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Preface

In a world defined by digital interconnectivity, data privacy and security principles 
play an increasingly critical role in personal, organizational, and societal interactions. 
Today, nearly every action – from routine email exchange to a complex financial 
transaction – creates digital traces that hold immense value and introduce risks. As 
companies and institutions leverage these digital footprints for insights, innovations, 
and enhanced services, they face mounting responsibilities and challenges in manag-
ing the sensitivity of these data. Therefore, data privacy and security have emerged as 
fundamental concerns, as important as the advancements they seek to support.  

Data Privacy and Security – Principles and Applications is a collection of discussions 
and insights that tackle the ever-changing world of data privacy and security. It brings 
together voices from various fields, including technology, law, and policy, offering a 
mix of viewpoints on essential principles, new ideas, and the rules that guide them. 
This volume aims to help readers understand the important issues surrounding data 
security and privacy while highlighting the need for real-world solutions as we deal 
with the challenges of our digital lives.

As we rely more on digital tools, securing systems that protect our personal informa-
tion and freedoms has become important. The chapters in the book explore data 
privacy and security in different areas, like healthcare, finance, artificial intelligence, 
and the Internet of Things (IoT). Each chapter looks at important topics, covering 
everything from basic security practices to new ways of keeping our data safe as 
technology changes. Together, these chapters show how essential it is to balance new 
ideas with ethical responsibility in data privacy.  

In Chapter 1, “Introductory Chapter: Text-Based Adversarial Attacks and Defense,” 
Sen & Waghela explore the rising challenges posed by adversarial attacks on Natural 
Language Processing (NLP) systems. The authors discuss how these attacks exploit 
the structure and semantics of text data to mislead machine learning models. Several 
attack schemes, such as word substitution, character-level manipulation, and sen-
tence modification, are presented, and their defence strategies are discussed. The 
authors also emphasize the need for adaptive, privacy-aware safeguards to improve 
the robustness and resilience of current NLP systems.  

In Chapter 2, “Privacy in Federated Learning,” Sen et al., discuss various challenges in 
preserving privacy of user data in Federated Learning. The authors focus on several 
vulnerabilities in Federated Learning like data reconstruction, model inversion 
attacks and membership inference. Several privacy-preserving techniques such as dif-
ferential privacy, secure multi-arty computation, and homomorphic encryption, are 
also explored. The chapter also examines how regulatory frameworks, like General 
Data Protection Regulation (GDPR), influence privacy standards in Federated 
Learning.     



In Chapter 3, “Privacy-Preserving Algorithms in Distributed Optimization Problems,” 
Huang et al. address the issue of privacy preservation in distributed optimization, 
specifically over unbalanced directed networks. The authors introduce two algo-
rithms, PP-DOAGT and SD-Push-Pull, to balance performance with privacy. While 
PP-DOAGT is designed to provide privacy over infinite iterations, SD-Push-Pull 
ensures privacy over finite iterations. 

In Chapter 4, “Information Privacy Rights in India: A Study of the Digital Personal 
Data Protection Act, 2023,” Bisht & Sreenivasulu critically evaluate the Digital 
Personal Data Protection Act, 2023 (DPDP Act) of India and assess its effectiveness in 
safeguarding individual information privacy. The author reviews key definitions, data 
fiduciary obligations, individual rights, penalties for violations, and the enforcement 
mechanisms within the Act. The authors also assess the adequacy of the DPDP ACT in 
upholding privacy rights in India’s digitally connected landscape. 

In Chapter 5, “One for All in Privacy Law: A Relational View on Privacy Based on 
the Ethics of Care,” Boeken defines privacy from an individualistic and relational 
perspective and shows how privacy affects groups and interconnected individuals. 
The author proposes an approach to privacy protection that respects relationships 
and context, considering privacy as a collective right rather than a personal one. The 
author also argues that privacy loss for one impacts all.  

In Chapter 6, “Enhancing Smart Grid Data Utilization within the Internet of Things 
Paradigm: A Cyber-Physical Security Framework,” Hu & Su examine the cyber-
physical security challenges introduced by the Internet of Things (IoT) integration in 
smart grids. The authors discuss key IoT components and potential vulnerabilities in 
smart grid data security and propose a dual-layer security framework with an online 
intrusion detection system. By enhancing data security, the proposed scheme enables 
the users to fully utilize IoT in smart grids.  

The volume is intended for a broad readership, including students, researchers, and 
professionals in computer science, cybersecurity, information technology, and law. 
For practitioners, this book offers practical insights supporting effective data privacy 
and security measures. Policymakers and regulators will also find value in under-
standing how technical and legal perspectives on data protection intersect, enabling 
them to formulate policies that address real-world challenges. 

As data becomes ever more critical to personal and professional life, the data privacy 
and security field will continue to evolve. Future technologies, such as quantum 
computing, will demand new standards for data protection, while innovations in AI 
and other advanced fields will require adaptable privacy and security strategies.

I am confident that the chapters in this book will encourage readers to consider both 
data security practices and future possibilities. A commitment to ongoing research, 
regulatory alignment, and public awareness is essential for a future where privacy 
and security are held to the highest standards. In an increasingly digital world, our 
shared responsibility to protect personal data is more important than ever, and I hope 
this book inspires further innovation and thoughtful approaches to data privacy and 
security.
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Chapter 1

Introductory Chapter: Text-Based 
Adversarial Attacks and Defense
Jaydip Sen and Hetvi Waghela

1. Introd uction

In recent years, machine learning (ML) and artificial intelligence (AI) have seen 
extraordinary progress, leading to their integration into critical applications in vari-
ous fields such as healthcare, finance, cybersecurity, and personal data protection. 
As these models become more popular, so do threats that exploit their vulnerabilities. 
Adversarial Machine Learning (AML) is one such challenge [1]. AML involves deliber-
ately crafting inputs that subtly alter this input data to mislead an ML model forcing 
it to make wrong predictions. These threats pose serious risks to the security, privacy, 
and integrity of ML-based systems.

While adversarial attacks on image classification models are relatively well-studied 
in the literature, adversarial text attacks have attracted the attention of researchers due 
to the complexities of natural language processing (NLP) systems. Text data have unique 
characteristics, such as discrete tokens, syntax, and semantics, making adversarial text 
attacks more challenging to detect and defend against. However, with applications rang-
ing from automated chatbots and sentiment analysis to spam filters and fraud detection, 
protecting against adversarial text attacks has become a critical requirement.

Adversarial text attacks can be broadly categorized into two types based on the 
attacker’s access to the model: white-box attacks and black-box attacks [2]. While 
white-box attacks allow attackers full access to the model’s architecture and param-
eters, their black-box counterparts rely only on input-output interactions. Hence, 
black-box attacks are more difficult to launch and they are feasible only through 
methods such as query-based exploitation. Text attacks are also classified based on 
their approach into three categories as follows:

1. Word-level substitution: This approach involves replacing specific words with 
synonyms or closely related terms to alter the model’s prediction.

2. Character-level perturbation: Changing individual letters or characters in a way 
that remains mostly readable but confuses the model.

3. Sentence-level modification: This type of attack involves rearranging sentences 
or adding extra clauses without altering the original meaning of the text.

These methods manipulate the input without necessarily making it nonsensical, pos-
ing unique challenges to models that must interpret context and semantics correctly.
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Unlike adversarial attacks on image classifiers, where continuous pixel manipula-
tions can deceive models, text-based attacks involve discrete manipulations that must 
maintain the original input’s linguistic structures and semantics. Furthermore, NLP 
models rely heavily on word embeddings that represent words in a high-dimensional 
space, making it challenging to ensure that minor input changes still align with the 
intended semantic meaning while evading detection.

These constraints mean that adversarial text attacks require a delicate balance of 
linguistic manipulation, often leveraging synonym replacement, paraphrasing, or 
intentional misspellings, to introduce ambiguity that ML models fail to handle.

2.  Related work

As adversarial attacks become more common in NLP, researchers have put consid-
erable effort into developing effective defense schemes. This section provides a brief 
overview of some of these mechanisms.

Jin et al. examine how well BERT [3] models handle adversarial text attacks in 
tasks like classification and entailment [4]. The authors introduce TextFooler, a 
powerful attack that successfully tricks BERT-based NLP models.

Ren et al. present a method for creating adversarial text examples by probability-
weighted word saliency [5]. This technique identifies keywords in the input text that 
have a strong influence on the model’s output and then alters them in a way to launch 
an effective adversarial attack.

Waghela et al. introduce the Modified Word Saliency-Based Adversarial Attack 
(MWSAA), a new method that targets text classification models by selectively 
altering input text while keeping the original meaning unchanged [6]. This approach 
improves the attack’s effectiveness by using contextual embeddings and preserving 
semantic coherence. In another study, the authors propose a scheme for crafting 
adversarial text samples by combining saliency, attention, and semantic similarity 
[7]. Further, the authors propose a refined method for attacking the BERT model 
using Projected Gradient Descent (PGD) [8], which optimizes the attack [9].

Wei et al. introduce TextBugger, a scheme designed to create adversarial text 
samples by making small changes to the input text, which can lead to misclassification 
or unexpected behavior in different NLP systems [10].

Liu et al. propose a method to create adversarial examples that can deceive mul-
tiple machine-learning models [11]. The approach aims to keep modifications to the 
input as small as possible so that the altered examples are most likely able to mislead a 
range of models and datasets.

Jia and Liang present a method for designing adversarial samples for checking 
the robustness of reading comprehension systems [12]. The scheme involves making 
small changes to passages and questions to trigger incorrect answers from the models. 
This attack demonstrates how vulnerable the current reading comprehension systems 
are to adversarial text attacks.

Chang et al. present TextGuise, an adaptive approach for creating adversarial 
examples that target text classification models [13]. The attack scheme utilizes 
feedback iteratively from the model and bypasses detection to increase its adversarial 
impact.

Besides the methods mentioned above, there are several other studies done by 
researchers using different techniques like word substitution [14–17], word insertion 
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[17–19], word swapping [20, 21], phrase adjustments [22], sentence modifications 
[23, 24], syntactic tweaks [25, 26], and contextual changes [27, 28].

Designing a robust defense system to counter adversarial text attacks is not an 
easy task. It requires the preservation of linguistic integrity while having the ability to 
detect subtle manipulations in the input text. Researchers have carried out extensive 
research on adversarial defense. In the following, some of the well-known defense 
schemes are mentioned.

Yang and Li propose a scheme to improve the resilience of NLP systems that 
identifies and corrects semantic mistakes in text that have been altered by adversarial 
attacks [29]. The key advantage of the approach is its emphasis on maintaining the 
meaning of the text, which is critical for accurate text classification.

Li and Li explore how deep ensemble methods can improve the strength of 
malware detection systems to defend against adversarial attacks [30]. The defense 
strategy proposed by the authors uses a combination of several deep learning models, 
each trained on adversarial examples.

Liu and Lane propose a defense scheme to enhance the performance of task-
oriented dialog models using adversarial learning [31]. The mechanism involves train-
ing the dialog model to create human-like responses by incorporating a discriminator. 
The discriminator checks the quality of the reply from the system.

Zhao et al. present a novel approach to make the NLP system robust against adver-
sarial attacks [32]. The scheme involves causal intervention that focuses on altering 
the causal relationship with the input data to counteract the adversarial changes 
introduced by the attack.

Shafahi et al. present a method that boosts the efficiency of adversarial training 
of NLP systems to improve their robustness against attacks [33]. The scheme uses 
gradients from regular training steps to design adversarial samples, reducing the 
computational overhead. The major contribution of this proposition is its ability to 
train robust models while keeping resource usage low.

Du et al. demonstrate a strong adversarial training scheme that can tackle attacks 
at the word level on an NLP system [34]. The proposed approach by the authors gen-
erates adversarial examples by slightly changing words in the input text. The model is 
then trained on the generated adversarial samples to introduce robustness.

Huang and Chen present an adversarial defense for text classifiers by using word 
embeddings based on the concept of a semantic associative field [35]. The proposed 
scheme attempts to retain the meaning of the input text by embedding words in a 
way that highlights their connections. This makes it hard for adversarial changes to 
misrepresent the intended meaning of the input text.

Li et al. present a new method called DiffuseDef to protect NLP systems from 
adversarial text attacks [36]. The approach is based on the use of diffusion models to 
improve the robustness of NLP systems. A controlled amount of noise is introduced to 
the input data, which finally reduces the effects of adversarial changes.

Zhang et al. provide a comprehensive overview of adversarial text attacks and 
their defense strategies for NLP systems [37]. The authors discuss various methods for 
creating adversarial examples that can deceive NLP models and various approaches to 
defend against those attacks.

Wang et al. introduce TextFirewall, a robust defense system designed to protect 
sentiment classification tasks from adversarial attacks [38]. The proposed framework 
combines several defense strategies, such as adversarial training and input transfor-
mation, to defend text classifiers against adversarial threats.
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While the current defense schemes against adversarial text attacks have shown 
some effectiveness, they also have their drawbacks. The adversarial training-based 
schemes [39] usually lead to higher computational overheads, and they may not 
generalize well on new types of attacks. Techniques like defensive distillation [40] 
and gradient masking [41] attempt to hide the model’s decision boundaries and make 
adversarial perturbations difficult to succeed. However, these methods cannot 
defend against more sophisticated adversarial attacks. Ensemble methods combine 
predictions from multiple models for enhanced robustness [42]. However, they 
depend on fixed configurations and usually perform poorly under different attack 
strategies.

3.  Conclusion and future directions

Adversarial text attacks are now a major topic of research in NLP. This focus has 
grown because more fields, like healthcare, finance, customer services, and law, 
are using large language models (LLMs) in their daily work. These models support 
tasks like sentiment analysis, spam detection, machine translation, and automated 
customer service. However, adversarial attacks reveal serious weaknesses in NLP 
systems. These attacks can reduce model accuracy, affect user trust, and raise privacy 
concerns. To make NLP systems safer and more dependable, effective defense  
methods against these attacks are needed.

Privacy is a key concern in the context of adversarial attacks. In sensitive areas like 
healthcare, law, and finance, systems often handle highly confidential information. 
If adversarial manipulation causes these models to misinterpret data, the risks are 
serious. For example, attacks that mislead diagnostic tools could lead to incorrect 
medical advice, putting patient safety at risk. In finance, adversarial attacks might 
trigger incorrect transactions or skew analytics, which can harm personal privacy 
and financial security. Defenses that protect privacy are essential to prevent sensitive 
information from being exposed or misinterpreted due to these attacks.

Looking ahead, several promising research areas could help NLP systems more 
robust. One key direction is to create adaptive defenses that can learn from and 
respond to new attack methods. Static defenses often do not work well against evolv-
ing attacks, so systems that can adjust themselves would improve NLP security and 
resilience. Another important area is using explainable AI [43] in adversarial defenses. 
This approach would help users understand why a model resists or fails against 
specific adversarial examples. This knowledge will make it easier to improve defenses 
based on how the model reacts.

Borrowing ideas from other fields, like computer vision and network security, 
researchers may find novel ways to protect NLP systems. Privacy-focused techniques, 
like federated learning [44], differential privacy [45], and homomorphic encryption 
[46], help keep data safe when training models. These methods reduce the chance of 
sensitive information being exposed and are hence not targeted by potential adver-
sarial attacks. By combining these privacy methods with strong defenses, future NLP 
systems can be made more secure and reliable.

As more and more NLP systems are integrated into sensitive applications, ensuring 
that these systems can withstand adversarial attacks will become even more critical. 
Future research will need to focus on building models that not only perform well but 
also protect user privacy and adapt to emerging threats. These advancements will 
pave the way for safer and more reliable AI systems in everyday life.
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Chapter 2

Privacy in Federated Learning
Jaydip Sen, Hetvi Waghela and Sneha Rakshit

Abstract

Federated learning (FL) represents a significant advancement in distributed 
machine learning, enabling multiple participants to collaboratively train models 
without sharing raw data. This decentralized approach enhances privacy by keeping 
data on local devices. However, FL introduces new privacy challenges, as model 
updates shared during training can inadvertently leak sensitive information. This 
chapter delves into the core privacy concerns within FL, including the risks of data 
reconstruction, model inversion attacks, and membership inference. It explores 
various privacy-preserving techniques, such as differential privacy (DP) and secure 
multi-party computation (SMPC), which are designed to mitigate these risks. 
The chapter also examines the trade-offs between model accuracy and privacy, 
emphasizing the importance of balancing these factors in practical implementa-
tions. Furthermore, it discusses the role of regulatory frameworks, such as GDPR, in 
shaping the privacy standards for FL. By providing a comprehensive overview of the 
current state of privacy in FL, this chapter aims to equip researchers and practitioners 
with the knowledge necessary to navigate the complexities of secure federated learn-
ing environments. The discussion highlights both the potential and limitations of 
existing privacy-enhancing techniques, offering insights into future research direc-
tions and the development of more robust solutions.

Keywords: federated learning (FL), privacy preservation, differential privacy (DP), 
secure multi-party computation (SMPC), model inversion attacks, data reconstruction, 
homomorphic encryption (HE), general data protection regulation (GDPR)

1.  Introduction

Federated learning (FL) introduces a new method in machine learning (ML) where 
the training process is decentralized, enabling multiple devices or servers to col-
laboratively build a model without sharing their individual data. This method greatly 
improves data privacy and security, making it especially important in our current 
data-centric environment where issues of data breaches and privacy are critical.

Google researchers introduced the concept of FL in 2016 to improve user privacy 
while still leveraging the advantages of large-scale ML models. The initial applica-
tion was in the context of mobile devices, particularly to improve the performance 
of predictive text input on smartphones without compromising user privacy. 
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The introduction of FL marked a significant shift toward privacy-preserving ML 
techniques and has since been adopted and refined across various industries and 
applications.

FL is becoming more pertinent amid stringent data privacy regulations and 
heightened public concern over data security. Legislations like the General Data 
Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act 
(CCPA) in the USA establish rigorous guidelines governing the collection, stor-
age, and processing of personal data. These regulations challenge the feasibility of 
traditional centralized data processing methods, driving the adoption of privacy-
preserving techniques like FL.

Moreover, the widespread use of Internet of Things (IoT) devices, mobile phones, 
and edge computing has led to a massive generation of data at the network’s edge. FL 
takes advantage of this distributed data by allowing devices to collaboratively train 
models locally. This approach minimizes the need to transfer large amounts of data to 
central servers, thereby reducing the risks associated with data breaches.

Core Concepts and Mechanisms: FL involves several core concepts and mechanisms 
that differentiate it from traditional ML approaches:

1. Local Training: Each client device independently trains a local model using its 
own data. This training process can be adapted to fit the device’s capabilities and 
the nature of the data.

2. Model Updates: After training, each client computes model updates, which are 
essentially the changes to improve the model based on the local data. These up-
dates are sent to a central server.

3. Aggregation: The central server collects model updates from multiple clients 
to enhance the global model. This aggregation can be achieved through various 
methods, such as weighted averaging, ensuring that the global model incorpo-
rates the collective learning from all clients.

4. Communication Protocols: Efficient communication protocols are essential in 
FL to minimize the overhead and latency associated with transmitting model 
updates between clients and the central server. Techniques like secure aggrega-
tion and differential privacy (DP) can be employed to enhance the security and 
privacy of the updates during transmission.

Types of FL: FL can be categorized into different types based on the nature of the 
clients and the data they hold:

1. Cross-Device FL: This type involves a large number of relatively lightweight 
devices, such as smartphones and IoT devices, each with a small amount of data. 
The primary challenge in cross-device FL is managing the communication and 
computation constraints of these devices.

2. Cross-Silo FL: This type involves a smaller number of organizations or institu-
tions (silos) that have substantial computational resources and larger datasets. 
Examples include hospitals collaborating on medical research or banks working 
together to improve fraud detection systems. Cross-silo FL typically deals with 
fewer clients but larger and more heterogeneous datasets.



15

Privacy in Federated Learning
DOI: http://dx.doi.org/10.5772/intechopen.1006677

Privacy-Preserving Techniques: FL enhances privacy by keeping data local, but 
additional techniques can further strengthen privacy guarantees:

1. Differential Privacy (DP): By incorporating noise into the model updates, DP 
ensures that sensitive information about individual data points is not disclosed. 
This technique provides mathematical guarantees about the privacy of the data.

2. Homomorphic Encryption (HE): This technique facilitates computations directly 
on encrypted data, ensuring the data remain confidential throughout the entire 
process [1]. HE is computationally intensive but offers strong privacy protection.

3. SMPC (SMPC): It facilitates collaborative computation of a function by multiple 
parties using their inputs, ensuring their confidentiality. In FL, SMPC can securely 
aggregate model updates without exposing individual updates to the central server.

4. Secure Aggregation: This technique combines model updates such that the 
central server cannot view individual updates but can still calculate the overall 
aggregated update [2]. Secure aggregation protocols (SAPs) are crafted to safe-
guard the privacy of model updates during both transmission and aggregation.

Real-World Applications: FL has been successfully implemented in various domains, 
demonstrating its potential to enhance privacy while enabling collaborative ML.

1. Healthcare: In healthcare, FL enables collaboration among several hospitals to 
train models using patient data without disclosing them. This approach can im-
prove diagnostic models, personalized treatment plans, and predictive analytics 
while complying with strict privacy regulations.

2. Finance: Financial institutions can use FL to collaboratively develop fraud de-
tection systems, credit scoring models, and personalized financial services. By 
keeping customer data within each institution, FL helps maintain compliance 
with financial privacy regulations.

3. Mobile and Edge Devices: FL is widely used in mobile applications, such as 
predictive text input, personalized recommendations, and voice recognition. For 
instance, Google’s Gboard keyboard uses FL to enhance its predictive text sug-
gestions without transmitting user typing data.

4. Industrial IoT: In industrial IoT, FL can be applied to predictive maintenance, 
quality control, and supply chain optimization. Devices and sensors in different 
locations can collaboratively train models to predict equipment failures or opti-
mize production processes without sharing sensitive operational data.

Challenges in FL: Although FL provides substantial benefits, it also poses several 
challenges that must be addressed. Some of them are mentioned below.

1. Data Variability: Client data can vary significantly, creating challenges in train-
ing a global model that performs well for all clients. Techniques for handling 
non-IID (non-independent and identically distributed) data are crucial for the 
success of FL.
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2. Communication Overhead: Regularly communicating the updates of model 
between the server and clients may lead to considerable overhead, particularly 
in cross-device FL. Efficient communication protocols and methods to minimize 
the frequency and size of updates are crucial.

3. Model and Data Privacy Risks: Despite the privacy-preserving nature of FL, 
there are still risks of data leakage through model updates. Adversarial attacks, 
such as model inversion attacks, can potentially reconstruct sensitive informa-
tion from model updates. Robust defense mechanisms are needed to mitigate 
these risks.

4. Scalability: FL needs to scale to handle millions of devices in cross-device sce-
narios or large datasets in cross-silo scenarios. Scalable algorithms and infra-
structure are necessary to manage the complexity and scale of FL systems.

Hence, current and future research in FL is likely to focus on improving pri-
vacy guarantees, enhancing communication efficiency, developing robust defense 
mechanisms against adversarial attacks, and ensuring the scalability of FL systems. 
Advances in these areas will help realize the full potential of FL as a paradigm of ML 
that prioritizes privacy preservation.

FL marks a notable advancement in ML by tackling the crucial challenge of data 
privacy. By enabling decentralized model training, FL allows multiple entities to 
collaborate on improving ML models without disclosing their data. This scheme not 
only enhances privacy and security but also opens new possibilities for applications 
in healthcare, finance, mobile and edge devices, and industrial IoT. As the field of 
FL continues to evolve, it has the potential to transform the way we approach ML in 
a privacy-conscious world. With ongoing research and development, FL is poised to 
become a cornerstone of privacy-preserving ML, striking a balance between leverag-
ing data-driven insights and the necessity to protect data privacy.

The organization of the chapter is as follows. Section 2 presents some fundamental 
background information of FL. Section 3 discusses different approaches to privacy 
preservation of data in FL. Some of the existing approaches and schemes proposed in 
the literature for protecting data in FLs are presented in Section 4. Section 5 discusses 
some important real-world applications of FL in the healthcare, financial, and 
electronic and embedded devices sectors and how the privacy of critical and sensitive 
information are protected. Section 6 concludes the chapter highlighting some poten-
tial future work in the privacy in FL.

2.  Fundamentals of FL

FL has evolved as a groundbreaking approach to decentralized ML, addressing the 
critical issue of data privacy. This section delves into the fundamentals of FL, explor-
ing its architecture and workflow, key components, and the various types of FL.

2.1  Architecture and workflow

At its core, the FL architecture involves multiple clients (e.g., mobile devices, 
IoT devices, or institutional servers) that collaboratively train a shared global model 
under the coordination of a central server. The primary innovation in FL is that the 
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training data remain localized on the client devices, significantly mitigating privacy 
risks associated with traditional centralized ML. The architecture of a typical FL is 
depicted in   Figure 1  . The roles of the central server and the local clients and the work 
flow in FL are discussed briefly in the following.  

Central Server : The central server has the following roles.

• Coordination:  The central server orchestrates the overall training process, ensur-
ing synchronization among the clients.  

• Model Initialization:  It initializes the global model parameters and disseminates 
them to the clients.  

• Aggregation:  The central server aggregates the model updates (gradients or 
parameter updates) received from the clients to form an improved global model.  

• Communication:  It handles the bidirectional communication between itself and 
the clients, managing the distribution of the global model and the collection of 
local updates.    

Local Clients : The local clients perform the following tasks.

• Local Data Storage:  Each client retains its data locally, ensuring that sensitive 
information is not exposed.  

• Local Model Training:  Clients perform training on their local data using the global 
model parameters received from the server.  

• Model Update Transmission:  After local training, clients compute model updates 
(e.g., gradients) and send them to the central server.  

  Figure 1.
  Federated learning architecture (note: the figure is adapted from [ 3 ]).          
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• Device Heterogeneity Management: Clients manage their computational resources 
to participate in the FL process, dealing with varying device capabilities and 
network conditions.

Work Flow: The FL workflow involves several iterative steps as follows.

• Model Initialization: The central server initializes the global model parameters 
and broadcasts them to all participating clients.

• Local Training: Clients receive the global model and train it on their local datas-
ets. This involves forward and backward passes to compute gradients or updates 
specific to the client’s data.

• Model Update Transmission: After training, each client sends its computed 
updates to the central server. These updates typically consist of gradient infor-
mation or parameter changes derived from the local training process.

• Global Aggregation: The central server aggregates the received updates to form 
a new set of global model parameters. Common aggregation methods include 
averaging the updates or using more sophisticated techniques like weighted 
averaging, considering the size of the local datasets.

• Model Update Broadcast: The server disseminates the updated global model 
parameters back to the clients, and the process repeats for several rounds until 
the model converges.

• Termination: The FL process concludes when the global model achieves satisfactory 
performance metrics, such as accuracy or loss, across the participating clients.

The effectiveness of FL hinges on several critical components that ensure the 
collaborative training process is efficient, secure, and scalable. The following compo-
nents are critical for an efficient FL system.

1. Local Training: This involves two important components: (a) data partition-
ing, and (b) training algorithm. Clients utilize their local datasets, which may 
be non-IID (non-independent and identically distributed), meaning the data 
distribution varies across clients. Moreover, clients employ standard training 
algorithms, such as stochastic gradient descent (SGD), on their local data. The 
training process involves multiple epochs to minimize the local loss function.

2. Model Update Transmission: This involves the following tasks: (a) gradient com-
putation, (b) update compression, and (c) secure communication. After local 
training, clients compute gradients representing the adjustments needed to im-
prove the model based on their local data. To reduce communication overhead, 
updates can be compressed using techniques like quantization or sparsification 
before transmission. Secure transmission protocols ensure the confidentiality 
and integrity of the updates as they are sent to the central server.

3. Global Model Aggregation: This involves the following tasks: (a) averaging, (b) 
weighted averaging, and (c) advanced aggregation. The simplest and most com-
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mon aggregation method is averaging the model updates from all clients. This 
approach assumes that each client’s contribution is equally valuable. To account 
for varying data sizes and qualities, the server may use weighted averaging, giv-
ing more weight to updates from clients with larger or more representative datas-
ets. More sophisticated methods, such as federated optimization algorithms, can 
be employed to improve convergence rates and model performance.

2.2  Types of FL

FL can be categorized based on the nature and scale of the clients involved. The 
two primary types are cross—device FL and cross-silo FL. These are discussed in the 
following.

2.2.1  Cross-device FL

Cross-device FL involves a vast number of relatively lightweight devices, such as 
smartphones, tablets, and IoT devices. Each device typically has a small amount of 
local data and limited computational resources. This type of FL has the following 
characteristics: (i) massive scale, (ii) device heterogeneity, (iii) intermittent avail-
ability, and (iv) privacy sensitivity. Potentially millions of devices can participate in 
the training process. Devices vary widely in terms of computational power, storage 
capacity, and network connectivity. Devices may frequently join or leave the train-
ing process due to power constraints, network availability, and user behavior. User 
data on these devices often include highly sensitive information, necessitating robust 
privacy-preserving mechanisms. Cross-device FL applications are typically found 
in mobile apps and IoT systems. In mobile apps, it is mostly used for enhancing 
predictive test input, voice recognition, and personalized recommendations without 
compromising user privacy. On the other hand, for IoT systems, it finds applications 
in wearables, home and industrial IoT systems through collaborative learning while 
maintaining data confidentiality.

2.2.2  Cross-silo FL

Cross-silo FL involves a smaller number of clients, typically institutions or 
organizations, each with substantial computational resources and large datasets. 
Cross-silo FL has the following characteristics: (i) limited number of clients, (ii) data 
homogeneity, (iii) stable participation, and (iv) regulatory compliance requirements. 
Cross-silo FL usually involves tens to hundreds of clients. Data may be more homoge-
neous within each silo but can vary significantly between different silos. As institu-
tions have more stable and reliable participation compared to individual devices, in 
cross-silo FL, entities have more stable participation. However, ensuring compliance 
with data protection regulations, such as GDPR and Health Insurance Portability and 
Accountability Act (HIPAA), is critical. Cross-silo FL finds applications in healthcare, 
finance, and research sectors. In the healthcare sector, cross-silo FL is used in col-
laborative training of diagnostic models across multiple hospitals without sharing 
patient data. Developing fraud detection systems by leveraging data from different 
banks, while maintaining customer privacy is a typical application of cross-silo FL in 
finance. In the field of research collaborations, universities and research institutions 
can jointly train models on sensitive data, such as genomic information, without data 
exposure.
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2.3  Exploration of the key components of FL

This sub-section provides more details on the three key components of a federated 
leaning system.

1. Local Training: Local training is the cornerstone of FL, as it enables each client 
to leverage its own data to improve the global model. The following elements 
are crucial to this process: (i) data partitioning and (ii) training algorithms. 
In FL, data are inherently partitioned across clients. This partitioning can be 
either horizontal or vertical. In horizontal FL, each client has data with the same 
feature space but different samples (e.g., different users). In vertical FL, each cli-
ent has data with different feature spaces but potentially the same samples (e.g., 
different institutions sharing user data with non-overlapping features). Clients 
use standard ML algorithms adapted to the local context. Common algorithms 
include the following: (1) stochastic gradient descent (SGD), (2) federated aver-
aging (FedAvg), and (3) personalized FL. SGD is the widely used algorithm due 
to its simplicity and effectiveness in large-scale optimization. FedAvg is a specific 
adaptation of SGB for FL, where local models are trained for multiple epochs 
before averaging. Personalized FL techniques allow each client to tailor the global 
model to better fit its local data, enhancing performance in heterogeneous envi-
ronments.

2. Model Update Transmission: Efficient and secure transmission of model updates 
is critical for the success of FL. Model update transmission involves the following 
issues: (1) gradient computation, (2) update compression, and (3) secure com-
munication. Clients compute the gradients or parameter updates based on their 
local training. These updates encapsulate the information needed to improve the 
global model without exposing the raw data. To minimize communication over-
head, updates can be compressed. Compression techniques include methods such 
as quantization, sparsification, and pruning. Quantization, however, reduces 
the precision of the updates as it uses fewer bits to represent each parameter. 
Sparsification involves sending only the most significant updates and zeroing 
out small updates. Pruning removes redundant parameters from the updates. 
Finally, ensuring the confidentiality and integrity of the updates during trans-
mission is paramount. Encryption and secure aggregation are two methods used 
to preserve the confidentiality and integrity of updates. Encryption involves the 
use of cryptographic techniques to protect the updates in transit. SAPs are used 
for aggregating updates in a way that prevents the server from having access to 
individual contributions from the clients.

3. Global Model Aggregation: The central server’s role in aggregating the updates 
from multiple clients is vital to FL. The following approaches are generally used 
in global model aggregation: (1) averaging, (2) weighted averaging, and (3) ad-
vanced aggregation techniques. Averaging is the most straightforward method, 
where the server computes the average of all received updates. This approach as-
sumes equal importance for all updates. Weighted averaging accounts for the size 
of the local datasets by giving more weight to updates from clients with larger 
datasets. This method helps balance the influence of different clients based on 
their data volume. Advanced aggregation techniques employing more sophisti-
cated approaches, such as federated optimization and adaptive aggregation can 
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improve the efficiency and effectiveness of aggregation. Federated optimization 
algorithms like Federated SGD and Federated ADAM can enhance convergence 
rates and model performance. Adaptive aggregation methods that adjust the 
aggregation method based on the characteristics of the updates received, such 
as considering the variance in the variance in the updates are found to be more 
accurate.

2.4  Challenges in FL

As FL continues to evolve, several areas require further research and development 
to address existing challenges and enhance its capabilities. Some of the critical chal-
lenges are as follows.

• Enhanced privacy-preserving techniques: Developing more robust privacy-preserv-
ing mechanisms, such as advanced DP techniques, HE, and secure multi-party 
computation, to ensure stronger privacy guarantees.

• Improved scalability: Creating scalable algorithms and infrastructure to handle 
the massive scale and diversity of devices in cross-device FL. This includes 
optimizing communication protocols and reducing the computational burden on 
resource-constrained devices.

• Efficient model aggregation: Innovating aggregation methods that can handle the 
heterogeneity of updates and improve the convergence rates of global models. 
Techniques like federated optimization and adaptive aggregation can play a 
significant role.

• Personalized FL: Developing methods that allow the global model to be personal-
ized for individual clients, improving performance in heterogeneous environ-
ments. Approaches like federated meta-learning and multi-task learning can be 
explored.

• Robustness and security: Enhancing the robustness of FL systems against adver-
sarial attacks and ensuring the security of model updates. Techniques like 
adversarial training and SAPs are critical.

• Regulatory compliance: Ensuring that FL frameworks adhere to data protection 
regulations across different regions. This involves continuous monitoring and 
updating of compliance strategies as regulations evolve.

• Interdisciplinary collaboration: Encouraging collaboration between researchers 
from different fields, such as ML, cryptography, and data privacy, to develop 
innovative solutions for FL.

FL represents a transformative approach to ML, addressing the critical issue of 
data privacy while enabling collaborative model training across distributed clients. 
By keeping data localized and leveraging privacy-preserving techniques, FL offers 
significant advantages over traditional centralized models. The architecture and 
workflow of FL, involving local training, model update transmission, and global 
model aggregation, provide a robust framework for decentralized learning.
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The distinction between cross-device and cross-silo FL highlights the versatility of 
FL in different contexts, from personal devices to institutional collaborations. Each 
type of FL presents unique challenges and applications, necessitating tailored solu-
tions to optimize performance and privacy.

As FL continues to advance, ongoing research and development in privacy-pre-
serving techniques, scalability, model aggregation, and regulatory compliance will be 
crucial to realizing its full potential. By fostering interdisciplinary collaboration and 
addressing existing challenges, FL can pave the way for a privacy-centric approach 
to ML that empowers individuals and organizations while driving innovation and 
collaboration.

3.  Privacy-preserving techniques in FL

Privacy-preserving techniques in FL are crucial for protecting the confidentiality 
of data while enabling collaborative model training. This section delves into several 
key methods, including DP, encryption methods, secure aggregation, and anony-
mization/pseudonymization, to ensure privacy and security in FL systems. In this 
section, these methods are discussed briefly.

3.1  Differential privacy

Differential privacy (DP) is a formal privacy framework designed to provide 
strong guarantees that individual data points in a dataset cannot be distinguished 
from each other. This is achieved by introducing randomness into the data or compu-
tations. The goal is to ensure that the output of a computation (e.g., a model update) 
does not reveal whether any single individual’s data was included in the input, thereby 
preserving privacy.

In the context of FL, DP can be applied to the model updates sent from the clients 
to the central server. This typically involves adding noise to the updates to obscure 
the contributions of individual data points. Depending on the type of noise being 
added and the way the noise is added, different types of DP may be implemented as 
discussed in the following.

Noise addition: Each client adds noise to its computed gradients or parameter 
updates before sending them to the central server. The noise is typically drawn from 
a statistical distribution, such as a Gaussian or Laplace distribution, with a scale 
determined by a privacy parameter (epsilon, ε). A smaller ε indicates stronger privacy 
guarantees but may reduce the utility of the model.

Local Differential Privacy: This approach ensures that each client’s data remains 
private even before aggregation. The noise added at the client level is calibrated to 
provide DP guarantees. This method protects against adversaries who might intercept 
updates during transmission.

Global Differential Privacy: In some cases, noise is added at the server level after 
aggregating the updates from all clients. This ensures that the aggregated update 
meets DP guarantees, though it may require trusting the server to some extent.

Advantages and Challenges in DP: DP provides two advantages: (i) strong privacy 
guarantees and (ii) flexibility. DP provides mathematically proven rigorous privacy 
guarantees and it can be adjusted to trade-off between privacy and model accuracy. 
However, there are some challenges which include: (i) accuracy vs. privacy trade-off 
and (ii) hyperparameter tuning. Adding noise can degrade the model’s performance, 
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especially if the privacy requirements are stringent. Selecting appropriate noise scales 
and privacy parameters requires careful tuning and domain knowledge.

3.2  Encryption methods

Encryption methods are essential for ensuring that data and model updates remain 
confidential during transmission and computation. Two prominent techniques in FL 
are HE and secure multi-party computation. These techniques are discussed briefly in 
the following.

1. Homomorphic Encryption: HE is a type of encryption that allows computations 
to be performed on ciphertexts (encrypted data) without needing to decrypt 
them. The result of the computation remains encrypted and can be decrypted 
later to obtain the correct result. HE in FL involves three fundamental steps: 
(i) encryption of updates, (ii) aggregation of encrypted updates, and (iii)
decryption. Clients encrypt their model updates using an HE scheme before 
sending them to the central server. Common schemes include partially HE 
(PHE) and fully HE (FHE). The central server aggregates the encrypted up-
dates directly, performing operations like addition and multiplication on the 
ciphertexts. As the operations are homomorphic, the result is an encrypted 
aggregate that can be decrypted by an authorized party. After aggregation, the 
server or a trusted third party decrypts the aggregated results to obtain the 
updated global model.

Advantages and Challenges in DP: Confidentiality and security are the two distinct 
advantages of HE. HE ensures that updates remain confidential throughout the 
computation process. It also protects against external adversaries and malicious serv-
ers. However, there are challenges associated with HE too. Two important challenges 
are (i) high computational overhead and (ii) high complexity. HE schemes, particu-
larly FHE, can be computationally intensive and slow. Moreover, implementing HE 
requires significant expertise and careful handling of cryptographic parameters.

2. Secure Multiparty Computation (SMPC): SMPC allows multiple parties to jointly 
compute a function over their inputs while keeping those inputs private. The 
computation is structured so that no party learns anything about the other par-
ties’ inputs beyond what can be inferred from the output. SMPC involves three 
steps in its operation in FL. These steps are (i) secret sharing, (ii) distributed 
computation, and (iii)reconstruction. Each client splits its model updates into 
multiple shares and distributes them among the participating parties (including 
the central server and other clients). The parties collectively perform the ag-
gregation on the shares. No single party has enough information to reconstruct 
the original updates during the computation. After computation, the shares 
are combined to obtain the aggregated update, which is then used to update the 
global model.

Advantages and Challenges in SMPC: The primary advantages of SMPC are (i) 
high level of privacy and (ii) no need of trusted environment. SMPC ensures that no 
individual party learns the complete updates from any other party. It also reduces the 
need to trust any single party, enhancing overall security. However, SMPC has its own 
challenges too. SMPC typically requires significant communication between parties, 



Data Privacy and Security – Principles and Applications

24

which can be a bottleneck. Moreover, designing and implementing SMPC protocols is 
complex and requires careful coordination.

3.3  Secure aggregation

Secure aggregation is a technique designed to aggregate model updates in such a 
way that the central server cannot see individual contributions. Instead, it only sees 
the aggregated result, ensuring the privacy of individual updates. In FL, SAPs work 
in three steps: (i) encryption of updates, (ii) aggregation of encrypted updates, and 
(iii) decryption. In the first step, each client encrypts its model updates using a secure 
encryption scheme before sending them to the central server. In the second step, the 
central server aggregates the encrypted updates. The protocol ensures that the server 
can only decrypt and aggregated result and not the individual updates. In the third 
and final step, the aggregated update is decrypted, providing the global model update 
without revealing individual contributions.

The implementation of SAPs involves two initial steps: (i) pairwise masking and 
(ii) additive secret sharing. In the pairwise masking phase, each client generates a 
random mask and shares it with other clients using a secure channel. The masks are 
used to obfuscate the updates before sending them to the server. The server aggregates 
the masked updates, and the masks cancel out in the aggregation process, revealing 
the aggregated results. In the additive secret sharing phase, each update is split into 
multiple shares, and the shares are distributed among multiple servers or parties. The 
servers perform the aggregation on the shares, ensuring that no single server learns 
the individual updates.

Advantages and Challenges in Secure Aggregation: Secure aggregation has two dis-
tinct advantages: (i) enhanced privacy and (ii) higher efficiency. Secure aggregation 
ensures that the server cannot see individual updates, enhancing privacy. Moreover, 
compared to full HE or SMPC, secure aggregation can be more efficient in terms of 
computation and communication overheads. Higher complexity and a lack of robust-
ness are two challenges for secure aggregation. Implementing SAPs requires careful 
design and coordination among clients. Additionally, the protocol must handle cases 
where some clients drops out of behave maliciously.

3.4  Anonymization and pseudonymization

Anonymization and pseudonymization are techniques used to obscure personal 
identifiers in data, making it difficult to link data back to specific individuals. While 
these techniques are commonly used in data privacy, they also play a role in FL to 
enhance the privacy of participants.

Anonymization: Anonymization encompasses various techniques including data 
anonymization, K-anonymity, and L-diversity. Data anonymization involves remov-
ing or altering personal identifiers, such as names, addresses, and other unique 
attributes, to prevent the data from being traced back to individuals. K-anonymity 
ensures that each record in the dataset is indistinguishable from at least K-1 other 
records based on certain identifying attributes, thereby minimizing the risk of 
re-identification. L-diversity builds on K-anonymity by ensuring that each group of 
similar records (equivalence class) contains at least L different values for sensitive 
attributes, offering enhanced protection against attribute disclosure.

Pseudonymization: In data pseudonymization, identifiers are replaced with 
pseudonyms or tokens that can only be linked back to the original identifiers using 
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a separate mapping table. This ensure that data analysis can be performed without 
revealing personal identifiers. Unlike anonymization, pseudonymization is reversible, 
allowing data to be reidentified, if necessary, using the mapping table.

Advantages and Challenges in Anonymization and Pseudonymization: There are 
two advantages for these two approaches: (i) enhanced privacy and (ii) compliance 
with standards. Anonymization and pseudonymization protect personal identifiers. 
Moreover, these techniques help in meeting regulatory requirements for data protec-
tion, such as GDPR and HIPAA. However, there are challenges too. Anonymization 
can lead to loss of data utility, making it harder to perform certain analyses. Again, 
pseudonymization is reversible, which means it requires secure handling of the map-
ping table to prevent data breaches.

Privacy-preserving techniques in FL are essential for ensuring the confidential-
ity and security of data while enabling collaborative model training. DP, encryption 
methods like HE and secure multi-party computation, secure aggregation, and 
anonymization/pseudonymization each plays a crucial role in protecting privacy.

DP provides strong mathematical guarantees by adding noise to model updates, 
ensuring that individual data points remain indistinguishable. Encryption methods 
like HE allow computations on encrypted data, while SMPC enables collaborative 
computation without data leakage. SAPs ensure that the server can only see the 
aggregated result, not individual updates. Anonymization and pseudonymization 
techniques obscure personal identifiers, further enhancing privacy and compliance 
with data protection regulations.

Each technique has its own benefits and challenges, and their implementation 
involves balancing trade-offs between privacy, utility, and computational overhead. 
As FL continues to evolve, ongoing research and development in these privacy-
preserving techniques will be crucial to addressing existing challenges and enhancing 
the security and effectiveness of FL systems.

4.  Existing methods of privacy in FL

Privacy in FL (FL) has become a significant area of research due to the sensitive 
nature of data involved and the increasing concern over data privacy. This section 
surveys important existing works that have addressed privacy issues in FL, encom-
passing various techniques and methodologies. We will explore DP, encryption 
methods, SAPs, and other privacy-preserving mechanisms that have been proposed 
or implemented in FL.

4.1  Differential privacy in FL

In this section, some DP-based privacy scheme for FL are discussed in details.
McMahan et al. introduce a method for training recurrent language models using 

DP within the FL framework [4]. The authors propose using differentially private 
stochastic gradient descent (DP-SGD) to ensure that individual user data remains 
protected and cannot be reverse-engineered from the trained model. By introducing 
noise adding noise into model updates, this method provides DP guarantees while 
trading-off privacy with the accuracy of model. Demonstrated on a language model-
ing task, the technique predicts the next word in a sequence based on previous words, 
enabling collaborative learning from a large user base while maintaining text data 
privacy.
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Abadi et al. presents a framework for training deep learning models with strong 
privacy guarantees using DP [5]. The authors introduce differentially private stochastic 
gradient descent (DP-SGD), which adds carefully calibrated noise to the gradients dur-
ing the training process to ensure that individual data points cannot be identified. The 
scheme introduces privacy accounting techniques that track the cumulative privacy 
loss over multiple training iterations, known as the privacy budget. Empirical results 
demonstrate the effectiveness of DP-SGD on various computationally intensive tasks 
based on deep learning.

Geyer et al. propose a novel scheme integrating DP into FL at the client level [6]. 
The authors propose adding noise to the updates from each client before they are 
aggregated, ensuring that the central server cannot infer information about any indi-
vidual client’s data. The authors also provide a comprehensive analysis of the privacy 
budget and its implications on model performance.

Fu et al. provide an analysis of the integration of DP in FL to improve security 
and privacy of data [7]. The authors systematically review existing methodologies 
that combine DP techniques with FL frameworks, addressing the inherent privacy 
risks. They also discuss how DP ensures that the inclusion or exclusion of any single 
participant’s data does not significantly alter the results protecting data privacy. 
The work categorizes various approaches based on their implementation strategies, 
such as noise addition, gradient perturbation, and secure aggregation. The authors 
also provide a critical evaluation of the scalability and efficiency of these methods, 
considering the computational and communication overheads involved.

Gu et al. investigate how the integration of DP affects the fairness of ML models 
in FL settings [8]. The authors explore the tension between ensuring privacy and 
maintaining model fairness, highlighting that privacy-preserving techniques can 
inadvertently introduce biases. They systematically analyze the impact of DP on 
model performance across different demographic groups, identifying potential 
disparities. Their findings suggest that while DP effectively protects individual data, 
it can also exacerbate inequalities in model predictions, leading to unfair outcomes 
for certain groups. The work also discusses various metrics for assessing fairness 
and evaluates the trade-offs involved in balancing privacy and fairness. The authors 
propose methods to mitigate the adverse effects on fairness, such as adaptive noise 
mechanisms and fairness-aware training algorithms.

Li et al. present an advanced framework for improving the privacy of FL systems 
[9]. The proposition includes a novel optimization scheme that integrates DP to 
protect individual user data during the collaborative training process. By introducing 
an adaptive noise mechanism, the framework dynamically adjusts the noise added 
to the updates, to optimally trade-off privacy and accuracy of models. This approach 
mitigates the performance degradation typically associated with DP. The work also 
introduces a SAP to ensure that only the aggregated results are accessible, further 
safeguarding individual contributions. Experimental evaluations on various datasets 
demonstrate that their optimized scheme significantly improves model performance 
while maintaining strong privacy protection.

Löbner et al. explore the application of local DP (LDP) to protect user data in FL 
scenarios, specifically for email classification tasks [10]. A new scheme is proposed 
that integrates LDP into the FL process, ensuring that users’ raw data remains private 
even before it is transmitted for aggregation. By applying noise to the data at the local 
level, their method prevents sensitive information from being exposed during model 
training. The framework effectively addresses privacy concerns inherent in FL, in 
which a model is trained in a collaboratively way using data from multiple sources. 
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The work presents a detailed analysis of the trade-offs between privacy and model 
accuracy, demonstrating that their approach maintains high classification perfor-
mance while providing robust privacy guarantees. Experimental results on email 
datasets illustrate that the LDP-enhanced FL model can achieve competitive accuracy 
compared to traditional methods.

Wei et al. delve into the development and evaluation of DP-enhanced algo-
rithms for FL [11]. The authors propose a suite of algorithms that incorporate DP 
mechanisms to safeguard individual data contributions during the FL process. The 
trading-off of privacy and accuracy of models has been done ensuring that the utility 
of the trained models remains high while providing strong privacy guarantees. The 
work details the mathematical foundations of the proposed algorithms, including 
the specific noise addition techniques used to achieve DP. Through comprehensive 
theoretical analysis, the authors establish the privacy guarantees and performance 
bounds of their algorithms. They also present extensive empirical evaluations on 
various benchmark datasets, demonstrating that their methods maintain competitive 
accuracy compared to non-private FL approaches. The results highlight the effective-
ness of their algorithms in mitigating privacy risks without significantly degrading 
model performance.

Li et al. introduce a novel approach that combines FL with transfer learning 
while incorporating DP to protect sensitive data [12]. The authors aim to address the 
challenge of training models collaboratively across different organizations that have 
diverse datasets, without compromising privacy. Their framework leverages transfer 
learning to enable knowledge transfer from a source domain to a target domain within 
a FL setup. To ensure privacy, they integrate DP mechanisms, adding noise to the 
model updates to prevent the exposure of individual data points. This combination 
allows organizations to benefit from shared knowledge without the need to share raw 
data, preserving both privacy and data utility. The work also provides a theoretical 
analysis of the privacy guarantees and evaluates the performance of the proposed 
method through experiments on real-world datasets. The results demonstrate that 
their approach maintains high model accuracy while providing strong privacy 
protection.

Park & Choi explore the integration of DP in FL systems that utilize over-the-air 
computation (OAC) [13]. The scheme exploits the inherent properties of OAC to 
enhance privacy and efficiency in FL. By combining OAC with DP, the framework 
ensures that individual data contributions remain confidential during the aggregation 
process. The approach uses OAC to simultaneously aggregate updates from multiple 
devices over a wireless channel, adding noise to the aggregated signal to achieve DP. 
This scheme has a reduced overhead of computing and communication making it 
scalable for large-scale FL deployments.

4.2  Encryption methods in FL

Encryption methods play a vital role in securing data during the FL process. This 
section discusses some encryption-based schemes for FL privacy.

Keith Bonawitz et al. introduces a protocol designed to enhance privacy in FL by 
securely aggregating user-held data [14]. The authors address the challenge of ensur-
ing that individual users’ data remains confidential while still enabling the collective 
training of a ML model. Their approach uses cryptographic techniques to perform 
secure aggregation, ensuring that only the aggregated results are revealed, not the 
individual contributions. This is achieved through a combination of HE and secret 
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sharing, which allows the aggregation process to be both secure and efficient. The 
protocol is robust against dropouts, meaning it can handle the scenario where some 
users do not complete the training process. Furthermore, it is designed to be scalable, 
accommodating many participants with minimal overhead.

Truex et al. explore the integration of several privacy-preserving schemes for 
FL to enhance the security and efficiency [15]. The authors recognize that no single 
approach is sufficient to address all privacy and scalability challenges, thus advocat-
ing for hybrid solutions. They combine DP, secure multiparty computation, and 
HE to protect sensitive data during the FL process. Secure multiparty computation 
enables multiple parties to collaboratively compute a function value based on their 
individual inputs which are private to them. HE allows computations to be carried out 
on encrypted data without needing decryption. The work also discusses the several 
optimization techniques for trade-offs computing and communication overhead with 
the level of privacy achieved.

Phong et al. revisit existing methods and propose enhancements to strengthen the 
privacy of deep learning models [16]. The authors address the challenge of protecting 
sensitive data during the training process by leveraging advanced cryptographic tech-
niques. They build upon HE to allow computations on encrypted data, ensuring that data 
privacy is maintained without exposing underlying information. The proposed enhance-
ments focus on optimizing the encryption schemes to mitigate the significant computa-
tional overhead typically associated with HE. By doing so, they make privacy-preserving 
deep learning more practical for real-world applications. The paper also introduces 
methods to maintain model accuracy while ensuring privacy, balancing the trade-offs 
between privacy protection, accuracy, and computational efficiency.

Park and Lim explore the implementation of privacy-preserving FL (FL) using 
HE [17]. The authors propose a method ensures that sensitive information remains 
secure during the training process. They also address the challenges associated with 
integrating HE into FL, such as computational overhead and communication costs. To 
tackle these, the authors propose optimizations that balance privacy, efficiency, and 
accuracy. Detailed experimental results demonstrating the feasibility and effective-
ness of the proposed approach are also presented.

Kurniawan & Mambo investigates the use of HE to enhance privacy preserva-
tion in FL, specifically for deep active learning (DAL) scenarios [18]. The proposed 
technique ensures data privacy is protected during model training. The authors 
identify several challenges of applying HE in the context of deep active learning, 
such as increased computational demands and communication overhead. The work 
also proposes several optimizations to mitigate these challenges, balancing security 
with efficiency and performance. Experimental results validate the feasibility and 
effectiveness of their approach, demonstrating that it can maintain high levels of data 
privacy without significantly compromising the learning outcomes. The authors’ 
method provides a practical solution for secure collaborative learning, particularly in 
environments where data sensitivity is a primary concern.

Nguyen & Thai addresses the critical issue of preserving privacy and security 
in FL [19]. The authors examine various privacy and security threats inherent in 
FL, such as data leakage, model inversion attacks, and malicious participants. They 
propose a comprehensive framework that incorporates multiple techniques to miti-
gate these risks, including DP, secure multi-party computation, and robust aggrega-
tion methods. The framework proposed by the authors aims to protect both the data 
and the model parameters during the training process. Experimental evaluations 
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demonstrate the effectiveness of the proposed framework in maintaining privacy and 
security without significantly degrading model performance.

Gao et al. explore strategies for ensuring privacy and reliability in decentralized FL 
[20]. The authors address critical issues related to privacy preservation and reliability 
in FL environments. They propose a novel framework that integrates privacy-preserv-
ing techniques such as DP and secure multiparty computation to safeguard sensitive 
data during the learning process. Additionally, the framework incorporates mecha-
nisms to enhance reliability, ensuring the robustness of the FL system against poten-
tial failures and malicious attacks. The proposed methods are designed to protect both 
the data and model integrity, thereby enhancing the overall security of the system. 
Experimental results validate the effectiveness of the framework, demonstrating 
that it can maintain high levels of privacy and reliability without compromising the 
performance of the learning model.

Mothukuri et al. present a comprehensive survey on the security and privacy chal-
lenges in FL [21]. The authors systematically review the various security and privacy 
threats that can affect FL, such as data poisoning, backdoor attacks, and inference 
attacks. They discuss existing defense mechanisms, including DP, secure multiparty 
computation, and HE, highlighting their strengths and limitations. The survey also 
explores the balance between model performance and the robustness of these security 
measures. The authors emphasize the importance of designing scalable and efficient 
solutions to address the evolving threats in FL environments. They identify gaps in 
the current research and suggest potential directions for future work to enhance the 
security and privacy of FL.

Zhao et al. address the challenge of maintaining efficiency and privacy in FL while 
defending against poisoning adversaries [22]. The decentralized nature of FL makes 
it vulnerable to poisoning attacks, where malicious participants can corrupt the 
model by injecting false data. The authors propose a robust framework that combines 
privacy-preserving techniques with mechanisms to detect and mitigate poisoning 
attacks. Their approach employs DP to protect individual data contributions and 
integrates anomaly detection algorithms to identify and exclude malicious updates. 
Experimental evaluations demonstrate the effectiveness of the proposed methods in 
enhancing both the security and accuracy of FL models.

Wang et al. introduce VOSA, a framework designed to enhance privacy-preserving 
FL through verifiable and oblivious secure aggregation [23]. FL enables collaborative 
model training across decentralized devices, ensuring data privacy by keeping data 
local. However, the aggregation of local updates poses privacy risks and requires 
secure methods to prevent data leakage. VOSA addresses these concerns by integrat-
ing secure aggregation techniques with verifiable computation, ensuring that the 
aggregated results are both accurate and privacy-preserving. The framework leverages 
cryptographic protocols to perform oblivious aggregation, meaning that the server 
cannot learn individual contributions. Additionally, VOSA includes mechanisms for 
participants to verify the correctness of the aggregation process, enhancing trust and 
reliability. Experimental results demonstrate that VOSA effectively maintains privacy 
and security without significantly impacting the efficiency of the FL process.

4.3  Secure aggregation protocols (SAPs)

SAPs ensure that the central server can aggregate model updates without accessing 
individual updates, providing a layer of security that protects user data.
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Zhao et al. introduces SEAR, a novel framework designed to enhance the security 
and efficiency of FL in the presence of Byzantine adversaries [24]. The authors 
address the challenge of maintaining robust model performance when some partici-
pants may act maliciously or send incorrect data. SEAR combines secure aggregation 
techniques with Byzantine-robust algorithms to ensure that the aggregation process 
is both confidential and resilient to adversarial behavior. The framework employs 
cryptographic methods to protect data during transmission, ensuring that individual 
contributions remain private. Additionally, SEAR incorporates robust aggregation 
rules that can effectively identify and mitigate the impact of malicious participants. 
The authors provide a detailed analysis of SEAR’s theoretical security guarantees and 
its practical performance.

So et al. present an innovative approach to overcoming the computational ineffi-
ciencies associated with secure aggregation in FL [25]. The authors introduce TURBO-
AGGREGATE, a novel protocol designed to reduce the quadratic communication and 
computation costs that typically hinder scalable secure FL. This protocol leverages 
advanced cryptographic techniques to enable efficient aggregation while maintaining 
strong privacy guarantees for individual users’ data. TURBO-AGGREGATE achieves 
its efficiency by using a hybrid approach that combines HE with a secure shuffling 
mechanism, significantly reducing the overhead compared to traditional methods. 
The authors provide a rigorous theoretical analysis of the protocol’s security and 
performance, demonstrating that it can securely aggregate data with linear communi-
cation complexity.

Rathee et al. introduce ELSA, a secure aggregation framework for FL designed to 
withstand the presence of malicious actors [26]. FL allows multiple devices to collab-
oratively train a model without sharing their local data, preserving privacy. However, 
the aggregation process is vulnerable to attacks from malicious participants who may 
attempt to disrupt the learning process or infer sensitive information. ELSA addresses 
these issues by incorporating cryptographic techniques to securely aggregate model 
updates while ensuring that the contributions of individual participants remain 
confidential. The framework uses a combination of HE and zero-knowledge proofs to 
provide strong privacy guarantees and detect any malicious behavior. Experimental 
results demonstrate that ELSA effectively secures the aggregation process, maintain-
ing model accuracy even in the presence of adversarial actors.

Fereidooni et al. introduces SAFELearn, a framework aimed at ensuring secure 
aggregation in private FL [27]. The authors argue that the aggregation of local model 
updates poses a significant risk of data leakage. SAFELearn addresses this by employ-
ing cryptographic techniques to securely aggregate the updates while ensuring that 
individual data contributions remain confidential. The framework leverages HE and 
secure multiparty computation to provide strong privacy guarantees. It also includes 
mechanisms to verify the integrity of the aggregated results, enhancing the overall 
security of the learning process. Experimental evaluations show that SAFELearn 
maintains model accuracy and efficiency while providing robust protection against 
data breaches.

Zhong et al. introduce WVFL, a framework for weighted verifiable secure aggre-
gation in FL [28]. In FL, the aggregation of model updates is vulnerable to data leak-
age and tampering. WVFL addresses these issues by incorporating secure aggregation 
techniques with weighted updates to reflect the varying importance of different 
participants’ data. The framework employs cryptographic protocols to ensure that the 
aggregation process is both secure and verifiable, preventing malicious actors from 
tampering with the results. Additionally, WVFL includes mechanisms to verify the 
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correctness of the aggregated updates, enhancing trust and reliability. Experimental 
results demonstrate that WVFL effectively maintains the privacy and security of the 
aggregated data while preserving model accuracy and efficiency.

Zhou et al. present a comprehensive survey on security aggregation techniques, 
focusing on their application in various domains including FL and distributed sys-
tems [29]. Aggregation plays a critical role in combining data or computations from 
multiple sources while preserving confidentiality and integrity. The authors system-
atically review different approaches to secure aggregation, such as cryptographic 
methods like HE, secure multiparty computation, and zero-knowledge proofs. They 
discuss the strengths and limitations of each technique in ensuring data privacy and 
preventing attacks such as data leakage and manipulation. The survey also explores 
recent advancements and emerging trends in secure aggregation, highlighting their 
implications for improving the robustness and efficiency of distributed systems.

Sami and Güler explore the implementation of secure aggregation specifically 
tailored for clustered FL [30]. The aggregation of model updates in FL can be vul-
nerable to privacy breaches and attacks from malicious participants. The authors 
propose a novel framework that introduces clustering techniques to enhance both the 
efficiency and security of aggregation in federated settings. Their approach leverages 
cryptographic protocols such as HE and SMPC to ensure that model updates from 
clustered devices are aggregated securely without revealing individual contributions. 
The framework also includes mechanisms for verifying the integrity and authenticity 
of the aggregated results, thereby enhancing trust and reliability in the FL process. 
Experimental evaluations demonstrate that their method effectively balances privacy, 
security, and computational efficiency, making it suitable for practical deployment in 
clustered FL scenarios.

Liu et al. address the challenge of fast and secure aggregation in privacy-preserv-
ing FL [31]. The method aims to accelerate the aggregation process without compro-
mising privacy. It leverages cryptographic techniques such as HE and SMPC to ensure 
that aggregated results remain confidential and accurate. The framework includes 
optimizations to reduce computational overhead, enabling efficient aggregation even 
with a large number of participating devices. Experimental results demonstrate that 
their method achieves significant improvements in aggregation speed while maintain-
ing robust privacy guarantees.

Truong et al. present a comprehensive survey focused on privacy preservation in 
FL, specifically examining it through the lens of GDPR [32]. The authors systemati-
cally review the challenges and strategies related to privacy in FL emphasizing GDPR 
compliance as a critical consideration for data protection in European contexts. 
They discuss various privacy-preserving techniques employed in FL, including DP, 
FL-specific encryption methods, and anonymization techniques. The survey high-
lights the intersection of FL with GDPR principles such as data minimization, pur-
pose limitation, and accountability, providing insights into how FL systems can align 
with regulatory requirements. Additionally, the authors explore emerging trends and 
future directions for enhancing privacy in FL systems under GDPR guidelines.

Li et al. provide a comprehensive survey on data security and privacy-preserving 
techniques in FL tailored for the edge and IoT environments [33]. The authors 
systematically review the unique challenges and existing solutions related to data 
security and privacy in FL at the edge and IoT levels. They discuss various security 
threats such as data leakage, inference attacks, and model poisoning, emphasizing 
the vulnerabilities inherent in edge devices with limited resources. The survey covers 
a range of privacy-preserving techniques applicable to FL, including DP, HE, secure 
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aggregation, and FL-specific optimizations. Furthermore, the authors examine the 
integration of these techniques with edge computing paradigms to enhance both 
security and efficiency in FL systems.

4.4  Anonymization and pseudonymization techniques

Anonymization and pseudonymization are crucial for protecting personal 
identifiers in data, ensuring that sensitive information cannot be traced back to 
individuals.

Shokri & Shmatikov introduce a pioneering approach to training deep learning 
models on private data without compromising individual privacy [34]. The authors 
propose a novel framework that allows multiple participants to collaboratively train 
a neural network while ensuring that their training data remains confidential. This 
is achieved through a technique called selective gradient sharing, where participants 
only share a subset of their model updates, rather than their raw data, during the 
training process. These updates are further protected using DP, ensuring that the 
shared gradients do not reveal sensitive information about the individual data points. 
The framework effectively balances the trade-off between privacy and model utility, 
maintaining high model accuracy while providing strong privacy guarantees. The 
authors also address scalability by designing the system to efficiently handle many 
participants. Extensive experiments demonstrate that the proposed method can train 
deep learning models with a minimal loss in accuracy compared to standard training 
methods.

Rieke et al. explore the transformative potential of FL in the healthcare sector [35]. 
The authors highlight how FL enables the training of ML models on decentralized 
data, preserving patient privacy by keeping data localized on healthcare providers’ 
servers. This approach mitigates the legal and ethical concerns associated with shar-
ing sensitive health data. By collaborating on a global scale, healthcare institutions 
can leverage diverse datasets to improve model accuracy and generalizability, leading 
to better diagnostic tools and treatment plans.

Kaissis et al. focus on secure, privacy-preserving, and federated ML methods spe-
cifically applied to medical imaging [36]. Medical imaging datasets are often sensitive 
and subject to strict privacy regulations, making traditional centralized approaches 
challenging. FL offers a decentralized paradigm where models are trained across 
institutions without sharing raw data, thereby preserving patient privacy. The authors 
review the application of FL in medical imaging, emphasizing techniques such as DP, 
secure aggregation, and encryption methods tailored for healthcare settings. They 
discuss the benefits of FL in enabling collaborative model training across distributed 
datasets while complying with regulatory frameworks like GDPR and HIPAA.

Kanwal et al. address the challenge of balancing privacy concerns with the 
advancement of artificial intelligence in the context of histopathology for biomedi-
cal research and education [37]. Histopathological data is rich in information crucial 
for medical diagnostics and research but is inherently sensitive due to its potential 
to reveal patient identities. The authors focus on anonymization techniques aimed 
at safeguarding patient privacy while enabling meaningful analysis and AI model 
training. They review various anonymization methods applicable to histopathological 
images, such as pixelization, blurring, and generative models that synthesize realistic 
yet privacy-preserving images. The work also discusses the trade-offs between ano-
nymization effectiveness and data utility, emphasizing the importance of preserving 
diagnostic accuracy and research value.
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Choudhury et al. explore methods to enhance privacy in FL by anonymizing data 
[38]. The authors discuss various anonymization techniques, such as DP, which add 
noise to data to obscure individual contributions while maintaining overall utility. 
They also explore methods like data generalization and k-anonymity to protect 
identities within datasets. The work also examines the trade-offs between the degree 
of anonymization and the accuracy of the trained models, aiming to find a balance 
that maintains both privacy and model performance. Experimental results show that 
appropriate anonymization can significantly reduce privacy risks without severely 
impacting the learning outcomes.

Almashaqbeh & Ghodsi introduce AnoFel, a framework designed to support 
anonymity in privacy-preserving FL [39]. AnoFel addresses privacy concerns in FL 
by incorporating advanced anonymization techniques to enhance participant privacy 
without compromising the integrity and utility of the learned model. The framework 
employs cryptographic methods, such as HE and secure multiparty computation, 
to anonymize data contributions while allowing accurate aggregation. AnoFel also 
integrates DP to add an extra layer of protection against inference attacks. The authors 
present experimental results demonstrating that AnoFel effectively maintains high 
model accuracy while providing robust anonymity and privacy guarantees.

Zhao et al. focus on developing a framework for anonymous and privacy-pre-
serving FL tailored to industrial big data applications [40]. The authors address the 
privacy risks associated with FL by proposing advanced anonymization techniques to 
safeguard individual data contributions. Their framework leverages DP and SMPC to 
ensure that data remains anonymous and protected during the aggregation process. 
This work highlights the unique challenges posed by industrial big data, such as the 
need for scalability and efficiency in handling large datasets. Experimental results 
demonstrate that their approach maintains high model accuracy while providing 
robust privacy and anonymity guarantees.

Agiollo et al. introduce a novel approach to FL called Anonymous FL via Named-
Data Networking (NDN) [41]. The authors propose leveraging NDN to enhance 
anonymity and privacy in FL, as NDN focuses on content rather than data sources, 
thus naturally obfuscating the participants’ identities. The proposed framework 
incorporates cryptographic techniques to secure data exchanges and ensure that 
model updates remain anonymous throughout the learning process. Experimental 
results demonstrate that their NDN-based approach effectively preserves privacy 
without compromising the efficiency and accuracy of the FL model.

Kobsa & Schreck explore the use of pseudonymity as a method for enhancing 
privacy in user-adaptive systems [42]. User-adaptive systems tailor their functionality 
and content to individual users, often requiring extensive personal data to do so. The 
authors argue that while such systems improve user experience, they also pose sig-
nificant privacy risks. They propose pseudonymity as a solution, where users interact 
with the system under pseudonyms rather than their real identities. This approach 
allows users to benefit from personalization while minimizing the exposure of their 
personal information. The work also discusses various pseudonymity techniques and 
their effectiveness in protecting user privacy.

Gu et al. provide a comprehensive review of privacy enhancement methods for 
FL in healthcare systems [43]. The authors discuss the unique privacy challenges in 
healthcare FL, such as sensitive patient information and strict regulatory require-
ments like HIPAA and GDPR. They review various privacy-preserving techniques, 
including DP, which adds noise to data to obscure individual contributions, and HE. 
The work also covers secure multi-party computation, enabling multiple parties to 
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jointly compute a function without revealing their inputs, and federated averaging 
algorithms designed to mitigate privacy risks.

5.  Real-world applications of FL

FL (FL) is rapidly gaining traction across various industries due to its ability 
to leverage decentralized data while preserving privacy. This section explores the 
real-world applications and case studies of FL in healthcare, finance, mobile and edge 
devices, and highlights specific implementations like Google’s Gboard and collabora-
tive healthcare research projects.

5.1  Healthcare sector

Healthcare is one of the most promising fields for the application of FL due to the 
sensitive nature of medical data and the potential for improved patient outcomes 
through collaborative research and development.

5.1.1  Collaborative research and development

The healthcare sector stands to benefit significantly from FL due to the collabora-
tive potential it offers while ensuring the privacy and security of sensitive medical 
data. This approach facilitates collaborative research and development among various 
healthcare institutions, leading to enhanced medical insights, improved diagnostic 
tool, and better patient outcomes.

FL allows multiple healthcare institutions to collaborate on research projects 
without sharing their data directly. This is particularly important in healthcare, where 
a patient data privacy is paramount, and regulations like the HIPAA and the GDPR 
impose strict controls on data sharing.

Medical Imaging: FL allows hospitals and medical institutions to collaboratively 
train models on medical imaging data (e.g., MRI and CT scans) without transfer-
ring patient data off-site. This leads to the development of more robust and accurate 
diagnostic tools. For example, models can be trained to detect tumors, fractures, and 
other anomalies more effectively by pooling data from multiple sources.

Genomic Research: Genomic data are highly sensitive and often subject to strict 
privacy regulations. FL enables researchers to build predictive models for genetic 
diseases and personalized medicine by aggregating insights from data distributed 
across different research centers and biobanks.

Electronic Health Records (EHRs): EHRs contain vast amounts of patient infor-
mation that can be used to predict patient outcomes, optimize treatment plans, 
and identify potential health risks. FL facilitates the development of predictive 
models that can analyze EHRs from multiple hospitals without compromising 
patient privacy.

5.1.2  Maintaining patient privacy

Maintaining patient privacy is paramount in healthcare applications of FL due to 
the highly sensitive nature of medical data. FL addresses this concern by implement-
ing several advanced techniques that ensure data privacy and security while still 
enabling collaborative research and model training. Here are some key approaches 
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used to maintain patient privacy. Methods such as DP, secure multiparty computation 
(SMPC), HE, federated averaging, secure aggregation, and anonymization can all be 
useful in maintaining privacy of patient data.

SMPC and HE enable different healthcare institutions to collaboratively train a ML 
model without revealing their individual datasets to each other. Each participating 
institution encrypts its local model updates before sending them to the central server. 
The central server performs computations on these encrypted updates and aggre-
gates them to improve the global model. By ensuring that raw data never leaves the 
local institution and remains encrypted during processing, SMPC provides a robust 
mechanism to protect patient privacy. DP adds random noise to the patient data or 
model updates from each institution before sending them to the central server. This 
added noise obscures individual datapoints, making it impossible to infer specific 
patient information from the aggregated model.

Federated Averaging (FedAvg) aggregated model updates from multiple clients 
(e.g., hospitals) in a privacy-preserving manner. Local models are trained on patient 
data within each institution. The resulting updates (model parameters) are sent to a 
central server, which averages these updates to form a new global model. Since only 
model parameters are shared and not the actual patient data, FedAvg significantly 
reduces the risk of data breaches and maintains patient privacy.

Anonymization removes all personal identifiable information (PII) from the data, 
making it impossible to link the data back to specific patients. Pseudonymization 
replaces personal identifiers with pseudonyms, allowing for indirect identification 
while still protecting patient privacy.

5.2  Financial sector

In the finance sector, FL addresses the critical need to protect sensitive finan-
cial data while improving the accuracy and robustness of models used for various 
applications.

5.2.1  Improving fraud detection algorithms

Fraud Detection: Fraud detection is a critical application in the financial sector. 
FL allows financial institutions to enhance fraud detection algorithms by training 
models on transaction data from multiple banks. This collaborative approach helps 
in identifying patterns and anomalies that might be missed when using data from a 
single source. The use of techniques like MPC and HE ensures that the transaction 
data remains private and secure.

Credit Scoring: Credit scoring models benefit from diverse data sources to improve 
accuracy and fairness. FL allows financial institutions to share insights without 
compromising privacy. Banks and financial institutions train local models on their 
credit data and share the updates with a central server. The aggregated model benefits 
from a broader dataset, leading to more accurate credit scoring. Techniques like DP 
ensure that individual credit data points are obfuscated, maintaining data privacy 
while improving model accuracy.

Anti-Money Laundering (AML): AML requires analyzing vast amounts of transac-
tion data to identify suspicious activities. FL facilitates collaboration among financial 
institutions to enhance AML models. Financial institutions train local AML models on 
their transaction data and share encrypted updates for aggregation. The global model 
benefits from diverse data sources, improving its ability to detect money-laundering 
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activities. Techniques like SAP and HE ensure that the transaction data remains 
confidential and secure throughout the process.

5.2.2  Ensuring data privacy

Secure Aggregation: Techniques like SAP ensure that individual financial institu-
tions’ data contributions remain confidential while still contributing to the global 
model.

Differential Privacy: Adding noise to the updates ensures that sensitive financial 
transactions cannot be traced back to individual users.

5.2.3  Case study: Bank fraud detection

Fraud detection is a critical application within the financial sector, where iden-
tifying and preventing fraudulent transactions can save institutions and customers 
significant amounts of money and reduce the risk of financial crimes. FL provides 
an innovative approach to enhancing fraud detection systems by enabling banks to 
collaborate without exposing sensitive transaction data. This case study explores how 
a consortium of banks can leverage FL for fraud detection while ensuring data privacy 
and security.

Background: Fraud detection involves monitoring transactions for unusual patterns 
that may indicate fraudulent activity, such as identity theft, unauthorized transac-
tions, or money laundering. Traditionally, banks develop fraud detection models 
based on their internal data, which limits the models’ effectiveness due to the lack of 
diverse data sources. By using FL, banks can collaboratively train more robust and 
accurate fraud detection models on a broader dataset.

Consortium Formation: A group of banks forms a consortium to collaboratively 
improve their fraud detection models. The consortium establishes a FL framework 
that allows them to train a global model without sharing raw transaction data. The 
banks forming the consortium get involved in the following activities: (i) local model 
training, (ii) secure model update sharing, (iii) centralized aggregation, and (iv) 
global model distribution. These activities are discussed briefly in the following.

Local Model Training: Each bank trains a local fraud detection model on its internal 
transaction data. This process involves data preparation and model training. In the 
data preparation step, transaction data are preprocessed to extract relevant features 
such as transaction amount, frequency, location, and time of day. The model training 
step involves the use of ML algorithms to train the fraud detection model on the pre-
pared data. The model learns to identify patterns indicative of fraudulent activities.

Secure Model Update Sharing: Once the local models are trained, each bank com-
putes the updates to the model parameters. These updates reflect the learned patterns 
and insights from the local data. To ensure privacy, the updates are encrypted using 
SMPC and HE techniques. While Secure Multiparty Computation (SMPC) encrypts 
the updates so that they can be securely combined with updates from other banks, HE 
allows computations on encrypted data, ensuring that the updates remain confiden-
tial during aggregation.

Centralized Aggregation: The encrypted model updates are sent to a central server, 
which aggregates the updates without decrypting them. The aggregation process com-
bines the insights from all participating banks to create a global model. Techniques 
like SAP and DP ensure that the server can aggregate the updates without accessing 
individual updates so that data privacy is protected.
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Global Model Distribution: The aggregated global model is distributed back to 
the participating banks. Each bank integrates the global model with its local system, 
improving its fraud detection capabilities with insights gained from the broader 
dataset. Several data privacy and security measures are taken at this stage. Data 
encryption techniques are used so that all model updates are encrypted before being 
shared, ensuring that sensitive transaction data is never exposed. DP is used to add 
noise to the updates, making it difficult to trace back any information to an indi-
vidual transaction. The use of SAPs ensures that the central server can aggregate the 
model updates without accessing individual updates, protecting the privacy of the 
data.

Challenges: The use of FL brings is several benefits in financial fraud detection 
in banks such as (i) improved fraud detection accuracy, (ii) enhance data privacy 
and security, (iii) compliance with regulations, and (iv) higher resource efficiency. 
However, it involves several challenges as well. Some of the challenges are (i) high 
technical complexity, (ii) complexity in coordination among banks, and (iii) perfor-
mance and scalability issues.

Technical complexity: Implementing FL involves complex cryptographic tech-
niques and secure communication protocols. Banks need to invest in the necessary 
infrastructure and expertise to deploy these solutions effectively. Collaboration 
with technology providers and research institutions can help banks implement FL 
frameworks. Open-source FL platforms and libraries can also facilitate the adop-
tion process.

Coordination complexity: Coordinating model training and update sharing among 
multiple banks requires effective communication and collaboration. Ensuring that 
all participants adhere to the same protocols and timelines can be challenging. 
Establishing a governance framework and clear communication channels can stream-
line coordination. Regular meetings and updates can ensure that all participants are 
aligned and progress is tracked effectively.

Performance issues: FL can introduce latency and computational overhead due 
to encryption and secure aggregation processes. Ensuring that the system scales 
efficiently with the number of participating banks is crucial. Optimizing encryption 
techniques and aggregation protocols can reduce latency and improve performance. 
Distributed computing and parallel processing can also enhance scalability.

5.3  Mobile and edge devices

FL is particularly well-suited for mobile and edge devices, enabling the training of 
ML models directly on devices like smartphones and IoT devices, thereby enhancing 
user experience while preserving privacy.

5.3.1  Enhancing user experience on mobile devices

Predicting Text Input: One of the most prominent applications of FL is in improving 
predictive text input on mobile devices. By training language models locally on user 
devices, FL allows for more personalized and accurate text predictions and autocor-
rect features.

Personalized Recommendations: FL can be used to train recommendation systems 
for apps, music videos, and other contents on mobile devices without sending 
user data to the cloud. This enhances user privacy while providing personalized 
experiences.
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Health Monitoring: Wearable devices and health apps can use federated earning 
to improve models for health monitoring, such as detecting irregular heartbeats or 
predicting glucose levels, by leveraging data directly from users’ devices.

5.3.2  Case study: Google’s Gboard

Google’s Gboard, the virtual keyboard app, is a prominent real-world example 
of FL in action. It demonstrates how FL can be used to improve ML models while 
maintaining user privacy. This case study elaborates on the implementation, benefits, 
and privacy measures of FL in the development of Gboard.

Background: Gboard is a widely used keyboard app that includes features like 
predictive text, autocorrection, and personalized suggestions. These features rely 
on ML models trained on user typing data to improve accuracy and user experience. 
However, collecting, and centralizing user data for model training poses significant 
privacy concerns. FL offers a solution by enabling the training of models directly on 
users’ devices.

Implementation of FL in Gboard involves the following tasks (i) local model train-
ing on devices, (ii) model update transmission, (iii) aggregation and global model 
improvement, and (iv) integrating privacy and security protocols and algorithms. 
These tasks are briefly discussed in the following.

Local Model Training on Devices: Instead of sending user data to a central server, 
Gboard trains ML models directly on users’ devices. This approach involves two steps, 
data Collection and model training. In the data collection phase, user interactions, such 
as typing patterns, text inputs, and corrections, are collected. These data never leave 
the user’s device. The Gboard app includes a local model that learns from the user’s 
typing data. The training process occurs in the background, utilizing the device’s 
computational resources.

Model Update Transmission: Once the local model is trained on the device, the 
updates (i.e., changes in model parameters) are sent to Google’s servers. To ensure pri-
vacy, these updates are processed securely. The model updates are encrypted before 
transmission to protect them from interception. Only relevant and necessary updates 
are transmitted, reducing the amount of data sent and further protecting privacy.

Aggregation and Global Model Improvement: The encrypted updates from many 
devices are aggregated on Google’s servers to improve the global model. An SAP 
ensures that the server aggregates the model updates without being able to view 
individual updates. Techniques like DP are used to add noise to the updates, ensur-
ing that individual users’ data cannot be reverse-engineered. The improved global 
model, which now incorporates insights from many users, is distributed back to 
users’ devices. This model update enhances the Gboard app’s overall performance and 
accuracy.

Integration of Privacy and Security Protocols: The updates from millions of devices 
are averaged to improve the global model. This model ensures that the data remain 
on the device and only model updates are shared. Standard encryption protocols like 
TLS (Transport Layer Security) are used to secure data in transit. Secure Multiparty 
Computation (SMPC): techniques are also applied to further secure the aggregation 
process. DP techniques are employed to add noise to the model updates. This ensures 
that individual contributions are obfuscated and cannot be traced back to specific 
users. Federated Averaging (FedAvg) is the primary algorithm used for aggregating 
model updates. The updates from multiple devices are averaged to form the new 
global model. Since only the model updates, not the raw data, are shared, privacy is 
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preserved. Moreover, FedAvg ensures that the aggregation process is computationally 
efficient, allowing the system to scale across millions of devices.

Impact: The FL approach has significantly improved the performance of Gboard’s 
predictive text input and autocorrect features, providing a more personalized user 
experience while maintaining high privacy standards. However, there are some 
associated challenges too. These challenges are (i) higher technical complexity, (ii) 
increased computational overhead, and (iii) network latency and bandwidth issues.

Higher technical complexity: Implementing FL requires sophisticated algorithms 
and robust infrastructure to handle the encryption, transmission, and aggregation of 
model updates. Google has invested in developing and optimizing FL algorithms like 
FedAvg and SAPs to ensure efficient and secure implementation.

Increased computational overhead: Training models on users’ devices can intro-
duce computational overhead, potentially affecting device performance and battery 
life. The Gboard app is designed to perform training in the background, leverag-
ing idle times and optimizing resource usage to minimize the impact on device 
performance.

Network latency and bandwidth issues: Transmitting model updates can incur 
network latency and bandwidth usage, especially with a large user base. Sparse and 
selective update transmission helps reduce the amount of data sent. Additionally, 
updates are often transmitted during periods of low network activity to minimize 
impact on user experience.

FL offers a revolutionary approach to ML by enabling collaborative model training 
across decentralized data sources while preserving privacy. Its application in health-
care, finance, and mobile and edge devices demonstrate the broad potential and 
versatility of this technology.

In healthcare, FL facilitates collaborative research and development, leading to 
improved diagnostic tools and personalized medicine while maintaining patient 
privacy. The finance sector benefits from enhanced fraud detection algorithms and 
credit scoring models that leverage data from multiple institutions without sharing 
sensitive information. Mobile and edge devices use FL to enhance user experience by 
training models locally, thereby preserving user privacy and providing personalized 
services.

Case studies like Google’s Gboard and collaborative healthcare research projects 
illustrate the practical implementation and impact of FL. Google’s Gboard dem-
onstrates how FL can improve predictive text input on millions of devices while 
maintaining high privacy standards. Collaborative healthcare projects highlight the 
potential for FL to advance medical research and diagnostics through secure, decen-
tralized data collaboration.

As FL continues to evolve, ongoing research and development in privacy-preserv-
ing techniques, secure aggregation, and efficient communication protocols will be 
crucial. By addressing the challenges and leveraging the advantages of FL, industries 
can harness the power of decentralized data to drive innovation, improve services, 
and protect user privacy.

6.  Conclusion and future work

FL represents a significant advancement in the field of machine learning by 
addressing the crucial challenge of data privacy. This approach enables multiple 
entities to collaboratively train models without sharing their underlying data, thus 
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enhancing privacy and security while maintaining model performance. Throughout 
this chapter, we explored the fundamentals of FL, its architecture, and workflow, and 
highlighted key privacy-preserving techniques such as differential privacy, encryp-
tion, and secure aggregation. Additionally, we examined the practical applications 
of FL in various sectors including healthcare, finance, mobile and edge devices, and 
industrial IoT.

The architecture of FL involves a central server and multiple local clients. The 
central server coordinates the overall training process, initializes model parameters, 
aggregates model updates, and manages communication with clients. Local clients 
retain their data, perform local training, compute model updates, and transmit these 
updates to the central server. This decentralized approach ensures that sensitive data 
remains localized, mitigating privacy risks associated with traditional centralized 
models.

Key privacy-preserving techniques discussed include differential privacy, which 
introduces noise to model updates to protect individual data points, and secure aggre-
gation, which ensures that individual contributions remain confidential during the 
aggregation process. These methods provide robust privacy guarantees while allowing 
for effective collaborative training.

As FL continues to evolve, several areas require further research and development 
to address existing challenges and enhance its capabilities:

Enhanced Privacy-Preserving Techniques: Developing more robust privacy-
preserving mechanisms such as advanced differential privacy techniques, homo-
morphic encryption, and secure multi-party computation to ensure stronger privacy 
guarantees.

Improved Scalability: Creating scalable algorithms and infrastructure to handle the 
massive scale and diversity of devices in cross-device FL. This includes optimizing 
communication protocols and reducing the computational burden on resource-
constrained devices [44].

Efficient Model Aggregation: Innovating aggregation methods that can handle 
the heterogeneity of updates and improve the convergence rates of global models. 
Techniques like federated optimization and adaptive aggregation can play a signifi-
cant role.

Personalized Federated Learning (FL): Developing techniques that customize the 
global model for each client, boosting performance in varied and heterogeneous 
environments. Approaches like federated meta-learning and multi-task learning 
are potential areas to explore.

Robustness and Security: Enhancing the robustness of FL systems against adver-
sarial attacks and ensuring the security of model updates. Techniques like adversarial 
training and secure aggregation protocols are critical [45].

Regulatory Compliance: Ensuring that FL frameworks adhere to data protection 
regulations across different regions. This involves continuous monitoring and updat-
ing of compliance strategies as regulations evolve.

Interdisciplinary Collaboration: Encouraging collaboration between researchers 
from different fields such as machine learning, cryptography, and data privacy to 
develop innovative solutions for FL.

By addressing the challenges mentioned above and fostering interdisciplinary 
collaboration, FL can continue to advance as a cornerstone of privacy-preserving 
machine learning. It has the potential to transform the way we approach machine 
learning in a privacy-conscious world, balancing the need for data-driven insights 
with the necessity to protect individual privacy.
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Chapter 3

Privacy-Preserving Algorithms in
Distributed Optimization Problems
Lingying Huang, Rong Su, Xiaomeng Chen and Junfeng Wu

Abstract

With the rise in computational complexity and network scale, distributed optimi-
zation problems have gained increasing interest due to their robustness and scalability
advantages over centralized approaches. It has been widely applied in various scenar-
ios. However, privacy concerns can deter participants from sharing their sensitive data
in such networks. To address this issue, we introduce methods to preserve privacy in
distributed optimization problems, particularly over unbalanced directed communi-
cation networks, in this chapter. Two algorithms, namely, PP-DOAGT and SD-Push-
Pull, are introduced in detail to balance the tradeoff between performance and pri-
vacy. PP-DOAGT ensures privacy over infinite iterations and highlights two funda-
mental impossibility results concerning privacy and performance. Due to the second
dilemma, the tradeoff between ε-DP and performance analysis is studied under sum-
mable stepsize sequences in PP-DOAGT. In contrast, SD-Push-Pull focuses on
guaranteeing privacy over finite iterations. Through state decomposition, this algo-
rithm attains linear convergence with an unchanged stepsize, approaching neighbor-
hood of optimum under certain conditions. With the proposed methods, privacy can
be guaranteed in real application scenarios such as machine learning, allowing partic-
ipants to confidently share their data within distributed optimization frameworks.

Keywords: privacy-preserving, distributed optimization problems, directed
communication networks, tradeoff between privacy and performance, machine
learning application

1. Introduction

Distributed optimization has been widely applied to a wide application scenario,
especially for large-scale networks [1–6]. Estrin et al. [7] showed that distributed
optimization offers greater robustness and scalability advantages compared to cen-
tralized ones. Various studies have proposed different kind of distributed optimiza-
tion algorithms to collaboratively solve problems by sharing information with
neighbors.

Extensive research has been conducted on distributed optimization through undi-
rected communication networks, as seen in works by Nedic and Ozdagalar [8], Ram
et al. [9], Duchi et al. [10], and Shi et al. [11]. These studies typically rely on doubly
stochastic mixing matrices. However, for directed graphs (digraphs), which include
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undirected graphs as a special case, the doubly stochastic matrix assumption generally
does not hold. To address this, [12, 13] introduced push-sum-based distributed opti-
mization algorithms for digraphs. However, this kind of algorithm has a drawback
since it cannot guarantee that the available stepsize set for convergence is nonempty.
The interval is further relaxed by Xi et al. [14] while maintaining linear convergence.
In the meanwhile, the algorithms in above literature need extra communication and
computation cost to address the imbalance problem. To tackle this, AB/Push-Pull,
which tracks the state along with the function’s gradient was introduced by the
authors in Refs. [15, 16], eliminating extra burden for eigenvector learning. In contrast
to the push-sum protocol, this kind of algorithm uses two stochastic mix matrices, in
which allows the agent to choose the weight by their local knowledge, providing
flexibility in network design and unifying various communication architectures. Pu
The robustness is further considered in [17], allowing for quick adaptation to agent
extraction and noise influence.

The gradient-tracking algorithms mentioned above, despite differences in imple-
mentation, share a common feature: each participant will hold and exchange two
variables, one to track the best decision while the other to track the estimates of a
function of the gradient set. This makes the exchanged data unprotected and accessi-
ble by malicious attackers, leading to the potential disclosure of confidential informa-
tion and serious disasters, such as the malicious use of personal data and even
economic losses of the country [18]. The urgent need to obtain optimal solutions
distributively while safeguarding critical information has led to significant research
efforts. Dwork et al. [19] (see [20] for a survey) first introduced the concept of ε-
differential privacy (DP). Building on this, Huang et al. [21] developed a DP consen-
sus algorithm by incorporating independent, exponentially decaying Laplace noise.
They extended the ε-DP concept to distributed optimization problems, proposing a
new DP distributed optimization algorithm in [22]. Ding et al. [23, 24] further
extended the algorithm to use a constant stepsize and relaxed the assumption of
bounded gradients. However, these works focused on undirected graphs, making
extension to directed communication network topologies challenging because of the
requirement of doubly stochastic matrices.

For most practical applications, information flows among sensors may be unidi-
rectional because of different communication ranges, as seen in coordinated vehicle
control problems [25] and economic dispatch problems [26]. To mitigate privacy
leakage for nodes communicating through unbalanced digraphs, an algorithm utilizing
the gradient-tracking approach with a diminishing stepsize that preserves the privacy
is developed by Mao et al. [27]. This algorithm was demonstrated through an example
of an economic dispatch problem. Despite its effectiveness, the algorithm did not
include a formal privacy definition and fell short of obtaining DP. The weight-
balancing method is adopted by Zhu et al. [28] to address asymmetry. Nevertheless,
this method requires the knowledge of each node’s out-degree, which is difficult to
obtain in some scenarios, especially broadcast systems. Xiong et al. [29] provided a
push-sum-based privacy-preserving algorithm, where the weights are balanced by
introducing an auxiliary variable. However, the push-sum protocol has inherent
shortcomings, including reliance on a decaying stepsize for convergence and stricter
communication topology requirements. In contrast, gradient-tracking algorithms have
fewer stepsize requirements compared with the studies [15, 16]. Gao et al. [30]
allowed each agent to randomly decide the mixing matrices to preserve privacy since
the gradient variables will become indistinguishable. However, if adversaries know
the coupling weights, the algorithm cannot preserve privacy of the sensitive gradient
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information. Wang [31] introduced a novel gradient-tracking-based method that pre-
vents the buildup of noise from information sharing in gradient estimates, ensuring
almost sure convergence of each agent to the optimum. A limitation of this approach is
the requirement of the left eigenvector of the communication graph at each iteration,
which is generally global information. To sum up, the tradeoff between performance
and privacy has not been thoroughly investigated, particularly for directed topologies.

In this chapter, methods to preserve privacy in distributed optimization problems
via directed network topologies are introduced in Section 2. The tradeoff between
privacy and performance considering different methods is analyzed in Section 3. The
application scenarios are included in Section 4 while conclusions are summarized in
Section 5.

2. Methods to preserve privacy in distributed optimization problems

In recent years, studies on privacy preservation have been categorized into four
main approaches: anonymity, cryptography, perturbation, and state decomposition.

1.Anonymity aims to protect the identification of participants [32]. However,
designing effective anonymity methods often requires background information
about the system, which is challenging to obtain without a centralized and
trusted server [33].

2.Cryptography is the most direct and commonly used method for preserving
privacy, as demonstrated in recent works [34, 35]. Despite its effectiveness, it
incurs high computational and communication costs.

3.Perturbation, particularly DP, introduces randomness into the original data. This
method ensures that outputs remain similar even when inputs differ by a single
entry, providing provable privacy guarantees independent of the eavesdropper’s
computational power, as demonstrated in recent works [21–24, 28]. However, a
balance must always be struck between privacy and performance.

4.State decomposition is a unique method for preserving privacy in multi-agent
systems, first proposed byWang [36]. The key concept involves dividing a node’s
original state into two substates: a visible state that is communicated between
neighbors and a hidden state that is accessible only to the originating node.

From the above analysis, the first two methods are not suitable for distributed
optimization problems. Anonymity requires a centralized trusted server, which con-
tradicts the decentralized nature of distributed systems. Cryptography, while effec-
tive, imposes significant computational and communication costs on distributed
nodes, negating the advantages of distributed optimization. Therefore, we will focus
on the last two methods for distributed optimization problems in the following dis-
cussion.

2.1 Distributed optimization problems via directed network topologies

The considered system consists N agents (nodes) that communicate via a digraph,
solving the following problem collaboratively:
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min
x∈m

XN
i¼1

f i xð Þ: (1)

Here, x represents a global decision variable, while f i : 
m !  is a convex func-

tion known exclusively by each node i.
In addition, a digraph G ¼ N , Eð Þ is utilized to model the interaction topology,

where N ¼ 1, 2, … ,Nf g denotes the set of node indices, and E ⊂N �N indicates the
set of communication links. In G, a directed edge j, ið Þ∈ E signifies a presence of a
directional communication link from agent j to agent i. Furthermore, a directed tree
refers to a directed graph where each node expect for the root node. Moreover, a
spanning tree of a directed graph [37] is a directed tree linking the root to all other
nodes in the graph. A digraph GM ¼ N , EMð Þ is described by a nonnegative matrix
M ¼ Mij

� �
∈N�N where an edge j, ið Þ∈ EM exists ifMij>0. The in-neighbor and out-

neighbor sets of node i are respectively given by

N in
M,i ¼ j : j, ið Þ∈ EMf g and N out

M,i ¼ j : i, jð Þ∈ EMf g: (2)

To solve the optimization problem distributively, each agent i holds a local decision
variable xi ∈m. Thus, Problem (1) is reformulated as

P : min
x1, x2, … , xN ∈m

XN
i¼1

f i xið Þ
s:t:x1 ¼ x2 ¼ ⋯ ¼ xN :

(3)

Here, we add the requirement of achieving the same decision variable among
different agents as a constraint.

To makeP have a unique solution, we assume the required function sets satisfy the
following assumption.

Assumption 1. The local function of each agent i, i.e., f i, is μ-strongly convex and
L-smooth with μ≤L.

Under Assumption 1, let x ∗ ∈m denote the unique solution to P, wherePN
i¼1∇f i x

∗ð Þ ¼ 0.
For convenience, we characterize the distributed optimization problem P by

X ,ℱ, f , Gð Þ [22]:

1.Domain: the domain of optimization is denoted as X ¼ m;

2.Function set and collaborative function: the collection of real-valued,
strongly convex, and differentiable individual cost functions is denoted as
ℱ⊆X ! . The overall collaborative function is expressed as f xð Þ ¼PN

i¼1f i xð Þ,
where f i ∈ℱ;

3.Communication topology: the communication topology is represented by G.

There are various methods to solve P distributively. In this chapter, we deal with
distributed algorithms where both estimate of the optimum xi kð Þ∈m and estimate of
the collaborative function gradient yi kð Þ∈m are maintained and updated by node i
following:
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yi kþ 1ð Þ ¼ 1� γð Þyi kð Þ þ γ
XN
j¼0

Cijyj kð Þ þ αk∇f i xi kð Þð Þ

xi kþ 1ð Þ ¼ 1�ϖð Þxi kð Þ þϖ
XN
j¼0

Rijxj kð Þ � yi kþ 1ð Þ þ yi kð Þ,
(4)

where the estimate of decision variable and collaborative function gradient xi 0ð Þ
and yi 0ð Þ, ∀i∈N can be any initializations, and γ,ϖ ∈ 0, 1ð �. This kind of algorithms is
called as DOAGT [38]. This kind of algorithm allows each node i to decide the in-
graph GR and out-graph GC⊤ locally satisfying Assumption 2.

Assumption 2. The weight matrices corresponding to GR and GC⊤ satisfy:

1.R and C are nonnegative weight matrix where R1 ¼ 1 and 1⊤C ¼ 1⊤;

2.Rij >0 only for the in-neighbors of node i, otherwise, Rij ¼ 0;

3.Cli >0 only for the out-neighbors of node i, otherwise, Cli ¼ 0.

To ensure that (4) eventually converges with a carefully chosen stepsize, the
following assumption regarding the graph connectivity is introduced.

Assumption 3. The induced graphs GR and GC⊤ each include at least one spanning
tree, respectively. In addition, there is at least one node that serves as the root of
spanning trees in both GR and GC⊤ .

This assumption offers greater flexibility in selecting the graph topology compared
to other distributed algorithms referenced in [14, 15, 39, 40], necessitating both the
communication topology GR and GC⊤ to be strongly connected.

2.2 DP in distributed optimization problems

DP is a concept that quantifies the degree of privacy protection for individuals
within a statistical database. In the first place, we provide the necessary background
by presenting the subsequent definitions as preliminaries for understanding DP in the
context of distributed optimization.

Different from other paper, we characterize δ-adjacency of two distributed opti-
mization problems based on the following definition.

Definition 1 (δ-adjacency) If the following requirements are met, we call the two
distributed optimization problems P and P0 are δ-adjacent:

1.X ¼ X 0,ℱ ¼ ℱ0, and G ¼ G0, that is, the domain, the function set, together with
the communication topology are all the same;

2.there is an i0 ∈N with different function, i.e., f i0 6¼ f 0i0 and for all other functions
are identical, i.e., j 6¼ i0 ∈N , f j ¼ f 0j;

3. the distance of the different gradient functions, i.e., ∇f i0 and ∇f 0i0 , is bounded by
δ across the whole domain X , i.e., supx∈X∥∇f i0 xð Þ � ∇f 0i0 xð Þ∥1 ≤ δ.

According to the above definition, if the two distributed optimization problems
vary only in the cost function of one node, with all other conditions remaining
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unchanged, they are deemed δ-adjacent. This concept of δ-adjacency ralexes the
requirement in [22], which mandates bounded gradients on the domain of optimiza-
tion. If we assume ∥∇f i xð Þ∥1 ≤ c, ∀i∈N as in [22], setting δ ¼ 2c ensures
∥∇f i0 xð Þ � ∇f 0i0 xð Þ∥1 ≤∥∇f i0 xð Þ∥1 þ ∥∇f 0i0 xð Þ∥1 ≤ δ. In addition, δ�adjacency accom-
modates a broader range of function sets. For example, f i0 xð Þ ¼ x⊤Qx and f 0i0 xð Þ ¼
x⊤Qxþ p⊤x with ∥p∥ 1 ≤ δ and Q >0 with the domain x∈m are only δ-adjacent in
our definition.

Under DOAGT (4), we consider the worst case that the eavesdropper can access as

much informaiton as they can, to be specific, initial state s0 ¼ xi 0ð Þ, yi 0ð Þ� �N
i¼1, the

stepsize sequence αkf gk∈ℕ, the communication graph GR, GC⊤ , and algorithm
parameterϖ, γ. Other eavesdropper has less information set would have better privacy
guarantee. In the worst case, transmitting xj kð Þ and Cijyj kð Þ directly reveals the sensitive
information since the gradient and decision value can be inferred via the following
formula:

∇f i xi kð Þð Þ ¼ 1
αk

yi kþ 1ð Þ �
XN
j¼1

C0
ijyj kð Þ

 !
¼ 1

αk

XN

l¼1

C0
liyi kþ 1ð Þ �

XN
j¼1

C0
ijyj kð Þ

 !
,

xi kþ 1ð Þ ¼
XN
j¼1

R0
ijxj kð Þ �

XN

l¼1

C0
liyi kþ 1ð Þ þ

XN

l¼1

C0
liyi kð Þ,

(5)

where R0
ij and, C

0
ij are elements of the modified weighted matrix Rϖ and Cγ with

Rϖ ¼ 1�ϖð ÞI þϖR ¼ R0
ij

h i
and Cγ ¼ 1� γð ÞI þ γC ¼ C0

ij

h i
.

Therefore, it is essential to blur the transmitted messages by, for example, adding
random noises to preserve the gradient information. Algorithm 1 (PP-DOAGT)
encapsulates the resulting randomized mechanism.

Algorithm 1. PP-DOAGT [38].

Input: Stepsize sequence αkf gk∈ℕ with αk >0, communication topology related
parameters R,C,ϖ, γ, and initial state s0.
Step 1: Node i initializes its states with xi 0ð Þ and yi 0ð Þ, ∀i∈N .
Step 2: At each iteration k, ∀k∈ℕ, ∀i∈N :

1.Node i randomly generates the noises ζi kð Þ, ηi kð Þ∈m following certain
distributions.

2.Node i pushes Cli yi kð Þ þ ηi kð Þ� �
to l∈N out

C,i .

3.Node i pulls xj kð Þ þ ζj kð Þ from j∈N in
R,i.

4.After receiving xj kð Þ þ ζj kð Þ and Cij yj kð Þ þ ηj kð Þ
� �

, node i updates yi and xi
following:

yi kþ 1ð Þ ¼ 1� γð Þyi kð Þ þ γ
X
j

Cij yj kð Þ þ ηj kð ÞÞ
� �

þ αk∇f i xi kð Þð Þ,

xi kþ 1ð Þ ¼ 1�ϖð Þxi kð Þ þϖ
X
j

Rij xj kð Þ þ ζj kð Þ
� �

� yi kþ 1ð Þ þ yi kð Þ:
(6)
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We refer to ηi kð Þ as the gradient-tracking noise and ζi kð Þ as the coordination noise,
respectively. Stack η kð Þ ¼ η1 kð Þ, … , ηN kð Þ½ �⊤ ∈N�m and
ζ kð Þ ¼ ζ1 kð Þ, … , ζN kð Þ½ �⊤ ∈N�m. A sample space Ω ¼ N�m� �

ℕ denotes the set of
avaiable choice of W ¼ ζ kð Þ, η kð Þf gk∈ℕ. Additionally, stack the state variables x kð Þ
and y kð Þ in a similar way, i.e., x kð Þ ¼ x1 kð Þ, … , xN kð Þ½ �⊤ ∈N�m and

y kð Þ ¼ y1 kð Þ, … , yN kð Þ� �⊤ ∈N�m. Lastly, denote

∇f x kð Þð Þ ¼ ∇f 1 x1 kð Þð Þ, … ,∇f N xN kð Þð Þ� �⊤ ∈N�m. By the above definitions, the
matrix form of (6) is:

y kþ 1ð Þ ¼ 1� γð Þy kð Þ þ γCyo kð Þ þ αk∇f x kð Þð Þ,
x kþ 1ð Þ ¼ 1�ϖð Þx kð Þ þϖRxo kð Þ � y kþ 1ð Þ þ y kð Þ,

xo kð Þ ¼ x kð Þ þ ζ kð Þ,
yo kð Þ ¼ y kð Þ þ η kð Þ:

(7)

For a particular problem P, it is obvious from (7) that the available set of output
sequences, i.e., O ¼ xo kð Þ, yo kð Þ� �

k∈ℕ, is uniquely determined by W, given αkf gk∈ℕ,
R,C,ϖ, γ and s0 under PP-DOAGT. Define this noise-to-output mapping ΘP : Ω↦Ω.
This mappings is a bijection from Ω to itself under Assumption 1 [38]. From the above
analysis, the ε-DP of PP-DOAGT is defined as follows.

Definition 2 (ε-DP) For a given ε>0, if for any two δ�adjacent distributed optimi-

zation problemP andP0, any Borel set of the output sequences∈ℬ N�m� �ℕ� �
has

P Θ�1
P ð Þ

h i
≤ eεP Θ�1

P0 ð Þ
h i

, (8)

we call a PP-DOAGT under Assumption 1 is ε-DP.
In essence, Definition 2 suggests that for any two similar distributed optimization

problems, the distributions of the transmitted outputs are indistinguishable to an
extent that prevents an adversary from identifying each individual’s correct local cost
function from the whole function set ℱ. In (8), the quantity ε represents the privacy
level. If ε is smaller, it means that the two distributions are more indistinguishable;
thus, the privacy level would be higher. The ε-DP is well-defined because of the
measurably of the mapping ΘP as proved in [38].

2.3 State decomposition

State decomposition involves partitioning each node’s state into two substates, where
only one of these substates is visible to neighboring nodes. Figure 1 illustrates an
example of state decomposition within a given network topology, where i0 contains the
hidden state information. It is first proposed by Wang [36] to preserve the initial state

Figure 1.
Demonstration of state decomposition.
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privacy in multi-agent systems to reach consensus via an undirected communication
network. Chen et al. [41] further extended to directed communication networks.

Algorithm 2. SD-Push-Pull [42].

Input: Constant stepsize α>0.
Step 1: Initialization:

1.Node i decides in-graph GR and out-graph GC⊤ locally satisfying Assumption 2,
and chooses two sub-state weights β1i , β

2
i ∈ 0, 1ð Þ, ∀i∈N .

2.Node i picks any xi 0ð Þ, y1i 0ð Þ, y2i 0ð Þ∈m, θi ∈þ.

Step 2: At each iteration k, ∀k≤K ∈ℕ, ∀i∈N :

1.Node i pushes Cliy1i kð Þ to l∈N out
C,i .

2.Node i injects a random noise ηi kð Þ consisting of m zero-mean Laplacian noise
independently following Lap θið Þ and updates y1i , y

2
i by:

y1i kþ 1ð Þ ¼ P
j
Cijy1j kð Þ þ 1� β2i

� �
y2i kð Þ þ ηi kð Þ,

y2i kþ 1ð Þ ¼ β1i y
1
i kð Þ þ β2i y

2
i kð Þ þ ∇f i xi kð Þð Þ,

(9)

where Lap θð Þ denotes the zero-mean Laplace distribution with probability den-

sity function pL x; θð Þ ¼ 1
2θ e

�∣x∣
θ .

1.Node i pulls xj kð Þ � α y1j kþ 1ð Þ � y1i kð Þ
� �

from its in-neighbors j∈N in
R,i.

2.Node i updates xi following:

xi kþ 1ð Þ ¼ P
j
Rij xj kð Þ � α y1j kþ 1ð Þ � y1i kð Þ

� �� �
: (10)

In SD-Push-Pull outlined in Algorithm 2 [42], the hidden node state y2i kþ 1ð Þ
includes the sensitive information of the local gradient function, i.e., ∇f i xi kð Þð Þ. Since
the hidden node state is not shared over the communication network, the private
information is protected from being leaked. Although this sensitive information might
be revealed through the shared information y1i kþ 1ð Þ, noise ηi kð Þ is injected to obscure
the data. The effect of this noise on both performance and privacy will be discussed in
the following section.

3. Tradeoff between performance and privacy

3.1 Two impossible results of PP-DOAGT

An impossible result between exact convergence, even in the distribution sense,
and DP of PP-DOAGT is proved in [38]. This result extends the impossibility findings
of [24] and is more challenging than the private consensus problem discussed in [43].
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This is because our protection considers the gradient over the entire domain, rather
than just a single point.

Theorem 1.1 (First Dilemma) [38] For any given αkf gk∈ℕ, R, C, γ, ϖ and initial
state s0, PP-DOAGT preserves ε-DP for some δ, ε>0, and that

lim
k!∞

P ∥xi kð Þ � x ∗ ∥1 ≥ ε½ � ¼ 0,∀i∈N , (11)

cannot hold simultaneously.
For convenience, ∥xi kð Þ � x ∗ ∥1 ¼ op 1ð Þ indicates that

lim k!∞P ∥xi kð Þ � x ∗ ∥1 ≥ ε½ � ¼ 0 for any ε>0.
It is worth to mention that the statement of Theorem 1 holds universally, regardless

of the noise distribution and the choice of noise-to-output mapping ΘP, as long as the
mapping is continuous and bijective. In other words, this impossibility result applies to
a broader range of distributed optimization algorithms other than the one described in
(7). Specifically, Assumption 1 and state evolution (7) represent a special case that
satisfies that ΘP is continuous and bijective. Consequently, a PP-DOAGT cannot
achieve both ε-DP and optimal point convergence in distribution simultaneously.

Given that convergence in distribution is the least strict form of exact conver-
gence, an ε-DP PP-DOAGT cannot achieve exact optimality in any sense, such as the
almost surely convergence result as proved in [24]. This leads us to another question:
Is it possible to achieve ε-DP while ensuring that PP-DOAGT converges in distribution
to a bounded neighborhood of the optimum, i.e., ∥xi kð Þ � x ∗ ∥1 ¼ Op 1ð Þ, ∀i∈N ?

Here, notation Op 1ð Þ represents that ∀ε>0, there exist finite constants M εð Þ>0 and
K εð Þ>0 such that P ∥xi kð Þ � x ∗ ∥>M εð Þ½ �< ε for all the following iterations k>K εð Þ.

For ease of calculating the probability measure in (8), we assume that the noise
distribution satisfies Assumption 4.

Assumption 4. The noises ζi kð Þ, ηi kð Þ∈m are identically independent, consisting of
the jth element ζi,j kð Þ and ηi,j kð Þ, ∀j∈N , which satisfies zero-mean Laplace distribution,

ζi,j kð Þ � Lap θζ,k
� �

, ηi,j kð Þ � Lap θη,k
� �

: (12)

Under this noise distribution, [38] proves that PP-DOAGT is not able to have ε-DP
if the selected stepsize sequence is not summable.

Theorem 1.2 (Second Dilemma) [38] PP-DOAGT with any given αkf gk∈ℕ satisfy-
ing

P∞
k¼0αk ¼ ∞ and supk∈ℕαk <∞ cannot achieve ε-DP.

The second dilemma sets the stage for a comprehensive examination of privacy
and performance under summable stepsize sequences. Other literature does not pay
much attention to this condition since it cannot ensure the convergence of DOAGT to
their optima because of the incomplete exploration of the state space. Denote x kð Þ ¼
uTx kð Þ to be the weighted average at kth iteration, where u is the unique left eigen-
value of R.

Theorem 1.3 (Performance Analysis) [38] Consider PP-DOAGT under Assump-

tions 1–4. When the variances of noise sequences satisfy
P∞

k¼0θ
2
ζ,k <∞,

P∞
k¼0

θ2η,k
αk

<∞,P∞
k¼0αk <∞, and the stepsize sequences αk

αk0
≥ βλk�k0 for all positive integers k> k0

with a possible λ∈ qC, 1
� �

and k0 ∈ℕ, the weighted average of local estimates x will
converge to the neigbouhood of the optimum in distribution, i.e.,
supk∈ℕE ∥x kð Þ � x ∗T∥22

� �
≤D1 with D1 bounded. In addition, all the agents local
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estimate will converge to the weighted average almost surely and from the mean-
square perspective.

It is easy to prove that the PP-DOAGT achieves stochastically bounded error under
the conditions.

Corollary 1 [38]. When the conditions in Theorem 1.3 hold, we have that each node
will converge to a bounded neighborhood of the optimum in distribution under PP-
DOAGT.

Sufficient conditions to ensure that PP-DOAGT has ε-DP for any two δ-adjacent
distributed optimization problems is summarized in Theorem 1.4.

Theorem 1.4 (Privacy Analysis) [38] Consider PP-DOAGT under the above
assumptions. When the following conditions

P∞
k¼0αk <∞, Dη≔

P∞
k¼0

αk
θη,kþ1

<∞ and

Dζ≔
P∞

k¼0
αk

θζ,kþ1
<∞ hold, Algorithm 1 obtains ε-DP for any two δ-adjacent distributed

optimization problems, where

ε ¼ δþ 2LD
γϖ

ϖDη þ 2Dζ

� �
, (13)

where

D ¼ K ≥ k inf max
max
0≤ i<K

αi δþ Lξið Þ þ αKδ

ϖγ � 2αKL
, max
0≤ i<K

ξi
2

8<
:

9=
;: (14)

with

k≔min kjαt < ϖγ

2L
,∀t≥ k

n o
, αk≔sup

t≥ k
αt: (15)

By Theorem 1.3 and 1.4, we conclude that it is possible to design αkf gk∈ℕ, θζ,k and
θη,k such that PP-DOAGT can ensure ∥xi kð Þ � x ∗ ∥1 ¼ Op 1ð Þ while achieving ε-DP,
provided that

P∞
k¼0αk <∞. This is formally presented in Corollary 2.

Corollary 2 [38]. Consider PP-DOAGT under the above Assumptions. When the

following conditions
P∞

k¼0αk <∞,
P∞

k¼0θ
2
ζ,k <∞,

P∞
k¼0

θ2η,k
αk

<∞,
P∞

k¼0
αk

θη,kþ1
<∞,

P∞
k¼0

αk
θζ,kþ1

<∞, and αk
αk0

≥ βλk�k0 for all natural number k> k0 with a possible λ∈ qC, 1
� �

and a natural number k0 hold, PP-DOAGT achieves stochastically bounded error
while satisfies ε-DP with ε given by (13) and (14) simultaneously.

To sum up, the tradeoff between privacy and convergence under PP-DOAGT is
illustrated in Figure 2. The dark blue areas represent where PP-DOAGT achieves ε-

Figure 2.
The tradeoff between performance and privacy under PP-DOAGT.
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DP, while the areas with blue lines indicate where PP-DOAGT achieves stochastically
bounded error.

3.2 Performance and privacy analysis of SD-push-pull

Different from the first part, which considers protecting function gradients over
infinite iterations, SD-Push-Pull only considers protecting the sensitive information
over finite iterations till K steps [42]. However, due to the allowable constant stepsize,
a linear convergence to a neighborhood of optimum distribution at an exponential rate
can be achieved under SD-Push-Pull. Theorem 1.5 demonstrates the convergence
characteristics.

Theorem 1.5 [Performance Analysis] [42] Consider SD-Push-Pull under the above
assumptions. When the constant stepsize α follows the below condition:

α≤ min

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2R
6c5

s
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2C
6c10

s
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d3

d2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 þ 4d1d3

q
vuut

8><
>:

9>=
>;
, (16)

Then, the supremum of the expectation of the difference between each node’s
estimate and the optimum or the average converges to lim sup

k!∞
E ∥x kð Þ � x ∗⊤∥22
� �

or

lim sup
k!∞

E ∥∥x kð Þ � 1x kð Þ∥22
� �

, respectively, with the linear convergence rate

O ρ Að Þk
� �

, where ρ Að Þ< 1. Furthermore, specific mathematical forms of the above

notions are given in [42].
In the above theorem, the specific forms of scalars d1, d2, d3, c5, c10 are also seen in

detail in [42].
Next, the privacy level of SD-Push-Pull is quantified using DP. Since SD-Push-Pull

considers only finite iteration steps and all the gradients of local objective functions
∥∇f i xi kð Þð Þ∥2 are bounded. For convenience, let us assume the bound is U, i.e.,
∥∇f i xi kð Þð Þ∥2 ≤U, ∀i∈N and ∀k ¼ 0, 1, … ,K. The ε-DP is guaranteed by adding noise
satisfying Theorem 1.6.

Theorem 1.6 [Privacy Analysis] [42] Consider SD-Push-Pull under Assumptions 1–
3. Under a finite iteration number k≤K, SD-Push-Pull preserve εi-DP for each node i’s
local objective function when the noise variance satisfies

θi ≥
2
ffiffiffiffi
m

p
UK

εi
: (17)

In other words, if all nodes choose θi ¼ θ, SD-Push-Pull can preserve ε-DP with
ε ¼ 2

ffiffiffi
m

p
UK

θ . Note that the privacy level can be improved by increasing the noise variance
θ; however, the performance accuracy would become arbitrarily low. The tradeoff
between privacy and performance of SD-Push-Pull is shown in Theorems 1.5 and 1.6.

3.3 Scalability issues

We note that the privacy-preservation steps are Step 2.1 in Algorithm 1 and Step
2.2 in Algorithm 2 by simple adding operation. In addition, the algorithm will
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converge to a neighborhood of the optimum within finite step K by Theorem 1.3 and
Theorem 1.5. Therefore, the whole added privacy-preservation steps increase linearly
with the number of nodes, unlike cryptographic methods, which require the compu-
tational burden increase exponentially with respect to the node number. The two
proposed methods are more desirable to be implemented in a large-scale of network in
different areas, which will be included in the next section.

4. Application scenarios

A wealth of information about the underlying model is carried by the gradient of a
cost function. This privacy concern has attracted increasing interest in areas such as
deep learning [44, 45], collaborative computing [46], energy management [47], and
traffic transportation [48].

Take classification problems in machine learning as an example. Suppose a multi-
agent system seeks to determine an optimal weight for features hi by the training
labels zi to minimize the sum of classification error, given by

x ∗ ¼ argmin x∈m
PN

i¼1
1
2 h⊤i x� zi
� �2

, while each agent holds hi, zið Þ as sensitive data.
It is worth noting that gradient information ∇f i xð Þ ¼ h⊤i x� zi may reveal the agents’
personal preferences about some features. Concerns about privacy leakage of sensitive
information may discourage agents from sharing their data to enhance learning per-
formance.

The effectiveness of the provided two algorithms is demonstrated via a numerical
ridge regression problem, i.e.,

min
x∈m

XN
i¼1

f i xð Þ ¼
XN
i¼1

h⊤i x� zi
� �2 þ ρ∥x∥22
� �

: (18)

Here, ρ indicates a regulation penalty parameter. Consider ρ ¼ 0:01 and there
exists five agents collaboratively solving the above optimization problem distribu-
tively. The communication network depicted in Figure 3 highlights Agent 3 in a
central role. Agent 3 exclusively transmitted information to agents 2 and 4 and then
compiles gradient estimates from its in-neighbors 2 and 5. The other agents form a
cyclic communication topology, with connections established as 1 ! 4 ! 5 ! 2 ! 1.
Let the mixing weights R, C be: ∀i, Rii ¼ 0:5 and Rij ¼ 1

2∣N in
R,i∣
, ∀j∈N in

R,i; Cii ¼ 0:5,

Cji ¼ 1
2∣N out

C,i ∣
. ∀j∈N out

C,i . It is worth to mention that neither GR nor GC⊤
� �

satisfies

strongly connected condition.
To begin with, we let agent i∈N draw the variables hi ∈ �1, 1½ �m and ~xi ∈ 0, 10½ �m

randomly following uniform distributions. The observed outputs zi can be then cal-
culated as zi ¼ h⊤i ~xi þ υi, where υi follows Gaussian distribution with zero-mean and
variance 25. The problem’s optimal solution is unique, to be specific,

x ∗ ¼ PN
i¼1hih

⊤
i þNρI

� ��1PN
i¼1hih

⊤
i ~xi.

4.1 Demonstration of PP-DOAGT

Letϖ ¼ γ ¼ 0:9 and α0 ¼ 0:1< ϖγ
2L. From Corollary 2, consider the special choice of

exponential convergence αk ¼ 0:1qk, θζ,k ¼ θη,k ¼ qkη . Then one has ε ¼ 3:6915
qη�q δ. With
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qη ¼ 0:93 fixed, the conditions for achieving ε-DP and Op 1ð Þ are satisfied if
0:8682< q<0:93.

We evaluate performance by comparing the normalized residual 1
N E

PN
i¼1

∥xi kð Þ�x ∗ ∥1
∥xi 0ð Þ�x ∗ ∥1

h i

under PP-DOAGT with different convergence stepsize ratio averaging over 100
simulation results under cases: q ¼ 0:87,0:88,0:89,0:90,0:91f g, to demonstrate
the tradeoff.

When q increases, the term 1� qð Þ q� qc
� �

increases in this domain, which
indicates that when the stepsize converges slower, a smaller performance accuracy
bound D1 can be obtained. However, this increased performance sacrifices privacy
since ε also grows when q increases, weakening the privacy level. The above results
inherently demonstrates a tradeoff between privacy and performance, as depicted in
Figure 4.

4.2 Demonstration of SD-push-pull

Let the weights between two substates, β1i , β
2
i be 0:01 and 0:5 for each agent i∈N ,

respectively. Assume that each agent has the same privacy level ε and let δ ¼ 10. The
tradeoff between privacy and performance over finite time step K ¼ 5000 are dem-
onstrated in Figure 5 for three cases: ε ¼ 1,5,10f g, averaging over 50 simulation
results. This figure depicts that Algorithm 2 converges to a neighborhood of the
optimum in expectation to guarantee ε-DP. Additionally, higher privacy level also
corrupt the performance accuracy.

Figure 3.
Communication topology demonstration, where the left (right) is the communication digraph GR GC⊤

� �
.

Figure 4.
The performance accuracy versus time steps under the different privacy level.
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5. Conclusions

In this chapter, we explore techniques for preserving privacy in distributed opti-
mization problems via directed communication networks. Two algorithms, namely,
PP-DOAGT and SD-Push-Pull, are introduced to navigate the tradeoff between per-
formance and privacy. Although PP-DOAGT ensures privacy over an infinite number
of iterations, it reveals two significant limitations that highlight the inherent tradeoff
between performance and privacy. Due to the second dilemma, analyses of tradeoff
between ε-DP and performance are conducted under summable stepsize sequences. In
contrast, SD-Push-Pull focuses on privacy guarantees over finite iterations. Utilizing
state-decomposition, this method targets convergence to a neighborhood of the opti-
mum at a linear convergence rate with a constant stepsize under certain conditions.
Various application scenarios demonstrate the effectiveness of these two algorithms in
preserving privacy while maintaining performance.

Acknowledgements

The chapter is supported by the National Research Foundation of Singapore under
its Medium-Sized Center for Advanced Robotics Technology Innovation and by Naval
Group Far East Pte Ltd. via an RCA with NTU.

Abbreviations

DOAGT Distributed optimization algorithm with gradient tracking
DP Differential privacy
PP-DOAGT Privacy-preserving DOAGT
SD-Push-Pull State-decomposition-based push-pull

Figure 5.
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Chapter 4

Information Privacy Rights in 
India: A Study of the Digital 
Personal Data Protection Act, 2023
Ajay Kumar Bisht and Neeruganti Shanmuka Sreenivasulu

Abstract

The widespread threats to the information privacy of the individuals in the 
digitally connected world have motivated the authors to examine the efficacy of 
the provisions of the newly enacted law of India, namely the Digital Personal Data 
Protection Act, 2023 (in short being called the DPDP Act, 2023). The objective of 
the chapter is to evaluate the adequacy and the appropriateness of the provisions 
that guarantee the information privacy rights of the individuals. After the introduc-
tory section, the relevant definitions listed under Section 2 of the Act are examined 
in the second section of this chapter. Thereafter, the obligations cast upon the data 
fiduciaries under chapter II of the Act will be discussed in the Section 3 of this 
chapter. In the fourth section, the rights of the individuals laid down in the chapter 
III of the Act will be examined. The penal provision for violation of the rights of the 
individuals will be discussed in the fifth section. In the sixth section, the enforce-
ment mechanism will be examined. The last section, number seventh, will be 
devoted to the suggestions made by the authors and the conclusions arrived at. The 
authors suggest that a specific provision may be added in the Digital Data Protection 
Act, 2023 with the heading “Right to data portability.” A dedicated provision on the 
portability would sensitize the data ecosystem to take the responsibility of main-
taining the data in a structured, commonly used, and machine-readable format. 
The authors further suggest the incorporation of a specific provision on “the right 
to be forgotten” in the DPD Act, 2023 on the lines of the provision proposed by the 
Committee of Experts in clause 27 of the PDP Bill, 2018 and the provision proposed 
by the Joint Committee of Parliament in clause 20 of the D.P. Bill, 2021. Further, the 
authors suggest the incorporation of a provision on compensation to the person who 
suffered harm due to the violation of the law of data protection. The authors further 
suggest the addition of a provision that a separate Tribunal dedicated to decide the 
cases under the Act may be constituted. The authors conclude that the rights of 
information privacy are largely covered in the DPDP Act, 2023 of India and the five 
changes suggested in the Section 6.1 (infra) are the only five improvements required 
to effectively protect the information privacy rights under the Digital Personal Data 
Protection Act, 2023.

Keywords: privacy rights, consent, lawful processing, privacy violation, penalties
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1. Introduction

The widespread threats to the information privacy of the individuals in the digi-
tally connected world have motivated the authors to examine the efficacy of the pro-
visions of the newly enacted law of India, namely the Digital Personal Data Protection 
Act, 2023 (in short being called the DPDP Act, 2023). The objective of the chapter is 
to evaluate the adequacy and the appropriateness of the provisions that guarantee the 
information privacy rights of the individuals and the enforcement of those rights.

After this introductory section, the relevant definitions listed under Section 2 of the 
Act are examined in the second section of this chapter. Thereafter, the obligations cast 
upon the data fiduciaries under chapter II of the Act will be discussed in the Section 
3 of this chapter. In the fourth section, the rights of the individuals laid down in the 
chapter III of the Act will be examined. The penal provision for violation of the rights 
of the individuals will be discussed in the fifth section. The enforcement mechanism 
stipulated in the Act is discussed critically in the sixth section. The last section, that is, 
number seventh, will be devoted to the suggestions made by the authors and the con-
clusions arrived at. In all these sections, the provisions of the DPDP Act, 2023 will be 
critically examined with reference to the relevant documents including the following:

i. The Modernized Convention 108 of the Council of Europe of the year 2018 (also 
called Convention 108+),

ii. The General Data Protection Regulation of the European Union of the year 2016 
(also called GDPR),

iii. The judgment dated 24th August, 2017 of the nine judge bench of the Supreme 
Court of India in WP (Civil) No 494 of 2012 titled Justice K.S. Puttaswamy v. 
Union of India (in short being called Puttaswamy, 2017),

iv. The report of the year 2018 of the Committee of Experts headed by Justice B.N. 
Srikrishna, constituted by the Government of India in the year 2017, to draft a 
data protection law for India (in short being called report of the Committee of 
Experts),

v. The Personal Data Protection Bill, 2018 recommended to the Government of 
India, by the Committee of Experts headed by Justice B.N. Srikrishna (in short 
being called PDP Bill, 2018),

vi. The Data Protection Bill, 2021 recommended by the Joint Parliamentary 
Committee of Parliament of India (in short being called DP Bill, 2021).

• Absence of case law under the Act: since the rules under the DPDP Act, 2023 have 
not been notified till the writing of this script, the Act has not been implemented 
till date and so case-law under the DPDP Act, 2023 is not available.

2. Important definitions

In the digital medium, information primary means protection of personal data. 
Therefore, we will begin with the analysis of the definitions data, personal data, 
data principal, data fiduciary, data processor, and processing.
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2.1 “Data”

Section 2(h) of the DPDP Act, 2023 defines “data” as something that the human 
beings or the automated systems can communicate, interpret or process ([1], p. 02). 
The “something” here implies any information, concept, fact, opinion, or instruction 
([1], p. 02). Neither the Convention 108+ of the Council of Europe, nor the GDPR of 
the European Union define the term data.

The term “data” is defined in clause 3(12) of the PDP Bill, 2018 in the same terms 
as in the section 2(h) of the DPDP Act, 2023 ([2], p. 03). The Joint Committee of 
Parliament had suggested the definition of “data” which is in line with the definition 
in section 2(h) of the DPD Act, 2023 ([3], p. 03). In common parlance in India, the 
Joint Committee of Parliament is also called JPC in short.

The definition of the term “data” in the section 2(o) the Information Technology 
Act, 2000 is also within the broad contours of the definition stipulated in sec 2(h) of 
the DPD Act, 2023 ([4], p. 07).

Thus, the authors find that the DPD Act, 2023 has proposed a comprehensive and 
clear definition of the term “data” in section 2(h).

2.2 “Personal data”

The section 2(t) of the DPD Act, 2023 defines any data about an individual 
which identifies that person as “personal data” ([1], p. 02). The article 2.a of the 
Convention 108+ of the Council of Europe defines “personal data” as any informa-
tion about an identified or an identifiable individual ([5], p. 07). The GDPR of the 
European Union defines “personal data” in the article 4(1) in similar language as 
Convention 108+ as any information about an identifiable or identified individual 
([6], p. L119/33).

The Committee of Experts had evolved a detailed definition of “personal data” 
defining it in clause 3(29) of the PDP Bill, 2018 as data about or relating to a natural 
person who is directly or indirectly identifiable ([2], p. 05).

The Joint Committee of the Parliament had recommended in clause 3(33), a 
definition of “personal data” which added to the definition proposed in the PDP Bill, 
2018, by including ‘any inference drawn from such data for the purpose of profiling’ 
([3], p. 06).

The authors find that the definition of “personal data” in the DPDP Act, 2023 is 
short as compared to the definitions proposed in earlier legislative proposal of India. 
However, the definition being in general terms is on the lines of the shorter defini-
tions of the European regional documents namely the Convention 108+ and the 
GDPR; it is expected to be expansive in its scope and so, would serve the purpose.

2.3 “Data principal”

The person whose personal data is in issue is defined in section 2(j) as “data princi-
pal” ([1], p. 02). The section 2(j) further qualifies the definition by making provision 
that lawful guardian will be the data principal where the personal data relates to 
children or persons with disability ([1], p. 02). The Convention 108+ calls such person 
“data subject.” The article 2.a of the Convention 108+ defines “data subject” as the 
identified or identifiable individual whose personal data is in issue ([5], p. 07). The 
article 4(1) of the GDPR defines “data subject” in the same language as the article 2.a 
of the Convention 108+ ([6], p. L119/33).
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The Committee of Experts headed by Justice B.N. Srikrishna was of the view 
that the autonomy of the individuals in relation to their personal data needs to be 
enhanced and that there is an urgent need to remove the existing imbalance in the 
bargaining power of the individuals vis-à-vis the entities that process and control 
data ([7], p. 07-08). The Committee of Experts, therefore, suggested the name “data 
principal” for the individual whose personal data is in issue ([7], p. 08). Accordingly, 
clause 3(14) of the PDP Bill, 2018 defined “data principal” as the natural person to 
whom the personal data in issue relates ([2], p. 03). The Committee of Experts, there-
fore, made the individual the focal point of the regime of data protection and so, the 
Committee proposed the word “data principal” for the individual who is referred to 
as “data subject” in the regional documents of Europe, namely Convention 108+ and 
the G.D.P. R.

The JPC agreed with the definition proposed by the Committee of Experts and 
so the definition in clause 3(16) of the DP Bill, 2021 defined “data principal” as the 
natural person whose personal date is in issue ([3], p. 04). The authors, thus, found 
that the emphasis on the individual is rightly reinforced by calling him/her as “data 
principal” instead of “data subject.” The information privacy rights of the individual 
will be protected better under the definition of “data principal” provided in 2(j) of the 
DPDP Act, 2023.

2.4 “Data fiduciary”

The section 2(i) of the DPDP Act, 2023 defines data fiduciary as the person who 
alone or jointly with others, decides the purpose and the mechanism of processing of 
personal data ([1], p. 02).

The European regional documents use the term data controller and so, the article 
2.d of the Convention 108+ defines “controller” as the natural or legal person, public 
authority, service agency, or any other organization which alone or in conjunction 
with others, decides the purpose and the means of processing ([5], p. 07). The article 
4(7) of the GDPR defines “controller” more elaborately than the definition in article 
2.d of Convention 108+ by adding the classification that the purpose and means of 
processing would be decided in accordance with the law of the Member State or the 
law of the European Union ([6], p. L119/33).

The Committee of Experts of India was of the opinion that in a free and fair 
digital economy, the relationship between the individual and the entity processing 
the data should be based on mutual trust ([7], p. 08). The Committee, therefore, 
recommended in clause 3(13) of the PDP Bill, 2018 the definition of “data fiduciary” 
as a person, including the State, or company, any juristic entity or any individual 
who alone or jointly with other decide the purpose and mechanism of processing 
([2], p. 03).

The JPC in clause 3(16) of DP Bill, 2021 suggested that definition of “data fidu-
ciary” as was suggested by the Committee of Experts in the clause 3(14) of the PDP 
Bill, 2018 ([3], p. 04).

The authors find that the language for the “data fiduciary” in the DP Act, 2023 is 
on same lines as suggested by the Committee of Experts and the Joint Committee of 
Parliament. Further, the authors find that the concept of fiduciary relationship, a 
better approach toward instilling an element of trust, and thereby, reduces the exist-
ing inequality between the data principal and the data controller.
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2.5 “Data processor”

The section 2(k) of the DPDP Act, 2023 defines “data processor” as the person 
who processes personal data on behalf of the data fiduciary ([1], p. 02).

The article Convention 2.e of the Convention 108+ defines “processor” as a natural 
or juristic person, public authority, service agency, or any other organization which 
process personal data on behalf of the data controller ([5], p. 07). The article 4(7) 
of the GDPR defines “data processor” in the same language as the article 2.e of the 
Convention 108+ ([6], p. L119/33).

The Committee of Exerts proposed the definition of the processor in clause 3(15) 
of the PDP Bill, 2018 on the lines of the definitions in article 2.e of the Convention 
108+, but with the exception of an employee of the “data fiduciary” ([2], p. 03). 
The JPC in the clause 3(17) removed the exception of employee from the definition 
proposed in the PDP Bill, 2018 and added the non-governmental organization in the 
category of the data processors ([3], p. 04).

The authors find that the definition of “data processor” in section 2(k) of the 
DPDP Act, 2023 appropriately includes the required categories.

2.6 “Processing”

The section 2(x) of the DPDP Act, 2023 defines “processing” of personal data in 
a very detailed manner. It says processing means wholly or partly automated opera-
tions performed on digital personal data including the collection, storage, adoption, 
sharing, erasure, or destruction ([1], p. 03).

The article 2.b of the Convention 108+ defines “data processing” as operations 
performed on personal data including collection, storage, alteration, disclosure, and 
logical operations or arithmetical operations on personal data ([5], p. 07).

The article 4(2) of the GDPR bases the definition of processing on the article 2.b 
of the Convention 108+ but adds the clarification with the words “whether or not 
by automated means” ([6], p. L119/33). The definition in the GDPR thus includes 
manual processing in the category of processing.

The Committee of Experts recommended in clause 3(32) of the PDP Bill, 2018 
the definition of processing on the lines of the definition of processing laid down in 
article 2.b of the Convention 108+ ([2], p. 05).

The JPC recommended in clause (36) of the DP Bill, 2021 a definition of process-
ing on the lines of the definition in 3(32) of the PDP, 2018 ([3], p. 07).

The authors, thus, find that the definition of processing in the DPDP Act, 2023 is 
an improvement over the definitions proposed by the Committee of Experts and the 
Joint Committee of Parliament. By defining “processing” on the lines of the definition 
in article 4(2) of the GDPR, the definition in section 2(x) of the DPDP Act, 2023 has 
clarified the matter by adding the words “fully or partly automated.”

3. Obligations of the data fiduciary for processing

After comparing the important definitions, we now turn our attention to the obli-
gations cast upon the “data fiduciaries” under the DPD Act, 2023, with the objective 
of protecting the information privacy rights of the individuals.
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3.1 Grounds for processing personal data

The section 4 of the DPDP Act, 2023 permits the processing of personal data 
for a lawful purpose only if the individual concerned (i.e., data principal) has 
consented to such processing or the processing is for specified legitimate objectives 
([1], p. 04).

The articles 5.1 and 5.2 of the Convention 108+ provide that personal data can only 
be processed for legitimate purpose either on the basis of the consent of the individual 
or for some other legitimate objectives laid down by law ([5], p. 08).

The article 6.1 of the GDPR lays down that personal data will be processed lawfully 
only if the concerned individual has consented to such processing or for other speci-
fied legitimate purposes ([6], p. L119/36).

The Committee of Experts proposed in clauses 4 and 5 of the PDP Bill, 2018 that 
personal data can be processed for clear, lawful, and specific purpose, while respect-
ing the privacy of the individual ([2], p. 06).

The JPC recommended in clauses 4 and 5 of the DP Bill, 2021 that personal data 
shall be processed lawfully for the purpose consented to by the individual or for speci-
fied legitimate purposes ([3], p. 09).

The authors find that the sections 4 and 5 of the DPD Act, 2023 adequately 
provide for protection of personal data by permitting lawful processing only after 
obtaining consent of the concerned individual or for legitimate purposes laid down 
in the DPD Act, 2023. This complies with the established data protection principle of 
purpose limitation.

3.2 Notice to the data principal before processing the data

The section 5(1) of the DPD Act, 2023 requires that every request for obtaining 
consent of the individual should be accompanied or proceeded by a notice to the 
individual conveying the information including the purpose for processing and the 
provisions available to the individual to exercise his/her rights of grievance redressal 
and making of a complaint to the regulatory body, that is, the Data Protection Board 
of India ([1], p. 04).

The articles 8.1.b and 8.1.c of the Convention 108+ require the data controller 
(i.e., the data fiduciary in case of India) to notify the data subject (data principal of 
India), the legal basis and the purpose of proposed processing, and the mechanism of 
exercising the rights of the data subject ([5], p. 08).

The articles 13.1. (c) and 13.2. (d) of the GDPR require the data controller (i.e., the 
data fiduciary of India) to inform the data subject (i.e., the data principal of India), 
the purpose and legal basis of the processing, and the right of the data subject to lodge 
a complaint with the supervising authorities ([6], p. L119/40–41).

The Committee of Experts of India proposed in the clause 8(1) of the PDP Bill, 
2018 that the data fiduciary is obligated to notify the data principal either before 
processing or not later than at the time of processing, the lawful purpose of process-
ing, and the information including the procedures for grievance redressal and the 
approach to the Data Protection Authority ([2], p. 07).

The JPC recommended in clause 7(1) of the D.P. Bill, 2021 that at the time of 
processing, the data fiduciary shall notify to the data principal the details includ-
ing the purpose of processing and mechanism for grievance redressal and filing of 
complaints to the Data Protection Authority ([3], p. 9–10).
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The authors find that the contents of section 5 of the DPD Act, 2023 are much 
shorter as compared to the contents of the corresponding clause 8 of the PDP Bill, 
2018 and clause 7 of the DP Bill, 2021. The contexts are much shorter even when 
compared with the corresponding article 13 of the GDPR. The sketchy nature of the 
section 5 of the DPD Act, 2023 might prove inadequate on many essential require-
ments of notice.

3.3 Consent of the individual

Section 6(1) of the DPDP Act, 2023 requires the data fiduciary to ensure that the 
consent accorded by the data principal is free, informed, and unambiguous and the 
consent should express an agreement for the proposed processing ([1], p. 05).

The article 5.2 of the Convention 108+ requires that the consent should be free, 
specific, informed, and unambiguous ([5], p. 08).

The article 7.2 of the G.D.P.R. requires the consent to be clear, in a plain language 
and not in violation of the Regulation ([6], p. L119/37).

The Committee of Experts proposed in clause 12(2) of the PDP Bill, 2018 that con-
sent should be free (with reference to section 14 of the Indian Contract, Act, 1872), 
informed, specific, clear, and capable to be withdrawn ([2], p. 09).

The ingredients of a valid consent, recommended by the JPC in clause 11(2) of the 
DP Bill, 2021 are similar to the ingredients proposed by the Committee of Experts in 
the clause 12(2) of the PDP Bill 2018 ([3], p. 11–12).

The authors find that the essential conditions for a valid consent of the data 
principal are adequately provided in the section 6(1) of the DPDP Act, 2023 to obli-
gate the data fiduciary to obtain a free and unambiguous consent. The section 6(2) 
further strengthens the information privacy right of the individual by prohibiting any 
consent which is in violation of the DPD Act, 2023 or the rules made thereunder or 
any other law of India ([1], p. 05).

The section 6(3) of the Act permits the data principal the option to give his 
consent in English or in any of the languages listed in the eighth Schedule of the 
Constitution of India ([1], p. 05). Further, under the section 6(4) of the Act, the data 
principal is entitled to withdraw his consent ([1], p. 05).

However, one red flag is apparent in the section 6(5), which requires the individual 
to bear the consequences of withdrawal of consent ([1], p. 05). A provision of liability 
of individual was proposed by the JPC in clause 11(6) of the DP Bill, 2021, which 
makes the data principal liable to bear the consequences, if the consent is withdrawn 
without any valid reason ([3], p. 12). Neither the Convention 108+ nor the GDPR put 
such a liability on the individual for the withdrawal of consent.

The Committee of Experts had proposed a liability on the individual in clause 
12(5) of the PDP Bill, 2018 when the data principal withdraws the consent for the 
processing that is necessary for the performance of a contract to which the data prin-
cipal is a party ([2], p. 09). The Committee of Experts was of the opinion that if the 
withdrawal of consent hinders the performance of a contract, then the data principal 
could choose to face the specific consequences that flow from the non-performance of 
the contract ([7], p. 42).

The authors find that the language of subsection (5) of section 6 of the DPDP Act, 
2023 leaves scope for any unjustified liability on the individual, unless the subsection 
is amended to specify that consequences would mean the consequences of hindrance 
in the performance of a contract, in which the data principal is a party.
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3.4 Absolute obligation of the data fiduciary

The section 8(1) of the DPD Act, 2023 makes the data fiduciary liable for comply-
ing with the Act, even if the processing is done on its behalf by any data processor 
([1], p. 07).

The Convention 108+ does not cast such an absolute liability on the controller (i.e., 
the data fiduciary), but the articles 28.1 and 28.2 of the GDPR entrust the responsi-
bility on the controller (i.e., data fiduciary) to ensure that the processing meets the 
requirements of the Regulation and that the data processor cannot engage another 
data processor without obtaining the specific authorization of the data controller 
([6], p. L119/49).

The Committee of Experts was of the view that the liability of the data processor 
may differ from the liability of a data fiduciary and so the required due diligence 
needs to be incorporated in the contract, to be signed between the fiduciary and the 
processor ([7], p. 52). The Committee, further, proposed in the clause 11 of the PDP 
Bill, 2018 that the data fiduciary would be liable for compliance even if the processing 
is done by the processor employed by the data fiduciary ([2], p. 11).

The JPC recommended a similar provision in clause 10 of the DP Bill, 2021 by 
making data fiduciary liable for complying with the provisions of the law in respect of 
the processing undertaken on its behalf ([3], p. 11).

The authors find the section 8(1) an appropriately worded section that rightfully 
makes the data fiduciary absolutely accountable, considering that the relationship 
between the fiduciary and the data principal is not a contract, between two equal 
parties.

3.5 Obligation of maintenance of data quality

Section 8(3) of the DPDP Act, 2023 requires a data fiduciary to maintain the accu-
racy, completeness, and consistency while processing any personal data ([1], p. 07). 
This is a widely accepted principle of data quality. The article 5.4.d of the Convention 
108+ mandates that the personal data being processed should be accurate and updated 
([5], p. 08). The article 5.1. (d) of the GDPR requires the personal data to be accurate, 
updated, and for this the inaccurate data should be erased or rectified without delay 
([6], p. L119/35).

The Committee of Experts proposed in clause 9(1) of the PDP Bill, 2018 that the 
data fiduciary shall ensure that the personal data processed is accurate, complete, 
updated, and not misleading ([2], p. 08).

The JPC recommended a provision [similar to the clause 9(1) of the PDP Bill, 
2019] in clause 8(1), mandating the data fiduciary to ensure that the personal data 
processed is accurate updated, complete, and not misleading ([3], p. 10).

The authors find that the principle of data quality is well articulated in the section 
8(3) of the DPDP Act, 2023.

3.6 Limitations on retention of personal data

The section 8(7) of the DPD Act, 2023 obligates the data fiduciary to erase the 
personal data after its purpose has been served or after the individual has withdrawn 
the consent ([1], p. 7–8).

The article 5.3.e point of the Convention 108+ prohibits the retention of per-
sonal data once the purpose for processing the data is no longer served ([5], p. 08). 
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The article 5.1. (e) of the GDPR permits the processing of personal data only for the 
time period for which processing is necessary ([6], p. L119/36).

The Committee of Experts proposed in clause 10(1) of the PDP Bill, 2018 that 
retention of personal data is permitted only till the time the purpose of processing is 
served ([2], p. 08). However, the subclause (2) of the clause 10 of the PDP Bill, 2018 
permits the retention for longer period if such retention is specifically mandated for 
complying with any law ([2], p. 08).

The JPC recommended the data retention provision in clause 9(1) of the DP Bill, 
2021 by prohibiting the retention of personal data beyond the period necessary to 
achieve the purpose of processing and require the data fiduciary to delete the data at 
the end of that period ([3], p. 11). Further, the clause 9(2) of the DP Bill, 2021 permits 
retention beyond the period if specifically consented to by the data principal or if it is 
necessary to comply with any law ([3], p. 11).

The authors find that the data retention limitation principle has been appropri-
ately incorporated in the section 8(7) of the DPDP Act, 2023. This section has demon-
strated that the chapter II of the DPDP Act, 2023 lays down substantial obligations on 
the data fiduciaries and the data processors to achieve the objective of protecting the 
information privacy rights of the individual. In the next section, we will evaluate the 
provisions of the data protection rights stipulated in the chapter III of the DPDP Act, 
2023.

4. Data protection rights of the individuals

The rights based on the personal data protection principles that evolved globally 
have been incorporated in the DPDP Act, 2023. These rights are now being examined 
beginning with the section 11.

4.1 Right of the individual to access his/her personal information

Section 11 of the DPDP Act, 2023 provides to the individual the right to obtain 
information about his/her personal data from the data fiduciary. The information 
includes the personal data that is being processed, the details of the data processors 
and other data fiduciaries with whom the personal data is being shared, and the 
personal data already shared ([1], p. 09).

The article 9.1.b of Convention 108+ of the Council of Europe provides that the 
individual has a right to obtain without excessive delay or expenses the confirmation 
of processing of his/her personal data ([5], p. 09). The information to be obtained in 
an intelligible form includes the data processed, the origin of the data, the retention 
period of the data, and the steps taken by the data controller to ensure transparency 
of processing ([5], p. 09).

The article 15 of the GDPR of the European Union provides the data subject (i.e., 
the data principal of India) the right to obtain information from the data controller 
including the purpose of processing the categories or personal data processed, the 
recipients of the personal data, the retention period of data, the origin of the data, 
and the automated decision making ([6], p. L119/43). Further, the individual has the 
right under the article 15 of the GDPR to obtain one copy free of cost of the personal 
data, which is being processed ([6], p. L119/43).

The Committee of Experts of India proposed in clause 24(1) of the PDP Bill, 
2018 the right of the data principal to obtain information on the personal data 
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including the personal data being processed or has been processed, the processing 
activities conducted, and the notice that was required to be furnished to the data 
principal ([2], p. 14). The clause 24(2) of the PDP Bill, 2018 mandates the data fidu-
ciary to furnish information in a form that is easily understood by a reasonable person 
([2], p. 14).

The JPC in clause 17(1) and (2) of the DP Bill, 2021 recommended the right to 
access and confirmation with the language similar to the contents of article 24(1) and 
(2) of the PDP Bill, 2018 ([3], p. 16).

The authors find that the right of access has been appropriately incorporated in 
the DPDP Bill, 2023.

4.2 Right to correction and erasure of personal data

The section 12(1) of the DPDP Act, 2023 confers on the individual, the right to 
correction and erasure of the personal data ([1], p. 10). The section 12(2) requires 
that on receiving the request of the data principal, the data fiduciary will make the 
requested correction, updation, or erasure ([1], p. 10).

The article 9.1.e of the Convention 108+ provides that an individual’s request for 
erasure or rectification will be attended to and the action of rectification/erasure will 
be communicated to the individual if the processing had been done contrary to the 
provisions of Convention 108+ ([5], p. 9).

The article 16 of the GDPR confers on the individual, the right to rectification, and 
erasure of personal data ([6], p. L119/43). The article 17 mandates that the data con-
troller shall, without undue delay, erase the personal data relating to the individual 
(data principal of India) ([6], p. L119/43).

The Committee of Experts proposed in the clause 25(1) of the PDP Bill, 2018 that 
the data fiduciary is required to correct, complete, and update the personal data on 
a request made by the individual ([2], p. 14–15). The clause 25(4) proposed that the 
data shall take all reasonable steps to notify all relevant entities that the data erasure 
or rectification or updation has taken place ([2], p. 15).

The JPC recommended in clause 18 of the DP Bill, 2021 the right to erasure and 
rectification on the lines of the clause 25 of the PDP Bill, 2018 ([3], p. 17).

The authors find that the provisions of subsections (1) and (2) of the section 12 
of the DPDP Act, 2023 are adequate for listing the right of correction, updation, and 
erasure of personal data of the individual (i.e., data principal).

However, subsection (3) of the section 12 of the Act provides for an exception 
from erasure, in the circumstances when the data fiduciary finds the retention neces-
sary for any particular purpose or for the compliance of any law ([1], p. 10).

4.3 Right to grievance redressal

The section 13 of the DPDP Act, 2023 mandates the data fiduciary to address the 
grievance of the individual. The section 13(1) of the Act confers a right on the data 
principal to avail the grievance redressal mechanism provided by the data fiduciary in 
relation to the obligation cast upon the data fiduciary in respect to the personal data 
or in relation to the exercise of the right of the data principal ([1], p. 10). The section 
13(2) requires the data fiduciary to respond to the grievance within the prescribed 
time limit ([1], p. 10).

The article 9.1.f of the Convention 108+ confers the right on the data fiduciary 
to a remedy under article 12 when the rights guaranteed under the Convention are 
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infringed ([5], p. 9). The article 12 of the Convention 108+ mandates each member 
of the Convention 108+ to provide for judicial as well as non-judicial sanctions and 
remedies for infringement of the provisions of the Convention ([5], p. 10).

The article 77(1) of the GDPR confers a right on the individual to lodge a com-
plaint to the supervisory authority if the processing of personal data violates the 
Regulation ([6], p. L119/80). The subarticle (2) of the article 77, further, requires the 
supervisory authority to inform the complainant about the action taken on the com-
plaint ([6], p. L119/80). The article 78(2) of the GDPR guarantees to the individual 
the right to an effective judicial remedy where the supervisory authority does not 
address the complaint or does not respond within 3 months of the lodging of com-
plaint ([6], p. L119/80). The article 79 of the GDPR provides that proceedings against 
the data controller (data fiduciary of India) and data processor shall be entertained 
by the Courts of the member State where the controller or processor has an establish-
ment or the Courts of the member State where the individual has his or her habitual 
residence ([6], p. L119/80).

The Committee of Experts of India proposed in clause 39(3) that any grievance 
raised by the data principal shall be resolved by the data fiduciary within 30 days 
of the registering of grievance ([2], p. 23). The clause 39(4) of the PDP Bill, 2018 
provides to the data principal a right to file a complaint with the adjudicating author-
ity if the data principal is not satisfied with the handling of the grievance by the data 
fiduciary ([2], p. 23). The clause 39(5) of the Bill provided for filing of appeal with 
the Appellate Tribunal against the decision of the Adjudicating Authority ([2], p. 23).

The JPC recommended in clause 32 (2) of the DP Bill, 2021 the provision of a 
complaint by the data principal to the data fiduciary [3]. In clauses 32(3) and 32(5), 
the JPC proposed the provision of a complaint to the Adjudicating Authority, on the 
lines of the PDP Bill, 2018 ([3], p. 28). In clause 68(1)(d) of the DP Bill, 2021, the JPC 
provided the provision of appeal to the Appellate Tribunal against the decision of the 
Adjudicating Authority ([3], p. 51).

The section 27(1)(b) of the DPDP Act, 2023, provides the mechanism of a com-
plaint to be filed by the individual, that is, the data principal, to the Data Protection 
Board of India against the data fiduciary when the data fiduciary fails to satisfy that 
the rights of the data principal are protected ([1], p. 14). The section 29(1) of the Act 
provides for the filing of an appeal before the Appellate Tribunal, if the individual 
(including the data principal) is aggrieved by the decision of the Adjudicating 
Authority of the Data Protection Board of India ([1], p. 15).

The authors conclude that the provision of grievance redressal against the data 
fiduciary and the Data Protection Board is adequately and appropriately incorporated 
in the DPDP Act, 2023.

4.4 Rights to nominate

The section 14(1) of the DPDP Act, 2023 confers on the data principal, the right to 
nominate a representative (nominee) who can exercise the rights of the data principal 
in the event of death or incapability of the data principal ([1], p. 10).

The Convention 108+ does not have any provision for a nomination similar to the 
nomination under section 14(1) of the DPDP Act, 2023.

However, the article 80 of the GDPR provides the data principal, the right to 
nominate, an organization working in the field of protection or personal data, on  
his or her behalf and to exercise the right of data protection on his or her behalf  
([6], p. L119/81).
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4.5 Amendment to the RTI Act, 2005

The section 44(3) of the DPDP Act, 2023 substitutes a smaller provision in the 
section 8(1) (j) of the Right to Information act, 2005 ([1], p. 20). This provision of the 
DPDP Act, 2023 has significantly enhanced the protection of privacy of the individu-
als whose personal information is sought under the provision of RTI Act, 2005.

The authors find that with this provision, the right to information privacy will be 
strengthened vis a vis the right to information under the RTI Act, 2005.

4.6 Absence of a right to data portability

The authors find it strange that the right of the individual to obtain the personal 
data in the format comprehended by him/her is absent from the DPDP Act, 2023.

Although the Convention 108+ does not have any provision of right of data por-
tability, the article 20.1 of the GDPR provides that the individual (the data subject) 
shall have the right to receive the personal data in a commonly used and machine 
readable format ([6], p. L119/45).

The Committee of Experts of India had proposed in clause 26 of the PDP Bill, 
2018, a right to the data principal to receive the personal data in a structured, com-
monly used and machine readable format ([2], p. 15).

The JPC recommended in clause 19 of the DP Bill, 2021, the right to data 
portability, largely on the lines of the language of clause 26 of the PDP Bill, 2018 
([3], p. 27–28).

The authors find it a shortcoming in the DPD Act, 2023 that the right to data 
portability is not included as a specific section or subsection in the Act, whereas both 
the expert bodies namely the Committee of Experts headed by Justice B.N. Srikrishna 
and the Joint Committee of Parliament had dedicated a specific clause on the right to 
data portability.

4.7 Absence of a right to be forgotten

The authors experience another academic worry over the absence in the DPDP 
Act, 2023 of a specific clause on the individual’s right to be forgotten.

The Convention 108+ does not have any specific provision on the right to be 
forgotten, but the GDPR has dedicated a full article on the right to be forgotten. The 
article 17 of the GDPR provides the individuals (i.e., the data subject) the right to 
be forgotten and the data controller is obligated to erase without undue delay, the 
personal data in the situations including the ceasing of the necessity of the data for 
the purpose of processing; the withdrawal of consent by the data principal and the 
personal data has been unlawfully processed ([6], p. L119/44).

The Committee of Experts had proposed in the clause 27 of the PDP Bill, 2018 a 
provision of the right to be forgotten, on the lines of the language of the article 17 of 
the GDPR ([2], p. 16).

The JPC had recommended in clause 20 of the DP Bill, 2021, the individual’s right 
to be forgotten, on the lines of the language of the PDP Bill 2018 ([3], p. 18–19).

The emphasis on the right to be forgotten is prominent in the order dated 24th 
August, 2017 of Justice S.K. Kaul, in the nine judge bench decision in K.S. Puttaswamy 
v. Union of India. Justice Kaul is of the view that an individual should be able to 
change his/her beliefs and evolve as a person ([8], p. 34). Justice Kaul justified the 
right with the reasoning that an individual should not be made to live with the fear 
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that the views he/she expresses would forever be associated with him/her and so the 
individual would refrain from expressing himself/herself ([8], p. 34).

The authors are of the opinion that a specific section on the lines of the clauses 
recommended by the JPC and the Committee of Experts, on the right to be forgotten, 
would have emphasized the individual’s undisputed right over his personal data.

After examining the obligations of the data fiduciaries in Section 3 and the specifi-
cally laid down rights of information privacy in the Section 4, we now examine the 
mechanism of enforcement of the data protection rights under the DPDP Act, 2023.

5. Penal action for violation of the rights of the individuals

In continuation of the right to grievance redressal explained in the paragraph 
4.3(supra), we will evaluate the provisions of the Act that relate to action against the 
violation of the information privacy rights.

5.1 Penalties

The section 33(1) of the DPDP Act, 2023 provides that the Data Protection Board 
of India (in short being called “the Board”) may, after following the principles of 
natural justice, impose a monetary penalty on the person who has caused the breach 
of the provisions of the Act ([1], p. 16–17). The schedule appeared to the Act lists the 
maximum amount of penalty as two hundred and fifty crore rupees ([1], p. 21). The 
section 34 of the Act mandates that the amount received as penalties would form part 
of the Consolidated Fund of India ([1], p. 17).

The article 12 of the Convention 108+ mandates the member States to set up the 
mechanism of judicial as well as non-judicial sanctions and remedies to address the 
infringement of the provisions of the Convention ([5], p. 10).

The article 84 of the GDPR requires the member States to provide for by law, the 
penalties to address the infringement of the Regulation ([6], p. L119/83).

The Committee of Experts had proposed in sections 69(1) and 69(2) of the PDP 
Bill, 2018 a monetary penalty for infringement of the provisions of the Act. The upper 
limits of the penalty amount was fifteen crore rupees or 4 percent of the worldwide 
turnover of the data fiduciary, whichever was higher ([2], p. 41–42).

The JPC recommended in the clause 57–61 of the DP Bill, 2021, penalties on the 
data fiduciaries and data processors for contravention of the provisions of the Act, 
including violation of the information privacy rights of the individuals. The upper 
limit of the amount of penalty in the DP Bill was fifteen crore rupees or 4% of the 
total worldwide turnover of the data fiduciary, whichever was higher ([3], p. 46).

The authors find that the penalties have been appropriately stipulated under 
section 33 of the DPDP Act, 2023. Prima facie, the upper limit of penalty seems too 
harsh, but for deterring the violation, exemplary and harsh penalties are appropriate.

5.2 Absence of the provision of compensation

The DPDP Act, 2023 does not have any provision for payment of compensation to 
the data principals for the harm suffered by them.

While the Convention 108+ does not have any provision for compensation, the 
article 82 of the GDPR provides a provision of compensation. The article 82(1) 
of the GDPR mandates that any person who suffers damage (whether material or 
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non-material) due to the violation of the Regulation would have a right to receive the 
compensation from the data controller or the data processor ([2], p. 44).

The Committee of Experts of India was of the opinion that data principals need 
to be compensated by the data fiduciary or data processor for the harm caused to the 
data principal by the violation of the law ([3], p. 165). Thereafter, the Committee of 
Experts proposed in clause 75 of the PDP Bill, 2018 that the data principal who suf-
fered harm due to the infringement of any provision of law, would have a right to seek 
compensation from the data fiduciary or the data processor ([2], p. 44).

The JPC in clause 65(1) recommended compensation to a data principal who suffers 
harm due to the infringement of the provisions of the law of data protection ([3], p. 49).

The authors find that the absence of the provision of compensation for the harm 
would be a hindrance in the strengthening of the right to privacy. The authors agree 
with the views of the Committee of Experts and the JPC that compensation for the 
harm suffered should be a right of the data principal.

5.3 Bar of jurisdiction of the civil court

Section 39 of the DPD Act, 2023 bars the civil courts from any jurisdiction, or any 
proceeding, or any action for which the Data Protection Board of India is empowered 
under the Act ([1], p. 18). Further, the section 38(2) of the Act mandates that the 
provisions of the DPDP Act, 2023 would prevail to the extent of any conflict between 
the DPDP Act, 2023 and any other law ([1], p. 18).

The Committee of Experts proposed in clause 89 of the PDP Bill, 2018 that civil 
courts would not have any jurisdiction to entertain any proceeding for which the 
Appellate Tribunal is empowered under the Act ([2], p. 51). The clause 89 of the 
Bill, further, bars any civil court or other authority from granting any injunction in 
respect of any action taken in pursuance of any power or duty conferred by that Act 
([2], p. 60). The clause 110 of the PDP Bill, 2018, had proposed an overriding effect 
to the Data Protection Act over any other law or any instrument having the force of a 
law ([3], p. 55).

The JPC recommended in clause 78, the exclusion of the jurisdiction of civil 
court on the lines of the language of the provision of clause 89 of the PDP Bill, 2018 
([3], p. 66). Further, the JPC recommended in clause 97 that the provisions of the law 
would have overriding effect on the lines of the language of clause 110 of the PDP Bill, 
2018.

The authors find that the overriding effect has rightfully been given to the DPD 
Act, 2023. This strengthens the letter and law to strengthen the right of the individual 
to information privacy.

6. Enforcement mechanism

It is often said that a law is as good as its enforcement. So, the provisions related 
to the enforcement of the information privacy rights of the data principal will now 
be discussed. The mechanism of enforcement of the rights is stipulated in the three 
chapters of the DPD Act, 2023. The chapter V (comprising sections 18 to 26) relates 
to the establishment of the Data Protection Board of India (hereinafter abbreviated 
as DPBI). The chapter VI (comprising sections 27 and 28) delineates the powers, 
functions, and the applicable procedures of the DPBI. The chapter VII (comprising 
sections 29 to 32) relates to the Appellate and Alternate Dispute Resolution.
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6.1 Constitution of the DPBI

The sections 18(1) and 18(2) of the DPDP Act, 2023 provide that the Central 
Government shall establish a corporate body named as the Data Protection Board of 
India ([1], p. 12). The subsection (3) of section 19 requires that the persons of abil-
ity, integrity, and standing are eligible to be considered for the chairpersonship or 
membership of the DPBI if they have special knowledge or practical experience in the 
fields including data governance, consumer protection laws, information technology, 
digital economy, law, and techno-regulation ([1], p. 12). The subsection (3) of section 
19 further mandates that at least one among the members or chairperson of the DPBI 
shall be an expert of law ([1], p. 12). The subsection (2) of section 20 limits the term 
of office of the chairperson and member to 2 years and permits their re-appointment 
([1], p. 12).

The authors feel that the qualifications stipulated are appropriate but find that the 
tenure of the chairperson or member should be at least 3 years in order to ensure a 
reasonable continuity as required under the Administrative law.

6.2 Powers and functions of DPBI

The section 27(1) of the PDP Act, 2023 empowers the DPBI to enquire into the 
data breaches and impose penalties as provided in the Act ([1], p. 12). The subsection 
(2) of the section 27 mandates that the DPBI may issue directions to the concerned 
persons and such persons shall be bound to comply with the directions of the DPBI. 
The subsection (2) provides that before the issue of any such direction, the concerned 
person(s) shall be given an opportunity of being heard ([1], p. 12).

The authors find it good that the section 28(1) provides that the DPBI shall func-
tion as an independent body and shall strive to work as a digital office ([1], p. 12). The 
authors further welcome that the DPBI has aptly been conferred, under the section 
28(7), the powers vested in a civil court under the code of civil procedure 1908 in 
matters including summoning and enforcing attendance ([1], p. 15).

The subsection (11) of the section 28 empowers the DPBI to either close the 
proceedings or proceed to impose penalty ([1], p. 15). For arriving at the amount of 
penalty, the DPBI is provided indication guidelines under section 33 ([1], p. 16–17).

6.3 Appeal and alternate dispute resolution

The sections 29(1) and (2) provide the person aggrieved with the order or direc-
tion of the DPBI the right to file an appeal before the Appellate Tribunal ([1], p. 15). 
The subsection (4) of the section 29 empowers the Appellate Tribunal to confirm, 
modify, or set-aside the order appealed against ([1], p. 15). The section 2(a) defines 
that the Telecom Disputes Settlement and Appellate Tribunal (hereinafter called the 
TDSAT) established under the Telecom Regulatory Authority of India Act, 1997 will 
be the Appellate Tribunal under the DPDP Act, 2023 ([1], p. 2).

The authors welcome the provisions of section 31 that empowers the DPBI to opt 
for mediation for resolution of dispute by a mediator mutually agreed upon by the 
parties ([1], p. 16).

However, the section 48(1) of the Information Technology Act, 2000 after 
the amendment in the year 2017, mandates that the TDSAT will be Appellate 
Tribunal under the IT Act, 2000 also ([4], p. 21). The authors, therefore find that 
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an already adequately burdened TDSAT may not be in a position to dispose off the 
appeals timely.

The authors find it disturbing that the rules under the DPDP Act have not been 
framed even after 1 year of the notification of the Act. The Act, therefore, remains 
unimplemented.

7. Suggestions and conclusion

After conducting an analysis of the important definitions, the obligations of the 
data fiduciary toward the data principals, the rights of the data principals, and the 
mechanism of enforcement of rights, the authors suggest the following improvements 
toward strengthening the information privacy rights of the individuals:

7.1 Suggestions

The authors suggest that the section 6(5) of the DPDP Act may be slightly 
amended to qualify on the withdrawal of consent by adding that the data principal 
would face legal consequences arising out of withdrawal of consent if the with-
drawal results in non-performance of a contract in which the data principal is a 
party.

Further, the authors suggest that a specific provision may be added in the Digital 
Data Protection Act, 2023 with the heading “Right to data portability.” On the lines 
of the provision drafted in clause 26 of the PDP Bill, 2018 and the clause 19 of the 
DP Bill, 2021, the contents of the clause could be conveying that the data principal 
will have a right to obtain the personal data about him in a structured, commonly 
used and machine readable format. A dedicated provision on the portability would 
sensitize the data ecosystem to take the responsibility of maintaining the data in a 
structured, commonly used and machine readable format.

The authors suggest the incorporation of a specific provision on “the right to 
be forgotten” in the DPD Act, 2023 on the lines of the provision proposed by the 
Committee of Experts in clause 27 of the PDP Bill, 2018 and the provision proposed 
by the Joint Committee of Parliament in clause 20 of the D.P. Bill, 2021. The incorpo-
ration of the right as a specific provision would keep the emphasis on the transitory 
nature of the personal information.

Further, the authors suggest the incorporation of a provision on compensation to 
the person who suffered harm due to the violation of the law of data protection. The 
contents of the provision could be on the lines of the clause 75 of the PDP Bill pro-
posed by the Committee of Experts and the clause 65(1) recommended by the Joint 
Committee of Parliament.

For timely disposal of the appeals under DPDP Act, 2023, the authors suggest an 
amendment in the chapter VII of the Act by the addition of a section 29A as follows:

7.2 29A. Constitution of appellate tribunal

The Appellate Tribunal under the Act will be called the Digital Data Protection 
Tribunal and will comprise of a Chairman and such number of members as pre-
scribed. Provided that, at least one member of the Tribunal shall be an expert in the 
field of law.
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7.3 Conclusion

The authors find that after addressing the shortcomings of liability for withdrawal 
of consent, absence of the clauses on data portability, absence of the right to be 
forgotten, and the compensation for harm, the provisions of the Data Protection Bill, 
2023 adequately address the privacy protection principles evolved under the regimes 
of the Convention 108+ of the Council of Europe and the GDPR of the European 
Union. These principles include the consent framework, data minimization principle, 
collection limitation principle, retention limitation principles, and the correction 
and erasure principle. Based upon these principles, the rights of information privacy 
have except the shortcomings discussed in the Section 6.1 above, been incorporated 
in the DPD Act, 2023 adequately. The right to privacy is not an absolute right. The 
nine judge bench of the Supreme Court of India had flagged that the right to privacy 
is not an absolute right ([8], p. 264). The Apex Court of India elaborated that right to 
privacy can only be restricted by a law which stipulates a procedure which is fair, just, 
and reasonable ([8], p. 264). The law restricting privacy has also to meet the threefold 
requirements of legality, the need for the law, and proportionality establishing a 
nexus between the objects of the law and the means adopted in the law ([8], p. 264).

The authors thus conclude that the rights of information privacy are largely 
covered in the DPDP Act, 2023 of India and the four changes suggested in the Section 
6.1 above are the only four improvements required on the Digital Personal Data 
Protection Act, 2023.
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Chapter 5

One for All in Privacy Law: 
A Relational View on Privacy Based 
on the Ethics of Care
Jasmijn Boeken

Abstract

This chapter proposes a transition from an individualistic conception of privacy to 
a relational perspective, challenging traditional approaches on two main fronts. First, 
considering privacy as an individual matter constitutes an unequal playing field when 
it is balanced against communal rights. Second, information shared by one person can 
significantly impact others. This chapter highlights research on group and relational 
privacy but emphasizes a need for a theoretical foundation, proposing care ethics as a 
normative basis for a relational perspective. Caring privacy should entail the follow-
ing criteria: (1) minimizing what is known about persons, (2) recognizing persons as 
embedded in relationships, (3) viewing the private-public distinction as a continuum, 
(4) no distinction between personal and general data, (5) information is contextual, 
(6) respecting personal space, and (7) everyone has it. The core contribution of the 
caring perspective of privacy is that a loss of privacy for one is a privacy loss for all.

Keywords: privacy, ethics, feminism, AI, care ethics, group privacy

1.  Introduction

There was of course no way of knowing whether you were being watched at any given 
moment. How often, or on what system the Thought Police plugged in on any indi-
vidual wire was guesswork. It was even conceivable that they watched everybody all 
the time. But at any rate they could plug in your wire whenever they wanted to. You 
had to live – did live, in the assumption that every sound you made was overheard, 
and except in darkness, every movement scrutinised. ([1], pp. 4-5)

George Orwell’s prophecy in his famous book 1984 did not come to him through a 
prophetic revelation. Surveillance has been a pervasive practice throughout history, 
used in times of peace and war, targeting both adversaries and allies. Nevertheless, 
Orwell accurately perceived that things were changing. In the past, surveillance was 
labor-intensive and focused on specific individuals, whereas contemporary surveil-
lance consists of large-scale, automated operations, aided by artificial intelligence. 
Tracking cookies can follow your every step online; in the physical world, as in 
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London, every dweller is captured by the CCTV [2], and government agencies aspire 
backdoors into encrypted communications [3]. As privacy has become a pressing 
topic due to technological advancements, there is an increased scholarly interest in 
conceptualizing this evolving landscape.

Traditional academic literature on privacy is very extensive and challenging to 
categorize. To provide some clarity, this chapter divides the work on privacy into 
three approaches: (1) control over information, (2) the right to be let alone, and 
(3) the reductionist approach. While the reductionist stance argues that common 
law adequately protects privacy, the other two perspectives have influenced privacy 
laws in the United States [4, 5] and the European Union [6]. While novel privacy 
theories are developed, these traditional theories are still important to discuss due 
to their influence on privacy and data protection laws. This chapter does not provide 
an exhaustive overview of privacy literature but rather discusses some of the most 
influential works in order to challenge the individualistic perspective. While provid-
ing distinct views on privacy, what these traditional conceptions have in common 
is their consideration of privacy as an individual matter [7–10]. This individuality 
is especially prevalent within the “notice and consent” focus of the GDPR. While 
the notice and consent paradigm has had a significant share of critique regarding 
people’s ability to understand the complexities of privacy [11, 12], this chapter 
will mainly focus on the general challenges of treating privacy as a matter of the 
individual.

This chapter discusses two main challenges for the individual conception of 
privacy. First, considering privacy as an individual matter constitutes an unequal 
playing field as it is often balanced against communal rights such as national security 
[13, 14]. Second, and most important for this chapter, information that one person 
might consensually give away can have a profound impact on others who did not give 
such consent [8, 9, 15]. This critique of the individualistic conception of privacy leads 
to the question of whether privacy as an individual right still fits the current reality 
of large-scale data collection and its use in AI models. An alternative approach could 
be to look at privacy as relational instead of individualistic. The question that this 
chapter will answer is: what might a relational conception of privacy entail? While 
previous work has been done on the idea of relational privacy and group privacy, 
these novel conceptions miss the solid theoretical foundation that the traditional 
conceptions of privacy have within the liberal tradition. This chapter aims to provide 
a normative foundation of relational privacy by using the ethics of care. The ethics of 
care is based on a conception of individuals as relational and therefore fits with the 
evermore networked reality of current society [16].

This chapter will first define assessment criteria for a conception of privacy, 
followed by discussing the three traditional perspectives and assessing their appro-
priateness. The subsequent section debates, in more detail than the introduction, why 
the individualistic view on privacy is problematic. This is followed by an overview of 
alternative ideas on privacy, such as group privacy and relational privacy. Finally, care 
ethics is introduced, and a caring approach to privacy is proposed.

2.  Individualistic conceptions of privacy

In 1970, Westin observed that it is remarkable that a concept as important as 
privacy has been so poorly theorized. Since then, a lot of scholarly work on privacy 
has emerged. This section will set forth four conditions that a conception of privacy 
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must meet. The preceding sections will discuss the three traditional perspectives on 
privacy and assess their usability.

Parker [17] suggests that a definition of privacy should meet three criteria: (1) it 
must fit the data, (2) it must be simple, and (3) it must be applicable in the court-
room. Gavison [18] adds that the concept of privacy should be value-neutral, because 
otherwise, it would be too difficult to identify a loss of privacy. While agreeing that 
neutrality is important in defining a concept, I also want to emphasize that absolute 
neutrality is impossible. The fourth condition that a conception of privacy should 
meet, therefore, is to endeavor neutrality. Massing this together, a definition of 
privacy should be fitting, simple, useful, and endeavor neutrality.

The subsequent sections will discuss three different conceptions of privacy and 
some of the authors that contributed to this broad field of literature. These concep-
tions will be put against the four criteria that a definition of privacy should meet as 
described above. What must be considered is that times have changed significantly 
since many of the definitions below have been developed. While they thus might 
have met the criteria before, they could fail to do so in the light of new technological 
developments.

2.1  Control over information

Westin [19] is the most prominent author of the conception of privacy as having 
control over information, which constitutes the dominant view in current privacy law 
and aligns with the broader liberal paradigm [6]. This section will discuss the work of 
Westin and scholars influenced by Westin. Following this exploration, the applicabil-
ity of the four criteria for a definition of privacy will be assessed.

Westin famously described privacy as “the claim of individuals, groups, or institu-
tions to determine for themselves when, how, and to what extent information about 
them is communicated to others” ([19], p. 7). The key element in this conception 
of privacy is thus the control that people have over information, not only including 
things like wiretapping but also, for example, personality tests, and thereby it pro-
tects the privacy of inner thoughts [19]. The notice and consent paradigm within the 
GDPR is based on the idea of having control over information [6]. In every step, the 
consumer gets the option to agree or disagree with the privacy policies and is there-
fore able to exercise control. Building on this idea of privacy as control, other authors 
argue to shift focus from control to meaningful choice, which includes the ability 
of people to make decisions [6, 20]. Companies that incentivize consumers to share 
information about themselves do not contribute to this ability. This adapted version 
of Westin’s definition thus conceptualizes privacy as not only having control but also 
having the necessary tools to control personal information.

Parker [17], focusing mainly on the physical realm, defines privacy as control 
over when and by whom the various parts of us can be sensed. By “sensed,” Parker 
means: “seen, heard, touched, smelled, or tasted” ([17], p. 281). While this defini-
tion does not account for the disclosure of personal information, one’s thoughts, and 
psychological state of mind due to its strong focus on the physical [17], it does provide 
an important insight, as privacy could indeed be a very physical thing. Someone 
watching you or sitting closely to you so they can smell you is, according to Parker, a 
violation of privacy.

Nissenbaum’s [21] explanation of privacy as contextual integrity is also related to 
Westin’s view of privacy as controlling information, as it is phrased in similar termi-
nology [22]. According to Nissenbaum [21], what constitutes adequate protection 
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of privacy depends on the norms of the context you are in. Nissenbaum’s theory is 
inspired by Walzer’s work on spheres of justice. While it might not be an invasion of 
privacy to provide your doctor with your medical history, when this information is 
taken outside the medical sphere and provided to your boss in the sphere of labor, it 
becomes a privacy violation. This focus on privacy as contextual is an important con-
tribution to the academic debate. However, Nissenbaum’s work also received critique, 
as norms are not always easily identified and might quickly change [23].

While acknowledging the distinctions, proponents of the conception of privacy 
as control identify a loss of privacy as a loss of control, which is the basis of current 
privacy law. This is also what constitutes the main critique—one also loses privacy 
when voluntarily sharing information, however, the question is whether this is bad or 
not [18]. This underscores how this definition of privacy does not meet the criteria of 
neutrality. Moreover, the relationality of data renders the focus on individuals prob-
lematic, as controlling information in the current technological reality is impossible 
[24–26]. Consequently, while providing important insights, this definition does not fit 
the data.

2.2  The right to be let alone

This section describes privacy as the right to be let alone, which has its foundations 
in privacy law in the United States [4]. It will first introduce the work of those some 
consider the most important authors in the field of privacy: Warren and Brandeis 
[27]. After delving into their theory, the conception of privacy by Gavison [18] will be 
discussed, which builds on this idea of privacy as being let alone. This is followed by a 
discussion based on the four criteria as previously outlined.

Warren and Brandeis [27] contended that the advent of technological innovations 
in photography and printed newspapers necessitated the formal recognition of the 
right to privacy. This right to privacy as being let alone was envisioned to protect 
individuals from having their picture taken without consent or having their private 
life exposed in the newspaper [27]. Warren and Brandeis define the right to privacy in 
the following way: “In general, then, the matters of which the publication should be 
repressed may be described as those which concern the private life, habits, acts, and 
relations of an individual” ([27], p. 216). In essence, privacy as the right to be let alone 
thus means that no one should have unauthorized access to you when you are in the 
private sphere.

Gavison [18] critiques the conception of privacy as proposed by Warren and 
Brandeis, arguing that their definition of privacy as a negative right, where the 
government is prohibited to spy on its citizens, falls short. The right to privacy, 
Gavison contends, should encompass both negative and positive rights, emphasizing 
the state’s duty to protect its citizens against intrusion by other citizens or companies 
[18]. Proposing an alternative conceptualization, Gavison suggests framing privacy 
as limited access, containing three core elements: secrecy, anonymity, and access. 
Secrecy pertains to information known about a person, anonymity is compromised 
when someone pays attention to you, and access means physical proximity. Gavison 
thus elevates the concept of privacy as the right to be let alone to a more detailed 
conception of privacy as limited access.

Whereas the definition as posed by Warren and Brandeis [27] has received sub-
stantial criticism for being both too narrow [28] and too broad [29], Gavison [18] 
gives the conception of privacy as being let alone more substance. Gavison’s concep-
tion is simple and useful and seems to withhold from giving a normative evaluation. 
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However, it is a highly individualized view on privacy and does not recognize that 
when a person is being watched, this might not only affect this one person but could 
also reveal information about those in proximity or those belonging to the same 
group, it therefore does not meet the criteria of fitting the data. Gavison’s argument 
that privacy is also a positive right, as well as the attention for secrecy, anonymity, and 
access, however, should be considered important insights.

2.3  Reductionist approach

The final traditional conception of privacy to discuss is the reductionist approach. 
The reductionist approach is based on a critique against the other conceptions of pri-
vacy as described in the previous sections. What is central to this approach is that the 
authors contend that we do not need new laws to protect privacy, as it is sufficiently 
protected within common law.

Thomson emerges as an important critic of the conception of privacy as the right 
to be let alone, asking: “where is this to end? Is every violation of a right a violation of 
the right to privacy?” ([28], p. 295). Thomson contends that when a right to privacy 
seems to be violated, some other rights have been violated as well. For instance, when 
security agencies spy on a married couple having a quiet fight inside their home, 
their right to privacy has not been violated, but their right over the person has been 
violated, which includes the right not to be listened to [28]. Similarly, Posner [30] 
takes an economic approach, arguing that while privacy can be useful for innovation, 
further protection will not be fruitful. According to these authors, privacy is thus 
sufficiently protected within common law.

Gavison [18] criticizes this reductionist approach to privacy, arguing that while 
other rights might simultaneously be harmed when a loss of privacy occurs, the loss 
of privacy remains important in itself. The plead made by the reductionist theorists 
leaves the doors wide open to dismiss any claim of a right to privacy. As Fried [31] 
notes, this work is inspired by scholars like Friedrich Hayek and Robert Nozick who 
maintain a hierarchy of rights where privacy is less important than other rights. 
Furthermore, the fast development of the digital world has changed the issues of 
privacy significantly, rendering it highly questionable whether the common law 
would still suffice in protecting it. As the reductionist approach, thus does not really 
propose a conception of privacy as they argue that this is not necessary, it is not 
entirely possible to assess it on the four criteria a definition should meet. However, 
there are indications that this approach does not endeavor neutrality and is a misfit 
with the data.

3.  Challenging individualistic conceptions of privacy

Studying the traditional conceptions of privacy reveals that it is a contested 
concept. While the three discussed approaches highlight vastly different aspects of 
privacy, a common thread among them is the perspective of persons as individual 
atoms [7, 8]. This individualistic viewpoint is not only prevalent within academic lit-
erature, it is also the dominant perspective within EU and US privacy laws [5, 32, 33]. 
This section aims to scrutinize the individualistic perspective on privacy and assert 
its problematic nature. This entails reflecting on two issues as established in the 
introduction: individual versus communitarian rights and the fast development of 
aggregated data and the use of AI technologies.
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The individualistic perspective on privacy renders it vulnerable to a communitar-
ian critique, particularly as outlined by Etzioni [34], who argues that the individual 
right to privacy often takes precedent over the common good while it should instead 
be balanced. While this statement is contested by Cohen [13] who observes that 
privacy is often on the losing side of this balancing game, let us discuss Etzioni’s argu-
ment shortly. Two important cases that Etzioni takes as example are those of testing 
infants for HIV, where the mother’s privacy is put against public health, and the case 
of registering sex offenders, where the privacy of the offender is put against public 
safety. Etzioni, in these cases, argues that the common good should take precedence 
over the individual’s right to privacy. While Etzioni’s work is a highly valuable contri-
bution to the discussion on privacy, I want to contest the idea of balancing privacy as 
an individual right against the common good. One possible solution might be to see 
privacy as important for the common good, while my analysis is not broad enough to 
argue it would change the outcomes of the two cases, what it would surely do is create 
an equal playing field. Other authors have also argued in this direction, for example, 
in favor of seeing privacy as an (aggregate) public good [5, 32], or as a collective value 
[35, 36]. Both Sætra’s [5] and Regan’s [36] argument is based on the idea that the 
privacy decisions of one person influences the privacy of others.

The idea that privacy decisions of one person have an effect that transcends 
beyond the individual is strengthened by the technological advancements of 
AI and data aggregation. The second vulnerability of the individualistic view 
on privacy is thus that it is no longer in line with our technological reality [33]. 
Especially the harvesting of data on an enormous scale poses a significant chal-
lenge to conceptualizing privacy as a matter of the individual [8, 9, 15, 32, 33, 37]. 
An example of consequences of the rapid harvesting and accumulation of data can 
be found in new AI models, which show how privacy is no longer an individual 
decision [33]. For AI, our data is not about an individual, but rather it categorizes 
us in groups; you can belong to numerous groups based on your gender, sexuality, 
occupation, age, race, and many more [8]. Whenever you accept tracking cookies, 
this thus does not only reveal something about you, it reveals something about the 
groups you belong to, and every person in them. Barocas and Nissenbaum [15] call 
this the “tyranny of the minority” as few people consenting to a privacy loss affect 
the privacy of everyone else. Or in other words: “everyone’s privacy depends on 
what others do” ([38], p. 558). Barocas and levy [38] explore the concept of privacy 
dependencies, which can be tie-based, where an observer gains information of 
someone because the ties they have with someone else. They can also be similarity-
based or difference-based, where due to similarities or differences in known 
attributes, other information can be inferred [38].

In their study, Barocas and Nissenbaum [15] provide multiple examples on how 
the tyranny of the minority works, which also shows the relationality of data. Jernigan 
and Mistree [39] show how sexual orientation can be inferred from Facebook profiles, 
and a study on Rice University alumni reveals that sharing personal details by only 
20% of a group allows accurate inference of over 80% [40]. Furthermore, Duhigg’s 
[41] research on Target’s advertising strategy demonstrates how a fraction of pregnant 
women disclosing information affects all pregnant individuals shopping there, in one 
case leading to the unintended consequence of revealing a teen pregnancy to family 
members. These examples emphasize that privacy is not solely an individual matter, 
and the introduction of sophisticated AI systems using aggregated data will ever more 
correctly infer information about individuals that did not give consent [23]. What 
makes aggregated data even more problematic is that data accumulates across time 
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and across different sources [32]. The younger the child that enters the internet, the 
more data will be collected of them over a lifetime.

This section argued that seeing privacy as individualistic creates an unequal 
playing field when it is balanced against the common good, and that it no longer fits 
with our technological reality. The issue of tyranny of minority [15] shows how the 
decisions of an individual regarding their privacy have a profound impact on every-
one’s privacy. The next section will discuss an alternative way of viewing privacy, 
transforming it from individualistic to relational.

4.  Group privacy

One form of privacy which does not only consider the individual is group privacy 
[9]. While the GDPR does not mention group privacy [8], it has been mentioned in 
academic literature and surprisingly even in the famous work of Westin [19]. The 
more recent work that this section discusses considers group privacy especially due 
to AI’s capability to categorize data subjects into groups, based on our characteristics, 
like age or nationality, or behavior.

In the renowned work on privacy as control over information, Westin [19] 
acknowledges the need for group privacy in society. Specifically mentioning the inti-
mate family and the community as important groups. To illustrate this point, Westin 
proposes that communities might have certain traditions which they would like to 
keep a private matter of the group. A recurring example in Westin’s work regards the 
idea that personality tests may inadvertently lead to a standard personality based on 
the white men, potentially disadvantaging minority groups. While Westin offers valu-
able insights into the significance of privacy for groups, this regrettably does not lead 
to a broader conception of privacy.

Substantial early work on the topic of group privacy was done by Bloustein [42], 
who does not consider it as an alternative to individualistic privacy but rather as 
additional to the right to be let alone: “The right to be let alone protects the integrity 
and the dignity of the individual. The right to associate with others in confidence – 
the right of privacy in one’s associations – assures the success and integrity of the 
group purpose” ([42], p. 181). Bloustein sees the group as a collection of individuals, 
not as a separate entity and discusses examples like the lawyer-client relationship 
where information is shared that should be kept private. In line with this, Bygrave and 
Schartum [43] consider the option of collective consent, where established groups 
can control their consent to data collection in a more organized way.

Further important work on group privacy is done by Floridi [9], who argues that 
in the digital realm, people are often not considered as individuals but as members of 
a group—regnant women, people living in Amsterdam, parents, or owners of a par-
ticular car. While group data has often been said to be anonymous, accumulating such 
data can lead back to an individual, as you are part of many groups [9, 15, 33, 44]. 
Anonymization of data thus is no guarantee for privacy. This leads Floridi to argue 
that “An ethics addressing each of us as if we were all special Moby-Dicks may be flat-
tering and perhaps, in other respects, not entirely mistaken, but needs to be urgently 
upgraded. Sometimes the only way to protect a person is to protect the group to which 
that person belongs” ([9], p. 20).

Influenced by the work of Floridi, Mittelstadt [44] discusses the impact of AI, which 
creates groups that have no collective identity or agency, providing a complicated legal 
question on how to protect such group rights. A possible solution according to Mittelstadt 
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is to think of these groups as rightsholders, carrying a moral right to privacy. As these 
rightsholders cannot be responsible for protecting their own privacy, this should be the 
task of an organization. Similarly looking into the direction of external organizations 
for the protection of group privacy, Mantelero [35] suggests this could be done by data 
protection agencies. This would entail collective data protection by means of risk assess-
ment methods, involving multiple stakeholders to balance the benefit of data collection 
against the collective data protection rights of groups [35].

Similarly, Loi and Christen [45] worry about AI assembled groups that have no 
agency. They propose “inferential privacy” to protect us from the inferences made 
by predictive analytics. Important to mention is that they acknowledge that such 
predictive analytics can be significantly beneficial for society, as for example showed 
by the research on increased risk of cancer after smoking [45]. While acknowledging 
the risks of predictive analytics for privacy, we must not lose sight of the benefits for 
society. Related to the logic of inferential privacy, Mühlhoff [33] discusses predic-
tive privacy as a concept relevant for protecting both individual and group privacy. 
Mühlhoff suggests that predictive privacy could protect the community against 
predictive analytics that could potentially harm society. To effectively reach the goal 
of predictive privacy, Mühlhoff contends that we need to depart from the liberalist 
ethics of individualism. Puri [46] argues that privacy exists at multiple levels, both 
individual as well as of the group. Going further than the discussion on inferential 
privacy, which focuses on the inferences made by predictive analytics, Puri argues 
that the process of algorithmic grouping itself is a violation of privacy.

Whereas the view on group privacy as provided by Westin [19], Bloustein [42], 
and Bygrave and Schartum [43] still holds a very individualistic view of the person. 
Later work provides a view that is a better fit with current technological reality. 
Whereas the novel work on group privacy thus overcomes the critique of traditional 
perspectives of privacy as they do not fit the data, they might be missing the founda-
tion in normative theories that the theories of Westin and Warren and Brandeis have. 
The individualistic views on privacy are strongly established within liberal theory, 
providing a solid foundation [6]. Such a foundation in theory would be a valuable 
contribution to the work of group privacy [46]. Furthermore, the number of groups 
one is part of is difficult to grasp and is not a static fact [35]. While the work on group 
privacy thus made valuable contributions to the privacy debate, the static idea of 
groups might be holding it back. Overcoming this challenge, the subsequent section 
will discuss relational privacy.

5.  Relational privacy

The preceding sections have established that traditional Western views on privacy 
are based on the individual as atomic entity. While group privacy provides an alterna-
tive view, it does not explicitly break with the Western liberal tradition of individual-
ity. Opposed to this Western tradition, cultures such as Indian, Japanese, Buddhist, 
and Confucian have been posited to adopt a more relational conception of privacy [8]. 
While the previous sections criticized the individualistic view on privacy in the tradi-
tional conceptions, according to Kerr [47] such conceptions already have an implicit 
relationality in them as they do focus on “the other”. However, an explicit view on 
relational privacy remains necessary. This section will discuss the work that has been 
done on conceptualizing privacy in a relational way. While not much scholarly work 
has been devoted to this topic, noteworthy suggestions have been made.
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The term “relational privacy” has been used in multiple ways. For example, 
Sacharoff [48] uses the term to explain that our expectation of privacy is depended 
on the type of relationship we have. While we do not mind sharing information about 
our body with our physician, we do mind sharing such information with our boss. 
Thus, because we make distinctions in what information we share with someone 
based on the relationship we have with them, Sacharoff considers privacy to be rela-
tional. In line with this, Sloan and Warner [49] use relational privacy to describe how 
we navigate sharing information within different relationships. This must remind us 
strongly of privacy as contextual integrity from the work of Nissenbaum [21] and is 
thus susceptible to the same criticism—it is still an individualistic view of privacy. 
While recognizing the importance of relationships, these conceptions are centered 
around the individual and thus are not in line with the type of relational privacy this 
chapter is looking for.

An example of a relational approach to privacy that truly moves away from the 
individualistic perspective can be found in Ubuntu philosophy, which originates 
from multiple countries within the African continent [8]. A phrase that is central 
to Ubuntu philosophy is “Umuntu ngumuntu ngabantu” which can be translated to 
“a person is a person through other persons” ([8], p. 595). This relational view of 
the person leads to the conclusion that the protection of privacy should not be up to 
individuals but should be regulated top-down. This also entails stopping using legal 
frameworks for privacy that are built on the idea of informed consent [8].

Ma [7] argues for relational privacy based on the ideas from Confucianism, 
and connects this to views from Western feminist ethics. While there are many 
different perspectives within Confucianism, the person is generally constituted as 
situated within a specific environment [7]. The relational perspective on privacy 
in Confucianism is based on a relational perspective of autonomy [7]. Relational 
autonomy conceives of autonomy as something that can be learned, a skill that you 
develop, and this development happens in context of relationships [7]. While Ma does 
not suggest how privacy law should be established according to this view, the research 
shows that outside of the Western world there are more relational views on privacy.

A relational view on autonomy can also be found within feminist work, which 
holds that autonomy is something that can be achieved when social circumstances are 
supportive of it [50]. Applying such a view of autonomy to privacy, Hargraeves [50] 
argues that relational privacy should be seen as a “privacy blanket”. With such a pri-
vacy blanket, privacy can be shared, in the sense that someone can join you under the 
blanket. Privacy is mobile, it can move from one place to another, leaving behind the 
strict dichotomy of the private and public spheres. And privacy can be weakened or 
strengthened [50]. A loss of privacy, in this way, occurs when “our ability to negotiate 
our level of exposure to or desired level of engagement with those around us” ([50], 
p. 476) is affected.

Although not being explicitly relational, the work of Marwick and Boyd [10] goes 
beyond the individual and the group to provide a networked definition of privacy. 
Studying the privacy experiences of teenagers, they argue that we should see privacy 
as constituted within relationships and networks [10]. This is a valuable insight that 
should be elaborated upon, and the focus on relationships will be further discussed 
in the subsequent section of care ethics as we further shift from an atomic view of the 
individual toward a relational view.

Whereas the traditional work on privacy as discussed in Section 2 contained the 
main issue of not fitting the data, a growing body of scholarly work in the fields 
of group privacy and relational privacy is especially focused on fitting the data. 
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However, while having its roots in reality and being applicable to novel challenges 
posed by AI, what these theories lack is a normative basis. This is necessary when 
it comes to questions of how much privacy there should be and when privacy loss is 
considered harmful. The ethics of care is proposed to provide a normative basis for a 
relational view on privacy [8] and will be discussed in the preceding section.

6.  Care ethics

As suggested by the authors on Ubuntu [8] and Confucian [7] ideas on relational 
privacy, the feminist tradition with its view on the relational person could provide a 
valuable contribution to the idea of relational privacy. This section will first discuss 
the complicated relationship between feminism and privacy before introducing the 
ethics of care and especially its ideas regarding the distinction between the private 
and public sphere and the relational nature of the person. The goal of this section is 
to show how the ethics of care could be a useful theoretical foundation for a caring 
perspective on relational privacy.

Using a feminist theory for a new conception of privacy is an interesting under-
taking, as the feminist tradition has been an important critic of the right to pri-
vacy [20, 26, 51, 52]. According to early feminist scholarly work, the right to privacy 
and the division of the public and private sphere have served as legitimization for the 
oppression of women inside their homes [20, 26, 52]. This resulted in the famous phrase 
“the personal is political”. According to Allen and Mack [53], traditional conceptions of 
privacy were developed from a position of privilege, ignoring women’s perspective on 
privacy. However, privacy has also been a partner for the feminist tradition, as the right 
to abortion in the United States relates to the right to privacy [20, 53, 54]. Feminist ethics 
thus provides a valuable and multifaceted approach to the topic of privacy.

The feminist perspective that this chapter discusses is the ethics of care [55]. 
Combining the central features of care ethics that Held [56] and Preston and Wickson 
[57] point out, the five most important features of an ethics of care are that: (1) it 
recognizes care as a moral value; (2) it values emotions; (3) it considers context; (4) it 
reconceptualizes the public and private sphere; and (5) it has a relational conception 
of the person. While all these aspects can provide interesting insights for privacy, this 
section will limit the discussion to the final two. This will show the great potential 
of using ethics of care in the debate on privacy, while leaving the details up to future 
research.

Regarding the distinction between the public and the private sphere, feminist 
ethics in general and care ethics specifically have had different, but complementary, 
perspectives. Whereas early feminists argued that the law should be introduced in the 
domain of the private sphere, the home, care ethics posits that relational care inherent 
in the private sphere should transcend into the public sphere [58]. In other feminist 
work, the distinction between the private and public sphere is altogether questioned 
[16, 50, 53, 59]. Given the evolving technological landscape, it is indeed questionable 
whether the distinction of spheres is still relevant, as products of firms in the public 
sphere invade our private homes. The work of Ford [60] provides a valuable contribu-
tion as it argues that rather than a dichotomy, the private and public should be seen 
as a continuum, with private on the one end and public on the other. Whereas this is 
a good solution to the issue of the public/private divide for now, future work should 
question whether a divide is necessary altogether or whether the idea of different 
spheres could be abandoned.
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The relational conception of the person as described in care ethics is especially 
interesting for the relational conception of privacy this chapter is exploring. Care 
ethics sees the relationships we have with others as what defines us; the caring person 
is a relational self: “Noticing interdependencies, rather than thinking only or largely 
in terms of independent individuals and their individual circumstances is one of the 
central aspects of an ethics of care” ([56], p. 53). A person is not conceived of as a 
single unit, an atom, but as a being that is embedded within relationships with others 
[16]. As we are thus embedded within relationships, so is information about us, and 
so is privacy.

This section discussed the ethics of care as a possible theoretical foundation 
for a caring, relational conception of privacy. The first key takeaway is that caring 
for privacy can be applicable to both the private and the public sphere in different 
degrees, as they constitute a continuum rather than a dichotomy. The second is that 
we should not see individuals as singular atoms but as constituted within a network of 
relationships.

7.  A caring definition of privacy

This section will propose a caring perspective on privacy, drawing upon all the 
takeaways from the previous sections. Privacy has been defined in different ways: as 
a right [27] or as a claim [19], but to make its definition more neutral, I will describe 
it here as a situation. A situation of privacy can thus be a good thing or a bad thing; 
sometimes it is necessary to lose some privacy, and sometimes losing privacy is harm-
ful. This section makes a first suggestion of how caring privacy could look like, based 
on the ethics of care and on all the valuable insights of previous work on privacy.

To have a situation of caring for privacy, the following conditions should be in 
place:

• What is known about persons is minimized;

• We see persons as embedded in relationships;

• The private and public spheres are seen as a continuum rather than a dichotomy;

• There is no distinction between personal data and general data;

• Information is considered to be contextual;

• Personal space is respected;

• And, everyone has it.

While the first point may come as a surprise, a situation of privacy is not a situa-
tion of full seclusion, when nothing is known about a person. It is a situation where 
what is known is limited to what is strictly necessary for the particular relationship. 
This relates to the second point, which is that we consider people to be relational; they 
are not singular atoms; they are networked within relationships. Furthermore, the 
distinction between the public and private spheres is rephrased, and the distinction 
between personal data and general data is no longer recognized, as all information 
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can be inferred from aggregating data [23, 33, 61]. Furthermore, as Nissenbaum [21] 
argued, information is contextual; while sharing certain information in a specific 
situation may not be a harmful loss of privacy, when this information is taken out of 
context, the loss might be harmful. Inspired by Gavison’s [18] insightful remarks on 
access and proximity, respect for personal space is also part of a situation of privacy. 
The final and most important point is that a situation of privacy can only exist as long 
as everyone has it: a privacy loss for one is a privacy loss for all.

Returning to the criteria a definition of privacy should meet as described in sec-
tion two, it should be fitting, simple, useful, and endeavor neutrality. Whereas the 
conceptions of privacy as discussed in Section 2 were problematic in the sense that 
they did not fit the data, the caring definition of privacy solves this issue by approach-
ing it from a relational perspective. The definition is as simple as possible regarding 
the difficulty of the topic. It is useful due to its clear imperative that privacy should 
not be an individual decision but governmental. It endeavors neutrality because to 
have privacy can be good or bad, and to have a loss of privacy can also be good or 
bad. It is up to the political community to decide when a loss of privacy is harmful. 
The caring definition of privacy should be all-encompassing, not only considering 
informational privacy but also decisional- and physical privacy. While this chapter 
only slightly lifts the veil of what a caring perspective of privacy has to offer, it clearly 
shows its potential.

8.  Conclusion

“We can achieve a sort of control under which the controlled, though they are fol-
lowing a code much more scrupulously than was ever the case under the old system, 
nevertheless feel free. They are doing what they want to do, not what they are forced 
to do. That’s the source of the tremendous power of positive reinforcement – there’s 
no restraint and no revolt. By a careful cultural design, we control not the final 
behavior, but the inclination to behave – the motives, the desires, the wishes.” ([62], 
pp. 246-247)

As many other authors, I started my chapter with a quote from Owell’s dystopian 
book 1984. However, after the findings of this chapter, it seemed more appropriate 
to finish with a quote from Skinner’s [62] Walden Two, where, while having a lot of 
personal freedom in decision-making, the behavior of the people in this imagined 
society is slowly modified. While the conceptions of privacy that see it as a personal 
right were great answers to the threat, as described by Orwell, of a government spying 
on its people, the situation as described by Skinner provides alternative challenges. 
These challenges are all too real in our current world, where accumulated data can be 
used for predicting and influencing consumers behavior or political opinions. Our 
current technological reality of accumulated data collection and the use of it in AI 
challenges the conceptions of privacy based on an individualistic perspective and calls 
for novel approaches to privacy.

This chapter shows how the traditional perspectives on privacy contain an individ-
ualistic approach. This individualistic perspective on privacy has also been the domi-
nant paradigm within EU and US privacy law. As well as in the GDPR’s focus on notice 
and consent. This chapter challenges the individual conception of privacy based on 
two arguments. First, considering privacy as an individual matter constitutes an 
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unequal playing field as it is often balanced against communal rights such as national 
security. Second, and most important for this chapter, information that one person 
might consensually give away can have a profound impact on others that did not give 
such consent. The current paradigm on treating privacy as control over information 
is thus lacking and is construing a dangerous process of desensitization of societies’ 
value for privacy [24]; a different conceptualization of privacy is therefore urgent.

To provide a first glimpse of what an alternative perspective on privacy could 
entail, this chapter used the ethics of care as a theoretical basis. While not providing 
a final definition of caring privacy, this chapter suggests that a situation of caring 
privacy should entail the following criteria: (1) what is known about persons is mini-
mized; (2) we see persons as embedded in relationships; (3) the private and public 
spheres are seen as a continuum; (4) there is no distinction between personal data 
and general data; (5) information is considered to be contextual; (6) personal space 
is respected; and (7) everyone has it. While not downplaying the other points, the 
most important contribution of the caring perspective of privacy is that when there 
is a loss of privacy for one, this affects the privacy of all. Furthermore, while a loss of 
privacy for one might not be harmful, as sharing information strengthens a particular 
relationship, it may end up being harmful for others, as the data could be used in 
predictive models.

What this entails for privacy legislation is that the basis of privacy protection 
should not be consent of the individual. The government should have an increased 
role in protecting citizens’ privacy. While some might suggest that to give govern-
ments this increased power would be undemocratic, I would argue the opposite. As 
the example of Target [41] showed, within current privacy law, a small group can 
impact the privacy of all, which is profoundly undemocratic. Governments must 
change their individualistic perspectives on privacy even though this might in some 
sense reduce freedom of choice: “People’s liberty to dismiss their own privacy is not 
reduced in order to protect themselves, but in order to prevent them from inflicting 
harm on others” ([5], p. 8).

As this is a preliminary exploration of combining the ethics of care with the 
concept of privacy, several topics remain deserving of more attention. These include, 
but are not limited to; the division between the private and public spheres, the role 
of emotions in privacy, and the question of what future technological developments 
could mean for the conception of privacy. Furthermore, the suggestion made by 
Dourish and Anderson [63] to combine the concepts of privacy and security should 
be further studied by applying care ethics. Additionally, future scholarly work should 
further study the ideas on privacy in non-Western philosophy. As this study highlights 
the valuable ideas from Ubuntu philosophy and Confucianism, there is a lot of work 
that Western researchers might be overlooking by primarily focusing on Western 
intellectual heritage.

The right to privacy has been significantly challenged by emerging technolo-
gies, and given the early stages of large AI language models at the time of writing, 
the future might bring even more severe challenges to privacy. Proposing a caring 
approach to the idea of relational privacy might not seem like a straightforward 
solution. However, since the individualistic paradigm has reached its expiration date, 
there is a need for innovative ways of approaching privacy. A caring approach to 
privacy can overcome the challenges of the individualistic paradigm and provide a 
solution that fits the data. The future is relational, as a privacy loss for one is a privacy 
loss for all.
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Chapter 6

Enhancing Smart Grid Data
Utilization within the Internet of
Things Paradigm: A Cyber-Physical
Security Framework
Zhijian Hu and Rong Su

Abstract

The integration of Internet of Things (IoT) technologies transforms traditional
power systems into smart grids with more opportunities for optimizing power gener-
ation and consumption. However, this integration incurs significant cyber-physical
security challenges that must be addressed to ensure the authenticity of critical data.
This chapter explores the intersection of smart grid data utilization and cyber-physical
security within the IoT paradigm. We first introduce the key components of IoT
systems and their communication in smart grids, highlighting the interdependencies
and vulnerabilities. Then, we discuss the potential risks associated with the collection,
transmission, and utilization of data in smart grid environments, emphasizing the
importance of cyber-physical security countermeasures in mitigating these risks.
Finally, we propose a cyber-physical security framework equipped with dual risk-
mitigation layers, including offline parameter configuration and online intrusion
detection, to safeguard smart grid data against cyber-physical threats. By adopting
this security framework, stakeholders can leverage the full potential of IoT technolo-
gies in smart grids while ensuring the security of the critical infrastructure. This
chapter contributes to the ongoing discourse on cyber-physical security in smart grids
and provides practical insights for policymakers, industry practitioners, and
researchers seeking to address the evolving challenges in this domain.

Keywords: internet of things, smart grid, cyber-physical security, data utilization,
security framework, risk-mitigation, intrusion detection

1. Introduction

In recent decades, the Internet of Things (IoT) technologies have assumed a
pivotal role in the evolution of modern smart grids, significantly enhancing data
collection and utilization processes [1]. The integration of IoT technologies provides
substantial benefits to smart grids, including advanced smart sensing capabilities and
intelligent monitoring systems [2]. However, despite these advantages, the IoT
framework presents significant challenges to the secure operation of smart grids.
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These challenges arise from both cyber and physical perspectives, particularly in
environments characterized by uncertainty. Consequently, addressing these security
concerns is crucial to ensuring the reliability and stability of smart grid operations.

The uncertainties originating from the IoT system in smart grids can be broadly
categorized into two main aspects: data collection from power infrastructures and
devices, and data exchange within IoT communication networks. The first aspect
pertains to data collection, which typically involves heterogeneous sensors such as
phasor measurement units (PMUs) and remote telemetry units (RTUs). These sen-
sors, often installed in outdoor environments, are composed of numerous intelligent
units designed for specific purposes such as data measuring, processing, and broad-
casting [3–5]. Due to prolonged exposure to outdoor environments, these sensors face
various uncertain factors, including limited processing capacities, functional disor-
ders, sensor aging, and potential physical attacks from adversaries. These limitations
can result in temporary sensor failures, leading to the degradation of the authenticity
and reliability of the collected data. The second aspect involves data exchange within
the IoT communication network. Modern smart grids often span distinct geographical
landscapes, including multiple cities and remote communities. These areas share local
data with their neighbors in real time, facilitated by wireless sensor networks (WSNs)
due to their advantages in flexible deployment, adaptable relocation, and cost-
effective installation and maintenance. However, the inherent openness of wireless
transmission makes WSNs vulnerable to cyber attacks [6, 7]. Adversaries can exploit
these vulnerabilities by injecting false data into the communication links of WSNs,
thereby altering data values and potentially destroying the power equipment. These
two primary concerns, encompassing both cyber and physical dimensions, form the
core topics to be addressed in this chapter.

To address the vulnerabilities inherent in the data collection of smart grids, signif-
icant efforts have been undertaken, yielding several promising solutions in recent
years [8–15]. For instance, Ref. [8] examined PMU faults from a hardware-software
interaction perspective, developing a comprehensive reliability model for PMUs based
on Markov models. This model facilitates the estimation of PMU false data using
Monte Carlo simulation techniques. Ref. [10] introduced a hybrid algorithm designed
for fast path recovery in wide-area measurement systems to mitigate the effects of
intermittent PMU outputs. Ref. [11] identified that intermittent PMU measurements
are caused by both natural factors and physical attacks. It employed a Bernoulli
process with a specified probability to model these intermittent measurements and the
degrees of PMU failure. From the perspective of data utilization, various stability
criteria have been employed to ensure the efficient operation of smart grids, despite
the imperfections in PMU models, such as mean-square asymptotic stability [11] and
stochastic stability [13], both of which are essential for guaranteeing the stability and
robustness of smart grids amidst imperfect data collection. These methodologies and
criteria serve as valuable tools in enhancing the security of smart grids from cyber-
physical perspectives, addressing both hardware-software interactions and external
threats to data integrity.

In response to cyber attacks targeting data exchange within IoT communication
networks, extensive research has been conducted on cyber attack detection method-
ologies [7, 16]. Prominent methods include intrusion-detector-dependent attack
detection [17, 18], credibility-based attack detection [19, 20], observer/filter-based
detection [21], and learning-based detection [22]. For instance, Ref. [17] developed a
χ2-detector-dependent approach to identify false data injection (FDI) attacks in
distributed frequency regulation, leveraging the decentralized model of each area to
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provide the frequency reference signal. Ref. [20] incorporated credibility evaluation
into frequency regulation within smart grids, effectively mitigating the impact of FDI
attacks on frequency dynamics. Ref. [21] proposed a reduced-order observer-based
approach for monitoring FDI attacks in large-scale smart grids, utilizing a reduced-
order observer to generate residual signals and embedding an adaptive detection
threshold to minimize conservativeness. Ref. [7] introduced a data-driven framework
encompassing detection, classification, and control signal retrieval to mitigate the
impacts of unobservable FDI attacks on smart grids. This framework includes a
classifier designed to dynamically learn from historical data and accurately classify
FDI attacks under challenging conditions. These advanced methodologies collectively
enhance the robustness and security of smart grids against cyber threats, ensuring
more reliable operation in the face of unexpected cyber attacks.

Based on the preceding discussion, we acknowledge that these results have con-
tributed to the effective utilization of smart grid data within the IoT architecture.
However, these findings are dispersed and lack a unified framework. This chapter
aims to establish a comprehensive and systematic framework to enhance smart grid
data utilization from both cyber and physical security perspectives, incorporating a
wide range of potential uncertainties inherent in the IoT architecture. The proposed
framework is designed to be general and represents a significant advancement toward
providing a scientific foundation for smart grids in the context of IoT with inherent
uncertainties. This framework is inspired from a macro perspective, focusing on
system-level data utilization enhancement rather than merely local operations. It is
structured into two risk-mitigation layers from cyber-physical perspectives. The first
risk-mitigation (physical) layer involves offline control parameter configuration,
which aims to integrate easily modeled uncertainties, such as intermittent sensor
measurements, into system modeling and control design. This configuration is
conducted prior to the deployment of smart grids, thereby contributing to offline
security enhancement. To address the inaccurate or incomplete modeling issues that
the first layer may not fully resolve, the second risk-mitigation layer is implemented.
This layer focuses on online intrusion detection to counter potential cyber attacks
within IoT communication networks. The dual-layer framework allows for both inde-
pendent application and practical integration, providing a high degree of flexibility
and universality. This approach offers valuable guidance for both academic
researchers and industry practitioners, facilitating effective risk-mitigation and
enhancing the reliability of smart grid operations in the face of diverse uncertainties.

The remainder of this chapter is structured as follows. Section 2 introduces the
data collection and exchange within IoT in smart grids. Section 3 models the smart
grids and potential risks. Section 4 designs the dual-layer security framework for
enhancing smart grid data utilization. Section 5 validates the effectiveness of the dual-
layer secure framework. Section 6 concludes this chapter.

2. Data collection and exchange within IoT in smart grids

As a representative example of cyber-physical systems, the smart grid exemplifies
the intricate interaction between the physical and cyber layers during its operation.
The physical layer is primarily responsible for data acquisition, encompassing the
measurement and processing of essential signals through various sensor devices, such
as PMUs and RTUs. In contrast, the cyber layer focuses on data communication,
including the transmission, reception, and exchange of the collected data. Together,
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these layers form an IoT system, a pivotal concept in the context of smart grids. The
IoT system encompasses devices equipped with sensors, computational capabilities,
software, and auxiliary technologies, enabling their interconnectivity and data
exchange with other devices and systems via the Internet or other communication
networks. This interconnectivity is crucial for the implementation of supervisory
control and data acquisition (SCADA) systems, which monitor the operational states
of smart grids. The IoT system’s applications span various stages of smart grid opera-
tion, including power generation, transmission, distribution, and consumption,
thereby enhancing efficiency and reliability [23].

The ways of data exchange within IoT are realized by the communication topol-
ogy, which is commonly determined by the physical connection. Take a typical appli-
cation scenario of smart grids, the communication topology of a power generation
system is determined by the amount of areas and performance requirements. To
better describe the characteristics of the communication topology of smart grids, we
here introduce the concept of a directed graph.

In graph theory,  ¼ ,,ð Þ represents the mathematical formulation of a
directed graph, which is employed to describe the communication topology in this
chapter. Here,  ¼ 1, 2, … , nf g denotes the set of labels corresponding to different
areas. The set ⊆�  characterizes the communication links between these areas.
The adjacency matrix  ¼ lij

� �
n�n encodes the presence and weights of these commu-

nication links, where lij >0 indicates that data transmission occurs from the i-th PMU
to the j-th PMU. An area j is defined as a neighbor of an area i if lij ¼ 1. Consequently,
the set i≜ j∈j i, jð Þ∈f g specifies the neighbors of the i-th PMU, indicating that the
i-th PMU can receive state measurements from its neighboring PMUs j∈i according
to the defined communication topology.

3. Modeling of smart grids and potential risks

3.1 Modeling of smart grids

This chapter takes the load frequency control (LFC), also named automatic gener-
ation control, a typical application in smart grids, as an example. The LFC dynamics of
each area contain the following five parts, i.e., generator, governor, power system, tie-
line power, and area control error. The dynamics of these five parts are

Δ _Pmi ¼ � 1
Tdi

ΔPmi þ
1
Tdi

ΔPvi , (1)

Δ _Pvi ¼ � 1
RiTgi

Δf i �
1
Tgi

ΔPvi þ
1
Tgi

ΔPci , (2)

Δ _f i ¼ � Di

Tmi

Δf i þ
1

Tmi

ΔPmi �
1

Tmi

ΔPi
tie �

1
Tmi

ΔPLi , (3)

Δ _P
i
tie ¼

X

j¼1, j6¼i

2πTij Δf i � Δf j
� �

, (4)

ACEi ¼ μiΔf i þ ΔPi
tie, (5)
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where the physical meanings of the system parameters are shown in Table 1 [11].
The compact form of (1)–(5) can be described as

_xi ¼ Aixi þ
P

j¼1, j6¼i
Aijxj þ Biui þ F iωi,

yi ¼ Cixi,

8><
>:

(6)

where xi ¼ Δf i ΔPmi ΔPvi ΔPi
tie

Ð
ACEi

� �T
denotes the state vector; yi

denotes the measured output; ui denotes the control input; ωi denotes the
load disturbance;

Ai ¼

�Di

Tmi

1
Tmi

0
�1
Tmi

0

0
�1
Tdi

1
Tdi

0 0

�1
RiTgi

0
�1
Tgi

0 0

P
j¼1, j6¼i

2πTij 0 0 0 0

μi 0 0 1 0

2
666666666666666666664

3
777777777777777777775

,

Symbol Physical meaning

Δf i deviation of frequency

ΔPWi the wind power deviation

ΔPmi deviation of generator mechanical power

ΔPvi deviation of turbine value position

ΔPi
tie net tie-line active power flow

ΔPLi load disturbance

 the number of areas

Tdi time constant of the generator

Tgi time constant of the governor

Tmi time constant of the power system

Ri speed drop

Di equivalent damping coefficient of the generator

Tij tie-line synchronizing coefficient between the area i and j

μi frequency bias constant μi ¼ 1=Ri þDi

Table 1.
Parameters of area i.
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Aij ¼

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�2πTij 0 0 0 0

0 0 0 0 0

2
666666664

3
777777775
, CTi ¼

μi 0

0 0

0 0

1 0

0 1

2
666666664

3
777777775
,

Bi ¼ 0 0
1
Tgi

0 0

" #T
,ωi ¼ ΔPLi , ui ¼ ΔPci ,

F i ¼ 1
Tmi

0 0 0 0
� �T

:

(7)

Given that state measurement and feedback control in smart grids are
implemented through digital devices like PMUs and RTUs, a discrete-time state-space
model is derived to facilitate the subsequent analysis. The discrete-time representation
of the continuous-time system model (6) is formulated as

xi kþ 1ð Þ ¼ Aixi kð Þ þ Biui kð Þ þ P
j¼1, j6¼i

Aijxj kð Þ þ Fiωi kð Þ,

yi kð Þ ¼ Cixi kð Þ,

8><
>:

(8)

where Ai ¼ eAih, Bi ¼
Ð h
0 e

AisBids, Aij ¼ eAijh, Fi ¼
Ð h
0 e

AisF ids, and Ci ¼ Ci; h denotes
the sampling period.

3.2 Potential risks and descriptions

This chapter examines the potential risks to smart grids from both physical and cyber
perspectives. Physical risks arise from sensor faults, which can be caused by limited
processing capacities, functional impairments, sensor aging, and physical attacks from
adversaries. Such sensor faults compromise the authenticity and reliability of the col-
lected data. To model the impact of these physical risks, this chapter utilizes Bernoulli
variables to capture the intermittent nature of measurements affected by sensor faults.
Consequently, the actual measured output from the sensor i is represented as

yi kð Þ ¼ θi kð Þyi kð Þ, (9)

where θi kð Þ ¼ 0 means that the sensor i suffers faults at the time k, while θi kð Þ ¼ 1
means the sensor i is healthy. The probability distribution of θi kð Þ satisfies

Prob θi kð Þ ¼ 1f g ¼ θi, Prob θi kð Þ ¼ 0f g ¼ 1� θi, (10)

where Prob �f g denotes the probability operator, θi kð Þ at different times are
assumed to be independent and identically distributed.

Note that θi kð Þ serves as a comprehensive representation of various factors,
including limited processing capacities, functional impairments, sensor aging, and
physical attacks from adversaries. Specifically, θi kð Þ can be expressed as
θi kð Þ ¼ θ1i kð Þθ2i kð Þθ3i kð Þ⋯θMi kð Þ, where denotes the total number of potential factors
contributing to sensor faults.
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From the cyber perspective, potential risks arise in the data exchange within the
IoT communication network. Modern smart grids typically encompass multiple con-
trol areas, which share local data with neighboring areas in real time. However, the
inherent openness of these communication networks renders them vulnerable to
cyber attacks. Adversaries can inject false data into the communication links based on
malicious intent, thereby compromising the data integrity of the national power grid
and endangering public safety. In the context of false data injection (FDI) attacks on
the communication network, the received data in the control area i, transmitted from
neighboring area j, can be modeled as:

~yj kð Þ ¼ yj kð Þ þGjgj kð Þ (11)

where yj kð Þ denotes the measured output at area j; gj kð Þ denotes a column vector
implying the false data deliberately injected into the communication link from area j
to area i by adversaries; and Gj defines the attack selection matrix. For the purposes
of the ensuing sensitivity analysis, Gj is assumed to be a diagonal matrix with entries
of 0 or 1, where 0 implies a real measurement and one implies a compromised
measurement.

4. Dual-layer security framework for enhancing smart grid data
utilization

This chapter endeavors to propose a dual-layer security framework for enhancing
smart grid data utilization. Section 4.1 focuses on the first risk-mitigation layer,
offline control parameter configuration, while Section 4.2 addresses the second
risk-mitigation layer, online intrusion detection. In the following, we will discuss
these two layers in detail.

4.1 Offline control parameter configuration: First risk-mitigation layer

Since we focus on multi-area smart grids, the distributed output feedback control-
ler is designed considering the sensor faults, whose mathematical formulation is

ui kð Þ ¼ θi kð ÞKiyi kð Þ þ
X

j¼1, j6¼i

θj kð ÞKijyj kð Þ, (12)

where Ki and Kij are local and neighboring control gains to be determined.
Then, the closed-loop system model (8) becomes

xi kþ 1ð Þ ¼ Ai þ θi kð ÞBiKiCið Þxi kð Þ þ P
j¼1, j6¼i

Aij þ θj kð ÞBiKijCj
� �

xj kð Þ þ Fiωi kð Þ,

yi kð Þ ¼ θi kð ÞCixi kð Þ:

8><
>:

(13)

Based on the closed-loop system (13), we will propose Theorem 1 and Theorem 2
to facilitate the control parameter configuration.
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Theorem 1.1 Considering the sensor fault probability θi, the closed-loop system
(13) is mean-square asymptotically stable with Δf i satisfying the prescribed H∞

performance indicator γi if there exist matrices Pi≻0 such that, for i ¼ 1, 2,⋯,,

ΞþDTD A
T
PF

∗ FTPF � γ2I

" #
≺0 (14)

where Pi is the Lyapunov matrix; “≻” and “≺” define “positive definite” and
“negative definite” of a matrix, respectively; “ ∗ ” denotes the symmetric item of a
sophisticated matrix; Diagi Cif g indicates that only the i-th diagonal block owns a
nonzero value Ci while other diagonal blocks are all zero; and

Ξ ¼ A
T
PAþP

i¼1ρ
2
i L

T
i PLi � P, A ¼ Aþ BKθC, B ¼ Diag B1,B2,⋯,Bf g,

C ¼ Diag C1,C2,⋯,Cf g, D ¼ Diag D1,D2,⋯,Df g, F ¼ Diag F1, F2,⋯,Ff g,
P ¼ Diag P1,P2,⋯,Pf g, θ ¼ Diag θ1, θ2,⋯, θf g, γ ¼ Diag γ1, γ2,⋯, γf g,
θ ¼ Diag θ1, θ2,⋯, θ

� �
, ρi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θi 1� θi
� �q

, Di ¼ 1 0 0 0 0½ �, Li ¼ BKEi,

Ei ¼ Diagi Cif g, A has the identical form with K,

K ¼

K1 K12 ⋯ K1

K21 K2 ⋯ K2

⋮ ⋮ ⋱ ⋮
K1 K2 ⋯ K

2
6664

3
7775: (15)

Proof: A similar proof procedure can be found in Ref. [24].
Careful readers may observe that condition (14) is not a strict linear matrix

inequality (LMI) due to the coupling between the distributed controller gain K and
the Lyapunov matrix P. Consequently, to determine the value of K, we further
propose Theorem 2.

Theorem 1.2 Considering the sensor fault probability θi, the closed-loop system
(13) is mean-square asymptotically stable with Δf i satisfying the prescribed H∞

performance indicator γi if there exist matrices Pi≻0 and Qi≻0 such that, for
i ¼ 1, 2,⋯,,

� ~Q 0 L 0

∗ �Q ~A F
∗ ∗ ~D 0

∗ ∗ ∗ �γ2I

2
6666664

3
7777775
≺0, (16)

PiQi ¼ I, (17)

where ~A ¼ Aþ BKθC, ~D ¼ DTD� P, L ¼ ρ1L
T
1 kð Þ, ρ2LT

2 kð Þ,⋯, ρL
T
 kð Þ� �T

,
~Q ¼ Diag Q,Q,⋯,Qf g, and Q ¼ Diag Q1,Q2,⋯,Qf g.

Proof: A similar proof procedure can be found in Ref. [24].
From Theorem 2, the distributed controller gain K can be determined automati-

cally using the mincx solver in the LMI toolbox. Subsequently, the quantity of the
control action can be calculated via (12) and applied to update the system (13).
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The obtained distributed controller gain K has a certain resiliency to different sensor
fault probabilities.

4.2 Online intrusion detection: second risk-mitigation layer

The first risk-mitigation layer aims to tolerate certain categories of easily modeled
uncertainties, such as temporary sensor faults, which are modeled offline prior to
calculating the controller gains. However, in real-world applications, pre-modeling
may be inaccurate or incomplete. Additionally, smart grids may encounter other
hard-to-predict uncertainties, such as cyber attacks on communication networks.
Consequently, the proposed security framework includes a second risk-mitigation
layer to address the deficiencies of the first layer.

To mitigate the impacts of hard-to-predict uncertainties, such as potential false
data injection (FDI) attacks on communication networks, on the stable operation of
smart grids, an online intrusion detection unit is established at the control center of
each area. Given that load disturbances typically follow a normal distribution, this
section presents a decentralized model-based χ2 detection mechanism to
evaluate the authenticity of data transmitted from neighboring areas in the presence
of potential FDI attacks. This detection unit, installed at the local controller, is
responsible for verifying the integrity of received data prior to executing control
actions.

The fundamental logic behind χ2 detection is to identify abnormal signals by
comparing the accumulated error between measured values and their estimates
against a predefined alarm threshold. The accumulated error is calculated by

ξj kð Þ ¼
Xk

l¼k�Γþ1

ŷj lð Þ � ~yj lð Þ
h iT

ŷj lð Þ � ~yj lð Þ
h i

, k≥Γ, (18)

where ξj kð Þ follows a χ2 distribution with 5� Γ � 1ð Þ degrees of freedom, ŷj lð Þ
represents the estimates of neighboring measurements, and Γ denotes the time win-
dow used to determine the number of signals considered.

The χ2 detector at time k is defined as

ξj kð Þ ≶
H0

H1

δj (19)

where the threshold δj is chosen with precision according to the desired security
level, Hypothesis H0 assumes that the received signals are identical to the actual
measurements, while the hypothesis H1 posits that there are significant
discrepancies. When hypothesis H0 is rejected, the hypothesis H1 is accepted,
triggering an alarm. Consequently, the smart grid operators will isolate the
compromised communication link.

Note that the precision of the χ2 detection is tightly related to the selected alarming
threshold δj. Determining the optimal alarming threshold remains an open challenge
in the field. A trade-off is necessary to balance the false isolation rate (FIR), false
connection rate (FCR), and average detection time (ADT). The impacts of δj on FIR,
FCR, and ADT are thoroughly examined through simulations, aiming to provide
valuable insights for researchers and practitioners.
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In (18), the estimates of neighboring measurements are calculated based on their
respective decentralized models, as follows

x̂j kþ 1ð Þ ¼ Ajx̂j kð Þ þ Bjuj kð Þ,
ŷj kð Þ ¼ x̂j kð Þ,
x̂j 0ð Þ ¼ x̂j0:

8><
>:

(20)

where the tie-line related signals in (13) are set as zero in (20), to facilitate the
calculation of (18).

4.3 Scalability analysis

Careful readers may observe that the mathematical formulation of each layer in the
proposed security framework involves numerous parameters. These parameters sig-
nificantly influence the framework’s implementation efficiency. A particularly
important parameter is the subscript i, which appears in almost all mathematical
formulas and denotes the number of areas within a large-scale power grid. Theoreti-
cally, the number of areas can impact the scalability of the proposed security frame-
work. However, it is advantageous that each area of the large-scale power grid can be
represented by an equivalent single-machine-single-load system, ensuring that the
number of areas remains manageable. Consequently, each generator within an area
will receive a power generation reference based on the reference obtained from the
equivalent model and predetermined participation factors. Therefore, scalability is not
a concern. The computational complexity and integration cost of the proposed frame-
work with existing systems and control strategies are closely tied to the scale of the
smart grid. Given that the number of areas is limited, both computational complexity
and integration costs remain reasonable. As a result, the proposed security framework
exhibits broad applicability.

5. Validation results

5.1 Structure and parameters of the smart grid

To verify the efficacy of the proposed dual-layer security framework, a four-area
fully-connected smart grid is utilized for demonstration. In this configuration, each
area is physically interconnected with the other three via tie-lines, facilitating mutual
communication. The parameters of the smart grid are detailed in Table 2.

5.2 First risk-mitigation layer validation

To validate the effectiveness of the first risk-mitigation layer, which involves
offline control parameter configuration, a traditional PI controller is used as a bench-
mark. The traditional controller gains are automatically determined using the LMI
toolbox in MATLAB, without accounting for PMU faults. Conversely, the risk-
mitigation controller gains are automatically selected using the LMI toolbox, consid-
ering various PMU fault probabilities. The parameters are set as hi ¼ 1, Γi ¼ 0:12, and
ΔPLi kð Þ ¼ 0:06e�0:05k rand 1ð Þ � 0:5ð Þ.
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Figures 1 and 2 compare the dynamics of Δf i between the traditional controller
and the proposed risk-mitigation controller against PMU fault probabilities of 1� θi ¼
0:1 and 0:3. The results indicate that the proposed risk-mitigation controller consis-
tently outperforms the traditional controller, although the extent of improvement
varies across scenarios. The incorporation of the first risk-mitigation layer signifi-
cantly reduces the settling time for each area. In summary, by considering different

Area 1 Area 2 Area 3 Area 4 Unit

D1 ¼ 5 D2 ¼ 1 D3 ¼ 3 D4 ¼ 4 pu=Hz

2H1 ¼ 20 2H2 ¼ 14 2H3 ¼ 11 2H4 ¼ 9 pu � s
Tch1 ¼ 1:2 Tch2 ¼ 1:0 Tch3 ¼ 0:7 Tch4 ¼ 0:5 s

Tg1 ¼ 1:2 Tg2 ¼ 0:6 Tg3 ¼ 1:4 Tg4 ¼ 0:8 s

R1 ¼ 0:016 R2 ¼ 0:03 R3 ¼ 0:05 R4 ¼ 0:08 Hz=pu

T12 ¼ 0:1 T21 ¼ 0:1 T31 ¼ 0:1 T41 ¼ 0:1 pu=rad

T13 ¼ 0:1 T23 ¼ 0:1 T32 ¼ 0:1 T42 ¼ 0:1 pu=rad

T14 ¼ 0:1 T24 ¼ 0:1 T34 ¼ 0:1 T43 ¼ 0:1 pu=rad

Table 2.
Parameters of the four-area smart grid.

Figure 1.
Dynamics of Δf i under traditional controller (solid lines) and under risk-mitigation controller (dotted lines)
against PMU fault probability 1� θi ¼ 0:1.

115

Enhancing Smart Grid Data Utilization within the Internet of Things Paradigm: A Cyber…
DOI: http://dx.doi.org/10.5772/intechopen.1006719



PMU fault probabilities during the offline control parameter configuration, the con-
troller’s resilience to PMU faults is enhanced. This validates the feasibility and effec-
tiveness of the first risk-mitigation layer.

5.3 Second risk-mitigation layer validation

To validate the effectiveness of the second risk-mitigation layer, which focuses on
online cyber attack detection within the communication network, the parameters for
the decentralized model-based χ2 detection mechanism is specified as follows:
Γj ¼ 20, Φj ¼ Diag 1, 1f g, Gj ¼ Diag 1, 0f g, and δj ¼ 10. For demonstration purposes,
we assume that the communication link from Area 3 to Area 2 is subjected to the FDI
attacks characterized by g2 kð Þ ¼ 0:5þ 0:015k 0½ �T starting from k ¼ 50.

Figure 3 compares the dynamics of Δf i with and without the proposed intrusion
detection unit. Without the online cyber attack detection unit, all four areas become
unstable under FDI attacks, with Area 2 showing the most significant divergence due to
cyber attacks on the communication link from Area 3 to Area 2. The other areas exhibit
slower divergence influenced by the state updates from Area 2. With the deployment of
the model-based χ2 intrusion detection unit, the FDI attacks are promptly identified at
t ¼ 57s. Subsequently, implementing an attacked data compensation scheme based on
the decentralized state estimation model (20), all four areas swiftly return to stable

Figure 2.
Dynamics of Δf i under traditional controller (solid lines) and under risk-mitigation controller (dotted lines)
against PMU fault probability 1� θi ¼ 0:3.
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states after a brief period of divergence. The extent of divergence and the detection time
are closely related to the false alarm threshold δ2. A larger δ2 requires a longer detection
time and results in greater divergence, and vice versa.

We also investigate the impacts of various δ2 values (6, 15, 30, 45, 60) on Δf 2
under the given FDI attacks, and similar conclusions are drawn. We conduct 100
independent tests to obtain statistical results between a wider range of alarming
thresholds δ2 and the Key Performance Indicator (KPIs), as shown in Table 3.

Figure 3.
Solid lines imply Δf i without χ

2 detection unit while dotted lines imply Δf i with χ2 detection unit.

δ2 FIR FCR ADT

90 0 0 88.60

75 0 0 69.11

60 0 0 48.86

30 0 0 28.24

15 0 0 8.15

10 0 0 5.54

6 2% 0 3.03

5 8% 0 2.79

3 14% 0 1.29

1 27% 0 1.00

Table 3.
KPIs under different δ2.
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Observant readers may note that the FCR remains zero even when δ2 values as large as
90 are used. This occurs because the time-varying FDI attack, characterized by
g2 kð Þ ¼ 0:5þ 0:015k, continually increases in amplitude over time. Consequently, the
proposed χ2 detection mechanism can identify such FDI attacks. However, a signifi-
cant drawback is the extended detection duration, resulting in a more pronounced
divergence in frequency deviation dynamics. Table 3 aims to serve as a guide for
researchers and practitioners, providing references for balancing the FIR, FCR, and
ADT.

6. Conclusions

This chapter proposes a dual-layer security framework addressing cyber-physical
aspects within the context of IoT systems in smart grids. This framework enhances
data utilization in smart grids under conditions of cyber-physical generalized uncer-
tainties, such as sensor faults and cyber attacks. It introduces a novel approach to
facilitate data collection and utilization under imperfect conditions and offers a valu-
able reference for researchers and practitioners in the fields of smart grids. Validation
results confirm the feasibility and effectiveness of the proposed cyber-physical
security framework for smart grids.
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