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Preface

Obesity is considered one of the most important factors associated with overall 
health. There are several definitions for obesity, the most common being body mass
index (BMI). Individuals with a BMI of 25 or more are considered overweight and 
those with a BMI of 30 or more are considered obese. There is convincing scientific
evidence to indicate a positive association between obesity and several human
health disorders such as cardiovascular diseases like heart disease and stroke, 
high blood pressure, type 2 diabetes, osteoarthritis, high cholesterol, and asthma
and chronic obstructive pulmonary disease, among others. The good news is that
obesity is a treatable health disorder. However, the bad news is that despite efforts
by health professionals to regulate obesity, its prevalence has increased globally
in the past two to three decades. Obesity was shown to be only behind high blood 
pressure, smoking, and high blood sugar in terms of number of deaths. A better
understanding of the causes of obesity and mechanisms by which obesity increases
the risk of human diseases can and will lead to developing effective strategies that
could save lives. Studies have shown conclusively that genetic, environmental, and 
lifestyle factors, individually and collectively, influence the prevalence of obesity. 
Diet and exercise are among the important lifestyle factors.

Role of Obesity in Human Health and Disease contains chapters authored by interna-
tional researchers that address some important aspects of the relationship between
obesity and human health.

This book is organized into three sections. Section 1 “Obesity and Health,” contains
five chapters. The emphasis of Chapter 1 is on how food intake in various Japanese
populations is correlated to BMI. Since BMI is an important indicator of obesity
and health, this chapter provides an important understanding of how management
of food intake can be a good strategy to control obesity and thereby health and 
quality of life. Chapter 2 provides a basic understanding of the causes and effects
of endocrine disorders on obesity. This knowledge can be used effectively in the
management of endocrine disorders and thereby obesity. Chapter 3, which is a
review of the most recent research being carried out in the area of obesity and 
health, provides information about the nature of this research and the direction
of future research. Chapter 4 addresses the relationship between obesity and 
endometrial cancer. The information provided in this chapter goes beyond the
scope of cancer and provides insight into suggested mechanisms and management
strategies that can be used to undertake research in other areas of health disorders
as they relate to obesity. Chapter 5 looks at the recent popularity of a ketogenic diet
and how it relates to sarcopenic obesity-related health issues. It provides some new
guidelines regarding the role of diet in the management of obesity and health. 

Section 2, “Causes of Obesity,” contains two chapters. of Chapter 6 focuses on
understanding the role of lifestyle factors on obesity and thereby overall health. 
Chapter 7 takes a broader approach to understanding the multiple causes of obesity. 
Both these chapters are important for understanding the causes of obesity, which
can then be used to develop effective strategies to control obesity and improve the
quality of human health.

XII
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Section 3, “Mechanisms by Which Obesity Influences Health Risks,” contains three 
chapters. Chapter 8 looks at obesity in a pediatric patient and how basal metabolic 
profile might be an important influential factor. Chapter 9 presents information 
about leptin and its role in oxidative stress-induced apoptosis. Although it does not 
directly address obesity, it does deal with oxidative stress as a working mechanism 
perhaps for other human health disorders including obesity. Finally, Chapter 10 
provides an interesting alternate model of Drosophila to study obesity by exploring 
the central taste circuits of fruit flies. It is possible that knowledge gained through 
this model may lead to applications for humans.

Overall, this book provides important information to health professionals, researchers, 
and other scientists that will be very useful in understanding the pathobiology of 
obesity, its causes, and mechanisms by which it can influence human health. The 
chapters provide thought-provoking ideas for future research in this important 
area of human health as well as for developing applicable and effective strategies 
to manage obesity and thereby improve human health and quality of life.

Dr. Venketeshwer Rao and Dr. Leticia Rao
University of Toronto,

Canada
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Chapter 1

Food Intakes and Correlations 
between Food Intakes and Body 
Mass Index (BMI) in Japanese Old 
Men, Women, and Male Medical 
Doctors
Akikazu Takada, Fumiko Shimizu, Yukie Ishii, 
Mutsumi Ogawa and Tetsuya Takao

Abstract

Objective; Obesity is an important health problem, leading to many metabolic 
diseases such as type2 diabetes mellitus, cardiovascular diseases, cancer. The are many 
diet proposals to combat obesity. Since obesity is relatively rare in Japan, we wante to 
know what kind of foods influence body mass index (BMI) in old Japanese people. 
METHODS; Healthy participants, old men and women and male medical doctors 
(MD) were given self-administered diet history questionnaires and described answers 
on each item by recollection of diets they took (7 days dietary recall). We used a brief-
type self-administered diet history questionnaire (BDHQ) by using which the Japanese 
Ministry of Health, Labour and Welfare reports national Nutrition Surveys. From 
these questionnaires, we calculated the intakes of energy, carbohydrate, fat, protein 
or other foods. RESULTS; Me take more alcohol, salt fruit, beans than women. Intakes 
of major foods such as carbohydrate, lipid, and protein did not influence BMI in men 
and women. MD with higher BMI tend to take vegetables and fruits. MD may be more 
health concerned than lay people. CONCLUSION; within the range of foods intakes in 
Japan, no restriction of any food such as carbohydrate is not necessary for staying lean. 
Medical doctors seem to be very health concerned compared to lay people.

Keywords: carbohydrate, protein, lipid, cholesterol, DHA (docosahexaenoic acid), 
EPA (eicosapentaenoic acid), fish, glucose, insulin, BMI (body mass index),obesity

1. Introduction

A world wide obesity epidemic together with an increasing aging population 
threaten the health and functional independence of old adults [1]. Increase in 
obesity is reported in US or developing countries [2, 3].

In order to prevent an obesity epidemic, many weight-loss diets are proposed 
[4–6]. Low-carbohydrate, high-protein or high fat diets were compared with low-fat 
diets [7–11]. In fact, 4 weight-loss diets of low to high carbohydrate intake were 
compared [5]. Women assigned to follow the Atkins diet (high protein, low carbo-
hydrate) showed a greater weight loss [5].



Role of Obesity in Human Health and Disease

4

A Mediterranean diet (a moderate amount of fat and a high protein portion of 
monounsaturated fat) shows cardiovascular protective effects [12]. A recent review 
suggested that the Mediterranean diet was beneficial for weight loss [13, 14].

As stated later, the rate oof obese people is very low, in fact one of OECD 
countries with lowest obesity rate [15]. We have previously reported correla-
tions between various foods intakes, plasma levels of amino acids or fatty acids in 
Japanese young and old men and women [16–19]. So it may be interesting to know 
what kinds of foods old Japanese men and women are taking and whether any kind 
of foods intake influence body mass index.

In the present article, we report about various foods intakes and their relation-
ships to BMI in old Japanese men and women.

We also obtained data from od male medical doctors to know if there are 
changes in eating habits between lay people and men of a medical profession.

2. Ethics

This work has been approved by the Ethical committees of Showa Women’s 
University and NPO (non-profit organization) “International projects on food 
and health” and has been carried out in accordance with The Code of Ethics of the 
World Medical Association (Declaration of Helsinki) for experiments.

3. Method

We asked male and female acquaintances older than 50 years old. Acquaintances 
mean that these participants are personal friends of our group member. We asked 
1961 alumni of Keio University School of Medicine, who are class mates of one 
of the authors, A.Takada. The sample sizes and ages of participants are as fol-
lows. Acquaintances are older than 50 years old; men (n = 22, age; 61.8 ± 9.5) and 
women(n = 39, age; 67.4 ± 7.5) and medical doctors (MD) (n = 22, 79.6 ± 0.4). We 
did not ask premenopausal women to participate since data may be variable due to 
their hormonal influences so that sample sizes must be big to get statistically signifi-
cant results. Dr. K. Matsuoka and K. Kato, who are internists, checked their health 
carefully and examined their blood samples then recruited them if there were no 
health problems such as diabetes, hypertension or not serious diseases experienced 
in the past. They did not smoke in the past. We also excluded people who took drugs 
for dyslipidemia, hyperglycemia, or hypertension. We collected blood samples early 
morning. Healthy participants were given self-administered diet history question-
naires and described answers on each item by recollection of diets they took (7 days 
dietary recall). We used a brief-type self-administered diet history questionnaire 
(BDHQ ) by using which the Japanese Ministry of Health, Labour and Welfare 
reports national Nutrition Surveys. From these questionnaires, we calculated the 
intakes of energy, carbohydrate, fat, protein or other foods.

4. Statistics

The results are presented as means ± SEM. Statistical significance of the differ-
ences between groups was calculated according by one-way ANOVA. When ANOVA 
indicated a significant difference (p < 0.05) the mean values were compared using 
Tukey’s least significant difference test at p < 0.05. Spearman’s correlation tests were 
used to examine statistical significance.
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5. Results

Table 1 shows that height, weight and BMI are smaller in old women than old 
men and MD. There was no difference in weight, height and BMI between lay 
men and MD.

Basic characteristics of participants and amounts of food intakes

0 ①old men) ②male MD ③old women significance

n = 22 n = 22 n = 39 p < 0.05

age 61.8 ± 9.5 79.6 ± 0.9 67.4 ± 7.5 ①vs.②, ①vs.③, 
②vs.③

height cm 167.7 ± 6.7 165.3 ± 6.7 157.1 ± 5.8 ①vs.③, ②vs.③

weight kg 69.5 ± 12.8 65.4 ± 9.1 50.6 ± 6.8 ①vs.③, ②vs.③

BMI kg/m2 24.6 ± 3.7 23.9 ± 2.9 20.5 ± 2.5 ①vs.③, ②vs.③

energy(kcal) kcal/日 2247 ± 575 2282 ± 676 1941 ± 535

protein g/d 83.2 ± 29.1 89.2 ± 26.6 80.0 ± 27.3

animal protein g/d 48.8 ± 21.3 54.8 ± 22.8 47.4 ± 19.8

vegetable protein g/d 34.4 ± 10.2 34.4 ± 9.3 32.6 ± 10.9

lipid g/d 64.6 ± 20.7 68.2 ± 20.8 60.9 ± 20.9

animal protein g/d 31.0 ± 13.5 33.3 ± 13.5 29.0 ± 10.7

vegetable lipid g/d 33.6 ± 10.1 34.9 ± 9.9 31.9 ± 11.9

carbohydrate g/d 270.2 ± 70.6 281.7 ± 106.4 248.2 ± 76.9

saturated fatty acid g/d 16.8 ± 6.7 18.5 ± 6.3 16.3 ± 5.6

monounsaturated fatty 
acid

g/d 23.4 ± 7.3 24.9 ± 8.0 21.6 ± 7.7

poly unsaturated fatty 
acid

g/d 15.8 ± 4.8 15.5 ± 4.7 14.6 ± 5.3

cholesterol mg/d 459.3 ± 191.7 480.5 ± 178.2 440.4 ± 187.9

soluble food fiber g/d 3.5 ± 1.4 4.1 ± 1.4 4.0 ± 1.5

insoluble food fiber g/d 10.4 ± 4.1 11.9 ± 4.3 11.0 ± 4.1

total food fiber g/d 14.4 ± 5.6 16.6 ± 5.8 15.3 ± 5.7

salt g/d 13.1 ± 3.8 14.6 ± 4.4 11.5 ± 3.2 ②vs.③

sucrose g/d 17.0 ± 9.0 18.6 ± 12.7 15.1 ± 8.5

alcohol g/d 31.5 ± 27.5 24.5 ± 29.9 9.7 ± 16.5 ①vs.③

n-3 fatty cid g/d 3.3 ± 1.3 3.4 ± 1.3 3.1 ± 1.4

n-6 fatty acid g/d 12.4 ± 3.5 11.9 ± 3.6 11.4 ± 4.0

grain g/d 456.2 ± 161.8 368.0 ± 161.3 338.6 ± 171.6 ①vs.③

potatoes g/d 53.1 ± 44.0 73.7 ± 46.9 53.2 ± 41.3

sucrose g/d 7.6 ± 5.6 7.3 ± 6.1 5.1 ± 2.9

beans g/d 68.0 ± 51.0 50.1 ± 32.4 82.5 ± 59.3

green, yellow 
vegetables

g/d 120.1 ± 91.0 175.8 ± 84.1 145.4 ± 75.7

other vegetables g/d 203.9 ± 105.6 241.9 ± 106.8 220.1 ± 117.5

fruits g/d 96.5 ± 73.2 221.6 ± 190.7 212.8 ± 115.9 ①vs.②, ①vs.③

fish g/d 97.1 ± 60.8 115.7 ± 66.4 94.0 ± 61.7
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Table 2 Correlations between foods intakes and BMI.
Men (lay or MD) take more salty foods than women. Also men drink more 

alcohol than women.
Table 2 shows that there was no correlation between energy, protein, carbohy-

drate, and lipid intakes and BMI.
Most interestingly, obese MD (high BMI) tend take vegetable protein, dietary 

fibers and green and yellow vegetables and fruits. Probably obese MD are more 
concerned about their health, So they intend to take more vegetables or fruits.

6. Discussion

The prevalence of overweight defined as body mass index (BMI) larger than 
25 g/m2 in adults increased from 21.5% in 1975 to 38.9% in 2016 [20]. Generally, 
people in the poor countries may be lacking nutritional foods, thus being less obese 
than people in the wealthier countries. However,,as national economic growth 
increases the prevalence of overweight and obesity shifted to people with lower 
personal wealth [21–23]. These shits result in increases in people suffering from 
cardiometabolic diseases and related conditions in poorer population.

Increase in the population of overweight or obesity in affluent countries such 
as USA have been suggested to be due to decreased physical activity and intakes of 
highly processed foods.

As stated above, many diet plans were proposed and examined. Among these, 
low carbohydrate-high protein diets and so called Mediterranean diet have been 
recommended [4–6].

Figure 1 shows comparisons of male and female BMI in various countries. As 
shown, People in wealthier countries do not necessarily have higher BMI. People in 
Tonga or Samoa in the pacific have unusually high BMI in men and women. Eating 
habits and genetics may count for this phenomenon. On the other hand people 
in North Korea or Nepar have very low BMI, possibly due to low intakes of nutri-
tional foods.

Japan is one of the wealthiest countries, her GDP being third in the world. Never 
the less, Japanese men and women are very lean. BMI of men of Korea and China 
are in the same level with that of Japanese men, Chinese or Korean women have 
larger BMI compared with Japanese women.

Comparison of BMI among people in OECD countries, people in USA show one 
of the largest BMI. Countries of EU such as Germany, France, Checs show that BMI 
of people in these countries are between USA and most of Asian countries.

Our data indicate that changes in intakes of protein, carbohydrate or fata do not 
influence BMI. Thus within the range of eating habits no particular foods intakes 
being about obesity or slimness.

meats g/d 94.6 ± 45.7 96.8 ± 46.3 82.7 ± 34.1

eggs g/d 48.8 ± 35.8 41.7 ± 27.9 41.9 ± 27.1

milk g/d 123.1 ± 115.6 41.7 ± 27.9 169.7 ± 105.1

oil g/d 14.2 ± 5.3 11.4 ± 5.6 11.1 ± 5.8

cakes g/d 48.4 ± 31.6 67.1 ± 54.7 62.1 ± 43.1

beverage g/d 1005.4 ± 387.6 1082.5 ± 452.5 779.7 ± 429.9 ②vs.③

spices mg/d 313.4 ± 173.0 279.5 ± 156.5 222.0 ± 140.7

Table 1. 
Basic characteristics of participants and amounts of foods intakes.
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Correlation

BMI vs. foods ①old men (lay) ②old men(MD) ③old women

n = 22 n = 22 n = 39

energy −0.097 0.268 0.125

protein −0.070 0.251 0.158

animal protein −0.040 0.081 0.125

vegetable protein −0.116 0.517* 0.168

lipid 0.164 0.324 0.157

animal lipid −0.001 0.235 0.066

vegetable lipid 0.338 0.361 0.216

carbohydrate −0.141 0.243 0.073

saturated fatty acids 0.042 0.239 0.145

monounsaturated fatty acid 0.266 0.332 0.152

polyunsaturated fatty acids 0.172 0.361 0.190

cholesterol 0.230 0.247 −0.009

soluble dietary fiber −0.066 0.621** 0.080

insoluble dietary fiber −0.049 0.620** 0.161

total dietary fiber −0.034 0.644** 0.136

salt −0.088 0.366 0.203

sucrose 0.215 −0.121 0.022

alcohol −0.179 −0.005 −0.024

n-3 fatty acids 0.038 0.197 0.196

n-6 fatty acids 0.218 0.379 0.181

grains −0.205 0.073 −0.009

potatoes −0.311 0.363 −0.047

sucrose −0.258 −0.228 −0.037

beans −0.261 0.272 0.289

green yellow vegetables 0.012 0.511* 0.095

other vegetables 0.082 0.481* 0.248

fruits 0.298 0.508* −0.047

fish −0.194 0.051 0.105

meats 0.119 0.183 0.125

eggs 0.356 0.365 −0.260

milk −0.216 −0.270 0.082

oil 0.270 0.208 0.258

cakes 0.381 0.153 0.068

beverages −0.111 0.124 0.130

seasonings, spices −0.154 0.224 0.023

*,p < 0.05,**;p < 0.01.

Table 2. 
Correlation between BMI vs. various foods intakes in men and women.
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Figure 1. 
BMI of male and female populations in various countries.

Japanese are very health concerned and are informed about various diet plans 
and their nutritional meanings by the media. So the amounts of foods taken by 
Japanese are in the range that a little change do not affect body weights.

There is a so-called Grant studies in which graduates of Harvard University were 
examined about their health, social status, or psychological or mental health for a 
long time [24]. We wanted to know whether medical doctors try to be healthier. As 
Table 2 indicates there is no difference in weight, height or BMI between lay men 
and MD. In both groups, the amounts of energy, protein, lipid or carbohydrate 
taken did not affect BMI. However, MD, with higher BMI tend to take vegetables 
such as green-yellow vegetables or fruits. They may be quite concerned about keep-
ing healthy.

We want to continue the study to know such differences are shown at the 
later age.
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Chapter 2

Endocrine Disorders 
Accompanying Obesity - Effect  
or Cause?
Alina Kurylowicz

Abstract

Endocrine disorders including hypothyroidism and hypercortisolism are 
 considered as causes of secondary obesity. However, several hormonal abnormali-
ties can also be found in individuals with primary (simple) obesity. Part of them 
results from the adipose tissue dysfunction that, via secreted adipokines, modulates 
the function of endocrine organs and can be reversed with weight loss. However, 
part of them correspond to the real endocrine disorder and require appropriate 
treatment. Therefore in the management of obese patients, it is essential to distin-
guish between obesity-related abnormal results of hormonal tests and underlying 
endocrine disorder. This chapter presents pathophysiological concepts of obesity-
related changes in the endocrine system and briefly reviews diagnostic algorithms 
helpful in distinguishing them from the co-existing endocrine disorders.

Keywords: obesity, endocrine disorders, hypothyroidism, hypercortisolism, 
hypogonadism, hyperandrogenism

1. Introduction

According to World Health Organization reports, the incidence of obesity has 
tripled in the last 30 years, and it is estimated that in 2025 obese individuals will 
constitute about 15% of the adult population [1]. Therefore, one can expect that 
obese patients would appear in the doctor’s office more frequently, searching for 
medical assistance. In addition, undiagnosed and untreated hormonal disorders, 
such as hypothyroidism, hypercortisolism, and hypogonadism, can contribute to the 
development of secondary obesity, and their exclusion is sometimes necessary for the 
diagnosis of so-called “simple” or primary obesity. However, simple obesity itself may 
affect the function of the endocrine system, and adipose tissue dysfunction seems to 
play a pivotal role in this phenomenon. Excessive lipid accumulation leads to several 
changes in the adipocyte’ metabolism, causing, among others, the dysfunction of the 
mitochondria and the associated endoplasmic reticulum stress [2]. These entail alter-
nations of genes’ expression, and thus – changes in the profile of substances secreted 
by adipose tissue (adipokines). These adipokines act in an endocrine manner and 
affect tissues and organs throughout the body, including the endocrine glands [3].

Therefore, in everyday medical practice, it is essential to understand the obesity-
related changes in the endocrine system function to distinguish between the actual 
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disease that requires treatment and changes secondary to obesity, where weight 
reduction is the best form of therapy. This chapter presents pathophysiological 
concepts of obesity-related changes in the functioning of the thyrotropic, adre-
nocorticotropic, and gonadotropic axes and briefly reviews diagnostic algorithms 
helpful in distinguishing them from the co-existing endocrine disorders.

2. The hypothalamic-pituitary-thyroid axis and obesity

The secretion of thyroid hormones (TH) is regulated by the hypothalamic– 
pituitary-thyroid (HPT) axis. The anterior pituitary lobe secretes thyroid-stimulating 
hormone (TSH, thyrotropin) upon the stimulation by thyrotropin-releasing hormone 
(TSH) produced by the hypothalamus. In turn, TH (triiodothyronine – T3 and 
thyroxine – T4) in a feedback inhibitory loop control both TRH and TSH release in 
order to ensure whole-body homeostasis. TH’s pleiotropic actions include control of 
energy expenditure and body weight maintenance via regulation of a basal meta-
bolic rate (BMR), adaptive thermogenesis, and appetite. Clinical studies suggest 
that thyroid status is associated with changes in body weight and adiposity. Even in 
euthyroid individuals, those with TSH levels in upper quintiles have higher body mass 
index (BMI) than those with TSH closer to the lower limit of the normal range, while 
variations of TH levels, even in the normal range, may promote weight gain or impair 
the effectiveness of weight-loss treatment [4, 5]. However, not all researcher managed 
to confirm this finding, that may mirror the fact that the metabolic effect of TH in 
target tissues is determined by variations in the activity of TH deiodinases, transport-
ers, receptors, and availability of their corepressors and coactivators [4, 6]. Moreover, 
the relationship between thyroid and obesity is bidirectional since both TH and 
TSH affect adipose tissue metabolism, which in turn, via adipokines, may influence 
thyroid function and structure.

2.1 Influence of hypothyroidism on body mass and composition

Weight gain is a frequent complaint in hypothyroidism. Indeed, HT deficiency 
may increase body adiposity due to a decrease in BMR and thermogenesis. Moreover, 
water retention related to the accumulation of hyaluronic acid and a decreased renal 
flow and impaired peristalsis causing chronic constipation contributes to weight 
gain. However, according to observational studies, an increase in body weight 
related to hypothyroidism is usually of a limited extent. Moreover, supplementation 
with levothyroxine (LT4) leads only to a modest weight loss (usually of less than 
10%) associated with excretion of excess body water, indicating that severe obesity 
is usually not secondary to hypothyroidism [7]. The American Thyroid Association 
(ATA) in the 2012 guidelines on hypothyroidism management underlines the fact 
that there is a lack of reliable scientific evidence in this field, and very few stud-
ies have directly assessed the association between hypothyroidism and obesity 
[8]. However, the European Society of Endocrinology (ESE) recommends testing 
routinely obese patients for hypothyroidism since HT deficiency contributes to an 
unfavorable lipid profile and thus potentiates their cardiovascular risk and the risk 
of metabolic syndrome. Of importance, untreated hypothyroidism reduces the 
effectiveness of weight loss therapies [5].

2.2 Obesity-related changes in thyroid function and structure

The majority of obese patients without diagnosed thyroid disease remain euthy-
roid [5, 9]. However, both overt hypothyroidism and subclinical hypothyroidism 
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(characterized by elevated TSH level with free TH concentrations within normal 
limits) is observed more frequently in obese subjects, compared to the patients with 
normal body weight and is estimated at 14.0% and 14.6%, respectively [5, 9–14]. 
The pathogenesis of obesity-related changes in thyroid hormone levels is com-
plex [15]. On the one hand, an increase in TSH level in obese individuals can be 
explained by the central resistance to locally-produced T3 and represents an adap-
tive process aimed to increase basal energy expenditure. On the other, increased 
TSH levels in obesity correlate with an excess of leptin, an adipokine produced by 
adipose tissue that can directly stimulate TRH and TSH secretion [16]. Moreover, 
leptin was found to activate deiodinases, enzymes responsible for the increase in 
free T4 (fT4) to free T3 (fT3) conversion, which is believed to constitute another 
mechanism that aims at the increase in BMR and energy expenditure [17]. Since 
elevated TSH level can be a form of adaptation of the central axis to obesity-related 
changes in metabolism in order to boost energy expenditure to prevent further 
weight gain, it has been proposed that hyperthyrotropinemia is an adequate term 
than subclinical hypothyroidism in this case [5, 18]. In addition, in subclinical 
hypothyroidism, fT4 and fT3 levels are usually low normal, while in most obese 
individuals, thyroid hormones are in the normal or high normal range, reflecting 
central hypothalamus-pituitary resistance [18].

Both ATA and ESE recommend the measurement of TSH as a screening test for 
thyroid dysfunction in obese individuals. Normal TSH enables to rule out primary 
hypothyroidism as a reason for secondary obesity; however, one should remember 
that decreased TSH level in an obese subject may suggest pituitary–hypothalamic 
dysfunction (representing less than 1% of cases of hypothyroidism). Therefore, the 
guidelines recommend measurement of fT4 only if TSH is elevated or if disorders 
other than primary hypothyroidism are suspected. In turn, routine measurement of 
fT3 in obese individuals with elevated TSH is not recommended [5, 19].

If TSH and fT4 levels in an obese patient suggest a diagnosis of subclinical hypo-
thyroidism, the screening test for autoimmune thyroid disorder (AITD) should be 
performed. In this case, the determination of thyroid antibodies is helpful not only 
to diagnose AITD but also to identify individuals at risk of developing overt hypo-
thyroidism. Therefore, the guidelines recommend the determination of thyroid per-
oxidase (TPO) antibodies and suggest that their level > 500 IU/ml indicates a high 
risk of progress [20]. From the pathophysiological point of view, obesity-associated 
dysfunction of the immune system (related to vitamin D deficiency, abnormal 
adipokine, and pro-inflammatory factors expression) can promote autoimmunity 
in obese individuals. Indeed, a recent meta-analysis showed the correlation between 
the presence of TPO antibodies and obesity [13]. However, despite the high sensitiv-
ity of modern assays, a consistent number of patients with primary hypothyroidism 
present negative tests for TPO antibodies, and the diagnosis of AITD is established 
based on a hypoechoic pattern of the thyroid gland in ultrasound examination (so-
called seronegative AITD) [21].

Ultrasound-based diagnosis of AITD in obese patients can be challenging 
since obese individuals are more likely to present hypoechoic images of thyroid 
parenchyma. This finding is confirmed by the epidemiological studies, where the 
correlation of the ultrasound image with AITD was observed in only 20.9% of 
obese subjects compared to 85.7% in the normal-weight controls [22]. In turn, a 
hypoechoic pattern of the thyroid gland in ultrasound examination with an absence 
of antithyroid antibodies was observed in only 1.9% non-obese individuals vs. 
64.8% in obese patients [22]. Thus, the hypoechoic thyroid picture in obese patients 
results from the increased permeability of thyroid blood vessels caused by the 
pro-inflammatory cytokines secreted by dysfunctional adipose tissue. As a result, 
plasma exudation and imbibition of parenchyma occur, which was confirmed by a 
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fine-needle biopsy that did not show lymphocyte infiltrations ruling out Hashimoto 
disease as a cause of the hypoechoic pattern of the thyroid gland [22].

Given all the data presented above, a decision on the administration of TH to an 
obese patient with elevated TSH levels should be handled with caution. The ATA 
and ESE guidelines recommend treating LT4 in obese subjects with overt hypothy-
roidism and those with TSH ≥ 10mIU/l. The initial dose should depend on the clini-
cal situation and be subsequently adjusted by regular assessment of TSH with the 
same target range as in the non-obese population [5, 19]. However, if elevated TSH 
(above the upper range but <10 mlU/L) is the only abnormality, without clinical 
symptoms, decreased fT4, thyroid antibodies, goiter, or associated thyroidal illness, 
it can be defined as obesity-associated hyperthyrotropinemia, and the treatment 
with LT4 to reduce body weight is not recommended [5, 23]. This approach seems to 
be justified since, until now, no randomized controlled trial nor systematic review 
was performed to evaluate the effectiveness of TH supplementation in obese adults 
with hyperthyrotropinemia.

However, some obese individuals with increased TSH level < 10 mlU/l who meet 
the diagnostic criteria for the mild subclinical hypothyroidism (e.g., showing clinical 
symptoms of hypothyroidism, TH levels in the low-normal range, present antithy-
roid antibodies) may benefit from LT4 supplementation. Furthermore, the same 
approach should be considered in women in the procreation period and pregnancy. 
On the contrary, age over 70 years and concurrent cardiovascular disease should 
direct the decision toward a follow-up strategy [5]. Especially since epidemiological 
studies suggest that LT4 replacement therapy for subclinical hypothyroidism does 
not improve health-related quality of life, survival, or decreased cardiovascular 
morbidity [12]. Also, administration of TH to euthyroid obese subjects to enhance 
weight loss is not recommended since it is associated with several adverse effects, 
including muscle wasting and weakness as well as cardiovascular complications [24].

Paradoxically, regardless of the method applied, the best treatment for 
obesity-related hyperthyreotropinemia is weight loss, leading to the reversal of the 
mechanisms causing central and peripheral resistance to TH. For instance, in an 
interventional study, after lifestyle interventions (diet combined with increased 
physical activity), the number of individuals with TSH level above the normal range 
decreased significantly after the intervention from 17.2% to 6.2%., while the mean 
TSH level in the whole group decreased from the mean 2.8 mU/l before the inter-
vention to 2.2 mU/l) [25]. Similarly, regardless of the procedure, bariatric surgery 
results in the normalization of TSH in nearly all patients (reviewed in ref. [26]). 
These findings strongly suggest that obesity-associated hyperthyrotropinemia is 
transient and resolves after weight loss.

In summary, most obese individuals are euthyroid, even though their TSH levels 
usually exceed those observed in normal-weight individuals. The most common 
obesity-associated thyroid hormone abnormality is hyperthyrotropinemia that can 
be distinguished from the SH by the normal and/or high normal concentrations 
of thyroid hormones. In addition, obesity is associated with decreased thyroid 
echogenicity in ultrasound which does not mirror the presence of autoimmune 
thyroid disease. Independently, obesity increases the risk of thyroid autoimmunity. 
Patients with isolated hyperthyrotropinemia should not be treated with thyroid 
hormone replacement unless there are symptoms or other signs of thyroid disease. 
Indications for LT4 treatment in obese individuals are limited to overt hypothyroid-
ism and some selected cases of its subclinical form. Administration of thyroid 
hormones to obese individuals without thyroid disease to induce weight reduction 
or improve metabolic profile is not justified and may lead to hyperthyroidism and 
its complications. Recommendations for testing for thyroid dysfunction in obese 
patients and their management are summarized in Figure 1.
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Loss of weight leads to the normalization of TSH in most obese individuals; how-
ever, till now, no large-scale study showed how the echogenicity of the thyroid paren-
chyma changes after weight loss and whether there is a correlation with the ultrasound 
image and the incidence of autoimmune thyroid disease before and after weight loss.

3. The hypothalamic-pituitary-adrenal axis and obesity

Cortisol secretion is regulated by the hypothalamic–pituitary–adrenal (HPA) 
axis upon stimuli received from the central and peripheral nervous system and 
integrated into hypothalamic nuclei to counteract different types of stressors. Upon 
these stimuli, corticotropin-releasing hormone (CRH) and vasopressin are released 
by the paraventricular nucleus of the hypothalamus and stimulate the secretion of 
adrenocorticotropic hormone (ACTH, corticotropin). Subsequently, ACTH acts on 
the adrenal cortex to produce and release glucocorticoid hormones (mainly cortisol 
in humans). The HPA axis activity is controlled by cortisol in an inhibitory feedback 
loop via glucocorticoid receptors (GR), located mainly in the brain’s hippocampus 
region. By interaction with GR, cortisol plays an essential role in the regulation of 
metabolism. In response to stress, cortisol, by mobilization of glucose, free fatty 
acids, and amino acids from endogenous resources, increases the availability of fuel 
substrates. In an emergency, these properties of cortisol assure the energy supply 
necessary to survive [27]. However, cortisol excess observed in patients with the 
Cushing’s syndrome, caused either by the adrenal tumor (ACTH-independent 
hypercortisolism), tumors of the hypothalamic–pituitary system, or tumors outside 
the HPA axis that ectopically produce ACTH (ACTH-dependent hypercortisolism) 
or CRH, leads to the profound impairment of whole-body homeostasis [28].

3.1 Metabolic consequences of hypercortisolism

Even though proper cortisol secretion is vital for everyday existence, its excess 
intensifies catabolism, leading to decreased lean body mass and causing muscle 

Figure 1. 
Testing for thyroid dysfunction and hypothyroidism treatment in obese patients (based on ref. [5]). AITD, 
autoimmune thyroid disorder; aTPO, thyroid peroxidase antibodies; fT4, free thyroxine; LT4, levothyroxine; 
TSH, thyroid-stimulating hormone; * If TSH and fT4 levels suggest subclinical hypothyroidism.
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atrophy. Moreover, to increase energy uptake, glucocorticoids stimulate appetite and 
food consumption contributing to the development of central obesity. Furthermore, 
by acting on the liver, muscle, adipose tissue, and pancreas, glucocorticoids increase 
gluconeogenesis, impair insulin sensitivity, and increase lipolysis and lipogenesis, 
leading to the development of the metabolic syndrome. Moreover, there is evidence 
from preclinical studies that glucocorticoids may interfere with the action of 
adipokines: by interference with the signaling system of the leptin receptor cortisol 
induces leptin resistance, characteristic for individuals with primary obesity [29]. 
Therefore the clinical picture of patients suffering from hypercortisolism resembles 
in many aspects primary obesity, and obesity is commonly listed among the differ-
ent entities of so-called pseudo-Cushing states [30]. However, several issues in a 
clinical examination should be considered during the differential diagnosis.

Firstly, adipose tissue distribution in hypercortisolism concerns mainly the 
abdominal area, the neck, and the face, while the extremities remain lean due to 
muscle atrophy. Subjects with primary obesity usually have fat accumulation all 
over the body, including upper and lower extremities. Next, striae in obese indi-
viduals are usually pale, narrow, and their appearance is associated with pregnancy 
or rapid weight gain. On the contrary, striae related to cortisol excess are reddish 
or live red, wider than 1 cm, and appear suddenly without any identifiable cause. 
Moreover, patients with cortisol excess complain of unusual brushing, skin thin-
ning, and facial plethora that are not specific symptoms in primary obesity. Excess 
of cortisol or co-secretion of androgens (by the adrenal tumor or ACTH-stimulated 
adrenal cortex) can result in typical features of hyperandrogenism that include 
acne, hirsutism, and alopecia. Furthermore, cortisol-induced osteolysis leads to 
osteoporosis that is rarely seen in obese subjects whose bones are protected by an 
endocrine activity of adipose tissue. Finally, hypercortisolism is associated with an 
increased frequency of non-metabolic complications that include, among others, 
thromboembolic incidents, severe infections, depressive and psychotic episodes 
resulting from the action of excess cortisol on other tissues and organs [30].

Apart from the clinical picture, the final diagnosis requires endocrine testing 
(described in detail elsewhere), especially in the case of individuals with so-called 
subclinical Cushing’s syndrome [28]. This endocrine disorder is observed in indi-
viduals with incidentally found adrenal adenoma and ACTH-independent cortisol 
secretion that is not fully restrained by pituitary feedback. Even though patients 
with subclinical Cushing’s syndrome do not present all clinical features of the 
full-blown disease (e.g., only 30–50% of them are obese) and hypercortisolism is 
of minimal intensity, it may eventually contribute to the development of metabolic 
and vascular complications [31]. The reason for unmasking endogenous hypercor-
tisolism derives from its devastating complications affecting the quality of life and 
life expectancy unless adequately treated [5].

Therefore the question is if the diagnostic of Cushing’s syndrome should be 
conducted in every obese patient. The epidemiological studies estimate the preva-
lence of Cushing’s syndrome in obese individuals to be 0.9%, and in patients with 
type 2 diabetes with poor metabolic control, it rises to 2–3% [14]. The incidence 
of subclinical Cushing’s syndrome has been more common in patients with obe-
sity than in the general population, though the precise assessment of the disease 
frequency is difficult since the diagnostic criteria and treatment program have not 
been well established yet. Therefore, assuming the epidemic proportions of obesity 
and the low prevalence of hypercortisolism among patients with obesity, the ESE 
guidelines do not recommend routine screening of Cushing’s syndrome in patients 
with obesity. However, such testing should be performed in patients who exhibit 
other specific features of hypercortisolism besides obesity, such as skin atrophy, 
osteoporosis, spontaneous ecchymoses, proximal myopathy, or wide purple striae. 
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Moreover, given the high risk of surgical complications or adverse clinical outcomes 
following surgery, the screening for hypercortisolism should be considered in 
patients referred to bariatric surgery [5]. Recommendations for testing for hyper-
cortisolism in obese patients are summarized in Figure 2.

3.2 Obesity-related HPA dysfunction

Obese patients constitute a heterogeneous population in terms of the HPA axis 
function [32]. Some of them have a normal circadian rhythm of cortisol secretion 
and its proper excretion in the urine. The remaining obese patients (especially those 
with abdominal obesity) present with the so-called functional hypercortisolism. 
This condition results both from the increased sensitivity of the HPA axis to stimuli, 
as well as from the increased peripheral cortisol synthesis (including the activation 
of 11β steroid dehydrogenase (11β-HSD) type 1, which converts cortisone into corti-
sol in adipose tissue) and the increased number of GR in peripheral tissues [33–36]. 
Clinically, in addition to some phenotypic features of Cushing’s syndrome, these 
patients exhibit increased nocturnal ACTH and cortisol levels, increased urinary 
excretion of cortisol metabolites, and enlargement of adrenal glands in imaging 
studies [37]. The results of studies on the inhibition of cortisol secretion in the 
dexamethasone test (1 mg) in obese patients also indicate the existence of different 
phenotypes of obesity. While some patients show a normal response, in others, a 
low dose of dexamethasone does not inhibit the HPA axis [37, 38].

The type of HPA disturbances in obesity seems to depend not only on adipose 
tissue distribution (visceral vs. subcutaneous) but also on the individual pattern of a 
stress response. Individuals coping well with stress usually have normal HPA func-
tion with high morning and low evening cortisol values, a brisk response to feeding, 
and are sensitive to dexamethasone suppression. In contrast, patients vulnerable to 
stress have low variability in a circadian cortisol rhythm, a small feeding response, 
and do not inhibit cortisol secretion after administration of dexamethasone. This 
abnormal HPA axis function is associated with a worse metabolic profile, including 
higher waist-to-hip ratio (WHR), total and low-density lipoprotein cholesterol,  

Figure 2. 
Screening for hypercortisolism in obese patients (based on ref. [5]).
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and blood pressure. Moreover, due to the interactions with other central endocrine 
axes, HPA axis status may determine the function of other endocrine glands. 
Therefore, HPA axis overactivity inhibits the secretion of sex steroids, growth 
hormone, and TSH [32]. However, these two reaction patterns of the HPA axis are 
extremes, and between them are several intermediate forms. These include, for 
instance, a normal, basic HPA axis activity, with high variability, stimulated by 
perceived stress that can explain the described above diversity of findings. Other 
determinants of the heterogeneous responses of the HPA axis in obese individuals 
include, but are not limited to: differences in GR sensitivity which can be partially 
genetically determined, comorbidities such as depression, or lifestyle factors such as 
alcohol abuse [39].

In summary, abnormalities of HPA function are a common phenomenon among 
obese individuals; however, due to a variety of hormonal responses, several pheno-
types can be distinguished that differ in metabolic risk and health consequences. 
In addition, the presence of overt hypercortisolism is relatively rare. Therefore, 
routine testing for Cushing’s syndrome in obesity is not recommended unless some 
typical alerting clinical features are present.

While normalization of the HPT axis after weight-loss interventions is widely 
described, only single studies carried out on groups of about 30 individuals show 
that weight loss normalizes the excretion of cortisol and cortisone metabolites in 
the urine, which correlates with a decrease in the expression of 11 β-HSD type 1 in 
subcutaneous fat [40]. However, it is unclear which of the obesity-related distur-
bances in the HPA axis function are reversible and which sustain despite the weight 
reduction.

4. The hypothalamic-pituitary-gonadal axis and obesity

The secretion of sex hormones is regulated by the hypothalamic–pituitary-
gonadal (HPG) axis. Briefly, gonadotropin-releasing hormone (GnRH) is secreted 
by the hypothalamus and stimulates the anterior pituitary lobe to release gonado-
tropins: luteinizing hormone (LH) and follicle-stimulating hormone (FSH), that 
subsequently stimulate gonads (ovaries and testes) to secrete estrogen and testos-
terone, as well as to control reproduction. While testosterone in a negative feedback 
loop inhibits GnRH and gonadotropins secretion, the regulation is more composed 
in the case of female sex steroids. In females, estrogen in a positive feedback loop 
stimulates LH secretion to prepare the reproductive organs for ovulation and 
implantation. In turn, after the ovulation, progesterone released by the corpus 
luteum inhibits proper cells in the hypothalamus and anterior pituitary lobe and 
stops the estrogen-LH positive feedback loop [41]. Since sex hormone receptors 
are spread all over the human body, apart from their pivotal role in the regulation 
of reproduction, sex steroids impact the function of several organs, including the 
adipose tissue. However, this relation is bidirectional since adipose tissue, via secre-
tion of adipokines, modulates the HPG axis [42].

4.1 Metabolic consequences of hypogonadism

Sexual dimorphism of adipose tissue distribution appears in puberty, indicating 
the role of sex hormones in its development [43]. Estrogens drive fat accumulation 
in the gluteofemoral subcutaneous depot, and during puberty in girls, increasing 
circulating estrogens levels correlate with an increase in fat deposition in this area. 
In turn, a decline in estrogen concentration during menopause is associated in 
women with changes in adipose tissue distribution from gluteofemoral to visceral. 
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On the contrary, women who are on hormone replacement therapy do not display 
the characteristic abdominal weight gain pattern usually associated with menopause 
[44]. The ability of estrogens to affect body fat distribution is not limited to women. 
In males, loss of estrogen signaling or its pharmacological inhibition promotes 
adiposity and impairs glucose metabolism [45, 46]. Preclinical studies confirmed a 
significant role for estrogen in regulating adipose tissue distribution, metabolism, 
and inflammatory activity. Activation of estrogen receptors was found to inhibit 
adipocyte differentiation, lipid accumulation, and the expression of adipocyte-
specific genes in primary human adipocytes [47]. Since estrogen influences adipose 
tissue amount and its metabolism, it may modulate the risk of obesity-related 
complications. In clinical studies, menopause is associated with a constant decline 
in insulin sensitivity parallel to an increase in serum inflammatory markers and 
unfavorable lipid profile [48]. In turn, transdermal administration of estradiol 
decreases the expression of genes encoding critical lipogenic enzymes in human 
adipose tissue that correlates with a decrease in plasma triglyceride levels [49].

Androgens also influence adipose tissue metabolism. By binding androgen 
receptors (AR) present in adipose tissue, especially in the visceral depot, testoster-
one up-regulates adrenergic receptors β that activate lipolysis. Moreover, androgens 
decrease in adipose tissue activity of lipoprotein lipase (LPL) responsible for the 
hydrolysis of circulating triglyceride-rich lipoproteins inhibiting in this way triglyc-
eride uptake [50]. Androgen status, responsible, among others, for the muscle mass 
accrual in puberty, is crucial to acquire and maintain favorable body composition 
in men. Accordingly, several cross-sectional and longitudinal studies have reported 
an inverse correlation between serum testosterone level and indices of obesity and 
metabolic risk (reviewed in ref. [51]). In turn, interventional studies have shown a 
beneficial effect of testosterone replacement therapy on BMI, adipose tissue distri-
bution, and body composition in hypogonadal men [14]. An essential voice in the 
discussion on the direction and causality of the relationship between adiposity and 
serum testosterone levels came from the genetic studies. The genetic risk for BMI 
was inversely associated with serum testosterone levels, while no association was 
observed between the genetic risk testosterone levels and BMI, suggesting that it is 
mainly adiposity affecting testosterone levels rather than the other way around [52].

4.2 Obesity-related gonadal dysfunction in men

Both in men and women, hypogonadism can be the cause but also the conse-
quence of obesity. In a recent meta-analysis, the prevalence of hypogonadism in 
obese men in general, when measuring total testosterone (TT), was 43,8%, while in 
severely obese individuals referred to bariatric surgery – 75,0% [14]. Several under-
lying mechanisms are responsible for the development of obesity-related hypogo-
nadism in men. Firstly, obesity is associated with increased aromatase cytochrome 
P450 activity in adipose tissue, resulting in the enhanced conversion of testosterone 
to estradiol. Subsequently, higher estradiol levels via stimulation of estrogen recep-
tor β downregulate glucose transporter (GLUT) 4 induce insulin resistance [53]. 
In turn, insulin resistance leads to the decreased sex-hormone-binding globulin 
(SHBG) synthesis in the liver, which translates to a larger amount of TT available 
for conversion to estradiol in adipose tissue. In turn, high estrogen levels inhibit 
gonadotropin secretion from the pituitary gland. Therefore, obesity impairs sperm 
concentration, motility, and morphology, too [54]. Furthermore, the HPG axis is 
modulated by adipokines. For instance, elevated leptin levels inhibit the production 
of testosterone by Leydig cells, while low adiponectin concentrations contribute to 
hepatic insulin resistance in this way, further influencing SHBG synthesis [53, 55]. 
In addition, described above, obesity-associated dysfunction of the HPA axis 
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resulting in functional hypercortisolism may contribute to the gonadotropin inhibi-
tion and, subsequently, reduced testosterone levels [56].

ESE does not recommend performing a routine hormonal screening for male 
hypogonadism in patients with obesity; however, testing should be considered 
when the clinical picture is suspicious. Then, TT plasma morning concentrations 
should be measured as an initial investigation, and when the result is low, the 
measurement should be repeated on two separate days in a fasting state. Since the 
equilibrium dialysis, which is the gold standard procedure to measure free testos-
terone, is hardly available, ESE suggests calculating bioavailable testosterone by 
using TT, SHBG, and albumin concentrations, when TT concentration is near the 
lower limit of the normal range [5, 57]. When low testosterone level is confirmed, 
the next step in the diagnostic algorithm includes measurement of FSH and LH to 
distinguish between primary and secondary hypogonadism [5]. Obesity-related 
hypogonadism in males is associated with low gonadotropin levels and sometimes 
with a predominance of FSH over LH, and its diagnosis requires exclusion of other 
causes of hypogonadotropic (secondary) hypogonadism [58]. When interpreting a 
testosterone measurement result, one should remember its level declines with age 
and can be affected by chronic diseases, drugs, lifestyle, and genetic predisposition 
[59]. Moreover, the assay technique used impacts the measurement result with 
the liquid chromatography–tandem mass spectrometry (LC–MS) method being a 
golden standard in sex steroids level determination [60]. The testosterone norms 
for obese individuals do not differ from the reference ranges accepted for the whole 
population; however, these vary between the countries [5]. In general, the diagnosis 
of male obesity-secondary hypogonadism should be based on a combination of low 
testosterone levels with clinical features of hypogonadism, including decreased 
sexual thoughts, erectile dysfunction, and reduced morning erections [61].

Since obesity can lead to functional male hypogonadism, which, in a vicious 
circle, can further promote obesity, the first-line therapy is focused on weight 
management. Unfortunately, non-invasive approaches focused on lifestyle modifi-
cation aiming at 5% weight loss are frequently insufficient to normalize testosterone 
levels, and the best results can be achieved employing bariatric surgery [62]. In turn, 
due to the potential risks (e.g., those related to increased prothrombotic activity), 
testosterone replacement is not routinely recommended in obese individuals with 
functional male hypogonadism. However, it can be considered if testosterone levels 
and/or hypogonadism signs and symptoms do not improve [5].

In summary, low testosterone serum levels in obese men are frequent; however, 
it does not equate to androgen deficiency. Moreover, obesity-secondary hypogo-
nadism in men is functional and can be reversed by proper weight management. 
The clinical assessment is of pivotal importance in assessing the causality of the 
relationship between body adiposity and hypogonadism. If the signs and symptoms 
of testosterone deficiency occurred first, before the weight gain – the diagnosis of 
hypogonadism as a cause of obesity can be established and testosterone replace-
ment treatment administered. In the context of the metabolic risk, it is still unclear 
whether low testosterone levels in obesity are a marker or a risk factor for metabolic 
complications. The clinical approach to obesity-associated hypogonadism in men is 
summarized in Figure 3.

4.3 Obesity-related gonadal dysfunction in women

While obese men struggle with testosterone deficiency, the most common 
consequence of obesity in the context of HPG axis dysfunction in women is hyper-
androgenism, frequently associated with hyperinsulinemia and infertility. The 
exact prevalence of biochemical hyperandrogenism in obese women is unknown 
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since most epidemiological studies were focused on the incidence of polycystic 
ovary syndrome (PCOS), which diagnosis can be established without the pres-
ence of clinical/biochemical androgen excess. However, the prevalence of PCOS in 
obese women is similar to the general population in reproductive age (25–29%) but 
increases with BMI [14].

In obese women, especially in those with visceral obesity, low SHBG levels lead 
to a relative increase in estrogens’ concentration that stimulates the pulsatile LH 
secretion and subsequent steroidogenesis in the theca cell system. Similarly, high 
insulin and insulin-like growth factor I (IGF-I) levels stimulate 17α-hydroxylase 
activity in the theca cells, increasing the secretion of ovarian androgens [63]. 
In addition, obesity-related HPA axis dysfunction (described above) results in 
increased synthesis of adrenal androgens. In turn, adipose tissue of obese women 
is characterized by a higher activity of 5α-reductase, which transforms testosterone 
into a much more active androgen – dihydrotestosterone [64]. All these changes 
clinically manifest by hyperandrogenism (most often hirsutism) and menstrual 
and/or ovulation dysfunction. The cause of ovulation dysfunction in obese women 
may also be an increased concentration of leptin, which, by binding its receptors 
in the ovary, inhibits follicle maturation and steroidogenesis [65]. Furthermore, an 
obesity-associated increase in pro-inflammatory cytokines secretion from adipose 
tissue also contributes to the disturbing gonadotropin secretion in the pituitary 
[66]. Therefore, the percentage of ovulation cycles decreases with BMI, reaching 
only 12% in individuals with BMI ≥ 35 kg/m2 and obese women, even when eumen-
orrheic, have reduced fecundity and worse outcomes of the in vitro fertilization 
(IVF) [67]. Apart from the HPG dysfunction, obesity negatively influences the 
oocyte and the embryo development that manifests by disrupted meiotic spindle 
formation and mitochondrial function. Moreover, obesity-associated low-grade 
inflammation has a toxic effect on the reproductive tissues, including the endome-
trium, characterized by impaired stromal decidualization that leads to impaired 
receptivity and placental abnormalities. In addition, chronic inflammation and 
the altered adipokines secretion impairs steroidogenesis and can directly affect the 
embryo. All these factors contribute to the higher rates of miscarriage, stillbirth, 
and preeclampsia in obese women [68].

Figure 3. 
The clinical approach to obesity-associated hypogonadism in men (based on ref. [5]). TT, total testosterone.
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Studies in women with PCOS show that weight loss achieved by a lifestyle inter-
vention may reduce hyperinsulinemia and thus break the vicious cycle of excessive 
androgen synthesis [69]. Similar changes occur in obese women who experience 
weight loss as a result of bariatric procedures. In a recent meta-analysis, resolution 
of PCOS was found in 96% of affected women after bariatric surgery, which was 
associated with an increase in SHBG level and a decrease in serum estradiol and TT. 
These changes in sex hormone levels in 53% of individuals resulted in the resolution 
of hirsutism and 96% – in the resolution of menstrual dysfunction [70]. However, 
most studies on the assessment of androgen concentrations in obese women were 
based on measurements performed with immunoassays, which are characterized by 
a high percentage of false-positive results, and as it was mentioned above, currently 
the reference method in the measurement of androgen concentrations is LC–MS 
[71]. In the context of infertility, in obese women, successful weight loss improves 
ovulation rates and menstrual irregularity, increasing the chances of pregnancy 
due to natural conception and IVF. According to meta-analyses, there appears to be 
no significant difference between the patients after weight-loss interventions and 
never obese controls concerning rates of miscarriage and IVF conceptions [67]. 
However, there is still a lack of randomized controlled trials that would assess, for 
instance, the effect of weight loss on numbers of oocytes retrieved for IVF and time 
to conception.

ESE guidelines do not recommend routine testing for gonadal dysfunction in 
female obese patients unless clinical symptoms (e.g., acne, hirsutism, androgenic 
alopecia, acanthosis nigricans, menstrual abnormalities, oligo-anovulation, infer-
tility) occur. When there is a clinical suspicion of PCOS, the diagnostic procedures 
should include hormonal testing and ovarian ultrasound. If the diagnosis of PCOS 
is excluded, other diseases leading to hyperandrogenism and infertility should 
be considered, e.g., hyperprolactinemia, thyroid dysfunction, congenital adrenal 
hyperplasia, and hypercortisolism. If PCOS is diagnosed, additional testing toward 
glucose intolerance should be performed [5].

In summary, hyperandrogenism and infertility seem to be the main manifes-
tation of obesity-related HPG axis dysfunction in women, and in both, weight 
management should be considered first-line therapy. However, if the HPG axis 
dysfunction sustains despite the successful weight loss or if the patient presents 
signs and/or symptoms suggesting an underlying disease not related to obesity, the 
causative treatment should be undertaken.

5. Conclusions and further directions

The increasing incidence of obesity translates to the increased number of obese 
individuals referred to endocrinologists, either because of clinical suspicion of an 
underlying endocrine disease-causing weight gain or concern that obesity may 
have caused endocrine dysfunction. As described above, the relationship between 
obesity and endocrine dysfunction is bidirectional and complex and concerns 
all main hormonal axes. Based on the meta-analyses of observational and inter-
ventional studies, endocrine sociates proposed clinical guidelines to facilitate the 
management of obese individuals in everyday practice. In most cases, those guide-
lines advise a cautious approach and limit the diagnostics to the cases with a clear 
clinical picture. Apart from the TSH measurement, no other hormonal assessment 
is recommended to an asymptomatic obese individual unless he or she is referred to 
bariatric surgery when a screening toward hypercortisolism should be performed.

Since most obesity-related hormonal disturbances are reversible in the case 
of HPT and HPG axes, weight management should be the first-line strategy, and 
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treatment considered if the abnormalities sustain despite the weight loss. However, 
given the diversity of changes in the HPA axis that occur in obese individu-
als, the influence of weight management on cortisol secretion requires further 
investigation.
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Chapter 3

Top 100 Most Cited Studies in 
Obesity Research: A Bibliometric 
Analysis
Tauseef Ahmad

Abstract

Obesity represents a major global public health problem. In the past few decades 
the prevalence of obesity has increased worldwide. In 2016, an estimated 1.9 bil-
lion adults were overweight; of these more than 650 million were obese. There is 
an urgent need for potential solutions and deeper understanding of the risk factors 
responsible for obesity. A bibliometric analysis study was designed to provide a 
comprehensive overview of top 100 most cited studies on obesity indexed in Web of 
Science database. The online search was conducted on June 6, 2021 using the key-
words “Obesity” OR “Obese” OR “Overweight” in title filed with no limitations on 
document types or languages. The top 100 cited studies were selected in descending 
order based on number of citations. The obtained data were imported in to Microsoft 
Excel 2019 to extract the basic information such as title, authors name, journal name, 
year of publication and total citations. In addition, the data were also imported in 
to HistCite™ for further citation analysis, and VOSviewer software for windows to 
plot the data for network visualization mapping. The initial search retrieved a total 
of 167,553 documents on obesity. Of the total retrieved documents, only top 100 
most cited studies on obesity were included for further analysis. These studies were 
published from 1982 to 2017 in English language. Most of the studies were published 
as an article (n = 84). The highly cited study on obesity was “Establishing a standard 
definition for child overweight and obesity worldwide: international survey” pub-
lished in BMJ-British Medical Journal (Impact Factor 39.890, Incites Journal Citation 
Reports, 2021) in 2000 cited 10,543 times. The average number of citations per study 
was 2,947.22 (ranging from 1,566 to 10,543 citations). Two studies had more than 
10,000 citations. A total of 2,272 authors from 111 countries were involved. The 
most prolific author was Flegal KM authored 14 studies with 53,558 citations. The 
highly active country in obesity research was United States of America. The included 
studies were published in 33 journals. The most attractive journal was JAMA-Journal 
of the American Medical Association (Impact Factor 56.272) published 17 studies 
and cited globally 51,853 times. The most frequently used keywords were obesity 
(n = 87) and overweight (n = 22). The countries with highest total link strength was 
United States of America (n = 155), followed by England (n = 140), and Scotland 
(n = 130). Our results show that most number of highly cited studies were published 
in developed countries. The findings of this study can serve as a standard benchmark 
for researchers to provide the quality bibliographic references and insights into the 
future research trends and scientific cooperation in obesity research.

Keywords: Obesity, Overweight, bibliometric analysis
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1. Introduction

Obesity represents a major public health challenge, in the past few decades the 
prevalence of obesity has increased worldwide and associated with serious adverse 
health outcomes [1, 2]. According to the statistics of World Health Organization, 
in 2016, an estimated 1.9 billion adults (18 years and older) were overweight, of 
these more than 650 million were obese. In 2019, 38 million children (under age of 
5 years) were overweight or obese [3].

Obesity associated comorbidities including certain cancer, depression, fatty liver 
disease, hepatic steatosis, hyperlipidemia, hypertension, obstructive sleep apnea, 
orthopedic conditions, type 2 diabetes mellitus and social isolation [1, 4, 5]. There is 
an urgent need for potential solutions and deeper understanding of the risk factors 
responsible for obesity.

Bibliometric type studies are of great interest, conducted not only to present an 
overall overview of the published scientific literature but also critical and subjective 
summarization of the most influential scientific studies [6–8].

2. Aim

This study aimed to provide a comprehensive overview of top 100 most cited 
studies on obesity. The finding can serve as a standard benchmark for researchers 
and to provide the quality bibliographic references.

3. Methods

3.1 Study design

Bibliometric citation analysis study.

3.2 Searching strategy and database

On June 6, 2021 the online search was conducted on Web of Science,  
Core Collection database (Philadelphia, Pennsylvania, United State of America). 
The search keywords used were “Obesity” OR “Obese” OR “Overweight” in  
title filed with no limitations on documents types or languages. The top 100  
cited studies were selected in descending order based on number of  
citations.

3.3 Data extraction

The obtained studies were imported in to Microsoft Excel 2019 to extract the 
basic information such as title, authors name, journal name, year of publication and 
total citations. In addition, the downloaded dataset were imported in to HistCite™ 
for further citation analysis.

3.4 Visualization network

Visualization network co-authorship countries and co-occurrence all keywords 
were plotted by using VOSviewer software version 1.6.15 (https://www.vosviewer.
com/) for windows.
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4. Ethical approval

This study did not involve any human or animal subjects, thus, ethical approval 
was not required.

5. Results

The initial search retrieved a total of 167,553 documents on obesity indexed in 
Web of Science database. Of the total retrieved documents, only top 100 most stud-
ies on obesity were included in this study. The included studies were published in 
English language. Most of the studies were published as an article (n = 84) followed 
by review (n = 14) and letter (n = 1). The average number of citations per study was 
2,947.22, ranging from 1,566 to 10,543 citations.

The most cited study on obesity was “Establishing a standard definition for child 
overweight and obesity worldwide: international survey” published in BMJ-British 
Medical Journal in 2000 cited 10,543 times. Another study “Positional cloning of the 
mouse obese gene and its human homolog” published in Nature in 1994 was cited 
10,214 times. A total of 10 studies were cited more than 5,000 times. Furthermore, 
52 studies were cited at least 2,000 times, while the remaining studies were cited 
more than 1,500 times. The top 100 studies on obesity is presented in Table 1.

5.1 Most prolific authors

A total of 2,272 authors contributed to top 100 most cited studies. The most 
prolific author was Flegal KM authored 14 studies with 53,558 citations, followed by 
followed by Carroll MD (n = 10, citations = 36,950), and Ogden CL (n = 9, cita-
tions = 34,784). Only nine authors authored at least five studies as shown in Table 2. 
In addition, only 22 authors contributed in at least three studies.

5.2 Most active countries

A total 111 countries were involved in top 100 most cited studies on obesity. The 
most active country was United States of America (studies contributed: 75, citations: 
217,788), followed by United Kingdom (studies contributed: 18, citations: 57,015), 
Canada (studies contributed: 9, citations: 17,920), Japan (studies contributed: 9, 
citations: 26,695), France (studies contributed: 8, citations: 21,228), Sweden (studies 
contributed: 8, citations: 20,632), and Netherlands (studies contributed: 7, citations: 
13,018) as shown in Table 3. Only 21 countries were involved at least in four studies.

5.3 Journals

The top 100 most cited studies were published in 33 journals. The most attrac-
tive journal was JAMA-Journal of the American Medical Association published 17 
studies and cited globally 51,853 times as shown in Table 4. Only seven journals 
published at least 4 studies, six journals published two studies each, while the 
remaining journals published a single study each.

5.4 Commonly used keywords

A total of 366 keywords were used in the top 100 most cited studies. The most 
widely used keywords were obesity (n = 87) and overweight (n = 22) as shown in 
Table 5.
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Rank Study reference LCS LCS/t GCS GCS/t

1 Cole et al. [9] 5 0.28 10543 585.72

2 Zhang et al. [10] 14 0.58 10218 425.75

3 Alberti et al. [11] 0 0.00 7170 796.67

4 Ogden et al. [12] 7 0.58 6501 541.75

5 Weisberg et al. [13] 9 0.60 6360 424.00

6 Turnbaugh et al. [14] 9 0.75 6237 519.75

7 Ng et al. [15] 2 0.50 6092 1523.00

8 Turner et al. [16] 1 0.05 5585 279.25

9 Ogden et al. [17] 2 0.50 5530 1382.50

10 Hotamisligil et al. [18] 12 0.48 5305 212.20

11 Calle et al. [19] 2 0.13 4927 328.47

12 Considine et al. [20] 1 0.05 4888 222.18

13 Ley et al. [21] 4 0.33 4624 385.33

14 Flegal et al. [22] 9 0.56 4575 285.94

15 Flegal et al. [23] 5 0.63 4510 563.75

16 Xu et al. [24] 5 0.33 4501 300.07

17 Turnbaugh et al. [25] 2 0.22 4499 499.89

18 Pi-Sunyer et al. [26] 0 0.00 4046 202.30

19 Halaas et al. [27] 8 0.35 3846 167.22

20 DeFronzo et al. [28] 0 0.00 3653 135.30

21 Flegal et al. [29] 3 0.50 3653 608.83

22 Pelleymounter et al. [30] 7 0.30 3611 157.00

23 Yamauchi et al. [31] 3 0.18 3603 211.94

24 Arita et al. [32] 4 0.21 3588 188.84

25 Ley et al. [33] 7 0.54 3439 264.54

26 Steppan et al. [34] 4 0.24 3335 196.18

27 Furukawa et al. [35] 1 0.07 3314 236.71

28 Cani et al. [36] 3 0.27 3183 289.36

29 Must et al. [37] 3 0.16 3081 162.16

30 Hedley et al. [38] 8 0.57 3077 219.79

31 Kopelman [39] 3 0.17 3001 166.72

32 Maffei et al. [40] 3 0.13 2989 129.96

33 Black et al. [41] 1 0.20 2937 587.40

34 Sjostrom et al. [42] 0 0.00 2910 264.55

35 Hubert et al. [43] 6 0.17 2908 83.09

36 Frayling et al. [44] 0 0.00 2908 264.36

37 Haslam and James [45] 1 0.08 2900 223.08

38 Mokdad et al. [46] 2 0.13 2816 187.73

39 Whitaker et al. [47] 2 0.10 2766 131.71

40 Barlow [48] 0 0.00 2764 251.27

41 Lumeng et al. [49] 0 0.00 2762 251.09
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Rank Study reference LCS LCS/t GCS GCS/t

42 Kahn et al. [50] 1 0.08 2747 228.92

43 Ogden et al. [51] 1 0.17 2704 450.67

44 Weyer et al. [52] 0 0.00 2694 158.47

45 Christakis and Fowler [53] 1 0.09 2687 244.27

46 Ogden et al. [54] 5 0.31 2660 166.25

47 Ozcan et al. [55] 1 0.07 2602 185.86

48 Despres and Lemieux [56] 0 0.00 2581 215.08

49 Hotamisligil et al. [57] 7 0.30 2580 112.17

50 Cani et al. [58] 2 0.20 2516 251.60

51 Hirosumi et al. [59] 2 0.13 2304 144.00

52 Huszar et al. [60] 1 0.05 2295 109.29

53 Calle and Kaaks [61] 0 0.00 2286 163.29

54 Swinburn et al. [62] 4 0.57 2196 313.71

55 Weiss et al. [63] 0 0.00 2178 155.57

56 Flegal et al. [64] 7 0.35 2166 108.30

57 Kuczmarski et al. [65] 11 0.46 2137 89.04

58 Montague et al. [66] 5 0.24 2081 99.10

59 Ezzati et al. [67] 0 0.00 2073 2073.00

60 Kahn and Flier [68] 3 0.17 2068 114.89

61 Gregor and Hotamisligil [69] 0 0.00 2026 289.43

62 Flegal et al. [70] 2 0.40 2021 404.20

63 Locke et al. [71] 0 0.00 1967 655.67

64 Luppino et al. [72] 0 0.00 1951 243.88

65 Wortsman et al. [73] 0 0.00 1934 107.44

66 Hotamisligil et al. [74] 5 0.23 1933 87.86

67 Flegal et al. [75] 2 0.15 1907 146.69

68 Yudkin et al. [76] 2 0.11 1873 98.58

69 Mokdad et al. [77] 2 0.12 1861 109.47

70 Popkin et al. [78] 1 0.17 1856 309.33

71 Yusuf et al. [79] 1 0.08 1841 141.62

72 Guh et al. [80] 0 0.00 1836 204.00

73 Everard et al. [81] 0 0.00 1836 367.20

74 Wang and Lobstein [82] 1 0.08 1832 152.67

75 Ebbeling et al. [83] 0 0.00 1823 113.94

76 Wang and Beydoun [84] 1 0.09 1821 165.55

77 Ridaura et al. [85] 0 0.00 1799 359.80

78 Kenchaiah et al. [86] 4 0.25 1725 107.81

79 Afshin et al. [87] 0 0.00 1703 1703.00

80 Elchebly et al. [88] 0 0.00 1702 89.58

81 Dietz [89] 1 0.05 1701 85.05

82 Poirier et al. [90] 1 0.08 1687 140.58
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S. No. Author Studies LCS LCS/t GCS GCS/t

1 Flegal KM 14 67 5.461386 53558 6340.429

2 Carroll MD 10 47 4.171429 36950 5114.773

3 Ogden CL 9 40 3.821429 34784 5006.473

4 Hotamisligil GS 7 34 1.541382 18410 1110.571

5 Dietz WH 6 15 0.819507 22538 1238.22

6 Gordon JI 6 24 2.044017 22272 2196.711

7 Johnson CL 5 40 2.254762 14615 869.3149

8 Mokdad AH 5 8 0.856244 14103 3609.046

9 Spiegelman BM 5 29 1.265631 13140 585.4702

10 Kengne AP 4 2 0.5 11941 7372

11 Khang YH 4 2 0.5 11941 7372

12 Kit BK 4 8 1.566667 13908 2846.2

13 Ley RE 4 22 1.844017 18799 1669.511

14 Turnbaugh PJ 4 17 1.505556 17034 1572.372

Note: LCS: Local citation score; LCS/t: Local citation score per year; GCS: Global citation score; GCS/t: Global 
citation score per year.

Table 2. 
Authors with at least 4 studies.

Rank Study reference LCS LCS/t GCS GCS/t

83 Van Gaal et al. [91] 0 0.00 1682 140.17

84 Newgard et al. [92] 1 0.11 1682 186.89

85 Turnbaugh et al. [93] 2 0.20 1674 167.40

86 Spiegelman and Flier [94] 2 0.12 1663 97.82

87 Kanda et al. [95] 3 0.25 1661 138.42

88 Uysal et al. [96] 7 0.33 1660 79.05

89 Hu et al. [97] 3 0.14 1659 75.41

90 Finkelstein et al. [98] 1 0.11 1645 182.78

91 Mozaffarian [99] 0 0.00 1640 820.00

92 Larsson et al. [100] 1 0.03 1633 48.03

93 Mokdad et al. [101] 2 0.11 1631 85.84

94 Visser et al. [102] 1 0.05 1615 85.00

95 Kissebah et al. [103] 1 0.03 1612 44.78

96 Wang et al. [104] 3 0.43 1610 230.00

97 Clement et al. [105] 1 0.05 1588 79.40

98 Puhl and Heuer [106] 0 0.00 1582 175.78

99 Flegal et al. [107] 0 0.00 1574 787.00

100 Turek et al. [108] 0 0.00 1566 120.46

Note: LCS: Local citation score; LCS/t: Local citation score per year; GCS: Global citation score; GCS/t: Global 
citation score per year.

Table 1. 
Top 100 most cited studies on obesity.
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5.5 Year of publication

The top 100 most cited on obesity were published from 1982 to 2017 as shown 
in Figure 1. The highest number of studies were published in 2006 (n = 9, cita-
tions = 29,552) and 2007 (n = 7, citations = 19,035) as presented in Figures 1 and 2.

S. No. Country Number of studies LCS GCS

1 United States of America 75 207 217788

2 United Kingdom 18 32 57015

3 Canada 9 7 17920

4 Japan 9 13 26695

5 France 8 11 21228

6 Sweden 8 12 20632

7 Netherlands 7 3 13018

8 Belgium 6 5 12993

9 Finland 6 2 16579

10 Australia 5 6 14031

11 Italy 5 2 15488

12 Pakistan 5 3 14772

13 Switzerland 5 3 11196

14 Brazil 4 3 12805

15 Estonia 4 2 11835

16 Germany 4 2 11835

17 Norway 4 2 11835

18 Peoples Republic of China 4 2 11835

19 Saudi Arabia 4 2 11835

20 South Korea 4 2 11835

Note: LCS: Local citation score; GCS: Global citation score.

Table 3. 
Country with at least 3 studies.

Journal name Number of studies LCS LCS/t GCS GCS/t

JAMA-Journal of the American 
Medical Association (IF: 56.272, Q1)

17 65 5.400378 51853 6276.611

Nature (IF: 49.962, Q1) 14 52 3.120612 48524 3834.997

Lancet (IF: 79.321, Q1) 9 13 1.903846 27057 5484.994

Science (IF: 47.728, Q1) 9 33 1.430875 25272 1644.342

New England Journal of Medicine 
(IF: 91.245, Q1)

8 10 0.614935 23784 3157.565

Journal of Clinical Investigation (IF: 
14.808, Q1)

7 28 1.725776 23246 1577.351

Circulation (IF: 29.690, Q1) 4 7 0.254762 13405 1840.336

Note: IF: Impact Factor, Incites Journal Citation Reports, 2021; Q: Quartile; LCS: Local citation score; LCS/t: Local 
citation score per year; GCS: Global citation score; GCS/t: Global citation score per year.

Table 4. 
Journals published at least 4 studies.
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5.6 Co-authorship countries network visualization

The minimum number of studies for a country was fixed at 3. Of the total coun-
tries, only 38 countries were plotted based on total link strength (TLS) as shown 
in Figure 3. The countries with highest TLS were United States of America (155), 
England (140), and Scotland (130).

5.7 Co-occurrence all keywords network visualization

Of the total keywords, only 69 were plotted as shown in Figure 4. The keyword 
body-mass index has the highest TLS 117, followed by overweight (65), adipose-
tissue (56), prevalence (53), weight (52), and obesity (49).

S. No. Word Occurrence LCS GCS

1 Obesity 87 205 245145

2 Overweight 22 58 73740

3 Insulin 17 55 45751

4 Resistance 16 54 43149

5 Prevalence 12 62 46421

6 Adults 11 41 38279

7 Diabetes 10 13 32966

8 Trends 10 34 27357

Note: LCS: Local citation score; GCS: Global citation score.

Table 5. 
The keywords used at least ten times.

Figure 1. 
Publication years of top 100 most cited studies in obesity research.
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6. Discussion

In recent years, bibliometric type studies have been increased significantly, these 
studies not only recognize the most influential studies in certain area but also deter-
mine the research shift and other important insights into the bibliometric parameters. 

Figure 2. 
Total global citation score per year of top 100 most cited studies in obesity research.

Figure 3. 
Co-authorship countries network visualization. Two clusters are formed; red color represents cluster 1 (24 
items), and green color represents cluster 2 (14 items).
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Globally, obesity is a major public health problem and the prevalence has increased 
in the past few decades. Therefore, this study was undertaken to recognize the most 
influential studies in obesity research and provide essential bibliographic information. 
To the best of our knowledge this is the first bibliometric analysis on top 100 most cited 
studies on obesity indexed in Web of Science database. The highly cited study in obesity 
research received a total of 10,543 citations. The study published in a highly rated jour-
nal in medicine had an impact factor of 39.890 and placed in quartile 1 (Q1) category. 
The study entitled “Establishing a standard definition for child overweight and obesity 
worldwide: international survey” provides cut off points for body mass index in child-
hood of six large nationally representative cross sectional growth studies [9].

Another study received a total of 10,218 citations. The study titled “Positional 
cloning of the mouse obese gene and its human homologue” discusses the potential 
role of obese gene and these genes may function as part of a signaling pathway from 
adipose tissue that acts to regulate the size of the body fat depot [10].

The top 100 most cited were published in 33 journals. The most attractive and core 
journals in obesity research were JAMA-Journal of the American Medical Association 
(n = 17), and Nature (n = 14) had an impact factor of 56.272, and 49.962 respectively. A 
total of 31 studies were published in these two journals with a total citations of 100,377, 
thus representing the quality of work and aiming of the authors for high impact factor 
journals. Influential studies on obesity were published in higher impact factor journals. 
Furthermore, studies published in higher impact factor journals are more likely to be 
cited by the scientific community. The impact factor shows importance and quality of 
a journal [109]. The top three authors based on number of studies in obesity research 
were Flegal KM (n = 14, citations = 53,558), followed by Carroll MD (n = 10, cita-
tions = 36,950), and Ogden CL (n = 9, citations = 34,784). In our study, the leading 
country was United States of America contributed in a total of 75 studies with a total 
citations of 217,788. The finding is in line with studies in other research areas [110–113].

7. Conclusion

This study provides a comprehensive information of the most cited studies  
in obesity research. Majority of the most cited studies were published by 

Figure 4. 
Co-occurrence all keywords network visualization. Three clusters are formed; red color represents cluster 1 (29 
items), green color represents cluster 2 (26 items), and blue color represents cluster 3 (14 items).
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Chapter 4

Obesity and Endometrial Cancer
Saliha Sağnıç

Abstract

Obesity is a very common health problem in almost all societies. Although obesity 
is a problem especially in high-income or upper-middle-income countries, it is pre-
dicted that obesity will increase rapidly in the future in developing countries. Excess 
body weight is associated with an increased risk for many malignancies and its impact 
on cancer incidence and mortality is well established. The role of obesity in the 
pathogenesis of endometrial cancer has been proved. The incidence of endometrial 
cancer is increasing due to an increasing prevalence of obesity. Approximately 57% 
of endometrial cancers in the United States are thought to be attributable to being 
overweight and obese. The mechanisms underlying the relationship between obesity 
and endometrial cancer have not been fully defined, however adipokines are known 
to stimulate cell proliferation in endometrial carcinoma. By preventing obesity and 
reducing its prevalence, deaths from endometrial cancer can be reduced.

Keywords: endometrial cancer, obesity, global epidemic, prevention

1. Introduction

Obesity is a very common health problem in almost all societies. Although obesity 
is a problem especially in high-income or upper-middle-income countries, it is 
predicted that obesity will increase rapidly in the future in developing countries. The 
worldwide prevalence of obesity has more than doubled among women and tripled 
among men over the past four decades [1]. Excess body weight is associated with an 
increased risk for many malignancies and its impact on cancer incidence and mortal-
ity is well established [2]. This makes obesity an important public health problem. 
Despite clear evidence linking endometrial cancer and obesity, public awareness is 
poor [3, 4]. Weight, weight gain, and obesity account for about 20% of all cancer 
cases. Although the role of obesity in the pathogenesis of endometrial cancer has 
been proved, its importance in the esophagus, thyroid, colon, kidney, liver, mela-
noma, multiple myeloma, rectum, gallbladder, leukemia, lymphoma, and prostate in 
men and breast cancer in postmenopausal women is also demonstrated [5, 6].

Endometrial cancer is the most common female genital tract malignancy in 
high-income countries and the second most common gynecological cancer in low-
middle-income countries. Endometrial carcinoma is a histological diagnosis based 
on characteristic findings in an endometrial biopsy, curettage, or hysterectomy 
specimen. A woman’s lifetime risk of endometrial cancer in the general popula-
tion is 3%. The incidence peaks between the ages of 60 and 70, but less than 5% of 
cases emerge before age of 40. The incidence of endometrial cancer is increasing 
due to an increasing prevalence of obesity, decreased use of menopausal hormone 
therapy with progestins, increased prevalence of diabetes, and changes in repro-
ductive behavior (eg, nulliparity) [7, 8]. Most patients are diagnosed at an early 
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stage and therefore have a five-year survival rate of more than 90%. Unfortunately, 
approximately 30% of women have stage III or IV disease, with 5-year survival rates 
significantly worse than in early-stage patients, 60% and 20%, respectively [9].

The primary complaint is abnormal uterine bleeding in 70% to 90% of endome-
trial carcinoma cases [10]. Premenopausal patients with abnormal uterine bleeding 
have a lower risk of cancer than postmenopausal women with the same complaint. 
In patients younger than 45 years of age, abnormal uterine bleeding tends to be 
persistent and is more likely to occur if there is a history of unopposed estrogen 
exposure (eg. obesity, chronic anovulation). The emergence of endometrial carci-
noma in postmenopausal women requires evaluation of endogenous and exogenous 
estrogen sources because unopposed estrogen (estrogen therapy, obesity, selective 
estrogenic receptor modulators, some herbs, sex cord-stromal tumors) is a risk 
factor for the disease.

Endometrial carcinoma is sometimes discovered incidentally when a hysterec-
tomy is performed for benign disease. To minimize this coincidence and optimize 
the surgical procedure performed, patients with abnormal uterine bleeding should 
always undergo endometrial sampling before performing a hysterectomy, and the 
results should be evaluated to determine the extent of surgery before the operation. 
Occult uterine cancer risk is significantly associated with race/ethnicity, obesity, 
comorbidity, personal history of malignancy, and cause of hysterectomy [11].

Typically, a pelvic examination is usually normal in patients with early-stage 
endometrial carcinoma. In women with more advanced disease, the uterus can 
be palpated as larger and fixed for the age of the patient. With blind endometrial 
sampling, the sensitivity is 90% or higher. History of colorectal cancer, endometrial 
polyps, and morbid obesity are risk factors for false-negative endometrial sampling 
[12]. In case of high clinical suspicion, hysteroscopy and targeted lesion-directed 
biopsy can be performed to reduce the false-negative rate. It is important to repeat 
endometrial sampling to exclude endometrial hyperplasia or carcinoma, especially 
in patients with risk factors for malignancy (eg. obesity, chronic anovulation).

More than 90% of uterine cancers originate from the endometrium, with most 
of the remainder originating from the myometrial muscle or less frequently from the 
endometrial stroma [13]. Adenocarcinoma of the endometrium is the most common 
histological type. The prognosis of endometrial carcinoma is primarily determined by 
the stage, grade, and histology of the disease. Most patients have a favorable prognosis 
as the majority of the histological type is the endometrioid type and presents with 
early-stage disease. Serous and clear cell types and other uterine cancers are associated 
with poor prognosis. Most women with low-risk endometrial cancer die from another 
cause, and cardiovascular disease is the leading cause of death among endometrial 
cancer patients [14]. The endometrioid type is the subtype predominantly associ-
ated with obesity; however, more aggressive subtypes (such as serous, clear cell, and 
carcinosarcoma) have recently been stated to increase with obesity [15].

Endometrial carcinomas are divided into two categories that differ in incidence, 
response to hormones, clinicopathological features, and risk factors [16, 17]. However, 
this approach does not adequately address the complexity of these neoplasms. Because 
25% of high-grade endometrioid carcinomas progress like serous carcinomas [18].

Type 1: It accounts for about 80 percent of endometrial carcinomas. Includes 
tumors with grade 1 or 2 endometrioid histology; It may result from intraepithelial 
neoplasm (atypical and/or complex endometrial hyperplasia), typically has a favor-
able prognosis, is estrogen-induced, and responsive to progestins on therapy. While 
estrogen excess is important in its etiology, unexposure to progesterone is probably 
equally important. The increasing prevalence of obesity, decreased use of meno-
pausal hormone therapy with progestins, and decreased propensity to delivery in 
women explain the increasing prevalence of type 1 endometrial carcinoma.
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Type 2: Accounts for 10 to 20 percent of endometrial carcinomas. Includes grade 
3 endometrioid tumors as well as histological types of non-endometrioid types: 
serous, clear cell, mucinous, squamous, transitional cell, mesonephric, and undif-
ferentiated. These patients generally have lower body mass indexes and are older 
than type 1 patients. These neoplasms are insensitive to estrogen, often occur in the 
atrophic endometrium, and have a poor prognosis. The reason for the increased 
incidence of type 2 neoplasms is unknown.

The Cancer Genome Atlas (TCGA) Research Network has significantly 
improved our understanding of the molecular level of endometrial cancer and 
introduced not two but four molecular subtypes [18];

1. POLE (ultra mutated) tumors,

2. Microsatellite unstable tumors,

3. Tumors with high copy number, mostly with TP53 mutations,

4. The group remaining without these changes.

2. Risk factors for endometrial cancer

The main risk factor for type I (endometrioid) endometrial carcinoma is an 
excess of endogenous or exogenous estrogen that is not adequately opposed with 
progestin [19]. In a woman with a uterus, oral, transdermal, and vaginal systemic 
estrogen therapy without the administration of progestin results in a marked 
increased risk of developing endometrial premalignant lesions and endometrial 
carcinoma. Unopposed estrogen increases the risk of endometrial cancer by 2–10 
times [20]. Studies have reported an increased risk of endometrial cancer in patients 
using estrogen alone, depending on the dose and duration of use [21–23]. The risk 
of endometrial cancer in postmenopausal patients is estimated to be approximately 
1 in 1000; therefore, studies have shown that patients receiving unopposed estrogen 
have an increased absolute risk of up to 1 in 100 [24]. Other risk factors include 
tamoxifen therapy, chronic anovulation, obesity, nulliparity, early menarche, late 
menopause, ovarian granulosa cell tumor, Cowden syndrome, having a first-degree 
relative with endometrial cancer, history of pelvic radiotherapy, diabetes mellitus 
and hypertension, and Lynch syndrome. A history of breast cancer is a risk factor 
for the development of endometrial cancer, partly because of the use of tamoxifen 
in the treatment of breast cancer, the increased risk of breast cancer in conditions 
such as obesity, and Cowden syndrome. As patients with hypertension and diabetes 
mellitus are generally obese, much of the risk these two comorbid conditions have 
in developing endometrial cancer may be attributable to obesity [25]. However, 
there are also studies stating that each has an independent risk factor [26, 27].

3. Obesity

Obesity is a chronic disease that is considered a global epidemic today. Obesity 
is defined by the World Health Organization (WHO) as excessive accumulation 
of fat in the body to the extent that it impairs health. According to WHO esti-
mates, 39% of adults worldwide were overweight and 13% were obese in 2016. 
Obesity is defined as an excess weight rather than excess fat, as it is impractical 
to determine body fat percentage. Based on the body mass index (BMI) of the 
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definition and grading of obesity, it is evaluated with the formula (BMI=Weight 
(kg)/Height (m2)). BMI provides a better estimate of total body fat compared 
to bodyweight alone [28]. According to the World Health Organization (WHO) 
standards, someone with a body mass index (BMI) >30 kg/m2 is classified as 
obese. Obesity classification according to body mass index in adults is dem-
ostrated in Table 1 [29–31]. According to the World Food Security and Nutrition 
Status 2019, obesity rates are increasing day by day in almost every country and 
the global adult obesity rate has reached 13.2% [32]. Today, overweight and 
obesity are considered to increase the overall health burden more than smoking. 
Obesity is associated with a significant increase in morbidity (including diabetes 
mellitus, hypertension, dyslipidemia, cardiovascular diseases, cerebrovascular 
accident, sleep apnea, and cancer) and mortality [33]. Weight loss reduces 
obesity-related morbidity. Due to the potential stigma risk of obesity, routine 
screening, diagnosis, and management are rare, and there is insufficient aware-
ness of the health problems caused by obesity in the population.

The type of obesity with increased waist circumference or waist/hip ratio 
is called central (abdominal, visceral, android, or male-type obesity) obesity. 
According to WHO, a waist circumference of 88 cm or more in women and 102 cm 
or more in men indicates the presence of central obesity. Patients with central obe-
sity have higher mortality rates [34] because these patients are at high risk for heart 
disease, diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease 
[34, 35]. Central obesity is a component of metabolic syndrome. The association 
of metabolic syndrome with endometrial cancer has also been reported [36, 37]. 
However, there is no data to suggest that outcomes can be improved with more 
effective management of associated medical conditions. In the Prospective Studies 
Collaboration analysis, in the upper BMI range (25 to 50 kg/m2), every 5 kg/m2 
increase in BMI is associated with coronary heart disease (CHD), stroke, diabetes, 
chronic kidney disease, and cancer (liver, kidney, breast, endometrial, prostate and 
colon) have been demonstrated to result in a significant increase in deaths [38].

Most cases of obesity are related to behaviors such as a sedentary lifestyle and 
increased calorie intake. Obesity develops with excessive fat accumulation in the body 
secondary to high energy intake. Energy homeostasis is impaired due to an increase in 
energy intake or a decrease in energy expenditure [39]. Interactions between genetic/
epigenetic factors and behavioral/social factors and chronic stress regulate energy 
balance. High-calorie diet, physical inactivity, sedentary lifestyle, and in addition, 
eating disorders accelerate the development of obesity. In addition, hypertrophy, 
hyperplasia and inflammation in adipocytes cause many changes in the structure 
of adipose tissue and the secretion of adipokines such as leptin, interleukin-6, and 

Underweight BMI <18.5 kg/m2

Normal weight BMI ≥18.5 to 24.9 kg/m2

Overweight BMI ≥25 to 29.9 kg/m2

Obesity BMI ≥30 kg/m2

Obesity class 1 BMI 30 to 34.9 kg/m2

Obesity class 2 BMI 35 to 39.9 kg/m2

Obesity class 3 BMI ≥40 kg/m2 (also referred to as severe, extreme, or massive 
obesity)

BMI, body mass index.

Table 1. 
Classification of body mass index.
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tumor necrosis factor-a. With the increasing prevalence of obesity, there is a growing 
awareness of its impact on cancers. Obesity has been defined as a risk factor affecting 
the severity of the disease and mortality in people with cancer.

4. The relationship between endometrial cancer and obesity

Obesity is known to increase the risk of endometrial cancer in women [40, 41]. 
Approximately 57% of endometrial cancers in the United States are thought to be 
attributable to being overweight and obese. The incidence of endometrial cancer 
increases as body mass index (BMI) increases [42]. More importantly, obesity and 
overweight can increase the likelihood of dying from cancer. A review of the litera-
ture states that most of the associations between adiposity indices and endometrial 
cancer are supported by strong or highly suggestive evidence. A review (IARC) 
from a comprehensive meta-analysis of weight, physical activity, and cancer 
incidence by the International Agency for Research on Cancer demonstrated that it 
is the cause of 39% of endometrial cancer cases [43].

The cause and effect relationship between obesity and endometrial cancer 
can be explained by 3 mechanisms; first; in obese patients, the adrenal glands 
secrete more androgen precursors for conversion to estrogen in peripheral tis-
sues. An androgen, androstenedione, (A) is converted to estrone (E1) mainly in 
peripheral adipose tissue, and this conversion is increased in adipose tissue of 
obese patients. Plasma SHBG levels that bind estradiol (E2) are reduced in obese 
subjects and therefore higher-than-normal amounts of serum estradiol are present 
in the circulation, thereby increasing the estrogenic stimulus in target tissues [44]. 
Proinflammatory cytokines such as tumor necrosis factor-a in obesity are associ-
ated with low plasma SHBG levels [45]. Obese patients also have changes in the 
concentration of insulin-like growth factors and their binding proteins and insulin 
resistance, all of which may contribute to an increased risk of endometrial cancer in 
these patients [46]. The triad of obesity, insulin resistance, and adipokine aberra-
tions is linked to cancer [47], since adipokines impair insulin signaling and contrib-
ute to insulin resistance [48]. Other mechanisms in pathophysiology are subclinical 
chronic low-grade inflammation, oxidative stress, and sex hormone biosynthesis 
[6]. Adipokine-mediated chronic inflammation and cellular stress cause genetic 
instability and DNA damage [42]. All of these mechanisms lead to endometrial 
hyperplasia and cancer. Despite all these conditions, obese patients who do not have 
metabolic problems seem to have an increased risk of endometrial cancer [49].

The mechanisms underlying the relationship between obesity and endometrial 
cancer have not been fully defined. However, estrogens and proinflammatory 
adipokines are known to stimulate cell proliferation in endometrial carcinoma. 
In addition to stimulating cell proliferation, estrogen also has mutagenic proper-
ties. Genotoxic metabolites of estrogen react with DNA and contribute to DNA 
breaks and genetic instability [50]. Although the role of estrogen metabolites in 
the pathogenesis of breast cancer is well defined, their role in the context of endo-
metrial cancer has not been fully understood. However, defects in DNA mismatch 
repair genes were detected in one-third of endometrial cancer cases. Visceral fat is 
a complex endocrine organ composed of adipocytes, preadipocytes, macrophages, 
stromal, nerve, and stem cells [42]. Adipokines secreted by these cells increase 
endometrial proliferation and promote tumor formation [51], even mesenchymal 
stem cells support tumor growth and progression [52, 53].

Cyclic secretion of ovarian estrogen and estrogen-induced cyclic secretion of 
insulin-like growth factor 1 (IGF1) in premenopausal women stimulates endome-
trial proliferation [54, 55]. In postmenopausal women, especially adipose tissue 
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is the main site of estrogen synthesis [56]. Aromatase enzyme, which provides 
estrogen synthesis from androgens, is mainly found in adipose tissue [57]. As body 
adiposity increases, the amount and activity of aromatase increases [58]. Steroid 
hormone synthesis from cholesterol and estrogen synthesis from androgens by 
aromatase enzyme is shown in Figure 1.

In a pooled analysis of individual patient data from 10 cohort and 14 case–con-
trol studies, including more than 14,000 endometrial cancer cases and more than 
35,000 controls, for type I endometrial cancer, by body mass index (BMI): over-
weight (BMI) 25.0 to <30.0 kg/m2) OR 1.5, OR 2.5 (30.0 to <35.0 kg/m2) for class 1 
obesity, OR 4.5 for class 2 obesity (35.0 to 39.9 kg/m2) and calculated as 7.1 for class 
3 obesity (≥40.0 kg/m2). For type 2 endometrial cancer, the ORs were calculated 
as 1.2 for overweight, 1.7 for class 1 obesity, 2.2 for class 2 obesity, and 3.1 for class 3 
obesity [59]. Higher BMI is associated with the development of endometrial cancer 
at a younger age (<45 years old) [60]. In another meta-analysis, body mass index 
and waist-to-hip ratio were associated with increased cancer risk in premenopausal 
women (RR 1.49 per 5 kg/m2; CI 1.39–1.61) and for total endometrial cancer (RR 
1.21 per 0.1 unit; CI 1.13–1.29), respectively [61].

Severely obese patients (BMI ≥40 kg/m2) who develop endometrial cancer are 
more likely to have a less aggressive histological subtype (endometrioid 87% vs. serous 
or clear cell 75%) compared to patients with BMI <30 kg/m2 [62]. Therefore, patients 
with severe obesity are more likely to present with stage I disease (77 versus 61%) or 
low-grade histology (44% vs. 24%), but severe obesity is associated with an increased 
risk of death in endometrial cancer patients [63, 64]. After being diagnosed with 
endometrial cancer, being obese indicates worse outcomes. Obesity has a negative 
effect on all-cause mortality. A retrospective study found that morbidly obese women 
with early-stage disease had higher mortality rates compared with women with a nor-
mal body mass index, accounting for 67% of these deaths. It has been determined that 
there are obesity-related causes unrelated to cancer [65]. Increased mortality may be 
due to sustained stimulation of metastatic cells by endogenous estrogen or may result 
from obesity-related conditions such as diabetes or cardiovascular disease [66, 67].

Figure 1. 
Steroid hormone synthesis.
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After obese women are diagnosed with endometrial cancer, clinical management 
strategies can be complex. As the operations of obese patients are technically more 
difficult it takes a longer time than normal-weight individuals. Since these patients 
also have many co-morbid medical problems, both perioperative and postoperative 
complication rates are increased. Even though the patients have early-stage cancer, 
they may not be able to be operated on due to concomitant systemic diseases such as 
cardiovascular and diabetes mellitus, and they may have to undergo primary radio-
therapy. Robotic surgery may provide an advantage over conventional laparoscopy in 
such patients [68, 69].

Meta-analyses show that increased physical activity reduces the risk of endome-
trial cancer [70–72]. Exercise may provide moderate protection against endometrial 
cancer [73]. Physical activity benefits by reducing obesity and making positive 
changes in immune function, endogenous sexual and metabolic hormone levels, 
and growth factors [74]. Losing weight through lifestyle changes such as diet and 
physical activity or bariatric surgery can reduce obesity. Bariatric surgery has been 
associated with a 50% to 80% reduction in the occurrence of endometrial cancer in 
a meta-analysis of controlled trials [75, 76]. Obesity-related hormonal and metabolic 
disorders and drugs aimed at correcting insulin resistance can also be used as a pre-
vention strategy. Losing weight has health benefits beyond protecting the endome-
trium. Preventing or treating obesity can provide significant lifelong health benefits. 
Public health interventions may be beneficial to reduce the incidence of endometrial 
cancer in the community. Obese patients should receive counseling about health 
risks, lifestyle changes, obesity treatment options, and risk factor reduction.

5. Conclusion

By preventing obesity and reducing its prevalence, deaths from endometrial 
cancer can be reduced. Prevention strategies should focus on changing the envi-
ronmental and lifestyle risk factors that cause endometrial cancer. General lifestyle 
recommendations include being physically active and maintaining a healthy weight. 
Healthy weight is considered a risk reducer and has a positive effect on blood pres-
sure, glucose metabolism, cardiac and vascular function. Therefore, reducing obesity 
reduces morbidity and mortality from endometrial cancer. More public awareness is 
needed regarding the cause and effect relationship between obesity and endometrial 
cancer. Public health education including obesity prevention is of great importance.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Abstract

Sarcopenic obesity is a skeletal muscle weight loss disease. It has happened at an 
elderly age. A ketogenic diet is a low-carbohydrate (5%), moderate protein (15%), 
and a higher-fat diet (80%) can help sarcopenic obese patients burn their fat more 
effectively. It has many benefits for muscle and fat weight loss. A ketogenic diet can 
be especially useful for losing excess body fat without hunger and for improving 
type 2 diabetes. That is because of only a few carbohydrates in the diet, the liver 
converts fat into fatty acids and ketones. Ketone bodies can replace higher ATP 
energy. This diet forces the human body to burn fat. This is a good way to lose fat 
weight without restriction.

Keywords: sarcopenic obesity, ketogenic diet, fat, muscle, type 2 diabetes

1. Introduction

The ketogenic diet is a mixed diet containing low carbohydrates, consisting 
primarily of proteins and fat [1, 2]. Some healthy foods are eaten on a ketogenic 
diet, for example, seafood, low-carb vegetables, cheese, eggs, meat, poultry, coffee, 
and tea. The importance of high fat in aging-related sarcopenic obesity reducing 
regimens on different metabolic models are shown by comparing the effects of 
four different types of ketogenic dietary regimens [3, 4]. Standard ketogenic diet 
(SKD): This typically contains a very low, only 5% carbohydrate, 15% moder-
ate proteins, 80% high fat diet. This classic SKD contains a 3:1 ratio to combined 
protein and carbohydrate. High protein ketogenic diet (HPKD): This contains 5% 
carbohydrate, 35% protein, and 60% fat. This type is similar to a standard ketogenic 
diet, but includes more protein [5]. Cyclical ketogenic diet (CKD): This ketogenic 
diet involves 5 periods of ketogenic days followed by 2 high carbohydrate days [6]. 
Targeted ketogenic diet (TKD): This ketogenic diet allows you to add carbohydrate 
around workouts. Although this ketogenic diet is usually safe for weight loss, 
diabetes, epilepsy, and aging-related sarcopenic obesity, there maybe have some 
initial side effects while your body adapts [7–9]. Ketogenic diets forces to burn 
fats rather than carbohydrates. A ketogenic diet, a high fat, in food is converted 
triglyceride (TG). The liver convers triacylglycerol (TAG) into fatty acid and ketone 
bodies [10]. Elevated ketone bodies in the blood eventually lowers the aging-related 
sarcopenic obesity. We hoped to obtain the benefits of ketone dietary therapy that 
could be maintained indefinitely. Ketone bodies were produced β-hydroxybutyrate, 
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acetoacetate, and acetone by the liver in they consumed a very low-carbohydrate, 
and excess high-fat diet (Figure 1) [11, 12].

2. Ketogenic diet is good for aging-related sarcopenic obesity

Sarcopenic obesity is caused reduced skeletal muscle mass and strength in order 
adults. Sarcopenic obesity is most commonly caused by a combination of age and 
excessive food energy intake, not exercising enough, smoking or heavy alcohol 
use, although a few caused by genes [13]. Inflammation with aging is known to 
be a major contributor to sarcopenia [14]. Therefore, sarcopenic obesity has been 
defined as the loss of skeletal muscle mass and overweight in the older age. As 
sarcopenic obesity grow older, up to half of the muscle is lost and skeletal muscle 
is often replaced with fat tissue, particularly in sarcopenic obesity [15]. This is an 
importance of sarcopenic obesity in the health care for older people. Sarcopenia 
obesity starts at approximately 40 years of age and there is an estimated muscle 
mass loss of about 3 ~ 8% per decade, stretching process speeds up until the age of 
70 years; after that age, a 15% loss ensues per decade [16]. This group proposed that 
sarcopenic obesity is diagnosed based on over whole-body weight combination with 
poor physical functioning [17].

The production of ketone bodies is from the liver. The reverse situation occurs 
in extrahepatic tissue. Responsible for ketone body formation are associated mainly 
with the mitochondria. Acetoacetate was formed from the terminal four carbons 
of a fatty acid upon oxidation. The liver is equipped with the production of aceto-
acetate from acetoacetyl-CoA (Figure 2). This accounts for the net production of 
ketone bodies by the liver. Sarcopenic obesity is a newly recognized geriatric syn-
drome by age-related decline of low skeletal muscle plus a combined approach of 
overweight body mass that occurs with advancing age [18]. There are several factors 
contributing to the disorder. Chronic low-grade inflammation has been identified 
as the initiator in the early stages of many disorders such as physical disability, poor 

Figure 1. 
Ketone bodies. Interrelationships of these three substances. Under certain a high rate of fatty acid oxidation, the 
liver products collectively of β-hydroxybutyrate, acetoacetate and acetone.



67

Ketogenic Diet Is Good for Aging-Related Sarcopenic Obesity
DOI: http://dx.doi.org/10.5772/intechopen.96028

nutrition, and smoking [19, 20]. However, a widely accepted definition of sarcope-
nic obesity or obese sarcopenia suitable for use in research and clinical practice is 
still lacking. Sarcopenic obesity is increases the risk of aging-related type 2 diabetes 
susceptibility to obesity, and it can be the cause of functional dependence and 
disability in the elderly population [21]. Sarcopenic obesity was significantly associ-
ated with greater odds of sarcopenia, overfat, and sarcopenic obesity in women, 
but not in men [22]. Among older adult sarcopenic obesity characteristics, reduced 
lean mass at its extreme termed sarcopenia and excess body fatness are predictors of 
poor health outcomes in the general population. Sarcopenic obesity is at its extreme 
referred to as ketogenic diet of theorized compound these individual risks [23]. 
On average, by 20–40% for both men and women in sarcopenic obesity-induced 
muscles loss and overweight. Overall prevalence of sarcopenia was 26.7% in women 
and 73.3% in men, which increased with age. Prevalence of obesity was 74.6% in 
women and 67.1% in men [24]. Thus, defining sarcopenic obesity only in terms 
of muscle mass is too narrow maybe of limited clinical value that becomes more 
common in people over the age of 65. Sarcopenic obesity factor seropositivity, and 
a lack of current treatment with disease-modifying anti-sarcopenic obesity drugs 
were significantly associated with abnormal body composition such as increasing 
joint deformity, disability scores and C-reactive protein levels [25]. After middle 
age, adults lose 3% of their muscle strength every year, on average, to perform many 
routine activities [26]. These factors contribute to sarcopenic obesity to the char-
acteristic skeletal muscle atrophy and weakness. Sarcopenic obesity also shortens 
life expectancy in those it affects, compared to individuals with normal muscle 
strength. Aging-related-sarcopenic obesity is caused by an imbalance between 
signals for muscle cell growth and signals for teardown [27]. Skeletal muscle cell 
growth processes are called “muscle anabolism,” and fat cell teardown processes 
are called “fat catabolism” (Figure 3). Ketogenic diet acts with protein-destroying 
enzymes to keep muscle steady through a cycle of growth, stress or injury, destruc-
tion, and then healing. However, during aging your body becomes resistant to the 
growth signals, tipping the balance toward catabolism and muscle loss [28].

Figure 2. 
Ketogenesis.
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The Older women with sarcopenic obesity have an increased all-cause mortality risk 
independent of obesity [29]. Sarcopenic obesity with obesity and aging, loss of muscle 
mass as a primary event, and this loss is a major contributor to fat gain, which in turn 
reinforces the muscle loss. Markedly elevated acetoacetic acid and β-hydroxybutyric 
acid production in the liver sarcopenic obesity. The various etiologic factors of sarco-
penia in aging all lead to loss of muscle [30]. With the increase ketone body in skeletal 
muscle, acetoacetic acid and β-hydroxybutyric acid secretion are increased, and both 
lead to sarcopenic obesity resistance, which reduces the fat mass in sarcopenic obesity 
skeletal muscle and normal anabolic effect of insulin on amino acid transport in muscle 
[30, 31]. In addition, there is some evidence that acetoacetic acid and β-hydroxybutyric 
acid reduces fat mass secretion, suppressing another major anabolic stimulus. In addi-
tion, higher acetoacetic acid and β-hydroxybutyric acid levels may exert direct catabolic 
effects on muscle [32] (Figure 4).

Sarcopenic obesity in older adults is associated with skeletal poorer performance 
and strength parameters. Despite β-hydroxybutyric acid in clinical use as a therapy 
for sarcopenic obesity for several years, the ketogenic diet remains a therapy in 
search of an explanation [33]. The action of the ketogenic diet is the optimal indica-
tions for its clinical use are incompletely defined. We defined the abnormalities in 
body composition and abdominal fat that occur in sarcopenic obesity is associated 
with the aging-related presence of skeletal muscle dysfunction. Some features of 
clinical experience have been replicated in animal models, including the role of 
ketosis, elevation of triglyceride, total cholesterol, HMG CoA reductase, testoster-
one. Sarcopenic obesity by both classic ketogenic and β-hydroxybutyric acid diets 
are better effective at younger ages, and rapid reversal of the sarcopenic obesity 
effect when the diet is discontinued [34]. Sarcopenic obesity have been implicated 
in muscle atrophy and dysfunction due to denervation, muscular dystrophy, and 
disuse. A ketogenic diet plays key roles in sarcopenic obesity in muscle atrophy 
and the potential of the ketogenic diet for the treatment of sarcopenic obesity in 
regulating metabolism in skeletal muscle. Several β-hydroxybutyric acid isoforms 
are potential targets for intervention in sarcopenic obesity. Supplementary of 

Figure 3. 
The ketone bodies use. Extrahepatic tissues utilize them as respiratory substrates. The ketone bodies from the 
liver to the extrahepatic tissues coupled with very low activity of enzymes responsible for their utilization. 
Ketone bodies serve as a fuel for extrahepatic tissues.
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acetoacetic acid and β-hydroxybutyric acid prevents muscle atrophy due to nutri-
ent deprivation [35]. A ketogenic diet regulates metabolism in skeletal muscle 
and may inhibit oxidative metabolism during aging. Both of acetoacetic acid and 
β-hydroxybutyric acid have been implicated in muscle atrophy due to skeletal 
muscle denervation, a process implicated in sarcopenic obesity. Acetoacetic acid or 
β-hydroxybutyric acid is already in use in the clinic, and there is promise in target-
ing skeletal muscle for the treatment of sarcopenic obesity [36]. As in the clinical 
arena, there has been a recent resurgence of interest in pursuing basic questions 
related to the ketogenic diet. There have been very few animal studies of the keto-
genic diet, and those that have been performed are difficult to compare because of 
wide discrepancies in experimental methods [37]. Earlier models concentrated on 
the effect of the ketogenic diet on sarcopenic obesity. The effects on the ketogenic 
diet and satiety, weight loss, and nitrogen balance are discussed as well as influences 
on electrolytes and the sympathetic system [38]. Hormonal changes of the keto-
genic diet regimens and the impact on mood and subjective acceptance are com-
pared. Experimental approaches such as brain metabolic pathways and histological 
techniques hold much promise in the effort to understand this intriguing alternative 
to standard ketogenic diet [39]. Though no recommendation for a particular dietary 
regimen is given, the different implications on the parameters described are pointed 
out. The global population is aging, the disease is younger and the influence of 
modern lifestyle, the clinic promotes personalized anti-aging programs, natural 
nutritional prescriptions, and preventive medical health management to awaken 
the body’s original anti-aging self-healing power, allowing everyone to reverse the 
sub-healthy and healthy life, but it does also face the impact of modern diseases. 
It may be necessary to face the torture of the disease in advance, so the concept of 
health and advocating naturalness has gradually increased [40].

The ketogenic diet is good for your health. This results in the production of 
ketones, acetoacetic acid, and β-hydroxybutyric acid. The body uses for acetoacetic 

Figure 4. 
A ketogenic diet can rebuild skeletal muscle. A ketogenic diet can help you lose fat in the skeletal muscle from 
sarcopenic obesity. β-hydroxybutyric acid provides the main fuel for moderate and high-intensity exercise.
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acid or β-hydroxybutyric acid to burns body fats, they can lead to weight loss. The 
possible mechanisms are a decrease in lipogenesis, an increase in lipolysis, and an 
increase in the metabolic cost of gluconeogenesis. Sarcopenia, obesity and their 
coexistence, obese sarcopenia, as well as sarcopenic obesity, are among the greatest 
health concerns in the aging population. A clear age-dependent increased preva-
lence of sarcopenia and sarcopenic obesity has been registered in the ketogenic diet 
therapy patients, suggesting mechanistic relationships.

3. Conclusion and future direction

Inflammation aging is a common ground for age-related sarcopenic obesity. 
Ketogenic diet therapy is observed greater weight loss compared with other 
balanced diets. The short-term ketogenic diet is by an almost carbohydrate-free oral 
diet might have weight loss effectively. Therefore, we suggest the benefits of the 
ketogenic diet and its risks including supports weight loss, reduce risk of cancers, 
improve heart health, protect brain function, aging-related sarcopenic obesity, and 
potentially reduces seizures. In this Chapter, we discuss the aging-related sarcopenic 
obesity. Nutrition, β-hydroxybutyric acid, in the early development of sarcopenic 
obesity, cardiomyopathy, dysbiosis and age-associated diseases is our future 
project. We want to know about sarcopenic obesity during COVID-19 lockdown 
restrictions. Like many difficult global health problems, the COVID-19 solutions 
maybe apparent but the logistics of implementing them may be lacking.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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Chapter 6

Lifestyle Factors and Obesity
Anca Mihaela Hâncu

Abstract

Obesity, with growing prevalence around the world, is a disease and a major 
risk factor for noncommunicable diseases and death. Lifestyle medicine integrates 
modern lifestyle practices with scientific evidence-based medicine in order to lower 
risk factors for chronic diseases and to support therapy if the disease is already 
present. Considering adiposity-based chronic disease conceptual model and new 
abdominal obesity classification, this article intends to describe healthy lifestyle 
pillars that must be considered in obesity prevention and treatment. Right nutri-
tion, regular physical activity, optimal sleep, moderation in alcohol consumption, 
absence of smoking, and mindfulness should be considered in the effort to prevent 
and treat obesity. Doctor-patient partnership, patient empowerment, and doctor as 
a role model will complete the basic principle of lifestyle medicine.

Keywords: lifestyle medicine, obesity, overweight, physical activity, sedentarism, 
nutrition

1. Introduction

Obesity prevalence is growing around the world, since 1975 it has increased by 
300%. According to WHO, in 2016, overweight people were 2 billion and obese 
650 million, meaning 39% overweight and 13% obesity around the world [1]. In 
2020, worldwide, 39 million children under the age of 5 were overweight and obese 
and for the group between 5 and 19 years, more than 340 million children were 
overweight or obese [1]. In the USA, there are more recent data, from The National 
Health and Nutrition Examination Survey, evidenced by the US Department of 
Health and Human Services, Centers for Disease Control and Prevention, National 
Center for Health Statistics [2]. According to CDC, in the USA, in 2017–2018, the 
age-adjusted prevalence of obesity was 42% for adults, without significant dif-
ferences between men and women. For severe obesity, age-adjusted prevalence 
is 9.2%, but higher in women vs. men. The age group 40–59 includes the highest 
prevalence of severe obesity.

1.1 Health concerns associated with obesity

Overweight and obesity represent major risks for noncommunicable diseases 
(NCDs), linearly correlated with BMI.

• cardiovascular diseases (CVDs) are the leading cause of death, ischemic heart 
disease representing 16% of total mortality globally in 2019, according to 
WHO [1].
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• diabetes, the ninth position in mortality causes in 2019 [1]

• musculoskeletal disorders

• some cancers—breast, endometrial, ovarian, livers, prostate, gall-bladder, 
colon, and kidney.

Children’s obesity is facing breathing difficulties, hypertension, insulin resis-
tance, higher fractures risk, and psychological effects. Moreover, childhood obesity 
is correlated with a higher risk of obesity, premature death, and disability in 
adulthood.

The double burden of malnutrition and obesity is characterizing low- and 
middle-income countries. Infectious diseases, together with undernutrition, are 
common; meanwhile, an increase in risk factors such as obesity and overweight can 
be seen in urban settings. Co-existing undernutrition with obesity is common in the 
same community, where inadequate dietary patterns combined with lower levels of 
physical activity have increased childhood obesity in conjunction with an unsolved 
undernutrition issue.

2. Lifestyle medicine (LM) definition

Described for the first time by the famous Professor James Rippe, cardiologist, 
in 1989, lifestyle medicine is defined as:

“The integration of lifestyle practices into the modern practice of medicine both 
to lower the risk factors for chronic disease and/or, if disease is already present, 
serve as an adjunct in its therapy. Lifestyle medicine brings together sound, scien-
tific evidence in diverse health-related fields to assist the clinician in the process of 
not only treating disease, but also promoting good health” [3].

3. Obesity new conceptual model

Prof Mechanick introduced, some years ago, a conceptual model that is 
adiposity-based chronic disease (ABCD), with four stages. The first stage means 
the risk—genetics, environment, and behavior. The second is when can be noticed 
an increased amount of adipose tissue with abnormal distribution or function. The 
disease is named in the third stage, diagnosed by biochemical, anthropometrical 
tests, measured by body mass index. The fourth stage associates cardiometabolic 
and biomechanical complications. ABCD is a part of cardiometabolic chronic 
disease stages that develop through dysglycemia-based chronic disease (DBCD) and 
cardiometabolic-based chronic disease (CMBCD). This is the new frame describ-
ing all metabolic interrelations and evolution through obesity [4]. This is a more 
comprehensive model to define obesity and explain its treatment.

4. Bioimpedance

The use of bioimpedance to measure tissue’s resistance during the passage of 
low-intensity electric current, based on the principle of variation of the rate of pas-
sage of electric current through the body in relation to body composition is widely 
used, is a good tool in clinical practice. This analysis is offering almost good data 
about body composition and may be a good tracker of treatment performances [5].
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5. Abdominal obesity classification

A new classification is proposed since February 2020 (Table 1) [6].
For each BMI category, another level of waist circumference WC is recom-

mended to identify abdominal fat (adapted after reference [6]) in order to have a 
more reliable picture of the abdominal distribution of fat.

6. Eating behaviors General indications for people with obesity

This is emphasized by guidelines: European Association for the Study of Obesity 
EASO 2019 guidelines are emphasizing the importance of eating behaviors [7]. The 
energetic density of the food should be decreased by eating a lot of vegetables and 
fruits, within the limit of five portions. Eating less refined carbohydrates and less 
fatty foods, especially saturated fats and small portions, may support these indica-
tions EASO guidelines recommend:

1. To avoid skipping meals but also snacking continuously between meals,

2. Eat slowly, in order to facilitate the satiation sensation that will appear  
after 20 min,

3. Eat in response to your hungry sensation and stop eating when you feel full,

4. Keep a diary in order to increase awareness of eating habits, and

5. Eating mindfully—slowly, responsible, taking a relaxing moment, sitting 
down at the table, observing emotions, paying attention to taste, texture,  
flavor, and temperature of the food.

7. Eating disorders

It describes a group of mental illnesses characterized by disturbed feeding 
behavior and body weight regulation, compromising key physiological systems, 
including cardiovascular and gastrointestinal functions [8]. They are as follows:

• anorexia nervosa (AN)

• bulimia nervosa (BN)

• binge eating disorder (BED)

• other unspecified or specified eating disorders that do not fit within these 
diagnoses.

BMI kg/m2 WC—women (cm) WC—men (cm)

18,5–24,9 ≥80 ≥90

25–29,9 ≥90 ≥100

30–34,9 ≥105 ≥110

≥35 ≥115 ≥125

Table 1. 
Abdominal obesity classification, adapted after [6].
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The shared symptoms for eating disorders are caloric restriction, binging, purg-
ing, over-evaluation of body weight.

Detailed anamnesis should reveal these symptoms and a multidisciplinary 
approach with a psychologist/psychiatrist should be performed in such situations.

8. Nutrition for a healthy lifestyle in treating and managing obesity

Modern nutrition emphasizes that not only singular food or nutrient is impor-
tant, but also the combination of nutrients in different foods and dishes. That 
means healthy models will be used instead of pointing out single nutrients.

9. A healthy model

A healthy model, the latest 4-year winner, as the best nutritional model (US 
News and World Report 2021) is a Mediterranean model (Med Diet).

Mediterranean model: Like was firstly described by Ancel Keys on the occasion 
of Seven Countries Study, Med Diet is a plant-based diet, with abundant seasonal 
vegetables, fresh fruits as deserts, olive oil as the main source of fats, fish for 2–3 
times/week, regularly nuts and seeds, daily whole cereals, dairies many times per 
week, red meat only rare, spices and herbs for tasty recipes. The important feature 
is unprocessed food cooked at home or in small restaurants, in antagonism with the 
Western diet, characterized mainly by highly processed food [9]. The uniqueness of 
this model derives from the combination of biologically active foods, with the right 
proportion between sources of fat, proteins, starches, fibers, minerals, vitamins, 
and bioactive compounds.

9.1  What are the mechanisms supporting these benefits? Several clinical 
pathways and molecular mechanisms have been studied, suggesting 
beneficial changes induced by this dietary pattern

Oxidative stress reduction and anti-inflammatory properties are attributed 
to bioactive components of food. The high content of polyphenols and low diet 
inflammatory index (DII) are correlated with all benefits. For example,

• DNA methylation and tumor suppressors are associated with polyphenolic 
compounds found in grapes, peanuts, extra virgin olive oil (EVOO) [10].

• Anthocyanins—pigments found in eggplants, berries, pomegranates, crucifer-
ous stimulate DNA repair mechanisms [11].

• Fisetin is a flavonoid contained in strawberries, apples, cucumbers, which 
prevent cancer growth [12].

• Sulforaphane from cruciferous vegetables exerts epigenetic actions through 
histone deacetylase enzyme inhibition [13].

• A key mechanism explaining Med Diet benefits is gut microbiota, an impor-
tant player in the relation health/diet, particularly through short-chain fatty 
acids (SCFAs) metabolites derived from microbial fermentation. Decreased 
Firmicutes and increased Bacteroides and fecal SCFAs are in line with high 
adherence to Med Diet, conversely for a healthy microbiota. High SCFAs lead 
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to increased production of butyrate, acetate, and propionate [14]. High-fiber 
content is another hallmark of the Med Diet. It has to be mentioned that 2 h of 
psychological stress may change completely gut bacteria. Butyrate-producing 
bacteria are increasing the quality of life.

9.2 Studies supporting med diet

Historically, the first study was done in the years 50, Seven Countries Study, 
which launched the concept defined by Angel Key, Med Diet. Later, Predimed, 
SUN, and LION are studies that proved different benefits of this eating model.

9.3 Benefits

Benefits proved already in significant studies mentioned before are increased 
longevity, cardiovascular protection, diabetes decreased incidence, diabetes man-
agement, prevention of cognitive decline, dementia, depression, obesity, metabolic 
syndrome, chronic respiratory diseases but also impact on sustainability [15].

Important in obesity management and higher Med Diet adherence, realized in par-
ticipants from EPIC-PANACEA study, showed lower weight gain at 5 years vs. partici-
pants with low adherence, but also the risk of becoming obese decreased by 10% [16].

Not only a diet, but a lifestyle model, Med Diet means daily consumption of 
whole grain products, various fresh vegetables and fruits, nuts, seeds, and legumes 
several times per week. The main source of fat is olive oil and adding herbs and 
spices will help to decrease salt at recommended intake of <2, 3 mg sodium per day. 
Sweets will mostly be replaced by fruits. Dairies’ daily consumption was mainly 
represented by yogurt or kefir, cheese in smaller quantities. Up to three times per 
week were fish and seafood, eggs were 2–4 times/week, and red meat in small 
portions was very rare (1–2 times monthly). Hydration will be done mainly through 
water, drinking may be allowed in small quantities, and the wine will be preferred 
instead of beer (1 drink per day for women, 2 drinks for men). Med Diet means also 

Two servings per day Vegetables like cabbage, tomatoes, eggplants, broccoli
Fresh fruits—apples, oranges, cherries, bananas, occasionally fresh juice 
100%
Whole grains—bread, oat, cereals for breakfast, biscuits

One serving daily Low GI cereals rice, barley, whole grain pasta
Nuts and seeds—almonds, nuts, sunflower seeds, pumpkin seeds
Extra virgin olive oil
Unflavored yogurt

Four servings/week Legumes
Fish, fresh, frozen, all types white, but also salmon, cod, mackerel, 
shellfish, tuna

Maximum three portions/
week

White meat—unprocessed turkey, poultry
Eggs
Cheese—Parmesan, Roquefort, Emmental
Milk

Less than two servings/week Starchy food with high GI—white bread, potatoes, biscuits, refined rice
Red meat—unprocessed pork, beef, lamb
Butter

Occasionally Processed meat

Table 2. 
Suggested food model for consumption.
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a philosophy of cooking at home or with friends, with a preference for local food, 
minimally processed, connection with nature, respect for nature, sustainability, 
moderate portion sizes, moderate physical activity, appropriate rest, eating in other 
people company.

A recent review published in Cardiovascular Research 2021 [17] points some 
elements related to cardiovascular/atherosclerosis protection. Moderate quantities 
of cheese and regular yogurt are linked with a protective effect, to replace high 
glycemic index food with whole grain and low glycemic index (GI) cereal food. A 
future target will be to promote appropriate food choices for atherosclerosis preven-
tion in the general population, the authors are suggesting.

9.4 A suggested food model for consumption

It is presented in Table 2 adapted after [17].
All these recommendations should be followed, in a frame of negative energetic 

balance, in order to lose weight.

10. Energy balance

Creating a negative energy balance is the first principle for lifestyle intervention 
in obesity. A daily caloric deficit of 0.5–1 kg will ensure a healthy weight decrease. A 
healthy weight decrease means 0.5–1 kg/week weight decrease. The decrease has to 
be mainly from fat mass and not muscular mass, proportion has to be 80% fat and 
20% lean mass.

11. As dietary guidelines for Americans for 2020–2025 is mentioning

11.1 Sodium

This is an essential nutrient consumed primarily as salt—sodium chloride—is 
indicated in a daily maximum intake of 2–3 mg [18].

11.2 Coffee

After some irrelevant studies, a new meta-analysis found that three cups of cof-
fee per day are related to a 10%, respectively, 16% risk reduction of CHD incidence 
and mortality. But this benefic effect disappears at doses higher than five cups/day 
[17]. Coffee consumption is associated with higher insulin sensitivity and lower 
risk of type 2 diabetes together with a low concentration of inflammatory mark-
ers such as C reactive protein and E selectin. These benefits are due to its phenolic 
compounds and magnesium, potassium, and niacin. It has to be mentioned that 
unfiltered coffee, which contains cafestol may increase total cholesterol levels, with 
a detrimental effect. Special conditions, like hypertension and arrhythmias, will 
require special caution for coffee consumption. In conclusion, a moderate coffee 
consumption, below three cups/day may be suggested.

11.3 Tea

Tea intake is also associated with coronary heart disease (CHD) risk reduction, 
mainly green tea, and 20% risk decrease being reported at three cups per day. 
Atherosclerosis prevention is related to catechin content, with high antioxidative 
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properties, contributing to modulate plasma lipid profile, decreasing inflammation 
at endothelial level, atherogenesis and thrombogenesis.

12. Chrono-nutrition

It is a concept detailed in lifestyle recommendations for the prevention of meta-
bolic syndrome. Potential health problems may arise for shift workers. Overall night 
working or rotating working is associated with a higher risk of insulin resistance, 
metabolic syndrome, and heart disease. The recommendation is to eat the main 
meal of the day before 3 PM [19].

Actual society, westernized, 24/7 means that eating moments are distributed 
over day and night without a clear schedule. Many people eat late in the evening or 
even during the night, this leading to a metabolic risk similar to shift workers. Even 
short-term misalignment, like jet lag or long flights, may cause bowel problems or 
fatigue. Not surprisingly, circadian misalignment may contribute to different medi-
cal conditions, being incriminated in the etiology of type 2 diabetes. The mecha-
nism is insulin resistance at the tissues level, caused by disrupted tissue clocks. As 
Oosterman is mentioning, it is maybe the time to include in dietary guidelines, in 
addition to quantity and quality of food the concept of time of meals, which is a 
critical determinant of metabolic health. Increasing awareness about the relation 
between eating time and metabolic implications will be a part of the complex 
system to fight against obesity [20].

13. Sustainability: Food for planet health

In January 2019, The Lancet published the Summary Report of the EAT-Lancet 
Commission, 2019 named Food, Planet, Health [21]. This report is a manifesto 
for sustainability, proposing a nutrition model for sustainable eating for 10 billion 
people. This model assumes that until 2050, substantial dietary shifts are neces-
sary. Globally, the consumption of red meat and sugar has to be reduced by more 
than 50%, and fruits, vegetables, nuts, and legumes have to be doubled. The rich 
plant-based diet will confer health but also environmental benefits. This model is 
aspirational and will be implemented step by step, in accordance with country’s 
educational development.

14. Healthy models

DASH and Nordic models are also healthy models, with similarities with Med 
Diet, and may be applied successfully, in accordance with cultural traditions and 
personal preferences in order to maximize adherence.

15. Sedentarism

It is the fourth risk factor for death [22] and large studies are revealing a great 
mortality risk associated with sedentarism. Ekelund investigated in a large meta-
analysis sedentary behavior effects on more than 1 million persons, revealing an 
association between all-cause mortality and the level of physical activity. There 
have been compared sitting periods of less than 4 h/day with the highest quartile of 
moderate or intense physical activity. One metabolic equivalent (MET) is defined as 
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the amount of oxygen consumed while sitting at rest and is equal to 3.5 ml O2 per kg 
body weight × min. “The metabolic equivalent of task, or simply metabolic equiva-
lent, is a physiological measure expressing the intensity of physical activities. One 
MET is the energy equivalent expended by an individual while seated at rest.

There is no risk for people sitting more than 8 h/day, but having more than 35, 
5 MET h/week of activity (HR = 1.04, 95% CI–1.1). But those being in the lowest 
physical activity PA quartile, below 2.5 MET h/week and sitting <4 h/day had an 
increased risk. The study conclusion is that 60–75 min/day of physical activity may 
attenuate or even eliminate the detrimental effect of sedentary style on health outcomes 
[23, 24]. Definition of sitting behavior (SB): The common behavior that is consid-
ered a health threat is sitting. There are two modern definitions of SB [25].

1. The first of these definitions is purely physiological and is synonymous with 
the lower end of the energy expenditure continuum <1.5 METs [25], which 
includes also standing quietly.

2. The second definition has three components:

Postural—in a sitting or reclining posture.

Contextual—walking time.

Physiological <1,5 METs.

16. Physical activity (PA)

16.1 Definitions (based on WHO 2020 guidelines)

Light PA (1.6–3.0 METs), moderate (3–6 METs), and intense (>6 METs) [26].
Light-intensity physical activity.
Light-intensity physical activity is between 1.6 and 3 METs, that is, activities 

with energy cost less than three times the energy expenditure at rest for that person. 
This can include slow walking, bathing, or other incidental activities that do not 
result in a substantial increase in heart rate or breathing rate.

Moderate-intensity physical activity.
On an absolute scale, moderate-intensity refers to the physical activity that is 

performed between three and less than six times the intensity of rest. On a scale 
relative to an individual’s personal capacity, moderate-intensity physical activity is 
usually a 5 or 6 on a scale of 0–10; intense PA is at a level higher than 6 MET’s..

16.2 Physical activity

This is essential for health and is an important component of a healthy lifestyle. 
Promoting continuously all PA benefits will lead finally to a higher percentage of 
people adopting healthy behaviors. The latest WHO guidelines [26] include the 
major developments vs. 2010 guidelines, being realized based on larger scientific 
evidence. Additional health benefits are supported by studies-cognitive health 
improvement, mental health, sleep, and health-related quality of life, and are 
emphasized beyond traditionally known benefits for cancer prevention, metabolic 
diseases prevention, cardiorespiratory fitness improvement, and musculoskel-
etal and functional health. All these documents are reflecting a maturity of the 
research, but also the complexity of WHO’s definition of health as “a state of 
complete physical, mental and social wellbeing” [27].
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Mentioning that a relation between cardiovascular cause mortality, all-cause 
mortality, and PA is well proved, WHO guidelines are reaffirming that any level and 
all intensities of PA are associated with low mortality risk. The incidence of type 
2 diabetes is decreasing proportionally with PA level. Benefits are also proven in 
hypertension, cardiovascular disease, colon cancer, and breast cancer. Meanwhile, 
adiposity is inversely related to PA and sleep and quality of life (QOL) may be 
considerably improved according to the level of PA. Development of depression and 
anxiety may be slower for active people. Guideline’s conclusions are that any level of 
any intensity of PA is associated with lower mortality from all causes but also with 
reduced incidence for type 2 diabetes, hypertension, and cardiovascular disease.

16.3 Recommendations for adults 18: 64 years

• Regular physical activity for all adults, a strong recommendation.

• Period: About 150–300 min of moderate PA or at least 75–150-min high-inten-
sity PA or a combination of both, also a strong recommendation.

• Muscle training activities have to be performed >2 days/week, providing 
supplementary benefits and strong recommendation.

• Period of PA may be extended to more than 300 min/150 min for moderate/
intense PA in order to gain additional benefits for health, and this is just a 
conditional recommendation.

• In conclusion, any type of PA is better than none, even if not meeting these 
recommendations, at least some PA will be beneficial.

• The level of PA should be increased gradually in frequency and intensity, 
adapted to the training stage.

There are specific recommendations for limiting sedentary behavior, which are 
as follows:

• The time spent sedentary should be limited and replaced with PA of any 
intensity, even if light PA in order to provide some health benefits.

• For compensating the detrimental effect of sedentarism, levels of PA should be 
overcome.

16.4 Recommendations for older adults

Older adults (> 64y) usually have a very low level of physical activity. WHO 
guidelines are emphasizing rules even for this period of life, bringing the same 
benefits as for the other adults. Additionally, for older adults, PA may prevent falls 
and injuries, a decline in bone density and functionality also will attenuate the 
decline of muscular mass.

Recommendations for older adults are (as described by WHO guidelines 2020) 
as follows:

• PA should be regularly performed by any older adults.
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• For moderate level, 150–300 min/week.

• For intense level, 75–150 min/week will be enough, bringing substantial health 
benefits.

• Additionally, 2 or more days for strengthening major muscle groups will 
substantiate benefits.

• Weekly training should be performed in multiple activities that support 
functional balance 3 days/week.

• If possible, the period of moderate activities will be increased, together with 
additional benefits for health and quality of life.

Important for older adults is that any activity is better than inactivity and PA 
should be increased gradually, based on personal functional capacities and  
fitness level.

17. Optimal sleep

Optimal sleep is a condition for a healthy lifestyle. The quality of good sleep will 
be recognized by three elements:

• Duration, that has to be sufficient for remaining alert and rested for the 
whole day

• Continuity, sleeping without fragmentation

• Depth, in order to restore functional capabilities

17.1 Sleep disorders

These disorders, like insomnia or sleep apnea, are related to obesity. In the 
obesity management process, Sleep Hygiene guidelines elaborated by the World 
Sleep Society may prevent poor quality nocturnal sleep, fragmentation of sleep, 
short duration of sleep, and even sleep deprivation in adults.

17.2  Ten lessons for a healthy sleep for adults, recommended by world sleep 
society (2021 world sleep day), will be simple and concrete lifestyle advice 
in obesity management

1. To fix the bedtime and constant awakening time [28]

2. Siesta’s habit should not exceed 45 min/day

3. About 4 h before bedtime avoids alcohol ingestion and smoking

4. Avoid caffeine (tea, coffee, sodas, chocolate) for a period of 6 h before 
bedtime.

5. Before bedtime only a light snack may be accepted, but not heavy meals with 
spicy, sugary foods, 4 h before sleep.
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6. Regular physical activity may not be prolonged before sleep time.

7. Try to use a comfortable bedroom

8. The bedroom should have a comfortable setting temperature for sleeping and 
good ventilation.

9. All distracting noise should be avoided in the bedroom and light as much as 
possible.

10. The bed must be used for sleep and sex. No eating, working, or sitting in bed.

17.3 Sleep deprivation risks

Short sleep duration is associated with hypercaloric food and an elevated intake 
of fats. Sleep may impact the time of meals, being related to intake behaviors. 
Specific evidence points out altered eating behavior, with frequent snacks, which are 
described as highly palatable and energy-dense throughout the whole day but also 
concentrated during the night for some short sleepers. These are important aspects, 
contributing to an unhealthy diet, predisposing people to noncommunicable diseases, 
and obesity. During anamnesis, a question about the duration and quality/depth of 
sleep is mandatory, as short sleep or sleep disorders are closely related to obesity [29].

18. Smoking

A healthy lifestyle means no smoking. Continuous efforts should be done by the 
medical community to stop smoking and decrease the number of people starting 
smoking.

18.1 Smoking cessation and weight gain

Smoking cessation is a real challenge and weight gain associated has to be care-
fully managed [30].

Particularly important for people with type 2 diabetes, due to their high cardio-
vascular risk augmented by insulin resistance and smoking. However, if smoking 
cessation is accompanied by weight gain—usually 4 kg/year of abstinence—this 
will dilute the health benefits of quitting. Nutritional counseling should be done in 
parallel with smoking cessation in order to maintain weight.

19. Alcohol

A healthy lifestyle may allow two glasses of wine for men/one glass of wine per 
day for women, or one can of beer. A level of 24 g of alcohol/day, for example, two 
glasses of wine is associated with 32% total CVD risk reduction in a meta-analysis 
with total CVD as the endpoint. How could be explained this risk reduction? 
Benefits exerted on lipid and glucose/insulin metabolism synergically with systemic 
subclinical anti-inflammatory and anticoagulation effects are the answer. Certainly, 
higher quantities are associated with a progressive increase of risk. Meanwhile, this 
meta-analysis shows a 20% lower risk of CVD for beer drinkers (one can per day) 
vs. abstainers, in concordance with previous studies. The dose–response analysis 
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suggests a J shape curve, after initial risk decreases, and an immediate growing 
positive trend is seen when doses are increasing. About 10 g per day of alcohol—a 
small intake, may be the dose correlated with the highest risk reduction. But, as 
Prof Riccardi emphasized, this dose should be considered maximal allowed intake 
and not daily recommended dose [18].

20. Mindfulness

The balance between mind, thoughts, body, and emotions is the concept that 
may be the base of creating the right, positive mindset for treating obesity. People 
should be able to build motivation and create positive energy, to have meaning in 
life. All of these will build the mindset of a winner, with the right approach in front 
of the disease named obesity. People should understand that obesity is a disease, 
and treatment is the right mindset, applied in daily life. Mindful eating principles, 
eating smart, but also intuitively, responsible, as an assumed decision for health are 
fundamental in the obesity management [31].

21. Healthy lifestyle, not dieting

Increasing populational awareness about lifestyle medicine for obesity preven-
tion and treatment is mandatory in order to further control NCDs expansion. WHO 
defines obesity as a disease and emphasizes that the treatment is a whole life treatment. 
Lifestyle education is mandatory in the future. Intervention in obesity should be a 
lifelong intervention and the doctor should be a partner for the patient, guiding him/
her in this process. “Food is medicine” is a concept released some years ago in order to 
motivate more people to connect each eating decision with health benefits. Intuitive 
eating is an eating type that could influence an individual’s awareness of food choices. 
It is negatively related to weight cycling and disordered eating and positively associated 
with weight stability and body satisfaction [32]. There is a way of eating in response to 
hunger/satiety and to create a positive relationship with food. The key is to prioritize 
behavioral changes, targeting not only the weight but with a focus on overall well-
being. Flexible restraint may reduce binge eating and increase weight loss. Eating for 
health must balance social, hedonic, and environmental reasons to eat. Intuitive eating 
could help people to reconnect with signals of hunger and satiety. Eating in the absence 
of hunger is very frequent, triggered by social, emotional, or advertising factors. 
Clinicians are in the position to help patients to recognize various factors influencing 
eating choices and they should support their patients to make healthy choices [31].

22. Doctor-patient partnership

The key to lifestyle changes is negotiation and cooperation. Physicians will be 
role models for their patients, adopting a “coach” approach, instead of the previous 
“expert” style. But they will not only educate patients and have to empower them, 
motivating and planning a healthy lifestyle with sustainable change [33].

23. Conclusion

Health is built every moment by right decisions or, on the contrary, is destroyed. 
The success of health promotion at the populational level requires a different 
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Abstract

Obesity is known to cause physical and metabolic diseases. It is often assumed 
by people (including the healthcare workers) that the person with obesity lacks self-
control in matters of diet and physical exercise, and is therefore responsible for his 
or her weight. Persons with obesity have to face sarcasm, barbs, and discrimination 
due to their condition. They often have difficulty in getting jobs or have to accept 
lower than standard pay for their work. Although weight gain requires calorie intake 
in excess of calorie expenditure, it is sometimes not easy for the person to restrict 
calories due to the underlying causes of obesity. The body resists losing weight, and 
attempts to hoard calories by reducing the metabolic rate. In this chapter we have 
explained and classified the causes of obesity into endogenous and exogenous. The 
endogenous causes include genetic and epigenetic causes, maternal factors, and 
hormonal causes, while exogenous causes include obesogenic environment, life-
style, and weight-gain promoting medicines. It must be realized that losing weight 
and keeping it off is not easy for a person with obesity.

Keywords: Obesity, Endocrine causes of obesity, Endogenous causes of obesity, 
Exogenous causes of obesity, Genetics of obesity

1. Introduction

Calorie intake that exceeds body requirements results in storage of the excess 
calories in the body. Although proteins are highly versatile in function, they cannot 
be used to store excess energy. The amount of glycogen that can be stored in adult 
liver is 100–120 grams, the skeletal muscle can store about 400 gram glycogen in 
a 70 kg adult. Small amounts are also present in other cells. The triacylglycerols 
(TAGs) are the best suited for energy storage purpose: they are energy-dense, 
hydrophobic (therefore do not associate with space-filling calorie empty water 
molecules), and can be stored in huge amounts. However, excess storage of the 
TAGs is often associated with ailments and early mortality. The Obesity Medicine 
Association has defined obesity as a ‘chronic, relapsing, multi-factorial, neu-
robehavioral disease, wherein an increase in body fat promotes adipose tissue 
dysfunction and abnormal fat mass physical forces, resulting in adverse metabolic, 
biomechanical, and psychosocial health consequences’ [1]. Since measurement of 
body fat content is tedious and requires sophisticated instruments, it is easier to 
define overweight and obesity on the basis of the Body Mass Index (BMI). BMI is 
calculated easily by dividing the weight of the person in kilograms by the square 
of height in meters. According to the World Health Organization, persons with 
BMI <  18.5 kg/m2 are underweight, those with BMI 18.5 to < 25 kg/m2 fare of 
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normal weight, those with BMI 25 to < 30 kg/m2 are overweight, and those with 
BMI > 30 kg/m2 are obese [2]. Besides affecting the patient on the individual level 
(posing increased risk of obesity-related diseases), obesity affects families and 
nations in terms of healthcare requirements, reduced working capacity, and eco-
nomic burden. Annual healthcare costs for obesity exceed $700 billion [3]. With the 
global increase in the incidence of obesity and obesity-related diseases, healthcare 
costs for obesity have exceeded those for smoking [4].

Thermodynamics can explain the excess storage of TAGs in a simple, succinct 
manner: storage of calories occurs when calorie intake exceeds calorie expendi-
ture. Decreasing the intake and increasing the expenditure should melt away the 
excess fat. Research conducted in the past 70 years reveals that adipose tissue that 
has grown out of size wants more of itself and persuades the body to devise ways 
to hoard calories. Thus, obesity is not merely a case of poor self-control. Also, all 
persons with obesity do not develop obesity-related diseases, as the type of adipose 
tissue and the site of deposition influence the risks to health.

2. Identifying obesity and determining the adipose content

The fact that weight is related to longevity of the person was realized by life 
insurance companies [5]. A higher health risk was predicted for weight more than 
20% the ideal weight for that height. This is equivalent to a BMI of 27.8 kg/m2. BMI 
cannot differentiate muscle from fat, or inform about the distribution of fat. It can-
not detect changes in body composition due to sarcopenia or osteopenia. It has been 
observed that some races are at a higher risk of type 2 diabetes mellitus and cardio-
vascular diseases at BMI values lower than what are normal for persons of European 
descent. Distribution of body fat is different in different races, Asians tend to have 
more central adiposity compared to the Caucasians [6]. Males have higher lean mass 
and bone mineral mass compared to females, however, females have more periph-
eral distribution of fat [7]. Pregnancy, age, and menopause cause redistribution of 
body fat, promoting central obesity [8]. It is important to determine the fat content 
of the body as well as the distribution of the body fat. The best method for deter-
mining fat content and fat distribution is cadaver analysis, as no in vivo technique 
can be that accurate [9].

Anthropometric methods are the most convenient and most popular for estimat-
ing the extent of fatness. Besides BMI, these include waist and hip circumferences, 
waist-to-hip ratio (WHR), skin fold thickness, and waist-to stature ratio (WSR). 
Since shorter individuals usually weigh less, weight alone cannot be used as a crite-
rion to determine the amount of fat stores. WSR and waist circumference are easy 
and relatively accurate techniques to estimate visceral fat [10]. The body adiposity 
index (BAI) does not require weight measurement; it is the ratio of hip circumfer-
ence to height. It is a fairly accurate measure of adiposity and can be easily used in 
remote areas without accessibility to reliable scales [11].

According to the two compartment (2C) model, the mass of the human body can 
be categorized into anhydrous Fat Mass (FM) and Fat Free Mass (FFM). The FFM 
includes water, minerals, and proteins. FM is assumed to have a density of 0.9007 g/
cm3 while the FFM is assumed to have a density of 1.1000 g/cm3. Water content of 
the body is assumed to be 73.72% [12]. Techniques based on two-component model 
are bioelectric impedance analysis, whole body counting of total body potassium, 
densitometry methods (hydrostatic underwater weighing and air displacement 
plethysmography), and hydrometry using isotope dilution technique. The water 
content (hydration fraction), bone mineral content, and density of the FFM vary 
with age, pubertal status, and pregnancy. These values are altered in patients with 
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deranged hydration and in those who have recently lost weight. Differences related 
to ethnicities have also been observed.

In the 3 compartment (3C) model of body composition assessment, the FFM is 
sub-divided into lean tissue mass (LTM) and bone mineral content (BMC). This 
method requires densitometry as well as hydrometry measurements and includes 
dual energy X-ray absorptiometry (DEXA), a rapid non-invasive method for 
regional as well as whole body measurement in which high- and low-energy X-rays 
are transmitted through the body.

The 4 compartment model further categorizes LTM into total body water 
(TBW) and protein. It requires a combination of several measurement techniques: 
hydrodensitometry like under-water weighing or air-displacement plethysmog-
raphy (to measure fat), DEXA (to measure mineral), isotope dilution (to measure 
water), and residual techniques (to measure protein) [13, 14]. It is an expensive, 
elaborate, and time requiring technique.

Multi-component models have also been used that incorporate results from 
many techniques, and are therefore more accurate. Simple methods can be used in 
the field, while lab-based methods or CT, MRI, X-ray techniques can be used only in 
clinical settings.

Anthropometric methods and bioelectric impedance analysis are considered 
indirect methods of assessment. Direct methods include measurement of total body 
water by isotope dilution technique, total body counting to measure radioactive 
potassium, and neutron activation techniques with a body scan to measure different 
elements. Criterion methods include underwater weighing, air-displacement pleth-
ysmography, DEXA, computed tomography (CT) scan, and magnetic resonance 
imaging (MRI) [15].

Vague in 1947 [16] noted that pear-shaped body with higher fat distribution 
in hips and thigh regions is associated with protection against metabolic diseases. 
Deposition of fat in the abdominal region (usually seen in males) is associated 
with development of metabolic diseases [17, 18]. Most of the adipose tissue in the 
adult human is white adipose tissue (WAT), the main function of which is to store 
excess calories as triacylglycerols. The brown adipose tissue (BAT), present in small 
quantities in the interscapular region, is responsible for non-shivering thermogen-
esis. WAT present in visceral regions is called visceral adipose tissue (VAT), and that 
present below the skin for insulation is called subcutaneous adipose tissue (SAT). 
Excess VAT is associated with the metabolic complications of obesity, like metabolic 
syndrome, type 2 diabetes mellitus, dyslipidemia, and cardiovascular diseases. 
TAGs may deposit in tissues other than the adipose; this is called ectopic fat. Ectopic 
fat in viscera, heart, and vasculature can be seen in lipodystrophy, characterized by 
little subcutaneous fat and high amounts of ectopic fat. Deposition of thoracic peri-
aortic fat and peripheral artery disease is considered local toxic effect of the ectopic 
fat. The renal sinus fat has been associated with hypertension and chronic kidney 
disease [19]. Although BMI is the most common method to identify overweight and 
obesity, it is unable to differentiate VAT and SAT, and central and global obesity. CT 
and MRI can be used to quantify the amount of visceral fat accurately. DEXA can 
also be used, however, it tends to underestimate VAT in people with normal BMI, 
and overestimates VAT in people with severe obesity [20].

It has been noted that some individuals classified as overweight or obese accord-
ing to their BMI do not show insulin resistance or increased risk of metabolic 
diseases. Such people are said to have metabolically healthy obesity (MHO), which 
can be a transient stage of variable duration that progresses towards metabolically 
unhealthy obesity (MUO) [21]. A person with obesity can be classified as metaboli-
cally healthy if blood pressure, blood glucose, TAG, and high density lipoprotein 
cholesterol levels are normal without medication [22]. Metabolically unhealthy 
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obesity results when adipocytes of SAT are unable to proliferate and differenti-
ate. Such tissue shows hypertrophy instead of hyperplasia, leading to ectopic and 
visceral deposition of fat.

3. What causes overweight and obesity?

The imbalance between energy intake and expenditure can result from vari-
ous causes that can be broadly classified into endogenous and exogeneous. In his 
paper on obesity, Pennington has described how the concept of endogenous obesity 
originated in 1907 [23].

3.1 Endogenous causes of obesity

Genetic and epigenetic disorders, hormonal imbalances, maternal and birth-
related factors, microbiome, and infections are included in the endogenous causes 
of obesity. In case of children, pathologic cause can be suspected if the patient 
shows hyperphagia with absence of satiety signals, shows food-seeking behavior, 
hides or steals food, has neuroendocrine abnormalities, has skin and hair that are 
lighter than those of siblings, or is gaining weight rapidly before the age of 5 years.

3.1.1 Genetic causes of obesity

Ethnic differences in obesity have been observed; admixture mapping studies 
show that obesity correlates with percentage of ancestry derived from ethnic groups 
[24]. Studies on individual families and animal models revealed rare obesity causing 
genes like leptin and leptin receptor genes, melanocortin 4 receptor gene, and the 
proopiomelanocortin genes, etc. Studies on obesity concordant monozygotic twins 
show BMI and other anthropometric measures like WHR are 40–60% heritable in 
children and adults [25]. The genome-wide association studies (GWAS) using mas-
sive study populations identified 119 independent loci associated with BMI [26]. 
The human obesity gene map discussed by Rankinen et al. [27] lists single-gene 
mutations in 11 different genes, 50 loci related to Mendelian syndromic obesity, 253 
quantitative trace loci (QTL) for obesity-related phenotypes. On the basis of clinical 
presentations, genetic obesity can be classified into monogenic non-syndromic, 
monogenic syndromic, and polygenic obesity.

A. Non-syndromic monogenic obesity. Rare, early-onset severe obesity that 
is mainly caused by mutations in genes whose products are involved in the regula-
tion of food intake. Most mutations require two dysfunctional copies of genes as 
homozygous or compound heterozygous condition in order to affect the phenotype. 
Around 200 single gene mutations have been associated with human obesity, but all 
are confined to more than 10 genes.

1. Leptin. The name leptin has been derived from the Greek word ‘leptos’ which 
means ‘thin’. Leptin (product of ob or LEP gene) is a 167 amino acid protein 
synthesized mainly in the adipocytes and enterocytes, and also in gastric 
epithelium and placenta. It is also called the satiety hormone as it regulates fat 
stores by diminishing hunger. Since its discovery in 1994 [28], leptin has been 
considered a potential target in the treatment of obesity.

Mutations in leptin gene are very rare, lead to hyperphagia and obesity, 
and can be ameliorated by leptin administration [29]. Administration of 
exogenous leptin reduces hyperphagia that is spontaneous or induced by 
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fasting [30]; chronic administration causes weight loss by reducing food 
intake [31, 32]. In most persons with obesity, circulating leptin levels are 
high, indicating that leptin resistance rather than leptin deficiency is the 
underlying reason for weight gain.

2. Leptin receptor. Multiple isoforms of leptin receptor (Ob-R or LEPR) have 
been identified, which are produced by alternative splicing of the mRNA or by 
post-translational modifications [33]. Ob-Rb, the long form of leptin recep-
tor expressed widely in the hypothalamus and appetite-modulating pathways 
of brain stem, has an intracellular domain that binds Janus kinases (JAK) and 
signal transducers and activators of transcription (STAT)-3 factors [34, 35]. 
The activated JAK–STAT-3 pathway induces expression of suppressor of cyto-
kine signaling (SOCS)-3. SOCS are a family of eight proteins that negatively 
regulate the JAK–STAT pathway, i.e., the very pathway that increases their 
synthesis.

Obesity-related leptin-resistance may be due to overexpression of the SOCS-3. 
This has been supported by the fact that SOCS-3 deletion in specific neurons 
in mice [36] or mice with heterozygous global SOCS-3 deficiency [37, 38] are 
more leptin-sensitive and resistant to weight gain. Ob-Rb, the long form of 
leptin receptor, is expressed in the arcuate nucleus of the hypothalamus in 
two neuronal groups: orexigenic neurons expressing neuropeptide (NP)Y 
and agouti-related peptide (AgRP), and by anorexigenic neurons expressing 
proopiomelanocortin (POMC) and cocaine-amphetamine-regulated transcript 
(CART) [39]. Leptin inhibits the expression of the orexigenic peptides NPY 
and AgRP, and activates the neurons producing the anorexigenic peptides 
POMC and CART [40, 41], thus reducing food intake. Low circulating levels of 
leptin lead to increased expression of NPY and AgRP, decreased expression of 
POMC and CART, and increased hunger. High levels of leptin in blood de-
crease the expression of NPY and AgRP, increase the expression of POMC and 
CART, and decrease hunger. Viral-mediated gene expression used to produce 
chronic leptin overexpression in the arcuate and paraventricular nuclei and 
ventromedial hypothalamus resulted in reduced food intake [42].

The secretory isoform of the leptin receptor binds circulating leptin and modu-
lates its biologic availability, while the short isoform of the leptin receptor is 
involved in the transport of leptin across the blood–brain barrier [43]. Leptin 
resistance may be due to defect in leptin receptor, or in the transport of leptin 
across the blood–brain barrier. Such persons have early-onset obesity and 
hypogonadism, however, the obesity is not as severe as in the case of persons 
lacking plasma leptin [42]. In rodents, a high-fat diet produces leptin resis-
tance, prior to the weight gain [43].

Mutations in leptin receptor gene (LEPR) produce a phenotype similar to that 
of leptin deficiency, with normal or high leptin levels [44, 45]. Often, LEPR 
mutations are accompanied with deficiencies of growth hormone or thyroid 
hormone [46, 47].

3. Proopiomelanocortin. The precursor protein pre-proopiomelanocortin is a 
267 amino acid protein synthesized in the corticotrophs and melanotrophs 
of the anterior and intermediate lobes of the pituitary [48]. A 26 amino acid 
signal peptide is removed to form proopiomelanocortin (POMC) with 241 
amino acids. Cleavage of POMC forms multiple peptide hormones (α-, β-, and 
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γ-melanocyte stimulating hormones (MSH), adrenocorticotropic hormone 
(ACTH), and β-endorphin). The cleavage is brought about by pro-hormone 
convertase (PC)1/3 (encoded by PCSK 1 gene in humans), carboxypeptidase 
(CP) E, and other enzymes. Mutations in PCSK1 and CPE are known to cause 
monogenic obesities (discussed later). The peptide products are packaged into 
vesicles and released by exocytosis. The processed products of POMC bind to 
different types of melanocortin receptors (MCRs), and to the μ-opioid recep-
tor [49]. Five MCRs (MC1R to MC5R) have been identified on the basis of their 
binding properties and tissue locations. MC1R is mainly located on the mela-
nocytes of skin and preferentially binds α-MSH. ACTH can also bind to MC1R. 
When ACTH is present at high concentrations, as in Cushing’s disease, it can 
cause hyperpigmentation. MC2R is mainly expressed in the adrenal cortex, and 
binds only ACTH to activate glucocorticoid synthesis. MC3R binds α-, β-and 
γ-MSH with equal affinity, is present on POMC neurons in the arcuate nucleus, 
and acts as an inhibitory auto-receptor. MC4R has a very high expression in the 
paraventricular nucleus of the hypothalamus and is involved in energy balance 
(discussed later). The primary agonist for MC4R is α-MSH released from the 
anorexigenic POMC neurons in the paraventricular nucleus. The primary antag-
onist of this receptor is agouti-related protein AgRP), released by the orexigenic 
AgRP/NPY neurons, also located in the paraventricular nucleus. MC5R is not 
expressed in the central nervous system. It is expressed in a variety of periph-
eral tissues during embryogenesis and binds with α-MSH with a slightly higher 
affinity. The μ-opioid receptor is expressed in the cortex, hippocampus, and 
brain stem, and in peripheral tissues. It binds β-endorphin mediating analgesic 
effect, and is also involved in feeding behavior.

Mutations in the POMC gene are autosomal recessive and cause early-onset 
severe obesity accompanied by hyperphagia, adrenal insufficiency, mild hy-
pothyroidism, and red/ginger hair [50]. Very few patients with this condition 
have been diagnosed worldwide. Heterozygous individuals have intermediate 
increase in BMI.

4. Prohormone convertase 1 and carboxypeptidase E. Prohormone convertase 
(PC1/3), also called PCSK1 (pro-protein convertase subtilisin/kexin type 1), 
is present only in neuroendocrine cells and is involved in the conversion of 
prohormones to active hormones. It is a serine protease, activated by calcium. 
CPE, also called enkephalin convertase, releases terminal arginine or lysine 
residues from polypeptides. It is involved in the production of nearly all neuro-
peptides and peptide hormones.

Mutations in PC1/3 gene are extremely rare [51] and cause severe obesity in 
childhood. Since this enzyme is involved in the maturation of many hormones, 
its deficiency is also associated with adrenal, gonadotropic, somatotropic, and 
thyrotropic insufficiency and postprandial insulin deficiency. Proinsulin levels 
are high. Patients have severe malabsorptive neonatal diarrhea and may show 
central diabetes insipidus.

Only a few patients with CPE mutations have been identified throughout the 
world. Such patients have morbid obesity, intellectual disability, type 2 diabe-
tes, and hypogonadotropic hypogonadism [52].

5. Melanocortin 4 receptor. This is encoded by the MC4R, an intron-less gene 
with open reading frame of 999 bp located on chromosome 18. The MC4R is 
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glycosylated and has 332 amino acids. It is mainly expressed by brain cells and 
by the enteroendocrine cells. Besides the neurons, it is also expressed by the 
astrocytes in brain [53].

The MC4R plays a key role in weight regulation. It is activated by α-MSH, and 
cocaine- and amphetamine-regulated transcript (CART) to decrease food 
intake and increase energy expenditure. The orexigenic peptides neuropeptide 
Y (NPY) and AgRP are the natural antagonists of MC4R, and increase appetite 
and reduce energy expenditure by binding to MC4R [54]. Leptin stimulates the 
secretion of POMC, and inhibits that of AgRP and NPY.

Heterozygous mutations in MC4R gene reported in different ethnic groups 
are associated with dominantly inherited obesity. MC4R deficiency is the 
commonest monogenic cause of obesity. In a cohort of 500 children with obe-
sity, 5.8% were found to have mutations in the MC4R gene [55]. Homozygous 
mutations and double heterozygous mutations are rare; about 25% mutations 
are heterozygous frame shift or nonsense with complete loss of function. 
Around 20% of the missense mutations are non-pathogenic. Heterozygous 
carriers of MC4R mutations have hyperphagia, impaired satiety, hyperin-
sulinemia, higher bone mineral density, and higher stature (big boned), 
especially in childhood. Patients homozygous for the condition have severe 
obesity and hyperinsulinemia which can be blocked by the administration of 
an α-adrenergic blocker. The hyperinsulinemia shows an age-related decrease 
and parallels amelioration of hyperphagia. Adults with MC4R deficiency 
have lower blood pressure and heart rate than age and BMI matched controls 
suggesting impaired activation of sympathetic nervous system. Diet-induced 
weight loss is not easy, but can be achieved by bariatric surgery in hetero-
zygous persons. Liraglutide promotes weight loss in patients with MC4R 
deficiency.

6. Single-Minded Homolog 1 (SIM1). The single-minded (sim) is a basic helix–
loop–helix-PAS domain transcription factor in Drosophila melanogaster that 
regulates gene expression in midline cells in the embryo [56]. SIM1, the human 
homolog, may have pleiotropic effects during embryogenesis. The SIM1 gene is 
located on chromosome 6; chromosomal abnormalities like deletion of 6q16.2 
region, translocation between 6q16.2 and 1p22.1, or point mutations in the 
6q16.2 region cause severe childhood obesity or SIM1-related Prader-Willi-like 
syndrome. Homozygous SIM1 knockout mice do not survive due to absence of 
hypothalamic neurons [57].

7. Brain Derived Neurotrophic Factor (BDNF). BDNF, also called neurotrophin 
and abrineurin, is encoded by the BDNF gene on human chromosome 11 [58]. 
The BDNF preproprotein with 247 amino acid residues is processed to mature 
119 amino acid protein. Pro-BDNF can be stored in dendrites and axons and 
undergoes cleavage either inside or outside the cell. BDNF and pro-BDNF are 
associated with opposing functions. High levels of BDNF are present in the 
hippocampus, amygdala, cerebellum, and cerebral cortex. Lower levels have 
been detected in the liver, heart, lung, etc. BDNF is a member of the neuro-
trophin family of growth factors required for the differentiation, maturation, 
and survival of neurons. In adverse conditions like hypoglycemia, cerebral 
ischemia, neurotoxicity, and glutamatergic stimulation, BDNF has a neuro-
protective effect. It is also involved in plastic changes related to learning and 
memory [59].
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Receptors for BDNF include TrkB, encoded by the NTRK2 gene, and LNGFR 
(low affinity nerve growth factor receptor). The TrkB receptor belongs to the 
family of tyrosine kinase receptors and is coupled to the Ras, Cdc42/Rac/
RhoG, MAPK, PI3K, and PLC-γ signaling pathways. Binding of BDNF with 
TrkB causes autophosphorylation of TrkB and is important for the develop-
ment of short term memory and growth of neurons. LNGFR is also called p75. 
Pro-BDNF preferentially binds to LNGFR, leading to NFκB receptor activa-
tion, triggering apoptosis pathway.

WAGR syndrome involves disorders of many body systems and is named for 
its main features: Wilms tumor (a childhood kidney cancer), aniridia, genito-
urinary anomalies, and intellectual disability (formerly referred to as mental 
retardation). A subtype of the WAGR syndrome called WAGRO (characterized 
by childhood onset obesity) has been reported to be strongly associated with 
haploinsufficiency for BDNF [60]. Nineteen patients with deletions in any por-
tion of the BDNF gene were reported to become obese by 10 years of age.

8. NTRK2. The NTRK2 gene encodes TrkB receptor for BDNF. In case of mice, 
homologous NTRK2 mutations are lethal. Heterozygous missense mutations 
in NTRK2 have been reported in patients with severe hyperphagia, obesity, 
impaired nociception, and intellectual disability [61].

9. Kinase Suppressor of Ras 2. This protein is a molecular scaffold that coor-
dinates Raf/MEK/ERK signaling and regulates activation of AMP-kinase. It 
is a product of KSR2 or the Fat gene located on chromosome 12q. Both KSR 1 
and KSR2 phosphorylate Raf, MEK, and ERF at several serine and threonine 
residues and cause their activation [62]. On stimulation by growth factor, the 
KSR proteins translocate to the plasma membrane to regulate the dynamics of 
Ras–Raf–MEK signaling.

Targeted deletion of Ksr2 in mice leads to obesity with hyperinsulinemia and 
low glucose tolerance.

10. SH2B Adaptor Protein 1. The Src homology 2b family members are adap-
tor proteins for several members of the tyrosine kinase receptor family. They 
contain SH2 and PH domains and can form homo or hetero dimers via their 
N-terminal dimerization domains. The SH2 domain present on the C-terminus 
binds proteins phosphorylated at their tyrosine residues: TrkA, insulin recep-
tors, IGF2-receptors, insulin receptor substrate (IRS)-1 and 2, and JAK2 [63].

The SH2B1 is a product of the SH2B1 gene located on chromosome 16p. It 
stimulates JAK2 activity and assembles JAK2/IRS1/2 complex to enhance leptin 
signaling. It also enhances catalytic activity of insulin receptor and protects 
IRS from dephosphorylation, thus increasing insulin signaling. Deletion of 
SH2B1 in mice leads to leptin resistance, hyperphagia, obesity, insulin resis-
tance, and type 2 diabetes.

Several SH2B1 mutations have been associated with obesity in humans and 
are known to increase the risk of type 2 diabetes mellitus. Partial deletions 
of about 200 bp are associated with early-onset severe obesity, while larger 
interspersed deletion extending through a 593 kb region on chromosome 
16p11.2-p12.2 has been associated with developmental delay, feeding difficul-
ties, dysmorphic facial features, and obesity [64].
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11. Adiponectin. This 244 amino acid protein is also called adipocyte comple-
ment-related protein (Acrp), GBP-28, apM1, and adipo Q [65]. The ADIPOQ 
gene is present on chromosome 3. This hormone is produced mainly by the 
adipocytes and also by other tissues like osteoblasts, liver, myocytes, epithelial 
cells, and placenta. It is secreted as trimer, (67 kDa, also called low molecu-
lar weight or LMW), hexamer, and a multimer with at least 18 monomers 
(300 kDa, high molecular weight or HMW). Globular adiponectin is generated 
from full length adiponectin by proteolysis. Plasma levels of adiponectin are 
inversely proportional to the amount of adipose. Adiponectin levels are high 
after weight loss due to calorie restriction or gastric bypass surgery in patients 
with obesity [66, 67], and also in patients anorexia nervosa [68].

Administration of adiponectin to rodents, and transgenic mice with increased 
adiponectin showed increased energy expenditure and oxygen consumption 
without affecting food intake [69, 70]. Adiponectin has been shown to sup-
press obesity [71], insulin resistance, type 2 diabetes [72, 73], atherosclerosis, 
and non-alcoholic fatty liver disease [74].

Adiponectin receptor AdipoR1 is more in the skeletal muscle, and AdipoR2 is 
more in the liver. Expression of receptors is proportional to insulin levels, and 
in case of receptors on the muscle cells, the number is increased with exercise 
[75]. AdipoR1 has a higher affinity for globular adiponectin while AdipoR2 has 
higher affinity for full length adiponectin. The T-cadherin receptor for adipo-
nectin recognizes hexameric and HMW forms of adiponectin. It is present in 
the vasculature and is involved in the cardioprotective action of adiponectin. 
Action of adiponectin on receptor requires adaptor proteins APPL1 or its iso-
form APPL2.

Binding of adiponectin to its receptor leads to activation of the AMP-activated 
protein kinase (AMPK) and the mitogen-activated protein kinase (MAPK). 
This causes increased NO production, adiponectin-induced glucose uptake, 
degradation of ceramide by ceramidase, and fatty acid oxidation, ultimately 
increasing insulin sensitivity.

Adiponectin deficiency has been associated with increased atherosclerosis 
while increased expression of adiponectin protects against atherosclerosis in 
mice [76]. Thiazolidinediones (TZD) used in the treatment of type 2 diabetes 
mellitus, are known to activate transcription factor peroxisome proliferator-
activated receptor (PPAR)-γ, which has been shown to increase adiponectin 
levels in plasma [77].

Adiponectin mutations have been associated with type 2 diabetes mellitus [78] 
and hypoadiponectinemia [79]. Recently, mutation in ADIPOQ has been as-
sociated with early-onset obesity and metabolic syndrome [80].

12. Adenylate Cyclase Type 3. Adenylate cyclase type 3 belongs to the adenyl-
ate cyclase family of enzymes that synthesize cAMP from ATP. The gene for 
this enzyme ADCY3 is located on chromosome 2 and codes for a 1144 amino 
acid protein. The protein shows highest expression in lungs and placenta, 
intermediate expression in brain, heart, kidney, and skeletal muscle. Low-
est expression is seen in liver and pancreas. It is also present in the olfactory 
cilia. Saeed et al. [81] reported loss-of-function mutations in ADCY3 gene in 
4 severely obese children from 3 consanguineous Pakistani families, and in 
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an obese boy from a non-consanguineous European American family. Inter-
estingly, a gain-of-function mutation in ADCY3 gene in a line of N-ethyl-N-
nitrosourea (ENU)-mutagenized mice, Jll, with dominantly inherited resis-
tance to diet-induced obesity, protects mice from diet-induced obesity [82].

13. Other Monogenic Causes of Obesity. Mutations in the INSIG2 gene [83, 84] 
and in gene for peroxisome proliferator-activated receptor gamma (PPAR-γ) 
[85, 86] are associated with obesity. INSIG2 gene present on chromosome 2 en-
codes for insulin-induced gene 2 protein which is involved in lipid homeosta-
sis. The gene for PPAR-γ (PPARG), present on chromosome 3p, can be activat-
ed by fatty acids and their metabolites. The protein is produced predominantly 
in liver and adipose and is crucial for the differentiation of fat cells. Besides 
obesity, mutations in this gene can cause insulin resistance, hypertension, and 
certain cancers.

Insulin-sensitizing drugs thiazolidinediones are potent agonists of PPAR-γ. 
This can also lead to increased adiponectin levels (see above).

B. Syndromic Obesity. Patients with obesity (children or adults) who also show 
cognitive delay, dysmorphic features, organ-specific abnormalities, hyperphagia, 
and/or signs of hypothalamic dysfunction are considered to have syndromic 
obesity. Syndromic obesity may show autosomal or X-linked inheritance pattern, 
or may occur due to de novo mutations. Since comorbidities are present that require 
additional treatment, it is important to correctly diagnose syndromic obesity, which 
can be of the following types:

1. Fat Mass and Obesity-Associated Protein (FTO) or Alpha-Ketoglutarate-
Dependent Dioxygenase Deficiency. This enzyme is coded by the FTO gene 
located on chromosome 16 in humans. The FTO proteins participate in adi-
pogenesis and tumorigenesis and FTO inhibitors have been found to have 
anti-obesity and anti-cancer effects in vivo. FTO is one of the genes known 
to contribute to polygenic obesity. In fact, it was the first one to be identi-
fied by genome wide association studies (GWAS) [87]. In humans, complete 
deficiency of FTO is associated with an autosomal recessive syndrome with 
growth retardation, malformations, and premature death. A loss-of-function 
non-synonymous mutation at position 316 in the FTO gene in which arginine 
is replaced by glutamine has been identified in nine members of a Palestinian 
family. The afflicted members showed post-natal growth retardation, dysmor-
phism of head and face, psychomotor delay, and in some patients, brain, car-
diac, genital, and palate defects. Complete/partial inactivation of FTO gene in 
mice protects from obesity while overexpression leads to increased food intake 
and obesity. Evidence suggests that certain mutations of FTO may increase the 
risk of obesity in humans.

2. Prader-Willi syndrome (PWS). This is caused by loss-of-function mutation of 
specific genes on chromosome 15 [88]. In most cases, a part of chromosome 15 
from the father is deleted. In some cases, the patient lacks father’s chromosome 
15 and has two copies from the mother. Some parts of the mother’s chromo-
somes are turned off by imprinting. This is usually not an inherited condition 
and affects 1 in 10,000 to 1 in 25,000 neonates. Polyhydramnios, reduced fetal 
movements, and abnormal fetal position may be present. New born may have 
hypogonadism, lethargy, poor muscle tone and difficulty in feeding. Afflicted 
children show delayed milestones, short stature, poor physical coordination, 
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crossed eyes. Hyperphagia begins between the ages of two and eight years 
and continues throughout life. The child gains excess weight. Adults with this 
condition have central obesity, hypogonadism, infertility, subnormal intelli-
gence, extreme flexibility, and light skin and hair. More than 50% patients have 
strabismus.

3. Bardet-Biedl syndrome (BBS). This is a rare pleiotropic, autosomal recessive 
ciliopathy, the estimated incidence is 1 in 1,60,000 in north European popula-
tions [89]. About 16 genes are associated with this disorder, accounting for 
80% cases. Diagnosis is based on clinical features: post-axial polydactyly, renal 
dysfunction, obesity, retinal dystrophy, hypogonadism, and learning dif-
ficulties.

The BBS phenotype is less apparent in the first decade of life and the condition 
is usually diagnosed in late childhood or early adulthood.

4. Alstrom syndrome (ALMS). This is also called Alstrom-Halgren Syndrome 
[90]. It is a very rare autosomal recessive disorder due to defect in the ALMS1 
gene located on chromosome 2p13. The encoded protein is implicated in ciliary 
function, control of cell cycle, and intracellular transport. About 900 people 
with this syndrome have been reported worldwide. This syndrome is charac-
terized by childhood obesity (but normal birth weight), hyperphagia, hyper-
insulinemia, and type 2 diabetes mellitus. Other features include progressive 
cone-rod dystrophy leading to blindness (occurring usually prior to 15 months 
of age) and sensorineural hearing loss (usually bilateral, beginning in the first 
decade of life). Otitis media with glue ear has been reported. About 70% patients 
develop dilated cardiomyopathy during infancy or adolescence. Renal failure, 
pulmonary, hepatic, and urologic dysfunction are often observed, and systemic 
fibrosis develops with age. Unlike the Bardet-Biedl syndrome, there is no men-
tal defect, polydactyly, or hypogonadism. Retinal lesion causes nystagmus and 
early loss of central vision in contrast to loss of peripheral vision first, as in other 
pigmentary retinopathies. Height is normal or more than normal in children, but 
growth slows down so that adults are usually of short stature. The symptoms and 
rate of progression of disease varies in patients, even amongst members of the 
same family.

5. Pseudohypoparathyroidism (PHP). This is a heterogeneous group of very 
rare endocrine disorders, primarily due to resistance to the parathyroid hor-
mone (PTH) [91]. It was first described by Fuller Albright in 1942 to describe 
patients with PTH-resistant hypocalcaemia and hypophosphatemia and a con-
stellation of skeletal defects called Albright hereditary osteodystrophy (AHO). 
Features of AHO (seen in PHP-1a and -1c) include short stature, stocky built, 
rounded face, short fourth metacarpal and other bones of the hands and feet, 
and ectopic ossifications.

Gene encoding the alpha-subunit of the stimulatory G protein (GNAS1) is 
defective resulting in at least 4 different forms of PHP: PHP-1 a, b, and c, and 
PPHP (pseudo pseudohypoparathyroidism). Molecular defect in PHP-2 is yet 
to be identified. The exact prevalence of PHP is not known.

6. Cohen syndrome or Pepper syndrome or Cervenka syndrome. This was first 
described by M Michael Cohen Jr. in 1973 in two siblings and one isolated case 
[92]. More than a hundred cases have been identified over the world, with 35 
from Finland [93]
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The phenotype in Finnish patients is homogeneous: non-progressive psy-
chomotor retardation, microcephaly, characteristic facial features, myopia, 
progressive retinochoroidal dystrophy, neutropenia, and cheerful disposition. 
Non-Finnish patients have a confusing phenotype. Affected persons have low 
birth weight but develop abnormal truncal fat distribution in teenage. This is 
an autosomal recessive condition, with mutation in the vacuolar protein sort-
ing 13 homolog B (VPS13B, also called COH1 gene) located on chromosome 
8q. This transmembrane protein is involved in vesicle-mediated intracellular 
protein transport.

7. Other syndromes associated with obesity. Down syndrome (trisomy 21) 
and Turner syndrome (45, X) have been reported to be associated with adult 
obesity [94, 95].

C. Polygenic obesity. More than an hundred polygenic loci harboring genetic 
variants associated with overweight and obesity have been identified [96–98]. 
Polygenic obesity is caused by the cumulative effect of obesogenic environment and 
weight-gain promoting genes. The contribution of a single gene is very small, of 
only a few hundred grams, but the combined effect of many such genes in a person 
can have a significant effect on weight gain. Khera et al. [98] have derived and 
validated a polygenic predictor of weight gain.

3.1.2 Epigenetic causes of obesity

Although the DNA in every cell of the multicellular organism is the same 
(exception: mosaicism [99]), the expression of genes is different in different cell 
types. The mechanisms that regulate the expression of genes can be heritable. 
Epigenetic modifications are mitotically and meiotically heritable modulation of 
gene function without changes in the sequence of the DNA [100]. Such modifica-
tions allow or silence the expression of specific genes. Epigenetic programming 
can be influenced by environmental and dietary factors as well as by the gut 
microbiota.

The epigenetic modifications are brought about by DNA methylation (by DNA 
methyltransferases, DNMTs, at distinct CpG sites), histone modification (methyla-
tion, acetylation, ubiquitination, or phosphorylation), and by short non-coding 
RNA species called micro-RNAs or miRNAs.

a. DNA methylation. The CpG sites where methylation occurs are usually present 
in the promoter regions of genes. Addition of methyl group hinders the attach-
ment of transcription factors and represses transcription of the gene. Some 
of these genes are involved in appetite control, obesity, metabolism, insulin 
signaling, inflammation, and growth. Examples of genes associated with obe-
sity having CpG in the promoter regions are the HIF3A, LEP, ADIPOQ, NPY, 
IGF-2, IRS-1, and POMC, etc. Increased methylation of LEP gene was found in 
maternal blood samples with pre-pregnancy obesity and in cord blood samples 
in neonates small for gestational age and whose mothers continued to smoke 
during pregnancy [101]. Tobi et al. [102] reported higher LEP methylation in 
men born after prenatal exposure to wartime (Dutch hunger winter) famine in 
1944–1945 compared to their unexposed same-sex siblings.

b. Histone modification. Histone modifications control the accessibility of the DNA 
to transcription factors. The five key regulatory genes of adipogenesis: pre-adipo-
cyte factor-1 (Pref-1), CCAAT-enhancer-binding protein β (C/EBP β), C/EBPα, 
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PPARγ, and adipocyte protein 2 (aP2), are modulated via histone modification 
during adipocyte differentiation [103].

c. Micro RNA. miRNA are short (18–25 nt) non-coding RNA sequences that 
regulate gene expression [104]. Certain miRNA species have been identified 
that are associated with insulin resistance and low-grade inflammation seen 
in obesity [105]. Childhood obesity is associated with specific miRNAs while 
some miRNAs are associated with weight changes [106–108].

Epigenetic changes influence embryo formation and development, inactivation 
of X chromosome in female, genomic imprinting, cell differentiation, stable inheri-
tance of gene expression, and immune cell function. In case of mice it was observed 
that pregnant animals exposed to polycyclic hydrocarbons during pregnancy 
gave birth to offspring with higher weight and fat mass. These offspring showed 
higher expression of PPAR-γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA 
methylation of PPAR γ. This epigenetic change was heritable, as it was also observed 
in the subsequent generation [109]. Female mice born following perinatal exposure 
to bisphenol A showed significantly different DNA methylated regions compared to 
controls [110].

3.1.3 Maternal factors influencing obesity

Certain factors related to the mother cannot be altered but are known to influ-
ence body weight or metabolic processes of the offspring. A U-shaped association 
between maternal age and fasting glucose concentration in adult offspring has been 
reported [111]. Adult offspring of younger or older mothers had blood glucose 
levels higher by about 0.05 mmol/L higher than the reference group. Early maternal 
menarche [112], maternal diabetes [113], and maternal smoking during pregnancy 
[114] are associated with a higher BMI in offspring. Low maternal education influ-
ences obesity, however, the relationship is different in different ethnicities [115, 
116]. Maternal employment has also been found to influence children’s weight [117].

3.1.4 Hormonal causes of obesity

Secondary obesity (consequence of some other illness) due to endocrine causes 
is relatively less common.

1. Hypothyroidism. Triiodothyronine (T3) and thyroxine (T4) are tyrosine-
derived iodine-containing hormones produced by the thyroid gland that act on 
almost all cells of the body to regulate a variety of metabolic functions. T4 is 
converted to the 4-times more potent T3 by deiodinases in cells, however, since 
T4 has a longer half-life, it is the major form in circulation (ratio of T4/T3 in 
blood is approximately 14).

Weight gain has been reported in thyroid insufficiency. About 54% patients 
with overt hypothyroidism report gain of weight compared to 13.8% control 
subjects [118]. Hypothyroidism is also associated with dyslipidemia with 
increased cholesterol levels. The thyroid gland secretes prohormone thyrox-
ine or T4 (3,5,3′,5′-tetraiodothyronine) along with small quantities of active 
T3 (3,5,3′-triiodothyronine), on receiving the signal from the pituitary gland 
in the form of thyroid stimulating hormone (TSH) or thyrotropin. TSH is re-
leased from the pituitary under the influence of thyrotropin releasing hormone 
(TRH), the master regulator of thyroid function, produced in the paraven-
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tricular nucleus of the hypothalamus. Depending on the underlying cause, 
hypothyroidism can be primary (decreased production of thyroxine by thyroid 
due to various reasons), secondary (due to decreased TSH), tertiary (due to 
deficiency of TRH), and peripheral or consumptive hypothyroidism (due to in-
creased activity of deiodinase 3 which degrades thyroid hormone). Secondary 
and tertiary hypothyroidism are together called central hypothyroidism [119].

Every organ system and cell in the body is influenced directly or indirectly by 
the thyroid hormones. Gut motility, heart rate, body temperature, perfusion 
of lungs, and muscle contraction modulate the effect of catecholamines. In 
females, thyroid hormones influence menstruation, ovulation, and fertility. 
Bone growth and brain maturation in children are also influenced by these hor-
mones, while in adults they affect the mood [120]. Thyroid hormones regulate 
the basal metabolic rate (BMR) and therefore are responsible for increase/de-
crease/maintenance of body weight.

Decreased thyroxine levels cause accumulation of hyaluronic acid in the dermis 
which causes water retention and non-pitting edema [121]. Decreased blood 
flow to kidneys resulting in lowered glomerular filtration rate in hypothyroid-
ism causes water retention and increase in body weight [122]. This is aided by 
decreased tubular resorption and secretion in thyroxine deficiency. Thyroid 
hormones also regulate the number of adrenergic receptors and dopaminergic 
activation of the tubular cells, thus affecting the renin-angiotensin-aldosterone 
(RAA) axis [123].

Hypothyroidism has been shown to cause decreased mitochondrial biogenesis 
and decreased levels of uncoupler proteins [124, 125].

Thyroid dysfunction has been associated with decreased insulin sensitivity 
[126]. This may be a consequence of increased adipose deposition from de-
creased BMR. Increased adipose tissue is known to cause insulin resistance in 
obese subjects.

2. Polycystic Ovarian Syndrome (PCOS). This is a heterogeneous disorder with 
ovarian dysfunction, hirsutism, hyperandrogenism, obesity, and insulin resis-
tance. PCOS has multifactorial etiology with both genetic and environmental 
components [127]. More than 50% of adult women with PCOS are overweight 
or obese and weight reduction alleviates menstrual irregularity [128]. Weight 
deposition is more around the waist (android pattern of fat distribution), and 
is both the cause as well as effect of hyperandrogenaemia [129]. Increased 
adipose tissue leads to higher production of adipokines. Abnormally high 
leptin levels have been noted in PCOS [130], although some authors report that 
the serum levels of leptin correlate with obesity rather than with PCOS [131]. 
Houjeghani et al. have reported higher levels of insulin, testosterone, lutein-
izing hormone (LH), and higher LH to FSH (follicle stimulating hormone) 
ratio in women with PCOS compared to normal age and BMI matched controls 
[132]. Lower concentrations of sex hormone binding globulins were reported 
in PCOS.

3. Cushing Syndrome. The corticosteroid hormones produced by the adrenal 
cortex are of two types: glucocorticoids and mineralocorticoids. The glucocor-
ticoids e.g., cortisol affect metabolism of carbohydrates, fats, and proteins, 
and are involved in anti-inflammation, immunosuppressive, anti-proliferative, 
and vasoconstrictive processes. The mineralocorticoids like aldosterone are 
involved in regulation of water and electrolyte balance.
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All conditions in which cortisol level is higher than normal are classified under 
Cushing syndrome, while Cushing disease is pituitary dependent [133]. Cush-
ing syndrome can be classified into ACTH-dependent, ACTH-independent, 
and pseudo-Cushing syndrome. Cushing disease, ectopic ACTH syndrome, ec-
topic CRH syndrome, macronodular adrenal hyperplasia, and iatrogenic treat-
ment with ACTH are included in the ACTH-dependent variety of Cushing syn-
drome. The ACTH-independent Cushing syndrome includes adrenal adenoma 
and carcinoma, primary pigmented adrenal nodular hyperplasia and Carney’s 
syndrome, McCune-Albright syndrome, aberrant receptor expression, and iat-
rogenic Cushing caused by pharmacotherapy by steroids. Chronic alcoholism 
and depression can cause pseudo-Cushing syndrome. A rare condition with 
repeated episodes of cortisol excess interspersed by regular or irregular periods 
of normal cortisol secretion is called the cyclic Cushing syndrome.

Chronically elevated levels of cortisol in Cushing’s syndrome cause redistribu-
tion of fat and central obesity [133]. Glucocorticoids (GCs) increase hypotha-
lamic endocannabinoids, hypothalamic AMPK activity, and gene expression 
of orexigenic NPY and agouti-related peptide, resulting in increased appetite. 
GCs promote adipocyte differentiation and sensitize preadipocytes to insulin. 
Visceral adipose tissue (VAT) shows differential response to GCs: increased 
deposition and insulin resistance occurs in VAT compared to subcutaneous 
adipose tissue (SAT). Excess glucocorticoids also produce hyperglycemia, dys-
lipidemia, and increased protein degradation.

4. Growth Hormone Deficiency. Growth hormone (GH) or somatotropin exists 
as several isoforms; the major isoform is a 191 amino acid protein. Secretion 
of growth hormone by the somatotropic cells of anterior pituitary is under 
control of the cells of neurosecretory nuclei of hypothalamus, which release 
GH releasing hormone (GHRH) or somatocrinin and GH inhibiting hormone 
(GHIH) or somatostatin. Release of GHRH and GHIH is influenced by physi-
ologic stimulators: sleep, exercise, and nutrition, and by the level of free fatty 
acids in blood. GH is released in a pulsatile manner, the peak occurs an hour af-
ter the onset of sleep. During the day, secretion of GH occurs at 3–5 h intervals 
[134]. Age, sex, diet, exercise, and stress influence GH secretion, which is also 
influenced by the other hormones.

Congenital, acquired, or idiopathic deficiency of GH may be associated with 
increased adipose deposition, especially in the waist region, and insulin resis-
tance. However, reduced GH levels have been reported in some patients with 
obesity [135, 136]. Usually, deficiency of GH in children is due to insufficient 
production of growth hormone releasing hormone in the hypothalamus. Dam-
age to the pituitary or hypothalamus (due to tumor or tumor-related surgery, 
stroke, bleeding, infection, etc) in adulthood may lead to decreased GH pro-
duction. GH increases lipolysis in the adipose tissue, and reduces storage of TG 
in a non-uniform manner. Thus it promotes loss of intra-abdominal fat. Scacchi 
et al. [137] reported that a primary growth hormone deficiency causes centrip-
etal adiposity, while obesity with increase in visceral adipose tissue produces 
secondary growth hormone deficiency.

5. Laron syndrome or primary growth hormone insensitivity (GHI). GHI 
[138] is a group of rare disorders caused by mutations either in the GH recep-
tor gene, or in genes of signaling proteins within the cell that are activated on 
binding of GH to its receptor. Various mutations and their effects have been 
summarized by Boro et al. [139]. Synthesis of insulin-like growth factor (IGF)-
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1 is prevented although GH levels in blood are normal or high. Such children 
show improved growth when IGF-1 is administered before puberty, but no 
improvement if only GH treatment is given. Children with GHI show delayed 
onset of puberty, short limbs, reduced muscle strength and endurance, promi-
nent forehead, low blood sugar, and obesity in adulthood.

6. Ghrelin (Lenomorelin). Ghrelin is a 28 amino acid peptide hormone dis-
covered in 1999 by Kojima et al. [140]. It is a fast-acting orexigenic hormone 
produced by the endocrine cells (ghrelin cells) in gastric fundus and to a lesser 
extent in the body of the stomach, intestinal mucosa, lungs, urogenital organs, 
and brain. It has a role in meal initiation. Pre-prandial ghrelin surges occur at 
fixed feeding schedules, or at food-related cues. The post-prandial decrease in 
ghrelin levels is due to increased intestinal osmolarity and increased insulin. 
Ghrelin regulates the input and output of calories, and therefore influences the 
body weight, via the G-protein-coupled growth hormone secretagogue recep-
tor (GHSR)1a. Besides regulating appetite, ghrelin stimulates secretion of GH 
and ACTH, increases gut motility and gastric acid secretion, modulates sleep, 
stress, and anxiety, influences taste sensation and reward-seeking behavior, 
regulates glucose metabolism, reduces lipid degradation, and suppresses ther-
mogenesis in brown adipose tissue. It has been shown to protect muscle from 
atrophy and improve cardiovascular function [141].

Two distinct forms of ghrelin are present in blood: acylated ghrelin (AG) and 
unacylated ghrelin (UAG). About 90% of the circulating ghrelin in unacylated 
(UAG). The AG acts on GHSR 1a mediating growth hormone release, while 
UAG acts on GHSR 1a on pancreatic cells stimulating the release of insulin and 
glucose utilization. AG opposes the action of UAG, inhibiting the release of 
insulin. In obesity, UAG levels decrease while the AG levels remain unchanged.

Highest levels of ghrelin in blood are immediately before a meal, and drop to low-
est levels immediately after the meal. Ghrelin administration increases appetite in 
both humans and rats. Ghrelin and synthetic ghrelin mimetics bind to the GHSR1a 
in hypothalamus, brain stem, and in the mesolimbic pathway, cause secretion of 
orexigenic neuropeptide Y (NPY) and agouti-related protein (AgRP). GHSR 1a 
is also expressed in vagal efferent neurons. Under influence of ghrelin, the gastric 
vagal efferents become less sensitive to gastric distension, increasing food intake.

Plasma level of ghrelin is lower in persons with obesity, except in patients 
with Prader-Willi syndrome, where ghrelin levels are proportional to the food 
intake. AG and UAG levels were compared in insulin-resistant and insulin-
sensitive subjects with obesity. It was found that UAG and total ghrelin was 
lowered in insulin-resistant subjects, while only AG levels were lowered in the 
insulin-sensitive subjects [142]. In patients with anorexia nervosa and with 
cancer-induced cachexia, ghrelin levels are high [143, 144]. Obese rodents with 
low levels of ghrelin in plasma have reduced levels of ghrelin-receptor mRNA 
as compared to the normal lean controls. Experiments on rodents showed that 
central ghrelin signaling activates reward centres in response to alcohol, food, 
high-fat diet, and psychosomatic drugs like cocaine [145, 146].

Besides being the hunger signal, the ghrelin-GHSR 1a system is related to the 
rewarding aspects of food intake. It is activated in anticipation of food intake, 
negative energy balance, and psychological stress. In times of food scarcity, the 
effect of the ghrelin/GHSR 1a system on the mesolimbic pathway is advanta-
geous for the animal’s survival.



109

The Multiple Causes of Obesity
DOI: http://dx.doi.org/10.5772/intechopen.98835

In developed countries, as well as in the rapidly developing countries, the 
changes in environment are favoring sedentary lifestyle, easy availability of 
calorie-dense tasty affordable foods, and increased stress levels are promoting 
increased appetite. The action of ghrelin on the mesolimbic system increases 
the appetite, acting as a spice to further increase food intake. In the current 
scenario of easy availability of food, the ghrelin/GHSR 1a system is no longer 
an evolutionary advantage but is in part responsible for the obesity epidemic 
and the associated diseases [147].

Weight gain may also be influenced by insulin, estrogen, progesterone, prolac-
tin, and melatonin.

3.2 Exogenous causes of obesity

Certain factors that are preventable and influence the person from outside the 
body are classified as exogenous causes.

3.2.1 Depression, sleep deprivation, gut microbiota, and infections

1. Depression. Previously it was believed that depression was associated with a 
loss of appetite and sleep, with an inability to persuade oneself to cheer up and 
get going. Later, atypical depression was noted for increased eating, hyper-
somnia, frequent, relatively short episodes, and a proclivity to obesity [148]. 
Murphy et al. [149] reported that many patients with depression felt like eating 
when they felt bad. From their study on 1396 subjects, they concluded that 
patients with obesity tended to experience more severe depression, compared 
to the non-obese. It is possible that the stigma of obesity contributed to the 
depression.

2. Sleep deprivation. Lack of sufficient sleep has been reported to be associated 
with high fat intake, night-time snacking, binge-eating, and gain of weight 
[150]. Altered sleep patterns due to shift work, trans-continental travel, sleep 
apnoea, or due to new parenthood can lead to sleep insufficiency. Sleep restric-
tion causes increased fat and carbohydrate intake and increased intake of total 
calories, with no corresponding increase in energy expenditure. Ding et al. 
[151] note that sleep dysregulation perturbs appetite-regulating hormones like 
leptin and ghrelin, affecting eating behavior and metabolism.

3. Gut microbiota (GM). Ninety-nine percent of the gut microbiota are bacte-
ria, of which 90% are of the phyla Firmicutes and Bacteroidetes [152]. Some 
fungal, protozoan, and archaeal species have also been isolated. Some bacteria 
belong to the phyla Proteobacteria, Actinobacteria, Verrucomicrobia, and Fu-
sobacteria. Most GM share a commensal relationship with the host, enhancing 
the overall fitness. A 20% increase in Firmicutes and a corresponding decrease 
in Bacteroidetes is associated with the increase in energy intake, thus inducing 
obesity. GM composition is involved in diseases like obesity, diabetes, inflam-
matory and immune disorders, and cancer.

Type of food taken influences the population of gut biota. High fat Western 
diet reduces Bacteroidetes and increases in Firmicutes population, similar to 
what is seen in obesity. Increased ratio of Bacteroidetes to Firmicutes is linked 
with diminished body mass. L. rhamnosus and Lactobacillus plantarum are 
probacteria that convert dietary linoleic acid to conjugated linoleic acid (CLA). 
In mice, these bacteria prevent weight gain on a high fat diet. Various probiotic 
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strategies are being developed to tailor the GM in such a way that they can help 
reduce weight of the host. GM are also associated with low-grade inflammation 
and metabolic syndrome via endotoxemia [153].

4. Viral infections. Four animal (canine distemper virus, Rous-associated virus 
type 7, Borna disease virus, and SMAM-1) and three human viruses (adenovi-
rus (Ad) 36, Ad-37, and Ad-5) are known to cause obesity [154]. Scrapie agent 
has been shown to produce obesity in mice [155]. The infection affects fat cell 
differentiation, modulates appetite, or cause inflammation that dysregulates 
the feeding centre of the brain [156]. SMAM-1 is an avian adenovirus that is 
associated with human obesity. The human viruses stimulate enzymes and 
transcription factors that cause differentiation of preadipocytes into mature 
adipocytes and accumulation of TAGs.

3.2.2 Obesogenic environment

1. Sedentary lifestyle and neighborhood safety. Rapid urbanization has 
brought about various energy-saving techniques that promote sedentary 
lifestyle: convenient and cheap motorized transport, elevators, household ap-
pliances, etc. Entertainment is available 24 x 7, on the television or the mobile 
phone. Instead of playing games in the fields, children and adults prefer to play 
video games on a comfortable couch. Built environment, especially in areas 
inhabited by people with low socioeconomic status, is devoid of safe parks 
and walkways. Often in unsafe neighborhoods parents prefer their children to 
stay at home rather than venture out in the parks. Physical inactivity results in 
reduced energy expenditure, and if calorie intake is not reduced, it will ulti-
mately lead to weight gain [157, 158].

2. Diet. With the abundance of calorie-dense food in attractive flavors and af-
fordable prices, calorie-intake has increased for many persons. Fast-food is 
available at nearby stalls and it has become easier to purchase ready-to-eat food 
rather than cook at home. With increase in the number of nuclear families and 
double-incomes, home-cooked meals have been replaced by take-aways, home 
deliveries, and restaurant dinners. Calorie, carbohydrate, fat, and salt intake 
has increased, while intake of fruits and vegetables has decreased. Sweetened 
beverages and alcohol add empty calories [159, 160].

3. Socioeconomic status (SES). In case of developed countries, the incidence of 
obesity decreases with increased income and education [161], as people enjoy 
food security, are aware of healthy choices, and can afford healthy lifestyles 
in socially secure neighborhoods. In developing countries, the situation is 
complex. Low SES is associated with lack of food and medicines, ignorance 
regarding health, hygiene, and family size, and unwillingness to change 
[162]. An increase in family income brings about weight gain that can exceed 
the healthy limit. This is promoted by food insecurity. High SES shows slight 
decrease in obesity, however, this may not hold true for obesity in children, 
as high purchasing power and lack of self-control may lead to splurging on 
unhealthy foods.

4. Unhealthy food advertisements. Many people, especially children, are sus-
ceptible to food advertisements [163]. Aggressive marketing of calorie-dense 
food, sweetened beverages, cereals, snacks, etc. on the television, in print, on 
hoardings, and in shops affects vulnerable people. The message is clear: eat to 
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feel good. Many adults, especially those prone to depression, are affected in the 
same manner as children. Children who are overweight or obese usually grow 
into adults with weight issues.

5. Culture and Ethnicity. Certain cultures prefer chubbiness in children and 
adults and consider it a sign of health [164]. In Asian cultures, hospitality and 
affection are demonstrated through food. Asian men and women are more 
prone to develop central obesity [165]. Reward eating also promotes intake of 
unrequired calories in the form of high fat/high sucrose foods.

6. Endocrine Disrupting Chemicals (EDCs). The endocrine disrupting chemi-
cals are man-made chemicals that block connections between hormones and 
their receptors [166]. The number of EDCs in the environment is increasing 
rapidly, even though their use has been banned. Their role in obesity has been 
highlighted by Brown et al. [167], who have used the U.S. National Health and 
Nutrition Examination Survey data, collected over nearly 4 decades, showing 
increase in calorie intake and BMI over time. For a given amount of calorie and 
macronutrient intake and leisure-time physical activity, the predicted BMI was 
significantly higher in 2006 than in 1998, indicating that factors other than 
diet and physical activity are contributing to the weight gain.

More than 800 EDCs have been identified [168]. Persistent organic pollutants 
(POPs) and certain heavy metals have been classified into EDCs, metabolism 
disrupting chemicals (MDCs), and mitochondrial function disrupting chemicals 
(MtDCs). They can interact with nuclear and mitochondrial genes and bring 
about epigenetic changes, decrease insulin sensitivity, promote inflammation and 
obesity, decrease basal metabolic rate (BMR), and narrow down the vasculature.

EDCs may be classified into obesogens and diabetogens. The obesogens (e.g. 
tributyltin, bisphenol A, phthalates, and metals like arsenic) can increase adi-
pocyte differentiation and adipose tissue depots, disrupt normal lipid metabo-
lism leading to obesity. The compound atrazine inhibits the electron transport 
chain in the mitochondrion. It has been shown to decrease BMR. Diabetogens 
either destroy beta cells of pancreas or disrupt their function leading to diabe-
tes [169]. Bisphenol A blocks insulin receptor site causing insulin resistance.

7. Weight-gain caused by pharmacotherapy. Certain drugs can lead to weight 
gain or redistribution of fat. Large increase in weight may be accompanied by 
dyslipidemia, insulin resistance, metabolic syndrome, and increased risk of 
type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), CVD, and cancer. 
Drugs associated with weight gain are described below.

a. Antidepressants. Drugs causing up to 5 kilogram per year weight gain include 
the following:

Tricyclic agents like amitriptyline and doxepine.
Selective serotonin reuptake inhibitors (SSRIs) like paroxetine and citalopram.
Serotonin and norepinephrine uptake inhibitors (SNRIs) like venlafaxine and 

duloxetine.
Monoamine oxidase inhibitors (MAOIs) like moclobemide, phenelzine.
Others like mirtazapine, mianserine, and maprotiline.
Bupropion is a norepinephrine and dopamine reuptake inhibitor that reduces 

food cravings. In US bupropion and naltrexone combination has been approved as 
an anti-obesity drug.
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b. Mood Stabilizer. Lithium used in the treatment of bipolar disorders causes a 
weight gain of more than 5% of the initial body weight.

c. Antipsychotics. Typical antipsychotics like haloperidol and perphenazine 
cause weight gain of up to 5 kg/year. Some atypical antipsychotics like clo-
zapine and olanzapine can cause more than 5 kilogram weight gain in a year 
(4.5–16.2 kg/year). Atypical antipsychotics like amisulpiride, quietapine, and 
sertindole cause weight gain of up to 5 kg/year.

d. Anticonvulsants. Topiramate and zonisamide produce weight loss. 
Gabapentine and pregabalin cause weight gain of up to 5 kg/year. Valproate and 
carbamazepine cause weight gain of more than 5 kg/year [170].

e. Antihyperglycemics. Type2 diabetes is strongly associated with diabetes. 
Many of the drugs used in the treatment can cause weight gain. Insulin, meg-
litinides, and sulfonylureas are known to cause weigh gain. Sulfonylureas like 
glimepiride, glyburide, glibenclamide, and gliclazide) and meglitinides (e.g. 
repaglinide) stimulate insulin secretion from the pancreas. Thiazolidinediones 
(TZD) or glitazones (e.g. pioglitazone) improve insulin sensitivity by acting 
on transcription factor PPAR-γ, which is involved in glucose and fat oxidation. 
Insulin increases lipogenesis and fat storage resulting in weight gain [171].

f. Antihypertensives. Weight gain is often associated with hypertension, and 
certain medicines used in the treatment of hypertension can cause weight gain. 
These include beta-blockers (atenolol, propranolol), angiotensin receptor 
blocker valsartan, and calcium channel blocker diltiazem [172].

g. Corticosteroids. Although short-term use of corticosteroids is not associated 
with significant change of weight, long-term use (> 3 months) is associated 
with significant gain of weight. Some patients showed a weight gain of >10 kg/
year with prednisone [173].

Since many of the patients are already struggling with the problem of overweight or 
obesity, it is important to prescribe drugs that are weight neutral or promote weight loss.

4. Direction of future research

The obesity pandemic has spread across the globe and a lot of research is being 
done regarding its control. If the cause of obesity is known, it is easier to cure 
or limit the disease. Most of the current research is related to diagnosis of the 
underlying causes of the condition, as removal of the cause can ameliorate the 
condition. Suitable lifestyle changes and pharmacotherapies are being designed to 
reduce weight. Different types of surgical interventions have been improvised to 
stop weight gain/promote weight loss in patients with severe obesity.

5. Conclusion

Obesity prevalence is increasing worldwide to assume pandemic proportions. 
Since many diseases are associated with obesity, it is important to identify the pres-
ence and causes behind overweight and obesity. We have attempted to list the various 
causes behind obesity, but we may have missed out some inadvertently or due to lack 
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of space. The purpose behind this work is to generate awareness about how overweight 
and obesity are sometimes beyond the patient’s control. People with obesity of all ages 
have to face discrimination in the society, teaching institutes, and at the workplace. 
Often this discrimination leads to depression, stress, and overeating and aggravates 
the problem. It is important to remove this stigma and to consider people who are 
having to deal with this stigma as victims, rather than justifying the discrimination.

The World Health Organization has recognized obesity as a disease. It is impor-
tant for physicians and healthcare workers to treat patients with obesity with com-
passion and empathy, to be open to endogenous and exogenous causes of obesity, and 
to suggest weight loss remedies if the patient is unable to achieve it himself/herself.
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Chapter 8

Influence of the Basal Metabolic 
Profile on the Evolution of the 
Pediatric Patient with Obesity
Belén Fernández, Ainhoa Sarasua Miranda,  
Isabel Lorente Blázquez and Ignacio Diez López

Abstract

Childhood obesity is a problem of growing importance globally. It is associ-
ated with significant health problems. Knowing how to treat it effectively would 
improve the quality of life of these children. The aim of this chapter is to study how 
basal metabolism influences the somatometric evolution of the child and adolescent 
population with obesity in a pediatric endocrinology clinic. Study childhood obesity 
in a tertiary hospital by means of a multichannel impedanceometry study. All the 
patients had a basal metabolism lower than the calculated theoretical ideal. In over-
all terms, weight reduction is not achieved in this pediatric population. However, it 
is observed a decrease in fat content in the medium term (1-3 years). Bioelectrical 
impedanceometry measurement is a simple method in clinical practice to evaluate 
the energy consumption and the body composition. Knowing the body composition 
of these children would help to intervene more effectively to help control obesity 
and its health consequences.

Keywords: obesity, childhood obesity, basal metabolism, bioelectrical impedance 
analysis, body mass analysis, body fat mass, body weight, body composition

1. Introduction

Obesity, in adults and in childhood, is one of the most serious public health 
problems of the 21st century. The World Health Organization (WHO) describes it 
as an epidemic since it generally affects all countries.

In 2016, more than 41 million children under the age of five were overweight 
or obese [1]. That same year, according to UNICEF, the prevalence in children 
and adolescents between the ages of 5 and 19 was approximately 124 million with 
obesity and 216 million with overweight [2].

In pediatric age, obesity is already the chronic non-communicable disease and 
the most frequent nutritional and metabolic disorder [3].

The importance resides in the association of obesity with important health 
problems and the development of serious non-communicable diseases, such as 
cardiovascular diseases, high blood pressure, type 2 diabetes mellitus and some 
types of cancer, which increases social and health costs considerably.

It is suspected that the presence of common causal factors could explain the 
global nature of this problem. Among other theories arises that of the Thrifty 



Role of Obesity in Human Health and Disease

130

Genotype [4, 5], whose hypothesis maintains that, due to the way of life of primi-
tive man, the human genome developed a tendency to create energy reserve tissues 
for periods of famine based on fats since they provide more calories in less volume. 
This type of genes in a current way of life, characterized by food in abundance, 
cheap and with high fat contents, and the tendency to sedentary lifestyle of the 
population, would be responsible for the aforementioned global epidemic of the 
21st century: obesity [6–8].

In developing countries, the prevalence of obesity and overweight in preschool 
children exceeds 30%, which represents a significant risk for them to become adults 
with metabolic syndrome and obesity [9].

Obesity is defined as an excess of body fat, the result of a positive energy balance 
persisting over a long period of time [9].

This situation in childhood develops different types of complications [10]. At 
first, problems such as flat feet, insulin resistance, increase in androgens, increase 
in cholesterol, LDL (low-density lipoproteins) and triglycerides, as well as pulmo-
nary, menstrual, type 2 diabetes and psychological disorders, such as deteriorated 
self-image.

After the first two or four years of the onset of obesity, obese children increase 
the risk of high blood pressure, hypercholesterolemia, increase in LDL, and 
decrease in HDL (high-density lipoprotein).

If this situation persists, the presence of an increase in coronary diseases, vas-
cular hypertension, vascular kidney disease, atherosclerosis, arthritis and certain 
neoplasias is added in adulthood, which are those that increase morbidity and 
explain mortality in adult life.

Furthermore, obesity in pediatric age is related to other comorbidities such as: 
sleep apnea, nonalcoholic steatohepatitis, cholelithiasis, pseudotumor cerebri, 
gastrointestinal reflux and polycystic ovary syndrome [10].

A simple tool to assess this problem is the body mass index (BMI), which 
represents both fat mass and fat-free mass, so it is an indicator of weight and not of 
adiposity as such. It is independent of height, allowing the comparison of the body 
weights of individuals of different heights [10].

Body composition is made up of two major components: body fat mass (BFM) 
and lean body mass (LBM). Fat mass refers to the fat tissue, lipids that the human 
body has, while lean mass in turn is divided into three main components: total body 
water (TBW), mineral content, mainly bones, and protein content like muscles.

In the first year of life there is a significant increase in body fat content, followed 
by a period of decline that ends between the 4 to 6 years of age, increasing later 
until the end of adolescence, known as adipose rebound. The earlier the rebound 
begins, the greater the risk of later obesity [11].

Childhood overweight is established above the 85th percentile of BMI, and 
obesity above the 95th percentile of BMI [12].

Due to the physiological differences between boys and girls, graphics and 
percentiles are created for each sex [10, 13, 14].

In Spain, the ALADINO study has evaluated the prevalence of childhood over-
weight and obesity every 4 years since 2011. In 2019, a downward trend is observed 
since 2011 and stable compared to 2015 [15].

Currently in Spain overweight in the child population is 23.3% and obesity 
17.3% [15].

Poor eating habits, low physical activity and low socioeconomic status of the 
family influence these results. A significant percentage of parents mistakenly 
perceive their children’s overweight or obesity as normal.

The child population with overweight oro bese has, in general, greater weight at 
birth than thin or normal weight children.
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By sex, overweight is more prevalent in girls and obesity in boys.
In children, the frequency of overweight is higher in those of 9 years and 

regarding obesity in those of 7, 8 and 9, compared to younger age groups. In girls, 
there are no age differences in overweight, while obesity increases from 6 to 
8 years old [15].

Being thin does not necessarily mean having a lower percentage of body fat than 
people who are thinner, since the latter can be more muscular. A high percentage of 
fat tissue increases the risk of developing cardiovascular diseases, diabetes, hyper-
tension and certain types of cancer [16, 17].

Accurately assessing the weight of a person is to know the body composition, 
that is, the amount of lean body mass and fat body mass in their organism. There 
are different measurement methods, each of them with advantages and disadvan-
tages: [16].

• Octopolar multi-frequency impedance measurement: An electrical current of 
very low intensity runs through the body, interacts with body water, which has 
a constant proportion of muscle mass. This data, together with the sex, age 
and height of the patient, calculates the body muscle mass. Fat mass does not 
conduct electricity, so it is not directly measured.

• Dual X-ray Absorption (DXA): “Gold standard”. It determines the correspond-
ing weights and percentages of fat, bone and muscle tissue. It allows assess-
ing the specific location of an excess of fat or muscle tissue. It evaluates the 
distribution of android and gynoid fat and these two data are two of the best 
predictors of health risks.

• Anthropometry: It consists of measuring skin folds using a “caliper”, different 
perimeters and diameters. It needs to be measured by an expert. Applying a 
series of formulas subsequently, the body composition and the somatotype are 
determined. It reports the magnitude and distribution of subcutaneous fat. 
However, it only provides regional body fat data, not the deep fat. Also, it is not 
useful for measuring folds in obese people.

• Image morphological study: it observes subtle changes in body silhouette, 
volumes and postural habits.

Metabolism represents energy expenditure at a baseline situation without stress. 
And it is primarily determined by age, sex, size, and body composition.

The most used technique for its determination is indirect open-circuit calorim-
etry; its value can also be estimated using predictive equations. The most used in the 
pediatric population are those of Schofield and those of the WHO [18].

In 2017, a study led by the Imperial College London and the WHO concluded 
that the number of children and adolescents (between the ages of 5 and 19) with 
obesity has multiplied by 10 in the world in the last four decades. It is also indicated 
that in 2022 there will be more children and adolescents with obesity than children 
with low weight.

Two articles on body composition in the adolescent and adult [19, 20] population 
have been found in the literature, but not in the child population. Both highlight the 
fact that the female population has a higher percentage of body fat mass; and that in 
overall; the obese population has a lower basal metabolism than estimated, higher 
in men than in women. In general, in terms of intake, this population falls within 
the normal limits of the FAO/WHO recommendations; at the same time that they 
present insufficient total energy expenditure.
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Detecting excess weight early and preventing it during childhood is essential to 
achieve a greater impact on health.

With the aim of finding another explanation for excess weight in childhood, 
apart from those already mentioned, this work will focus on finding a causal rela-
tionship between basal metabolism and excess weight in the child population.

2. Hypothesis

Given the importance of the knowledge and management of obesity due to its 
relationship with certain comorbidities in the child population, it seems necessary 
to know if children who attend hospital consultation for childhood obesity referred 
from primary care have a basal metabolism or caloric intake below what is expected 
for their age and sex. Assuming that this fact is an associated risk factor for obesity 
or, on the other hand, its usual treatment is more difficult than usual.

3. Aim

To study how basal metabolism influences the somatometric evolution of 
the child and adolescent population with obesity in a pediatric endocrinology 
consultation.

4. Material and methods

An anonymized and coded database of a pediatric endocrine clinic in a tertiary 
hospital was used, which records the body composition of patients by means of 
impedance measurement at different consultations, up to 3 years of follow-up.

Finally, a sample of 100 people was selected from the database that had 1,400 
patients.

Inclusion criteria:

• Patients referred from primary care, less than 14 years of age at the time of 
referral, who present a lack of weight control.

• Minimum age 6 years, due to impedance measurement limitation.

• Minimum longitudinal follow-up 12 months (at least 2 visits).

Deferral criteria:

• Patients with syndromic or similar diseases that could justify their overweight 
or obesity.

Children with obesity who meet the criteria are weighed with a bioelectrical 
impedance scale. Thanks to this type of measurement, we have access to the fol-
lowing measurements for each patient: weight (kg), height (cm), body mass index, 
basal metabolism (kcal), percentage of body fat mass, percentage of lean body mass 
and percentage of total body water. Before they step on the scale, they are asked to 
urinate so that the amount of body water is not overestimated and the calculation is 
as accurate as possible. Once the child is on the scale, the scale emits an impercep-
tible electrical signal that interacts with all water-containing body structures. In 
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this way, the fat-free body mass, the lean body mass and indirectly, because there 
is no water, the body fat of the patient is calculated. In addition, the scale provides 
the child’s height, total weight and basal metabolism. All these data are stored in a 
database and can be compared at subsequent check-ups. The method is completely 
painless for the patient and very fast, taking only a few seconds.

5. Results

As shown in Figures 1 and 2, the type of patient who mainly attends these 
consultations are 11-year-old girls. In girls, it is observed that most of them start the 
follow-up at two different ages or at 8 years of age or, mostly, at 11 years.

On the other hand, as shown in Figure 3, males constitute less than half of the 
sample and, in general, they start their follow-up at the age of 9 years, following a 
homogeneous trend between 8 and 11 years of age.

The entire sample studied presented a basal metabolism lower than that corre-
sponding to their age and sex, on average the difference was −209 kcal in both boys 
and girls.

In light of this analysis, Figure 4 shows that the mean basal metabolic rate at the 
first visit for boys was 1664 ± 262.54 kcal, and 1408 ± 125.54 kcal for girls. Whereas, 
according to their theoretical water needs calculated with the TBW prediction equa-
tions (18), the ideal basal metabolic rate for boys would be 1740 kcal and for girls an 
average of 1700 kcal.

All patients who come for obesity control are instructed in standardized child 
nutrition educational programs.

After the first 12 months of follow-up, basal metabolism in both sexes increased. 
Boys reached 1738 ± 276.84 kcal and girls reached 1449 ± 123.20 kcal.

The calculated theoretical basal metabolism increases steadily with age. This 
trend is also observed in Table 1, although with lower values than the desired val-
ues, it is maintained in the sample analyzed in all age ranges except at 9 years of age; 
at this age the basal metabolism has values more similar to the calculated theoretical 
metabolism with a difference of −85 kcal.

Figure 1. 
Percentage distribution of the sex of the pediatric population studied attending hospital consultations for 
weight control.
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After one year of follow-up, all age groups achieved a decrease in body fat mass 
content. The higher success rate was at 11 years, achieving a reduction of almost 2% 
in fat mass.

At 9 years of age, despite a basal metabolism more similar to the theoretical one, 
the lowest rate of reduction in fat content is achieved per year, that is −0.4%.

After three years, there continues to be an overall decrease in the percentage of 
fat mass. The 7 and 9-year-old groups, after three years of follow-up, show a slight 
increase in their fat content (+ 1.6% and + 0.9%, respectively), corresponding to 
the start of adolescence.

Whereas the 10-year-old group, after three years achieved a reduction of 4.5%.
A greater difference is observed in the 14-year-old group, but due to such 

extreme data and the low prevalence of the sample at this age, they are considered 
non-representative values.

Regarding the study of body composition by sex:
At the beginning of the control, the boys had an average of 36.4 ± 6% of fat mass 

and the girls an average of 37.1 ± 3% of fat mass.

Figure 2. 
Percentage age distribution of the pediatric population studied attending hospital consultations for weight 
control.

Figure 3. 
Percentage distribution of age of onset for hospital weight control, by sex.
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After the first year, as shown in Figure 5, there is a decrease in fat content in 
both sexes. Boys had around 34.2 ± 6% of fat mass (−2.2%) and girls 35.9 ± 4% 
(−1.2%).

After one year, the boys in the study show an increase of 2.2% (65.8 vs. 63.6%) 
in lean body mass content. Of this, 72% of this increase corresponds to mineral-
protein components. So these boys have increased height and their muscle 
development.

The girls in the study, after the first check-up per year, increased their lean 
body mass content by 1.2% (62.9 vs. 64.1%), of which 75% corresponds to mineral-
protein component and the remaining 25% to body water.

Looking at Figure 6 68% of the patients, regardless of their age or sex, achieved 
a reduction in fat content after one year of control, so it can be said that they actually 
managed to lose weight. After three years, 61% of the sample persists in a decrease in 
their body fat content, the remaining 7% gain fat, that is, they gain weight.

Figure 4. 
Real basal metabolism and theoretical basal metabolism calculated by sex of the pediatric population 
attending hospital for weight control.

AGE at the start 
of follow-up

BM 
medium

BM theoretical 
medium

Mean 
difference 

BM

EvoBFM
After 
12 m

EvoBFM
After 
36 m

7 1.315 kcal 1.422 kcal −107 −0,5 1,6

8 1.409 kcal 1.517 kcal −108 −1,7 −1,5

9 1.534 kcal 1.619 kcal −85 −0,4 0,3

10 1.481 kcal 1.691 kcal −210 −1,7 −4,5

11 1.505 kcal 1.817 kcal −311 −1,9 −2,2

12 1.560 kcal 1.878 kcal −318 −0,7 −1,0

13 1.717 kcal 2.077 kcal −360 −2,3 −2,7

14 2.077 kcal 2.237 kcal −161 −16,2 −11,5

Table 1. 
Evolution of actual and theoretical basal metabolic rate and body fat mass in the pediatric population by age 
group at the beginning of the hospital weight control intervention.
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After three years, looking again at Figure 5, the fat content in boys was reduced 
to 30 ± 7.5%. Girls, on the other hand, increased the fat content compared to the 
previous control, (+ 0.5% GM) although they do not reach initial figures.

Despite finding numerical differences, this result of body composition after 
three years for BFM, LBM and TBW are not statistically significant, since Levene’s 
test for equality of variances show a p > 0.05.

54% of boys after three years achieved a reduction in fat mass compared to 36% 
of girls.

Most of the patients who achieved a reduction in fat mass after three years of 
follow-up are those who started the control at 11 years.

Regarding the relationship between the kg of weight and the weight situation of 
the pediatric population: (Figures 6-10).

Figure 6. 
Evolution of the proportion of patients reducing or increasing body fat mass over time.

Figure 5. 
Evolution over time at the beginning, at 12 months and at 36 months of the percentage of body fat mass in the 
patients studied for weight control in the hospital. Differentiation between boys and girls.



137

Influence of the Basal Metabolic Profile on the Evolution of the Pediatric Patient with Obesity
DOI: http://dx.doi.org/10.5772/intechopen.98526

In the first year, 86% of the studied sample increased their initial weight and 45% 
their BMI value. Whereas, in the same time, only 31% increased their body fat content.

The same occurs after three years, 100% increased their initial weight and 86% 
increased their BMI, but 61% decreased their fat content.

The lack of relationship between weight and body fat content is observed, which 
is really harmful to health.

Finally, it was studied which of all the available variables had the most influ-
ence on these results, and it was the value of the basal metabolism that the patient 
presents at the beginning of the follow-up was different between girls and boys, 
better at first one than second one.

Figure 7. 
Percentage evolution of weight in kilograms after 12 months of follow-up in hospital consultations.

Figure 8. 
Percentage evolution of BMI, after 12 months of control in hospital consultations for weight loss.

Figure 9. 
Percentage evolution of weight in kilograms after 36 months of follow-up in hospital consultations.
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6. Discussion

Childhood obesity is a problem of increasing importance in our society. 
Knowing its characteristics would allow different strategies to be taken for a better 
treatment and diagnosis of these cases.

One of the strategies is to know if those girls and boys who have a worse evolu-
tion are those who either move less, consume more food or, on the contrary, their 
body could have a lower metabolism. The present essay focuses on this possible 
third cause in which it was called the Thrifty Gene syndrome. Among the main 
methods of the study of consumption, the bioelectrical impedance measurement 
was chosen as it is a simple, cheap and easy-to-use method in clinical practice. It 
has been shown that the basal metabolism of these patients is globally lower than 
the theoretical one, more noticeable in girls as well as the presence of a higher 
percentage of fat mass in girls compared to boys, as it has been published in previ-
ous studies; In a novel way, it has been concluded that the patients who fare worse 
over a follow-up time of between 1 and 3 years are girls, who on average had a basal 
metabolism markedly lower than the theoretical one for their age and sex.

In turn, it is observed that after one year of follow-up and all of them employing 
standardized educational programs in child nutrition, the boys achieve a greater 
reduction in the percentage of fat mass. From this it can be deduced that a basal 
metabolism more similar to the needs intervenes positively when it comes to burn-
ing the excess of body fat.

It was observed how 86% of the individuals in the study after one year of follow-
up gained weight, while only 31% presented an increase in their fat content. From 
this it can be deduced that the changes in nutritional habits of these patients, added 
to their growth, influence weight gain at the expense of increasing other param-
eters, without the need for an increase in fat content. There is a risk of committing a 
bias when assessing the total weight by not perceiving that there has been a decrease 
in fat content at the cost of an increase in muscle mass. In the pediatric population, 
the gross data of total weight and BMI are not faithful to the seriousness of this 
disease and its evolution, what makes more interesting to know their body composi-
tion. One of the most reliable methods to determine this composition is bioimped-
ance measurement, such as the one used in this study.

It has previously been shown how after 12 months of follow-up, the boys 
reduced their LBM by 2.2%, therefore an increase in BFM and that, of this, 72% 
corresponded to the mineral-protein component. The girls in the same period, 
reduced the BFM more discreetly, a 1.2%, and the increase of the mineral-protein 
component was of 75%.

Figure 10. 
Percentage evolution of BMI, after 36 months of control in hospital consultations for weight loss.
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A growth in height and an increase in muscle content can be seen, greater in 
girls, this can be a result of the fact that they start puberty two years earlier. This 
growth period would be key to achieving a reduction in fat mass and for overweight 
or obese patients to be normal weight.

Regarding the fat content by sex, both presented on average very similar per-
centages, although the girls presented slightly higher numbers. Interestingly, it was 
observed that the boys after re-evaluating them after 12 months achieved a greater 
reduction, twice that of the girls. It can be deduced that, given the same adherence 
to nutritional programs, since both achieve a reduction, boys perform on average 
more physical activity than girls, which influences basal metabolism and a subse-
quent decrease in fat content.

One of the purposes was to find out which of the variables, of all available, 
had the most global influence on the results of the population. Characteristically, 
the value of the basal metabolism of the boy and girl at the time of the start of 
follow-up, turned out to be the variable that most influences the evolution of these 
patients, regardless of other variables such as sex, age, BFM at the beginning, etc.

It can be observed how basal metabolism can influence a person’s tendency to 
gain weight. For example, a person with a low basal metabolic rate (who therefore 
burns fewer calories while resting or sleeping) will tend to gain more pounds of body 
fat over time than a similarly tall person with an average basal metabolic rate who 
eats the same amount of food and practices the same amount of physical exercise.

7. Conclusion

It is observed in our sample that the fat content of the patients in this practice 
and their body weight do not follow a direct relationship with each other. Our 
sample describes different types of patients: those who lose weight and those who 
gain weight, but this is not always related to a change in fat mass, as the study shows 
that there are patients who gain weight, but on the basis of lean mass. This is impor-
tant because if we only look at the weight variable we could be biased by continuing 
to classify a child as overweight when what has actually increased is lean mass and 
may have increased muscle power.

In our sample of patients, we observed that boys have a higher basal metabolism 
than girls, which could be due to differences due to sexual dimorphism or, as has been 
published in several previous studies, to the fact that they are more physically active.

In view of these results and the importance of the situation of obesity in the 
child population, we propose to carry out a new study that includes variables that 
were not included in this study to analyze in more detail the child population 
affected by obesity, such as ethnicity, the type of family to which they belong, the 
economic resources they have and customs.

On the other hand, it would also be interesting to evaluate body composition, 
not only by age and sex, but also taking into account pubertal development, that is, 
the Tanner stage at the time of data collection.

Due to the current mobility restrictions and economic crisis derived from the 
COVID-19 pandemic worldwide, it would be interesting to study its impact on  
the weight control and prevalence of this disease in the population, especially in the 
pediatric population.

We emphasize the importance of the impedance measurement study and to 
focus efforts on the population with the worst basal metabolism and to contribute 
to improving the efficiency and effectiveness of the scarce health resources that we 
have. Achieving an effective action in childhood obesity will improve life expec-
tancy and its quality in adulthood.
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Abstract

Adipose tissue (AT) in the body plays a very important role in the regulation of 
energy metabolism. AT regulates energy metabolism by secreting adipokines. Some 
of the adipokines released are vaspin, resistin, adiponectin, visfatin and omentin, 
and leptin. In addition to regulating energy metabolism, leptin plays a role in the 
regulation of many physiological functions of the body such as regulation of blood 
pressure, inflammation, nutrition, appetite, insulin and glucose metabolism, lipid 
metabolism, coagulation, and apoptosis. Among all these physiological functions, 
the relationship between leptin, oxidative stress, and apoptosis has gained great 
importance recently due to its therapeutic effect in various types of cancer. For this 
reason, in this study, the release of leptin, its cellular effects and its effect on oxida-
tive stress, and apoptosis are discussed in line with current information.

Keywords: Apoptosis, leptin, obesity, oxidative stress

1. Introduction

Obesity is defined as a chronic disease that results in an increase in adipose tissue 
(AT) in the body as a result of the energy intake being more than the energy spent. 
Today, it has become a common and important health problem in both developed 
and developing countries due to various reasons such as changes in eating habits 
and inactivity [1, 2]. Obesity directly or indirectly affects national economies. 
Obesity causes an increase in the rates of noncommunicable diseases, damage to 
various organs, shortens the life span, and negatively affects the quality of life [3–5]. 
In the case of obesity, which is so important, the level of leptin increases. Leptin 
is an adipokine secreted in fat cells [6]. After leptin is released from the fat cell, it 
reaches the central nervous system via the blood, binds to its receptor, and reduces 
food intake through this receptor [7, 8]. Leptin is produced by the obese (ob) gene 
in adipose cells by encoding it into mRNA [9, 10]. As the number of fat cells in the 
body increases, the plasma leptin level also increases. While leptin decreases plasma 
glucose and insulin levels, it increases metabolic rate and physical activity, resulting 
in a decrease in body fat [11]. It has been determined that leptin, which has such 
important effects on fat cells and hunger, is effective on cancer cells. In line with this 
information, this study aimed to explain leptin synthesis, its receptor, factors affect-
ing its release, and the relationship between leptin, oxidative stress, and apoptosis.
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2. Leptin

Leptin (a fat tissue hormone), the ob gene product, was the first adipokine 
discovered. Its discovery is based on work done in the 1950s. It begins with the 
researchers’ discovery of two genes, called diabetic (db/db) and obese (ob/ob), in 
two separate strains of mice [12, 13]. In a study conducted in these mice, which have 
the same phenotypic characteristics (such as insulin resistance, morbid obesity, 
lethargy, and infertility), blood leptin level was found to be deficient in the ob/ob 
gene product, while the db/db gene product was found to have a deficient leptin 
receptor. In addition, in the study where db and ob genes were examined in detail, 
db/db and ob/ob mice were both three times heavier than controls, and both groups 
of animals had five times more fat than the control [14]. About 40 years after the 
first studies, the ob or Lep gene encoding leptin was discovered and given this name 
because of its weak meaning [15]. About a year later, the isolation of the leptin 
receptor gene was reported [16].

The mouse leptin gene size is 4.5 kilobases long containing 167 amino acids [15]. 
Regulation of the leptin gene initiator that controls leptin production, is mediated by 
glucocorticoid response elements, CCAAT/enhancers, cyclic adenosine monophos-
phate (cAMP), and specificity protein 1 (SP1) binding sites [17]. Studies have shown 
that human leptin is 84% similar to mouse leptin and 83% to rat leptin [18]. Besides, 
a positive correlation was found between plasma leptin concentrations and AT leptin 
mRNA levels. Therefore, as leptin mRNA increases, plasma leptin concentrations also 
increase [19].

Human leptin is produced from a gene on chromosome 7. The structure of 
human leptin, a 16 kilodalton protein, is in the form of a 4 α helical bundle coil, like 
class-I helical cytokines [20]. The most highly conserved amino acid extension is 
the GLDFIP sequence [21, 22]. Leptin, synthesized by adipocytes, is a hormone that 
notifies the brain of energy reserves and affects metabolism, reproduction, growth, 
and development processes [16, 22]. Circulating leptin levels act at the hypothalamic 
central level to increase energy expenditure and reduce food intake when the body 
is well nourished [23]. It induces the storage of triglycerides in AT and has an effect 
on appetite [7]. When plasma leptin levels increase, it sends a signal of satiety to 
the brain in the short term, while it sends information about the energy status in 
the long term [24]. It also influences hypothalamic neuropeptide signaling [25]. The 
main physiological role of leptin during periods of hunger is to regulate the neuro-
endocrine system. With regard to obesity, leptin levels rise with increasing adiposity 
[26]. Circulating leptin levels are high in obese, pointing to the importance of leptin 
resistance in the obese [24]. Leptin-deficient mice have been found to show neuro-
endocrine abnormalities similar to starving mice. Leptin supplementation causes 
neuroendocrine normalization and reduced food intake in leptin-deficient obese 
rodents and humans, thereby reversing obesity [10]. Mutations of the ob gene result 
in leptin resistance and extreme obesity in mice [15]. Ob/ob mice have neuroendo-
crine abnormalities and they are generally classified as hyperphagic, hypothermic, 
morbidly obese [27].

It has been reported that leptin plays a proinflammatory role by increasing the 
inflammatory immune response, and this is associated with the pathogenesis of 
many complications of obesity [28]. It is noted that leptin can affect both adaptive 
and innate immunity by inducing proinflammatory response and thus playing a key 
role in regulating the pathogenesis of various autoimmune/inflammatory diseases 
[29]. It has been shown that as the degree of obesity increases in adults, the levels of 
plasminogen activator inhibitor-1 (PAI-1) and leptin, which is a proinflammatory 
marker, increase. It has been reported that it is responsible for the proinflammatory 
process, which is associated with an increased level of obesity [30]. Leptin regulates 
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the functions of immune cells, such as natural killer cells, dendritic cells, neutro-
phils, eosinophils, macrophages, and basophils [23].

3. Leptin synthesis

Effector systems that control energy intake and energy expenditure, hypo-
thalamic control centers where leptin signals from different sources are received, 
and the size of AT mass are the regulatory steps of leptin synthesis [31]. The major 
sites of leptin mRNA expression are in the stomach, liver, and AT [32]. Leptin 
mRNA is also expressed at minor levels in the fetal tissue, placenta, heart, brain, 
and pituitary gland [18]. Leptin synthesized is generally related to the degree of 
adiposity. Larger adipocytes express more leptin genes than smaller adipocytes [33]. 
Mechanical stretching of the fat cell, determined by the amount of stored triglycer-
ides, can generate signals to increase leptin synthesis [24]. In addition, in humans, 
uridine diphosphate N-acetylglucosamine (UDPGlcNAc) and hexosamine act as 
potential links between cell size and leptin content. Body mass index is positively 
correlated with the amount of UDPGlcNAc in subcutaneous AT [34].

The composition of the food, not the amount, affects leptin production [35]. The 
composition of a meal affects leptin levels; for example, low-fat and high-carb food 
causes increased leptin levels [36]. Compared to high-carbohydrate meals, high-fat 
meals lower circulating plasma leptin levels 24 hours after a meal [37]. It has been 
reported that meals rich in ω-6 polyunsaturated fatty acids (PUFA) increase leptin 
production [35]. It has been reported that the protein composition of a meal does 
not affect leptin production [38].

Gender differences have an effect on leptin production. Although there is no 
difference in leptin levels between girls and boys in the prepubertal period, leptin 
levels increase in girls and decrease in boys with puberty development [39, 40]. This 
is explained by the fact that with puberty, the amount of body fat in girls increases 
more than in boys, and testosterone suppresses leptin levels in boys [41]. In addi-
tion, the fact that the subcutaneous AT mass is significantly larger than the omental 
fat mass of women is also among the factors [39]. Reproductive hormones greatly 
affect leptin production. Androgenic hormones inhibit leptin synthesis, while 
estrogens stimulate leptin synthesis [42]. In one study, it was thought that increased 
estrogen concentrations caused an increase in leptin concentration, which may 
have been caused by leptin stimulating gonadotrophin releasing hormone (GnRH) 
synthesis and thus increasing estrogen synthesis [43]. In addition, chronic insomnia 
and an increase in melatonin concentrations have been reported to decrease plasma 
leptin concentrations [44].

4. Leptin release factors

The immune system has a role in regulating energy expenditure and AT lipolysis 
[45]. White adipose tissue (WAT) is the primary energy store; brown adipose tissue 
(BAT) is associated with heat production. Sympathetic activity in WAT is increased in 
conditions associated with decreased leptin synthesis/secretion, such as cold exposure 
and starvation. By the way, catecholamine and β-adrenoceptor agonists inhibit leptin 
production; this suppressive effect is mediated by β3-adrenoceptor agonists, which 
actively reduce leptin levels [46]. Leptin also causes sympathetic nervous system 
activation, resulting in regulatory feedback inhibition [47]. Intracerebroventricular 
injections of leptin have been noted to increase metabolic rates through increased 
norepinephrine release from sympathetic nerve terminals innervating BAT [48].
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After a meal, plasma insulin and amino acid levels initiate the mammalian 
target of rapamycin (mTOR) pathway, which stimulates leptin biosynthesis via 
mechanisms involving the 5′/3′ untranslated region (UTR) [49]. Cyclic AMP 
activates cyclic AMP-activated exchange proteins (EPACs). Deletion of EPAC1 
genes causes an increase in leptin sensitivity in the hypothalamus. EPAC1 is also 
involved in leptin secretion and expression in WAT [50].

Leptin antagonizes orexigenic pathways and stimulates anorexigenic pathways. 
Leptin exerts its general effects on the nervous system through these pathways 
[7]. Orexigenic neuropeptides that are down-regulated by leptin are orexins, 
agouti-related peptides, neuropeptide Y, and melanin-concentrating hormone. 
By the way, the anorexigenic neuropeptides upregulated by leptin are alpha-mela-
nocyte-stimulating hormone, which acts on corticotropin-releasing hormone, 
cocaine and amphetamine-regulated transcript, and melanocortin-4 receptor 
(Figure 1) [31].

Glucocorticoids are long-term regulators of leptin expression [52, 53]. They 
increase leptin mRNA levels by acting on adipocytes; in vitro incubation of a 
synthetic glucocorticoid in rats, adipocytes have been found to increase leptin 
secretion [54]. Oral glucocorticoids doubled serum leptin levels and leptin 
mRNA 24–48 hours after absorption. Furthermore, cell cultures incubated with 
a glucocorticoid and insulin combination synergistically increased leptin mRNA 
levels [55].

Lactates and hexoses also increase leptin secretion [56]. Because leptin secretion 
requires ATP, suppressing glucose uptake suppresses leptin secretion. When the 
energy supply is low, food is needed to increase it. Glucose, the cellular sensor of 
energy stock, stimulates leptin gene expression and secretion in both muscle and AT 
via hexosamine biosynthetic [57]. Insulin lowers blood sugar when glucose levels 
rise above normal and also increases leptin promoter activity [58]. No increase in 
leptin mRNA levels was observed after adipocytes were incubated with insulin for 
1–2 hours, but an increase in leptin release was observed [54].

Regulation of tumor necrosis factor-alpha(TNFα) and leptin may be inter-
dependent and similar as they have comparable functions such as suppressing 

Figure 1. 
The leptin/Melanocortin pathway. ARC; the arcuate nucleus of the hypothalamus, POMC; 
proopiomelanocortin, Ob-R; leptin receptor, PVN; paraventricular nucleus, MSH; melanocyte-stimulating 
hormone (α-MSH,β-MSH,γ-MSH), MC4R; melanocortin-4 receptor, SIM1; single-minded 1 [51].
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lipid synthesis, reducing food intake, and stimulating lipolysis [59]. Leptin limits 
AT mass. TNFα has the role of stimulating leptin secretion from mature human 
adipocytes. TNFα therapy has been shown to cause increased leptin levels in 
humans [60].

5. Leptin receptor and leptin resistance

Leptin receptors are in the family of cytokine receptors. There are six isoforms 
encoded by the LepR gene. The OB-Rb receptor is the dominant longest form. Its 
mutations cause obesity because it cannot bind to the receptor [16]. Obese people 
have high leptin levels. Circulating leptin levels are correlated with body mass index 
[61]. On the other hand, in diet-related exogenous obesity, studies in fat mice and 
humans without leptin deficiency, it has been shown that external leptin treatment 
does not provide a significant reduction in body weight and food intake [62]. In 
obese people, leptin levels increase, but hyperglycemia-correcting or appetite-
reducing effects are not observed [63]. Despite the increased leptin levels in obese 
patients, the absence of the functions of leptin, an appetite-reducing hormone, sug-
gests leptin resistance [64]. It has been suggested that leptin resistance plays a role 
in the pathogenesis of obesity triggered by overeating [65]. However, the molecular 
mechanisms underlying leptin resistance have not yet been clearly elucidated. The 
inability of leptin to cross the blood–brain barrier, inhibition of the intracellular 
leptin signaling pathway in neurons, and/or downregulation of leptin receptors are 
thought to be the underlying mechanisms of leptin resistance. It has been reported 
that a high-fat diet causes an increase in fat mass, leading to hyperleptinemia and 
triggering leptin resistance [66]. In high-fat rats (fa/fa), substitutions in OB-Rb 
result in reduced signaling capacity, leptin binding affinity, and cell surface expres-
sion [67]. Obese fa/fa rats have leptin resistance and are not sensitive to the effects 
of leptin. Although obese people may have high plasma leptin concentrations due to 
leptin resistance, they do not experience the effects of leptin [19].

In gastric chief cells (also known as zymogenic cell or peptic cell), leptin is 
released upon sensing gastrin and secretin and it is actively inhibited by cholecys-
tokinin [68]. The binding of leptin to its receptor activates the Janus kinase (JAK) 
signal transducer and activator of the transcription 3 (STAT3) signal transduction 
pathway, inducing cellular anti-apoptotic events, angiogenesis, and proliferation 
[69, 70]. The gene product also interacts with IL-1 and Notch cascade, which are 
involved in promoting tumor growth. Some other pathways activated are mitogen-
activated protein kinases/extracellular signal-regulated kinases pathway (MAPK/
ERK), phosphatidylinositol 3 kinase (PI3K), 5′AMP activated protein kinase 
(AMPK), and mTOR [71].

6. Leptin-related cellular pathways

After leptin binds to its receptor on the cell membrane, it acts by stimulating the 
following signaling pathways in the cell.

6.1 JAK2/ STAT3 signaling pathway

In the activation of this signaling pathway, leptin is activated by phosphoryla-
tion of its receptor, binding of STAT3, and phosphorylated by JAK2 [72]. Activated 
STAT3 enters the nucleus and binds to target sites on DNA; and so cellular activity 
takes place (Figure 2).
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6.2 SHP2/ERK signaling pathway

Stimulation of the leptin receptor activates the protein tyrosine phosphatase 2 
(SHP2), contributing to the activation of the ERK signaling pathway, resulting in a 
cellular response [72, 74].

6.3 JAK2/STAT5 signaling pathway

As a result of the stimulation of the receptor, it provides activation of STAT5 by 
JAK2. Activated STAT5 acts by binding to the target region in the nucleus [75].

6.4 IRS/ PI3K Signaling pathway

Leptin also activates the IRS (insulin receptor substrate)/PI3K (phosphoinositol 
3 kinase) pathway [76, 77] (Figure 2). The SH2B1 adapter protein mediates activa-
tion of the PI3K pathway by linking the JAK2 and IRS protein via the SH2 domain 
[78]. In addition, the IRS/PI3K pathway proceeds in two substeps, FoxO1 (forkhead 
box O1) and mTOR (the mammalian target of rapamycin) (Figure 2).

7. The relationship between leptin and oxidative stress

Oxidative stress results from an imbalance between reactive oxygen species 
(ROS) and the organism’s antioxidant defense. Due to oxidative stress, peroxida-
tive damage to macromolecules and membranes of cells occurs in organisms. 
Moreover, their metabolic activities in cell components are impaired. Known 
to tissue and organ pathologies occur in the presence of oxidative stress in the 
organism [79–86]. It has been reported that high leptin levels can induce the 
formation of ROS, mainly due to nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase activation [87, 88]. However, leptin replacement therapy has 
also been shown to significantly downregulate NADPH oxidase expression in AT 
of leptin-deficient ob/ob mice [89]. This indicates that leptin has a protective role 
at normal levels.

Figure 2. 
Leptin signaling pathways. POMC;pro-opiomelanocortin, SOCS3; intracellular suppressor of cytokine signal 3, 
PTP1B; protein tyrosine phosphatase 1B, SHP2; tyrosine phosphatase 2, IRS; (insulin receptor substrate)/PI3K; 
(phosphoinositol 3 kinase), FoxO1; (forkhead box O1) and mTOR; (mammalian target of rapamycin), S6K; 
ribosomal S6 kinase, ERK; extracellular signal-regulated kinase [73].
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Free radical-mediated peroxidation of membrane lipids loses its integrity, 
increasing membrane fluidity and permeability. The lipid peroxidation process is 
one of the oxidative conversions of PUFAs to products known as malondialdehyde 
(MDA). MDA is a highly toxic molecule and its secondary products such as thiobar-
bituric acid reactive agent are commonly used to assess lipid peroxidation [90–94]. 
Glutathione (GSH) is an important nonenzymatic component of the cellular 
antioxidant system and plays an important role in ROS antioxidation [95–97]. It has 
been suggested that leptin modulates the activity of various antioxidant enzymes 
such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) in patients 
with leptin gene mutations [98]. Leptin production is increased by overexpression 
of the endogenous antioxidant enzyme catalase and correlates with markers of 
oxidative stress and inflammatory in ob/ob mice [99]. In another study, enzymatic 
antioxidants including catalase and GSH levels were increased by leptin treat-
ment in ob/ob mice, and leptin treatment decreased MDA levels in rats exposed to 
oxidative stress [100, 101]. It is noted that leptin treatment reverses the effect of 
streptozotocin (STZ)-induced diabetes by lowering glutathione and catalase levels 
and increasing lipid peroxidation [102, 103] It has been reported that defective 
antioxidant enzyme activity is recovered after leptin treatment in the plasma of 
humans with leptin gene mutations and ob/ob mice [97, 104]. They are most likely 
the result of the modulatory effect of leptin on metabolic and hormonal disorders. 
Recombinant leptin treatment leads to weight loss by reducing food intake and has a 
reducing effect on oxidative stress caused by a high-fat diet [105].

Hyperleptinemia is the most prominent feature of obesity and is likely to be 
involved in the pathogenesis of obesity-related pathologies [19]. Studies in obese 
individuals have shown a correlation between leptin levels and oxidative stress 
parameters such as nitric oxide (NO), superoxide anion (O2

−.), peroxynitrite, MDA, 
hydroperoxides, protein carbonyl (PC) contents, GSH, and SOD [106–108]. Studies 
in which hyperleptinemia was induced by the administration of exogenous leptin in 
nonobese animals suggest that leptin increases the level of systemic oxidative stress 
[109, 110]. In addition, some in vitro studies have shown that in the presence of high 
leptin concentration, ROS production is stimulated by endothelial cells, inflammatory 
cells, and other cell types [111–113]. In another in vitro study, it was noted that leptin 
significantly decreased pro-oxidant biomarkers such as MDA and NO and increased 
antioxidant markers such as total antioxidant capacity (TAC), SOD, and GPx against 
cryopreservation-induced oxidative stress in rabbit embryos. It has been suggested that 
leptin can be used as an antiapoptotic and antioxidant promoter to support embryonic 
development in vitro under oxidative stress induced by cryopreservation [114]. In one 
study, treatment with high glucose caused an increase in oxidative stress in pheochro-
mocytoma (PC12) cells with excessive ROS and MDA production and depletion of 
GSH content, however, leptin treatment caused a decrease in MDA and ROS levels 
and an increase in GSH content, resulting in hyperglycemic PC12 cells. It has been 
reported to significantly reduce the oxidative damage mediated by reactive oxygen 
species caused by the condition. Therefore, it was stated that leptin may have a protec-
tive effect against oxidative stress and apoptosis mediated by reactive oxygen species 
caused by the hyperglycemic state [115]. In addition, hypothalamic oxidative stress 
induces leptin resistance, which leads to the induction of insulin resistance and obesity. 
Activation of nuclear factor erythroid 2–related factor 2 (Nrf2) suppresses hypotha-
lamic oxidative stress and improves leptin resistance in the hypothalamus [116].

8. The relationship between leptin and apoptosis

Recently, some studies have shown that there is an important relationship 
between leptin and apoptosis; such as in a study, it was determined that there is a 
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leptin receptor (Ob-R) on the surface of breast cancer cells. Leptin is thought to 
stimulate these cancer cells with various effects, such as migration and spread. It has 
been determined that the expression of Ob-R increases as the tumor grows [117]. 
Another study reported that leptin may affect the risk of breast cancer by increas-
ing estrogen synthesis [118, 119]. It is believed that leptin, which is associated with 
breast cancer, exerts this effect by affecting the JAK/STAT and MAPK pathways, 
as well as increasing the transcriptional expression of vascular endothelial growth 
factor receptor-2 (VEGFR-2) and VEGF [120]. In another study, it was determined 
that the ratio between leptin and adiponectin is important in regulating the devel-
opment of breast cancer [121]. Again, in some studies, it has been determined that 
leptin triggers cell proliferation by stimulating the MAPK pathway in breast cancer 
cells [122]. It has been observed that leptin also stimulates estrogen receptors via 
MAPK in breast cancer cells [123].

It has also been reported that leptin is associated with lung cancer. Ob-Ra and 
Ob-Rb were expressed on the surface of lung cancer cells. It has been determined 
that leptin plays a role in the development and progression of lung cancer as 
well as its migration [124, 125]. It has been reported that leptin also increases 
cytokine production by stimulating JAK/STAT3, PI3K/AKT, and MEK1/2 signal-
ing pathways [126]. In a study, it was determined that the removal of leptin from 
the medium in non-small cell lung cancer cell lines inactivates the JAK/STAT3 
and Notch signaling pathways, thus stopping cell proliferation and stimulating 
apoptosis (Figure 3) [128].

In some studies, leptin has been shown to stimulate cell proliferation and pre-
vent apoptosis by activation of the PI3K/AKT signaling pathway in thyroid cancer 
cells [129, 130].

Leptin has been reported to be associated with liver cancer [131]. In one study, 
they reported elevated leptin levels in patients with hepatocellular carcinoma 
[132]. It has been determined that leptin increases liver fibrosis by stimulating 
transforming growth factor-β (TGF-β) synthesis and release. It has also been 
reported that leptin stimulates the production of a tissue inhibitor of metallo-
proteinase1 through the JAK/STAT pathway in hepatic stellate cells [133]. Leptin 
has also been reported to cause the proliferation of hepatocellular cancer cells 
by altering cyclin D1, Bcl-2 (B-cell lymphoma-2)-related X protein (Bax), and 
apoptotic gene activity [134].

Figure 3. 
Leptin signaling. AKT; protein kinase B, GRB2; growth factor receptor-bound protein 2, JAK; Janus 
kinase, Ob-R; leptin receptor, MAPK; mitogen-activated protein kinase, FOS, JUN, JUNB; GENES PI3K; 
phosphatidylinositol 3 kinase, SHP2; Src homology 2-containing tyrosine phosphatase, STAT3; signal transducer 
and activator of transcription 3 [127].
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Another study demonstrated the presence of leptin receptors on the surface 
of human colon tumor cells [135]. In colorectal cancer, leptin acts as a very potent 
mitogen and antiapoptotic cytokine. It has been determined that leptin plays a role 
in many stages of this type of cancer [136, 137]. It has been reported that leptin 
increase is proportional to tumor development and tumor metastasis [138]. It has 
been determined that leptin exerts this effect via JAK and the extracellular signal-
regulating kinase (ERK) pathway [139]. In another study, they found that leptin 
prevented apoptosis and stimulated cell proliferation via PI3K/AKT/mTOR path-
ways in colon cancer cells (Figure 4) [141].

In a study conducted in ovarian cancer, it was determined that leptin is directly 
related to PI3K/AKT signaling pathways, antiapoptotic proteins XIAP (X-linked 
inhibitor of apoptosis), and Bcl-XL. By activating these pathways, leptin has been 
reported to suppress cell proliferation and apoptosis [142]. In another study, it was 
determined that leptin administration to epithelial ovarian cancer cells increases 
cancer cell proliferation in a dose-dependent manner, and this increase is done by 
suppressing genes that inhibit cell proliferation [143].

An increase in leptin levels has been found to be associated with the develop-
ment of prostate cancer [144]. It has been determined that leptin suppresses 
apoptosis in prostate cancer cells. Leptin has been reported to exert this effect via 
the MAPK and PI3K pathways [145]. It has also been reported that leptin stimulates 
the increase of (hypoxia-inducible factor 1), which is known to play an important 
role in carcinogenesis in prostate cancer cell culture and stimulates the spread and 
adhesion of these cells [146].

Figure 4. 
Intracellular signaling pathways of leptin in connection with cellular proliferation. AKT: Protein kinase  
B/serine–threonine kinase, ERK: Extracellular signal-regulated kinase, JAK: Janus kinases, MAPK: Mitogen-
activated protein kinase, MEK: Mitogen-activated protein kinase, mTOR: Mechanistic/mammalian target of 
rapamycin, Ob-R: Leptin receptor, PI3K: Phosphatidylinositol3-kinase, STAT: Signal transducer and activator 
of transcription [140].
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9. Conclusion

In conclusion, leptin is adiponectin released from AT. As a result of studies, it 
has been reported that leptin is associated with oxidative stress and apoptosis, as 
well as regulating body energy metabolism and food intake. Knowing the release of 
leptin, its receptor, cellular effects, and especially the relationship between oxida-
tive stress and apoptosis will guide various studies on this subject.
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Chapter 10

Drosophila Central Taste Circuits 
in Health and Obesity
Shivam Kaushik, Shivangi Rawat and Pinky Kain

Abstract

When there is a perturbation in the balance between hunger and satiety, food 
intake gets mis-regulated leading to excessive or insufficient eating. In humans, 
abnormal nutrient consumption causes metabolic conditions like obesity, diabetes, 
and eating disorders affecting overall health. Despite this burden on society, we 
currently lack enough knowledge about the neuronal circuits that regulate appetite 
and taste perception. How specific taste neuronal circuits influence feeding behav-
iours is still an under explored area in neurobiology. The taste information present 
at the periphery must be processed by the central circuits for the final behavioural 
output. Identification and understanding of central neural circuitry regulating taste 
behaviour and its modulation by physiological changes with regard to internal state 
is required to understand the neural basis of taste preference. Simple invertebrate 
model organisms like Drosophila melanogaster can sense the same taste stimuli as 
mammals. Availability of powerful molecular and genetic tool kit and well char-
acterized peripheral gustatory system with a vast array of behavioural, calcium 
imaging, molecular and electrophysiological approaches make Drosophila an 
attractive system to investigate and understand taste wiring and processing in the 
brain. By exploiting the gustatory system of the flies, this chapter will shed light on 
the current understanding of central neural taste structures that influence feeding 
choices. The compiled information would help us better understand how central 
taste neurons convey taste information to higher brain centers and guide feeding 
behaviours like acceptance or rejection of food to better combat disease state caused 
by abnormal consumption of food.

Keywords: Taste, neural circuits, pharynx, gustatory receptors, feeding behaviour

1. Introduction

The sense of taste is a fundamental sensory modality for all animals. It controls 
many behavioural decisions by processing and integrating information from the 
periphery. In all animals, gustatory system plays a critical role in evaluating the 
nutritional value of food. The sense of taste warms animals against consumption 
of spoiled/fermented or toxic compounds and orchestrate appetitive responses to 
energy, protein and calorie-rich food sources.

In humans, taste buds on the tongue can differentiate between the five basic 
tastes: sweet, sour, salty, bitter, and umami (a savoury taste) by processing the taste 
information in the brain. These are important building blocks for our understand-
ing of flavour. Animals show attraction towards low salt, sweet and umami taste 
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and aversive behaviour towards high salt, bitter and sour foods. Such responses 
are innate and largely invariant throughout animal’s life suggesting physiological 
 hard-wiring of taste quality to hedonic value.

For decades, flies have been used as a genetically accessible system to study 
molecular mechanisms that coordinate feeding behaviour with sensory signals. 
They show an array of feeding characteristics that can be easily exploited for 
various behavioural and physiological analysis. Identification of gustatory che-
mosensory receptors has provided a major impetus in understanding taste signal 
transduction [1–5]. Gustatory sensory neurons located in external mouth region 
as well as internally in the pharynx project to sub esophageal zone (SEZ-a region 
implicated in feeding and taste) [5–8]. Much less is known about the organization 
of the SEZ. Very few neurons that connect SEZ to higher brain centers have been 
identified. These circuits represent critical higher-order features of gustatory 
system including various set of interneurons, projection neurons, modulatory 
neurons and motor neurons that help flies to process and integrate peripheral 
taste signals. Although recently, many studies have focused on understanding how 
gustatory neural circuits are spatially organized to represent information about 
taste quality. Yet, the role of various regions in the central nervous system (CNS) in 
integrating feeding behaviour with sensory signals on the availability and quality 
of nutrients is currently insufficiently understood. How central taste circuits play 
an important role in health and disease is still undetermined. In this chapter, we 
have assimilated the information together to present a map of various taste circuits 
identified in the past few years beyond the level of primary taste neurons specifi-
cally in Drosophila melanogaster. Hopefully the information provided in the chapter 
would be useful to gain insight into brain structures and the neural networks 
that control taste and feeding behavior in simple model organisms and may 
provide information that would be useful in combating obesity or other metabolic 
 disorders in humans.

2. Central taste circuits in humans

Tongue is the peripheral taste organ of the human taste system essential for 
tasting, chewing, swallowing and speech [9–11]. Tiny bumps present on the tongue 
called papillae give the tongue its texture. Many thousand taste buds cover the 
surfaces of the papillae that respond to taste and transmit that information from 
periphery to the CNS [9]. Different types of papillae are present on the tongue 
classified as circumvallate, fungiform, filiform and foliate. All except the filiform 
papillae are associated with taste buds. The most common mushroom-shaped 
fungiform papillae cover two third of the tongue and are involved in detecting taste. 
They also contain sensory cells for detecting touch and temperature. The human 
taste system, along with the olfactory and trigeminal systems, helps in identifying 
and controlling the nutrient versus toxic compounds that finally leads to acceptance 
and rejection behaviour [9, 12]. Inside the mouth, the chemical components of 
food interact with taste receptors cells located inside the taste buds on the tongue 
and evaluate the quality and intensity of the taste. The other areas where taste cells 
are present includes the back of the throat, and at the junction of the hard and soft 
palates, epiglottis, the nasal cavity, and even in the upper part of the esophagus 
[13, 14]. The current findings also suggest nutrient sensing and presence of taste 
receptors in the gut [15–18].

Taste buds are generally present as clusters of 50-100 polarized neuro-epithelial 
cells which can detect nutrients and other chemical compounds. They have 
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numerous sensory cells that are in turn connected to many different nerve fibres 
[12, 19]. The first stage of gustatory signal processing starts with the taste buds. 
They communicate using electrical coupling via gap junctions and by cell to cell 
chemical communication via neurotransmitters including glutamate, serotonin, and 
ATP among other possible transmitters [20, 21]. Taste receptor cells get consistently 
replaced in taste buds to compensate the injury of the gustatory epithelia [22]. 
Several afferent nerves carry specific sensory information from a specific peripheral 
region. The chorda tympani (CT), a branch of the facial nerve (cranial nerve VII), 
transmits gustatory information from fungiform papillae, while the lingual branch 
of the trigeminal nerve (cranial nerve V) carries information from fungiform 
about pain, tactile, and temperature and filiform papillae in the same area [23, 24]. 
Multimodal information including taste, tactile, pain, and thermal cues get con-
veyed from circumvallate papillae by the glossopharyngeal nerve (cranial nerve 
IX), from palatal taste buds by the greater superficial petrosal nerve (GSP, another 
branch of VII), and from the throat by the superior laryngeal branch of the vagus 
(cranial nerve X) [25–28]. Foliate papillae are innervated by the CT (taste) and V 
(tactile) in anterior regions and by IX (multimodal) in posterior regions [29, 30]. 
All together taste and oral somatosensory cues combine centrally with retro nasal 
olfaction to generate the composite experience of taste [31].

The entire human taste system includes both peripheral receptors and central 
pathways. As afferent taste signals ascend the brain from caudal to rostral, the 
information flow split between the ventral forebrain and more dorsal thalamo-
cortical regions where primary and secondary gustatory cortices (opercular, 
insular, orbitofrontal) give rise to conscious taste sensation [32–34]. Taste 
qualities, attention, reward, higher cognitive functions and multiple-modal 
sensory integration are managed by multiple secondary and tertiary cortices 
that are involved in the dorsal pathways [20, 35, 36]. While sensory processing 
at the extent of the taste bud is complex, the information transfer to the CNS via 
marked line [37]. A gustotopic map has been produced when taste signals extend 
to the insula of the gustatory cortex [38]. Each individual taste has a representa-
tion in the insular cortex by fine-tuned cells organized in a precise and spatially 
ordered taste map with each taste quality encoded in its own stereotypical 
 cortical field [38].

The final step in perceiving taste is relaying the taste information collected 
by taste cells to the central nervous system via cranial nerves VII (Facial), IX 
(Glossopharyngeal), and X (Vagus), where there is a topographical representation 
of the oral cavity within the first nuclear relay, the solitary tract nucleus, in which 
brainstem reflexes of acceptance and rejection are controlled (Figure 1) [39]. The 
taste cells within the taste buds transduce the stimuli from the ingested food and 
provide additional information about the identity, concentration and pleasant or 
unpleasant quality of the substance [20]. Taste nerve fibers on stimulation by the 
binding of chemicals to their receptors, depolarize, resulting in an action potential 
that gets ultimately transmitted to the brain [19]. This information also prepares 
the gastrointestinal system to receive food by causing salivation and swallowing 
(or gagging and regurgitation if the substance is noxious). The principal receptors 
involved to transduce human sweet stimuli are T1R2/T1R3, T1R1/T1R3 for umami 
stimuli (although mGluR1, mGluR4 and NMDA have been implicated), and T2R 
family for bitter taste stimuli. Growing evidences have suggested the role of epithe-
lial sodium channel (ENaC) in part, in transducing salty taste, and acid sensing ion 
channels (ASICs) for sour taste stimuli [20, 40–42].

The ventral pathways are involved in autonomic and visceral functions, affec-
tive and emotional processing, memory and learning [43, 44] and ultimately, the 
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informational content and values of the ventral and the dorsal pathways integrate 
[45]. The circuitry is such that the cells make synaptic connection with primary sen-
sory axons that run in the chorda tympani and greater superior petrosal branches 
of the facial nerve. The taste cells in fungiform papillae on the anterior tongue are 
innervated exclusively by the chorda tympani branch of the facial nerve. In circum-
vallate papillae, the taste cells are innervated entirely by the lingual branch of the 
glossopharyngeal nerve and in the palate they are innervated by the greater superior 
petrosal branch of the facial nerve [46]. The lingual branch of the glossopharyngeal 
nerve and the superior laryngeal branch of the vagus nerve project into the rostral 
portion of the nucleus of the NST. The central axons of these primary sensory 
neurons in the respective cranial nerve ganglia project to rostral and lateral regions 
of the medulla [47, 48]. Secondary cortical taste area in the orbitofrontal cortex, 
present in the frontal lobe of the brain is responsible for decision making [49]. Here, 
single neurons respond to combinations of chemosensory, somatic sensory, olfac-
tory, and gustatory stimuli and even visual information [34]. Information about the 
temperature and texture of food transmit from the mouth via the cranial nerves to 
the thalamus and somatic sensory cortices [50].

In the orbital cortex, feeding to satiety with one food reduces the responses 
of those neurons to that particular food only suggesting computation of sensory-
specific satiety in the orbitofrontal neurons [51]. Hypothalamic nuclei project 
to and receive input from other extra hypothalamic brain regions such as the 
nucleus of the solitary tract (NTS) to regulate food intake and energy expenditure 
[52–58]. Hunger, satiety and food consumption neural regulations are directly 
control by the genetic influence on human obesity [34]. High sweet tastes are 
attractive while high bitter tastes are aversive, even in decerebrate animals and 
anencephalic humans [59, 60]. The brain ascent from caudal to rostral by the 
afferent taste signals where the information start breaking between the ventral 
forebrain and more dorsal thalamo-cortical regions then later opercular, insular, 
orbitofrontal (primary and secondary gustatory cortices) bring the awareness to 
taste  sensation [32].

Taste pathways in the CNS are intimately connected with general viscero sensory 
sensory nerves from the cardiovascular, respiratory and, importantly, gastrointesti-
nal systems [61]. Circulating metabolic signals modulate neural responses in relays 
of the taste system, such as the NTS, and in areas that receive direct or indirect 
gustatory afferents like the hypothalamic homeostatic centers and reward-related 

Figure 1. 
A portion of the taste pathway in the human brain. Taste information from taste receptor cells on the tongue 
(peripheral organ) is relayed to the nucleus of the solitary tract (NTS) in the medulla. Gustatory neurons in the 
NTS send projections to the thalamus, which in turn directs gustatory information to taste cortex in the brain.
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areas in the midbrain [62]. Vagus in particular contain afferent neurons that trans-
fer mechanical and chemical sensory information from the gastrointestinal tract 
(GIT) to the brain. The neural transmission of chemical information could result 
from recognizing signalling peptides, such as CCK, produced by enteroendocrine 
epithelial cells with chemo-sensing properties [63].

Although a great deal of information has been generated but elucidation of 
how taste intensity is encoded in the insular cortex is necessary to address. It is still 
unknown whether taste qualities with similar valence project to common targets in 
the brain. Tracing the connectivity of each basic taste qualities to higher brain areas 
is still incomplete and will help decipher how these integrate with other modali-
ties and combine with internal and external state for the final behavioural output. 
Hopefully understanding taste circuits in simple invertebrate model systems like 
Drosophila can help addressing these mysteries of the central taste system in higher 
animals.

3. Drosophila gustatory system and circuits

In the olfactory system of the adult fruit fly, the structure and function of the 
neural circuits involved in detecting and processing olfactory information are well 
known. Approximately 50 different classes of olfactory receptors neurons express 
a particular type of olfactory receptor. The olfactory sensory neurons expressing 
the same receptor projects its axon to a single glomerulus in the antennal lobe of 
the fly where synaptic association with projection neurons and local interneurons 
occurs. The projection neurons transfer processed sensory information from the 
glomeruli to higher order brain centers including mushroom bodies (MB) and 
lateral horn (LH) which further process olfactory information for behavioural 
functions such as learning and memory or appetitive and inhibitory response 
control [64–66].

On the other hand, the identified central taste circuits of the gustatory sys-
tem of Drosophila involved in sensory processing i.e. from detection to behavior 
are very few. The gustatory system of Drosophila is a commendable system for 
learning taste perception, taste modulation and behavior due to its simple brain 
architecture of the fly, gustatory receptor neurons (GRNs), vigorous behavioural 
responses that are flexible to probe molecular genetics and electrophysiologi-
cal dissection [67]. Different aspects of feeding behavior include finding a food 
source, evaluating food for nutritional suitability, choosing between different 
food sources, and deciding to initiate or terminate feeding. Like mammals, taste 
helps Drosophila to detect the potential edible food sources and to decide whether 
to accept it or not. The fruit fly can detect and sense all the distinct taste modali-
ties that mammals can i.e., sweet, bitter, salts, water, sour and umami. Flies 
attract to sweet substances and show aversive behavior towards bitter making 
final feeding decisions [68]. The taste neurons house inside the hair like structures 
known as sensilla (Figure 2B) present on different peripheral organs of the fly 
body i.e., labellum, legs, wing margins, ovipositor and pharyngeal organs lining 
the esophagus (Figure 2A). The small sensory structures known as taste pegs are 
also present in the labellum [69]. Taste neurons of tarsal segments are the first that 
come in contact with food source and then on the labellum (Figure 2A) [70]. The 
GRN axons from various peripheral taste organs transmit the taste information to 
the higher brain area, the primary taste processing center called SEZ (Figure 2A) 
[71]. SEZ is the first relay for taste information in the fly brain just below the 
antennal lobe where axons of gustatory receptor neurons (GRNs) of peripheral 
organs terminate [67, 72, 73].
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4. Drosophila SEZ is the first relay of taste information

The adult Drosophila bears approximately 135,000 neurons in the central ner-
vous system and thousands of neurons in ventral nerve cord (alike mammalian 
spinal cord). Taste neurons transmit their input (Figure 2B) to SEZ in the CNS, 
where the inputs received from different organs and taste modalities are refined and 
united [74] (Figure 2C and D). The gustatory neuropil of the SEZ includes the sub 
esophageal zone, gnathal ganglia (GNG), and parts of the periesophageal neuropil 
[75], and is relatively disorganized compared to the olfactory and visual neuropils. 
Immunohistochemistry and microscopy visualization of axonal termini of distinct 

Figure 2. 
Drosophila taste system. (A) Adult fly accessing sugar drop with the tarsi. Proboscis, legs, wing margins, and 
genitalia are peripheral taste organs where taste receptor cells house in taste sensillae. The taste information 
from various taste organs goes to the brain. SEZ is a first relay of taste processing (shown in the magnified 
version of brain). Antennal lobe (AL) receive information about volatile chemicals from the periphery and 
mushroom bodies are learning and memory centers. (B) Taste sensillum containing gustatory receptor neurons, 
mechanosensory neurons and support cells. (C and D) Taste representation in the SEZ. Projection map in the 
SEZ in accordance with the taste modalities (C) and taste organs (D).
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categories of GRNs has exposed a spatial representation of taste quality within SEZ for 
example sweet taste neurons from proboscis terminate in discrete regions of the SEZ 
that do not overlap with axonal projections of bitter taste neurons (Figure 2C) [67, 72]. 
There is a distinct projection map in the SEZ in accordance with the taste modalities 
(Figure 2C and D) [67, 72] and taste organs i.e. gustatory axons of the mouth part ends 
in the dorsal anterior SEZ, axons from labellum ends in the medial SEZ, and axons 
from legs ends in dorsal posterior SEZ (Figure 2C and D) [67, 71]. Motor neurons and 
modulatory neurons that guide proboscis extension are also found in the SEZ [71, 76] 
indicating that the SEZ carry local circuits that connect sensory, motor, modulatory 
and command neurons that have processes in this region [71, 76–78] suggesting its 
role as a sensorimotor center for feeding. Taste information is also integrated with 
other internal and external sensory cues, but where this occurs is not known. Later the 
taste information get conveyed to higher brain centers, including the mushroom body, 
which contains neurons activated upon sucrose ingestion [79, 80]. Recently found 
various central neurons that may or may not synapse with taste sensory neurons and/
or play modulatory roles have been identified which are discussed in further sections.

5. Drosophila sweet taste feeding circuits in the brain

SEZ has been shown to play a key role in gustatory signal transduction and 
feeding responses in different insects. Drosophila larval neurons expressing neu-
ropeptide gene (referred as hugin neuron) are identified as probable interneurons 
that modulates taste mediated feeding behavior [77]. These are about 20 neurons 
in the SEZ. The connectivity pattern of hug neurons in larvae and adult flies is 
similar. Blocking hug neurons activity results in alteration of food intake initiation 
which depends on previous nutrient condition. The hug neurons send axons to three 
distinct targets - to the ring gland (central neuroendocrine organ), pharyngeal 
muscles, and higher brain center protocerebrum. The extension to the ring gland 
and the pharyngeal muscles depicts that hug neurons correlate sensory informa-
tion with growth, metabolism, and feeding. The axon tracts to the protocerebrum 
indicates a role of hug neurons in transducing sensory signals for higher brain 
processing. The connectivity pattern of hug neurons suggest a role of incorporating 
gustatory sensory signals with higher brain functions and feeding behavior [77].

Additionally, to understand the central taste circuits in the fly brain that are 
involved in feeding decisions and different aspects of feeding behavior few second 
order neurons have been identified in the past few years. The first set of sweet 
gustatory projection neurons (sGPNs) marked by NP1562 have been identified in a 
genetic screen (Figure 3A) [81]. Suppression of sGPNs activity results in decrease 
food intake and inhibition of PER responses. The sGPNs activation by applying 
sucrose and other sugars to the labellum suggested a functional link with Gr5a+ 
sweet taste neurons. These neurons relay sweet information from the SEZ to the 
antennal and mechanosensory motor center (AMMC) in the deutocerebrum of 
fly brain. Starvation and dopamine signaling increases the sucrose sensitivity of 
the sGPNs providing direct confirmation for state dependent alterations in sweet 
taste circuit activity [81]. The AMMC is known to receive input from sensory axons 
of the basal antennal segments involved in sensing gravity, sound and [82–85] 
olfactory inputs from a class of olfactory projection neurons [86]. It remains to 
determine if AMMC acts as a secondary center for sweet taste and receive inputs 
from other categories of taste neurons, such as water [87, 88], bitter [67, 72], and 
salty [89, 90], sour [91] and fat [92] and, if so, whether the representation of differ-
ent tastes remains distinct in AMMC. Little is understood about the wiring where 
information from the AMMC is transmitted, but single-cell tracing experiments in 
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flies reveal the caudal ventrolateral protocerebrum (CVLP) as a possible target [93] 
as some Gr32a+ GRNs involved in pheromone sensing appear to terminate directly 
in the VLP [94]. It is still undetermined whether AMMC conveys information from 
sGPNs to higher brain centers or back to the SEZ, where it can be transferred to 
motor neurons connecting to proboscis muscles.

Another genetic screen identified pair of 12 cholinergic local interneurons to 
characterize Drosophila ingestion circuit. These neurons namely IN1 (ingestion 
neurons, Figure 3B) controls the dynamics of ingestion in flies regulated by hunger 
state and sucrose concentration [95]. Upon sucrose ingestion, IN1 interneurons 
show persistent increase in activity in fasted flies. The activity drops in response to 
subsequent feeding bouts. Conversely IN1 interneurons in fed flies show smaller 
responses to sucrose which lacked persistent activity. In a satiated fly, insensitive 

Figure 3. 
Examples of few taste circuits in the Drosophila brain. (A) Sweet gustatory projection neurons (NP1562+ 
sGPNs). (B) IN1 Cholinergic Local Taste Interneurons (ingestion neurons). (C) PERin neurons. (D) TPN1, 
TPN2, TPN3 neurons. TPN2 and TPN3 neurons terminate in the SLP (superior lateral protocerebrum) and in 
and around lateral horn area. Both SLP and lateral horn are nearby structure.
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sucrose IN1 neurons show decrease drive to ingest and results in shorter ingestion 
episodes. IN1 SEZ second-order interneurons monitor ingestion by receiving pre-
synaptic input from sugar sensitive taste neurons in the pharynx [95]. Hence, the 
IN1 probably be the second- order neurons for a particular subprogram of feeding 
behavior i.e. ingestion that provides a fast feedback mechanism to regulate sucrose 
ingestion by integrating taste and hunger signals. The study proposes IN1 neurons 
as a key node in the circuit that governs rapid food intake decisions.

6. Bitter taste circuit in the brain

The bitter taste modality is conserved in insects and mammals. It plays a key role 
in evoking aversive behavior in animals [32, 66, 68, 96]. Bitter sensitive gustatory 
interneurons (VGN6341) in the adult SEZ are identified by performing a functional 
behavioural screen and shown to be involved in aversive gustatory responses [97]. 
These neurons receive direct synaptic input from Gr66a labelled bitter-sensitive 
GRNs. The VGN6341 neurons are single bilaterally symmetric pair of SEZ inter-
neurons responsible for the inhibition of the appetitive PER responses and gets 
activated by natural or transgenic stimulation of bitter GRNs [97]. Identified bitter 
gustatory local interneurons (bGLNs) play an important role in the aversive bitter-
sensitive gustatory circuitry of the adult fly and represent a significant step towards 
understanding how bitter taste modalities are processed by the gustatory circuitry 
in the brain. Identifying their postsynaptic targets in the bitter gustatory circuitry 
of the SEZ will reveal new players of the bitter higher order taste circuits. And 
whether they will receive excitatory or inhibitory input from these new player’s cells 
await further investigation [97].

Three classes of taste projection neurons (TPNs) have been identified based 
on their morphology and taste selectivity [98] named as TPN1, TPN2 and TPN3 
(Figure 3D). TPN1/TPN2 neurons respond to sweet taste and promotes PER 
(innate feeding behavior) while TPN3 is bitter responsive and inhibits PER. TPNs 
are long-range projection neurons that separately carry sweet (TPN1 and TPN2 
selectively relay sugar taste detection from the legs) or bitter information to higher 
brain demonstrating modality-specific relays. TPN3 responds to bitter taste on the 
legs and the proboscis, suggesting aversion to bitter compounds may not require 
specific location. Their data suggests that taste detection from different organs 
serves different functions, consistent with other studies where interneurons sense 
sweet taste from the mouthparts and drive ingestion [95]. The organ-specific and 
modality-specific connectivity of TPNs demonstrates a mechanism to encode both 
taste location and taste quality. As both TPN2 and TPN3 send axons to the superior 
lateral protocerebrum (SLP) (Figure 3D) suggesting that information from the 
higher brain feeds back onto sensorimotor circuits for PER. Functional link from 
TPNs to mushroom body (learning and memory centers) has been postulated based 
on the presence of their arbors in the SLP and lateral horn, which further excite or 
inhibit MB extrinsic neurons. Reciprocal and bidirectional interactions between 
SLP and MBs for learned associations have also been shown previously [99]. 
Conditional silencing of TPNs suggested that TPNs are not essential for proboscis 
extension and contribution from other neurons must contribute to this behavior but 
TPN2 and TPN3 are essential for conditioned taste aversion. Inhibition of synaptic 
transmission in sugar-sensing TPN2 during either training or testing decreased 
conditioned aversion, whereas inhibiting bitter TPN3 decreased aversion only if 
inhibition occurred during training. The modulatory role played by TPNs without 
being essential components of PER circuits require future investigation. These 
studies demonstrate modality-selective taste pathways to higher brain.
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In a separate study, a pair of interneurons (PERin neurons, Figure 3C) are identi-
fied that activate by stimulation of mechanosensory neurons inhibiting feeding 
initiation. Conversely, inhibition of activity promotes feeding initiation and inhibits 
locomotion suggesting such neurons suppress feeding while the fly is walking 
[100]. The dendrites of these neurons reside in the first leg neuromeres whereas 
axons are found in both SEZ and first leg neuromeres suggesting that they process 
information from the legs and convey to SEZ. These neurons do not make synaptic 
connections with known neurons that regulate proboscis extension. This study 
highlights that feeding initiation and locomotion are mutually exclusive behaviours 
and identified pair of interneurons influence this behavioural choice.

A receptor-to-neuron maps of pharyngeal taste organs reveals the presence 
of multiple classes of taste neurons [101], consistent with the knowledge that the 
pharynx may independently assess food quality. In this study use of Pox-neuro 
(Poxn) mutants (mutants in which all external taste bristles are transformed 
into mechanosensory bristles but all pharyngeal taste neurons retain) [101–104] 
suggests how pharyngeal taste input affects feeding behaviours. It is found that 
high salt inhibits sucrose-evoked activity of pharyngeal Gr43a+ sweet GRNs. 
Furthermore, feeding avoidance of denatonium, tartaric acid, or high salt elimi-
nates only when both inhibition of pharyngeal Gr43a sweet GRNs and activation 
of different combinations of aversive pharyngeal GRNs are absent. Tracing experi-
ments reveals that both appetitive and aversive pharyngeal GRNs convey inputs 
to two common brain areas (pars intercerebralis and lateral protocerebrum), 
suggesting that pharyngeal taste is represented across brain regions. This study 
demonstrates an important role of pharyngeal taste in controlling food choice and 
intake [105].

7. Central neurons controlling regurgitation

In another genetic screen to understand how sensory information is translated 
into behavior, a subset of higher order neurons labeled by VT041723-GAL4 trans-
genic line are identified that controls regurgitation after food ingestion [105]. The 
neurons labeled by VT041723-GAL4 receive sensory input from peripheral Ir76b+ 
taste neurons in the pharynx. Optogenetics activation of these neurons produce 
“proboscis holding” behavior (extrusion of the mouthpart without withdrawal). 
Flies pre-fed with either sugar or water before neuronal activation shows regur-
gitation indicative of an aversive response. However, motor circuits controlling 
regurgitation and if PER and regurgitation share common motor programs are not 
known. Identification of VT041723-GAL4 neurons provide a ground to address 
such questions [105].

8. Higher order taste circuits involved in taste learning and memory

In Drosophila, MBs are the central sites for experiential learning that are com-
posed of approx. 2,000 Kenyon cells (KCs) which have dendrites in a region known 
as calyx (Figure 4A) [106–108]. Pairing of sugar with a deterrent compound creates 
aversion to sugar in flies although for the short duration [109]. The conditioned 
taste aversion involves MBs [80, 109]. How the diversity of sensory information 
that the MB integrates is still undetermined. Anatomical studies have suggested that 
visual, tactile and gustatory cues are processed in different compartments of MB as 
conditional stimulus (CS) [110]. The MBs also receives multimodal inputs as they 
are required for courtship, taste conditioning and visual learning [109, 111].
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Based on their axonal arborizations in the α/β, α’/β’, and γ lobes, the KCs of the 
MB are divided into three main classes (Figure 4B). Evidences have identified that 
functional specializations among and within the classes, with different subsets 
playing different roles in the phase, type, and length of associative memory [112]. 
Evidence that the MB processes tastes as CS and US (unconditional stimulus) 
comes from behavioural taste conditioning experiments [109, 113]. A simple taste 
behavior is the proboscis extension response (PER): when leg gustatory neurons 
detect sucrose, the fly extends its proboscis to eat. Pairing sucrose stimulation to the 
leg (CS) with an aversive stimulus (US) causes short-term inhibition of proboscis 
extension. This learned behavior requires the MB, but the neural processing in the 
MB that underlies taste conditioning is unknown. To gain insight into sensory pro-
cessing, taste representation and role of these structures in aversive taste condition-
ing in the MB, behavioural and high end imaging studies reveal that the gustatory 
information in the main calyx are segregated and have unique representation by dif-
ferent taste modalities and different taste organs [80]. Such inputs get differentially 
and independently modified by learning. Selectively blocking the γ lobe neurons 

Figure 4. 
Adult Drosophila brain showing higher brain areas. (A) Learning and memory centers in adult fly brain 
includes mushroom body, calyx, Kenyon cells (KC) and lateral horn. (B) Structure of MB lobes. There are 
three different classes of neurons that make up the MB lobes (α/β, α’/β’ and γ).
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leads to complete elimination of conditioned aversion suggesting role γ lobe as the 
site for aversive taste memory formation in the MB. The study also demonstrates 
the requirement of MB neurons for taste conditioning and taste information relayed 
to the MB is via multiple pathways. Only taste stimulation (bitter compounds and 
sucrose) activates the dorsal accessory calyx which has been implicated in gusta-
tory processing in other insects earlier [114] providing evidences that gustatory 
MB representation is distinct from olfactory cues. These studies have extended the 
understanding of the neural coding underlying conditioned learning in the MB as a 
sensory integration center in the fly brain.

9. Motor neuron circuit

Interneurons are the local circuit neuron of CNS that relays impulses between 
sensory neuron and motor neuron while a neuron that passes from CNS or a 
ganglion towards a muscle and conducts a nerve impulse resulting in movement 
is known as motor neuron. The process by which brain process the sensory infor-
mation into motor actions is not well acknowledged. A major step in most of the 
sensory-motor transformations is to convert the coordinates of sensory system into 
a map of spatially directed motor actions.

Proboscis is the primary feeding organ of flies and also plays an important 
role for taste cue detection and food ingestion and show reliable PER by applying 
positive gustatory stimulus to GRNs [67, 109, 115, 116]. PER represents an innate, 
sequential behavior involving many movement steps [78]. PER sequence may 
require activation of different muscle groups at distinct time points, implying a 
defined temporal organization of upstream motor neuron (MN) activity. It has been 
proposed that the relay of gustatory sensory information from GRNs to MNs occurs 
mainly within the SEZ [67, 72, 117–119]. The motor neurons innervating proboscis 
musculature have been portrayed in fruit fly and blow fly [120, 121]. There are 
15 paired proboscis muscles found in blowfly and 17 in Drosophila, illustrating 13 
prime muscle groups. These muscles control action of 3 segments of the proboscis 
i.e. rostrum, haustellum and labellum with distinct muscles intricate in extension 
or retraction. The central and dorsal dilator muscle, forms the cibarial pump, which 
dilates the pharynx to coordinate fluid intake [122]. Twenty pairs of motor neurons 
innervate proboscis muscles [120, 121] and each proboscis muscle is innervated by 1 
to 3 motor neurons. On the basis of the nerve through which their axons depart the 
CNS, the proboscis motor neurons are categorized as labial, pharyngeal, or acces-
sory pharyngeal. The Cibarial muscles, forming the oral pump, are innervated by 
pharyngeal motor neurons, while the proboscis muscles required for the placement 
of proboscis during feeding are innervated by labial motor neurons.

A pair of neurons that generate feeding motor program and induces the entire 
feeding sequence when activated are identified in Drosophila [78]. The interneurons 
called feeding neurons (fdg) located in the SEZ are required for feeding as their sup-
pression eliminates the sugar-induced feeding behaviour (Figure 5B). Activation 
of a single Fdg-neuron leads to asymmetric feeding behavior. Fdg-neurons respond 
to food only in starved condition suggesting this response is dependent on the 
metabolic state of the animal. The asymmetric regulation of proboscis extension by 
the Fdg-neuron suggests that each Fdg-neuron may selectively regulate the strength 
of proboscis muscle contraction on the same side of the body. These results are 
consistent with the observation that presentation of food to gustatory receptors 
on one side of the body leads to proboscis extension on that side demonstrate that 
Fdg-neurons operate firmly within the sensori-motor watershed, downstream of 
sensory and metabolic cues and at the top of the feeding motor hierarchy to execute 
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the decision to feed. How the Fdg-neurons coordinate the various motor patterns 
involved in feeding remains to be determined.

One of a study revealed that the mouth mechano-reception can ease and end feed-
ing by two distinct central motor circuits and these two mechanosensory circuits merge 
with bitter taste in opposing manners to shape feeding behavior. Mechanosensory 
neurons (MSNs) were identified in taste pegs and taste bristles of the labella which rely 
on the same mechanoreceptor, NOMPC (No mechanoreceptor potential C) to trans-
duce mechanical drift. The optogenetic arousal of bristle MSNs induce labellar spread, 
while activation of peg MSNs induces proboscis  retraction [123].

Another pair of motor neurons involved in taste behavior has been identified to 
identify the components of the PER circuits. These neurons activate by sugar stimu-
lation and inhibit by bitter stimuli [76]. The bilateral pair of E49 motor neurons 
are both necessary and adequate to initiate proboscis extension reflex. Although 
these neurons synapse on proboscics musculature and show wide dendritic field 
in SEZ but otherwise are shown to make no direct connections with GRNs [76]. 

Figure 5. 
Examples of motor neurons in adult fly that are involved in proboscis extension. (A) Five motor neuron types 
that control the key steps of proboscis extension were identified, lifting of the rostrum (MN9), extension of the 
haustellum (MN2), extension of the labella (MN6), spreading of the labella (MN8) and proboscis retraction 
(MN1). (B) Fdg neurons.
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In Drosophila, feeding is achieved by a pump that draws fluid into the esophagus. It 
has been shown that the cibarial motor neurons play a key role in such a pumping 
behavior [124]. The inhibition of these motor neurons decrease the feeding and 
pump frequency, while activation induce arrhythmic pumping. The rate of pump-
ing is shown not to be affected by sucrose concentration or hunger but is changed 
by fluid viscosity. These neurons respond to taste stimuli and show prolonged 
prolonged to palatable substances. The open question is how cibarial pump motor 
neurons talk to rest of the feeding circuit in flies. How rhythmic motor activity is 
generated together with other feeding motor program such as proboscis extension 
and retraction and the neural circuits involved in such a behavior will provide 
insight in their role in the feeding circuit. There is a possibility that different chemo-
sensory inputs may trigger PER and pumping as stimulation of tarsal taste neurons 
elicit PER but not pumping [115, 125]. Further studies revealed four GABAergic 
interneurons in the fly brain that impose feeding restraint in Drosophila. Inactivation 
of these neurons results in excessive ingestion of all compounds regardless of taste 
quality or nutritional state while severe activation of these neurons decreases inges-
tion of water and nutrients. These neurons act upstream of motor neurons for mul-
tiple feeding subprograms such as meal initiation and ingestion. Hence, this study 
unfolds how central inhibitory control regulates feeding behaviors and is required to 
inhibit a latent state of uncontrolled and nonselective consumption [125].

In a separate study, analysis of sequential features of the motion pattern of PER 
provided morphological description of proboscis motor neurons and muscles [121]. 
By implying genetic manipulations along with artificial activation and silencing 
process, five motor neuron types that control the key steps of proboscis extension 
are identified, lifting of the rostrum (MN9), extension of the haustellum (MN2), 
extension of the labella (MN6), spreading of the labella (MN8) and proboscis 
retraction (MN1) (Figure 5A). The above-mentioned steps are independently 
controlled in a one-to-one manner with the majority of MNs both sufficient and 
required for the execution of one individual step of the forward reaching behavior.

Remarkable specificity has been observed for candidate higher-order neurons in 
terms of the sensory neurons that activate them (proboscis versus mouthparts) and 
the behavioural subprograms they generate i.e. proboscis extension versus inges-
tion. The identification of these neurons suggest taste information is processed by 
parallel labelled lines via several different neural streams that coordinate different 
aspects of feeding behavior. Another behavioural study of the function of different 
taste neurons on the legs found that some cause inhibition of locomotion whereas 
others promote proboscis extension [72]. This study highlights that sweet taste 
receptor neurons of legs are essential for sugar choice and highlighted a functional 
dissociation between and within taste organs of Drosophila.

10. Modulation of feeding behaviors via taste circuits

Taste preference and sensitivity are two most essential elements of food evalua-
tion. Such criteria are not always constant and often change depending on internal 
states such as hunger and satiety. Recent evidences reveal that starvation induces 
increased sweet taste preference and sensitivity at the periphery and in the CNS in 
various species from fruit flies to humans [81, 126, 127]. Electrical recordings of 
various neurons in central brain areas in mice and monkeys including amygdala, 
orbital frontal cortex, and hypothalamus have indicated the existence of neurons 
that can respond to taste stimuli in a state (hunger/satiety)-dependent manner 
[128–130]. However, the key neuronal pathway(s) responsible for hunger-induced 
taste modification are still unknown.
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Neuromodulators such as neurotransmitters, neuropeptides, and endocrine 
hormones, play an important role in changing the morphological and functional 
characteristics of neural circuits to achieve behavioural flexibility. The changes in 
taste preference could occur through variation in the peripheral taste receptor cells, 
or in higher order neural circuits controlling food intake in the brain. To understand 
how changes in the internal state influence behavioural decisions in flies, various 
neurons in the SEZ whose activity depends on starvation state have been identified. It 
has been suggested that Dopamine is a potent modulator of a variety of behaviors in 
mammals and flies. Tyrosine hydroxylase ventral unpaired medial (TH-VUM) dopa-
minergic neurons modulate feeding in response to nutritional needs (Figure 6A) 
[131] and feeding (Fdg) interneurons (Figure 5B) integrate gustatory input with the 
internal state to command a feeding behaviour routine [78]. Even in mice mutant for 
Tyrosine hydroxylase show failure in initiating feeding in spite of intact motor ability 
to consume [132]. It has been shown that TH-VUM neurons can drive proboscis 
extension and neuronal activity of TH-VUM corresponds with the starvation dura-
tion. Silencing TH-VUM neurons decrease PER in starved flies to sucrose whereas 
increasing the activity of TH-VUM elevates PER in both fed and starved flies [131].

Role of various neuromodulators in regulating feeding responses in starved adult 
Drosophila [125, 133–135] has shown that dNPF and sNPF, neuropeptides related 
to mammalian NPY, modulate multiple feeding related behaviours, including the 
formation and expression of food-associated memory, enhancement of food-related 
olfactory sensitivity, and control of food intake during starvation [136–140]. 
During energy deficit conditions, animals become less selective in their food choices 
by enhancing their sensitivity to nutritious resources, such as sugar [115, 141–145]. 
Hunger enhances behavioural sensitivity to sweet taste, at least in part, via 
increased dopamine (DA) release onto Gr5a-expressing sugar-sensing GRNs, which 
increases calcium responses to GR activation in flies [131, 144]. Starvation also 
reduces sensitivity to unpalatable and potentially toxic compounds, such as bitter 
tastants. In PER assay, sensitivity to bitter tastants reduce in fasting flies’, in part, 
independently of the increase in sugar sensitivity [126]. Both dopamine and dNPF+ 
modulates sugar and show enhanced sugar sensitivity during starvation. dNPF 
act upstream of dopamine to control sugar. This study also suggests that subsets 
of sNPF expressing neurons regulate bitter sensitivity under starvation and sNPF 
as well as dNPF-dopamine pathways independently regulate bitter- and sugar 
sensitivity at the neuronal circuit level suggesting neuromodulatory cascades serve 
as key mediators of state-dependent control [134, 146–148]. Separately it has been 
shown that starvation reduces Octopaminergic/tyraminergic OA-VL activity and 
results in depotentiation of bitter taste in flies (Figure 6B) [149].

Figure 6. 
Examples of few modulatory neurons in the adult fly brain. (A) TH-VUM neurons. (B) OA-VL1 and OA-LV2 
(B) neurons that send projections to SEZ.
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Recent identification of second-order sweet taste neurons [81] has enabled 
investigations into the interplay between sweet taste circuits and other sweet- and 
starvation responsive neurons to understand the neural basis of feeding behav-
ior. Both starvation state and an increase in dopamine signaling brings about an 
enhancement of sGPN sensitivity to sucrose. In both cases, increases in sucrose- 
induced calcium activity occurs in the absence of corresponding changes in periph-
eral sweet Gr5a+ neural activity. Other studies have detected that starvation leads 
to increases in sucrose-evoked electrophysiological [150, 151] or calcium activity in 
Gr5a+ taste neurons [144]. In most cases, the observed increases in GRN sensitivity 
was comparatively small in magnitude compared with the alterations in NP1562+ 
sGPN activity of starved flies.

There are several other neurons that have been identified as modulating sugar 
feeding. A pair of Fdg (feeding) neurons (Figure 5B) act as command neurons in 
the fly, is also required for normal feeding behavior as the ablation of the neurons 
distort the sugar prompt feeding behavior. These neurons activate by sugar taste but 
only in starved flies [78]. Moreover, twelve cholinergic interneurons, IN1 in the SEZ 
form synapse with sugar sensing neurons. The activity of these neurons is also regu-
lated by hunger state/starvation but unlike feeding neurons that respond to sweet 
taste, ingestion neuron is triggered by sucrose ingestion. Also, the activation of IN1 
neurons increases the chance of sugar ingestion upon presenting a drop of sucrose 
solution in close proximity instead of directly triggering the feeding behavior [95].

In another study, it has been shown that only sweet neurons express GABAB 
receptor (GABABR) [152]. GABABR mediates presynaptic inhibition of calcium 
responses in sweet GRNs, and both sweet and bitter stimuli evoke GABAergic 
neuron activity in the vicinity of GRN axon terminals. Blockage of GABABR both 
lead to increased sugar responses and decreased suppression of the sweet response 
by bitter compounds. This study propose a model in which GABA acts via GABABR 
to expand the dynamic range of sweet GRNs through presynaptic gain control and 
suppress the output of sweet GRNs in the presence of opposing bitter stimuli [152].

Further evidences [77] show that hug neurons function within a neural circuit 
that modulates taste mediated feeding behavior. Suppression of hug neurons 
activity, cause a change in particular feeding behavior response. As a result of this 
alteration the control flies when shifted to a new food medium, they hold back for 
a period of time before feeding, on contrary the experimental flies initiate feeding 
promptly. The size of the crop after a long feeding period does not change in both 
cases, implying that there is no difference in the termination phase of feeding. 
There is a possibility that the Drosophila link feeding with a familiar source of food 
and when they experience different food source, they first re-examine it before 
feeding. Hence, the hug neurons seem to regulate feeding initiation based on earlier 
food encounter.

It has also been shown that starvation of amino acid stimulates yeast feeding by 
regulating central brain circuits. Two dopaminergic neurons (DA-WED) in each 
hemisphere of the adult brain innervating the “Wedge” neuropil are suggested to 
encode protein hunger. The suppression of these neurons results in decrement of 
yeast intake but elevates the sucrose consumption, whereas if these neurons are 
triggered they enhances the yeast intake but minimizes the sucrose consumption. 
Thus, like overall hunger and thirst, nutrient specific hunger motive may also 
compete for behavioral expression [153].

Mating has also been shown to be responsible for modifying the feeding behav-
ior in female Drosophila, and the sex peptide is a key molecule involved in this 
modulation [154]. Mating improves female’s interest in valuable nutrient source 
(polyamines such as spermine and putrescine). The mated females attract more to 
the taste and smell of polyamines than virgin females. This modulation in behavior 
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is regulated through sex peptide receptor (SPR) and its conserved ligands MIPs 
(myoinhibitory peptides) that directly act on chemosensory neurons [155]. Another 
modulation in feeding was shown by Walker and colleagues that mating induces a 
salt appetite in Drosophila. Mating promote chances of salt appetite by increasing 
gustatory response to sodium. It is induced by male-derived Sex Peptide acting on 
the SPR (Sex peptide receptor) in female reproductive tract neuron [156]. In has 
been suggested that mating is a pivotal modulator of the decision-making process in 
female flies and depends on the action of the SPR in internal ppk+ sensory neurons 
along with a neuronal TOR /S6K act as an essential input to this decision. The SPR 
signaling in ppk+ neurons trigger a robust inclination for yeast in mated females 
while neuronal TOR/S6K signaling modulates food choices [157].

It has been studied and shown that mushroom body controls the responses of 
adult flies to learned odours as well as regulates their innate food seeking behavior 
elicit by food odours. A study depicted that 5 of the 21 types of MBONs (Mushroom 
body output neurons) are required for starved flies to seek food odours. Four other 
MBONs (MBON-a3, MBON-b2b02a, MBON-a02 and MBON-g2a01) and their 
corresponding dopaminergic neurons (DANs) also regulate innate food seeking 
behavior. Obstructing MBONs and DANs reduce innate food seeking behavior in 
starved flies, and activation of dopaminergic neurons is sufficient to evoke food 
seeking behavior in fed flies. The results from RNAi knock-down of different 
receptors for various hunger and satiety cues illustrates that the MB innervating 
dopaminergic neurons are modulated by many of these signals, making the MB an 
integrative center for hunger and satiety signals in the fly brain [158].

11. Influence of taste on food intake and obesity in humans

High calories (especially overconsumption of energy from high fat and sugar 
foods) and low nutrition density (poor nutrition) are associated with many chronic 
metabolic diseases including cardiovascular diseases, obesity, diabetes mellitus type 
2 and eating disorders in humans. It’s a great burden on healthcare system in any 
country and effective intervention strategies are yet to be found to control them. 
Past research has suggested that taste impacts the selection of food and its intake in 
animals as well as other factors like satiation and palatability. Obese and overweight 
individuals show a tendency of selecting energy-dense-food [159]. In humans, 
pleasure achieved by food can stimulate “non- homoeostatic” eating making it a 
prospective player contributing obesity [160]. Nonetheless, factors like previous 
food experiences, liking, wanting, taste sensitivities and depressed sense of taste 
cannot be ignored. Many pathways, neural circuits and neurohormones involved 
as discussed in Drosophila section, regulate food intake and decision to stop eating. 
Internal and external cues also trigger immediate desire to eat specific foods and can 
impact the final outcome of how much to eat. Similarly, in humans as well several 
conserved pathways and genes have been observed to play a significant role in 
controlling feeding behavior.

Although it has been seen that smell also plays a key role in modulating taste 
perception and influence food intake in individuals [161], but alteration in reward, 
dopamine signaling, homeostatic signals and affective circuits lead to hedonic 
eating causing obesity [162, 163]. Various neuroimaging methods have provided 
insights into central mechanisms underlying taste and hedonic eating highlighting 
the role of taste circuits in obesity. It has been found food stimuli causes different 
neural brain responses in obese individuals compared to normal weight people 
showing striking structural and functional brain circuitry alterations [164–170]. 
A recent review by [171] and others [172, 173] have beautifully described neural 
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correlates of sweet, fat, umami, bitter, salty, and sour tastes across brain areas 
implicated in obesity. Although more conclusive neuroimaging outcomes are 
required to confirm the role of various taste neural circuits but experimental data 
indicates different hedonic responses to taste information in obesity. Dysregulations 
in brain reward circuitry in response to fat and sugar has been associated with 
obesity [165, 168, 174–177] suggesting fat and sugar affect brain reward circuitry 
differently. Similarly, high salt consumption has been linked to obesity engaging 
different brain areas which modulate taste processing and reward [178, 179]. These 
brain circuits also encode salt taste intensity [178, 180]. Data showing convincing 
differences in higher salt sensitivities between obese and normal individuals is still 
insignificant [181, 182]. Studies on neural responses to salt taste in case of obesity 
are still limited.

Another taste studied in the context of obesity is Umami which contributes to 
a sense of satiety [183, 184]. Obese individuals show reduced sensitivity but higher 
preference for umami taste [185, 186] than healthy controls. Since, umami and salt 
taste both activate primary gustatory cortex circuits in case of umami high tasters 
compared to low tasters suggest that both tastes share common processing system 
and may contribute to feeding behaviors implicated in obesity in a similar man-
ner [179]. Bitter taste influence dietary fat consumption suggesting its relevance 
in obesity [187]. Bitter taste linked with appetite reduction affect many brain 
areas [188–190]. Conditioning to bitter taste modulates Hedonic evaluation [191]. 
Alterations in brain activation patters associated with bitter taste in individuals 
with obesity [190] compared to people without obesity have been observed but 
more consistent and reliable findings are needed to understand the interaction 
between brain responses and hedonic ratings of bitter taste [192, 193]. Sour taste 
is least explored in context of obesity but it plays major role in food selection and 
consumption and recruit brain regions in sex, age and internal state, condition 
dependent manner [194, 195]. Neural correlates of sour taste in obesity are limited 
and require further investigations. dysregulation of gut to brain neural connec-
tions and chemosensory pathways along this axis may also contribute to increased 
risk of obesity [196] suggesting gut could offer potential therapeutic targets in 
obesity [197]. Nutritional interventions to target neural pathways involved in taste 
behaviors and perception could offer solutions for prevention and treating obesity 
in humans.

Further detailed neuroimaging studies to understand taste response, taste 
physiology and dietary intake in humans and higher animal model systems are 
required to illustrate the neurobiological underpinnings of taste modalities and 
their relevance in obesity. Further research to characterize the influence of gut taste 
receptors and neural circuits on brain responses following food consumption and its 
modulation by smell in obese individuals that influence food intake are also needed. 
Collectively, research on invertebrate model system like Drosophila shows potential 
in understanding neurobiological basis of metabolic diseases like obesity at level of 
neural circuits that regulate feeding behaviors.

12. Conclusion

For the animal fitness, feeding is regulated by peripheral and central feeding 
circuits to help in acquiring a necessary and balanced dietary input for energy and 
nutrient homeostasis. It is subjected to intense regulation by multiple neuromodula-
tor systems. In this chapter, we have illustrated recent progress in understanding 
neural circuits and its modulation in the feeding behavior including local circuits 
and motor neurons of adult flies which links various internal energy and nutrient 
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needs to adaptive behaviors. This chapter has integrated information about the 
structure, function, and molecular regulation of fly taste and feeding circuits. 
The fruit fly Drosophila melanogaster, with many fewer neurons, is ideally suited 
to understand the complex interactions between neural circuits and genetics that 
ultimately control behavior. Countless studies have demonstrated the conservation 
of critical genes between flies and humans, and striking similarities in the organiza-
tion of the brain, particularly the circuits that process sensory information. A num-
ber of functionally distinct populations of neurons in the fly taste circuits have been 
identified recently in flies that regulate various aspects of feeding behavior. We 
emphasize on the set or individual neurons that directly or indirectly affects steps 
in feeding behavior which can be independently adjusted by neuromodulatory cues. 
How newly identified interneurons that regulate feeding motor program, suppress 
non- selective ingestion and regulate fluid ingestion connect taste sensory input 
to the motor output of ingestion as well as interpret top-down information about 
hunger state is not known. The fruit fly shares the basic metabolic regulation that is 
conserved throughout evolution. Therefore, simple genetic models like Drosophila 
can provide reliable insights to advance studies in more complex vertebrates, and 
enhance understanding of specific feeding-related neurological and metabolic 
disorders in humans. Tracing taste neural circuits in the fly brain, understanding 
the contribution of taste-independent calorie sensing to feeding, and uncovering 
novel regulators of neuronal remodeling in the taste system can help elucidate 
similar principals in higher animals including humans. Together, such studies may 
provide important clues to how feeding circuits may function in mammals, and lay 
the groundwork for understanding genetic factors that affect feeding control and 
body weight.

Humans live in a society very different from the ones that shaped the evolution 
of our brains. Easy access to cheap, calorie-rich foods has resulted in widespread 
obesity and an explosion of obesity-related diseases such as type 2 diabetes, hyper-
tension, and heart disease. A detailed understanding of how feeding behaviour is 
controlled at the level of neural circuits is an important step towards developing 
new ways to treat and prevent obesity. Humans consume more calories when their 
diets consist of processed foods [198]. It has been shown that reducing taste sensa-
tion at the periphery, a high sugar diet impairs the central Dopamine processing 
of sensory signals and weakens satiation [199]. Given the importance of sensory 
changes in initiating this cascade of circuit dysfunction, understanding how diet 
composition mechanistically affects taste is imperative to understand how the food 
environment directs feeding behavior and metabolic disease.
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