly due to two difficulties.
Firstly, no mathematical model is applicable to describe the
memory processing in human brain. Secondly, no bio-plausible
validation system that allows to emulate how chunking can be
merged into a proper memory model. Although researchers have
a long way to go before synthetic systems canmatch the capability
of the natural brain, there are breakthroughs in neuroscience and
neuromorphic engineering studies (Mead, 1989):

(1) The discovery of the link between transient metastability and
sequential memory in the brain. Advances in non-invasive
brain imaging (Gholipour et al., 2007) allow assessing
the structural connectivity of the brain and corresponding
evolution of the spatio-temporal activity in details. This
makes the structure and dynamics of functional brain
networks useful for building theoretical memory models.
Among these results, one popular view is that, sequential
memory, which refers to the functionality of the brain to
encode and represent the temporal order of discrete elements
occurring in a sequence, plays a key role in organizing
the brain memory. The metastable state (Rabinovich et al.,
2008, 2014; Mante et al., 2013; Tognoli and Kelso, 2014)
is a significant feature of sequential memory. Experimental
and modeling studies suggest that most of the sequential
memories are the result of transient activities of large-scale
brain networks in the presence of noise (Rabinovich et al.,
2008; Maass, 2014).

(2) The discovery of the bridge between the synapse and the
memristor. A synapse is a functional unit of the brain,
which permits a neuron to pass an electrical or chemical
signal to another neuron. In the last few years, it is believed
that a synapse bears striking resemblance to a two-terminal
electrical device termed as “memristor” (memory+ resistor)
(Chua, 1971; Strukov et al., 2008; Kim et al., 2012). The
memristor resistive states can be modified by controlling
the voltage applied across its terminals or the current
flowing through it, which makes it promising to emulate the
biological synapse (Jo et al., 2010; Chang et al., 2011; Kuzum
et al., 2011; Yu et al., 2011; Alibart et al., 2012; Jackson
et al., 2013; Kuzum et al., 2013; He et al., 2014). Clearly,
advancements in memristor technology are establishing
entirely new fashions in brain-inspired chip design.

Based on above breakthroughs, we set out to investigate why
chunking improves sequential memory performance. To achieve
this, we build a bio-plausible hierarchical chunking of sequential
memory (HCSM) model shown in Figure 1 using memristors
as synapses. More specifically, our works are summarized as
follows. Firstly, a HCSM model consisting multilayered neural
networks is proposed. Each layer is divided into different
chunks of neurons. Within each chunk, neurons are all-
to-all connected (Figure 3); while chunks in different layers
might be correlated through an activation signal denoted by

the dotted arrows in Figure 1. In particular, a chunk in the
upper layer and its connected ones in the adjacent lower layer
are termed as parent chunk (PC) and child chunks (CCs),
respectively. A winner neuron in a PC activates its connected
child chunk (CC) to form a hierarchical structure (Figure
S4). The winnerless competition (WLC) (Rabinovich et al.,
2001) principle is applied between neurons, i.e., the winner is
temporary or “metastable” because it switches from one neuron
to another. The HCSM model selects the necessary metastable
states and link them together to form a sequential memory
through the hierarchical organization. When a recall cue is
given, the model presents a memory trace containing temporary
winner neurons among different chunks. The trace reflects the
sequential memory recall. Secondly, to emulate the synapse with
ideal synaptic plasticity, we use iron oxide (He et al., 2014)
as the memristor resistive layer. A memristor with a typical
sandwich structure, 0.25 µm2 − size TiW/Pt/FeOx/Pt/TiW,
is fabricated, as shown in Figure S1. The well-known I-V
hysteresis loops of memristor (Chua, 2011) under applied
triangle-wave-shape DC voltage sweeps are observed. The
conductance of this memristor can be monotonically and
consecutively modulated among the intermediate states, which is
crucial for the synaptic plasticity emulation. Lastly, we provide
a neuromorphic chip implementation (Figure 3, Figures S2–
S4) in which the memristor crossbar is used for emulating
the synapse matrix of each chunk in the proposed HCSM
model, and a scheme for encoding the sequential memory
is presented. The key to encode memory in a bio-neural
network is to exploit its ability of changing the synaptic
weights (Zeng et al., 2001), which is also known as synaptic
plasticity. In fact, synaptic plasticity is widely believed to be
essential for creating the memory and learning ability of the
brain (Hebb, 1949; Bi and Poo, 1998; Song et al., 2000; Han
et al., 2011; Ramanathan et al., 2012; Carrillo-Reid et al.,
2015).

With the HCSM model, the chunking mechanism can be
linked to the synaptic plasticity. Usually, the dynamic range of
the synapse, i.e., a memristor when considering a neuromorphic
chip, is required to bemuch wider if the same length of sequential
memory is encoded without chunking. By contrast, we observed
that only a narrower dynamic range and imprecise state of
the synaptic weight is required to encode a sequential memory
with chunking mechanism. Thus, it is shown that chunking
improves sequential memory by reducing the requirements of
synapse plasticity in memory encoding. Our work reveals how
chunking works and what role it plays in encoding sequential
memory.

2. MATERIALS AND METHODS

As illustrated in Figure 2, this work explains why hierarchical
chunking mechanism helps improve the memory performance
and provides a promising solution to successfully realize memory
dynamics in neuromorphic circuits. Through the reduced
“synaptic plasticity” provided by the chunking mechanism,
i.e., narrow dynamic range and not so precise state, we
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FIGURE 1 | Hierarchical chunking of sequential memory (HCSM) model. (A) The metastable states within a chunk, within which neurons are all-to-all

connected. Each colored node denotes a temporal winner neuron in the chunk, which is a metastable state switching from one to another in the sequential memory

trace. The shadowed circle encompassing each metastable state represents the domain of attraction for the state. (B) An illustrative diagram of the proposed

hierarchical chunking sequential memory model. The chunk indexed by (n,m) denotes the mth chunk in layer n. A neuron representing a particular concept in a chunk

(termed as PC) in layer n may activate a chunk (termed as CC) in layer n+ 1 that is connected to the PC neuron through a dotted arrow. In a memory recall, as the

metastable neuron switches from one to another in a PC, the corresponding CCs is activated in a sequential order.

FIGURE 2 | An illustrative diagram of the main idea in this work. General neural networks without chunking require the synapse to have wide dynamic range,

especially to memorize a long sequence. While the proposed hierarchical chunking mechanism greatly improves memory performance under a lower requirement for

synaptic plasticity, i.e., only requires a narrow dynamic range and not a very precise state, which seems bio-plausible. A neuromorphic architecture is designed based

on memristor devices with narrow dynamic range to successfully perform the sequential memory simulation. In this way, the reduced “synaptic plasticity” provided by

chunking model bridges the brain memory dynamics and neuromorphic system.

establish a bridge between the brain memory dynamics and the
neuromorphic system.

2.1. Synapse and Memristor
The molecular nature of the synaptic plasticity has been
mathematically examined to have identical calcium-dependent
dynamics, where the synaptic weight is described by a linear
equation as follows (Shouval et al., 2002):

dWi
dt

= 1
τ ([Ca2+]i)

(

�([Ca2+]i)−Wi

)

, (1)

where Wi is the synaptic weight of the i-th input axon. τ is a
time constant with respect to the insertion and removal rates

of neurotransmitter receptors, which is a function dependent on
the concentration of calcium [Ca2+]. � is another function of

[Ca2+] that depends linearly on the number of receptors on the
membrane of the neuron. Equation (1) implies that the present

synaptic weight between neurons is dependent on the historical

weight indirectly, and it can be adjusted by changing �([Ca2+]).
To mimic the biological synapse, it is critical to build

an artificial synaptic device to emulate its plastic behavior.

Fortunately, the memristor (Strukov et al., 2008) was successfully

developed and found to bear striking resemblance to the

synapse in neural networks. The fundamental characteristic of

a memristor is that its present resistance is dependent on its
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historical resistances. The resistance of a memristor can be
adjusted by changing the applied voltage or current, which
controls the transport of charge carriers in the nanoscale device.
In this work, iron oxide is adopted as the memristor resistive
layer. As shown Figure S1 in the Supplementary Information,
a typical memristor of sandwich structure with 0.25 µm2 −

size TiW/Pt/FeOx/Pt/TiW is fabricated.
However, as shown in (Kuzum et al., 2013), the dynamic

range of memristor conductance to effectively emulate a
synapse is often relatively narrow. For instance, the iron oxide
memristor fabricated in this work is an ideal synaptic device
due to its monotonous and consecutive state distribution.
Note that the resistive ratio of the maximum conductance
to the minimum conductance reflects the dynamic range
of synaptics weight. As seen in Figure S1C, the ratio is
only about 3 ∼ 4. This is consistent with a narrow
distribution of biological synaptic weights that generally follows
a lognormal distribution (Song et al., 2005; Teramae and
Fukai, 2014). With the proposed HCSM model, it will
be shown later that the neuromorphic system also works
well since HCSM reduces the requirements on the synaptic
plasticity.

2.2. Hierarchical Chunking of Sequential
Memory (HCSM) Model
We propose a hierarchical chunking of sequential memory
(HCSM) model shown in Figure 1, which consists of multi-
layered networks. Each dashed circle indexed by a unique tuple
(n,m) represents the mth chunk in the nth layer. Within each
chunk, neurons are all-to-all connected (Figure 3). It can be seen
that in each layer n, each neuron is connected to a specific sub-
chunk in layer n + 1 to form a hierarchical structure (Figure
S4), through an activation signal denoted by the dotted arrows
in Figure 1. Thus we refer a chunk in layer n and its connected
chunks in layer n + 1 as a parent chunk (PC) and child chunks
(CCs), respectively. Clearly, a chunk in layer n is a CC, with
respect to its PC in layer n − 1, and also a PC with respect
to its CCs in layer n + 1. In other words, PCs and CCs only
represent relative relationships between connected chunks from
two successive layers.

The winnerless competition principle (WLC) (Rabinovich
et al., 2001) among neurons in each network is described by the
generalized Lotka-Volterra model in (Bick, 2009). The neuron
preserving the maximum activity is a winner neuron. Here
“winnerless” implies a winner is only metastable and it will switch
from one neuron to another in a sequential memory trace as
shown in Figure 1A. As each temporary winner neuron in a PC
chunk will activate its connected CC, competition exists among
different chunks in the same layer. When a recall cue is given, the
HCSM model presents a memory trace containing all temporary
winner neurons as shown in Figure 1B. In order to apply the
WLC principle to the model of hierarchical architecture in this
work, a time constant (τ > 0) is introduced to reflect the dynamic
evolving rate in the generalized Lotka-Volterra model. The WLC
in a chunk indexed by (n,m) is then described by the following
dynamic equation:

ẋ
(n,m)
i = τ (n,m) · x

(n,m)
i (σ

(n,m)
i −

∑N
(n,m)
0

j= 1 w
(n,m)
ij · x

(n,m)
j )+ v

(n,m)
i

(2)
where τ (n,m) is the time constant that reflects the rate of activation
and decay of N

(n,m)
0 neurons in the chunk (n,m), σ

(n,m)
i is a

fixed bias term that determines the equilibrium neural activity

in the absence of external inputs and noise, x
(n,m)
i ≥ 0 is the

output neural activity of neuron i, w
(n,m)
ij ≥ 0 for j 6= i is

the inhibitory weight (Brunel and Wang, 2001) from neuron

j to neuron i, w
(n,m)
ii = 1 for i = 1, ...,N

(n,m)
0 , and v

(n,m)
i is

the external noise in the interval [−ε, ε] where ε is a small

positive constant. Note that the weight w
(n,m)
ij , and σ

(n,m)
i for

all i and j are required to be encoded when performing specific
task. Also, the connection between the nodes in different layers
is not reflected in the dynamic Equation (2). However, it is
assumed that a neuron in the PC can activate a CC chunk
that is connected to the PC neuron through a activation signal
denoted by dotted arrow. This implies that different chunks, for
example the chunks in layer 2 of Figure 1, do not interact with
each other directly in the same layer, but they indeed interact
with each other in a particular way in the higher layer (layer
1). The time constant τ (n,m) for a CC is normally smaller than
that in a PC, which implies that the chunks in the CC layers
possess relatively faster dynamic evolving rates. Since the HCSM
model may be a deep architecture, the time constant τ has
a wide range. It is known that there is indeed a wide range
of time constants for the neurons in the human brain, from
hundreds of milliseconds to tens of seconds (Bernacchia et al.,
2011).

Note that each neuron represents a particular item in memory
such as a digital number or a letter of the alphabet. The neural
activity in a dynamic system (Equation 2), which is time-varying,
reflects the level of activity of each neuron in a neural network.
At a given time instant, the neuron of the maximum neural
activity among a chunk becomes the temporal winner. The
corresponding item that the winner neuron represents will be
recalled.

2.3. Encoding Scheme for the HCSM
Neuromorphic Network
Suppose that there are N0 neurons in a chunk, and each neuron
represents a particular item in the memory. Before we encode
a sequence containing κ ≤ N0 metastable states in a chunk as
described in Equation (2), the bias parameter of each neuron and
the weight between two arbitrary neurons need be determined
first. In this work, the bias parameter of neuron i in a specific
chunking sequence is chosen as

σi =

{

Fk, if neuron i is the k-th term of the chunking sequence.
0 otherwise.

(3)

where Fk is the k-th term of the Fibonacci sequence (Dunlap,
1997) with F1 = 1 and F2 = g. Here g is the “Golden
ratio” (Dunlap, 1997; Livio, 2008). The synaptic weight between
neurons i and j in the same chunk is then selected as:
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FIGURE 3 | Hardware implementation for a single chunk. The chunk, a PC or a CC, is mainly constructed by an analog memristor crossbar circuit and digital

neurons. The memristor crossbar completes a VMM operation in one step, and the digital neurons run the neuronal dynamics described in Equation (6). The diagonal

elements of the crossbar are non-plastic, with the same value as Rf to satisfy wii = 1. The DACs and ADCs are required to convert the signal format between analog

circuits and digital circuits. The iterative timing sequence k → k + 1 is governed by the clock signal. The winner neuron activator in each chunk (PC) is used to

determine the winner neuron at each time step and transmit an excitatory signal to the corresponding connected CC block. When a CC receives an excitatory

activation signal from a winner neuron in the PC, the clock will be triggered and the iterative neuronal dynamics in this CC starts to form a pre-defined memory trace.

wij ∈







S1, if neurons i and j are adjacent in the chunking
sequence.

S2 otherwise.
(4)

with

S1 = {x|g − 1
2 < x < g}

S2 = {x|gk − 1 + 1 < x < +∞}
(5)

where k is the length of the sequence in this chunk. A
detailed motivation to the above encoding scheme associated
with the existence of the metastable states in a stable sequential
memory trace are provided in Theorem 1 in the supplementary
information.

2.4. Hardware Implementation
As well known, the neuromorphic engineering especially the
memristive system enables the hardware implementation of
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neural networks with ultra-low power, small size, and high speed
(Kuzum et al., 2012; Yu et al., 2013; Deng et al., 2016), which
aims at the future of mobile intelligence. However, the memristor
with good plasticity to emulate synapse usually suffers from a
narrow dynamic range. Fortunately, the proposed HCSM model
efficiently reduces the requirement on synaptic plasticity. This
coincidencemotivates us to build amemristive architecture of the
chunking model and demonstrate the feasibility, which provides
neuromorphic engineers with a promising solution to realize
dynamical memory on hardware platform.

We fabricate a FeOx-based memristor device with typical
sandwich structure, whose detailed process and electrical
characteristics are shown in Figure S1. The conductance state can
be monotonously and consecutively modulated under a series of
positive or negative pulses, i.e., with good plasticity. The positive
pulse train gradually increases the conductance, corresponding
to the short/long term potentiation (STP/LTP) process; while
the negative pulse train results in short/long term depression
(STP/LTD). The resistive ratio of highest conductance to lowest
conductance is only 3 ∼ 4.

The memristor is cascaded with an amplifier to perform
as a functional synapse. The one-input-to-one-output structure
and multiple-input-to-one-output structure are illustrated in
Figures S2A,B, respectively. The equivalent synaptic weight is
co-determined by the memristor conductance G and feedback
resistance Rf on amplifier, w = Vout/Vin = −RfG, which
is a dimensionless value indicating the voltage transmission
efficiency from input to output. In this manner, the negative
weight realizes the inhibitory connection in HCSM model. For
the case of multiple inputs injected to one amplifier, all the
memristors form a parallel circuit and the transfer function
is provided in Figure S2. The amplifier is able to accumulate
the multiple synaptic inputs, like the integration function of
dendrites. This feature efficiently supports the multiplication and
accumulation (MAC) operations between the inputs and weights
in Equation (2).

The neuron dynamics described by the differential
equation (Equation 2) can be numerically solved based on
its corresponding difference equation

x
(n,m)
i (t + dt) = x

(n,m)
i (t)+ dt · {τ (n,m)x

(n,m)
i (t) · [σ

(n,m)
i

−
∑N0

j= 1 w
(n,m)
ij · x

(n,m)
j (t)]+ v

(n,m)
i }.

(6)

If we replace the evolution “t → t + dt” by “k → k + 1,”
we can achieve a numerical iteration process. The one-to-one
corresponding digital neuron block is shown in Figure S3A. A

Fibonacci sequence block is also necessary to determine σ
(n,m)
i ,

as well as the upper and lower bounds of the synaptic weights, as
shown in Figure S3B.

Based on the element synapse and neuron block, a chunk
network can be implemented, as demonstrated in Figure 3. Each
chunk, a PC or a CC, is mainly constructed by an analog
memristor crossbar circuit and digital neurons. More specifically,
the weighted synapses which is themost critical part in this neural
network, are implemented by a memristor crossbar circuit. Each
column in the memristor crossbar and the cascaded amplifier on
that column perform a MAC operations as shown in Figure S2B.

All columns are assumed to be independent without crosstalk,
so that the whole memristor crossbar and the amplifier array
can well realize the matrix-vector multiplication (VMM) which
is the major operation in neural networks. This indicates that the
architecture supports one-time projection from multiple inputs
to multiple outputs, with the advantages of small size, high speed
and low power. It is worth noting that the diagonal elements
of the crossbar are non-plastic resistors (not memristor) with
the same value as the feedback resistance Rf on the amplifier.
Thus, the requirement of wii = 1 in HCSM model is met.
Each neuron block iteratively runs the dynamics of Equation (6).
The neuronal outputs at each time step are stored in temporal
registers and fed back into the network as synaptic inputs at the
next time step. In fact, the timing sequence of the whole network
(k → k + 1...) is governed by the clock signal. Actually, the
chunk is an analog-digital hybrid circuits, DACs (digital to analog
converters) and ADCs (analog to digital converters) are required
to convert the signal format (Li et al., 2013). Furthermore, each
chunk circuit can be hierarchically organized together to form
a complete HCSM model, as shown in Figure S4. The winner
neuron activator in each chunk (PC) is used to determine the
winner neuron at each time step and transmit an excitatory signal
to the corresponding connected CC circuit. When a CC receives
an excitatory activation signal from a winner neuron in the PC,
the clock will be triggered and the iterative neuronal dynamics in
this CC starts to form a pre-defined memory trace.

When performing a real task, the memristive networks
often work in two stages: the write (synaptic modulation)
stage and the read (neuronal processing) stage. During the
write stage, the memristive crossbar is fully controlled by
the pulse modulator block, as presented in Figure S5. The
weight calculator block calculates the theoretical weight of
each synapse according to a pre-defined chunking sequence
based on Equations (3)–(5), and the pulse modulator generates
the pulse train (potentiation or depression pulses) to modify
the conductance of each memristor to the desired value.
Two detailed modulation methods are illustrated in Figures
S6, S7. Different from the conventional direct configuration
in computer software, neuromorphic implementation has to
gradually program the conductance of hardware synapse array
from a random initial state to the target state that is produced
by the weight calculator. Pulse tuning scheme is more popular,
compared to DC switching, since its well controllable modulating
increment can achieve relatively high precision. The open-loop
modulation directly uses the behavior model of memristor device
to determine the direction and number of pulses to move any
initial conductance state to the desired one. Considering real
device variability, one-time open-loop modulation sometimes
cannot reach the ideal state. To this end, the closed-loop
modulation repeatedly performs the open-loop modulation until
the desired conductance is achieved. More generally, the closed-
loop modulation can use the trial-and-error method to gradually
tune the conductance without the guidance of theoretical
behavior model. Furthermore, the modulation process is flexible
by choosing proper pulse amplitude (Kuzum et al., 2011), width
(Snider, 2008), and frequency (He et al., 2014) of the pulse
train. However, the versatile pulse tuning schemes will drastically
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increase the burden of the pulse generator, hence it is often hard
to be executed in hardware systems. To mitigate the burden, a
number of identical pulses are adopted in this work to modulate
the memristor states, as mentioned earlier in Figure S1C.

When updating the conductance of a specificmemristor in the
crossbar, it would be firstly selected to avoid influencing the states
of other unselected memristors. Some typical selective devices
are useful such as diode or transistor (Wong et al., 2012), and
even selector-free memristor crossbar is possible (Prezioso et al.,
2015). The half-selected technique is also used to further prevent
unintentional operation on the unselected memristors (Yang
et al., 2013). This is because the conductance change only occurs
when the amplitude of modulation pulses is above the threshold
voltage and no significant conductance change is observed under
applied voltages below the threshold (Jo et al., 2010). The full
programming voltage VP and VD on the selected memristor is
above the threshold, while the half voltage VP/2 and VD/2 is
configured below the threshold. Then while one synapse is under
programming, the others are clamped at their current states with
a lower half-selected voltage. During the read stage, the pulse
modulator is switched off and the data flows from the memristor
crossbar to the neuron block, and then feeds back at next time
step. The input voltages are scaled to be sufficiently small that the
trainedmemristor states would not change during the whole read
stage.

This paper aims for offering a heuristic solution to guide
neuromorphic engineers to embed a dynamical memory model
into future neuromorphic platforms. In all the following
simulations, we present less peripheral circuit details but pay
more attention to the influence of dynamic range and precision
of memristor device, which are the two key points narrowing the
gap between memristive system and HCSM model. Based on the
real memristor data in Figure S1, as well as some existing physical
models and behavioral models of the memristor (Strukov et al.,
2008; Yang et al., 2008; Guan et al., 2012a; Suri et al., 2012;
Deng et al., 2015), we build an iron oxide memristor model
whose synaptic behavior shows excellent agreement with the real
device experiments (Figure S1D). Furthermore, we use SPICE (a
standard circuit simulator) to verify the proposed network model
of HCSM shown in Figure 3 and Figure S4.

3. RESULTS

3.1. Chunking and Synaptic Plasticity
We denote sup(S

(n, m)
1 ) as the supremum of set S1 defined

in Equation (5) in the chunk (n,m), and inf(S
(n′, m′)
2 ) as the

infimum of set S2 in the chunk (n′, m′). The ratio of inf(S
(n′, m′)
2 )

to sup(S
(n, m)
1 ) generally implies the requirement of synaptic

plasticity to recall the sequences. As there are multiple chunks in
different layers, a relative synaptic plasticity requirement index ϕ

is defined as

ϕ =
max{inf(S

(n′ , m′)
2 )}

min{sup(S
(n, m)
1 )}

=
gmax{k(n, m)}−1+1

g = gmax{k(n, m)}−2 + g−1

(7)

wheremax{k(n, m)} is the length of the longest chunking sequence
for a particular memory task. It is known that ϕ in real
neurobiological systems should be less than an upper bound,
which constitutes the capacity boundary of sequential memory.
As mentioned previously, the dynamic range of memristor with
good synaptic plasticity is often relatively narrow. This may
relate to capacity limitations in the human brain. Note that in
the HCSM, a sequence is divided into a series of subsequences
with different lengths, and the chunk with the longest sequence
mainly determines the requirement on the dynamic range of the
memristor. In this regard, the HCSM model is capable of having
the neuromorphic system maintaining its performance with a
reduced requirement of synaptic plasticity.

As shown in the literature, the synaptic weight distribution
(Barbour et al., 2007) in the human brain follows a lognormal
distribution (Song et al., 2005; Teramae and Fukai, 2014), as
illustrated in Figure 4A. This indicates that the synaptic weights
mainly locate in a narrow domain. Note that generally it is
impossible to estimate the relative synaptic plasticity requirement
index ϕ in human brain and bio-neural systems by applying
(Equation 7). Here we define another index ϕ̃ to address this
issue. Let w̄ be the median weight and define ϕ̃ = w

w̄ as
the measurement of relative synaptic plasticity index in bio-
neural systems. Thus, in Figure 4A, it is observed that for
80 and 90% of synaptic weights, the synaptic plasticity index

FIGURE 4 | Lognormal distribution of synaptic weights underlies the

chunking mechanism. (A) The lognormal distribution of synaptic weights in

real neural systems, which implies that the dynamic range of the synapses in

the brain is in a narrow interval. (B) The relative synaptic plasticity requirement

index with respect to the length of the sequence in a particular chunk for

HCSM.
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is below ϕ̃1 = 4.2
1.9 = 2.21 and ϕ̃2 = 6.5

1.9 = 3.42,
respectively.

While in Figure 4B, it is seen that ϕ increases exponentially
with respect to the length of the sequence in HSCM. As a
chunking mechanism allows us to encode a long sequence
into many shorter subsequences, HCSM could work on the
domain which requires a relative narrower dynamic range of
the memristor in the neuromorphic network. By combining the
results shown in both Figures 4A,B, when we apply ϕ̃ to reflect
the requirement of synaptic plasticity in the brain/bio-neural
systems, we provide a putative reason why the optimal items in
sequential memory is 3–4 items, which is a long standing problem
pointed out in (Simon, 1974) and (Gobet, 2004).

3.2. Impact on the Precision of the
Synaptic Weights in HCSM
We simulate the hardware implementation of HCSM (Figure 3)
and the results of neuronal activities are shown in Figure 5,
where an example consisting of four winner neurons in each
chunk is illustrated. Specifically, several sub-circuits with the
same structure but different parameters, each represents a PC
or a CC, have been established to form the complete HCSM
model. A 50 Hz square wave is provided as the gated clock
signal for all sub-circuits, while each gate is controlled by its
activation signal. The clock gate is on when the activation
signal is logically high. Then the sub-circuit is activated. The
computation module of the activated sub-circuit, consisting of
a memristor array, a group of neurons and other peripheral
circuits, is then triggered by the 50Hz clock signal. Output
neuronal activities of the activated subcircuit gradually evolve
following Equation (6) where each time step is kept smaller
than a half clock period. The winner neuron activator then
determines the winner neuron with maximum neuronal activity
and set the corresponding activation signal logically high to
activate its connected CC. It is seen that the ideal memory trace
is successfully achieved, where different neurons become the
temporal winner in turn. Thus, the trace in the CCs is instantly
activated by a corresponding activation signal generated from
the PC.

As discussed in (Kuzum et al., 2012), (Yu et al., 2013), (Guan
et al., 2012b), and (Yu et al., 2012), the main challenge of
memristor-based neuromorphic system is the notable variation
of memristive devices during programming, including cycle-
to-cycle variation and device-to-device variation. In this case,
the performance of the encoded memristor-based neuromorphic
network of HCSM in the presence of device variation need to
be validated. We introduce different levels of fuzzy dispersion
to the final weight values of synaptic weights in HCSM using
our fabricated memristor as synapse when recalling a memory
trace task. Figure 6 shows the robustness of HCSM model by
analyzing the fault-tolerance performance with respect to the
weight variation of memristors. In particular terms, the network
can perfectly trace the target sequence under a pessimistic 20%
dispersion of the synaptic weights. As expected, the responses
of pre-defined winner neurons gradually deviate from the
ideal pattern with a rapid increasement of weight dispersion.

For example, only three winner neurons successfully trace its
memory under 30% dispersion of the synaptic weights, and
the number of successful neurons reduces to two when the
dispersion level increases to 50%. The trace pattern no longer
converges to its stable state when the dispersion is larger than
70%. In general, our proposed HCSM model does not require
precise synaptic weights in the encoding scheme, and a great
degree of device variation can be tolerated. This suggests that
chunking mechanism enables applying low precision synapses
when performing a memory task.

3.3. Impact on the Dynamic Range of the
Synaptic Weight in HCSM
In simulating the encoding process of a sequential memory on
SPICE, two conclusions are obtained: (i) the dynamic range of the
synaptic weight is required to bemuch wider if the same length of
sequential memory is encoded without chunking; (ii) the success
rate of the encoding in each chunk is a monotonously increasing
function of the dynamic range synaptic weights.

Suppose that we encode a sequential memory with k items
such that the square root of k is an integer. To achieve a lower
relative synaptic plasticity requirement index defined in Equation
(7), the best way is to encode the sequence in

√
k chunks, with

each chunk consisting
√
k items. Then, the relative synaptic

plasticity requirement index ϕ is obtained by

ϕ =
max{inf(S

(n′ , m′)
2 )}

min{sup(S
(n, m)
1 )}

= g
√
k−2 + g−1 (8)

By comparing Equations (7) and (8), it is seen that we require
the same dynamic range of the synaptic weight to encode k

items with chunkingmechanism and
√
k items without chunking

mechanism.
We simulate the encoding process of a length of 16-items

sequential memory which has 4 chunks, with each chunk
consisting of 4 items on SPICE based on the encoding scheme
we introduced in Equations (3)–(5). In Equation (5), we notice
that the supremum of set S2 can be positive infinity. However,
in real applications it is well known that the synaptic weight can
never be infinity. To show the impact of the dynamic range of the
synaptic weight in HCSM more clearly, we set |S2| = |S1| where
|.| denotes themeasure/length of an interval, i.e., S2 = {x|gk − 1+

1 < x < gk − 1 + 3
2 }. Obviously, we have |S2| = |S1| = 1

2 .
When both |S1| and |S1| are fixed, the relative synaptic plasticity
requirement index ϕ also reflects the requirement of the dynamic
range of synaptic weights. In SPICE simulation, ϕ is chosen from
2–4. In Figures S8–S11 in Supplementary Information, the effects
for cases ϕ = 2.0, 2.4, 3, and 3.6 are shown in four figures,
respectively. It is seen that a small ϕ usually leads to failure of
the encoding of the sequential memory while a larger ϕ improves
such a situation. We repeated the experiments 200 times to
estimate the encoding success rate for each fixed ϕ in Figure 7,
where it is shown that the encoding success rate in each chunk
is a monotonously increasing function of the dynamic range of
synaptic weights.
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FIGURE 5 | Hierarchical memory traces in one PC and its CCs. The vertical axis is the output neuronal activity and the horizontal axis is the sampling time. At a

given moment, the neuron which preserves the maximum activity is the temporal winner neuron.

4. DISCUSSION

In this work, we suggest a link between chunking mechanism
and synaptic plasticity to answer a long standing question why
chunking improves sequential memory. A hierarchical chunking
of sequential memory (HCSM) model and a robust scheme
regarding how to encode sequential memory are presented. It is
observed from the encoding scheme that chunking mechanism
reduces the requirements of synaptic plasticity when recalling
a memory trace, including the tolerance of the dynamic range
and precision of the synaptic weights. Furthermore, we provide
a neuromorphic implementation to verify the proposed memory
dynamics under the hardware constraints of narrow dynamic
range and device variability. The successful demonstration
indicates the feasibility to embed more complex memory models
into future neuromorphic systems.

One merit of the proposed HCSM model is the robustness of
the encoding method, i.e., the weight can be a random value in a
given interval, which makes the model convenient to be realized
bymemristive devices. However, the disadvantages include (i) the
model requires full connection of the neurons in the network; and
(ii) the asymmetry in information storage fundamentally impairs
the length of the memory trace. Therefore, the investigation of
a new model that allows sparse connection of neurons to link
metastable states together in a sequential memory would be of
great interest. Also, besides chunking mechanism, how can the
memory capacity of biological systems be improved deserves
investigation. Furthermore, we would like to point out that in
HCSM, a particular item in the memory trace is represented by

only one neuron. However, experimental studies have revealed
that population coding (Pasupathy and Connor, 2002) , a method
to represent stimuli (a memory item) by using the joint activities
of a number of neurons, is widely used in the brain (Averbeck
et al., 2006). This implies that single neural coding method
may be inadequate in practical applications. We conjecture that
population coding could be applied to our model which deserves
further investigations.

This work provides an addition to recent work on learning
of chunking sequences (Fonollosa et al., 2015) including specific
roles in cognitive process (Varona and Rabinovich, 2016).
Specifically, this work provides a useful hardware validation
means for many advanced theory researches. We also open up a
new application space on neuromorphic platforms to implement
not only HCSM, but also various bio-inspired memory models
related to the encoding of the visual, acoustic and semantic
information and so on. Predictably, the disciplines of cognitive
psychology, neuroscience and information technology, and
neuromorphic engineering becomes more and more important.
The top-down bio-plausible theories fundamentally guide the
development of future neuromorphic computing systems; while
the bottom-up neuromorphic materials, chips, boards and
systems usefully verify these pioneering theories. Although there
is still a long road ahead, this work kindles a ray of hope.

The major difficulty preventing its application is the
fabrication and management of large-scale memristor crossbar,
especially considering the device variability and the crosstalk
among adjacent cells. On the other side, the required peripheral
circuits are also quite complex, including analog-digital
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FIGURE 6 | Analysis of the fault-tolerance performance of the proposed HCSM system with respect to the variation of memristors. It can be seen that

although with a weight dispersion of up to 20%, the HCSM system can perfectly pass by all the four temporal winners. And the system can pass by three of the four

temporal winners even with a dispersion of 30%. Hence, a good tolerance of the proposed HCSM system to the device variation can be shown.

FIGURE 7 | The relationship of encoding success rate and the dynamic

range of synaptic weights.

converters, read/write circuits, switching matrix as well as extra
computing circuits for learning. Fortunately, some reported
memristor-based artificial neural networks have shown that
these developments may become feasible in the near future, at
least in relatively small scale (Alibart and Zamanidoost, 2013;
Garbin et al., 2014; Prezioso et al., 2015). With the development
of integration techniques for large scale memristor crossbar or
even 3D networks (Yu et al., 2013; Li et al., 2016), as well as

memristor for logical or arithmetical computations (Borghetti
et al., 2010; Gale, 2015) to reduce complex peripheral circuits
by replacing the digital neurons, we envisage a real chip able to
perform interesting memory tasks.
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Recurrent neural networks (RNN) have traditionally been of great interest for their capacity

to store memories. In past years, several works have been devoted to determine the

maximum storage capacity of RNN, especially for the case of the Hopfield network, the

most popular kind of RNN. Analyzing the thermodynamic limit of the statistical properties

of the Hamiltonian corresponding to the Hopfield neural network, it has been shown

in the literature that the retrieval errors diverge when the number of stored memory

patterns (P) exceeds a fraction (≈ 14%) of the network size N. In this paper, we study

the storage performance of a generalized Hopfield model, where the diagonal elements

of the connection matrix are allowed to be different from zero. We investigate this model

at finite N. We give an analytical expression for the number of retrieval errors and show

that, by increasing the number of stored patterns over a certain threshold, the errors

start to decrease and reach values below unit for P ≫ N. We demonstrate that the

strongest trade-off between efficiency and effectiveness relies on the number of patterns

(P) that are stored in the network by appropriately fixing the connection weights. When

P≫N and the diagonal elements of the adjacency matrix are not forced to be zero, the

optimal storage capacity is obtained with a number of stored memories much larger than

previously reported. This theory paves the way to the design of RNN with high storage

capacity and able to retrieve the desired pattern without distortions.

Keywords: maximum storage memory, feed-forward structure, random recurrent network, Hopfield model,

retrieval error

1. INTRODUCTION

A vast amount of literature deals with neural networks, both as model for brain functioning (Amit,
1989), and as smart artificial systems for practical applications in computation and information
handling (Haykin, 1999).

Among the different possible applications of artificial neural networks, those referred to as
“associative memory” are particularly important (Rojas, 1996), i.e., circuits with the capability to
store and retrieve specific information patterns. According to Amit et al. (1985a,b) there is a natural
limit for the usage of an N nodes neural network built according to the Hebbian principle (Hebb,
1949) as associative memory. The association is embedded within the connection matrix which has
a dyadic form: the weight connecting neuron i to neuron j is the product of the respective signals.
The limit of storage is linear with N: an attempt to store a number P of memory elements larger
than αcN, with αc ≈ 0.14, results in a “divergent” (order P) number of retrieval errors. In order to be
effective (low retrieval error probability) a neural network working as associativememory cannot be
efficient (i.e., it can store only a small number of memory elements). This is particularly frustrating
in practical applications, as it strongly limits the use of artificial neural networks for information
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storage, especially since it is well known that the number of
fixed points in randomly connected (symmetric) neural networks
shows an exponential relation with N (Tanaka and Edwards,
1980; Sompolinsky et al., 1988; Wainrib and Touboul, 2013).

Contemporaneous to Amit et al., Abu-Mostafa, and St. Jaques
(Abu-Mostafa et al., 1985) claimed that the number of fixed
points that can be used for memory storage in a Hopfield model
with a generic coupling matrix is limited to N (i.e., P<N). Soon
after, Mc Eliece et al. (1987), considering only the Hebbian dyadic
form for the coupling matrix, found a more severe limitation:
the maximum P scales as N/log(N). In a more recent study,
Sollacher et al. (2009) designed a network of specific topology,
reaching αc-values larger than 0.14, but still maintaining the
limit of a linear N dependence of the maximum storage capacity.
The storage problem remains an open research question (Brunel,
2016).

In this letter we show that the existence of a critical P/N-
value in the Hebbian scheme for the coupling matrix is only part
of the story. As demonstrated in Amit et al. (1985a,b), the limit
P<αcN holds in the region where P<N. In all previous studies,
the diagonal elements are removed from the dyadic form of the
couplingmatrix. Here we show the existence of a not yet explored
region in the parameter space, with P≫N, where the number of
retrieval errors decreases with increasing P and reaches values
lower than one. This region can be found by not removing the
diagonal elements. Strictly speaking the present model is not a
“Hopfield model,” as in the latter case the diagonal elements are
forced to vanish and—as we will see- bring significant differences
in the network behavior. In order to avoid confusion, let us
call the present model as “Hopfield model with autapses” or
“Generalized Hopfield model.” This strategy allows the design
of effective and efficient associative memories based on artificial
neural networks. In the following we will derive analytically
the probability of retrieval errors, validate these results by their
comparison with a numerical simulation and study the efficiency
of the system as a function of P and N.

2. METHODS

2.1. Network Model
In an artificial neural network working as associative memory,
one deals with a network of N neurons of which each one has
state si (i = 1...N) that can be “active” (si = 1) or “quiescent”
(si = −1). The configuration of the whole network is given by
the vector s̄ ≡ {s1, s2, ..sN} and its temporal evolution follows the
parallel non-linear dynamics:

si(t + 1t) = E[si(t)]
.
= sign

[

N
∑

j=1

Jijsj(t)
]

, (1)

where J = {Jij} is the connection matrix. We set external inputs
to be equal to 0. We assume a symmetric bimodal distribution
for the synaptic polarities in the wiring matrix J, so 50% of the
connections are excitatory and 50% inhibitory. After a transient
time related to the finite value of N, the network reaches a fixed
point, si = E[si], or a limit cycle of length L, si = E(L)[si].

2.2. The Hebbian Rule and the Storage
Memory
Previous work has studied the cycle length and transient time
distribution as a function of the properties of J (Gutfreundt et al.,
1988; Sompolinsky et al., 1988; Derrida, 1989; Bastolla et al.,
1997). In order to work as an associative memory, the matrix
J must be tailored in such a way that one or more patterns of
neurons are fixed points of the dynamics in Equation (1), i.e.,
they are the “memory elements” stored in the network. To store
one pattern ξ̄ , the connection matrix is simply the dyadic form
given by Jij = ξiξj

1 , while to store a generic number P of
patterns ξ̄µ (µ = 1...P) one follows the storage prescription of
Cooper (1973) and Cooper et al. (1979), who exploited an old
idea which goes back to Hebb (1949) and Eccles (1953) and which
states that the change in synaptic transmission is proportional
to the product of the signals of pre and post-synaptic neurons.
The process for which each matrix element is appropriately
determined is called learning. Specifically, the “Hebbian” rule
results in the following expression for the connectivity matrix,

Jij =
1

P

P
∑

µ=1

ξ
µ
i ξ

µ
j . (2)

The set of vectors ξ̄mu is known as “training set.” In this case, it is
not guaranteed that each ξ̄µ is a fixed point. In other words, ξ̄µ is
stable in probabilistic sense. Further, the probability for ξ̄µ to be
a fixed point depends on the values of P and N. This dependence
has been first studied by Hopfield (1982); Hopfield et al. (1983);
Hopfield (1984) who concluded that the retrieval of the memory
stored in the Hebbian matrices is guaranteed up to a P-value
which is a critical fraction on the number of network nodes N
of the order of 10–20%. Above this value, the associative memory
quickly degrades. Following these studies, Amit et al. (1985a,b),
who noticed the similarity between the Hopfield model for the
associative memory and the spin glasses, developed a statistical
theory for the determination of the critical P/N ratio, that turned
out to be ≈ 0.14, in good agreement with the previous Hopfield
estimation. Above P=0.14N the number of errors is so large that
the network based on the Hebbian matrix is no longer capable
to work as an associative memory. All these studies assumed a
modified form of Equation (2): the diagonal elements of J are
forced to be zero.

2.3. Numerical Simulations and Data
Analysis
In order to demonstrate the validity of our analytic results (see
Section 3), we perform numerical simulations by evolving the
network model as described in Equation (1). We design the
default network by fixing the NxN recurrent connections as given
in Equation (2), by randomly assigning the value ±1 to ξ

µ
i and

retaining the diagonal elements. So, theN(N−1) connections are
50% excitatory and 50% inhibitory and the N neurons can form
self-connections. We then run simulations by varying the size of
the network, N = 50, .., 200 and the number of stored memories

1The evolution E[ξi] always return ξi since the sum
∑

j ξ
2
j = N.
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in Equation (2), P = 1, ..., 2000. Finally, for each pair of N and P,
we perform 1000 different random realizations.

All P patterns introduced in Equation (2) are given as input
to the network and their dynamics is followed until the network
reaches the equilibrium state. The initial patterns are chosen
among those that were stored in the adjacency matrix and that
have been randomly chosen in the designing of the network.
Evolved patterns were recorded at each time step and compared
with the initial one. Then, if the evolved pattern is different
from the initial state, we calculated the temporal evolution
of the distortion (number of wrong bits) and determined the
probability that one of the bits was wrong, the probability that the
whole vector was exactly recovered, and the number of memory
patterns that could not be recovered, as a function of N and
P. Basically, to calculate the storage capacity, it is sufficient to
determine all these quantities by using the distortion between the
stimulus (the stored memory) and its first evolved pattern.

3. RESULTS

3.1. The Probability of Recovery
In order to investigate the maximum storage memory of our
model, we calculate the one-step dynamical evolution. We give
as input a vector of the training set and we calculate a single step
of the dynamical evolution according to Equation (1). Then, we
compare the output with the input. We aim to look whether or
not a vector, ξ̄µ, belonging to the training set, is truly a fixed
point. If ξ̄µ is a fixed point, the output coincides with the input,
and the recovery has been successful. If ξ̄µ is not a fixed point,
the two vectors differ for at least a single bit. We now derive
an analytical expression for the probability that the recovery of
a stored pattern was not successful. The first step is to find the
probability pB that -given the matrix J of Equation (2)- a single
element of the vector (a “bit”) was wrong, i.e., the probability
that E[ξ

µ
i ] 6= ξ

µ
i . Basically, we need to evolve a vector ξ̄mu

(from the training set) for one step and count how many bits
of its time evolution are different from the bits of ξ̄mu itself.
Obviously, if ξ̄mu actually is a fixed point, this distance vanishes.
On the contrary, ξ̄mu is not a fixed point, the network has made
a recovery error. Thus, pB (or better, pV , as we see in the next
paragraph) measures “how many” training set vectors are not
fixed points. The argument of the sign function in Equation (1) is
A

µ
i =

∑N
j=1

∑P
ν=1 ξ ν

i ξ ν
j ξ

µ
j , this containsNP terms among which

there are N+P−1 terms (those with j=i 2 and those with ν=µ)
where two out of the three ξ of the product are equals to each
other ξ ν

i and the third is ξ
µ
i . Thus A

µ
i = (N+P−1)ξ

µ
i + T

µ
i ,

with T
µ
i =

∑N
j 6=i

∑P
ν 6=µ ξ ν

i ξ ν
j ξ

µ
j . The first term is the “coherent”

one, its sign is identical to ξ
µ
i , and it will -if dominant- guarantee

that ξ̄µ is a fixed point of the dynamics. The second term T
µ
i ,

on the contrary, is “noise” and its presence can either reinforce or
weaken the stability of ξ

µ
i as fixed point. Specifically, if |T

µ
i | >

(N+P−1) and sign(T
µ
i ) 6= ξ

µ
i , then the i-th bit of the vector

ξ̄µ will turn out to be wrong. The quantity T
µ
i is the sum of

(N−1)(P−1) statistically independent terms, each one being +1

2These are P terms that are present only if the diagonal elements are kept as they

are and are not forced to vanish.

or−1. Therefore, for large enough P andN, its distributionN(T)
can be approximated by a gaussian with zero mean and standard
deviation

√
(N − 1)(P − 1):

N(T) =
e−T2/(2(N−1)(P−1))

√
2π(N−1)(P−1)

. (3)

It is now straightforward to determine the probability that |T
µ
i | >

(N+P−1) and sign(T
µ
i ) 6= ξ

µ
i , thus that one of the bits of E[ξ

µ
i ]

was wrong, as pB =
∫ ∞
N+P−1 dT N(T). In conclusion:

pB =
1

2

[

1− erf
( N+P−1
√
2(N−1)(P−1)

)]

. (4)

It is worth to note that this expression is symmetric under the
exchange of P with N, and that for large P and N, with P/N = 1,
it tends to (1−erf(

√
2))/2≈0.02275 which corresponds to the

maximum of probability in a wrong recovery of a single bit (see
Figures 1, 2).

The second step is the determination of the probability pV that
one of the P vectors encoded into the connection matrix (the
training set) turns out not be a fixed point. If only a single bit
of the vector is wrong, the whole vector is considered “wrong.”
Since there are N bits that can be wrong, the probability pV will
be much higher than pB. The calculation is straightforward, in
order not to be wrong, all the bits of the vector ξ̄µ must be right,
thus pV = 1−(1−pB)

N , therefore:

pV = 1−
[1

2
+

1

2
erf

( N+P−1
√
2(N−1)(P−1)

)]N
. (5)

Finally, the number, NV , of memory vectors that are not
recovered, i.e., that are not true fixed points of the dynamics is
given by PpV , that is:

NV =
[

1−
[1

2
+

1

2
erf

( N+P−1
√
2(N−1)(P−1)

)]N]

P (6)

3.2. The Asymptotical Approximation
Equations (4), (5) and, in particular, Equation (6) represent the
main result of this work. Before showing their validity, via a
comparison with numerical simulations, and discussing their
relevance in the framework of artificial neural networks, it is
important to present the asymptotical approximation for NV .
The argument of the error function, for either P≫N or P≪N,
is large, and can be expanded as erf(x) ≈ 1−exp(−x2)/(x

√
π).

Furthermore, as pB is exponentially small with N (or P) for large
N (P), we use, (1−pB)

N ≈ (1−NpB). Thus, for largeN or large P:

pV ≈
N3/2P1/2e−

(N+P)2

2NP

√
2π(N + P)

(7)

NV ≈
N3/2P3/2e−

(N+P)2

2NP

√
2π(N + P)

(8)

We note that, while in the exact expression for NV (Equation 6)
the P↔N exchange symmetry is lost, in the approximate form
the symmetry is recovered.
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FIGURE 1 | Comparison of the results of the numerical simulation (pB,

full dots A; pV , full squares, B; NV , full diamonds, C) with the corresponding

theoretical function (pB, Equation 4; pV , Equation 5; NV , Equation 6) reported

as full lines. The three quantities are reported as a function of P for fixed N. The

values of N are 50 (black), 100 (blue), 150 (green), and 200 (red). The P range

in (C) is extended with respect to (A,B).

For sake of comparison with the previous literature, it is also
useful to express the main results as a function of α

.
= P/N.

Equations (4) (for large N) and (8) read:

pB ≈
1

2

[

1− erf
(1+ α
√
2α

)]

(9)

NV ≈ NP
1

√
2π

√
α

1+ α
e−

(1+α)2

2α . (10)

While pB only depends on α, NV clearly is an extensive
observable, being proportional to P and N. Furthermore, both
expressions keep their symmetry with respect to the exchange of
P andN, thus to the exchange of α with 1/α. The last observation
anticipates that there must exists a region at large α-values where
the same features are observed as at small values of α.

3.3. Numerical Results
To check the predictions of our network model, we have
simulated the Model (1) and studied the dynamics for several
values of N and P, in the range of few hundred, see Section

FIGURE 2 | Theoretical curves for the three quantities pB, pV , and NV
(pB, Equation 4, A; pV , Equation 5, B; NV , Equation 6, C) reported as full

lines. The three quantities are reported in linear scale as a function of α = P/N

for fixed N. The values of N are 50 (black), 100 (blue), and 200 (red). The

dotted lines in (C) represent NV = P.

2.3 for details. In the numerical analysis, the P memory vectors
have been randomly chosen and used to construct the connection
matrix J. Next, we tested whether or not the stored memories
were fixed points of the dynamics. The values of pB, pV and NV

were calculated by averaging over (up to) 1000 different random
realizations of ξ̄µ. The results of the numerical simulations
are reported (dots) in Figure 1, together with the analytical
Expressions (4)–(6) (lines). The three panels refer to the three
quantities pB (Figure 1A), pV (Figure 1B), and NV (Figure 1C)
as a function of P for the selected values of N, as reported in
the legend. From Figure 1, we observe that on increasing P,
at fixed N, both the single bit probability error, the probability
of recovery error (PV ), and the number of wrong recoveries
NV , after a first fast increase, reach a maximum (equal to
0.02275 for pB, close to one for pV , and larger than N for
NV ) then start to decrease, tending to zero for very large P-
values.

To better emphasize this behavior, the same quantities are
reported (analytic results only) as a function of α in Figure 2

(linear scale) and in Figure 3 (log scale) for selected N. The
dotted lines in panels C of both figures represent NV = P,
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i.e., indicate the case of “totally wrong recovery.” Due to the
already observed α↔1/α symmetry, the asymptotic curve in
Figure 3A appears with a left-right symmetry around α = 1.
From Figures 2, 3, we can clearly identify two regions of high
recovery efficiency. The low α region, already studied many
years ago by Hopfield (1982); Hopfield et al. (1983); Hopfield
(1984) and Amit et al. (1985a,b), shows the existence of a quick
transition toward “loss of memory recover” on increasing α

around α ≈ 0.14. The second region at large α-values is not yet
explored.

Although the value α = 1 (P = N) represents traditionally
a sort of limit in the computation of the storable memories in a
RNN, there is no reason why not to store more than N memory
elements in a network of N neurons, that by construction allows
2N possible patterns. Indeed, the number of fixed points in a
(random) symmetric matrix is known to be, for fully connected
symmetric matrices as in our case, exponentially large with N
(Tanaka and Edwards, 1980). Specifically, the number of fixed
points Po is equal to Po = exp(γN), with γ ≈ 0.2. Po, much larger
than N, can be considered a natural limit for P.

FIGURE 3 | Theoretical curves for the three quantities pB, pV, and NV

(pB, Equation 4, A; pV, Equation 5, B; NV, Equation 6, C) reported in

Log-Log scale as full lines. The three quantities are reported in linear scale as a

function of α = P/N for fixed N. The values of N are 50 (black), 100 (blue), and

200 (red). The dotted lines in (C) represent NV = P.

The recovery efficiency increases for large P. In fact, the
coherent term in the argument of the sign function increases
linearly with P and the noise increases as P1/2. For large P, the
relative weight of the noise decreases as P−1/2, this allows to store
a large number of memories in a relatively small neural network.

For practical purposes, as for example in the design of
an artificial neural network with high efficiency (large storage
capacity) and effectiveness (low recovery error rates), it is
important to study (Equation 6, and its approximation in
Equation 8) and, in particular, to find the conditions for which the
network shows “perfect recovery.” Let’s define perfect recovery
as the state where the number of retrieval errors NV is smaller
than one.

In Figure 4 we show the contour plot of the (decimal)
logarithm of NV , from Equations (6) and (8), in the P-N range
[0–100]. The full lines are the loci of the points where log10(NV )
equals 0, 0.4, 0.8, 1.2, and 1.6, as indicated on the right side of the
figure. The dashed lines are the same level lines for the (logarithm
of the) approximate form of NV reported in Equation (8). As can
be observed, for NV ≈ 1, the approximation (Equation 8) for
NV is highly accurate, indicating that this approximation can be
safely applied to find the “perfect recovery” condition.

In the P-N plane the existence of two regions (small and
large α) where the perfect recovery (NV = 1, red lines) takes
place can be easily observed and the result is symmetric under the
exchange of P and N. In the already explored small α region, we
also show (full blue line) the P = 0.14N condition. Similar to the
high α region, it is important to find a simple relation between
N and P identifying the NV = 1 condition. We aim, therefore,
to obtain a function P(N) which returns, at given N, the P-value

FIGURE 4 | Contour plot of log10(NV ) from Equations (6) (full lines) and

(8) (dashed lines), in the P and N range 0–100. The lines are the loci of the

points where log10(NV ) equals 0.0 (red), 0.4, 0.8, 1.2, and 1.6 (black), as

indicated on the right side of the figure. The blue line represents P = 0.14N,

while the black dotted line is the bisectrix N = P, plotted to emphasize the

symmetry of the contour lines.
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such that NV = 1. We write the prefactor NP in Equation (10)
as αN2 and exploit the α≫1 limit, so to obtain NV ≈ N2α1/2

exp(−α/2)/
√
2π . The equation N2α1/2exp(−α/2)/

√
2π = 1

can be squared, α exp(−α) = 2π/N4, and solved with respect
to α, to give α = −W−1(−2π/N4), where W−1(x) is the second
real branch of the Lambert function (Olver et al., 2010 ). In
conclusion, the “perfect recovery condition” is satisfied -for each
N-value- if we chose to store a number of memories larger than
P(N) given by:

P(N) = −NW−1(−2π/N4). (11)

For practical purposes, for large enough N, we can use the small-
argument expansion of the Lambert function −W−1(−x) ≈

−ln(x)+ln(−ln(x)) (Corless et al., 1996), to have:

P(N) = N
[

ln
(N4

2π

)

+ ln
(

ln
(N4

2π

))]

. (12)

The results for P(N) are shown in Figure 5 as a function of N in
the range 1–1000. The black line represents the exact, numerical,
solution to NV = 1, with NV in Equation (6), the blue line is the
expression for P(N) in Equation (11), while the red line is those
in Equation (12).

It is important to note that the presence of a decrease of
the retrieval error probability at high P, or α, values is due
to the presence of non-zero diagonal elements in the J matrix
that creates a coherent term of weight P. Indeed, repeating
the rationale leading to Equation (4) with the assumption that
Jii = 0, would give rise to the same (Equations 4–6) but with
the numerator of the argument of the error functions equal to
N − 1 instead of to N + P − 1. This is shown graphically in
Figure 6 where we compare for N = 50, both theoretically (full

FIGURE 5 | The quantity P(N), i.e., the P-value where the perfect

recovery is guaranteed, is shown as a function of N. The blue line is the

numerical solution of NV = 1 from Equation (6), the blue line is the plot of

Equation (11) and the red line is the plot of Equation (12).

line) and numerically (full dots), the quantities pB, pV , and NV as
a function of P in the two cases: diagonal elements in Equation (2)
(black) and diagonal elements forced to vanish (orange).

The stabilization of the fixed points ξ̄µ in the high storage
region arises from the presence of the non-zero diagonal
elements. Asymptotically, on increasing P, the diagonal elements
growth coherently and the J matrix tends to become the unit
matrix. However, the dynamics (see Equation 1) dictated by the
matrix J does not tend to the dynamics dictated by the unit
matrix. In the latter case, indeed, all the 2N state vectors should
become fixed points and the network should loose on important
feature: the capability to distinguish between the storedmemories
(the vectors ξ̄µ, for µ = 1...P) and the spurious fixed points,
all the vectors ζ̄ not belonging to the set ξ̄µ but such that E[ζ̄ ]
= ζ̄ . To study this property, we have calculated the probability
that a (randomly chosen) vector ζ̄ (different from all the ξ̄µ used

FIGURE 6 | The upper panel (A) reports for a given N-value (N = 50), as

a function of P, the probability pB that, stimulating the network with a

vector inside the training set, there is one bit wrong in the network

response. The middle panel (B) reports pV , the probability that, stimulating

the network with a vector inside the training set, the vector obtained after one

dynamical step is not the stimulating vector. The lower panel (C) reports

NV = PpV . The black symbols/lines refer to the case where the diagonal

elements are as determined in Equation (2), while the oranges ones to

diagonal elements forced to vanish. The full lines are the theoretical prediction,

the full dots are the results of the numerical simulation.
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to build the J matrix) was recognized as a “memory” from the
network dynamics. To be consistent with the previous notation
(where we called pB and pV the probability of errors, not that
of correct retrieval of the memory states) we define p̄B (p̄V ) as
the probability of correctly not retrieving a vector not belonging
to the training set. More specifically, the quantity p̄V is the
probability that one dynamical step after presenting a vector ζ

not belonging to the training set to the network, the output a
vector is different from ζ .” More specifically, the quantity p̄V is
the probability that presenting a vector ζ not belonging to the
training set to the network, after one dynamical step we found
as output a vector different from ζ . Similarly for p̄B. It turns out
that 3:

p̄B =
1

2

[

1− erf
( P
√
2(N−1)(P−1)

)]

(13)

p̄V = 1−
[1

2
+

1

2
erf

( P
√
2(N−1)(P−1)

)]N
. (14)

In Figure 7 we report the comparison of the P dependence of
pB and p̄B (Figure 7A) and that of pV and p̄V (Figure 7B). As
usual, full lines are the theoretical results, while the full dots
are the outcome of the numerical simulation. Black data are for
the “memory states,” while the green ones are for the “spurious
state.” As can be seen, the spurious state becomes more and more
“present” in the set of memories stored by the network as P
increases. It seems however that also at high P-values the retrieval
of the memory states is reasonably good and that of the spurious
states reasonably bad.

To be quantitative on this point, we rewrite Equation (14) in
its large N limit:

p̄V ≈
N3/2P−1/2e − P

2N

√
2π

(15)

and compare it with Equation (7). In particular, is interesting to
calculate the ratio, ρ, between the probability of wrong retrieval
of a spurious state and that of a memory state: ρ = p̄V/pV . From
Equations (7) and (15) it turns out:

ρ =
(N + P

P

)

e
(N+P)2

2NP e−
P
2N . (16)

This quantity only depends on α:

ρ =
(1+ α

α

)

e

(

1+ 1
2α

)

(17)

and ρ has a finite high α limit:

lim
α→∞

ρ = e. (18)

In other words, although the number of spurious attractors tends
to increase for P ≫ N, the vectors encoded into the system
through the connection matrix are retrieved with an efficiency
almost three times better than for the spurious states.

3The calculation follows the same steps already depicted before, counting the

“coherent” terms, that, in this case, only arise from the diagonal elements (i=j)

and not from the µ=ν terms that now do not exist. The weight of the coherent

part is equal to P instead of N + P − 1. The rest of the demonstration follows

straightforward.

FIGURE 7 | (A) The upper panel reports for a given N-value (N = 50), as a

function of P, the probability that, stimulating the network with a vector inside

(pB, black) or outside (p̄B, green) the training set, there is one bit differing

between the input and the output vector. (B) The lower panel reports the

probability that, stimulating the network with a vector inside (pV , black) or

outside (p̄V , green) the training set, the vector obtained after one dynamical

step is not the stimulating vector. The full lines are the theoretical prediction,

the full dots are the results of the numerical simulation.

4. DISCUSSION

In this work we have developed a simple theoretical approach to
investigate the computational properties and the storage capacity
of feed-forward networks with self-connections.We have worked
out an exact expression which gives the probability pB of having
a wrong bit in the recovery of a memory element from a Hebbian
N-node neural network, where P memory elements are stored.
In disagreement with previous studies we have investigated the
case in which the diagonal elements were not forced to vanish.
Studying the storage capacity, and deriving the related probability
pV and number NV of having a wrongly recovered memory
element, we discovered that besides the well know P≪N region,
there is another region, at P≫N, where the recovery is highly
effective. When P≫N, the efficiency of recall for a large number
of encoded vectors in the J matrix is related to the presence of
non-zero diagonal elements of the matrix. Basically, the higher
storage performance of the network depends on the number of
“coherent” terms (the signal) in the quantity A

µ
i (see Section

3.1) with respect to the “incoherent” ones (the noise). The larger
the ratio between coherent to incoherent terms, the lower the
probability of a wrong recovery. The number of coherent terms
is (N + P − 1) in the case of autapses, it is (N − 1) in the case
of no autapses. Indeed, the P terms disappear if the diagonal is
forced to be zero as in the standard Hopfield model. It is clear
that, apart from a transient regime at P ∼ N, increasing P ≫ N
strongly reinforces the signal-to-noise ratio and induces a much
larger storage capacity. In addition to the vectors encoded into
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the system, other unwantedmemories also appear in the network.
These are the spurious states, fixed points which do not belong to
the training set. The presence of spurious states is not a feature
specific to the present model, it is a typical characteristic of
the standard Hopfield network and its successive improvements.
Indeed, as shown by Tanaka and Edwards (1980), a random
N × N matrix has 2γN fixed points (γ ≈ 2). As an example,
if N = 100, the number of fixed points is about one million.
A Hebbian 100×100 matrix storing P = 1000 patterns, besides
the “good” P fixed points have also an overwhelming number
of spurious fixed points (or “false memories”). The interest of
our approach does not rely in “how many” spurious (i.e., not
belonging to the training set) states are present but rather in how
the recognition of a vector belonging to the training set is as a
“good” one. Obviously, the argument of Tanaka-Edwards applies
only to random matrices. The Hebbian form, with or without
autapses, is not fully random (there exists correlation among the
matrix elements), but we expect a number of fixed points similar
to that of a random matrix. It would be interesting to determine
such a number, but this is beyond the scope of the present paper.
In spite of the overwhelming majority of spurious fixed points,
the network—even at very large P-values, maintains the capacity
of discriminate between “good” state (belonging to the training
set) and “wrong” ones (not belonging to the training set). More
specifically, looking at the one-step dynamical evolution and
comparing the input vector with the output one, we have posed
to the network the question: “is the input vector belonging to the
training set”? We have demonstrated that, when the input vector
actually belongs to the training set, at large P (similarly to low
P) the probability of having a wrong response (“no, it does not
belong to the training set) goes to zero. Furthermore, we have
demonstrated that when the input vector does not belong to the
training set the probability of a wrong response (“yes, it is a fixed
point”) is much less that in the previous case, asymptotically 2.7
time worst.

In order to identify whether or not a vector belonging to
the training set was a fixed point we propose to the system a
vector of the training set as input. Then we perform a one-
step dynamic evolution of this input state. If after one step the
output vector is equal to the input one, this is a fixed point. On
the contrary, if after one step the output vector is not equal to
the input one, it could be possible that further dynamical steps
lead to the input vector. From this point on, as the dynamic is

deterministic, the system enters a limit cycle (of length greater
than one). Since it is not clear whether or not a limit cycle can be
considered a “right recognition,” we have excluded this possibility
from the counts of the right recognition. Only fixed point are
considered “good.” For this reason, to determine the probability
of “right recognition” one dynamical step is enough.We have also
not considered the possibility that, using as input a vector not
belonging to the training set, it converges to one of the training
vectors. The probability of right recognition reported here is an
underestimation of the network capability. A further quantity
that it would be interesting to evaluate is the size of the attraction
basin of a given fixed point, i.e., how many non-training vectors
converge to a given training vector fixed point. The basins size
would be an important measure of the network performance,

their determination is however difficult to achieve analytically,
and is behind the goal of the present paper.

One important finding is summarized in Equation (18). It
states that for P ≫ N, when the connection matrix is dominated
by the diagonal term and is still different from the unity matrix
(this is due to the great number of off-diagonal elements with
zero average and RMS of the order of 1/

√
P ), the network retains

its capacity of give more “good” than “wrong” answers. This
property, the fact that the limit in Equation (18) is e and not
“1,” can be ascribed to the observation that, although the matrix J
tends to the unit matrix for large P, the dynamics (see Equation 1)
dictated by the matrix J does not tend to the dynamics dictated
by the unit matrix. This finding opens the way to a much
more efficient use of the artificial Hebbian neural network for
information storage. In the first region, as well known since 40
years, the storage capacity is limited as the number of encoded
vectors becomes of the order N. Indeed, in the high α region, the
number of elements is basically unlimited 4, when the number of
stored elements is taken larger than≈ 4Nln(N).
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Deep neural networks (DNNs) provide useful models of visual representational

transformations. We present a method that enables a DNN (student) to learn from

the internal representational spaces of a reference model (teacher), which could be

another DNN or, in the future, a biological brain. Representational spaces of the

student and the teacher are characterized by representational distance matrices (RDMs).

We propose representational distance learning (RDL), a stochastic gradient descent

method that drives the RDMs of the student to approximate the RDMs of the teacher.

We demonstrate that RDL is competitive with other transfer learning techniques for

two publicly available benchmark computer vision datasets (MNIST and CIFAR-100),

while allowing for architectural differences between student and teacher. By pulling

the student’s RDMs toward those of the teacher, RDL significantly improved visual

classification performance when compared to baseline networks that did not use transfer

learning. In the future, RDL may enable combined supervised training of deep neural

networks using task constraints (e.g., images and category labels) and constraints

from brain-activity measurements, so as to build models that replicate the internal

representational spaces of biological brains.

Keywords: neural networks, transfer learning, distance matrices, visual perception, computational neuroscience

1. INTRODUCTION

Deep neural networks (DNNs) have recently been highly successful for machine perception,
particularly in the areas of computer vision using convolutional neural networks (CNNs)
(Krizhevsky et al., 2012) and speech recognition using recurrent neural networks (RNNs) (Deng
et al., 2013). The success of these methods depends on their ability to learn good, hierarchical
representations for these tasks (Bengio, 2012). DNNs have not only been useful in achieving
engineering goals, but also as models of computations in biological brains. Several studies have
shown that DNNs trained only to perform object recognition learn representations that are similar
to those found in the human ventral stream (Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014; Güçlü and van Gerven, 2015). The models benefit from task training, which helps
determine the large number of parameters and bring the domain knowledge required for feats of
intelligence such as object recognition into the models. This is in contrast to the earlier approach
in visual computational neuroscience of using nonlinear systems identification techniques to set
the parameters exclusively on the basis of measured neural responses to large sets of stimuli
(Naselaris et al., 2011). The latter approach is challenging for deep neural networks, because the
high cost of brain-activity measurement limits the amount of data that can be acquired (Yamins
and DiCarlo, 2016). Ultimately, task-based constraints will have to be combined with constraints
from brain-activity measurements to model information processing in biological brains.

124

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
https://doi.org/10.3389/fncom.2016.00131
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00131&domain=pdf&date_stamp=2016-12-27
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:patrick.mcclure@mrc-cbu.cam.ac.uk
https://doi.org/10.3389/fncom.2016.00131
http://journal.frontiersin.org/article/10.3389/fncom.2016.00131/abstract
http://loop.frontiersin.org/people/360873/overview
http://loop.frontiersin.org/people/1330/overview


McClure and Kriegeskorte Representational Distance Learning

Here we propose a method that enables the training of
DNNs with combined constraints on the desired outputs and
the internal representations. We demonstrate the method by
using another neural net model as the reference system whose
internal representations the DNN is to emulate. One method
for doing so would be to have a layer in a DNN linearly
predict individual measured responses (e.g., fMRI voxels or
neurons), and backpropagate the error derivatives from the linear
measured-response predictors into the DNN. However, the linear
measurement predictionmodel has a large number of parameters
(nunits × nresponses). An alternative approach is to constrain
the DNN to replicate the representational distance matrices
(RDMs) estimated from brain responses. In this paper, we take
a step in that direction by considering the problem of training
a DNN (student) to model the sequence of representational
transformations in another artificial system (teacher), a CNN
trained on different data.

Our technique falls in the class of transfer learning methods.
In the deep learning literature, several such techniques have
been proposed both for pulling a DNN’s internal representations
toward the task target and for transferring knowledge from a
teacher DNN to a student DNN. We begin by briefly considering
the previous approaches used to accomplish these goals.

1.1. Auxiliary Classifiers: Pulling Internal
Representations Toward the Desired
Output
Recently, it has been investigated how the error signal reaching an
internal layer through backpropagation can be complemented by
auxiliary error functions. These more directly constrain internal
representations using auxiliary optimization goals. A variety of
methods using auxiliary error functions to pull representations
toward the desired output have been proposed.

Weston et al. (2012) proposed semi-supervised embeddings to
augment the error from the output layer. A reference embedding
of the inputs was used to guide representational learning. The
embedding constraint was implemented in different ways: inside
the network as a layer, as part of the output layer, or as an
auxiliary error function that directly affected a particular hidden
layer. Weston et al. discussed a variety of embedding methods
that could be used, including multidimensional scaling (MDS)
(Kruskal, 1964) and Laplacian Eigenmaps (Belkin and Niyogi,
2003). The addition of these semi-supervised error functions led
to increased accuracy compared to DNNs trained using output
layer backpropagation alone.

Lee et al. (2014) also showed that auxiliary error functions
improve DNN representational learning. Instead of using semi-
supervisedmethods, they performed classification with a softmax
or L2SVM readout at a given intermediate hidden layer.
The softmax layer allowed the output of a network to be
treated as a probability distribution by performing normalized
exponentiation on the previous layer’s activations (yi =

exi/
∑

j e
xj ). The error of the intermediate-level readout was then

backpropagated to earlier layers to drive intermediate layers
directly toward the target output. The gradients from these
classifiers were linearly combined with the gradients from the

output layer classifier. This technique resulted in improved
accuracies for several datasets.

A challenge in training very deep networks is the problem
of vanishing gradients. Layers far from the output may receive
only a weak learning signal via conventional backpropagation.
Auxiliary error functions were successfully applied to these very
deep networks by Szegedy et al. (2015) to inject a complementary
learning signal at internal layers by constraining representations
to better discriminate between classes. This was implemented
in a very large CNN which won the ILSVRC14 classification
competition (Russakovsky et al., 2014). In this DNN, two
auxiliary networks were used to directly backpropagate from two
intermediate layers back through the main network. Similar to
the method used in Lee et al. (2014), the parameters for the layers
in the main network directly connected to auxiliary networks
were updated using a linear combination of the backpropagated
gradients from later layers and the auxiliary network.

Wang et al. (2015) investigated the effectiveness of auxiliary
error functions in very large CNNs and their optimal placement.
They selected where to place these auxiliary functions
by measuring the average magnitude of the conventional
backpropagation error signal at each layer. Auxiliary networks,
similar to those used in Szegedy et al. (2015), were placed after
layers with vanishing gradients. These networks consisted of
a convolutional layer followed by three fully connected layers
and a softmax classifier. As in Lee et al. (2014) and Szegedy
et al. (2015), the auxiliary gradients were linearly combined to
update the model parameters. Adding these supervised auxiliary
error functions led to an improved accuracy for two very large
datasets, ILSVRC12 (Russakovsky et al., 2014) and MIT Places
(Zhou et al., 2014).

1.2. Transfer Learning: Pulling the
Representations of a Student Toward
Those of a Teacher
Enabling a student network to learn from a teacher is useful for
a number of tasks, for instance model compression (also known
as knowledge distillation) and transfer learning (Bengio, 2012).
The goal in either case is to use the representational knowledge
learned by a teacher neural network to improve the performance
of a student network (Bucilua et al., 2006; Ba and Caruana, 2014;
Hinton et al., 2015). For model compression, the teacher is a
larger or more complex network with higher performance than
the student. For knowledge transfer, the representations learned
by the teacher network are used to improve the training of a
student network on a different tasks or using different data.
Several techniques have been proposed for performing these
methods.

One technique for model compression is to have the student
learn the output representation of the teacher for a given training
input. For classification, the neurons before the softmax layer
can be constrained to have the same values as the teacher using
mean squared error (MSE) as done in Bucilua et al. (2006); Ba
and Caruana (2014). Alternatively, the output of the softmax
layer can be constrained to represent the same, or similar, output
distribution as the teacher. This can be done by minimizing the
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cross-entropy between the output distributions of the teacher and
student networks for the training inputs (Hinton et al., 2015).
However, these techniques assume that the student is learning the
same task as the teacher.

Knowledge from different networks can also be transferred
at internal layers. Romero et al. (2014) proposed a method for
transferring the knowledge of a wide and shallow teacher to
a thin and deep student, called FitNet. Pre-trained a network
by constraining an intermediate layer of the student network
to have representations that could linearly predict “hints” from
the teacher network (i.e., activation patterns at a corresponding
layer in the teacher network). After this, the network was fine-
tuined using the technique proposed in Hinton et al. (2015). The
FitNet method was shown to improve the students classification
accuracy.

Another prominent technique for performing transfer
learning is to initialize the weights of the student network to
those of the teacher. The network is then trained on a different
task or using different data. This can lead to improved network
performance (Yosinski et al., 2014). However, this requires
that the teacher and student have the same, or very similar,
architectures, which may not be desirable, especially if the
teacher is a biological neural network.

In this paper, we introduce an auxiliary error function
that enables a student network to learn from the internal
representational spaces of a teacher that has a similar or
different architecture. The method constrains the student’s
representational distances in a set of layers to approximate those
of the teacher. The student can thus learn the computational
transformations discovered by the teacher, leading to improved
representational learning during training.

2. METHODS

Our method, representational distance learning (RDL), enables
DNNs to learn from the representations of other models to
improve performance. As in Lee et al. (2014), Szegedy et al.
(2015), andWang et al. (2015), we utilize auxiliary error functions
to train internal layers directly in conjunction with the error
from the output layer found via backpropagation. We propose
an error function that maximizes the similarity between the
representational spaces of a student DNN and that of a teacher
model.

2.1. Representational Distance Matrices
In order to compare the representational spaces of models, a
method must be used to describe them. As discussed in Weston
et al. (2012), a representational space can be characterized by the
pairwise distances between representations. This idea has been
used in several methods such as MDS, which seeks to reduce
the dimensionality of data while minimizing the error between
the pairwise distance matrix of the original data and the reduced
dimensionality data (Kruskal, 1964).

Kriegeskorte et al. (2008) proposed using the matrix of
pairwise dissimilarities between representations of different
inputs, which they called representational distance, or
dissimilarity, matrices (RDMs), to compare computational

models and neurological data. More recently, Khaligh-Razavi
and Kriegeskorte (2014) used this technique to analyze several
computer vision models, including the CNN proposed in
Krizhevsky et al. (2012), and neurological data. Any distance
function could be used to compute the pairwise dissimilarities,
for instance the Euclidean or correlation distances. An RDM for
a DNN can be defined by:

RDM(X; fm)i, j = d(fm(xi;Wm), fm(xj;Wm)) (1)

where X is a set of n inputs (e.g., a mini-batch or a subset of a
mini-batch), fm is the neuron activations at layerm, xi, and xj are
single inputs,Wm is the weights of the neural network up to layer
m, and some distance, or dissimilarity, measure d.

In addition to characterizing the information present in a
particular layer of a DNN, RDMs can be used to visualize
the representational space of a layer in a DNN (Figure 1).
information captured by internal layers in a DNN is challenging.
Zeiler and Fergus (2014) proposed a method for visualizing
the input features which active internal neurons at varying
layers using deconvolutional neural networks. Yosinski et al.
(2015) also proposed methods for visualizing the activations
of a DNNs for a given input. However, these methods do not
show the categorical information of each representational layer.
Visualizing the similarity of labeled inputs at layers of interest, via
an RDM, allow clusters inherent to the learned representational
transformations to be viewed.

2.2. Representational Distance Learning
RDL uses an auxiliary error functions that maximizes the
similarity between the RDMs of a student and the RDMs of
a teacher at several layers. This is motivated by the idea that
RDMs, or distance matrices in general, can characterize the
representational space of a model. DNNs seek to learn a set of
hierarchical representations. For classification, this culminates
in finding a representational space where different classes are
separable. RDL allows aDNN to learn from the representations of
a different, potentially better, model by maximizing the similarity
between the RDMs of the DNN being trained and the target
model at several layers. Unlike in Bucilua et al. (2006), Ba and
Caruana (2014), and Hinton et al. (2015). RDL not only directly
trains the output representation, but also the representations
of hidden layers. As discussed in Bengio (2012), however, large
datasets can prohibit the use of pairwise techniques, since the
number of comparisons grows quadratically with dataset size.
To address this, our technique only uses a random subset of all
pairwise distances for each parameter update. This allows the
speed of our method to be constrained by the subset size and not
the overall number of training examples, which is usually several
orders of magnitude larger.

In order to maximize the similarity between the RDM of
a DNN layer being trained and a target RDM, we propose
minimizing the mean squared error between the two RDMs. This
corresponds to making all possible pairwise distances as similar
as possible:

Eaux(X; fm;Tm)=
2

n(n− 1)

∑

(i, j)|i< j

(RDM(X; fm)i, j−Tm, i, j)
2 (2)
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FIGURE 1 | Example representational distance matrices (RDMs) of the output layer of convolutional neural networks (CNNs) for 10 random images of

each class from MNIST (left) and CIFAR-10 (right) made using the RSA toolbox (Nili et al., 2014).

TABLE 1 | The convolutional neural network (CNN) architecture used for

MNIST.

Layer Kernel Number of Stride Non- Other

size features linearity

Conv-1 5 × 5 32 1 ReLU −

MaxPool-1 3 × 3 32 3 Max −

Conv-2 5 × 5 64 1 ReLU −

MaxPool-2 2 × 2 64 2 Max −

FC 1500 200 − ReLU Dropout (p = 0.5)

Linear 200 10 − − −

where X is a set of n inputs (e.g., a mini-batch or a subset of a
mini-batch), fm is the neuron activations at layer m, and Tm, i, j is
the distance between the teacher’s representations of input xi and
input xj at layer m. The function d used to calculate the RDMs
(Equation 1) could be any dissimilarity or distance function, but
we chose to use the mean squared error (MSE). This results in
the average auxiliary error with respect to neuron k of fm, fm, k,
for input xi and the weights of the neural network up to layer m,
Wm, being defined as:

∂Eaux(xi;X; fm;Tm)

∂fm, k
=

8

n(n− 1)

∑

j|j 6= i

(RDM(X; fm)i, j − Tm, i, j)(fm, k|
xi
xj
) (3)

where fm, k|
xi
xj = fm, k(xi;Wm)− fm, k(xj;Wm).

However, calculating the error for every pairwise distance can
be computational expensive, so we estimate the error using a
random subset, P, of the pairwise distances for each update of

TABLE 2 | The McNemar exact test p-values for the tested CNNs trained

on MNIST.

Baseline Teacher Finetuning Deep Hints RDL

supervision

Baseline — 0.38 0.00 ↑ 0.11 0.34 0.01 ↑

Teacher 0.38 — 0.01 ↑ 0.66 0.89 0.20

Finetuning 0.00← 0.01← — 0.14 0.04← 0.63

Deep 0.11 0.66 0.14 — 0.64 0.39

Supervision

Hints 0.34 0.89 0.04 ↑ 0.64 — 0.17

RDL 0.01← 0.20 0.63 0.39 0.17 —

Arrows indicate a significant difference (p < 0.05, uncorr.) and point to the better model.

a network’s parameters. This leads to the auxiliary error gradient
being approximated by:

∂Eaux(xi;X; fm;Tm)

∂fm, k
≈

8

|XP||Pxi |

∑

(i, j)∈Pxi

(RDM(X; fm)i, j − Tm, i, j)(fm, k|
xi
xj
) (4)

where XP is the set of all images contained in P, Pxi is the set of
all pairs, (i, j), in P that include input xi and another input, xj. If
an image is not sampled, its auxiliary error is zero.

The total error of fm, k for input xi is calculated by taking a
linear combination of the auxiliary error at layerm and the error
from backpropagation of the output error function and any later
auxiliary functions. These terms are combined using weighting
hyper parameter α, similar to the method discussed in Lee et al.
(2014), Szegedy et al. (2015), and Wang et al. (2015). In RDL,
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α is the weight of the RDL error in the overall error function.
Subsequently, the error gradient at a layer with an auxiliary error
function is defined as:

∂Etotal(xi; yi;X; fm;Tm)

∂fm, k
=

∂Ebackprop(xi; yi; fm)

∂fm, k
+ α

∂Eaux(xi;X; fm;Tm)

∂fm, k
(5)

This error is then used to calculate the error of earlier layers
in the DNN using backpropagation. As discussed by Lee et al.
(2014) and Wang et al. (2015), the value of α was decayed
as training progressed. Throughout training, α was updated
following αt+ 1 = α0

∗(1 − t/tmax) where t is the epoch number
and tmax is the total number of epochs. By using this decay rule,
the auxiliary error function initially helps drive the parameters to
good values while allowing the DNN to converge predominantly
using the output error by the end of training.

3. RESULTS

To evaluate the effectiveness of RDL, we perform two
experiments using four different datasets, MNIST, InfiMNIST,
CIFAR-10, and CIFAR-100. For each experiment, we transferred
the knowledge of a teacher network trained on a separate dataset
to a student network with the a similar architecture using: (1)
finetuning after directly copying the weights of the teacher,
(2) pre-training an internal layer of the student to linearly
predict a corresponding layer in the teacher using “hints,” and
(3) using RDL. We compared the results to two non-transfer
learning networks, a network only constrained at the output
layer using the target labels and a deeply supervised network,
which constrained both the output layer and internal layers using
the target labels. We implemented all of these methods using
Torch (Collobert et al., 2011). These experiments show that
the knowledge stored in the weights of a teacher network can
be transferred to a student network using the representational
distances learned by a teacher trained on a related task.

3.1. MNIST
MNIST is a dataset of 28× 28 images of handwritten digits from
10 classes, 0 through 9 (LeCun et al., 1998). The dataset contains
60,000 training images and 10,000 test images. A 10,000 image
subset of the training data was used as a validation set for hyper-
parameter tuning. No pre-processing or data augmentation was
applied. InfiMNIST is a dataset that extends the MNIST dataset
using pseudo-random deformations and translations (Loosli
et al., 2007). The first 10,000 non-MNIST InfiMNIST examples
were used as a validation set and the next 120,000 examples were
used as a training set for the teacher network. Each tested network
had the same architecture (Table 1), excluding any auxiliary error
functions. The deeply supervised network had linear auxiliary
softmax classifiers placed after the max pooling layers and α

was decayed using αt+ 1 = α∗t 0.1
∗(1 − t/tmax), as proposed

in Lee et al. (2014). For the finetuning network, the weights

TABLE 3 | Test errors for MNIST trained convolutional neural networks

(CNNs) and the CIFAR-100 trained “Network in Network” (NiN) models.

Method Error (%)

MNIST

Baseline CNN 0.63

Teacher 0.56

Teacher with finetuning 0.48

Student with deep supervision 0.55

Student with hints 0.56

Student with RDL 0.49

CIFAR-100

Baseline NiN 30.68

Teacher with finetuning 38.75

Student with deep supervision 29.46

Student with hints 29.37

Student with RDL 28.77

The performance of the teacher for the CIFAR-100 classification is not shown, since it

was trained on CIFAR-10 and, therefore, predicted across 10 not 100 classes, making it

unable to perform the CIFAR-100 task.

FIGURE 2 | The change in the train and test errors through time as the tested convolutional neural networks (CNNs) are trained on MNIST.
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were initialized as the weights of the teacher network instead of
being randomly initialized. After this, the network was trained
normally. The RDL network had auxiliary error functions after
both max pooling layers and the fully connected layer. 5% (500)
of the image pairs per mini-batch were used to calculate the RDL

auxiliary errors. A momentum of 0.9 and a mini-batch size of 100
were used for all networks trained on MNIST and InfiMNIST.

In addition to the classification error (Figure 2 and Table 3),
we used the McNemar exact test (Edwards, 1948) to evaluate
whether a network was significantly more accurate in classifying

FIGURE 3 | Representational distance matrices (RDMs) using the Euclidean distance for the first and second convolutional layers as well as the fully

connected (FC) and softmax layers of the CNN tested methods, the raw pixel data, and the target labels for 10 random class exemplars from MNIST.

FIGURE 4 | 2-D multi-dimensional scaling (MDS) visualization of the distances between the representational distance matrices (RDMs) for selected

layers of the MNIST trained networks. RDMs were generated for each model using 20 bootstrapped samples of 100 images from the test set. For each sampled

image set, the correlation distance between the RDMs of the different networks were calculated. These values were then averaged to generate the MDS plot.
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a random image from the distribution from which the images in
the training and test sets were drawn. The results (Table 2) show
that the finetuning and RDL methods both signifantly improve
accuracy compared to the baseline CNN. They are, however, not
significantly different, showing the ability of RDL to indirectly
transfer the knowledge of the teacher network. The finetuned
network is also significantly better than the teacher and the “hint”
network, unlike RDL. This is because RDL actively constrains
the student network to imitate the teacher, while finetuning only
affects initialization.

In order to further compare the trained networks, RDMs were
generated for each fully trained model. Figure 3 shows RDMs for
100 random test images, 10 from each class. This visualization
emphasizes the class clustering as inputs are transformed from
pixel space to label space. Some classes are already clustered in
pixel space. For instance, 1, 7, and 9 s each have large blocks along
the diagonal portion of the pixel RDM. However, by looking at
the rows and columns we can see that these classes are difficult
to separate from one another. After the first convolutional layer,

TABLE 4 | The “Network in Network” (NiN) architecture with

batch-normalization (BN) (Ioffe and Szegedy, 2015) used for CIFAR-100.

Layer Kernel Number of Stride Non- Other

size features linearity

Conv-1 5 × 5 192 1 ReLU BN

MLPConv-1-1 1 × 1 160 1 ReLU BN

MLPConv-1-2 1 × 1 96 1 ReLU BN

MaxPool 3 × 3 96 2 Max −

Conv-2 5 × 5 192 1 ReLU BN, Dropout (p = 0.5)

MLPConv-2-1 1 × 1 192 1 ReLU BN

MLPConv-2-2 1 × 1 192 1 ReLU BN

AveragePool-1 3 × 3 192 2 − −

Conv-3 5 × 5 192 1 ReLU BN, Dropout (p = 0.5)

MLPConv-3-1 1 × 1 192 1 ReLU BN

MLPConv-3-2 1 × 1 100 1 ReLU BN

AveragePool-2 8 × 8 100 − − −

class clustering increases, especially for the baseline CNN. After
the second convolutional layer, class clustering increases for
every model and other class relationships become apparent. For
instance, 3 and 5 s are becoming increasingly different from other
classes, but are still similar to each other. Also, 1s remain similar
to many other classes. The fully connected (FC) layer leads to
stronger, but not perfect, class cluster. As expected, the softmax
layer leads to extremely strong class distinction. However, most
of themodels still view 1s as similar to other classes, as seen by the
large horizontal and vertical gray stripes. The notable exception
is the finetuned CNN, which had the lowest testing error.

While viewing the RDMs directly can make certain facts
about the transformations performed by the models evident,
it can be hard to compare RDMs to each other by visual
inspection. To better understand the relationships between
the representations of the different models, we calculate the
correlation distance between each pair of RDMs and use MDS to
create a 2-D plot showing the relative position in representational
space of the transformations learned by the various trained
networks (Figure 4). This allows for drawing several qualitative
conclusions. As expected, the RDMs of the networks start close
to the pixel-based RDM and become more similar to the target
RDM the deeper the layer. The differences between the evaluated
techniques can most clearly be seen at the 2nd (Conv2) and 3rd
(FC) layers. As expected: (1) the network initialized with the
weights of the teacher and then finetuned has the most similar
RDMs to the teacher, (2) deep supervision pulls the RDMs of the
student toward the target, (3) RDL pulls the RDMs of the student
toward and the RDMs of the teacher, especially at 3rd layer.

3.2. CIFAR-100
In order to test RDL on a more interesting problem, we
performed transfer learning from CIFAR-10 to CIFAR-100. This
experiment consists of transferring knowledge learned in an
easier task to a harder one, something that is useful in many
instances. CIFAR-100 is a dataset of 32 × 32 color images
each containing one of 100 objects. The dataset contains 50,000
training images and 10,000 test images. A 10,000 image subset of
the training data was used as a validation set for hyper-parameter

FIGURE 5 | The change in the train and test errors through time for the “Network in Network” (NiN) models trained on CIFAR-100.
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tuning. CIFAR-10 is also a dataset of 32 × 32 color images,
but containing only 10 distinct classes instead of 100. CIFAR-10
also contains 50,000 training images and 10,000 test images. For
both datasets, the data were pre-processed using global contrast
normalization. During training, random horizontal flips of the
images were performed and the learning rate was halved every 25
epochs.

To evaluate using RDLwith a more complex network, we used
a “Network in Network” (NiN) architecture (Lin et al., 2013),
which use MLPConv layers, convolutional layers that use multi-
layered perception (MLP) filters instead of linear filters (Table 4).

TABLE 5 | The McNemar exact test p-values for the tested “Network in

Network” (NiN) models trained on CIFAR-100.

Baseline Finetuning Deep supervision Hints RDL

Baseline — 0.00← 0.00 ↑ 0.00 ↑ 0.00 ↑

Finetuning 0.00 ↑ — 0.00 ↑ 0.00 ↑ 0.00 ↑

Deep supervision 0.00← 0.00← — 0.86 0.08

Hints 0.00← 0.00← 0.86 — 0.05

RDL 0.00← 0.00← 0.08 0.05 —

Arrows indicate a significant difference (p < 0.05,uncorr.) and point to the better model.

The CIFAR-10 trained teacher network had the same architecture
as the baseline CIFAR-100 NiN (Table 4) except with a 10-class
output layer and had a testing error of 8.0%. The DSN had linear
auxiliary softmax classifiers after the first and second pooling
layers and α was decayed as proposed in Lee et al. (2014). The
finetuning network’s weights were initialized using those of the
CIFAR-10 teacher network and a linear readout was added. The
RDL network had the same architecture as the baseline CIFAR-
100 network with randomly initialized weights and the addition
of auxiliary error functions that used the RDMs from the CIFAR-
10 teacher. For RDL, an additional linear readout was added after
the last MLPConv layer since RDL does not specify that each
neuron in a representation corresponds to an output class. For
RDL, 2.5% (406) of the image pairs per mini-batch of 128 images
were used to calculate the RDL auxiliary errors.

As in the previous experiment, the performances of the
networks (Figure 5 and Table 3) were statistically compared
using theMcNemar test. The results are shown in Table 5. Unlike
in the MNIST experiment, the fine tuned network performed
statistically worse than all tested methods. This is likely a
combination of the weights being overspecialized for CIFAR-10
classification and the last MLPConv layer having less units. The
networks that were trained with deep supervision, hints, and
RDL all significantly improved upon the baseline NiN and the

FIGURE 6 | 2-D multi-dimensional scaling (MDS) visualization of the distances between the representational distance matrices (RDMs) for selected

layers of the CIFAR-100 trained networks. RDMs were generated for each model using 20 bootstrapped samples of 100 images from the test set. For each

sampled image set, the normalized Euclidean distance between the RDMs of the different networks were calculated. These values were then averaged to generate

the MDS plot.
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finetuned network. These results show that learning from RDMs
can extract meaningful information from a teacher network,
which leads to improved classification performance.

To investigate the relationships between the representations
of the different NiN models, we calculate the correlation between
each pair of RDMs and use MDS to create a 2-D plot showing the
relative position in representational space of the transformations
learned by the various trained networks (Figure 6). The MDS
plots shows that: (1) the layer 2 and layer 3 RDMs of the network
initialized with the weights of the teacher and then finetuned are
further from the target than the other non-teacher networks, (2)
deep supervision pulls the RDMs of the student toward the target,
(3) despite learning a series of transformations that do not map
directly to the target, the teacher contains useful information to
the students’ task, and (4) RDL pulls the RDMs of the student
toward and the RDMs of the teacher. This shows the ability of
RDL to incorporate both the representational information from
the teacher as well as from the classification task.

4. DISCUSSION

In this paper, we proposed RDL, a technique for transferring
knowledge from a teacher model to a student DNN. The
representational space of the student is pulled toward that of a
teacher model during training using stochastic gradient descent.
This was performed by minimizing the difference between the
pairwise distances between representations of two models at
selected layers using auxiliary error functions. Training with RDL
was shown to improve classification performance by extracting

knowledge from another model trained on a similar task,
while allowing architectural differences between the student and
teacher. This suggests that RDL can transfer the relationships
between class examples learned by the teacher. This information
is not present when only constraining internal layers using class
labels, as done in the deeply supervised method, since the target
vectors for each class are orthogonal. In particular, RDL allows
a student network to learn similar sequential transformations to
those learned by a teacher network. This could be of potential
use in learning transformations similar to those performed in
the human visual ventral stream. Such a model might be able to
generate brain-like RDMs for novel stimuli. In the future, we plan
to train such a model by constraining large DNNs using fMRI-
based RDMs from the human visual ventral stream. By learning
from brain-activity patterns, RDL has the potential to help build
more realistic models of computations in biological brains.
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Understanding the relation between (sensory) stimuli and the activity of neurons (i.e., “the

neural code”) lies at heart of understanding the computational properties of the brain.

However, quantifying the information between a stimulus and a spike train has proven to

be challenging. We propose a new (in vitro) method to measure how much information

a single neuron transfers from the input it receives to its output spike train. The input

is generated by an artificial neural network that responds to a randomly appearing and

disappearing “sensory stimulus”: the hidden state. The sum of this network activity is

injected as current input into the neuron under investigation. The mutual information

between the hidden state on the one hand and spike trains of the artificial network or

the recorded spike train on the other hand can easily be estimated due to the binary

shape of the hidden state. The characteristics of the input current, such as the time

constant as a result of the (dis)appearance rate of the hidden state or the amplitude

of the input current (the firing frequency of the neurons in the artificial network), can

independently be varied. As an example, we apply this method to pyramidal neurons in

the CA1 of mouse hippocampi and compare the recorded spike trains to the optimal

response of the “Bayesian neuron” (BN). We conclude that like in the BN, information

transfer in hippocampal pyramidal cells is non-linear and amplifying: the information loss

between the artificial input and the output spike train is high if the input to the neuron (the

firing of the artificial network) is not very informative about the hidden state. If the input

to the neuron does contain a lot of information about the hidden state, the information

loss is low. Moreover, neurons increase their firing rates in case the (dis)appearance rate

is high, so that the (relative) amount of transferred information stays constant.

Keywords: neural information processing, artificial neural network, in vitro electrophysiology, Bayesian neuron

model, information theory

Abbreviations: BN, Bayesian Neuron, see Denève (2008a); MSE, Mean-Squared Error (Equation 14); FMSE, Fraction of

output MSE relative to input MSE (Equation 16); MSEP , Fraction of output MSE relative to MSE in Poisson spike train

(Equation 15); F, Fraction of information relative to entropy of the hidden state (Equation 2); FI, Fraction of information

about the hidden state in output relative to input (Equation 3); FS, SNRoutput/SNRinput.
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1. INTRODUCTION

Neuroscientists aim to understand how the brain represents and
transforms incoming information by quantifying the relation
between (sensory) stimuli and the activity of neurons (i.e.,
“the neural code”). When researching such information transfer
properties of neural systems, and in particular of single neurons,
there are twomain questions: (1)what information is encoded by
a neuron (and what information is discarded), and (2) how much
information is transferred (or lost). The first question is often
investigated by fitting functional filter models such as a Linear–
Non-linear Poisson model (Chichilnisky, 2001) or a Generalized
Linear Model (Paninski, 2004) to the neural input and output
(for an overview see Simoncelli et al., 2004; Schwartz et al.,
2006). Here, we will focus on the second question: How much
information is transferred by single neurons? This question was
first posed by MacKay and McCulloch (1952) and de Ruyter
van Steveninck and Bialek (1988) were first to develop a way to
measure the information transfer in neurons. This quantitative
approach to information transfer is important, because it shows
how information transfer properties change. For instance, the
amount of information a neuron transmits depends on the
background activity of the network a neuron is embedded in
Panzeri et al. (1999) and Shadlen and Newsome (1998), on
neuromodulators such as dopamine (Cruz et al., 2011) and on the
type of code that is used (i.e., a “temporal” or “rate” code, Panzeri
et al., 2001).

Researchers have attempted to measure the information
transfer from presynaptic activity to output spike trains in
neurons in different experimental setups and sensory systems
in vivo and in vitro (including the visual system of the
fly (de Ruyter van Steveninck and Bialek, 1988) and the
whisker system of rats (Panzeri et al., 2001), using different
information theoretical measures (for an overview, see Borst and
Theunissen, 1999; Dimitrov et al., 2011). However, quantifying
the information between a stimulus and a spike train has
proven to be challenging. For example, information can be
measured by reconstructing the stimulus from a spike train,
and estimating the signal-to-noise ratio (Bialek et al., 1991;
Rieke et al., 1997). This method requires a large amount of
data, since a model needs to be fitted to the neural response
(e.g., a linear filter and transfer function) before transferred
information can be measured. Alternatively, information can be
measured using the so-called “direct method” (de Ruyter van
Steveninck et al., 1997; Strong et al., 1998), in which the response
variability is used to estimate the mutual information between
stimulus and spike train output. Measuring the information
between a neuron’s input and output this way involves various
difficulties and biases, including the need to repeat a stimulus
many times (or for a vary long time) and a bias due to
limited sample sizes (Treves and Panzeri, 1995; Strong et al.,
1998). Moreover, it might be difficult to determine what kind
of stimulus to use, and in these setups the stimulus and the
measured neuron are often several synapses away, making
it difficult to assess where a measured loss of information
happens. Finally, the choice of what set of stimuli to use is
non-trivial.

Here we present a method to estimate how much information
is contained in the spike train of a single neuron in an in vitro
setup. The neuron is presented with an current input, generated
by a population of artificial presynaptic neurons that respond
to a randomly appearing and disappearing preferred stimulus:
the hidden state (Denève, 2008a; Lochmann and Denève, 2008).
This hidden state mimicks for instance a randomly appearing
bar with a preferred orientation (for cells in primary visual
cortex) or sound with a preferred frequency (for cells in auditory
cortex). The information estimate is calculated by comparing
the absence/presence of the hidden state and an estimate of
the presence of this stimulus, based on the output spike train.
The method does not require vast amounts of data or many
repetitions. The method can be applied in any in vitro setup (so it
not limited to sensory systems). Moreover, various experimental
parameters such as the autocorrelation time-constant due to
the (dis)appearance rate of the hidden state or the specific
amount of information in the input and the amplitude of
the signal relative to the background noise can systematically
be varied, while the input is still close to the natural stimuli
neurons normally receive. Finally, since we have a model of
the optimal response (the “Bayesian neuron,” Denève, 2008a),
the quality of the performance of the neuron can be rigorously
assessed.

The goal of the method presented here is to define an
experimental paradigm with which the information (loss) of the
spike-generating process can be quantified and compared (for
instance between neuropharmacological states) in an in vitro
paradigm. This information-calculation is based on previous
work (Denève, 2008a; Lochmann and Denève, 2008), where
a similar method was used to compare single-compartment
models. Here, we add the following to the existing method:
Firstly, we replace delta-spikes by exponential kernels to mimick
Post-Synaptic Currents (PSCs). Secondly, we define the output
of the artificial neural network as a current output, and scale
it so that it can be injected in a current-clamp setup. Thirdly,
we show that the mutual information in the input current
can be kept constant while varying experimental parameters.
There is a a trade-off between the autocorrelation time and
the firing rates of the artificial presynaptic neurons: if the
autocorrelation time is short (i.e., the hidden state appears
and disappears with a high rate), a high firing rate of the
presynaptic neurons is needed to keep the information in the
input current constant1. Finally, we provide an example of an
in vitro experiment where this paradigm is used. We apply
the method presented here to pyramidal neurons in region
CA1 of the rat hippocampus in an in vitro slice, to quantify
the information loss from input to output spike train as a
function of the stimulus (dis)appearance rate, the input current
amplitude, and the information content of the input current
(for an overview of other coding properties of these cells, see
Hasselmo, 2011).

1Note that increasing the number of presynaptic neurons or the firing rates of the

presynaptic neurons has the same effect: increasing the stimulus amplitude relative

to the background noise. This relative stimulus amplitude is related to, but not the

same as, the signal-to-noise ratio (see Supplementary Material).
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2. METHODS

Here we present an experimental method to estimate how much
information is contained in the spike train of a single neuron. In
the first part of this methods section, we summarize and explain
the theory behind the method. In order to easily estimate the
information in a spike train, the neuron has to respond to a
special type of input generated by an artificial neural network,
which is explained first in Section 2.1.1. In the next Section
2.1.2, we explain how this special form of a noisy input can
be used to quantify the information in the output spike train.
The theoretical derivation follows Lochmann and Denève (2008),
who compared model-neurons this way. Next, we define an
optimal response model (Denève, 2008a; Section 2.1.3), which
sets a benchmark for the performance of the recorded neuron.

In the second part of the methods section, we zoom in on the
experimental part of the method: in Section 2.2.1 we explain how
the activity of the artificial neural network, which is in arbitrary
units, can be scaled so that it can be used as a fluctuating current
input in an in vitro setup. Next, the input parameters used in the
experiments are summarized (Section 2.2.2). Finally, the details
of the experimental slice preparation and recording are given
(Section 2.2.3).

2.1. Theory
2.1.1. Input Generation
Except for sensory receptors, neurons in the brain respond to
input generated by other neurons. We assume here that neurons
respond to the absence or presence of a preferred stimulus
feature, for instance an edge in a preferred orientation (visual
system). This absence or presence of the preferred stimulus
feature is represented by the hidden state x (Figure 1): a binary
variable that equals 1 if the preferred stimulus is present, and 0 if
it is absemt. We assume that this preferred stimulus appears and
disappears randomly following a memoryless (Markov) process
with rates ron and roff. Or, stated differently, the quantities
τ = 1

ron + roff
and p1 =

ron
ron + roff

quantify respectively how fast the

hidden state switches and the probability of finding the hidden
state in the “ON” (1) state.

The second assumption in the input generation, is that
neurons do not directly observe the hidden state, but receive
synaptic inputs from a population of N presynaptic neurons
i, whose firing rate is modulated by the stimulus so that each
fire Poisson spike trains with rate qion when x = 1, and
qi
off

when x = 0. These two assumptions are comparable
to the assumptions that are implicitly made when estimating
tuning curves, for instance by fitting filter models such as a
Linear-Nonlinear Poisson model (Chichilnisky, 2001) to sensory
stimuli: in both cases it is assumed that a neuron responds
only to the present value (so no history or reverberation effects)
of a preferred stimulus feature that it does not have direct
access to.

Each of the spikes from the population of artificial presynaptic
neurons is convolved with an exponential kernel with a time
constant of 5 ms and a unitary surface. Moreover, the spike trains
from different presynaptic neurons are weighted according to

their reliability, i.e., wi = log
qion
qi
off

(Figure 1). This is the third and

strongest assumption of the input generation. These values for
the weights result in an optimally informative total input current
(Denève, 2008a), and can be learned with an unsupervised, local,
spike-dependent learning rule (Denève, 2008b). We did not use
a learning rule here, but just used the “optimal” weights. The
relation between the weights and the firing frequencies makes
sense intuitively: we assume that the neuron listens strongly to
informative neurons (qion >> qi

off
, results in wi >> 0), not

to neurons that are not informative (qion ≈ qi
off
, so wi ≈

0) and neurons that fire more when the preferred stimulus is
absent have an inhibitory contribution (qion << qi

off
, results in

wi << 0). Given these weights, the sum-total synaptic input is
given by

I =

N
∑

i= 1

wisi ∗ k, (1)

where ∗ denotes a convolution with the exponential kernel k(t)

and si =
∑Mi

mi = 1 δ(t − tmi ) is the spike train of artificial neuron i

that depends on the hidden state through qion and qi
off
. However,

this input cannot be injected directly into a neuron in an in
vitro setup or into a model neuron yet: it has to be scaled from
dimensionless units to ampère A, which will be explained in
Section 2.2.1. The autocorrelation time constant of the input
depends on the switching rates of the hidden state (through
τ = 1

ron + roff
and on the distribution of firing rates in the

artificial neural network qion and qi
off
. Since we do not know

anything a priori about the distributions of the firing rates qion
and qi

off
, we make the most simple assumption and draw them

from a Gaussian distribution. So qion and qi
off

are all drawn from
a Gaussian distribution with mean µq and standard deviation

σq =

√

1
8µq (the value if σq is chosen so that virtually all firing

rates are positive). Note that even though the firing rates qion and
qi
off

are drawn from the same distribution, this generally does not
mean they have the same value.

2.1.2. Estimating Mutual Information
The mutual information between the hidden state and the the
input (MII) or any output spike train (MIspike train) in response
to this input can easily be estimated, because the input defined
in the previous section uses a hidden state x. In this section, we
will explain how to estimate this information in a spike train
(the method can be applied to any spike train, be it recorded,
simulated any other spike train). We start by estimating the
entropy of the hidden state. Next, we consider the following
two steps: (1) the transformation from hidden state to input
(MII), and (2) the transformation from input to spike train (i.e.,
the neural spike generating process, MIspike train). By definition,
MII and MIspike train cannot exceed the entropy of the hidden
state Hxx (determined by p1, Equation 4). If there would be no
information loss, the mutual information between the spike train
and the hidden state equals the entropy of the hidden state:
MIspike train = MII = Hxx. However, in practice every step will
result in information loss: MIspike train < MII < Hxx. Since we
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FIGURE 1 | Graphical representation of the input model: the input is generated by N artificial neurons i that fire Poisson spike trains with rates qion and qioff in

response to a hidden Markov model, with rates ron and roff. The spikes of each artificial neuron are convolved with an exponential kernel with a time constant of 5 ms

and a weight of wi = log
qion

qioff

. This current is injected into hippocampal pyramidal cells in an in vitro current clamp setup. The resulting spike trains are recorded and

used to reconstruct the hidden state.

have access to MIspike train, MII , and Hxx, we can estimate the
information loss at every step.

The derivation follows Lochmann and Denève (2008) and
Denève (2008a). The method requires two assumptions; firstly
an ergodic argument: it is assumed that an average over samples
can be replaced by an average over time. This means that
if in an experiment the setup is not stationary during the
time window for which the mutual information is calculated,
the approximation fails. Secondly, it is assumed that output
spike trains are by approximation Poissonian. The estimate
of the mutual information is not strongly sensitive to this
assumption, but strong deviations from Poissonian statistics will
make the estimate fail. Time is measured in discrete steps, as
most simulations and experiments use finite sampling rates. The
mutual information is estimated for a single time-step, so it is
an information rate (in bits/second). However, for simplicity
and since we do not adjust the time step of our simulations of
experiments here, we will only report the mutual information (in
bits).

In Section 3, we will often use the fraction of transferred
entropy

F = 〈
M̂I

Ĥxx

〉samples or simulations, (2)

where the brackets denote an average over samples orsimulations.
This fraction shows how much of the entropy of the hidden state

is transferred to the output spike train, and should therefore
always have a value between 0 (since information or entropy
cannot become negative) and 1 (the mutual information should
never exceed the entropy of the hidden state). Similarly, we will
use the fraction of transferred information

FI =
M̂Ispike train

M̂II
, (3)

which should also have a value between 0 (no information about
the hidden state in the input was transferred to the output spike
train) and 1 (all information in the input was transferred to the
output spike train).

2.1.2.1. Entropy of the hidden state
The theoretical value of entropy of the hidden state on each
moment in time depends only on the probability that the hidden
state is 1 (because a Markov process is memoryless):

Hxx = −p1 log2(p1)− (1− p1) log2(1− p1). (4)

However, for a given realization (the full sequence of hidden state
values up to time t: x0→t), the estimate of the entropy:

Ĥxx = −〈x0→t〉time log2(〈x0→t〉time)

− (1− 〈x0→t〉time) log2(1− 〈x0→t〉time). (5)
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could show small deviations from its true value given in
Equation (4).

2.1.2.2. Conditional entropy
We start with a general estimate of the mutual information
between the hidden state x and either an output spike train or
the input. We use y to denote the history of the spike train or
the input until now, and Y as the set of values y can take. The
estimated mutual information MI is defined as the difference
between the estimate of the entropy of the hidden state and the
estimate of the conditional entropy of the hidden state given the
history of y (spike train or input) until now:

M̂I = Ĥxx − Ĥxy. (6)

The conditional entropy of x given y is defined by

Hxy = −
∑

x∈X,y∈Y

p(x, y) log2(p(x|y)), (7)

where X is the set of values x can take (i.e., X = {0, 1}). Since the
hidden state can only take the values 0 and 1, we can estimate the
conditional entropy by averaging over time:

Ĥxy = −〈x log2(p(x = 1|y))+ (1− x) log2(p(x = 0|y))〉time

= −〈x log2(p(x = 1|y))

+ (1− x) log2((1− p(x = 1|y)))〉time, (8)

where we used the ergodic argument mentioned before to
approximate an average over samples by an average over time.
In the following two sections, we will explain how to estimate
p(x = 1|y) and p(x = 0|y) based on either the input or an output
spike train. Remember that x denotes the current value of the
hidden state, whereas y signifies the spike train or input history
up until now.

2.1.2.3. Mutual information between the hidden state and

the input
To estimate of the conditional entropy of the hidden state given
the input history, we have to estimate the probability of the
hidden state being equal to 1 given the history of the input.
Following the derivation in Denève (2008a), L(t), the temporal
evolution of the posterior log-likelihood of the hidden state being
1 based on the input history

L(t) = log2
p(x = 1|I0→t)

p(x = 0|I0→t)
= log2

p(x = 1|I0→t)

1− p(x = 1|I0→t)
(9)

can be estimated using the following differential equation:

dL̂

dt
= ron(1+ e−L̂)− roff (1+ eL̂)+ I(t)− θ , (10)

where θ =
∑N

i=1 q
i
on − qi

off
is the constant offset of the input,

which is chosen to be equal to 0 in this paper2. So if we generate

2For large enough N, θ ≈ 0. Since qion and qi
off

are drawn from the same normal

distribution with mean µq and standard deviation σq =

√

1
8µq, the difference

distribution has mean 0 and standard deviation
√
2σq =

√

1
2µq.

an input using the method from Section 2.1.1, we can integrate L̂
using Equation (10) and estimate the mutual information using
Equation (8) and the following estimate of the probability that the
hidden state equals 1 given the input history:

p̂(x = 1|I0→t) =
1

1+ e−L̂
. (11)

2.1.2.4. Mutual information between the hidden state and a

spike train
The conditional entropy and themutual information between the
hidden state and an output spike train ρ(t) =

∑M
m=1 δ(t − tm)

can be estimated using the same method as for estimating the
mutual information between the hidden state and the input: by
integrating the log-likelihood L over time. However, parameter I
in Equation (10) should now be replaced by Ispike train, generated
with the help of Equation (1). In this equation, the exponential
kernel k was used, because δ-spikes cannot be used in an
experimental setup. However, for the information calculation,
δ-spikes are not a problem, so the exponential kernel will be
discarded3. For a given spike train, we need to estimate both θ

and w, so we need to estimate qon and qoff:

q̂on =

∫

t|x= 1
ρ(t)dt

∫

t|x= 1
dt

=
total # spikes while x = 1

total time x = 1

q̂off =

∫

t|x= 0
ρ(t)dt

∫

t|x= 0
dt

=
total # spikes while x = 0

total time x = 0
.

(12)

Now, we can generate Ispike train for calculating L using Equation
(10) and estimating the mutual information using Equations (8)
and (11).

2.1.2.5. Hidden state estimate and mean-squared error
With the help of Equation (9), an estimate of the hidden state can
be defined: because the hidden state can only take the values 0
and 1, and the estimate of the probability that the hidden state is
equal to one p̂(x = 1|I0→t) can only take values between 0 and 1,
p̂(x = 1|I0→t) can be viewed as an estimate of the hidden state:

x̂(t) = p̂(x = 1|I0→t) =
1

1+ e−L̂(t)
. (13)

This can be used to calculate another measure of how well a
spike train represents the hidden state, the mean-squared error
(MSE)4:

MSE =
1

Nt

Nt
∑

t= 1

(x̂t − xt)
2, (14)

3Due to the discretization of numerical approaches, “true” δ-spikes cannot be

implemented in a computer. Rather, a δ-spike is implemented as a square kernel

with width dt and height 1
dt
.

4Note that this gives us another estimate of the mutual information, based on

the relation between the signal-to-noise ratio and the mutual information MI =
∫ ∞
0 log2(1+SNR(f ))df (Shannon, 1984; Cover and Thomas, 1991; Guo et al., 2005;

Schultz, 2007) and the noise signal is defined as noise = x − x̂. However, this will

give us essentially the same results, since it is based on the same estimate p̂(x = 1)

and L̂.
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where we used discretized time. We can normalize this MSE by
dividing it by the MSE of Poisson spike-trains with the same
number of spikes

MSEP =
MSEspike train

〈MSEPoisson spike train〉simulations
. (15)

This gives us a quantity that is around 1 when a spike train
performs as well as a Poisson spike train (so when there is
no information about the hidden state in the spike train) and
vanishes when the hidden state can be perfectly inferred from
the spike train (so the MSE vanishes). We can also normalize
MSEspike train by dividing it by the mean-squared error obtained
with the inputMSEI :

FMSE =
MSEspike train

MSEI
. (16)

This represents how much noise the spike process of the neuron
adds to the estimate of the hidden state: if it equals 1 the error
of the estimate based on the input has the same size as the
error based on the spike train, and the neuron transmits all the
information in the input perfectly.

2.1.2.6. Delays
The theoretical form of the input was derived using Dirac-
delta spikes (Denève, 2008a). Since an input consisting of delta
spikes cannot be used in an experimental setup, we chose to
convolve the input with exponential kernels, which mimics
cortical PSC shapes. However, since an exponential kernel rises
instantaneously, but decays slowly, this introduces a delay in the
input relative to the hidden state. On the next level, any neuron
that responds to this input will have a non-vanishing membrane
time constant, resulting in a further delay. With this reasoning,
each processing level adds a few ms delay to the representation
of the hidden state. To separate the effects due to delays and
other effects influencing the quality of the representation, we also
calculate the mutual information between the hidden state and a
shifted version of the input or spike train: we calculate the time-
value peak of the cross-correlogram between the hidden state
and the input/spike train, and shift the input/spike train by this
amount. The mutual information resulting from this calculation
will be denoted byMI∗.

2.1.3. Optimal Response Model
One of the advantages of creating an input using a hidden
Markov model is that we have a model for an optimal response:
the “Bayesian neuron” (Denève, 2008a). This model compares
the log odds ratio of the stimulus (i.e., the log-likelihood of the
hidden state being 1, see Equation 9) based on the input L with
the log odds ratio based on the output spike train G, and keeps
this difference small by spiking at appropriate times. This neuron
only spikes if the likelihood of the hidden state being 1 based on
the output spike train is lower than the likelihood of the hidden
state being 1 based on the input, thereby only transferring “new”

information and making efficient use of its output spikes:

dL

dt
= ron(1+ e−L)− roff (1+ eL)+ I(t)− θ

dG

dt
= ron(1+ e−G)− roff (1+ eG)

if L > G+
η

2
:

{

a spike is fired

G → G+ η

(17)

For a given input, the only free parameter in this model is η, the
reset and threshold condition which sets the output firing rate
of the neuron. The mutual information between a spike train
and the hidden state necessarily depends on the firing rate: if
a neuron does not spike, the mutual information vanishes. To
signal whether the hidden state switches on (or off), the neuron
needs to fire at least one spike every on (or off) state. Ideally, the
firing rate of a spike train is comparable to 1

τ
. We use parameter

η to match the firing rate of the neurons we measured and the
firing rate of the Bayesian neuron, to be able to compare the two.

2.2. Experimental Design
2.2.1. Scaling
The input defined in Section 2.1.1 is dimensionless (the weights
only give a relative contribution, scaled to how informative the
artificial neuron is about the hidden state). Input currents used
in in vitro experiments has either unit ampère A (current clamp),
volt V (voltage clamp), or siemens S (dynamic clamp). Therefore,
the dimensionless theoretical “input current” from the artificial
network has to be scaled so that it can be injected into the neuron
in a current clamp setup (so we will have to scale the input
generated by the artificial network to ampère A).

Iinjected = Ihold + IscaleIMarkov(t), (18)

where IMarkov(t) is the dimensionless “current” defined by
Equation (1). Finding Ihold and Iscale is not a trivial procedure:
how “strong” an input current is for a neuron depends on
its sensitivity to input current. This sensitivity can depend on
several neuronal properties such as its excitability (rheobase, the
steepness of the input-frequency curve), but also on the size of
the neuron and the strength of the seal of the patch clamp. Here,
we chose the following solution:

• Offset: In the current clamp measurements the membrane
potential was adjusted by a feedback system that injects current
(Ihold), so that the membrane potential stabilized to a desired
value (−65 mV) before the actual measurement was started.
From then on the value Ihold was fixed.

• Amplitude:Weused a probe input (see Section 3.1.2) to define
the amplitude with which to scale all inputs for a given neuron:
we tried factors Iscale (with a resolution of 250 pA, so 250, 500,
750, 1000, 1250 pA, etc.) to set the firing rate response of the
neuron to about 12 Hz overall (about 20 Hz when x = 1).

2.2.2. Parameters
Every parameter set {τ , p1,µq} defines an input “regime.” We
chose three “difficult” (i.e., lowMII) regimes: a “slow” (S) regime,
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with a small µq and a large τ ; a “fast” (F) regime, with a
large µq and a small τ , and a “probe” (P) regime in between
with intermediate µq and τ . The probe served to determine the
scaling of the input (previous Section 2.2.1). For comparison, we
also used a “fast switching—low amplitude” (FL) regime with
a very low information content and a “slow switching—high
amplitude” (SH) regime with a high information content. The
exact values and reasoning behind the regimes will be explained
in Section 3.1.2.

As explained in the previous Section 2.2.1, the theoretical
input generated by the artificial network needs to be scaled
in order to use it in an experimental set-up. We scaled the
inputs generated in the different regimes all with the same
factor (Equation 18). From then on the value was fixed. To
determine Iscale we used the probe (P) input, i.e., an input with
the same information content as the S and F inputs, but with an
intermediate τ : τprobe and µ : µq,probe. The mutual information
between the hidden state and a spike train naturally depends on
the firing rate. Therefore, we scale the input current so that each
neuron responds with about the same firing rate to the probe
input: about 12 Hz overall (about 20 Hz when x = 1).

The input defined in Section 2.1.1 was generated once for each
regime, and consequently used as a “frozen noise” input for the
experiments and simulations. The parameters for the generated
input are shown in Table 1. In Section 3.1.2 we will motivate
these choices. The input used in the experiments was 20 s for
the probes, and 300 s for each of the other regimes. The mutual
information was calculated on 15 consecutive windows of 20 s.
Unless mentioned otherwise, we used a sampling rate of 5,000
Hz (so a time step of dt = 0.2 ms) for both the input in the
experiments and the simulations. Due to the limited time we had
for each neuron, we measured in each neuron both the “slow”
(S) regime and the “fast” (F) regime, but only the “fast, low
amplitude” (FL) OR “slow, high amplitude” (SH) regime in the
following order: (1) F, (2) SH, (3) S or (1) S, (2) FL, (3) F. So
the switching speed was always changed first, and the amplitude
second.

We obtained valid recordings from 6 cells. We measured the
mutual information of on traces of 20 s. Since we used 300
s recordings, this means we obtained 15 measurements of the
mutual information per neuron and per regime.

2.2.3. Experiments

2.2.3.1. Animals and slice preparation
Electrophysiological experiments were performed using brain
slices from 4 to 5 week old C57/Bl6 mice (Harlan, The
Netherlands) of either sex (3 animals, 5 different slices in
total). All experiments were performed with the approval of the
committee on animal bioethics of the University of Amsterdam.
Hippocampal acute slices were prepared in ice cold (4◦C)
modified artificial cerebro spinal fluid (ACSF, in mM)—120
choline Cl, 3.5 KCl, 0.5 CaCl2, 6 MgSO4, 1.25 NaH2PO4, 10 D-
glucose, 25 NaHCO3. Animals were killed by decapitation, and
350µm thick slices were cut in the horizontal plane on a vibrating
slicer (Leica, VT1200S; Wetzlar, Germany). Slices were kept in a
perfusion chamber with ACSF (in mM)—120 NaCl, 3.5 KCl, 2.5
CaCl2, 1.3 MgSO4, 1.25 NaH2PO4, 10 Glucose, 25 NaHCO3 at

32◦C for 30 min, and then left at room temperature for at least 30
min until recordings started. For further details on the animals
and slice preparation, see Wierenga and Wadman (2003).

2.2.3.2. Electrophysiological recordings
Current-clamp recordings were made under constant
superfusion of ACSF bubbled with carbogen (95% O2/5%
CO2) at a temperature of 32◦C. We recorded neurons solely
from the pyramidal cell layer of region CA1 and identified the
pyramidal cells using differential interference contrast (DIC)
with a light source of 780 nm (Scientifica; Uckfield, UK), as
well as on the basis of their firing properties. Neurons were
recorded in whole cell current clamp configuration with the
Axopatch 200B amplifier (Axon Instruments Inc.; Forster City,
CA, USA). For these recordings we used a pipette solution with
(in mM) 131.5 K-gluconate, 8.75 KCl, 10 HEPES, 0.5 EGTA, 4
MgATP, and 0.4 NaGTP, this solution was brought to a pH of 7.3.
Glass pipettes with a resistance in the range of 2.5–4 M� were
used. Signals were low-pass filtered at 5 kHz and sampled at 25
kHz. Series resistances was compensated up to 70%. Data was
acquired with in-house MATLAB based routines (MathWorks,
2007b; Natick, MA, United States).

We compensated online for the liquid junction potential (14.5
mV), as calculated from the solutions. To determine Ihold, we
used a feedback system that stabilized the membrane potential
to−65 mV until the actual measurement was started.

3. RESULTS

In order to calculate the information transfer in single neurons
in an in vitro setup, we designed an input current defined in
Sections 2.1.1 and 2.2.1. Before we describe the results of the
current clamp experiments, we will first discuss the properties of
this input current.

3.1. Input Properties
3.1.1. Information in Input Depends on Switching

Speed and Firing Rate
The input defined by Equation (1), depends on the switching
speed of the hidden state (ron and roff) and on the firing rates
of the artificial presynaptic neurons (qion and qi

off
, see Figure 1).

The characteristics of the hidden state are external, i.e., they
model how “the world outside of the animal” behaves. The
characteristics of the artificial neurons model how neurons
presynaptic to the real neuron (inside the animal) respond to the
external stimulus. Both the external parameters of the “outside
world” and the modeled internal parameters of the artificial
neurons influence how much of the entropy of the hidden state
(Hxx is transferred to the spike trains received by the neuron
(mutual information in the input, MII). In Figure 2 we kept
the entropy of the hidden state constant (roff = 2ron, so the
probability of the hidden state being 1 equals p1 = 1

3 and
the entropy of the hidden state is Hxx ≈ 0.92 bits at each
moment in time). The switching speed τ of the hidden state
and the firing rates µq of the artificial presynaptic neurons
were independently varied. We calculated the fraction of the
entropy in the hidden state that gets transferred to the input
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TABLE 1 | Parameter values for the different input regimes.

Regime Symbols Abbreviations ron (Hz) roff (= 2 ron) (Hz) τ (ms) µq (Hz)

Slow • S 6.7 13.3 50 0.5

Fast N F 5ron, slow = 33.3 66.7 10 5µq,slow = 2.5

Probe � P 2.5ron, slow = 16.7 33.3 20 2.5µq, slow = 1.3

Slow, high amplitude � SH 6.7 13.3 50 2.5

Fast, low amplitude ∗ FL 33.3 66.7 10 0.5

(Equation 2). Figure 2 shows that there is a trade-off between
the switching speed of the hidden state and the firing rates of
the presynaptic neurons: if the switching speed is high (small
τ ), a high firing rate of the presynaptic neurons is needed to
represent the hidden state, whereas for lower speeds the firing
rates can be lower. This was expected: in order to represent
x, one or more of spikes are needed to signal each period
when x is in the “ON” state (i.e., a period when x = 1). A
higher switching rate implies that these “ON” periods are shorter
and more frequent. Even though the total “ON”-time might be
unchanged, there are more separate “ON” states. Therefore, if
every “ON”-state needs (at least) one output spike to be visible in
the output spike train, more spikes are needed for a fast-switching
hidden state (small τ ). Note that since the artificial presynaptic
neurons fire Poissonian spike trains, a higher overall firing rate
can be obtained by either increasing the individual firing rates of
the neurons (µq), as in Figure 2, or by increasing the number
of presynaptic neurons N5. The relationship between µq and
τ is almost inversely proportional (black line shows inversely
proportional relationship).

Even though the time constant of the hidden state (τ ) and the
firing rates of the presynaptic neurons (µq) have a similar effect
on the mutual information between the hidden state and the
input, their effects on the shape of the input are quite different:
the effect of increasing µq is to increase the amplitude of the
input (Figure 2). Alternatively, increasing τ does not increase
the amplitude, but changes the autocorrelation-time τauto (see
Supplementary Material) of the input current signal. So, with τ

andµq we can vary the input amplitude and autocorrelation-time
independently, while keeping the mutual information between
the input and the hidden state constant.

3.1.2. Input Regimes
In order to show the power of the method presented here, we
designed two inputs with the same mutual information between
the input current and the hidden state, but with a different
amplitude (µq) and time-constant (τ ) on the basis of our results
from the previous section. The results of the current clamp
experiment will be shown in Section 3.2. Here, we explain the

5If we would use delta-spikes to simulate postsynaptic current shapes these two

options are completely equivalent (as long asN is large enough, about 100 or more

neurons are needed or otherwise the realization of the firing rates and therefore

the weights w results in large variations between realizations). For all other PSC-

shapes, there could be a small effect if overlapping spikes from different neurons

are added different from overlapping spikes from the same neuron, but we will not

consider this technical issue here, since the effects are small.

design of the experiment (Figure 2 and Table 1). We chose
three “difficult” (i.e., low information content) regimes: a “slow”
(S) regime (circle •), with a low amplitude and a large τ , a
“fast” (F) regime (triangle N), with a high amplitude and a
small τ , and a “probe” (P) regime in between (square �) with
intermediate firing rates and τ . The probe served to determine
the scaling of the input current (Section 2.2.1). For comparison,
we also used a “fast switching—low amplitude” (FL) regime with
a very low information content (star ∗) and a “slow switching—
high amplitude” (SH) regime with a high information content
(diamond �).

As explained in Section 2.2.1, the theoretical input generated
by the artificial network needs to be scaled in order to use it in
an experimental set-up. We scaled the inputs from the different
regimes all with the same factor (Equation 18). This factor was
determined once for each neuron, from then on the value was
fixed. To determine Iscale we used the probe (P) input defined
before, i.e., an input with the same information content as the
S and F inputs, but with an intermediate τprobe and µq,probe. As
argued before, the mutual information between the hidden state
and a spike train naturally depends on the firing rate. Therefore,
we scale the input current so that each neuron responds with
about the same firing rate to the probe input: about 12 Hz overall
(about 20 Hz when x = 1).

3.2. Experimental Results
3.2.1. Representation of the Hidden State by a Single

Neuron

3.2.1.1. Neurons perform a non-linear operation on their

input
In the previous section, we explained the rationale behind
the experiments. In Figure 3 we show the distributions of
the injected input current (left) and the resulting membrane
potential (right) of one example neuron (denoted with + in
Figure 5). The input current distributions of both the S (blue),
and the FL (pink) regimes were identical, as expected. There
was a small difference between both F regimes (red) and the SH
(green) regime, because in the F regime the “ON” state (x = 1)
and “OFF” state (x = 0) are blurred by the exponential shape
of the artificial EPSCs (Section 2.1.1). The resulting membrane
potential distributions (Figure 3, right) are unimodal for both
the S and the FL regimes, as expected. However, in the SH
regime the (output) membrane potential distribution (green) is
bimodal, whereas the (input) current distribution is unimodal
for this regime (this effect was found for all cells for which we
measured the SH regime). This means that the neuron performs
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FIGURE 2 | The mutual information between the hidden state and the input

generated by a network of N = 1, 000 artificial neurons as a fraction of the

entropy in the hidden state (top). This fraction of transferred information

depends both on the firing rate of the neurons in the network (µq) and on the

switching speed (time constant τ ) of the hidden state: if the hidden state

switches faster, more spikes (i.e., higher firing rate or more neurons) are

needed to reliably represent the hidden state in the input. For the experiments

we chose three “difficult” (i.e., low information content) regimes: a “slow”

regime (circle), with a low firing rate and a large τ , a “fast” regime (triangle),

with a high firing rate and a small τ and a “probe” regime in between (square)

with intermediate firing rates and τ , to determine the scaling of the input. For

comparison, we also used a “fast switching—low amplitude” regime with a

very low information content (star, example shown in Supplementary Material)

and a “slow switching—high amplitude” regime with a high information content

(diamond, example shown in Supplementary Material). NB Note that even

though theoretically MI ≥ 0, due to our approximation M̂I can take small

negative values. However, these effects are negligable (smallest value in this

figure is M̂I = −0.0011).

a non-linear operation on the input current; with a linear
transformation, the shape of the distribution would stay identical.
Moreover, the distributions of the membrane potentials in both F
regimes (red, full and dotted line) are not identical. This could
be due to neural adaptation to the input or to non-stationary
experimental conditions (for instance resistance of the seal with
the pipette).

3.2.1.2. Neurons transmit information about the hidden state
In Figure 4 we show the hidden state and the different estimates
of the hidden state (Equation 13), in the S (Figure 4A) and F
(Figure 4B) regime, for a single hippocampal (CA1) pyramidal
cell (depicted with 2 in Figure 5). Note that in both regimes,
spikes occur mostly in when x = 1, even if there is not a spike
every time. In Figure 4C we calculated the MSE between the
hidden state and the estimated hidden state, based on the spike
times of the recorded neuron and normalized by a Poisson spike
train of the same rate (MSEP, Equation 15). Note that the values
in both the slow and fast regime are smaller than but not far
from 1, meaning that the estimate is not much better than that
of a Poisson process. The neuron performs slightly better in the
slow regime: the difference in mean-squared error is small but
significant (slowMSEP = 0.83 ± 0.03, fastMSEP = 0.92 ± 0.01,
Student’s t-test on difference p = 1.2 · 10−7). In Figure 4D it
can be seen that the ratio between the MSE based on the spike
train and the MSE based on the the input (Equation 16) is close
to 1 (but significantly different; slow FMSE = 1.26 ± 0.05,
Student’s t-test on difference between 1: p = 5.8 · 10−12, fast
FMSE = 1.16 ± 0.02, Student’s t-test on difference between 1:
p = 5.3 · 10−13). So even though the neuron does not perform
much better than a Poisson process (Figure 4C), there is not
much information loss between the input and the output spike
train. The low mutual information between the spike train and
the hidden state is a result of the low information content of
the input. Indeed, in Figures 4E,F it is shown that the spike
train transmits about 40–50% of the information in the input
(Equation 3).

Even though the firing rate in the F regime is much higher
than that of the S regime, the difference in output-information
between the S and the F regime is very small [but significant:
(Figure 4E) slow FI = 0.45 ± 0.05, fast FI = 0.37 ± 0.04,
Student’s t-test on difference p = 1.2 · 10−4, (Figure 4F) slow
FIshifted = 0.48± 0.06, fast FIshifted = 0.39± 0.04, Student’s t-test
on difference p = 0.0012]. This means that the recorded neuron
represent the hidden state states equally well in both regimes, but
it is less efficient in the F state: it needs more spikes to transfer the
same amount of information. As explained before (Section 3.1.1),
more spikes are needed to represent a fast-switching hidden state.
The result that the recorded neuron indeed increases its firing
rate in the F regime relative to the S regime and the transferred
information stays the same in both regimes suggests that the
neuron “adapts” to the different regimes to keep the transferred
information constant.

In Figure 5A we show the FI against the firing rate (same as
in Figure 4E) for all recorded neurons. Different symbols denote
different cells, whereas different colors denote the different
regimes. The fraction of information about the hidden state
in the input that is transmitted into the output spike train,
depends on the amount of information in the input: in the
very informative regime (SH, green), about 50–60% of the
information in the input is transferred to the spike train,
whereas in the low informative regime (FL, pink) only about
10% of the information is transmitted. In the intermediate
S (blue), F (red), and P (black) regimes, the transmitted
information is comparable and between these two extremes.
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FIGURE 3 | Distributions of the input current (left) and output membrane potential (right), for a one of the recorded cells (depicted with symbol + in Figure 5). The

experiment was performed in the following order of regimes: fast (red), slow, high amplitude (green), slow (blue), slow (blue, dotted), fast, low amplitude (pink), fast

(red, dotted).

The “adaptation” (the neuron transmits as much information
in the S or F regime, but with different firing rates) seen in
Figure 4 can be seen in 4 (◦, ⋄,2,+) out of 6 neurons. The
other two neurons (×,△) show a very low response in the slow
state.

The firing rate of the neurons depends strongly on the
amplitude of the input µq: in the SH (green) and F (red) regime,
that used the same value for µq (Table 1), the neurons show
similar firing rates of around 15 Hz (except for a single neuron
denoted with ⋄). In the SH (pink) and S (blue) regime, which also
used the same value forµq (Table 1), the neurons show low firing
rates, with the firing rates of the FL regime, which has very little
information about the hidden state in the input, having a lower
artificial network firing rate. So the firing rates of the neurons
increase with both the amplitude of the input and the amount of
information.

3.2.2. Comparison to an Optimal Response Model
Finally, we compared the responses of the recorded neurons to a
model of the optimal response for this input (Denève, 2008a; see
Section 2.1.3). The parameters of this “Bayesian Neuron” (BN)
are determined by the parameters of the input (i.e., ron, roff, and
θ), except for parameter η, which determines the firing rate of the
model neuron (changing η has a similar effect as changing the
reset value and threshold in a leaky integrate-and-fire model).

In Figure 5B, we show how the BN performs in a simulation
where we used the same input as we used in the experiments, for
different values of η. Overall, the BN performs somewhat better
than the recorded neurons, as can be expected from an optimal
response model. However, as in the in vitro experiments, the BN
increases its firing rate in the F state relative to the S state to keep
fraction of transferred information relatively constant [compare
for instance the F (red) and the S (blue) regime for η = 3.5,
denoted with △].

In both the experiments and the simulations, the S and SH
regimes seem to form a single curve, as do the F and FL regimes.
In the Bayesian neuron this makes sense: the switching speed of
the hidden state τ is a parameter of the model, the amplitude of
the input µq is not. So the BN has the same parameters in the S
and SH regimes, and the same is true for the F and FL regimes.
The observation that these regimes also form a single curve in
the experiments, suggest that the recorded neurons also adapt
their response properties to the input statistics. The recorded and
simulated neurons all transmit less information for a given firing
frequency in the F and FL regimes than in the S and SH regimes,
because in the F and FL regimes, more spikes are needed because
more spikes are needed to represent a fast-switching hidden state.

For a quantitative comparison between the experiments and
the BN, we fitted a saturating function to both slow states (green
and blue, fits represented by blue lines) and both fast states (red
and pink, fit represented by red lines) to the data from both the
experiments and the model:

FI = 2fsat

(

1

1+ e−νsatr
−

1

2

)

, (19)

where r is the firing rate, fsat is the saturation value and νsat
the saturation rate (in s). Since the BN is an ideal observer
model, we expect that the BN transmits more information than
the experimentally measured neurons: we expect the saturation
value fsat to be higher, which is indeed what we find (Figure 5C).
The closer the experimentally obtained fsat is to the values from
the model, the more “optimal” the information transfer of the
hippocampal pyramidal cells.

Finally, for both the S and SH curve and the F and FL
curve (Figure 5, right), there seems to be an optimal value for
parameter η of the BN. This means that the BN appears to have
an optimal firing rate: for too low firing rates (larger η) the
neuron will miss some periods when x = 1, whereas for too
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FIGURE 4 | Representation of the hidden state by a single hippocampal pyramidal neuron (depicted with 2 in Figure 5). The neuron responds to the input by spiking

mostly when x = 1 in both the slow (A) and the fast (B) regime. The hidden state (black line) can be estimated from the input (red and yellow line) and from the output

spike train (green and purple line), using a correction for the exponential kernel (yellow and green lines, section 2.1.2.6) or not (red and purple lines). In (C) the MSEP
(MSE normalized by a Poisson spike train, Equation 15) is shown as a function of the overall firing rate, and in (D) the FMSE (MSE of the spike train normalized by the

MSE of the input, Equation 16). In (E,F), we show the mutual information between the spike train and the hidden state normalized by the mutual information in the

input, corrected for the exponential kernel (F) or not (E).

high firing rates (smaller η) the neuron will also spike when
x = 0, making the neuron less informative. This effect is stronger
for the fast regimes than for the slow regimes. For all regimes
investigated here, this optimal firing rate appears to be around 40
Hz (Figure 5B). In the experiments, we scaled the input current
to set the firing rate response of the recorded neuron to the probe
stimulus to about 12 Hz overall (about 20 Hz when x = 1), so
this “optimal” firing rate of 40 Hz was never reached. Whether
this 40 Hz is optimal for the recorded neurons too, remains to
be investigated (see Grienberger et al., 2017 for natural firing
regimes for hippocampal neurons).

4. DISCUSSION

An important task of the brain is to infer information about
the outside world. Except for sensory receptors, neurons in the
brain do not have direct access to sources in the outside world,
but have to infer the state of the world from input generated by
other neurons. This input from other neurons is often unreliable
and noisy (Knill and Richards, 1996; Körding and Wolpert,

2004). Therefore, neurons need enough input samples to keep
a reliable estimate. The number of samples can be increased
by either increasing the number of presynaptic neurons, or by
integrating information over a longer period of time. Which one
is feasible or appropriate depends on the characteristics of the
local network (How many presynaptic neurons are available?
With what frequency do they fire? How informative are they?)
and on the characteristics of the outside world itself (How fast
does a stimulus change?). Here, we modeled this by creating a
current input for a single neuron that has to infer the presence
or absence of a hidden state on the basis of noisy Poisson spike-
trains of presynaptic neurons. Like in the general case, there is
a trade-off between being fast, in which case many sources (pre-
synaptic neurons) are needed, and being precise, in which case a
longer integration time is needed, especially if there are not many
presynaptic neurons. We propose to use the current stimulus
designed here to measure in an in vitro setup how single neurons
transfer information about a time varying stimulus.

We propose a newmethod to measure howmuch information
a single neuron transfers from the (current) input it receives
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A B

C D

FIGURE 5 | (A) Representation of the hidden state by 6 hippocampal pyramidal neurons (8 measurements). The figure shows the mutual information between the

spike train and the hidden state normalized by the mutual information in the input, for 6 different hippocampal pyramidal neurons (depicted with symbols

◦, ⋄,2,×,+,△), in different regimes (blue: slow, red: fast, green: slow, high amplitude, pink: fast, low amplitude, black: probe). Solid lines: fit with saturating function

(Equation 19). NB Note that even though theoretically MII ≥ 0 and MIspike train ≥ 0, due to our approximation M̂I can take small negative values, and therefore so can

FI. However, these effects are negligable (they only occur when both MII and MIspike train are very small due to vanishing firing rates, which makes FI ≈ 0
0 ).

(B) Representation of the hidden state by the Bayesian neuron (Section 2.1.3) for different values of the threshold/reset parameter η. The inset shows the same

frequency range as in the experiments. Solid lines are fits using all data, dashed lines (“BN, limited”) are fits limited to values for η ≥ 2 (slow) or η ≥ 3 (fast). (C) Fitted

parameters of saturating function (Equation 19) to data. Error bars denote 95 % confidence intervals of the fit.

to the output spike train it generates. This method is based
on generating current input as the response of an artificial
population of presynaptic neurons responding to a stimulus
randomly switching on and off, and measuring how well this
hidden state can be constructed from the output spike train. This
gives a lower bound on themutual information between the spike
train (Lochmann and Denève, 2008). This method has several
advantages: (1) trials do not have to be repeated, since no estimate
of the trial-to-trial variability is needed; (2) since no decoding
model needs to be fitted, all recorded data can be used to measure
the quantities of interest; (3) for comparison, the properties of
an optimal response can be computed easily with the help of the
Bayesian neuron (Denève, 2008a); (4) as the method is designed
for an in vitro setup, stimuli are not limited to sensory stimuli,
and neurons outside the sensory systems can be analyzed; (5)
since we explicitly control how much information is present in
the input, the information loss at the spike generating process
itself can be measured; (6) experimental parameters, such as the
“time constant of the world” and the number of available sources
as discussed above can be systematically varied.

Like any method, the method presented here has several
limitations and assumptions. We will discuss these explicitly.

Firstly, three assumptions concern generating the input current
for the experiments: (1) neurons respond to a randomly
appearing and disappearing “preferred stimulus” that (2) they
have no access to, and (3) synapses from informative presynaptic
neurons are stronger than synapses from non-informative
presynaptic neurons. The first two assumptions are comparable
to the assumptions that are implicitly made when estimating
tuning curves, for instance by fitting filter models such as a
Linear–Non-linear Poisson model (Chichilnisky, 2001): in both
cases it is assumed that a neuron responds only to the absence
or presence (so no history or reverberation effects) of a preferred
stimulus feature that it does not have direct access to. However,
in the case of filter models, the presence of the preferred stimulus
is graded: a preferred stimulus can be “more” or “less” present
(i.e., the stimulus can be more or less similar to the preferred
stimulus). Here, the stimulus is binary: it is either present or not.
Which one is more realistic probably depends on the system in
question. Whether the third assumption is realistic depends on
the learning rule that was used by the system. Denève (2008b)
showed that there exist indeed unsupervised, local, spike-based
learning rules by which these synapse strengths could be learned.
Secondly, the method requires two additional assumptions for
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the output spike trains: (1) an ergodic argument: it is assumed
that an average over samples can be replaced by an average over
time and (2) it is assumed that spike trains are by approximation
Poissonian. The first assumption means that if in an experiment
the system is not stationary during the time window for
which the mutual information is calculated, the approximation
fails. However, such an argument is necessary for almost any
experimental measurement. Concerning the second assumption:
the estimate of the mutual information is not strongly sensitive to
how “Poissonian” the output spike train is, but strong deviations
from Poissonian statistics will make the estimate fail. Finally, the
fact that we used somatic patch-clamp stimulation, means that
we ignored most of the computations that happen in dendritic
trees, something that has proven to be substantial in hippocampal
pyramidal cells (Spruston, 2008) and that could be essential for
the integration of (correlated) inputs (Ujfalussy et al., 2015).
This could be partly overcome by using bipolar electrodes and
stimulate dendritically, for instance to evoke dendritic calcium
spikes. However, the complex spatial distribution of dendritic
inputs will be difficult to assess experimentally, although it could
be investigated in a biophysical model. Another difference with
the natural situation is that normally synaptic input creates
conductance fluctuations, which have different (more complex)
dynamics than the current injections we used in our model and
experiments. For the moment we assume that this difference only
creates second order differences.

We designed different input currents with the same amount of
information about the hidden state, but with different switching
speeds and firing rates (which are realistic for hippocampal
neurons, see Grienberger et al., 2017), and injected these into
the somata of pyramidal neurons in the CA1 region of mouse
hippocampus. We found that the amount of information in the
recorded spike trains depended strongly on the firing rate of the
neuron: spike trains with more spikes were more informative
about the hidden state than spike trains with fewer spikes.
However, this effect saturated at around 15 Hz. The slope
of the relationship between the firing rate and the mutual
information depended on the switching speed of the hidden
state: slowly changing inputs were easier to represent, hence
contained more information for a given firing rate. However,
the neurons responded to two inputs that contained comparable
amounts of information about the hidden state, but had different
characteristics (a “slow” input with a low amplitude and a “fast”
input with a high amplitude) with different firing rates, but
kept the amount of information in the recorded output spike
trains constant, thereby “adapting6” to the characteristics of
the stimulus. Strikingly, how much of the information about
the hidden state in the input is transferred to the output
spike train depended on how informative the input was in the
first place: if the input was not very informative, not much
information is transferred, whereas a much larger fraction of
information about an informative input is transmitted to the
output spike train, an effect that is also present in the optimal
response of the Bayesian neuron, suggesting that biological

6The word “adapting” is between quotation marks, since it is possible that this

effect is caused by non-linear but instantaneous processes in the neuron and not

by an active adaptive process, compare for instance to Hong et al. (2008).

neurons approximate an optimal inference process. So the spike-
generating process of the recorded neurons has an amplifying
effect on information transfer: it reduces the information about
a low-informative input stronger than the information about
a high-informative input (as explained in the Supplementary
Material, the same holds for the relative signal-to-noise ratio:
FS = SNRoutput/SNRinput: the FS in response to an input with
a low SNR is lower than the FS in response to an input with a
high SNR).

The probability density functions of the membrane potential
and the input current values show that that the input-current-
to-membrane-potential transformation is strongly non-linear
and could therefore not be described by for instance a simple
leaky integrate-and-fire neuron. The strongly bimodal shape
of the membrane potential distribution (as opposed to the
input current distribution) can for instance be a result of a
saturating (sigmoidal) input-output relation. From this non-
linear processing and the amplifying effect on information
transfer together we conclude that the neurons we recorded
cannot have a simple linear input-output relation, but perform
complex transformations on their input. In agreement with this
conclusion, Ujfalussy et al. (2015) recently also suggested that the
neural computation from presynaptic spikes to the postsynaptic
membrane potential should be non-linear for optimal stimulus
integration. How such non-linear input-output relationships
shape the information processing properties of neurons and how
they respond to stimuli with different characteristics (see also
Stemmler and Koch, 1999; Brenner et al., 2000; Hong et al., 2008)
remains an important topic that needs to be investigated further.

The mutual information between the position of an animal
and the spike trains of rat hippocampal CA1 pyramidal cells
has been quantified by Barbieri et al. (2004), who also used
an estimate of the posterior probability to estimate the mutual
information. They concluded that the hippocampal place cells
contain a significant amount of information about the location
of the animal. However, how much information was present in
previous processing layers, and how much information is lost
or maintained by these neurons, was not specified. Here, we
quantified the information loss of the spike generating process,
i.e., the mutual information between the cellular input and the
output spike train. In barrel cortex, this information transfer
has been quantified, and several studies have shown that spike
generation can result in significant information loss (Panzeri
et al., 2001; Petersen et al., 2002; Alenda et al., 2010), similar to
what has been shown here. In hippocampus, what information
is encoded in the spike trains has been described extensively
since the discovery of place cells (O’Keefe and Dostrovsky,
1971). Moreover, how this information is encoded in the spike
trains has been suggested to depend on the theta/gamma
phase precession (Lisman, 2005). Finally, it has been shown
that the nature of this information transfer (for instance the
shape of place cell receptive fields) can change significantly,
depending on for instance the age of the animal (Tanila et al.,
1997). However, how much information is transferred by these
cells, and how that depends on parameters such as the input
characteristics, the state of the network (such as “up” or
“down” states or the “high conductance state”; Destexhe et al.,
2003) or the presence of neuromodulators such as dopamine
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or acetylcholine (ACh) remains to be quantified. Here, we
provide a method to easily measure information transfer or
information loss in hippocampus or any other system in an in
vitro setup.
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Spiking Neural Networks constitute the most promising approach to develop realistic

Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms,

information coding in spiking models is based on the precise timing of individual spikes. It

has been demonstrated that spiking ANNs can be successfully and efficiently applied to

multiple realistic problems solvable with traditional strategies (e.g., data classification or

pattern recognition). In recent years, major breakthroughs in neuroscience research have

discovered new relevant computational principles in different living neural systems. Could

ANNs benefit from some of these recent findings providing novel elements of inspiration?

This is an intriguing question for the research community and the development of

spiking ANNs including novel bio-inspired information coding and processing strategies

is gaining attention. From this perspective, in this work, we adapt the core concepts of the

recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify

each unit in the network, local information contextualization during the processing, and

multicoding strategies for information propagation regarding the origin and the content

of the data—to be employed in a spiking neural network. To the best of our knowledge,

none of these mechanisms have been used yet in the context of ANNs of spiking

neurons. This paper provides a proof-of-concept for their applicability in such networks.

Computer simulations show that a simple network model like the discussed here exhibits

complex self-organizing properties. The combination of multiple simultaneous encoding

schemes allows the network to generate coexisting spatio-temporal patterns of activity

encoding information in different spatio-temporal spaces. As a function of the network

and/or intra-unit parameters shaping the corresponding encoding modality, different

forms of competition among the evoked patterns can emerge even in the absence of

inhibitory connections. These parameters also modulate the memory capabilities of the

network. The dynamical modes observed in the different informational dimensions in a

given moment are independent and they only depend on the parameters shaping the

information processing in this dimension. In view of these results, we argue that plasticity

mechanisms inside individual cells and multicoding strategies can provide additional

computational properties to spiking neural networks, which could enhance their capacity

and performance in a wide variety of real-world tasks.

Keywords: bioinspired ANNs, neural signatures, subcellular plasticity, multicoding, local contextualization,

signature neural network, spiking neuron
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1. INTRODUCTION

Biological neural circuits are powerful computational systems
that efficiently process a great amount of data in real time
with extensive plasticity capabilities. This makes the nervous
system a source of inspiration when designing engineered
tools. In this sense, many Artificial Neural Network (ANN)
paradigms mimicking the computational principles performed
by living neural systems have been developed to solve real-world
problems (Michie et al., 1994; Bishop, 1995). Nevertheless, the
bio-inspiration in most cases is limited to a knowledge about
neural information processing that was available more than 60
years ago. A challenge in ANN research is related to incorporate
novel bio-inspired information coding and processing strategies
to the network design since they can contribute to enhance the
network capacity to perform a given task (Rumbell et al., 2014).

Information coding in the nervous system is mainly based on
the generation, propagation, and processing of action potentials
or spikes (Bialek et al., 1991; Kandel et al., 1991; Rieke et al.,
1999). Most of the neural computation is driven by these events.
The classical view of neural coding emphasizes the importance
of information carried by the rate at which neurons discharge
action potentials. However, experimental evidence indicates that
living neural systems use many different information coding
strategies (Rabinovich et al., 2006b; Middleton et al., 2011),
which greatly enhances their processing capacity as compared
to the classical view. In this scenario, temporal coding emerges
as a strategy commonly used by neural systems, emphasizing
that, unlike (or in addition to) the firing rate paradigm, neural
information may be carried by precise individual spike timings
(e.g., seeMainen and Sejnowski, 1995; Lestienne, 1996; Diesmann
et al., 1999; Reinagel and Reid, 2002).

Traditional ANN paradigms are mostly based on highly
simplified information processing mechanisms derived from the
neural coding classical view. However, the growing experimental
evidence of the importance of temporal code to explain
neural computation gave rise to the Spiking Neural Networks,
nowadays considered the third generation of ANNs (Gerstner,
1995; Maass, 1997b). In the two previous generations, neuron
models employ threshold gates and activation functions, such
as sigmoid functions, to propagate analog values to their
neighbors. In contrast, spiking neurons communicate and
encode information using discrete spikes (Gerstner et al., 1993;
Deco and Schürmann, 1998; Maass and Bishop, 2001; Gerstner
and Kistler, 2002; Bohte, 2004; Brette et al., 2007; Ponulak
and Kasinski, 2011). This allows spiking neural networks to
solve computational tasks using a firing-rate based strategy
as their analog counterparts (O’Connor et al., 2013; Diehl
et al., 2015; Esser et al., 2016), but discrete spiking activity
provides additional dimensions for information coding (e.g.,
time, frequency or phase), which makes ANN of spiking neurons
a promising approach for solving complex computational
tasks. Theoretical efforts try to illustrate that computing and
modeling with these networks may be biologically plausible
and computationally efficient (Maass, 1997a; Izhikevich, 2004;
VanRullen et al., 2005; Cessac et al., 2010). It has been shown
that spiking neural networks are at least as computationally

powerful as traditional ANN paradigms (Maass, 1996, 1997a;
Natschläger and Ruf, 1998; Ruf and Schmitt, 1998). In
applied engineering, spiking ANNs have been successfully
used in different practical applications, such as motor control,
odor recognition, image classification, or spatial navigation
between others (see Ponulak and Kasinski, 2011, for an
overview).

Although they are closer to their biological counterparts,
most ANN paradigms of spiking neurons do not include relevant
computational principles experimentally and theoretically
studied in the nervous system. For instance, most neuro-inspired
paradigms consider network elements as indistinguishable
units; they only implement synaptic learning based on adjusting
the synaptic weights (Bohte et al., 2002b; Kube et al., 2008;
Ponulak and Kasinski, 2011); and individual units are considered
integrators that integrate synaptic input over time until a given
threshold is reached. Experimental evidence demonstrates
that neural computation does not only include synaptic
integration and synaptic plasticity, but also subcellular plasticity,
i.e., intra-unit mechanisms that allow a neuron to tune its
intrinsic dynamics and shape the computation of its output
response as a function of the incoming information (Zhang
and Linden, 2003; Turrigiano and Nelson, 2004; Davis, 2006;
Turrigiano, 2007). Likewise, it is commonly considered that
the information arriving to a neuron is encoded through a
single code, e.g., the rate or the precise timing of spikes, when
the need for several simultaneous codes (multicoding) in the
nervous system seems to be apparent (Latorre et al., 2006; Kayser
et al., 2009; Panzeri et al., 2010). Living cells receive many
inputs from different sources and send their output to different
neurons too. An effective way to improve communications is
combining multiple encoding modalities in the same signal.
Not all the readers have to be interested in the same modality
at the same time, specially when we talk about multifunctional
networks. This kind of information processing requires of local
information discrimination/contextualization mechanisms that
allow a neuron to process the multiple simultaneous codes
in its input signals one by one or simultaneously in order to
perform different tasks. Subcellular plasticity emerges as a highly
relevant strategy to perform this context-dependent information
processing.

Signature Neural Networks represent a novel self-organizing
bio-inspired ANN paradigm that incorporates some of these
concepts (Latorre et al., 2011). Behind this ANN paradigm,
there are three main ideas. (1) Each neuron of the network
has a signature that allows its unequivocal identification by
the rest of the cells. (2) The neuron outputs are signed with
the neural signature. Therefore, there are multiple codes in a
message regarding the origin and the content of the information.
(3) The single neuron discriminates the incoming information
and performs a distinct processing as a function of the multiple
codes in the network. Nevertheless, in spite of being inspired in
a precise temporal structure, signature neural networks are non-
spiking ANN. The main goal of this work is to assess whether
the information coding and processing strategies proposed by
the signature neural network paradigm are plausible for spiking
networks. With this aim, we morph the core concepts of the
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existing non-spiking paradigm to build an ANN of spiking
neurons.

Bursting activity consists of series of high-frequency spikes
that alternate with quiescent periods with only subthreshold
activity (Izhikevich, 2006). This is particularly suitable to
implement multicoding, since it involves the presence of at
least two different time scales that can serve to encode distinct
informational aspects. It has been also suggested that the burst
length or the number of spikes in a burst can be used by living
neurons to encode information (Kepecs and Lisman, 2003, 2004).
Information can also be encoded in the intraburst firing pattern.
In the bursting activity of the leech heartbeat control circuit,
the temporal structure of the first spikes in the burst allows
predicting the length and number of spikes of the burst (Campos
et al., 2007). Another relevant temporal structure within the
burst is the intraburst neural signature, in which the signature
neural network paradigm is inspired. Intraburst neural signatures
are very precise and cell-specific spike timings experimentally
observed in the bursting activity of cells of different vertebrates
and invertebrates living neural circuits (Szücs et al., 2003,
2005; Garcia et al., 2005; Zeck and Masland, 2007; Brochini
et al., 2011). In central pattern generators (CPGs), they depend
on the synaptic organization of the network (Latorre et al.,
2002; Rodríguez et al., 2002; Szücs et al., 2003). These precise
temporal structures coexist in the neural signals with relevant
information encoded with other encoding modalities. Their
possible functional meaning for the neurons that belong to the
same or to other neural system is still an open question. Model
simulations of CPG circuits (Latorre et al., 2004, 2006, 2007)
point out that they can have important implications for the
understanding of the origin of the CPG rhythms, the fast and
fine tuning to modulation and the signaling mechanisms to other
interconnected systems (other CPGs or muscles that the CPG
controls). These modeling results have shown that cell-specific
intraburst spike timing can be part of a multicoding strategy of
bursting neurons. The readers of these signals may be able to read
these characteristic firing patterns to perform different tasks in
response to the multifunctional signals from each CPG cell.

In the context of ANN, bursting activity has been labeled as
a “non-standard” behavior (Kampakis, 2013). However, taking
into account the previous considerations, the individual units
of the proposed network have bursting behavior. We argue that
the additional dimensions to encode information provided by
bursting activity can significantly increase the computational
power of a spiking network. In particular, here we consider
two encoding schemes in the bursting signals: a rhythmic
encoding modality, in which information is carried by the
bursting frequency; and a spike-timing encoding modality; in
which information is carried by specific intraburst spike patterns.
Each individual neuron has a characteristic intraburst neural
signature that uses to sign its output signals in the spike-timing
encoding dimension. Finally, the model incorporates intra-unit
history-dependent processing rules to compute the response in
the spike-timing encoding dimension as a function of previous
incoming signals. This local contextualization mechanism can
be considered a particular case of subcellular plasticity. The
idea behind this network design is transforming different stimuli

and/or different relevant aspects of the inputs into different
coexisting spatio-temporal spaces that encode information in a
distributed network form.

The analysis of the emerging collective dynamics and the
self-organizing properties of the network discussed in this
paper points out that novel bio-inspired processing strategies
could enhance the spiking ANNs capacity and performance.
In particular, we provide a proof-of-concept that combining
multiple encoding modalities in the network allows transforming
incoming data into different spatio-temporal spaces, from which
different aspects of the data, including their source, could be
exploited one by one or globally. Different collective processing
strategies can be implemented in each information dimension
only by tuning the synaptic or intra-unit parameters, which
facilitates parallelism and multifunctionality in the network.
All these features would potentially increase the computational
power of spiking ANNs and their ability to model complex
high-dimensional processes.

2. MODELS AND METHODS

2.1. Network Model
Signature neural networks use neural fingerprints to identify
each individual unit of the ensemble (Latorre et al., 2011).
For the spiking network proposed here, we take inspiration
from the CPG circuits and use interspike interval signatures to
achieve this feature. Thus, the fingerprint of a neuron (ni) is
a cell-specific intraburst spike timing distribution described as
the sequence Si = {ISI1, ISI2, ..., ISIn}, where ISIn represents
interspike intervals between consecutive spikes within the same
burst. The timing of the last spikes in the bursting activity of
the pyloric CPG cells varies from one burst to another; while
the first spikes in the burst are highly reliable (Elson et al., 1999;
Varona et al., 2001a,b) and contain the neural signature (Szücs
et al., 2003, 2005). Mimicking this behavior, we consider two
parts in a burst. The first part is used to sign the output
messages and contains the signature of the emitter neuron (Si).
The spike timings of the second part of the burst are given by
a preferred output pattern (Pi = {t0 = 0, t1, t2, ..., tN}) that
changes dynamically as a result of the single neuron plasticity (see
Section 2.1.3).

Spiking-bursting activity allows the simultaneous propagation
of different units of information throughout the network
(multicoding). Therefore, different spatio-temporal spaces can be
simultaneously used to globally encode and store information. In
the network discussed in this paper, we consider two coexisting
units of information in each neural signal: the bursting frequency
and the neural fingerprints included within the burst. In the first
dimension, the network must generate and coordinate spatio-
temporal patterns of propagating transient bursting activity
(rhythmic encoding modality). To achieve this, we impose two
constraints (Wiedemann and Lüthi, 2003; Tabak et al., 2010):
(i) predominance of excitatory synapses and (ii) a refractory
period in each neuron following hyperexcitation. Information
processing in the second dimension is based on the emission
and recognition of specific neural signatures (Tristán et al.,
2004; Carrillo-Medina and Latorre, 2015), i.e., information
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in this dimension propagates encoded in a spike-timing
modality. An intra-unit contextualization mechanism drives
the signature emission and recognition processes. This does
not only allow us to illustrate a novel information processing
strategy in the context of spiking neural networks, but also the
dynamical richness that subcellular plasticity can provide to these
networks.

2.1.1. Neuron Spontaneous Dynamics
Many spiking models generate output bursts depending on
the parameter settings and/or the input stimuli (e.g., the
models by Hindmarsh and Rose, 1984, Komendantov and
Kononenko, 1996, or Liu et al., 1998 that we have previously
used to investigate the functional meaning of neural signatures).
However, simulations show that the neural signatures in these
models mainly depends on the network connectivity (Latorre
et al., 2002) and, to our knowledge, none of the existing spiking
models displays an adaptive fingerprint as required by our study.
A possible alternative to this issue is using the mechanism
described in Marin et al. (2014) to tune neuron busting models
and produce neural signatures equivalent to those observed in
living cells. However, the generation of realistic signatures is out
of the scope of this proof-of-concept.

To describe the individual behavior of each unit, we
define a stochastic model operating in a discrete event
framework. The neuron activity is considered as a discrete
variable and characterized in time by V(t), its “membrane

potential.” Figure 1A illustrates schematically the neuron
spontaneous dynamics. Our model neuron integrates and
processes the information received through its different input
channels (synaptic integration), adapts its firing pattern to the
incoming information (intra-unit plasticity), and generates a
coherent signed output signal. During subthreshold activity, the
spontaneous evolution of the neuron activity is determined by
the probability p—the transit probability of the internal state per
time step. When the membrane potential of a neuron ni reaches
the firing threshold (TH), this generates a sequence of spikes
(not a single spike). The temporal distribution of spikes within
the response burst is given by a firing sequence composed of
concatenating the signature (Si) and the preferred output spike
pattern (Pi) of the neuron. Then, the stochastic dynamics of a
single neuron depends on the temporal evolution of the neuron
activity and whether it is under (subthreshold activity) or over
(spiking-bursting activity) the firing threshold. Formally:

• During subthreshold activity (Vi(t) < TH):

Vi(t + 1) =

{

Vi(t)+ Isyn + 1 with probability p
Vi(t)+ Isyn otherwise

(1)

where Isyn is the synaptic input (Equation 3) and p the transit
probability of the internal state per time step.

A C

B

FIGURE 1 | (A) Schematic representation of the stochastic neuron model (see main text for details). S = {ISI1, ISI2} and P = {P1,P2} denote the neuron signature

and the preferred output pattern, respectively. Note that the intraburst firing pattern is different in the first and the second burst. This is because, as (B) illustrates, the

neuron recognizes a signature at the time step pointed by the arrow and intra-unit plasticity changes the neuron response in the spike-timing encoding modality.

(B) Example of signature recognition. For each incoming spike, the local informational context keeps track of the corresponding input channel and spike timing (e.g.,

C1-100 means that at time step 100 a spikes arrived to the neuron through channel C1). This transient memory provides an intra-unit contextualization mechanism to

the single neuron. For example, if the arrow in (A) corresponds to time step 136 and an input spike arrives through channel C1, the neuron can contextualize this spike

and determine that the signature {8, 3} have been received four times in the recent history. If this value is greater than the learning threshold (Li ), the neuron recognizes

this signature and, consequently, modulates its output firing pattern as illustrated in the second burst of (A). (C) Network topology. Each neuron is directly connected

to its eight nearest neighbors with periodic boundary conditions. Then, neighbors of the white unit are the blue neurons.
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• During the generation of the burst (Vi(t) >= TH):

Vi(t + 1) =























AP if t = t1 + tn
TH + 1 if t = t1 + tn + 1 , ∀n 6= N
0 if t = t1 + tN + 1
Vi(t)+ 1 otherwise with probability p
Vi(t) otherwise

(2)

where N is the number of spikes in the firing sequence (Si + Pi),
tn denotes the timing of the nth spike in this sequence, (i.e.,
t1 corresponds to the initial timing of the burst) and being AP
the peak membrane potential to generate a spike. Note, that
during the burst generation synaptic input (Isyn) is not taken into
account (cf. Equation 1 and 2). After generating a burst, neurons
have a refractory period of RP time steps during which Vi(t) = 0.
Then, subthreshold dynamics starts again.

2.1.2. Synaptic Input
Synaptic input arrives to a neuron through two kind of input
channels: connections with other neurons and an external
channel to introduce external stimulation into the network. Each
neuron in the network is connected to its eight nearest neighbors
(Figure 1C) with periodic boundary conditions. As in every
spiking neural network, neurons communicate with each other
through the generation and propagation of spikes. Then, the
interchange rule is defined by:

Isyn = ge · pulsee +
∑

j

gji · pulsej (3)

where ge defines the weight of the external stimulus, pulsee is
1 when an action potential is delivered through the external
channel and 0 otherwise; and, similarly, gji is the weight of the
connection between neurons nj and ni and pulsej is 1 when
Vj(t − 1) = AP and 0 otherwise. Note that Equation 3 does
not apply neither during the generation of a burst (Equation 2)
nor during the refractory period, i.e., in these situations synaptic
input is not considered.

It is important to highlight that in this paper we do not discuss
synaptic learning (see Section 4). This implies that gji is constant
for all the synapses and, consequently, the neighborhood of every
neuron does not change.

2.1.3. Intra-Unit Plasticity
Incorporating subcellular plasticity to a neuron model implies
that a mechanism inside the cell allows tuning the neuron
dynamics to incoming signals and/or to particular processing
states. We consider here a history-dependent contextualization
mechanism driving the spike-timing encoding modality. This
intra-unit contextualization modulates the preferred output
pattern as a function of previous incoming spike patterns.

As in the non-spiking signature neural network paradigm, to
implement local contextualization, each individual neuron uses a
transient memory, called local informational context. The local
informational context keeps track of the information received
during a time window of Mi time units, providing a history-
dependent contextualization mechanism to the single neuron
processing. In the case of our spiking network, for each incoming

spike, the neuron stores in its local context the joint information
about the input channel and the spike timing (Figure 1B). In this
way, different intra-unit plasticity rules can be defined to take into
consideration the input spike timings. In particular, the following
rule can be used to recognize specific neural signatures:

• when a spike arrives to a target unit, this checks whether
the spike pattern received though the corresponding input
channel appears in its local informational context so many
times as a given learning threshold, Li. If so, the receptor
recognizes this fingerprint, which implies that the preferred
output pattern is overwritten with the recognized fingerprint.

Figures 1A,B illustrate how intra-unit plasticity tunes the output
firing pattern in response to the fingerprint recognition. During
the generation of the first burst in the time series, the neuron does
not recognize any signature. Therefore, there is not a preferred
output pattern and the burst only contains the signature of the
neuron (S = {ISI1, ISI2}). At time step 136 (pointed by the
arrow), an spike arrives through channel C1. The neuron can use
its local informational context (Figure 1B) to contextualize this
spike. In our case, this means to identify the incoming pattern
through this channel (in this case {8, 3}) and to determine that
this fingerprint has been received four times from time step 100.
Then, assuming that the learning threshold is Li = 4, the neuron’s
preferred output spike pattern changes due to the recognition of
the signature S′ = {8, 3}. As a consequence, the intraburst firing
pattern of the second burst in the time series varies to encode
additional information (in the example, the sequence P = {P1 =
8, P2 = 3}). The neuron emits the new preferred output pattern
until a new fingerprint is recognized or until the recognized
fingerprint appears less than Li times in the local informational
context (keep in mind that this is transient memory). Note, that
intra-unit plasticity can be used to compute different aspect of the
output signal as a function of the local contextualization, not only
the spiking firing pattern. For instance, a particular cell could
increase/decrease its level of activity or generate an output spike
in response to specific incoming patterns independently of the
synaptic weight.

During the input processing, channels are checked randomly
in each iteration. In this way, when the target neuron recognizes
multiple signatures in the same iteration, the last processed
prevails over the others. Plasticity rule does not apply during
the generation of a burst—i.e., once the neuron starts firing, the
output spike pattern cannot change.

2.2. Analysis Methods
2.2.1. Rhythmic Encoding Modality
To illustrate the spatio-temporal patterns generated in the
bursting informational dimension, we generate activity movies
representing themembrane potential evolving dynamics. In these
movies, the evolution in time of the activity of a given unit (Vi(t))
is represented with a color scale. Regions with the same color
have synchronous behavior. Red corresponds to neurons with
a membrane potential over the firing threshold (Vi(t) > TH),
i.e., they are generating a burst. Intermediate colors between blue
and red, represent subthreshold activity. The cooler the color, the
lower the level of activity.
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Spatio-temporal patterns of spiking or spiking-bursting
activity in one dimensional signals are usually detected and
analyzed by means of spectral methods. However, in higher
dimensions, the coefficients produced by the multidimensional
Fourier transform are hard to interpret. On the other hand,
wavelet-based techniques have proven to be useful tools for signal
analysis (Stollnitz et al., 1996; Mallat, 1999). Unlike the Fourier
transform coefficients, the wavelet transform coefficients are
determined both by a resolution component and a time (or space)
component and, therefore, they represent the resolution content
at a given portion of the original signal. Thus, to quantitatively
characterize the bursting rhythmic activity in our network, we
perform a wavelet-based analysis.

In particular, we use the same discrete wavelet transform
(DWT) analysis employed in Latorre et al. (2013a) to characterize
the global network dynamics of a model of the inferior olive.
The method consists in considering the spiking-bursting spatio-
temporal patterns produced by the network as sequences of
images evolving in time. As a first step in the characterization,
a two-dimensional basis is generated by direct Cartesian product
of the one-dimensional Haar basis (Stollnitz et al., 1996). Then,
the two dimensional non-standard DWT is calculated for each
frame of network activity. The idea behind this characterization
method is that the number of wavelet coefficients in a given
frame,C(t), provides an estimation of the complexity of the image
corresponding to the spatio-temporal pattern at time t. A low
number of coefficients means that the image is smooth or is
composed of smooth components. In contrast, a high number
of coefficients corresponds to complex images. In this way, the
DWT analysis transforms the multidimensional spiking-bursting
activity in the network, Vi(t), into a one dimensional signal, C(t).
This signal provides an useful characterization of the bursting
dynamics in which both the frequency and the spatial complexity
can be discussed. From the frequency perspective, a simple visual
inspection of the evolution of C(t) allows to detect the presence
of different rhythmic patterns in the network. Furthermore, these
rhythms can now be studied by means of the one dimensional
Fourier transform. From the spatial complexity of the patterns,
very high values of C(t) correspond to almost random behavior
of every neuron, with no patterns present; intermediate high
values indicate the presence of complex spatial structures in
the patterns; while completely synchronized networks produce
a small number of coefficients. Note, that C(t) ranges between 0
and the number of neurons in the network.

2.2.2. Spike-Timing Encoding Modality
The spike-timing encoding is related to the spreading of
specific intraburst spike patterns through the network
and the synchronization mechanisms that allow a group of
neurons to recognize and emit the same signature at a given
moment (Tristán et al., 2004; Carrillo-Medina and Latorre,
2015). To graphically illustrate the dynamic spatial organization
of the spike patterns within the network, we generate activity
movies representing the fingerprint-based evolving dynamics
(e.g., see Figure 5). Each point in the 50 × 50 square represents
with a color code the neural signature recognized by a given
neuron within the network at a given moment. In this manner,

neurons with the same color recognize the same signature. White
color identifies the units that do not recognize any fingerprint.

To quantitatively analyze this encoding strategy, we compute
the evolution of the number of neurons that recognize and emit
each individual signature per time unit. This measure provides an
estimation over time of the level of activity in the network related
to each signature.

3. RESULTS

We have conducted experiments in which multiple datasets
are presented to regular networks with different parameters.
Independently of the network size and the number of neighbors
per neuron, it is possible to find a broad range of synaptic weights
and neuron parameters allowing the network to simultaneously
encode information in the rhythmic and the spike-timing
modality. However, the emerging phenomena that we describe
here can be more easily illustrated in autonomous networks
with a low level of bursting activity, since in these cases, the
spatio-temporal activity in the different dimensions arises due to
external stimulation. In autonomous networks, i.e., networks not
receiving external input, the level of bursting activity depends on
the transit probability of the internal state (p), the firing threshold
(TH), and the duration of the refactory period (RP). These
parameters modulate the ratio of bursts produced by an isolated
neuron. The greater the value of the stochastic probability p,
the higher the mean bursting frequency. Similarly, the bursting
frequency also grows with low values of TH and RP.

Thus, in the following sections, we focus on neurons where
p = 0.05, TH = 50, RP = 50, and AP = 200 (units are
dimensionless). Note, that AP—the peak membrane potential to
generate a spike—has no influence on information processing,
the only requirement is being greater than TH. We discuss results
of square-shaped networks of 50×50 of such units, with periodic
boundary conditions and where each unit is connected through
an excitatory synapse (gji = 1) to its eight nearest neighbors as
shown Figure 1C. External stimuli consist of tonic spiking signals
at a given frequency introduced into a randomly chosen cell
during a give time period. The neural signature of every neuron
has six spikes, with all the ISIs in the range 2–12 (dimensionless).
These signatures are randomly generated and assigned at the
beginning of the simulation. The rest of parameters are specified
in the corresponding experiment description. Vi(0) is chosen
randomly between 0 and 40 a.u. for all neurons in the network.

3.1. Rhythmic Encoding Modality
The degree of synchrony among the membrane potential of
the neurons constituting the network characterizes the global
spiking-bursting activity in the network. For fixed values of p and
TH, the degree of synchrony varies as a function of the synaptic
transmission strength among neurons (i.e., gji in Equation 3). For
small values, each neuron fires nearly independently. As synaptic
weights grow, the degree of synchrony increases because the
generation of a burst in a given unit sequentially propagates to
its neighbors and so on (Figure 2). The higher synchrony occurs
in networks with combinations of firing thresholds and excitatory
synapses that allow a target neuron to reach the firing threshold
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A

B

FIGURE 2 | (A) Activity time series of four randomly chosen close neurons in

an autonomous network with Mi = 400 and Li = 4. Units are dimensionless.

Due to the synaptic excitation, the generation of a burst in a given unit

propagates to the surrounding units. (B) Spatio-temporal patterns of

spontaneous activity observed in the network of the top panel. The patterns

consist of propagating wave fronts of spiking-bursting activity. Sequences

develop in time from left to right and from top to bottom with a time interval

between frames of 33 a.u.

when it receives a burst (gji · #spikes_in_burst ≥ TH). However,
as we mention above, here we are interested in autonomous with
a low level of bursting activity.

Depending on the synaptic parameters, burst propagation
provides autonomous networks the ability to generate well-
defined spatio-temporal patterns in the form of propagating
wave fronts of transient spiking-bursting activity. Note that local
contextualization modulates intraburst firing patterns, but it has
not any influence on burst timings. To illustrate these spatio-
temporal patterns, we generate activity movies representing the
membrane potential evolving dynamics (see Section 2.2.1 for
details). As representative example of the spontaneous collective
bursting rhythms generated by the network, bottom panel in
Figure 2 displays snapshots of the activity movie of the network
shown in the top panel.

The spontaneous generation of transient spatio-temporal
patterns of spiking or spiking-bursting activity is a feature
with relevant functional implications observed in different living
neural media. However, we are interested in the network response
to stimuli. Therefore, from the encoding perspective, the most
interesting feature of the network, appearing even in networks
with a small synaptic transmission among neurons, is its ability
to develop dynamical patterns of spiking-bursting activity in
response to data onset. These patterns allow the network to
encode information using the frequency of different bursting
rhythms induced by stimuli. To illustrate how the network of
Figure 2 encodes a single input using this spatio-temporal space,
Figure 3A shows snapshots of its collective spiking-bursting
dynamics when a unit in the left-top corner receives an external
tonic spiking signal. When the stimulus is introduced into the
neuron, its firing frequency increases. Then, the spiking-bursting

A

B

C

FIGURE 3 | (A) Snapshots of an activity movie illustrating the spiking-bursting

spatio-temporal patterns generated by the network of Figure 2 (Mi = 400 a.u.

and Li = 4) when a tonic input with a period of 100 time units between

consecutive spikes is introduced into a single neuron (arrow in the first frame

points to the neuron that receives incoming stimulus). Sequences develop in

time from left to right and from top to bottom. The time interval between

frames is 33 a.u. The stimulated unit increases its bursting frequency due to

the external stimulation, and this generates new spatio-temporal patterns of

transient spiking-bursting activity from this unit. (B) Characterization with the

DWT coefficients of the activity of the network in the top panel: first without

stimuli (snapshots in Figure 2B belong to this period), then when the selected

neuron receives the incoming data (grayed area identifies the period while the

input is active), and finally without any input again. (C) Normalized power

spectra of the wavelet analysis for the three periods. Left: without stimuli.

Middle: during the stimulation. Right: when the stimulation is over and after the

reverberation period. Power spectra are calculated using time series of

500,000 time units. The DWT analysis demonstrates that the global network

dynamics changes when data are introduced into the network. It also shows

that the network is a dynamical working memory of spiking-bursting rhythms,

since the network dynamics generated in response to data onset reverberates

after the input is retired.

activity originated in the stimulated neuron propagates to the
surrounding units because of excitation. Thus, this neuron
becomes the origin of a new rhythm that coexists with those
generated spontaneously by the network (if any).

The DWT analysis (Section 2.2.1) corroborates the rhythm
encoding in the network transient spiking-bursting dynamics.
Changes in the collective spiking-bursting dynamics in response
to data onset are reflected in a change in the evolution of the
DWT coefficients whose shape characterizes the spiking-bursting
activity of the network. As an example, Figure 3B illustrates how
the collective dynamics of the network in Figure 3A changes
when data are introduced into the stimulated unit. Initially, no
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data is present and the network spontaneously generates spatio-
temporal patterns as the ones shown in the bottom panel of
Figure 2. In this situation, the DWT coefficients oscillate with
a nearly homogeneous frequency capturing the spontaneous
spiking-bursting rhythm. The spontaneous rhythm frequency
depends on the stochastic probability p and can be estimated by
means of the Fourier transform of the wavelet analysis of the
network activity. For instance, in the network of Figures 2, 3, the
spontaneous rhythm frequency is around 6.2·10−3 (see frequency
peak in Figure 3C, left). On the other hand, the oscillation
of the DWT coefficients between a high and an intermediate
value indicates, respectively, the nearly independent neuron
behavior during subthreshold activity and a high transient
synchronization in the network during the spreading of the
spiking-bursting wave fronts. Then, the external stimulus is
introduced into the network during a given time interval (grayed
area). At this point, the network collective dynamics stepwise
changes. A first remarkable change in the evolution of DWT
coefficients is observed in the oscillation amplitude. Now, the
DWT coefficients tend to oscillate around two high values. This
change points out the complex spatial structure of the new
emerging dynamics. Not obtaining low or intermediate values in
the DWT analysis during the stimulation period indicates that,
in this network, the propagation of the wave fronts originated
in the stimulated unit does not imply a complete transient
synchronization in the whole ensemble. Another relevant change
in the DWT coefficients during the stimulation is a frequency
increase (cf. left and middle power spectra in Figure 3C),
pointing out that the rhythm evoked by the stimulus prevails over
the spontaneous rhythm (6.2 · 10−3 vs. 10 · 10−3 a.u.−1). The
frequency of the spiking-bursting rhythms evoked by external
stimulation depends on the frequency of the input, since the
stimulated neuron follows the stimulus. These changes indicate
that the network has encoded the incoming information in
a characteristic spiking-bursting rhythm. Finally, no input is
present again and the network recovers the spiking-bursting
autonomous activity (cf. Figure 3C, right). The DWT analysis
indicates that the stimuli-evoked rhythms can reverberate for
long periods after data onset. This implies that the network
behaves as a working memory in the spiking-bursting spatio-
temporal space. For each network configuration, the mean
reverberation period of the rhythms encoding different inputs
is nearly the same, i.e., the memory capability of the network in
this information dimension is independent of the data and only
depends on the synaptic parameters.

The emerging collective dynamics analysis in networks that
receive multiple tonic stimuli with different frequencies indicate
that spatio-temporal patterns of spiking-bursting activity allow
the network to encode information using several coexisting and
coordinated rhythms. Top panel in Figure 4 displays an example
of the complex spatial organization of the patterns generated by a
network receiving 10 different inputs. The snapshots clearly show
the increased complexity of the patterns, since, now, the network
organizes clusters of neurons oscillating at different frequencies
(cf. top panel in Figure 3). Each of the unit receiving external
data becomes the source of a rhythm that propagates through
the network competing with the rhythms encoding other inputs.

A

B

FIGURE 4 | Figure equivalent to Figure 3 but when the network

(Mi = 400 a.u. and Li = 4) receives 10 inputs. (A) Sequences develop in

time from left to right and from top to bottom. The time interval between

frames is 33 a.u. In response to data onset, the network starts generating 10

different coexisting rhythms encoding incoming information. (B) The different

spiking-bursting rhythms encoded within the network are captured by the

DWT analysis. While external inputs are present, the oscillation frequency of

the DWT coefficients is not homogeneous (see inset), which reveals the

coexistence of the different rhythms. Inset shows the normalized power

spectrum of the wavelet analysis of a time series of 500,000 time units while

the 10 external stimuli are present. The number of coefficients increase (cf.

Figure 3B) denotes the increase in the spatial complexity of the patterns.

As we show above, while an input is active, the corresponding
rhythm survives in the network. Therefore, when more than
one stimulus is present, the competition among the input-
evoked spiking-bursting rhythms is a winnerless competition.
Note that there is no inhibition in the network nor subcellular
plasticity rules limiting the spiking-bursting activity. Winnerless
competition allows the encoding of multiple coexisting spiking-
bursting rhythms. This competition dynamics is captured by the
DWT analysis (bottom panel in Figure 4). When multiple data
are introduced into the network, the number of DWT coefficients
remains high with a non-homogeneous oscillation frequency.
This reveals the complex spatial structure of the patterns and,
on the other hand, the coexistence of multiple spiking-bursting
rhythms within the network.

We have previously shown that the spiking-bursting rhythms
evoked by a single stimulus reverberate for a while when the
stimulation is over. The reverberation period drastically increases
when the network receives multiple stimuli. The greater the
number of external inputs, the greater the number of sources of
spiking-bursting activity. This translates into a higher spiking-
bursting activity in the network and explains the increasing
reverberation period. Depending on the synaptic strength and
the value of p, in this situation, the network even becomes a
long-term memory of spiking-bursting rhythms. We would like
to emphasize that the rhythms that survive for longer periods in
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short-term memories or the ones that persistently reverberate in
long-termmemories are not always the higher frequency stimuli-
evoked rhythms nor the rhythms encoding the last data presented
to the network.

3.2. Spike-Timing Encoding Modality
One of the major characteristics of the proposed network is
the intra-unit contextualization of input signals, responsible
of the spike-timing encoding modality. In this section, we
study the complex collective dynamics induced by this intra-
unit information processing strategy. These emerging collective
dynamics can give us important clues about the underlying
computational properties of the network.

As expected, the ability of an individual unit to recognize
specific fingerprints varies as a function of the intra-unit
parameters shaping local contextualization, i.e., the maximum
size of the local informational context (Mi) and the fingerprint
learning threshold (Li). Depending on the value of these
parameters, specific intraburst firing patterns can propagate
through autonomous networks. However, the more interesting
phenomena from the information processing viewpoint are
related to the mechanisms that allow the network to generate
and organize spatio-temporal patterns in response to data onset.
Therefore, we focus our attention on networks in which the
signature recognition does not occur without external stimuli.
When these networks receive incoming data, they aid the study
of the information encoding in the fingerprint-based spatio-
temporal space by analyzing how the signatures of the stimulated
units propagate throughout the network.

Again, we first address the analysis of networks receiving
a single stimulus. When a neuron receives an external tonic
input, this unit increases its bursting frequency (see Section 3.1).
This increase can make the neighbor units recognize the
neural signature of the stimulated neuron and propagate
the corresponding intraburst firing pattern. In this situation,
new intriguing collective dynamics arise in the network.
To illustrate the dynamic spatial organization of the neural
signatures traveling through the network, we generate activity
movies representing the fingerprint-based evolving dynamics
(see Section 2.2.2 for details). These activity movies point out that
the network generates in this dimension well-defined transient
patterns of activity in response to data onset. The emerging
spatio-temporal patterns are related to the spatial organization
and clusterization of the signatures traveling through the
network. To give insight into the generation and propagation
of these complex spatio-temporal structures, Figure 5 shows
snapshots of the activity movies of two representative networks
in which the same unit receives an input. Note, that the
only signature traveling through the network corresponds to
the stimulated unit. If we consider that at a given moment
two neurons that recognize the same signature belong to
the same cluster; we can study the specific properties of
the dynamic organization of the patterns by calculating the
clustering coefficient and the average shortest path between
neurons belonging to the same cluster. This analysis indicates
that the fingerprint-based spatio-temporal patterns are initially
originated in the stimulated unit (see initial frames in the

A

B

FIGURE 5 | Snapshots of two representative activity movies illustrating

the fingerprint-based encoding mechanism. (A) Mi = 500 a.u. and

Li = 5. (B) Mi = 400 a.u. and Li = 4. Sequences develop in time from left to

right and from top to bottom. The time interval between frames is 1000 a.u.

Note that the propagation of the fingerprint-based spatio-temporal patterns is

slower than the corresponding spiking-bursting rhythms (cf. bottom panel and

Figure 3). The color code identifies neurons recognizing the same signature,

being white color used for neurons that do not recognize any signature. The

first frame in each sequence indicates that, in the absence of stimuli, neural

signatures do not propagate in these networks. When the external stimulus is

introduced into a neuron located in the left-top corner (second frame in both

panels), new collective dynamics emerge and the network organizes transient

spatio-temporal patterns of activity related to the propagation of the signature

of the stimulated unit (blue regions). Note that this is the only signature that

travels throughout the network. These localized patterns of activity encode the

who of incoming data.

sequences of Figure 5). Then, depending on the parameters Mi

and Li, they can propagate locally or globally as transient wave
fronts; or as localized clusters with a fixed spatial organization
that occasionally become the source of new transient patterns.
The generation of localized transient patterns of activity in the
fingerprint spatio-temporal space suggests a collective coding
strategy based on the emission and recognition of specific neural
fingerprints. This mechanism allows the network to encode
information regarding the origin of incoming data (input source)
in a distributed network form.

The information encoded in the spike-timing modality and
the encoded in the rhythmic modality coexist in the network.
A relevant property observed in the simulations is that a neural
fingerprint does not necessarily travel over the propagating wave
fronts encoding the corresponding spiking-bursting rhythm.
The spreading velocity of the fingerprint-based spatio-temporal
patterns is always slower than the corresponding spiking-
bursting spatio-temporal patterns velocity (cf. time interval
between frames in Figures 3, 5; 33 vs. 1000 a.u). Likewise,
the spatial organization of the patterns in the different spatio-
temporal spaces is not correlated. If we consider that at a given
moment two neurons over the firing threshold belong to the
same cluster, we can calculate the clustering coefficient and
the average shortest path for the spiking-bursting patterns and
compare the self-organizing properties of the patterns encoded
in both information dimension. This analysis points out that the
spiking-bursting patterns always consist of propagating transient
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wave fronts from the stimulated unit traveling through the whole
network. Meanwhile, the fingerprint-based patterns can also be
originated in the stimulated unit, but they can propagate locally
or globally as transient wave fronts or remain bounded in specific
regions of the network.

A simple way to characterize the fingerprint-based dynamics
is computing the number of neurons that recognize and emit
a given firing pattern. This allows us to identify the signatures
encoded in the network. Figure 6A depicts the characteristic
evolution of the level of activity related to the fingerprint of
the data source in three representative networks receiving the
same single input during three different stimulation periods.
This figure corroborates the results derived from the snapshots
shown in Figure 5. When the stimulation begins, the signature
of the stimulated unit starts propagating through the network.
The number of neurons recognizing this fingerprint grows until
reaching a stationary level that depends on the value of Mi

and Li. Then, the network dynamics consists of a fluctuation
around the steady level (e.g., see blue traces in Figure 6A).
This dynamic is kept while the stimulation is sustained. When
the stimulation ends, the stimulus-evoked activity does not
immediately disappear from the network (cf. red and green traces
in Figure 6A). This is an interesting result that demonstrates that
intra-unit contextualization can be a mechanism to implement
intrinsic memory in the network, giving rise to both short-
term and long-term memories. In short-term memories (bottom
and middle panel in Figure 6A), the stimuli-evoked dynamics
reverberate for a while. This reverberation effect constitutes a
mechanism providing the network the ability of acting as a
dynamical working memory that transiently stores incoming
data. In contrast, in long-term memory networks (top panel
in Figure 6A), the information survives in the network in a
permanent manner (maybe until a new input is received).

The collective dynamics in the fingerprint-based dimension is
mainly driven by the intra-unit parameters Mi and Li. On the
one hand, reducing the size of the local informational context
of every neuron (Mi) decreases the number of neurons that
recognize a given firing pattern. On the other hand, decreasing
the learning threshold (Li) facilitates the recognition of the
propagating fingerprints and, therefore, the level of activity in
the network grows. The trade-off among the effect of these
parameters determines if the network encodes information
in the spike-timing modality and the mode of behavior in
this dimension. To illustrate this, Figure 6B depicts a phase
diagram locating the different behaviors in the space of intra-unit
parameters.

With the experiments described so far, we investigate the
ability of the proposed network to encode and process a single
stimulus using an information processing strategy driven by
local contextualization. If we repeat the same experiments but
now introducing multiple inputs simultaneously, we observe
that the presence of multiple stimuli makes the network
generate coexisting transient spatio-temporal patterns of activity
encoding the origin of the different inputs (Figure 7). These
experiments reveal additional relevant computational properties
that subcellular plasticity can provide to spiking neural networks.
When multiple intraburst firing patterns spread through the
network, a competition dynamics arises between them. A simple
visual inspection of the snapshots shown in Figure 7 reveals that
the self-organizing properties of the patterns drastically change
depending on the intra-unit parameters shaping the intra-unit
plasticity rules. These define different modes of competition
among the spreading fingerprints. This competition affects
the global level of activity of each signature in the network
and determines the spatial organization of the patterns. The
competition dynamics among the different intraburst firing

A B

FIGURE 6 | (A) Evolution of the mean number of neurons that recognize and emit the fingerprint of a unit receiving the same data in three different networks during

three different periods. Each trace is calculated as the average of 10 experiments with different random seeds and location of the stimulated unit. These plots

characterize the stimuli-evoked fingerprint-based dynamics. Top panel: Mi = 500 and Li = 5. Middle panel: Mi = 400 and Li = 4. Bottom panel: Mi = 350 and

Li = 4. Units are dimensionless. In red traces, the stimulation period corresponds to the red region. In green traces, to the green region. And in blue traces, data are

continuously present. In this spatio-temporal space, the network may act as a long-term memory (top panel) or as a short-term memory (middle and bottom panels)

depending on the value of Mi and Li , i.e., the parameters associated to intra-unit contextualization. (B) Phase diagram illustrating the relationship between Mi and Li in

networks where p = 0.05, TH = 50, RP = 50, and AP = 200 (units are dimensionless).
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A B

C D

FIGURE 7 | Snapshots of four representative activity movies illustrating the fingerprint-based spatio-temporal patterns generated by networks that

receive 10 data simultaneously. The inset in the first frame of (D) shows the approximate location of each input. Sequences develop in time from left to right and

from top to bottom. The time interval between frames is 2000 a.u. Subcellular plasticity induces different competition dynamics among the coexisting patterns in this

spatio-temporal space: from winnerless (A–C) to winner-take-all (D). These competition regimes are characterized in Figure 8. (A) p = 0.05, Mi = 400, and Li = 4.

The competition among fingerprints makes the patterns only propagate locally, remaining bounded near the corresponding stimulated unit. (B) p = 0.05, Mi = 350,

and Li = 4. Evolving coexisting patterns propagate through the whole ensemble. Each pattern is originated in the unit that receives the corresponding input. (C)

p = 0.05, Mi = 500, and Li = 5. The patterns also travel through the whole network, but there exist alternating periods during which only the patterns encoding a

given input propagate. After that, a new competing cycle begins until a fingerprint prevails over the others and starts propagating. (D) p = 0.08, Mi = 350, and Li = 3.

As result of the competition, only the patterns associated to a limited group of data (the winners) propagate. Note that the different competition regimes arise

depending on the values Mi and Li which shape the intra-unit contextualization mechanism.

patterns determines the coherence and coordination of the
coexisting patterns.

We would like to highlight that the competition regimes
observed in the activity movies arise in the absence of inhibitory
connections, which hints at intra-unit contextualization as an
effective mechanism to restrict the activity in networks without
inhibition. Note that each neuron can only transmit one
recognized firing pattern per burst. This limitation produces
somehow a local competition among the patterns received by
the neuron where only the “winner” is transmitted. This local
competition is the basis of the global competition in the whole
network.

The different dynamicalmodes observed in the activitymovies
are better characterized by the evolution of the number of
neurons that recognize and emit each signature (Figure 8).
Regardless the number of active inputs, the type of competition
depends on the value of the parameters Mi and Li and may
vary from a winnerless (WLC) to a winner-take-all (WTA)
competition. In WLC networks, none of the signatures becomes

a “winner,” and therefore, none of them persistently prevails
over the others. Depending on the intra-unit parameters, the
network can display different winnerless regimes. Figure 8A

illustrates a winnerless competition in which the level of activity
related to every fingerprint is similar and remains fluctuating
nearly a stationary level. This defines a collective dynamics
where several coherent spatio-temporal patterns coexist within
the network encoding simultaneously a great amount of data
(e.g., in Figure 8A all the inputs introduced into the network).
Figures 8B,C show winnerless regimes with alternating periods
where some fingerprint has a higher level of activity.

An interesting phenomenon observed with some network
settings is that some regions within the network specialize in
the emission of firing patterns encoding the origin of different
stimuli although they do not receive any external input. This
phenomenon occurs without any kind of supervised synaptic
nor intra-cellular learning, i.e., it is a self-organizing property
of the network. These emitter areas are usually related to
winnerless competitions where the prevailing fingerprints change
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A B

C D

FIGURE 8 | Level of activity related to the 10 neural signatures belonging to the input sources in the networks of Figure 7. The inputs and the color code

used to identify them are the same used in this figure. All of them are injected simultaneously from time step pointed out by the arrow to the end of the time series.

Each panel corresponds to the equivalent in Figure 7 and illustrates a different competition regime (see main text for details).

accordingly to the patterns originated in these areas (Figure 9).
Conversely, when a winner-take-all competition occurs, only
the signature or signatures that win the competition propagates
through the network (e.g., see Figure 8D). In the WTA network
shown in Figure 7D, all the neurons tend to recognize and emit
simultaneously the prevailing fingerprint. However, depending
on Mi and Li, this can also spread as evolving transient patterns
equivalent to the shown in Figure 7C when the dark green input
prevails over the others. Note that, in some sense, the winnerless
competitions displayed in Figures 7B,C consist of sequences of
transient winner-take-all competitions.

The reverberating spatio-temporal patterns encoding the
origin of incoming data continue competing even when they
are not sustained by an active input. Short-term memory
networks have a limited ability to retain previously stored
data when new information is introduced into the network.
In these cases, the reverberation period drops as compared
to networks receiving a single input, and the stored data
are almost instantaneously forgotten, i.e., the corresponding
patterns disappear because the patterns encoding the last

incoming stimulus win the competition. However, in long-term
memory networks, coexisting coherent spatio-temporal patterns
related to multiple fingerprints can be observed even when the
corresponding input is not active.

4. DISCUSSION

The present work introduces a spiking neural network that makes
use of multicoding strategies for information propagation and
subcellular plasticity to locally contextualize or discriminate data
received by a unit. Furthermore, each neuron in the network has
a neural signature that allows its unequivocal identification by
the rest of the cells. This network is an encoder and generator
of spatio-temporal patterns that take advantage of the multiple
simultaneous encoding modalities present in the network to
transform dynamic inputs into different spatio-temporal spaces,
and organize and coordinate coexisting patterns of transient
activity in response to data onset.

The discussed experiments are aimed at analyzing the
emerging collective dynamics in two information dimensions.
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FIGURE 9 | WLC network whose collective dynamics is characterized

by an emitter area that generates transient patterns encoding the

prevailing fingerprint in the network. Arrow in the first frame denotes the

approximate location of this area. Sequences develop in time from left to right

and from top to bottom. When neurons in the pointed area start generating

patterns encoding a given input, the collective behavior changes accordingly

to these patterns and the corresponding fingerprint prevails over the others.

Note that the existence of these emitter areas is a self-organizing property of

the network.

On one hand, a spiking-bursting spatio-temporal space, where
information processing is driven by synaptic transmission.
On the other hand, a fingerprint-based spatio-temporal space
driven by an intra-unit contextualization mechanism. The
specific properties of the dynamic organization of the patterns
are different in each information dimension, so that, the
life cycle of the information encoded in both encoding
schemes is independent. When multiple patterns in the same
dimension coexist in the network, a competition emerges
between them. We show that various forms of competition can
arise without inhibitory connections in the network. Depending
on the parameters shaping simple intra-unit plasticity rules,
the competition regime may vary from a winnerless (i.e., the
network stores multiple data simultaneously) to a winner-take-
all competition (i.e., one datum or a group of them prevails
over the others). The stimuli-evoked spatio-temporal patterns
and the corresponding competing dynamics can survive for long
periods after data onset. This reverberation effect allows the
network to memorize incoming data. This can display short-
term or long-term memory capabilities in the different spatio-
temporal spaces. When the network behaves as a short-term
memory, the spatio-temporal patterns encoding incoming data
in the corresponding scheme transiently reverberate after the
stimulation ending. Conversely, in long-term memories, the
stimulus leads the network to a new stable state and the patterns
persistently survive. The memory ability of the network in each
dimension varies as a function of the synaptic and/or intra-
unit parameters. Therefore, different simultaneous processing
strategies can be implemented within the network.

These results illustrate the dynamical richness and large
flexibility of the proposed network to encode and process
information in different spatio-temporal spaces. We argue that
plasticity mechanisms inside individual cells and multicoding
strategies can provide additional computational properties to

spiking neural networks, which could enhance their capacity and
performance. In particular, local contextualization mechanisms
allow individual neurons to process the multiple simultaneous
codes in their input signals selectively or globally in order
to completely decide or weight the decision about their
output in the different encoding schemes. This information
processing provides a framework to model complex high-
dimensional processes that can be applied to different real-world
computational problems. The ideas relating multicoding with
local information discrimination have a direct application in
problems that benefit from multifunctionality and parallelism.
These are desirable features for many technical applications
of ANNs, representing a potential advantage when processing
large amounts of data or multiple decision-making criteria
must be developed, for instance, in multiobjective optimization
problems (Saini and Saraswat, 2013; Wang et al., 2014) or
in control systems [e.g., multifunctional prosthesis controllers
that must quickly detect and classify multiple characteristic
simultaneous myoelectric signals (Saridis and Gootee, 1982;
Hudgins et al., 1993; Karlik et al., 2003; Li et al., 2010)]. Another
straightforward application of these concepts is in problems
where a global task is solved by means of solving independent
partial tasks. An example is the wide scope of multidimensional
sorting problems, specifically when the order in a particular
dimension can be independent of the order in other dimensions,
or when there is no global sorting criteria in any dimension.
Non-spiking signatures neural networks have been successfully
applied to this type of problems (Latorre et al., 2011). Areas
of application for multidimensional sorting are scheduling,
planning and optimization, between others (Catoni, 1998; Aref
and Kamel, 2000). On the other hand, the different dynamical
modes observed in the network are relevant in the context
of multiple technical applications. Winnerless competition is
usually associated to sequential information processing (Seliger
et al., 2003; Rabinovich et al., 2006a; Arena et al., 2009;
Kiebel et al., 2009; Latorre et al., 2013b), which has a wide
application in many artificial intelligent systems in tasks such
as inference, planning, reasoning, natural language processing,
and others (Sun and Giles, 2001; Wörgötter and Porr, 2005).
Similarly, pattern recognition in different spiking ANNs is based
on winner-take-all dynamics (Bohte et al., 2002a; Gütig and
Sompolinsky, 2006; Schmuker et al., 2014).

In this paper, we have imposed some constraints and
assumptions in order to facilitate the presentation of our
results. Results obtained with larger regular networks (up to
1000 × 1000); higher levels of bursting activity; and different
number and/or distribution of spikes in the neural signatures are
equivalent to the results presented in Section 3. In experiments
with signatures with an arbitrary number of spikes, new
interesting fingerprint-based dynamics emerges in the network
and results are not exactly the same. In these simulations, not
only the fingerprints belonging to a neuron propagate, but
also specific firing sequences built with combinations of these
signatures propagate throughout the network. In some sense,
these networks do not only encode information regarding the
input source, but they also generate new information. It is also
important to note that, for simplicity, we only consider two
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encoding schemes in the network. However, bursting activity
allows easily including additional units of information (e.g., the
burst duration or the number of spikes in the burst). In this
line, and regarding a selective processing of input messages,
experimental evidence indicates that some neural systems
exhibit functional or behavioral neural signatures representing
different states or associated to the task performed at a given
moment (Klausberger et al., 2003; Somogyi and Klausberger,
2005; Kaping et al., 2011). The concept of neural fingerprint
that underlies the strategy of the discussed network can be
extended to consider the emission and recognition of multiple
fingerprints with a different meaning within the same signal.
In this situation, subcellular plasticity in the form of intra-
unit information contextualization mechanisms would allow
individual neurons to perform a distinct processing of incoming
signals, for example, as a function of specific emitters and/or
functional states.

Although not addressed in this paper, subcellular plasticity
and multicoding mechanisms for information processing can be
combined with the features that underlie information processing
in the existing spiking neural network paradigms. In this line,
for example, plenty of work has been done on synaptic plasticity
in spiking neural networks, since modifications of the synaptic
connections are traditionally considered the physiological basis
of learning in the nervous system. These works are mostly
related to unsupervised synaptic learningmethods, such as Spike-
Timing Dependent Plasticity (STDP) (Song et al., 2000; Bohte
et al., 2002b; Kube et al., 2008; Meftah et al., 2010), with an
increasing interest into supervised synaptic learning (Bohte et al.,
2002a; Belatreche et al., 2007; Yu et al., 2013). The combination
of learning rules including not only the modification of the
synaptic weights, but also the parameters that affect the local
discrimination of input signals can greatly contribute to enhance
the spiking ANNs’ computational power. In this vein, our results
can be of particular interest in the context of the generation and
recognition of spatio-temporal information. Different spiking
neural networks have been proposed to process, classify, and
store spatio-temporal patterns (Laje and Buonomano, 2013;
Yu et al., 2013). We speculate that incorporating multicoding
strategies and different types of subcellular plasticity to other
successful spiking ANN paradigms can potentially allow these
networks to process, classify and store more complex data.
For example, a highly relevant application of the referred
spiking networks is the analysis of EEG spatio-temporal data.

To consider a multicoding mechanism that incorporates the
neural fingerprint-based dimension to these networks could
permit an analysis of coexisting brain rhythms from multiple
simultaneous perspectives. In particular, the fingerprint-based
spatio-temporal patterns could facilitate the analysis of the
propagation trajectories and the identification of possible
information sources and sinks in different cognitive processes.

Because of their functional similarity to biological neurons,
spiking neural networks have been extensively used by the
computational neuroscience community as a powerful tool for
studying neural information processing (e.g., see Izhikevich,
2003; Deco et al., 2008; Izhikevich and Edelman, 2008). Results
obtained with our simple model could also be relevant from

this perspective Information storage in the nervous system
has been typically studied considering the adaptation of the
synaptic connection strengths (e.g., see Zipser et al., 1993).
Our simulations suggest that mechanisms inside individual cells
modulating their intrinsic dynamics could also be an effective
mechanism to implement intrinsic memory, both in short-
and long-term memory networks. On the other hand, many
biological neural systems (including many areas of the human
brain) continuously receive a great amount of inputs from
many different sources and, nevertheless, they exhibit a low
level of activity and only respond to specific inputs (Shoham
et al., 2006; Sato et al., 2007; O’Connor et al., 2010; Barth
and Poulet, 2012). We hypothesize that neural dynamics
based on the propagation of specific neural fingerprints and a
contextualization mechanisms like the one studied here could
explain why these system are so sparsely active. Target neurons
would only fire when they recognize a characteristic firing pattern
in their incoming stimuli; while signal not recognized would be
simply ignored. Obviously, to test this hypothesis more realistic
spiking models for the activity of the neurons must be developed.
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Mechanisms of Winner-Take-All and
Group Selection in Neuronal Spiking
Networks
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Amajor function of central nervous systems is to discriminate different categories or types

of sensory input. Neuronal networks accomplish such tasks by learning different sensory

maps at several stages of neural hierarchy, such that different neurons fire selectively to

reflect different internal or external patterns and states. The exact mechanisms of such

map formation processes in the brain are not completely understood. Here we study the

mechanism by which a simple recurrent/reentrant neuronal network accomplish group

selection and discrimination to different inputs in order to generate sensory maps. We

describe the conditions and mechanism of transition from a rhythmic epileptic state (in

which all neurons fire synchronized and indiscriminately to any input) to a winner-take-all

state in which only a subset of neurons fire for a specific input. We prove an analytic

condition under which a stable bump solution and a winner-take-all state can emerge

from the local recurrent excitation-inhibition interactions in a three-layer spiking network

with distinct excitatory and inhibitory populations, and demonstrate the importance of

surround inhibitory connection topology on the stability of dynamic patterns in spiking

neural network.

Keywords: neuronal spiking network, phase transition, learning and memory, Winner-take-all (WTA), neural

computation, Robotics

1. INTRODUCTION

Facing with vast amount of multi-sensory information, Central Nervous System (CNS) seems
to process only a small subset of those inputs at any given time, no matter whether they come
from external or internal sources. How brain selectively processes such large number of inputs
and maintains a unified perception remains a mystery. At the level of neuronal networks, a
network in which all neurons respond the same to all stimuli would convey no information about
the stimulus. In order to be useful, neurons must come to respond differentially to variety of
incoming signals. Many neural models and theories have been proposed to account for such ability.
Winner-Take-All (WTA) network is one of such proposed mechanisms for developing feature
selectivity through competition in simple recurrent networks, and it has received much attention
on both theoretical and experimental grounds. The primary theoretical justification is the ability
of such networks to explain how the maps, which are ubiquitous in the cerebral cortex, can arise
(Kohonen, 1982; Goodhill, 2007). WTA networks can also explain how a network can come to
make useful distinctions between its inputs. WTA networks coupled with synaptic learning rules
and homoestatic plasticity can explain how this takes place in a self-organized fashion from an
initially undifferentiated state. Finally, WTA models are often employed at the behavioral level in
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theoretical models of higher-level cognitive phenomenon such
as action-selection, attention (Itti and Koch, 2001; Walther and
Koch, 2001) and decision making (Wang, 2002; Furman and
Wang, 2008).

Another mechanism proposed for feature selectivity is the
phenomenon of spatially localized bumps in neuronal networks
(Somers et al., 1995; Laing and Chow, 2001; Wei et al., 2012). If
we view multiple neurons within a bump as mulitiple-winners of
excitatory and inhibitory competition, bump activity in spiking
networks can be treated as a soft WTA or k-Winner-Take-
All phenomenon (see Maass, 2000 for their definition). In this
paper we use Winner-Take-All (WTA) and “bump activity”
inter-changeably to describe the same stable group activity
that arises from inter-connected excitatory-inhibitory neuronal
networks. On a more general level, both bump activity and
WTA phenomenon can be viewed as a type of pattern formation
process in networks of excitatory and inhibitory neurons (for
example, patterns of stable grid in Wilson and Cowan, 1973;
Ermentrout and Cowan, 1979), and an example of activity
dependent neuronal group selection process (Edelman, 1987).

Population rate-based WTA models have been extensively
studied and are well understood (Dayan and Abbot, 2001). But,
the connections between rate models to the real biological neural
systems are not direct, because they are different from the real
nervous systems whose neurons are spiking. So it is necessary to
study the networks of spiking neurons, such that the biological
interpretation of spike models can be more directly linked to real
nervous systems. Modeling and understanding spiking networks
is not simple because spiking neurons are highly nonlinear and
their action potentials are discrete. As a result, it is always more
difficult to obtain analytical solutions for spiking firing properties
than rate models.

Analysis has shown conductance-based spiking models can be
approximated by simple rate models under certain conditions
(such as in an asynchronous state in Shriki et al., 2003).
This approach has been applied to the study of hyper-column
in a spiking model of visual cortex (Shriki et al., 2003).
The orientation selectivity in their study, is modeled as the
appearance of a unimodal “bump”-like spiking activity in a ring-
connected spiking network, similar to an earlier study (Laing and
Chow, 2001). Both approaches applied approximations from the
rate models and used Fourier analysis to calculate the conditions
for the appearances of bump activity. Recent work specifically
studied recurrent spiking WTA networks, which are closer to
real biological systems than previous rate models (Rutishauser
and Douglas, 2009; Rutishauser et al., 2011). Even though these
newer network models can receive spike input and generate
spike output, their network structures are still very simplified.
For example, excitatory and inhibitory neurons are modeled into
one single population (Laing and Chow, 2001), and inhibitory
population are reduced into one unit (Rutishauser et al., 2011), or
removed altogether andmodeled as direct inhibitory connections
among excitatory neurons (Oster et al., 2009).

In a recent report we presented a robust and more
biologically-realistic WTA network structure with distinct
excitatory and inhibitory populations with arbitrary number
of units (Chen et al., 2013). This WTA network has been

implemented into a robot that accomplished a sequence learning
and mental rotation task (McKinstry et al., 2016). In our spiking
models each neuron type has very detailed biological parameters
to model different neuronal transmitters and receptor types
similar to previous work (Izhikevich and Edelman, 2008). We
showed that surround inhibition and longer time constants
from NMDA and GABAb conductances are sufficient to achieve
stable “bump” spiking activity in a selected winner neuronal
group while all the other neurons are inhibited and quiet.
However, detailed biological properties, such as STSP (short-term
synaptic plasticity), NMDA voltage gating etc., prevented a
formal analytical analysis of the whole model. Also, it is not
clear any of those biological details or a specific type of synaptic
connections are crucial for the emergence of bump activity.

To identify the most important mechanistic factors for the
spiking WTA networks, here we study a simplified spiking
network after some biological details are removed. For example,
based upon what we have noticed previously, turning off STSP,
NMDA voltage-gating and excitatory-to-excitatory connections
does not change the overall properties of WTA phenomenon. On
the other hand, we preserve some important biological features
such as the four different synaptic connections and conductance
types (AMPA, NMDA, GABAa, and GABAb), because we found
that these four individual conductance types contribute to
different aspects of the “bump" stability. By examining functions
of these individual conductances and the topologies of excitatory-
inhibitory connectivity, we provide a detailed analysis of the
conditions on which a stable bump activity can emerge from
this recurrent spiking network. Our analysis thus provide a
mechanistic analysis on how a neuronal group selection process
can occur in an activity dependent manner in neural systems.

2. METHODS

2.1. Network Structure
Here we analyze a basic 3-layer spiking neuronal network with
different neuron types with realistic biological parameters. The
first layer of excitatory neurons (IN – input cells) takes input
signals (e.g., arbitrary analog patterns) and translates them into
spiking activity. The input signal we considere here in this paper
is a type of unstructured random currents evenly distributed
within a certain range and injected into the 100 input neurons
(IN). IN cells are randomly connected to the next excitatory
layer (E) with initial weights evenly distributed between 0 and
a maximal value. The random input currents and random
connections to the excitatory layer we analyzed here provide a
baseline condition in which we test how the recurrent/reentrant
connectivity between excitatory and inhibitory neurons by
themselves can accomplish winner-take-all competition to
random but unstructured input patterns (without obvious firing-
rate differences among input neurons) and without synaptic
modifications. The successful WTA network structure then can
be trained to discriminate more complex and structured patterns
through spike-timing dependent learning rules such as STDP.
Such learning process will modify the synapses between these
two excitatory types so that a selected E and I neurons (the
WTA group) will respond to preferred input patterns more
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quickly for practical applications. We have demonstrated these
in previous reports (Chen et al., 2013; McKinstry et al., 2016)
where the same WTA network structures were implemented
in a humanoid robot to process real world complex visual
inputs, to learn visual-motor association and sequencing, and
to accomplish a “mental rotation" and delayed-match-to-sample
task.

We also implemented the above network using adaptive
exponential spiking models and obtained similar results.
For simplicity the analysis below uses the Izhikevich model
(Izhikevich and Edelman, 2008), and excitatory (E) and
inhibitory (I) neurons use the same parameters in the following
equation:

Cv̇ = k(v− vr)(v− vt)− u− Isyn (1a)

u̇ = a{b(v− vr)− u} (1b)

Parameters in these equations are the same as explained before
(Izhikevich and Edelman, 2008). That is, v is the membrane
voltage in millivolts (mV), C is the membrane capacitance, vr is
the neuron’s resting potential, vt refers to its threshold potential,
u represents the recovery variable defined as the difference of
all inward and outward voltage-gate currents. Isyn is the synaptic
current (in pA) originated from spike input from other neurons.
a and b are different constants. When the membrane voltage
reaches a threshold, i.e., v > vpeak, the model is said to generate a
spike, and two variables in Equations (1a, 1b) are reset according
to v ← c and u ← u + d while c and d are parameters for
different cell type.

We use a simplified synaptic current form with four
basic conductances from AMPA, NMDA, GABAA, and GABAB

channels. For simplification, voltage-gating of NMDA channel is
reduced to a constant factor. This is done through calculating
an average number for the voltage-gating term for the NMDA
conductance (i.e., [(v + 80)/60]2/[1 + ((v + 80)/60)2] on
Page 11 of the Supplementary Information in (Izhikevich and
Edelman, 2008)) for the normal range of voltages: v =

[−60, 60] , and the result is equivalent to a voltage-independent
NMDA channel with smaller gain factor than AMPA channels
(see Appendix for the individual conductance gain factors we
used). So synaptic current Isyn is composed of four different
current types originated from those four conductancesmultiplied
with the voltage differences between their individual reversal
potentials:

Isyn = gAMPA (v− 0) + gNMDA (v− 0) + gGABAA (v+ 70)

+ gGABAB (v+ 90). (2)

Shown in the above equation, reversal potentials of AMPA
and NMDA channels are 0 and reversal potentials for
GABAA and GABAB channels are −70 and −90mV
respectively.

As described before, each conductance has exponential decay
with different time constants in millisecond (ms):

ġ = −g/τ , (3)

while τ = 5, 150, 6, and 150 for the AMPA, NMDA, GABAA, and
GABAB channels respectively.

To simplify the analysis, there are equal numbers (400 in
all the subsequent analysis) of excitatory (E) and inhibitory
(I) neurons in our basic network model in Figure 1, although
their numbers can be in any ratio. In fact, in our previous
published full models (Chen et al., 2013; McKinstry et al., 2016)
the ratio of E and I neurons were set at 4:1 to more closely
resemble the real cortex. We also explored different types of
connection topologies in the connections from excitatory to
inhibitory neurons (E to I), the reentrant inhibition from basket
cells to pyramidal neurons (I to E) and the inhibitory connections
within basket cells themselves (I to I). In our study, Inhibitory
to Excitatory and Inhibitory to Inhibitory connections are kept
the same topological type and total weights are kept equal.
Throughout the simulation the total connection weights to each
neuron are normalized to be a constant for each connection type.
The total weights for each connection type (E to I and I to E)
are two parameters we explored systematically. As a first step, we
firstly only consider one type of inhibitory conductance (GABAA)
to obtain analytical solutions for the conditions of Winner-Take-
All state. GABAB conductances are added after an analytical
solution is found, a comparison of the transition plots can be
found in the Appendix.

...... 

...... 

...... 

IN 

E 

I 

FIGURE 1 | Structure of the basic 3-layer spiking network and a

schematic plot of the “surround inhibition” connectivity that supports

winner-take-all phenomenon. IN – thalamo-cortical input neurons, E –

Excitatory pyramidal neurons, I – Inhibitory neurons. We chose 100 input (IN)

cells, 400 E cells, and 400 I cells for total of 900 neurons in the analysis model

presented here. Input layer to excitatory layer (IN to E) are all-to-all random

connected, excitatory to inhibitory layers are narrow and were simplified into

one-to-one connection in our analysis. Inhibitory connections are surround

type, that is, I cells do not inhibit its nearest neighboring I and E cells, but only

distant surrounding neurons. This connectivity is implemented as two cosine

peaks with a flat gap (zero value connectivity) in between. We call this specific

network connectivity as surround inhibition type for the one dimensional case

and it is a simplified version of the two-dimensional Central-Annual-Surround

(CAS) type of topology we described before (Chen et al., 2013).
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3. RESULTS

To classify different types of spike dynamics for the surround
inhibition network in Figure 1, for each neuron, we record the
number of spikes between 2 and 3 s after the simulation had
reached steady state without synaptic plasticity (STDP off). We
then characterize the behavior of the network by the maximum
number of spikes generated by any excitatory neuron. Figure 2E
plots this maximal firing rate for every combination of the E to I
weights vs. the I to E weights. The analysis is repeated and plotted
in Figure 2F for the inhibitory population.

Figure 2 shows different types of dynamic firing patterns
in the 2-dimensional parameter space. When only one type
of connection weight (excitatory or inhibitory) is high but the

other weight is low, either excitatory or inhibitory neurons
are in a quasi-random/rhythmic state in which one group of
neurons fires in high Gamma frequency range (>40Hz, see
Figures 2A,G). When both connection weights are relatively
high (see Figure 2C), both excitatory and inhibitory neurons
have high maximal firing rates where excitatory neurons have
a maximal firing rate larger than 35 Hz and inhibitory neurons
have a maximal firing rate of larger than 100 Hz. If we look at
the corresponding spike raster plot in Figure 2C, only a subset of
excitatory and inhibitory neurons maintain such high firing rates
while majority of other neurons are silent. We call this Winner-
Take-All (WTA) state in which only a small subset of neuronal
groups persistently fire high frequency and keep the rest of
neurons from firing using surround inhibition. The region of the
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FIGURE 2 | Classification of different dynamic spiking patterns in the surround inhibition network we defined in Figure 1 and the phase diagram for

the transition between different firing states. (A–C,G–I) Are raster plots which show all spikes within a half second interval for each neuron in the network. (E,F)

are maximal firing rates of excitatory and inhibitory neurons in the 2-d parameter space (total excitatory weight in y-axis and total inhibitory weight in the x-axis). Red

Points in (D) are transition curves constructed from (E) where maximal firing rate of excitatory neurons changed from below to above 40 Hz. (A–C,G–I) Are example

spiking patterns under their specific parameter combinations which are marked on the 2-d plot in (D). Subplot (C) represents a winner-take-all (WTA) state where only

a small group of excitatory and its corresponding inhibitory neurons fire persistently while others are silent. Black curves on the middle row–(D,E,F) are the same

analytic transition condition for the WTA region based upon the analysis described in the Appendix (Equation A.14). Basically it is a curve where SE · SI equals to a

constant defined by Equation (A.14), and it delineates the Winner-Take-All region (i.e., max firing rate large than 40 Hz for only a selected group of excitatory neurons)

in the parameter space very well for both the excitatory and inhibitory neurons.
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parameter space with such WTA states is delineated by the right
curve in Figure 2D where the maximal firing rate of excitatory
neurons increased to greater than 35 Hz from lower firing rates
in the middle region (from the blue area in Figure 2E transition
to the red area on the top right), and roughly corresponds to
a similar increase of maximal firing rate to above 100 Hz for
inhibitory neurons in Figure 2F.

Subplots Figures 2A,B,H,I all belong to an intermediate
region in the parameter space in Figure 2B between two curves
where maximal firing rates for both excitatory and inhibitory
neurons are relatively low. Within this parameter range,
excitatory and inhibitory neurons are either quasi-synchronized
(Figure 2A) or precisely synchronized and firing rhythmically
(Figure 2H), or exhibit moving bump activity (Figure 2I) or as
combinations of rhythmic and moving bump activity. In all these
cases, single excitatory neuron cannot maintain a stable high
gamma frequency spiking activity unless connection weights are
changed, moving to the WTA region on the top-right of the
second curve in Figure 2D. Figure 2D thus provides a phase
diagram for the neuronal network defined in Figure 1.

Notice that this maximal firing rate is not the neuron’s
instantaneous firing rate, but is the total number of spikes within
a 1 s window. This definition is useful to discriminate a stable
high firing rate neuron vs. a neuron firing a short burst less than
1 s and then becoming quiet (especially for stable vs. traveling
activity, see Figure 2C vs. Figure 2I).

Figure 3 summarizes patterns of spike dynamics with
different connection topologies. Compared to the surround
inhibition type analyzed above, all the other connection types
do not support a Winner-Take-All state manifested as stable
bump activity shown in Figure 2C. This is because under those
connection types, excitatory and inhibitory neurons cannot
maintain high maximal firing rates when both excitatory and
inhibitory weights are high and did not have a red area on the
upper-right region shown in Figures 2E,F. The most common
firing patterns for those connection types are quasi-rhythmic
firings in the 10–20Hz range for excitatory neurons resembling
an epileptic state while some short burst of unstable bump
activity in inhibitory neurons. Our results suggest that, among
different types of connectivity topologies we analyzed, only

All-to-All Random Connectivity 

Narrow excitation / Wide inhibition 

Surround excitation / Gaussian inhibition 

FIGURE 3 | Spiking dynamics under different connection types other than the surround inhibition type defined in Figure 1. Each row represents a

connectivity type and the middle and right columns are maximal firing rate of excitatory and inhibitory neurons under specific connectivity. These plots were calculated

the same way as Figures 2E,F. Notice that all three connectivity types here do not support a winner-take-all (WTA) region in the parameter space (no red region in the

upper-right corner). It exists in Figures 2E,F as a red region representing a high individual maximal firing rate state when both excitatory and inhibitory weights are

relatively high, but it is always absent here on the top right of the 2-d parameter space.

Frontiers in Computational Neuroscience | www.frontiersin.org April 2017 | Volume 11 | Article 20 | 170

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Chen Analytical Conditions for Winner-Take-All Neuronal Networks

surround inhibition can generate a stable bump spiking activity
and maintain a WTA state.

3.1. Mechanism of Winner-Take-All
Neuronal Group Selection and Emergence
of Bump Activity
Our above analysis suggests that surround inhibitory topology
supports emergence of bump activity. To explore the mechanism
of WTA and which neuronal properties are essential for
such behavior, we applied the same analysis as in Figure 2

to neuronal network in Figure 1 when Short-Term-Synaptic-
Plasticity (STSP) or NMDA voltage-gating is on, or change
excitatory and inhibitory neurons’ parameters to different type.
In all cases, a similarWTA region was found for every conditions,
even though the transition curves that delineate the emergence
of stable bump activity are shifted to different positions in the
parameter space (see results in Chen et al., 2013). We also
analyzed the same neuronal network with a different set of
individual spiking models, i.e., the adaptive exponential models
and found the similar WTA region as long as the topology of
the inhibitory connections are surround type. These analyses
suggest that detailed neuronal properties such as exact models
of the spiking neuron, STSP or NMDA gating etc., are likely not
fundamental for the existence of stable bump activity, but the
type of connectivity topology (i.e., surround inhibition) is more
important for such behavior.

Both the Izhikevich neural model and the adaptive
exponential model we used are conductance based with
models of inhibitory and excitatory currents of different time
scales. So we suspect that different time constants of NMDA,
AMPA, GABAa, and GABAb channel conductance might play
some role for the emergence of bump activity. To demonstrate
this, Figure 4 shows the time evolutions of AMPA, NMDA,
and GABAa currents along with the spiking activity in the
simplified network in Figure 1 starting from a zero conductance
initial condition. It demonstrates the detailed transition from a
rhythmic synchronized firing state into a stable bump activity.
Looking at detailed dynamic changes of the individual excitatory
and inhibitory currents should shed light on how the transition
is occurred.

From Figure 4 we can see, differences in time constants will
determine how fast a specific channel conductance returns back
to zero after a burst of spiking activity. For excitatory neurons
specifically, because of its short time constants (6 ms), AMPA
current fluctuates around a similar level with large variances.
NMDA currents, on the other hand, are accumulating to higher
levels because of longer time constant (150 ms) even though
both currents are generated by the same spiking input from the
input neurons. Similar phenomenon can be seen for inhibitory
neurons. When those neurons fire rhythmically before about 300
millisecond, AMPA conductance jumps to high level (from 7 to
9 nS) after each spike then drops down to zero very fast (red
curve in Figure 4D), while NMDA conductance only drops a
small amount each cycle and overall level still increases to much
higher value (red curve in Figure 4E). Initially inhibitory neurons
fire after excitatory neurons in each rhythmic cycle and they

synchronize to each other with a time delay. If excitatory to
inhibitory weights (E to I) are larger than a certain value, such
that NMDA currents for inhibitory neurons increase faster than
excitatory neurons (Figure 4E), the delay between inhibitory
and excitatory neurons diminishes and GABAa currents become
effective within the same cycle to inhibit other neurons. As
a result some inhibitory and excitatory neurons stop firing in
the rhythmic cycle, eventually lead to a winner group that
persistently fires and shuts off their surrounding neighbors.
Notice that in the simplified model in Figure 4, GABAb (with
longer time constant of 150 ms) currents are omitted and set
to zero, which lead to a moving bump activity for this specific
parameter set. If GABAb conductance is restored to the original
level as in the full model, bump activity becomes stable. It implies
that time constant of GABAa and GABAb channel conductance
is related to the stability of the bump activity.

As a summary, we think the combinations of long and short
time constants from excitatory and inhibitory conductance plus
the surround inhibitory connectivity support a mechanism for
emergence of bump activity and winner-take-all phenomenon
in this basic spiking neuronal network. This neuronal group
selection mechanism provides a basis for modeling learning and
map-formation process for sensory motor integration and other
higher cognitive processes.

4. ANALYTICAL ANALYSIS OF THE
TRANSITION CURVE FOR WTA
PHENOMENON

4.1. Differentiation in Inhibitory
Conductances Lead to Spiking Activity
Pattern Transition and Neuronal Group
Selection
To identify the mechanism of bump activity in spiking networks,
based upon the transition plots shown in Figure 4, we look
at voltages, conductances of all 400 excitatory neurons at
one specific time point (t = 980ms. in Figure 4). Figure 5

shows AMPA, NMDA, and GABAa conductances along with
voltages for all those excitatory neurons at this specific time
point. From the network structure defined in Figure 1, we
know that the excitatory conductances (AMPA and NMDA) are
determined by excitatory synapses from the input layer (because
we omitted self-excitation), where inhibitory conductances
(GABAa and GABAb) are only determined (triggered) by
spikes from inhibitory neurons onto those excitatory neurons.
Because of the uniform random connection from input layer,
AMPA and NMDA conductances are around the same level
and undifferentiated for all excitatory neurons. From Figure 5,
voltages are above threshold and neurons fire only at locations
where GABAa conductances below a certain value. So in order
for a bump to emerge and a subgroup of neurons selected to be
active, GABAa or GABAb conductances have to be differentiated,
i.e., they have to be small for some neurons and remain high for
all other neurons. We suspect this condition can only be met by
surround type of inhibitory connectivity. It is obvious that lowest
GABA conductances lead to highest firing rate for excitatory
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A B C

D

G

E F

FIGURE 4 | Transition from a synchronized rhythmic firing state to a winner-take-all bump spiking activity–(G). In this simplified surround inhibition

network, short-term synaptic plasticity (STSP) and NMDA gating effects are removed, GABAb conductance is set to be zero and individual excitatory and inhibitory

spiking models are changed to have the same biological parameter set. First row shows the 1-s spatial-temporal evolutions of individual conductance for AMPA–(A),

NMDA–(B), and GABAa–(C). Second row (D–F) show the averaged conductance over time for excitatory and inhibitory cells separately. Notice that bump activity in

AMPA and NMDA conductance appear in inhibitory neurons first (see A,B), while both conductances are spatially uniform even after spiking bump activity emerged

after about 400ms. The fact that spatial uniformity is destroyed in GABAa conductance first in (C) suggests that inhibitory neurons might show transition into

winner-take-all state early and then bias the transition in excitatory cells.

neurons. Since we have local feedforward excitation to inhibitory
neurons in our network, the bump area in inhibitory neurons
with highest firing rate should also have lowest inhibitory
conductances. This difference in GABA conductances is true
for both excitatory and inhibitory neurons because GABA
conductances are determined by the same inhibitory spikes. This
suggests that in order for a bump to emerge, local inhibition to
the nearest neighbors should be lower than inhibition to neurons
outside of the bump. Notice the three other inhibition topology
in Figure 3 all have peak (or flat) inhibition locally, so even if
a neuronal group emerge with highest firing rate, the strong
local inhibition will force their firing rates to decrease, and let
the other sub-threshold neurons to fire. So this is likely the
reason why we did not obtain stable bump activity using those
inhibition connectivities. On the other hand, surround inhibition

type defined in Figure 1 might be the most simple form of
inhibition topology that could let a bump emerge and stabilize.
Below analysis will further prove this point.

In contrast with models using negative weights to represent
inhibitory connections, our spiking models’ synaptic weights
and excitatory/inhibitory conductances are all positive (which
obviously is more biologically realistic). From Equation (2)
we can see, it is only because of the differences in reversal
potentials between excitatory and inhibitory channels, the
current generated by excitatory and inhibitory conductances
could have different signs (excitatory current coming into the
neuron and inhibitory current coming out of neuron). In order
for a neuron to fire, synaptic current has to be below a threshold
Isyn < −Ith where Ith is about 100pA (Isyn has to be negative
for a neuron to fire because it was defined as an outward
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FIGURE 5 | AMPA,NMDA,GABAA conductances and voltages for all

excitatory neurons (cell index 101–500 in Figure 1) at one specific time

point (t = 980ms. in Figure 4). AMPA and NMDA conductances are

basically flat across all excitatory neurons here, while GABAA conductances

are close to 0 for neurons around number 101 and 500, and reach high values

else where. Pink dashed lines are analytic GABA conductances from

Equation (A.6) in the Appendix and derived from surround inhibition topology,

and is a good match for the actual numerical simulation. Notice that excitatory

neurons fire spikes and have above threshold voltage values (blue lines) only

within neighborhood of neurons having GABAA conductances close to 0 and

below a certain value.

current in Equation 1a). Firing threshold Ith can be found from
calculating F-I curve for the specific spiking neuron model
we used. Figure A.3 (in the Appendix) plots the firing rates
vs. amount of injected current (equivalent to −Isyn) for the
Izhikevich neuron model result from numerical simulations. It
shows that neurons start to fire when absolute value of the
injected current is above 100 pA and then increase their firing
rate approximately linearly until above 100 Hz. we can use this
information to simplify the spiking activity into a rate model. As
indicated on the last paragraph, AMPA andNMDA conductances
are approximately uniform for excitatory neurons and they can
not contribute to the differences in firing rates, so in order for the
excitatory population to fire differentially, the difference between
highest and lowest GABA conductances for individual neurons
has to be larger than a certain value. This value can be estimated
using Equation (2). If min(gGABAA) is 0, for a resting potential
of vr = −60mV , GABAA conductance has to be larger than the
following value so injected synaptic current −Isyn will be below
the firing threshold Ith:

gGABAA > (−Ith + 60 ∗ (gAMPA,E + gNMDA,E))/10. (4)

In Figure 5, gAMPA,E + gNMDA,E for excitatory neurons is around
4nS (Appendix will show how this value can be estimated
analytically), so gGABAA has to be larger than 14 nS to keep sub-
threshold neurons from firing. This number is consistent with the
result plotted on Figure 4, 5 that neurons fire and form a bump
area where GABA conductances are below 14 nS and areas with
GABA conductance larger than 14 nS are completely quiet.

If we consider both the GABAA and GABAB conductances
based upon Equation (2) and using the same idea as above,
conditions for inhibitory conductances will be the following for
the winner-take-all state:

10 · gGABAA + 30 ·gGABAB > (−Ith + 60∗ (gAMPA,E + gNMDA,E)).
(5)

Equations (4, 5) can be used further to identify the exact
condition for the WTA state and to locate the transition curve
in Figure 2. Using two cosine bumps as surround inhibitory
connection weights, Appendix gives the analytic form of GABA
distribution of a bump solution for neurons connected one
dimensionally and uses it to obtain analytic conditions for the
WTA state in the parameter space (see Equations A.13, A.14).
Such analytic conditions are expressed as formulas combining
single neuron property and the conductance parameters (such
as time constants, gain factors for different inhibitory and
excitatory conductances). Based upon these formulas we can
locate the Winner-Take-All and bump activity in the parameter
space fairly precisely (see black curves in Figure 2 and the
white curve in Figure A.4 in the Appendix), thus provide a
mechanistic explanation for the emergence of winner-take-all
state and stationary bump activity in this 3-layer spiking network
we analyzed here.

4.2. Origin of Traveling Wave and Instability
of Bump Activity – Driven by AMPA
Conductances
Parameters in Figure 4 are located very near the transition curve
in the parameter space (see Figure 2), so the bump is not spatially
stable and moves across different neurons. To identify the origin
of such instability, we selectively set AMPA gain of excitatory
or inhibitory neurons to 0 in order to see their effects on the
bump stability. This is equivalent to selectively block AMPA
conductances in either excitatory or inhibitory neurons in real
biological neural systems. We found that if AMPA conductances
in inhibitory neurons are set to 0 but not in excitatory neurons,
bumps become more or less stable. On the other hand, when
AMPA conductances are blocked and set to 0 in excitatory
neurons but not in inhibitory neurons, we can have a moving
bump with a constant spatial speed (see Figure 6). In fact, we can
estimate the moving speed of bumps based upon the parameters
we defined in Figure 2. So we believe the source of the bump
instability is from the AMPA conductances in inhibitory neurons.
Previous studies have associated stabilities of bump activity
with dynamic synapses (Fung et al., 2009). Notice that AMPA
conductances have much shorter time constants than others thus
more associated with faster synapses (similar to GABAa), so in
this sense there might be a connection and some agreement
between our observation on Figure 6 and dynamic synapses
analyzed by Fung et al. (2009).

5. CONCLUSION AND DISCUSSION

In this paper we derive global properties of spiking neuronal
networks related to bump activity and Winner-Take-All state
mainly through analysis of the dynamics of excitatory and
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FIGURE 6 | Stability of the bump activity is determined by AMPA conductances. Figures above show that spiking bump activity moves with a constant speed

when AMPA conductances in excitatory neurons are blocked and set to 0 (Top left). The speed of the traveling “bump,” proportional to the length of firing interval for

each neuron (L) and the period of the traveling wave (T), seems relate to the frequency of the inhibitory neurons (hence their AMPA conductances) and the delay time

for the NMDA conductances when they reach maximal firing rate. When AMPA conductances are set to 0 in inhibitory neurons, bump activity stops moving and

T →∞.

inhibitory conductances. To achieve the analysis of collective
behavior, individual spiking properties are approximated by its
firing rate property such as the conductance/firing rate curve
(Figure A.3 in the Appendix) or F-I curves. In this regard,
detailed properties of individual spiking model might not be
crucial for global activity such as the emergence of bump and
WTA state. For example, if we use different parameter sets
for excitatory and inhibitory neurons such as changing the
inhibitory neurons to be basket cell type, we can still found
the WTA region in the parameter space in Figure 2D, but the
exact location of the transition curve is shifted to a different
place because basket neurons have different conductance/firing
rate curve and different Ith, gth, k values in Equation (A.13). This
could explain the transition curve in our full model with more
detailed biological properties has the same functional form, but
in different location in the parameter space (see Chen et al.,
2013) because it included more detailed single neuronal spiking
properties such as NMDA voltage gating and STSP etc. In fact,
we used adaptive exponential spiking model to substitute the
Izhikevich neuron models and obtained similar phase plot and
transition curve for the bump activity and the WTA state.

We suggest that all conductance-based spiking models with
distinct excitatory and inhibitory populations could have the

similar collective Winner-Take-All behavior as analyzed here.
Detailed spiking model properties such as F-I curve and firing
threshold (Ith and gth) would determine the exact location of the
transition curve in Figure 2. Global connectivity topology and
different time constants (dynamics) of excitatory and inhibitory
conductances are likely to be the determinant of system-wide
spiking activity patterns.

5.1. Importance of the Inhibitory Topology
The most important feature of our winner-take-all network is
its surround inhibition topology. The reason we chose two sine
function peaks as surround inhibitory connection weights is just
because of its mathematical convenience, since convolutions of
sine/cosine functions are much easier to solve than other types
of functions. In fact, connection topologies using Gaussian peaks
or torus (for two-dimensional neuronal arrays) were used in
our previous model (Chen et al., 2013) and similar stable WTA
results were obtained. We believe using other type of function for
inhibitory connection would also work, as long as there is a low
inhibitory weight locally. Comparing four different connection
topologies from Figures 2, 3, the reason why only surround-
inhibition supports stable bump activities is because its maximal
inhibitory connection weight is not to the nearest neighbors,
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but to slightly distant neurons. This gap of zero inhibitory
weight can be very small (e.g., w down to 0 and equivalent to a
no-self-inhibition case), and we can still find solutions for stable
bump or bumps (in fact, w determines how many bumps can
emerge and we will have a 2-bump solution when w is close
to 0, see Appendix and Figures A.1, A.2). So as long as there
is a local valley of inhibitory weight, stationary bumps could
emerge because only decreasing inhibition could allow a bump to
sustain.

Mechanistically it appears that the most important
requirement for a bump solution is the stable differentiation
in inhibitory (GABAA or GABAB) conductance distributions
across the neuronal population. That is, for some neuronal
groups, GABA conductances should be low to allow bumps
to emerge and for the other neurons, they need to be high
enough to keep the rest of neuronal population from firing
spikes. As long as this condition is met, more detailed biological
properties such as local self-excitation, short-term synaptic
plasticity (STSP), voltage-gating of NMDA channels etc. can
be added to the model without destroying the overall bump
stability.

5.2. Why Traditional Center-Surround
Topology Might Not Lead to Stable Bumps
in Models with Distinct Excitatory and
Inhibitory Populations
Previous rate-based population models (Dayan and Abbot,
2001) had most often used center-surround type of connection
topology as shown in the middle row of Figure 3 (Narrow
excitation/Wide inhibition). Similarly, many spikingmodels with
excitatory/inhibitory conductances on the same units used the
same topology (Laing and Chow, 2001). By simple subtraction,
narrow excitation and wide inhibition can lead to a “Mexican
Hat” type of effective connectivity which supports winner-take-
all in previous firing rate models. But, as we see from the
analysis above, in biologically more realistic spiking models with
distinct excitatory and inhibitory neuronal populations, multiple
types of conductances cannot cancel each other easily because
they are generated by precise spike timing and have different
time constants. The “classical” center-surround topology can
not guarantee a stable “Mexican Hat” type of net connectivity
because sensitive spike timing differences between different
neurons prevent easy subtraction of excitatory and inhibitory
weights at every time point. In fact, as shown in Figure 4, the
emergence of winner-take-all in spiking networks is a direct

result of precise spike-timing–the coincide of excitatory and
inhibitory population firing spikes lead to a sub-population
of inhibitory neurons fire earlier than the rest of populations
which then let them suppress and shut off the other neurons
in the network (see Figure 4G). This is the reason that we
believe a surround-type of inhibitory topology is essential for
a stable spiking WTA network because it can support the
emergence of a winner-group without shutting off themselves
too early.

In summary, WTA network analyzed here demonstrates how
variability and randomness in spiking time of individual neurons
can lead to global pattern changes and phase transition in
collective neuronal groups. Analytic solutions for the phase
transition curve provided in this paper will help to increase our
understandings of different functional roles of excitatory and
inhibitory neural connections on the emergence and stability of
firing patterns in the brain.
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The recent “deep learning revolution” in artificial neural networks had strong impact

and widespread deployment for engineering applications, but the use of deep learning

for neurocomputational modeling has been so far limited. In this article we argue

that unsupervised deep learning represents an important step forward for improving

neurocomputational models of perception and cognition, because it emphasizes the role

of generative learning as opposed to discriminative (supervised) learning. As a case study,

we present a series of simulations investigating the emergence of neural coding of visual

space for sensorimotor transformations. We compare different network architectures

commonly used as building blocks for unsupervised deep learning by systematically

testing the type of receptive fields and gain modulation developed by the hidden

neurons. In particular, we compare Restricted Boltzmann Machines (RBMs), which are

stochastic, generative networks with bidirectional connections trained using contrastive

divergence, with autoencoders, which are deterministic networks trained using error

backpropagation. For both learning architectures we also explore the role of sparse

coding, which has been identified as a fundamental principle of neural computation. The

unsupervised models are then compared with supervised, feed-forward networks that

learn an explicit mapping between different spatial reference frames. Our simulations

show that both architectural and learning constraints strongly influenced the emergent

coding of visual space in terms of distribution of tuning functions at the level of single

neurons. Unsupervised models, and particularly RBMs, were found to more closely

adhere to neurophysiological data from single-cell recordings in the primate parietal

cortex. These results provide new insights into how basic properties of artificial neural

networks might be relevant for modeling neural information processing in biological

systems.

Keywords: connectionist modeling, unsupervised deep learning, restricted Boltzmann machines, autoencoders,

sparseness, space coding, gain modulation, sensorimotor transformations
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INTRODUCTION

Artificial neural network models aim at explaining human
cognition and behavior in terms of the emergent consequences
of a large number of simple, subcognitive processes (McClelland
et al., 2010). Within this framework, the pattern seen in
overt behavior (macroscopic dynamics of the system) reflects
the coordinated operations of simple biophysical mechanisms
(microscopic dynamics of the system), such as the propagation
of activation and inhibition among elementary processing units.
Though this general tenet is shared by all connectionist models,
there is large variability in processing architectures and learning
algorithms, which turns into varying degrees of psychological and
biological realism (e.g., Thorpe and Imbert, 1989; O’Reilly, 1998).
When the aim is to investigate high-level cognitive functions,
simplification is essential (McClelland, 2009) and the underlying
processing mechanisms do not need to faithfully implement the
neuronal circuits supposed to carry out such functions in the
brain. However, modelers should strive to consider biological
plausibility if this can bridge different levels of description
(Testolin and Zorzi, 2016).

Recent theoretical and technical progress in artificial neural
networks has significantly expanded the range of tasks that
can be solved by machine intelligence. In particular, the advent
of powerful parallel computing architectures based on Graphic
Processing Units (GPUs), coupled with the availability of “big
data,” has allowed to create and train large-scale, hierarchical
neural networks known as deep neural networks (LeCun et al.,
2015, for review). These powerful learning systems achieve
impressive performance in many challenging cognitive tasks,
such as visual object recognition (Krizhevsky et al., 2012),
speech processing (Mohamed et al., 2012) and natural language
understanding (Collobert et al., 2011). However, while the impact
of deep learning for engineering applications is undisputed,
its relevance for modeling neural information processing in
biological systems still needs to be fully evaluated (for seminal
attempts, see Stoianov and Zorzi, 2012; Khaligh-Razavi and
Kriegeskorte, 2014; Güçlü and van Gerven, 2015).

One critical aspect of most deep learning systems is
the reliance on a feed-forward architecture trained with
error backpropagation (Rumelhart et al., 1986), which has
been repeatedly shown to yield state-of-the-art performance
in a variety of problems (LeCun et al., 2015). However,
the assumptions that learning is largely discriminative (e.g.,
classification or function learning) and that an external teaching
signal is always available at each learning event (i.e., all training
data is “labeled”) are clearly implausible from both a cognitive
and a biological perspective (Zorzi et al., 2013; Cox and Dean,
2014). Reinforcement learning is a valuable alternative and
it has already shown promising results when combined with
deep learning (Mnih et al., 2015; Silver et al., 2016), but
there is a broad range of situations where learning seems
to be fully unsupervised and its only objective is that of
discovering the latent structure of the input data in order to build
rich, internal representations of the environment (Hinton and
Sejnowski, 1999). We argue that more realistic neurocognitive
models should therefore also exploit unsupervised forms of deep

learning, where the objective is not to explicitly classify the
input patterns but rather to discover internal representations
by fitting a hierarchical generative model to the sensory data
(Hinton, 2007, 2013; Zorzi et al., 2013). Compared to its
supervised counterpart, this modeling approach emphasizes the
role of feedback, recurrent connections (Sillito et al., 2006),
which carry top-down expectations that are gradually adjusted to
better reflect the observed data (Hinton and Ghahramani, 1997;
Friston, 2010) and which can be used to implement concurrent
probabilistic inference along the whole cortical hierarchy (Lee
and Mumford, 2003; Gilbert and Sigman, 2007). Notably, top-
down processing is also relevant for understanding attentional
mechanisms in terms of modulation of neural information
processing (Kastner and Ungerleider, 2000).

A powerful class of stochastic neural networks that learn a
generative model of the data is that of Restricted Boltzmann
Machines (RBMs), which can efficiently discover internal
representations (i.e., latent features) using Hebbian-like learning
mechanisms (Hinton, 2002). RBMs constitute the building block
of hierarchical generative models such as Deep Belief Networks
(Hinton and Salakhutdinov, 2006) and Deep Boltzmann
Machines (Salakhutdinov, 2015). These unsupervised deep
learning models have been successfully used to simulate a
variety of cognitive functions, such as numerosity perception
(Stoianov and Zorzi, 2012), letter perception (Testolin et al.,
under review), location-invariant visual word recognition (Di
Bono and Zorzi, 2013), and visual hallucinations in psychiatric
syndromes (Reichert et al., 2013). A similar approach has been
used to simulate how early visual cortical representations are
adapted to statistical regularities in natural images, in order to
predict single voxel responses to natural images and identify
images from stimulus-evoked multiple voxel responses (Güçlü
and van Gerven, 2014). A temporal extension of RBMs has also
been recently used to model sequential orthographic processing
and spontaneous pseudoword generation (Testolin et al., 2016).

Unsupervised deep learning can be implemented using an
alternative architecture based on autoencoders (Bengio et al.,
2007), which are deterministic, feed-forward networks whose
learning goal is to accurately reconstruct the input data into
a separate layer of output units. Single-layer autoencoders are
trained using error backpropagation, and can be stacked in
order to build more complex, multi-layer architectures. However,
despite the common view that RBMs and autoencoders could
be considered equivalent (Ranzato et al., 2007), we note that
their underlying architectural and learning assumptions are
significantly different. In this study we empirically compare
RBMs and autoencoders in terms of the type of internal encoding
emerging in the hidden neurons. Moreover, we investigate how
additional learning constraints, such as sparsity and limitation
of computational resources (i.e., hidden layer size), could
influence the representations developed by the networks. As a
case study, we focus on the problem of learning visuospatial
coding for sensorimotor transformations, which is a prominent
example of how the emergentist approach based on learning
in artificial neural networks has offered important insights into
the computations performed by biological neurons (Zipser and
Andersen, 1988).
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Sensorimotor transformations refer to the process by
which sensory stimuli are converted into motor commands.
For example, reaching requires to map visual information,
represented in retinal coordinates, into a system of coordinates
that is centered on the effector. Coordinate transformations
can be accomplished by combining sensory information with
extra-retinal information, such as postural signals representing
the position of eyes, head, or hand, thereby obtaining abstract
representations of the space interposed between the sensory input
and the motor output (Pouget and Snyder, 2000). Single-neuron
recordings from monkey posterior parietal cortex have shown
that the response amplitude of many neurons indeed depends
on the position of the eyes, thereby unveiling a fundamental
coding principle used to perform this type of signal integration
(Andersen et al., 1985). The term gain fieldwas coined to describe
this gaze-dependent response of parietal neurons, and since then
the notion of gainmodulation has been generalized to indicate the
multiplicative control of one neuron’s responses by the responses
of another set of neurons (Salinas and Thier, 2000). Another
fundamental property unveiled by neuronal recordings is that the
encoding of space used for coordinate transformations involves
a variety of different, complementary frames of reference. For
example, although many parietal neurons are centered on retinal
coordinates (Andersen et al., 1985; Duhamel et al., 1992),
others represent space using body-centered (Snyder et al., 1998)
or effector-centered (Sakata et al., 1995) coordinate systems.
Moreover, some neurons exhibit multiple gain modulation
(Chang et al., 2009), suggesting more complex forms of spatial
coding. For example, postural information related to both eye
and head positions can be combined in order to encode “gaze”
direction (Brotchie et al., 1995; Stricanne et al., 1996; Duhamel
et al., 1997).

From a computational perspective, the seminal work of
Zipser and Andersen (1988) showed that gain modulation
could spontaneously emerge in supervised, feed-forward neural
networks trained to explicitly map visual targets into head-
centered coordinates, giving as input any arbitrary pair of eye and
retinal positions. Similar results have been observed using more
biologically-plausible learning settings, such as reinforcement
learning (Mazzoni et al., 1991) and predictive coding (De Meyer
and Spratling, 2011). Note that these learning settings assume
that gain modulation emerges because the task implies to
establish amapping between different reference frames. However,
it is unclear whether the form of modulation and the distribution
of neuronal tuning functions is influenced by the type of
learning algorithm and/or by the nature of the learning task (i.e.,
learning input-output mappings vs. unsupervised learning of
internal representations). We also note that a popular alternative
framework for modeling sensorimotor transformations is not
based on learning, but rather stipulates that parietal neurons
represent a set of basis functions that combine visual and postural
information (for review, see Pouget and Snyder, 2000).

In summary, space coding represents an interesting case
study for testing the adequacy of different neural network
architectures and learning algorithms, because it provides a
wealth of neurophysiological data (both at the population and
single-neuron levels), and it departs from the classic problem of

visual object recognition investigated in the largemajority of deep
learning research.

MATERIALS AND METHODS

In this section we describe the space coding tasks used in our
simulations, including training and test stimuli, the different
learning architectures, and the procedures for analyzing the
emergent neural representations.

Space Coding Tasks
In this study we consider a visual signal in retinotopic coordinates
and two different postural signals, one for eye position and
another for a generic “effector,” which might represent, for
example, the position of the hand. We do not consider
the integration between different modalities (see Xing and
Andersen, 2000, for a computational investigation of multimodal
integration in several coordinate frames). We implemented
three types of space coding tasks to test the different learning
architectures.

Unsupervised Learning with No Coordinate

Transformation
The first learning architecture is depicted in Figure 1A.
Unsupervised learning is represented by undirected arrows,
which connect the sensory input to a separate layer of hidden
neurons. The input signal to the network consists of a visual map,
which represents target location in retinotopic coordinates, and
two postural maps, which represent eye and effector positions.
The learning goal is only to build a compact representation of
these input signals in the hidden layer, which is later read-out by
a simple linear associator in order to establish a mapping with
the corresponding motor program. Details of input and output
representations are provided in Section Dataset and Stimuli. The
unsupervised learning phase does not involve any coordinate
transformation because information about the motor program is
not available.

Unsupervised Learning with Coordinate

Transformation
The second learning architecture is depicted in Figure 1B. The
input signal to the network still consists of a visual map and
two postural maps, but in this case we also provide as input the
corresponding motor program. In this setting the unsupervised
learning phase implicitly involves coordinate transformation
(i.e., different coordinate systems become associated). In
order to compare the mapping accuracy of different learning
architectures using the same method, the motor program
is still read-out from hidden neurons via a simple linear
associator.

Supervised Learning with Coordinate Transformation
The third learning architecture is depicted in Figure 1C, and it
corresponds to the model used by Zipser and Andersen (1988).
The input is the same of the unsupervised architecture shown in
Figure 1A, but in this case supervised learning (directed arrows)
is used to establish an explicit mapping between input signals
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FIGURE 1 | Graphical representations of the learning architectures

used to simulate the space coding tasks. Undirected edges entail

bidirectional (recurrent) connections, while directed arrows represent

feed-forward connections. (A) Unsupervised learning with no coordinate

transformation. (B) Unsupervised learning with coordinate transformation. (C)

Supervised learning with coordinate transformation.

and motor programs. As for the previous architectures, accuracy
of the motor program is also tested by read-out from hidden
neurons via linear association.

Dataset and Stimuli
The representation format adopted for the sensory stimuli
was the same used in previous computational investigations
(Zipser and Andersen, 1988; Pouget and Snyder, 2000; De

Filippo De Grazia et al., 2012), which is broadly consistent
with neurophysiological data recorded in animals performing
tasks involving coordinate transformations (e.g., Andersen et al.,
1985).

The visual input to the models consisted in a real-valued
vector representing the position of the stimulus as a Gaussian
peak of activity in a specific location. These visible neurons
simulate the activity of the cortical areas supplying retinotopic
sensory information to the posterior parietal cortex. The
retinotopic map consisted in a square matrix of 17× 17 neurons,
which employed a population code with Gaussian tuning
functions (standard deviation = 4◦). Visual receptive fields were
uniformly spread between −9◦ and +9◦ with increments of 3◦,
both in the horizontal and vertical dimensions.

Four postural maps, each one consisting of 17 neurons, were
used to represent the horizontal and vertical positions of the eye
and the effector. These visible neurons used a sigmoid activation
function (steepness parameter = 0.125) to represent postural
information between−18 and+18◦, with steps of 3◦.

The motor program consisted in a real-valued vector
representing the target position of the stimulus. Similarly to
the retinotopic map, it was coded as a square matrix of 25 ×

25 neurons, which employed a population code with Gaussian
tuning functions to represent target position in coordinates
centered on the effector (standard deviation = 6◦). Motor
programs were uniformly spread between −9◦ and +9◦ with
increments of 3◦, both in the horizontal and vertical dimensions.

In order to create the stimuli dataset, all possible combinations
of visual input and postural signals were first generated, and the
corresponding motor program (target location) was computed.
We then balanced the patterns to ensure that target locations
were equally distributed across the motor map to avoid position
biases when decoding the motor program. This resulted in a total
of 28,880 patterns, which were randomly split into a training set
(20,000 patterns) and an independent test set (8,880 patterns).
The latter was used to assess the generalization performance of
the models.

Learning Architectures
Despite they differ in several aspects, Boltzmann machines and
autoencoders can both be defined within the mathematical
framework of energy-based models (Ranzato et al., 2007), where
the learning objective is to carve the surface of an energy function
so as to minimize the energies of training points and maximize
the energies of unobserved points. A set of latent variables is
used to learn an internal code that can efficiently represent the
observed data points, and since the number of latent variables is
usually smaller than that of the observed variables the encoding
process can be interpreted as a form of dimensionality reduction
(Hinton and Salakhutdinov, 2006). In this unsupervised setting,
the model learns the statistical structure of the data without the
need for any explicit, external label.

Restricted Boltzmann Machines (RBMs)
Boltzmann machines are stochastic neural networks that use a
set of hidden neurons to model the latent causes of the observed
data vectors, which are presented to the network through a set of
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visible neurons (Ackley et al., 1985). In the “restricted” case, the
network connectivity is constrained in order to obtain a bipartite
graph (i.e., there are no connections within the same layer; see
Figure 2A for a graphical representation). The behavior of the
network is driven by an energy function E, which defines the
joint distribution of the hidden and visible neurons by assigning
a probability value to each of their possible configurations:

p(v, h) =
e−E(v, h)

Z

where v and h are the column vectors containing the values of
visible and hidden neurons, respectively, and Z is the partition
function. The energy function is defined as a linear combination
of visible and hidden neurons’ activation:

E(v, h) = −bTv− cTh− hTWv

where W is the matrix of connections weights, b and c are two
additional parameters known as unit biases and T denotes the
transpose operator. Since there are no connections within the
same layer, hidden neurons are conditionally independent given
the state of visible neurons (and vice versa). In particular, the
activation probability of the neurons in each layer conditioned
on the activation of the neurons in the opposite layer can be
efficiently computed in one parallel step:

P(hj = 1|v) = σ (cj +
∑

i
wijvi)

P(vi = 1|h) = σ (bi +
∑

j
wijhj)

where σ is the sigmoid function, cj and bi are the biases of
hidden and visible neurons (hj and vi respectively), and wij is
the connection weight between hj and vi. Learning in RBMs can
be performed through maximum-likelihood, where each weight
should be changed at each step according to a Hebbian-like
learning rule:

1W = η(v+h+ − v−h−)

where η represents the learning rate, v+h+ are the visible-hidden
correlations computed on the training data (positive phase), and
v−h− are the visible-hidden correlations computed according to
the model’s expectations (negative phase). Model’s expectations
have been traditionally computed by running Gibbs sampling
algorithms until the network reached equilibrium (Ackley et al.,
1985). However, more efficient algorithms such as contrastive
divergence (Hinton, 2002) speed-up learning by approximating
the log-probability gradient. The reader is referred to Hinton
(2010) and Zorzi et al. (2013) for more details about RBMs and
for the discussion of hyper-parameters of the learning algorithm.

In our simulations, RBMs were trained using 1-step
contrastive divergence with a learning rate of 0.03, a weight
decay of 0.0002 and a momentum coefficient of 0.9, which was
initialized to 0.5 for the first few epochs. Learning was performed
using a mini-batch scheme, with a mini-batch size of 4 patterns,
for a total of 100 learning epochs (reconstruction error always
converged). Sparse representations were encouraged by forcing

the network’s internal representations to rely on a limited number
of active hidden units, that is, by driving the probability q of a
unit to be active to a certain desired (low) probability p (Lee et al.,
2008). For logistic units, this can be practically implemented by
first calculating the quantity q-p, which is then multiplied by a
scaling factor and added to the biases of each hidden units at
every weight update. When the sparsity constraint was applied,
we always verified that the average activation of hidden units was
indeed maintained below the desired level. All the simulations
were performed using an efficient implementation of RBMs on
graphic processors (Testolin et al., 2013). The complete source
code is available for download1.

Autoencoders
Similarly to RBMs, autoencoders rely on a single layer of
nonlinear hidden units to compactly represent the statistical
regularities of the training data. However, autoencoders
are feed-forward, deterministic networks trained with error
backpropagation (Bengio et al., 2007). The training data is
presented to a layer of input units, and the learning goal is
to accurately reconstruct such input vector into a separate,
output layer. An autoencoder is therefore composed of a set of
encoding weights W1 that are used to compute the activation
of hidden h units given the activation of input units v, and a set
of decoding weights W2 that are used to compute the network
reconstructions v_rec from the activations of hidden units:

h = σ (W1v+ c)

v_rec = σ (W2h+ b)

where b and c are the vectors of output and hidden unit
biases, and σ is the sigmoid function (see Figure 2B for a
graphical representation). The error function E to be minimized
corresponds to the average reconstruction error, which is
quantified by the sum across all output units of the squared
difference between the original and the reconstructed values:

E =
1

N

N
∑

n = 1

K
∑

k = 1

(vk − v_reck)
2 + β∗�sparsity

where K is the number of output units and N is the number of
training patterns. Similarly to RBMs, sparse representations can
be induced by adding to the cost function a regularization term
�sparsity that takes a large value when the average activation value
q of each hidden neuron diverges from a certain desired (low)
value p. In particular, the sparsity constraint was implemented as
the Kullback-Leibler divergence from q to p:

�sparsity =

H
∑

i = 1

KL(p || qi)

where H is the number of hidden units. As for RBMs, when
sparsity was applied we always verified that the average activation
of hidden units was indeed maintained below the desired level.
1http://ccnl.psy.unipd.it/research/deeplearning
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FIGURE 2 | Graphical representations of the different learning architectures used in the simulations. (A) Restricted Boltzmann Machine (RBM): the learning

objective is to accurately reconstruct the input patterns presented through the visible layer (v) by relying on a set of hidden units (h), which represent the latent

structure of the data. The reconstruction is performed by using a weight matrix (W) that contains symmetric (i.e., undirected) connections. (B) Autoencoder: as for

RBMs, the learning objective is to accurately reconstruct the input patterns presented through the visible layer (v) by relying on a set of hidden units (h). However, the

reconstruction is performed on a separate layer of units (v_rec) by using two weight matrices (W1 and W2) that contain directed connections. (C) Feed-forward,

supervised network: in contrast to RBMs and autoencoders, the learning objective is to minimize the mapping error between the input patterns presented through the

visible layer (v) and a distinct set of output patterns presented through a dedicated layer (out).

In our simulations, we used an efficient implementation
of autoencoders provided by the MATLAB Neural Network
toolbox (Demuth and Beale, 1993). Learning was performed
using standard scaled conjugate gradient descent (Møller, 1993)
with adaptive learning rate, using a weight decay factor of 0.0002
and a batch processing scheme, for a total of 150 learning epochs
(reconstruction error always converged).

Feed-Forward, Supervised Networks
In order to better assess the impact of the learning regimen,
we compared the unsupervised learning architectures described
above with a standard, supervised architecture implemented
as a feed-forward network with one hidden layer (Zipser and
Andersen, 1988). Similarly to autoencoders, learning can be
performed using error backpropagation (see Figure 2C for a
graphical representation). We used an efficient implementation
of feed-forward networks provided by the MATLAB Neural
Network toolbox2. Learning rate was set to 0.05 and training
was performed for a total of 2500 learning epochs (output error
always converged).

Testing Procedure
For each experimental setting, we run 10 different networks in
order to collect simulation statistics. In the results, we therefore
always report mean values along with standard deviations.

Decoding Internal Representations by Linear

Read-Out
Following unsupervised learning, a linear read-out was
performed from the internal (hidden layer) distributed
representations of the networks in order to assess how well

2MATLAB provides several improved versions of the standard backpropagation

algorithm. An extended set of preliminary simulations was used to establish

the best performing variant. In particular, these training functions were

tested: traingdm (gradient descent with momentum); traingda (gradient descent

with adaptive learning rate); traingdx (gradient descent with momentum and

adaptive learning rate); trainscg (scaled conjugate gradient) and trainrp (resilient

backpropagation). The most stable and accurate learning algorithm was resilient

backpropagation (Riedmiller and Braun, 1993).

they could support a supervised mapping to the target motor
program through a simple linear projection (Pouget and Snyder,
2000). The read-out was implemented using a linear neural
network trained with the delta rule (Widrow and Hoff, 1960).
Learning was performed for 250 epochs using mini-batches of
20 patterns. Learning rate was set to 0.07, and weight decay of
0.000001 was used as a regularizer. Classifier performance was
always measured on the separate test set. Test errors always
matched those obtained on the training set, indicating that the
read-out was robust to overfitting.

The output of the classifier was first compared with the
target motor program by computing the Root Mean Squared
Error (RMSE) between the two matrices. However, a more
useful performance measure was obtained by first decoding
the Center Of Mass (COM) of the output distribution, which
was then compared with the actual coordinates of the motor
program. This measure allows to quantify the read-out error in
degrees: following Zipser and Andersen (1988), the mapping was
considered to be successful if the error was below the distance
between the centers of the Gaussian tuning functions in the
retinotopic map (i.e., 3◦). If the latter mapping accuracy was
not achieved, we did not consider the network for subsequent
analyses. We found the RMSE and COM measures to be always
consistent with each other, so we only report COM results.

Measuring Single-Neuron and Population Sparseness
An index of single-neuron sparseness was computed using
a well-established procedure employed in neurophysiological
investigations (Rolls and Tovee, 1995; Vinje and Gallant, 2000),
which describes the activity fraction a of each neuron across
stimuli as:

a =
(
∑

ri/n)
2

∑

(ri2/n)

where ri is the firing rate of the neuron to the i-th stimulus
in the set of n stimuli. This is a useful measure of the extent
of the tail of the distribution, in this case of the firing rates
of the neuron to each stimulus. Mean single-neuron sparseness
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for each network was then calculated by averaging the activity
fraction a across all hidden neurons. A low value (minimum
value is 0, maximum value is 1) indicates that the distribution
has a long tail, which means that, on average, each neuron
has high activation levels only for a small subset of input
patterns. This method for quantifying sparseness has a number
of advantages (Rolls and Tovee, 1995): (a) it results from formal
analyses of the capacity of neural networks using an approach
derived from theoretical physics (Treves and Rolls, 1991); (b)
it can be applied both to binary neurons and to neurons with
continuous (graded) firing rates; (c) it makes no assumption
about the form of the firing rate distribution and (d) it makes
no assumption about the mean and the variance of the firing
rate.

Following Froudarakis et al. (2014) we also computed
an index of population sparseness, on which the activity
fraction is computed over the entire hidden layer, that is,
by considering ri as the firing rate of the i-th neuron
and n as the total number of neurons. Mean population
sparseness for each network was then calculated by averaging
the activity fraction a across all stimuli. A low value of
population sparseness indicates that, on average, each stimulus
elicits high activations only for a small subset of hidden
neurons.

Receptive Fields Emerging in the Hidden Neurons
In order to qualitatively assess the type of visual features
extracted by individual hidden neurons, we first analyzed
the weight matrices by separately plotting the strengths
of the connections between each hidden neuron and all
the visible neurons corresponding to the retinal input.
Weights were plotted on a gray scale, with dark colors
indicating strong inhibitory connections and light colors
representing positive, excitatory connections. This allowed
to assess whether hidden neurons learned location-
specific receptive fields, for example by developing
stronger projections to specific regions of the visual
field.

Gain Modulation Indexes
We then analyzed the response of hidden neurons using a
standard approach adopted in neurophysiological studies to
assess gain modulation in parietal neurons (Andersen et al.,
1985). First, we probed the hidden neurons in order to only select
the “visual” ones, that is, those responding to the portion of input
vectors representing the retinotopic map (De Filippo De Grazia
et al., 2012). To this aim, we first recorded all hidden neurons’
activations when the network received as input only all possible
combinations of eye and effector positions (i.e., the retinotopic
map and, if present, the motor program, were set to zero),
and for each neuron we selected the positions corresponding to
maximum activation. We then probed again each neuron, this
time providing as input all possible retinotopic signals along
with the preferred combination of postural signals. The neuron
was considered as visual if its maximum activity differed by
more than 10% from that recorded in the absence of visual
input. Non-visual neurons were discarded from subsequent

analyses3. We then computed a gain modulation index (GMI)
for each neuron by recording its response to each target
location as a function of eye and effector position (Pouget and
Snyder, 2000). We first identified the combination of postural
and retinal input producing the maximum neuron activation
value. Starting from this input combination, we systematically
varied each postural variable (one at a time, keeping all the
others fixed) and computed gain modulation as the normalized
ratio between the maximum and minimum activation values.
Therefore, each neuron was characterized by four different
GMIs, representing the gain for each postural variable with
respect to horizontal and vertical axes. We finally sorted all
hidden neurons into four different categories based on the
combination of GMI indexes (using a threshold of 0.5 to establish
modulation): (i) no modulation (i.e., purely visual neurons), (ii)
modulation by eye position only, (iii) modulation by effector
position only, and (iv) modulation by both eye and effector
position.

RESULTS

Learning always converged for all models. For unsupervised
models, convergence was monitored by measuring the mean
reconstruction error on the whole training set. Autoencoders
required more learning epochs to converge, but also achieved a
lower reconstruction error compared to RBMs. This is probably
due to the fact that autoencoders are natively real-valued.
Existing real-valued extensions of RBMs (Cho et al., 2011)
assume that the input values are normally distributed, which was
not our case, so we preferred to use standard RBMs. Learning
in the feed-forward, supervised models required almost 20 times
more epochs to converge (the number of epochs required by each
learning architecture is reported in Table 1).

A first, qualitative analysis shows that RBMs and autoencoders
developed different types of receptive fields. As shown in
Figure 3, autoencoders learned homogeneous, location-specific
receptive fields that uniformly covered the central regions of the
visual input. On the other hand, while some neurons in the RBMs
learned location-specific receptive fields resembling those of
autoencoders, other neurons developed more complex receptive
fields covering larger regions of the visual fields, sometimes
also simultaneously covering symmetrical portions of the input
image.

The quantitative analyses (see Section Testing Procedure)
allowed to group hidden neurons into different categories
according to their response profiles. In line with empirical
findings (Duhamel et al., 1997), there were always some neurons
that did not exhibit any form of gain modulation (i.e., “purely
visual” neurons), that is, they responded to visual stimuli at a
given spatial location regardless of eye- or effector- positions.
However, the majority of neurons developed gain fields, which in
some cases were modulated exclusively by either eye or effector
position (see, for example, top panels of Figure 4), while in other

3It turned out that more than 95% of hidden neurons responded to the visual input,

with a minimum activation value exceeding a threshold of 0.1.
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TABLE 1 | Read-out errors for each learning architecture and space coding task, as a function of hidden layer size.

Space coding task Layer size RBMs Autoencoders Supervised Feed-forward

Read-out Epochs Read-out Epochs Read-out Epochs

No transformation 200 1.59 (0.08) 100 1.05 (0.05) 150

300 1.39 (0.07) 100 0.91 (0.04) 150

400 1.30 (0.08) 100 0.86 (0.04) 150

500 1.25 (0.04) 100 0.89 (0.02) 150

600 1.23 (0.05) 100 0.90 (0.02) 150

700 1.33 (0.04) 100 0.90 (0.03) 150

Coordinate transformation 500 1.55 (0.15) 100 1.45 (0.05) 150 1.46 (0.06) 2,500

600 1.47 (0.12) 100 1.46 (0.06) 150 1.45 (0.02) 2,500

700 1.52 (0.11) 100 1.45 (0.05) 150 1.46 (0.05) 2,500

800 1.57 (0.11) 100 1.47 (0.08) 150 1.47 (0.08) 2,500

900 1.56 (0.16) 100 1.45 (0.07) 150 1.47 (0.04) 2,500

Read-out errors are in degrees, and standard deviations are reported in parentheses. The “Epochs” column shows the number of epochs required by each learning architecture to

converge.

cases were modulated by both eye and effector position, resulting
in multiple gain fields (bottom panels of Figure 4).

Unsupervised Learning without Coordinate

Transformation
In a first set of simulations, the number of hidden units
was fixed to 4004, while the sparsity constraint was varied
between 0.004 (very strong sparsity constraint, requiring low
average activation) and 0.3 (mild sparsity constraint). As shown
in Figure 5, the effect of sparsity constraints on the two
unsupervised architectures was markedly different. Levels of
sparsity constraints in the first two rows are represented using
a color scale, where lighter tones indicate stronger sparsity and
dark tones indicate mild sparsity. Gain modulation in RBMs
(Figure 5A) was not affected by imposing sparsity constraints.
In all cases, we found a modest percentage (around 10%) of
purely visual neurons, which were not modulated by any postural
information. A more consistent percentage of neurons (20–
25%) were modulated either by eye or by effector positions,
while the remaining neurons (40–50%) exhibited multiple gain
fields. Read-out accuracy (Figure 5C) was always good, except
for the networks trained with very strong sparsity constraints
(0.01 and 0.004), where learning failed and read-out accuracy
did not achieve a mean error lower than 3◦. The lowest read-
out error (around 1.3◦) was obtained with a sparsity constraint
of 0.05. In contrast, autoencoders were extremely sensitive to
sparsity constraints: Strong sparsity constraints resulted in a
compressed code where the majority of hidden neurons (60%)
exhibited multiple gain fields (Figure 5B). When the sparsity
pressure was reduced gain fields gradually disappeared, and
the majority of neurons did not exhibit any modulation at
all. Read-out error was generally lower compared to RBMs,
and learning failed only for the networks trained with extreme
(0.004) or without any sparsity constraints (Figure 5D). Notably,
also for autoencoders the lowest read-out error (around 0.9◦)

4The initial size of the hidden layer was determined empirically based on a set of

pilot simulations to guarantee reliable and relatively fast convergence of learning.

was obtained with a sparsity constraint of 0.05, which also
resulted in a distribution of gain fields more similar to that of
RBMs.

Interestingly, the objective indexes of sparseness revealed that
RBMs are naturally much sparser than autoencoders (see bottom
panels of Figure 5). Indeed, the level of sparsity constraint turned
out to have a very weak effect on population sparseness in
RBMs (Figure 5E), as also confirmed by linear regression [r2 =
0.32, b = 0.05, p < 0.001, n = 50]. Single-neuron sparseness
was only affected when the sparsity constraint operated below
a critical level of 0.1. In order to measure what would be
the “spontaneous” index of sparseness in RBMs, we trained
an additional set of networks without imposing any sparsity
constraint, which resulted in a single-neuron sparseness of 0.56
and a population sparseness of 0.28, showing that RBMs naturally
exhibit a remarkable sparseness. In contrast, sparsity constraints
in autoencoders had a marked effect on both single-neuron
sparseness and population sparseness (Figure 5F), suggesting
that this architecture naturally develops extremely distributed
internal representations. In particular, the effect of level of
sparsity constraint on population sparseness for autoencoders
[linear regression: r2 = 0.88, b = 0.43, p < 0.001, n = 50]
was almost one order of magnitude higher compared to RBMs.
In order to measure the spontaneous index of sparseness in
autoencoders, we trained an additional set of networks with
a very low sparsity constraint (0.8), which is the borderline
condition that still guaranteed successful learning. The latter
simulations yielded sparseness values indicating non-sparse,
highly distributed representations (single-neuron sparseness =
0.97; population sparseness= 0.98).

In a second set of simulations, the sparsity constraint
for both architectures was fixed to the value leading to the
best performance (0.05), while the size of the hidden layer
was varied systematically between 200 and 700 neurons in
steps of 100. This range allowed to explore the effect of
relatively large increases and decreases of hidden layer sizes
with respect to the previous simulations, without compromising
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FIGURE 3 | Visual receptive fields. Samples of receptive fields emerging from RBMs (top panel) and autoencoders (bottom panel) on the unsupervised learning

task that did not require coordinate transformations. Similar receptive fields emerged from the unsupervised learning task involving coordinate transformations.

FIGURE 4 | Gain field coding. Examples of single (top panels) and multiple (bottom panels) gain fields emerging in the hidden neurons of RBMs (left) and

autoencoders (right). Colors represent the amount of activation, with yellow indicating highest activation and dark blue indicating lowest activation. Single gain fields

are characterized by a modulation of the neuron’s activation that depends only on one postural signal (in the figure, effector position for the RBM and eye position for

the autoencoder). In multiple gain fields, the activation is modulated by both signals.

the learning accuracy. For both architectures, the read-out
accuracy was not affected by hidden layer size, and the
mapping error was always below 2◦ (read-out errors for all
different hidden layer sizes are reported in Table 1). However,
as shown in Figure 6, also in this case the manipulation

had different effects for the two architectures (lighter colors
indicate smaller sizes). The type of encoding developed by
RBMs (Figure 6A) was affected by hidden layer size: When the
number of hidden neurons decreased the network developed
more compressed codes, by increasing the percentage of
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FIGURE 5 | Effect of sparsity constraints. Distribution of gain field types emerging in the hidden neurons of RBMs (A) and autoencoders (B) with varying levels of

sparsity constraint. Sparsity constraints are represented in different columns using a color scale, where lighter tones indicate stronger sparsity constraints and dark

red indicates mild sparsity constraints. Read-out errors obtained at each level of sparsity constraint for RBMs (C) and autoencoders (D). Single-neuron and population

sparseness as a function of sparsity constraints for RBMs (E), and autoencoders (F). Note that small values indicate stronger sparseness.

multiple gain fields and reducing the percentage of neurons
modulated by only eye or effector positions. Interestingly,
it turned out that the manipulation of hidden layer size
had a clear impact also on the underlying sparseness of the
representation (Figure 6C). Indeed, both single-neuron and
population sparseness decreased as a function of number of
hidden neurons [linear regressions: single-neuron sparseness,
r2 = 0.92, b = 0.22, p < 0.001, n = 60; population sparseness,

r2 = 0.96, b = 0.21, p < 0.001, n = 60]. This result suggests
that the distribution of gain fields in RBMs might in fact be
modulated by the underlying sparseness of the representation.
This was confirmed by the high correlation between the
percentage of multiple gain-fields and the objective sparseness
indexes [Pearson correlations: single-neuron sparseness: r =

−0.85, p < 0.001; population sparseness, r = −0.92, p <

0.001].
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FIGURE 6 | Effect of hidden layer size, with strong sparsity constraint. Distribution of gain field types emerging at the hidden layer of RBMs (A) and

autoencoders (B) with varying number of hidden neurons and sparsity constraint fixed to 0.05. Lighter tones indicate smaller layers and dark blue indicates larger

layers. Single-neuron and population sparseness as a function of hidden layer size for RBMs (C) and autoencoders (D). Note that small values indicate stronger

sparseness.

On the contrary, neuronal tuning functions in autoencoders
were not affected by hidden layer size, as this architecture
always developed uniformly distributed types of gain fields
(Figure 6B). Interestingly, as for RBMs the reduction of hidden
layer size caused a decrease in both single-neuron sparseness
and population sparseness [linear regressions: single-neuron
sparseness, r2 = 0.98, b = 0.25, p < 0.001, n = 60; population
sparseness, r2 = 0.98, b = 0.23, p < 0.001, n = 60]. However,
the sparseness indexes did not correlate with the percentage of
multiple gain-fields [all p > 0.05]. This suggests that similar
changes in the underlying sparseness do not produce the same
effect on the gain field distribution in RBMs and autoencoders.

In order to better clarify if the size of the hidden layer in RBMs
modulates the distribution of gain fields only when sparseness
is externally forced (i.e., when using a sparsity constraint of
0.05), in a subsequent set of simulations the sparsity constraint
was set to a weak level (0.2) and the size of the hidden layer
was manipulated as in the previous condition. In this case
the distribution of gain fields did not systematically change
(Figure 7A) but, notably, also the population sparseness was not
affected (Figure 7C) [linear regression: r2 = 0.24, b = 0.03, p <

0.001, n = 60]. Correlation analyses still revealed a correlation
between population sparseness and the percentage of multimodal
gain fields [r = −0.54, p < 0.001], while the correlation with
single-neuron sparseness was not significant [p > 0.05]. These
results show that, for RBMs, population sparseness is a robust
predictor of the distribution of gain fields: if RBMs must rely

only of few active neurons to represent each sensory stimulus,
they will develop more compressed spatial codes, such as those
based on multiple gain fields. The corresponding simulation with
autoencoders was relatively uninformative, because the weak
level of sparsity constraint resulted in the absence of multimodal
gain fields (Figure 7B).

Unsupervised Learning with Coordinate

Transformation
As discussed before, in this learning setting the motor program
was included as input during unsupervised learning. This implies
that two different coordinate systems (i.e., retinotopic andmotor)
are implicitly associated during training. For these simulations,
we focused on hidden layer size, which was varied between 500
and 900 neurons in steps of 100. Note that the larger number
of hidden neurons with respect to the previous simulations is
motivated by the increased size and complexity of the training
patterns. The sparsity constraint was fixed to 0.05, which was the
value resulting in more accurate read-outs and more balanced
distribution of gain fields for both RBMs and autoencoders in
the previous set of simulations. For both architectures, read-
out accuracy was always good (mapping error below 2◦) and it
was not affected by hidden layer size (see Table 1). As shown in
Figure 8, RBMs generally developed a larger percentage of gain
fields compared to autoencoders. In particular, the number of
multiple gain fields was much higher for RBMs. Interestingly, for
both architectures also in this case the manipulation of hidden
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FIGURE 7 | Effect of hidden layer size, with moderate sparsity constraint. Distribution of gain field types emerging at the hidden layer of RBMs (A) and

autoencoders (B) with varying number of hidden neurons and sparsity constraint fixed to 0.2. Lighter tones indicate smaller layers and dark blue indicates larger layers.

Single-neuron and population sparseness as a function of hidden layer size for RBMs (C) and autoencoders (D). Note that small values indicate stronger sparseness.

layer size produced a systematic change in the sparseness indexes
[linear regressions: RBMs single-neuron sparseness, r2 = 0.98, b
= 0.14, p < 0.001, n = 50; RBMs population sparseness, r2 =

0.95, b = 0.07, p < 0.001, n = 50; autoencoders single-neuron
sparseness, r2 = 0.98, b = 0.10, p < 0.001, n = 60; autoencoders
population sparseness, r2 = 0.98, b = 0.06, p < 0.001, n = 60].
For both architectures, population and single-neuron sparseness
were highly correlated with the percentage of multiple gain
fields [Pearson correlations: RBMs single-neuron sparseness, r
= −0.94, p < 0.001; RBMs population sparseness, r = −0.96,
p < 0.001; autoencoders single-neuron sparseness, r = −0.88,
p < 0.001; autoencoders population sparseness, r = −0.88, p <

0.001]. This finding corroborates the hypothesis that, especially
for RBMs, reducing the number of active neurons results in more
compressed codes based on multiple gain fields, which might be
particularly advantageous in the current scenario since learning
involved coordinate transformations. In contrast, fewer neurons
in autoencoders exhibited multiple gain modulation (Figure 8B),
even if also in this case the percentage of multiple gain fields was
proportional to the underlying level of sparseness.

Supervised Learning with Coordinate Transformation
The final set of simulations reproduced the feed-forward,
supervised architecture used by Zipser and Andersen (1988).
As in their original work, we did not enforce sparse coding.
The size of the hidden layer was varied between 500 and

900 in steps of 100. Learning always converged and both
the feed-forward mapping error and the read-out error were
below 3◦ (see Table 1). As shown in Figure 9, this type of
learning architecture developed a strikingly lower proportion
of gain-modulated neurons in the hidden layer: Almost 80%
of the neurons did not exhibit any form of gain field. The
remaining ones were almost uniformly distributed across the
three other types (about 8% for either eye or effector position;
10% for multiple gain modulation). Moreover, differently from
the unsupervised architectures, the type of gain modulation was
not affected by changes in the hidden layer size. This result
is remarkable, because it suggests that feed-forward, supervised
architectures are much less prone to develop efficient forms
of space coding based on gain fields. One possible explanation
for this finding is that the type of coding used to represent
the motor program might have affected the efficiency of error
backpropagation, which was not able to properly propagate the
error signals across the hidden layer. Indeed, also Zipser and
Andersen (1988) found some discrepancy between the type of
gain modulations developed when using a monotonic output
format compared to the Gaussian output format (which was
adopted in the present study). However, the previous simulations
with autoencoders showed that backpropagation can give rise to
a variety of strong gain modulations when it is applied within
an unsupervised learning setting. Another, more critical factor
might instead be the absence of sparsity constraints, which were
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FIGURE 8 | Unsupervised learning involving coordinate transformations. Distribution of gain field types emerging at the hidden layer of RBMs (A) and

autoencoders (B) with varying number of hidden neurons. Lighter tones indicate smaller layers and dark blue indicates larger layers. Single-neuron and population

sparseness as a function of hidden layer size for RBMs (C) and autoencoders (D). Note that small values indicate stronger sparseness.

not used in the feed-forward models but turned out to be
fundamental with autoencoders.

DISCUSSION

In this study we investigated the role of architectural and learning
constraints in neural network models that learned to encode
spatial information resulting from the combination of visual and
postural signals. Results showed that, compared to the supervised
architecture originally proposed by Zipser and Andersen (1988),
unsupervised architectures like Restricted Boltzmann Machines
(RBMs) and autoencoders discover space codes that more closely
reproduce the distribution of neuronal tuning functions observed
in neurophysiological experiments. In particular, the majority
of hidden neurons of RBMs and autoencoders exhibited gain
modulation, which in some cases only depended either on
eye or effector position, while in other cases depended on
both eye and effector positions, thereby resulting in multiple
gain fields. In fact, all unsupervised models developed a much
higher percentage of gain modulated neurons compared to the
supervised models. Although the precise distribution of gain
field types in the cerebral cortex depends on the exact recording
site (Colby and Goldberg, 1999), our simulations suggest that
this efficient form of encoding emerges more naturally if the
task requires to reconstruct the whole sensory input, rather than
to simply discover a feed-forward mapping to a target motor

program. In other words, gain field coding might be useful
when the goal is to discover “good” internal representations of
the input data, that is, when the aim is to unveil and more
explicitly encode the latent factors underlying the input data
distribution.

As a general principle, the quality of an internal representation
should reflect how well the learned features disentangle as many
factors of variation as possible, at the same time discarding as
little information about the data as is practical (Bengio et al.,
2013). In the specific case of sensorimotor transformations, it
has been proposed that good internal representations should
have a variety of properties, such as the ability to combine
the input signal in a nonlinear way, the ability to fully
cover the range of possible input values, and the ability to
represent multiple reference frames simultaneously within the
same neurons (Pouget and Snyder, 2000). Populations of gain
modulated neurons satisfy these requirements, allowing to
encode visual space using a flexible set of basis functions. Notably,
our simulations showed that this allows to learn coordinate
transformations in two separate stages, by first learning the set
of basis functions in a completely unsupervised way, and then
learning appropriate mappings to target motor commands by
relying on explicit supervision or reinforcement signals (Pouget
and Snyder, 2000).

Our analyses also highlighted several differences in the spatial
codes learned by RBMs and autoencoders, despite the fact
that these two unsupervised architectures are often considered
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similar, if not equivalent (Ranzato et al., 2007; Coates et al., 2011).
Even from a simple, qualitative analysis of the visual receptive
fields, it turned out that these models developed different
internal representations. Subsequent analyses conducted to
investigate the emergence of gain fields further revealed that
the distribution of hidden neurons’ tuning functions in RBMs
and autoencoders was similar only for a very narrow choice
of the hyper-parameters. An important finding was that RBMs
spontaneously exhibited a remarkable level of sparseness, which
made them insensitive to external sparsity constraints, and
which encouraged the emergence of compressed forms of
spatial coding based on gain modulation. The spontaneous level
of sparseness in RBMs could be manipulated only within a
narrow range, by imposing an extreme sparsity constraint and
jointly reducing the size of the hidden layer. This forced the
internal representations to rely on even fewer neurons, and
produced an increase in the percentage of multiple gain fields.
These findings are consistent with the intuition that reducing
the computational resources forces the networks to discover
more complex (and compressed) forms of encoding, such as
those resulting from the combination of many sensory/postural
variables into multiple gain fields. Notably, for RBMs this was
the case even when the task did not involve any coordinate
transformations, which implied that postural variables were
orthogonal. In other words, despite the fact that eye and
effector positions were varied independently across training
patterns, the RBMs with fewer active neurons often combined
these signals together, resulting in an increase of multiple gain
fields. Nevertheless, unlike autoencoders, RBMs always dedicated
some representational resources also to encode eye and effector
positions independently.

Autoencoders turned out to rely on much more distributed
representations compared to RBMs, and were therefore
extremely sensitive to external sparsity constraints. This implies
that, compared to RBMs, autoencoders have an additional
hyper-parameter that must be carefully tuned. Notably, when
the sparsity pressure was reduced hidden neurons in the
autoencoders did not develop any form of gain modulation.
Only for specific values of sparsity constraints autoencoders
could reproduce the variety of gain field types observed in
neurophysiological data (Brotchie et al., 1995; Graziano et al.,
1997; Snyder et al., 1998; Chang et al., 2009), with a distribution
compatible with that of RBMs. However, in autoencoders the
underlying sparseness indexes did not seem to be systematically
related to the complexity of the emergent spatial codes. Though
these findings alone do not allow to adjudicate between models,
they call for a more systematic investigation of these different
learning architectures, possibly spanning other domains
and using a more direct comparison to neurophysiological
data.

A plausible explanation for the striking differences in
the spontaneous level of sparseness between RBMs and
autoencoders can be found when considering the different
processing dynamics embedded in these two neural network
models. Indeed, in autoencoders the activation of each hidden
neuron is deterministic, and simply corresponds to the
(possibly graded) value returned by the non-linear, logistic

FIGURE 9 | Supervised learning of coordinate transformations.

Distribution of gain field types emerging at the hidden layer of a feed-forward,

supervised neural network similar to that used by Zipser and Andersen (1988)

with varying number of hidden neurons. Lighter tones indicate smaller layers

and dark blue indicates larger layers.

activation function. In RBMs, instead, the value returned
by the logistic function is treated as a probability, and
the final activation of each hidden neuron is obtained by
performing a stochastic binarization step. This important
difference likely produces more sharp neuronal activations,
driving RBMs to develop more sparse representations compared
to autoencoders.

From a broader perspective, we believe that stochastic neural
networks such as RBMs and their extension into hierarchical
generative models will have an increasingly central role in
neurocomputational modeling, because they provide a unique
bridge between high-level descriptions of cognition in terms of
Bayesian computation and low-level, mechanistic explanations
inspired by the biophysical properties of real neuronal networks
(Testolin and Zorzi, 2016). For example, generative neural
networks are compatible with Bayesian approaches based on
probabilistic population codes (Ma et al., 2006), which have
been successfully used to simulate sensorimotor transformations
with basis functions (Pouget and Sejnowski, 1997; Pouget and
Snyder, 2000). RBMs extend the basis function approach by
explaining how learning might shape the emergent neuronal
gain fields, and they could similarly be combined with
attractor dynamics to simulate optimal statistical inference over
multisensory spatial representations (cf. Pouget et al., 2002) and
spatial remapping in attention orienting (cf. Casarotti et al.,
2012).

Moreover, the fact that generative networks can simulate both
evoked (feed-forward) and intrinsic (feedback) neuronal activity
makes them particularly suited to investigate spontaneous brain
activity, which has been recognized as a fundamental property
of the brain (Raichle, 2015) but whose computational role is still
largely unknown. An intriguing hypothesis suggests that intrinsic
activity could help with driving the brain close to states that are
probable to be valid inferences once an external input arrives,
thus potentially shortening the reaction time of the system
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(Fiser et al., 2010). Stochastic, generative networks are consistent
with this “sampling-based” framework, and also support the
idea that neuronal noise could play an important role during
sampling (Kirkpatrick et al., 1983), for example by keeping the
system in a metastable state that facilitates flexible settling into
the most appropriate configuration (Kelso, 2012; Deco et al.,
2013). Notably, we are also beginning to better understand how
these powerful models could be implemented with biologically
more realistic architectures, such as those incorporating temporal
dynamics and spike-based communication (Buesing et al., 2011;
Nessler et al., 2013).

In conclusion, we hope that the recent breakthroughs in
neurally-inspired machine learning will attract the interest of the
neuroscience community, as these models hold great promise
for improving our understanding of how learning shapes and
organizes information processing in complex neuronal networks.
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Dreaming is generally thought to be generated by spontaneous brain activity during sleep

with patterns common to waking experience. This view is supported by a recent study

demonstrating that dreamed objects can be predicted from brain activity during sleep

using statistical decoders trained with stimulus-induced brain activity. However, it remains

unclear whether and how visual image features associated with dreamed objects are

represented in the brain. In this study, we used a deep neural network (DNN) model

for object recognition as a proxy for hierarchical visual feature representation, and DNN

features for dreamed objects were analyzed with brain decoding of fMRI data collected

during dreaming. The decoders were first trained with stimulus-induced brain activity

labeled with the feature values of the stimulus image from multiple DNN layers. The

decoders were then used to decode DNN features from the dream fMRI data, and the

decoded features were compared with the averaged features of each object category

calculated from a large-scale image database. We found that the feature values decoded

from the dream fMRI data positively correlatedwith those associatedwith dreamed object

categories at mid- to high-level DNN layers. Using the decoded features, the dreamed

object category could be identified at above-chance levels by matching them to the

averaged features for candidate categories. The results suggest that dreaming recruits

hierarchical visual feature representations associated with objects, which may support

phenomenal aspects of dream experience.

Keywords: dream, brain decoding, deep neural networks, hierarchical neural representations, functional magnetic

resonance imaging

INTRODUCTION

Dreaming during sleep is a universal human experience and one that is often accompanied by
highly realistic visual scenes spontaneously generated by the brain. The most striking characteristic
of visual dreaming is its similarity to the visual experience during waking hours, and dreaming
generally incorporates features that are typical of the waking experience, such as shapes, objects, and
scenes. These phenomenological similarities are considered to be underlain by neural substrates
common to both the awake and sleep states, and a number of studies have sought to address
the neural commonalities and differences of these contrasting states by analyses of regional brain
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activations (Maquet et al., 1996; Braun et al., 1997, 1998; Maquet,
2000; Hong et al., 2009; Dresler et al., 2011), and brain activity
patterns for specific visual contents (Horikawa et al., 2013).

A previous work investigated the commonality of
neural representations of visual objects and scenes between
perception and dreaming, and demonstrated that the dreamed
objects/scenes could be predicted from brain activity patterns
during sleep using statistical decoders trained to predict viewed
object/scene categories (Horikawa et al., 2013). In this study, the
authors used decoders trained to predict categorical labels of
viewed objects and scenes, the labels of which were constructed
from subjects’ dream reports. They thereby demonstrated
decoding of dream contents from brain activity patterns during
sleep using stimulus-trained decoders. The decoders trained on
brain activity patterns in higher visual cortex showed higher
accuracy than those trained on brain activity patterns in lower
visual cortex. Their results suggest that visual dream contents are
represented by discriminative brain activity patterns similar to
perception at least in higher visual areas.

While this study demonstrated accurate decoding of
categorical information on dreamed objects from higher visual
areas, it still remains unclear whether or how multiple levels
of hierarchical visual features associated with dreamed objects
are represented in the brain. Because brain decoding through
multi-voxel pattern classification algorithms often obscures
what made the labeled brain activity patterns discriminable, it is
not clear what levels of visual information, including multiple
levels of hierarchical visual features and semantics, enabled the
successful decoding.

Several recent studies have addressed this issue by using
explicit models of visual features, and investigated neural
representations of visual contents (Kay et al., 2008; Khaligh-
Razavi and Kriegeskorte, 2014; Horikawa and Kamitani, 2015;
Naselaris et al., 2015; Jozwik et al., 2016). These studies used
multiple levels of visual features, including Gabor filters and
features extracted from hierarchical models, to represent visual
images by patterns of visual features. They thereby established
links between brain activity patterns and visual features or
modeled the representational space of brain activity patterns
using visual features to address how each visual feature is used
to represent seen or imagined visual images.

Among a large number of visual features, hierarchical
visual features, such as those from deep neural networks
(DNN) (Khaligh-Razavi and Kriegeskorte, 2014; Horikawa
and Kamitani, 2015), would be especially suited to represent
objects: They are hierarchical in the sense that higher-level
features are composed of the outputs from the previous lower-
level features. The reason for their suitability is that those
visual features achieve varying levels of invariance to image
differences through hierarchical processing, including differences
in rotation, position, scale, and other attributes, which are often
observed in images even within the same object categories, and
acquire robust object-category-specific representations.

Our previous study (Horikawa and Kamitani, 2015)
investigated neural representations of hierarchical visual features
associated with seen and imagined objects by representing
objects using patterns of visual features. In this study, we asked

subjects to imagine visual images of presented object names and
analyzed imagery-induced brain activity in combination with
hierarchical visual features to observe how hierarchical visual
feature representations are used during mental imagery. We
first used the visual features derived from various computational
models to represent an object by a vector of visual features,
and then trained statistical regression models to decode feature
vectors of viewed objects from brain activity patterns measured
as subjects viewed images of objects (stimulus-trained decoder).
The trained decoders were then used to decode visual features of
seen and imagined objects, and the decoded feature vectors were
used to identify the object categories. Our analyses showed that
the stimulus-trained decoders better predicted the low/high-level
visual features of seen objects from lower/higher visual areas
respectively, showing a homology between the brain and DNN.
This provided empirical support for the idea that the DNN can
be a good proxy for the hierarchical visual system for object
recognition. We further demonstrated high decoding accuracy
for mid- to high-level features of imagined objects from relatively
higher visual areas, suggesting the recruitment of feature-level
representations during mental imagery, in particular for the
mid- to high-level feature representation. Therefore, the same
strategy would also be applicable to investigate hierarchical
feature representations of dreamed objects, and may reveal
the recruitment of feature-level representations associated
with dreamed objects at least for mid- to high-level feature
representations as the previous study demonstrated for volitional
mental imagery (Horikawa and Kamitani, 2015).

Here, we investigated whether multiple levels of hierarchical
visual features associated with dreamed objects are represented in
the brain in a manner similar to perception. For this purpose, we
applied the same strategy inHorikawa andKamitani (2015) to the
decoding of hierarchical visual features associated with dreamed
objects from brain activity patterns during sleep. We used a
deep convolutional neural network (DNN) for object recognition
as a proxy for hierarchical visual feature representation. We
represented images of objects using patterns of visual features
derived from DNN models (Figures 1A,B). We then performed
decoding analyses of DNN features associated with dreamed
objects from brain activity patterns obtained from sleeping
subjects. We used the decoders trained to decode visual features
of seen objects, thereby testing whether visual dream contents are
represented by the hierarchical feature representations elicited in
visual perception. We also tested whether the decoded feature
vector could be used to identify the reported dreamed object by
matching it to the averaged feature vectors of images in multiple
candidate categories. The results were then compared with those
for seen and imagined objects (Horikawa and Kamitani, 2015) to
see the differences in hierarchical representation and the ability
to decode arbitrary objects beyond training categories (“generic
object decoding”).

MATERIALS AND METHODS

The data used for this study came from two previous studies
performed at our laboratory (Horikawa et al., 2013; Horikawa
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FIGURE 1 | Deep neural network features. (A) Representing an input image by visual feature patterns derived by DNN. The DNN was used to extract feature

values of individual units in each layer. (B) Preferred images for each DNN layer. The images that highly activate each DNN unit were generated using activation

maximization methods (see Materials and Methods: “Synthesis of Preferred Images Using Activation Maximization” for details).

and Kamitani, 2015). In these studies, two subjects (Subjects 1
and 2 in this study) participated in both of the two studies as
Participants 1 and 3 in Horikawa et al. (2013) and as Subjects 1
and 2 in Horikawa and Kamitani (2015). Here, we provide a brief
description of the subjects, datasets, and preprocessing of the
MRI data for the main experiments. For full details, see Horikawa
et al. (2013) and Horikawa and Kamitani (2015).

Subjects
Two healthy subjects (males, aged 27 and 42) with normal
or corrected-to-normal vision participated in the experiments.
Both subjects had considerable experience of participating in
fMRI experiments, and were highly trained. Both subjects
provided written informed consent for their participation in the
experiments, in accordance with the Declaration of Helsinki,
and the study protocol was approved by the Ethics Committee
of ATR. The experimental of each subject were collected over
multiple scanning sessions spanning over 2 years.

Dataset from Horikawa et al. (2013;
“Dream” Dataset)
We used an fMRI dataset from the sleep experiments conducted
in a previous dream decoding study (Horikawa et al., 2013). This
“dream” dataset was used for testing decoding models trained on
part of the dataset from Horikawa and Kamitani (2015). A brief
description of the dataset is given in the following paragraph (see
Horikawa et al., 2013 for all experimental details).

fMRI signals were measured with simultaneous recording
of electroencephalography (EEG) while subjects slept in an
MRI scanner. They were awakened when a characteristic EEG
signature was detected during sleep-onset periods (non-rapid eye
movement [NREM] periods) and were then asked to provide a
verbal report, freely describing their visual experience (NREM
dream) before awakening. This procedure was repeated until
at least 200 awakenings associated with a visual report were
collected for each subject. From the collected reports, words
describing visual objects or scenes were manually extracted and
mapped to WordNet, a lexical database in which semantically
similar words are grouped together as synsets (categories), in

a hierarchical structure (Fellbaum, 1998). Using the semantic
hierarchy, extracted visual words were grouped into base synsets
that appeared in at least 10 reports from each subject (26 and
16 synsets for Subjects 1 and 2, respectively). The fMRI data
obtained before each awakening were labeled with a visual
content vector, each element of which indicated the presence or
absence of a base synset in the subsequent report.

Note that these fMRI data were collected during sleep-onset
periods (sleep stage 1 or 2) rather than rapid-eye movement
(REM) periods. Although REM sleep and its underlying
neurophysiological mechanisms were originally believed to
be indispensable for dreaming, there has been accumulating
evidence that dreaming is dissociable from REM sleep and can be
experienced during NREM sleep periods (Nir and Tononi, 2009).

In addition to the fMRI data, we used visual images presented
in the perception experiment described in Horikawa et al.
(2013) to construct category features (see Materials and Methods:
“Category feature vector”) for dreamed objects (216 and 240
images for each category for Subjects 1 and 2, respectively).

Datasets from Horikawa and Kamitani
(2015; “Training,” “Perception,” and
“Imagery” Datasets)
We used fMRI data from the perception experiment and the
imagery experiment conducted in Horikawa and Kamitani
(2015). The perception experiment had two sessions: a training
image session and a testing image session. Data from the training
image session of the perception experiment were used to train
decoding models in this study (“training” dataset), which were
then tested on the dream dataset from Horikawa et al. (2013).
For comparison with the results from the dream dataset, the
data from the perception experiment (the testing image session)
and the imagery experiment in Horikawa et al. (2013) were also
used as test datasets in this study (“perception” and “imagery”
datasets). A description of the datasets is given in the following
paragraph (see Horikawa and Kamitani, 2015 for all experimental
details).

In the perception experiment of Horikawa et al. (2013),
stimulus-induced fMRI signals were collected from two distinct
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sessions: a training image session and a testing image session,
consisting of 24 and 35 separate runs respectively. Each run
contained 55 stimulus blocks consisting of 50 blocks with
different images and five randomly interspersed repetition blocks
where the same image as in the previous block was presented. In
each stimulus block an image (image size, 12× 12◦C) was flashed
at 2 Hz for 9 s. Images were presented on the center of the display
with a central fixation spot. To indicate the onset of the block, the
color of the fixation spot changed for 0.5 s before each stimulus
block began. Subjectsmaintained steady fixation throughout each
run, and performed a one-back repetition detection task on the
images to maintain their attention on the presented images,
responding with a button press for each repetition. In the training
image session, a total of 1200 images from 150 different object
categories (eight images per each category) were each presented
only once. In the testing image session, a total of 50 images
from 50 object categories (one image from each category) were
presented 35 times (blocks) each. Note that the categories in the
testing image session were not used in the training image session.
The presentation order of the categories was randomized across
runs.

In the imagery experiment of Horikawa et al. (2013), the
subjects were required to visually imagine images from one of
the 50 object categories used in the testing image session of
the perception experiment. The imagery experiment consisted of
20 separate runs, with each run containing 25 imagery blocks.
Each imagery block consisted of a 3-s cue period, a 15-s imagery
period, a 3-s evaluation period, and a 3-s rest period. During the
rest periods, a fixation spot was presented in the center of the
display. From 0.8 s before each cue period began, the color of
the fixation spot changed for 0.5 s to indicate the onset of the
blocks. During the cue period, words describing the names of
the 50 categories presented in the testing image session of the
perception experiment were visually presented around the center
of the display (one target and 49 distractors). The word of the
category to be imagined was presented with a red color (target),
while the other words were presented in black (distractors). The
onset and end of the imagery periods were signaled by beep
sounds. Subjects were required to start imagining as many object
images pertaining to the category described by the red word as
possible. Their eyes were closed from the first beep sound to the
second beep sound. After the second beep sound, the word of the
target category was presented at the center of the display to allow
the subjects to evaluate the vividness of their mental imagery on
a five-point scale (very vivid, fairly vivid, rather vivid, not vivid,
cannot recognize, or forget the target) by a button press. The 25
categories in each run were pseudo-randomly selected from 50
categories such that the two consecutive runs contained all the 50
categories.

fMRI Data Preprocessing
The first 9 s of scans from each run were discarded to remove
instability effects of the MRI scanner. The acquired fMRI data
were subjected to three-dimensional motion correction using
SPM5 (http://www.fil.ion.ucl.ac.uk/spm). The data were then
coregistered to the within-session high-resolution anatomical
image of the same slices used for EPI, and then subsequently to

a whole-head high-resolution anatomical image common across
the two studies. The coregistered data were then reinterpolated to
3× 3× 3mm voxels.

For the dream data from Horikawa et al. (2013), we created
data samples by first regressing out nuisance parameters,
including a linear trend, and temporal components proportional
to six motion parameters from the SPM5 motion correction
procedure, from each voxel amplitude for each run, and the data
were then despiked to reduce extreme values (beyond ± 3SD for
each run). After that, voxel amplitudes around awakening were
normalized relative to the mean amplitude during the period 60–
90 s prior to each awakening. This period was used as the baseline,
as it tended to show relatively stable blood oxygenation level
dependent (BOLD) signals over time. The voxel values averaged
across the three volumes (9 s) immediately before awakening
served as a single data sample (the time window was shifted for
time course analysis).

For the perception and imagery data from Horikawa and
Kamitani (2015), we created data samples by first regressing
out nuisance parameters, including a constant baseline, a linear
trend, and temporal components proportional to six motion
parameters from the SPM5 motion correction procedure, from
each voxel amplitude for each run, and the data were then
despiked to reduce extreme values (beyond ± 3SD for each
run). The voxel amplitudes were then averaged within each
9-s stimulus block (three volumes) or 15-s imagery block
(five volumes), after shifting the data by 3 s (one volume) to
compensate for hemodynamic delays.

For testing decoding models with the dream dataset, the trials
in which the last 15-s epoch before awakening was classified as
wakewere not used for the following analyses, and those classified
as sleep stage 1 or 2 were used. We analyzed the dream fMRI
data in two ways: single category-based analysis with averaged
trials, and multiple category-based analysis with individual trials.
In the single category-based analysis, fMRI samples were further
averaged for the dream trials containing the same category while
disregarding the other reported categories. Thus, one data sample
is labeled only by a single category. This preprocessing yielded 26
and 16 averaged fMRI samples for Subjects 1 and 2, respectively
(corresponding to the numbers of the base synsets). In the
multiple category-based analysis, individual fMRI samples were
labeled by multiple reported categories at each awakening.

For testing with the perception and imagery datasets,
the blocks of the same category were averaged (35 and 10
blocks averaged for perception and imagery, respectively). This
procedure yielded 50 averaged fMRI samples (corresponding to
the 50 test categories) for each of the perception and imagery
datasets in each subject.

Region of Interest (ROI) Selection
V1, V2, V3, and V4 were delineated by a standard retinotopy
experiment (Engel et al., 1994; Sereno et al., 1995). The
lateral occipital complex (LOC), the fusiform face area (FFA),
and the parahippocampal place area (PPA) were identified
using conventional functional localizers (Kanwisher et al., 1997;
Epstein and Kanwisher, 1998; Kourtzi and Kanwisher, 2000). For
the analysis of individual visual areas, the following numbers

Frontiers in Computational Neuroscience | www.frontiersin.org January 2017 | Volume 11 | Article 4 | 197

http://www.fil.ion.ucl.ac.uk/spm
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Horikawa and Kamitani Hierarchical Neural Representation of Dreamed Objects

of voxels were identified for V1, V2, V3, V4, LOC, FFA, and
PPA, respectively: 1054, 1079, 786, 763, 570, 614, and 369 voxels
for Subject 1; 772, 958, 824, 545, 847, 438, and 317 voxels for
Subject 2. A continuous region covering LOC, FFA, and PPA was
manually delineated on the flattened cortical surfaces, and the
region was defined as the higher visual cortex (HVC). Voxels from
V1–V4 and HVC were combined to define the visual cortex (VC;
4794 and 4499 voxels for Subject 1 and 2, respectively). For full
details on the experiments for localizing the regions of interest,
see Horikawa et al. (2013) and Horikawa and Kamitani (2015).

Visual Features Derived from Deep
Convolutional Neural Network
Using the deep convolutional neural network (DNN) proposed
in a previous study (Krizhevsky et al., 2012), we computed
visual features from the images used in the fMRI experiments,
and also from images from an online image database1 where
images are grouped according to the hierarchy in WordNet
(Fellbaum, 1998). We used the MatConvNet implementation of
DNN2, which was trained with images in ImageNet to classify
1000 object categories. The DNN consisted of five convolutional
layers (DNN1–5) and three fully connected layers (DNN6–8),
with some of these layers containing a huge number of feature
units (e.g., 290,400 units in DNN1). We randomly selected
1000 units in each of the layers from one to seven to reduce
the computational load while making sure that the selection
was unbiased, and used all 1000 units in the eighth layer. We
represented each image by a vector of those units’ outputs.

Category Feature Vector
We constructed category feature vectors to represent object
categories using visual features in each DNN layers. We first
computed visual feature vectors for all images of categories in
the ImageNet database (50 test categories for Horikawa and
Kamitani (2015), and 15,314 candidate categories; Deng et al.,
2009) and for images used in the perception test experiment in
Horikawa et al. (2013) (26 and 16 dreamed categories for Subjects
1 and 2, respectively). Using the computed feature vectors,
category feature vectors were constructed for all categories by
averaging the feature vectors of images belonging to the same
category. These procedures were conducted for each DNN
layer to construct feature representations of individual object
categories (single-category feature vectors). In addition to that,
we also constructed multi-category feature vectors to represent
multiple object categories reported at each awakening in the
dream dataset using features in each DNN layer. The multi-
category feature vectors were constructed by averaging multiple
single-category feature vectors annotated by reported categories
at each awakening.

Synthesis of Preferred Images Using
Activation Maximization
We used the activation maximization method to generate
preferred images for individual units in each layer of the
DNN model (Simonyan et al., 2014; Yosinski et al., 2015;

1(ImageNet; (Deng et al., 2009); http://www.image-net.org/; 2011 fall release)
2(http://www.vlfeat.org/matconvnet/)

Mahendran and Vedaldi, 2016; Nguyen et al., 2016). Synthesis
of preferred images starts from a random image and optimizes
the input image to maximally activate a target DNN unit by
iteratively calculating how the image should be changed via
backpropagation. This analysis was implemented using custom
software written in MATLAB based on the original Python code
provided in blog posts3.

Visual Feature Decoding Analysis
We constructed multivoxel decoders to predict a visual feature
vector of a seen object from fMRI activities in multiple
ROIs in the training dataset (Horikawa and Kamitani, 2015)
using a set of linear regression models. In this study, we
used the sparse linear regression algorithm (SLR; Bishop,
2006), which can automatically select important voxels for
decoding, by introducing sparsity into weight estimation through
Bayesian parameters estimation with the automatic relevance
determination (ARD) prior (see Horikawa and Kamitani, 2015
for detailed descriptions). The decoders were trained to predict
the values of individual elements in the feature vector (consisting
of 1000 randomly selected units for DNN1–7 and all 1000 units
for DNN8) using the training dataset (1200 samples from the
perception experiment).

Decoding accuracy was evaluated by the correlation
coefficient between the category feature and decoded feature
values of each feature unit. The correlation coefficients were
pooled across the units and the subjects for each DNN layer and
ROI.

These analyses were performed for each combination of DNN
layers (DNN1–8) and brain regions of interest (V1, V2, V3, V4,
LOC, FFA, and PPA), and the entire visual cortex covering all
of the visual subareas listed above (VC). We performed voxel
selection prior to the training of the regression model for each
feature unit: voxels showing the highest correlation coefficients
with the target variable (feature value) in the training data were
used (at most 500 voxels for V1, V2, V3, V4, LOC, FFA, and
PPA; 1000 voxels for VC). For details of the general procedure
of feature decoding, see Horikawa and Kamitani (2015).

Pairwise Identification Analysis
In the pairwise identification analysis, the category of a
seen/imagined/dreamed object was identified between true and
false categories, using the feature vector decoded from the
averaged fMRI activity pattern for each object category. The
decoded feature vector was compared with two candidate
category feature vectors, one for the true category and the
other for a false category selected from the 15,314 candidates.
The category with a higher correlation coefficient was selected
as the identified category. The analysis was repeated for all
combinations of the test categories (50 categories for the
perception and imagery datasets; 26 and 16 categories for
the dream dataset of Subjects 1 and 2, respectively) and the
15,314 candidate categories. The accuracy for each test category

3(Mordvintsev, A., Olah, C., Tyka, M., DeepDream—a code example

for visualizing Neural Networks, https://github.com/google/deepdream,

2015; Øygard, A.M.,Visualizing GoogLeNet Classes,

https://github.com/auduno/deepdraw, 2015)
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was evaluated by the ratio of correct identification. This was
further averaged across categories and subjects to characterize the
accuracies with the dream, perception, and imagery datasets.

Data and Code Availability
The experimental data and codes used in the present study are
available from the corresponding author upon request.

RESULTS

We applied the decoders trained with stimulus-induced fMRI
signals (stimulus-trained decoders) to dream dataset to test
whether multiple levels of visual features associated with
dreamed object categories could be decoded from brain activity
of sleeping subjects. For this analysis, the dream fMRI samples
[three-volume (9 s) averaged fMRI signals immediately before
awakening] annotated by each individual object category were
averaged across awakenings, and these averaged fMRI samples
were used as input to the stimulus-trained decoders (Figure 2A).
To evaluate the prediction accuracy in each unit, Pearson’s
correlation coefficient was calculated between the decoded and
the single-category feature values for the series of test samples
for each subject. The correlation coefficients were then averaged
across all feature units obtained from two subjects for each
DNN layer. Here, we used the correlation coefficient between
the series of the category feature values and the decoded feature
values in each unit, instead of the correlation coefficient between
the category feature vector and the decoded feature vector for
each sample. This was because we constructed decoders for each
unit independently, and the baseline amplitude pattern across
units alone could lead to spuriously high correlation coefficients
between feature vectors.

The correlation coefficients between the features decoded
from the dream fMRI dataset and the category features in
multiple ROIs are shown in Figure 2B. While the absolute values
of the correlation coefficients from dream fMRI dataset were
lower than those from perception and imagery fMRI datasets
(Horikawa and Kamitani, 2015), positive correlation coefficients
were observed from decoders trained with relatively higher visual
areas at mid- to high-level DNN layers (46 out of 56 pairs of
DNN layers and ROIs, one-sided t-test after Fisher’s Z transform,
uncorrected p < 0.01). For most of the DNN layers, the previous
study (Horikawa and Kamitani, 2015) showed that the decoding
accuracy of seen category features was moderately high from
most of visual areas with peak accuracy in V4, whereas the
decoding accuracy of imagined category features was high for
mid- to higher visual areas. The category feature decoding of
dreamed objects showed highest correlation coefficients around
the higher visual areas, suggesting the qualitatively similar
tendency to the results for imagined rather than seen object
categories (Horikawa and Kamitani, 2015).

While we first focused on individual dream categories at a time
by averaging fMRI samples at multiple awakenings annotated
by the common dreamed object categories (Figure 2), we also
performed decoding analysis on brain activity patterns from
each awakening annotated by multiple dreamed object categories
(Figure 3A). For this analysis, the same decoders were applied

to fMRI samples at each single awakening (three-volume [9 s]
averaged fMRI signals immediately before awakening) to obtain
decoded features for all awakenings (samples classified as sleep
stage 1 or 2). Then, the multi-category features were constructed
by averaging the single-category features for multiple object
categories reported at subsequent awakenings. The accuracy was
evaluated by Pearson’s correlation coefficients between decoded
feature values and feature values of the multi-category features
for the series of test samples. This analysis showed that feature
values decoded from brain activity patterns in higher visual areas
just before awakening positively correlated with feature values
of the multi-category features constructed for object categories
reported at subsequent awakening at mid- to high-level DNN
layers (Figure 3B; 45 out of 56 pairs of DNN layers and ROIs,
one-sided t-test after Fisher’s Z transform, uncorrected p< 0.01).
The results suggest that single trial-based fMRI signals contain
sufficient information to decode feature-level representations
about dreamed object categories while the accuracy was relatively
low.

Furthermore, when the time window for the feature decoding
analysis was shifted around the time of awakening, the
correlation coefficient peaked around 0–10 s before awakening
for most of the DNN layers in both of the averaged- and
single-trial analyses (Figure 4; no correction for hemodynamic
delay). This is consistent with the results of the category
decoding reported in the previous study (Horikawa et al.,
2013). While the high correlations after awakening may be
explained by hemodynamic delay and the large time window,
the general tendency for the high correlations to be relatively
prolonged, especially for higher DNN layers, may reflect feature
representations associated with retrieved dream contents during
reporting.

Finally, we tested whether the decoded feature vectors can
be used to identify dreamed object categories and compared the
results with the identification accuracies of seen and imagined
object categories reported in a previous study (Horikawa and
Kamitani, 2015). We did this by matching the decoded feature
vectors and category feature vectors calculated from multiple
images of candidate categories in the image database (Figure 5A).
The pairwise identification accuracy for all combinations of
the DNN layers and ROIs are shown in Figure 5B. For most
combinations of the DNN layers and ROIs, the dreamed object
categories can be identified from brain activity patterns with a
statistically significant level (43 out of 56 pairs of layers and
ROIs, one-sided t-test, uncorrected p < 0.05). Additionally,
the analysis showed significantly high identification accuracy of
dreamed objects from the LOC and FFA for all of the DNN
layers (one-sided t-test, uncorrected p < 0.05). The pairwise
identification accuracies for dreamed, seen, and imagined objects
obtained by decoders trained on brain activity pattern in an
entire visual cortex are shown in Figure 5C. The identification of
dreamed objects showed a higher than chance accuracy for most
of the DNN layers (one-sided t-test, uncorrected p < 0.05, except
for DNN7). The identification accuracy for seen and imagined
object categories was higher than the chance level for all of the
DNN layers (one-sided t-test, uncorrected p < 0.05; re-analyzed
using the datasets from Horikawa and Kamitani, 2015), with
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FIGURE 2 | Single category feature decoding with averaged trials. (A) A schematic view of analysis procedure. The decoders trained to decode the DNN

feature values calculated from the presented images in the training dataset were applied to an averaged fMRI activity associated with a specific dream category to test

decodability of the values of the category features constructed from multiple images annotated by the dream categories. (B) Correlation coefficients between the

category feature values and the decoded feature values [error bars indicate 95% CI across feature units; two subjects pooled; three-volume (9 s) averaged fMRI

signals immediately before awakening].

the highest accuracy shown around the mid-level layers. Similar
to the results of the perception and imagery, the identification
of the dreamed object categories also showed relatively higher
accuracy at mid-level DNN layers around DNN5. However,
the accuracy tendency across layers under the dream condition
was slightly different from those under the perception and
imagery conditions, in the sense that the highest layer, DNN8,
also showed higher accuracy, whereas the DNN7 showed poor
performance, which may suggest the unique characteristic of
dream representations.

DISCUSSION

In this study, we examined whether hierarchical visual feature
representations common to perception are recruited to represent
dreamed objects in the brain. We used the decoders trained to
decode visual features of seen object images and showed that
the feature values decoded from brain activity during dreaming
positively correlated with feature values associated with dreamed
object categories at mid- to high-level DNN layers. This made

it possible to discriminate object categories in dreaming at
above-chance levels. These results reveal the recruitment of
hierarchical visual feature representations shared with perception
during dreaming.

In our analyses, we have shown that the multiple-levels
of DNN features associated with dreamed objects can be
predicted using the stimulus-trained decoders especially from
the relatively higher visual areas (Figures 2B, 3B), as in our
previous finding with imagined objects (Horikawa and Kamitani,
2015). The present results demonstrated not only semantic or
categorical representations but also feature-level representations
were recruited during dreaming to represent dreamed objects
in a manner similar to perception. While a previous study
demonstrated decoding of category information on dreamed
objects (Horikawa et al., 2013), it did not clarify whether multiple
levels of hierarchical visual feature representations are used to
represent dream contents. In contrast to that, the present study
demonstrated decoding of hierarchical visual features associated
with dreamed object categories (Figures 2B, 3B), especially for
features in mid- to high-level DNN layers (see Figure 1B for
the characteristics of feature units in these layers), providing
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FIGURE 3 | Multi-category feature decoding with individual trials. (A) A schematic view of analysis procedure. The stimulus-trained decoders were applied to

fMRI samples at each single awakening (or trial) in the dream fMRI dataset [orange areas, three-volume (9 s) averaged fMRI signals immediately before awakening].

The values of the single-category features for reported dreamed objects were averaged to construct the multi-category features for each awakening. The accuracy

was evaluated by Pearson’s correlation coefficients between feature values of the decoded and the multi-category features for the series of test samples. (B)

Correlation coefficients between multi-category features and decoded features (error bars, 95% CI across feature units; two subjects pooled).

FIGURE 4 | Time course of feature prediction. Correlation coefficients were calculated between the decoded and the category feature values for the series of test

samples (two subjects pooled; decoded from VC). The plot shows the mean feature prediction accuracy with the 9-s (three-volume) time window centered at each

point (arrowed point for main analyses; cf. ). (A) Time course of feature prediction with single category-based, averaged-trial data. (B) Time course of feature

prediction with multiple category-based, single-trial data.

empirical evidence for recruitments of hierarchical visual feature
representations during dreaming. These results further our
understanding of how dreamed objects are represented in our
brain.

Our decoding of feature-level representations of dreamed
objects allowed us to discriminate dreamed object categories,
although the accuracy is limited, without pre-specifying target
categories, and achieved predictions beyond the categories used
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FIGURE 5 | Pairwise identification analysis. (A) A schematic view of the pairwise identification analysis. Given a decoded feature vector, the correlation coefficient

was calculated between the decoded feature vector and the category feature vectors of two candidate categories (one true, the other false), and the category with a

higher correlation coefficient was selected as the predicted category (star). (B) Pairwise identification accuracy of dreamed object categories for each combination of

DNN layers and ROIs. The pairwise identification analysis was carried out for all combinations of DNN layers and ROIs. (C) Pairwise identification accuracy for the

dream (left), perception (middle), and imagery (right) datasets. The visual feature vectors decoded from VC activity were used for identification analyses [error bars,

95% CI across samples; two subjects pooled; three-volume (9 s) averaged fMRI signals immediately before awakening].

for decoder training: this characteristic was conceptualized as
“generic object decoding” in our previous brain decoding study
(Horikawa and Kamitani, 2015). This framework is also known
as the “zero-data learning” or “zero-shot learning” (Larochelle
et al., 2008) in the machine-learning field, in which a model must
generalize to classes with no training data. In the previous dream
decoding study (Horikawa et al., 2013), the target categories
to be decoded from brain activity patterns were determined
from and restricted to the reported dream contents consisted of
around 20 object categories for each subject. By contrast, we did
decoding of dreamed object categories via predictions of DNN
features. Thereby, we were able to decode arbitrary categories
once the decoders were trained, even though the fMRI data
for decoder training were collected irrespective of the reported
dream contents. Our results extended the previous results on
generic decoding of seen and imagined objects (Horikawa
and Kamitani, 2015) to dreamed objects, demonstrating the
generalizability of the generic decoding approach across different
visual experiences.

The present study extended the previous results reporting
recruitments of hierarchical visual feature representations during
volitional mental imagery (Horikawa and Kamitani, 2015) to
spontaneous mental imagery, in the sense that the feature-
level representations were recruited without volitional attempt

to visualize images. Taken together with the generalizability
of the generic decoding from task-induced brain activity to
spontaneous brain activity, we may be able to expect that
the generic decoding approach via visual feature prediction is
also applicable to decoding of visual information from other
types of spontaneously generated subjective experiences, such
as mind wandering (Smallwood and Schooler, 2015) or visual
hallucination induced by psychedelic drugs (Carhart-Harris et al.,
2016), which may help to understand the general principles of
neural representations of our visual experience.

Our demonstration of the generic decoding of dreamed object
categories indicates the commonality of hierarchical neural
representations between perception and dreaming, but there
still may be a representational difference between, perception,
imagery and dreaming as suggested from different tendency in
identification accuracy across DNN layers (Figure 5C). In our
analyses, the identification accuracy of seen and imagined objects
showed a single peak at aroundmid-level DNN layers (DNN4–7).
On the other hand, the identification accuracy of dreamed objects
showed poor accuracy at DNN7, whereas DNN8, which showed
relatively poor accuracy for the seen and imagined conditions,
showed higher accuracy (Figure 5C). Additionally, the high-
level ROIs (LOC and FFA) rather than the mid-level ROI (V4)
tended to show higher dreamed object identification accuracy for
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most of DNN layers (Figure 5B), while the identification of seen
and imagined objects showed highest accuracy from V4 activity
(Horikawa and Kamitani, 2015). Because there were differences
in test categories between the perception/imagery datasets and
dream dataset (50 test categories for perception and imagery;∼20
reported dream categories for dreaming) such difference may
partially affect the results. However, the discontinuous profile
of identification accuracy across DNN layers, relatively high
accuracy in mid- and top-level DNN layers (DNN5 and 8) and
low accuracy in DNN6 and 7, might suggest the involvement
of higher cognitive functions, such as memory and abstract
knowledge, to generate object representations during dreaming.
Our time course analyses of the feature prediction accuracy
showed the prolonged high accuracy for the high-level DNN
features during reporting periods (Figure 4), which may also
be explained by higher level cognitive functions related with
memory retrieval and verbal reporting. The associations between
dreaming and higher cognitive functions (Nir and Tononi, 2009)
may lead to robust representations that resemble the high-level
DNN layer.

While our analyses showed higher decodability for features
at mid- to high-level DNN layers from relatively higher ROIs
(Figures 2B, 3B), we were not able to provide evidence on
how low-level features of dreamed objects are represented
in lower ROIs. This was partly because our analyses were
restricted to feature representations associated with object
categories. Specifically, while the decoders were trained to decode
visual features of individual images, the decoding accuracy
was evaluated by correlation coefficients between the decoded
features and the category features. Furthermore, the decoding

from dream fMRI data was based on category-averaged brain
activity and not based on brain activity induced by a specific
image. Because of these limitations, our analyses should have
reduced the sensitivity to the information on low-level image
features. Thus, the poor accuracy for low-level DNN features
and ROIs does not necessarily mean that we should reject the
possibility of the recruitment of low-level image features in
the representation of dream contents. Whether low-level image
features, such as color and contrast, are represented in the
dreaming brain is a topic that is worth addressing in future
study.
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Encoding models are used for predicting brain activity in response to sensory stimuli with

the objective of elucidating how sensory information is represented in the brain. Encoding

models typically comprise a nonlinear transformation of stimuli to features (feature model)

and a linear convolution of features to responses (response model). While there has

been extensive work on developing better feature models, the work on developing

better response models has been rather limited. Here, we investigate the extent to

which recurrent neural network models can use their internal memories for nonlinear

processing of arbitrary feature sequences to predict feature-evoked response sequences

as measured by functional magnetic resonance imaging. We show that the proposed

recurrent neural network models can significantly outperform established response

models by accurately estimating long-term dependencies that drive hemodynamic

responses. The results open a new window into modeling the dynamics of brain activity

in response to sensory stimuli.

Keywords: encoding, fMRI, RNN, LSTM, GRU

1. INTRODUCTION

Encoding models (Naselaris et al., 2011) are used for predicting brain activity in response
to naturalistic stimuli (Felsen and Dan, 2005) with the objective of understanding how
sensory information is represented in the brain. Encoding models typically comprise two main
components. The first component is a feature model that nonlinearly transforms stimuli to features
(i.e., the independent variables used in fMRI time series analyses). The second component is
a response model that linearly transforms features to responses. While encoding models have
been successfully used to characterize the relationship between stimuli in different modalities
and responses in different brain regions, their performance usually falls short of the expected
performance of the true encoding model given the noise in the analyzed data (noise ceiling). This
means that there usually is unexplained variance in the analyzed data that can be explained solely
by improving the encoding models.

One way to reach the noise ceiling is the development of better feature models. Recently,
there has been extensive work in this direction. One example is the use of convolutional neural
network representations of natural images or natural movies to explain low-, mid- and high-level
representations in different brain regions along the ventral (Agrawal et al., 2014; Cadieu et al.,
2014; Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Güçlü and van Gerven, 2015a;
Cichy et al., 2016) and dorsal streams (Güçlü and van Gerven, 2015b; Eickenberg et al., 2016) of the
human visual system. Another example is the use of manually constructed or statistically estimated
representations of words and phrases to explain the semantic representations in different brain
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regions (Mitchell et al., 2008; Huth et al., 2012; Murphy et al.,
2012; Fyshe et al., 2013; Güçlü and van Gerven, 2015c; Nishida
et al., 2015).

Another way to reach the noise ceiling is the development
of better response models. There is a long history of
estimating hemodynamic response functions (HRFs) in fMRI
time series modeling. The standard general linear (convolution)
model used in procedures like statistical parametric mapping
(SPM) expands the HRF in terms of orthogonal kernels or
temporal basis functions that have been motivated in terms of
Volterra expansions. Indeed, commonly used software packages
such as the SPM software have (hidden) facilities to model
second-order Volterra kernels that enable modeling of non-
linear hemodynamic effects such as saturation. In reality, the
transformation from stimulus features to observed responses is
exceedingly complex because of various temporal dependencies
that are caused by neurovascular coupling (Logothetis and
Wandell, 2004; Norris, 2006) and other more elusive cognitive
or neural factors.

Here, our objective is to develop a model that can be trained
end to end, captures temporal dependencies and processes
arbitrary input sequences for time-continuous fMRI experiments
such as watching movies, listening to music or playing video
games. Such time-continuous designs are characterized by the
absence of discrete experimental events as those found in
their block or event-related counterparts. To this end, we
use recurrent neural networks (RNNs) as response models
in the encoding framework. Recently, RNNs in general and
two RNN variants—long short-term memory (Hochreiter and
Schmidhuber, 1997) and gated recurrent units (Cho et al.,
2014)—in particular have been shown to be extremely successful
in various tasks that involve processing of arbitrary input
sequences such as handwriting recognition (Graves et al.,
2009; Graves, 2013), language modeling (Sutskever et al., 2011;
Graves, 2013), machine translation (Cho et al., 2014) and
speech recognition (Sak et al., 2014). These models use their
internal memories to capture the temporal dependencies that are
informative about solving the task at hand. That is, these models
base their predictions not only to the information available at a
given time, but also to the information that was available in the
past. They accomplish this by maintaining an explicit or implicit
representation of the past input sequences and use it to make
their predictions at each time point. If these models can be used
as response models in the encoding framework, it will open a
new window into modeling brain activity in response to sensory
stimuli since the brain activity is modulated by long temporal
dependencies.

While the use of RNNs in the encoding framework has
been proposed a number of times (Güçlü and van Gerven,
2015a,b; Kriegeskorte, 2015; Yamins and DiCarlo, 2016a,b),
these proposals mainly focused on using RNNs as feature
models. In contrast, we have framed our approach in terms
of response models used in characterizing distributed or
multivariate responses to stimuli in the encoding framework.
The key thing that we bring to the table is a generic and
potentially useful response model that transforms features to
observed (hemodynamic) responses. From the perspective of

conventional analyses of functional magnetic resonance imaging
(fMRI) time series, this response model corresponds to the
convolution model used to map stimulus features (e.g., the
presence of biological motion) to fMRI responses. In other
words, the stimulus features correspond to conventional stimulus
functions that enter standard convolution models of fMRI time
series (e.g., the GLM used in statistical parametric mapping).

In brief, we know that the transformation from neuronal
responses to fMRI signals is mediated by neuronal and
hemodynamic factors that can always be expressed in terms of
a non-linear convolution. A general form for these convolutions
has been previously considered in the form of Volterra
kernels or functional Taylor expansions (Friston et al., 2000).
Crucially, it is also well known that RNNs are universal
non-linear approximators that can reproduce any Volterra
expansion (Wray and Green, 1994). This means that we can
use RNNs as an inclusive and flexible way to parameterize
the convolution of stimulus features generating hemodynamic
responses. Furthermore, we can use RNNs to model not just
response of a single voxel but distributed responses over
multiple voxels. Having established the parametric form of
this convolution, the statistical evidence or significance of
each regionally specific convolution can then be assessed using
standard (cross-validation) machine learning techniques by
comparing the accuracy of the convolution when applied to test
data after optimization with training data.

We test our approach by comparing how well a family
of RNN models and a family of ridge regression models can
predict blood-oxygen-level dependent (BOLD) hemodynamic
responses to high-level and low-level features of natural movies
using cross-validation. We show that the proposed recurrent
neural network models can significantly outperform the standard
ridge regression models and accurately estimate hemodynamic
response functions by capturing temporal dependencies in the
data.

2. MATERIALS AND METHODS

2.1. Data Set
We analyzed the vim-2 data set (Nishimoto et al., 2014),
which was originally published by Nishimoto et al. (2011). The
experimental procedures are identical to those in Nishimoto
et al. (2011). Briefly, the data set has twelve 600 s blocks of
stimulus and response sequences in a training set and nine
60 s blocks of stimulus and response sequences in a test
set. The stimulus sequences are videos (512 px × 512 px or
20◦ × 20◦, 15 FPS) that were drawn from various sources.
The response sequences are BOLD responses (voxel size = 2 ×

2 × 2.5mm3, TR = 1 s) that were acquired from the occipital
cortices of three subjects (S1, S2, and S3). The stimulus sequences
in the test set were repeated ten times. The corresponding
response sequences were averaged over the repetitions. The
response sequences have already been preprocessed as described
in Nishimoto et al. (2011). Briefly, they have been realigned to
compensate for motion, detrended to compensate for drift and
z-scored. Additionally, the first six seconds of the blocks were
discarded. No further preprocessing was performed. Regions of
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interests were localized using the multifocal retinotopic mapping
technique on retinotopic mapping data that were acquired in
separate sessions (Hansen et al., 2004). As a result, the voxels
were grouped into 16 areas. However, not all areas were identified
in all subjects (Table 1). The last 45 seconds of the blocks in the
training set were used as the validation set.

2.2. Problem Statement
Let xt ∈ R

n and yt ∈ R
m be a stimulus and a response at temporal

interval [t, t + 1], where n is the number of stimulus dimensions
and m is the number of voxel responses. We are interested in
predicting the most likely response yt given the stimulus history
Xt = (x0, . . . , xt):

ŷt = argmax
yt

Pr
(

yt
∣

∣Xt
)

(1)

= g
(

φ
(

x0
)

, . . . ,φ
(

xt
))

(2)

where Pr is an encoding distribution, φ is a feature model such
that φ (·) ∈ R

p, p is the number of feature dimensions, and g is a
response model such that g (·) ∈ R

m.
In order to solve this problem, we must define the feature

model that transforms stimuli to features and the response model
that transforms features to responses. We used two alternative
featuremodels; a scene descriptionmodel that codes for low-level
visual features (Oliva and Torralba, 2001) and a word embedding
model that codes for high-level semantic content. We used two
response model families that differ in architecture (recurrent
neural network family and feedforward ridge regression family)
(Figure 1). In contrast to standard convolution models for
fMRI time series, we are dealing with potentially very large
feature spaces. This means that in the absence of constraints the
optimization of model parameters can be ill posed. Therefore, we
use dropout and early stopping for the recurrent models, and L2

regularization for the feedforward models.

2.3. Feature Models
2.3.1. High-Level Semantic Model
As a high-level semantic model we used the word2vec
(W2V) model by Mikolov et al. (2013a,b,c). This is a
one-layer feedforward neural network that is trained for
predicting either target words/phrases from source-context
words (continuous bag-of-words) or source context-words from
target words/phrases (skip-gram). Once trained, its hidden
states are used as continuous distributed representations of
words/phrases. These representations capture many semantic
regularities. We used the pretrained (skip-gram) W2V model
to avoid training from scratch (https://code.google.com/archive/
p/word2vec/). It was trained on 100 billion-word Google News

dataset. It contains 300-dimensional continuous distributed
representations of three million words/phrases.

We used the W2V model for transforming a stimulus
sequence to a feature sequence on a second-by-second basis
as follows: First, each one second of the stimulus sequence is
assigned 20 categories (words/phrases). We used the Clarifai
service (http://www.clarifai.com/) to automatically assign the
categories rather than annotating them by hand.Clarifai provides
a web-based video recognition application, which internally
uses a pretrained deep neural network to automatically tag
the contents of the video frames on a second-by-second basis.
Then, each category is transformed into continuous distributed
representations of words/phrases. Next, these representations are
averaged over the categories. This resulted in a 300-dimensional
feature vector per second of stimulus sequence (p = 300).

2.3.2. Low-Level Visual Feature Model
As a low-level visual feature model we used the GIST
model (Oliva and Torralba, 2001). The GIST model
transforms scenes into spatial envelope representations.
These representations capture many perceptual dimensions that
represent the dominant spatial structure of a scene and have
been used to study neural representations in a number of earlier
work (Groen et al., 2013; Leeds et al., 2013; Cichy et al., 2016).
We used the implementation that is provided at: http://people.
csail.mit.edu/torralba/code/spatialenvelope/.

We used the GIST model for transforming a stimulus
sequence to a feature sequence on a second-by-second basis as
follows: First, each 16 non-overlapping 8 × 8 regions of all 15
128 × 128 frames in one second of the stimulus sequence are
filtered with 32 Gabor filters that have eight orientations and
four scales. Then, their energies are averaged over the frames.
This resulted in a 512-dimensional feature vector per second of
stimulus sequence (p = 512).

2.4. Response Models
2.4.1. Ridge Regression Family
The response models in the ridge regression family predict
feature-evoked responses as a linear combination of features.
Each member of this family differs in how it accounts for the
hemodynamic delay.

The R-C model (i) convolves the features with the canonical
hemodynamic response function (Friston et al., 1994) and (ii)
predicts the responses as a linear combination of these features:

ŷt =
(

HcFcB
⊤
)t

(3)

TABLE 1 | Number of voxels per subject and area.

V2 V3 V1 IPS V4 LOC V7 MT+ V3A V3B VO EBA OFA RSC pSTS TOS

S1 1,477 1,141 994 2,251 734 885 0 466 252 256 410 0 0 71 45 0

S2 1,659 1,360 1,043 0 1032 614 400 174 337 223 267 319 246 128 0 0

S3 1,377 1,131 1,366 893 750 408 583 263 282 225 0 131 91 8 16 41
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FIGURE 1 | Overview of the response models. (A) Response models in the RNN family. All RNN models process feature sequences via two (recurrent) nonlinear

layers and one (nonrecurrent) linear layer but differ in the type and number of artificial neurons. L-10/50/10 models have 10, 50, or 100 long short-term memory units

in both of their hidden layers, respectively. Similarly, G-10/50/10 models have 10, 50, or 100 gated recurrent units in both of their hidden layers, respectively.

(B) First-layer long short-term memory and gated recurrent units. Squares indicate linear combination and nonlinearity. Circles indicate elementwise operations. Gates

in the units control the information flow between the time points. (C) Response models in the ridge regression family. All ridge regression models process feature

sequences via one (nonrecurrent) linear layer but differ in how they account for the hemodynamic delay. R-C(TD) models convolve the feature sequence with the

canonical hemodynamic response function (and its time and dispersion derivatives). R-F model lags the feature sequence for 3, 4, 5, and 6 s and concatenates the

lagged sequences.

where Hc ∈ R
t×t is the Toeplitz matrix of the canonical

HRF. That is, it is a diagonal-constant matrix that contains the
shifted versions of the HRF in its columns. Multiplying it with
a signal corresponds to convolution of the HRF with the signal.

Furthermore, Fc =
[

φ
(

x0
)

, . . . ,φ
(

xt
)]⊤

∈ R
t×p and B ∈ R

m×p

is the matrix of regression coefficients.
The R-CTD model (i) convolves the features with the

canonical hemodynamic response function, its temporal
derivative and its dispersion derivative (Friston et al., 1998), (ii)
concatenates these features and (iii) predicts the responses as a
linear combination of these features:

ŷt =
(

[HcFc,HctFc,HcdFc]B
⊤
)t

(4)

where Hct ∈ R
t×t is the Toeplitz matrix of the the temporal

derivative of the canonical HRF, Hcd ∈ R
t×t is the Toeplitz

matrix of the the dispersion derivative of the canonical HRF and
B ∈ R

m×3p is the matrix of regression coefficients.
The R-F model is a finite impulse response (FIR) model that

(i) lags the features for 3, 4, 5, and 6 s (Nishimoto et al., 2011),
(ii) concatenates these features and (iii) predicts the responses as
a linear combination of these features:

ŷt = FfB
⊤ (5)

where Ff =
[

φ
(

xt−3
)

,φ
(

xt−4
)

,φ
(

xt−5
)

,φ
(

xt−6
)]⊤

∈ R
t×4p

and B ∈ R
m×4p is the matrix of regression coefficients.

We used the validation set for model selection (a
regularization parameter per voxel) and the training set for
model estimation (a row of B per voxel). Regularization
parameters were selected as explained in Güçlü and van Gerven
(2014). The rows of B were estimated by analytically minimizing
the L2-penalized least squares loss function. In related Bayesian
models, this corresponds to applying shrinkage priors to the
parameters (weights) of our model.

2.4.2. Recurrent Neural Network Family
The response models in the RNN family are two-layer recurrent
neural network models. They use their internal memories for
nonlinearly processing arbitrary feature sequences and predicting
feature-evoked responses as a linear combination of their second-
layer hidden states:

ŷt = ht2W
⊤ (6)

where ht2 represents the hidden states in the second layer, andW

are the weights. The RNN models differ in the type and number
of artificial neurons.

The L-10, L-50, and L-100 models are two-layer recurrent
neural networks that have 10, 50, and 100 long short-term
memory (LSTM) units (Hochreiter and Schmidhuber, 1997) in
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their hidden layers, respectively. Each LSTM unit has a cell state
that acts as its internal memory by storing information from
previous time points. The contents of the cell state are modulated
by the gates of the unit and in turn modulate its outputs. As a
result, the output of the unit is not only controlled by the present
stimulus alone, but also by the stimulus history. The gates are
implemented as multiplicative sigmoid functions of the inputs of
the unit at the current time point and the outputs of the unit at
the previous time point. That is, the gates produce values between
zero and one, which are multiplied by (a function of) the cell
state to determine the amount of information to store, forget or
retrieve at each time point. The first-layer hidden states of an
LSTM unit are defined as follows:

ht = ot ⊙ tanh
(

ct
)

(7)

ot = σ
(

Uoh
t−1 +Woφ

(

xt
)

+ bo
)

(8)

where ⊙ denotes elementwise multiplication, ct is the cell state,
and ot are the output gate activities. The cell state maintains
information about the previous time points. The output gate
controls what information will be retrieved from the cell state.
The cell state of an LSTM unit is defined as:

ct = ft ⊙ ct−1 + it ⊙ c̄t (9)

ft = σ
(

Uf h
t−1 +Wf φ

(

xt
)

+ bf
)

(10)

it = σ
(

Uih
t−1 +Wiφ

(

xt
)

+ bi
)

(11)

c̄t = σ
(

Uch
t−1 +Wcφ

(

xt
)

+ bc
)

(12)

where ft are the forget gate activities, it are the input gate
activities, and c̄t is an auxiliary variable. Forget gates control what
old information will be discarded from the cell states. Input gates
control what new information will be stored in the cell states.
Furthermore,Us andWs are the weights and bs are the biases that
determine the behavior of the gates (i.e., the learnable parameters
of the model).

The G-10, G-50, and G-100 models are two-layer recurrent
neural networks that have 10, 50, and 100 gated recurrent units
(GRU) (Cho et al., 2014) in the their hidden layers, respectively.
The GRU units are simpler alternatives to the LSTM units. They
combine hidden states with cell states and input gates with forget
gates. The first-layer hidden states of a GRU unit is defined as
follows:

ht =
(

1− zt
)

⊙ ht−1 + zt ⊙ h̄t (13)

zt = σ
(

Uzh
t−1 +Wzφ

(

xt
)

+ bz
)

(14)

rt = σ
(

Urh
t−1 +Wrφ

(

xt
)

+ br
)

(15)

h̄t = tanh
(

Uh

(

rt ⊙ ht−1
)

+Whφ
(

xt
)

+ bh
)

(16)

where zt are update gate activities, rt are reset gate activities and
h̄t is an auxiliary variable. Like the gates in LSTM units, those in
GRU units control the information flow between the time points.
As before, Us and Ws are the weights and bs are the biases that
determine the behavior of the gates (i.e., the learnable parameters
of the model).

The second-layer hidden states are defined similarly to the
first-layer hidden states except for replacing the input features
with the first-layer hidden states. For each previously identified
brain area of each subject, a separate model was trained. That
is, the voxels in a given brain area of a given subject shared
the same recurrent layers but had different weights for linearly
transforming the hidden states of the second recurrent layer to
the response predictions. We used truncated backpropagation
through time in conjunction with the optimization method
Adam (Kingma and Ba, 2014) to train the models on the
training set by iteratively minimizing the mean squared error loss
function. Dropout (Hinton et al., 2012) was used to regularize the
hidden layers. The epoch in which the validation performance
was the highest was taken as the best model. The Chainer
framework (http://chainer.org/) was used to implement the
models.

2.5. HRF Estimation
Voxel-specific HRFs were estimated by stimulating the RNN
model with an impulse. Let x−t , . . . , x0, . . . , xt be an impulse
such that x is a vector of zeros at times other than time 0
and a vector of ones at time 0. The period of the impulse
before time 0 is used to stabilize the baseline of the impulse
response. First, the response of the model to the impulse is
simulated:

[

H∗
r

]t

−t
= gr

(

x−t , . . . , x0, . . . , xt
)

(17)

where
[

H∗
r

]t

−t
=

(

H∗−t
r , . . . ,H∗0

r , . . . ,H∗t
r

)

. Then, the baseline of
the impulse response before time 0 is subtracted from itself:

[

H∗
r

]t

−t
=

[

H∗
r

]t

−t
−H∗−1

r . (18)

Next, the impulse response is divided by its maximum:

[

H∗
r

]t

−t
=

[

H∗
r

]t

−t
/max

[

H∗
r

]t

−t
. (19)

Finally, the period of the impulse response before time 0 is
discarded, and the remaining period of the impulse response is
taken as the HRF of the voxels:

[Hr]
t
0 =

[

H∗
r

]t

0
. (20)

The time when the HRF is at its maximum was taken as the
delay of the response, and the time after the delay of the response
when the HRF was at its minimum was taken as the delay of
undershoot.

2.6. Performance Assessment
The performance of a model for a voxel was defined as the cross-
validated Pearson’s product-moment correlation coefficient
between the observed and predicted responses of the voxel (r)1.
Its performance for a group of voxels was defined as the median
of its performance over the voxels in the group (r̃). The data of all

1The cross-validated correlation coefficient automatically penalizes for model

complexity and therefore can be used as a proxy for model evidence.
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subjects were concatenated prior to analyzing the performance of
the models.

In order to make sure that the differences in the performance
of a model in different areas are not caused by the differences
in the signal-to-noise ratios of the areas, the performance of
the model in an area was corrected for the median of the
noise ceilings of the voxels in the area (r̃∗) (Kay et al., 2013).
Briefly, we performed Monte Carlo simulations in which the
correlation coefficient between a signal and a noisy signal is
estimated. In each simulation, both the signal and the noise
were drawn from a Gaussian distribution. The noisy signal
was taken to be the summation of the signal sample and
the noise sample. The parameters of the signal and the noise
distributions were estimated from the 10 repeated measurements
of the responses to the same stimuli. The noise distribution
was assumed to be zero mean, and its variance was taken
to be the variance of the standard errors of the data. The
mean and the variance of the signal distribution were given
as the mean of the data, and the difference between the
variance of the data and the noise distribution, respectively.
The medians of the correlation coefficients that were estimated
in the simulations were taken to be the noise ceilings of
the voxels, indicating the maximum performance that can be
expected from the perfect model due to the noise in the
data.

Permutation tests were used for comparing the performance
of a model against chance level. First, data were randomly
permuted over time for 200 times. Then, a separate model was
trained and tested for each of the 200 permutations. Finally, the
p-value was taken to be the fraction of the 200 permutations
whose performance was greater than the actual performance. The
performance was considered significant at α = 0.05 if the p-value
was less than 0.05 (Bonferroni corrected for number of areas).

Bootstrapping was used for comparing the performance of
two models over voxels in a ROI (i.e., all voxels or voxels
in an area). For 10,000 repetitions, bootstrap samples (i.e.,
voxels) were drawn from the ROI with replacement, and the
performance difference between the models over these voxels
were estimated. The performance difference was considered
significant at α = 0.05 if the 95% confidence interval of the
sampled statistic did not cover zero (Bonferroni corrected for
number of models).

3. RESULTS

3.1. Comparison of Response Models
We evaluated the response models by comparing the
performance of the response models in the (recurrent)
RNN family and (feed-forward) ridge regression family in
combination with the (high-level) W2V model and the (low-
level) GIST model. Using two feature models of different levels
ruled out any potential biases in the performance difference of the
response models that can be caused by the feature models. Recall
that the models in the RNN family (G/L-10/50/100 models)
differed in the type and number of artificial neurons, whereas the
models in the ridge regression family (R-C/R-CTD/R-F models)
differed in how they account for the hemodynamic delay.

Once the best response models among the RNN family
and the ridge regression family were identified, we first
compared their performance in detail. Particular attention was
paid to the voxels where the performance of the models
differed by more than an arbitrary threshold of r = 0.1.
We then compared the performance of the best response
model among the RNN family over the areas along the visual
pathway.

3.1.1. Comparison of the Response Models in

Combination with the Semantic Model
Figure 2 compares the performance of all response models
in combination with the W2V model. The performance
of the models in the RNN family that had 50 or 100
artificial neurons was always significantly higher than that
of all models in the ridge regression family (p ≤ 0.05,
bootstrapping). However, the performance of the models in
the same family was not always significantly different from
each other. The performance of the G-100 model was the
highest among the RNN family (r̃ = 0.16), and that of the
R-C model was the highest among the ridge regression family
(r̃ = 0.12).

The performance of the G-100 model and the R-C model
differed from each other by more than the chosen threshold of
r = 0.1 in 30% of the voxels. The performance of the G-100
model was higher in 78% of these voxels (1r̃ = 0.17), and that of
the R-Cmodel was higher in 22% of these voxels (1r̃ = 0.14).

Figure 3 compares the performance of the G-100 model in
combination with the W2Vmodel over the areas along the visual
stream. While the performance of the model was significantly
higher than chance throughout the areas (p ≤ 0.05, permutation
test), it was particularly high in downstream areas. For example,
it was the highest in TOS (r̃∗ = 0.55), OFA (r̃∗ = 0.38) and EBA
(r̃∗ = 0.35), and the lowest in pSTS (r̃∗ = 0.14), IPS (r̃∗ = 0.20)
and V1 (r̃∗ = 0.24).

3.1.2. Comparison of the Response Models in

Combination with the Low-Level Feature Model
Figure 4 compares the performance of the all response models in
combination with the GISTmodel. The trends that were observed
in this figure were similar to those that were observed in Figure 2.
TheG-100model was the best among the RNN family (r̃ = 0.18),
and theR-Cmodel was the best among the ridge regression family
(r̃ = 0.14).

The G-100 model and the R-C differed from each other by
more than the threshold of r = 0.1 in 27% of the voxels. The
G-100 model was better in 66% of these voxels (1r̃ = 0.17). The
R-Cmodel was better in 34% of these voxels (1r̃ = 0.14).

Figure 5 compares the performance of the G-100 model in
combination with the GIST model over the areas along the
visual pathway. While the G-100 model performed significantly
better than chance throughout the areas (p ≤ 0.05, permutation
test), it performed particularly well in upstream visual areas. For
example, it performed the best in V1 (r̃∗ = 0.39), V2 (r̃∗ = 0.35)
and V3 (r̃∗ = 0.35), and the worst in TOS (r̃∗ = 0.13), IPS
(r̃∗ = 0.16) and pSTS (r̃∗ = 0.16).
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FIGURE 2 | Comparison of the response models in combination with the W2V model. (A) Median performance of response models in RNN (G-X and L-X ) and

ridge regression (R-X ) families over all voxels. Error bars indicate 95% confidence intervals (bootstrapping). Asterisks indicate significant performance difference. All of

the individual bars depict significantly above chance-level performance (p < 0.05, permutation test). (B) Performance of best response models in RNN (G-100 model)

and ridge regression (R-C model) families over individual voxels. Points indicate voxels. Gray points indicate voxels where the performance difference is less than

r = 0.1. Lines indicate (median) performance over all voxels.

FIGURE 3 | Comparison of the G-100 model in combination with the W2V model in different areas. (A) Median noise ceiling controlled performance over all

voxels in different areas. Error bars indicate 95% confidence intervals (bootstrapping). All of the individual bars depict significantly above chance-level performance

(p < 0.05, permutation test). (B) Projection of performance to cortical surfaces of S3.

3.2. Comparison of Feature Models
Once the efficacy of the proposed RNN models was positively
assessed, we performed a validation experiment in which we
assessed the extent to which these models can replicate the earlier
findings on the low-level and high-level subdivision of the visual
cortex. This was accomplished by identifying the voxels that
prefer semantic representations vs. low-level representations.
Concretely, we compared the performance of the W2V model

and the GIST model in combination with the G-100 model
(Figure 6).

The performance of the models was significantly different
in all areas along the visual stream except for pSTS and V3A
(p ≤ 0.05, bootstrapping). This difference was in favor of
semantic representations in downstream areas and low-level
representations in upstream areas. The largest difference in
favor of semantic representations was in TOS (1r̃ = 0.11),
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FIGURE 4 | Comparison of the response models in combination with the GIST model. (A) Median performance of response models in RNN (G-X and L-X ) and

ridge regression (R-X ) families over all voxels. Error bars indicate 95% confidence intervals (bootstrapping). Asterisks indicate significant performance difference. All of

the individual bars depict significantly above chance-level performance (p < 0.05, permutation test). (B) Performance of best response models in RNN (G-100 model)

and ridge regression (R-C model) families over individual voxels. Points indicate voxels. Gray points indicate voxels where the performance difference is less than

r = 0.1. Lines indicate median performance over all voxels.

FIGURE 5 | Comparison of the G-100 model in combination with the GIST model in different areas. (A) Median noise ceiling controlled performance over all

voxels in different areas. Error bars indicate 95% confidence intervals (bootstrapping). All of the individual bars depict significantly above chance-level performance

(p < 0.05, permutation test). (B) Projection of performance to cortical surfaces of S3.

OFA (1r̃ = 0.08) and MT+ (1r̃ = 0.04), and low-level
representations was in V1 (1r̃ = 0.10), V2 (1r̃ = 0.07) and
V3 (1r̃ = 0.05).

Thirty-nine percent of the voxels preferred either
representation by more than the arbitrary threshold of
r = 0.1. Thirty-four percent of these voxels preferred semantic
representations (1r̃ = 0.16), and 66% percent of these voxels
preferred low-level representations (1r̃ = 0.18).

These results are in line with a large number of earlier work
that showed similar dissociations between the representations of

the upstream and downstream visual areas (Mishkin et al., 1983;
Naselaris et al., 2009; DiCarlo et al., 2012; Güçlü and van Gerven,
2015a).

3.3. Analysis of Internal Representations
Next, to gain insight into the temporal dependencies captured
by the G-100 model, we analyzed its internal representations
(Figure 7).

First, we investigated how the hidden states of the
RNN depend on its inputs and output. We constructed
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FIGURE 6 | Comparison of the feature models in combination with the G-100 model. (A) Median performance difference over all voxels in different areas.

Asterisks indicate significant performance difference. Error bars indicate 95% confidence intervals (bootstrapping). (B) Performance over individual voxels. Points

indicate voxels. Gray points indicate voxels where performance difference is less than r = 0.1. Lines indicate median performance over all voxels. (C) Projection of

performance difference to cortical surfaces of S3.

representational dissimilarity matrices (RDMs) of the stimulus
sequence in the test set at different stages of the processing
pipeline and averaged them over subjects (Kriegeskorte et al.,
2008). Per feature model, this resulted in one RDM for the
features, two RDMs for the layer 1 and layer 2 hidden states and
one RDM for the predicted responses. We correlated the upper
triangular parts of the RDMs with one another, which resulted
in a value indicating how much the hidden states of the RNN
were modulated by its inputs and how much they modulated
its outputs at a given time point. We found a gradual increase
in correlations of the RDMs. That is, the RDMs at each stage
were more correlated with those at the next stage compared
to those at the previous stages. Importantly, the hidden state
RDMs were highly correlated with the predicted response RDMs
(r = 0.61 and r = 0.93 for layers 1 and 2, respectively) but less
so with the feature RDMs (r = 0.39 and r = 0.21 for layers
1 and 2, respectively). This means that while the hidden states
of the RNN modulated its outputs at a given time point, they

were not modulated by its inputs to the same extent at the same
time point. This suggests that a substantial part of the output
at a given time-point is not directly related to the input at the
same time-point, but instead to previous time-points. That is,
the RNN learned to use the input history to make its predictions
as expected.

Then, we investigated which time points in the input history
were used by the RNN to make its predictions. We cross-
correlated each hidden state with each stimulus feature, and
averaged the cross-correlations over the features, which resulted
in a value indicating how much a hidden state is selective to
different time points in the input history. The time point at which
this value was at its maximumwas taken as the optimal lag of that
hidden unit. We found that different hidden units had different
optimal lags. The majority of the hidden units had optimal lags
up to -20 s, which are likely capturing the hemodynamic factors.
However, there was a non-negligible number of hidden units with
optimal lags beyond this period, which might be capturing other
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FIGURE 7 | Internal representations of the G-100 model. (A) Correlation between representational dissimilarity matrices of layer 1 and layer 2 hidden states with

each other as well as with those of features and predicted responses. (B) Temporal selectivity of layer 1 and layer 2 hidden units. Points indicate lags at which

cross-correlations between hidden states and features are highest.

cognitive/neuronal factors or factors related to stimulus/feature
statistics. It should be noted that not all hidden units, in particular
those with extensive lags, can be attributed to any of these factors,
and their behavior might be induced by model definition or
estimation. Furthermore, the optimal lags of the hidden units in
the W2V based model were on average significantly higher than
those in the GIST based model (µ = −9.6 s vs. µ = −4.9 s,
p < 0.05, two-sample t-test), which might reflect the differences
in the statistics of the features that the models are based on. That
is, high-level semantic features tend to be more persistent than
the low-level structural features across the input sequence. For
example, over a given video sequence, distribution of objects in
a scene change relatively slowly compared to that of the edges in
the scene.

3.4. Estimation of Voxel-Specific HRFs
Traditionally, models have used analytically derived (Friston
et al., 1998) or statistically estimated (Dale, 1999; Glover, 1999)
HRFs such as the linear models considered here. Estimation
of voxel-specific HRFs is an important problem since using
the same HRF for all voxels ignores the variability of the
hemodynamic response across the brain, which might adversely
affect themodel performance. Recent developments have focused
on the derivation and estimation of more accurate HRFs. For
example, Aquino et al. (2014) has shown that HRFs can be
analytically derived from physiology, and Pedregosa et al. (2015)
has shown that HRFs can be efficiently estimated from data.
Note that, while the methods for statistically estimating HRFs
are particularly suited for use in block designs and event related
designs, they are less straightforward to use in continuous designs
such as the one considered here.

As demonstrated in the previous subsection, one important
advantage of the response models in the RNN family is that they
can capture certain temporal dependencies in the data, which

might correspond to the HRFs of voxels. Here, we evaluate
the voxel-specific HRFs that are obtained by stimulating the
G-100 model with an impulse. We used both feature models in
combination with the G-100 model to estimate the HRFs of the
voxels where the performance of any model combination was
significantly higher than chance (51% of the voxels, p ≤ 0.05,
Student’s t-test, Bonferroni correction) (Figure 8). TheW2V and
G-100models were used to estimate the HRFs of the voxels where
their performance was higher than that of the GIST and G-100
models, and vice versa.

It was found that the global shape of the estimated HRFs
was similar to that of the canonical HRF. However, there was a
considerable spread in the estimated delays of responses and the
delays of undershoots (median delay of response= 6.57± 0.02 s,
median delay of undershoot = 16.95 ± 0.04 s), with the delays
of responses being significantly correlated with the delays of
undershoots (Pearson’s r = 0.45, p ≤ 0.05, Student’s t-test).

These results demonstrate that RNNs can not only learn
(stimulus) feature-response relationships but also can estimate
HRFs of voxels, which in turn demonstrate that the nonlinear
temporal dynamics that are learned by the RNNs capture
biologically relevant temporal dependencies. Furthermore, the
variability in the estimated voxel-specific HRFs revealed by
the recurrent models might provide a partial explanation of
the performance difference between the recurrent and ridge
regression models since the ridge regression models use fixed
or restricted HRFs, making it difficult for them to take such
variability into account.

4. DISCUSSION

Understanding how the human brain responds to its
environment is a key objective in neuroscience. This study
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FIGURE 8 | Estimation of the hemodynamic response functions. The G-100 model was stimulated with an impulse. The impulse response was processed by

normalizing its baseline and scale. The result was taken as the HRF. (A) Median hemodynamic response functions of all voxels in different areas. Error bands indicate

68% confidence intervals (bootstrapping). Different colors indicate different areas. Dashed line indicates canonical hemodynamic response function. (B) Delays of

responses and undershoots of all voxels. Black lines indicate canonical delays.

has shown that recurrent neural networks are exquisitely capable
of capturing how brain responses are induced by sensory
stimulation, outperforming established approaches augmented
with ridge regression. This increased sensitivity has important
consequences for future studies in this area.

4.1. Testing Hypotheses about Brain
Function
Like any other encodingmodel, RNN based encodingmodels can
be used to test hypotheses about neural representations (Naselaris
et al., 2011). That is, they can be used to test whether a particular
feature model outperforms alternative feature models when it
comes to explaining observed data. As such, we have shown that
a low-level visual feature model explains responses in upstream
visual areas well, whereas a high-level semantic model explains
responses in downstream visual areas well, conforming to the
well established early and high-level subdivision of the visual
cortex (Mishkin et al., 1983; Naselaris et al., 2009; DiCarlo et al.,
2012; Güçlü and van Gerven, 2015a).

Furthermore, RNN-based encoding models can also be used
to test hypotheses about the temporal dependencies between
features and responses. For example, by constraining the
temporal memory capacities of the RNN units, one can identify
the optimal scale of the temporal dependencies that different
brain regions are selective to.

Here, we used RNNs as response models in an encoding
framework. That is, they were used to predict responses
to features that were extracted from stimuli with separate
feature models. However, use cases of RNNs are not limited
to this setting. For example, RNN models can be used as
feature models instead of response models in the encoding
framework. Like CNNs, RNNs are being used to solve various

problems in fields ranging from computer vision (Gregor
et al., 2015) to computational linguistics (Zaremba et al.,
2014). Internal representations of task-optimized CNNs were
shown to correspond to neural representations in different brain
regions (Kriegeskorte, 2015; Yamins and DiCarlo, 2016b). It
would be interesting to see if the internal representations of task-
based RNNs have similar correlates in the brain. For example, it
was recently shown that RNNs develop representations that are
reminiscent of their biological counterparts when they learn to
solve a spatial navigation task (Kanitscheider and Fiete, 2016).
Such representations may turn out to be predictive of brain
responses recorded during similar tasks.

4.2. Limitations of RNNs for Investigating
Neural Representations
RNNs can process arbitrary input sequences in theory. However,
they have an important limitation in practice. Like any
other contemporary neural network architecture, typical RNN
architectures have a very large number of free parameters.
Therefore, a very large amount of training data is required for
accurately estimating RNN models without overfitting. While
there are several methods to combat overfitting in RNNs like
different variants of dropout (Hinton et al., 2012; Zaremba et al.,
2014; Semeniuta et al., 2016), it is still an important issue to which
particular attention needs to be paid.

This can also be the reason why gated recurrent unit
architectures were shown to outperform LSTM architectures.
That is, the performance difference between the two types
of architectures is likely to be caused by difficulties in
model estimation in the current data regime rather than one
architecture being better suited to the problem at hand than the
other.
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This also means that RNN models will face difficulties when
trying to predict responses to very high-dimensional stimulus
features such as the internal representations of convolutional
neural networks which range from thousands to hundreds
of thousands dimensions. For such features, dimensionality
reduction techniques can be utilized for reducing the feature
dimensionality to a range that can be handled with RNNs in
scenarios with either insufficient computational resources or
training data.

Linear response models have been used with great success in
the past for gaining insights into neural representations. They
have been particularly useful since linear mappings make it easy
to interpret factors driving response predictions. One might
argue that the nonlinearities introduced by RNNs make the
interpretation harder compared to linear mappings. However,
the relative difficulty of interpretation is a direct consequence
of more accurate response predictions, which can be beneficial
in certain scenarios. For example, it was shown that systematic
nonlinearities that are not taken into account by linear mappings
can lead to less accurate response predictions and tuning
functions of V1 voxels (Vu et al., 2011). Furthermore, since
more accurate response predictions lead to higher statistical
power, the improved model fit afforded by RNNs might make
detection ofmore subtle effects possible. Moreover, when the goal
is to compare different feature models, such as the GIST and
W2V models used here, maximizing explained variance might
become the main criterion of interest. That is, linear models
might lead to misleading performance differences between the
encoding models in the cases where their assumptions about
the underlying temporal dynamics do not hold. In such cases,
it would be particularly important to fit the response models as
accurately as possible as to ensure that the observed performance
difference between two encoding models is driven by their
underlying feature representations and not suboptimal model
fits. Therefore, RNNs will be particularly useful in settings
where temporal dynamics are of primary interest. Finally,
combining the present work with recent developments on
understanding RNN representations (Karpathy et al., 2015)
is expected to improve the interpretations of factors driving
response predictions.

4.3. Capturing Temporal Dependencies
RNNs can use their internal memories to capture the temporal
dependencies in data. In the context of modeling the dynamics
of brain activity in response to naturalistic stimuli, these
dependencies can be caused by factors such as neurovascular
coupling or stimulus-induced cognitive processes. By providing
an RNN with an impulse on the input side, it was shown
that, effectively, the RNN learns to represent voxel-specific
hemodynamic responses. Importantly, the RNNs allowed us to
estimate these HRFs from data collected under a continuous
design. To the best of our knowledge this is the first time
it has been shown that this is possible in practice. By
analyzing the internal representations of an RNN, it was
also shown that the RNN learns to represent information
from stimulus features at past time points beyond the
range of neurovascular coupling. Hence, the predictions of

observed brain responses are likely induced by stimulus-
related, cognitive or neural factors on top of the hemodynamic
response.

4.4. Isolating Neural and Hemodynamic
Components
In the introduction, we motivated the use of RNNs as a generic
parameterization of any non-linear convolution of stimulus
features to hemodynamic responses. Crucially, this could cover
both neuronal and hemodynamic convolution. In other words,
our black box approach allows for a neuronal convolution of
stimulus feature input to produce a neuronal response that is
subsequently convolved by hemodynamic operators to produce
the observed outcome. This facility may explain the increased
cross-validation accuracy observed in our analyses (over and
above more restricted models of hemodynamic convolution).
In other words, the procedure detailed in this paper can
accommodate neuronal convolutions that may be precluded in
conventional models.

The cost of this flexibility is that we cannot separate the
neuronal and hemodynamic components of the convolution.
This follows from the fact that the RNN parameterization
does not make an explicit distinction between neuronal
and hemodynamic processes. To properly understand the
relative contribution of these formally distinct processes,
one would have to use a generative model approach with
biologically plausible prior constraints on the neuronal and
hemodynamic parts of the convolution. This is precisely
the objective of dynamic causal modeling that equips
a system of neuronal dynamics (and implicit recurrent
connectivity) with a hemodynamic model based upon
known biophysics (Friston et al., 2003). It would therefore
be interesting to examine the form of RNNs in relation
to existing dynamic causal models that have a similar
architecture.

4.5. Conclusions
We have shown for the first time that RNNs can be used to
predict how the human brain processes sensory information.
Whereas classical connectionist research has focused on the
use of RNNs as models of cognitive processing (Elman, 1993),
the present work has shown that RNNs can also be used
to probe the hemodynamic correlates of ongoing cognitive
processes induced by dynamically changing naturalistic
sensory stimuli. The ability of RNNs to learn about long-
range temporal dependencies provides the flexibility to
couple ongoing sensory stimuli that induce various cognitive
processes with delayed measurements of brain activity
that depend on such processes. This end-to-end training
approach can be applied to any neuroscientific experiment
in which sensory inputs are coupled to observed neural
responses.

4.6. Data Sharing
The data set that was used in this paper was originally published
in Nishimoto et al. (2011) and is available at Nishimoto et al.
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(2014). The code that was used in this paper is provided at http://
www.ccnlab.net/.
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