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Foreword

When I was a PhD student, the first study that I designed was about the mean-
ings that young children attribute to number words. I put together some tasks,
went to some preschools, and tested some children. But when I analyzed the
data, I found nothing: no interpretable patterns, no confirmation or disconfir-
mation of my hypotheses. I took the results to my faculty advisors. “Look,” I
said. “Nothing. I guess I have to think of a new study and start over.”

“Well, wait a minute,” my advisors said, looking closely at the data. “It
looks like half of these kids are bilingual. Did you exclude them?” I had not. My
advisors told me to run the analyses again, using data only from monolingual
children. I followed their instructions, and voila! Clear results. The results were
the opposite of what I predicted, but I didn’t care – results are results! By elimi-
nating one dimension of variation (multilingualism) from the sample, I had
turned an unpublishable study into a publishable one.

I believe that experiences like these are the reason why so many develop-
mental researchers have shied away from studying diverse dimensions of math-
ematics and language learning. Research is difficult to begin with, and every
dimension that we include just makes it more difficult. After my first study, I
spent the next handful of years studying language and number development
only in monolingual English-speaking, typically developing children. I knew
that most of the world’s children are not monolingual, and I knew that develop-
ment takes many different paths besides the path we call normal. But I wanted
to simplify my work however I could.

Then I got a job in Southern California. Suddenly, 85% of the preschoolers
in schools I visited were bilingual or multilingual. So I had a choice: I could
either exclude data from 85% of children, or I could try to study multilingual
development.

I think a similar thing is happening to our whole field. Experimental psychol-
ogists have always created artificial situations to study; our analytical methods
require experiments to be simpler than real life. But real life now in many of our
communities is so diverse that when we abstract away from dimensions like mul-
tilingualism or atypical development, the picture that we end up studying seems
utterly divorced from the reality that we all live in.

The authors of these chapters know well that studying realistic diversity is
difficult, and that it would make things simpler if we pretended that all children
grew up monolingual and developed along a typical path, which we could all
study using one agreed-upon research method. But the world is not so simple.
We must find ways to handle the diversity of mathematics and language learning
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in our research because that is the only way to gain real wisdom about both the
universals and the particulars of human development.

The editors of this book have done us all a service by bringing together
scholars who use different methods and address different topics. Each of us has
only a narrow band of expertise. We are trained in particular methods that limit
the kinds of questions we can ask, and we have deep knowledge of only a small
corner of the scientific literature. As the old joke says, a researcher learns more
and more about less and less until eventually she knows everything about noth-
ing. This unavoidable narrowness in our individual expertise means that a truly
diverse picture of mathematics and language learning can only come from a
whole community of researchers in conversation with each other. That is what
the editors have created in this book.

I conclude this foreword with the hope that this book will be starting a con-
versation that continues for many years, inspiring new collaborations and new
lines of research that lead us back to real wisdom. When I teach human devel-
opment to undergraduates, I start by saying that all human beings on earth
only differ from each other by 1–1.5% of their genes. Although diversity is fasci-
nating, the most important truths of human experience are true for all of us –
everyone wants to be safe, everyone wants to be loved, everyone wants to be
heard. Even as our studies of mathematics and language learning become more
sophisticated and more able to handle the diversity of real life, I suspect that
they will keep bringing us back to certain home truths – that the human brain
is amazingly plastic; that learning the representational systems of mathematics
and language actually transforms the way we think; and that human develop-
ment is simultaneously the most complicated research topic in the world, and
also the most important.

Barbara Sarnecka

VI Foreword



Introduction

In 2016, the three of us started working on a mathematics screening instrument
for bilingual first-graders. It was a kick-off for an intensive time of learning, as we
were relatively unfamiliar with each other’s discipline. The one who was an ex-
pert in the development of arithmetic concepts was introduced to the linguistic
aspects of multilingual learning; the one familiar with second-language acquisi-
tion learned about children’s development of early numeracy; and the one who
had advanced knowledge about early mathematics instruction encountered the
diversity of linguistic influences on children’s development. Thus, every one of
us learned how important the others’ expertise was for the own field, and vice
versa, how important the own expertise was to the others’ fields.

The book title Diversity Dimensions in Mathematics and Language Learning re-
fers to children’s diversity when acquiring fundamental linguistic and mathemat-
ical knowledge. This diversity comprises cultural properties such as the direction
of reading and writing, or the structure of number words. Diversity dimensions
can also refer to the instructional resources children contribute; for example,
their experiences at home or the words they know to express numbers and num-
ber relations. And it may also include the diversity of home languages and how
this diversity interferes with instruction, which in many educational environ-
ments may be monolingual.

However, this book can also be read in the light of the diversity of disciplines
that engage with research on children’s mathematics and language learning. The
heterogeneity of involved disciplines, which comprise knowledge and theories
from different traditions, will inevitably bring different perspectives to bear on
mathematics and language learning that is not easily integrated. This book aims
at collecting and interconnecting the various perspectives and insights gained by
the different disciplines. Another consequence of this diversity is that this book
has many contributors with varied approaches to the topic. We are proud and
happy to have gathered these eminent researchers from different scientific back-
grounds, who have contributed their expertise to this book.

To us, this book is the continuation and expansion of the learning process
that started with our first meetings. In the following paragraphs, we would like
to highlight the main insights gained while editing this book.

The first section “Perspectives on mathematics and language from different
disciplines” represents the range of disciplines that are involved in mathematical
and language learning: linguistics (Everett), psychology (Hartmann and Fritz;
Dowker), neuroscience (Klein et al.), and mathematics education (Prediger). The
focus is on fundamental theories and key findings arising from these disciplines
and thus paves the path for the following sections. The variety of scientific
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backgrounds shows also in the other sections, which are dedicated to one dimen-
sion of diversity each.

The second section “Language learning and mathematics development” fo-
cuses on the impact that language has on mathematical learning. Children’s de-
velopment of early numerical knowledge depends in part on their linguistic
environment. Bahnmüller et al. provide an overview of the ties between mathe-
matics and language. The way in which the labeling of numerosities affects the
development of counting skills is highlighted in the chapter by Pixner and Dre-
sen. Desoete et al. investigate the importance of children’s learning opportuni-
ties at home.

Worldwide, there are more children learning mathematics who are multilin-
gual than those who are monolingual: being multilingual therefore is the norm
rather than the exception. The manifestation of multilingualism has varying ef-
fects on number representation as illustrated in the third section (“Multilingual-
ism and mathematical learning”). Ashkenazi and Mark-Zigdon show how spatial
number representation is affected by the languages spoken at home, while Klein
reports findings on the acquisition of exact number representation in multilin-
gual children. Multilingualism is often seen as a challenge for teachers. Martini
et al. discuss the effect of the choice of cut-off values for mathematical difficulties
among different home language groups.

Most research on mathematics and language learning focuses on children
whose development proceeds within a normal range. However, there are chil-
dren, who systematically differ from typical development due to specific impair-
ments. The mathematical development of these children, focused in the fourth
section “Vision and speech language impairments”, has rarely been researched.
Crollen et al. present findings on visually impaired children’s mathematical de-
velopment, while Schuchardt and Mähler investigated the mathematical skills
of speech and language-impaired children. How the language of learning and
instruction as second language affects mathematical learning is addressed by
Moser, Opitz, and Schindler.

The final section “Language as a learning resource in school” attends to the
instructional aspects of mathematics and language learning. While trying to bridge
the gap between research and practice, the perspectives of the different disciplines
are made visible: Moura et al. discuss the similarities of procession models for
numbers and words informed by neuroscience. An important linguistic learning
resource is children’s mathematical vocabulary, whose development is the
focus of Powell et al. The main topic in this section is word problems. Mosch-
kovich and Scott demonstrate the pitfalls that word problems bring to learn-
ers. From a psychological perspective, Herzog et al. invert the usual process of
mathematical modeling and explore how children write word problems when

VIII Introduction



provided with given illustrations. Stephany takes a linguistic perspective and
investigates the relation of text coherence and children’s reading skills in the
context of word problems. MacKay et al. address this challenge and illustrate
how to prepare teachers for multilingual classrooms. The decision about when
to intervene in a child’s schooling is both complex and critical.

The various disciplines have contributed insights to the development of
mathematics and language skills. It would seem to us, given the work presented
in this book, that an imminent task for current and future researchers would be
to integrate and interconnect these findings with the aim of forming a compre-
hensive theory of mathematical and language learning. Our common work on
the mathematical screening for bilingual children worked as an initial spark for
theorizing this interrelation and taking initial steps toward a theory. We hope to
fuel this spark in our colleagues with the creation of this book.

Essen, September 2020
Annemarie Fritz, Erkan Gürsoy, and Moritz Herzog
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I Perspectives on mathematics and language
of different disciplines





Caleb Everett

The diversity of linguistic references
to quantities across the world’s cultures

1 Introduction: Defining core concepts

It is challenging, perhaps impossible, to discuss “numbers” without bringing
to bear particular assumptions of one’s culture, language, theoretical bias, or
some combination thereof. What are numbers, exactly? Are they innate con-
cepts given to us by natural selection? Are they entities that exist in nature,
awaiting discovery by the brains of humans and other animals? Are they cul-
tural and linguistic constructs that have gradually accrued across the world’s
populations in different but constrained ways? Some scholars would offer af-
firmative answers to only one of the three preceding questions, while others
might offer positive answers for all three. Volumes have been written on these
possible perspectives and, perhaps, many of those volumes are of little rele-
vance to those interested in more quotidian, and perhaps more significant, ped-
agogical concerns associated with numbers. Nevertheless, it is useful to have
some basic agreement as to what we mean when we talk about learning num-
bers and the basic mathematical principles revolving around them – to have
some shared understanding about what numbers even are. In this chapter I will
focus on the last of the three questions above, outlining in basic form the cross-
linguistic variation that exists vis-à-vis spoken number systems to illustrate
how such systems have accrued in variable ways across human cultures – even
if the relevant variations are constrained in some ways. The survey presented
should, I hope, benefit scholars interested in mathematical pedagogy who are
not entirely familiar with the extent of cross-cultural variation in the number
systems of the world’s languages.

Before embarking on the survey, though, allow me to establish the definitions
of three terms that I will be using during its course. These definitions reflect my
own theoretical predispositions, informed as they are by cross-cultural and cross-
linguistic data. The three key terms and associated definitions I will employ are
“quantical,” “numerical,” and “numbers.” The definitions are grounded in other
work, primarily Núñez (2017), though related terms and definitions have been
presented by a variety of scholars. I begin with “numbers,” which I define as
verbal symbols representing precise quantities. Given that verbal symbols for
precise quantities have primacy both ontogenetically and cross-culturally in
our species, when contrasted to nonverbal symbols, I find it useful to interpret
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them as the default form of numbers. This may seem odd in cultural contexts in
which written symbols are sometimes interpreted as equally (or more?) basic,
learnable units, but I believe that a focus on numbers-as-words is a useful re-
minder of the primacy of verbal symbols for representing precise quantities.
Judging from the cross-cultural data, humans’most basic symbolic tools for ma-
nipulating quantities are verbal (Everett, 2017).

The distinction between “quantical” and “numerical” concepts is more re-
cent and esoteric, but I believe it to be extremely useful and well motivated. For
a fuller discussion of the merits of this distinction, I refer the reader to Núñez
(2017). The chief motivation is that much research in psychology refers to basic
and native “numerical” cognition, putatively shared by our entire species, that
appears to be neither basic nor native once the extent of cross-cultural diversity
in quantitative cognition is surveyed with sufficient care. Nevertheless, it is gen-
erally agreed that all humans do share some basic native capacities for quantity
discrimination. For instance, humans can generally distinguish small quantities
(1, 2, and 3) from each other precisely without training (as can the members of
some other species). Humans can also approximately discriminate larger sets of
items, for instance, eight sticks from sixteen sticks, presuming that the ratio
between the sets is large enough. (This ability is also phylogenetically primitive –
some have suggested it stretches back to the first vertebrates.) These basic quan-
titative reasoning skills are not apparently contingent on cultural scaffolding, but
they are not really “numerical” in that they offer no means of delimiting, for in-
stance, five from six items with consistency. Numbers like “five” and “six” do not
simply follow from our native quantitative capacities; they must be crafted and
honed by distinct cultural practices that rely on those capacities. These practices
allow us to transfer our modest native exact quantity recognition into the realm
of larger quantities. For such reasons, it is not particularly useful (from my per-
spective anyhow) to refer to native quantical abilities, shared with other species,
as “numerical,” or to liken them to a “number sense.” Terms like “number sense”
may give the false impression that we are somehow born with numbers in our
heads or are wired to learn basic arithmetic (Dehaene, 2011). In the words of
Núñez:

Humans and other species have biologically endowed abilities for discriminating quanti-
ties. A widely accepted view sees such abilities as an evolved capacity specific for number
and arithmetic. This view, however, is based on an implicit teleological rationale, builds
on inaccurate conceptions of biological evolution, downplays human data from non-
industrialized cultures, overinterprets results from trained animals, and is enabled by
loose terminology that facilitates teleological argumentation. (2017:409)

4 Caleb Everett



Given my shared desire to avoid teleological argumentations where they are not
warranted, and given this chapter’s focus on cross-cultural variability, I adopt
the terminological distinction proffered by Núñez, the distinction between “quant-
ical” concepts and “numerical” concepts. The former term refers to humans’ na-
tive, biologically endowed capacities for differentiating quantities in generally
coarse ways. The latter term, “numerical,” refers to exact, symbolic practices evi-
dent when humans use “numbers.” Framed differently: The existence of quanti-
cal cognition is a necessary condition for the flowering of numerical cognition,
but it is, critically, not a sufficient condition. Maintaining a distinction between
“quantical” and “numerical” cognition is particularly useful as a background for
discussing the extent of cross-cultural variability in the ways that people talk
about quantities, and the potential relevance of that extensive variability to math-
ematical pedagogy. It is important to dissociate the universals of human quantical
thought from the cross-cultural variability of numerical thought and numbers.
This clear dissociation could positively impact efforts to more effectively convey
numerical concepts to individuals across the world’s cultures.

So, to be clear, this contribution aims to shed light on the diversity of num-
bers in the world’s languages in the expression of numerical concepts, and also
will survey some differences in how languages describe quantical concepts. Ap-
proaches to the pedagogy of arithmetic could only benefit, I hope, from an under-
standing of commonalities and differences in the ways the world’s languages
refer to such concepts. These could offer some insights into the best ways to ap-
proach, for instance, cross-culturally effective instruction strategies. (I leave it to
the experts on pedagogy, however, to judge how the findings discussed here
might benefit mathematical instruction across cultures.) At the least, such com-
monalities and differences can hopefully give the reader a better sense of just
how typical or atypical our own linguistic strategies for encoding numerical and
quantical concepts are, when considered in the light of the typological data. By
examining an adequately representative sample of number systems in the world’s
languages we can, inter alia, better understand which numerical concepts are
most easily acquired by the members of our species.

2 Cross-population differences in grammatical
number

The grammars of the world’s languages often refer to quantical concepts, what
is commonly referred to as “grammatical number.” Grammatical number refers
to a variety of phenomena that denote distinctions between small precise
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quantities and large imprecise quantities (e.g., singular vs. plural), or between
small precise quantities (e.g., singular vs. dual). Grammatical number markers
take many forms, including noun suffixes and prefixes, verb suffixes and pre-
fixes, and many more. In English, for example, suffixes are added to nouns to
demonstrate whether there is one or more than one of an item or entity to
which the speaker is referring. In the languages in which grammatical number
exists, it serves overwhelmingly to distinguish between sets of exactly one (sin-
gular) and more than one (plural). In rarer cases grammar is also used to distin-
guish one, from two, from more than two items. Languages with that kind of
grammatical number are said to have singular, dual, and plural marking. Rarer
still are languages that have singular, dual, trial, and plural marking. So gram-
matical number is always used to designate sets of items (1, 2, 3, or many) that
humans are capable of discriminating via their native quantical cognition, as
defined above.

Grammatical number refers only to small quantities precisely, and to large
quantities approximately. In this way its function is limited, but in another
sense its function is very robust: Languages that have grammatical number
often use it to obligatorily denote the quantity of reference, and this obligatory
status means that it is extremely pervasive in speech. In this chapter alone
there are hundreds of cases of grammatical number inflected on verbs and
nouns. English learners, whether children or adults, must learn the ways of
adding regular plural markings, not to mention irregular plural markers. They
must also learn that some nouns, say, “deer,” are not marked at all in the plu-
ral. More broadly, they learn that the quantity of referents is always relevant,
even if only in approximate ways, during communication.

This is not the case in many of the world’s cultures. In fact, in about 10% of
the world’s languages, there is no grammatical means of designating the number
of referents to which a speaker is referring. For example, the Karitiâna language,
on which I have done a fair amount of research, has no nominal plurality. Con-
sider the following phrases from that language:

(1) myjyp ambi
three house
“Three houses.”

(2) y-ambi
1st.Singular.Possessive-house
“My houses.”

6 Caleb Everett



(3) ombaky naokyt taso
jaguar killed man
“The jaguar(s) killed the man/men.”

(4) yj-pyt ombaky
our-hand jaguar
“Five jaguars.”

As we see in (1) and (2), the word for house does not change even when there
are many houses being referred to. The same is true of “jaguar,” and “man,” as
seen in (3) and (4), because all the nouns in the language do not denote quan-
tity distinctions.

There are many languages like Karitiâna scattered around the world. In a
survey of data of 291 languages representing many distinct language families
and geographic regions, the linguist Martin Haspelmath found that about 10%
(n = 28) of the languages were like Karitiâna, with no nominal plurality evident
in their grammars (Haspelmath, 2013). (“Nominal plurality” refers to cases in
which the quantity of an item referred to by a noun is denoted in the grammar,
typically with a suffix on the noun.) In another 19% (n = 55) of the languages,
nominal plurality was found to be optional in all cases. So rather than saying
something like, for instance, “three cars,” one could say “three cars” or “three
car,” and either would be grammatically correct. There is a sense in which this
is intuitive, as the -s suffix in a phrase like “three cars” is, after all, redundant,
encoding information about plurality that is already contained in the preceding
number word. In other cases the plural marking may prove quite informative.
For example, the interpretation of clause (3) could vary significantly. Did one
jaguar kill one man? Did one jaguar kill many men? Did many jaguars kill many
men? Did many jaguars kill one man? In actuality, though, context and real-
world prior information (e.g., that jaguars are fairly solitary creatures) help to
constrain most cases of ambiguity. Speakers can communicate just fine without
grammatical reference to things like plurality. One could make the case that
grammatical number is most relevant for human nouns, since speakers tend to
talk about human referents, and since humans can occur in varying group sizes
(Everett, 2019). The global distribution of grammatical number types supports
this intuition: Haspelmath (2013) found that about 7% (n = 20) of the world’s
languages have plural marking that is optional but can only be used to denote
plural human referents. Furthermore, in about 14% (n = 40) of the sampled lan-
guages, plural marking is obligatory but is restricted to human nouns. And in
5% (n = 15) of the languages, plural marking occurs on all noun types but is op-
tional for inanimate nouns.
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Haspelmath’s survey reveals, then, just how variable grammatical number
marking is across the world’s languages. Less than half of the languages in his
sample, or 46% (n = 133), exhibit the kind of grammatical number marking evi-
dent in English and most European languages, in which multiple referents must
be designated with plural-marked nouns in an obligatory manner. In over half
of the world’s languages, grammatical plural marking is either absent, or is op-
tional, or is only obligatory for nouns that refer to human referents. This vari-
ability of grammatical plural marking is evident across diverse regions and
language families.

One logical question that follows from the diversity of grammatical number
is whether one’s native language impacts how s/he becomes familiar with the
distinction between the notions of “one” vs. “more than one.” (This topic has
been raised in contemporary discussions of “linguistic relativity”; see for exam-
ple Everett, 2013.) Such an impact may seem implausible given that these are
quantical concepts, native to all members of our species and countless others.
Yet the question is not whether variation in grammatical number enables hu-
mans’ simple capacity for tracking singularity or plurality, but whether it affects
how a person habitualizes themselves to such distinctions during every-day
events.1 For instance, if a person speaks a language that only indicates plurality
on human nouns, does this bias that person to pay attention to quantity more
when speaking about or conceptualizing human referents? Perhaps not, but to
my knowledge no experimental evidence has been brought to bear on the topic.
There is now evidence, however, that distinctions in grammatical number can
affect how adroitly children handle quantical concepts. Some of that evidence
will be discussed below.

Grammatical duals are the formal means, often noun suffixes as in the case
of plural markers, that languages use to denote precisely two referents. This
dual marking is not extremely rare. For instance, in a recent survey of 218 lan-
guages, Franzon et al. (2018) find that grammatical duals occur in some form in
84 of the languages. In Everett (2019) I observe that these duals tend to be re-
stricted in terms of geographic distribution and in terms of the language fami-
lies in which they occur and are also restricted in terms of function. In most
languages that use dual markers, they denote distinctions on human referents
only. There are over 300 language families in the world (Bickel et al., 2017), and
in the vast majority of these grammatical duals are not present. Still, grammatical

1 Note that this is just one of many issues that could be raised vis-à-vis the interaction of lan-
guage, culture, and cognition. For more discussion on this topic, see Everett (2017) or Saxe
(2012).
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dual markers are more common cross-linguistically than some might assume,
given that most of the world’s most widely spoken languages lack grammatical
duals. One notable exception to this trend is Arabic. Intriguingly, while Spanish
and English and the vast majority of European languages lack a grammatical dual
maker, Proto-Indo-European did apparently have one, as did ancient Greek and
Sanskrit. And there are vestiges of the grammatical dual in English, notably in the
words “either” and “both.”

Despite their well-known tendency to have few numbers, as in a “one-two-
many” system, some languages of Australia employ grammatical dual markers.
Here are some examples from Dyirbal, taken from Dixon (1972: 51):

(5) bayi Burbula miyandanyu
“Burbula laughed.”

(6) bayi Burbula-gara miyandanyu
“Burbula and another person laughed.”

(7) bayi Burbula-mangan miyandanyu
“Burbula and several other people laughed.”

In (7) we see that the suffix -mangan serves as a plural maker, denoting that
multiple people are involved in the event. But this plural is only used to denote
more than two people, since if there are precisely two people the -gara suffix is
used as in example 6. (This kind of dual marker is called an “associative dual”
since it refers to a specific person and exactly one other person.) While dual
markers may tend to refer to human and pronominal referents, this is certainly
not the case in all languages that use them. In the Sikuani language and various
others, there is a suffix or other affix that refers to precisely two things. Consider
these Sikuani words: emairibü “a yam” vs. emairibü-nü “yams” vs. emairibü-behe
“two yams.” The -behe suffix signifies that there are precisely two yams in ques-
tion (Aikhenvald, 2014).

Grammatical trials are also evident in Franzon et al.’s (2018) survey. In that
survey, 20 of the 218 languages have grammatical trials. However, the grammat-
ical trial is evident in only one world region, Oceania. It is evident in clauses
like the following example sentence from Moluccan:

(8) duma hima aridu na’a
house that we three own
“We three own that house” (Laidig & Laidig, 1990: 92)
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The aridu pronoun is a first-person trial pronoun meaning “we three.” Gram-
matical trials are generally restricted to pronouns, even more so than gram-
matical duals.

Given the distribution of grammatical number types, it seems fair to say
that languages generally indicate a singular/plural distinction in their gram-
mar, either with affixes attached to the noun, or with verbal affixes or other
changes made to the verb that denote “agreement” with the number of items of
a relevant noun. (Verbal affixes are prefixes or suffixes, in most cases, that are
attached to a verb.) This singular/plural distinction is evident throughout most
of the world’s languages, but a substantive minority of languages do not make
the distinction grammatically. Languages that refer to grammatical duals and
trials are comparably rare, and the functional utility of these other categories
tends to be limited.

Does the variation that exists in the world’s grammatical number types impact
how speakers of languages learn basic quantitative concepts like “precisely 2” and
“precisely 3”? This may seem an odd suggestion given that quantical cognition
allows us to differentiate 1 from 2, and 2 from 3. Yet simply because all humans
are endowed with the capacity to differentiate these quantities, we cannot as-
sume that they come to use them in the same ways and with the same dexterity,
nor that the features of a language do not impact the ease with which the con-
cepts are handled during childhood. To the contrary, there is now evidence that
grammatical number has at least a modest effect on the ease with which quanti-
cal concepts are handled, at least in some contexts. English-speaking children
tend to learn the word for 1 rapidly, when compared to Japanese and Mandarin
speakers (Almoammer et al., 2013; Marušič et al., 2016). This may be due, at least
in part, to the presence of grammatical number in English, which Mandarin and
Japanese lack. Relatedly, speakers of one dialect of Slovenian that has a gram-
matical dual marker tend to learn the word for 2 earlier than speakers of the
other languages for which comparable data are available. These include English,
Russian, Japanese, and Mandarin (Marušič et al., 2016). While such results are
consistent with a grammatical effect on the ease with which even quantical con-
cepts are labeled and manipulated linguistically, the causal role of grammar is
of course debatable given the host of cultural confounds entailed in such cross-
cultural research.2 One of the ways to circumvent this challenge is to examine

2 For example, cultures that rely heavily on trade may be more likely to refer frequently to dis-
tinctions between quantities, even small quantities (Everett, 2019). In such cases, the frequency
of transactions requiring precise quantities could serve as a confounding explanation, perhaps
explaining the observed differences in quantitative thought that could also correlate with lin-
guistic differences.
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groups that are relatively homogenous culturally, but differ in terms of one par-
ticular linguistic feature. Slovenian presents a critical test case, as dialects of Slo-
venian vary according to the presence of grammatical duals. Recent research
with speakers of these dialects suggests that the kind of grammatical number
that exists in a given Slovenian population impacts how and when Slovenian
children learn to label and manipulate quantical concepts.

In dialects of Slovenian that employ a grammatical dual, it takes the form
evident in (9).

(9) dva rdeča gumba ležita na mizi
two red.DUAL button.DUAL lie.DUAL on table
“Two red buttons are lying on the table” (Marušič et al. 2016: 2).

Note the pervasiveness of the grammatical dual in such a clause. The adjective
(“red”), the noun (“button”), and the verb (“lie”) are all inflected in a way that
indicates the fact that there are precisely two buttons. Learning a language like
this requires children to consistently refer to whether or not there are two, and
precisely two, referents being discussed. This cognitive fixation might have
some effect on the age at which children become comfortable with a more gen-
eral ability to symbolically denote the notion of two. A research team led by
Franc Marušič at the University of Nova Gorica, Slovenia, tested the hypothe-
sis with young children between the ages of two and four. Their sample was
large, involving nearly 300 children from three Slovenian regions. Eighty-three of
these children were from Slovenska Bistrica, a region of Slovenia where the dual
morphology evident in clause 9 is quite normal. Seventy-one represented Central
Slovenia, another region in which the grammatical dual is used. One hundred
fifty-eight children represented two other regions in which speakers do not gener-
ally use the grammatical dual: Metlika and Nova Gorica. Finally, a control popu-
lation of 79 English speakers in San Diego was tested. The tasks involved in the
work are common to research on the development of numerical cognition. A key
task was the so-called Give-N task, in which children are tested on their familiar-
ity with basic number words. For this variant of the task, the researchers gave
kids 10 buttons and asked the kids (in Slovenian or English) the following ques-
tion: “Can you put N in the box?” For example, “Can you put two in the box?” N
refers to a number word. The results of the Give-N task were promising for the
hypothesis, pointing to subtle but significant differences across the populations
of Slovenian speakers. The researchers found that “overall, speakers of dual dia-
lects were more likely to be 2-knowers than speakers of non-dual dialects” and
reached the “2-knowing” stage at an earlier age (Marušič et al., 2016: 2). While
the cross-population differences were not pronounced, they were consistent with
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the hypothesis that grammatical dual marking can impact how kids acquire basic
numbers, even those associated with quantical concepts. These and other related
findings led Marušič et al. (2016) to the following conclusion: “morphological
marking of number in language facilitates learning of early number word mean-
ings” (Marušič et al., 2016: 15).

We have seen in this section that languages vary in terms of how, and
whether, they denote quantitative concepts grammatically. This survey has not
been comprehensive, and for a fuller picture on grammatical number I refer the
reader to Corbett (2000). Yet the survey was sufficient to demonstrate that varia-
tion in grammatical number is more substantive than some scholars may pre-
sume. Furthermore, I have highlighted recent work that suggests that variation
in grammatical number, including the presence/absence of a grammatical dual,
may impact when and how kids are able to symbolically represent quantical
concepts like 2.

3 Cross-population differences in number words

There are many critical stages in the acquisition of basic numerical concepts.
These include the well-known stage at which children master the cardinal prin-
ciple, becoming fully aware that a set labeled by a word N corresponds to an
exact quantity that is associated with the word N only. Relatedly, they learn the
successor principle, becoming aware that each word in a sequence of number
words refers to the quantity denoted by the previous number word plus exactly
one more (Carey, 2009a, 2009b). Prior to the acquisition of these principles,
kids are able to recite a list of number words but are unaware of the relationship
between them. They merely recognize that number words, like the letters of the
alphabet, come in a predictable order. Much debate remains as to how exactly
kids acquire the cardinal and successor principles, but it is clear that cultural
variation in finger counting and number words impinge on that acquisition.
The presence of precise number words like “two” or “seven” (as opposed to “few”
or “several”) in a language appears critical to even more basic cognitive stages
that do not rely exclusively on quantical capacities. For example, the mere recog-
nition of one-to-one correspondence benefits from the presence of number words.
There is some debate as to the extent of that benefit, but work among anumeric
Nicaraguan homesigners, largely anumeric Munduruku indigenes, and totally
anumeric Pirahã indigenes points in the same general direction: Number words
are critical to scaffolding or at least enhancing the recognition of one-to-one corre-
spondence for set sizes larger than 3–4 (Pica et al., 2004; Spaepen et al., 2011).
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For differing views on the extent of the effects of an absence of number words
in a culture, see Everett and Madora (2012) and Frank et al. (2008). (The Pi-
rahã language is well known to lack precise number words (Everett, 2005).)

Much has been written about the cultures and languages with few or no
number words, and admittedly the sparse studies carried out among the rele-
vant groups leave room for multiple interpretations of a few key results. (See
Frank et al. (2008) and Everett and Madora (2012) for one example of a disagree-
ment in interpreting the experimental results among the Pirahã.) This is not sur-
prising given that there is still debate on the acquisition of numerical concepts
in cultures whose numerical cognition has been studied with thousands of stud-
ies, for example, Americans. (See, for instance, the differing views on some key
topics by prominent researchers such as Carey (2009a), and Dehaene (2011).)
But it is difficult to contest that number words are critical to the acquisition of
very basic numerical concepts besides the cardinal and successor principles.
This conclusion is, in a way, unsurprising. What is more contestable is whether
current differences in types of number words impact numerical cognition. Set-
ting aside the rare contemporary cases of anumeric or nearly anumeric cultures,
then, what can we say about the vast majority of the world’s 7000+ languages
that have lexical numbers? Do cultures that rely on distinct kinds of number
systems exhibit associated distinctions in how they think about and learn numer-
ical concepts? The truly cross-cultural work on this topic is modest in scope, but
it does hint that variation in number word systems yields some effects on basic
numerical cognition.

Anecdotally, my own impression is that the extent of diversity in the world’s
number systems is underestimated by many scholars. In a detailed survey of 196
languages representing dozens of families and all major geographic regions, lin-
guist Benard Comrie offers us a sense of that diversity. Twenty of these languages
have “restricted” number systems, one of which is the aforementioned extreme
case of Pirahã. Other restricted cases include Hup, which will be discussed
below, and some other Amazonian and Australian languages. In New Guinea
there are four languages from Comrie’s (2013) survey that use an “extended
body part” number system. In some of these cases, for example, Kobon, count-
ing follows a trajectory up the arm (and back down the other side of the body
in some languages). So the words for 1–5 are the same as the words for the
fingers on the left arm, and then 6–12 are expressible via the words for the fol-
lowing body parts: wrist, middle of the forearm, the elbow (or, rather, the op-
posite side of the elbow), the upper arm, the shoulder, the collarbone, and
then, lastly, the suprasternal notch (the indentation above the sternum). Such
extended body part number systems, like restricted systems, have no number
bases. In 172 of the 196 languages in Comrie’s (2013) survey, there are bases.
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Bases of verbal numbers are the key numbers around which larger numbers
are structured, usually in a multiplicative fashion. For instance, English is
base-10 or decimal because number words like “forty three” are constructed
around “ten”: four x ten + three.

According to Comrie’s (2013) survey, 125 of the 196 languages examined
have decimal bases, as in English, for numbers greater than 10. A smaller but
sizable segment, 20 of the 196 languages, use vigesimal or base-20 numbers for
higher quantities. Hybrid bases, which rely on a combination of decimal and vi-
gesimal bases, are found in 22 of the languages. In total, then, 167 of 196 lan-
guages in the survey use some base that is derived from an obvious anatomical
source. The existence of base-10 and base-20 systems owes itself, of course, to
the fact that humans have 10 fingers and 20 fingers and toes. Taking Comrie’s
sample as a reasonable proxy for the world’s languages, this means that about
85% of the world’s languages likely rely on digitally based numbers, and most of
the other extant number systems rely on anatomical features in some other way.

One base that is rarely attested but that has shaped much of western life, in
an oblique manner at least, is the base-60 system that was once used in ancient
Sumeria. This system has, over the last few millennia, worked its way into vari-
ous aspects of our mathematical culture, for instance the use of 360-degree arcs
evident in geometry and navigation. More fundamentally, due to its adoption
by the Babylonians and Greeks, it ultimately came to shape how we define
units of time. The minutes of the day are simply what one arrives at if hours are
divided into 60 equal units and if we divide those units by 60 a second time we
get, well, “seconds” (hours are an odd by-product of the ancient Egyptian sun-
dials that divided the daylight into 12–10 units for when the sun was up, due
to the decimal Egyptian language, plus one unit for dawn and one for dusk)
(Everett, 2017). Base-60 systems are also attested in the ethnolinguistic litera-
ture, at least in the Ekari language of New Guinea:

(10) èna ma gàati dàimita Mutò
one and ten and Sixty
“Seventy one” (Drabbe, 1952: 30).

Interestingly, the most plausible account of the genesis of base-60 systems also
points to the criticality of the fingers in the origins of numbers. An attested prac-
tice in some cultures is to count the 12 lines of the non-thumb joints of the in-
side of one hand with the five fingers of the other hand. (See image in Everett
(2017: 80).) If each added finger is used to represent the 12 lines, then the total
quantity represented by five fingers is 60 (Ifrah, 2000). So while the base-60
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system we used for telling time is unrelated to the decimal system that devel-
oped in Indo-European languages, it shares with it manual origins.

There are roughly 400 Indo-European languages spoken in the world today,
with English and other languages well represented across the globe as first
and second languages. Proto-Indo-European, spoken somewhere in the vicinity
of the Black Sea over 6,000 years ago, had a decimal system as evident by re-
constructed words such as *dékmt, “ten” and *duidkmti, “twenty” (literally “two
tens”) or *trihdkomth, “thirty” (literally “three tens”). Phonetic vestiges of such
number words are still evident in descendant words, like the Portuguese word
dez (“ten”) or the word decimal itself, both of which bear some resemblance to
*dékmt (Everett, 2017). More critically, though, the structure of Portuguese num-
bers, English numbers, and numbers in other contemporary Indo-European lan-
guages still carry the structure of Proto-Indo-European numbers, whereby 10 is
multiplied by smaller numbers to create larger number words. This decimal base
is evident in the world’s other largest language families today, including Niger-
Congo, Austronesian, and Sino-Tibetan, which like Indo-European has over 400
languages and over a billion speakers. (The Niger-Congo and Austronesian fami-
lies each have over 1,000 members, representing a sizable chunk of the world’s
7,000+ languages.)

The manual/digital origins of number words are not simply evident in the
preponderance of decimal and vigesimal number systems; they are also evident
in the base-5 nature of number words less than 10 in many cultures. The critical
nature of a word for 5 in constructing greater numbers is evident worldwide,
and stems from the clear derivation of that number from counting with the fin-
gers. For instance, the word for 5 in many languages is transparently derived
from the word for “hand.” In Proto-Austronesian, for example, the word for
hand and the word for five were both *lima. The same correspondence is evident
in very many unrelated languages, and the word for “five,” once derived from
the word for “hand,” seems to kick-start the growth of larger number systems
(Bowern & Zentz, 2012).

The digital foundations of numbers are even evident in some languages
that have modest number systems, in words for precise numbers less than 5. In
Hup and Dâw, two closely related languages of Amazonia, words for numbers
are based around the kinship terms in the language. The word for 3, for in-
stance, translates to “without a sibling” because 3 is odd. The word for 4 trans-
lates to “with a sibling,” because it is even (Epps, 2006). These number words
are not used by themselves, however, but alongside finger-counting strategies.
So one needs to hold up four fingers and say “with a sibling” to fully denote the
number four. Languages like Hup and Dâw drive home the general theme of
this section: A survey of the world’s spoken numbers suggests that languages
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vary tremendously in terms of the kinds of numbers they use, and in terms of
the range of quantities denoted by those numbers. Yet there are also pervasive
tendencies underlying this variability, and those tendencies point again and
again to the ways in which finger counting is critical to the historical acquisi-
tion of numbers in diverse and unrelated cultural lineages.

Variation in kinds of cardinal numbers is just one of the sorts of variation in
cultures’ verbal representation of quantities. Ordinal numbers also vary in marked
ways. In a recent survey of 321 languages, Stolz and Veselinova (2013) observe
that over 10% do not have a distinct category of ordinal numbers. This is in con-
trast to languages like English, in which ordinal numbers are often denoted with a
-th suffix, for example, fourth, fifth, sixth. In most languages there is some distinc-
tion between cardinal and ordinal numerals, however, and in most cases ordinal
numbers are clearly derived from cardinal numbers as in the English examples
just cited. Intriguingly, though, in almost two thirds of the languages surveyed by
Stolz and Veselinova (2013), small ordinal numbers are treated differently. In
many of these languages it is only the ordinal number for 1, as in English “first”
(we do not say “oneth’)” In some languages 2 also is denoted with a distinct ordi-
nal number, as with English “second” (we do not say “twoth”). The cross-cultural
variation in small ordinal numbers underscores that even basic reference to quant-
ical concepts (quantities less than four) varies cross-culturally. This variation in
the reference to quantical concepts, which was also evident in our discussion of
cardinal numbers and grammatical numbers, is in some sense surprising. Lan-
guages vary extensively with respect to how they describe quantical concepts that
all humans share and, as seen in cases like Slovenian, this variation has demon-
strable effects on the age at which individuals become adept and using such
“quantical” concepts. While linguists, anthropologists, psychologists, and others
have long been aware of variation in terms of how languages denote numerical
concepts, only relatively recently have we come to appreciate that that variation
extends in key ways to quantical concepts. It is possible, however, that we still
underestimate the ways in which languages vary vis-à-vis their expression of
quantical concepts. In a very recent study involving data from nearly 6,000
dialects, I make the case that there is another key type of variation in number
words for quantical concepts that has still not been explored systematically:
The cross-cultural frequency in speech of words for 1 and 2 (Everett, 2019).

While the vast majority of the world’s languages have words translatable as
“one” and “two,” this does not mean that those terms are used in the same
ways or at the same rate. The exploration of their frequency seemed worthwhile
for a few reasons. One reason is that the frequency of usage of number terms,
even as small as “one” and “two,” could well impact the rate and age at which
children become practiced with basic quantitative concepts. This possibility is
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supported by the aforementioned work on grammatical duals, which suggests
that the frequent grammatical reference to 2 facilitates to some degree children’s
refinement of certain facets of basic quantitative thought. While directly establish-
ing the frequency in speech of words like “two” for most of the world’s languages
is not possible, there is one indirect way to test for frequency in speech. This way
relies on a well-known fact about words: Highly frequent words tend to be re-
duced phonetically, that is, made shorter (Bybee, 2007). With this fact in mind, I
examined the length of number words for “one” and “two” across the bulk of the
world’s languages. This was done via a database containing 40–100 commonly
used words (phonetically transcribed) for the bulk of the world’s languages
(Wichmann et al., 2018). My work looked at 5,942 language varieties (dialects
and mutually unintelligible languages), considering the average word length of all
the words for each language. For each language variety, I then contrasted the word
lengths for “one” and “two,” respectively, with the average word length of all the
other words in that language. Upon doing so, a very clear pattern emerged: The
languages spoken by cultures with larger populations tend to have shorter
words for “one” and “two,” even after controlling for factors like the average
word lengths of particular languages and the relatedness of languages. This
pattern suggests strongly that larger populations tend to use number words
more frequently than smaller populations. There are many factors that likely
motivate this tendency across the world’s culture, including greater frequency
of number words in cultures relying on trade and industrialization.

This all may seem very intuitive and even trivial: Of course cultures vary in
the degree to which they use number words, and in the frequency with which
they use number words in practices like trade. Yet the key point is that such
variation extends to number words for quantical concepts that are shared by all
human populations. Previous work had suggested that quantical concepts, namely
1, 2, and 3, are less prone to being concretized in varied ways across cultures be-
cause they are native concepts (Franzon et al., 2018). Instead, I argue, they are
treated pretty much like other quantitative concepts in terms of how they are re-
ferred to in speech. That is, they are prone to cross-cultural variation and are used
with very different frequencies across the world’s cultures – at least judging from
the indirect word-length data. More broadly, the issue of the frequency of small
number words raises yet another kind of cross-linguistic variation in numbers. This
variation, like the variation in grammatical number types, may impact children’s
acquisition of numerical concepts. Work is required to explore this possibility.

In this section we have seen that there is an underlying manual basis of
number systems but also an amazing diversity of number words overlaid over
that manual basis. This includes diversity of several sorts: Diversity in number
bases (despite their generally digital origins), diversity in the mere existence of
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number words (since some languages lack them), diversity in ordinal numbers,
and diversity in the frequency with which numbers, even very small numbers,
are used. This global diversity of number words impacts how kids acquire nu-
merical concepts and even their facility with basic quantical concepts. All
these factors are worth keeping in mind when considering how best to teach
arithmetic across the world’s cultures. The linguistic features of a given cul-
ture affect how the members of that culture learn even basic quantitative
concepts.

4 Discussion and conclusion

While there are universal human quantitative capacities, each culture and lan-
guage brings with it its own biases in terms of how it refers to quantical and
numerical concepts. A greater awareness of the extant cross-cultural diversity
of spoken numbers could, I hope, benefit those concerned with how best to
teach basic arithmetic concepts. It is still very debatable just how much cross-
cultural variation of numbers impacts how kids acquire numerical concepts.
Yet, where relevant experimental evidence exists, it consistently suggests that
such variation matters, often in marked ways. If people speak an anumeric lan-
guage, this has marked effects on their ability to learn number concepts. If they
speak a language with a grammatical dual, this seems to offer advantages to
early numerical cognition. More commonly, cross-linguistic variation in the
transparency of number bases may impact how kids acquire numbers. Some
evidence suggests that Chinese children, for instance, outperform children
from the UK, Russia, and other nations on mathematical tasks, and that this
high performance is due in part to the greater transparency of the decimality
of Chinese numbers (Rodic et al., 2015; though see Moschkovich, 2017). So,
while languages tend to have decimal bases, the transparency with which dec-
imality is expressed appears to affect the cross-cultural acquisition of numeri-
cal concepts.

All of this leaves us with two simple conclusions: (1) The cross-cultural
variation of linguistic numbers impacts quantitative cognition, and (2) the
cross-cultural variation of linguistic numbers is remarkable even if it is con-
strained by the typically digital origins of numbers. Both of these points seem
worth bearing in mind as we adopt and refine pedagogical models for arith-
metic instruction, if we are interested in the cross-cultural efficacy of those
models.
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Language and mathematics:
How children learn arithmetic through
specifying their lexical concepts
of natural numbers

1 Introduction

When children are about 18 months old their speech output rapidly increases.
It’s like an explosion where about 10 new words are learned every day. It seems
as if children suddenly understand how they can use language to interact with
their surroundings. At 21 months of age the 100-word milestone in productive
vocabularies is reached (Pine, 2005). Words are still mostly content words, used
to refer to concrete objects and to describe the relationship between objects
with expressions such as “car there,” “mommy’s mug,” or “doggy sleep” being
common. Around their second birthday they start to use words to describe the
relationship of singular and plural. After being able to say and point out “car
there” and doing so for all the cars seen at that moment, all of the sudden they
say “car there, many car,” pointing out all the cars observed (Barner et al., 2007).
With the usage of natural quantifiers infants engage verbally with the world of
numerical relationships. Soon after this development, children are able to de-
scribe objects as being “two.” What seems like simply naming a group of things
needs in fact the development of deep lexical concepts, which rely, on the one
hand, on innate structures, and which, on the other hand, is learned from conver-
sational interactions (Carey, 2009).

Being able to name the number of things seen in their surroundings means
that infants refer to lexical concepts which are concrete and abstract at the
same time. The twoness of something is concrete because of being unique and
distinct from being “three” or “one”; on the other hand, it is abstract because it
names and highlights just one feature of the objects seen. At the same time the
word “two” has a whole bundle of different significations. We are, for example,
referring to two cars meaning the magnitude, to the second car meaning the nu-
merical order, and to two gallons of water describing a continuous substance.
So, while “two” always has the same numerical value, it differs in shape, color,
form, and size (Wiese, 2007). To integrate all these and even more information
into one lexical concept requires about six years to develop as we will elaborate
in the chapter.
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Our aim in this chapter is to describe how lexical concepts for natural num-
bers develop. In order to address the complexity of the topic, we present inter-
linking sections, each dealing with a distinct though connected topic.

In Section 2, we provide a brief overview of the innate knowledge of number
and magnitude, as it manifests in the child’s numerical development. We focus
on the innate core systems being the approximate number system (ANS) and the
object tracking system (OTS). In parallel, drawing on Carey (2009), we introduce
“language” as the third core system and point out which linguistic structures
seem to be fundamental for the numerical development.

In Section 3, we refer to the construct “bootstrapping,” and explain this
most important learning tool that is needed to integrate all numerical knowl-
edge we presume is stored separately in each of the three core systems. To do so
we introduce the knower-level theory (Le Corre & Carey, 2007), which explains
how children gain the specific lexical knowledge, constituting the vocabulary
of natural numbers up to “four.”

In Section 7, we describe cognitive constraints as a key learning tool. Cogni-
tive constraints function as a parallel working process, which helps children to
organize their surroundings and order all global knowledge. This process, the
functioning of cognitive constraints, may be likened to children building a men-
tal closet with drawers for all different categories.

In Section 4, we present a model of early arithmetic development, where we
focus on hierarchy in the development of numerical knowledge and align this
hierarchy with age.

Considering the number of theories introduced and intertwined with each
other each section ends with an interim conclusion summing up what has been
stated so far. We close the chapter with an all-embracing conclusion bringing
all knowledge components together.

2 Innate knowledge of number and magnitude

Over the last 20 years of research a lot has been discovered about innate struc-
tures of number and their magnitude. Whereas arithmetic, dealing with the
properties and operations of number, is a culturally dependent and learned
tool, knowledge of magnitude is an evolutionally old structure securing, for ex-
ample, survival. Dehaene (1999) calls this knowledge of magnitude, the number
sense. The two systems we rely on, as well as most of the animals, are called
core systems. The first core system holds the knowledge of magnitude and is
called the approximate number system. Here the approximately cardinal value
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of perceived sets is represented by a physical magnitude that is roughly propor-
tional to the number of objects, or individuals, in the set being enumerated.
What is currently known from the literature is that analog magnitude representa-
tions of number are available as early as six months of age. Number represented
as analog magnitude is not unusual; dimensions like brightness, loudness, and
temporal duration are also represented this way. In all cases the absolute dis-
tance of two entities of greater magnitudes is increasingly harder to discriminate
and underlies a function of their ratio described by Weber`s psychological law of
quantifying change (Sarnecka & Carey, 2006). With this system it is possible for
infants and children to process the number of big sets and compare or distinguish
these if the ratio between the sets is as big as 1:2, slowly decreasing to a 2:3 ratio.
Xu and Spelke (2000) could show this ability to distinguish starting with seven-
month-old infants. In their experiment the children were shown displays of eight
dots. After a while the children lost their interest in displays showing eight or
even more than eight dots. They recovered interest only when a novel display
held at least 16 dots.

The second core system is called the object tracking system. This system pro-
cesses mental representations of individual object-files as in “one,” “one-one,”
and “one-one-one.” The symbols in this system explicitly represent discrete ob-
jects. This innate input analyzer represents implicit numbers; each object-file
corresponds one-to-one with its match in the world. Being nonverbal this sys-
tem does not hold any numerical information and the models are just compared
as being either equal or unequal.

Wynn (1992) found that children even form expectations about how these
models should interact. Five-month-old children are able to perform transfor-
mations on small sets. In her experiment children observed a small set of one or
two discrete objects. After familiarization a screen hid the objects from view.
The children could then only see how one entity was added or removed. In both
events the child saw the action without seeing the outcome. After removing the
screen children reacted with more attention to the unexpected event, which led
Wynn to the supposition that they had mentally also performed the adding or
subtracting task and expected the situation to match their “new” working mem-
ory model. The argument is that children are able to mentally hold and match
sets like this, and they therefore can use this information to distinguish entities
according to quantity.

Feigenson et al. (2002) showed that children always chose the greater quan-
tity, if numbers ranged between one and four. In their experiment they placed
up to four cookies in two opaque cookie jars of the same size using different
pairings. Being just 12 months of age children always chose the cookie jar hav-
ing more cookies in it, if the ratio was 1 to 2 or 2 to 3. If the pairing was 1 to 4, 2
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to 4, or 3 to 4 children chose by random, showing no differentiation. Here the
limit to store up to three object-files simultaneously is reached, after which per-
formance declines. While observing how the cookies are placed the system cre-
ates a Working Memory Model, which contains one object-file for each cookie.
Afterward the system must keep track of whether the object seen at one point in
time, is the same one as that object seen at the previous point in time. The deci-
sion the system makes dictates whether an additional individual file is estab-
lished, and this guarantees that a mental model of a set of three crackers will
contain three cracker symbols.

This outcome leads to the interim conclusion that pre-numerical set sizes
are supported by iconic mental representations. Each object-file held in the short-
term memory is an icon for its match in the real world (Wiese, 2007). Nonetheless
children have no awareness of the fact that three object-files are equivalent to the
numerical quantity of three. In fact, neither of the core systems, although storing
numerical content, has the power to represent natural number (Carey, 2009).
Both core systems share constraints that do not allow the child to distinguish be-
tween a single object and multiple objects precisely. There are no symbols, in
these core systems for plural. There are no concepts in either of these systems of
core concepts with the content, some, all, or the indefinite article “a” meaning
“one” (Carey, 1999: 194). Based on this argument that the complex cognitive sys-
tem, holding these two systems, is incomplete, a third system, that of language,
is introduced as playing a pivotal role in the development of number knowledge.

The starting point for children is learning and recognizing number words in
speech. Toddlers do this very early in their development, and while observing
the surrounding speech patterns they quickly understand that number words
are linguistically different from other adjectives. The usage of number words
differs very much from descriptive adjectives; they are used not to denote some-
thing, but to describe a relation, for example, a set size or a sequential position
(Wiese, 2007). The class of number words soon forms surface concepts, mean-
ing that toddlers know that these words are used to somehow describe the
quantity and relationship of quantities to each other, and in addition, that you
need to point to entities while using these words. Number words are now the
“placeholder.” As expressed by Negen and Sarnecka (2012), “The placeholder
symbols are the memorized count list and associated counting routine – without
those, the number concepts themselves would not be created. In that sense, num-
ber-concept creation may depend heavily on language” (Negen & Sarnecka, 2012).

Moving forward in their development children sequentially integrate over
the years the following critical pieces of information. Around their second birth-
day they integrate knowledge about the stable order of the number sequence.
They understand singular and plural relationships and can describe them verbally
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with quantifiers such as more or less. In the year following, by the third birthday,
they start integrating the knowledge that a number word matched to a point se-
quentially further along the number line is the same number used for a larger
quantity. The vocabularies of spatial (e.g., between) and temporal prepositions
like “before” or “after” are crucial in the early development of number compre-
hension. “Before” and “after” used in context of the number line refer to changing
magnitudes and can be synonym to “less” and “more.”

Children gradually improve their counting by applying the five counting prin-
ciples introduced by Gelman and Gallistel (1978). The first principle is the one-
to-one relation; the second, the stable order of the number line; and third, the
cardinal principle, or the last word rule, referring to the number word of the last
object counted, which is the answer to the question, “How many objects are there
altogether?” As we will see, children knowing how to answer this question are not
necessarily aware of the fact that this answer describes all the counted objects
(Fritz et al., 2013). The fourth and fifth principle, respectively, acknowledge that
counting can take place without a real counterpart (abstraction principle), and that
the starting point of counting is flexible (order irrelevance principle).

In summary, it may be asserted that to learn the natural number system
children start off with three separate systems: the ANS, the OTS, and lan-
guage. None of the systems independently, as we have seen, holds enough nu-
merical information to form stable concepts of natural number. The ANS has
the power to form approximate representations of large magnitudes, the OTS stores
iconic representations as object-files up to a number of three. Language has the
power to discriminate between individual objects and sets. Chierchia (1998) formu-
lates this to be a semi-lattice structure (Fig. 1) which is linguistically universal. This
is the basis of all language quantification systems,which will be used by children to
link core knowledge together into numerical concepts.

Thus, for children there is the need to combine all three systems to construct new
stable concepts representing the various features. Therefore, what starts as a
surface lexical concept increases and at approximately four years of age holds
information of a stable order, that each number word is used for exactly one cor-
responding magnitude; it is also the last word voiced while counting a set of ob-
jects, or the spaces on a number line, and it represents the quantity counted.

{a,b,c,d,...}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d} ...
a   b   c   d  = At

{a,b,c} {a,b,d} {b,c,d} {a,c,d} ...

Fig. 1: Semi-lattice structure (Chierchia, 1998).
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3 Bootstrapping

To combine all three systems, toddlers use what Carey calls bootstrapping. This
process is used to not simply match information together, but to actually con-
struct completely new mental concepts building on the foundation of innate
structures.

One could think that the knowledge that the number word “three” refers to
the sum of three individual objects is simply a problem of matching the number
word and the iconic representation of three object-files correctly together. One
might liken this process to grown-ups learning the number line in French and
matching each number word to the corresponding magnitude. If this were the
case, the development of numeracy knowledge would be a relatively quick pro-
cess once the three core systems were in place as they hold all the information
that is needed (Sarnecka & Carey, 2006). But in fact, the development is a slow
and extended process, in which each child constructs new mental concepts. We
will see this development in the knower-level theory.

Building new concepts on the foundation of innate structures is a unique
human resource. We use this resource every time we learn a cultural tool like,
for example, arithmetic. To do so Carey (2009) coined the term conceptual-role
bootstrapping – bootstrapping as a metaphor, which means to get oneself out of
a situation using existing tools. In the case of a toddler confronted with the task
to differentiate, describe, and work with number and magnitude, it needs to
find an answer to this dilemma from within its own set of innate resources.
Early on children are confronted with number in speech. They soon know that
number words refer to something special, since this group of adjectives does
not work like “normal” adjectives, such as adjectives of comparison; for exam-
ple, number words cannot be increased. To give an example you can talk about
a small dog and then about a smaller one, but you cannot talk about two dogs
and then about “twoer” dogs. Only number words and color words share this
feature.

Although rooted in the same class of words and being linguistically more
alike, talking of “three bricks” and “red bricks” still has different reference ob-
jects. Red builds a feature belonging to the brick; three does not belong to the
brick in itself, but rather describes the relationship the bricks have to each
other. A motherly demand, “Hand me those three bricks,” challenges the child on
a very high level. The child first of all needs to understand brick and the task of
“giving something.” But the real work starts with analyzing the adjective “three”
and its grammatical and semantic features.

To truly understand the cognitive demand on the child, let us consider the
situation the child shares with its mother and what information the child gets
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from its innate knowledge about the phrase “Hand me those three bricks.” The
child and its mother play with bricks; there is a group of three bricks lying on
the floor next to the child. The mother then asks the child to give them to her.
1. The word “those” indicates that mother and child have a common focus

while the mother points out which group of bricks she means, making sure
her child pays attention to the right group.

2. When focusing on the group of bricks, the child’s innate core structures
respond and the OTS builds – in this particular case – an abstract mental
representation of “one–one–one.” The model matches the real situation
(iconic representation).

3. The iconic representation of three is held securely in the working memory
during the whole analyzing process.

4. In the word “bricks” the plural “s” is grammatically decoded.
5. The number word “three” has – dependent on the depth of the lexical con-

cept of “three” – to be matched to the iconic representation.
6. The child might count out the number; or hand three bricks over directly.

The cognitive information up to step four comes from innate structures and
emerges without much effort from the child. But actually, being able to hand
over any exact number of things is a learning process that children need to
work on for over a year. Earlier we stated that number words form placeholders,
meaning children know the words and use them, but they have not assigned
deep lexical meaning to them. These surface concepts will now be enriched
step by step. Le Corre and Carey (2007) describe the process of gaining knowl-
edge of the cardinal number by evoking the knower-level theory.

Toddlers understanding only a “giving task” will grab any amount and
hand it over. They might insist that the number matches the magnitude asked
for, thereby showing they understood that a quantity was asked for but may
not be able to count out the correct number. These children are referred to as
“grabbers.” Afterward they start working out the cardinal number of “one.”
Being a One-knower means toddlers are capable of handing over exactly one
object but would grab an arbitrary amount of bricks when asked for more
than one. Once the child knows what one means, the child will then start
working out cardinal values of two to four. This development means that in
the next step the number word “two” and sets containing two objects inter-
sect. Children are then capable of naming sets of two, plus after being asked
for any set of two, they can respond with the correct amount. Having concep-
tualized the set number of “two,” they start the process on “three” in the
same manner. It takes about one year to develop cardinal knowledge up to a
magnitude of “four.”
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Referring to our example this means that to meet the mother’s request our
child has to be at least a three-knower since in this case the iconic representa-
tion shows three and the number word is “three.”

Sarnecka (2014) affirmed that the attainment of deep lexical concepts oc-
curs via mapping number words to the corresponding object-files. She com-
pared the amount of time children required to step up to conceptualize the next
cardinal number in different languages. Doing this she could even show that
children acquiring the next knower level took a longer time when reaching the
boundary to the undefined plural. If languages have a singular/plural marking
system like English or in fact German, children stay one knower for a longer
time than children growing up with languages marking singular/dual/plural as
used in Slovenian or Saudi Arabic. Here the children step up to know the mean-
ing of two faster but take a longer time to step up to knowing the undefined
plural starting with three. If languages do not mark singular/plural like, for ex-
ample, Japanese, children need more time to even become a one knower.

So far, the two systems of need were quantificational language and the OTS.
The natural limit of the OTS is the cardinal value of four. This limit means there
are no more exact mental models as a reference. From this point on the process
of counting forms the basis for attainment of exact cardinal number. Children
having worked out the meaning of one to three have understood how quantities
can be measured by counting them out. Yet not all higher magnitudes can be
detected easily. It seems as if now the ANS needs to sharpen. Le Corre and
Carey (2007) tested children on magnitudes raging between 6 and 10 and could
show that even though children could give any exact number asked for through
counting, the capability to semantically map higher magnitudes firmly to their
corresponding number word still needs, on average, about six more months to
develop. They differentiated children linguistically in groups of non-mappers
and mappers. When presented with magnitudes raging between 6 and 10, non-
mappers answer at random while mappers estimate closely to the correct cardi-
nal number. Le Corre and Carey (2007) interpret this to mean that even though
children have understood how to count out any number asked for, they still
need about six months to actually map the approximate representation held by
the ANS to the corresponding number word.

Drawing the evidence together, it can be concluded that to learn natural
number children rely on three innate structures. These structures being the ana-
log magnitude system for cardinal number higher than 4, the object tracking sys-
tem with its parallel individuation models for cardinal number up to three at the
most four and the system of quantificational language. To grasp the full meaning,
they have to override the limitations of the two core systems representing numeri-
cal content and map all numerical features to the number words.
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What seems most important is that not one system alone has the power to
represent all these pieces of information, but that all three must be intertwined
together to actually build new stable and enriched lexical concepts. Therefore,
although it seems as if number words form the foundation for all this develop-
ment, Sarnecka (2016) states that they, the number words, are only the scaffold-
ing. Once the new concept is attained, the scaffolding is no longer necessary,
and the number word becomes just one feature among all others in the deep
conceptualization of natural number.

In addition to matching the initial cardinal knowledge to number words,
children need to deepen their understanding of the relationship numbers hold
to each other and the relationship with regard to the number line construct. Ad-
ditionally, children are constrained by the kinds of hypotheses (referred to as
cognitive constraints) that they use to work out not only cardinal aspects but
also ordinal dimensions of number. How these constraints work and the extent
of their influence on the deep lexical concepts of natural number will be dis-
cussed in the following section.

4 Cognitive constraints

The previous section dealt with the children’s ability to work out initial aspects
of quantity. This means, in essence, that they learned how number words can
be used to count out small quantities by applying a one-to-one correspondence
of number words to matching objects. They learned that the last counted num-
ber word answers the question “how many?” Having grasped these aspects of
cardinality they still do not know how each number stands for a whole set rep-
resenting the magnitude of a number. This aspect is gained through counting
out quantities and responding to the demand to give an exact amount seen in
the “give a number” task.

They have also learned so far that the number word sequence has a fixed
order that has to be maintained. This preservation of order is the linguistic fea-
ture crucial to attributing ordinal number assignment. Ordinal assignment de-
scribes through language the position or rank of a number (Wiese, 2007) and
requires the conceptual development of a mental number line.

Even before children are verbally well grounded in their knowledge of the
order of numbers up to ten, and before they have built up cardinal knowledge
about magnitude, they are capable of arranging quantities according to their
amount. The innate system used here is the ANS, which leads children to estimate
quantities. With this knowledge children can through a one-to-one-correspondence
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work comprehensively with quantities. This knowledge means that they can
put them into a sequential arrangement following their magnitude or even
equally split magnitudes. Linguistically they do not use number words to do this
but rather quantificational language such as more, less, or the same (even) (Fritz &
Ricken, 2008).

Keeping these aspects of innate knowledge derived from the ANS and the
OTS (see section one) in mind, the children´s task is to integrate those concepts.
They do this using cognitive constraints in organizing learning that are an in-
nate foundation in itself. Sophian (2019) states that cognitive constraints under-
lie the children’s task to learn very complex bodies of knowledge by assuming
that they start with some expectations that simplify the learning task. With re-
spect to vocabulary learning, one might understand the challenging problem
children experience here. Each unknown word has a large number of possible
interpretations. It can describe focal objects, parts of an object, characteristics,
or actions of an object. To narrow down their chances Markman (1990) de-
scribes the whole-object constraint to be the first one that children rely on. This
means that hearing any new word children tend to search for a referential ob-
ject. Using the whole-object constraint they pick out objects that have not been
labeled yet and guess the new word to name the whole object. With this nomi-
nal strategy children form distinct objects. The taxonomic constraint then leads
children to the assumption that single words can be used to label a whole class
of objects that are taxonomically related. A third constraint, the mutual exclu-
sivity constraint, leads the children to assume that each object has only one
name, so hearing a new word they search for an unfamiliar reference, which
will then be labeled. If there is no unfamiliar object this constraint is the one
that helps children to override the others. If all objects are named, children
seek new referents for the new word, which may be one part of the object in
question. It is in this way that constraints are used heuristically to get a learning
process started (Sophian, 2019).

Congruent with the counting principles described in section one, Gelman
(1991) suggests these principles function as constraints. She proposes that they
also need to be overridden. Shipley and Shepperson’s (1990) ideas of how con-
straints help children’s development of natural number resemble the whole ob-
ject constraint of Markman (1990). The tendency to focus on whole, distinct
objects leads children to interpret numbers used in counting as tags in the
counting sequence (Sophian, 2019). Wiese (2007) refers to this as the nominal
dimension numbers hold. This means that each tag (number word) is used like
a fixed label or name for the objects counted (iconic counting).

A central task in numerical development is that of reasoning about relations.
Resnick (1992) describes four levels of numerical reasoning. Roughly speaking
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these four levels can be divided into two levels, “protoquantitative reasoning”
and “quantitative reasoning” in the preschool years, and “mathematics of num-
bers” and “mathematics of operations” in the school years (Sophian, 2019). Since
this chapter focuses on the preschool years levels III and IV will be omitted.

The protoquantitative schemata basically describe prenumercial relations
of equality and inequality as well as less-than and greater-than. As seen earlier
in this development, AMS and quantificational language work together.

When children have gained knowledge of the number word sequence and
have developed counting abilities, they enter the world of quantitative reasoning
and are able to think about ordinal relations. With matching quantity to number
words “less-than” and “greater-than,” relations hold numerical content that can
in the following years be used to order magnitudes due to their exact quantity.
Starting off with the development of a mental number line, ordering numbers de-
scribes the relations numbers have with each other.

5 The mental number line

The mental number line comes into existence as soon as global knowledge of
magnitude and counting combine. It allows children to understand the hierarchi-
cal arrangement of number words to represent a sequence of increasing numbers
and, based on this understanding, the subsequent sequences of increasing quan-
tities (Resnick, 1983), meaning that each number has a fixed position in the
hierarchy of numbers. Integrating more and more number words with their
magnitudes means therefore that more positions on the number word line be-
come “numerical.” What has to be kept in mind here is that children order mag-
nitudes due to their fixed position coming from the number words so there is as
yet no numerical knowledge of distance relations between numbers. Children at
this developmental stage do not know about the successor function, meaning
that all neighboring numbers/magnitudes differ by exactly one (Fritz et al., 2013).
Tasks asking children to write out a number line show that bigger numbers are
positioned at narrower intervals (Fig. 2).

The placeholder structure which the line of number words had is thereby
transformed into the mental number line, where each number word will by the
end of kindergarten hold knowledge about set size and position.

Children now have an abstract representation of the number line where they
can locate any given number, know the neighboring numbers, and use sections
of the number line to solve arithmetic problems encountered in the early years.
Fuson (1992) showed that children solved contextually rich arithmetic tasks by
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“wandering up and down” the mental number line. Using the counting-all strat-
egy, they first count out both subsets and then count the whole starting from one.

6 Second interim conclusion

The argument up to now shows that children construct cardinal and ordinal
knowledge using innate structures. On the one hand they use the core systems
described in section one; on the other hand, they use cognitive constraints that
help them organize their surroundings and order the development of concepts.

In the preceding sections we have described two levels of learning that chil-
dren consolidate in their first five years of life. The first level defines initial car-
dinal knowledge. Children have integrated magnitude and number word, and
with this development are able to enumerate small sets of numbers. They answer
questions concerning the magnitude by counting the whole set. The second step
describes how ordinal aspects of numerical knowledge are formed and a mental
number line is constructed. Third, children deepen their cardinal knowledge. By
the age of around five they are full cardinal principle knowers, knowing about
the magnitude of any number.

But having come this far in their numerical development children still lack
deeper understanding of numerical relations. At this point they do not know
about the part-part-whole relation or the complex ordinal relation that numbers
on the mental number line always differ by a magnitude of one.

During the next two years, about ages six and seven, most children develop
firm concepts of part-part-whole relations and concepts based on the relation of
congruent intervals that exist between successive numbers on the number line.
Sophian (2019) considers these firm concepts, part-part-whole relations and con-
gruent intervals, to be the step from quantitative meaning to the mathematics of
numbers that in her account seems to be closely related to success in schooling,

Fig. 2: Number line (Fritz et al., 2013).
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since the disassociation of number from any physical referent is typically called
on in school exercises.

7 Model of early arithmetic development

Taking these results into account, Fritz and Ricken (2008) (see also Ricken et al.,
2013, 2011) framed a model of early arithmetic knowledge and its development.
Theoretically confirmed by substantial research they could show empirically how
numerical knowledge develops following six levels of arithmetic understanding.
Each layer is thereby acquired separately and represents its own distinct numeri-
cal conceptual innovations. Though being hierarchical, the successive levels of
understanding are not discrete but rather develop in “waves”; for example new
knowledge is already present, while old knowledge is still in use (Fig. 3).

A model describing the competences that children acquire has the chance
to become a didactically powerful tool, where children at the end of kindergar-
ten and in grammar school can be tested for their actual conceptual knowledge.
Since the model represents the conceptual ability that a child has, by mapping
the child’s competence against the model, help can be structured more easily,
and children can then be guided on to acquire incrementally hierarchically
higher mathematical concepts.

Each level thereby formulates the key competences children gain and will
now be described in brief.

Level I: Count number and level II:
The mental number line

These two levels form the foundation of any numerical learning and are basi-
cally described in the earlier sections of the chapter. they describe how children
gain the fundamental knowledge and how these levels are intertwined in cogni-
tive learning and linguistic processes, they take up most of the time of children
entering the world of numerical relations.

From level III onward formal instruction is known to take over as the main
influence in elaborating arithmetic knowledge and the chance to perform highermath-
ematics. Sophian (2019) calls this the mathematics of numbers, where “children move
beyond quantitative reasoning” (p.162), where numbers no longer need references to
physical amounts and where relations between numbers form the focus of learning.
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Level III: Cardinality and decomposability

At the start of primary school (1st grade) children should be at level III or be “on
the jump” from level II to level III. At level III the principle of cardinal number is
developed. This basically means that a number word does not only stand for the
ordinal position but that each number word unites all its counted elements. This
does not happen automatically; instruction is required. To conceptualize the car-
dinal principle, children need to mentally integrate all counted elements into a
whole. So, the question “How many are there?” is no longer being answered rely-
ing on the last word rule – the last number word counted indicates how many
there are – but is grasped on a deeper level. The reasoning is as follows. If the
quantity being counted holds eight elements, each single element is assigned a
number word, and all together are assigned the mightiness, in this case “the
eightness.” With this mental integration, linguistic-numerical concepts now hold,
alongside the feature ordinal, also the feature cardinal. Both features exist side by
side, meaning that the task, which is more, seven or eight? can be answered and
extended in two ways. Seven is less than eight, firstly because of its position on
the number line, and then secondly, the amount seven holds fewer elements
than the amount eight. Having mastered the step that number is a composite unit
that consists of single elements, children also understand that numbers can be
decomposed again. This very first understanding of part and whole forms is not
only the basis for the next level but is also the key competence required to access
effective calculating skills. While up to now all adding and subtracting tasks had

Fig. 3: Developmental model of early arithmetic learning.
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to be worked out using the counting all strategy, children now have the ability to
switch to the counting on strategy (Fuson, 1992). This strategy builds on the newly
added knowledge that each partial quantity stands for a cardinal unit which is
embedded in a whole (Fritz & Ricken, 2008). In order to solve an addition
task, the first sum is counted out and the second sum is counted onward. The
same strategy can now be used for a subtraction task. A subtrahend can be
taken away from the whole as a unit. Also tasks where the second sum is to be
completed, for example, “I need to go 9 steps to win this board game, my cube
shows five. How many steps are missing?” can now be solved by counting on
from the first partial quantity.

Level IV: Class inclusion and embeddedness

At level IV the most important concept is learned. They are able to work with
the scheme of part-part-whole when given three partial quantities. This means
they know that whatever the task is, the relationship of these three quantities is
fixed in a triangular relationship and will not ever change. Now any task can be
solved when two quantities are given, and in addition, children are able to cre-
ate new triangles by shifting elements from one partial quantity to the other.
Knowing this means children have grasped the concept of class inclusion which
states that the connection of partial quantities and the whole can be expressed
by the child. They now work at a more formalized cognitive level. With the un-
derstanding of the part-part-whole concept they have understood that numbers
include other numbers and can be decomposed flexibly. The relation between
parts and whole is determined. Thus, addition and subtraction problems, ask-
ing for the starting quantity, the exchange, or final quantity, are of equivalent
difficulty.

Level V: Relationality

When children reach level V, they include all the knowledge gained on the previ-
ous levels resulting in a deep understanding of the concept of natural number.
This means in essence that children have integrated ordinal and cardinal knowl-
edge plus knowledge of their relationship in the part-part-whole composition.
Numbers are now in position on the mental number line; they are representatives
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for both the mightiness and countable units in themselves. A newly added fea-
ture on this level is that of equidistance. This means that coming from the right of
the mental number line on level II, children now know that the distance between
any two neighboring numbers is exactly one. With this they can define by how
many two quantities differ. This principle holds equally for distances of the same
size that are equidistant independent of their position on the number line.

Level VI: Units in numbers

With reaching the final rung in the ladder in the developmental model of arith-
metic learning children specify their part-part-whole concept that they gained
on level IV. They already know that two partial quantities and their sum form a
fixed triangle, where the partial quantities can be changed by shifting elements
from one to the other partial quantity. What they now understand is that one
whole can be divided into bundles of the same mightiness – 18 can, for exam-
ple, be decomposed into three bundles each holding six elements. These bun-
dles in themselves form now abstract units and are therefore countable as used
in multiplication tasks. At the same time children know that each whole in-
cludes different sets of bundles of differing size (18: 3 × 6 or 2 × 9). The ability to
bundle and unbundle numbers flexibly into sets of the same magnitude there-
fore shows that children have finally reached a stable, deep, and complex lin-
guistic-numerical concept of natural number.

8 Composite conclusion

It can be concluded, based on the reasoning thus far, that learning arithmetic
and gaining deep mathematical understanding is a process that not only takes
about seven years to develop but is also dependent on different inputs.

There are, firstly, the innate structures that help children to construct cardi-
nal and ordinal knowledge. The core systems from section one (levels l and ll)
and the cognitive constraints from section two are fundamentally responsible
for the childlike capability to construct concepts obtaining knowledge about
“how many” and a ranking of the number line. The number word hierarchical
order builds on the scaffolding that will finally be integrated into the concept
itself.
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This development takes place throughout the preschool years. With the transi-
tion from kindergarten to school, children leave the notion of “quantitative mean-
ing” and enter the world of the “mathematics of number” (both Sophian, 2019).

Children’s numerical concepts are now enriched due to formal instruction
and become progressively more abstract. They no longer rely on a physical ref-
erent but start to work with numbers as abstract units that hold relations to
each other. These relations reveal a successive order and describe firstly the es-
tablishment of cardinal knowledge and with this understanding the mightiness
of a number. Numbers will no longer stand for the position in a string alone,
but also for the whole set of all counted objects. Secondly, the expanded knowl-
edge for the structure of the part-part-whole concept, describing the ability to
compose and decompose quantities, is gained. Children now understand that
quantities are flexible units. Thirdly, children acquire the concept of congruent
intervals between all numbers on the number line and finally they gain the com-
petence to bundle numbers into quantities of the same mightiness. These bundles
then become new abstract composite units and are therefore countable.

All these different steps have been corroborated empirically and can be de-
scribed in a model of early arithmetic development (Fritz & Ricken, 2008).

Although research on numerical development is still in early stages and is
an ongoing process, it can be confidently stated that numerical reasoning in
children underlies fundamental changes during childhood. All empirical data
including those of competence and limitation suggest that numerical cognition
is based on the relational character of numerical reasoning. During the develop-
mental process it is the changes of what and how children relate “kinds of enti-
ties (unmeasured quantities, measured quantities, or abstract numbers), and in
the kinds of relation among those entities they consider (equivalent relations,
additive relations, or multiplicative relations)” (Sophian, 2019: 168).

Thinking about numbers as lexically complex concepts built via bootstrap-
ping processes it can be emphasized that it needs the impact of both innate struc-
tures and culturally transmitted knowledge to build up firm numerical cognition.
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Elise Klein, Stefanie Jung, and Liane Kaufmann

A neuropsychological perspective on
the development of and the interrelation
between numerical and language
processing

1 Introduction

Impairments in number processing (e.g., dyscalculia, acalculia) are often associ-
ated with impairments in language processing (e.g., dyslexia, aphasia) in both
developmental disorders and adult neurological syndromes (e.g., Geary, 1993;
Willmes, 2008). However, number processing deficits in aphasics are not neces-
sarily reducible to the language impairment (Basso et al., 2005). Recent studies in
mathematical experts even suggest the existence of two distinct, non-overlapping
networks for mathematics and language (Amalric & Dehaene, 2018). This under-
scores the importance to understand the neuropsychological foundations of mathe-
matics and language processing. The main aim of this chapter is to present
the current neuropsychological literature of numerical cognition so that in
a second step similarities and intersections with language processing can be
briefly outlined.

2 Number processing and mental arithmetic

2.1 Models for numerical cognition

In the past four decades, various theoretical models have been proposed to pro-
vide a conceptual framework for the cognitive components involved in number
processing and mental arithmetic (e.g., Campbell, 1994; Cipolotti & Butterworth,
1995; Dehaene, 1992; McCloskey, 1992; for an overview, see Deloche & Willmes,
2000). These models differ in the number and type of postulated representations
and their interactions. The goal of all attempts was to develop a sufficiently de-
tailed model to explain the numerical and arithmetical skills of adults with and
without specific (learning) impairments. In the last two decades, the Triple-Code
Model (TCM) of Dehaene and its elaborations (1992; Dehaene & Cohen, 1995,
1997; Dehaene et al., 2003) became the most influential model in numerical
cognition because of its unique integration of behavioral and neurofunctional
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aspects. However, it is important to note that the original TCM is based on
adults (i.e., mature brain systems) only (Kaufmann et al., 2013).

2.2 The Triple-Code Model

One of the most important postulates of the TCM (Dehaene, 1992) is the distinction
between a number magnitude representation on the one side and arithmetic fact
retrieval from memory on the other side. Moreover, a visual number form represen-
tation in bilateral fusiform areas is assumed for recognizing Arabic digits. Fig. 1.

As regards the number magnitude representation, a bilateral fronto-parietal
network around the intraparietal sulcus (IPS) subserves the representation and
mental manipulation of numerical quantities (e.g., 28 + 52). In contrast, simpler
tasks such as multiplication with one-digit numbers (e.g., 3 × 2) are solved by
arithmetic fact retrieval in a left-hemispheric network including perisylvian lan-
guage areas and the angular gyrus (Dehaene et al., 2003).

It is important to note that these representations can dissociate. For instance,
patients suffering from a left-hemispheric stroke can present with a selective deficit
of rote verbal knowledge (including multiplication facts, e.g., Zaunmuller et al.,
2009) with preserved semantic knowledge of numerical quantities. On the other
hand, patients with IPS lesions can show specific impairments of quantitative nu-
merical knowledge (e.g., in subtraction), while knowledge of rote arithmetic facts
is preserved (e.g., in simple multiplication; Dehaene & Cohen, 1997). These double
dissociations suggest that numerical knowledge is processed in different codes
within distinct cerebral areas.

Fig. 1: Schematic Integration of Functional and Anatomical Assumptions of the Triple-Code
Model (modified from Dehaene & Cohen, 1995). The brain regions postulated for the three
codes (magnitude representation, verbal representation, visual representation) are projected
onto lateral views of the left and right hemispheres. Arrows represent theory-based
assumptions about transcoding pathways between codes rather than empirically
substantiated white matter connections.
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2.2.1 Neurofunctional correlates of number magnitude

The TCM incorporates evidence from studies on brain-lesioned patients, human
functional neuroimaging, and primate neurophysiology in indicating that nu-
merical cognition is subserved by a fronto-parietal network centered around the
IPS. In particular, the IPS is dedicated to the mental manipulation of numerical
quantities, if, for instance, it has to be decided which of two numbers is the nu-
merically larger one. Here, numbers are coded as analogue magnitudes in an
abstract notation-independent format (Piazza et al., 2007; but see Cohen Kadosh
et al., 2007), each of them activating a small segment on a nonverbal, logarithmi-
cally compressed left-to-right oriented quantitative representation called “mental
number line.” The bilateral IPS are connected through transcallosal fibers, which
enable the interplay between both hemispheres when semantic number magnitude
is processed (Ratinckx et al., 2006). The IPS is active even in numerical tasks that
do not necessarily require quantity processing (Eger et al., 2003, Klein et al., 2010)
or that present numerical stimuli unconsciously (Naccache & Dehaene, 2001). In
more complex numerical problems, the quantity-specific IPS is complemented
by (pre)frontal areas involved in more general cognitive processes such as at-
tention, working memory, or problem solving. However, the involvement of
prefrontal cortices was only vaguely specified in the TCM. Based on an fMRI
meta-analysis, Arsalidou and Taylor (2011) suggested a modification and exten-
sion of Dehaene’s model specifying a refined picture of (pre)frontal functions
and, thus, of supporting and domain-general functions implicated in solving
arithmetic tasks.

Finally, the TCM considers the bilateral posterior superior parietal lobe (PSPL)
to support magnitude processing via mental orientation of attention on the mental
number line (Dehaene et al., 2003).

2.2.2 Neurofunctional correlates for arithmetic fact retrieval

Neurofunctional evidence on arithmetic fact retrieval primarily comes from stud-
ies that pursued the acquisition of arithmetic facts by means of drill training
of difficult multiplication problems (e.g., 43 × 9 = ___; Delazer et al., 2003). A
consistent finding was a switch from magnitude-related processing to ver-
bally-mediated arithmetic fact retrieval with learning, reflected by a shift in
activation from the bilateral fronto-parietal network of number processing to a
left-hemispheric network including perisylvian language areas and angular
gyrus (AG). The authors interpreted this to reflect a shift from quantity-based
and working memory demanding computations to automatic retrieval of arithmetic
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facts from long-term memory. Consequently, it was argued that the left AG consti-
tutes a key area for these retrieval processes (e.g., Dehaene et al., 2003).

In recent years mounting evidence suggested the additional involvement of
long-term memory processes, subserved by the medial temporal lobe centered
around the left hippocampus (Klein et al., 2016; Menon, 2016), while the role of
the AG for arithmetic fact retrieval was challenged (e.g., Bloechle et al., 2016).
The involvement of long-term memory areas in fact learning was corroborated
by diffusion tensor imaging (DTI) data showing a significant increase of struc-
tural connectivity in fibers encompassing the left hippocampus but not the left
AG following drill training of multiplication facts (Klein et al., 2019). Converging
evidence for a central role of the hippocampus in mental arithmetic in general
and arithmetic fact retrieval in particular comes from developmental research
on functional connectivity in arithmetic fact learning (e.g., Rosenberg-Lee et al.,
2018). For instance, hippocampal activation and functional connectivity increased
with the acquisition of mathematical knowledge following a short-term training.
However, the question whether the role of the hippocampus in fact learning is
time-limited is not resolved yet. Recent neuropsychological single-case studies sug-
gest that the hippocampus might be necessary only for the consolidation of arith-
metic facts in memory rather than the retrieval of well-consolidated facts from
memory (Delazer et al., 2019).

Taken together, it is assumed that the magnitude representation is sup-
ported by both cerebral hemispheres, while the verbal representation of arith-
metic facts is situated in the left hemisphere only. Thus, only a bilateral parietal
lesion would lead to a permanent impairment of the quantitative number
representation.

2.3 Developmental models

Compared with the adult literature, there are far fewer studies investigating the
neurofunctional correlates of number processing and calculation in children. A
quantitative meta-analysis of these fMRI studies in children aged 14 years or
younger is provided by Arsalidou et al. (2018). Interestingly, beyond brain areas
reported to be associated with symbolic and non-symbolic mental arithmetic in
adults (Arsalidou & Taylor, 2011), the authors identified additional brain areas
(i.e., the insula and the claustrum) supporting number processing in children
(Arsalidou & Taylor, 2018). These brain regions are not typically considered in
numerical cognition models in adults.

Notably, neurofunctional trajectories of typically and atypically developing
children may manifest differently at both the behavioral and the brain levels.
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Below, we will focus on specific factors known to influence children’s numeri-
cal development, namely, age, math proficiency, and notation.

2.3.1 Age effects

There is accumulating evidence that cerebral activation patterns in response to
number processing are clearly age dependent (see the meta-analysis of develop-
mental fMRI studies, Ashkenazi et al., 2013; Kaufmann et al., 2011). Compared
with adults, children were found to activate more anterior (intra)parietal re-
gions upon solving number magnitude comparison tasks (despite comparable
accuracies and reaction times). A plausible explanation for the more anterior
parietal activations (neighboring the postcentral gyrus, which is known to host
sensory functions of the hand and fingers) is that children have a stronger need
to rely on finger-based solution strategies (Kaufmann et al., 2011). Furthermore,
when compared to adults, children are found to stronger recruit (pre)frontal
brain regions that have been interpreted to reflect more effortful processing. In-
terestingly, upon investigating number processing in prematurely born six- and
seven-year-old children that were just about to start formal education, Klein
et al. (2018) found that gestational age predicted the frontal-to-parietal activa-
tion shift associated with number magnitude processing.

2.3.2 Effects of math proficiency

It is important to note that beyond the age of six or seven years (i.e., when for-
mal schooling starts), age effects are inevitable confounded by math competency.
Indeed, converging evidence suggests that with increasing age and schooling, ce-
rebral activations associated with number processing become stronger in the pos-
terior parietal cortex (including the IPS; symbolic number processing: Kaufmann
et al., 2006; non-symbolic number processing: Ansari & Dhital, 2006; Cantlon
et al., 2006; addition and subtraction:, Rivera et al., 2005). Hence, math compe-
tency might be a modulating factor for the ease with which children access num-
ber representations (e.g., Bugden & Ansari, 2011).

2.3.3 Notation effects

In children, different number notations are thought to be processed by distinct
mental representations that become more overlapping with increasing age and
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math proficiency (Kucian & Kaufmann, 2009). Contrary to the assumption of an
abstract number magnitude representation (TCM, Dehaene, 1992), typically de-
veloping children were found to process non-symbolic and symbolic magnitudes
in distinct parietal and extra-parietal brain regions (Kaufmann et al., 2011):
non-symbolic number processing yielded predominantly right (intra)parietal
activations, located more anteriorly than the bilateral (intra)parietal activa-
tions associated with children’s symbolic number processing.

With respect to calculation tasks, 9- to 12-year-old typically developing chil-
dren revealed distinct activation pattern for symbolic (i.e., Arabic digits and
number words) and non-symbolic (i.e., dot arrays) number formats upon solving
simple subtraction tasks (Peters et al., 2016). While subtraction with symbolic for-
mats yielded parietal activations (i.e., AG and supramarginal gyri), subtraction
with non-symbolic format led to parietal and extra-parietal activations (i.e., mid-
dle occipital and superior parietal lobes, superior frontal gyrus and insula). Most
likely, these differential activation patterns reflect differences in strategy use.

3 Neuropsychology of numerical cognition

The scientific interest in numerical deficiencies is quite young. It was only at
the beginning of the twentieth century that Henschen (1919) coined the term
“acalculia” by systematically describing acquired numerical deficits in brain-
damaged patients. As regards innate numerical impairments in children, it took
another 50 years before Kosc (1974) first introduced the term “dyscalculia.” No-
tably, research on developmental dyscalculia and acquired acalculia has been
separated from the beginning without systematic joint consideration and evalu-
ation of the existing empirical evidence.

3.1 Acquired acalculia

Acquired acalculia designates the loss or impairment of the formerly intact ability
to deal with numbers and/or to calculate following acquired brain pathology. In
particular, up to 50% of patients with left-hemispheric and up to 30% of patients
with right-hemispheric lesions suffer from acquired acalculia (Basso et al., 2005).
Acalculia is often, but not necessarily, associated with other cognitive impair-
ments such as language disturbances (Ardila & Rosselli, 2002, for a review).

The symptomatology of acalculia is not homogeneous (see Ardila & Rosselli,
2002; Domahs & Delazer, 2005, for reviews). This led to clinically oriented
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classifications into subtypes being proposed already in the early stages of research
on acalculia (e.g., however, see the single-route model proposed by McCloskey,
1992). Indeed, several case studies in the 1990s clearly showed that specific sub-
components of numerical cognition can be impaired differentially.

Generally, the symptomatology of acquired acalculia can be divided into
(i) impairments of a (quantitative) magnitude representation and (ii) calculation
impairments (oral and/or written), which can be further subdivided into (a) im-
pairments of arithmetical fact retrieval and (b) impairments of procedural as
well as conceptual arithmetic knowledge. Additionally, (iii) transcoding impair-
ments are frequently observed in patients with left-hemispheric lesions. Impor-
tantly, these capacities can be affected independently (Domahs & Delazer, 2005
for a review). This led Dehaene (1992) to formulate the multi-componential TCM,
which assumes that numerical knowledge is processed in different formats within
distinct cerebral areas.

3.1.1 Impairments of the (quantitative) magnitude representation

Problems with processing abstract numerical magnitudes have been observed
less frequently than language-related errors. The postulated bilateral (i.e., redun-
dant) representation of numerical quantity in the IPS makes it less vulnerable to
focal brain damage. There are only a few patients reported in the literature suffer-
ing from unilateral IPS lesions of the language-dominant hemisphere who re-
vealed problems in dealing with abstract quantities (Dehaene & Cohen, 1997;
Delazer & Benke, 1997; Lemer et al., 2003). In these cases, counting or reciting
multiplication tables from memory as well as reading aloud of numbers or
transcoding of numerical symbols like dot patterns was preserved. In contrast,
number magnitude comparison of Arabic digits was affected as well as number
bisection (e.g., “What is the numerical middle between the two outer numbers
23 and 27?”). Simple subtraction tasks, which are not assumed to be solved via
arithmetic fact retrieval from long-term memory, led to erroneous or no responses.
Approximate calculation was impossible. Since number magnitude comparison of
regularly placed sets of dots was impaired as well, the patients’ problems with
numerical magnitudes were not notation specific.

Delazer et al. (2006) reported a case of bilateral posterior cortical atrophy.
The patient made errors in both a production and a verification version of the
number bisection task (e.g., ls the middle number of this triplet also the numeri-
cal middle?” e.g., 23_26_29”; “23_25_29”). Similarly, approximate calculation
tasks in which the less deviating alternative had to be selected quickly from two
wrong solutions to an arithmetic problem were impaired.
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Single-case studies also show that numerical knowledge can dissociate from
non-numerical knowledge at the level of semantic processing. For instance, Cipo-
lotti et al. (1991) reported a patient who was completely dysgraphic and dyslexic
for all kinds of material, but showed preserved oral performance for words except
for numerals above four. In particular, the patient could not discriminate Arabic
digits from meaningless shapes or numerals from nonwords, nor could she pro-
duce the direct “neighbors” of a number word presented auditorily or do numeri-
cal magnitude comparisons for number words above four.

3.1.2 Impairments of arithmetical fact retrieval

Impairments of arithmetic fact retrieval are seen much more frequently. They com-
prise errors in highly overlearned simple addition and subtraction problems with
numbers below 20, and in simple multiplication for arithmetical tables up to 9 × 9,
which are typically retrieved from declarative long-term memory in healthy adults.
Erroneous responses to simple multiplication tasks in acalculia tend to be from
the same multiplication table or a close entry from another table (i.e., within-table
errors, McCloskey et al., 1985; e.g., “7 × 8 = 48” or “7 × 8 = 54,”) and not from a
more distant entry or even a non-table response. Problems with arithmetic fact re-
trieval are not necessarily related to higher error rates only; they can also manifest
in substantially longer response times, indicating the use of calculation routines
or strategies in case of hampered or impossible fact retrieval (Warrington, 1982).

Zaunmuller et al. (2009) reported a patient with a severe impairment of
multiplication fact retrieval following a left-hemispheric lesion of the middle ce-
rebral artery. After a customized arithmetic fact drill training over 30 days, the
patient’s multiplication performance improved significantly, accompanied by a
shift of activation to the contralesional right AG.

However, some studies challenge the view that simple problems are always
retrieved from memory (e.g., LeFevre et al., 1996). Also Domahs and Delazer
(2005) pointed out that a precise definition of what constitutes a number fact is
not available. Multiplications with zero or with 10 are considered to be rule-based
and have been shown to dissociate from “proper” multiplication problems
(Pesenti et al., 2000).

3.1.3 Transcoding impairments

In acquired aphasia and acalculia alike, lexical and morphosyntactic errors can
often be observed when number words are presented auditorily or visually.
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These errors are sometimes accompanied by errors due to impaired verbal work-
ing memory. Number words are special because, unlike other long compound
words (e.g., “football world championship”), semantics does not help to solve
problems with the strict word order. In number words, all combinations of the
elements of the number word dictionary are principally conceivable.

The two clinically most relevant transcoding pathways are between Arabic
digits and spoken number words. When reading Arabic digits aloud, each of the
three steps (identification of the digit chain, subsequent mental transformation
into a sequence of words following fixed rules, utterance of the number word)
can be disturbed.

In pure alexia, the initial (encoding) phase is impaired, while multi-digit
numbers still can be compared with respect to their magnitude, because the
non-dominant hemisphere can also encode Arabic digits and perform the mag-
nitude comparison.

In lexical errors, a wrong element is selected from the same lexical number
word class (ones 0–9; “teens” 11–19; decades 10–90), while the morphosyn-
tactic structure (number word frame) of the target number word is preserved
(e.g., 56 ‒> “seventy-six” or 411 ‒> “four hundred twelve”). In syntactical errors,
an incorrect syntactic frame is generated which is filled with the “correct” num-
ber words corresponding to the digits in the Arabic numeral (e.g., 56 ‒> “five hun-
dred and six”).

When writing Arabic digits to dictation, not only lexical (e.g., “seventy-six”
‒> 56) and syntactical errors occur (e.g., “five-hundred-and-six” ‒> 56), but also
errors, in which the numerical word is transcoded in sections (“term-by-term”)
and the additive composition principle of multi-digit numbers is not correctly
applied (“three-hundred-and-sixty-eight” ‒> “30068”).

Despite serious transcoding problems when verbalizing even single-digit
numbers, a good understanding of the same numbers can be achieved by acti-
vating number-related semantic associations (e.g., 1945 ‒> “Hitler gone”). Pa-
tients with more severe naming disorders use the better-preserved up-counting
technique for smaller numbers. Alternatively, fingers are used to show the num-
ber or the index finger is used to “imaginatively” write the Arabic numeral on a
surface or in the air.

Acalculia and aphasia are often associated. Nevertheless, number process-
ing problems and aphasia are not per se congruent (for an overview, see Will-
mes, 2008). Problems in reading and writing numbers occur mainly together,
but also can be dissociated. Aphasic patients are typically better at choosing
the larger number from a pair of Arabic multi-digit numbers than from a pair of
spoken or written number words.
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Likewise, various transcoding errors are found in neuropsychological condi-
tions different from aphasia. For instance, visual processing disorders like hemi-
anopia or visual neglect can result in leaving out the leftmost digits (e.g., Hécaen
et al., 1961) even without a similar problem in semantically adequate texts.

3.1.4 Advantages and limitations of single-case studies

One of the main limitations of single-case studies is that the data collected cannot
necessarily be generalized to the broader population, so they might seem less
meaningful. Criticism of generalizability, however, is of less relevance when the
intention is one of theory discovery and model falsification as outlined by
Shallice (1988) for the case of double associations or dissociations of cognitive
processes. In this situation, qualitative knowledge of a specific case may be
generalized to significant segments of the population (Kennedy, 1979). How-
ever, regarding statistical generalization, caveats are necessary. For instance,
if statistical procedures initially designed for data from statistically indepen-
dent replications are applied to data from a single subject (e.g., to differentiate
reliably between classical, strong, or weak dissociations), assumptions of inde-
pendence can become questionable (Willmes, 1990). Here, statistical and psycho-
metric aspects have to be applied carefully, for example, by using additional
normative data together with the binomial model for criterion-referenced mea-
surement (Sergent, 1988).

In this vein, single-case designs can be used to apply, to build, and to a
lesser extent, to test a theory as well as in the study of unique cases because
they allow a more detailed data collection and can be conducted on rare cases
where large samples of similar participants are not available.

3.2 Developmental dyscalculia

Developmental dyscalculia (DD) is an innate learning disability hampering the
typical development of numerical and arithmetical competencies in children
(Kaufmann & Von Aster, 2012; Kucian & von Aster, 2015) that can persist into
adulthood. It results in a failure to achieve adequate proficiency in arithmetic
despite normal intelligence, scholastic opportunity, emotional stability, and suffi-
cient motivation (e.g., Shalev & Gross-Tsur, 2001). Prevalence rates are rather
high, ranging from 3.5% to 6.5% (Butterworth & Kovas, 2013). With respect to the
etiology of DD the core deficit hypothesis (suggesting a deficit in the core repre-
sentation of number magnitude information) has long been the dominant view
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(e.g., Butterworth, 2005; Butterworth et al., 2011). Even though the heterogeneity
of DD has long been observed empirically (e.g., Temple, 1991 for a differentiation
of fact and procedural dyscalculia), the existence of subtypes of DD was ac-
knowledged only recently in theoretical models on numerical development
(e.g., Kucian & Aster, 2015; Kaufmann & Aster, 2012 as well as Kaufmann et al.,
2013 for critical reviews).

At the brain level, the core deficit hypothesis implies that compared with
typically developing children those with DD have deviant (intra)parietal fMRI
responses (Ashkenazi et al., 2013; Kaufmann et al., 2011). Indeed, both over-
and underactivation of the IPS have been reported, which has been interpreted
to reflect compensatory effortful functioning and deficient recruitment of num-
ber-relevant sites (i.e., deficient neuronal representation of numerosity), respec-
tively. Furthermore, additional activation differences were found in (pre)frontal
and occipital brain areas that were interpreted as reflecting domain-general
compensatory mechanisms (Ashkenazi et al., 2013; Kaufmann et al., 2011; Peters
& De Smedt, 2018; see also McCaskey et al. (2018) for a longitudinal developmen-
tal fMRI study of number processing).

It is important to note that beyond the above-mentioned core deficit of
number magnitude representation, math learning difficulties may also be
caused by other dysfunctional systems. Alternative accounts are, for example,
(i) deficient mapping processes between number symbols and their internal
magnitude representations (Rousselle & Noël, 2007; Rubinsten & Henik, 2005),
(ii) domain-general deficiencies such as attention (Ashkenazi & Henik, 2010) and
working memory (Rotzer et al., 2009; Toll et al., 2011), or (iii) a combined deficit
of representing and manipulating numerical magnitude information (Ashkenazi
et al., 2013). According to Ashkenazi et al. (2013), the latter hypothesis is espe-
cially apt to explain comorbid learning disorders (i.e., reading and math learning
difficulties).

Fig. 2 provides a schematic overview of hypothetical subtypes of DD that
is based on the TCM (Dehaene et al., 2003) and its postulate of three distinct
types of (number) magnitude representations supported by distinct brain re-
gions (i.e., numerical/analogue magnitude subtype: IPS, verbal subtype: left
hemisphere language regions, spatial attentional subtype: posterior superior
parietal lobe). According to this hypothetical model (Kaufmann & Aster, 2012),
the cognitive core deficiencies of these three subtypes of DD could not only be
used to develop diagnostic marker tasks but could also provide an empirically
validated framework to design efficient and tailored intervention tools.
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4 Language processing

4.1 Models for language processing

Various cognitive components involved in language processing have been iden-
tified (e.g., language comprehension, reading and writing at the level of single
words and in the context of sentences or functional communication) and de-
scribed in various theoretical models (for language comprehension: e.g., the
parallel interface model: Friederici, 2013, for reading: Coltheart, 1978; Caramazza
et al., 1985; for writing: e.g., Ellis, 1982; 1988; Morton, 1980; for sentence produc-
tion: Garrett, 1988; Levelt, 1993). These models have been elaborated on both
typical and erroneous developmental trajectories of language processing (i.e.,
slip-of-the-tongue or slip-of-the-pen phenomena in the different language do-
mains), and need to be differentiated from models describing impaired language
processing in brain-injured patients (Ellis, 1982).

In principle, two types of models can be distinguished. First, in serial mod-
els, language processing is interpreted as a serial sequence of processing steps.

Fig. 2: Schematic representation of three distinct hypothetical subtypes of DD (differentiated
at the behavioral and neural level, and assigned to specific diagnostic marker tasks and
intervention goals).
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The functional architecture of serial models is often graphically displayed by
box-and-arrow graphs, in which a box represents a processing module, and
an arrow represents the route in the direction of processing. Crucially, mod-
ules and routes are assumed to be affected and treated selectively (Ellis &
Young, 2013 for a review). Second, interactive models, also referred to as con-
nectionist models, adopt hierarchically structured networks that can be activated
in parallel (Dell, 1988; Dell et al., 1997; Dijkstra & de Smedt, 1996). These net-
works are characterized by specific nodes and edges through which activations
spread in all directions within the network.

Serial and interactive models are often interpreted as contradictory. Never-
theless, there are also language models that appear as hybrid (mixed) models
(e.g., Levelt, 1993).

Recently, an association between behavior and neural correlates has been
taken into account in models of language development in children. These models
predominantly focused on theoretic descriptions of children’s observable language
behavior. Neural correlates played at best a very subordinate role and the descrip-
tion of the neural basis of language development still remains difficult (Friederici,
2011). However, based on neuroimaging findings, domain-general aspects underly-
ing language processing have been identified as being already established in in-
fants. In contrast, the domain-specific aspects emerge only gradually until they are
fully established in young adulthood (Skeide & Friederici, 2016).

4.2 Neuropsychology

In patients with acquired language disorders, speech or language is significantly
impaired in one (or several) of the communication modalities (auditory compre-
hension, verbal expression, reading and writing, or functional communication).

4.2.1 Acquired language disorders

The generic term “acquired language disorders” covers various types of acquired
functional impairments such as aphasia, alexia, and agraphia. The difficulties of
people with aphasia can range from occasional trouble finding words to losing the
ability to speak, read, or write while intelligence is unaffected. Alexia and agraphia
can emerge as central and peripheral impairments of reading and writing. Central
impairments often occur in association with other acquired language disorders
such as aphasia (e.g., Delazer & Bartha, 2001) and may affect reading and writ-
ing in all domains (i.e., letters and digits in the context of acalculia) and
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output modalities [i.e., oral spelling, handwriting, and typing (Beeson & Rapc-
sak, 2015; Rapcsák, 2002)]. Peripheral impairments, in contrast, are related to
the level of visual processing (alexia) or graphomotor planning and the execu-
tion of writing (Purcell et al., 2011).

The broad spectrum of symptoms as well as the combined and isolated oc-
currence of various speech and language deficits requires a precise understand-
ing of typical language processes and their neural correlates in order to develop
appropriate intervention approaches.

4.2.2 Developmental dyslexia and dysgraphia

Developmental dyslexia, like DD, belongs to the specific learning disabilities
that develop in childhood and can persist into adulthood, and that cannot be
explained by a child’s chronological age, education, or IQ (APA, 2013). Both
learning disabilities occur together more often than expected coincidentally
(Wilson et al., 2015).

Developmental dyslexia describes the disability to sufficiently learn reading
and/or writing despite an (above-) average intelligence and appropriate educa-
tion. It is the most common subtype of learning disabilities with prevalence rates
between 4 and 7% in early childhood, depending on the criteria used (Landerl
et al., 2009). Crucially, a gender discrepancy is noticeable with boys being more
often affected than girls. Empirical data clearly indicate that dyslexia increases
an individual’s risk for school dropout, low educational achievement, and unem-
ployment (Esser et al., 2002).

Children (and adults) with dyslexia have a deficit in the mechanism of pho-
nological awareness, the ability to recognize, identify, and manipulate syllables
and phonemes within spoken language (Shaywitz & Shaywitz, 2012). They also
struggle with handwriting aspects for various reasons, such as graphomotor
planning and grapheme transcription (e.g., Kandel et al., 2017), correct spelling
(e.g., Cidrim & Madeiro, 2017, for a review), and writing fluency (e.g., Sumner
et al., 2013; but see Martlewm, 1992). They also have difficulties in recognizing
and correcting errors (e.g., Horowitz‐Kraus & Breznitz, 2011, for reading).

Etiological explanations for developmental dyslexia are twofold at least. On
the one hand, difficulties due to basic deficits in (rapid) auditory (Tallal, 1980)
and visual processing that arise from an impairment of the visual magnocellular
system (Stein & Walsh, 1997) are described. On the other hand, deficits in atten-
tional (e.g., Facoetti et al., 2001) and automatization processes (e.g., Nicolson &
Fawcett, 2005) are discussed. Advocates of the latter theory argue that if cere-
bellar regions and the neural systems involved are affected (which are assumed
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to support automatization of basic articulatory and auditory skills), handwriting
difficulties may arise (Nicolson & Fawcett, 2011). Liberman (1973) and later
Snowling (2000) related dyslexia to a deficit in phonological awareness. Al-
though there is supporting empirical evidence for all of these theories, not
all cognitive domains are simultaneously affected and several subtypes of
developmental dyslexia are identified (Heim et al., 2008).

Brain imaging techniques identified dysfunctional neuronal networks in dys-
lexia mainly in left-hemispheric temporo-occipital, parieto-temporal and frontal
brain regions (Ashkenazi et al., 2013). Both hypo- and hyperactivations have been
reported (see Vandermosten et al., 2012 for a review), in terms of either reduced
performance or compensatory strategies. Parts of this network are also associated
with dyscalculia, for instance, the fusiform gyrus as well as the angular gyrus,
which may explain comorbidity of both learning disorders (i.e., reading and math
learning difficulties).

5 Connectivity

Both number and language processing are cases of distributed and connected
processing in the human brain. As such, both arithmetic (e.g., Dehaene & Cohen,
1997) and language processing (e.g., Hickok & Poeppel, 2004) rely on widespread,
separate, and overlapping networks in the human brain. This underscores the im-
portance of white matter fiber connections between the specialized grey matter
brain areas.

Analogous to the visual system with a dorsal “where” and a ventral “what”
stream (Mishkin et al., 1983), it is assumed that language is processed in a dual
system connecting Broca’s and Wenicke’s areas for language processing (Hickok &
Poeppel, 2004, 2007). The dorsal “where” stream along the arcuate fasciculus is
dedicated to the mapping of auditory input to frontal articulatory networks (Hickok
& Poeppel, 2007), while the ventral “what” stream along the external/extreme cap-
sule system is involved in language comprehension (Saura et al., 2008). The func-
tional link between the arcuate fascicle and language dates back to Wernicke’s
(1874) suggestion that a lesion of association fibers connecting the sensory and
motor speech areas leads to a disconnection syndrome characterized by a fail-
ure to repeat verbal information (“conduction aphasia”). This is in line with
more recent models, which propose that the arcuate fascicle connects dorsally
brain regions involved in sensorimotor processes supporting speech produc-
tion and speech perception (Hickok & Poeppel, 2007; Rauschecker & Scott,
2009), that is, superior temporal gyrus with premotor cortex and posterior
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inferior frontal gyrus. In contrast, the ventral pathway connects Wernicke’s
area with Broca’s area through the extreme and external capsule subserving
meaning (Weiller et al., 2011).

Only in 2013, a first study investigated whether the fronto-parietal network
from numerical cognition can be integrated into this framework of dorsal and
ventral processing pathways (Klein et al., 2013). Using probabilistic fiber track-
ing, the authors showed that magnitude- and fact retrieval–related processing
are indeed subserved by two largely separate networks, both of them following
dorsal and ventral pathways. Nevertheless, even though distinct anatomically,
these networks operate as a functionally integrated circuit for mental calculation.
In 2016, the TCM was complemented by adding these neuro-structural connec-
tions between cortical areas related to magnitude processing and arithmetic fact
retrieval (Klein et al., 2016). These amendments suggest that the general princi-
ples associated with dorsal (“doing”) and ventral (“understand what you are
doing”) processing streams, which seem to be instrumental for various domains
(Rijntjes et al., 2012), can be adapted to number magnitude and fact retrieval
processing in mental arithmetic.

So far, the work on the structural connectivity of these networks is primarily
based on adults. Therefore, it is still not clear how any of these networks develop
during childhood. Based on the work of Perani and colleagues (2011) for the case
of language, the development of numerical competencies may most likely
go hand-in-hand with brain maturation. In particular, studies from infancy
to adulthood show later maturation of the dorsal compared to the ventral
pathway (for an overview, see Friederici, 2012). While newborns have an adult-
like ventral pathway at birth, the dorsal pathway that connects the temporal cor-
tex to Broca’s area develops later and is not fully matured at the age of seven
(Perani et al., 2011). At this age, children still struggle with syntactically complex
sentence processing. Therefore, it has been suggested that the degree of language
competencies crucially depends on maturation of the dorsal pathway (Frieder-
ici, 2012). This would be in line with the idea children understand and process
new numerical tasks first ventrally (“understanding what you are doing”), be-
fore more automated sequences of dorsal procedural processing can be estab-
lished (“doing”).

Taken together, the two neuro-cognitive networks of magnitude representa-
tion and verbal representation are (1) functionally distinct and dissociable, (2)
anatomically largely distinct, but they (3) nevertheless work together in a func-
tionally integrated way. However, it is controversially discussed whether they
(4) are exclusively processed dorsally (Amalric & Dehaene, 2018) or follow gen-
eral principles of dorsal and ventral processing (Klein et al., 2016).
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6 Similarities in number and language
processing

The question of an association between aphasia and acalculia reflects an important
topic in cognitive neuroscience: To what extents are higher cognitive functions
such as numerical cognition based on language? The spectrum of assumptions
ranges from the mediation of arithmetic by lexical and syntactic linguistic pro-
cesses to the assumption that in adulthood, arithmetic can be independent of
language. In the latest amendment to the TCM, Amalric and Dehaene (2018)
argued that numerical and arithmetical processing are independent of “sen-
tence-level language processing” and “general semantic thinking.” In contrast
to this view, Chomsky (2017; but see Corballis, 2017) argued that all thinking
is verbal/linguistic thinking.

In particular, Amalric and Dehaene (2018) suggested that the behavioral
dissociation between mathematical and linguistic skills is accompanied by a
major neural dissociation between brain regions associated with math and re-
gions involved in language processing and semantics. This idea would be in
line with neuropsychological findings on differences between numbers and lan-
guage (e.g., Jung et al., 2015). In a single-case study, Jung et al. (2015) observed
impairments in writing letters while number writing was preserved. Single let-
ters (e.g., “E”) do not necessarily carry semantic information. Also, a random as-
sembly of letters (e.g., “EHKU”) does not necessarily produce a word that carries
semantic meaning. In contrast, any number as well as any random assembly of
numbers (e.g., “3,” “3826”) conveys meaning, namely, the numerical magnitude
of the respective numbers. Hence, the authors suggested that semantic magni-
tude information of numbers can facilitate their processing. Importantly, in the
therapy of the same patient, semantic cues were then added to each letter to sup-
port the retrieval of these letters. This additional semantic information indeed
successfully facilitated letter writing.

In contrast, Chomsky (2017) argued that numerical knowledge is an adjunct
of human linguistic ability. This view assumes a close link between the domains
of language and number processing. Indeed, there are several theoretical ac-
counts that emphasize the importance of language for the phylogenetic and on-
togenetic development of the human faculty of number processing (e.g., Carey,
1998; and already, Henschen, 1919). For instance, Wiese (2007) concluded that
“it is language that opened the way for numerical cognition,” suggesting that
“it is no accident that the same species that possesses the language faculty as a
unique trait should also be the one that developed a systematic concept of num-
ber” (p. 758). Furthermore, both letters and numbers are linked to verbal linguistic
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information and both natural language and number processing share the need for
a recursion operation that creates embedded tree structures (Hauser et al., 2002).
There is also evidence that language and number processing share a number of
crucial functional characteristics at the brain level such as an overlapping ventral
network, at least for specific cognitive processes such as semantic classification
(Willmes et al., 2014).

Probably, neither of the two proposals is sufficiently detailed to explain the nu-
merical performance of both healthy and cognitively impaired participants. Rather,
we suggest that it may be the type of the specific problem at hand and its difficulty
that determines which system is used to solve the task or how we translate our
thoughts into language. Very simple arithmetic problems may be retrieved verbally
as facts from long-term memory or solved applying overlearned procedures (e.g.,
“rule of three”). More difficult arithmetic problems may be tackled with different
strategies, which do not always have to be linguistic. Nevertheless, future studies
are needed to provide evidence in favor of or against one of these accounts.

Taken together, there is an ongoing debate on the building blocks of num-
ber and language processing: on the one hand, there is the view that number
processing and arithmetic are independent of language processing (Amalric &
Dehaene, 2018) and, on the other hand, there is the view that all thinking is lin-
guistic thinking (Chomsky, 2017).
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Ann Dowker

Culture and language: How do these
influence arithmetic?

International comparisons such as those carried out by TIMSS and PISA (e.g.,
Mullis et al., 2016a, b; OECD, 2016) tend to show considerably better arithmetical
performance by children in some countries than in others. The position of coun-
tries can vary over time, but one consistent finding is that children from countries
in the Far East, such as Japan, Korea, Singapore, and China, tend to perform bet-
ter in arithmetic than do children in most parts of Europe and America.

Stevenson et al. (1993) looked at performance in different subjects. They
found that Japanese and Korean children outperformed American children to a
greater extent in mathematics than in reading. This may be in part because of
specific difficulties with regard to reading that are posed by East Asian writing
systems; but it is also likely that the results reflect a special focus on mathemat-
ics in East Asian countries.

1 Why do some countries seem to perform
better than others?

There are a number of reasons why some countries may perform better than
others. These include (1) suitability and comparability of the tests for different
national or cultural groups; (2) the social and economic situation of the coun-
tries; (3) cultural attitudes toward mathematics; (4) teaching methods, and the
emphasis placed on mathematics in school; (5) mathematical experience in out-
of-school contexts; and (6) influences of language and in particular the count-
ing system.

(1) Suitability and comparability of tests
Considering the emphasis that has been placed on international comparisons,
there has been relatively little study of how suitable particular tests may be in
different international contexts. Yet this may well be quite important. First of
all, children in some countries and cultural groups are in general more accus-
tomed than others to being tested and more familiar with the conventions of
testing (e.g., the concept of being questioned in order to find out what they
know, rather than to find out the answer). While those countries that participate
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in international comparisons are unlikely to have many children who are totally
inexperienced with regard to testing, there are certainly likely to be differences
in the extent of testing experience that they have.

There is also the issue of context. Children are likely to perform better in a
context that is familiar to them, as will be discussed in section (5); and contex-
tual familiarity of any problem may vary between countries, locations within
countries, and cultural groups.

More generally, it is difficult to standardize a test reliably for all countries
in which it may be used, which creates problems for any international compari-
son. Kreiner and Christenson (2014) pointed out that the PISA results are not
totally reliable, and can fluctuate significantly according to which test ques-
tions are used. The Rasch measurement model used by PISA is valid only if the
questions are equally difficult for each country. This appears not always to be
true: especially for reading, but also for mathematics.

(2) The economic and political situation of a country
The very poorest countries, where a high proportion of people have little or no
secondary school education, are rarely included in international comparisons.
However, even among those countries that are included in such comparisons,
social and economic deprivation and political violence and insecurity are likely
to be associated with reduced performance. The lowest-achieving countries for
Grade 8 Mathematics in the TIMSS 2011 and 2015 studies (Mullis et al., 2016a, b)
were mostly countries in the Middle East that are listed on the ISI Register of
Developing Countries, and which were in many cases also experiencing politi-
cal turmoil at the time when the testing took place. The lowest-achieving coun-
try of all was Ghana, which was also the only country in southern or western
Africa to be included, and, while it is one of the more stable and prosperous
countries in Africa, it still shares some of the economic problems of the region.

It should be noted at this point that although the use of international
comparisons may give the impression that countries are largely homogeneous,
there can be much variation within a country, which may have links to regional
economic differences. For example, in the TIMSS comparisons, Massachusetts
was very much above the average in mathematics achievement, while Alabama
was somewhat below it. This makes a general rating for the United States unreli-
able. The difference is likely to reflect the economic situation of the two states:
Massachusetts comes first or second and Alabama 45th in recent rankings of the
50 states in terms of GDP per capita. In China, it is well known that rural areas
are much poorer economically than urban areas, but almost all testing for inter-
national comparisons has been in urban areas, and thus may not reflect the
whole country.
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(3) Cultural attitudes toward mathematics
Some cultures seem to value mathematics more highly than others, which may
affect performance. There appears to be a tendency for East Asian cultures to
place a higher value on academic performance in general, and mathematics
and related subjects in particular, than do many other countries (Askew et al.,
2010; Stevenson et al., 2000). This may lead to greater attention to, and practice
in, mathematics.

The relationships between emotions and attitudes toward mathematics, math-
ematical performance, and national achievement in mathematics appear to be
complex, though within any country positive attitudes toward mathematics
are linked to better performance, and in particular mathematics anxiety is nega-
tively related to performance (Foley et al., 2017; Lee, 2009). Children in high-
achieving Asian countries, such as Korea and Japan, tended to demonstrate high
mathematics anxiety; while those in high-achieving Western European countries,
such as Finland, the Netherlands, Liechtenstein, and Switzerland, tended to dem-
onstrate low mathematics anxiety. This may be because the high importance
given to mathematics in East Asian countries makes failure more threatening. It
may also reflect some cultural differences in the social acceptability of expressing
anxiety about academic subjects.

(4) Teaching methods, and amount of time devoted to arithmetic in school
Since international comparisons have come into extensive use, there have been
many proposals that countries with medium or low positions in the interna-
tional league tables for school mathematics performance should emulate the
teaching methods of higher scorers, such as the Pacific Rim countries. While
this sounds plausible, it is important to exercise caution (Jerrim, 2011; Sturman,
2015). For one thing as stated above, factors such as the suitability of the meas-
ures used, and the economic situation of a country, could be what influences
performance, as could the level of emphasis put on mathematics within a culture.
For another, even as regards teaching methods there are usually many differen-
ces between mathematics instruction in different countries, and it may be diffi-
cult to isolate which factors are causing differences in mathematics performance.

For example, there has been considerable emphasis recently on the “Mathe-
matics Mastery” approach of Singapore and other East Asian countries, and
some UK schools have begun to introduce aspects of this approach. It can be
difficult, however, to tease apart the numerous aspects of this approach that
might contribute to better mathematical performance (Jerrim & Vignoles, 2015).
For example, the Mathematics Mastery approach breaks different parts of the
mathematics curriculum into units with clearly defined goals. It has a narrower,
but deeper, focus than some other primary curricula such as that of the UK,
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aiming to teach a smaller number of topics within arithmetic in depth rather
than a larger number more superficially. It also aims to ensure that all pupils
have mastered each unit before going on to another one. While the approach is
sometimes misinterpreted as involving whole-class teaching, with all children
expected to succeed so that no allowances or individualized interventions are
given to weaker pupils, in fact teachers are expected to look at the children’s
work, and to intervene immediately with individuals’ misconceptions before
moving on. This, of course, places high demands on the teacher.

Here we may possibly find another difference between East Asian countries
and many others: the status of and requirements for the teaching profession in
many East Asian cities may influence performance as much as any specific as-
pects of the curriculum. Teaching tends to be regarded as a high-status profes-
sion, which requires high academic qualifications for entry, and to involve
extensive continued professional development (Ma, 1999).

Another reason for international differences in arithmetic may be the sheer
amount of time devoted to it in different countries. In the UK, and certainly in Eng-
land, primary school children study a wider variety of subjects than children in
some other countries, resulting in less time devoted specifically to mathematics.
Within mathematics, children study a wide variety of topics: not only arithmetic,
but shape and space; measurement; recording data; applying mathematical knowl-
edge to real-world problems, and so on. This could lead to English children being
less good at arithmetic, but better at some other aspects of mathematics, than
those in some other countries. One international comparison did indicate that En-
glish children were worse at arithmetical calculation, but better at applying mathe-
matics to real-world problems, than those in most other European countries.

Children in Pacific Rim countries, at least the urban children who are most
commonly included in international comparisons, spend more time in academic
pursuits, both in school and in homework, than those in many other countries.
Mathematics comprises a higher proportion of that time than it does in many
other countries. Thus, the sheer amount of time devoted to mathematics may
explain at least part of the superior performance in mathematics by children in
these countries.

(5) Children and indeed adults may learn mathematical techniques, strategies,
and concepts within a particular context, and may not transfer them to other
contexts. People may not always transfer what they learn in school mathemat-
ics to real-world non-school contexts and vice versa.

Carraher et al. (1985) studied Brazilian child street traders aged between 9
and 15 years. All attended school, though many attended somewhat irregularly.
They were given the same arithmetic problems in three different contexts: (1) a
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“street” context, where the researchers approached them as customers and asked
them about prices and change; (2) a “word problem” context where they were
given school-type word problems dealing with prices and change in hypothetical
vending situations; and (3) a numerical context, where they were given the prob-
lems in the form of written sums. The children performed much better in the
street context than on word problems and much better on word problems than
on written sums. They solved almost all – 98% – of the problems correctly in the
street context. Seventy-four percent of the same problems were solved correctly
when presented in the form of word problems; but only 37% were solved cor-
rectly when presented in the form of written sums. By contrast, middle-class
children, who attended school regularly but had no street market experience,
performed better in a numerical context than a market-type context.

Other studies of the effects of schooling versus street trading experience were
carried out by Saxe (1985, 1990; Saxe & Esmonde, 2005). Saxe studied the arith-
metical strategies of Oksapmin children in Papua New Guinea. Some were street
vendors with little or no schooling; some attended school but had no vending ex-
perience; and some had both types of experience. They were all given word prob-
lems based on the prices and profits for selling sweets. Those with more schooling
relied more on written numbers and place value notation. Those with little or no
schooling referred more to the specific features of the currency.

Among children with equal amounts of schooling, children with vending
experience used more derived fact strategies. Those without vending experience
relied more on well-learned, school-taught algorithms. Those with more school-
ing relied more on written numbers and place value notation. Those with little
or no schooling referred more to the specific features of the currency.

Even apart from school-taught arithmetic, different cultures may have differ-
ent preoccupations. For instance, in many cultures, including the UK and white
Australia, age is an important preoccupation, whereas it is much less important,
for example, to Aboriginal Australians. On the other hand, navigation and the es-
timation of distance and direction are very important in Aboriginal Australian
culture: far more than they are for most white Australians. Presumably for these
reasons, Kearins (1991) found that Australian Aboriginal children were better
than non-Aboriginal children at estimating direction, which was traditionally
very important in this group. On the other hand, non-Aboriginal Australian
children were better than Aboriginal children at estimating age, which is very
important in Western culture but much less so in Aboriginal culture.

Posner (1982) found that the Dioula, a mercantile group of people on the
Ivory Coast, learned to use rather complex calculation strategies for trading and
selling purposes. Even those merchants who had never been to school were
adept at calculation. Baoule people in the same region, who were farmers rather
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than merchants, did not demonstrate such high-level calculation abilities. These
findings indicate that groups that require sophisticated calculation strategies are
likely to develop them, with or without schooling.

The extent and nature of use of technology may also influence arithmetical
performance. Ever since calculators became widely used, there have been con-
cerns that they may interfere with children’s learning to calculate and/or result
in an unthinking approach. Obviously much will depend on how calculators are
used; but on the whole, studies of the effects of calculator use have suggested
that these are surprisingly weak: the use of a calculator as such does not have a
large effect on the development of arithmetical calculation or reasoning.

Technological aids to arithmetic did not begin with calculators. In Pacific
Rim countries, many people still use the abacus, which involves the use of
beads on strings, where the strings represent place value. Experienced calcula-
tors can become very fast and accurate, and even use a “mental abacus”: visu-
alizing operations on an abacus, even when there is none present (Hatano
et al., 1977; Stigler, 1984). However, even highly expert abacus calculators do
not always transfer their abacus skills to other arithmetical contexts. The use
of the abacus alone is unlikely to explain the superior arithmetical skills of
people in Pacific Rim countries.

(6) For centuries, there has been much debate as to the role of number words and
numerals in arithmetic. Could we do arithmetic without words? Locke (1690) ar-
gued that small numbers can be represented without words by showing numbers
of fingers, but words are needed to keep track of larger numbers. According to
this theory, speakers of languages without number words would be restricted to
the understanding of numbers that can be represented through fingers.

Most languages have number words at least up to 10. However, a few Native
American and Native Australian languages (e.g., Warlpiri in Australia) have only
words corresponding to “one, two, three, many.” Some languages with somewhat
more extensive counting systems have limits on how far one can count; for exam-
ple, some of the languages of Papua New Guinea count by pointing to body parts
and use the names of these body parts for their counts (Butterworth, 1999; Lancy,
1983). In the Kewa language “1” is represented by the right little finger, and “34”
by the nose. The upper limit of the Kewa counting system is 68, while that of the
Oksapmin system is 19. It is arguable that there is an upper limit on the counting
sequence in a language; then this may interfere with arithmetic and quantity re-
presentation beyond that number. It may also limit the ability to understand the
key mathematical concept of infinity:

Pica et al. (2004) studied 55 Munduruku-speaking participants. Munduruku
is a language spoken by approximately 7,000 indigenous people in the state of
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Para, Brazil. It only includes the words for the numbers one to five. The first test
was to name the numbers for sets including from 1 to 15 points. The second test
involved showing participants two clouds of dots and asking them to judge
which of the two sets was more numerous. The third test involved approximate
computation. Participants were shown short video clips illustrating simple op-
erations. For example, approximately 20 seeds fall into a box, and then approxi-
mately 30 more were added. The participants were asked whether the total was
more or less than another set (e.g., of approximately 40 seeds). The fourth test
involved exact computation. The participants were again shown video clips,
and were asked to give the result of a precise mathematical operation, for exam-
ple, 6 seeds minus 4 seeds.

Results showed that participants could not carry out arithmetic operations
with quantities above 5. For example, they could not calculate 6–4 or 7–7 accu-
rately. However, they could do approximate arithmetic just as well as French
controls! The researchers concluded that numerical approximation ability is a
basic cognitive ability that is common to all human beings, and which may be
independent of language.

It is possible that even these findings underestimate the mathematical abili-
ties of speakers of languages with limited counting systems. In this study, most
of the exact number tasks involved subtraction, which is usually found to be
more difficult than addition.

Another study was carried out by Butterworth et al. (2008), involving stud-
ied child speakers of two Aboriginal Australian languages, Anindilyakwa and
Warlpiri, and compared them with English speakers. These languages do not
have number words beyond three. Nonetheless, they showed some capacity for
exact nonverbal arithmetic.

In this study, participants were given four tasks:
(1) Memory for sets of counters. Children had to reproduce sets comprising

two, three, four, five, six, eight, or nine randomly placed counters.
(2) Cross-modal matching. Children had to match numbers of counters with

numbers of times that a block was tapped (numerosities ranged from 1 to 7).
(3) Nonverbal addition. Children watched an experimenter put one or more coun-

ters under a cover onto a mat; and then add more counters. They were asked
to “make your mat like hers.” Sums included 2 + 1, 3 + 1, 4 + 1, 1 + 2, 1 + 3,
1 + 4, 3 + 3, 4 + 2, and 5 + 3.

(4) Sharing. Children shared sets of play-dough disks among three toy bears.
The trials comprised 6, 9, 7, and 10.

There were effects on performance of both age (6- to 7-year-olds performed bet-
ter than 4- to 5-year-olds) and of set size (children performed better on problems
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involving smaller numbers than larger numbers). However, there was little or
no effect of language. Speakers of the languages with the limited counting sys-
tems performed as well on these tasks as English-speaking Australian controls.

2 Transparency of counting systems

As early as 1798, Edgeworth and Edgeworth (1798) pointed out that English
speakers may be at a disadvantage compared with speakers of some other lan-
guages due to the relatively irregular English counting system.

Transparency of a counting system involves two major components: (i) The
regularity of the spoken number system: the degree to which it gives a clear and
consistent representation of the base system (usually base 10) used in the lan-
guage; and (ii) The degree and consistency of conformity between the spoken
and the written number system. In practice, these usually amount to the same
thing, as most languages use the same (Arabic) written counting system.

East Asian counting systems are more transparent than most others. Instead
of “eleven, twelve, thirteen” and so on, such counting systems use the equivalent
of “ten-one, ten-two, ten-three” and so on. Instead of “twenty, twenty-one, . . .
thirty, thirty-one . . .,” they use the equivalent of “two-tens, two-tens-one, . . .
three-tens, three-tens-one . . ..”

It is sometimes suggested that the relative transparency of Asian counting
systems is a major contributory factor to the superior performance of Pacific
Rim children in most aspects of arithmetic. Learning number names may be eas-
ier in systems where new numbers may be inferred rather than having to be
learned by rote. One might also expect that the concept of place value would be
easier to comprehend and use in a regular counting system.

There are indeed results that suggest that users of regular counting systems
find it easier to count, even before they start formal schooling. Miller et al. (1995)
studied counting in Chinese and American four- and five-year-olds. The two groups
performed similarly in learning to count up to 12, but the Chinese children were
about a year ahead of the American children in the further development and count-
ing of higher numbers.

There is also evidence that primary school children who use transparent
counting systems find it easier to represent two-digit numbers than children who
use less transparent counting systems. Miura, Okamoto, and colleagues studied
six-year-old children of different nationalities (Miura et al., 1988; Okamoto, 2015).
Three groups used regular counting systems; Japanese, Korean, and Chinese.
Three groups used less regular counting systems – American, French, and
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Swedish. The children were given tasks involving representation of two-digit
numbers with base ten blocks (unit blocks and tens blocks; the latter being
blocks with ten segments shown on them).

The users of transparent counting systems were far more likely to represent
the tens and units by means of the blocks: typically representing 42 by four tens
blocks and two unit blocks. The American, French, and Swedish children tended
to attempt to represent the numbers as collections of units, such as by represent-
ing the number 42 as 42 unit blocks. The researchers concluded that the users of
transparent counting systems find it easier to represent multi-digit numbers and
that this leads to better arithmetical performance.

Several studies have supported this view, but some have not, and in general
it seems likely that the effects of using a transparent counting system are spe-
cific to some aspects of arithmetic, rather than affecting all aspects. Some of the
studies have involved representing numbers on empty number lines. Siegler
and Mu (2008) found that Chinese kindergarten children performed better than
American children on mental number line estimation tasks involving a number
line spanning from 1 to 100. Laski and Yu (2014) found that Chinese children
performed better on such tasks than Chinese-American children, who in turn
performed better than monolingual English-speaking American children. This
could indicate either that the extent to which children use a transparent count-
ing system has a significant effect on their arithmetic (for Chinese-American
children, the effect may be diluted by their use of English as well as Chinese)
or, perhaps more likely, that both linguistic and educational factors are impor-
tant to children’s number representation.

On the other hand, Muldoon et al. (2011) did not find any such differences
in number line performance between Chinese and Scottish four- and five-year-
olds, despite the fact that that the Chinese children performed better than the
Scottish children on a standardized arithmetic test.

Mark and Dowker (2015) studied children in Chinese and English medium
schools in Hong Kong. They found that those in the Chinese medium school did
perform somewhat better at a standardized arithmetic test, and at backward
and forward counting, but only younger children (6 to 7), and not older children
(8 to 9), showed group differences in reading and comparing two-digit numbers.

However, it is difficult to draw firm conclusions about the implications of
these results, because there are so many other cultural and educational differ-
ences between Asian and Western children (Towse & Saxton, 1998).

The Welsh language can offer important insights here. The main counting
system used for school mathematics is, like the counting systems used in Pacific
Rim countries, completely regular (Roberts, 2000). The number words are easily
constructed by knowing the numbers 1 to 10 and the rule for combining them.
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For example, eleven in Welsh is “un deg un” (one ten one), twelve is “un deg
dau” (one ten two), and twenty two is “dau ddeg dau” (two tens two).

Wales provides an unusual opportunity for research on linguistic influences on
mathematics, since it is a region in which languages with both transparent and
non-transparent counting systems are used in schools. In Wales, children receive
either English or Welsh medium schooling within the same country, educational
system, curriculum, and cultural environment. About 80% of children in Wales,
like those elsewhere in the UK, receive their school education in English, but 20%
attendWelsh medium schools, where they study inWelsh. Children whose parental
language is English may still receive their education from age 4 entirely in Welsh.
This makes it possible to compare children, who are following the same National
Curriculum, and where the only educational difference is in the language used.

Maclean and Whitburn (1996) studied children in their first year of school,
and found that those in Welsh medium schools performed better than those
in English medium schools on certain numerical measures. In particular, they
could count higher. However, comprehension and use of multi-digit numbers
were hard to assess in their study, as most of the children were six years old or
under, and had not been much exposed to oral and written representations of
tens and units.

Dowker et al. (2008) carried out a study investigating the performance of
numerical tasks by Welsh children who had just begun dealing with such repre-
sentations (6-year-olds) and those who had greater experience (8-year-olds).

They investigated the performance of numerical tasks by 30 Welsh children
who had just begun dealing with such representations (6-year-olds) and 30 who
had greater experience (8-year-olds). One third of the children in each age group
spoke Welsh both at home at school; one third spoke English at home but were
educated at a Welsh medium school; and one third spoke English both at home
and at school.

The children were given three standardized tests: the British Abilities Scales
(BAS) Basic Number Skills test (2nd edition), which measures written calcula-
tion; the WISC Arithmetic subtest, which measures mental arithmetical reason-
ing, especially word problem solving; and the WISC Block Design subtest, which
measures nonverbal reasoning.

They were also given a Number Comparison task, based on that used by
Donlan and Gourlay (1999). In the Number Comparison task, 24 pairs of two-digit
numbers were presented to children in a flip booklet. All participants were required
to read each pair of numbers aloud before pointing to which was the bigger.

The groups did not differ in Block Design scores. They also did not differ in
terms of overall arithmetical reasoning or calculation ability. A two-factor analysis
of variance with School and Age as factors was applied to the WISC Arithmetic and
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BAS Number Skills scores. No statistically significant differences were found be-
tween schools or age groups on the scaled score on either test. This suggests that
the counting system on its own does not appear to have an impact on global arith-
metical ability in otherwise culturally and educationally similar groups. But might
the nature of the counting system have an effect on some more specific aspects of
arithmetic?

There were indeed group differences in more specific areas of arithmetical
ability – notably in the ability to read and judge number pairs, as shown by the
Number Comparison Task. The composite Comparison Error score was found to
show highly significant differences in a two-way analysis of variance between
schools and between age groups. Not surprisingly, eight-year-olds performed
better than six-year-olds. Children who spoke Welsh both at home and at school
performed better than those who spoke Welsh only at school, who in turn per-
formed better than those who spoke English both at home and at school. These
results suggest that the transparency of the counting system does not have a
global effect on arithmetical performance when other aspects of education and
culture are kept constant, and is therefore unlikely to be the sole or main reason
for superior performance by children in Pacific Rim countries. However, it does
appear to have specific effects on performance in particular aspects of arithmetic.

This appears to be supported by other studies of Welsh children. Dowker
and Roberts (2015) studied children in English and Welsh medium schools in
Wales. The study found a trend for children in Welsh medium schools to be
more accurate and quicker on number line tasks, but the difference did not
quite reach significance. However, the Welsh medium pupils did show signifi-
cantly lower standard deviations than the English medium pupils, indicating
more consistency and lower variability in performance.

Some languages have less transparent counting systems than English: in par-
ticular those such as German, Dutch, and Arabic, where the tens and units in
multi-digit numbers are inverted in speech. For example, in German the written
number “24” is spoken as “vier und zwanzig” (four and twenty). While this does
not seem to have broad negative effects on arithmetic as a whole (Germany and
the Netherlands usually do relatively well in international comparisons), it does
seem to affect specific aspects of numerical abilities. Children who use such
counting systems are less accurate in placing numbers on empty number lines
children who use counting systems with little or no inversion (e.g., Dowker &
Nuerk, 2016; Bahnmueller et al., 2018; Göbel et al., 2011; Helmreich et al.,
2011; Klein et al., 2013; Lonneman et al., 2016; Moeller et al., 2015). Krinzinger
et al. (2011) compared German, Austrian, French, Flemish, and Walloon second-
grade children on several numerical tasks. The first two groups had such in-
version effects in their language; the others did not. Results showed that
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inversion had a clear effect on writing Arabic numerals to dictation, but not
on reading and recognizing them, or on calculations. Once again, we see spe-
cific but not global effects of the level of transparency of the counting system.

3 Conclusions

There are numerous ways in which culture may affect arithmetic: ranging from
the effects of learning in different contexts, to the effects of counting in different
languages. Many of these affect specific aspects of arithmetic but do not affect
mathematical ability globally, or lead to strikingly different levels of perfor-
mance in different contexts.

In education, it is important to remember that a child’s apparent weakness
in mathematics in one context does not necessarily mean that they will not be
able to carry out apparently similar mathematical tasks in another context. An
ideal would be to find ways of helping children to transfer knowledge and skills
from one context to others, but that is often remarkably difficult.

It is important to bear in mind, when teaching children mathematics, that
the language that they speak and the counting system that they use may influ-
ence how easy or difficult they find it to acquire and understand certain aspects
of place value. However, the effects of the counting system do not apply to
every aspect of mathematics; and even speakers of languages with very limited
counting systems can acquire many number concepts and skills.

The many cultural variations that we find should not obscure the fact there
is a universal potential for arithmetical reasoning: indeed the variations them-
selves demonstrate this potential. Arithmetical reasoning can develop in a very
wide variety of contexts, not only in a conventional school context, but at home;
in school; in games; in shopping, budgeting, and other financial contexts; in jobs
ranging from street trading to carpentry; in cooking, sewing, and other domestic
activities; and in dealing with measurement in many situations.
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Susanne Prediger and Ángela Uribe

Exploiting the epistemic role of
multilingual resources in superdiverse
mathematics classrooms: Design
principles and insights into students’
learning processes

1 Introduction

Many language policy documents worldwide have called for treating students’
multiple languages as resources in subject matter classrooms (Beacco et al., 2015).
Many qualitative observation studies (Adler, 2001; Barwell et al., 2016; Planas,
2018) and some quantitative intervention studies in mathematics education
(Schüler-Meyer et al., 2019) have also shown that teaching approaches that ac-
tivate students’ multilingual resources can be beneficial.

However, most of these studies refer to classrooms with shared bilingualism,
which means teachers and students share at least two languages. In contrast,
Meyer et al. (2016) describe European schools as superdiverse language contexts
in which more than five non-shared languages can be present in a classroom
with only the language of instruction being shared. This is exemplified in the Ger-
man-language context: In German schools, 30% of all students are multilingual,
with most of them being second- to fourth-generation children of immigrant fami-
lies. Typical classes in urban areas have five to seven languages, with only Ger-
man being shared by all students and English learned as a foreign language.
Teachers might speak one immigrant language, but not all. Usually, using home
languages is allowed in small group work, but not encouraged and built upon.

The prevalence of non-shared multilingualism raises the question of how
teaching approaches for activating multilingual resources can be transferred
from classrooms with shared bilingualism to superdiverse classrooms with non-
shared multilingualism.

In this paper, we argue that this transfer is possible when the focus is not
only on the communicative role of multiple languages (i.e., so that students can
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engage more easily in discussions about mathematics), but also on the episte-
mic role of multiple languages (Prediger et al., 2019). Section 2 of this paper
presents the theoretical background of this argumentation. In Section 3, we in-
troduce design principles and the design elements used to realize those. Sec-
tions 4 and 5 present a case study from an ongoing design research project in
Grade 7, in which we explore how to adapt the design principles of multilin-
gual mathematics classrooms for the mathematical topic of covariation. Thus,
we pursue the following research question for a topic-specific case study on
covariation: What are the benefits and limitations of activating non-shared
multilingual resources in a superdiverse mathematics classroom?

The current paper is an expanded version of an unpublished conference
paper on this topic (Uribe & Prediger, 2020). Whereas the empirical part is
mainly preserved, the theoretical part is significantly enhanced.

2 Theoretical background

2.1 Existing research on building upon students’
multilingual resources and its epistemic role

As the majority of the societies in the world are multilingual, many students are
obliged to learn mathematics in languages of instruction that do not correspond
to their home languages. The call for instructional approaches that build upon
students’ home languages as resources for mathematics learning (Barwell, 2009;
Planas, 2018) has its sources in early language policy discourses (Ruíz, 1984),
and it is now widely acknowledged in many educational policies (e.g., for the
Council of Europe: Beacco et al., (2015)).

Many qualitative and quantitative studies have identified the benefits of ac-
tivating multilingual students’ home languages as resources for mathematics
learning (Barwell et al., 2016; Planas 2018). These benefits include (1) higher en-
gagement in classrooms discussions, (2) strengthened identities, (3) better con-
nections to students’ everyday school experiences, (4) better support in literacy
development, and, ideally, (5) higher mathematical achievements (quantitative
empirical evidence for efficacy has been provided in only few controlled trials,
e.g., in Schüler-Meyer et al., 2019).

Many researchers in these studies have traced back the possible effects of
using multiple languages in code-switching practices, with a strong focus on
the communicative role of students’ home languages. The hypothesized relation-
ship was that being encouraged to use all languages strengthened their ability
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to participate in communication (1), which then results in the other possible
benefits (2–5).

In recent years, researchers have also increasingly emphasized a second
role of multilingual resources: the epistemic role of languages as tools for
thinking and knowledge construction, especially for students’ meaning-making
processes (Barwell, 2018; Planas, 2018; Prediger et al., 2019). This epistemic
role goes far beyond early ideas of simplified communication by code‐switching:
It has value whereby it emphasizes that connecting languages unconsciously or
deliberately can reveal epistemic and didactic potentials for students’ processes
of meaning-making. For example, Prediger et al. (2019) show how discussing differ-
ent conceptualizations of fractions in German and Turkish could enrich multilin-
gual students’multifaceted understanding of the part–whole relationship. In these
cases, multiperspectivity on mathematics concepts is strengthened by connecting
a variety of language-specific nuances (Planas, 2018; Prediger et al., 2019). These
benefits cannot be explained by code-switching in complementary bilingual modes
(languages do not only complement each other in moments of insufficiency), but
require a connective bilingual mode in which the individuals deliberatively or
unconsciously connect their languages mentally or in external communication.
Hence, the connective bilingual mode has been presented to realize ideas of trans-
languaging (Li, 2011) for mathematics learning. The relevance of the connective bi-
lingual mode with its added epistemic value for knowledge construction is also the
reason, why we speak of activating multilingual resources, in other words, the full
linguistic repertoire rather than just activating home languages (which might be re-
stricted to a complementary bilingual mode rather than a connective mode).

The distinction between the communicative and epistemic role of languages
is crucial for superdiverse classrooms: The communicative role of multilingual
resources can mainly be exploited in classrooms with shared bilingualism, when
teachers and students share at least two languages to be used for communica-
tion. In contrast, the epistemic role of multilingual resources can also be ex-
ploited in superdiverse language contexts with non-shared multilingualism, even
for monolingual students in these classrooms, as we will show in this paper.

2.2 The epistemic role of multilingual resources
in the literacy engagement framework

The possible connection of the five potential benefits identified in Section 2.1
can be explained through Cummin’s (2015) literacy engagement framework, es-
pecially in its form in Fig. 1, which was adapted to mathematics learning by in-
cluding the grey boxes (Uribe & Prediger, 2020).
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When we extend the students’ language resources by allowing the use of all
languages, registers, and representations, we are then not only able to strengthen
students’ identities and connect to students’ everyday experiences, but we also en-
hance theirmeaning-making processes. This opens the base for extending students’
language repertoires with more elaborated language, which can contribute to in-
creased participation in language activities (referred to as print access and literacy
engagement by Cummins, 2015) and students’ language learning in the long run
(referred to as literacy achievement).

Scaffolded meaning-making can contribute to exploiting the epistemic role
of connecting languages (Schüler-Meyer et al., 2019; Barwell, 2018), which can
strengthen students’ access to joint language activities and, in particular, en-
gage students in rich mathematical discourse practices. This can lead to higher
achievement in mathematical conceptual understanding (Erath et al., 2018).

Exploiting epistemic potentials of language comparisons for enhancing stu-
dents’ conceptual understanding is of particular importance when students are
in the process of learning to understand highly compacted concepts (such as
functional relationships; see Prediger & Zindel, 2017) by unfolding them in joint
discourse practices. This involves de-composing the condensed language (e.g.,
de-composing nominalizations or condensed adjectives into verbal forms) and
connecting it again to the more compacted language. Planas (2019: 27) provides
an example of translanguaging practices from a classroom with shared bilin-
gualism in which the connection of nominalized expressions in one language
with de-composed expressions in the second language supported students’
meaning-making processes when learning about equations.

Although these possible impacts have been shown to potentially exist, realiz-
ing them deliberately in teaching-learning situations is nevertheless a challenging
task for instructional designers and teachers. Realization is easier in classrooms
with shared bilingualism, but the following section will present design principles

Fig. 1: Literacy engagement framework (Cummins 2015, p. 240), adapted for mathematics by
adding grey boxes.
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and design elements for realizations in mathematics classrooms with multiple lan-
guages where all (but one) languages are not shared.

Since most of the existing studies stem from language contexts of shared
multi- and bilingualism (e.g., California, Ireland, South Africa), Meyer et al.
(2016) called for more research to explore how existing teaching approaches for
activating multilingual resources can be transferred to superdiverse classrooms
with non-shared multilingualism. As the empirical part of the paper will show,
the bilingual connective mode is crucial as it can also be activated internally
when only one speaker of a certain home language is present.

3 Design principles and design elements
for exploiting multilingual resources
epistemically

Exploiting the epistemic role of multilingual resources can best take place in
teaching-learning arrangements that are based on the most relevant design
principles for language-responsive teaching-learning arrangements (which will
eventually be applied in monolingual contexts; see Erath et al., 2021 for an over-
view on the research base and Schüler-Meyer et al., 2019 for their adaptation to
bi- and multilingual classrooms):

DP Engaging students in rich discourse practices
DP Macro-scaffolding along two coordinated learning trajectories
DP Connecting multiple representations, languages, and registers
DP Variation for initiating reflection

DP1 means that teachers should demand and support discourse practices so that
all students can participate in explaining meanings, arguing, and discussing
divergent ideas. DP2 means that the language learning opportunities should
be sequenced in parallel to the mathematical learning opportunities starting
from students’ everyday resources, establishing a common meaning-related lan-
guage before introducing formal, technical language. Both design principles are
crucial and unchanged in both multilingual and monolingual language-responsive
teaching-learning arrangements.

In a multilingual setting, DP3, connecting multiple representations and regis-
ters, is enriched by also connecting languages (Prediger et al., 2016), preferably
in the connective bilingual mode of each individual, but perhaps only with inner
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speech if no partner with the same languages is present. To initiate this connec-
tion, we use the following design elements as examples:
– Recurrent explicit and implicit prompts to use two languages (DE3.1) are re-

quired in contexts that are usually monolingual before students dare to
activate multilingual resources (Meyer et al., 2016). Also, students from
monolingual German families are encouraged to use their foreign language,
English, in order to treat all students equally as multilinguals. Explicit prompts
are required to overcome the usually established monolingual norms (at least
in most German schools), but always respect the principle of voluntary
language use. Once new multilingual norms are established, this design
element is no longer necessary.

– Graphical representations (DE3.2), such as the double number line, facilitate
students’ explanations and descriptions of mathematical relationships by ac-
tivating the whole range of multimodal resources: Gestures, deictic means,
and embodied language are more important meaning-making resources than
well-elaborated technical phrases in the home language (Barwell, 2018).

– Activities to make sense of crucial meaning-related phrases (DE3.3). Explain-
ing (not only translating) crucial meaning-related phrases in two languages
is a key activity to mobilize the epistemic function of multiple languages.
This activity usually elicits slightly different nuances of meaning and by
this consolidates the conceptual understanding (Prediger et al., 2019).

The last design principle, the variation principle, DP4, means that language-
related or mathematical reflection can be initiated by slightly varying some
language pieces (form, function, etc.) and comparing them explicitly (Erath
et al., 2021). In the multilingual setting, this specifically involves the compari-
son of expressions and conceptualizations for the same mathematical con-
cept in different languages. It can be realized, for example, by the following
design elements:
– Activities for comparing phrase variations with different meanings (DE4.1).

Concept cartoons or varied word problems can initiate the students’ com-
parison of phrases that look very similar but have different meanings. This
can raise students’ language awareness of small details (Dröse & Prediger,
2020).

– Activities for comparing multiple phrases with same meaning (DE4.2). When
students provide synonymous phrases for the same key meaning-related
phrase (in the language of instruction and other languages; see DE3.3), the
teacher does not necessarily need to be able to translate it: Sometimes it is
also interesting to compare the syntactic form. Multilingualism becomes an
occasion to reflect on language and on the different words in use in terms
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of conceptual relevance: When students translate German lexical means
into different languages in their language repertoires, they can reflect on
the resulting variations that emerge through the translation process.

In the following case studies, we illustrate how the design elements DE3.3 and
DE4.2 initiate a rich mathematical reflection and moments of conceptual insight.

4 Methodological framework of the case study

4.1 Research context of the case study

4.1.1 Embedding in larger design research project

The case study presented here belongs to the larger project MuM-Multi 2 being car-
ried out in a German-language context. The investigation of transfer possibilities
between contexts of shared and non-shared multilingualism has been conducted
using a design research methodology that iteratively combines the design of teach-
ing-learning arrangements with the qualitative study of initiated teaching-learning
processes (Gravemeijer & Cobb, 2006). The design elements and design principles
in Section 3 were a first outcome of the design research project on the practical
side. Here, we provide some empirical insights into the initiated learning processes.

4.1.2 Mathematical topic in view: Covariational reasoning

The mathematical topic in view is covariation, a core idea for functional relation-
ships that is fundamental to students’ mathematical learning: Using functional
relationships, we can investigate how one quantity varies with another one as a
dynamic phenomenon (Thompson & Carlson, 2017). Students first encounter co-
variation in the coupling of two quantities that vary simultaneously in propor-
tional reasoning: “The more apples I buy, the higher the total price.” In the first
step of the learning trajectory, qualitative ideas about covariation are to be devel-
oped on the double number line, which proved to be a powerful visualization to
activate students’ intuitive resources (van Galen et al., 2008) and a tool that
supports verbalizing and imagining quantities’ values that vary smoothly or con-
tinuously. In a later step of the learning trajectory, qualitative covariation is quan-
tified using fixed scalars, and the double number line is then used to engage
students in reasoning flexibly up and down (van Galen et al., 2008).
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With respect to the epistemic function of languages, covariation is an inter-
esting exemplary topic, as it can be expressed in different degrees of compac-
tion and reification (see Fig. 2).

For our case study, we hypothesize that different expressions for covariation
can also provide multiple approaches for understanding this compacted con-
cept. We explore whether this kind of epistemic support can also be provided in
non-shared multilingualism.

4.1.3 Teaching learning arrangement in view

The language-responsive teaching-learning arrangement on covariational rea-
soning was designed based on the design principles and design elements in
Section 3. The learning trajectory starts from students’ intuitive mathematical
resources and language resource (DP2) on informal qualitative covariation. By
engaging the students in rich discourse practices of explaining meanings (DP1),
the aim is to develop proportional reasoning across different contexts. The dou-
ble number line, introduced as the continuously used graphical representation,
is used to elicit students’multiple multimodal resources (DE3.2).

Fig. 3 shows two of the initial tasks of the learning trajectory, which first are
treated in language-homogeneous small groups and then discussed in the whole
class. Task 1 introduces the double number line by eliciting its intuitive use. The
estimation prompt leads the students into their first thinking about covaria-
tion. Task 2 asks students to express their own ideas in two languages (DE3.3);
Tarkan’s model shows that this is expected to result in establishing a new
norm (DE3.1). Students from monolingual German families are encouraged to use
their foreign language, English, in order to treat all students equally as multilin-
guals (DE3.1). Whereas the pre-formulated answer articulates the correspondence
approach, the later whole-class discussion of estimation strategies addresses
covariation ideas (DE4.1). The whole-class discussion is designed to compare
multiple phrases with same meanings in different languages (DE4.2).

Fig. 2: Context-embedded expressions for covariation with different degrees of compaction.
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4.2 Methods of data gathering

The video data of the case study presented here stems from the first lesson of
the design experiment Cycle 3 (encompassing four lessons in total), in which
the intervention in a regular Grade 7 classroom was video-recorded and partly
transcribed.

All students speak German (and English as their common foreign language
learned in school); additional home languages are Turkish (spoken by 12 stu-
dents), Polish (4 students), Arabic (2 students), Albanian (1 student), and Kurdish
(1 student). The episode analyzed for this paper stems from a whole-class discus-
sion collecting students’ work on Task 2 (shown in Fig. 3).

4.3 Methods of data analysis

The transcript was qualitatively analyzed with respect to students’multiple lan-
guage use, their conceptions of covariance, and the processes of compacting
and unfolding using more or less condensed language. The analytic scheme
was deductively derived from Prediger and Zindel (2017) and then inductively
adapted to the other learning content. For the final coding scheme the codes
E0–E5 were assigned for the expressions (see Fig. 2) used by the students and
the teacher in order to identify communicative and epistemic benefits and limi-
tations of work in a non-shared multilingual context. The codes were assigned
based on the following criteria:

Fig. 3: Initial tasks for activating multilingual resources on covariation.
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E: Variation of quantities is described separately without expressing the
relationship between them.

E: Covariation of both quantities is expressed in complete sub-clauses with
verbs connected by the conjunctions “if . . . then . . . .”

E: Covariation of both quantities is expressed in compacted adverbs, connected,
for instance, by “the more apples . . . the more . . .”

E: Quantities are addressed explicitly by nominalizations (e.g., “the value,”
“the amount”), and the covariation is expressed by verbs (e.g., “increase”)
connected by “if . . . then . . .” or “the . . . the . . . .”

E: Quantities are addressed explicitly using nominalizations (e.g., “the value,”
“the amount”), and the covariation is compacted into adjectives “the . . . the
higher the price,” connected by “the . . . the . . . .”

E: Quantities are addressed explicitly by nominalizations (e.g., “the value,”
“the amount”), and the covariation is not addressed explicitly but compacted
into a phrase such as “depends on.”

5 Empirical insights into benefits
and limitations of exploiting the epistemic
role of multilingual resources

5.1 Qualitative analysis of three sequences

We analyzed a transcript of the whole-class discussion on students’ multilin-
gual writings about covariation on the double number line (Task 2 in Fig. 3) in
order to show how the students and the teacher made sense of covariation by
connecting multiple phrases (DE3.3).

Sequence 1: Separate variations in two languages
The whole-class discussion starts with a conversation on Baydar’s German-
Turkish writing product (Fig. 4) which is projected onto the whiteboard.
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 Teacher Baydar has written something very nice: that the value increases each time.
What is written here? [points to Baydar’s Turkish sentence]

 Fatma [translates] That the number gets higher.
 Teacher That the number gets higher. And then he says here that the number of apples

also increases itself.
 Fatma That is the same.
 Teacher Is it the same?
 Shenay No, that is “number” and that is “value.”
 Fatma I see! Yes.
 Shenay The one means that the value [meaning the price] increases itself each time

and, yes, that the value increases. And the other one, that the apples, though
the number increases.

 Teacher Thus, what does he mean by the value?
 Shenay Eh, the selling price.
 Teacher The selling price. Ok, he sees that the selling price changes. And what else

does he observe?
 Thilo That the selling price changes and that the number changes. So, that five

apples, eh, ten apples, cost  €.

The teacher chooses what Baydar wrote because it describes the increase of both
quantities separately in two speech bubbles (included as expression E0 in the an-
alytic graph in Fig. 5). She asks other Turkish-speaking students to translate the
Turkish part for the class (Turn 89), which affirms their identity as competent
multilinguals (Fig. 1). Fatma translates (Turn 90) and states that both speech
bubbles describe the same thing (Turn 92), which is not true for the Turkish
sentence.
As the teacher cannot read the Turkish, she misses this subtlety and continues
working with the German text. Shenay distinguishes the value (the selling price)
from the number of apples (Turn 94). She uses re-voicing to repair the language
slip, changing “increase itself” to “increase” without further comments (a pro-
ductive practice).

Fig. 4: Baydar’s writing product (translated).
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As the teacher’s focus is first on striving for precision by turning “value”
into “selling price” (Turn 98–101), the students continue articulating two sepa-
rate statements of variation, without combining them into a statement of covari-
ation until Turn 101. When Thilo tries to explain the two separate variations in
Turn 101, he expresses the correspondence, but not yet the covariation approach
(still coded as E0, Corr).

Sequence 1 shows how students’ interest can be attracted to understanding
students’ bilingual writing, even those students who do not share the language.
It also shows a limitation of not sharing a language with the students, as the
teacher missed the opportunity to compare the Turkish “number” with the German
“value.”

Sequence 2: German expressions for covariation
In the next turns, the two separate variations are condensed into a covariation,
and the direction of the dependency is questioned:

 Dennis That’s normal, though! If the value increases itself, then more apples
are there. Otherwise, it makes no sense.

E/E

 Teacher But what depends on what?
E Dennis The, well, the price depends at [sic] the number of apples.

 Teacher The price depends on the number of apples.
 Dennis Yes.
 Teacher That is more precise, isn’t it?
 Dennis Somewhat.
 Teacher How would you articulate the sentence?
 Shenay Em, the more number of apples, the more the price increases. E
 Teacher The more apples, the higher the number of apples, the . . . E
 Lale . . . more expensive
 Shenay The higher increases the price.
 Lale Eh, I would say, the more apples, the more expensive they are.

E
 Teacher The more apples, the more expensive.

Dennis articulates an if-then sentence that first combines the two variations in a
covariation (coded as E1 in Turn 103). Since he uses condensed verbs for ex-
pressing the change, the utterance is also coded as E3.

The teacher reacts to his inverse direction of dependency by asking a ques-
tion, but this question is phrased in a much more condensed structure, coded
as E5 (Turn 105). Dennis corrects himself by using the highly condensed expres-
sion E5 that he picks up from the teacher (Turn 106). In order to activate the
design principle DP4, variation for initiating reflection, the teacher calls for fur-
ther ways of articulating the covariance (Turn 111). The collection of utterances
(Turns 111–117) reveals four different ways of expressing the covariance (E5, E3,
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E4, and E2). These four phrases successively de-compose the highly compacted
phrase of the teacher (E5).

This sequence shows nicely how the call for further phrases can add multi-
ple modes of expression to the covariation concept in view.

Sequence 3: Multilingual expressions for covariation
So far, three students contributed utterances in German only. In order to acti-
vate all students to recapitulate the discussion, the teacher calls for finding fur-
ther expressions in other languages:

 Teacher Further possibilities, a further idea how to construct the sentence? Who
has an idea in Turkish, Polish, or Arabic, how could you construct the
sentence in these languages? [. . .]

Think about it for a minute. And also think [directed to the students of
monolingual German-speaking families], how would you express that in
English?

 Lale We have one!
 Teacher Yes, you have one. We will allow some more time for the others. Write it

into the speech bubbles. [-second break].
You can also use dictionaries but only for selected words, no direct

translation.
 Teacher [After a -minute break] Now, do you want to read the sentence in

Turkish and what it means?
 Fatma “Elmalarin sayisi yükselirse fiyati da yükselir.” [Translated from Turkish:

If the number of apples raised, then the price would also raise.]
E

 Teacher Have you also written “the . . . the” or have you rephrased it?
 Lale We have simply – directly written it.
 Teacher What would it mean exactly, what you have written?
 Lale If the number of apples gets higher, then the price also gets higher. E/

E Teacher Super, that is also creative. How is it for you?
 Thilo We have only written “the more apples” [English in original] and then we

wanted to write, eh, “more,” eh, the more? [Student searches for “the
. . . the” – “je . . . desto” in German]

E

 Teacher “Expensive”
 Thilo Yes
 Teacher Well, well, well. And you [to Dennis]?
 Dennis We don’t have it completely in Polish, but I can try.
 Teacher Yes, so that we can see how Polish . . .
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 Dennis “Ile masz jabłko, tak będzie” [Translated from Polish: So many apples as
you have, so . . . it will be] and the rest I do not know, there is a word
missing.

Corr

 Teacher Which word is missing?
 Dennis Eh, expensive
 Shenay Shall I google that quickly?
 Dennis Yeah, do it.
. . .
 Shenay “Kostownie” [Translated from Polish: valuable]
 Dennis “Ile masz jabłko, tak będzie kostownie.” [So many apples as you have,

so valuable it will be.]

 Teacher [. . .] How would this sentence be in German?
 Dennis This would be, eh. I have so many apples. The more apples I have, the

more evaluable it’ll be.

E

 Shenay Yes, you cannot translate everything directly.
. . .

 Qaiss “Lil- mazīd minat-tuffāḥ kallama kān ʿalayka ʾan tadfaʿa ʾakṯar”
[Translated from Arabic: For more apples, all you have to do is pay more]

E

. . .

 Teacher When you buy more apples, then you have to pay more. Thus, when the
number increases, then you have to spend more money.

E/
E

In this sequence, the classroom transforms into a translanguaging space in which
all students feel free to deal with multiple languages for meaning-making in math-
ematics, regardless of their proficiency level. Even if the conversation takes place
mainly in their shared language, German, they individually make use of their mul-
tilingual repertoires in an epistemic function that supports a consolidated mean-
ing making of covariation. In Turn 125, Fatma brings in an important sentence
variation in Turkish (E1). After Lale first declares it to be a literal translation (Turn
127, E1/E3), the teachers’ repeated questions result in a more accurate translation
(Turn 129) that reveals the variation from “the . . . the” to “if . . . then” and a de-
nominalization, both supporting the unpacking of the condensed concept.

The group of foreign English-language speakers searches for the translation
of “je . . . desto” in German (“the . . . the” in English) in Turn 131 (E2). The teacher
provides vocabulary support for “valuable” without noticing this obstacle. (Later,
the students use a more de-composed version: As they still do not know “the . . .
the,” they construct a longer sentence.)

Dennis and three other Polish-speaking students are also unfamiliar with the
use of Polish within a mathematical discourse and feel uncomfortable using it
(Turn 135). The teacher encourages them several times, and Dennis reads his in-
complete sentence (Turn 137). With dictionary support of the non-Polish-speaking
peer Shenay (Turns 141–147), he completes their Polish sentence, showing the
students’ engagement and identity strengthening. Dennis’ Polish sentence
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reveals an interesting perspective, the correspondence approach, assigning
one price for each number of apples (Turn 150). Again, the students’ limitations
in a language serve as catalysts for multiple perspectives and for enriching the
learning situation. However, Dennis’ translation back to German (Turn 152, E4)
does not articulate the correspondence approach anymore, so the teacher cannot
exploit it. This shows again the limitations of exploiting non-shared languages. A
similar situation occurs with the Arabic sentence in Turn 155, which is only par-
tially exploited (E1).

5.2 Overview of three sequences

A summary of the interpretations in the analytic graph in Fig. 5 shows the course
of expressions brought in by students and the teacher in Sequences 1–3. During
the 70 lines of transcript, the students articulate all six expressions (E0–E5 as
shown in Fig. 2) several times and connect them by moving forward and back-
ward. Sequence 1 started with a misconception E0 and the teacher funneled
the most compacted expression E1. Many class discussions stop at this point.

The created translanguaging space, however, allowed the students to connect
the highly compacted E5 to four other versions, which allowed them a multi-
perspective meaning-making. This was possible for the students even in languages
that are not shared in the whole group.

6 Discussion and outlook

Instructional strategies for activating multilingual resources for mathematics
learning have been shown to be beneficial not only for overcoming communi-
cative obstacles, but also for epistemic purposes, especially by providing mul-
tiple perspectives for meaning-making (Cummins, 2015; Planas, 2019; Prediger
et al., 2019). The current case study investigates whether these results from

Fig. 5: Analytic graph of the process of connecting multilingual expressions
in Sequences 1–3.
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classrooms with shared bilingualism can also be transferred to classrooms
with non-shared multilingualism.

Qualitative analysis shows that teachers can also activate students’ home
and foreign languages and conduct productive discussions about multiple lan-
guages (design principles DP3 and DP4 when the conversation itself is in Ger-
man; by striving for preciseness in different languages, DE4.1), and by comparing
different expressions in German and other languages (DE3.3 and DE4.2), the stu-
dents in the case study were able to realize that the covariation statement “the
more x, the more y” can be expressed in different degrees of compaction. They
benefited mathematically by unfolding a highly compacted mathematical con-
cept. Although the macro-scaffolding principle suggests starting with less com-
pacted expressions and connecting them to more compacted ones, the learning is
also deepened when different degrees of compaction are mutually connected and
explicitly compared. Thus, mobilizing students’ multiple language not only in-
creases their agency by being addressed as competent multilingual speakers, but
also strengthens the students’mathematical reflection.

The case study also shows that it is not always necessary to share the lan-
guages: Help for Polish expressions was provided by a non-Polish speaker offer-
ing to google a missing word. The analysis shows how the “bilingual connective
mode” can also be established by individual mental connections that are only
partially accessible to the non-shared space.

However, the case study also reveals various examples of limitations where
the teacher was unable to react or include some students’ statements, especially
when she cannot exploit subtle differences because they are not covered by the
students’ translations back to the shared language of instruction.

In future research, the methodological limitations of this case study (being
bound to a specific classroom and languages, with a limited scope and small
sample) should be overcome by extending the investigations to further cases,
mathematical topics, and language contexts.
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II Language learning and mathematics
development
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Ties of math and language: A cognitive
developmental perspective

Because numerical and mathematical competencies play an important role in
our everyday life (e.g., Butterworth et al., 2011), it is crucial to understand un-
derlying cognitive processes and factors influencing the acquisition of these nu-
merical and mathematical competences. In particular, a better understanding
at the level of cognitive processes may help to develop targeted interventions,
inform, and enhance the quality of mathematics teaching, which may raise stu-
dent attainment (cf. The Royal Society & The British Academy, 2018).

To be able to deal with numbers and mathematical content in a competent
and efficient way, a set of concepts, procedures, and (math) facts need to be
acquired starting even before (formal) education in kindergarten, preschool,
and (elementary) school years. Crucially, and probably more so than it is the
case in many other school subjects, mathematics education is largely hierarchi-
cal in nature (e.g., Clements & Sarama, 2021). As such it is important and neces-
sary to be able to draw on previously acquired competences and knowledge,
because new numerical and mathematical content usually builds on these pre-
viously acquired competences, concepts, and procedures.

Besides considerable developmental variability on the individual level, inter-
national studies evaluating scholastic abilities have consistently reported large
cross-cultural differences in mathematical achievement (e.g., OECD, 2019a). In
addition to differences in schooling and cultural valuation (e.g., OECD, 2019b), it
has been argued that influences of domain-general factors such as language also
need to be considered as a potential source of but also resource for overcoming
difficulties in the acquisition of numerical and mathematical competences. In
particular, language may refer to a range of different linguistic aspects and/or
specific aspects of language skills, each of which might interact with specific
steps in the acquisition of numerical and mathematical competences.

So far, a wide range of studies investigated various language aspects critical
for the acquisition of numerical and mathematical concepts. And indeed, find-
ings of many of these studies are in line with a weak Whorfian hypothesis sug-
gesting that different aspects of language seem to influence the way we acquire,
think about, perceive, represent, and apply numerical and mathematical con-
cepts, procedures, and (math) facts. In an attempt to classify and structure previ-
ously observed associations of language and mathematics as well as influences
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of language on mathematics, Dowker and Nuerk (2016) proposed a taxonomy dif-
ferentiating linguistic categories that have previously been identified to influence
numerical and mathematical processing in various ways (see also Bahnmueller
et al., 2018; Berch et al., 2018). In particular, Dowker and Nuerk (2016) specified
six categories: (1) lexical, (2) syntactic, (3) phonological, (4) visuo-spatial ortho-
graphic, (5) semantic, and (6) conceptual influences of language. Structuring as-
sociations of language and math from a linguistic point of view may thereby
foster a broader, more theoretically guided approach to the investigation of how
language and math are intertwined throughout development.

Drawing from this proposed taxonomy, this chapter will give an overview
of a subset of specific linguistic categories covering those aspects we deem
most influential with respect to the development of (early) numerical and mathe-
matical competences. In particular, after a brief description of selected linguistic
categories (i.e., lexical, syntactic, phonological, and semantic), we will discuss
associations of language and numerical cognition along three consecutive content
strands: (i) early numerical competences: number words, counting, and cardinality
understanding; (ii) processing of multi-digit numbers; and (iii) basic arithmetic op-
erations. Afterward, a summarizing paragraph will highlight differences, common-
alities, and implications of the reported associations of language and numerical
and mathematical development.

1 Linguistic influences in numerical/
mathematical development

Linguistics is the objective study of natural languages addressing characteristics of
language concerning the lexicon (e.g., words, morphemes, compound words),
knowledge about language structures (phonology, morphology, syntax) as well
as the creation and understanding of meaning of words and sentences in differ-
ent contexts (semantics, pragmatics; Pickett et al., 2018). Drawing from linguistic
categories, Dowker and Nuerk (2016) proposed above-mentioned taxonomy of
different linguistic categories that were shown to influence numerical and mathe-
matical processing. In the following, key aspects of (1) lexical, (2) syntactic,
(3) phonological, and (4) semantic linguistic influences will be outlined briefly
as they seem particularly relevant in the context of associations of language
and mathematics from a developmental context.

Within the proposed taxonomy, lexical influences reflect the degree to which
number words vary to obscure or emphasize features of a number system such
as the most widely used Arabic number system. In this context, the transparency

102 Julia Bahnmueller et al.



(i.e., the consistent reflection of the Arabic number system in a language’s num-
ber word system) or rather the lack thereof poses a specific hurdle for children
that needs to be overcome to master more sophisticated numerical and math-
ematical competences. For example, one of the most widely investigated in-
transparencies is the so-called inversion property of number words with respect
to the digital-Arabic notation. Number word inversion reflects that in some lan-
guages (German, Dutch, Maltese, etc.) the unit digit is named first in two-digit
number words which is inverted with respect to the order of tens and units in
the digital-Arabic notation (e.g., the number word for 24 is “vierundzwanzig” –
literally four and twenty in German; for an overview, see e.g., Klein et al., 2013).
Overall, the lexical category seems the most widely investigated one in contexts of
multi-digit number processing. There is now accumulating evidence suggesting
that a lack of transparency has detrimental effects on different aspects of numeri-
cal processing (e.g., number transcoding: Imbo et al., 2014; number magnitude
comparison: Pixner et al., 2011; addition: Göbel et al., 2014) as well as numerical
and mathematical development (e.g., Moeller et al., 2011 for longitudinal influen-
ces of inversion-related difficulties on later arithmetic performance).

Syntactic influences usually result from (language-specific) grammatical rules
and thus do not reflect influences on the word level but rather on the sentence
level. For example, effects of grammatical number fall within this category.
Effects of grammatical number on the early acquisition of cardinality knowl-
edge result from differences in singular, dual, and plural marking between
certain languages (e.g., Almoammer et al., 2013; Sarnecka et al., 2007; for an
overview, see Sarnecka, 2014). In this context, Sarnecka and colleagues (2007) re-
port, for instance, that children speaking Japanese (a language with hardly any
marking of singular/plural) learned the meaning of the number word “one”
later than English- as well as Russian-speaking children (with English and
Russian having explicit plural marking). Thus, grammatical number seems to
foster the very early acquisition of the meaning of small numbers.

Another important linguistic category reflects phonological influences, which
cover effects of phonological language processes as well as effects related to
verbal working memory.1 As regards the former, one subcomponent of phono-
logical processing, namely, phonemic awareness (i.e., the ability to perceive
and manipulate phonemes that constitute words, Wagner & Torgesen, 1987), is of
particular interest. Phonemic awareness has been argued to be associated with,
for example, the early acquisition of number words (e.g., Koponen et al., 2013;

1 Dowker & Nuerk (2016) actually consider influences of verbal working memory in a 7th cate-
gory (“other language-related skills”).
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Krajewski & Schneider, 2009; Soto-Calvo et al., 2015) as well as performance
in multi-digit number transcoding (e.g., Lopes-Silva et al., 2014; see also Chapter 15
of this volume by Haase et al.) and arithmetic fact retrieval (e.g., De Smedt et al.,
2010). As regards verbal working memory, it has been found that the ability to
temporarily store and manipulate verbal information influences a multitude
of different numerical and mathematical tasks (among other working memory
components; for reviews, see e.g., Friso-Van den Bos et al., 2013; Peng et al.,
2016) and was suggested to represent an integral part in numerical and mathe-
matical development.

Besides Arabic numbers and number words, there are other words and sym-
bols conveying numerical or mathematical meaning by means of their seman-
tics (e.g., more, less, some many, buy, sell). As such, the proposed category of
semantic influences shows considerable overlap with conceptualizations and
investigations of domain-specific mathematical language (e.g., knowledge of terms
such as more, less, near, and far; e.g., Purpura et al., 2017; Purpura & Reid, 2016).
For example, results of a study by Purpura and Reid (2016) suggest that mathemat-
ical language might be a more important predictor of early numerical competences
as compared to more general language-related predictors such as vocabulary.
Furthermore, research on, for example, text problem solving nicely illustrates
the context-dependency of certain (numerical/mathematical) words. For ex-
ample, it was suggested that words such as “more,” “buy,” and “get” facilitate
the processing of text problems requiring additions whereas words like “less”
and “sell” interfere with solving addition problems (e.g., Verschaffel et al.,
1992; see Daroczy et al., 2015 for a review on text problems).

Taken together, a variety of different linguistic influences seem to affect the
acquisition of numerical and mathematical competencies. Crucially, some lin-
guistic aspects seem to affect specific numerical and/or mathematical compe-
tences and concepts early on while others only follow later and might be critical
for different competences and concepts. In the following, we will elaborate on
selected linguistic influences (i.e., lexical, syntactic, phonological, and seman-
tic) on three different consecutive content strands: (i) early numerical compe-
tencies including the acquisition of number words, counting principles, and
cardinality understanding; (ii) multi-digit number processing; and (iii) basic
arithmetic operations (see Fig. 1 for an overview). Please note, however, that
providing a comprehensive and exhausting overview goes beyond the scope of
this chapter. Therefore, and because not all linguistic influences seem to be of
equal importance for each of the three content strands, we will give an over-
view of selected linguistic influences on above-named content strands of early
numerical and mathematical development from a cognitive developmental
perspective.

104 Julia Bahnmueller et al.



Fi
g.

1:
Ex
am

pl
es

fo
r
as

so
ci
at
io
ns

of
se

le
ct
ed

lin
gu

is
ti
c
ca
te
go

ri
es

(i
.e
.,
le
xi
ca
l,
sy
nt
ac
ti
c,

ph
on

ol
og

ic
al
,a

nd
se

m
an

ti
c;

cf
.

D
ow

ke
r
&
N
ue

rk
,2

0
16

)w
it
h
th
re
e
co

ns
ec
ut
iv
e
co

nt
en

t
st
ra
nd

s
di
sc
us

se
d
in

th
e
cu

rr
en

tc
ha

pt
er
.P

le
as

e
no

te
th
at

em
pt
y

ce
lls

do
no

tn
ec
es

sa
ri
ly
in
di
ca
te

th
at

th
er
e
is
no

as
so

ci
at
io
n
bu

tr
at
he

r
th
at

th
es

e
sp

ec
if
ic
as

pe
ct
s
ar
e
no

tc
ov

er
ed

in
th
e

cu
rr
en

tc
ha

pt
er
.

Ties of math and language: A cognitive developmental perspective 105



2 Early numerical competences: Number words,
counting, and cardinality understanding

In this first content strand, we will elaborate on the role of above-described lan-
guage-related aspects in the context of early numerical competencies that build
the foundation for further, more advanced numerical and arithmetic competen-
ces. In particular, we will address language-related benefits but also pitfalls
that were observed to influence the acquisition of number words and the num-
ber word sequence as well as the cardinality of small numbers. Moreover, we
will discuss the role of mathematical language for early numerical development.

The development of early numerical competencies is a complex process
that begins well before formal mathematics instruction starts. In this context,
the acquisition of number words as well as the counting sequence alongside
specific counting principles (i.e., one-to-one principle, stable order, cardinality-
principle; e.g., Gelman & Gallistel, 1978) represents an early milestone in nu-
merical learning. As regards phonological influences, it has been demonstrated
that, beyond the prominent relation of phonemic awareness with reading and
writing skills (for a review, see e.g., Melby-Lervåg et al., 2012), phonemic aware-
ness also seems to be associated with and predictive of the acquisition of num-
ber words and the number word sequence (e.g., Koponen et al., 2013; Krajewski &
Schneider, 2009). For instance, in a longitudinal study with 5-year-old kinder-
garten children (at T1), Krajewski and Schneider (2009) investigated the asso-
ciation of phonemic awareness with future mastery of the counting sequence
(e.g., counting forward and backward, identifying the successor and predecessor
of a number). Results showed a substantial association of phonological aware-
ness and mastery of the counting sequence. Thus, previous studies seem to be in
line with the idea that phonemic awareness fosters the acquisition of number
words by supporting the construction of sound-based representations in the same
way as it facilitates the acquisition of other word categories (e.g., Gathercole,
2006).

Considering that number words are often embedded in sentences, it is not
surprising to see language-specific grammatical rules to also shape the learning
of the semantic meaning of (small) number words (i.e., number words “one,”
“two,” and “three”). Substantiating this idea, several studies investigated influ-
ences of grammatical number on the acquisition of early cardinality knowledge
typically assessed via the Give-N task (i.e., asking children to produce a set of
a given size; e.g., Almoammer et al., 2013; Barner et al., 2009; Li et al., 2013;
Sarnecka et al., 2007; for a review, see Sarnecka, 2014). The term “grammati-
cal number” refers to singular, dual, and plural markings of certain languages
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like, for example, the morpheme “s” used as a suffix for plural marking in En-
glish. Research suggests that trajectories of number word learning and with
this the acquisition of cardinality understanding are influenced by the presence
or absence of explicit plural/dual markings in a certain language. As mentioned
above, Sarnecka and colleagues (2007) report that English- as well as Russian-
speaking children aged between 2 and 3 (with English and Russian having explicit
singular/plural markings) learned the meaning of the number word “one” earlier
than Japanese-speaking children (with Japanese being a language with hardly
any marking of singular/plural). Moreover, 2- to 4-year-old children speaking
a language with explicit dual marking such as Slovenian or Arabic (i.e., a specific
form referring to exactly two things), appear to learn the meaning of “two” earlier
than English-speaking children (Almoammer et al., 2013). Thus, not only the fre-
quency of exposure to number words and the counting sequence but also numer-
ical information expressed and made explicit through grammatical structures
seems to influence learning the meaning of (small) number words (see also Barner
et al., 2009 for syntactical aspects in quantifiers).

Next to grammatical structures, various studies suggest that the way num-
ber words are formed determines number word learning trajectories. As men-
tioned above, number word systems vary considerably with respect to their
transparency by which the place-value structure of the Arabic number system is
reflected in number word formation. From a lexical point of view, differences
between language groups in number word acquisition should be comparably
small for numbers up to ten as in most languages there are exactly ten arbitrary
but ordered words (eleven when including zero) that need to be learned and
mapped to the respective numerical magnitude. And indeed, cross-cultural stud-
ies investigating counting skills (i.e., correctly reciting the counting sequence) in
children aged between 3 and 6 suggest that for numbers up to 10 average perfor-
mance is fairly similar across different language groups (e.g., LeFevre et al.,
2002; Miller et al., 1995; Miller & Stigler, 1987).

However, within the number range up to 20 (i.e., numbers “eleven” to
“nineteen”; see Section 3 (“Processing multi-digit numbers”) for effects for
numbers >20), the transparency by which the place-value structure of the Arabic
number system is reflected in number words starts to vary considerably between
languages. Importantly, the teen number range seems to be special in that a lack
of transparency for teen number words can be found in quite many languages
(e.g., Arabic, English, Hindi, Italian, Polish, Russian, Spanish, Swedish) – even
though number words for numbers larger than 20 are often quite transparent
again in these languages. In particular, languages show a variety of peculiarities
for teen number words such as, for example, (i) exceptional number words not
indicating the teen range at all (e.g., English: “eleven” and “twelve”); (ii) inverted
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number words [e.g., English: “fourteen” instead of ten four; Polish: “jedenaście”
(oneteen); German: “dreizehn” (three-ten)], or (iii) inconsistent construction of
teen number words within a language [e.g., Italian: “undici” (one ten) but “di-
ciotto” (ten eight); cf. Lewis et al. (2020)]. This may represent a source of consid-
erable difficulty for children because rather than simply applying a consistent
rule for the first two-digit number words children are confronted with, they have
to deal with irregularities that may not facilitate the acquisition of numerical and
place-value and concepts more broadly.

And indeed several studies investigated the acquisition of teen numbers in
different languages and reported a delay in number word acquisition for numbers
larger than 10 for languages with less transparent number words (e.g., Aunio
et al., 2008; Cankaya et al., 2014; LeFevre et al., 2002; Lonnemann et al., 2019;
Miller et al., 1995; Miller & Stiegler, 1987). For instance, Miller and colleagues
(1995) compared early counting skills in three- to five-year-old English- and
Mandarin-speaking preschoolers. Compared to perfectly transparent Mandarin
number words [“shí yī” (ten one), “shí èr” (ten two), “shí sān” (ten three), etc.],
English number words in the teens range are fairly in-transparent (“twelve” in-
stead of ten-two, “fourteen” instead of ten-four, etc.). As mentioned before, this
study found no differences in counting skills between language groups for
numbers up to 10. However, the authors found significant language differen-
ces favoring Mandarin-speaking children starting in the teen range. When look-
ing at individual teen numbers more closely, language differences in counting
were most pronounced for numbers above 12 (Miller et al., 1995). Importantly,
while approximately 75% of Mandarin-speaking children were able to correctly
count up to 20, only 50% of English-speaking children were able to do so by the
age of five. Based on these findings, the authors concluded that English-speaking
children need more time to master number names for teen numbers and beyond
because of the lack of transparency between their number word system and the
place-value structure of the Arabic number system.

Notably, however, others have questioned specificities in number word sys-
tems as sole contributing factor to observed cross-cultural differences and argue
that differences in, for instance, approaches to teaching and learning (e.g., Aunio
et al., 2008) as well as differences in home experiences (e.g., LeFevre et al., 2002)
need to be considered as plausible additional or even alternative explanations for
the observed differences in counting. In this context, evaluating a counting inter-
vention in three- and four-year-old Turkish- and English-speaking children,
Cankaya and colleagues (2014) came to the conclusion that both the transparency
of the number word system and prior experience with numeracy-related activities
were crucial for the acquisition of counting skills. As in Mandarin, Turkish teen
number words are very transparent [e.g., on üç (13) translates to ten three]. The
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authors report that in their intervention learning gains in counting were higher
and more consistent for Turkish- compared to English-speaking children. The au-
thors attributed this finding to the more transparent Turkish number words com-
pared to the English ones. However, despite the transparent number word system,
Turkish-speaking children showed poorer counting skills and poorer general
numerical performance overall before the intervention. Thus, while the trans-
parency of the number word system does seem to matter, additional culture-
specific variables likely contribute to differences in developmental trajectories
when learning to count.

Next to lexical influences concerning the (lack of) transparency of many
number word systems (especially in the teen number range), both before and
during formal schooling children need to learn further specific numerical and
mathematical language. Such mathematical words may, for example, convey
less precise numerical meaning than number words (e.g., many, fewer, less
than) or may have a different meaning in a mathematical context (e.g., quar-
ter, break apart; e.g., Powell et al., 2017; Powell & Nelson, 2017). Generally,
Harmon et al. (2005) suggest that language used in numerical and mathematical
contexts is highly content-specific and, thus, may require more explicit teaching
of the meaning of specific words at times. Accumulating evidence suggests that
mathematical language proficiency (e.g., Powell et al., 2017; Powell & Nelson,
2017; Purpura et al., 2017; Purpura & Reid, 2016; Schleppegrell, 2007; Toll &
Van Luit, 2014a, 2014b) but also parent and teacher usage of this specific lan-
guage (e.g., Boonen et al., 2011; Gunderson & Levine, 2011; see also Chapter 7 in
this volume by Desoete et al.) is associated with and predicts future development
of numerical and mathematical competences.

For young children, knowledge of two types of mathematical language terms
seems to be critical: quantitative (e.g., more than, many, fewer; cf. quantifier
knowledge, e.g., Hurewitz et al., 2006) and spatial terms (e.g., before, close to;
e.g., Mix & Cheng, 2012; Pruden et al., 2011). In this early numerical context, re-
sults of a study by Purpura and Reid (2016) in 3- to 5-year-old preschool children
suggest that mathematical language might be a more important predictor of early
numerical competences (e.g., counting or relational knowledge) when compared
to more general language-related skills (e.g., vocabulary, phonemic awareness).
The relevance of mathematical language for early numerical skills was further
substantiated by an intervention study conducted by Purpura et al. (2017) focus-
ing on quantitative and spatial mathematical language in 3- to 5-year-old chil-
dren. After the eight-week intervention, children in the intervention group not
only outperformed the business-as-usual control group with respect to their knowl-
edge of mathematical language terms but also with respect to early numerical
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skills (e.g., one-to-one correspondence, number order, set and numeral compari-
son, numeral identification, among others; Purpura et al., 2017).

Taken together, this evidence is in line with the idea that different aspects
of language seem to shape the development of early numerical competences
way before formal education starts. As such, very specific language aspects
such as phonemic awareness and grammatical number but also formation of
number words and use of unspecific quantifiers seem to influence the typical
development of children’s early numerical development to a considerable
degree - even without formal instruction but by simply living in the respective
language environment. Importantly, however, while linguistic influences seem to
reflect one important factor during the development of early numerical compe-
tences, other cultural and environmental factors (e.g., approaches to learning
and teaching, home environment) ought not to be neglected when trying to eval-
uate the specific contribution of language to arrive at a comprehensive under-
standing of the driving factors in early numerical development.

3 Processing multi-digit numbers

One key concept of the Arabic, base-10 number system is its place-value struc-
ture. The place-value structure defines that overall magnitude of multi-digit num-
bers is represented by powers of ten increasing from right to left combined by
specific multiplicative and additive composition rules (e.g., 342 = {3} × 102 + {4} ×
101 + {2} × 100; McCloskey et al., 1985). In particular, deriving the magnitude of a
specific number requires understanding that any digit in a multi-digit number
informs about both the size (through the digit’s face value) and the power of
ten it represents (through the digit’s position within the digit string). As such,
mastery of the place-value structure of the Arabic number system is critical for
understanding multi-digit numbers.

In this context, mastery of the place-value structure of the Arabic number
system was indeed observed to be associated with current but also predictive of
later arithmetic performance (e.g., Chan et al., 2014; Moeller et al., 2011). Moreover,
deficient place-value knowledge has been discussed as a predictor or source of dys-
calculia and mathematical learning difficulties (e.g., Cawley et al., 2007; Chan &
Ho, 2010; Haase et al., 2014). For instance, Chan and Ho (2010) assessed 8- as well
as 10-year-old children with and without mathematical difficulties and demon-
strated that conceptual understanding of the place-value structure differentiated
reliably between children with and without mathematical difficulties (see also
Lambert & Moeller, 2019). Thus, mastering the place-value structure of the
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Arabic number system represents an important milestone in numerical de-
velopment (see also Herzog et al., 2017, 2019 for a developmental model of
conceptual place-value understanding).

However, children often experience specific difficulties when learning the
place-value structure and, thus, with many tasks involving multi-digit numbers.
Moreover, as mentioned in the context of teen numbers before, number words
do not always reflect the place-value structure properly, which further compli-
cates the learning process. Such lexical influences are the most widely investi-
gated linguistic aspects in the context of multi-digit numbers processing. Thus,
this section will focus on linguistic influences on place-value processing result-
ing from specificities in the formation of number words.

Regarding multi-digit number processing, lexical influences cover both the
(lack of) transparency of power (e.g., in Mandarin, power is expressed explicitly
in both number symbols and words: 42 =四十二 = sì shí èr = 4-10-2) and the
(lack of) transparency of order (e.g., the inversion of number words in, e.g.,
German: the number word for 23 is “dreiundzwanzig,” literally three-and-twenty).
Although many cultures share the Arabic number system, number word systems
clearly vary with respect to the degree of transparency in which power and order
are conveyed (see above for the case of teen numbers). While for many cultures
using Arabic digits and for most numbers, power is expressed by different words
for the same symbol depending on the position in the digit string (e.g., in English
the number word for 4 is “four” and the number word for 42 is “forty-two”) or by
adding a multiplier indicating the power (the number word for 342 is “three hun-
dred forty-two”), many exceptions are found for specific number ranges in different
number word systems.

In French number words, for example, most two-digit numbers are trans-
parently composed of two words each reflecting the power of a digit in accor-
dance with the place-value structure (e.g., the French number word for 42 is
“quarante-deux,” literally forty-two). However, number words larger than 60 are
constructed quite irregularly by drawing on a vigesimal system (i.e., a base-20
system), which is inconsistent with the base-10 structure of the Arabic number
system (e.g., the number word for 72 is “soixante-douze,” literally sixty-twelve).
Finally, the French number word for 80 is “quatre-vingt” (literally four-twenty)
and larger numbers are constructed accordingly (e.g., the number word for 96 is
“quatre-vingt seize,” literally four-twenty sixteen), which adds even more con-
struction principles to the already complex number word system.

Lack of transparency with respect to order can also be found in English
number words. As mentioned before, English number words for teens from 13 to
19 are inverted with respect to the digital-Arabic notation (e.g., 19 = “nineteen”),
although English number words for two-digit numbers are otherwise fairly
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transparent (42 = “forty-two”). While in modern English the phenomenon of in-
version is restricted to teen numbers, in old English and many other modern
languages (e.g., Arabic, Danish, Dutch, German, Flemish, Malagasy, Maltese,
and also partly in Czech and Norwegian; Comrie, 2005) number words of wider
number ranges are inverted. For example, in German, all two-digit numbers are
inverted (e.g., the number word for 42 is “zweiundvierzig,” literally two and
forty). Moreover, although hundreds and thousands are not inverted (e.g., the
number word for 2342 is “zweitausenddreihundertzweiunsvierzig,” literally two
thousand three hundred two and forty), for thousands and ten thousands (e.g.,
powers 103 and 104) the inversion of numbers words occurs again (the word for
42,342 is “zweiundvierzigtausenddreihundertzweiundvierzig,” literally two and
forty thousand three hundred two and forty).

This exemplary illustration of some aspects of lack of transparency shows
that there are number word systems that do not reflect basic principles of the
Arabic number system such as its base-10 structure or/and the place coding
scheme correctly (i.e., that value increases from right to left). Noteworthy, a
long list of studies showed that lack of transparency of number word systems
with respect to the place-value structure of the Arabic number system influen-
ces and, crucially, complicates multi-digit number processing (for an overview,
see e.g., Klein et al., 2013).

As mentioned before in the context of teen numbers, in addition to, for in-
stance, specific approaches to teaching and learning, Asian children seem to ben-
efit from their highly transparent number word systems (i.e., power and order are
transparently reflected in the number words themselves; e.g., in Mandarin the
number word for 42 is sì shí èr (四十二), literally four-ten-two). When investigat-
ing the understanding of the place-value structure of the Arabic number system
in children from various Asian and Western countries, several early studies dem-
onstrated better place-value understanding in Asian compared to Western pre-
schoolers and 1st graders (e.g., Miura et al., 1988; Miura & Okamoto, 2003; Miura
et al., 1993). In particular, while Asian children preferred representing multi-digit
numbers by using ten and one blocks (i.e., matching the place-value structure of
multi-digit numbers), Western children preferred using collections of one blocks
for longer suggesting delayed understanding of the place-value structure of the
Arabic number system in Western children with less transparent number systems
(e.g., Miura, et al., 1994; Towse & Saxton, 1998). Importantly, differences were
already observed before the concept of the place-value system was explicitly
taught (e.g., in school) questioning influences of differences in the teaching ap-
proaches as the sole determining factor (see Vasilyeva et al., 2015 for an opposing
view).
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Detrimental effects of the lack of transparency of certain number word sys-
tems were demonstrated in different numerical tasks. The probably most obvi-
ous effects can be observed in number transcoding (i.e., writing down numbers
to dictation) in elementary school children. Typically, errors children commit
suggest that they “simply write down what they hear”. More formally speaking,
errors in transcoding often reflect insufficient knowledge of additive (e.g., “three
hundred and forty-two” is written down as 30042) and/or multiplicative composi-
tion rules (e.g., “three hundred” is written down as 3100) or further language-
specific (in)transparencies.

As regards the latter, it was shown, for example, that children speaking lan-
guages with inverted (e.g., German, Dutch), as compared to children speaking
languages with non-inverted, number words (e.g., French, Italian) do not only
commit more transcoding errors overall (e.g., Krinzinger et al., 2011; Pixner et al.,
2011b; but see Imbo et al., 2014), but also commit up to 50% inversion-related
errors (e.g., “vierundzwanzig” (24) – literally “four and twenty” – is written down
as 42; Imbo et al., 2014; Krinzinger et al., 2011; see Pixner et al., 2011b for a
within-culture approach in Czech).

Another example for the language specificity of transcoding errors is de-
scribed in the study by Van Rinsveld and Schilz (2016) who investigated effects
of the vigesimal structure in French number words larger than 60 (e.g., the
number word for 72 is “soixante-douze,” literally sixty twelve; see also Seron &
Fayol, 1994) in two computerized transcoding tasks (i.e., choosing the Arabic
number with auditory verbal presentation and reading out loud the Arabic num-
ber presented on the screen). Results in both tasks indicated that performance in
English-speaking fifth graders (aged 10) was comparable to French-speaking fifth
graders for numbers up to 60. However, for numbers larger than 60 and, thus,
the number range where number words in French follow the vigesimal and
number words in English follow the decimal structure, English-speaking chil-
dren were faster in both tasks and made fewer errors in the recognition task
than French-speaking children. The fact that these results were observed in
fifth graders is of particular interest because it illustrates that although the im-
pact of specificities in number word formation might get smaller with age and
experience, traces of in-transparent number word formation can still be de-
tected in children way beyond the age of early numerical development.

The latter also applies to the processing of multi-digit number magnitude.
Here, influences of lack of transparency in number word formation were shown
for the unit-decade compatibility effect (Nuerk et al., 2001) in two-digit number
magnitude comparison. When children (or adults) are asked to indicate the larger
of two two-digit numbers, they usually respond faster to unit-decade compatible
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number pairs for which separate comparisons of tens and units bias the same de-
cision (e.g., 32_57, 3 < 5 and 2 < 7). In contrast, in decade-unit incompatible num-
ber pairs comparing tens and units separately leads to opposing decision biases
(37_62, 3 < 6 but 7 > 2), resulting in comparably slower responses due to the interfer-
ence between comparisons of tens and units. The unit-decade compatibility effect
(i.e., the performance difference between compatible and incompatible number
pairs) was replicated for both adults and children (e.g., adults: Bahnmueller et al.,
2019; Ganor-Stern et al., 2007; Macizo & Herrera, 2011; Nuerk et al., 2005; children:
Landerl & Kölle, 2009; Pixner et al., 2011a; Van Rinsveld et al., 2016).

Importantly, the unit-decade compatibility effect is found in number pairs
for which the comparison of the unit digit is actually completely irrelevant be-
cause identification of the larger number can be based solely on the comparison
of the tens digits. This suggests two things: first, the unit digit is processed au-
tomatically although it is irrelevant for the task at hand, and second, that mag-
nitudes of tens and units are processed in a decomposed way but in accordance
with the place-value structure of the Arabic number system (i.e., tens are com-
pared with tens and units are compared with units; see Wood et al. (2005) for
expansions on this).

Although the compatibility effect is not a language-specific phenomenon
(i.e., the effect was observed in many different languages), the effect was found
to be modulated by language, and more specifically by the inversion property
of number words. For example, Pixner, Moeller, and colleagues (2011) investigated
the unit-decade compatibility effect in German-, Italian-, and Czech-speaking first
graders. While German number words are inverted and Italian number words are
not, in Czech there are two number word systems – one inverted and the other
one not. Clear differences in the compatibility effect were observed with German-
speaking children showing a significantly larger compatibility effect than the
other two language groups and, for reaction times, Czech-speaking children
showed a compatibility effect falling in between the German and the Italian
group. This pattern of results suggests that number word formation influences
the processing of two-digit number magnitude in an entirely symbolic number
magnitude comparison task as neither the input nor the output in this task
was verbal. In particular, in languages with inverted number words such as
German, the unit digit is named first (e.g., the number word for 23 is “dreiundz-
wanzig,” literally three and twenty) and might, thus, lead to increased unit-based
interference in incompatible trials, which in turn would increase the unit-decade
compatibility effect for inverted languages. Thus, these results suggest that verbal
number word information influences number processing even when it is not pres-
ent in or necessary for the task at hand.
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Research regarding transcoding competencies (i.e., writing numbers to dic-
tation) in elementary school children further investigated possible phonological
influences relating to verbal working memory capacities in multi-digit number
processing. In this context, several studies in different language groups with
and without inverted number words evaluated the idea that transcoding might
be influenced by working memory capacity because incoming number word in-
formation needs to be manipulated and mapped onto the digital-Arabic nota-
tion. These studies observed that better working memory was associated with
better transcoding performance in general (Imbo et al., 2014; Pixner et al., 2011b;
Simmons et al., 2012; Zuber et al., 2009) but with a lower number of inversion-
related errors in German-speaking first graders in particular (Zuber et al., 2009).
However, while there is broad agreement that working memory is important for
transcoding, findings are so far inconsistent with respect to specific working
memory components (cf. Baddeley, 2000; Baddeley & Hitch, 1974). For instance,
while some studies primarily reported associations of transcoding performance
with verbal working memory capacities (e.g., Imbo et al., 2014), others highlight
the relevance of visual-spatial working memory capacities (e.g., Simmons et al.,
2012; van der Ven et al., 2017), or the central executive (Pixner et al., 2011b;
Zuber et al., 2009). So far, findings suggest that for transcoding numbers from
the verbal number word to the digital notation conveying the correct order of
digits seems more relevant than solely being able to temporarily store verbal
number word information – at least in children that are busy learning the place-
value structure of the Arabic number system (cf. van der Ven et al., 2017).

Taken together, the presented studies provide further strong evidence that
cognitive representations of multi-digit numbers are shaped by and differ be-
tween languages as indicated by significant linguistic influences in a variety of
different tasks ranging from transcoding between the verbal and the digital-
Arabic notation to tasks requiring the explicit processing of number magnitude
information. Importantly, these observed language-related influences do not
only foster our understanding of underlying principles of multi-digit number
processing, but they may also be of diagnostic value. For instance, Moeller
and colleagues (2011) showed that the number of inversion-related errors in
transcoding as well as the size of the compatibility effect in the first grade
predicted arithmetic performance in the third grade (including mathematics
grades). Thus, better understanding language-specific aspects of place-value
processing might help identifying children that may develop mathematical
difficulties early on.
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4 Basic arithmetic operations

Building on previously described numerical competencies, mastery of basic arith-
metic operations – addition, subtraction, multiplication, and division – represents
a further cornerstone in numerical and mathematical development. Not only is
mastery of basic arithmetic operations a pervasive requirement in everyday life, it
also represents a crucial basis for more advanced mathematical competencies
(e.g., Geary & Hoard, 2005). Children use a variety of different strategies to solve
arithmetic problems that may vary with the type of operation they are presented
with. Moreover, strategies used by children become more efficient and adaptive
with age and experience (Ashcraft, 1982; Carpenter & Moser, 1984; Geary & Hoard,
2005; Geary et al., 2004; Siegler, 1996; Siegler & Shrager, 1984). Usually, two
major types of strategies are distinguished separating (i) procedural strategies in-
cluding counting (cf. Fuson, 1982), mental computations and/or transformations,
or keeping track of intermediate solutions; and (ii) retrieval strategies that allow
direct retrieval of previously learned arithmetic facts from memory (Ashcraft,
1982). Strategy choices were reported to depend on a range of factors, includ-
ing problem size (i.e., the numerical magnitude of the components of an arithme-
tic problem; e.g., De Smedt et al., 2010) and the respective arithmetic operation
(e.g., Imbo & Vandierendock, 2007), as well as the presentation format or context
in which a problem is presented (e.g., digital-Arabic format vs. embedded in
word problem). Because heterogeneous solving strategies are involved in arith-
metic problem solving, language may affect arithmetic processing differently de-
pending on the strategy that is used when solving a particular problem. In this
final section, we will therefore elaborate on phonological influences on arithmetic
processing with respect to the use of both procedural and retrieval-based strate-
gies. Moreover, we will describe lexical influences on multi-digit arithmetic prob-
lem solving as well as semantic influences in the context of word problems.

Regarding phonological influences on the development of arithmetic com-
petence, a considerable body of research is concerned with the relation of work-
ing memory resources and arithmetic performance in both adults and children
(for reviews, see DeStefano & LeFevre, 2004; Friso-van den Bos et al., 2013; Peng
et al., 2016; Raghubar et al., 2010). While researchers seem to generally agree
that working memory is crucial for arithmetic processing and learning, incon-
sistent findings also suggest that the relation between a specific working memory
component (e.g., verbal and visual-spatial working memory, central executive,
e.g., Baddely, 2000; Baddeley & Hitch, 1974) and arithmetic performance likely
depends on several factors (age, mathematical outcome variable, working mem-
ory task, etc.; e.g., Raghubar et al., 2010). Concerning arithmetic processing
in primary school, Friso-van den Bos and colleagues (2013) suggested verbal
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working memory to show the most pronounced association with arithmetic
competencies.

Generally, working memory has been suggested to be of specific importance
when procedural strategies including maintaining and manipulating intermediate
results during calculation have to be used to solve a problem (e.g., DeStefano &
LeFevre, 2004). This is, for example, the case for more complex problems
with larger problem sizes (e.g., Barrouillet, Mignot & Thevenot, 2008; Imbo &
Vandierendock, 2008), for addition problems requiring a carry procedure (e.g.,
Ashcraft & Kirk, 2001; Fürst & Hitch, 2000), or – more generally – for problems
for which solutions cannot (yet) be retrieved from memory.

Critically, empirical evidence suggests that the respective contribution of
verbal and visual-spatial working memory components changes with age (e.g.,
De Smedt et al., 2009; Rasmussen & Bisanz, 2005; Van de Weijer-bergsma et al.,
2015). For example, van de Weijer-Bergsma and colleagues (2015) observed that
while the importance of verbal working memory for all four arithmetic operations
was shown to increase from the second to sixth grades, visual-spatial working
memory influences decreased. A similar conclusion was drawn by McKenzie
et al. (2003), who investigated influences of verbal and visual-spatial working
memory on simple arithmetic competencies in 6- to 7- and 8- to 9-year-old chil-
dren experimentally by using a dual task paradigm. Children were asked to solve
simple, auditorily presented addition problems (e.g., 9 + 4, 4 + 3 + 7) in three con-
ditions: a baseline condition without added interference, a verbal interference
condition in which children heard an audiotaped story while solving the addition
problems, and a visual-spatial interference condition in which children solved
addition problems and at the same time saw a matrix of black and white squares
that randomly changed on the screen. Results indicated that while performance
of children in both age groups was affected by visual-spatial interference, verbal
interference only decreased performance in the older group of children. Thus,
this study seems to substantiate that younger children may rely more on visual-
spatial working memory when acquiring arithmetic competences, whereas older
children seem to draw from both verbal and visual-spatial working memory re-
sources when solving arithmetic problems.

Studies that specifically address the involvement of verbal working mem-
ory resources when retrieving arithmetic facts provided somewhat mixed re-
sults (for a review, see DeStefano & LeFevre, 2004). For instance, some studies
suggest that the retrieval of multiplication facts is interrupted by concurrent
verbal processing (e.g., Lee & Kang, 2002; Lemaire et al., 1996); however, in
other studies fact retrieval remained largely unaffected under verbal load (De
Rammelaere et al., 2001; Seitz & Schumann-Hengsteler, 2000). Thus, the de-
gree to which verbal working memory influences arithmetic problem solving
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seems to depend on the respective strategies available and used to solve a par-
ticular problem.

Interestingly, further studies have addressed an additional phonological
language aspect in that they focused on the influence of phonemic awareness
on arithmetic performance assessed by standardized tests (e.g., Fuchs et al.,
2006; Hecht et al., 2001; Krajewski & Schneider, 2009; Leather & Henry, 1994;
Rasmussen & Bisanz, 2005; Simmons et al., 2008) but also more specifically on
arithmetic fact retrieval (De Smedt & Boets, 2010; De Smedt et al., 2010). While
many studies provided quite substantial evidence for an association of phone-
mic awareness with general arithmetic skills, the precise mechanism driving
this association seems less well understood. Following up on this, De Smedt
et al. (2010) suggested that one mechanism driving the association of phonemic
awareness with general arithmetic skills might lay in its functional role for the
retrieval of arithmetic facts. To investigate this claim, 9- to 11-year-old children
were asked to solve addition, subtraction, and multiplication problems of both
small (<25) and large problem size. The idea was that problems with a small
problem size are more likely to be solved via retrieval-based strategies and
should, thus, show a more pronounced association with phonemic awareness
than problems with a large problem size. And, indeed, results showed a signifi-
cant association of phonemic awareness with performance on problems with a
small but not with a large problem size. Interestingly, this was observed inde-
pendent of the respective operation. Thereby, the results of De Smedt and col-
leagues (2010; see also De Smedt & Boets, 2010 for additional evidence in
dyslexics) support the idea that phonemic awareness may play a critical role
for the acquisition of arithmetic facts.

Beyond phonological influences and similar to previously reported tasks in-
volving multi-digit numbers, lexical influences related to the lack of transparency
of certain number word systems were also observed for basic arithmetic. Investi-
gating inversion-related effects, Göbel and colleagues (2014) evaluated perfor-
mance differences in mental addition between German- and Italian-speaking
second graders (with German having inverted and Italian having non-inverted
number words). The authors specifically focused on the so-called carry effect
which describes the observation that it takes considerably longer and more er-
rors are committed in addition problems that require a carry procedure com-
pared to problems that do not contain a carry (e.g., Deschuyteneer et al.,
2005; Fürst & Hitch, 2000; Imbo et al., 2007; Klein et al., 2010). For example, a
carry procedure is needed for 18 + 35 = 53 because the units add up to a sum
larger than 9 (i.e., 8 + 5 = 13) and, thus, the tens digit of the unit sum has to be
carried to the sum of the tens digits. Göbel and colleagues (2014) observed a regular
carry-effect for both language groups; however, the effect was more pronounced in
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German-speaking as compared to the Italian-speaking children (for similar results
in adults, see Lonnemann & Yan, 2015). In carry problems it is crucial to keep track
of place-value information because a successful carry operation requires to carry
the tens digit of the unit sum to the tens position of the result. The more pro-
nounced carry effect in children speaking German – a language with inverted num-
ber words – was attributed to increased demands on the manipulation and the
mapping of the digital-Arabic notation and number words due to the inversion-
related lack of transparency in the German number word formation.

Next to inversion-related language effects, there are also effects of number
word systems (partially) following vigesimal (i.e., base-20) structuring (e.g., in,
e.g., French or Basque the number word for 35 literally means to twenty-fifteen).
For instance, Van Rinsveld et al. (2015) investigated performance in addition
problems in German-French bilinguals across grades 7 to 10. Results indicated
that when problems had to be solved in French, it took participants longer
and they made more errors for problems with sums larger than 70 as compared to
when the same problems had to be solved in German. Similarly, Colomé, Laka
and Sebastián-Gallés (2010) manipulated addition problems so that problems ei-
ther did not (e.g., 25 + 10 =) or did match with a vigesimal number word structure
(e.g., 20 + 15 =). While performance between conditions did not differ for Italian
and Catalan speakers, Basque speakers were specifically faster when addends fol-
lowed the same vigesimal structure as Basque number words.

A last important aspect in the context of semantic influences on basic arith-
metic abilities concerns the fact that throughout formal education arithmetic
(and other) problems are regularly presented as word problems. The difficulty
of arithmetic word problems is influenced by many factors related to both linguis-
tic and numerical aspects (e.g., single- vs. multi-digit numbers, type of operation;
see Daroczy et al., 2015 for an overview). On the one hand, linguistic aspects of
arithmetic word problems such as sentence structure and length (e.g., Abedi &
Lord, 2001; Spanos et al., 1988) but also the presence or absence of additional
irrelevant information (e.g., Muth, 1992) certainly affect arithmetic word problem
difficulty. On the other hand, the role of mathematical language and, in particu-
lar, the role of explicit verbal cues has also been investigated (e.g., Boonen et al.,
2016; Hegarty et al., 1992; Van der Schoot et al., 2009; Verschaffel et al., 1992).
Explicit verbal cues include words and phrases whose semantic usually directly
hints at a respective operation that needs to be performed to arrive at the solution
of the problem (e.g., subtraction: “Henry has 9 books. He sells 4 books at the
flea market. How many books does he have left?”; multiplication: “Henry
has 5 friends that he will meet in the park later today. He wants to bring 3
gummy bears for each of his friends. How many gummy bears does he have
to bring?”).
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Unfortunately, verbal cues must not be used blindly because in some in-
stances they are misleading. For example, the relational term “less” in the com-
pare word problem “At the supermarket, a chocolate bar costs £1. This is 30
pence less than at the kiosk. How much do you have to you pay at the kiosk?” is
inconsistent with the required operations (i.e., less would suggest a subtraction
problem, however, to solve the problem correctly an addition needs to be per-
formed). In this context, the consistency effect describes the finding that such
inconsistent arithmetic word problems are more prone to errors compared to
consistent problems (i.e., in which the term “less” indeed requires a subtraction;
e.g., Hegarty et al., 1992; van der Schoot et al., 2009). Thus, while it is important
to learn the semantic meaning of verbal cues and their associated arithmetic op-
erations, it is also crucial to emphasize the integration of additional information
across sentences to derive a proper mental model of the problem and with this a
first step to a successful solution.

Taken together, as mentioned above, mathematics education is largely hier-
archical in nature and, therefore, it is necessary to be able to draw on previ-
ously acquired competences, because new numerical and mathematical content
usually builds on these previously acquired competences. Regarding some of
the linguistic influences (i.e., lexical, phonological, semantic) there appears to
be a similar pattern: some aspects that have been observed to already influence
early numerical competences (i.e., counting and cardinality understanding) seem
to persist or even increase their impact on more complex mathematical content
strands such as arithmetic problem solving. This means that one may not assume
linguistic influences on basic numerical competences to be overcome entirely
with time. Instead, it seems that they exhibit a lasting influence on human nu-
merical cognition.

5 Conclusion

In this chapter, we discussed (i) lexical, (ii) syntactic, (iii) phonological, and (iv)
semantic aspects of language that seem to influence numerical and mathematical
development and illustrated their relevance for selected numerical and mathe-
matical content strands of (i) counting and cardinality understanding, (ii) multi-
digit number processing, and (iii) basic arithmetic operations. In this last section
we aim at discussing differences between but also commonalities across linguis-
tic influences and content strands, before we elaborate on potential implications
of the reported linguistic influences that arise for numerical and mathematical
development.
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First, it needs to be mentioned that linguistic influences seem to be most
obvious, relevant, and detectable during specific time windows of numerical
and mathematical development. On the one hand, some linguistic influences
begin to affect numerical and mathematical development very early on even be-
fore formal education starts (e.g., effects of grammatical number, effects of pho-
nemic awareness on the acquisition of the counting sequence). Others start to
show their effect later when more advanced numerical and mathematical com-
petences are acquired (e.g., lexical effects regarding the transparency of number
words on multi-digit number processing and mental arithmetic). On the other
hand, some linguistic influences seem to fade out rather quickly and, thus, can
be observed only in a comparably small time window (e.g., effects of grammati-
cal number), whereas others keep being relevant or become even more relevant
throughout elementary school years when more and more complex mathematical
competences are acquired (e.g., influences of verbal working memory, semantic in-
fluences regarding mathematical language). From this pattern of effects, it seems
that linguistic influences occur in waves that peak for and when new numerical or
mathematical concepts or procedures are learned. It seems that at these times of
high external demands due to new to-be-learned content the cognitive system is
more susceptible to influences of internal biases of numerical representations re-
flecting influences of lexical, syntactic, phonological, and semantic linguistic spe-
cificities of the respective language.

Second, because we aimed at summarizing linguistic influences on numeri-
cal and mathematical processing in children, we did not specifically consider
evidence on adolescents or adults throughout this chapter. It is worth mention-
ing though that most of the reported linguistic influences can still be observed
in highly skilled adults. For example, in a cross-cultural study, Moeller et al.
(2015) realized a natural 2 by 2 design for the variables number word inversion
(inverted vs. non-inverted) and reading direction (left-to-right vs. right-to-left)
in a quadrilingual study with German-, English-, Hebrew-, and Arabic-speaking
adults. Results were comparable to those observed for children by Pixner et al.
(2011a) indicating lexical influences. In particular, Moeller et al. (2015) observed
that unit-decade compatibility effects were larger when reading direction and
order of tens and units as named in number words were in conflict (i.e., for Ger-
man, left-to-right reading but units named before tens, and Hebrew, right-to-
left reading but tens named before units) than for English- and Arabic-speaking
participants for which reading direction and the order in which tens and units
are named in number words match. Thus, even though linguistic effects might
be more pronounced in children, traces of linguistic influences can also be
found in adults.
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Nevertheless, it needs to be noted that effects in adults are usually quan-
titatively smaller (a few dozen milliseconds) and, thus, are only detectable
using more sensitive measures (e.g., reaction time measures). However, the
consistent observation of linguistic influences in adults suggests that they
are not a purely transient phenomenon but shape how we process numbers
for good. Yet, studying linguistic influences in adults seems more relevant
from a theoretical cognitive perspective aiming at understanding the underly-
ing principles of numerical and mathematical cognition. Implications for nu-
merical and mathematical learning or even educational practice may be limited
because effects and differences in the millisecond range may not reflect practi-
cally relevant differences in numerical and mathematical competence in every-
day life.

Finally, however, for a teaching practitioner, knowing that certain language
aspects influence typical numerical and mathematical development in a certain
time window might help identifying children that struggle or might struggle in
the future. As mentioned earlier, Moeller and colleagues (2011) showed, for in-
stance, that the number of inversion-related errors in transcoding as well as the
size of the unit-decade compatibility effect in the first grade predicted arith-
metic performance in the third grade. Thus, better understanding language-
specific aspects of place-value processing might help identifying children that
may develop mathematical difficulties later on. Moreover, while considering
linguistic influences on numerical and mathematical development when de-
veloping interventional strategies is certainly necessary, it is also important to
know that not all linguistic influences seem to cause lasting disadvantages for
a particular language group or mathematical task.

In turn, this allows for a reconciliatory ending of this chapter. Although we
presented explicit effects of linguistic aspects on numerical and mathematical
development, it does not seem to be the case that any of the discussed linguistic
aspects (alone) is a necessary predictor of numerical and mathematical devel-
opment in an all or nothing manner. Instead, specific linguistic aspects may
be detrimental to some aspects of numerical cognition while others may even
facilitate numerical and mathematical learning (e.g., explicit plural markings
or a transparent number word system). As such, it is important to be aware of
the width of linguistic influences to be able to adapt teaching and learning ap-
proaches accordingly. These adaptations may then allow to compensate for
disadvantageous influences and to foster beneficial linguistic aspects to help
children to successfully develop sufficient numerical and mathematical com-
petences to master everyday demands and needs.
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The relative importance of “parental
talk” as a predictor of the diversity in
mathematics learning in young children

Abstract: This study explored the importance of the amount of “parental talk” fo-
cusing on numerical cues as “opportunity factor” in the prediction of diversity in
mathematics learning. Thirty-one children were followed up from toddlerhood
(24 months of age) till kindergarten (48 months of age). Mathematics learning was
tested with a number discrimination task at 24 months. At 48 months children’s
mathematics learning was examined with a procedural and conceptual counting
task and a calculation task. The amount of parental talk was operationalized via a
questionnaire and via a structured play Duplo or Lego building session. The study
confirmed a substantial amount of diversity in the frequency of parental talk with
the results of the questionnaire and the observation positively related to each
other. A positive concurrent association was found between the amount of ob-
served parental talk and children’s calculation skills in kindergarten. Parental talk
with toddlers was also positively predicting children’s mathematics learning in kin-
dergarten. There was a trend of positive association between the amount of paren-
tal talk with toddlers and children’s conceptual counting abilities in kindergarten.
There was a positive quadratic predictive contribution of parental talk in toddlers
for “calculation” in kindergarten. These results confirmed that mathematics learn-
ing might not be unitary even in young children and that parental talk should be
considered as one of the opportunity factors to explain some of the diversities in
mathematics learning.

Keywords: parental talk, opportunity-propensity model, toddlers, kindergart-
ners, mathematics learning, number discrimination, procedural counting, con-
ceptual counting, calculation

1 Introduction

1.1 Mathematics learning

Nelson and Powell (2018) revealed findings based on 35 longitudinal studies that
mathematics learning in elementary school was one of the biggest predictors
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for future academic achievement. Mathematics skills were stronger predictors
than reading skills, even after controlling for intelligence and socioeconomic
status. Deary et al. (2000) demonstrated diversity in mathematics learning from
childhood to old age. A longitudinal study on 17.638 participants revealed that
mathematics learning at the age of seven was positively associated with the so-
cioeconomic status (SES) of individuals at the age of 42 years. This effect was
significant even when controlling for intelligence and SES at birth on top of intelli-
gence and SES at birth (Ritchie & Bates, 2013). Poor mathematics learning was re-
vealed to have an impact on daily life, resulting in more employment in low paid
professions and in negative consequences for (mental) health (Duncan & Magnu-
son, 2011; Geary, 2011; Wilson et al., 2015). These studies indicated the importance
of mathematics and indicated the need to improve the understanding of mathe-
matics learning, and in particular diversity in mathematics learning.

1.2 Mathematics learning in young children

Mathematics learning might not be unitary, but is rather made up of many dif-
ferent subcomponents, such as number discrimination, counting procedures,
counting principles, and calculation with possible discrepancies among sub-
components (Dowker et al., 2019).

According to Clements and Sarama (2014) there is no age too young for
mathematical thought. Number discrimination can be seen as an early marker
of diversity in infants (Xu & Arriaga, 2007). Previous research has shown that
number discrimination in toddlerhood even has some predictive value for math-
ematical learning in kindergarten (Ceulemans et al., 2015, 2017).

Previous studies also revealed that children’s counting proficiency played a
role in the development of mathematics learning. A secondary analysis on 7,665
children indicated that counting was one of best predictors of school success
(Claessens & Engel, 2013). The knowledge of counting procedures (or procedural
knowledge) and the knowledge of counting principles (conceptual knowledge)
can be seen as two distinctive aspects of counting. Procedural counting knowl-
edge is needed to determine that there are five objects in an array. Conceptual
counting knowledge reflects a child’s understanding of the essential counting
principles: the stable order principle, the one-one-correspondence principle and
the cardinality principle (Desoete & Roeyers, 2009; Stock et al., 2009).

Finally, mathematics learning also involves basic knowledge and skills to
calculate accurately in order to solve mathematical tasks. In later years, not
only calculation accuracy but also calculation fluency will be needed (LeFevre
et al., 2009).
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1.3 Opportunity (O)-Propensity (P) model
to explain diversity

The Opportunity-Propensity (O-P) framework (Byrnes, 2020; Byrnes & Miller,
2016; Wang et al., 2013) aims to explain some of the diversity of mathematical
learning, visualized in Fig. 1.

Propensity factors (P) in the O-P model refer to the variables that make people
able (e.g., intelligence) and/or willing (e.g., motivation) to learn mathematics.
Opportunity factors (O) have been defined as contexts and variables that ex-
pose children to learning content (e.g., home and school environment, includ-
ing parental talk). Distal variables (e.g., SES) were included in the model to
explain why some people are exposed to richer opportunity contexts and have
stronger propensities for learning than others.

The O-P model has been validated in large secondary data sets, including
lower-income pre-kindergarten children, children followed up from kindergar-
ten until primary school and secondary school pupils (Byrnes, 2020; Byrnes &
Miller, 2016; Wang et al., 2013). These studies have shown that mathematics
learning (as outcome variable) improved with more propensities (P-factor). In
addition, some of the diversity in mathematical learning could be explained by
the opportunities in the school and home environment (O-factors).

Previous studies informed us about the information on the influence of the
school environment (Baten & Desoete, 2018; Byrnes & Miller, 2016) in the predic-
tion of mathematics learning. The impact of these school related O-factors de-
pended on the specific support factors (Byrnes & Wasik, 2007, 2009). However,
other studies have shown that the home numeracy environment also mattered
(as O-factor) for mathematics learning (Missall et al., 2014; Segers et al., 2015).
Parent–child interactions that included experiences with numerical content in
daily life have been positively associated with children’s mathematics learning

Fig. 1: The Opportunity-Propensity model.
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(e.g., Blevins-Knabe & Austin, 2016). Anders et al. (2012) demonstrated that the
quality of the home environment at the beginning of kindergarten (mean age of
3 years) was strongly associated with mathematics learning in preschool, with
this advantage maintained at the end of preschool (mean age 5 years). Their re-
sults underlined the differential impact of school and home environments on
mathematics learning. Niklas et al. (2016) and Casey et al. (2018) demonstrated
that offering more parental support to children resulted in better mathematics
learning. Kindergartners who received rich early numerical home opportunities
developed better mathematics skills compared to those with fewer learning oppor-
tunities (e.g. Clements & Sarama, 2014; Kleemans et al., 2012; LeFevre et al., 2009).
However, Yildiz et al. (2018) found that home numeracy factors operationalized in
a questionnaire (parent’s reports) were positively related to children’s calculation
abilities, on the other hand, contrary to expectation, the observed parental talk
was negatively related to children’s calculation abilities. They concluded that ques-
tionnaires and observations might tap different aspects of home numeracy.

1.4 Parental talk as Opportunity (O) factor

Some component of the association between home environment and mathematics
learning might be at least partially explained by parental involvement (Hong et al.,
2010; Wilder, 2014) or by parental responsiveness (Dieterich et al., 2006). Parental
involvement can be described as the overall quality of the interaction between
parent and child (e.g., Melhuish & Phan, 2008; Sy et al., 2013). In addition, some
studies revealed that also parental responsiveness was positively associated with
later language and literacy development of children (e.g., Dieterich et al., 2006).
On top of the constructs involvement and responsiveness, math-related parental
talk is a component of home numeracy (e.g., Karrass & Braungart-Rieker, 2005).

Parental talk can be defined as the formal or direct numeracy talk (such as
counting objects) and informal or indirect (such as mealtime) numeracy talk of
parent–child dyads. Susperreguy and Davis-Kean (2016) revealed that all mothers
involved their preschool child in a variety of math exchanges during mealtime,
although there were differences in the amount of input that children received.
Several studies have shown that parental talk often involved counting and label-
ing cardinal values of sets (Ramani et al., 2015; Zhou et al., 2006). Talking about
large sets of objects was the strongest predictor of mathematics learning (Gunder-
son & Levine, 2011).
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1.5 Diversity in parental talk and in subcomponents
of mathematics learning

Dowker (2019) has shown that mathematics learning might not be unitary
and may differ with age. A study in kindergarten, grades 1 and 2, revealed that
basic numerical skills were positively associated with informal parental talk,
whereas calculation fluency was related to both formal and informal parental
talk (LeFevre et al., 2009). Yildiz et al. (2018) confirmed the positive relation-
ship between parental talk and calculation in the last year of kindergartners
(mean age 5.64 years), but only with the parental talk assessed via a question-
naire. Levine et al. (2011) demonstrated that in 14- to 30-month-olds the frequency
of parental talk about numbers predicted the children’s cardinal knowledge
(e.g., knowing that the word “four” refers to sets with four items) at 46 months
of age. The study of Skwarchuk et al. (2014) indicated that formal talk (such as
practicing sums) predicted symbolic number system knowledge, whereas in-
formal talk was related to children’s abilities to non-symbolically represent and
manipulate quantities in children starting in kindergarten (mean age 58 months).
Benavides-Varela et al. (2016) provided evidence for the unexpected finding that
the construct “home environment”was related to the exact, but not to the approxi-
mate, number representation in children with a mean age of 5 years 11 months.
Casey et al. (2018) found that (observed) parental support (labeling sets of objects)
at 36 months predicted mathematics learning at 4½ and 6–7 years.

To conclude, although there is evidence that parental talk is predictive for
mathematics learning, the importance might depend on the age of children, on
the subcomponent of mathematics learning that is studied, and even on the tech-
nique that is used to operationalize parental talk and mathematics learning.

1.6 Current study

In this study we use questionnaires and observations to assess parental talk
and to study the association with mathematics learning in toddlers and in kin-
dergarten. This results in the following specific Research Questions (RQ).

RQ1. Is there diversity in the parental talk with young children? Are ques-
tionnaires and observations of parental talk positively associated?

RQ2. Is there diversity in mathematics learning assessed at 24 months (with
a number discrimination task) and at 48 months (with procedural and
conceptual counting tasks and a calculation task)?

RQ3. Does parental talk predict mathematics learning, controlling for pa-
rental involvement and sensitivity?

136 Desoete Annemie et al.



2 Method

2.1 Participants

Participants were part of a birth cohort, living in different Flemish districts in
Belgium. They were recruited within the scope of a longitudinal study for the
Belgian government (www.steunpuntwvg.be). A small sample of children were
randomly selected to participate in a more in depth study on mathematics learn-
ing (see also Ceulemans et al., 2015, 2017). As such, parents of 15 boys and 16 girls
consented to participate with their child at the age of 24 (T1) and 48 months (T2).
The mean intelligence of the children measured with Wechsler Preschool and Pri-
mary Scale of Intelligence – Third edition (WPPSI-III-NL; Wechsler, 2002; Dutch
translation) was 101.33 (SD = 12.53). Half of the families of the children had a mid-
dle income and the other half had a high income when the research project
started. The category “middle income” comprised a considerable part of the
study population being a “modal” family with two working parents as manual
worker or employee. Families in the “middle income” category earned be-
tween 1,501 and 3,000 euros, whereas those in the “high income” category
earned more than 3,000 euros per month.

2.2 Procedure and analyses

Linear regression analyses were conducted to explore the research questions.
Graphical inspection of the data revealed that error terms were normally distrib-
uted. Since not only the quantity of opportunities might be important, linear and
quadratic relationships were explored. Only in case of a significant quadratic re-
lationship was this mentioned additional to the results of the linear relationship
between certain variables. Moreover, significant relationships between the oppor-
tunities were tested by taking into account the control variable (parental involve-
ment and sensitivity).

2.3 Instruments

2.3.1 Parental talk (O-factor)

Parental talk was tested through observations and via a questionnaire. The
structured play situation was used to observe “parental talk” (as O-factor) at 24
and 48 months. Mother and child sat on a carpet and were instructed to build a
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house with a set of Duplo blocks according to a model. After the instruction was
given, parent and child were left alone in the room. The structured play was
recorded for five minutes on video and all parental talk, and/or language of the
children were coded manually afterward. All actions were given a score accord-
ing to their frequency during the observation. The sum of all scores (which
could be reduced to 18 items) resulted in the total parental talk score. Internal
consistency of the data output was .63 (M= 55.51, SD = 29.71). At 24 months two
experimenters achieved an averaged inter-rater reliability of .88 percentage of
scores in agreement. At 48 months two experimenters achieved an averaged
inter-rater reliability of .84 percentage of agreement.

All parents also completed questionnaires. The questionnaire on parental
talk included activities related to mathematics learning at home, with 13 items
related to direct activities (such as learn the right sequence of number words)
and 10 items related to indirect activities (such as sing a song with numbers).
Parents were asked to score all items according to their occurrence during the
past month. They could choose between the options never (1), sometimes (2), or
many times (3). The option “not applicable” (0) could be indicated when pa-
rents thought that their child could not perform this behavior because he/she
was not yet able to do it. The original options to indicate frequency were trans-
formed into scores ranging from zero to two per item. Cronbach’s alpha was .87
(with .85 for the direct activities and .72 for the indirect activities). For the mean
(M) and standard deviation (SD) of all items, see Tab. 1.

Tab. 1: Diversity in (self-reported) parental talk of todlers.

Response options (%)

    M (SD)

Direct activities

Use words about quantity and size . – . , . (.)

Use words to compare . . . . . (.)

Use number words: one, two, three – – . . . (.)

Use number words: four, . . ., ten . . . . . (.)

Say the sequence of numbers from
one to ten

. . . . . (.)

Learn the right sequence of number
words

. . . . . (.)

Learn counting or say number words
using fingers

. . . . . (.)
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2.3.2 Parental involvement and parental sensitivity

All parents completed a questionnaire with 10 items on parental involvement
from the scale “Parental Involvement in Developmental Advance (PIDA)” of the
StimQ-Toddler interview (Dreyer et al., 1996) were included. These items de-
scribed possible actions or activities with the child initiated by the parent in the
home environment. Cronbach’s α (M = 10, SD = 1.41) in the present study was .71
at 24 months and .63 at 48 months. A pilot study showed that the questionnaire
was easy to complete.

During observation of the structured play parental sensitivity was mea-
sured as well. In line with other research (e.g., Feldman & Masalha, 2010), the

Tab. 1 (continued)

Response options (%)

    M (SD)

Encourage counting . . . . . (.)

Asking “how many” . . . . . (.)

Practice counting objects . . . . . (.)

Encourage use of matching . . . . . (.)
Recognizing and naming numbers . . – – . (.)

Counting down . . . . . (.)

Indirect activities

Name shapes . . . – . (.)

Sort objects on color . . . . . (.)

Sort objects on shape . . . . . (.)

Sort objects on size . . . – . (.)

Sing a song on numbers . . . . . (.)

Give compliments to child on using
numbers

. . . . . (.)

Play with magnetic numbers or
number stamps

. . . . . (.)

Read books with focus on numbers . . . . . (.)

Play with a dice . . . – . (.)

Measure ingredients . . . . . (.)
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Coding Interactive Behavior (CIB) system (Feldman, 1998) was used to assess
the parental sensitivity during the structured play. This is a global rating sys-
tem of parent–child interaction that included 42 codes rated on a scale of 1 (low)
to 5 (high) that leads to eight theoretically derived parent, child, and dyadic com-
posites on diverse aspects of parent–child interaction. For each code, the ob-
server assigned a single score after viewing the entire interaction, and several
viewings were required to complete the coding. At 24 months the coder achieved
an averaged percentage of agreement of .84 with an officially trained coder by
the laboratory of Feldman. At 48 months the inter-rater reliability between two
observers averaged .91 with the same trained coder. The composite set of parental
sensitivity indicators was used in this study. This composite set included the
codes “parent acknowledgment of child signals,” “maintenance of visual contact,”
“expression of positive affect,” “appropriate vocal quality,” “resourcefulness in
handling child’s distress or expanding the interaction,” “consistency of style,” and
“display of an affective range that matches the infant’s readiness to interact.” Reli-
ability as measured with Cronbach’s α (M = 3.96, SD = 0.55) for this composite set
of indicators in the present study was .87 at 24 months and .80 at 48 months.

2.3.3 Mathematics learning

Mathematics learning was assessed as an outcome variable (at 24 and 48 months)
in the O-P model.

Mathematics learning at 24 months was tested with a number discrimina-
tion task using a manual search paradigm as described by Feigenson and Carey
(2005). A wooden box (25 cm × 12.5 cm × 31.5 cm) had a slit at the front oriented
toward the toddlers and an opening at the backside oriented toward the experi-
menter who was facing the child at an – except for the box – empty table. Parents
were told that some balls would be hidden to explore how children responded to
a task and that no wrong reaction existed. The task entailed three kinds of trials:
a first box empty trial, a more remaining trial, and a second variant of the box
empty trial, which always followed after amore remaining trial (see Fig. 2).

Each of the trial types was presented twice and the order of the trials was
counterbalanced. Children could search through the slit for 10 seconds after each
type of trial commenced. It was expected that children would search longer after
the more remaining than after the box empty trials which would indicate success-
ful discrimination. Cumulative searching time was coded. Subtracting searching
time after box empty trials from searching time after more remaining trials re-
sulted in difference scores. Reliability of the difference scores, as measured with
Cronbach’s α, was .79 for this task (M = 2.42, SD = 1.48).
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Mathematics learning at 48 months was tested with three subtests of the
TEDI-MATH (Grégoire et al., 2004). Procedural countingwas tested with all eight
items of TEDI-MATH where children had to count starting from one (up till 31),
counting up to an upper bound (e.g., “count to 9”) and/or from a lower bound
(e.g., “count from 3”). Cronbach’s α of the current study was .62 (M = 1.45, SD =
1.61). Conceptual counting was tested with all 13 items of TEDI-MATH where
children had to judge the counting of linear and non-linear patterns of objects,
and were asked questions about the counted amount of objects (e.g., “How
many objects are there in total?”). Furthermore, they had to construct two nu-
merical equivalent amounts of objects and use counting as a problem-solving
strategy in a riddle. Cronbach’s α of the current study was .76 (M = 4.39, SD =
2.70). Calculation was tested with all six items of TEDI-MATH where children
had to solve visually supported additions and subtractions. Reliability for the
current study was Cronbach’s α = .73 (M = 1.97, SD = 1.80).

3 Results

3.1 Diversity in “parental talk”

The amount of “parental talk” (assessed with a questionnaire) was positively associ-
ated with the amount of observed “parental talk” (during the manual search task)

Box placedon table

3 Balls on box thenhidden

Infant allowed to retrieve 1  ball 

Experimenter asks if she/he 
can help and gives the two 
remaining balls from inside 
of the box to the child  
through the slit in the front

1st Boxempty trial More remaining trial 2nd Box empty trial

Box stayson table

1 Ball on box then hidden

Box placedon table

Infant allowed to retrieve 1  ball 

Fig. 2: Different trial types of the manual search task. Adopted from “On the limits of infants’
quantification of small object arrays,” by Feigenson and Carey (2005), Cognition, 97, p. 301.
Copyright 2004 by Elsevier B.V.
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with r = .54, (p < .001). Table 1 gives an overview of the frequencies of the parental
talk assessed via a questionnaire at 24 months. “Using words to tell something
about the quantity or the size of objects,” “using words to express a comparison
between objects,” and “using the small number words from one to three” were the
most frequent activities by parents of toddlers. Direct “opportunities” to focus on
mathematics learning were reported as occurring (i.e., either “sometimes” or “many
times”) in about 60% of the cases. Indirect “opportunities” to focus on mathematics
learning were reported as not occurring in about 60% of the cases.

During the observation of parental talk (the structured play) interactions using
Duplo or Lego blocks occurred on average with a frequency of about 31.21 times
(SD = 14.34, range = 0.00–58.00) during the observation which lasted 5 min, giving
a rate of about 6 interactions per minute. Only once was no parental talk between
mother and child observed during the structured play situation, again pointing to
diversity of opportunities offered by children to enhance mathematics learning.

3.2 Diversity in mathematics learning

There was no significant association (see Tab. 2) between mathematics learning
in toddlers (assessed with a number discrimination task) and in kindergarten
(assessed with a counting and calculation task). Counting and calculation skills
were positively and significantly associated (at 48 months).

3.3 Relation between parental talk (as “opportunity”)
and mathematics learning

Table 3 provides the explorative correlations between the parental talk and all
mathematics learning measures included in the current study.

Tab. 2: Correlations between mathematics learning measures.

Mathematics learning 

 month (m)


 m


 m


 m
M (SD)

. Number discrimination – . (.)
. Procedural counting −. – . (.)
. Conceptual counting −. .* – . (.)
. Calculation −. .* .** – . (.)

* p ≤ .05.
** p ≤ .001
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At 48 months, there was a significant and positive linear relationship, F(1,29) =
5.56, p = .025, R2 = .161 between parental talk and calculation which remained
marginally significant in addition to the parental involvement, Fchange (1,28) =
3.11, p = .089, R2

change = .09.
The linear regression analysis with parental talk (observed at 24 months) as

the independent variable revealed a relationship and trend of prediction for con-
ceptual counting at 48 months, F(1,27) = 3.60, p = .068. In addition, although
not linear F(1,27) = 2.29, p = .142, a significant quadratic (positive) relationship
could be found, F(2,26) = 3.68, p = .039, R2 = .221 between the parental talk at
24 months and the calculation skills at 48 months.

4 Discussion

Parental talk occurred on average about six times per minute during the Duplo
or Lego building activity. In line with Susperreguy and Davis-Kean (2016), large
differences (varying from 23 to 0 times parental talk) in the amount of math
input that children received, were observed. These results indicate a substantial
diversity in the amount of parental talk children experience as young children.

In contrast with the finding of Yildiz et al. (2018), in this study there was a
significant relationship between parental talk operationalized via questionnaires
and via observational methods in toddlers (24 months).

In line with Ramani et al. (2015) and Casey et al. (2018) parental talk was
mainly involved in counting and labeling quantities. We observed that parents
often focused on small number words with toddlers, whereas Gunderson and
Levine (2011) revealed that the indicator “talking about large sets of objects”
was the strongest predictor of mathematics learning.

Parental talk was associated with mathematics learning even controlling
for parental involvement. In addition, in line with LeFevre et al. (2009), but in
contrast with Yildiz et al. (2018), a significant linear relationship was found be-
tween more (observed) parental talk and better calculation in kindergarten. As
such, the parental numerical language might be perceived as on opportunity
factor that stimulates the child’s mathematics learning in a positive way. How-
ever, it is also possible that parents who talk more about numbers or pick up
more opportunities to engage with their children, do so because their children
are (initially more) interested in mathematics. Children might, accordingly, pro-
voke numerical parental talk themselves. No causal relationship could be drawn.
Nonetheless, the value of parental talk could be demonstrated even when taking
into account parental involvement as a plausible explaining factor.
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In addition while the concurrent relationship between the constructs at kin-
dergarten age (48 months) was linear, the relationship at toddler age (24 months)
was quadratic in nature. In kindergarten this implied that more parental talk was
associated with higher mathematics learning. In toddlerhood, however, it seemed
that more parental talk only predicted higher mathematics learning in kindergar-
ten to some extent, needing the appropriate engagement at the right time. At
higher rates later mathematics learning declined again. This finding suggests
that a child’s mathematics learning might not only depend on the parental talk,
and empowerment of opportunities should be within children’s zone of proximal
development. Future research needs to clarify this finding and the clinical rele-
vance more in detail.

There are some limitations to this study. The first limitation is the sample
size. A small sample size may lead to higher variability, leading to bias. In addi-
tion, only families with a middle or high family income were included. It would
therefore be interesting for future research to also take into account low-income
families to accurately investigate the influence of SES on both numerical inter-
action and performance.

Despite the mentioned limitations, the current study might imply that an
additional focus on parental talk by agencies in support of parenting could be
worthwhile. Making parents aware of the importance of numerical parental talk
might empower them and stimulate mathematics learning in young children.
However, it may be that education in respect of what is appropriate mathemati-
cal talk may be needed.
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Pixner Silvia and Dresen Verena

Number words, quantifiers,
and arithmetic development with
particular respect of zero

Mathematics and language. Apparently two independent fields. Why appar-
ently? Looking at adults with mathematical knowledge, you can observe great
differences in both directions in the sense of a double dissociation with regard
to these two competences, that is, language and arithmetic competences. This
means that there are people who have very good language competences but
weak mathematical competences and vice versa. This dissociation would indi-
cate a certain independence from language and arithmetic competences. In this
chapter we would therefore like to shed light on both associations and certain
independencies between language and arithmetic competences. Above all, we
would like to show that both views are correct, since it always depends on the
respective moment of observation in development and especially on the skills
of interest. Arithmetic competences include the understanding of numbers and
their relations as well as the mastery of basic arithmetic operations. Therefore,
we will first look at some general associations between language and numerical
competences, based on the Triple Code Model by Dehaene (1992). Then we will
go into more detail about the development and the interdependence between
language and numerical competences as they are in a permanent interaction.
Finally, we want to give some specific insights into the associations between
quantifiers and the development of cardinality before explaining the role of
zero in this context. We believe that a specific knowledge of these associations
is essential not only for research, but also for practical work with children with
dyscalculia. This applies not only to the work with children with a migration
background or a specific language development impairment and how these dif-
ficulties can be countered. It is also important to keep in mind that language
can also be a resource for children with dyscalculia to better grasp numerical
content.

Looking at the current leading number processing model, the Triple Code
Model by Dehaene (1992), it quickly becomes clear that arithmetic competences
do not represent a single homogeneous competence, but actually consist of sev-
eral sub-competences that are predominantly independent of each other. This
means that some sub-competences in numeracy may be more dependent on
language, while others may be less dependent on language. The three represen-
tations of Dehaene’s model are the verbal code, the visual Arabic code, and the
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semantic code. The verbal code includes not only the spoken and written number
words, but also the verbal counting and especially the verbal memorized arithme-
tic facts (e.g., 4 + 3 = 7 or 3 · 4 = 12). Therefore the verbal code represents most lan-
guage-dependent numerical skills. The link between language competences and
the verbal code appears to be strongest at this point. Opposite to this the seman-
tic code includes semantic knowledge about size and quantities for number com-
parison or estimation as well as the numerical quantities represented on the
mental number line. The third representation is called the visual Arabic code and
represents the numbers in Arabic format. This is mainly used for multi-digit cal-
culation and also for parity judgments. Apart from that it must be considered
that, depending on the mathematical task, the different codes are activated to dif-
ferent degrees or, in addition, can also be different in terms of their quality within
a person. This means that someone can be very good at verbal fact retrieval, but
has difficulty with procedural understanding, or vice versa. Nevertheless, lan-
guage does not represent a homogeneous competence either, because it also con-
sists of many sub-competences. It is therefore important to look in detail at the
associations between language competences and arithmetic competences, as is
impressively described in this book. This chapter is therefore devoted to specific
or concrete number words (e.g., one, two, three), quantifiers or unspecific num-
ber words (e.g., many, some, a few), as well as the development of arithmetic
competences and the influence or contribution of language.

What is the relationship between the development of arithmetic competences
and language competences? Studies show a certain independence with regard to
individual sub-competences, as also described by Dehaene (1992) in the Triple
Code Model. According to several studies (cf: Wynn, 1992), the understanding or a
certain sensitization in dealing with quantities (in sum a kind of innate number
sense) is innate. Even infants without any understanding of language can discrimi-
nate between two quantities under certain conditions long before the development
of language begins (Xu et al., 2005). Thus, at the beginning, the processing of
numbers and quantities seems to be language-independent, which is also impres-
sively demonstrated by behavioral studies with animals that are able to handle
quantity differentiation very well (Ward & Smuts, 2007). However, if we look fur-
ther along the time axis, it becomes clear quite quickly that one of the most effec-
tive ways to acquire mathematical or arithmetical knowledge is through language.
Language competences not only represent one of the most important predictors of
school success in general (Wagner et al., 2013), they also serve specifically as a pre-
dictor of mathematical skills (Preat et al., 2013). Additionally, it is possible to ob-
serve clear difficulties in this phase of the development of arithmetic competences
in disadvantaged groups, such as children with a migration background or chil-
dren with a language development impairment (Donlan et al., 2007). Therefore,
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this is a clear indication that language must fulfill a specific function in early
numerical development. These contradictory results are not contradictory when
viewed in a longitudinal section. Besides the innate number sense, knowledge
of numbers and quantities is naturally acquired through learning as well as
through social interaction. Children start to talk and use these new language
skills to refine their numerical competences at the same time. Thus, at the be-
ginning, children can only distinguish very large differences between two quan-
tities with the help of their innate intuition for quantities. In the second year of
life, they learn, parallel to this but independently of it, the number words. At
this time, the word sequences are still isolated from quantities (Krajewski &
Schneider, 2009a) – these two sources of information come together only later
in the development. To be more precise, the first most spoken words up to the
age of one and a half years already include a number word (Szagun, 2013).
Looking at the main principles of acquiring vocabulary (mostly nouns) at this
stage of development, this is not self-evident. The first principle that children
follow in vocabulary acquisition is the “mutual exclusivity assumption,” which
means that a word is always assigned to an object (i.e., if a word has already
been learned for that object, that word cannot mean another object; Markman,
1989). To use two for the number of bears and two for the number of cars would
therefore contradict this principle. In addition, a second principle is used by the
toddlers in this phase, the “whole object assumption.” This means that the
word “heard” covers the whole object and not any feature or part of the object.
The word “shoe” is thus associated with the shoe as a whole and not just with
the sole, the shoelace, or even the number of shoes (Markman, 1989). These
principles make it a little difficult for children to grasp the concept of a number
word at this early stage because the number word is an attribute of the object,
not the object itself. As Gelman and Gallistel (1978) have already described in
their Abstraction Principle, children recognize that things are countable and
this in turn helps them to process the number words as specific words on an-
other abstract level. This abstraction allows them to process these words differ-
ently and to refine them further. At first, it is just an empty collection of specific
words without a stable order. Only with time children learn that number words
follow a sequence, as Gelman and Gallistel (1978) also state in their counting
principles. In parallel, one-to-one correspondence is discovered and applied. In
this phase, counting is equivalent to reciting a poem. This means that there is
not yet a cardinality understanding. One could also say that numbers are proc-
essed purely linguistically, without the quantity being processed as a semantic
unit behind it. So the child can count four objects correctly, but cannot answer
the question how many there actually are. This semantic knowledge about
the number words is built up only very laboriously and slowly. In the last step,
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therefore, the linguistic information, that is, the number word, must be linked
to the content or semantics (i.e., the quantity information). In concrete terms,
this means that the child not only has to identify one as a number word and
place it correctly in the number word series, but also must understand that ex-
actly one object can be assigned to one. The so-called one-knowers (Sarnecka &
Carey, 2008; Wynn, 1992) are thus children who have already understood the
concept of one and can therefore semantically distinguish exactly between one
and more. For example, if a child at the one-knower level is asked to give one of
the presented objects (e.g., cars), exactly one is also given. If a one-knower is
asked to give two objects, more objects are given, sometimes two, but sometimes
more than two. It can be observed that language plays an important role in this
step. The understanding of plural markings in nouns occurs at the same time as
the children change to the one-knower-level (Barner et al., 2007). This is also sup-
ported by observations of Japanese children (Sarnecka et al., 2007), who do not
acquire a plural marking at this time because this plural marking does not exist
in Japanese. As a result, Japanese children achieve the transition to the one-
knower-level much later. In this first phase of the acquisition of cardinality, the
path via the linguistic concept of the plural seems to be beneficial. On the other
hand, the path via the plural does not seem to be the only one, as the findings
from Japan show. So there must also be at least one other way to acquire cardi-
nality. With time, children gradually learn to differentiate two, three, four, and
five and to assign them correctly. Only from six onward this understanding of car-
dinality generalizes and the children can transfer the knowledge to the next
quantity. At this stage, children are called cardinality-knowers (Sarnecka et al.,
2007). This acquisition of mapping the number word to the correct quantity is
quite hierarchical (Sarnecka et al., 2007) and language seems to have a support-
ive function throughout numerical development. Studies such as Negen and Sar-
necka (2012) show a clear correlation between the size of the vocabulary and the
knowledge of number words. Pixner et al. (2018) also found a clear difference in
vocabulary between subset-knowers (i.e., children who did not yet show any gen-
eralization in terms of cardinality) and cardinality-knowers. Phonological aware-
ness proved to be another important language-related predictor for the prediction
of basic numerical competences in a group of preschool children, as Pixner et al.
(2017) were able to show. It is assumed that phonological awareness plays an im-
portant role in this phase, since the first number words are also very similar in
sound, at least in German (e.g., zwei and drei). Krajewski and Schneider (2009b)
state that a phonological processing deficit should affect mathematical domains
that are verbally coded, while other domains, especially higher numerical proc-
essing, should not. In the following, they explain that the influence of a phono-
logical awareness deficit on a mathematical impairment in early mathematical
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development can be mitigated or compensated (e.g., by training and manipu-
lating the precise number words). Based on the number word sequence, chil-
dren then learn to connect this number word sequences with the corresponding
quantities. That means that good linguistic differentiation is necessary. All
these studies show that language or linguistic competences, such as the size
of the vocabulary but also phonological awareness, are helpful in this phase
of the development of number words and counting as well as for cardinality
knowledge. Knowledge of number words, counting, and cardinality are in
turn an important building block for the successful development of arithme-
tic competences.

1 Quantifiers: Their development
and their influence on cardinality

One aspect of the association between language and arithmetic skills is mathemat-
ical language. This includes terms that are strongly domain-specific and related to
the mathematical context (Purpura & Reid, 2016). Understanding mathematical
language is essential in school. Even “simple” quantifiers like “more” or “less”
can cause massive problems in solving word problems (Dresen et al., submitted).
Children usually associate “more” with an addition and “less” with a subtraction.
If these terms are used inconsistently to the “anticipated” arithmetic operation,
the probability of solving such problems decreases significantly. This phenome-
non can be observed not only in children but also in adults. Therefore the devel-
opment of an understanding of mathematical language, especially of quantifiers,
is of essential importance.

Quantifiers are unspecific number words, which play a special role in the de-
velopment of number words as well as cardinality. In line with Gleitman’s boot-
strapping theory (1990), Carey (2004) postulated that children derive the meaning
of number words from their understanding of quantifiers. Resnick (1989) also as-
sumes that children first have an imprecise association between quantifiers and
the corresponding quantities, which becomes more specific and precise with the
length of their experience. Quantifiers represent unspecific number words (e.g.,
more, many, a few) and – as specific number words – represent a quantity (Sulli-
van & Barner, 2011). Additionally, exact quantifiers (e.g., both) or non-exact quan-
tifiers (e.g., some) can be distinguished. However, to understand the meaning of
quantifiers, it is important to grasp semantic and pragmatic restrictions (i.e., lan-
guage knowledge) as well as the quantificational meaning of each quantifier (i.e.,
domain-specific numerical knowledge; Dolscheid & Penke, 2018). In this sense,
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Sullivan and Barner (2011) argued that to get the meaning of quantifier success-
fully, children need to understand that quantifiers are arranged on a shared scale.
This scaling allows children to draw pragmatic conclusions about the individual
significance of the quantifiers. Accordingly, Hurewitz et al. (2006) investigated lin-
guistic similarities and differences of both specific and unspecific number words.
They argued that specific number words (as, for example, two) are always inde-
pendent from the context (e.g., two is always two). In contrast – regarding quanti-
fiers as unspecific number words – in a set of three objects many could already be
two, whereas in a set of thousand objects many is clearly more than two. At the
same time, similarities regarding the embedment in the syntax are described as
well. For instance, both specific and unspecific number words can be sequenced
in an order (e.g., all is always more than most and 7 is always more than 4). Fur-
thermore, findings of Dolscheid et al. (2015) demonstrated an association between
unspecific quantifier knowledge and numerical skills such as specific cardinality
knowledge and counting skills at the age of 4.6 years – without, however, being
able to answer the extent to which these skills are interdependent.

A recent study of Dresen et al. (2020) evaluated potential associations between
the acquisition of cardinality knowledge and quantifier knowledge (i.e., unspecific
number words) in children. The study followed a total of 76 (34 boys and 42 girls)
monolingual German-speaking children aged between 3.6 and 4.6 years at the first
measurement time for two more measurement times 6 months and one year later.
Children were tested with two relevant tasks: a give-N task assessing specific cardi-
nality knowledge of numbers from 1 to 10 and a give-N task measuring unspecific
quantifier knowledge (more than, less than, all, a lot of, etc.). Results clearly indi-
cated that children’s cardinality knowledge correlated over all three measuring
times. Children who already had better cardinality knowledge at an earlier mea-
surement time also performed better at later measurement times and vice versa.
Therefore, it makes sense to monitor children’s cardinality knowledge already at
early stages of their numerical development because it is considered as one impor-
tant basic numerical competence for the development of further numerical compe-
tences (e.g., Brannon & Van de Walle, 2001). A little different was the picture for
the case of quantifiers. No correlation between quantifier knowledge at the first
and second measurement time was found. This may indicate that the development
of quantifier knowledge is not linear but may rather be influenced by other factors
such as language development, for instance. It was only between the second and
third measurement time that a significant correlation for quantifier knowledge was
observed.

More interesting, however, were the observed associations of specific cardi-
nality knowledge and unspecific quantifier knowledge. Quantifier knowledge
assessed at the first measurement time was not associated with actual and/or
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future cardinality knowledge. This seems to imply that there may be no further
disadvantage for children’s development of the cardinality knowledge when
they do not yet master the quantifiers at the ages of 3.6 to 4.6. Interestingly,
however, there was a significant association between cardinality knowledge and
quantifier knowledge at the second measuring time. Furthermore, there were sig-
nificant bidirectional associations of cardinality knowledge and quantifier knowl-
edge from the second to the third measurement times (when children were on
average 4.4 and 4.10 of age, respectively). Importantly, mediation analyses speci-
fied that the association between cardinality knowledge at measurement times
two and three was fully mediated by children’s quantifier knowledge at measure-
ment time two. Interestingly, on the other hand, there was no mediation of the
development of quantifier knowledge between measurement times two and three
by children’s cardinality knowledge at measurement time two. Based on these re-
sults, it can be assumed that – at this particular age – quantifier knowledge
seems to facilitate further development of children’s cardinality knowledge. In
turn, this may mean that children should have acquired an understanding of
quantifiers up to this age because this helps them to further develop their cardi-
nality knowledge.

In summary, these results show how differentiated one has to consider associ-
ations between the early development of specific cardinality knowledge and unspe-
cific quantifier knowledge reflecting less precise numerical magnitude information.
In particular, quantifier knowledge seems to facilitate cardinality knowledge at a
specific age, which might indicate the specification of less precise and thus approx-
imate magnitude representations as reflected by quantifiers.

2 Concept and characteristics of zero
and negative quantifiers

As described above, the development of arithmetic competences involves many
sub-competences and a wide range of influences. If we concentrate on the spe-
cific number words on the one hand and on the unspecific number words,
quantifiers, on the other hand, we can discover additional specific characteris-
tics. Both zero and negative quantifiers (e.g., nothing) differ from the concepts
presented, although by definition they belong to these two groups. Let us first
take a closer look at zero. As discussed at the beginning, children between the
ages of 22 and 24 months learn to distinguish between one and more, at the
same time as they mark nouns with the correct plural. This means that the un-
derstanding of quantities greater than one is supported by the language, thus
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facilitating differentiation. But what does this look like with zero? Also with
zero, the following noun is marked with plural (e.g., I have zero apples). This
phenomenon can be found in many languages. The supporting principle of
quantity differentiation by plural marking is thus overridden or violated at zero.
Concretely, this means that a quantity which is less than one is nevertheless
marked with the plural at nouns. This may therefore be one of the explanations
why zero is associated with a lot of difficulties in children, but also later in
adults (Brysbaert, 1995; Wellman & Miller, 1986). The first, frequently described
difficulty with zero is the implementation of arithmetic rules when calculating
with zero (2*0 = 0 but 2 + 0 = 2). The second difficulty has to do with the place-
holder function of zero in multi-digit numbers. In evolutionary terms, zero is a
relatively young number (Butterworth, 1999). Most primitive number word sys-
tems and also the symbol-x-value systems such as the Roman system did not
need zero, since only one number was needed to represent a quantity. All of the
above-mentioned number word systems begin with the number one, and since
they do not need a placeholder due to their structure (e.g., in Roman 5 is repre-
sented as V and 10 as X), zero is not necessary either. In the current Arabic nota-
tion system, however, zero has this very important placeholder function. In
concrete terms, this means that if in a multi-digit number a position is not exist-
ing (e.g., no tens), a zero must be entered in the missing place; otherwise, the
quantity is no longer correct (e.g., there is no ten in 302, but the ten’s place can-
not simply be omitted, since otherwise the 302 would result in a 32, i.e., a
completely wrong quantity).

Looking at these difficulties with zero, the question arises how the under-
standing of negative quantifiers, for example, no/none/nothing, looks like in
child development. The concept of nothing may pose difficulties at a more
general level – not only referring to the numerical value of zero. This means
the understanding of the concept of no objects differs from the understanding
of one or more objects as an experiment of Wynn and Chiang (1998) could
show. In this experiment, 8-month-old infants were irritated when an object
disappeared in a location in which this item had been shown before. This was
not the fact when an object appeared where no object was before. Although
young infants already have a distinct knowledge of material objects, they are
not able to understand no objects. Only later on, children acquire the words
“nothing”/”none”/”no” (objects) and their semantical meaning, without con-
sidering it as a numerical value and combining it with the symbol of zero (Pix-
ner et al., 2018).

In a study by Pixner et al. (2018) 65 kindergarten children aged 4 to 5 years
(M = 4 years and 4 month; SD = 3 months) were examined with regard to their
understanding of small numbers and zero as well as their visual-spatial skills
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(measured with the subtest visual perception of the Visual Motor Integration
(VMI), Beery, 2004), general language (measured with a standardized active vo-
cabulary test, AWST-R, Kiese-Himmel, 2005), counting skills, knowledge of Ara-
bic numbers, and finger knowledge. To identify children´s finger knowledge,
the children were asked to present a different configuration of fingers. All quan-
tities between 0 and 10 were asked in random order. Participating children
were recruited from local public kindergartens and all of them were monolin-
gual native German speakers. Thirty-one boys and 34 girls were included in this
study. Most of the children were right-handed (81.5%). No child in this study
showed an intellectual or language impairment. Significant correlations were ob-
served between vocabulary, numeracy, finger knowledge, and counting skills,
both with understanding of the cardinality of small numbers and with knowledge
of zero. Subsequent regression analyses, however, only showed the importance
of counting skills on knowledge of zero. General vocabulary, spatial skills, as
well as the cardinality understanding of small numbers showed no independent
predictive value in this regression. It is interesting to note that zero and the nega-
tive quantifiers, like “nothing”/”no”/”none,” had a negative correlation at this
age. An explanation can be derived from the general principles in the vocabulary
development, specifically from the mutual exclusivity assumption, which means
that if you already have a term for nothing/zero at this age, you do not need an-
other term for this state.

3 Conclusion

In summary, it can therefore be said that language or linguistic competences, as
cross-domain competences, fulfil strongly supportive functions at many stages of
the development of arithmetic competences. This should be kept in mind espe-
cially for children at risk with limited linguistic development, for whom there is
an additional risk that arithmetic competences will not develop in line with age.
However, despite the linguistic influence, the results of some studies also show
that domain-specific numerical precursor skills appear to be more important for
the acquisition of cardinality understanding and zero than more cross-domain
skills. An intervention should therefore cover both aspects equally.

If we look in particular at specific mathematical vocabulary, such as the
quantifiers in this chapter, results indicate that understanding quantifiers con-
tribute significantly to the acquisition of children’s understanding of cardinality.
However, mathematical vocabulary is also important in later life for the acquisi-
tion of various mathematical skills and the successful solution of mathematical
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tasks, such as mathematical word problems, and should, therefore, also be a
focus in the school context.

An important and often neglected aspect is the extraordinary role of zero,
both in acquisition and later in implementation in the mathematical sense. In
order to minimize the numerous difficulties with zero in children as well as in
adults, the corresponding arithmetic rules and also the placeholder function
should not be neglected and should be repeated continuously.
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Directionality of number space
associations in Hebrew-speaking
children: Evidence from number
line estimation

It is widely believed that quantity manipulation and understanding is an innate
human ability, which is preverbal and based upon the mapping between space
and quantities (number-space associations) (Dehaene, 1992, 2009; Dehaene et al.,
2003, 1999; de Hevia & Spelke, 2010). Infants are born with preverbal approximate
number sense (ANS). Later, with maturation and schooling, an exact symbolic
quantity system develops, supported by the preverbal ANS as well as verbal abili-
ties (Halberda et al., 2008; Libertus et al., 2011).

The preverbal representation of quantity (ANS) is believed to be needed across
the life span mostly for estimation tasks. During numerical estimation, a quantity
(symbolic or non-symbolic) is translated into an abstract code of that quantity in
the form of the mental number line (Dehaene, 1992, 2009; Dehaene et al., 2003).
The mental number line has a few documented characteristics, including its left to
right directionality (Dehaene et al., 1993), as well as its arrangement; it is initially
logarithmic, and becomes linear with maturation and schooling (Siegler & Booth,
2004; Siegler & Opfer, 2003). Logarithmic representation of the number line in-
cludes overestimation of small numbers and underestimation of larger numbers
toward the end of the scale. By contrast, linear representation includes equal dis-
tances between quantities, regardless of their size.

1 Number line estimation tasks

One popular estimation task, aimed at examining the averbal numerical repre-
sentations, is the number line estimation task (or the number to position task)
(Siegler & Opfer, 2003). In the number line estimation task, a number is presented
above a number line, with 0 at one end and 100 or 1,000 at its other end. The
participant is instructed to place a number spatially on the line. Corresponding to
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the development of the mental number line (see the previous section), and with
maturation, children’s estimation shifts from logarithmic to linear (Siegler &
Booth, 2004; Siegler & Opfer, 2003). The shift between logarithmic and linear
representations is related to familiarity with the range (i.e., a child can present a
linear representation for a small and familiar range, and a logarithmic represen-
tation for a larger range) and also to age. Specifically, most second graders will
show logarithmic representation in an unfamiliar range (up to 1,000), with lin-
ear representation in the familiar range (until 100). However, most sixth graders,
like adults, will use linear representation regardless of range (Siegler & Booth,
2004; Siegler & Opfer, 2003). However, logarithmic representation can be found
in adults due to cultural invention. For example, the Mundurucu, an Amazonian
indigenous tribe with no formal education and with a minimal number word sys-
tem, who at all ages map symbolic and non-symbolic numbers onto a logarith-
mic scale (Dehaene et al., 2008). Furthermore, a linear tendency is also related
to individual differences in numerical abilities. Participants with better numeri-
cal abilities will show preference for linear representation over logarithmic re-
presentation (Booth & Siegler, 2006). Hence, even if number line estimations
should be based upon averbal spatial representations, they are shaped by educa-
tional level, culture, and individual differences.

Most of the studies that used the number line estimation task tested school-
age children or adults (Siegler & Opfer, 2003). Only a few studies have tested pre-
schoolers (Berteletti et al., 2010; Siegler & Booth, 2004). For example, Siegler and
Booth (2004) examined 5- to 6-year-old children, in the range between 0 and 100,
and found a logarithmic representation of that range. Berteletti et al. (2010) tested
even younger preschoolers, beginning from the age of 3.5 years, in the ranges of
1–10, 1–20, and 0–100. They discovered that with development, children’s esti-
mates shifted from logarithmic to linear in the smaller number range. Estimation
accuracy was correlated with knowledge of Arabic numerals and numerical order.

2 Do number line tasks reflect pure averbal
numerical estimations?

Lately, there has been debate about the nature of the number to position task.
Barth and colleagues (Barth & Paladino, 2011; Slusser & Barth, 2017; Slusser
et al., 2013) suggest that the classical number to position task is based upon
proportion–judgment strategies, rather than non-symbolic representations. In
the number to position task participants are asked to place a number on a num-
ber line, and to do it using a base ten understanding of the number line and the
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distance between the number and reference point on the line (e.g., beginning,
mid-point, and end of the line). Proportion estimation strategies involve focus-
ing on a part of the line, thereby producing an estimation bias that is reflected
in more precise estimations closer to the reference point, as compared to farther
away from it. Accordingly, the shift between logarithmic and linear representa-
tion can be explained alternatively by the shift between judgment according to
one reference point (the beginning of the line), to judgment according to two ref-
erence points (beginning and end of the line), and later on judgment according
to three reference points (beginning, mid-point, and end point) (Slusser et al.,
2013). Specifically, the first graders used the beginning of the line as a single ref-
erence point, while the second graders used both endpoints, and typically by the
third grade children’s strategy was similar to adults, as they used multiple refer-
ence points, including both endpoints and the midpoint. One major support for
that view is that across age groups, 1 cycle function and 2 cycle function func-
tions explain the data better (in relation to percentage of explained variance),
compared to logarithmic and linear functions (Barth & Paladino, 2011).

3 Number space associations: Are they
culturally driven or innate?

A variety of evidence, aside from the number line task, supports number space
associations (de Hevia & Spelke, 2010; Hubbard et al., 2005; Wood et al., 2008).
For example, in the parity judgment task, participants make their responses
more quickly on the right for larger numbers and on the left for smaller num-
bers (Dehaene et al., 1993). This effect is called Spatial Numerical Association of
Response Codes (SNARC). The SNARC effect is the main support for the assump-
tion that the mental number line orients from left (small numbers) to right
(large numbers) (Hubbard et al., 2005; Wood et al., 2008).

While the SNARC effect can be found in various tasks and situations (Wood
et al., 2008), there is cultural variation in its direction and even its appearance
(for review, see Göbel et al., 2011). For example, Dehaene et al. (1993) described
an absence or even reversed SNARC effect in Iranian subjects, who read and
write Farsi from right to left. Shaki et al. (2009) tested three groups of partici-
pants that differed in number and reading directions. (1) Hebrew-speaking par-
ticipants, who read numbers from left to right, and Hebrew words from right to
left; (2) Canadians (words and numbers are oriented from left to right); and (3)
Palestinians (words and numbers are oriented from right to left). As expected,
Canadians show associations between left-side space with small numbers, and
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right-side space with large numbers. By contrast, Palestinians showed reversed
associations. Importantly, the Hebrew-speaking participants showed no associ-
ations between space and numbers. These results suggest that reading habits,
for both words and numbers, contribute to the spatial representation of num-
bers (Shaki et al., 2009). Like the cultural variation of the SNARC effect, a cul-
tural variation was found in finger counting direction (Lindemann et al., 2011).
While most Western individuals started counting with the left hand (from left to
right), most Middle Eastern (Iranian) respondents preferred to start counting
with the right hand (from right to left) (Lindemann et al., 2011).

Lastly, right to left number space associations were found in English-speaking
preschoolers prior to formal reading education. For example, young children
showed left to right number space mapping during a non-symbolic numerosity
comparison in the form of spatial–numerical congruity (quicker reaction times to
smaller sets presented on the left side of the screen, and to larger ones presented
on the right side) (Patro & Haman, 2012). Moreover, preschoolers in an im-
plicit, color discrimination task showed the SNARC effect (represent right to
left mapping of number to space; see previous paragraphs) (Hoffmann et al.,
2013; Patro & Haman, 2012).

Notably, cultural variation in the direction of number space associations can
start very early, before the formal acquisition of reading habits (Göbel et al., 2018;
McCrink et al., 2018; McCrink & Opfer, 2014; Nuerk et al., 2015). In a recent study,
American and Israeli toddler–caregiver dyads were tested in a situation of natural
interactions (the infants were 2 years old). In the case of ordering spatial structures
English‐speaking American caregivers were more likely to use left to right spatial
structuring, while Hebrew‐speaking Israeli parents were more likely to use right to
left spatial structuring. The authors concluded that spatial structure biases exhib-
ited by caregivers are a potential route for the development of spatial biases in
early childhood, before experiencing any formal education (McCrink et al., 2018).

4 The current study

The current study tested number space associations using the number line esti-
mation task. We tested a group of young children (4–6 years old), before formal
experience with reading. We used a familiar range for this age group, 1–9. In
the first step, we verified our assumption that 1–9 was a familiar range for
young children. Formal number knowledge was tested. Only children with for-
mal number knowledge for the range of 1–9 were included in our sample.
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All the children in our sample are native Hebrew speakers; Hebrew is read
from right to left. This was found to modulate the direction of number space asso-
ciations, in a task that implicitly connects numbers to space (e.g., the parity task),
in adults (Göbel et al., 2018; McCrink et al., 2018; Nuerk et al., 2015; Shaki et al.,
2009). Hence, the main goal of the present study was to test directionality of num-
ber space associations in Hebrew-speaking children. Estimations were to be given
on number lines oriented from left to right (as expected in Western society) or
right to left (similar to the directionality of number space associations for Hebrew-
speaking preschoolers) (Shaki et al., 2012). We expected to find better estimations
for right to left orientation of the number line than for left to right orientation.
This effect should be modulated by children’s age. Hence, younger children will
show greater preference for right to left orientation than older children.

An additional goal of the present study was to test the effect of presentation
on estimations. Magnitudes were presented as symbolic (Arabic numeral) or
non-symbolic (dots). We expected that estimations would be modified by pre-
sentation. This effect should be modulated by children’s age. It was suggested
that younger children possess two separate representations for symbolic and
non-symbolic quantities, while older children possess a united representation
(Kolkman et al., 2013). Hence, we expected that the effect of presentation on es-
timation should be greater in younger children than in older children.

5 Method

5.1 Participants

Fifty-three subjects from three kindergartens in the central district of Israel partic-
ipated in the study. The children’s mean age was 51.43 months, SD 5.78 months,
ranging between 41 and 60 months. All subjects were native Hebrew speakers
and did not know how to read (an alphabet); 21 of the participants were female
and 32 were male.

5.2 Procedure

Prior to conducting the study, the required approvals were obtained from the
Ministry of Education and from the parents of the children for their participa-
tion in the study.

Directionality of number space associations in Hebrew-speaking children 167



Each of the subjects was examined individually in a separate room. The
tests were conducted in two sessions, each session lasting about 20 min. All
subjects started the test with the pre-knowledge tasks. The order of tasks for
each subject was randomly selected. As for the number line tasks, subjects were
divided randomly into two groups. One group started with a symbolic number
line, and the other group with a non-symbolic number line. Each group was di-
vided into subgroups.

5.3 Task

The study consisted of three parts: (1) pre-knowledge tasks; (2) formal knowl-
edge tasks; and (3) number line tasks. The aim of the pre-knowledge tasks was
to test the required knowledge as a pre-condition for participating in the num-
ber line tasks.

5.3.1 Pre-knowledge tasks

The coding of tasks was done on a trial-by-trial basis. The score of 1 was given if
the child performed with no errors, and a 0 was given for error trial. We averaged
each of the repetitions in every task. Each of the tasks was tested four times.

5.3.1.1 Counting
The children were instructed to count freely up to ten.

5.3.1.2 Matching
The children were instructed to match between cards with quantities, and cards
with numbers from 1 to 10. The numbers were selected randomly for each child.

5.3.1.3 Ordering
The children were instructed to arrange cards with numbers from 1 to 10.

5.3.1.4 Size ratio
The children were presented with two cards with consecutive numbers. They
were asked to indicate which was the larger or the smaller number.
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5.3.1.5 Concepts

5.3.1.5.1 Size
Big – small, bigger – smaller.

5.3.1.5.2 Quantity
Much – few, more – less.

5.3.1.5.3 Space
Close – far. For the absolute concepts, two pictures were presented to the chil-
dren, and for the relational concepts three pictures were presented. The chil-
dren were asked to point out the picture that fits the concept about which they
were asked. The cards contained images of fruits (grapes or bananas) animals
(dogs and horses) and objects (houses).

5.3.2 Formal knowledge tasks

5.3.2.1 Cardinality

5.3.2.1.1 The “How many” task
A brown rabbit doll was presented on a table. The experimenter said: “The rab-
bit likes cucumbers, so I’ll give him some.

Please tell me how many cucumbers I should give him?” The amounts were
varied randomly from 1 to 5.

5.3.2.1.2 “Give –N” task
A gray rabbit doll was presented on a table. The experimenter said: “The rabbit
likes carrots very much. Please give him X carrots.” The amounts were varied
randomly from 1 to 5.

5.3.2.2 Adding one and subtracting one
The purpose of the next two tasks was to test whether the child knows the prin-
ciple of a constant difference of 1 between consecutive numbers. The experi-
menter placed cards with pictures of carrots next to the rabbit and asks the
child to count how many carrots the rabbit has. The experimenter repeated the
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question several times until he was sure the child remembered how many car-
rots the rabbit has. Then the experimenter covered the cards and asked the
child: “Do you remember how many carrots the rabbit has?” If the child didn’t
remember, the experimenter allows him to count again. Then he said: “now I
give/take one carrot from the rabbit.” Then, he added or subtracted one carrot.
Then he asked the child without allowing him to count: “How many carrots will
be left for the rabbit now?”

5.3.2.3 Order relations
Two rabbits are on the table, one brown and one gray. The experimenter gave one
of the rabbits a quantity of cards with pictures of cucumbers (from 1 to 5). The
other rabbit got a smaller (−1) or larger (+1) amount of cucumbers than the first
rabbit. The experimenter asked the child to count and say how many carrots each
rabbit has. Then he asked the child: “What can you do to make the gray rabbit
have the same number of cucumbers as the brown rabbit, and vice versa.” The
child could see and count the quantities of the cucumbers for the two rabbits.

5.3.3 Number line estimation task

Included four subtasks: (1) symbolic orientation from left to right; (2) symbolic
orientation from right to left; (3) non-symbolic orientation from left to right; and
(4) non-symbolic orientation from right to left. The order of subtasks was selected
randomly. Each trial was given on separate sheets of paper with a 13.5 cm. line
on it, with one end labeled as 1 or () and the other end labeled as 9 or (). The
children got four cards with numbers 3, 4, 6, and 7, one at a time, for symbolic
and non-symbolic presentation and for congruent and incongruent directions.
They were requested to locate the number by a vertical hatch mark on each sheet
of paper. Before performing the task, the children performed practice trials with
the numbers 1 and 8. The experimenter practiced the task with the children until
he was sure the child understood what to do.

5.4 Stimuli

5.4.1 Cubes

In the matching, cardinality, adding one, subtracting one, and order relation
tasks, we used cubes. In each task different color cubes were selected, to avoid
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the possibility of children attaching numerical values to certain colors. All the
cubes were about 1 × 1 cm in size.

5.4.2 Tabs

In the Matching and Ordering tasks, numeral tabs from 1 to 10 were used. In the
size, quantity, and space tasks, the images on each tab were different and con-
tained vegetables or fruits (lettuce, onions, carrots, potatoes, grapes, and ba-
nanas). All tabs were about 10 × 8 cm. in size.

5.4.3 Dolls

Brown and Gray Rabbit dolls about 10 × 20 cm. in size.

6 Results

6.1 Pre-knowledge

All the children in the sample were able to count to ten, count objects until 7 (as
a minimum), and understood numerical concepts of size, quantity, and space.
All of the sample could match quantity to Arabic numerals. Most of our sample
could understand ratio relations (98%). Most of the children could order groups
by size (94%).

6.2 Number line understanding

The entire sample understood the cardinality principle. However, formal under-
standing of the adding one principle was found in some of the children (73%).
An even smaller proportion of the children were able to understand the sub-
tracting one principle (34%). Similarly, only some of the children understood
the role of numbers in representing ordinal relations (82%). Please note that
none of the variables were related to age (see Tab. 1).
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6.3 Number line

6.3.1 Functions fit

The fit statistics of linear, logarithmic, 1 cycle (0.8), and 2 cycle (0.8) functions
were computed to analyze the pattern of estimates. We computed these fit sta-
tistics for each individual child. We first aimed to exclude children whose fit
statistics were negative or less than 0.55 (see the profile analysis).

6.3.1.1 Profile analysis
We examined the profiles of children related to their function fit statistics. To
characterize profiles we used the linear fit, examining whether linear fit for each
of the study conditions was greater than 0.55 (symbolic congruent (left to right),
symbolic incongruent (right to left), non-symbolic congruent (left to right), non-
symbolic incongruent (right to left)). Children in profile 1 (N = 5) had only 1 condi-
tion with fit greater than 0.55. Children in profile 2 (N = 7) had 2 conditions with
fit greater than 0.55. Children in profile 3 (N = 12) had 3 conditions with fit greater
than 0.55. Children in profile 4 (N = 30) had 4 conditions with fit greater than
0.55. We excluded children from profiles 1 and 2 from the other analysis.

Tab. 1: Descriptive statistics for: (A) Pre-knowledge and (B) Formal number
line understanding. The correlations between scores in these tests and age
failed to reach significance (see the last column for the correlations).

Variable Minimum Maximum Mean Std.
Dev

Age
correlations

A. Matching    

Counting    

Ratio   . .

Ordering .  . . .

Mathematical concepts    

B. Cardinality    

Adding one .  . . −.

Subtracting one   . . −.

Order relations .  . . .
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6.3.1.2 ANCOVA for individual level fits
A three-way analysis of covariance (ANCOVA) with a mean r value of fit to
power analysis was computed, with function (1 cycle / 2 cycle/ linear / logarith-
mic), presentation type (symbolic/ non-symbolic), direction (congruent from
left to right/ incongruent from right to left) and the age of the children serving
as a covariant. The effect of presentation reached significance [F(1, 39) = 9.22,
partial η2 = .19, p < .01]. The fit was better for symbolic (mean = 0.91, SD = 0.18)
than for non-symbolic (mean = 0.78, SD = 0.39). The effect of directionality was
also significant [F(1, 39) = 5.27, partial η2 = .12, p < .05]. The fit was better for
incongruent direction (right to left) (mean = 0.86, SD = 0.26) than for congruent
(left to right) direction (mean = 0.81, SD = 0.32). The interaction between presenta-
tion and direction was also significant [F(1, 39) = 4.64, partial η2 = .11, p < .05]. The
differences between congruent and incongruent fit were not significant in the sym-
bolic presentation (mean = 0.90, SD = 0.14, mean = 0.9, SD = 0.13 for congruent
and incongruent respectively, t(41) = −.18, p = .86). However, in the non-symbolic
presentation, fit for incongruent presentation (mean = 0.83, SD = 0.23) was better
than for congruent presentation (mean = 0.71, SD = 0.39), with t(41) = −2.4, p < .05.

The effect of age interacted with presentation [F(1, 39) = 7.6, partial η2 = .16,
p < .01] and direction [F(1, 39) = 4.43, partial η2 = .10, p < .05]. The interaction
between age and congruency was also significant [F(1, 50) = 6.10, partial η2 = .1,
p < .05]. The correlation between age and congruent (left to right) direction was
significant r(40) = .40, p = .009. Fit was better as age increased. However,
there were no significant correlations for the incongruent (right to left) direc-
tion r(40) = .10, p = .52. Similarly, the correlation between age and non-symbolic
direction was significant, r(40) = .41, p = .007. Fit was better as age increased.
However, there were no significant correlations for the symbolic representa-
tion r (40) = −.09, p = .56. Please note that the effects of function and interac-
tion with function were not significant (see Fig. 1).

6.3.1.3 Percentage of absolute error
Children’s estimation accuracy was computed as percentage of absolute error
(PE). This was calculated with the following equation (Siegler & Booth, 2004):

PE = estimate− target number
scale of estimates

× 100

A two-way analysis of covariance (ANCOVA) with mean PE was computed,
with presentation type (symbolic/non-symbolic), direction (congruent/incon-
gruent), and the age of the children serving as a covariant. The effect of direc-
tion reached significance [F(41) = 7.39, partial η2 = .15, p < .05]. PE were larger
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Fig. 1: (a) Function fit as a function of presentation (symbolic or non-symbolic) and direction
(congruent from left to right or incongruent from right to left). In the symbolic representation
the fit was very large regardless of direction. However, in the non-symbolic representation, fit
was larger for incongruent representation than for congruent representation. Correlations
between age and function fit in the congruent condition left panel (b) and non-symbolic
representation right panel (c). Both are positively correlated, as age increases the fit is better
both in the congruent condition and in the non-symbolic presentation. The correlations
between incongruent direction and symbolic representation and age were small and
non-significant.
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in the congruent direction (left to right) (mean = 0.56, SD = 2.04) than the incon-
gruent direction (right to left) (mean = −0.34, SD 2.43). This effect was modulated
by age [F(1, 41) = 6.27, partial η2 = .13, p < .05]. Age correlated with incongruent
direction (right to left) errors, r (41) = .37, p = .015, but not with congruent direc-
tion (left to right), r (41) = −.063, p = .69.

The interaction between symbolic presentation and age was marginally sig-
nificant [F(1, 41) = 3.47, partial η2 = .08, p = .07] (see Fig. 2).

7 Discussion

The present study examined a number line estimation task, in a young group
of Hebrew-speaking children (starting from 4 years old). Due to the young age
of the children, we used a familiar range for that age: 1–9. Two conditions were
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Fig. 2: Children’s estimation accuracy was computed as percentage of absolute error (PE). (a)
PE as a function of presentation (symbolic or non-symbolic) and direction (congruent from left
to right or incongruent from right to left). PE were larger in the congruent direction than the
incongruent direction. (b) Age correlated with incongruent direction errors, but did not
correlate with congruent direction errors.
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manipulated: (1) presentation: symbolic or non-symbolic (Arabic numerals or dots),
and (2) directionality: congruent to the mental number line (from left to right), or
opposite to the classical number line (from right to left).

We first examined general numerical abilities, as a prerequisite for partici-
pation of children in our sample. We found that the entire group had basic un-
derstanding of quantities: they were able to count freely, and all of them could
count objects and understood mathematical concepts. This finding confirmed
our assumption that for all the children in our group, 1–9 was quite a familiar
range. However, in relation to the number line estimation task, 23% of the sam-
ple had no number line representation (linear, logarithmic, 1 cycle, or 2 cycle)
in that familiar range, reflecting the dissociation of formal number knowledge
and number space associations in young children.

We calculated functions fit (linear, logarithmic, 1 cycle or 2 cycle) on the
individual level. We did not discover any preference (in terms of explained vari-
ability) for a specific function or interaction with specific function and the other
variables. This finding may possibly be due to the small number of data points
to estimate function fits in the present study. Hence, we will not refer to differ-
ences between functions fits from now on.

Two variables explained estimations. First, directionality: in the condition of
number line orientation from right to left, we found better fits and lower estima-
tion error rates than for orientation of the number line from left to right. Fit of left
to right orientation improved with age. There was no such correlation with right
to left orientation. In what follows, we suggest that Hebrew-speaking children
possess a cultural bias for number space associations. Second, presentation af-
fected estimation. Symbolic presentation had better fits than non-symbolic pre-
sentation. Estimations for non-symbolic presentation improved with age. There
was no such correlation with symbolic presentation. In what follows, we suggest
that young children possess two separate systems for processing of exact sym-
bolic information and approximate non-symbolic information.

7.1 Dissociation of formal number knowledge and number
space associations, in young children

Most studies on number line estimation tested children beginning from 5 years
old (Siegler & Booth, 2004). To the best of our knowledge, only one other study
tested young children (Berteletti et al., 2010), as in the present study. Similar to
the present findings, 27% of their sample had no representation of small range
(1–10). The present study has shown, for the first time, that children with formal
knowledge of numbers could lack number space associations. However, formal
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knowledge of (1) order relations and (2) adding and subtracting one rules was
not fully developed in our sample, hinting at possible relations between these
formal number line abilities and number space associations.

7.2 Directionality of number space associations
in Hebrew-speaking children

In the present study, Hebrew-speaking children had better and more accurate
fit when the number line orientation was from right to left, compared to the left
to right orientation. It has been previously found that Hebrew-speaking adult
participants differ from English-speaking participants in their number space as-
sociations (Shaki et al., 2009). While English-speaking participants associate
small numbers with the left-side space and large number with the right-side
space, Hebrew-speaking participants showed reversed associations or no asso-
ciations (but see Feldman et al., 2019; Zohar-Shai et al., 2017).

This cultural directionality was associated with reading habits (Hebrew words
are oriented from right to left). Specifically, the associations between number and
space originate from directional counting preference (Göbel et al., 2018). Initially,
there is a strong relation between reading direction and directional counting pref-
erence (i.e., most of the Hebrew-speaking participants start counting from the
right, while most of the English-speaking participants start counting from the
left), and later, directional counting preference determines the direction of num-
ber space associations (Göbel et al., 2011).

Please note, however, that we tested young children (as young as 4 years
old) before formal reading education. How can cultural orientations emerge in
young children? (Nuerk et al., 2015). According to Shaki et al. (2012), counting
biases exist before reading acquisition in preschoolers, and were found to be
modified by early reading experience (Shaki et al., 2012). About 72.9% of the He-
brew-speaking preschoolers started counting from right to left. Importantly, the
rates dropped significantly to 55.8% of the Hebrew-speaking children attending
school (Shaki et al., 2012). A common explanation for acquiring cultural counting
bias, prior to school, is children’s observation of adult’s actions. Children watch
adults reading stories to them, and observe them pointing at words and turning
pages (Göbel et al., 2018). Moreover, it has been found that adults present spatial
structures from left to right or from right to left according to their culture, demon-
strating it to infants as young as 2 years old (McCrink et al., 2018).

Cultural bias for number space associations was found in several implicit
number space association tasks, such as parity judgment (Dehaene et al., 1993).
This task does not deliberately require participants to present numbers spatially.
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However, there are no indications, so far, of cultural bias for number space asso-
ciations, in a task that requires participants to represent numbers spatially, such
as the number line estimation task. Here, for the first time, we revealed a prefer-
ence for orientation of the number line from right to left in Hebrew-speaking
children.

Please note that similar to the present finding, which demonstrates cultural
bias in a number line estimation task in young children, the number line estimation
task was found to be sensitive to cultural bias due to language structure of multi-
digit number words. In German, most multi-digit numbers are inverted (e.g., 48 →
“eight-and-forty”). However, there is no inversion in Italian number words. Accord-
ingly, in the first grade, it was found that Italian children were more accurate in
number line estimations than German-speaking children (Helmreich et al., 2011).

7.3 Dissociations between symbolic and non-symbolic
processing in young children

The current results demonstrated that estimations of spatial locations of number
are more precise when numbers are represented as Arabic numerals rather than
as dots. This indicates that in young children, two numerical systems exist next
to each other: (1) exact symbolic, (2) approximate non-symbolic. Kolkman et al.
(2013) have already tested the effect of symbolic and non-symbolic presentation
on estimations in a number line task in young children. They tested it, along with
other tasks, longitudinally in 4- to 6-year-old children. Specifically, the authors
tested whether the data can be explained best by a three-factor model that in-
cludes symbolic, non-symbolic, and mapping factors, or one united model. For 4-
to 5-year-olds, the three-actor model best explained the data, while at the age of
6 the united model best explained the data. Accordingly, the authors concluded
that the developmental courses of non-symbolic and symbolic skills are all sepa-
rate at a younger age and integrated by the first grade.

The finding of more precise estimations when numbers are represented as
Arabic numerals instead of dots is not in line with the view that number line
estimation reflects activation of the mental number line (Dehaene, 1992; De-
haene et al., 2003, 1999; Halberda & Feigenson, 2008; Halberda et al., 2008).
According to the triple code model (Dehaene, 1992), the mental number line is
a-modal, and representation of quantity on the mental number line is based
upon translation of a specific number representation to an abstract quantity.
Hence, contrary to the present results, estimations should not be modulated by
presentation notation (symbolic or non-symbolic). Please note, however, that
contrary to the triple code model that suggests only an abstract representation
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of quantity (Dehaene, 1992) Cohen Kadosh et al. (2007) suggested that the right
parietal lobe possesses a notation-specific representation of symbolic and non-
symbolic presentations. This view can shed light on the differences between the
precise representation of Arabic numerals and the approximate representation
of dots that was discovered in the present study.

Lastly, the triple code model (Dehaene, 1992) as well as the findings of
Cohen Kadosh et al. (2007) refers to processing by a developed adult brain,
rather than a child’s developing brain. Hence, it might be only a developmental
phase of two numerical systems for processing of exact symbolic and approxi-
mate non-symbolic quantities, that will later be united into one system (Kolk-
man et al., 2013).

8 Conclusions and limitations

The present study tested number line estimation in young Hebrew-speaking chil-
dren. Innovatively, we found more precise estimations when the number line was
orienting from right to left. This finding is in line with the implicit number space
association task that found cultural bias of preferences for right to left directions
of the number line in Hebrew-speaking adults. This result in Hebrew-speaking
adults is associated with reading habits; accordingly, we assumed that the expla-
nation is parallel with the present study. However, we did not directly compare
differences between number space associations between Hebrew-speaking chil-
dren (Hebrew words are oriented from right to left) and English-speaking chil-
dren (words are oriented from left to right). Hence, it will be important, in future
studies, to examine directly number space associations in the number line esti-
mation task of children from different cultures.

We found more precise estimations when numbers are represented as Arabic
numerals rather than dots. Accordingly, we suggested that in young children, two
numerical systems exist, one next to the other: (1) exact symbolic, (2) approximate
non-symbolic. It would be important to see whether preferences for symbolic repre-
sentation in number line estimation change developmentally, and whether these
two systems integrate into one united system in later development.
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Helga Klein

Exact number representations in first
and second language

One of the major questions in the field of cognitive psychology is the extent to
which our thought is dependent on, or formed by, the language we speak. In
the mid-1900s, proponents of the linguistic relativity principle claimed that dif-
ferent languages with distinct grammatical properties and lexicons would have
a major impact on the way the native speakers of that language perceived real-
ity. This idea was based on the work of the anthropologists Sapir (1949), and
Whorf (1956), and named the “Sapir-Whorf-Hypothesis” by Hoijer (1971). The
opposite view is expressed by the theory of cultural universality (Au, 1983),
meaning that basic concepts innate to human beings can be found in every cul-
ture irrespective of linguistic differences.

The concept of number seems to be a good example for a theory of cultural
universality at first sight, as all known cultures have developed at least some
number words, and even pre-verbal infants and animals are able to single out
the larger of two sets based on the respective number of items. The term “nu-
merosity” was used by Dehaene (1997) for the awareness of quantity. Yet, it is
still not clear whether nature has provided us with the concept of exact number
or if this is a cultural acquirement based on the acquisition of verbal counting
procedures.

This chapter will review evidence supporting the language relativity hypothe-
sis for the instance of exact number representations in a small number range (up
to 10); other chapters in this book focus on the linguistic specificities of multi-digit
number word systems and other aspects of mathematics Bahnmüller, this volume;
Dowker, this volume). Presenting studies from different fields, this chapter will
propose that the concept of exact numerosity is based on natural language, and
furthermore that linguistic specificities even put constraints on the form of exact
numerosity representations. The first focus is on the finding that grammatical
properties shape the development of the concepts for one versus two, three, and
more. Second, studies that describe a representational change in adults who learn
a new number word system (including symbols for numerosities higher than four
or five) will be presented. Third, differences in arithmetic fact retrieval in both first
and second language will be reviewed. These findings will be discussed in the
light of the “access-deficit-hypothesis” regarding developmental dyscalculia, sug-
gesting that children with mathematical difficulties may have a problem in access-
ing number magnitude from symbols (e.g., presenting with longer response times
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or less matured reaction time patterns) rather than in processing quantities per se
(Rousselle & Noёl 2007). The chapter concludes with the proposal that using ca-
nonical finger configurations provide a language-independent means of symboliz-
ing exact quantities for children presenting with problems in this area.

1 The role of language for the ontogenetic
development of exact numerosity concepts in
early childhood

The mapping of number words to their corresponding numerosities develops grad-
ually: First, children understand the cardinality meaning of the number word
“one,” then they differentiate “two” from other number words, next comes “three,”
and at some point the relationship between counting and numerosity is understood
and the cardinality principle generalizes to all number words in the counting se-
quence. Wynn (1990, 1992) named these levels 0-knowers, 1-knowers, 2-knowers,
3-knowers, and cardinality-principle-knowers. According to Wynn (1990), children
acquire the last stage at an approximate age of 3.5 years and use counting to refer
the numerosities of sets only from this stage onward. She argued that mapping
number words and their respective numerosities is a kind of associative learning
process which is possible because children already know that number words corre-
spond to specific, unique, and inherently ordered numerosities, even before they
map each word to its numerosity (Wynn, 1992). The reason why children learn to
map smaller number words to their numerosity first would be the higher frequency
of smaller numbers in the children’s environment (Wynn, 1990). However, there
may also be language-related aspects at play. The scientific controversy regarding
the role of language for the first developmental steps toward an exact number re-
presentation is reviewed in the next sections.

1.1 The language-irrelevant hypothesis

According to the language-irrelevant hypothesis, the dominant role in acquiring
the concept of cardinality should lie in recognizing the equivalence of numeros-
ities of sets via one-to-one correspondence. As first prominent proponents of
this view, Gelman and Gallistel (1978) stated that preschool children already un-
derstand the principles underlying counting due to their correspondence to this
pre-verbal numerosity coding mechanism, and young children’s failure to execute

184 Helga Klein



the counting process successfully would occur only because of high performance
demands (Greeno et al., 1984; but see Le Corre et al., 2006 for opposite results).
According to this view, mapping number words and their respective numerosities
is just a kind of associative learning. The reason why children learn to map smaller
number words first should be the higher frequency of smaller numbers in the
children’s environment. Butterworth (2010) also postulated that pre-counting chil-
dren and animals possess an ordered sequence of numerosity concepts (numeros-
ity coding). Furthermore, in this pre-verbal numerosity coding it is assumed that
the individual is able to establish numerical equivalence of two sets through one-
to-one correspondence. He emphasized this view with the following statement:
“The concept of fiveness pre-exists acquisition of the knowledge that the word five
refers to the numerosity fiveness” (p. 538).

1.2 The strong language hypothesis

The perspective opposing the language-irrelevant hypothesis is held by the strong
language hypothesis (see Brannon & Van de Walle, 2001 for an overview of this
controversy). This strong language view is characterized by the assumption that
the concepts of exact number and even abstract numerosity can develop only as a
consequence of cardinality understanding, which in turn has been shown to result
from acquiring the verbal counting process (Wynn, 1990, 1992). For example, Bran-
non and Van de Walle (2001) showed that 2-year-old children could not make suc-
cessful ordinality judgments (determining which of two sets contains more items
after being asked which one was “the winner”) as long as they had not acquired
any number word knowledge.

Most researchers in favor of the strong language hypothesis argue that for
success in their tasks, children have to explicitly draw their attention to the nu-
merosity of the stimuli. Furthermore, they postulate that number becomes a sa-
lient dimension of the environment to which children will consciously attend
only after they have developed at least some cardinality understanding (Bran-
non & van der Walle, 2001; Rousselle et al., 2004).

1.3 The weak language hypothesis

An intermediate view within this debate is represented by the weak language hy-
pothesis (Brannon & Van de Walle, 2001). The most important representative of
the weak language hypothesis is the bootstrapping theory (Carey, 2001; Spelke &
Tsivkin, 2001; see next paragraph). Similarly to the strong language hypothesis,
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this theory states that children are not able to represent large exact numerosities
before they have acquired the cardinality meaning of numbers (Sarnecka & Carey,
2008).

“Bootstrapping” describes the processes by which children learn the map-
ping of number words to their corresponding numerosities (Wynn, 1990, 1992)
building on the following cognitive prerequisites: (i) the ability to attentively
track up to three objects in parallel via representing each item with a separate
symbol (object file tracking system or OTS), (ii) the ability to learn meaningless
ordered word lists (like hickory-dickory-dock or one-two-three-four), and (iii)
the ability to understand quantity markers in language such as the singular/
plural distinction. The role of quantity markers will specifically be reviewed in
Section 1.4.

The most important difference between the strong and the weak language
hypotheses is that according to the bootstrapping view, children can represent
small numerosities up to three exactly before they have learned how to count.

Evidence for the weak and strong language hypotheses comes from studies
showing that in some tasks toddlers don’t seem to know that number words refer
to specific numerosities (Condry & Spelke, 2008; Sarnecka & Gelman, 2004),
which would not be expected by the language-irrelevant hypothesis. More specif-
ically, Sarnecka and Gelman (2004) showed that children without full cardinality
understanding did not know that equal sets must have the same number word,
although they judged that the application of unmapped number words changes
when numerosity changes (by adding or taking away an object of a set). Further-
more, Condry and Spelke (2008) found that young children did not know that a
large unmapped number word (like “eight”) continues to apply to a set whose
members are rearranged or that a specific number word ceases to apply if the set
is increased by one, doubled, or halved.

1.4 The role of grammar for the development of cardinality
understanding

The bootstrapping theory explicitly states that the ability to understand singu-
lar/plural markers is a prerequisite for the mapping of number words to their
corresponding numerosities (see above).

Koudier et al. (2006) investigated the developmental sequence of singular/
plural distinctions in 20- to 36-month-old infants using a preferential-looking
paradigm. In their experiment, children were presented with sets containing
either one item or more than one item concurrent to hearing different senten-
ces asking them to look: These sentences marked number either only with
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noun morphology (“Look at the blicketS”/“Look at the blicket”) or redundantly
with noun morphology, lexical quantifiers, and verb morphology (“Look, there
ARE SOME blicketS”/“Look, there IS A blicket”; Koudier et al., 2006: (1). What
they found was that 20-month-old infants were not able to look at the set cor-
responding to the sentence, 24-month-old children looked at the correspond-
ing set only in the redundant sentence condition, and the 36-month-olds
succeeded even in the noun morphology only condition. The authors con-
cluded that “infants first come to understand the semantic force of the singu-
lar/plural distinction in the months just before their 2nd birthday” (Koudier
et al., 2006: 2).

Similarly, Barner et al. (2007) could show that children up to the age of
20 months failed not only to comprehend singular-plural morpho-syntactic cues
in a manual search task, but did not even distinguish sets of 1 from 4, although
they were able to do so within the limit of object-based attention (e.g., 1 vs. 3). By
the age of 22 months, some children were able to distinguish 1 from 4 in both
verbal and nonverbal trials. Most interestingly, success in the manual search task
in the age group of 22–24 months was due to the children who were beginning to
produce plural nouns according to parental reports, indicating that the linguistic
and conceptual abilities became available at around the same time.

These studies confirm that a specific grammatical aspect, namely, the num-
ber of different plural markers used within a sentence, and the individual abil-
ity to understand and use plural markers, play a role in the development of
exact number representations. Interestingly, this effect can be found among
children of different ages within one language community, and also in cross-
language comparison studies.

Languages differ in the number of plural markers, with some using hardly
any – like Japanese. Sarnecka et al. (2007) compared children learning English,
Russian (which uses plural markers), and Japanese within the age range of 2-1/2
to 3-1/2 years to match the one from Wynn’s (1990) study. Children were asked
to complete counting tasks and a task where children are required to give a spe-
cific amount when asked, also known as a Give-N task. Their main finding was
that more English and Russian learners than Japanese learners were 1-knowers,
2-knowers, 3-knowers, and cardinality-principle-knowers. Their interpretation
was that the learning of the exact number concepts of one, two, and three is
rather supported by the conceptual framework of grammatical number than im-
plicit understanding of integers.

These developmental studies (Koudier et al., 2006; Barner et al., 2007;
Sarnecka et al., 2007) strongly support the notion of linguistic constraints on
the development of numerical concepts. On the other hand, the object file tracking
system, which allows us and even pre- and nonverbal groups to individuate up to
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three in most children or four in most adults objects in parallel, seems to have
posed constraints on the development of grammatical aspects regarding num-
ber morphology. Franzon et al. (2019) compared the number morphology of
218 different languages. The possibilities of morphological expressions for
number values included few (paucal), two (dual), three (trial), and possibly
sometimes even four (quadral) options. They concluded that nonverbal nu-
merical cognition, specifically the object tracking system, constitutes a core
part of language when it comes to numerical expressions. These two notions
may seem contradictory at first sight, posing a “chicken-and-egg-problem”:
How can numerical concepts, which seemingly rely on language properties for
their individual development, have constrained the cultural development of the
same language properties? However, one should take into consideration that the
mechanisms underlying ontogenetic and phylogenetic (including cultural) devel-
opment need not be identical.

The next section will focus on observations obtained in adults whose first
language contains no words for numerosities larger than four or five, investiga-
tions of their restricted numerical concepts, and the effect of learning a more
elaborate number word system in a second language. These studies can be seen
as providing crucial evidence for the language dependency of number concepts,
even if the results of the developmental studies presented so far may not be
conclusive.

2 The impact of number word systems
on exact number representations

Strong evidence for language determining thought at least in one instance
comes from observations in two independent Amazonian cultures with very re-
stricted counting systems, namely, the Pirahã (Gordon, 2004) and the Mundurukú
(Dehaene et al., 2008; Pica et al., 2004), and from deaf individuals who do not
have access to a usable model for spoken or signed language, but live in a numer-
ate culture (Spaepen et al., 2010).

Members of the Pirahã tribe use only number words for one, two, and many
(Gordon, 2004). In informal observations they show no recursive use of their re-
stricted count system, which means that they do not combine these words to de-
pict larger quantities. They use fingers to supplement oral enumeration, but
inaccurately even for numbers smaller than five. Furthermore, the word for one
is sometimes also used to denote small quantities such as two or three, ap-
pearing to mean “roughly one.” More formal examinations revealed that their
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restricted number word system limits their ability to exactly enumerate sets
exceeding two or three items. For tasks requiring additional cognitive process-
ing, their performance deteriorated even in this small number range. Gordon’s
(2004) interpretation of these results was that the Pirahã used magnitude estima-
tion to solve the tasks, meaning that they did not use counting even in the small-
est number range. He concluded that humans who are not exposed to a number
word system cannot represent exact quantities even for medium-sized sets of four
or five.

The Mundurukú lack number words for quantities beyond five, but are able
to compare and add large quantities far larger than their naming range (Pica
et al., 2004). However, they fail in exact arithmetic tasks using numbers larger
than four or five. The authors come to the same conclusion as Gordon (2004),
namely, that language plays a special role in the emergence of exact number rep-
resentations during development. They also state that the availability of number
names may not be sufficient to promote a mental representation of exact number,
but that the crucial factor would be the existence of a counting routine – which
the Mundurukú do not have.

Even stronger evidence for the role of counting for the development of exact
numerical representations comes from observations of deaf adults living in a nu-
merate society, leading to the same conclusions as the two studies described
above. The deaf individuals investigated by Spaepen and colleagues (2010) live
in Nicaragua. Despite having no language model at hand, they have access to
other aspects of culture which may foster the development of number concepts,
for example, observing other people’s hand gestures. These deaf adults have de-
veloped their own gestures for communication, called homesigns, which they
also use to communicate about number. The four observed adult men showed no
congenital cognitive deficits, performed as well as hearing siblings and friends
on mental rotation tasks, held jobs, made money, and interacted socially with
hearing friends and relatives. However, the homesigners did not consistently ex-
tend the correct number of finger for set sizes larger than three. Furthermore,
they did not always correctly match the number of items in one set to a target set
containing more than three items. Overall, the homesigners failed to appreciate
the one-to-one correspondence guaranteeing numerical equivalence. The authors
concluded that individuals who lack input from a conventional language struc-
ture, do not spontaneously develop representations of exact numerosities above
the subitizing range (three or four items, which can be individualized in parallel
due to the object tracking system). They speculated that although the homesign-
ers at least partially mastered the monetary system (identifying currency and
rating relative values), their numerical homesigns are not embedded in account-
ing routine. Thus, the homesigners lacked summary symbols for each integer
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representing the cardinal value and the principle of the successor function (that
each natural number n has a successor that is exactly n + 1).

However, the question remains what happens if adult humans without a
counting routine, without number words for numerosities beyond five and thus
without concepts for exact quantities larger than that are exposed to a more
elaborate number word system. If language really is the constituting factor for
exact numerical representations, experience with a counting system should be
sufficient for that even in adults.

Dehaene and colleagues (2008) tested 33 Mundurukú children and adults
of varying exposure to formal education and thus with varied exposure to the
Portuguese number word system. Using number line tasks in different modali-
ties (sets of dots, sequences of tones, Mundurukú number word [composites],
and Portuguese number words for bilinguals), they could show that mere expo-
sure to the Portuguese counting system was not enough to evoke an exact (lin-
ear) magnitude representation on a number line task. Only the individuals with
the highest number of years of formal education – who had experience with ad-
dition and subtraction procedures – were able to provide with exact responses
for Portuguese number words. The authors concluded that experience with
arithmetic and measurement yields the intuition that all consecutive num-
bers are separated by the same interval + 1. However, even the most educated
Mundurukú participants of this study did not extend this principle to the
Mundurukú number words, speculatively because this cultural device “does
not emphasize measurement or invariance by addition and subtraction as de-
fining features of number, contrary to Western numerical systems” (Deheane
et al., 2008: 1219).

So far, it is safe to conclude that there is a very strong argument that the
development of exact numerical representations is dependent on language.
For the smallest number range, developmental studies imply a crucial support-
ing role of morphological number markers (most importantly, plural markers).
For numbers beyond the subitizing range, a counting routine seems to be nec-
essary to develop a concept of the successor function of numbers, which in
turn allows for exact number representations. However, the presented evi-
dence from bilingual Mundurukú speakers implies that this may not be the
whole story and that experience with adding and subtracting could play an
important role as well. Hence, the next section will explore the relation be-
tween language and arithmetic.
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3 Arithmetic fact retrieval in first
and second language

Since the 1990s more and more scientific evidence points to the language-
sensitivity – if not language dependency – of arithmetic fact retrieval (Bernardo,
2001). Interestingly, one of the first experimental studies showed that a first-
language advantage in bilinguals is usually only found for arithmetic (response
times and accuracy), but not for the manipulation of number words in general
(Frenck-Mestre & Vaid, 1993). Arithmetic facts were usually highly overlearned
and automatized only in the first language (L1) and showed weaker associations
between problems and answers in the second language (L2).

3.1 Language-sensitivity of arithmetic fact retrieval depends
on language of instruction

However, it is important to note that this language-sensitivity is not constituted
by an advantage of L1 in general, but that the crucial factor is the language of
first arithmetic instruction and/or the language of training (Bernardo, 2001; see
also Saalbach et al., 2013). Bernardo (2001) noted that this effect is not consistent
with abstract, format-independent number fact representations. However, it fits
into the encoding complex model by Campbell and Clark (1988). Saalbach and
colleagues (2013) pointed out that it is also in line with the triple-code model by
Dehaene and Cohen (1997), which assumes an abstract, format-independent re-
presentation of numerical quantity, but not of arithmetic operations.

3.2 Language effects occur in trained exact,
but not in trained approximate, arithmetic operations

Spelke and Tsivkin (2001) observed the same training-language effects for arith-
metic operation in adult bilinguals, but added an important new specification.
Notably, they found language switching costs (slower responses for problems
presented in the untrained language) for trained exact arithmetic operations
(like repeatedly adding 54 or 63 to a given number, addition in base 6 or base 8),
but not for trained approximate arithmetic operations (like approximation of cube
roots, approximation of logarithmic bases). They proposed that natural language
contributes to the representation of large, exact numbers but not to our biologically
inherited approximate number representations and offered a possible explanation
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for this special role of language within the domain of numerical representations.
The authors argued that language was the first evolutionary developed representa-
tional system allowing for the combination of input from different modalities
(e.g. spatial layouts and smell). They further elaborated that the two known bio-
logical (and thus language-independent) core systems for exact number represen-
tations, namely, an approximate system for large numerosities and a small number
system (see above), both fail to represent all the complementary aspects of number.
The “large approximate system fails to represent each member of a set as a persist-
ing individual,” whereas the “small number system fails to represent a group of
individuals explicitly as a set” (Spelke & Tsivkin, 2001: 82). They suggested that
the natural counting system may allow humans to combine these two distinct
types of representation into a representation of sets of individuals whose cardi-
nality increases as new individuals are added to the set. As language was neces-
sary to link the two limited systems, the new hybrid system – which captures the
benefits and overcomes the limits of each language-independent system – depends
on language.

In summary, Spelke and Tsivkin (2001) suggest that the symbolic nature of
the verbal counting system brings together the distinct features of small exact
numerosity processing and large number approximation. This theory provides
an explanation for all of the phenomena described so far in this chapter. How-
ever, at least for the context of bilingual or multilingual instruction, the ques-
tion remains what happens if individuals have been overlearning arithmetic
facts in a second language for years.

3.3 Developmental change of language effects
for arithmetic fact retrieval

Van Rinsveld et al. (2015) investigated this phenomenon in Luxembourg, where
the German-speaking individuals usually attend the first six years of primary
school with instruction in their mother tongue, but then switch to French-
language secondary education. Implementing a cross-sectional study design
using five different age groups from the seventh grade to adulthood, they
could show that simple addition fact retrieval was almost equally accurate
after extended practice in French, but still faster in German. For addition includ-
ing a carry procedure, even the young adults were faster and more accurate in
German, although the performance differences between the two languages di-
minished somewhat.

So in the case of highly efficient bilinguals who can solve simple arithmetic
facts almost equally well in two languages, the question remains whether they
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will build new associations within the numerical fact networks in the second
language, or become more and more efficient in translating from one language
into the other (Lin et al., 2012; Wang et al., 2007), or will use a different strategy
altogether?

3.4 Which strategy is used for arithmetic fact retrieval in L2?

The possible relations between arithmetic fact representations in different lan-
guages and strategies used for fact retrieval in L2 have been investigated using
functional magnetic resonance imaging (fMRI) studies (Van Rinsveld et al., 2017)
and EEG studies using event-related potentials (ERP: e.g., Salillas & Wicha, 2012).
fMRI studies measure differences in oxygenated and de-oxygenated blood flow in
the brain and thus allow for three-dimensional localizations of active regions in
the functioning human brain with high spatial, but low temporal resolution (Wind-
horst & Johannson, 2013). Event-related potentials use EEG to measure electrical
brain activity following specific “events” and have a very high temporal, but low
spatial, resolution (Windhorst & Johannson, 2013).

These studies foster the conclusion that arithmetic in L2 is mediated by the
Arabic digit code and not the verbal code of L1 (as expected if participants
would translate the problems into L1). Specifically, van Rinsveld and colleagues
(2017: 27) asked participants to solve visually and auditively presented arithme-
tic problems in L1 and L2 in the scanner and observed additional brain activa-
tion in the auditive task in the L2 condition compared to the other conditions in
occipito-temporal areas (known to underlie the processing of Arabic digits) and
in the precuneus area (important for visual imagery). They concluded that arith-
metic in L2 may be performed “with the help of a mental visual support, such
as via imagining the heard numbers in their visual symbolic form.”

Summing up, both the development of large, exact number concepts and
the mental manipulation of exact quantities (arithmetic) seem to be language-
dependent. Furthermore, diminishing the costs of mental arithmetic in L2 (or
more specifically in a language different from the one used in first mathematical
instruction at school) appears to rely on switching to another representational
format altogether, namely, to the visual symbolic code of Arabic digits. As the
next section will show, this might generate even more problems for bilingual
learners who already have mathematical difficulties.

Exact number representations in first and second language 193



3.5 The role of symbolic number processing for arithmetic

In 2007, Rouselle, and Noёl presented a theory claiming that a core deficit in chil-
dren with developmental dyscalculia may not lie in their approximate number
system and thus in processing numerosity per se, but in their ability to access
number magnitude from symbols. This access deficit hypothesis has triggered
extensive research tapping the differential roles of symbolic and non-symbolic
numerical magnitude processing skills. A review of these studies concluded that
there is indeed consistent and robust evidence across studies and different age
groups for a correlation between weak performance in symbolic numerical tasks
(using Arabic digits) and low math achievement, whereas conflicting findings
have been reported for respective non-symbolic formats (De Smedt et al., 2013).
This stronger relation between math achievement and symbolic vs. non-symbolic
number processing means that children with mathematical difficulties will most
likely be less efficient in accessing the meaning of Arabic digits – namely their
exact numerical value – compared to their peers. An even more pronounced
problem will hence arise if they have to handle arithmetic tasks in multiple lan-
guages. This situation may be relevant for bilingual children whose caregivers
cannot provide them with help in mathematics in the instructional language, or
for children whose instructional language in mathematics changes during their
educational years. As pointed out above, the most efficient strategy in such situa-
tions seems to be mentally switching to the Arabic code rather than translating
problems into L1 – which, however, may not be possible to the same extent for
children with difficulties in mathematics.

The question is then: Could children with problems in accessing the exact
quantity of Arabic digits be provided with another set of symbols to bypass lan-
guage-related difficulties in dealing with numbers?

4 Finger representations as an alternative set of
symbols

During the last decade, neurocognitive research produced growing evidence that
finger counting results in finger-based numerical representations in the sense of
embodied cognition (Fischer & Brugger, 2011) with a sub-base 5 (Domahs et al.,
2008) which can still be found in healthy adults (Domahs et al., 2010). Several
studies also showed that finger gnosis, the ability to differentiate between the fin-
gers (Gerstmann, 1940), predicts calculation abilities even if general cognitive
and motor abilities are controlled for (see Berteletti & Booth, 2015 for a review).
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The reasons for these connections between finger representations and num-
ber representations are still unclear. Some authors suggest that there are an-
atomically neighboring brain areas for finger- and number processing; others
also suggest a functional connection (see Berteletti & Booth, 2015 for an over-
view of this discussion). Finger-based numerical representations can be seen as
a prototypical example of embodied cognition, hence the question arises which
aspect of finger counting may be crucial for this: the one-to-one correspondence
of fingers and cardinal value, the additional somatosensory route of perception,
or the automatic processing of canonical finger patterns (Brissiaud, 1992).

Priming studies in adults showed that canonical finger patterns for showing
numbers (e.g., all 5 fingers of one hand and 2 fingers of the other hand to show 7)
were processed as exact magnitudes like Arabic numbers, whereas non-canonical
finger patterns (e.g., 3 fingers of one hand and 4 fingers of the other hand to
show 7) were processed as approximate magnitudes like dot patterns (Di Luca,
Lefevre & Pesenti, 2010; Di Luca & Pesenti, 2008). This finding means that canon-
ical finger patterns may have the same symbolic character as Arabic digits, pro-
viding a possible alternative route to exact numerical quantity representations.
This interpretation was confirmed by Krinzinger et al. (2011) in a developmental
fMRI study. Berteletti and Booth (2015: 8) also concluded that educational practi-
ces should encourage the use of fingers “as a functional link between numerical
quantities and their symbolic representation.” Another advantage of this may
well be that fingers provide an external support for arithmetic problems, decreas-
ing the working memory load and therefore increasing the efficiency of mental
calculation (Berteletti & Booth, 2015).

5 Summary and discussion

In summary, several different effects of language on the processing of exact
number can hardly be explained by a theory of cultural universality (Au, 1983).

First, the number of grammatical plural markers used in a language influ-
ences the speed with which children acquire the exact number concepts of one,
two, and three (see Section 1.4). Second, adult humans who speak a language
lacking words for exact numbers higher than three or four do not present with
exact number concepts even in nonverbal tasks (see Section 2). Both lines of
evidence defy the view of the language-irrelevant hypothesis, but rather sup-
port the claim that the acquisition of concepts of large, exact numerosities (or
cardinality) is language-driven and relies on learning respective linguistic rep-
resentations (or symbols).
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Third, the mental manipulation of exact numbers (or arithmetic) is also lan-
guage-dependent, as arithmetic fact retrieval is usually faster and more accurate
in the language of instruction (see Section 3). Interestingly, more efficient arith-
metic fact retrieval in a secondary language seems to correspond to a stronger
reliance on the visual imagery of Arabic digits and thus to a change in the mo-
dality of mental representations rather than on faster translational processes
or building a new mnemonic network of arithmetic facts altogether. As the
core deficit of children with low math achievement seems to lie in symbolic,
exact number processing rather than in non-symbolic, approximate number
processing (see Section 3.5), it is safe to assume that doing mental arithmetic
in a secondary language should pose even larger difficulties for these children
compared to their typically developing peers.

A solution to this problem may lie in the explicit use of canonical finger con-
figurations to depict exact number in formal and informal educational settings,
as they seem to possess the same symbolic characteristics as Arabic digits and
may thus provide children with an additional developmental route to exact num-
ber representations (see Section 4). In conclusion, the automatized processing of
canonical finger patterns might enhance symbolic (and therefore exact) process-
ing of numerical magnitudes especially in children presenting with language-
related difficulties in mathematics or exhibiting less efficient processing of Arabic
digits.
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Identifying math and reading difficulties
of multilingual children: Effects of different
cut-offs and reference groups

1 Introduction

An increasing number of students speak a language at home that differs from
the language of instruction at school (L2 students). It is estimated that roughly
half of the children in the world learn to read in a language other than their
home language and are taught in an L2 (McBride-Chang, 2004). In this chapter,
we use L2 to refer to all other languages children learn or speak that are differ-
ent from the main language of instruction. Some children, regardless of which
language they speak at home, encounter severe problems with reading or math
and may have a specific learning disorder (SLD). Identifying students with SLD
can be challenging, as it often co-occurs with other disorders (Fletcher et al.,
2018). Identifying L2 students with SLD can be even more challenging, because
these students’ L2 proficiency often develops differently from students who do
speak the language of instruction at home (L1 students), and weak L2 language
proficiency has to be ruled out as a cause of low achievement on diagnostic
tests administered in an L2 (American Psychiatric Association, 2013). Although,
diagnostic criteria and normed diagnostic tests for SLD exist, their norms are
often based on an overrepresentation of L1 students. Therefore, these norms
may not be accurate for L2 students due to their different language development
from L1 students. In this chapter we will explain what SLD is and why it is espe-
cially challenging to identify L2 students with SLD.

Early diagnosis and identification of SLD are paramount and screeners may
help determine which students to refer for further diagnostic testing. In this
chapter, we do not aim to identify and label students with a clinical diagnosis,
such as SLD as specified in the DSM-5 (American Psychiatric Association, 2013).
Rather, we aim to identify students who are in the lowest achievement groups
of large-scale tests and may need to be referred for further diagnostic SLD test-
ing. We will use the terms learning difficulties (LDs), reading difficulties (RD),
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and math difficulties (MD) to refer to these groups. Concretely, we explore what
would happen if a large-scale math and reading test would be used as a screener
for children at risk for MD and RD in a multilingual education setting. We investi-
gate how different cut-off settings, that is, cut-offs at different percentiles and
with different language reference groups, impact the profile of students charac-
terized as having LD. Lastly, we discuss the implications of our findings in rela-
tion to (diagnostic) testing in general.

1.1 What is SLD?

SLD is listed in the DSM-5 as a neurodevelopmental disorder (American Psychiatric
Association, 2013). There are different subtypes of SLD, namely, with impairment
in reading, written expression, or in math. Each subtype can manifest itself in dif-
ferent ways. For example, SLD with impairment in reading may correspond to a
diagnosis of impairments in word reading accuracy, reading rate or fluency, and/
or reading comprehension. For impairments in math, students may have problems
with number sense, memorization of arithmetic facts, accurate or fluent calcu-
lation, and/or correct math reasoning. To start a diagnostic process, students’
achievement should be substantially lower than expected for their age and this
lower achievement should persist for at least six months. An SLD diagnosis can
be given only after a child has been tested individually, using appropriate stan-
dardized tests. Furthermore, an SLD should not be explained by a low profi-
ciency in the language of instruction (American Psychiatric Association, 2013:
66–67). Impairments in math and in reading are assumed to have equal preva-
lence rates (e.g., Geary, 1993) of less than 10% (Desoete et al., 2004; Gross-Tsur
et al., 1996).

1.2 Identification of SLD

Identifying students with SLD may be complicated in general, but it is even more
so for those who do not speak the language of instruction at home while being
tested in the language of instruction, as low proficiency in the language of instruc-
tion has to be excluded as a potential cause. Students are usually tested in their
language of instruction, as that is the language in which they learned how to read/
write and calculate. Due to L2 students’ different language development compared
to L1 students, they may have lower language of instruction proficiency than their
L1 peers. Diagnostic tests are rarely normed with L2 students as a separate refer-
ence group, which can lead to both over-identification (e.g. Cummins, 1984, cited
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in Limbos & Geva, 2001) and under-identification (e.g. Limbos & Geva, 2001) of L2
students. On the one hand, L2 students may thus have lower proficiency in the lan-
guage of instruction than L1 students, and this lower proficiency may be classified
as an SLD according to the test norms. On the other hand, if it is assumed that
students’ difficulties are caused by a low L2 proficiency, difficulties caused by a
possible SLD may be missed. The interaction between language of instruction pro-
ficiency and a possible SLD is especially important to consider when diagnosing
reading disorders. However, math learning is also highly influenced by language,
for example, counting and transcoding (Kempert et al., 2019). Hence, language
proficiency also impacts the diagnosis of learning disorder in mathematics.

It is assumed that the prevalence of SLD is the same for L2 students as for L1
students (Letts, 2011), yet on large-scale achievement tests L2 students often lag
behind their L1 peers. Furthermore, L2 students are often referred to as a homoge-
neous group, though that may not be accurate and may mask differential charac-
teristics between L2 students in terms of home language types and SES (Jang
et al., 2013). Considering differences in home languages and SES is important, be-
cause they underlie reading comprehension in an L2 (Geva &Wiener, 2014). Socio-
economic status (SES) is a proxy for the resources students have at their disposal
and can comprise, for example, parental education, income, or possessions at
home (Lenkeit et al., 2018). SES may be related to math and reading development,
as SES affects students’ language development (Hammer et al., 2014; Hoff, 2006,
2013), their numerical abilities (Mejias & Schiltz, 2013), and academic achievement
(e.g., Pace et al., 2017; Paetsch et al., 2015).

1.3 Cut-offs to screen for SLD

A wide variety of cut-offs are used to screen for SLD. Screening tests are often
group-based and identify students with low performance. It is quite common to
label students in the lowest achievement group of a large-scale test as (poten-
tially) being at risk for developing SLD. A certain percentile (cut-off) on the fre-
quency distribution of the test scores is defined and students at or below this
percentile are flagged as at risk for developing SLD. For instance a cut-off at the
10th percentile means that 10% of the test takers will be labeled at risk for devel-
oping SLD or as having learning difficulties. The test score corresponding to the
10th percentile is the cut-off score. However, there is no consensus on which cut-
off should be used to classify this lowest-achieving group with difficulties, espe-
cially in multilingual populations. In reading studies, the 25th percentile is often
used, whereas the 10th percentile is very common in math research. It is gener-
ally accepted that cut-offs above the 25th percentile are undesirable, as too many
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students with average ability would be flagged (Fletcher et al., 2018). Therefore,
when examining MD or RD, these two cut-offs are the most obvious ones. Al-
though, the 10th percentile is probably most suitable to screen children for SLD
as it appears to be more stable across time (Braeuning et al., 2020). Additionally,
less than 10% of the population is estimated to have SLD (Desoete et al., 2004;
Gross-Tsur et al., 1996). However, the 25th percentile may still be very useful to
find the group of children who need extra support, but who may not have SLD.

Besides which cut-offs are most suitable, there is also no consensus on which
reference group should be used for norming diagnostic tests. Combined, the cut-
off and the reference group used are called “cut-off setting” in this chapter. Theo-
retically, norms should be based on a reference group that is representative of and
comparable to the characteristics of the tested student, at least for those character-
istics that may influence students’ performance (e.g., age, gender, grade, profi-
ciency in the test language) (American Educational Research Association et al.,
2014). In the following section, we will present three different reference groups
and describe how their use affects the identification of students with SLD.
(1) Sometimes the whole sample that is available is used as a reference group,

without differentiating for students’ characteristics such as SES or home lan-
guage (such as for the Tempo-Test-Rekenen (TTR); an arithmetic test) (de Vos,
1992). If this sample is representative of the population, this may lead to L1 stu-
dents with SLD performing above the cut-offs and L2 students without SLD
below the cut-off, due to the difference in language of instruction development.

(2) In countries or regions with one main language of instruction, which is the
L1 for most students, tests may be normed based on (an overrepresentation
of) students for whom the language of instruction is their L1 (e.g., Leysen
et al., 2018). This could lead to norms that identify the expected proportion
of L1 students with difficulties, but a larger number of L2 students as their
test scores are often lower.

(3) Lastly, it has been suggested that students who speak a language other than
the language of instruction should be compared to each other, instead of to
the whole sample or their L1 peers (Bedore & Pena, 2008). This is done to try
to compare students to other students with similar backgrounds, and thus sim-
ilar development of the language of instruction development, to each other.
Ideally, this would lead to the expected and similar proportions of L1 and L2
students below the cut-offs, as the same proportion of students is expected to
have SLD, regardless of language background. This way of norming is, for ex-
ample, implemented for the Diagnostischer Rechtschreibtest-tests (e.g. Müller,
2004a, 2004b) that have norms for German home language students, and for
students who speak another language than German at home. This norming
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does not take into account the specific L2s of the students, though different
students’ L2s may affect language of instruction development differently (e.g.,
Geva &Wiener, 2014).

1.4 The present study

The present chapter focuses on the effect of setting criteria for the screening of
learning difficulties by using a complete population dataset. We do not focus on
clinical SLD, as the tests used in this chapter were not primarily designed to iden-
tify SLD; however, they can be considered as potential screeners to identify chil-
dren who have math or reading difficulties and may be at risk of developing SLD.
These group-based tests can only be considered as global achievement indicators
of reading and math. They cannot give precise information on the cognitive pro-
cesses underlying reading or calculation which would be necessary to diagnose
SLD. Most screening tests are group-based (e.g., Mejias et al., 2019; Nosworthy
et al., 2013) followed by a more precise, diagnostic, individual follow-up.

Most cut-offs on standardized large-scale tests used to identify potential
math and reading difficulties are based on samples that consist of students who
speak the language of instruction at home. The present study aims to investi-
gate the impact of different cut-offs and reference groups on the number of chil-
dren being considered as having reading difficulties (RD) and math difficulties
(MD) in relation to third graders’ linguistic backgrounds. In this chapter we
look at RD and MD separately. Due to space limitations, the analyses for com-
bined RD and MD could not be included in this chapter.

More precisely, we investigated the effect of using different cut-offs on L2 stu-
dents (of different home language groups) and bilingual students (L1 and another
language at home) compared to L1 students (who speak the language of instruc-
tion at home) in the multilingual educational setting of Luxembourg. In Luxem-
bourg, there are currently no standardized diagnostic tests that are normed on
the country’s multilingual population, and that take the trilingual educational
system into account. In the Luxembourgish school system, kindergarten is taught
in Luxembourgish. From grade 1 onward, students acquire formal literacy skills
in German, while learning this language; German functions as the main language
of instruction at the same time. The Luxembourgish student population is also
very multilingual, as the majority of students speak a language other than Lux-
embourgish or German at home. The main other languages spoken at home are
Portuguese, French, and South Slavic languages (Ministry of National Education,
Children and Youth, Department of Statistics and Analysis, 2018). Though this
level of multilingualism at a national level may be quite exceptional, other
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countries (for example Canada) (Martel et al., 2011) are facing an increasingly di-
verse school population, especially in urban areas (see, for example, the sample
from Geva & Yaghoub Zadeh (2006)). We compared different ways of setting cut-
offs to identify students with MD and RD. For that reason, we used a dataset that
comprises the population and chose the two most common cut-offs (10th and
25th percentiles) and three different reference groups (whole sample, native (L1),
and within each home language group).

We aimed to answer the following research question: What is the effect of
different cut-off settings on cut-off scores and consequently on the amount and
the characteristics of students classified as having MD and RD?

2 Method

2.1 Participants

The data were collected as part of the Luxembourgish National School Monitoring
Programme in 2016. The tests in this program are administered to all students en-
rolled in Luxembourgish state-funded schools that follow the national curriculum.
The overall sample included 5367 third-grade students. This is the vast majority of
third graders in Luxembourg, as there are few private schools (Ministry of National
Education, Children and Youth, Department of Statistics and Analysis, 2018). In
this analysis, we excluded students whose math, German reading comprehension
(RC), and/or German listening comprehension (not used in this study) scores were
missing (N = 169) and/or whose sex indication was missing (N = 87). The final
sample contained 5111 students (49.7% girls).

Students were divided into six home language groups (HLGs), based on
which language(s) the student reported to speak with their two primary caretakers,
for example, their mother and father (see Tab. 1). These HLGs comprise all students
in the Luxembourgish public school system that speak these languages at home
and are therefore representative. For four HLGs, both parents mainly speak the
same language to their child: Luxembourgish, French, Portuguese, or South
Slavic. Students in the South Slavic group speak South Slavic languages of for-
mer Yugoslavia with their parents, that is, Bosnian, Croatian, Macedonian,
Montenegrin, Serbian, and Serbo-Croatian. For two HLGs, parents mainly
speak two different languages to their child: Luxembourgish and French, and
Luxembourgish and Portuguese. Luxembourgish and German were grouped to-
gether for the establishment of the home language groups, as these languages are
linguistically very close (Serva & Petroni, 2008) and are considered L1 students in
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this study. Additionally, German-speaking children (with both parents) consti-
tute only 1.3% (N = 67) of the sample. The six HLGs constitute 75.6% of the sam-
ple; the remaining 24.4% of students speak various other languages at home and
were excluded from the analyses. These students’ language backgrounds are too
diverse to be grouped together, but too small to be able to calculate reliable cut-
offs for each home language background separately.

Students’ SES was based on the professions caretakers reported on the
background questionnaire. The profession of the caretaker that ranks highest
on the international socioeconomic index of occupational status (HISEI) scale
(Ganzeboom et al., 1992) was taken as the SES-indicator. An overview of the
mean HISEI scores per HLG can be found in Tab. 1.

2.2 Instruments

Competency Measures. The school monitoring program in grade 3 consisted of
three paper-pencil-based competency tests: mathematics (divided over two ses-
sions), German reading comprehension, and German listening comprehension

Tab. 1: Overview of the cut-off settings, the reference groups, and the number of students per
cut-off setting. For the six home language groups (HLGs) the mean HISEI scores and number of
students whose HISEI score is missing are listed.

Cut-off
settings

Reference
groups

N % Cut-off
percentiles

HISEI

Mean Std.
dev.

No. of
missings

%Missings
in HLG

Population Whole sample    

HLG Luxembourgish        

French        

Portuguese        

South Slavic        

Luxembourgish-
French

       

Luxembourgish-
Portuguese

       

Native Luxembourgish
HLG
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(not reported here). These tests were standardized within cohorts as well as be-
tween cohorts of different years. Students’ parents also filled out a background
questionnaire, on which students’ SES scores were based. The competency tests
were taken at students’ schools. Each test session lasted for 50 min. The items of
all competency tests were scaled with a unidimensional Rasch model. The result-
ing estimates were converted to standardized scores (Lorphelin et al., 2014).

German Reading Comprehension (RC). The German RC test took 50 minutes.
In this test, “[closed and half-open] items mainly address two sub-competencies:
(a) locating and understanding written information, and (b) interpreting written
information and applying reading strategies” (Sonnleitner et al., 2014: 8). For this
measure we used the scale as it is used for school monitoring purposes with a
reliability of .892.

Math. The math test as used in the school monitoring program comprised
“two content domains: (a) numbers and operations, and (b) space and shape.
Item development further covers two contexts (applied vs. not applied)” (Sonn-
leitner et al., 2014: 8). A subset of the math items was used for this study: only
items that test students’ ability to do calculations were included. The selected
math items were as language-free as possible; that is, students could solve them
without reading an explanation and did not need to know specific terms in Ger-
man to solve the tasks. This was done so that students’ math achievement is af-
fected by reading comprehension and German-language proficiency as little as
possible. Of the 75 items in the math test, 38 items met the criteria for this scale.
The final scale contained 35 items, because three items had to be removed due to
poor model fit (Fischbach et al., 2014). The reliability of this math scale is .605.

2.3 Groupings

This chapter explores the impact of two different cut-offs (percentiles 10 and 25)
for RC and math achievement for three different reference groups. (1) The first ref-
erence group is the whole sample; that is, the cut-off scores have been calculated
based on the achievement of all students who took part in the test. (2) The second
reference group was within the home language groups; that is, the cut-offs were
based on the performance within each of the 6 HLGs. (3) The third reference
group was the native language group. In an educational system where there is
one dominant language that is used as the language of instruction and most stu-
dents are raised in this language, diagnostic and large-scale tests are often stan-
dardized based on a supposedly mostly native, monolingual, majority language
group. In this context, the native reference group is the Luxembourgish HLG.
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Students who performed below the cut-offs (percentile 10 or 25) were classi-
fied as having potential learning difficulties. Due to rounding up or down to
whole percentages, and because a number of students may have the same test
score, the actual number of students below the cut-off based on the HLGs and
the native reference group may be slightly higher or lower than the expected 10
and 25%. An overview of these cut-off settings can be found in Tab. 1.

2.4 Procedure

Data were collected in five testing sessions. The tests were administered by the stu-
dents’ teachers, who had received instruction manuals on how to administer these
tests. The national school monitoring program has a proper legal basis and has
been approved by the national committee for data protection. Parents were asked
to fill out a background questionnaire on, for example, their educational and occu-
pational backgrounds and country of birth. All students and their parents or legal
guardians were duly informed before the data collection and had the possibility to
opt out. All statistical analyses were performed with anonymized data.

3 Results

In this section we will discuss the differences in prevalence of math and reading
difficulties for the six different HLGs. We will first focus on the exact cut-off
scores for all six cut-off settings (Section 3.1). In a second step, we will examine
the prevalence of MD and RD for the six HLGs (Section 3.2).

3.1 Cut-off scores

Before looking at the cut-offs for MD and RD, and consequently the prevalence of
these difficulties for students from the six different HLGs, differences in mean
scores between different HLGs are described in Tab. 2. Differences in mean scores
are related to cut-off scores and number of students below the cut-offs, depending
on the reference group that is chosen. On average, students in the Luxembourgish
and Luxembourgish-French HLGs have the highest German RC and math scores.
The other four HLGs have lower mean scores.

For the native reference group and the whole sample reference group, at
the 10th and 25th percentile cut-offs for both math and German RC, the scores
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based on the native reference group are always higher than the whole sample
reference group. These differences are bigger for German RC than for math, and
for the 25th percentile than for the 10th percentile; see Tab. 2.

For the cut-off scores within the HLGs as reference groups, there is a cut-off
score for each HLG. In this case, the proportion of students identified as having
difficulties is the same for each HLG at each cut-off, but the cut-off score will
differ depending on the distribution of math and RC scores; the cut-off scores
differ within each HLG.

Table 2 shows that for the cut-off scores with the HLGs as reference group,
the cut-off scores for the Luxembourgish HLG are higher than the cut-off scores
for the other home language groups. The only exception is the math 10th percen-
tile cut-off score of the Luxembourgish-French HLG (395), which is equal to the
Luxembourgish HLG (395) cut-off. Overall, the differences between the MD cut-
offs are smaller than the differences between the RC cut-offs of the six HLGs, and
the differences between the 10th percentile cut-offs are smaller than the 25th per-
centile cut-offs. However, the differences between cut-off scores for the different
HLGs can be large: for example 152 points between the Luxembourgish (493) and
Portuguese (341) HLGs at the 25th percentile for RD.

For most HLGs, the cut-off score for math is higher than the one for RC at
the same percentile. Moreover, some HLGs have the same or similar cut-off
scores for one subject, but not for the other. This implies that L2 and language

Tab. 2: The mean scores and cut-off scores per cut-off setting for all reference groups.

Cut-off settings Reference groups Mean scores per
reference group

Cut-off scores per
percentile

 

Math RC Math RC Math RC

) Whole sample Whole sample      

) HLG Luxembourgish      

French      

Portuguese      

South Slavic      

Luxembourgish-French      

Luxembourgish- Portuguese      

) Native Luxembourgish HLG      
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proficiency interact differently, depending on the HLG. For example, the 10th per-
centile cut-off scores for math are equal for the French and Portuguese HLGs,
namely, 368, but different for RC, namely, 325 and 291. Additionally, for the 25th
percentile cut-off scores, the Portuguese and South Slavic HLGs’ math cut-off
scores is 421, but their RC cut-off scores are 43 points apart.

In sum, the six different cut-off settings result in different cut-off scores. As
a consequence of these differences in cut-off scores, the prevalence of math and
reading difficulties varies per cut-off setting.

3.2 Prevalence of MD and RD

The prevalence of math and reading difficulties varies per cut-off setting. For the
cut-off settings with the whole sample and within HLGs as reference groups, re-
spectively 10 or 25% of the students (either for the whole sample or for the six
HLGs) are classified as having difficulties. However, for the cut-off settings based
on the native reference group, only the proportion of students in the Luxem-
bourgish HLG is fixed at 10 or 25%, but not for the other five HLGs. Therefore, the
percentage of students with MD and RD in the other five HLGs may be higher or
lower than 10 and 25 percent respectively.

If the students with difficulties were distributed equally over all HLGs, 25 or
10% respectively of students in all home language groups would be classified
as having difficulties for the two cut-off settings based on the whole sample and
the two settings based on the Luxembourgish home language group. However,
as is shown in Fig. 1 (and Appendix A), this is not the case.

For the cut-offs with the HLGs as reference groups, the percentage of stu-
dents below the cut-offs is fixed for each HLG at 10 or 25 percent respectively.
Therefore, the cut-offs based on the HLGs as reference group are not discussed
in this section. However, the cut-off scores differ between HLGs, which is dis-
cussed in Section 3.1.

3.2.1 Whole sample reference group

25th percentile
For MD, the Luxembourgish and Luxembourgish-French HLGs have fewer students
with MD than the expected 25%: 19 and 21; see Fig. 1, a2. The French home lan-
guage group would have 27% of students with MD, slightly more than expected.
The Portuguese, South Slavic, and Luxembourgish-Portuguese HLGs have the
most students that are identified with MD: 34, 36, and 40% respectively. For RD
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(Fig. 1, a1), the difference in proportion of students per HLG that are classified as
having difficulties are larger than for MD. Again, the Luxembourgish and Luxem-
bourgish-French HLGs have fewer students with RD than the expected 25%: only
10 and 13%. The French and South Slavic HLGs have 30 and 31% of students with
RD, which is slightly more than the expected 25%. However, the Portuguese and
Luxembourgish-Portuguese HLGs have more students with RD than expected,
namely, 48 and 37%.

10th percentile
For MD, the Luxembourgish and Luxembourgish-French HLGs have fewer stu-
dents with MD than the expected 10%: 7 and 6%, as shown in Fig. 1, a2. The
French HLG would have 11% of students with MD, slightly more than expected.
The Portuguese, South Slavic, and Luxembourgish-Portuguese HLGs have the
most students that are identified with MD: 13, 13, and 14% respectively. This
pattern is in line with the one found for the 25th percentile whole sample cut-
off. For RD, there is a bigger difference in the proportion of students classified
as having difficulties than for MD.

Again, the Luxembourgish and Luxembourgish-French HLGs have the small-
est proportion of students with RD (Fig. 1, a1), namely, 4 and 5%. The French HLG
has 11% students with RD, slightly more than the expected 10%; the South Slavic
HLG has 9% students with RD, slightly below the expected 10%. Similar to MD,
the HLGs with the highest proportion of students with difficulties are the Portu-
guese and Luxembourgish-Portuguese HLGs: 21 and 20%.

3.2.2 Native reference group

25th percentile
As this cut-off setting is based on the Luxembourgish HLG, this group has 26%
(not 25, due to duplicate scores and rounding up to a whole percentage) of stu-
dents with MD. The other HLGs have a higher proportion of students with MD.
The French and Luxembourgish-French HLGs are closest to the expected 25% of
students with MD, namely, 34 and 29%; see Fig. 1, b2. Similar to the 25th percen-
tile cut-off with the whole sample reference group, the Portuguese, South Slavic,
and Luxembourgish-Portuguese HLGs have the highest proportions of students
with MD: 46, 45, and 52%.

For RD, all other HLGs have more students with RD than the reference group.
The Luxembourgish-French HLG has the lowest proportion of students with RD
after the Luxembourgish HLG: 38%. Three groups have a similar proportion of
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students with RD, the French, South Slavic, and Luxembourgish-Portuguese
groups: 62, 63, and 66%. The group with most students with RD for this cut-off
setting is the Portuguese home language group with 81%.

10th percentile
As this setting is based on the Luxembourgish HLG, 11% of the students in the
Luxembourgish HLG are classified as having MD. The Luxembourgish-French
HLG have a slightly higher proportion of students with MD, namely, 12%. The
group with the next lowest proportion of MD are the French HLG with 15%. The
other three HLGs, that is, the Portuguese, South Slavic, and the Luxembourgish-
Portuguese, have the highest proportion of students with MD: 20, 21, and 23%.
For RD, again the Luxembourgish HLG has the lowest proportion of students
with MD, 10%, as expected for this cut-off. The Luxembourgish-French HLG has a
similar proportion of students with RD, 13%. The French, South Slavic, and Lux-
embourgish-Portuguese HLGs have similar prevalence of RD: that is, 30, 31, and
37%. The HLG with most RD is the Portuguese HLG, namely, 48%.

In sum, for the four cut-off settings discussed above (whole sample reference
group, both 10th and 25th percentiles, and native reference group, both 10th and
25th percentiles), the Luxembourgish HLG has the smallest proportion of stu-
dents with both MD and RD; in all other HLGs, MD and RD are more prevalent.
Sometimes, difficulties are only slightly more frequent than the Luxembourgish
HLG than in other HLGs, for example, MD for the Luxembourgish-French and
French HLGs, for most of the four cut-off settings discussed. However, for one of
the other HLGs, the proportion of students classified with MD is twice as high as
in the Luxembourgish HLG, namely, for the Portuguese HLG. Though the pattern
of HLGs with more or less MD and RD is similar for these four cut-offs, the actual
proportion of students classified as having difficulties varies, as the exact cut-off
score differs (see Tab. 2)

3.3 Consistency of identified students across
cut-off settings

It is interesting to examine how many students are classified as having difficul-
ties when using all three reference groups, versus how many are only classified
as such for one or two reference groups. This will provide further insights into
how the different cut-off settings work for the different HLGs.
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3.3.1 RD prevalence across the cut-offs

Across the different cut-off settings, a different pattern emerges for the six HLGs
(see Tab. 3). At the 10th percentile, about 10% of students in the French, Portu-
guese, South Slavic, and Luxembourgish-Portuguese HLGs are consistently below
the cut-off for all three reference groups, at the 25th percentile, that is, 25%. The
Luxembourgish and Luxembourgish-French HLGs have a lower proportion of stu-
dents who are below all three cut-offs than the other HLGs. Additionally, these
two HLGs are the only ones with students who are only below the HLG and below
the native reference group cut-offs. In the French, Portuguese, South Slavic, and
Luxembourgish-Portuguese HLGs, there are students below the native and below
the whole sample cut-offs; this is not the case for the Luxembourgish and Luxem-
bourgish-French HLGs. Additionally, for these four HLGs many students are only
below the native reference group cut-offs: 19, 27, 22, and 17% of students at the
10th percentile and 32, 33, 32, and 29% at the 25th percentile.

3.3.2 MD prevalence across the cut-offs

Similar to RD, a different pattern emerges for the six HLGs across the different cut-
off settings. At the 10th and 25th percentiles, about 10 or 25% of students in the
French, Portuguese, South Slavic, and Luxembourgish-Portuguese HLGs are below
the cut-off for all three reference groups; see Tab. 4. The Luxembourgish and Lux-
embourgish-French HLGs have a lower proportion of students who are below all
three cut-offs. As for RD, these two HLGs are the only groups with students below
the HLG and the native reference group cut-offs, but above the whole sample cut-
offs. In the French, Portuguese, South Slavic, and Luxembourgish-Portuguese
HLGs, there are students below the native and whole sample cut-offs but above
the within HLG reference group cut-off; this is not the case for the Luxembourgish
and Luxembourgish-French HLG. Additionally, for these four HLGs many stu-
dents are only below the native reference group cut-offs: 4, 7, 8, and 9% of stu-
dents at the 10th percentile and 7, 12, 10, and 12% at the 25th percentile.

4 Discussion

In this study we aimed to answer the question: What is the effect of different cut-
off settings on the classification of students with MD and RD in a multilingual stu-
dent population? Concretely, we examined the impact of different language-group
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related criteria of cut-off scores and consequently the number of students below
the cut-offs and thus classified as having MD or RD. The associated number and
characteristics of students classified as potentially having MD and RD. We used
three different cut-off settings, that is, whole sample, HLG, and native reference
group, and found that they resulted in different cut-off scores and hence in large
variations in the number of students classified as having potential MD and RD.

Generally, the cut-off scores based on the performance of the native reference
group were higher than those based on the whole sample. This means that the
performance-level below which a student is considered as having MD or RD is
higher when natives are used as the reference group compared to the whole sam-
ple. As a consequence, more students in general would be identified as having
MD and RD with the native group as reference for the cut-off. Within the whole
sample and the native reference group, there were differences between the cut-off
scores for math and reading comprehension. For the whole sample, the cut-off
scores for math were higher than those for reading, whereas for the native refer-
ence group the reading cut-off scores were higher than for math. This indicates
that the Luxembourgish native reference group had an advantage in the more lan-
guage-dependent task, that is, reading comprehension, as it was the only group
who took the tests in their L1. The comparisons between the cut-off scores within
each of the six HLGs showed that there were large differences between cut-off
scores of HLGs. Furthermore, for most HLGs the math cut-off score was higher
than the RC cut-off score, except for the Luxembourgish HLG, meaning that gener-
ally performance-levels under which students were considered as having RD were
relatively lower than those for MD. This may be due to the math scale used in this
study, as only items with very low language requirements, which did not require
students to read and understand a word problem, were included.

As the cut-off scores differed per cut-off setting, the prevalence rate of MD
and RD consequently varied between the different groups per cut-off setting too.
Moreover, there were large differences in MD and RD prevalence rate between
HLGs for the cut-offs based on the whole sample and native reference groups. For
these reference groups’ cut-offs, the difference between the Luxembourgish and
Portuguese HLGs was most pronounced: MD was twice as prevalent in the Portu-
guese HLG, and RD five times as frequent as in the Luxembourgish HLG.

4.1 Over- and under-identification

In the literature, both over- and under-identification of L2 students with RD
and MD have been reported (e.g. Cummins, 1984 cited in Limbos & Geva,
2001). In this study, when the population and native reference groups are
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used to set cut-offs, more students from the French, Portuguese, and South
Slavic HLGs than the expected 10 and 25% are classified as having difficulties,
especially for German reading. On the other hand, when the population refer-
ence group is used, it is very likely that students with an LD would remain un-
identified within the (native) Luxembourgish HLG.

When the HLGs are used as reference groups the proportion of students with
difficulties is the same across HLGs, but the actual cut-off scores vastly differ, up to
150 points, which equals 1.5 standard deviation. Overall, only a minority of stu-
dents is consistently below the 10th or 25th percentile respectively for math or read-
ing for all three reference groups. For the Luxembourgish HLG, the students who
are not always classified as having difficulties perform above the population cut-
off, but below the native/HLG reference group cut-off scores (that is the same for
this HLG). In contrast, for the Portuguese HLG, for example, students who are only
sometimes classified as having difficulties are above the HLG cut-off, but below the
native or population reference group cut-off scores (or both). Therefore, a combina-
tion of cut-off settings while considering students’ linguistic backgrounds may be
most effective to identify students with LDs. Knowing a student’s score in relation
to the whole sample or native reference group, as well as in comparison to a group
of students with a similar background, may help in deciding what follow-up testing
or interventions should be taken.

Two HLGs speak two languages at home, of which one is Luxembourgish, yet
their cut-off scores and prevalence of MD and RD differ substantially from each
other. For the Luxembourgish-French HLG, the cut-off scores within HLG are
close to the Luxembourgish HLG, as well as the proportion and ratio of MD and
RD. Both these HLGs have relatively high mean SES. In contrast, the Luxem-
bourgish-Portuguese HLG is more like the Portuguese HLG, in terms of mean SES.
It also resembles the Portuguese HLG’s cut-off scores based within the HLG refer-
ence group, and prevalence and ratio of MD and RD. The Luxembourgish-French
HLG thus seems to benefit from speaking Luxembourgish at home, while this is
not the case for the Luxembourgish-Portuguese group, who have similar cut-off
scores and MD and RD prevalence to the Portuguese HLG. This might be indi-
rectly related to SES.

This chapter did not investigate the influence of SES in combination with HLG
on math and reading achievement in detail. Previous research with grade-three
data from the Luxembourgish National School Monitoring Programme showed
that the differences in math and German RC achievement are for a large part ex-
plained by home language and SES: students who speak Luxembourgish or Ger-
man at home and who have high SES have higher mean achievement for both RC
and math compared to students with average or low SES and who do not speak
either of these languages at home. National School Monitoring data further have
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shown that the effect of home language background is bigger for RC than for
math and the effect of SES is similar for math and RC (Muller et al., 2015). Further-
more, school monitoring data has shown that that students’ German RC in grade
3 was predictive for their German RC in grade 9 (Sonnleitner et al., 2018). How-
ever, the predictive values differed for students with high and low SES and be-
tween different HLGs. Students with high SES (top quartile) and students who
speak Luxembourgish at home were more likely to have high RC and math in
later grades. This is in line with the findings of the present study and implies that
the students who do not speak Luxembourgish at home and/or come from HLGs
with lower mean SES are more likely to fall below cut-offs and have low math
and/or reading achievement.

4.2 Screening for difficulties

Screening procedures should identify students that need further diagnostic test-
ing (Fletcher et al., 2018, p. 63). Helping students with a deficit as early as possi-
ble usually has the best outcome (Heckman, 2008). For these tests, missing an
at-risk child is a bigger problem than having a false positive (i.e., identifying a
child that does not have difficulties). Generally, it is indeed less harmful to
identify more children than necessary, than missing children who would need
further diagnostic testing and help. On the other hand, having too many “false
positives” is counterproductive, as valuable resources would be spent on stu-
dents who may not need it.

Which cut-offs (or a combination of cut-offs) are useful depends on the
purpose of the screener: to only select the students who are likely to have a
clinical SLD, then the 10th percentile is most suitable. Moreover, at the 10th
percentile for the whole sample and HLG reference groups, the prevalence of
MD and RD is similar, which is what is expected for clinical SLD in math and
reading (e.g. Geary, 1993). However, all students below the 25th percentile
might benefit from extra instruction, even though they might not have a clini-
cal SLD. When the whole sample or the native reference groups are used, this
may lead to many “false positive” students for SLD; therefore, a comparison
with the within HLG cut-off score would be useful to decide what kind of sup-
port students need.

In this chapter, we did not discuss the prevalence of MD and RD simulta-
neously occurring in the same students, due to space limitations. This would be
important to consider, as the underlying causes of the learning difficulties may
be different in isolated or combined LDs. Therefore, when choosing follow-up
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tests for a clinical SLD diagnosis or non-clinical LD identification and the fol-
lowing choice of adequate interventions, this should also be considered.

4.3 Limitations and implications

While a large-scale group-based standardized test can serve as a screener for stu-
dents at risk of having SLD, these tests are neither designed for nor sufficiently
fine-grained to detect clinical SLD. Nevertheless, the results of this study using
population data to examine the impact of cut-off scores and reference groups to
screen for SLD also have an impact on other settings in which tests are used,
such as for diagnostic tests. For instance, the choice of the reference group to es-
tablish norms and/or the language of the instruction should be considered to
make the diagnostic process more accurate and fair, especially for L2 children.
For the SLD diagnosis, several individual follow-up testing sessions with a psy-
chological diagnostic specialist are necessary. For RD, for instance, a potential
follow-up could be to investigate reading skills at the word-level, as RD can com-
prise word decoding or recognition and/or spelling deficiency (Fletcher et al.,
2018). Typically L2 students do not differ from L1 students on the level of decod-
ing (Limbos & Geva, 2001), so this type of supplementary assessment could help
distinguish between a predominantly German proficiency problem and a clinical
RD (e.g., Lesaux & Siegel, 2003).

For the purpose of this study on LDs, we refined the math scale in this
study, which artificially decreased the large achievement differences between
HLGs usually found (e.g. Muller et al., 2015; Sonnleitner et al., 2018). The adjust-
ment of the math scale was to minimize the language required to solve the
items on the math test. This minimization of language explains why the differ-
ences between students from six different HLGs were smaller for math achieve-
ment than for RC, whereas in previous studies with National School Monitoring
data and PISA data these differences are larger. Our findings thus imply that
using a subset of language-reduced standardized, large-scale test items may be
more fine-grained as a screener for MD in a multilingual setting and should be
researched further.

In countries in which national standardized tests are implemented, these
tests could potentially serve as a screener for students who are at risk of fall-
ing behind. As both math and RC in the language of instruction depend on
language of instruction proficiency, strengthening students’ language of instruc-
tion skills may be helpful for students and may help decrease performance differ-
ences and associated cut-off score differences between HLGs. Ertel et al. (2019)
found that for Portuguese HLG students in Luxembourg, differences in German
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and Luxembourgish language skills were the only language-related factor that
differed significantly between low-achieving students who passed second grade
and those who were retained. Differences in Portuguese skills were statisti-
cally insignificant. In general, providing students who have low RC and/or
math achievement in grade 3 with an extended training in the language of in-
struction could help improve their reading comprehension. Therefore, the large-
scale test used in this study or in similar settings could potentially be used to
identify students with difficulties, so that they can receive extra help to catch up
as soon as possible, to prevent low long-term achievement.

In this study we found that two different cut-offs, that is, the 10th and 25th
percentile and three different reference groups (i.e., whole sample, HLGs, native
reference group), resulted in different cut-off scores and consequently different
proportions of students identified with MD and RD. Practitioners should be
aware of all of the caveats of using standardized tests and their corresponding
norms when using them.
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IV Vision, hearing, and speech language
impairments





Kirsten Schuchardt and Claudia Mähler

Numerical competencies
in preschoolers with language difficulties

School children with specific language disorders (SLI) often experience massive
learning difficulties that concern not only literacy but also numeracy. Since pre-
school basic numerical precursor competencies have a great influence on the
later development of arithmetic at school, this chapter is interested in poten-
tial early difficulties in counting skills, numerical knowledge, understanding of
quantities, and early arithmetic skills. Given the close link between learning diffi-
culties and working memory, a second question is whether these potential early
difficulties can be associated with functional problems of working memory.

One of early childhood’s central developmental tasks lies in the development
of language. Yet, not every child achieves the milestones of language develop-
ment smoothly. Specific language disorders rank among the most frequently oc-
curring developmental dysfunctions during childhood and adolescence, with a
total incidence between 5% and 8%. Boys are affected three times as often as
girls (Tomblin et al., 1997). The relevant individuals typically display anomalies
in language acquisition which do not result from cognitive deficits, physical ill-
ness, impaired hearing, or lack of stimuli due to unfavorable or stressful sur-
roundings. SLI is defined by a considerable deviation from normal speech and
language development, both in quantity and in quality. Language production as
well as language comprehension may be affected (World Health Organization,
2011). The most severe effects manifest themselves in the acquisition of grammat-
ical structures, but also pragmatic competence may be affected (Leonard, 2014).
Frequently, articulatory deficits can be detected; however, an isolated functional
impairment of articulation does not justify the diagnosis of SLI (Leonard, 2014).
Speech anomalies resulting from certain illnesses (i.e., autism) will be excluded
from this consideration. These cases are rather referred to as unspecific or sec-
ondary language development impairments.

Because of their speech difficulties, children suffering from SLI stand out at an
early age. Language delay is a typical sign, along with a relatively small vocabulary
and a late usage of phrases of two or more words (Desmarais et al., 2008). This
initial deficit in language acquisition will further increase over the develop-
mental course. While affected children show progress in language acquisition
to some extent and are capable of understanding and producing simple sen-
tences over the course of their development, they are never going to reach the
level of individuals unaffected by SLI. Oftentimes, a number of accompanying
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difficulties will develop as a result of the language deficit, especially emotional
and social issues (Yew & O’Kearney, 2013); anomalies in the development of mo-
toric abilities (Sanjeevan et al., 2015) and attention deficit hyperactivity disorder
(Beitchman et al., 1996, 2001) are characteristic for these children.

1 School performance of SLI-affected children

With the onset of schooling, usually extensive learning difficulties arise, since
language competence is a prerequisite for the understanding and application of
content knowledge. SLI frequently goes hand in hand with an impaired acquisi-
tion of reading and writing (Joye et al., 2018). According to estimates, about
25–75% of children affected by SLI will also develop dyslexia (Tomblin et al.,
2000; Catts et al., 2005; McArthur et al., 2000). Moreover, the affected children
also experience difficulties in the subject of mathematics. In comparison to un-
affected children of their age group, they possess significantly lower mathe-
matic capabilities (Durkin et al., 2015). This discrepancy becomes greater as
their time in school progresses (Durkin et al., 2013). Children suffering from SLI
exhibit considerable problems in counting, both forward and backward, but
also in the estimation of quantities and in the comprehension of positional no-
tation (Cowan et al., 2005; Donlan et al., 2007; Fazio, 1996; Nys et al., 2013).
Regarding numeracy skills, they are much slower and more prone to mistakes
(Cowan et al., 2005). Furthermore, recalling mathematical facts from memory
appears to be challenging (Cowan, 2014; Cowan et al., 2005; Fazio, 1996). On
the other hand, children with SLI seem to understand mathematical rules and
regularities equally well as unaffected children from the same grade (Donlan
et al., 2007).

Based on research findings regarding difficulties in the subject of mathe-
matics, this present study poses the central question whether these problems
surface in school for the first time, or whether the children have already ex-
perienced difficulties with numerical basic skills in the preschool context (cf.
Donlan et al., 2007).

2 Preschool-level basic numerical skills

School starters already possess considerable amounts of knowledge of quantities
and numbers, which they have acquired during their preschool time (Mähler
et al., 2017). This knowledge facilitates a successful performance in their early
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mathematics instruction. At the point of school enrollment, however, the indi-
vidual knowledge levels differ substantially (Mähler et al., 2017). While some
children manage calculations within the number range up to 100 with ease,
other children are unable to count to ten. It can be assumed that SLI-affected
children start school with an already disadvantageous learning predisposition
in the fields of written language acquisition and numeracy, as a result of their
extensive speech and language developmental deficits. Examples of relevant
precursor competencies in the context of school numeracy are the ability to
comprehend a numerical series, the ability to count, associating numbers to
quantities, and the recognition of quantitative relations (Passolunghi et al., 2015).
The model of number–quantity connection (Krajewski et al., 2013) describes a de-
velopmental progress on three levels: Level (1) comprises the differentiation of
easily distinguishable quantities, the recital of numerical series, as well as the
imitation of the counting procedure. Subsequently, level (2) establishes the con-
nection between quantities and numbers. Two performances initiate the mental
conceptualization of quantity: the internalization of the number’s ordinal aspect,
as well as the realization of the one-to-one assignment while audibly counting.
Distinguishing merely between “little” and “a lot,” this notion of quantity is yet a
rather unprecise one, but it will further evolve into a precise concept of number
(assignment of numbers and their corresponding quantities). Level (2) provides
the children with the insight, that quantities can be changed by adding amounts
or to subtracting amounts from those (= part-whole concept). If both insights are
now combined on level (3), the students will have attained a sophisticated under-
standing of numerical relations, enabling them to express in numbers both par-
tial quantities and differences in quantity.

3 Working memory and numerical competence

Aside from the influential role language skills have, the development of basic
numerical competence is also heavily impacted by general cognitive functions.
Among these, the operability of working memory is a decisive factor in the devel-
opment of preschool skills (Friso-van de Bos et al., 2013; Schuchardt et al., 2014).
Working memory can be described as a system of short-term storage and si-
multaneous processing of information, prior to permanent storage in long-
term memory. Therefore, working memory is involved in every single instance
of information processing and can be construed as a sort of bottleneck of cog-
nitive capacity (Süß, 2001). According to Baddeley (1986), working memory
consists of a cross-modal central executive, which comprises two subordinate,
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modality-specific components which are limited in capacity. The first compo-
nent is the phonological loop for verbal and auditory information; the second
is the visuo-spatial sketchpad, responsible for visual patterns and spatial lay-
out (see Fig. 1). Following Baddeley’s model, the central executive carries out
the functions of control, monitoring, and coordination, such as the coordina-
tion between subsystems during simultaneous information processing, selec-
tion of and switching between different strategies of retrieval, management of
selective attention, as well as retrieval and manipulation of long-term memory
information. In a further elaboration of his model, Baddeley (2000) postulated
the episodic buffer as a fourth component. This instance’s purpose lies in com-
bining differently coded information (from perception, from other subsystems
of working memory, and from long-term memory) into a coherent whole, be-
fore transferring this information to long-term memory. Empirical evidence
has not yet been provided for this structural addition; so far, only few studies
on this subject have been published.

Overall, working memory is regarded as the active memory constituent, which
can take in only a limited amount of information. Hence, the operability of
working memory constitutes the limiting resource on which an individual’s
cognitive performance depends. In this context, interindividual differences
exist in the size of processed units, and the processing speed of the respective
working memories. Both phonological loop and visuo-spatial sketchpad are
easily differentiable at an age of four already (Alloway et al., 2006). The differ-
entiation of the central executive cannot be reliably detected before the age of
five (Alloway et al., 2006; Michalczyk et al., 2013). For the development of pre-
school numerical competencies, particularly the visuo-spatial sketchpad has
been proven to be a central influencing factor (Krajewski & Schneider, 2009;

PHONOLOGICAL LOOP

Phonological
store

Central
executive

Articulatory processes

Visuo-spatial
store

Visuo-spatial processes

VISUO-SPATIAL SKETCHPAD

Fig. 1:Working memory model according to Baddeley (1986).
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Kyttälä et al., 2003; Schuchardt et al., 2014). As Preßler et al. (2013) pointed
out in their study, preschool children with an impaired visuo-spatial sketch-
pad displayed poor mathematical competencies immediately before and three
months subsequent to the onset of schooling. This matches the findings on
children suffering from dyscalculia, where particularly dysfunctions of work-
ing memory’s visuo-spatial component have been identified as a decisive
causal factor for a reduced numeracy performance (Klesczewski et al., 2018;
Schuchardt et al., 2008).

4 Working memory and SLI

Working memory difficulties anomalies are also diagnosed in children affected by
SLI. Accordingly, a large portion of studies attests a substantial functional deficit
of phonological loop and central executive, while impairments of the visuo-spatial
sketchpad have been observed rather infrequently (Archibald & Gathercole, 2006;
Schuchardt et al., 2013; Marton & Schwartz, 2003; Montgomery & Evans, 2009;
Riccio et al., 2007). Schuchardt et al. (2013) examined elementary school children
with dyslexia, as well as with a combination of deficits (dyslexia and dyscalculia),
focusing on working memory functions. Moreover, half of the test subjects
were affected by SLI. Whereas children with a comorbidity of dyslexia and
dyscalculia exhibited a functionally impaired visuo-spatial sketchpad, chil-
dren additionally affected by SLI possessed a properly operating visuo-spatial
working memory. Thus, these children’s numerical shortcomings appear to be
rather a consequence of speech difficulties than attributable to malfunctions
of the visuo-spatial sketchpad.

5 Research issue

On the basis of research findings on the subject of SLI-affected children experienc-
ing difficulties in mathematics, the principal question (1) arises, whether anomalies
regarding preschool basic numeracy competence become apparent prior to school-
ing? For this, the following categories of competence undergo a closer examina-
tion: counting ability, knowledge of numbers, comprehension of quantities, and
basic numeracy. It is assumed that preschoolers affected by SLI will, in comparison
to their unaffected peers, exhibit a less developed basic numerical competence in
all categories.
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Moreover, an interesting task (2) lies in exploring the causes of possible de-
velopmental deficits in the field of basic numeracy. There are two conceivable
explanatory approaches: On the one hand, the study results of Schuchardt et al.
(2013) suggest that the present language deficits are responsible for the child-
ren’s failure to progress at an age-appropriate level in basic numerical learning
(language deficit hypothesis). In order to verify this hypothesis, the children af-
fected by SLI will be compared to a group of younger children on the same level
of speech development. If the development of basic numerical competencies
proceeds analogously to the language level, the performances of these two
groups should attain a similar level.

On the other hand, it is also conceivable that, beyond the language deficits,
an additional cause in the form of a cognitive working memory deficit exists. In
the latter case, the deficit would be attributed to the visuo-spatial sketchpad
(working memory deficit hypothesis). Hence, should anomalies of the visuo-
spatial sketchpad appear compared to the control group of the same age, these
anomalies could relate to the deficient numeracy development. However, the
case of age-appropriate intact visuo-spatial working memory functions would
further consolidate the language deficit hypothesis.

6 Method

6.1 Sample and research design

Within the frame of a three-group design, the group of SLI-affected children
(n = 25) is contrasted to two control groups: (1) children of the same chronological
age without signs of language deficits (CA, n = 25), and (2) a group of children on
the same level of language development as the SLI-affected group, that is, of the
same language maturity (LA, n = 25). All participating children are native speak-
ers of German and have an IQ of ≥80 (CPM; Bulheller & Häcker, 2002). The chil-
dren of the SLI group come from two speech therapy kindergartens, the children
of both control groups from regular kindergartens. The latter constitute partial
random samples from a study on differential developmental courses of cogni-
tive competencies during preschool and elementary school age (Differentielle
Entwicklungsverläufe kognitiver Kompetenzen im Vor- und Grundschulalter).
The parallelization of language maturity has been conducted on the basis of
raw score from the active vocabulary test (AWST-R; Kiese-Himmel, 2005), as
well as based on raw score of the subtest morphological rule formation, which
is part of the language development test for children (SETK 3–5; Grimm, 2001)
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in order to assess grammatical competence. Table 1 contains the sample pa-
rameters of all three groups. Here, it becomes apparent that group SLI shows
unambiguously substandard performances in the fields of vocabulary and gram-
mar, which would be expected for the age of four.

6.2 Instruments

6.2.1 Numerical competencies

The implicated battery of tasks has been developed for the age group between
three and six years (retest-reliability rtt = .95). Computers have been used as inter-
face for all tasks. Counting abilities have been tested via two subtests. For audible
counting (Cronbach’s alpha = .95), the child is instructed to count a sequence of
numbers up to 25. In a further step, the child is asked to count from 58 to 72. The
latter sequence is meant to test the child’s ability to start counting from any given
point within the numerical series. In counting objects (Cronbach’s alpha = .83), the
child is instructed to count 11 given quantities, which are being visually presented
(yellow stars on a blue background) in succession. The child is asked to point a
finger at the individual objects while audible counting them. The number of stars
varies between three and twenty-one. The task assesses the degree to which the
child already masters basic counting principles, such as one-to-one correspon-
dence, stable order, and cardinality. For the survey regarding numeral knowledge,
the two following tasks have been designed. For the denomination of Arabic nu-
merals (Cronbach’s alpha = .93), a task with 17 items captures the ability of trans-
ferring Arabic numerals into words. The numerals (1 to 12, 15, 18, 19, 100, and 116)
are presented along with additional objects to be named (e.g., mouse, apple, tree,
ball, moon) on a computer display. In the second task, transcoding (Cronbach’s

Tab. 1:Means (SDs) for descriptive characteristics of subgroups.

SLI
(n = )

CA
(n = )

LA
(n = )

Sex(m/f) / / /
Age (years) ; ; ;
IQ . (.) . (.) . (.)
Vocabulary (RW) . (.) . (.) . (.)
Vocabulary (T-Score) . (.) . (.) . (.)
Grammar (RW) . (.) . (.) . (.)
Grammar (T-Score) . (.) . (.) . (.)

Note: SLI = specific language disorders; CA = chronological age; LA = language age.
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alpha = .65), three Arabic numerals are visually displayed; the child is subse-
quently asked to point out a verbally indicated number within this number
range (number range: 1 to 150). The comprehension of quantity has been as-
sessed with the task quantity comparison (Cronbach’s alpha = .73). On a screen,
two rectangular shapes are displayed, each filled with different amounts of ob-
jects (circles, squares, bars). The child is to name the square containing the
largest number of objects. The objects vary in size, shape, and arrangement. At
the same time, the quantitative proportions differ greatly (e.g., 15:3, respec-
tively 7:6). Early numerical competence has been examined in two tasks. For
the addition of two visualized quantities (Cronbach’s alpha = .66), two circles,
each containing blocks which indicate quantities, are displayed. The task now
is to determine the sum of both quantities. In the task mental operations involv-
ing objects (Cronbach’s alpha = .77), the computer shows either a garage or a
rabbit’s burrow, into which successively two differing numbers of cars, respec-
tively of rabbits, enter and disappear. Following this presentation, the child is
asked to report the number of objects inside the structures. Also, this task as-
sesses primary addition skills, whereby the first subset must be represented
mentally in order to add the second subset.

As dependent variables, the children’s individual raw points have been di-
vided by the corresponding total of items for every single subtest; resultingly,
the values are in the range of 0 to 1.

6.2.2 Working memory

Here, children worked on two tasks from the working memory test battery for chil-
dren between ages 5 and 12 (AGTB 5–12; Hasselhorn et al., 2012). For the examina-
tion of the visuo-static component of the visuo-spatial sketchpad, the matrix span
has been implicated (retest-reliability rtt = .51; split-half-reliability r = .98). Pat-
terns of black-and-white sections of a four-by-four matrix are visualized on the
display, starting with two sections and increasing up to a maximum of eight
black sections. Immediately following this presentation, the children are to repro-
duce the black sections by pressing the corresponding areas on the empty display
matrix. A corsi-block-span (retest-reliability rtt = .60; split-half-reliability r = .97)
serves to assess the visuo-spatial sketchpad’s spatial-dynamical component. The
child is exposed to a touchscreen monitor showing nine arbitrarily arranged
white squares, in which for moments little smiley faces appear consecutively.
Subsequently, the child is instructed to touch those display areas in which the
smiley faces had been visible, in order of their appearance. As the dependent
variable, the longest sequence attained in both tasks is being determined.
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7 Results

The performances for the entirety of tasks examined of three groups can be
obtained from Tab. 2. Initially, the performances in the field of numerical com-
petence have been analyzed via individual univariate analyses of variance
(ANOVA). Through this, as presumed, a significant group effect manifested it-
self for all tasks (Tab. 2). Further post hoc tests (Tukey) for the explanation of
group effects illustrated that children of the CA group achieved significantly

Tab. 2:Means (SDs) for numerical competencies and working memory of subgroups.

SLI CA LA ANOVA Post hoc
comparison

F(,) p ηp

Numerical competencies

Counting abilities
Audibly counting .

(.)
.

(.)
.

(.)
. . . SLI = LA < CA

Counting objects .
(.)

.
(.)

.
(.)

. . . SLI = LA < CA

Numeral knowledge
Denomination of Arabic numerals .

(.)
.

(.)
.

(.)
. . . LA < SLI < CA

Transcoding .
(.)

.
(.)

.
(.)

. . . LA < SLI < CA

Comprehension of quantity
Quantity comparison .

(.)
.

(.)
.

(.)
. . . LA < SLI < CA

Early numerical competence
Addition of two visualized
quantities

.
(.)

.
(.)

.
(.)

. . . SLI = LA < CA

Mental operations involving
objects

.
(.)

.
(.)

.
(.)

. . . SLI = LA < CA

Visuo-spatial working memory
Matrix-span .

(.)
.

(.)
.

(.)
. . . LA < SLI = CA

Corsi-block-span .
(.)

.
(.)

.
(.)

. . . LA < SLI = CA

Note: SLI = specific language disorders; CA = chronological age; LA = language age.
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better results in all tasks than children affected by SLI. The comparison with
group LA is used to answer the question whether these poor numerical per-
formances of children exhibiting language development anomalies can be at-
tributed to their low level of language development. Here, the results show a
heterogeneous pattern. While group SLI yields comparable results in the fields
of counting ability and numeracy, they deliver better results than group LA in
tasks regarding numeral knowledge and quantity comparison.

As a second step, the performances for working memory’s visuo-spatial
sketchpad have been examined employing once more univariate analysis of
variance (ANOVA) for both tasks separately. Again, substantial group effects
appeared (Tab. 2). Yet, subsequent post hoc comparisons uncovered a different
result pattern. In both tasks, the SLI and the CA groups yielded similar results,
which were significantly higher than those of group LA children.

8 Discussion

The present study closely examined the development of basic numerical pre-
school competence of SLI-affected children prior to schooling. It became appar-
ent that these individuals showed weaker performances than their peers without
language impairments in all fields. In this context, counting ability and first nu-
merical operation skills are comparable to the results of the younger control
group. Thus, it appears that the exhibited developmental delay corresponds to
the deficit in language competence. However, different result patterns come into
view in the examination of quantity comprehension and numeral knowledge.
Here, the SLI-affected children’s performances rank between those of the two
control groups. These findings might be interpreted as evidence for general nu-
merical knowledge of quantity and numerals is not as strongly affected as the
specific numerical operations of counting and calculating (cf. Donlan et al.,
2007). Presumably, operations of counting and calculating are related to lan-
guage proficiency more closely than knowledge of quantity and numerals.

Furthermore, it becomes clear that anomalies of numeracy development can-
not be associated with a diminished capacity of working memory’s visuo-spatial
sketchpad. Despite the fundamental role visuo-spatial working memory plays in
building up numerical preschool competencies, the children with deficient pre-
school competence partaking in this survey did not exhibit shortcomings regarding
visuo-spatial working memory. Beyond that, functional anomalies of the visuo-
spatial sketchpad can be assessed to have a clear connection with a developing
dyscalculia (Schuchardt et al., 2008). Asked for a cautious estimate, one can derive
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from the findings that the SLI-affected children examined here do not possess a
significant risk of developing a dyscalculia, since they are unaffected by working
memory problems, which frequently are the underlying cause.

Results of the present study rather give evidence for the language deficit
hypotheses, according to which language development anomalies represent an
obstacle to age-appropriate numeracy development. This obstacle becomes ap-
parent already at preschool age in counting and calculation tasks. Therefore,
one can conclude that age-appropriate language competence is not only of cen-
tral importance in its role as a prerequisite of literacy, but that it is also crucial
for the acquisition of preschool numerical competence. For this reason, SLI-
affected children after all are particularly prone to developing learning dys-
functions. Since the acquisition of knowledge and the transfer of educational
content happen via speech and language, language development deficits con-
stitute a considerable risk for achieving academic success, to which affected
children are exposed during preschool and schooling ages.

The results described must be considered in the light of the limitations of
the study. It should be noted, for example, that the sample size is rather small.
A replication on a larger sample would therefore be desirable. Moreover, only a
few working memory tasks were included. A comprehensive battery of tasks
that include a wider range of working memory functions would be desirable
here. Furthermore, we should be aware of the fact that a diagnosis of SLI is less
stable at early ages, and therefore, predictions should be made carefully.

To counteract the emergence and consolidation of numeracy acquisition
problems within the context of school education, special tuition is mandatory
from early on. As it is the case for all combined developmental deficits (in this
case preschool language and numeracy competence), there is a lack of academic
studies to recommend an appropriate, evidence-based strategy of support: Would
a specific language tuition result in an improvement of numerical competence?
Or, as an alternative approach: Is the training of numerical competence the more
appropriate intervention, considering the reduced level of speech development?

Possibly, children with language impairments require simplified teaching
instructions tailored to their needs, ideally realized via visualization, in order to
facilitate the comprehension of numerical concepts. The same problem presents
itself during the first years of schooling, even in specialized language learning
groups, or in an inclusive learning group offering special language tuition.
While both pedagogical environments obviously focus on improving language
competence, a methodically and didactically differentiated form of tuition may still
be requisite, which explicitly takes into consideration the children’s individual
learning progress.
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Elisabeth Moser Opitz and Verena Schindler

Disentangling the relationship between
mathematical learning disability
and second-language acquisition

1 Introduction

Several studies have established that the mathematical achievement of language
minority students (students whose first language differs from the language of in-
struction) is poorer than that of native speakers (students whose first language is
the academic language of the instruction; Haag et al., 2015; Paetsch & Felbrich,
2016; Vukovic & Lesaux, 2013; Warren & Miller, 2015). However, despite the ex-
panding literature on the mathematical learning of language minority students
and of native speakers, very little is known about the relationship between math-
ematical learning disabilities and second-language acquisition. More detailed re-
search on this topic is important for several reasons: Gonzáles and Artiles (2015)
report that Latina/o students in the United States who perform below expecta-
tions in literacy tests are often diagnosed as having learning difficulties, which,
in turn, often leads to their exclusion from mainstream education. Further, lan-
guage minority students with low mathematical achievement in Switzerland –
and probably also in other countries – often receive special second-language sup-
port, but they do not receive support for mathematics because it is assumed that
their mathematical problems are caused by their language background. There-
fore, it is important to investigate the extent to which the problems of language
students with mathematical learning disabilities may be caused by math-related,
as opposed to language-related, factors.

This study investigates whether the relationship between selected language
variables and mathematical achievement gains is similar for native speakers
with mathematical learning disabilities and language minority students with
mathematical learning disabilities. The research was conducted by evaluating
grade 3 students (students who are in the third year of school after attending
kindergarten) over the course of a school year.

Note: This project was sponsored by the Swiss National Science Foundation Grant Nr. 134652
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2 The relationship between mathematical
learning and language

The mathematical learning process and therefore the mathematical achievement
gain are closely linked to language. According to Morgan et al. (2014: 845), “lan-
guage has a special role in relation to mathematics because the entities of math-
ematics are not accessible materially.” Language is an important tool that gives
access to mathematics. However, the language of instruction, the academic lan-
guage, differs from everyday language (Cummins, 2000) and has its own charac-
teristics and challenges for all students (Schleppegrell, 2004; Snow & Uccelli,
2009). Prediger et al. (2019) categorized the challenges for students on word,
sentence, and text, and on discourse level. The challenges can, individually or
in combination, affect the mathematical learning process and thus contribute to
learning difficulties in mathematics.

On word level, the linguistic structure of the number words has an influ-
ence on the acquisition of numbers (e.g., Klein et al., 2013; Miura et al., 1994).
Math vocabulary is also an issue at this level. According to Haag et al. (2015)
more difficult lexical features in test items, such as a more specialized vocabu-
lary, increase the item difficulty in math tests.

On a sentence and text level, logical relationships, complex prepositional
clauses (Jorgensen, 2011), conditional clauses, and complex issues of cohesion
are difficult (e.g., Schleppegrell, 2004). Further, Haag et al. (2015) showed that
text length and an increased number of noun phrases made comprehension
more challenging for third graders. Koponen et al. (2018) found a link between
reading competence and mathematical achievement. Students with a very low
performance in reading showed low performance in mathematics across all
grades.

Language in mathematics classrooms is also important on a discourse level.
Language is both a medium of knowledge transfer and discussion, and a tool
for thinking (Morek & Heller, 2012). Moschkovich (2015) and Erath et al. (2018)
emphasized the importance of students’ participation in discourse for develop-
ing conceptual understanding. Moschkovich (2015) points out that it is not the
use of formal mathematical words that makes a discussion mathematical, but
the use of mathematical concepts. Such concepts may also be expressed using
informal words and phrases. Nevertheless, it may be assumed that performance
in informal language production, regardless of use of mathematical vocabulary,
is an important prerequisite for participation in classroom discourse.

In summary, this short review shows that language factors and mathemati-
cal learning are closely related on multiple levels.
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3 Language performance and mathematical
learning of students with mathematical
learning disabilities

Although the scientific community has yet to agree on a formal definition of
mathematical learning disability (e.g., Nelson & Powell, 2017), and different
countries use different diagnostic criteria, studies have identified some charac-
teristics commonly found in students with mathematical learning disabilities:
low competence in counting tasks (Desoete et al., 2009; Stock et al., 2010),
problems with understanding different aspects of the base-10 number system
(e.g., Herzog et al., 2019; Moeller et al., 2011; Vukovic & Siegel, 2010), and deal-
ing with word problems (e.g., Kingsdorf & Krawec, 2014; Peake et al., 2015;
Zhang & Xin, 2012). Students with mathematical learning disabilities also have
problems with fact retrieval, which can be related to deficits in working mem-
ory (e.g., De Weerdt et al., 2012; Geary et al., 2012). This study uses the term
“mathematical learning disabilities” to refer to students with below-average
mathematical achievement who have the characteristics described in this section
(for cut-off criteria, see instruments).

Little is known about the relationship between language performance and
mathematical learning in students with mathematical learning disabilities. Most
studies to date have investigated the differences between students with and with-
out comorbid reading disabilities.

On word level, the relationship between mathematics vocabulary and mathe-
matical learning disabilities, with and without reading disabilities, has been in-
vestigated (Forsyth & Powell, 2017). Fifth graders with mathematical learning
disabilities only or with reading disabilities only demonstrated a significantly
weaker grasp of mathematics vocabulary than typically achieving students. Stu-
dents with both mathematical learning disabilities and reading disabilities scored
significantly lower than students who had problems only with either reading or
mathematics.

On text and sentence levels, research generally focuses on reading disabil-
ities. Mann Koepke and Miller (2013) conclude that 17–66% of students with
mathematical learning disabilities also have reading disabilities. Several stud-
ies confirm this relationship (Vukovic, 2012; Vukovic & Siegel, 2010).

Peake et al. (2015) examined another factor on sentence level. They found a
relationship between arithmetic problem solving and syntactic awareness in a
sample of students with reading disabilities and a group of comorbid disabil-
ities (reading and math), but not with students with mathematical learning dis-
abilities only.
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In summary, evidence in the literature supports the hypothesis that students
with mathematical disabilities often have problems with mathematical vocabu-
lary and reading.

4 Language performance and mathematical
learning of language minority students

The achievement gap in mathematics between native speakers and language mi-
nority students (see introduction) is often explained by the difference between
everyday language and academic language (Schleppegrell, 2004). This relation-
ship is complex. The research of Martinellio (2008) showed that the poor test re-
sults of language minority students in grade 4 were caused by several factors:
lack of knowledge of the specific context of a word problem, lack of vocabulary
(e.g., likely, unlikely, certain), as well as the linguistic complexity of the items.
Bochnik (2017) investigated the relationship between mathematical vocabulary,
overall language proficiency in German, and mathematical achievement in a
sample of German-speaking native speakers and language minority students in
grade 3 who had lower mathematical achievement than their peers. The differ-
ence between the samples was predicted by overall proficiency in German. But,
proficiency in the technical language of mathematics was the strongest predictor
when explaining differences in the mathematical achievement of native speak-
ers and language minority students. Vukovic and Lesaux (2013) investigated the
relationship between language ability and mathematical cognition in a sample
of language minority and native speakers aged 6 to 9. The authors found that
language proficiency predicted gains in data analysis, probability, and geome-
try, but not in arithmetic, which was assessed with a computation test. The
authors concluded that language seems to play a limited role in numerical ma-
nipulation but may be necessary for forming mathematical concepts and repre-
sentations. Prediger et al. (2018) showed in a survey of grade 10 students that
language proficiency is the background factor with the strongest connection to
mathematics achievement of all the social and linguistic background factors.
Language proficiency therefore was more strongly interrelated to mathematics
achievement than multilingualism, immigrant status, or socioeconomic status.

Finally, Rodriguez et al. (2001) found that the performance rate of solving
word problems by culturally and linguistically diverse learners in special bilin-
gual classrooms was lower than that of students with learning disabilities and of
students in general classrooms. This occurred even when reading requirements
were minimal and the students were capable of solving computation problems.
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The authors assume that the issues with problem solving might be because the
student had never seen this kind of problem before.

These studies confirm the strong relationship between language proficiency
on different levels (word, sentence, and text, discourse) and mathematical learn-
ing for all students. Therefore, it is important to heed Moschkovich (2010), who
recommends focusing less on differences between monolinguals and bilinguals,
and more on their similarities.

5 Research questions

The literature review reveals that little is known about the relationship between
mathematical learning and the contributing language factors of students with
mathematical learning disabilities, and as far as we have been able to ascertain,
there has been no research into this relationship that looks specifically at lan-
guage minority students with mathematical learning disabilities. Reported find-
ings from the literature for typically developing students lead to the hypothesis
that the mathematical learning gains of language minority students with math-
ematical learning disabilities and those of native speakers with mathematical
learning disabilities may be influenced by similar variables. This would also
mean that differences between language minority students with and without
mathematical learning disabilities could be explained by math-related factors.
This study will examine these assumptions by investigating the following re-
search questions in the framework of a year-long study:
– Are the mathematical learning gains of language minority students with

mathematical learning disabilities better explained by math-related or lan-
guage-related factors?

– Are the mathematical learning gains of native speakers and language mi-
nority students with mathematical learning disabilities explained by the
same or by different factors?

In order to investigate the relationship between math-related and language-
related factors of language minority students with mathematical learning
disabilities, it is also important to compare language minority students with
mathematical learning disabilities and those without to find an answer to the
following question:
– What factors explain the differences between the mathematical learning

gains of language minority students with mathematical learning disabil-
ities and those without?
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It is assumed that the mathematical learning gains of language minority stu-
dents with and without mathematical learning disabilities are explained by spe-
cific math-related factors.

6 Method

6.1 Participants

The participants were 70 third graders from Switzerland (32 classrooms). These
students were selected from an initial sample of 888 students from 58 inclusive
classrooms which participated voluntarily in a study on inclusive mathematics
instruction (for selection criteria, see section “Measures”). All participants had
written parental consent. To reduce the chances of influential variables in a
highly selective sample (language minority students, students with mathemati-
cal learning disabilities), a matched-sample design was chosen.

Two samples were studied separately. The first sample included matched
pairs of native and language minority students with mathematical learning
disabilities (sample mathematical learning disabilities, n = 40; for criteria see
below). The second sample consisted of matched pairs of language minority
students with or without mathematical learning disabilities (language minor-
ity student sample, n = 42). Information on the language background of the
students was gathered using a two-step procedure. First, data on languages
spoken at home (first, second, third language) were collected using a teacher
questionnaire, and students with a first language other than German, or with
two first languages, were selected. Then, a language-use telephone interview
was conducted with 52 of the 62 parents of these students, following the proto-
col established by Ritterfeld and Lüke (2011). Based on this information, the
first-language variable was dummy-coded (German vs other).

Finding a sufficiently large sample of language minority students with
mathematical learning disabilities was challenging due to the small popula-
tion of such students. Therefore, 12 of the students were part of both samples.
Because the analyses for each sample were conducted separately, the problem
of dependency can be discounted. Mathematical achievement was measured
at the end of grade 2 (t1), then eight months later with a post-test (t2), and at
the end of grade 3 with a follow-up (t3). Information on selected language and
control variables was collected at t1, after selecting the subsamples.

The mathematical learning disability sample consisted of 20 pairs of matched
students (n = 40, Tab. 1) with below-average mathematical competence at t1 (for
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criteria, see below). Each pair comprised one student with German as his or her
first language and one student with German as a second language. The pairs
were matched by mathematical achievement at pre-test (difference math score ≤ 6
points), IQ (difference IQ score ≤ 8 points), age (difference ≤ 6 month), and gen-
der. A Wilcoxon signed-rank test showed no significant difference between the
groups on the basis of the matching criteria (math pretest U = −1.09, p > .05; IQ:
U = −0.13, p > .05; age: U = −0.11, p > .05). A significant difference was found for
socioeconomic status (U = −3.36, p < .01). The impact of this variable will be
controlled in the analysis. The language minority students spoke the following
first languages: Albanian (7), Croatian (1), Portuguese (4), Serbian (2), Tamil (2),
Tigrinya (1), Turkish (2), and Urdu (1).

The language minority learner sample consisted of 21 matched pairs of stu-
dents with German as a second language (n = 42, Tab. 1). One student from
each pair had below-average mathematical achievement (for criteria, see below),
and the other had average or good mathematical achievement (difference math
score ≥ 10 points). The matching criteria were IQ (difference IQ score ≤ 8 points),
age (difference ≤ 6 month), gender, and first language. A Wilcoxon signed-rank
test showed no significant difference between the groups on the basis of the
matching criteria IQ and age and socio-economic status (IQ: U = −0.93, p > .05;
age: U = −0.85, p > .05; SES: U = −0.80, p > .05). As intended, the groups differed
significantly in the math pretest (U = −4.02, p < .001). The language minority stu-
dents spoke the following first languages: Albanian (9), Chinese (1), English (1),
Italian (1), Croatian (2), Macedonian (2), Portuguese (8), Serbian (2), Tamil (6),
Tigrinya (1), Turkish (8), and Urdu (1).

Tab. 1: Demographic characteristics of the sample mathematical learning disabilities and the
sample of language minority learners.

Mathematical learning
disabilities sample

Language minority
learner sample

First language
German

Other first
language

Total With math
disabilities

Without math
disabilities

Total

Students      

Classes      

Gender
Boys
Girls
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6.2 Measures

This study used highly selective samples with reduced variance. This can lead
to the measures having low reliability. Therefore, with one exception, standard-
ized tests and scales from standardized instruments were used. Nevertheless,
some scales had to be excluded from the analyses due to low reliability scores.
All tests were carried out in German. Sum scores were used for all scales.

6.2.1 Mathematics measures

General mathematical achievement: Standardized math tests to diagnose mathe-
matical learning disability with norms for Germany and Switzerland (t1: Moser
Opitz et al., 2020; t2 and t3: Moser Opitz, 2019) were conducted. The tests assess
basic mathematical competences (e.g., understanding place value, number decom-
position, doubling, halving, addition, subtracting, solving simple word problems).
Linguistic requirements are minimal as most information is given with tables and
pictures. In addition, the test administrators were allowed to read out the short
instructions. The cut-off score for determining mathematical learning disabil-
ity was set in the pre-test on the basis of the test norms (percentile 16) for all
students. Average mathematical achievement was defined as scores that were
the mean of the initial sample or higher. Table 2 gives an overview of the num-
ber of items and Cronbach’s alpha.

Solving word problems: Researcher-designed scale with simple and com-
plex comparison, combine, and exchange problems (details see Tab. 2).

Counting competences (counting forward and backwards by twos and tens)
was also tested; however, this scale had to be excluded due to low reliability
scores.

6.2.2 Language-related variables

In order to answer the research question, different language-related variables
on sentence and on text level (reading comprehension, understanding semantic
relationships), as well as on discourse level (verbal fluency) were assessed in an
in-depth examination. Most of the scales are subtests of the standardized instru-
ment SET5-10 constructed to diagnose language impairment (Petermann, 2010;
number of items and Cronbach’s alpha; see Tab. 2).
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– Listening comprehension: understanding semantic relationships (Petermann,
2010)

– Verbal fluency (forming a sentence from a given word, e.g. lemon and sour;
Petermann, 2010)

– Reading comprehension (subtest of K-ABC, Kaufman & Kaufman, 2009)

Mathematical vocabulary, cases, and plural formation were also examined.
However, this data had to be excluded due to low reliability scores.

6.2.3 Control variables

Intelligence was tested with CFT 1 at t1 (Weiß & Osterland, 1997). The student’s
socioeconomic status was determined using the “books-at-home” index (Paulus,
2009), as measures like free meals are not available in Switzerland, and it was
not possible to collect data such as the professional qualification of the mother.
The books-at-home index involves showing pictures of five bookshelves with dif-
ferent numbers of books, from which the student is asked to choose the one that
is most similar to that at home. To improve reliability, students were polled on
three occasions (t1, t2, t3). The average of the responses was used in the analyses.
Verbal working memory (repeating nonsense words) was tested in-depth using

Tab. 2: Overview on the measures.

Number
of items

α sample mathematical
learning disabilities

α sample of language
minority students

Math pre-test (t)  . .

Math post-test (t)  . .

Math follow-up (t)  . .

Solving word problems  . .

Listening
comprehension

 . .

Verbal fluency  . .

Reading
comprehension

 . .

Verbal working memory  . .
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the Mottier-Test (Gamper et al., 2012). Visual processing speed was also assessed,
but the reliability score was very low, and therefore this measure could not be
used in the analyses.

Table 3 gives an overview on the descriptives of the two samples.

Tab. 3: Descriptives of math-related, language-related, and control variables of the samples.

Mathematical learning
disabilities sample

Language minority
student sample

First
language
German

Second
language
German

All
students

With learning
disabilities

Without learning
disabilities

All
students

M (SD) M (SD)

IQ .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

SES .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Age month .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Math t .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Math t .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Math t .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Word problems .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Reading
comprehension

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Listening
comprehension

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Verbal fluency .
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

Verbal working
memory

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)

.
(.)
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6.3 Data analysis procedures

First, correlations were calculated for both samples. Second, due to the small
sample size, which would allow for the inclusion of only few predictors, hier-
archical multiple regression analyses were conducted with the dependent var-
iable “mathematical achievement” at the post-test and the follow-up, with
separate models. The residuals of these variables were normally distributed
for the mathematical learning disabilities sample. This was not the case for
the follow-up of the language minority student sample. Because of this and
because some students dropped out at t3, the analysis for this sample was car-
ried out with the dependent variable of the post-test only. In order to assess
the impact of first language, two models were tested for the language minority
student sample. One model put first language in a first step (minimal handi-
cap), followed by math-related variables (math t1, solving word problems),
control variables which are known as predictors for mathematical achievement
(IQ, socio-economic status, working memory), and finally language-related varia-
bles (maximum handicap). In the second model, math t1 was placed in the first
step, and first language was put in the last step (maximum handicap). This second
model was formulated on the basis of the findings of Vukovic and Lesaux (2013)
and Prediger et al. (2018), which show that language proficiency has an impact on
mathematical achievement of all students regardless of the language background.
For the language minority student sample, two analyses were conducted: one
model in which math-related variables were included first, followed by control
variables and language-related variables; and a second model with language
variables at the first place (minimal handicap). The assumptions of multicolli-
nearity and autocorrelation were not violated.

7 Results

7.1 Correlation analyses

Due to space limitations, only strong correlations are reported (without table).
In the students with mathematical learning disabilities sample, a strong corre-
lation (r = .50**) was found for math t1 and math t3, and for math t2 and math
t3 (r = .72**). First language (German/other) was strongly negatively correlated
with verbal fluency (r = −.64**). In addition, reading comprehension and ver-
bal fluency were strongly correlated (r = .66**).
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In the language minority student sample, a strong correlation was found
between math at t1 and t2 (r = .78**). In addition, verbal fluency correlated
strongly with reading comprehension (r = .62**) and listening comprehension
(r = .54**).

7.2 Hierarchical multiple regression analysis

7.2.1 Mathematical learning disabilities sample

In the first model for the post-test (Tab. 4), first language was included in step
1. R2 was .12 (f = .37). R2 rose significantly to R2 = .42 (ΔF = 9.40, p < .001) when
math-related predictors were inserted with a strong effect size (f = .85) according
to Cohen (1969). Control variables did not lead to a significant increase of R2.
However, for the language-related variables, R2 rose significantly to .57 (ΔF =
3.02, p < .05, effect size of the increase of R2 f = .39).

The pattern of development over 12 months (dependent variable follow-up math
with post-test math as one of the math-related variables) differed (Tab. 4). The
proportion of the explained variance, when including first language in step 1,
was .08 (ΔF = 3.49, p < .1). The significance threshold was missed and the effect
size (f = .29) is medium, according to Cohen (1969). R2 increased to .54 when in-
cluding the math-related variables (ΔF = 18.09, p < .001). The effect size for the

Tab. 4: Hierarchical multiple regression analysis summary in sample mathematical
learning disabilities (dependent variable post-test and follow-up mathematics) with
first language included as first predictor.

Predictor Post-test Follow-up

R ΔR ΔF P R ΔR ΔF P

Step 

First language
. . . . . . . .

Step 

Math-related variables
. . . . . . . .

Step 

Control variables
. . . . . . . .

Step 

Language-related variables
. . . . . . . .
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increase of R2 = .46 was high, with f = .92. Neither the control variables nor the
language-related variables explained the additional variance.

By including the math-related predictors in step 1 for the post-test (Tab. 5),
R2 was .37, with a very high effect size (f = .77). R2 increased also significantly
(R2 = .57, ΔF = 4.25, p < .05) when language variables were included. The ef-
fect size of the increase was f = .47, which is a high effect (Cohen, 1969). The
first language variable as well as the control variables did not lead to a sig-
nificant increase of R2.

When math-related variables were included in step 1 for the follow-up (Tab. 5),
R2 was .54 (ΔF = 21.92, p < .001). The effect size of f = 1.08 was higher than that in
the model with the posttest as the dependent variable (f = .77). Neither the control
variables nor the language variables resulted in a significant change of R2.

To sum up, math-related variables explained the highest proportion of the
variance for mathematical progress, especially over the longer term. First lan-
guage was found to have a significant impact only for the post-test, when in-
cluded in the first step of the model.

7.2.2 Language minority student sample

In the language minority student sample, only two models were tested (for de-
pended variable post-test math, see Section 6.3): one model, which put lan-
guage-related variables in the first step (Tab. 6), and a second model, which

Tab. 5: Hierarchical multiple regression analysis summary in mathematical learning
disabilities sample (dependent variable post-test and follow-up mathematics) with
math-related variables included as first predictor.

Predictor Post-test Follow-up

R ΔR ΔF p R ΔR ΔF p

Step 

Math-related variables
. . . . . . . .

Step 

Control variables
. . . . . . . .

Step 

Language-related variables
. . . . . . . .

Step 

First language (German/other)
. . . . . . . .
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inserted math-related variables in the first step (Tab. 7). Putting language-
related variables in the first step resulted in R2 = .17 (ΔF = 2.57, p = .069. f = .44).
R2 increased to .67 (ΔF = 27.38, p < .001) when math-related variables were given
a heavy weighting with a very high effect size of R2 (f = .71). No impact of control
variables was found.

A very high proportion of the variance (66%) was explained by including the
math-related variables (ΔF = 37.61, p < .001; f = 1.40). No increase of R2 occurred
when control and language variables were added (Tab. 7).

In conclusion, in this sample, only math-related variables led to an increase
of R2.

Tab. 6: Hierarchical multiple regression analysis summary in language
minority student sample (dependent variable post-test math) with first
language included as first predictor.

Predictor R ΔR ΔF p

Step 

Language-related variables
. . . .

Step 

Math-related variables
. . . .

Step 

Control variables
. . . .

Tab. 7: Hierarchical multiple regression analysis summary in the
language minority student sample (dependent variable post-test math)
with math-related variables as first predictor.

Predictor R ΔR ΔF p

Step 

Math-related variables
. . . .

Step 

Control variables
. . . .

Step 

Language-related variables
. . . .
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8 Discussion

This study aimed to investigate which factors contribute to the mathematical
learning gains of native speakers with mathematical learning disabilities and
language minority students with mathematical learning disabilities. To answer
this question, data on the mathematical achievement and on selected language
variables (sentence and text, discourse level) as well as control variables were
collected in a sample of students with mathematical learning disabilities (native
speakers and language minority students) and a sample of language minority
students with and without mathematical learning disabilities.

8.1 Correlation analysis

In the sample of students with mathematical learning disabilities, verbal flu-
ency had the highest negative correlation. This is an interesting result which
might have an effect on the discourse level. Verbal fluency was assessed with a
measure of day-to-day language (forming a sentence with given words). Profi-
ciency in day-to-day language is important for mathematical learning on dis-
course level, when expressing mathematical concepts. Moschkovic (2015) and
Erath et al. (2018) emphasize the importance of students’ participation in the
classroom discourse in helping them to develop a conceptual understanding of
mathematics. However, if students have problems with verbal fluency in day-to
-day vocabulary, this may have an impact on their participation in classroom
discourse and, therefore, hinder the mathematical learning process. Evidence
from Bochnik (2017) supports this assumption. The study found that proficiency
in German had an impact on mathematical achievement. However, no causal
relationships can be drawn with the aforementioned correlation results.

8.2 Hierarchical multiple regression analysis

The results show that math-related variables had the highest impact on the
mathematical learning gains of participants with learning disabilities in mathe-
matics. A significant increase of R2 for first language was found only when in-
cluding this variable as a first step. An effect of language-related variables was
found for the post-test. However, this effect disappeared completely at the fol-
low-up, four months later. These findings lead to the conclusion that the slower
rate of mathematical progress shown by students with mathematical learning
disabilities seems to be caused by specific mathematical problems, rather than
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by language issues. This result is in line with the findings of Vukovic and
Lesaux (2013). Their research with typically developing students shows that
the relationship between language ability and mathematical cognition seems
to be similar for language minority students and native speakers (see Prediger
et al., 2018 for older students). This also seems to be true for students with mathe-
matical learning disabilities, regardless of language background. Geary et al. (2017)
found, in a sample of typically achieving students, that domain-general ef-
fects (intelligence, working memory, reading) on mathematics achievement
remained stable across grades, whereas the overall mathematics-specific effects
increased across grades. This could also be due to the cumulative nature of math-
ematics, and might be even more the case for students with mathematical learn-
ing disabilities and explains the absence of any effect from the control variables.

In the language minority student sample, only math-related variables had a
significant impact on students’ mathematical learning gains. This leads to the
conclusion that the influences of language and control variables seem to be
similar for language minority students, with or without mathematical learning
disabilities.

8.3 Limitations

Some limitations of the study should be mentioned. First, the samples were
small due to the fundamental challenge of finding a highly selective sample of
language minority students with and without mathematical learning disabil-
ities. The highly selective sample led to rather low alpha coefficients in some
scales, even when standardized measures were used. The norms of these tests
are based on representative samples of students, and might not be suitable for
language minority students. Developing suitable measures and testing existing
measures for text equity for language minority students are therefore major objec-
tives for future research.

In addition, the choice of language variables and instruments could be que-
ried. The reading test gives only a global score of reading competence, and using
an instrument that assesses different components of reading competence could
have resulted in different findings. Further, the test for examining working mem-
ory was language-based, and a measure without language requirements (e.g., vi-
sual processing) could have led to other results. Visual processing was tested,
but had to be excluded from the analyses due to a low reliability score. The
small sample size also meant that hierarchical regression analyses had to be per-
formed, and the impact of single predictors, such as reading comprehension or
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working memory, could not be estimated. Therefore, it was not possible to outline
effects on word, sentence and text, and discourse level.

Finally, because of the constraints of the budget, it was not possible to com-
pare language minority students with average math achievement with a similar
sample of native speakers. However, it is the first longitudinal study disentan-
gling the relationship between language-related variables and mathematical
learning gains.

9 Conclusion

The results of the study confirm the assertion by Moschkovich (2010) that it is
important for studies to focus not only on differences between monolinguals
and bilinguals, but also on their similarities. Our study provides evidence that
one of these similarities is the profile of mathematical learning disabilities, irre-
spective of the student’s first language. Our results indicate that these students
need support both in second-language acquisition and in mathematics. Future
research into this problem would benefit from studies with bigger sample sizes.
A very interesting factor, which has rarely been investigated, is verbal fluency
and its influence on participation in classroom discourse. This means that, as
suggested by Vukovic (2012), research on mathematical learning disabilities
and specifically on language minority students with mathematical learning dis-
abilities has to focus on both numerical and language skills.
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Margot Buyle, Cathy Marlair, and Virginie Crollen

Blindness and deafness: A window
to study the visual and verbal basis
of the number sense

1 Introduction

When children acquire numerical skills, they have to learn a variety of specific
numerical tools. The most obvious are the numerical codes such as number
words (one, two, three, etc.) or Arabic numerals (1, 2, 3, etc.). Other skills will
be relatively more abstract: arithmetical facts (i.e., 4 × 2 = 8), arithmetical proce-
dures (i.e., borrowing), or arithmetical laws (i.e., a + b = b + a). The acquisition
of these numerical tools is complex and probably not facilitated by the fact that
a numerical expression does not have a single meaning. Indeed, numbers can
be used as a kind of label or proper name (i.e., Bus 51). They can also be part of
a familiar fixed sequence (i.e., 51 comes immediately after 50 and before 52).
They can be used to refer to continuous analogue quantities (i.e., 51,2 grams)
(Butterworth, 2005; Fuson, 1988) and, most importantly, they can be used to
denote the number of things in a set – the cardinality of the set.

Children are able to understand the special meaning of cardinality because
they possess a specific and innate capacity for dealing with quantities (Feigenson
et al., 2004). Supporting the innate nature of the “number sense,” it has been
found, for instance, that fetuses in the last trimester are already able to discrimi-
nate auditory numerical quantities (Schleger et al., 2014). A large set of behav-
ioral studies using the classic method of habituation has also revealed sensitivity
to small numerosities (e.g., Starkey & Cooper, 1980) in young children. In the
study of Starkey and Cooper (1980), for example, slides with a fixed number of 2
dots were repeatedly presented to 4- to 6-month-old infants until their looking
time decreased, indicating habituation. At that point, a slide with a deviant num-
ber of 3 dots was presented and yielded significantly longer looking times, indi-
cating dishabituation and therefore discrimination between the numerosities 2
and 3. This effect was replicated with newborns (Antell & Keating, 1983) and with
various stimuli such as sets of realistic objects (Strauss & Curtis, 1981), targets in
motion (Van Loosbroek & Smitsman, 1990; Wynn et al., 2002), two- and three-
syllable words (Bijeljac-Babic et al., 1991), or puppet making two or three sequen-
tial jumps (Wood & Spelke, 2005; Wynn, 1996). However, it was not observed
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with other numerosities such as 4 and 6 (Starkey & Cooper, 1980). Taken to-
gether, these data therefore suggest that infants may possess a concept of
small numbers which is dependent on the absolute number of items presented
(up to 3 or 4).

Besides their ability to discriminate particularly small numerosities, infants
are also able to discriminate large numerosity sets. However, this discrimina-
tion ability differs dramatically from that observed with small numerosities:
performance no longer depends on the absolute number of items presented but
on the numerical ratio that separates the two numerosities to be discriminated.
Hence, while 6-month-old infants are able to discriminate numerosities with a
1:2 ratio (4 vs. 8, 8 vs. 16 and 16 vs 32 stimuli) (Brannon et al., 2004; Lipton &
Spelke, 2003, 2004; Wood & Spelke, 2005; Xu, 2003; Xu & Spelke, 2000; Xu
et al., 2005), they fail to discriminate numerosities with a 2:3 ratio (8 vs. 12 and
16 vs. 24) (Xu & Spelke, 2000). By 9 or 10 months, however, the precision of the
representation improves since infants become able to discriminate between 8
and 12 elements (Lipton & Spelke, 2003; Xu & Arriaga, 2007).

Following these two waves of investigations on numerosity discrimination
in infancy, it has been suggested that basic numerical abilities could be sus-
tained by two different proto-mathematical systems (e.g., Butterworth, 1999;
Carey, 2001; Dehaene, 1992; Feigenson et al., 2004; Xu, 2003; Xu & Spelke,
2000): (1) an object-tracking system (e.g., Scholl, 2001; Trick & Pylyshyn, 1994;
Uller et al., 1999) which has a clear limit on set size (3 or 4), allows the precise
representation of small number of objects, and provides a basis for the verbal
and accurate quantification process of counting; (2) a large numerosity esti-
mation system, commonly known as the Approximate Number System (ANS),
which has no set size limit and allows the approximate representation of large
non-symbolic numerosity sets (Xu, 2003; Xu & Spelke, 2000).

Formal mathematics could therefore emerge from these two proto-mathematical
systems. A commonly accepted hypothesis is that symbolic number representa-
tions acquire their numerical meaning through being mapped onto non-symbolic
representations. Accordingly, many visuo-spatial and verbal processes have been
linked to the development of complex numerical skills. Among these, we could
cite visual working memory (WM; Bull et al., 2011a; LeFevre et al., 2010), visual
attention (Anobile et al., 2013), visuo-spatial mental rotation (Reuhkala, 2001),
basic visual perception (Lourenco et al., 2012; Tibber et al., 2013), visual movement
perception (Sigmundsson et al., 2010), phonological awareness (Alloway et al.,
2005; Leather & Henry, 1994; Simmons & Singleton, 2008), and the relative linguis-
tic transparency of the language used (Almoammer et al., 2013; Miller et al., 1995;
Miura et al., 1988; Miura & Okamoto, 1989; Miura et al., 1993; Miura et al., 1994).
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Interestingly, the relative importance of these visual and verbal processes
seems to vary with age and the specific numerical task that is investigated. Several
reports, for example, demonstrated that visuo-spatial and verbal processes might
be differently engaged in the resolution of specific arithmetic operations. While
the resolution of subtraction and addition principally relies on finger-based and
visuo-spatial calculation strategies (Siegler & Shrager, 1984), overlearned simple
multiplication facts have been associated with verbal memory retrieval (Cooney
et al., 1988). Similarly, a recent theoretical framework has developed the idea that
different types of spatial information might be engaged in different numerical
tasks. In Western populations, people tend to represent number along a left-
to-right-oriented mental number line (MNL; Dehaene, 1989, 1992). A compelling
demonstration of this strong association between numbers and space resides in
the SNARC effect. This effect refers to the observation that responses to small
numbers are faster in the left side of space, while responses to large numbers are
faster in the right side of space (Dehaene et al., 1990). Because the SNARC effect
was observed even when participants crossed their hands, numbers were as-
sumed to be mapped onto an external frame of reference (Dehaene et al., 1993),
where small and large numbers facilitate responses in the left and right sides
of space irrespective of the hand of response. More importantly, however,
while the SNARC effect was assumed to primarily originate from visuo-spatial
associations in magnitude comparison tasks, it was assumed to primarily arise
from verbal associations in parity judgment tasks (Herrera & Macizo, 2008; van
Dijck et al., 2009).

Given the importance of visual and verbal processes in the development of
the number concept, it is not surprising to see that visual and verbal deficits
can prevent the acquisition of numerical skills. Hence, it has been reported
that children presenting non-verbal learning disability frequently show comor-
bid mathematics learning difficulties (Crollen et al., 2015). Difficulties in arith-
metic are also remarkably common in dyslexia, particularly when it comes
to retrieving arithmetic facts from semantic long-term memory, as is the case in
multiplication (De Smedt & Boets, 2010; Göbel, 2015; Simmons & Singleton,
2008; Träff & Passolunghi, 2015). A possible explanation for this finding is
that numerical processing might be influenced by visuo-spatial and phonolog-
ical processes (Dehaene et al., 2003; De Smedt & Boets, 2010; Geary & Hoard,
2001). However, to date, it is still unknown whether visuo-spatial and verbal
processes are mandatory or only co-vary with the development of good numer-
ical skills (Szücs, 2016).

Evidence from sensory-deprived individuals offers a unique opportunity to
address this question. If vision and language play a foundational role in the de-
velopment of the concept of numbers, then blind and deaf individuals should
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present atypical numerical behavior. Alternatively, if the “number sense” can
be acquired without vision and without typical verbal input, then blind and
deaf individuals should show typical numerical abilities. In this chapter, we
will address this question by reviewing recent empirical evidence examining
mathematical reasoning in blind and deaf individuals. We will call into ques-
tion arguments stating that (1) the development of the number concept is scaf-
folded mainly by visuo-spatial development, and (2) that language becomes
integrated only after the concepts are created.

2 Numerical processing in the blind

Although vision has long been considered as critical in the emergence of nu-
merical representations and skills, a growing set of studies on numerical per-
formances following early visual deprivation nevertheless indicate that blind
individuals perform as efficiently as their normally seeing peers in various nu-
merical tasks. It was shown, for instance, that early and congenitally blind par-
ticipants were as good as sighted individuals in number comparison tasks with
both small and large numbers (Castronovo & Seron, 2007a; Szücs & Csépe,
2005). Similar results were found when they had to perform parity judgment
task (Castronovo & Seron, 2007a). In addition to that, blind participants have
also been shown to perform as accurately as their sighted peers in counting
(Crollen et al., 2014) and subitizing tasks (i.e., fast and accurate processing of a
small collection of up to three or four elements; Ferrand et al., 2010). Interest-
ingly and more surprisingly, the lack of vision since early age might even have
a positive impact on some numerical skills. When submitted to a numerical
estimation task, blind individuals indeed demonstrated enhanced abilities as
compared to sighted participants, especially when the task involved touch
and proprioception (i.e., key press estimation task): they showed greater accu-
racy in both small (up to 9; Ferrand et al., 2010) and large numerical ranges
(up to 64; Castronovo & Seron, 2007b). Moreover, this greater estimation skill
in blind individuals was not specific to a particular modality (i.e., tactile), nei-
ther to a familiar numerical context (i.e., close to their daily life use of numeri-
cal information – a footstep production task). It was indeed found in more
unfamiliar contexts requiring verbal, non-tactile processing (i.e., non-word
repetition task; Castronovo & Delvenne, 2013). Finally, early blind participants
also showed enhanced abilities to perform arithmetic operations: addition,
subtraction, and especially multiplication of different complexities (Dormal
et al., 2016). In sum, there is plenty of evidence suggesting that early visual

268 Margot Buyle, Cathy Marlair, and Virginie Crollen



deprivation does not prevent the development of good numerical skills but
may even induce greater efficiency in estimation and manipulation of numeri-
cal quantities.

So far, it seems clear that blind individuals are capable of developing a
good number understanding. However, it is still unknown whether the represen-
tation of numerical magnitude in visually deprived individuals shares the same
“visuo”-spatial properties as the one of the sighted. The close connection be-
tween numbers and space is well established in the literature of numerical
cognition and illustrated by the metaphor of the logarithmic and left-to-right-
oriented mental number line (MNL; Castronovo & Seron, 2007a; de Hevia et al.,
2008). This mental spatial organization of numbers has been supported by the
recurrent observation of three main effects: (1) the size effect, which refers to the
fact that larger numbers are less easy to discriminate than smaller ones (e.g., 2
vs. 4 is easier than 8 vs. 10; Ashcraft & Stazyk, 1981; Brysbaert, 1995; Cantlon
et al., 2009; McCloskey et al., 1991); (2) the distance effect, which refers to the fact
that it is easier to discriminate numbers that are distant on the MNL than num-
bers that are close to each other (e.g., 2 vs. 8 is easier than 2 vs. 4; Cantlon et al.,
2009; Moyer & Landauer, 1967); and (3) the Spatial Numerical Associations of Re-
sponse Codes (SNARC) effect, which refers to the observation that responses to
small and large numbers are faster when performed in the left and right sides of
space respectively (Fias & Fischer, 2005; Wood et al., 2008). Because the SNARC
effect was observed even when participants crossed their hands, numbers were
assumed to be mapped onto an external frame of reference, where small and
large numbers facilitate responses in the left and right sides of space irrespective
of the responding hand (Dehaene et al., 1993; Fias & Fischer, 2005). Supporting
the idea that the MNL is oriented from left to right, it was also observed that peo-
ple tend to overestimate the leftward space on the MNL (Loftus et al., 2008).
When asked to perform a numerical bisection task (which consists in estimating,
without calculating, the number midway between two others), participants in-
deed present a leftward bias (also called the “pseudo-neglect” effect): they sys-
tematically tend to mis-bisect the numerical interval slightly to the left of its
objective midpoint. Finally, the spatial organization of numbers was also found
in tasks involving arithmetic operations (Masson & Pesenti, 2014; McCrink et al.,
2007). It was indeed suggested that additions and subtractions involve atten-
tional shifts along the MNL: toward the right (i.e., larger numbers) for addition
and toward the left (i.e., smaller numbers) for subtractions (Knops et al., 2009a,
2009b; Masson & Pesenti, 2014; McCrink et al., 2007; Pinhas & Fischer, 2008).

Does vision root the construction of the relationship between numbers
and space? Interestingly, many studies indicate that visually deprived indi-
viduals possess a numerical magnitude representation that shares the same
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spatial characteristics as the one of sighted individuals. Congenitally blind
participants indeed show similar distance and size effects as sighted individuals
when submitted to number comparison (Castronovo & Seron, 2007a; Szücs &
Csépe, 2005) and parity judgment tasks (Castronovo & Seron, 2007a). In addi-
tion to that, they both show a pseudo-neglect effect (i.e., a leftward bias)
when asked to perform a numerical bisection task (Cattaneo et al., 2011). Both
blind and sighted participants also present the SNARC effect when they have
to indicate the parity status of a number (odd or even) by means of a manual
response with the left or the right hand (Castronovo & Seron, 2007a; Crollen
et al., 2013; Szücs & Csépe, 2005). The same SNARC effect was furthermore
observed when blind and sighted participants had to judge whether a pre-
sented number was smaller or larger than 5 (Crollen et al., 2013). However,
unlike sighted individuals, blind individuals were shown to present a re-
versed SNARC effect when performing the numerical comparison task with
the hands crossed over the body midline (Crollen et al., 2013). They indeed
produced faster responses to small numbers in the right space (i.e., with the
left hand) and to large numbers in the left space (i.e., with the right hand).
Consequently, it was proposed that blindness may shape the frame of refer-
ence onto which numbers are represented: while sighted individuals rely on
a world-centered (external) representation of space, blind individuals rather
use a representation that is body-centered (internal). Importantly, blind par-
ticipants did not present any reversed SNARC effect when performing the
parity judgment task with the hands crossed over the body midline. Because this
task is thought to involve verbal-spatial processes instead of visuo-spatial pro-
cesses (van Dijck et al., 2009; but see Huber et al., 2016 for alternative findings),
it was therefore suggested that early visual experience shapes the nature of the
visual association between numbers and space but does not influence the verbal
one (Crollen et al., 2013). Although blind individuals develop a spatial representa-
tion of numerical magnitude similar to the one of sighted individuals, their use of
this representation might therefore present some specificities.

Another evidence supporting the idea that blindness shapes some quali-
tative aspects of the numerical processing can be found in the interactions
that occur between numbers and fingers (Crollen et al., 2011, 2014). The latter
has been illustrated by the use of the finger counting strategy, a procedure
that often accompanies the development of basic arithmetic in the sighted
population. Although the use of finger counting was thought to play a func-
tional role in the development of a mature numerical system (Butterworth,
2005), it has been shown that blind children less spontaneously use this strat-
egy while learning counting and arithmetic (Crollen et al., 2011, 2014). Fin-
gers were indeed assumed to permit the assimilation of basic numerical skills
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(Andres et al., 2008) and the connection between non-symbolic and symbolic nu-
merosities (Fayol & Seron, 2005). However, Crollen and colleagues (2011; 2014)
observed that blind children, compared to their sighted peers, used their fingers
less spontaneously and in a less canonical way to count and show quantities, de-
spite similar counting performances. Consequently, it was suggested that visual
experience drives the establishment of finger-number interactions.

Differences between blind and sighted individuals were also found in more
complex numerical domains like arithmetic skills. As already mentioned, early
blind individuals show enhanced abilities to perform addition, subtraction,
and multiplication of different complexities (Dormal et al., 2016). In addition to
these observations, it was recently suggested that blindness may shape the
neural foundations of arithmetic reasoning. While it is widely recognized that
mathematical skills are supported by a bilateral fronto-parietal network in
sighted and blind individuals (Amalric & Dehaene, 2016, 2019; Amalric et al.,
2018; Arsalidou & Taylor, 2011; Dehaene et al., 2003), imaging studies have
indeed highlighted that blind, but not sighted, participants recruit some early
visual areas in addition to this math-responsive network while calculating
(Crollen et al., 2019; Kanjlia et al., 2016). Consequently, it was suggested that
the occipital cortex – which typically process visual information – might be
cognitively pluripotent (i.e., capable of assuming non-visual cognitive func-
tions; Kanjlia et al., 2016). However, this conclusion does not take into ac-
count the computational relation between number and visual processes, nor
does it consider the variety of strategies that are used while solving arithmetic
operations (Campbell & Timm, 2000; Dehaene & Cohen, 1997; Hecht, 1999).
Indeed and as mentioned previously, visuo-spatial procedures are principally
used to solve subtractions while retrieval is the dominant method for solving
easy and overlearned multiplications (Ashcraft, 1992; Campbell & Xue, 2001).
It is therefore possible that early visual deprivation selectively affects the brain
organization of visuo-spatial arithmetic operations (subtraction) while keeping
intact the neural network involved in the arithmetic operations learned by rote
verbal memory (multiplication).

This later assumption was recently supported by a study contrasting the
brain activity of blind and sighted participants while performing subtraction vs.
multiplication arithmetic operations (Crollen et al., 2019). An enhanced activity
of the occipital cortex was indeed observed in the blind while they performed
subtraction, but was not observed for the multiplication operations (Crollen
et al., 2019). This recent study therefore challenges the idea that the brain is
cognitively pluripotent and rather suggests that the recruitment of the occipital
cortex in the blind actually relates to its intrinsic computational role (Crollen
et al., 2019). It is also interesting to note that the brain results obtained by
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Crollen et al. (2019) are reminiscent of the behavioral results observed with
the SNARC: when crossing their hands over the body midline, blind individu-
als indeed showed a reversed SNARC effect in tasks relying on visuo-spatial
processes (numerical comparison), but not in tasks involving verbal processes
(parity judgment; Crollen et al., 2013).

Altogether, numerous studies clearly indicate that early visual experiences
are not essential for the development of numerical cognition. Indeed, evidence
has shown that (1) blind individuals perform as efficiently as their sighted peers
in various numerical tasks; (2) blind individuals even possess enhanced abili-
ties to perform numerosity estimation and calculation tasks; (3) blind individu-
als develop a numerical magnitude representation that shares the same spatial
properties as sighted individuals. However, blindness was found to shape some
qualitative aspects of numerical processing. For instance, it was shown that (1)
blindness impacts the reference frame in which the associations between num-
bers and space occur; (2) the lack of vision reduces the use of finger counting
strategies; and (3) blindness shapes the neural foundations of arithmetic opera-
tions relying on visuo-spatial processes.

Although blindness was found to have a positive impact on numerical abil-
ities such as estimation and calculation, the mechanisms sub-serving these
greater abilities are still unknown. One possible explanation lies in the use of en-
hanced high-level cognitive processes such as WM (Castronovo & Delvenne, 2013).
As WM and numerical abilities are linked to each other (De Smedt et al., 2009;
Simmons et al., 2012) and as blind individuals present greater WM skills than
sighted participants (Crollen et al., 2011; Hull & Mason, 1995; Swanson & Lux-
enberg, 2009), numerical skills in blind individuals could indeed potentially
be accounted by the use of enhanced WM processes.

Finally, although blind individuals present greater skills in some numerical
domains, it is still unknown whether they would present some delays in other abil-
ities not tested so far. It could be worth examining basic knowledge of geometry as
this mathematical knowledge is intrinsically linked to visuo-spatial representa-
tions. Answering these questions in the future may potentially have important im-
plications for mathematics teaching and mathematics rehabilitation programs.

3 Numerical processing in the deaf

Deaf signers show advantages in various visual domains. They, for example,
outperform their hearing peers in the speed of shifting visual attention and vi-
sual scanning and in the peripheral detection of motion (Bavelier et al., 2000;
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Chinello et al., 2012; Proksch & Bavelier, 2002). These advantages are sug-
gested to be primarily due to their experience with sign language since this in-
cludes a highly significant spatial component. Accordingly, it is assumed that the
primacy of visual cognition in deaf signers may influence numerical skills, and
that the spatial components of sign language may have an impact on some visuo-
spatial features of the mental number line (Chinello et al., 2012). Despite this com-
mon-sense conception, the visuo-spatial advantages of deaf do not appear to
support or enhance deaf students’ performance compared to hearing students
(Ansell & Pagliaro, 2006; Borgna et al., 2018; Marcelino et al., 2019 for review).
Numerous studies have consistently showed that deaf children from preschool
onward through their school years into higher education, as well as deaf
adults tend to be slower and less accurate in numerical processing compared
to their hearing counterparts (Ansell & Pagliaro, 2006; Blatto-Vallee et al., 2007;
Bull et al., 2006, 2005, 2018, 2011b; Chinello et al., 2012; Korvorst et al., 2007;
Marschark et al., 2013, 2015; Rodríguez-Santos et al., 2014; Zarfaty et al., 2004).
Several studies have indeed indicated that deaf pupils experience a delay of 2
to 3.5 years in comparison with hearing children on mathematical achieve-
ment tests (Bull et al., 2005; Nunes & Moreno, 2002). Growth curves of deaf
students are identified to be much flatter than those for hearing learners (Zarfaty
et al., 2004) and differences are often noted in: (1) standardized achievement tests;
(2) measurement and number concepts; (3) understanding fractions; (4) computa-
tion and reasoning; (5) logical thinking; (6) communication about time; and (7)
problem solving (Allen, 1995; Ansell & Pagliaro, 2006; Austin, 1975; Bull et al.,
2011b; Marschark & Everhart, 1999; Nunes & Moreno, 2002; Pagliaro & Kritzer,
2013; Rodríguez-Santos et al., 2014; Traxler, 2000; Titus, 1995; Zarfaty et al.,
2004). Geometry, in contrast, is indicated as an area of strength (Pagliaro &
Kritzer, 2013).

While the competences mentioned above are quite complex, some other re-
search has been performed on rather simple abilities such as subitizing. Deaf
individuals could have an advantage in performing subitizing tasks because of
their enhanced abilities in some aspects of visual and spatial processing (Bull
et al., 2006). Nevertheless, the patterns of results are found to be very similar
for both deaf and hearing individuals and this is also true for different presenta-
tion formats (symbolic and non-symbolic) (Bull et al., 2006). Basic differences
in subitizing skills are therefore not believed to be the roots of the mathematical
difficulties observed in the deaf (Bull et al., 2006).

Besides subitizing, the accuracy to discriminate quantities is restricted by
the ratio difference of the quantities being compared. The closer this ratio is to
1, the more difficult the discrimination of the magnitude will be. Hearing as
well as deaf individuals show a distance effect when they are asked to make
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magnitude judgments, but not when they have to make physical size judgments
(Bull et al., 2018). A similar distance effect is found when sign language is used
as representation mode in both deaf and hearing adults. This finding implicates
that the signed numbers automatically activate information about magnitude
for both groups (Bull et al., 2006, 2005). Furthermore, similar size and distance
effects are seen in symbolic and non-symbolic tasks for deaf and hearing partic-
ipants, which demonstrates that deaf individuals have no deficits in building
abstract symbolic and non-symbolic numerical representations. Nonetheless,
slower reaction times were observed for the symbolic task in deaf individuals.
This suggests that both groups have similar quantity representations, but that
deaf participants might experience a delay in accessing representations from
symbolic codes (Rodriguez-Santos et al., 2014). This conclusion has also been
reached in number-to-position tasks, requiring participants to estimate a num-
ber’s position on a 0–100 number line (Borgna et al., 2018; Bull et al., 2011).
Deaf students have consistently made less accurate number-line estimations
(Borgna et al., 2018; Bull et al., 2011b) than their hearing peers. This accuracy
difference has been found at very young age before much exposure to formal
education has taken place (Bull et al., 2018). Deaf individuals indeed appear to
be more accurate in arithmetic estimation tasks involving non-symbolic stimuli
(Masataka, 2006). In contrast, tasks requiring symbolic processing appear to be
more challenging for deaf individuals than for their hearing peers, as this relies
more on linguistic skills (Masataka, 2006; Rodriguez-Santos et al., 2014). A re-
duced accuracy in estimation for deaf participants may therefore be apparent
only when number meaning has to be accessed from symbols (Masataka, 2006).
This assumption has been called the “access deficit hypothesis” and was first
proposed to explain difficulties of children who present mathematical learning
disabilities (Rousselle & Noël, 2007). According to Masataka (2006), the differ-
ence in performance between deaf and hearing adults might be related to the
variability in WM architecture, which is due to the difference of languages
both groups acquired. Our WM is traditionally divided into two major do-
mains, namely, a verbal and a visuo-spatial domain. The existence of a sign-
based rehearsal loop mechanism that is parallel to the speech-based rehearsal
loop is provided in adults who acquire a sign language as their first language,
which could thus possibly account for their superior capacity to execute non-
symbolic arithmetic (Masataka, 2006).

The ability to compare numbers and to judge whether numbers are odd or
even also represents a basic numerical skill. When performing such tasks, both
deaf and hearing individuals show faster responses to low numbers with the
left hand and to high numbers with the right hand (i.e., SNARC effect). This has
been demonstrated with Arabic digits as well as with sign language numerals
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(Bull et al., 2006; Chinello et al., 2012) and could therefore indicate that, just
like Arabic digits, sign language number signs may be directly mapped into an
underlying left-to-right-oriented representation of magnitude (Bull et al., 2006).
However, the speed of deaf participants making the SNARC decision in congru-
ent condition (low numbers, left response box) was similar to the speed of hear-
ing participants making the SNARC decision in the incongruent condition (low
numbers, right response box) (Bull et al., 2005; Chinello et al., 2012; Iversen
et al., 2004). This, again, demonstrates that the processing of numbers may be
slower in deaf individuals. In 2007, Korvorst and colleagues presented number
triplets (in Arabic digits or in sign language) to deaf and hearing adults who
had to determine if the middle number was the numerical mean of the two
outer numbers. Hearing individuals appeared to be faster in confirming valid bi-
section. In the sign language mode, deaf individuals had similar performances as
hearing individuals (Korvorst et al., 2007). When asked to estimate as quickly as
possible the midpoint of a series of numerical intervals that are presented in as-
cending and descending order, deaf and hearing participants were equally
accurate in their estimations and were significantly biased toward lower num-
bers (Cattaneo et al., 2014). Nevertheless, the underestimation bias in deaf per-
sons was smaller than in hearing when using a descending order, indicating that
the decisions of the hearing individuals fall more systematically to the left (i.e.,
were more underestimated) than those of deaf participants (Cattaneo et al., 2016).

Finally, Nuerk, Iversen, and Willmes performed a study in 2004 in which
they observed that hearing individuals respond faster in an even-right/odd-left
condition than for the reverse parity-response box condition. This Markedness
Association of Response Codes (MARC) effect has been interpreted as a lin-
guistic markedness congruency effect since “even” and “right” are believed to
be the linguistically marked antonyms of “odd” and “left” (Nuerk, H., Iversen,
W., & Willmes, K. 2004). The effect also appeared to be stronger for written
words than for Arabic numerals, which might reflect a stronger access to ver-
bal-linguistic concepts via verbal stimuli, as suggested by the authors (Hines,
1990). An inversed MARC effect has interestingly been shown in deaf individu-
als, with native signers responding faster with the left-handed side to even
numbers, and responding faster to the odd numbers with the right-handed
side (Iversen et al., 2004). This result suggests that the structure of the sign
language may influence number representations in a specific way.

To conclude, deaf and hearing individuals show SNARC, distance, and size
effects that are normally associated with a representation of magnitude on a
visual-analog MNL. However, deaf participants have slower response times when
making comparative judgments, which indicates that their numerical representa-
tion of magnitude information is not distinct from that of hearing individuals, but
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that they might process basic numerical information in a less efficient way (Bull
et al., 2005; Chinello et al., 2012; Iversen et al., 2004; Rodriguez-Santos et al.,
2014). While deaf individuals seem to use a left-to-right-oriented mental number
line, it is still not known whether the associations between numbers and space
occur in external coordinates or whether deafness, like blindness, shapes the ref-
erence frame in which these associations occur.

Therefore, future research should be conducted to: (1) establish a wider base
of studies about cognitive abilities among deaf students; (2) determine the spe-
cific cognitive mechanisms that are slower in development in deaf individuals
and causing a lag in mathematical achievement; (3) assess early representations
of number that do not involve counting in younger children to clarify the status
of the early abilities in number representation; (4) evaluate if there is an effect of
home language, the medium of instruction, and the test language on children’s
mathematical performance; (5) study the aspects of sign language contributing to
mathematical learning; (6) clarify how the human mind spatially represents ab-
stract concepts and the extent to which differences are related to visual character-
istics or linguistic values; (7) determine whether poorer acuity of numerical
estimation is distinguishable from any language component associated with the
task; (8) investigate further the influence of assistive hearing devices on child de-
velopment and academic functioning; (9) identify differences among deaf individu-
als and how to accommodate for their needs (Ansell & Pagliaro, 2006; Borgna
et al., 2018; Bull et al., 2011b; Cattaneo et al., 2017; Chinello et al., 2012; Gottardis
et al., 2011; Korvorst et al., 2007; Marschark et al., 2015; Marcelino et al., 2019; Ri-
naldi, Merabet, Vecchi & Cattaneo, 2018; Zarfaty et al., 2004).

In summary, future research is necessary to better understand the factors
that contribute to the academic achievements for deaf students across various
subject areas for both theoretical and practical reasons. This would enhance
the scientific understanding of cognitive, social, and linguistic functioning in
deaf individuals as well as it would help to develop educational materials,
methods, and interventions to support deaf learners in their academic achieve-
ment (Marschark et al., 2015).

4 Discussion

The representation of abstract concepts such as numbers has been proposed to
originate from sensorimotor interactions within the world around us (Bonato
et al., 2012; Winter et al., 2015). Hence, if a normal sensorimotor experience is
strictly mandatory in order to represent numbers, we should expect that sensory
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deprivation would have an impact on the development of this representation.
The present chapter examined this question by reviewing experimental data
on numerical performances in blind and deaf individuals. From a quantitative
point of view, it is interesting to note that blindness does not prevent the emer-
gence of good numerical skills while deafness, in contrast, seems to delay these
acquisitions. These observations are at odd with the hypothesis suggesting that
mathematical representations are rooted in visuo-spatial thinking and develop
through visual experience (Burr & Ross, 2008; Ross & Burr, 2010). They never-
theless support the idea that language plays an important role in learning the
meaning of numbers (Spaepen et al., 2011). Recent years have seen a surge in
empirical studies examining the role of language in accounting for cross-cultural
disparities in children’s number understanding and arithmetic competence
(Fuson & Kwon, 1992; Göbel et al., 2014; Krinzinger et al., 2011; Wang et al.,
2008). It has, for example, been suggested that the superior arithmetic perfor-
mance of Chinese and other Asian students could be explained by the relative
linguistic transparency of the Asian counting systems (Fuson & Kwon, 1992;
Miller et al., 2005) which gives a clear and consistent representation of the
base-ten system. While comparisons across different auditory languages have
been made, examining numerical competences in deaf individuals will addi-
tionally allow to compare auditory and visuo-manual languages.

Two hypotheses may account for the existence of good numerical skills in
blind individuals. The first one assumes that blind individuals learn mathematics
by compensating their visual lack through other modalities. In this case, the
same numerical performances in blind and sighted individuals would arise from
different neural correlates (e.g., areas involved in auditory or tactile processing).
The second hypothesis assumes that mathematical activity is in fact based on
highly abstract representations which are amodal rather than primarily visual. In
this case, the same mental representation of numbers would be accessed indif-
ferently from visual, auditory, or tactile inputs (Piazza et al., 2006; Riggs et al.,
2006; Tokita et al., 2013). In the present chapter, we demonstrated that the reality
may probably lie in-between these two main hypotheses. When solving arithme-
tic operations, congenitally blind adults were indeed shown to activate a num-
ber-related network very similar to the one observed in sighted subjects (Crollen
et al., 2019; Kanjlia et al., 2016). These findings show that numerical thinking can
develop in the absence of visual experience and is rooted in typical number-
related brain circuits, therefore lending support to the second hypothesis. How-
ever, an additional activity of the occipital cortex was also demonstrated but only
when blind participants had to perform subtraction operations (not when they
had to perform multiplications) (Crollen et al., 2019). This additional activity was
not observed in the sighted and probably reflects the use of compensating

Numbers in blind and deaf 277



strategies to perform a numerical task assumed to primarily rely on visuo-
spatial processes.

In the literature, two main visuo-motor functions are assumed to be associ-
ated with the representation of numbers. On the one hand, following the recur-
rent observation that small numbers are preferentially associated with the left
side of space while large numbers are preferentially associated with the right
side of space (i.e., SNARC effect; Dehaene et al., 1993), numbers were assumed
to interact with space. On the other hand, following the observation that children
often use their fingers to learn the counting sequence and basic arithmetic opera-
tions, numbers were assumed to interact with finger movements (Butterworth,
1999). Interestingly, these two interactions are assumed to take place in the parie-
tal cortex, a brain area which is part of the dorsal visual pathway. Consistently
with the idea that blind individuals use alternative strategies to develop their un-
derstanding of numbers, we demonstrated that blind participants present a re-
versed SNARC effect when performing a numerical comparison task with their
hands crossed over the body midline (Crollen et al., 2013). Importantly, they did
not show a reversed SNARC effect in a parity judgment task (Crollen et al.,
2013), suggesting that early visual experience drives the development of the
visuo-spatial representation of numbers but do not shape the verbal associa-
tions that occur between numbers and space. We also demonstrated that the
finger counting strategy was not often used by blind participants while count-
ing and calculating (Crollen et al., 2011, 2014). Together, these observations
lend some support to the idea that visual deprivation may promote the develop-
ment of strategies that allow blind individuals to understand the number con-
cept without relying on visuo-spatial processes.

Several studies already suggested that deaf individuals tend to be slower
and less accurate with regard to numerical processing than normally hearing
controls (Bull et al., 2011b; Epstein et al., 1994; Rodriguez et al., 2014). Deaf chil-
dren may also be delayed in developing mathematic skills compared to their
normally hearing peers (Gottardis et al., 2011). Interestingly, we showed the op-
posite dissociation as the one observed in the blind. The delay deaf individuals
present in numerical development seems indeed to be more pronounced with
symbolic tasks than with non-symbolic tasks. The study of this question should,
however, be further investigated in the future. While it has already been dem-
onstrated that deaf individuals represent numerical information along a left-
to-right-oriented mental number line (Bull et al., 2005; Chinello et al., 2012;
Iversen et al., 2004), the spatial frame of reference they preferentially use to
map numbers onto space is still unknown. Moreover, to our knowledge, the
spatial frame of reference onto which numbers are represented in deaf has so
far never been compared across visuo-spatial and verbal-spatial tasks.
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Furthermore, several studies have indicated that WM functioning is correlated
with both symbolic and non-symbolic approximation, which points out that the
individual variation in our WM could predict the mathematical achievement be-
yond the effect of approximation skills (Bull et al., 2018). However, symbolic ap-
proximation skills appear to correlate with mathematic ability beyond the effect of
WM capacity. This might indicate unique contributions from both domain-specific
and domain-general abilities (Bull et al., 2018). It has been stated that individuals
with hearing loss seem to suffer from difficulties in verbal short-term memory,
WM, and executive functioning (Bull et al., 2018; Marcelino et al., 2019 for review).
On the other hand, it is suggested that deaf native signers have a better visuo-
spatial WM than hearing individuals (Proksch & Bavelier, 2002).

To be able to better evaluate the respective contribution of visual vs. verbal
processes in the development of the number concept, future studies should also
examine the brain plasticity phenomenon following deafness. It has already
been demonstrated that the temporal “auditory” cortex of deaf individuals
changes its functional tuning to support visual or tactile functions (Fine et al.,
2005; Finney et al., 2003; Finney & Dobkins, 2001; Nishimura et al., 1999;
Petitto et al., 2000; Sadato et al., 2004; Shibata, 2007). However, it is still un-
known whether the temporal “auditory” cortex of the deaf can be activated by
higher cognitive function such as arithmetic and whether this activation is, as
already observed in the blind, operation-specific (observed for multiplication,
but not for subtraction in this case). Studying the neural correlates of numeri-
cal processes in deaf and comparing this to what has already been observed in
the blind will provide a thorough understanding of the development of numer-
ical competencies without vision or audition and give rare insights about the
role of experience on the cerebral development of high cognitive functions.
This question is really important to understand the principles of brain archi-
tecture and its reorganization under sensory deprivation. It will hopefully yield
important novel insights into how the brain develops and whether this develop-
ment is malleable or resistant to atypical sensory experiences.

Beyond this theoretical question, we also argue that a better understanding
of the mechanisms underlying number understanding after visual and auditory
deprivation plays a critical role in better characterizing what does dyscalculia
look like in blind and deaf individuals. An advance in the understanding of this
issue is timely since clinicians are currently lacking standardized norms to eval-
uate the numerical abilities of sensory-deprived individuals. Better understand-
ing number development in these populations will therefore constitute a starting
point for elaborating programs that stimulate numerical learning mechanisms in
blind and deaf children presenting numerical difficulties. As poor mathematical
skills are associated with employment difficulties, developing further such field
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of research therefore holds the promises to have a substantial fundamental im-
pact, but also some applied, social, and societal implications.
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Reading and writing words
and numbers: Similarities, differences, and
implications

1 Introduction

Literacy and numeracy are culturally acquired abilities that are well established
as crucial for educational and vocational prospects (Parsons & Bynner, 1997;
Ritchie & Bates, 2013; Romano et al., 2010). When investigating these abilities
in children, researchers from educational and cognitive sciences often focus on
the writing and reading of either words or numbers. Accordingly, these usually
represent two independent lines of research. Nevertheless, in recent years there
is increasing research interest into relevant commonalities between learning to
read and write words as well as numbers (e.g., Lopes-Silva et al., 2016).

It has been argued that efficient processing of words and numbers requires a
partially overlapping cognitive architecture including basic perceptual abilities,
attention, working memory (WM), verbal, visuo-spatial and visuo-constructional
processing as well as graphomotor sequencing, among others (e.g., Collins &
Laski, 2019; Geary, 2005). Over the last decades, researchers have mostly been
focusing on either phonological processing as a cognitive precursor of reading
and writing words (Castles & Coltheart, 2004) or on numerical magnitude un-
derstanding as the most important precursor of number processing (Siegler &
Braithwaite, 2017). In this chapter, we aim at bringing together both lines of
research by discussing the role of phonological and magnitude processing for
the understanding of words and numbers, as well as interactions between
these processes in more detail. In particular, we will address aspects of the
structure and the acquisition of symbolic (both verbal and Arabic) codes in
young children. Moreover, we will discuss similarities and specificities of both
codes and how they acquire semantic meaning in early stages of human develop-
ment. Furthermore, we will elaborate on the comorbidity between math and read-
ing difficulties in light of the interaction between the development of symbolic
codes for words and numbers. Finally, we will integrate these lines of argument
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by exemplarily reviewing the cognitive underpinnings of number transcoding (a
numerical task with clear verbal aspects), focusing on the role played by different
subcomponents of phonological processing.

2 Words and numbers: Common developmental
footprints?

The process of mastering the representational codes for words and numbers is
marked by a change from an early period when children learn the primitives
and begin to construct a lexicon, to a later period in which this lexicon is fully
and readily available and can be operated on. This can be observed in number
transcoding tasks that demand converting numbers from different notations,
such as reading Arabic digits aloud or writing Arabic numbers from dictation.
Previous research investigating number transcoding performance observed rel-
atively high frequencies of lexical errors in younger children (up to the second
grade), and of syntactic errors in older children (Moura et al., 2013, 2015; Power
& Dal Martello, 1990; Seron et al., 1992; Seron & Fayol, 1994). During the first
years of schooling, processing of words and specifically also number words is
usually more procedural and serial in nature (i.e., starting to read letter by letter
and counting-based strategies to assign cardinality to sets). At this point, proc-
essing of words poses high demands on WM based on the segmentation of
words into smaller units (i.e., phonemes) and their recoding (Share, 1999). Ad-
ditionally, the processing of number words highly depends on the actual task at
hand. For instance, in young children the precise numerical magnitude mean-
ing of a number word is often accessed by counting-based strategies which,
later on, may also be employed to solve simple calculations (Fritz et al., 2013).
Additionally, both (multi-digit) number words and numbers in the form of
Arabic digits are segmented in order to be processed (Bahnmüller et al., 2016;
Barrouillet et al., 2004). All these processes represent a considerable chal-
lenge for children at the respective age of acquisition and depend heavily on
working memory resources (Camos, 2008; Hecht, 2002; Noël, 2009).

Commonalities between the acquisition of the verbal and numerical codes
are reflected at the theoretical level. Brysbaert (2005) called attention to the
similarities between the process of word reading, as described by the dual-route
model (Coltheart et al., 2001), and the processing of single-digit numbers. In
particular, Brysbaert (2005) suggested that learning of both verbal and numeri-
cal codes proceeds from initial sequential processing based on phonological
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and working memory resources to later more holistic/parallel and automatized
forms of processing.

According to the dual-route model of single word reading (Coltheart et al.,
2001, see Fig. 1a for an illustration) reading starts by the visual orthographic
analysis of the written word, with identification and grouping of its graphic com-
ponents in parallel, followed by serial processing of the word following different
routes. Along the sublexical or phonological route, processing occurs by rules
for converting written units into sound units (i.e., grapheme-phoneme conver-
sion). Along the lexical route, familiar words, stored in a lexicon that combines
contextual, visual, phonological, and orthographic information, are recognized
directly, bypassing grapheme-phoneme conversions. These two routes work si-
multaneously and in a horse-race manner so that the more efficient route results
in reading or speaking a target word out loud first. As such, reading unfamil-
iar words is usually associated with the phonological route, while familiar
words are more likely read via the lexical route primarily. While less profi-
cient readers might have access only to the phonological, more sequentially
operating route, proficient readers can flexibly draw from both routes in
parallel.

Barrouillet and colleagues (2004) also explicitly explored similarities
between verbal and numerical processing in the ADAPT (A Developmental,
Asemantic, and Procedural Transcoding) model of writing numbers in digital-
Arabic notation – a dual-route model of number dictation (see Fig. 1b). The
ADAPT model explains transcoding of verbally spoken number words to digi-
tal-Arabic numbers through the interplay of recovering content from long-
term memory and applying algorithm-based conversion rules. The model sug-
gests a first step in which verbal input is temporarily stored in a phonological
buffer. In case this content matches a lexical unit stored in long-term memory,
the digital form can be retrieved directly (cf. the lexical route in dual-route
model of single word reading; Coltheart et al., 2001). When this is not possi-
ble, a parsing process divides the respective content into units that can be
processed. At this stage, a set of procedural rules are applied sequentially
processing the content held in the phonological buffer and deriving a syntac-
tic frame which is then filled with the respective digital forms.

In general, dual-route models assume that words and number words are
initially processed in a laborious sequential way at the phonemic level. As chil-
dren become more experienced, lexical entries gradually develop and processing
of words and some number words and digital-Arabic numbers becomes less
WM demanding and increasingly based on parallel processing (Barrouillet et al.,
2004). Practice in word reading allows for applying more holistic or parallel visual
word processing based on recurring grapheme ensembles and their progressive
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association with pronunciation and meaning. Dehaene (2009) suggested that
these holistic strategies are not acquired at the lexical level, eventually build-
ing a “sight lexicon,” but at the sublexical level, consisting of recurring pat-
terns of associations among graphemes digrams, such as “ll” (Treiman et al.,
2018), that are processed preferentially.

Something similar to the lexicalization of word processing can occur with
respect to the processing of single-digit number words and Arabic numbers.
Growing experience with smaller and more frequent numbers in this range can
facilitate more direct processing of these symbols, allowing fast access to the
represented numerical magnitudes (Brysbaert, 2005). Empirical evidence also
indicates that more frequent numerals with two or more digits with associated
verbal lexical-semantic meanings may be accessed more efficiently (747, 1945,
etc. See, e.g., Delazer & Girelli, 1997). However, access to and processing of the
quantitative meaning of number words and Arabic numbers with two or more
digits remains dependent on more laborious serial processing strategies (Bahn-
mueller et al., 2016).

Primary units of symbolic representations are then used to build more
elaborate representations, with words leading to lexical-semantic access, and
multi-digit Arabic numbers leading to the ability to represent and manipulate
increasingly larger quantities in an abstract way. Figure 2 illustrates this

Fig. 2: In early phases of reading acquisition, associations between orthography and
semantics primarily rely on sequential phonological recoding. In later phases, lexical
representations are gradually built and access to semantics from orthography becomes more
direct through parallel processing of sublexical subcomponents such as digrams and
trigrams.
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assumed development of associations between graphemes and lexical entries in
word reading. Corresponding associations of numerical magnitude and number
words and Arabic digits/multi-digit numbers are illustrated in Fig. 3.

As indicated in Fig. 2 and 3, an important difference during the acquisition
of word, number word, and Arabic digit knowledge is the role of bodily experi-
ences of fingers (for counting). Finger-based numerical representations (e.g.,
thumb, index, and middle finger representing three) and finger counting are ex-
tremely common (Crollen et al., 2011; Wasner et al., 2014). As finger-based rep-
resentations and finger counting provide concrete representations of number
magnitude, they may play an important role in offloading working memory.
Thereby, resources that facilitate the acquisition of more abstract symbolic repre-
sentations and calculation procedures may be set free (Alibali & DiRusso, 1999;
Costa et al., 2011).

3 Shared deep structural features: Symbolic
mapping and relational reasoning

The detailed mechanisms by which phonological processing mediates the de-
velopment of literacy and numeracy are not yet clear. Collins and Laski (2019)
proposed an analytical framework intending to foster our understanding of
interactions between word and number processing during developmental pro-
gression. According to the authors, early literacy and numeracy skills differ in
surface features such as the physical signs (letters, words, digits, arithmetic
symbols, etc.). On the other hand, literacy and numeracy skills share some
deep structural features, which rely on common processes (i.e., processing
rules, principles, or schemas). These common processes may, in part, explain
the observed associations between both domains. Importantly, the authors
called attention to specific similarities in the deep structure of literacy and nu-
meracy, mainly pertaining to symbolic mapping and relational reasoning.

Symbolic mapping reflects the establishing of connections between sym-
bols and labels (i.e., identification of letters and digits as relevant codes) as well
as symbols and referents (i.e., mapping of letters onto sounds and digits onto
magnitudes). Relational reasoning is defined as the ability to discern meaning-
ful patterns within otherwise unconnected information (Dumas et al., 2013). As
such, relational reasoning abilities allow for making comparisons and recogniz-
ing similarities and differences between sets of information to infer meaningful
relationships, structures, and patterns.
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An important subcomponent of relational reasoning similarly involved in
literacy and numeracy is part-whole thinking. Part-whole thinking is defined
as understanding how units of information (parts) combine into larger units of
meaning (wholes, cf. Fritz et al., 2013). With respect to literacy, phonemic
awareness, the prime cognitive correlate of literacy, allows singling out specific
phonemic segments from words to create new words (e.g., What is cup without
the /c/?). As regards numeracy, part-whole thinking plays a role in recognizing
that several parts can make up a whole (i.e., composing numbers of other num-
bers, e.g., 2 + 4 = 6), and wholes can be divided into parts (i.e., decomposing
numbers), which also underlies children’s basic understanding of first arithmetic
procedures (i.e., addition and subtraction, e.g., Krajewski & Schneider, 2009),
but also fractions and proportions later on, e.g., Siegler et al. (2011).

Despite numbers and words sharing some features, numerical symbols are
unique for many reasons. The special status of numerical symbols is attribut-
able to the syntactic structure of number words and Arabic numbers, which im-
poses specific hurdles during development. In the next section the literature on
the acquisition of the numerical symbols will be addressed in more detail.

4 The numerical Arabic system

Numerical representations develop side-by-side with language in children
(e.g., Le Corre & Carey, 2007). Almost as early in their cognitive development as
children begin to speak, they start using the first oral number words. However, it
takes years of informal learning but also formal instruction until children master
the use of symbolic numerical notations (Moura et al., 2013, 2015). At first,
children learn to count by reciting a sequence of number words. However,
these number words are still devoid of any quantitative meaning (Sarnecka &
Lee, 2009). Gradually, these number words become associated with non-sym-
bolic numerical representations (Krajewski & Schneider, 2009; Le Corre & Carey,
2007). As the mapping between the sequence of number words and their respec-
tive numerical magnitude meaning is established, children become able to
successfully perform several new tasks. For instance, they may then use these
number words to indicate the quantity reflected by a set (i.e., say “six” when
they quickly look at a set of six objects). Additionally, they can now also pro-
duce quantities of a certain magnitude (e.g., delivering two toys requested by
a caregiver). These activities are only completely developed around the age of
five, when children have mastered the so-called cardinality principle, accord-
ing to which the last number word recited when counting corresponds to the
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magnitude of the set (Le Corre & Carey, 2007). From then on, children possess
a list of number words which is progressively associated with specific numeri-
cal magnitudes, which still need to be automatized and associated with other
numerical codes, in particular the digital-Arabic code.

Mastering symbolic numerical codes is one of the first challenges faced by
young children in math instruction at school (McLean & Rusconi, 2014). At this
point in their numerical development, most children already acquired lexical
entries necessary for reciting number words and recognizing single-digit Arabic
numbers (Moura et al., 2013, 2015; Power & Dal Martello, 1990, 1997; Seron
et al., 1992). However, they usually still struggle with larger numbers and with
switching between numerical notations, this means transcoding from number
words to digital-Arabic notation and vice versa. In order to successfully acquire
these skills, children have to master not only the lexical and syntactic structure
of number words and Arabic numbers, but also be aware of similarities and spe-
cificities of the two codes.

Learning the digital-Arabic code is, in fact, an important landmark in the
development of children’s numerical abilities, and one of the first important dif-
ficulties they have to deal with (McLean & Rusconi, 2014). But why is it consid-
ered and experienced as difficult? The main reason why understanding the
structure of the Arabic number system is difficult may be because it is fully sym-
bolic, and not based on any previously acquired numerical ability (e.g., count-
ing) or acquired intuitively. In fact, the learning of the Arabic number system
demands explicit and systematic instruction and it usually requires several
years until children have mastered its structure (Gervasoni & Sullivan, 2007;
Moura et al., 2015).

From an evolutionary perspective, representing numbers in symbolic nota-
tions was a big challenge for human civilizations. The origins of the first symbolic
numerical codes go back to the time when humans developed written language
and may have originated from the necessity to store and share the results of enu-
meration (Chrisomalis, 2004; Ifrah, 2000; Zhang & Norman, 1995). Early tally-like
notations, mostly based on one-to-one correspondence, failed when larger nu-
merical magnitudes needed to be represented (Coolidge & Overmann, 2012). Sym-
bolic codes were then proposed, but initially they did not take advantage of a
compositional place-value structure to reduce the complexity imposed by larger
sequences of symbols as numerical magnitudes increased (e.g., MCMXLVIII for
1948 in the Roman code; Bender & Beller, 2018). As in other numerical notations
(e.g., the Babylonian), in the Arabic number system, numbers are represented by
sequences of lexical primitives (i.e., the digits 1 to 9) in accordance with a so-
called place-value structure. The latter allowed for an economic representation of
large numbers by only using a small set of digits. In particular, in the place-value
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structure of the Arabic number system, the numerical value of a digit is indi-
cated by its position in the digit string, with the relative magnitude of a digit
increasing from right to left by powers of ten. The relative magnitude of a
single digit in the digit string is given by the multiplication of its absolute
value and its base (following a multiplicative composition principle). The
overall magnitude of a multi-digit number is given by the sum of the relative
values of all digits (following an additive composition principle). For example,
the overall value of 291 is equal to 2 × 102 + 9 × 101 + 1 × 100 (i.e., 200 + 90 + 1).
Finally, “0” (zero) is an indispensable placeholder that indicates the absence of a
given power of ten in a multi-digit Arabic number.

Despite being of clear symbolic nature, the Arabic number system is also
influenced by language characteristics such as, for example, the transparency
of the respective number word system. Asian languages, such as Mandarin, Ko-
rean, and Japanese, are known for having highly transparent number words
as they clearly reflect the place-value structure of the Arabic number system
(Fuson, 1990; Miura et al., 1993). For example, numbers between 11 and 19 are
spoken as “ten one” (1 × 101 + 1 × 100), “ten two” (1 × 101 + 2 × 100), and so on,
until 20, which is spoken as “two tens” (2 × 101) (Fuson, 1990). Contrarily, some
languages such as German and Dutch are rather in-transparent as the order
of number words is inverted compared to the digital-Arabic notation. For ex-
ample, the German number word for 24 is “vierundzwanzig” (literally “four and
twenty”). Interestingly, previous studies indicate that children speaking languages
with transparent number words seem to encounter fewer difficulties in learning
number transcoding when compared to speakers of languages with less transpar-
ent number words such as English (e.g., thirteen instead of ten three; Miura et al.,
1993) and German (e.g., Moeller et al., 2015). For instance, one consistent finding is
that a large portion of transcoding errors observed in children speaking languages
with in-transparent number words like German, Dutch, or Czech are related to the
inversion property of the verbal number system (e.g., Zuber et al., 2009; Moeller
et al., 2015; Pixner et al., 2011a; Pixner et al., 2011b).

The complexity of the Arabic number system for young students becomes
evident when we consider how performance in number transcoding (i.e., Arabic
number writing and reading) increases with age. When investigating Italian speak-
ers, Power and Dal Martello (1990) observed that typically developing first graders
were well able to write two-digit numbers flawlessly but experienced problems
when writing down three- and four-digit numbers. Interestingly, these difficulties
were more pronounced for Arabic numbers with internal zeros (e.g., 1007). This is
well in line with more recent findings by Camos (2008). When investigating the
performance of French second graders, Camos (2008) also found that these chil-
dren were perfect in writing Arabic numbers up to 100 and committed fewer errors
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in three-digit, as compared to four-digit, Arabic numbers. Using a longitudinal de-
sign, Seron, Deloche and Nöel (1992; see also Seron & Fayol, 1994) assessed num-
ber transcoding skills of second and third graders three times within one school
year and reported performance improvements over time with overall better perfor-
mance for the Arabic number reading as compared to the Arabic number writing
condition. In particular, second graders showed an improvement in performance
from the beginning to the end of the school year. On the other hand, third graders
showed only a small improvement due to ceiling effects from the middle of the
school year on. Finally, Moura et al. (2015) studied writing of one- to four-digit
Arabic numbers in Brazilian children from first to fourth grades and observed sig-
nificant improvements from first to third grades, but not from third to fourth
grades, substantiating the idea of a plateau or ceiling effect from the third grade
onward.

Mastery of the place-value structure of the Arabic number system by chil-
dren has received increasing research interest recently. This is mostly due to its
importance for succeeding in school but also everyday life in general (e.g., Ger-
vasconi & Sullivan, 2007). In the educational context, mastery of the place-
value structure of the Arabic number system allows children to represent larger
(multi-digit) numbers, and to apply more sophisticated calculation strategies.
Not surprisingly, early mastery of the place-value structure of the Arabic num-
ber system was found to be predictive of later mathematics achievement. Mo-
eller et al. (2011) administered several numerical tasks to first graders and
observed that place-value understanding, assessed by multi-digit Arabic num-
ber transcoding and two-digit number magnitude comparison, was highly pre-
dictive of performance in multi-digit addition but also math grades two years
later. More recently, Lambert and Moeller (2019) showed that difficulties in two-
digit addition (in particular in problems requiring a carry over, e.g., 15 + 17 = __)
in children with mathematics learning difficulties (MLD) were driven by deficits
in their place-value understanding.

Moreover, employing an Arabic number writing task, Moura et al. (2013)
showed that children with MLD experienced pronounced difficulties when re-
quired to write more complex Arabic numbers (i.e., three- and four-digit Arabic
numbers, and Arabic numbers with internal zeros, e.g., 405). Importantly, the
most frequently observed errors were due to insufficient syntactical understand-
ing of the place-value structure of the Arabic number system (e.g., writing three
hundred forty-five as 300405). Interestingly, these errors were even more com-
mon in children with MLD.

Besides requiring specific understanding of the place-value structure of the
Arabic number system, processing multi-digit Arabic numbers is also demand-
ing with respect to WM resources. Camos (2008) studied number transcoding
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in 7-year-old children and found a strong positive association between trans-
coding performance and WM capacities. More specifically, a critical role for
visuo-spatial and central executive components of WM in number transcoding
was reported by Zuber et al. (2009) when investigating syntactic errors (such
as unit-decade inversion) produced by typically developing German-speaking
children in number transcoding.

Importantly, the significant role of WM for number transcoding may reflect
one of the underlying factors associated with specific learning difficulties in the
domains of both mathematics (Salvador et al., 2019) and reading (Peterson &
Pennington, 2015). These respective developmental disabilities frequently co-
occur and, in the next sections, we discuss hypotheses put forward to explain
this high comorbidity. Moreover, we specifically focus on hypotheses relating
phonological WM, as well as other subcomponents of phonological processing
(namely phonemic awareness and lexical access) to developmental disabilities
in both domains. Afterward, we discuss studies that investigated the role of
phonological processing in number transcoding, suggesting that, besides WM,
phonemic awareness and lexical access should also be taken into account when
it comes to the evaluation of subjacent factors to Arabic number processing.

5 The association between math and reading
disabilities

In a meta-analysis, Joyner and Wagner (2019) found that students suffering from
MLD are over two times more likely to also present a reading disability compared
to children that do not have MLD. According to Moll et al. (2019), basic linguistic
skills such as phonemic awareness may be precursors not only for later reading
skills but also for verbal numerical skills, such as counting and transcoding,
which in turn were found to underlie later arithmetic skills (see above).

The high comorbidity rate for math and reading difficulties may be explained
by the double deficit hypothesis (Landerl et al., 2004), according to which chil-
dren who present both learning difficulties suffer from simultaneous deficits in
phonological processing and the processing of number magnitude. In contrast,
Simmons and Singleton (2008) suggested a common deficit account to describe
cognitive impairments associated with difficulties in both reading and mathemat-
ics. According to these authors, MLD may be caused by the phonological deficits
commonly associated with dyslexia. It is assumed that phonological representa-
tions of dyslexic children are weak, which leads to an impairment in cognitive
processes that demand and build on phonological codes. In particular, Simmons
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and Singleton (2008) proposed the weak phonological representation hypothesis,
according to which the poorly specified nature of phonological representations
would lead to poor performance in tasks that involve the retention, retrieval, or
manipulation of phonological codes. Because Arabic number writing requires ac-
cess to the verbal representation of number words, it seems sensible to assume
that children’s phonological processing abilities should also influence their nu-
merical (i.e., transcoding) attainment.

With respect to the high comorbidity rate between math and reading diffi-
culties, Moll et al. (2014) proposed that mathematics has both verbal and non-
verbal components and poor performance may be due to different patterns of
deficits in verbal and/or nonverbal number processing. The authors assessed
children from 6 to 12 years and concluded that children with both reading and
math difficulties presented an additive profile of deficits. In line with this argu-
ment, Jordan (2007) suggested that reading deficits aggravate – but not neces-
sarily cause – math difficulties, because children with both difficulties would
also struggle in using language-based compensatory mechanisms.

For instance, when children have to write Arabic numbers to dictation, the
respective input is verbal. Hence, children must be able to differentiate between
speech sounds to correctly comprehend the verbal number word that should be
transcoded into the digital-Arabic notation. De Clercq-Quaegebeur et al., (2018)
assessed arithmetic and number processing abilities of 47 dyslexic French chil-
dren and found their performance to be lower than one standard deviation
below the mean on number transcoding tasks. This result supports the claim
that, independently of math learning difficulties, impairments in phonological
processing may impact number transcoding performance.

However, most studies on children with reading difficulties, who present
phonological processing deficits, have focused on their general arithmetic per-
formance, and did not explore their performance in basic number processing
in a differential way (e.g., De Smedt, 2018; Simmons & Singleton, 2008). As
such, it is still not clear whether number transcoding may be consistently im-
paired in these children because of its verbal processing components when
transcoding from verbal number words to digital-Arabic notation. Despite this
potential impact of phonological processing on basic number processing skills, to
the best of our knowledge, there are no studies so far that systematically in-
vestigated the association between phonological processing and number trans-
coding in more depth.

Reading and writing words and numbers 303



6 Words and numbers: The role
of phonological skills and WM

As outlined in the first section, both the dual-route model of single-word read-
ing and the ADAPT model of Arabic number writing assume an important role
of phonological processes for the acquisition of the respective symbolic codes.
The term “phonological processing” was proposed to refer to a set of cognitive
abilities associated with literacy acquisition such as (i) the speed of phonologi-
cal recoding in lexical access (referring to the recoding of a written stimulus
into a sound-based representation to get from the written word to its lexical ref-
erent) (e.g., assessed by rapid automatized naming tasks), (ii) processes associ-
ated with maintaining sound-based representation in working memory (e.g.,
measured using verbal span tasks), and (iii) phonemic awareness, reflecting
awareness of the sound structure of language (e.g., assessed by phoneme dele-
tion tasks; Wagner & Torgesen, 1987). This set of abilities seems also relevant to
number processing.

Lopes-Silva et al. (2014) assessed children’s general cognitive abilities, ver-
bal and visuo-spatial WM, non-symbolic magnitude comparison, phonemic aware-
ness, and verbal to Arabic number transcoding in a sample of 172 children from
second to fourth grades. At first glance, a hierarchical regression model showed
that verbal WM was a significant predictor of transcoding after considering effects
of age and general cognitive abilities. However, adding phonemic awareness in a
third step of the regression analyses led to the exclusion of verbal WM. Therefore,
the authors conducted path analyses including all of the previous measures to de-
termine possible mediation effects on number transcoding. When phonemic aware-
ness was not included as a mediator of the influence of verbal WM on number
transcoding, model fit indices were not acceptable. The model in which the effect
of WM was partially mediated by phonemic awareness was the one fitting the em-
pirical data best indicating that this phonological skill is associated specifically
with number transcoding. Both phonemic awareness and phonological working
memory can thus be interpreted as indexes of the quality of children’s phonologi-
cal representation which may influence performance on numerical tasks requiring
number words representations, such as number transcoding.

Phonemic awareness has also been consistently associated with reading
performance (Peterson & Pennington, 2015; Vellutino et al., 2004). To extend
this result, possible shared associations between phonemic awareness and
digital-Arabic as well as word writing and reading skills were investigated.
Lopes-Silva et al. (2016) aimed at disentangling the role of phonemic aware-
ness and its impact on verbal to Arabic transcoding tasks as well as on single-
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word reading and spelling, controlling for other cognitive variables such as
WM. The authors conducted a series of hierarchical regression models with
scores of reading and writing of single words and Arabic numbers as depen-
dent variables. They observed that performance on each numerical task (i.e.,
reading or writing Arabic numbers) was predicted by the corresponding verbal
tasks (i.e., reading or spelling words) and vice versa as well as by phonemic
awareness – even beyond the influence of general cognitive abilities. Phonologi-
cal WM was also significantly associated with word reading, but to a smaller
extent as compared to the influence of phonemic awareness. Interestingly, pho-
nological WM was not associated with number transcoding. Potentially, this was
due to possible shared variance with phonemic awareness. In addition, Teixeira
and Moura (2020) observed that children with reading difficulties also present
difficulties in writing Arabic numbers, committing both syntactic and lexical errors,
whereas lexical errors were hardly observed in typically developing children.
These difficulties may be explained by differences in phonological processing
abilities, mainly with respect to phonemic awareness, but also regarding speed of
lexical access and phonological memory.

Adding to the studies mentioned above, Batista et al. (in preparation) investi-
gated the association between phonological processes, WM and Arabic number
transcoding more thoroughly by considering different aspects of phonological
processing as well as different WM aspects in the same study. In particular, in a
sample of third and fourth graders they assessed variables including phonemic
awareness, speed of lexical access as well as verbal and visuo-spatial WM. Hierar-
chical regressions controlling for influences of general cognitive abilities showed
that Arabic number writing performance was predicted by visuo-spatial WM and
lexical access. Interestingly, considering lexical access in the regression models
led to the exclusion of phonemic awareness.

These findings are in line with the weak phonological representation hy-
pothesis by Simmons and Singleton (2008), according to which phonological
processing deficits impair aspects of numerical processing that require the ma-
nipulation of verbal codes (transcoding but also counting, arithmetic fact re-
trieval, etc.), while other nonverbal aspects of number processing that rely less
on verbal codes (e.g., magnitude manipulations, estimation, subitizing) should
remain unimpaired. In number transcoding, the input is verbal; hence, the child
must be able to differentiate between speech sounds to correctly comprehend
the verbal number word that needs to be transcoded into Arabic notation. The
results reviewed above suggest that the poor phonological representation hy-
pothesis may also hold for numerical transcoding tasks in the sense that number
transcoding should also be interpreted as a verbally mediated numerical ability,
at least partially relying on phonological processing.
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However, the actual working mechanisms underlying the association between
phonological processing and numerical abilities more broadly remains unclear so
far, even though above-described results may allow for a preliminary conclusion
with respect to the interplay of phonological processing and number transcoding
abilities. To further substantiate our suggestions, future studies should simulta-
neously consider different subcomponents of phonological processing (i.e., lexical
access and phonemic awareness) to investigate their specific influences. To illus-
trate this, lexical access has so far been associated with arithmetic fact retrieval
(De Smedt, 2018) and fluency in reading words (Papadopoulos et al., 2016). In a
similar vein, Geary (1993) suggested that the comorbidity between math and read-
ing difficulties may be associated with deficits in lexical access. Moreover, a meta-
analysis by Koponen et al. (2017) investigated the association of lexical access with
a range of numerical abilities. Results indicated that rapid automatized naming
was more strongly associated with simple numerical tasks (e.g., arithmetic fluency)
than with more complex ones (e.g., multi-digit calculations). Also, lexical access is
required when processing numerical or operational symbols in simple tasks, while
in more complex calculations, multiple cognitive skills are involved (e.g., Koponen
et al., 2017). Regarding number transcoding, deficits in lexical access may lead chil-
dren to commit more lexical errors due to incorrect access to the digital-Arabic re-
presentation corresponding to the dictated verbal number word (Barrouillet, 2004).

However, phonemic awareness may be strongly associated with lexical
access to numerical symbols. In many languages investigated so far, there
are phonologically similar number words that one may confuse – especially
children – and specific strategies may be required to differentiate them orally.
For instance, in German “zwei” (two) and “drei” (three) sound quite similar.
When dictating a phone number people could say “zwo” instead of “zwei,” to
avoid errors. This is also observed in Portuguese for “três” (three) and “seis”
(six), on which people often say “meia” (half a dozen) instead of “seis” (six) to
avoid misunderstandings. Furthermore, it is obvious that an accurate under-
standing of the phonological structure of verbal number words is crucial to de-
rive the corresponding Arabic symbols correctly. Thus, it is especially important
to investigate the role of lexical access and phonemic awareness as subcompo-
nents of phonological processing because most studies only considered influen-
ces of phonological WM so far (see Camos, 2008; Moura et al., 2013; Zuber et al.,
2009) – even though the ADAPT model suggests that the first step of transcoding
from verbal number words to digital-Arabic notation is the phonological encod-
ing of the respective number word.

Taken together, we reviewed evidence suggesting that phonological pro-
cesses are important not only for acquiring word reading and writing but also for
reading and writing (multi-digit) numbers. However, it is not clear from previous
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research which role different components of phonological processing may play –
in particular in reading and writing (multi-digit) numbers. From a developmental
point of view, it seems that phonological processing might be important in early
stages of the acquisition of basic numerical and arithmetic abilities whereas the
exact role of phonological processes in numerical cognition in adults is contro-
versial (De Rammelaere et al., 2001; De Rammelaere & Vandierendonck, 2001;
DeStefano & LeFevre, 2004; Seitz & Schumann-Hengsteler, 2000). In this context,
initial evidence also indicates that the relevance of phonological and visuospatial
working memory may vary considerably with age and experience (Krajewski &
Schneider, 2009; McKenzie et al., 2003). This may suggest that there might be dif-
ferent paths to acquire symbolic numerical and arithmetic abilities in the tran-
sition from kindergarten to primary school, one verbal (phonological) and the
other visuospatial (LeFevre et al., 2010).

7 Conclusions

Reading and writing words as well as numbers are core challenges elementary
students face in their first years of schooling. Despite considerable bodies of re-
search dedicated to each of these tasks, there is still a lack of research on poten-
tial overlaps between the cognitive mechanisms underlying word and symbolic
number processing, and how they interact during children’s cognitive develop-
ment. Recent results indicated a prominent role for phonological skills for the
development of both reading and numerical abilities. Moreover, evaluating per-
formance in tasks that simultaneously draw on phonological as well as numeri-
cal aspects, such as number transcoding, seems to be particularly informative.
Laborious and sequential phonological processing may be crucial for the initial
processing of both words and symbolic numbers in children’s development.
Practice allows for more efficient forms of processing of words and smaller and
more frequent Arabic digits. These may then form the building blocks for read-
ing comprehension and processing of more complex multi-digit symbolic num-
bers. Better understanding of how representations of words and numbers are
associated may foster our understanding of the cognitive underpinnings of
learning to read and write words and numbers and, as a consequence, the di-
agnosis of specific learning difficulties.
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Sarah R. Powell, Samantha E. Bos, and Xin Lin

The assessment of mathematics
vocabulary in the elementary
and middle school grades

1 Introduction

Students use academic language, which involves vocabulary, grammatical struc-
tures, and linguistic functions, to learn knowledge and perform tasks in a specific
discipline (e.g., mathematics; Cummins, 2000). Understanding these discipline-
specific ways of using language requires deep knowledge of discipline-specific
content and a keen understanding connecting academic language to learning
(Fang, 2012). Therefore, not surprisingly, academic language has been shown to
be closely related to academic performance (Kleemans et al., 2018) and a signifi-
cant predictor of academic achievement (Townsend et al., 2012). Mathematics,
a challenging discipline for many students (Berch & Mazzocco, 2007), also de-
velops academic language specific to the discipline, which is often referred to
as mathematics language. Mathematics language is used to express mathemat-
ical ideas and to define mathematical concepts, and it can facilitate connections
among different representations of mathematical ideas (Bruner, 1966).

In this Introduction, we provide a definition of mathematics vocabulary
and discuss the importance of understanding mathematics vocabulary. Then,
we review why and how students experience difficulty with mathematics vocab-
ulary. In the rest of the chapter, we describe the development and testing of sev-
eral measures of mathematics vocabulary. These measures could be used by
educators to understand which mathematics vocabulary cause difficulty for stu-
dents and could be a focus of mathematics instruction.

1.1 Definition of mathematics vocabulary

Mathematics vocabulary, a key component of mathematics language (Moschkovich,
2015; Simpson & Cole, 2015), includes terms routinely used in mathematics instruc-
tion, textbooks, and assessments (Monroe & Orme, 2002; Moschkovich, 2013). In
this chapter, we define mathematics vocabulary as terms used to describe specific
mathematical concepts or procedures. We use the word “term” because a large pro-
portion of mathematics vocabulary includes more than one word (e.g., greater than,
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minus sign, quarter past, rectangular prism, unequal shares). In the mathematics
learning progression (Browning & Beauford, 2011; Purpura & Logan, 2015), math-
ematics vocabulary first emerges as number terms (e.g., one, three), terms repre-
senting quantities (e.g., more, less), and terms representing spatial relations (e.g.,
above, below). Some of the earliest learning of mathematics occurs through learn-
ing mathematics vocabulary (Purpura et al., 2017).

As the complexity of mathematics skills increases by grade level, mathemat-
ics vocabulary becomes accumulatively complex with students expected to un-
derstand hundreds of different mathematics vocabulary terms by middle school
(Powell et al., 2017). Mastering foundational mathematics vocabulary may be nec-
essary for understanding advanced mathematics vocabulary and concepts. For
example, students need to master the term multiple to understand the term least
common multiple, which describes part of the procedure for identifying common
denominators when adding or subtracting fractions. Given the complexity and
accumulative nature of mathematics vocabulary, an explicit focus on vocabulary
has become a point of interest in mathematics education (Browning & Beauford,
2011; Riccomini et al., 2015). In the next section, we discuss mathematics standards
and research practices that highlight the importance of mathematics vocabulary.

1.2 Importance of mathematics vocabulary

Mathematics practice standards in the United States (U.S.) highlight the use of
mathematics vocabulary as a medium to learn and perform mathematics. For ex-
ample, within the Curriculum Focal Points of National Council of Teachers of
Mathematics in the U.S. (2006), students are expected to “develop vocabulary to
describe” various attributes of shapes (p. 31) or use “language” to compare quan-
tities (p. 11). Similarly, use of mathematics vocabulary as a medium to learn
mathematics is also shown in the mathematics standards used in the U.S. (Na-
tional Governors Association Center for Best Practices & Council of Chief State
School Officers, 2010). Specifically, mathematics standards suggest that students
be able to use clear vocabulary to communicate precisely to others, explain how
to solve problems, construct viable arguments, and critique the mathematic rea-
soning of others. For example, it is outlined that students should use “language
to describe” (p. 42) or “describe their physical world using . . . vocabulary” (p. 9).

In addition to a focus in mathematical standards in the U.S., mathematics
vocabulary is important because of its association to mathematics performance.
For example, Powell and Nelson (2017) noted a significant correlation be-
tween the mathematics vocabulary and mathematics fluency (i.e., fluency
with mathematics facts such as 4 + 7 or 36 ÷ 6) scores of U.S. first-grade students.
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Similarly, Powell et al. (2017) identified significant correlations between a test of
mathematics vocabulary and mathematics computation (i.e., addition, subtrac-
tion, multiplication, or division or multi-digit numbers involving algorithms) for
both third- and fifth-grade U.S. students. Peng and Lin (2019) noted an analogous
pattern with Chinese fourth-grade students with significant correlations on
measures of mathematics vocabulary and mathematics fluency, computation,
and word problems. Besides correlational findings, Fuchs et al. (2015) further
demonstrated that mathematics vocabulary may partially or fully explain the
relation between general cognitive skills and students’ word-problem solving
performance.

Consistent with the focus of mathematics vocabulary in U.S. practice standards
for mathematics and more recent research demonstrating an association between
mathematics-vocabulary knowledge and mathematics performance, an increasing
number of researchers have started to focus on the importance of instruction re-
lated to mathematics vocabulary (Harmon et al., 2005; Livers & Elmore, 2018;
Monroe & Orme, 2002; Riccomini et al., 2015). Monroe and Panchyshyn (1995)
explained instruction needs to occur for four categories of mathematics vocab-
ulary. First, students need to learn technical terms that include terms specific
to mathematics (e.g., decagon). Second, students need instruction on subtechni-
cal terms. Subtechnical terms have multiple meanings, one of which is mathe-
matics related (e.g., cube). Third, students require instruction on symbolic terms
(e.g., minus sign). Fourth, educators need to ensure students understand general
terms. These are non-mathematics terms (e.g., measure) used in the mathematics
classroom.

Many researchers and educators have provided suggestions for teaching
mathematics vocabulary including using explicit instruction (Bay-Williams &
Livers, 2009; Monroe & Orme, 2002), mnemonic strategies (Riccomini et al.,
2015), and graphic organizers with the definitions, characteristics, examples,
and nonexamples of a mathematics vocabulary term (Bruun et al., 2015). How-
ever, in classrooms, mathematics vocabulary instruction is not often prioritized.
Specifically, except for the instruction of definitions in textbook, educators pro-
vide students with few opportunities to explicitly learn mathematics vocabulary
(Monroe & Orme, 2002). In addition, educators of mathematics often use infor-
mal language in the classroom – for example, diamond for rhombus, bottom
number for denominator, and line for fraction bar (Karp et al., 2014; Rubenstein
& Thompson, 2002). Because students do not receive enough mathematics vo-
cabulary instruction, understanding mathematics vocabulary can be difficult.
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1.3 Difficulty of understanding mathematics vocabulary

As described by Barrow (2014), mathematics is not a universal language, and all
students should be considered learners of mathematics vocabulary and language.
Not understanding academic language may prohibit students from engaging fully
in the mathematics classroom (Ernst-Slavit & Mason, 2011; Schleppegrell, 2012).
Mathematics vocabulary may be difficult for many students because of the com-
plexity of the vocabulary. Rubenstein and Thompson (2002) listed 11 difficulties
students may encounter when learning mathematics vocabulary terms: (1) when
used in mathematics context, some common English terms have alternative mean-
ings (e.g., expression, face); (2) some terms have similar but more precise meanings
(e.g., area, average); (3) some terms involve technical terms specific to mathemat-
ics (e.g., parallelogram, integer); (4) some terms have more than one mathematical
definition, such as cube as a solid figure versus to cube a number; (5) some terms
used in mathematics have different technical meanings when used in other disci-
plines (e.g., prism is a solid figure in mathematics versus prism is an object that
refracts light in science); (6) some mathematical terms have homophones or homo-
graphs, such as pi versus pie; (7) some related mathematical terms have distinct
meanings, but are easily confused (e.g., divisor and dividend); (8) the translation of
a single mathematical term into another language may have multiple ways, which
may cause confusion – for example, the Spanish word tabla can be translated to
the data table, but not the table we eat from (this would be mesa); (9) the spelling
of terms is not regular (e.g., half vs. halves); (10) some mathematical terms can be
verbalized in more than one way (e.g., one-quarter and one-fourth); and (11) the
use of informal language in many classrooms, as discussed earlier, make the learn-
ing of mathematics vocabulary more difficult.

Given the difficulty of understanding mathematics vocabulary, research on
mathematics-vocabulary instruction is in need. Only one experimental study
(Petersen-Brown et al., 2019), according to our knowledge, has specifically focused
on the instruction of mathematics vocabulary. Although their study showed the
effectiveness of mathematics-vocabulary instruction for third and fourth graders,
their study only included instruction about eight mathematics-vocabulary terms.
Future experimental research involving more grade-level important mathematics
vocabulary is in need. However, before conducting experimental work, it is neces-
sary to understand how to develop a measure of mathematics vocabulary. Under-
standing such process could help determine important mathematics vocabulary
terms to be involved in mathematics-vocabulary intervention. Such measures
should assist in determining the efficacy of any mathematics-vocabulary inter-
vention in addition to providing an understanding of the baseline levels of
mathematics vocabulary of students and variability in mathematics-vocabulary
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performance. In the next section, we describe our efforts at designing several
mathematics-vocabulary measures at different grade levels.

2 Development of mathematics-
vocabulary measures

Across the last few years, we developed a series of mathematics-vocabulary meas-
ures for use at grade 1 (ages 6–7), 3 (ages 8–9), 5 (ages 10–11), 7 (ages 12–13), and 8
(ages 13–14). We utilized a similar development process across the measures, and
we describe this process in the following paragraphs to demonstrate our develop-
ment framework and to aid any researchers or educators who want to develop
their own mathematics-vocabulary measures in English or another language.

2.1 Determine grade-level mathematics vocabulary

First, we compiled lists of grade-specific mathematics vocabulary. Unfortu-
nately, educators in the U.S. do not have access to a common list of mathematics
vocabulary at each grade level, so we accessed several mathematics textbooks at
a single grade level (e.g., first-grade mathematics textbooks) and created our
own grade-level lists of mathematics vocabulary. Our list of textbooks included
enVision MATH, Everyday Mathematics, Go Math!, and Houghton Mifflin Math.
We reviewed glossaries in the textbooks and created a database of mathematics-
vocabulary terms and definitions. We accessed two or three textbooks at each
grade level from kindergarten through eighth grade. Our complete database con-
tained 1,220 mathematics-vocabulary terms with many terms appearing at several
grade levels. Fig. 1 displays the counts of mathematics-vocabulary terms within
each grade level.

In the early elementary grades (i.e., kindergarten through second grade), glos-
saries featured approximately 150 different terms. In the third grade, we noted a
large increase in mathematics-vocabulary expectations, and we attributed this to
the introduction of multiplication, division, and fractions in U.S. classrooms in the
third grade (National Governors Association Center for Best Practices & Council
of Chief State School Officers, 2010). We identified another substantial increase
from fifth grade to sixth grade as U.S. students enter middle school, and in-
struction about algebra and rational numbers becomes a core focus of mathe-
matics instruction.
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2.2 Focus on important mathematics vocabulary

After we compiled the vocabulary database, we determined it was important to
streamline the mathematics vocabulary that would be included in any measure.
That is, we could not possibly create a test with 553 separate mathematics-
vocabulary terms identified from sixth-grade glossaries; no student would
take that test, and no educator would want to grade that test.

Our process for streamlining involved the following. We awarded 1 or 2
points if a term appeared in one or two additional glossaries within a specific
grade level. We believed a term gained importance if multiple textbooks writ-
ten by different author teams used the same term. We identified many text-
book-specific terms (e.g., break apart a ten, count back, in all) that did not
appear in more than one textbook. Then, we awarded 1 to 3 points if the term
appeared in glossaries at other grade levels. For example, during the first de-
velopment of the first-grade measure, a term earned points for also appear-
ing in kindergarten, second grade, and third grade glossaries. We noted the
use of some terms (e.g., half past or T-chart) occurred only at a single grade
level. Other terms (e.g., greater than, length, number line, octagon) were uti-
lized across several grade levels, which indicated such terms had carried
greater weight because students would hear, see, and use these terms across
multiple years. Third, we consulted mathematics standards used across the
U.S. (National Governors Association Center for Best Practices & Council of
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Fig. 1:Mathematics terms featured within grade-level textbooks.
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Chief State School Officers, 2010) and determined whether standards explic-
itly used terms. For example, at first grade, addend, quarters, and trapezoid
are each explicitly named within the first-grade mathematics standards. A
term earned 1 point if it is specifically mentioned within standards. In sum,
we included the terms with the highest point values.

For the development of a middle school measure for use in seventh and
eighth grades, we further tightened our method for streamlining vocabulary
terms (Hughes et al., 2020). After confirming terms were featured across glossa-
ries and grade levels and within standards, we had approximately 200 terms re-
maining. We placed the terms on an online survey and asked middle school
educators to select the 50 most important mathematics-vocabulary terms for
their grade level. For our measure, we included approximately 70 terms that
multiple educators categorized as important. We noted consistency across teach-
ers; for example, 53 of 53 educators agreed expression was important with 52
teachers coming to agreement on distributive property and 50 educators stating
equation was an important middle school mathematics vocabulary term.

To avoid basement or ceiling effects, we included terms introduced before
and beyond the target grade levels. We did this based on grade level of introduc-
tion of the term in the textbook glossaries. For example, at third grade, we in-
cluded many terms (e.g., circle, odd) introduced before the third grade, some as
early as kindergarten, to ensure students who experienced difficulty with third-
grade terms could answer some questions about more familiar terms. At fifth
grade, we included several terms introduced beyond the fifth grade (e.g., positive
integer, slope) to ensure a distribution of mathematics-vocabulary scores and
limit ceiling effects. For this reason, it was important to collect terms from text-
book glossaries across the elementary and middle school grades to be able to un-
derstand the grade level of introduction of a term, in how many grades the term
appeared, and the grade level of disappearance of a term.

2.3 Develop questions to assess mathematics-
vocabulary knowledge

We designed each of our measures for educators to use in the general education
classroom. Therefore, we planned for a paper-and-pencil task in which students
would read prompts and respond via writing. For each selected term, we cre-
ated three levels of questions: recall, comprehension, and use in complex tasks
(Haladyna & Rodriguez, 2013). Figure 2 displays sample questions. Often, our
recall questions involved matching a letter to a term. Comprehension questions
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encouraged the students to provide a quick response. Task questions asked stu-
dents to draw something. After generating the levels of questions, we selected
the level of question that would be easiest for student response, but we also con-
sidered balancing levels so that students answered a variety of questions.

When creating the test forms, we started each test with an easier question
as the first problem. We then grouped similar items together (e.g., questions
about even and odd numbers or numerator and denominator appeared next to
one another), but we distributed terms by mathematical domain. For all grade
levels except the first grade, examiners read a set of directions and then pro-
vided time (e.g., 20 min or 30 min) for students to work. Examiners read no
questions or terms aloud. Our decision to not read the test aloud meant that stu-
dents had to use reading to interpret the mathematics-vocabulary term, just as
students would do in a textbook, on a test, or on a computer screen. At the first
grade, because of the limited reading experiences of the students, examiners
read each prompt and answer choices aloud and permitted students to respond
to the question before moving on to read the next prompt aloud.

3 Student performance on mathematics-
vocabulary measures

In the U.S., we administered mathematics-vocabulary measures to students at
different grade levels. In the following sections, we describe five different
studies. In the first three studies, we investigated the use of mathematics-
vocabulary measures at understanding the mathematics-vocabulary knowl-
edge of students in grade 1 (Powell & Nelson, 2017), in grades 3 and 5 (Powell
et al., 2017), and grades 7 and 8 (Hughes et al., 2020). In the fourth study (Forsyth
& Powell, 2017), we compared the mathematics-vocabulary scores of fifth-grade
students with and without mathematics or reading difficulty. In the fifth study

Recall Comprehension Task

Fig. 2: Examples of different questions on third-grade measure.
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(Powell et al., 2020), we compared mathematics-vocabulary scores of third-grade
students with and without mathematics difficulty who also categorized as dual-
language learners or native English speakers. Tab. 1 presents an overview of the
data from each study.

3.1 Elementary students’ mathematics vocabulary knowledge

3.1.1 Grade 1

Powell and Nelson (2017) investigated the mathematics-vocabulary knowledge
of first-grade students and also explored the relationship between general English
vocabulary, mathematics fluency, and mathematics vocabulary. Students showed
wide variability in mathematics-vocabulary performance. Findings suggested
a significant and positive relationship between both general English vocabu-
lary and mathematics vocabulary as well as mathematics fluency and mathe-
matics vocabulary.

Powell and Nelson (2017) explored whether students struggled with a particu-
lar type of mathematics vocabulary. Few clear patterns emerged regarding which
mathematics-vocabulary terms caused the most difficulty for students. According
to categories suggested by Monroe and Panchyshyn (1995), students had higher ac-
curacy rates in identifying general mathematics-vocabulary terms (91.1%) than
symbolic terms (54.5%), technical terms (42.0%), or subtechnical terms (56.4%).
Student accuracy varied based on whether the vocabulary term was introduced in
kindergarten, first or second grade. That is, students demonstrated a 67.1% accu-
racy rate with terms introduced in kindergarten textbooks, followed by an accuracy
of 48.8% of terms introduced in the first grade. As expected, accuracy on terms
introduced in the second grade was 29.2%. Powell and Nelson (2017) tested the
measure near the final weeks of the first grade when students should have mas-
tered kindergarten and first-grade mathematics vocabulary. This finding suggested
students may already struggle with mathematics-vocabulary terms as early as the
first grade.

3.1.2 Grades 3 and 5

Powell et al. (2017) continued to explore the mathematics vocabulary knowl-
edge of elementary-aged students, examining trends in the knowledge base of
third- and fifth-grade students. The authors analyzed the mathematics vocabulary
knowledge, general English vocabulary, and mathematics computation knowledge
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of both third- and fifth-grade students. Similar to the findings of Powell and Nelson
(2017), Powell et al. (2017) determined general English vocabulary and mathemat-
ics computation knowledge were both significant predictors of mathematics-
vocabulary knowledge in third- and fifth-grade students, although the strength of
the relationships varied depending on the students’ level of mathematics vocabu-
lary. The relation was significantly stronger in third-grade students. That is, third-
grade students demonstrated greater dependence on general English vocabulary
and computation compared to fifth-grade students.

Furthermore, the authors examined whether the influence of general vocabu-
lary and mathematics computation on mathematics vocabulary varied for stu-
dents with different levels of mathematics vocabulary. The findings showed that
general English vocabulary was a more accurate predictor of mathematics vocab-
ulary for students with lower mathematics-vocabulary scores, but mathematics
computation served as a stronger predictor for students with higher mathemat-
ics-vocabulary scores in the third-grade sample. In the fifth-grade sample, how-
ever, mathematics computation was a stronger predictor for students with lower
mathematics-vocabulary performance but not for students with the higher math-
ematics-vocabulary performance; general English vocabulary was a significant
predictor across all performance levels of mathematics vocabulary. This reversal
in the trend lines between grades could reflect the growing development of a
mathematical lexicon in the third grade and therefore a greater dependence on
general English vocabulary compared to fifth-grade students.

3.2 Secondary students’ mathematics knowledge

3.2.1 Grades 7 and 8

Hughes et al. (2020) measured mathematics vocabulary of both seventh- and
eighth-grade students. The authors determined the mathematics-vocabulary
measure was well targeted for middle school students and measured mathe-
matics vocabulary with high validity and high reliability. The differential per-
formance between seventh- and eighth-grade students provided evidence to
suggest that a mathematics-vocabulary measure can detect differences in the
growth of mathematics vocabulary from one grade level to the next. Also nota-
ble was the wide variability in students’ scores. The average score of both ver-
sions of the mathematics-vocabulary measure showed that students knew only
two-thirds of vocabulary deemed essential by middle school educators, text-
books, and standards.
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3.3 Mathematical vocabulary knowledge of students
with difficulties

3.3.1 Students experiencing mathematics and reading difficulty

Forsyth and Powell (2017) examined the impact of mathematics and reading
difficulties on the mathematics-vocabulary knowledge of fifth-grade students.
Using the same measure of mathematics vocabulary as Powell et al. (2017), For-
syth and Powell (2017) examined the mathematics-vocabulary scores of stu-
dents who experienced a reading-only difficulty (RD-only), a mathematics-only
difficulty (MD-only), or comorbid reading and mathematics difficulty (MDRD),
determined by performing below cut-off benchmarks on a test of general En-
glish vocabulary, a test of mathematics computation, or both assessments, re-
spectively. The authors compared scores to typically developing students.
Typically developing students demonstrated significantly higher performance
over students with RD-only, MD-only, and MDRD, with the largest effects in com-
parison to students with MDRD. Students with RD-only and MD-only did not dif-
fer significantly on mathematics-vocabulary scores, but both groups of students
had significantly higher mathematical-vocabulary scores than students with
MDRD.

When Forsyth and Powell (2017) examined the impact of the year the
term was introduced to students upon student knowledge of that term, the
same pattern held, in which typically developing students outperformed stu-
dents with MD-only, RD-only, and MDRD; students with MD-only and RD-
only did not significantly differ; and students with MD-only and students
with RD-only outperformed students with MDRD, with the greatest contrast be-
tween typically developing students and students with MDRD. This pattern did
not hold for mathematics-vocabulary introduced in fifth-grade and sixth-grade
textbooks and not included in textbook glossaries. Specifically, when mathemat-
ics-vocabulary were terms introduced in fifth-grade or not included in textbook
glossaries, typical students significantly outperformed all other difficulty groups,
with no significant differences among MD-only, RD-only, and MDRD groups.
Given that mathematics-vocabulary introduced in sixth-grade was difficult for
all groups, there was no significant group difference among typically develop-
ing and other disability groups.
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3.3.2 Dual-language learners

Powell et al. (2020) assessed the mathematics-vocabulary performance of third-
grade students to determine if performance differences existed among dual-lan-
guage learners and native English speakers with and without MD. Powell et al.
(2020) categorized students based on performance on measures of equation solv-
ing and word problems. This categorization included: equation-only difficulty
(EQD; i.e., performing below 27th percentile on equation solving), word-problem-
only difficulty (WPD; i.e., performing below 28th percentile on word-problem solv-
ing), or word-problem and equation difficulty (EQ +WPD). In addition, the study
included students without equation or word-problem difficulty.

The Grade 3 measure of mathematics vocabulary was a revised version of the
mathematics-vocabulary measure used in grades 3 and 5 (Powell et al., 2017). The
revised assessment did not contain terms introduced in grades 4, 5, or 6. Students
with no MD who were native English speakers outperformed students with no MD
who were dual-language learners. The same was true for students with equation-
only difficulty in which native English speakers outperformed dual-language learn-
ers. This pattern, however, did not hold for students with word-problem difficulty
or combined difficulty. Instead, Powell et al. (2020) identified no significant differ-
ences between native English speakers and dual-language learners with word-
problem-only difficulty or combined difficulty.

In addition, Powell et al. (2020) noted differences in students’ mathemat-
ics vocabulary knowledge between different types of mathematics difficulty.
For dual-language learners, students with no MD outperformed students with
any type of MD (i.e., equation-only difficulty, word-problem-only difficulty,
and combined difficulty). Although there was not a significant difference in
the mathematics vocabulary between dual-language learners with equation-
only difficulty and word-problem-only difficulty, both groups significantly outper-
formed dual-language learners with the comorbid difficulty. Across native English
speakers, students without a MD outperformed their peers with any form of MD.
Native English speakers with equation-only difficulty significantly outperformed
native English speakers with combined difficulty. Similar to the findings of
Forsyth and Powell (2017), students with comorbid difficulties demonstrated
the weakest mathematics vocabulary. It is noteworthy that students without
any mathematics difficulty, on average, did not score above 50% on the third-
grade mathematics-vocabulary measure, suggesting many students struggle
answering questions about mathematics vocabulary.
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4 Conclusion

In this chapter, we described five studies in which students in the U.S. answered
questions about mathematics vocabulary. All five studies above demonstrated
wide variability in students’ understanding of mathematics vocabulary. That is,
within a grade level, the mathematics-vocabulary scores of students ranged
from very low – in some cases, zero – to well above average. Across studies, the
average mathematics-vocabulary score was at or below 67% of all terms on a
measure. This indicated that all students have room for improvement on meas-
ures of mathematics vocabulary. Some students answered fewer than 10% of
items on a mathematics-vocabulary measure even when the terms were intro-
duced in previous grades and students should have experienced multiple op-
portunities to interact with such terms.

In a few studies, we noted significant correlations between mathematics-
vocabulary scores and general English vocabulary as well as mathematics per-
formance on measures of fluency or computation. The connection between
mathematics and general English vocabulary is important, but our analyses
did not explore whether greater mathematics vocabulary led to greater English
vocabulary or vice versa. Future research should investigate this relationship.
Similarly, we would ask researchers to conduct more research on the con-
nection between mathematics-vocabulary knowledge and the understanding
of mathematics concepts. We noted several significant correlations between
mathematics vocabulary and fluency or computation, but it would be impor-
tant for both researchers and educators to understand whether increased
mathematics-vocabulary knowledge contributes to improved understanding
of a concept or procedure. That is, how important is mathematics vocabulary
on the pathway to learning mathematics?

Furthermore, students experiencing mathematics difficulty scored signifi-
cantly below peers without mathematics difficulty. In the study by Forsyth and
Powell (2017), the average score for students with both mathematics and reading
difficulty was markedly below-average scores of students experiencing difficulty
in only mathematics or reading. Such results should help educators understand
which students in a classroom require more or less mathematics-vocabulary sup-
port. In the study by Powell et al. (2020), we observed differing average scores
for dual-language learners and non-dual-language learners when the students
experienced no mathematics difficulty or only equations difficulty. When stu-
dents experienced word-problem difficulty, the difference between non-dual- and
dual-language learners faded. These results should inform discussions about math-
ematics language support for dual-language learners.
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Even with the need to conduct future research, we suggest all educators
should use mathematics-vocabulary measures to understand the mathematics-
vocabulary profiles of their students. This knowledge could inform mathematics
instruction. Based on our findings that many students demonstrated low mathe-
matics-vocabulary scores, we also suggest that educators provide explicit in-
struction on mathematics vocabulary to help all students develop a deep lexicon
related to mathematics vocabulary. Such explicit instruction may be essential for
students experiencing mathematics difficulty to ensure these students have ac-
cess to the mathematics curriculum throughout their education.
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Judit Moschkovich and Judith Scott

Language issues in mathematics word
problems for English learners

1 Introduction

This paper describes language issues in mathematics word problems for English
language learners (ELLs). We first summarize research relevant to the linguistic
complexity of mathematics word problems from studies in mathematics educa-
tion, reading comprehension, and vocabulary. Based on that research, we make
recommendations for addressing language complexity and vocabulary in de-
signing word problems for instruction, curriculum, or assessment. We then use
examples of word problems1 to illustrate how to apply those recommendations
to designing or revising word problems and creating supports for students to
work with word problems.

2 Summary of relevant research on language
issues in mathematics

This section contextualizes recommendations for the design of word problems
and support for word problem instruction for ELLs, using research on language
issues in mathematics. In reviewing the relevant research on language and math-
ematics, we focused on research specific to the domain of mathematics and word
problems in particular.

1 These word problems are sample released items for the U.S. assessment created by the Smar-
ter Balanced Assessment Consortium. The Smarter Balanced Assessment Consortium (SBAC) is
a standardized test consortium that created Common Core State Standards–aligned tests
(“adaptive online exams”) to be used in several states in the United States. The Common Core
State Standards Initiative is an educational initiative from 2010 that details what K–12 students
throughout the United States should know in English language arts and mathematics at the
conclusion of each grade.
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2.1 Research on language issues in mathematics word problems

There are multiple uses of the terms language in mathematics education re-
search. Some interpretations of the phrases “language in mathematics” or
“mathematical language” reduce their meaning to single words or the proper
use of technical vocabulary. In contrast, we ground this chapter in research in
mathematics education that provides a more complex view of mathematical
language. Such work (e.g., Pimm, 1987) provides a view of mathematical lan-
guage as not only specialized vocabulary—new words and new meanings for
familiar words—but also as extended discourse that includes syntax and orga-
nization (Crowhurst, 1994), the mathematics register (Halliday, 1975), and dis-
course practices (Moschkovich, 2007).

Researchers in mathematics education have examined many topics related to
mathematics and language, some of them relevant to designing word problems
used with ELLs, for example, mathematical texts (O’Halloran, 2005), words with
multiple meanings or polysemy (Pimm, 1987), and differences between mathe-
matical registers at school and at home (Walkerdine, 1988). One contribution that
is especially relevant to word problems is a shift from seeing the mathematics
register as merely technical mathematical language. The mathematics register
should not be interpreted as merely a set of words and phrases particular to
mathematics. The mathematics register includes styles of meaning, modes of ar-
gument, and mathematical practices. It also has several levels of complexity that
go beyond the word or phrase level to include background knowledge level and
complexity at the sentence or paragraph level.

The following word problem illustrates how the mathematics register is not
simply about vocabulary specific to mathematics and involves more than only
the word level:

A boat in a river with a current of 3 mph can travel 16 miles downstream in the same amount of
time it can go 10 miles upstream. Find the speed of the boat in still water.

The complexity involved in making sense of this word problem is not at the level of
technical mathematical vocabulary, but lies principally in the background knowl-
edge (Martiniello & Wolf, 2012) for understanding and imagining the context or sit-
uation for the problem. In this case, the reader needs to imagine and understand
that there is a boat traveling up and down a river, that the speed was measured in
still water (presumably a lake), and that the speed of the boat increases (by the
speed of the current) when going downstream, and decreases (by the speed of the
current) when going upstream. The language complexity lies not in understanding
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mathematical terms, but having the background knowledge to imagine the situa-
tion. A glossary for non-mathematical words such as upstream, downstream, and
the phrase in still water would certainly help. However, also notice that much of
the language complexity is not at the word level, but at the sentence and para-
graph levels, in the use of the passive voice without an agent and in the multiple
subordinate clauses and nested constructions (Cook & MacDonald, 2013).

Another contribution from mathematics education work relevant to mathe-
matics word problems is that we know there are international differences in the
meaning of some mathematical terms. For example, the definitions of trapezium
and trapezoid (a quadrilateral with no sides parallel) are often interchanged. In
Spanish, “The word trapezoid is reserved for a quadrilateral without any paral-
lel sides, whereas trapezium is used when there is one pair of parallel sides
(This is opposite to American English usage)” (Hirigoyen, 1997: 167).

2.2 Research on language complexity of mathematics
word problems in assessments

The research on word problems on assessments is relevant to considering the lan-
guage complexity in word problems. According to Abedi (2002), linguistic com-
plexity of assessment word problems unrelated to the content being assessed may
at least be partly responsible for the performance gap between ELLs and non-ELLs,
and linguistic complexity of assessment word problems may invalidate achieve-
ment on tests. In particular, Shaftel et al. (2006) found that fourth graders had diffi-
culty with vague words, complex verbs (verbs with three or more words, e.g., had
been going), pronouns, prepositions, and mathematical vocabulary. The greater
the number of linguistic elements, the more difficult the word problem proved to
be. Grade 7 students found it hard to understand mathematical vocabulary and
comparative terms (greater than, less than). Overall, unfamiliar words, rarely used
vocabulary, and passive voice hinder comprehension (Abedi & Lord, 2001).

Abedi (2009) studied several supports (computerized tests, a pop-up glos-
sary, a customized English dictionary, extra testing time, and small-group test-
ing). The dictionary was customized and did not include any content-related
vocabulary. He found that all the supports made a significant difference for ELL
students for the more linguistically complex word problems. Another study (Sato
et al., 2010) used an original and modified version2 and found that linguistically

2 This study used the Grade 8 National Assessment of Educational Progress (NAEP) and the
Grade 7 California mathematics assessment.
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modified versions more reliably measured mathematical proficiency of students
labeled as ELL or Non-English Proficient (NEP) than the original format and lin-
guistic modification did not alter the targeted math constructs being assessed.

Martiniello (2008) found that understanding word problems that involve
polysemous words can be challenging for ELLs. Polysemous words are words
with different meanings or connotations, depending on the context provided by
the text or discourse. Martiniello gave the following example: “Find the amount
of money each fourth-grade class raised for an animal shelter using the table
below.” The word raised here refers to collecting funds. Other meanings are
“raise your hands,” “raise the volume,” “raising the rent,” or “receiving a raise.”
Martiniello found that ELLs tended to interpret the word raise as “increase” and
did not understand the connotation of raise in fund raising.

Martiniello and Shaftel both found that fourth-grade students struggled with
specific categories of vocabulary. These included words with multiple meanings,
slang or conversation words, and words learned in an English-speaking home
(Martiniello, 2008; Shaftel et al., 2006). Martiniello concluded, “It is important to
distinguish between school and home related vocabulary as a potential source of
differential difficulty for ELLs.” She suggests that since ELLs learn English pri-
marily at school, school-related words (student, pencil, ruler, school, day, book,
etc.) are likely to be more familiar than words related to the home (her examples
included raking leaves, chore, washing dishes, vacuum, dust, rake, and weed).
Martiniello’s general recommendations for word problems include avoiding un-
necessary linguistic complexity not relevant to mathematics, refining linguistic
complexity measures so they include issues that are specific to ELLS (e.g. home
vocabulary, polysemy, familiarity), and, for assessments, including thorough re-
view by experts on ELLs.

2.3 Summary of research on the language
of mathematics word problems

The following key understandings from research contribute to recommenda-
tions for how to design, revise, or support mathematics word problems when
working with ELLs. The language features of word problems documented as
problematic for ELLs are at three levels: Cultural (background level), syntactic
(sentence and paragraph level), and lexical (word and phrase level). All three
levels should be considered in designing mathematics word problems for curric-
ulum materials, in designing assessment problems, and when considering sup-
ports such as glossaries.
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A crucial aspect of word problems is the background knowledge and cultural
references necessary for understanding the setting of a word problem. Since it is
not possible to predict what settings, context, or background knowledge all stu-
dents share, it is important to provide some support for any setting described in
an item. The syntactic level involves the way sentences are put together. Several
challenging aspects of mathematics word problems include the use of the passive
voice without an agent, multiple subordinate clauses, nested constructions, and
long noun phrases. The lexical level involves unfamiliar words, unfamiliar phrases,
and unfamiliar connotations of words with multiple meanings (polysemy).

Vocabulary that is specific to mathematics is not the only source of diffi-
culty. Since the language complexity of mathematics word problems and the
language complexity issues for ELLs are not all necessarily at the word level,
the overall recommendation is that the design of word problems and the guide-
lines for glossaries should focus on cultural and syntactic levels, in addition to
the lexical level.

3 Summary of relevant research
on reading comprehension

This section contextualizes recommendations for the design of word problems
and support for word problem instruction for ELLs. In reviewing the relevant
research on vocabulary and reading, we focused on a broad view of reading
comprehension and word knowledge, not constrained by the domain of mathe-
matics. The following key understandings from research on reading comprehen-
sion and vocabulary can contribute to recommendations.

3.1 Background knowledge

Background knowledge plays a large role in understanding text and making in-
ferences about a word’s meaning. Research in the last 40 years has shown that
language comprehension requires knowledge of the world as well as knowledge
of the language (McNamara et al., 1991). Reading comprehension depends on
interaction between the reader (e.g., background, knowledge, abilities, and ex-
perience), the activity (e.g., instruction, grouping, purpose), and the text (e.g.,
genre, structure, words), embedded within a sociocultural context (RAND read-
ing study group; Snow, 2002). “Text can be difficult or easy depending on fac-
tors inherent in the text, on the relationship between the text and the knowledge
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and abilities of the reader, and on the activities in which the reader is engaged”
(RAND: 14). Within an individual text, such as a word problem, the vocabulary
load and linguistic structure interact with the readers’ knowledge during the
comprehension process. Comprehension is affected when there is a mismatch be-
tween the text and student’s knowledge and experience. A synthesis of research
on background knowledge and assessment with ELLs revealed that underde-
veloped background knowledge or lack of background knowledge hinders
performance on all types of assessments, including word problems (August &
Shanahan, 2006).

3.2 Words have multiple meanings

Multiple meanings for words are a common source of confusion for students.
Words are the cornerstone of effective communication, but work knowledge is
complex and multifaceted (Anderson & Nagy, 1991; Beck & McKeown, 1991;
Nagy & Scott, 2000). In addition to multiple meanings, words are often abstract,
are used in idioms, vary according to register, and differ according to context.

Anderson et al. (1976) propose, “A word does not have a meaning, but has,
rather, a family of potential meanings” (p. 667). The more frequent a word is in
English, the more likely it is to have multiple meanings (Nagy, 2009). For in-
stance, a round of golf, singing in a round, rounding up numbers, and a round
shape are all acceptable uses for the word round. The meaning of individual
words (and phrases) must be inferred from context and is nuanced by that con-
text, even if it is a familiar word (Nagy & Scott, 2000).

3.3 Word frequency

Most of the words in English, particularly academic words, occur infrequently.
In a 17.5-million-word corpus from K–12 schoolbooks (Zeno et al., 1995), the fre-
quency distribution shows that a core set of 5,600 words accounts for almost
80% of the words. The other 20% are over 150,000 unique words, most of
which are seen less than once per million words of text (Nagy & Hiebert, 2011).
Given this distribution, it is likely that many ELLs will not know or recognize
infrequent words. On average, ELLs at fourth- and fifth-grade score more than
two grade levels below their native English-speaking peers in English vocabu-
lary knowledge and tend to use high-frequency words for communication rather
than low-frequency vocabulary (Manyak, 2012).
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3.4 Verbs and nouns

Verbs are harder to learn than nouns. Young children learn concrete nouns before
verbs in part because verbs have a less transparent relationship to the perceptual
world (Gentner, 1982). For concrete nouns, the mapping between a word and its
referent is tangible. For verbs, this mapping depends on the language used, and
the way that information is captured by verbs varies across languages (Gentner,
2006). For instance, English verbs include manner of motion (e.g., the little bird
hops out of the cage) while Spanish typically includes path of motion, and not
manner (e.g. El pajarito sale de la jaula dando saltitos—The little bird leaves from
the cage giving hops) (Negueruela et al., 2004: 118). Note that the word exit could
have been used instead of leaves from to avoid the propositional verb.

3.5 Using high-frequency words and shorter sentences
is not the solution

The use of high-frequency words and shorter sentences may make a text more
difficult to read rather than easier. Abedi et al. (2004), in a thorough review of
assessment supports for ELLs, established that minor changes in the wording or
the syntactic complexity of mathematics problems can affect student perfor-
mance and recommend using straightforward, uncomplicated language when
developing word problems for assessments. While this makes sense as a general
rule, substituting more familiar words for more precise, less frequently seen,
words might also be problematic. Since high-frequency words are more likely to
have multiple meanings (Nagy, 2009), this needs to be factored into decisions
about word use.

Syntactical simplification is also problematic, as shortening sentences by elim-
inating words that establish connective relationships (because, therefore, etc.) can
make text harder to read rather than easier (Davidson & Kantor, 1982). In a study
with Puerto Rican students learning English as a second language, researchers
found that eighth-grade students’ comprehension benefited from longer sentences
that showed relationships rather than from choppy sentences with simple syntax.
Thus, sentences like, “If the manufacturer and the market are a long distance
apart, then it can be a big expense for the manufacturer to get goods to mar-
ket” were easier to understand than several shorter sentences like, “Manufac-
turers must get goods to market. Suppose that the manufacturer and the market
are a long distance apart. This can be a big expense” (Blau, 1982: 518).
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3.6 Other factors relating to word recognition

Two different studies indicate that both word frequency and the age of acquisition
of a word are features that influence the ease or difficulty of word knowledge, and
the second study also reported word length, number of syllables, and concrete-
ness or imageability as significant factors (Hiebert et al., 2019). Age of acquisition
captures when children can typically understand or use a word in oral language,
and thus relates to familiarity with the word. Concrete words, words that can be
easily thought of as a picture or an image, are easier than abstract words, and im-
ageability interacts with both the complexity of sentences and word familiarity to
influence word recognition (Mesmer et al., 2012). These additional factors should
also be considered in choosing words for word problems.

Some words are more easily decoded because their spelling pattern maps
onto recognizable phonetic patterns (Adams, 1990). For Spanish speakers, the
use of cognates with a similar meaning may facilitate word recognition (Nagy
et al., 1993). For instance, rotation/ rotación are cognates. Using rotation in a
word problem instead of the word spin or flip would help those Spanish-speaking
students who recognize this relationship. However, the use of complex or unfa-
miliar orthographic patterns (e.g., bouquet, answer, souvenir) can prove challeng-
ing, for non-ELLs as well as ELLs (Peregoy & Boyle, 2000).

3.7 Definitions

Definitions are often not student friendly. Using typical definitions to understand
the meaning of unknown words is a difficult metalinguistic task (McKeown, 1993;
Miller & Gildea, 1987; Scott & Nagy, 1997). The conventions of standard defini-
tions are largely the result of the need to conserve space in their printed form
(Landau, 1984). Definitions are “even more decontextualized, more terse, and
less like oral language than most of the written language to which children have
been exposed” (Scott & Nagy, 1997: 187). Graves et al. (2012) suggest that student-
friendly definitions are “longer, often written in complete sentences, phrased in
ways that are as helpful as possible to second-language learners, and do not in-
clude words more difficult than the word being defined. Also, sentences that give
an example of the thing named can be a useful add-on to a student friendly defi-
nition” (pg. 58). They suggest that providing a visual that represents a word, and
a sentence that explains how it represents the word, may be crucial for helping
ELLs understand the word’s meaning.
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4 Implications and recommendations
for writing word problems

This set of key insights from research can be used to help guide the design,
modification, and support of word problems and help determine which words
should go into glossaries. Below we summarize recommendations for address-
ing three levels in the language of mathematics word problems:
a) Cultural level: When choosing situations for word problems, background and

cultural knowledge is crucial for understanding the context for word problems.
Short explanations of the setting or context are often necessary. Since it is not
possible to predict what settings, context, or background knowledge all stu-
dents bring or share, it is important to use common settings, such as school,
and to provide short explanations of any setting described in an item.

b) Syntactic level: When considering syntax, as a rule, it is best to keep sen-
tence structure clear and straightforward. However, connective words in lon-
ger sentences that help students understand relationships should not be
eliminated if they facilitate meaning. Long sentences should be broken into
shorter, less complex sentences only if the shorter sentences make the mean-
ing clearer. Avoiding complex noun and verb phrases, using an active voice
with an agent, reducing nested constructions and subordinate clauses, using
pronouns with clear references, and using sentences with a clear subject
would also help students process the problems more easily.

c) Lexical level: When choosing words for word problems it makes sense to
avoid the type of words that may cause comprehension problems for ELLs.
To facilitate word recognition and understanding, first acknowledge that
word meanings are flexible and variable, and that word problems often in-
clude polysemous words. If multiple meanings might confuse students, it
might be worthwhile to use another word. When there is a choice between
words, it makes sense to choose imageable words and cognates. If that isn’t
possible, a glossary and the context should provide sufficient information
to make the word meaning clear.

Infrequent or unusual words, words with complex spellings, vague words, ab-
stract words, idioms, and colloquial or slang phrases should all either be replaced
or glossed. Using words in a students’ oral language, cognates, concrete words,
and easily decodable words will help focus the assessment on the mathematics
instead of English proficiency. Uncommon verbs, particularly those that are cen-
tral to comprehending a word problem, should be glossed for most problems.
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Glossaries can be a useful resource, if they are well written, provide visuals,
and explain the context of the word. Glossaries are particularly important for
polysemous words, multiword phrases (e.g., standard deviation), satellite or
phrasal verbs known to be problematic for ELLs (e.g. look up, clean up, turn off,
bring up, etc.); regionalisms (e.g., bag/sack, soda/pop), and mathematical terms
that differ across countries (e.g., trapezoid).

4.1 Designing a glossary

The definitions provided in a glossary should try to explain words in complete,
easy-to-read sentences. There is no need to use the terse, convoluted language
forms found in typical dictionaries. Example sentences should be used as needed.
A picture is often the quickest way to convey the meaning, particularly for con-
crete nouns. It is much easier to show a picture of a kangaroo than to try to explain
what a kangaroo is in words. Since imageability of words can aid recognition and
understanding, it makes sense to make those images available to students.

The following are a few guidelines for identifying terms for an English-
language glossary:
a) Background knowledge: Provide short explanations or descriptions of the

setting or context that may not be familiar to all students; use visuals and
pictures to illustrate setting and context.

b) Syntactic level: Write in a clear, straightforward, and cohesive manner;
make relationships within the word problem transparent.

c) Lexical level: Use visuals and pictures to illustrate words, particularly con-
crete nouns; provide glossaries for unfamiliar words, unfamiliar phrases,
and unfamiliar connotations of words with multiple meanings (polysemous
words); replace words, or provide glossaries for abstract words and words
with unusual spelling patterns; provide glossaries for verbs, particularly
those that are central to comprehending and completing the word problem.

5 Examples

Several of the word problems we use below as examples illustrate overlapping
issues. For instance, infrequent vocabulary is often correlated with lack of back-
ground knowledge. However, we have created these revisions from real items,
and grouped them as examples of areas of concern.
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5.1 Cultural (background knowledge) examples

Example 1 – Original
A company purchases $, of new computer equipment. For tax purposes, the company
estimates that the equipment decreases in value by the same amount each year. After  years,
the estimated value is $,.

Which of the following is an explicit function that gives the estimated value of the computer
equipment n years after purchase?

It is unlikely that many high school students know about paying taxes and
depreciation.

Example 1 – Revised

A company buys $, of new computer equipment. The company estimates that the
equipment decreases in value by the same amount each year. After  years, the estimated
value is $,.

Which of the following is an explicit function that gives the estimated value of the computer
equipment n years after purchase?

Since paying taxes and depreciation are complex ideas to explain, it might be
easiest to eliminate the phrase “For tax purposes.” This also eliminates the need
to explain this complex idea and doesn’t affect the word problem. Replace pur-
chaseswith buys, a more familiar and frequently used word.

Glossary: Estimate—to guess an answer close to the correct value.

Example 2 – Original

Ms. Olsen is having a new house built on Prospect Road.
She is designing a sidewalk from Prospect Road to her front door.
Ms. Olsen wants the sidewalk to have an end in the shape of an isosceles trapezoid, as shown.

The contractor charges a fee of $ plus $ per square foot of sidewalk. Based on the
diagram what will the contractor charge Ms. Olsen for her sidewalk?

The idea of having a contractor and designing a sidewalk may be unfamiliar to
many students. Charges is a polysemous word.

Example 2 – Revised

Ms. Olsen wants her new house to have a new sidewalk that goes from the road to her front
door. But, she doesn’t want it to have straight lines. Instead, she wants the sidewalk to end in
the shape of an isosceles trapezoid, as shown.

The builder charges a fee of $ plus $ per square foot of sidewalk. Based on the
diagram what will the builder charge Ms. Olsen for her sidewalk?
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This revised version provides more context more clearly, without the passive
voice or the use of unfamiliar terms and puts charges a fee in a glossary.

Glossary: Charges a fee—when someone charges a fee, they are asking the
other person to pay that much money.

5.2 Syntactic examples

Example 3 – Original

Jason uses a balance scale to measure the weight of objects. Each of the objects is the same
size but has a different weight. Four of the objects have their weights labeled and one does
not. Jason is trying to find the weight of the object that is not labeled. He performs the two
experiments shown below.

Which could be the weight of the object without the label?

The phrase, “Which could be” uses the conditional tense serves no real purpose
and could confuse students. An additional concern is that the word object is ge-
neric, polysemous, and abstract, and perform is also polysemous.

Example 3 – Revised

Jason uses a balance scale to measure the weight of bricks. Each of brick is the same size but
has a different weight. Four of the bricks have their weight labeled and one does not. Jason is
trying to find the weight of the brick that is not labeled. He does the two experiments shown
below.

What is the weight of the brick without the label?

The word object could be easily replaced with a word that is more concrete and
imageable, like brick. A word like brick, with a visual image in the glossary,
would be more familiar and accessible. The question without the conditional
tense is more straightforward and easier to comprehend.

Fig. 1: Visual image for the word brick in Example 3.
(Image courtesy of iStockphoto | vladakela)
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5.3 Lexical examples

Example 4 – Original

Infrequent words and multiple meanings
While the word gumball is a concrete noun, it is also a low-frequency word in
English. The word qualities and its singular form quality have multiple mean-
ings. Students may confuse this sense of the word with the sense that relates to
a grade of excellence (e.g., high quality).

Example 4 – Revised

Rewording the sentence to eliminate qualities reduces confusion. Adding a link
to a picture of a gumball machine in a glossary, or to the item itself, and defin-
ing it in a glossary help students access the meaning.

Glossary: A giant gumball machine is a tall machine that gives out brightly
colored balls of sugar-coated chewing gums in exchange for coins.

A giant gumball machine has the following qualities: It can hold no more than , gumballs.
– Exactly 7/40 of the gumballs are blue.
– Exactly 4/21 of the gumballs are red.
– There are more white gumballs than blue gumballs.
– There are fewer white gumballs than red gumballs. Which is a possible number of white

gumballs in the giant gumball machine?

A giant gumball machine can hold no more than , gumballs. Out of those , gumballs . . .

– Exactly 7/40 of the gumballs are blue.
– Exactly 4/21 of the gumballs are red.
– There are more white gumballs than blue gumballs.
– There are fewer white gumballs than red gumballs. Which is a possible number of white

gumballs in the giant gumball machine?
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Example 5 – Original
Cara makes scarves in different sizes.
The first scarf has  stripes and  tassels.
The second scarf has  stripes and  tassels.

The spelling pattern of scarves and scarf is irregular and the word tassels is infre-
quent. It is also unlikely that tassels is a word in students’ oral vocabulary.

Example 5 – Revised

Cara makes pillows in different sizes.
The first pillow has  stripes and  buttons
The second pillow has  stripes and  buttons.

A better alternative would be to change tassels to more familiar, imageable words
like bedspread, pillows, or bookmarks that could have buttons, beads, or stickers.
Although these are common words, a picture can facilitate comprehension.

Fig. 2: Visual image for the phrase gumball machine in
Example 4.
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Example 6 – Original

The concept of a decibel is highly specific and the word is a low-frequency En-
glish word. Understanding the meaning of this word is central to understanding
the word problem. In addition, speakers and speaker have multiple meanings,
and could be interpreted as human speakers if the reader doesn’t know this
context.

Fig. 3: Visual image for the word pillow in
Example 5.

The noise level at a music concert must be no more than  decibels (dB) at the edge of the
property on which the concert is held.
Melissa uses a decibel meter to test whether the noise level at the edge of the property is no
more than  dB.

– Melissa is standing 10 feet away from the speakers and the noise level is 100 dB.
– The edge of the property is 70 feet away from the speakers.
– Every time the distance between the speakers and Melissa doubles, the noise level

decreases by about 6 dB.

Rafael claims that the noise level at the edge of the property is no more than 80 dB since the
edge of the property is over 4 times the distance from where Melissa is standing. Explain
whether Rafael is or is not correct.

Language issues in mathematics word problems for English learners 345



Example 6 – Revised

This revision adds context to the word problem and defines what a decibel and
a decibel meter is within the item. It also disambiguates the word speaker. The
addition of a picture of speakers in a glossary would also help.
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Fifth-grade students’ production
of mathematical word problems

1 Introduction

Mathematical word problems challenge students significantly, as empirical stud-
ies have shown (e.g., Bush & Karp, 2013; Lewis & Mayer, 1987). Difficulties mostly
arise from two aspects, mathematical characteristics, and linguistic structure.
Mathematical characteristics of the word problem, such as number size, number
and complexity of required operations, and applicable strategies, increase prob-
lem difficulties. While on the linguistic side, semantic as well as syntactical char-
acteristics of word problems add to the difficulty (for an overview, see Daroczy
et al., 2015). Besides these factors, it is building a mathematical model based on a
situation described in a text that is a main difficulty to identify in empirical re-
search (Jupri & Drijvers, 2016; Leiss et al., 2010; Maaß, 2010).

We use the term “situation” to refer to a context, which serves the purpose
of exemplifying a concept or set of related concepts. As a situation is related to
a specific mathematical conceptual field, it formulates a mathematical problem
that requires a predictive response. Thus, situations go beyond stimuli, which
cause a specific behavior, but are rather typical settings in which mathematical
concepts become visible. Situations can be given by illustrations and also by
contextual descriptions with mathematics concepts embedded. While research
on word problems has focused on contextual descriptions of situations, this
chapter aims at investigating how children produce word problems from engag-
ing with illustrated situations.

Children encounter word problems that contextualize a more, or less, com-
plex mathematical task in a real-world situation in different ways (Verschaffel
et al., 2000). A typical, simple word problem is: “Alex has 3 packages of choco-
late. In every package there are 5 pieces. How many pieces of chocolate does
Alex have in total?” In this example, the encoded arithmetic task (3*5 = ?) is
rather transparent in the word problem, as all numbers are given and the multi-
plicative structure is highlighted by cue words or phrases (here: “in every”)
(LeBlanc & Weber-Russell, 1996). Jupri and Drijvers (2016) report that finding
all these cue words and phrases is a main obstacle for students while mathema-
tizing a situation. In such tasks, the real-world context often appears to be de-
signed for the task, thereby casting the word problem’s authenticity into doubt
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(Palm, 2009). The main purpose of these so-called “dressed-up” problems is
practicing basic operations in real-world contexts (Leiss et al., 2019; Verschaffel
et al., 2000). Actual mathematical problem solving requires a significantly more
complex mathematizing process (Leiss et al., 2010). Mathematical problem solv-
ing is thus a more authentic application of mathematics to real-world problems
(Maaß, 2010). Therefore, mathematical problem solving is a necessary part of
national curricula (Bush & Karp, 2013; Jupri & Drijvers, 2016; KMK, 2005).

Mathematical word problems are commonly investigated in a manner we will
call receptive mode: children are given mathematical word problems which they
then have to solve (Thevenot & Barrouillet, 2015). In contrast to the receptive
mode, Frank and Gürsoy (2014) investigated how grade 5 students create word
problem texts in response to a given illustration, which we will call word problem
production. As both aspects – context and task-relevant structure – are important
to design such a text, the visualizations used as stimuli had pictorial properties.
As their study had a linguistic research focus on children’s awareness of lan-
guage and multilingualism in mathematics classrooms, the extent to which such
tasks can provide information about children’s word problem-solving processes
is rather limited (Frank & Gürsoy, 2014). This chapter reports on subsequent re-
search which investigated how fifth graders write mathematical word problems
in response to given illustrations, pictorial representations of situations, and how
that relates to both individual characteristics (mathematical skills and reading
comprehension proficiency) and to the features of the illustrated mathematical
situations (obviousness of appropriate mathematical model for the illustration).

2 Mathematical modeling

In general, word problems require a complex process of modeling that trans-
lates the real-world context into a solvable mathematical task (Borromeo Ferri,
2006). Blum and Leiss (2007) propose a cyclic model of mathematical modeling,
comprising cognitive, linguistic, and math-specific processes (Leiss et al., 2019).
Fig. 1 shows the phases of mathematical modeling following Blum and Leiss
(2007) that are involved in word problem solving that differ in extent and focus,
depending on the task (Leiss et al., 2010, 2019).

The problem-solving process of a word problem can generally be divided into
two phases. On the modeling side, children need to construct a suitable representa-
tion of the situation through identifying the embedded mathematical problem. On
the computational side, the mathematical problem has to be solved by applying
appropriate strategies and operations (Mayer, 1999). Modeling processes bridge the
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gap between these phases and make mathematics applicable for real-world con-
texts (Leiss et al., 2019).

In the first step (1), children understand the real situation and translate it
into a situation model of the context. This involves the student reading the text
and sometimes providing an illustration containing the necessary information re-
quired to solve the task (Leiss et al., 2010). Thus, linguistic aspects are of great
importance in this phase (Leiss et al., 2019). Empirical studies have shown that
errors in this initial phase often lead to subsequent errors, which highlights the
significance of understanding processes in word problems (Clements, 1980; Leiss
et al., 2010). Recent research provided insights on linguistic difficulties in this
phase (Daroczy et al., 2015; Leiss et al., 2019; Prediger et al., 2013). The informa-
tion obtained from the word problem is organized and structured in the second
step (2), leading to a real model (i.e., a model of the real-world problem). In this
model, the context is reduced to (mathematically) relevant information and rep-
resented more precisely. Particularly in realistic word problems, this step might in-
volve making hypotheses about information not given in the text or not obviously
applicable (Leiss et al., 2010). For example, a problem such as “Linda bought 5 lit-
ers of juice for her café. How many glasses of 0.4 liters can she sell?” requires a
child to keep in mind that you might not have partially filled glasses in some con-
texts (e.g., when selling them in a café).

At this point, the modeling process switches from real-world representations
and considerations to the mathematical aspect of word problems (Mayer, 1999).
While mathematizing (3), children transfer the real model into a mathemati-
cal model that can be solved by mathematical means (Leiss et al., 2010). As
children need to know which mathematical model is appropriate, this step
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Fig. 1:Modeling cycle (Blum & Leiss, 2007).
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requires profound conceptual knowledge of the involved operations (Rittle-
Johnson & Schneider, 2015; Daroczy et al., 2015; Leiss et al., 2010). In contrast,
the purely mathematical solution process (4) that generates a mathematical re-
sult is more process-based and draws on strategy choice (e.g., counting, fact
retrieval) as well as arithmetic proficiency (Daroczy et al., 2015).

In the next step (5), children interpret the mathematical result by relating
the outcome to the real-world contexts. This process entails using conceptual
knowledge and bridging the gap between mathematics and the real world again
(Leiss et al., 2010; Mayer, 1999). This step leads to a real result that solves the
mathematical part of the word problem under the given assumptions and with
the numbers presented. However, this result has to be validated (6) within the
context of the situation model (Leiss et al., 2010). Questions need to be asked: is
the result realistic, are the assumptions adequate, and what other parameters
besides the mathematical result could be taken into account? Based on these
considerations in the situation model, children can finally present and explain
(7) their solution to the word problem in terms of the real situation.

Obviously, the construction of a situation model is an integral part of the
modeling process (Blum & Leiss, 2007), which can be underpinned by empirical
research (Leiss et al., 2019, 2010). While building an adequate situation model of
the real situation, children derive the necessary information such as numbers, op-
erations, and their respective relation from the context. A mere combination and
manipulation of numbers mentioned in the word problem is not sufficient to find
a correct solution (Thevenot & Barrouillet, 2015; Verschaffel et al., 2000). Thus,
the situation model allows transferring the not-yet-solved real-world problem into
a solvable mathematical problem, if necessary under the constraint of simplifica-
tion or additional reasonable assumptions; these restrictions are undone or at
least discussed during the interpretation phase (Leiss et al., 2019, 2010).

3 Visualization and rewording
in word problem solving

While constructing a situation model by understanding and organizing the real-
world situation, children often make use of organizing illustrations. Hegarty
and Kozhevnikov (1999) differentiate between pictorial illustrations that repre-
sent the context of a word problem and visual-schematic representations that
organize the given information. For example, to a combinatorial word problem
such as “Peter has two trousers and three shirts. How many different outfits can
he wear?” a pictorial illustration might show Peter in front of his wardrobe,
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which does not give any hint of the problem structure or of an appropriate solv-
ing strategy. A visual-schematic illustration could show the trousers and shirts,
enabling the imagining of combinations more easily. Empirical research revealed
that the quality of the illustrations and in particular the use of visual-schematic
illustrations is of significant relevance for solving word problems (Hegarty & Koz-
hevnikov, 1999; Vicente et al., 2008). More recently, Boonen et al. (2013) investi-
gated the relation of the use of visual-schematic representations and reading
comprehension, as both skills are discussed as crucial for solving word problems.
Boonen et al. (2013) report significant effects of producing visual-schematic repre-
sentations and reading comprehension. In contrast to visual-schematic visualiza-
tions, the use of pictorial illustrations seems to have negative effects on word
problem performance (Hegarty & Kozhevnikov, 1999; van Garderen & Montague,
2003). Against this background, some researchers suggest that pictorial represen-
tations rely on isolated information derived from single phrases or words, while
schematic representations are more likely to integrate the information given in
the text (Boonen et al., 2013; van Garderen & Montague, 2003).

As a consequence, a situation cannot be represented by only pictorial il-
lustrations, but requires at least to some extent schematic information that in-
dicates which mathematical concepts are involved. This applies in particular to
dressed-up problems, in which the underlying relations are made as obvious as
possible, because the intention of such problems is not teaching the modeling
process, but practicing arithmetic within real-world contexts (Palm, 2009).
Dressed-up problems do not contain an actual problem that has to be solved
(e.g., “Linda bought 5 liters of juice for her café. How many glasses of 0.4 liters
can she sell?”), but just contextualize a mathematical problem (e.g., “Linda
has 2 glasses and gets 3 more. How many does she have now?”). Thus, a
dressed-up problem refers to a specific and pre-defined solving strategy and a
corresponding operation. In contrast, more complex problems allow for vari-
ous solution strategies: In case of the given example of Linda’s café above,
several strategies are equally appropriate (divide 5 by 0.4, add up 0.4 until
reaching 5, etc.). Illustrations of dressed-up and more complex problems differ in
their obviousness. As dressed-up problems are meant to elicit the pre-defined op-
eration, corresponding illustrations have to be as obvious as possible in order to
guide children to that intended operation. A more complex problem, however,
can be illustrated less obviously, as there is not one specific intended solution
strategy. Naturally, less obvious illustrations of word problems are supposed to
elicit more diverse strategies and operations than more obvious illustrations.

De Corte and Verschaffel (1987) highlight the relevance and benefits of re-
wording word problems as an instructional method in mathematics classrooms.
Rewording means that children rephrase the situation of a given word problem
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in different words. Because children have to understand the structure and situa-
tion of the word problem to reword it correctly, it might contribute more to the
“concept acquisition function” (De Corte & Verschaffel, 1987: 379) of arithmetic
instruction. Therefore, rewording as instructional method might have positive
effects on word problem performance (Thevenot & Barrouillet, 2015). As for vis-
ualizations, children also benefit from rewordings of the word problem struc-
ture. In contrast, situational rewordings that do not refer to the structure of a
word problem but just slightly alter the context have no effect on word problem
solving. These findings underpin the importance of children’s understanding of
the situation given in a word problem.

4 Conceptual foundations of multiplication
and division

Multiplication and division mark a change in conceptual thinking from addi-
tion and subtraction, in that the concepts are two-dimensional rather than
one-dimensional. Whereas addition and subtraction can be conceptualized
along a number line, multiplication and division require more complex meta-
phors. Early conceptions of multiplication or grouping can be understood as
repeated addition; however, more complex conceptions of multiplication re-
quire two-dimensional models such as area models.

In addition and subtraction, quantities of the same type are added or sub-
tracted, for example, 3 candies and 4 candies are added together; however, in
multiplication the quantities involved are of different types, for example, 3 jars
each with 4 candies per jar, means that there are 12 candies altogether. The divi-
sion operation, explained as 12 candies divided equally between three jars, will
result in four candies per jar (partitive division), or by placing four candies in
each jar how many jars are needed will result in three jars (quotative division).
From this distinction we see that in addition and subtraction the total number
of candies is preserved, while in multiplication and division, the total number
is transformed, the 4 candies are taken three times, which makes 12 candies
(adapted from Schwartz, 1988: 41).

The developmental path from counting to additive reasoning to multiplica-
tive reasoning is mapped below. We acknowledge that the multiplicative concep-
tual field incorporates many concepts and that proficiency may be incrementally
gained through different pathways; nevertheless, there is a logical mathematical
route for the teaching of these concepts that can be determined theoretically, and
corroborated or challenged empirically.
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5 From counting to additive reasoning
to multiplicative reasoning

In the early years of schooling the students move from counting, to addition
and subtraction, and to multiplication and division. The reasoning develops
from additive reasoning to multiplicative reasoning and finally to this most im-
portant construct proportional reasoning, understood to be “the capstone of
children’s elementary school arithmetic and the cornerstone of all that is to fol-
low” (Lesh et al., 1988: 93–94).

Counting is the basic concept related to the creation of number concept
(Desoete, 2015; Fritz et al., 2018). Counting meaningfully implies that students
understand one-to-one correspondence, that is “the situation where there is
one item to a set” (Bakker, van den Heuvel-Panhuizen & Robitzsch, 2014: 70).
According to Bakker et al. (2014) one-to-many correspondence provides the stu-
dent with “the awareness that a set has more than one item and the student can
count the groups according to number in a set” (p. 70). This concept then leads
to the understanding of multiplication and division, which are the base con-
cepts for more complex mathematical concepts in the multiplicative conceptual
field such as ratio, fractions, and linear functions (Vergnaud, 1983). Multiplica-
tive reasoning relates to proportional reasoning (Lesh et al., 1988).

Vergnaud’s (1983) rationale for clustering the concepts involving multipli-
cation and division as the multiplicative conceptual field is that both operations
are related in many everyday situations. As multiplication and division are in-
verse operations, a problem containing a many-to-many relationship can often
be solved by multiplication and by division. In the example task of Linda’s café
above, multiplication (multiplying 0.4 with increasing numbers until reaching 5)
or division (divide 5 by 0.4) is a suitable operation. This conceptualization of the
many-to-many relationship from multiplicative concepts to situations supports
the rationale for this study.

6 The current study

The aim of this study was to identify how children produce complete word
problems for illustrations of given situations. Based on pictures of multiplication
or division situations, we investigated children’s word problem production, a pro-
cess which can be interpreted as an inversion within the modeling cycle (Leiss &
Blum, 2007): Children start with a situation model (2). To write a mathematical
word problem, they create an appropriate real situation (1), a possible real model
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(3), and a mathematical model (4). The relationship between writing a full mathe-
matical word problem, numeracy, and literacy, which might be new to many stu-
dents, can provide insights into fifth-graders’ production of word problems.

Characteristics of the given situation are likely to affect the mathematical
word problems that children produce, in particular the choice of operations.
For example, when a task contains numbers in a specific and salient relation
(e.g., numbers that can be divided without remainder such as 12 and 4), it can
be translated directly to a suitable mathematical problem. However, if there is
no directly translatable operation, with no common factors, (e.g., 13 and 4), the
given situation has to be transformed into a possible task by manipulating the
given information, and an appropriate word problem might be harder to find.

Mathematical word problems form part of a specific text genre (Frank & Gür-
soy, 2014; Hyland, 2007). This context implies that mathematical word problems
have particular aspects such as the necessary numerical information, a clearly
formulated relation between them, and a mathematical problem (Frank & Gür-
soy, 2014). In addition, mathematical word problems can have typical structures,
such as “dressed-up” problems. As children are used to such structures from a
teaching environment, they might rely on patterns they encounter often in math-
ematics classrooms. The use of typical word problem structures while writing
mathematical word problems might mirror students’ approaches to word problem
solving.

The scope of the study has been operationalized by the following research
questions:

(RQ1) To what extent are fifth graders able to produce word problems from
situations given in illustrations with varying level of obviousness re-
garding an intended strategy?
While reading and solving word problems has been addressed by
several studies in the past, children’s production of word problems is
less well researched (Frank & Gürsoy, 2014). We expect that children
have more difficulties with writing word problems that are less obvi-
ous in terms of less clearly suggesting a certain multiplicative or divi-
sional relation between the numbers.

(RQ2) How can multiplication and division performance as well as reading
fluency predict the successful production of word problems?
Arithmetic performance and reading fluency both were predictors
for solving word problems in recent studies (e.g., Leiss et al., 2019;
Stephany, this volume). This raises the question, how arithmetic
performance and reading fluency can predict children’s writing of
word problems?
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(RQ3) To which operations do students refer in their word problems and to
what extent does their choice relate to the illustration?
This research question focusses how illustration type and intended op-
eration in the word problems written by the children relate. Among
other representations, the multiplicative conceptual field can be illus-
trated as distribution contexts, which refer more to division tasks (e.g.,
Tasks 1 and 2 in Fig. 2), or repeated addition contexts, which refer
more to multiplication tasks (e.g., Tasks 3 and 4 in Fig. 2). We ex-
pect that more obvious illustrations (Tasks 2 and 3 in Fig. 2) mostly
lead to the operations intended by the illustrations.

(RQ4) How do fifth graders verbalize the parts of a complete mathematical
word problem (background story, mathematical problem, and math-
ematical task)?
Word problems consist of different parts, such as a background story
contextualizing the problem, a mathematical problem that has to be
solved, and a mathematical task that specifies which question has to
be solved in the word problem (Frank & Gürsoy, 2014). In addition,
these parts have to match (e.g., the mathematical task has to refer to
the mathematical problem). This research question aims at investi-
gating how children address the different parts of a word problem
and to what extent they can match them.

Fig. 2: Illustrations used in the word problem writing tasks (Frank & Gürsoy,
2014).
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7 Method

7.1 Sample

Fifth graders (n = 368; 226 girls, 61.4%; 142 boys, 38,6%; mage = 136.0 months,
SDage = 5.7 months) from Western Germany participated in the study. Students
from 12 different schools were tested at the end of grade 5. In this part of Ger-
many, students are separated based on their academic performance in primary
school into three different school levels after grade 4. In this study, 234 (63.6%)
students attended the highest school level (“Gymnasium”; preparing for univer-
sity), 62 (16.8%) the medium school level (“Realschule”), and 72 (19.6%) the
lowest school level (“Gesamtschule” and “Sekundarschule”).

7.2 Instruments

Writing word problems: In line with Frank and Gürsoy (2014), children were asked
to write a mathematical word problem for four given illustrations (Fig. 2).
The illustrations included schematic as well as pictorial properties. The ob-
jects depicted set up a general context (e.g., monkeys eating bananas). Their
arrangement in general was supposed to elicit a multiplication or division
task by activating the respective operational understanding (vom Hofe, 1998):
While two pictures (monkeys and candies) suggested a distributive context, the
other two pictures (flowers and fish) were expected to lead to a compositional
understanding.

Two pictures – one multiplication (flowers) and one division task (candies) –
contained numbers from the multiplication table (12 and 3) that would elicit a
whole number answer. The other two pictures were designed such that the an-
swers would include fractions. As well, one of these illustrations was an intended
multiplication task (fish; 3 + 3 + 4) and one was an intended division (bananas; 13
and 4). In case of number pairs with common factors (flowers and candies), the
illustrated situations supported a dressed-up problem clearly. Thus, we will refer to
these situations as relatively obvious compared to the other situations, in which
number pairs did not support a direct dressed-up problem. We expected that the
number pairs that were designed to elicit whole number answers would lead to
more multiplication and division tasks than the less obvious number pairs suggest-
ing rational number answers.

Multiplication and division problems: Children were given 27 multiplication
and division problems in the number range up to 100 (Crombach’s α = .72). The
problems contained dressed-up word problems as well as pure arithmetic
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problems. This subtest was not timed, so children solved these problems with-
out any time pressure. In all division problems number pairs could be divided
without remainder. In all problems products and dividends were two-digit num-
bers, while factors, divisors, and quotients were single-digit numbers.

Reading skills: A standardized speed test for reading skills was adminis-
tered (ELFE 1–6, Lenhard & Schneider, 2006). The test consisted of two sub-
scales: sentence comprehension and text comprehension. In the sentence
comprehension subtest, children were asked to complete a given sentence to
form a meaningful and grammatically correct sentence. Text comprehension
required reading a short text and answering one question on information
given in the text.

7.3 Results

Word problem production (RQ1): We evaluated whether the produced word prob-
lems were correct as intended in the task (“Write a mathematical word problem
connected to the picture”). We considered those word problems as correct that
described a situation connected to the picture and contained a problem that
could be solved mathematically.

To fulfil the criterion “connected to the situation,” it was sufficient to adopt
the given context (i.e., bananas and monkeys, candies and jars, flowers and vases,
fish and fishbowls) in the word problem. Partial adoption (e.g., only one part:
“There are 10 fish to sell at the pet shop. How many are there, after 4 are sold?”) as
well as additional, not given, information (e.g., “If one fish needs 12 g fish food per
week, how much fish food do 10 fish need per week?”) was also accepted. The
same principle applied to children’s counterintuitive interpretations of the pictures
(e.g., “Here you see 3 duplication machines [=jars]. Every hour, 12 candies are pro-
duced by each machine. How many candies do you have in 1 hour, 13 days, and
4 years?”).

The criterion “mathematical word problem” was handled rather strictly.
Word problems were considered correct if they demanded a mathematical prob-
lem-solving process. That could be implemented by formulating a particular ques-
tion (“There are 4 vases containing 3 flowers each. How many flowers are there?”)
or a direct operational instruction (“4 monkeys have 12 bananas. Share them
equally”).

Evaluated as not correct were word problems that just described the situa-
tion without any problem or question (“The jars are empty, but there are 12
candies in the air”) and those that just described how to perform a (maybe
suitable) operation (“Calculate 4 monkey multiplied by 12”) or the solution
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(“4 candies go in each jar”). Moreover, the word problems did not necessarily
have to report the amounts given in the illustration, because children might
have anticipated that the illustrations would be part of the word problem
(e.g., “How many fish are there?”). As the level of linguistic complexity of a
word problem does not matter regarding its solvability, more complex word
problems (e.g., “Here you see 3 duplication machines. Every hour, 12 candies
are produced by each machine. How many candies do you have in 1 hour,
13 days, and 4 years?”) were not distinguished from more simple word prob-
lems (e.g., “How many monkeys are there?”). Word problems did not need to
include arithmetic operations to be considered correct (e.g., “Which mathe-
matical geometrical shape do the jars have?”).

In general, most students were able to correctly write a mathematical word
problem suited to the picture. Task 1 (Bananas) was solved by 86.4%, task 2
(Candies) by 88.6%, task 3 (Flowers) by 87.2%, and task 4 (Fish) by 84.8% of
the students. There were no significant differences regarding the correct solu-
tion rates between all tasks (χ2(3) = 3.257, p = .354). Correct solution rates did
not differ between pictures showing a distributive (Tasks 1 and 2) or a multipli-
cative situation (Tasks 3 and 4) (χ2(1) = .425, p = .514). Contrary to our expecta-
tions, pictures directly eliciting multiplication or division tasks did not have
higher correct solution rates than less obvious pictures showing situations
that cannot be translated directly into either a multiplication or a division task
( χ2(1) = 2.757, p = .097).

Reading and mathematical performance (RQ2): Correlation analyses be-
tween raw sums of correctly written word problems and number of correctly
solved multiplication and division (mathematical performance), as well as sen-
tence and text comprehension tasks, were run. While sentence comprehension
correlations were low (r = .194, p < .001), text comprehension (r = .322, p < .001)
and mathematical performance (r = .292, p < .001) showed low to medium corre-
lations. This result is mirrored in a regression analysis explaining word prob-
lem production (F(3,363) = 19.914, p < .001, adj. R2 = .134). Only mathematical
performance (β = .201, p < .001) and text comprehension (β = .239, p < .001)
were significant predictors, while sentence comprehension (β = .027, p = .623)
had almost no predictive power. Tab. 1 provides an overview of these results.

Operations in the word problems (RQ3): Written word problems can refer
to operations that lead to the solution more or less directly. Very clearly en-
coded operations are typical of dressed-up problems in which cue words or
typical structures indicate the targeted operation (Frank & Gürsoy, 2014; Jiten-
dra et al., 2007). Based on the produced word problems, the encoded operations
can be compared. In most word problems (86.3%), a specific encoded operation
could be assigned. These were the basic operations and counting. The operations
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might be explicitly mentioned (“There are 4 vases and 3 flowers in each vase. Cal-
culate how many flowers there are. Add them all up”) or implicitly suggested by
cues (“There are 12 candies and they are supposed to be shared equally among
the jars”). In some produced word problems, no mathematical operation was en-
coded (no operation). In these cases, mostly no mathematical problem was for-
mulated (e.g., “Those are vases,” “There are 4 monkeys and one of them eats a
banana”). In other word problems a mathematical problem was formulated, the
specific operation, however, was not explicated (unclear, e.g., “Calculate how
many flowers are in one vase”). Fig. 3 shows the shares of these categories for the
four tasks.

In general, word problems encoded operations as intended when designing
the illustrations. Tasks 1 (Bananas) and 2 (Candy) mostly lead to division encod-
ing, while in task 3 (Flowers) most word problems encoded a multiplication
task. However, the picture is rather fuzzy for task 4 (Fish): About one third of
the word problems encoded a multiplication or division task and another third
was classified as unclear. In most of these word problems, children described
the situation and simply asked for the total sum of fish but indicated no particu-
lar operation. As depicted in Fig. 3, there was a greater variety in the encoded
operations in the less obvious tasks 1 and 4.

Verbalizations of word problems (RQ 4): A mathematical word problem can
be decomposed into three main parts (Frank & Gürsoy, 2014): A background
story that describes the situational setting of the word problem (e.g., “Lukas,
Emma, and Lilli go to the kiosk to buy some candies”), a mathematical problem
(“They bought 12 candies. They wanted to share them fairly”), and a mathemati-
cal task (“How many candies does everyone get?”). While the mathematical
problem refers to the operational relation of the numbers, the mathematical
task refers to the formulation of a prompt to solve the mathematical problem.
Obviously, the background story is not necessary to solve the mathematical
problem. However, the situational background is relevant when the mathemati-
cal result has to be evaluated and explained regarding the real-world context
(steps 6 and 7) in the modeling cycle (see Fig. 1, Blum & Leiss, 2007). Note that

Tab. 1: Relations between predictor variables and word problem production.

Predictor Correlation (r) Regression (β)

Sentence comprehension .** .

Text comprehension .** .**

Mathematical performance .** .**

Note. ** = p < .001.
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the background story has to provide more situational information than describ-
ing the items relevant for the mathematical task (e.g., “There are 4 monkeys
and 13 bananas”). We claim that a lack of situational contexts is one of the
characteristics for “dressed-up” problems, since such word problems do not
refer to a realistic context (Verschaffel et al., 2000). Word problems can be
solved only if the (numerical) relation of the elements (e.g., candies and chil-
dren) is specified. This criterion constitutes a mathematical problem. Finally,
a word problem is supposed to contain a mathematical task (e.g., “How many
candies and jars are there in total?”). As mathematical word problems might
have more than one possible task, this part is highly relevant. Obviously, the
mathematical problem and the task have to be related in order to be solved. In
other words, the mathematical task has to extend the mathematical problem.

In this study, we accepted such background stories that introduced names
and specific characters (e.g., parents or zookeepers) or any situation going be-
yond the mere mention of the depicted items. Any mathematical relation be-
tween elements that can be solved by mathematical means was coded as a valid

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Unclear

Division

Multiplication

Subtraction

Addition

Counting

No operation

Bananas Candies Flowers Fish

Fig. 3: Operations encoded in the word problems.
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mathematical problem. Finally, mathematical tasks were accepted if they for-
mulated a question that can be solved mathematically in general. Note that
mathematical problems and mathematical tasks were evaluated separately and
thus did not necessarily have to be related. If the mathematical problem and
the mathematical tasks were related, this was evaluated as an independent
characteristic of the produced mathematical word problem. In the last step, we
checked if the mathematical word problem contained all the information neces-
sary to solve the respective word problem.

Table 2 provides an overview of the percentages of correctly verbalized char-
acteristics as found in the word problems the students produced. In general,
there are little differences between the tasks. This indicates that the way children
produced word problems was independent of the given picture and refers to
children’s ideas and skills in general. Children’s word problems rarely contained
background stories. Chi-square statistics reveal no significant differences in
correct response rates between the tasks regarding writing a background
story ( χ2(3) = 1.894, p = .595), verbalizing a mathematical problem ( χ2(3) =
1.232, p = .745), and formulating a mathematical task ( χ2(3) = 2.885, p = .410).
Only success in matching mathematical problem and mathematical task dif-
fered between the tasks ( χ2(3) = 27.783, p < .001), obviously due to lower matching
rates in the less obvious tasks (bananas and fish).

As they were not explicitly asked to do so and background stories are not oblig-
atory, it cannot be guaranteed that children would produce more background
stories if these were made more salient in advance (e.g., by providing an exam-
ple). Children did not provide mathematical problems in about one third of the
word problems. One reason might be that not all students understood the ne-
cessity for this integral part of a mathematical word problem.

About one third of the produced word problems did not contain a proper
mathematical problem. This result indicates that verbalizing the mathematical

Tab. 2: Correctly verbalized characteristics of the produced word problems in percent.

Bananas Candies Flowers Fish

Background story , , , ,

Mathematical problem , , , ,

Mathematical task , , , ,

Match of problem and task , , , ,
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problem, which includes describing the relevant context and mentioning the
necessary information, was a main obstacle for students in this study.

In contrast, children had fewer difficulties in formulating a mathematical
task in their word problems, as the vast majority of produced word problems
contained a clearly and explicitly formulated task (e.g., “How many flowers go
in each vase?”). One might thus argue that children are rather familiar with the
aspect of mathematical task in word problems.

While formulating tasks did not challenge students considerably, matching
the task to the mathematical problem was not easy for all students. Notably re-
garding the less obvious tasks that contained numbers that had no common fac-
tors (Bananas and Fish), children more often failed to match the problem and
the task. In general, this appears as a second main obstacle to students in writ-
ing a mathematical word problem.

8 Discussion

To the best of our knowledge, the vast majority of empirical studies on model-
ing focus on children’s construction of a situation model based on a given text.
This study aimed at investigating to what extent students are able to write a
word problem to a given situation model. In the context of the cyclic model by
Blum and Leiss (2007), this approach means reversing the process of under-
standing between the real situation and the situation model, which generally
implies bidirectional processes (Borromeo Ferri, 2006; Leiss et al., 2010). Al-
though this is not part of the national curriculum standards, children did not
show particular difficulties with writing mathematical word problems to given
situations, as mirrored throughout in the high correct solution rates of about
85%. The produced word problems mostly were “dressed-up” problems suited
to the simple situations, which indicate that students generally know how to
encode a word problem directly. Characteristics of the given situations, such as
being more multiplicative or more distributive, did not affect correct solution
rates significantly. In addition, it had no effect on solution rates if numbers
were selected from the multiplication table or not.

In line with previous findings, writing word problems is associated with
reading proficiency and mathematical performance (Daroczy et al., 2015; Leiss
et al., 2019). Thus, these individual factors affect understanding in both direc-
tions. In particular text comprehension has to be highlighted, while sentence
comprehension correlated only minimally with writing proficiency. This result
strengthens the position that mathematical modeling relies on a comprehensive
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understanding of the situation and goes beyond cue words or phrases (Theve-
not & Barrouillet, 2015). However, correlations and the predictive power of the
regression analysis in this study are rather low, which corresponds to the litera-
ture on this topic (e.g., Leiss et al., 2019).

Children mostly used the intended operations multiplication and division.
Varying the obviousness of the given situation led to more variety in the oper-
ations used. This outcome might indicate that fifth graders anticipate a kind
of standardized dressed-up problem based on typical situations. This might
result from schooling that focusses on this kind of word problems (Verschaf-
fel et al., 2000). How deep children’s understanding of the situation in such
cases is is doubted (Maaß, 2010). It is rather likely that children produce (and
read) such word problems by applying a certain, well-trained verbal frame
(Borromeo Ferri, 2006).

Obviously, situations indicating a distribution elicit division more specifi-
cally than groupings do for multiplication. A closer look at the visualizations
used in classrooms might provide a better understanding of the processes un-
derlying children’s use of operations.

Children’s focusing on standardized dressed-up problems might also be ob-
served in the few differences between the less obvious (bananas and fish) and
more obvious (flowers and candy) situations in the study. First, it has to be no-
ticed that obviousness did not significantly affect performance at all. However,
the operations referred to in the word problems were more diverse in the less
obvious situations, which indicates that the children’s search for a dressed-up
problem was hampered by the less obviousness of relatively prime numbers.
The less obviousness of tasks 1 and 4 might have resulted in less-well-trained
problem-solving processes, in which children used a broader variety of opera-
tions. Consequently, not all of these operations could be conceptually sup-
ported by the illustrations to the same extent. In this problem-solving process,
children did not struggle more with formulating a mathematical problem or a
mathematical task than in the more obvious tasks. However, children showed
more difficulties in relating the mathematical problem and the task, which
could be consequence of their adapted problem-solving process that digressed
from the well-trained search for a dressed-up problem.

Children’s production of word problems might reflect what they focus on
when they encounter word problems in mathematics classrooms. The results
show that the mathematical task was particularly salient to the children in
this study. The mathematical task is usually the actual question that is asked
in word problems. Children obviously are used to focus on that question as
they have to answer it and are evaluated based on their answer. However, the
mathematical problem, which is often considered as a main aspect of a word
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problem, was less often given attention. In addition, the children in this study
showed considerable difficulties in matching the mathematical problem and
task (see Tab. 2). These results suggest that fifth graders pay much attention
on the question asked at the cost of understanding the mathematical problem.
It would be of great interest to investigate to what extent children are aware of
the different parts of a word problem and how they address them.

Such knowledge of children’s meta-knowledge of word problems could be
useful for instruction. Based on the framework of so-called genre pedagogy, pro-
ducing word problems could help students to understand word problems (Hy-
land, 2007). The central idea of genre pedagogy is that every discipline has its
own typical text types (genres) that have specific properties and follow particu-
lar rules. This coherence allows genre-specific teacher scaffolding. A typical
“teaching-learning cycle” (Hyland, 2007: 159) covers teaching the purpose and
typical use of the genre; identification of key characteristics of the genre as well
as possible variations; a joint construction of a typical text type such as a word
problem, in which the teacher supports the children by providing appropriate
exercises; children’s independent construction of such a text; and interrelating
the text type to other types (e.g., theorems).

With the teacher scaffolding and co-constructing word problems, children
can understand which parts (e.g., given information or targeted result) a word
problem has and how these parts can be identified. This instructional method
might be a successful addition to existing approaches such as schema-based in-
struction to promote students’ ability to establish a suitable situation model
(Frank & Gürsoy, 2014; Hyland, 2007; Jitendra, 2019). Developing such an inter-
vention definitively asks for more detailed and more qualitative research on
children’s production of word problems in response to given situations.

References

Bakker, Marjoke, van den Heuvel-panhuizen, Marja & Alexander, Robitzsch (2014):
First-graders’ knowledge of multiplicative reasoning before formal instruction in this
domain. Contemporary Educational Psychology 39, 59–73.

Blum, Werner & Leiss, Dominik (2007). How do students and teachers deal with modelling
problems? In Haines, Christopher (ed.), Mathematical modelling (ICTMA 12).
Education, engineering and economics: Proceedings from the twelfth international
conference on the teaching of mathematical modelling and applications 222–231.
Chichester: Horwood.

Boonen, Anton J. H., van der Schoot, Menno, van Wesel, Floryt, de Vries, Meinou H. & Jolles,
Jelle (2013): What underlies successful word problem solving? A path analysis in sixth
grade students. Contemporary Educational Psychology 38 (2013), 271–279.

Fifth-grade students’ production of mathematical word problems 367



Borromeo Ferri, Rita (2006): Theoretical and empirical differentiations of phases in the
modelling process. ZDM Mathematics Education 38 (2), 86–95.

Bush, Sarah B. & Karp, Karen S. (2013): Prerequisite algebra skills and associated
misconceptions of middle grade students: A review. Journal of Mathematical Behavior 32
(3), 613–632.

Clements, M. A. Ken (1980): Analyzing children’s errors on written mathematical tasks.
Educational Studies in Mathematics 11 (1), 1–21.

Daroczy, Gabriella, Wolska, Magdalena, Meurers, Walt D. & Nuerk, Hans-Christoph (2015):
Word problems: A review of linguistic and numerical factors contributing to their
difficulty. Frontiers in Psychology 6, 1–13.

De Corte, Erik & Verschaffel, Lieven (1987): The effect of semantic structure on first-graders’
strategies for solving addition and subtraction word problems. Journal for Research in
Mathematics Education 18, 363–381.

Desoete, Annemie (2015): Cognitive predictors of mathematical abilities and disabilities. In
Kadosh, Roi C., Dowker, Ann (Hrsg.): The Oxford Handbook of Mathematical Cognition.
Oxford: 2 Medicine UK, 915–932.

Frank, Magnus & Gürsoy, Erkan (2014): Sprachbewusstheit im Mathematikunterricht in der
Mehrsprachigkeit – Zur Rekonstruktion von Schülerstrategien im Umgang mit
sprachlichen Anforderungen von Textaufgaben. In Ferraresi, Gisella, Liebner, Sarah
(Hrsg.): SprachBrückenBauen. Göttingen: Universitätsverlag, 29–46.

Fritz, Annemarie, Ehlert, Antje & Leutner, Detlev (2018): Arithmetische Konzepte aus
kognitiv-psychologischer Sicht. Journal für Mathematik-Didaktik 39, 7–41.

Hegarty, Mary & Kozhevnikov, Maria (1999): Types of visual-spatial representations and
mathematical problem solving. Journal of Educational Psychology 91, 684–689.

Hyland, Ken (2007): Genre pedagogy: Language, literacy and L2 writing instruction. Journal
of Second Language Writing 16, 148–164.

Jitendra, Asha K. (2019): Using schema-based instruction to improve students’ mathematical
word problem solving performance. In Annemarie Fritz, Vitor G. Haase, Räsänen, Pekka
(eds.): The International Handbook of Mathematical Learning Difficulties. New York:
Springer, 595–609.

Jitendra, Asha K., Griffin, Cynthia, Haria, Priti, Leh, Jayne, Adams, Aimee & Kaduvetoor, Anju
(2007): A comparison of single and multiple strategy instruction on third grade students’
mathematical problem solving. Journal of Educational Psychology 99, 115–127.

Jupri, Al & Drijvers, Paul (2016): Student diffculties in mathematizing word problems in
algebra. EURASIA Journal of Mathematics, Science, & Technology Education 12 (9),
2481–2502.

KMK (Kultusministerkonferenz) (2005): Bildungsstandards im Fach Mathematik für den
Primarbereich. Beschluss vom 15. 10.2004. München: Luchterhand Verlag.

LeBlanc, Mark & Weber-Russell, Sylvia (1996): Text integration and mathematical connections:
A computer model of arithmetic word problem solving. Cognitive Science 20, 357–407.

Leiss, Dominik, Plath, Jennifer & Schippert, Knut (2019): Language and mathematics – Key
factors influencing the comprehension process in reality-based tasks.Mathematical
Thinking and Learning 21 (2), 131–153.

Leiss, Dominik, Schukajlow, Stanislaw, Blum, Werner, Messner, Rudolf & Pekrun, Reinhard
(2010): The role of the situation model in mathematical modelling – task analyses,
student competencies, and teacher interventions. Journal Für Mathematik-Didaktik 31,
119–141.

368 Moritz Herzog et al.



Lenhard, Wolfgang & Schneider, Wolfgang (2006): Ein Leseverständnistest für Erst- bis
Sechstklässler. Göttingen: Hogrefe.

Lesh, Richard, Post, Thomas & Behr, Merlyn (1988): Proportional reasoning. In Hiebert, James,
Behr, Merlyn (eds.): Number Concepts And Operations in the Middle Grades. Reston,
Virginia: Lawrence Erlbaum, 93–118.

Lewis, Anne B. & Mayer, Richard E. (1987): Student’s miscomprehension of relational
statements in arithmetic word problems. Journal of Educational Psychology 79, 363–371.

Maaß, Katja (2010): Classification scheme for modelling tasks. Journal für
Mathematik-Didaktik 31 (2), 285–311.

Mayer, Richard E. (1999): The Promise of Educational Psychology Vol. I: Learning in the Content
Areas. Upper Saddle River, NJ: Merrill Prentice Hall.

Palm, Torulf (2009): Theory of authentic task situations. In Verschaffel, Lieven, Greer, Brian,
van Dooren, Wim, Mukhopadhyay, Swapna (eds.):Words and worlds. Modelling verbal
descriptions of situations. Rotterdam: Sense, 3–20.

Prediger, Susanne, Renk, Nadine, Büchter, Andreas, Gürsoy, Erkan & Benholz, Claudia (2013):
Family background or language disadvantages? Factors for underachievement in high
stakes tests. In Lindmeier, Anke, Heinze, Aiso (Hrsg.), Proceedings of the 37th Conference
of the International Group for the Psychology of Mathematics Education 4,49–56. Kiel: PME.

Rittle-Johnson, Bethany & Schneider, Martin (2015): Developing conceptual and procedural
knowledge of mathematics. In Kadosh, Roi C., Dowker, Ann (eds.): The Oxford Handbook
of Numerical Cognition. New York: Oxford University Press, 1118–1134.

Schwartz, Judah (1988): Referent preserving and referent transforming operations on
qualities. In Hiebert, James, Behr, Merlyn (eds.): Number Concepts and Operations in the
Middle Grades. Vol. 2, Reston, Virginia: Erlbaum/N.C.T.M, 41–52.

Thevenot, Catherine & Barrouillet, Pierre (2015): Arithmetic word problem solving and mental
representations. In Kadosh, Roi Cohen, Dowker, Ann (eds.): The Oxford Handbook of
Numerical Cognition (pp. 158–179). Oxford, UK: Oxford University Press.

van Garderen, Delinda & Montague, Marjorie (2003): Visual–spatial representation,
mathematical problem solving, and students of varying abilities. Learning Disabilities
Research & Practice 18, 246–254.

Vergnaud, Gerard (1983): Multiplicative structures. In Lesh, Richard, Landau, Marsha (eds.):
Acquisition Of Mathematics Concepts and Processes. New York: Academic Press, 127–174.

Verschaffel, Lieven, Greer, Brian & De Corte, Erik (2000):Making Sense of Word Problems.
Lisse: Swets & Zeitlinger.

Vicente, Santiago, Orrantia, Josetxu & Verschaffel, Lieven (2008): Influence of situational and
mathematical informationon situationally difficult word problems. Studia Psychologica
50 (4), 337–356.

Vom Hofe, Rudolf (1998): Generation of basic ideas and individual images. In Sierpinska,
Anna, Kilpatrick, Jeremy (eds.):Mathematics Education as a Research Domain. Dordrecht:
Kluwer Academic, 316–332.

Fifth-grade students’ production of mathematical word problems 369



Sabine Stephany

The influence of reading comprehension on
solving mathematical word problems: A
situation model approach

1 Introduction

Tasks presenting mathematical information as text, known as word problems,
are one of the key components in the teaching of mathematics in primary school.
Still, they are also one of the most difficult ones. Studies have revealed that word
problems are solved up to 30% less successfully than tasks in numerical notation
(Duarte et al., 2011). This discrepancy indicates that besides mathematical compe-
tence aspects of language play a significant role in the processing of word prob-
lems as well (Duarte et al., 2011; Gürsoy, 2016; Heinze et al., 2011; Prediger et al.,
2015; Verschaffel et al., 2000). In order to solve a word problem, students not
only need to perform the necessary mathematical operations, they also need to
understand the text of the task.

There are two intertwining factors central to understanding the text of a word
problem: the task text itself and the problem solver’s individual reading compe-
tence. Both can cause difficulties. In recent years, increasing attention has been
paid to the task text and its linguistic characteristics that are considered to chal-
lenge the processing of the task, such as academic language (Abedi & Lord, 2001;
Gürsoy, 2016; Haag et al., 2015; Martinello, 2008; Prediger et al., 2015). However,
there have only been a few studies that focus on reading skills as a factor in
explaining students’ difficulties in dealing with word problems. Since read-
ing and understanding the text of a task are fundamental for solving word
problems, it can be assumed that, in addition to the linguistic characteristics
of the task text itself, reading competence also has an important influence
on the solution process.

Hence, the present study examines the impact of reader characteristics on
the handling of word problems in primary school and explores aspects of read-
ing competence that may be relevant for their solution. Putting mathematical
content and processes aside, word problems are primarily texts that have to be
read and understood. In addition to the mathematical perspective on solving
word problems (Section 2), the reading process is therefore examined from a cog-
nitive-psychological perspective to transfer relevant conclusions to mathematics
(Section 3). This may lead to important conclusions on ways of promoting
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mathematical reading skills. The empirical part (Sections 4 and 5) describes the
study carried out on the relationship between various aspects of reading compe-
tence, mathematical competence, and the probability of solving word problems.
Finally, the results regarding their impact on teaching mathematical word prob-
lems are discussed (Section 6).

2 Solving mathematical word problems

Mathematical word problems are mathematical exercises whose main characteris-
tic is the embedding of mathematical relations in a text rather than in a mathemat-
ical notation (Duarte et al., 2011), for example, “Peter has 3 marbles and Ann has 5
marbles. How many marbles do they have altogether?” The context of the tasks
varies and ranges from excerpts from students’ everyday lives to facts and figures
and fantasy worlds. Word problems pursue three goals: the application of mathe-
matics, the development and expansion of problem-solving skills, and the explora-
tion of the environment by means of mathematics (Franke & Ruwisch, 2010).

Solving word problems is complex and includes several stages (Blum & Leiss,
2007; Verschaffel et al., 2000). The modeling cycle of Blum and Leiss (2007) shown
in Fig. 1 illustrates the cognitive operations during the solution process.

At the beginning of the process, the word problem has to be read and (1) the
problem situation has to be understood. During the reading process, a situation
model, that is, a mental representation of the initial situation described in the
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Fig. 1:Modeling cycle (Blum & Leiss, 2007).
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text, is generated. In a next step, a (2) real model has to be formed through pro-
cesses of simplification and structuring. The real model contains only certain fea-
tures essential for processing the task, meaning that every information is excluded
from the situation model that is not necessary for computation. (3) Mathematizing
transforms the real model into a mathematical model, which contains relations
between relevant elements, numbers, variables, and so forth and is created by in-
corporating mathematical concepts. This process is not a one-to-one translation
between the real model and the mathematical model, but rather a constructive act
that depends, among other things, on the objectives and mathematical knowledge
of the problem solver (Franke & Ruwisch, 2010). Finally, by (4) working mathemat-
ically, that is, performing mathematical operations, the result is calculated, and
interpreted with respect to real-life situation (5) and validated with respect to the
situation model previously constructed (6). The modeling cycle ends with the
(7) exposition and explanation of the solution. Metacognitive strategies “check”
the processes for plausibility throughout the entire modeling process, and lead, if
necessary, to a restart of the cycle or individual sub-processes.

Empirical evidence suggests that the construction of a situation model is
crucial for processing word problems successfully (Hegarty et al., 1995; Kintsch,
1998; Reusser, 1989; Thevenot, 2010).

Depending on the text and the problem solver’s individual characteristics
such as goals, mathematical knowledge, language and reading skills, and meta-
cognitive abilities, the processing of tasks can be less linear than described
above. Difficulties can occur in all sub-processes. In particular, the construction
of a situation model and a real model can be a major obstacle for learners (Gree-
frath et al., 2013; Hegarty et al., 1995; Verschaffel et al., 2000). Therefore, often
inadequate strategies are used that usually do not result in a correct solution.
Frequently used strategies are the immediate calculation with the given num-
bers without reading the text and the orientation toward alleged keywords such
as “more” or “less,” which are directly translated into a mathematical operation
that seemingly fits the keyword (addition, respectively subtraction), simulta-
neously ignoring the particular context. Consequently, key sub-processes such
as the construction of a situation model are skipped (Hegarty et al., 1995; Ver-
schaffel et al., 2000). Thus, Hegarty et al. (1995) speak of a “direct translation
strategy” (p. 18) in contrast to the “problem model strategy” (p. 18).

However, the processes involved in building a situation model are not the
primary concern of mathematical research, which is why conclusions about the
situation model concerning word problems remain somewhat vague.

Building a situation model is a decisive process not only for solving word prob-
lems but also for reading comprehension in general. As word problems are texts
that have to be read and understood, it is crucial to give an in-depth examination
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of the construction of the situation model from a text comprehension perspective
to gain insights into possible reasons for difficulties during problem solving.

There are only a few studies that deal with the relationship between reading
comprehension and word problems and even less that focus on the construction
of a situation model. Nevertheless, these studies provide evidence that reading
competence plays an important part in solving word problems (Boonen et al.,
2016; Capraro et al., 2012; Fuchs et al., 2015; Jordan et al., 2003; Leiss et al.,
2019; van der Schoot et al., 2009). So far, however, little attention has been paid
to the sub-processes involved in the construction of the situation model while
reading word problems. Thus, the aim of the present study is to shed light on
these sub-processes and their relevance for the solution of word problems.

Hence, in the next section, the processes involved in building a situation
model will be closely examined from the psychology of reading point of view, in
order to derive indications for factors affecting reading and understanding word
problems for the empirical study.

3 Text comprehension

The complex process of reading is composed of several sub-processes. At word
level, these include the basic processes of letter and word recognition as well as
the acquisition of word meaning. At sentence and text level, syntactic and se-
mantic relationships between words and sentences have to be established and
transformed into a coherent meaning of the text by integrating previous knowl-
edge (Christmann & Groeben, 1999; Richter & Christmann, 2009).

Recognizing the meaning of words is undeniably crucial for reading compre-
hension. However, understanding texts is more than just decoding single words.
Current theoretical approaches assume that comprehension requires the construc-
tion of multiple mental text representations (Graesser et al., 1994; Kintsch, 1998;
Schnotz, 2006). Three main levels of text processing are distinguished:1 the sur-
face level of the text, the text base, and the level of the situation model (Kintsch,
1998; Schnotz, 2006). As the construction of a situation model is the core process
of text comprehension, the following section focusses on these processes without
considering basic reading processes.

1 In current research, additionally a communication and a genre level are assumed. Schnotz
and Dutke (2004) refer to the latter as meta-levels since they do not represent facts described
in the text, but rather characteristics of the situation in which a text is received.
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3.1 Construction of a situation model

The surface level represents the entire linguistic information of a text, for exam-
ple, the literal wording and syntactic constructions (Graesser et al., 1997). A
mental representation of the text surface arises from processes of recoding and
parsing. Semantic processing does not yet take place on this level. The follow-
ing example of a pseudo-sentence with fake words illustrates these processes:
“The ploor proy yegged.” When processing this pseudo-sentence, the graph-
eme-phoneme correspondence is established, and syntactical parsing is carried
out. Thus, for instance, even without understanding the meaning, one can eas-
ily identify the noun in the sentence (“proy”). On this level of word processing,
it is therefore possible to reproduce sentences literally without understanding
their meaning. It is assumed that the mental representations of the text surface
form the structural basis for higher semantic representations (Schnotz, 2006).

Cognitive theories agree that the semantic information of the text is trans-
ferred into a mental representation, the so-called text base. The text base repre-
sents the semantic content of a text (Kintsch, 1998; van Dijk & Kintsch, 1983).
As texts consist of single pieces of semantic information, semantic relations be-
tween these pieces must be established in the process of text comprehension,
so that a mental network is created. At the level of the text base these connec-
tions are established by means of inference that are text-based and do not re-
quire any extra-textual knowledge, such as creating co-reference with pronouns
(Graesser et al., 1997). The emerging mental network is at best locally coherent
because there is no top-down processing integrating the reader’s background
knowledge on this level.

The use of prior knowledge is essential for global text comprehension since
texts do not explicitly represent all the information necessary for a complete re-
construction of the meaning (Schwarz, 2001). The missing references have to be
established by the recipient taking into account his or her background knowledge.
Hence, the construction of a text base allows only for shallow comprehension
without establishing global connections and a deeper meaning and is therefore
insufficient for the understanding of texts (Schnotz, 2006). The integration of tex-
tual information with the reader’s knowledge into a coherent mental representa-
tion of the text, a so-called situation model is crucial for text comprehension.

A situation model is “a cognitive representation of the events, actions, persons,
and in general the situation that a text is about” (van Dijk & Kintsch, 1983: 11). The
situation model built on the sentences “Peter has three marbles and Ann has five
marbles. How many marbles do they have altogether?” could be the imagination of
two kids sitting on the pavement combining their marbles. The construction of a
situation model is an integrative and step-by-step process: On the one hand,
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relations between sentences are established during reading, and on the other
hand, the situation model constructed so far forms the context for the inter-
pretation of the next sentence. Thus, an extended new model is created,
which in turn provides the context for the interpretation of the next passage
of text. During this process, explicit information from the text is integrated
with the reader’s prior knowledge from long-term memory (Garnham & Oakhill,
1996; Kintsch, 1998). This includes linguistic knowledge as well as knowledge of
the world or expert knowledge (Nussbaumer, 1991).

The successful drawing of inferences is crucial for the construction of a situa-
tion model. Two types of inferences are particularly relevant here: “Local Cohe-
sion Inferences” and “Global Coherence Inferences” (Graesser et al., 2007; Oakhill
et al., 2015), the former often referred to as “bridging inferences” (Graesser et al.,
2007; Kintsch, 1998). “Local Cohesion Inferences” are used to create references at
a local level within and between sentences. Anaphora like pronouns and connec-
tives are important linguistic means for establishing local connections. “Global
Coherence Inferences” establish global coherence by connecting larger parts of
the text in the situation model. They are more important for text comprehension
than “Local Cohesion Inferences.” Global inferences are knowledge-based; that is,
they cannot be drawn without extra-linguistic prior knowledge. Since inference
making depends on a number of different impact factors, different readers might
create situations models of the same text that might vary widely in character and
complexity (Kintsch, 1998).

3.2 Impacts on the construction of a situation model

Text comprehension is a complex process involving the interaction of different
mental sub-processes. Individual differences in mastering these processes lead
to difficulties in constructing mental representations. Parameters affecting the
construction of a situation model are mainly inference skills and metacognitive
skills such as the ability to monitor one’s own understanding (Oakhill & Garn-
ham, 1988). These aspects will be examined in more detail below.

3.2.1 Inference skills

Oakhill and Garnham (1988) assume that individual differences in inference mak-
ing are responsible for differences in the construction of situation models and
thus for text comprehension. In a longitudinal study, Oakhill and Cain (2012) in-
vestigated factors influencing text comprehension in eleven-year-old children.
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They were able to show that the ability to build inferences during reading of
seven- and nine-year-olds is the critical predictor of later text comprehension.
Decoding ability and implicit syntactic knowledge, however, had no predictive
power on text comprehension in eleven-year-olds. The ability to draw inferences
during the reading process develops over the course of schooling, independently
of the learners’ prior knowledge (Barnes et al., 1996; Oakhill & Garnham, 1988).
Klicpera and Gasteiger-Klicpera (1993) demonstrated that third graders had diffi-
culties in drawing inferences despite a high level of prior knowledge. The ability
to draw necessary inferences during the reading process not only distinguishes
younger from older children, but also differentiates decisively between compe-
tent and less competent readers. Studies reveal that children with lower text com-
prehension skills draw fewer inferences than good readers, despite having the
same prior knowledge. Difficulties in drawing inferences and thus in constructing
a coherent situation model can be the result of a lack of prior knowledge or insuf-
ficient retrieval of knowledge, poor processing of anaphors and connectors, lim-
ited working memory capacity, and limited vocabulary knowledge.

Vocabulary knowledge is essential for text comprehension and also for draw-
ing inferences. A broad mental lexicon supports the construction of a situation
model (Oakhill et al., 2015; Oakhill & Garnham, 1988; Schnotz & Dutke, 2004).
However, vocabulary is not the only factor in determining text comprehension.

A large number of studies have found that a possible explanation of indi-
vidual differences in drawing inferences is rooted in the extent of prior knowl-
edge (McNamara et al., 2011). Regardless of their reading skills, children who
had the most background knowledge about the topic of the text they had to
read scored best in these studies. Children with low-level reading skills but a
high level of prior knowledge outperformed children with high-level reading
skills but low-level prior knowledge in the number of correct inferences (Adams
et al., 1995; Recht & Leslie, 1988; Schneider & Körkel, 1989). Further studies re-
vealed that prior knowledge influences mainly the situation model level and
hardly the text base. Readers with little background knowledge do not con-
struct a global situation model during reading, but rather build up a text base
(Dutke, 1993; Fincher-Kiefer et al., 1988). This is because many pieces of infor-
mation remain unconnected in long-term memory. Kintsch (1998) refers to
“many different unconnected islands” (p. 232), because the necessary knowl-
edge to establish connections is missing. However, a lack of prior knowledge
does not completely explain the problems that occur during inference making.
Even if poor readers have background knowledge, they often seem to be un-
able to retrieve this knowledge sufficiently from long-term memory to draw in-
ferences or fail to integrate prior knowledge into information drawn from the
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text. Thus, poor readers may not know when to draw inferences (Cain & Oak-
hill, 1999; Cain et al., 2001).

Anaphora resolution and understanding connectives are crucial for drawing
local inferences. The ability to resolve pronouns while reading develops during
primary school is critical. For example, children up to the age of 10 still find it
difficult to use the context when resolving syntactically ambiguous pronouns
(Oakhill et al., 2015). In particular, children with lower-level reading skills often
have difficulties in resolving pronouns. They frequently tend to interpret the
noun closest to the pronoun as an antecedent (Megherbi & Ehrlich, 2005). This
may be due to lower working memory capacity. The distance between pronouns
and antecedent thus plays a role in pronominal resolution and in the process of
comprehension (Daneman & Carpenter, 1980; Oakhill et al., 2015). Since in Ger-
man not only semantic but also syntactic clues are relevant for the resolution of
pronouns, such as the consistency of the grammatical gender, this can also re-
sult in difficulties, especially for second-language learners.

Connectives are gradually acquired while children are still of primary school
age. Regarding the English language, acquisition patterns reveal that additive
connectives are acquired first, followed by temporal, causal, and finally adversa-
tive connectives (Bloom et al., 1980). As regards the German language, Dragon
et al. (2015) demonstrated throughout different studies that second and third
graders, whose first or second language was German, processed temporal and
causal connectives with high frequency significantly better than concessive con-
nectives, regardless of the language spoken at home. Differences between chil-
dren only speaking German at home and those who spoke another language with
family members were, if at all, only marginally present and therefore of no practi-
cal relevance.

Working memory is relevant for both global and local comprehension. Infor-
mation that is spread across the entire text must be maintained in memory and
integrated into the situation model created so far. At local level, for example, the
referential words for pronouns have to be maintained. A lower working memory
capacity leads to a reduced ability to link information from the text to prior
knowledge which hinders the creation of a coherent global situation model. The
capacity and processing efficiency of the working memory develop throughout
childhood. In children with below-average text comprehension skills, it has been
found that working memory performance is a distinguishing factor as compared
to good readers, especially when the information which has to be integrated does
not occur in adjacent sentences, but is located further apart (Oakhill et al., 2005).
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3.2.2 Metacognition

Children with good and lower-level text comprehension skills differ in the
strategies they consider appropriate for reaching specific reading goals. Simi-
larly, below-average readers often have different individual theories about
reading compared to good readers (Cain, 1999). “They tend to view reading as
a word decoding activity rather than one of meaning-making” (Oakhill & Cain,
2007: 67). Even those having good decoding ability tend to focus on word
reading. Thus, their reading aim is more directed toward understanding indi-
vidual words. The establishment of references and the understanding of the
text as a whole are not focused (Garner, 1981; Oakhill & Cain, 2007; Oakhill
et al., 2015; Oakhill & Garnham, 1988). Oakhill et al. (2015) accordingly state,
“If reading is all about ‘getting the words right’ then a high standard for com-
prehension will not be set” (p. 105). Contrary to good readers, children who
read a text word by word do not expect to build up a coherent situation model
of the text when reading it. Oakhill and Cain (2007) refer to this as a lower
“standard for coherence – caring that a text makes sense” (p. 67). A low “stan-
dard for coherence” leads to less or no inferring and, thus, no global situation
model is established. According to Schnotz (1994), in this case, one can speak
of an “illusion of understanding” (p. 208). Therefore, less efficient readers are not
aware of their comprehension problems at all. Thus, they regard further activities
aimed at optimizing comprehension as pointless, although a coherent situation
model has not yet been established. Consequently, there is hardly any monitoring
of the reading process; otherwise, problems of understanding would be noticed
(Cain, 1999; Schnotz, 1994). However, constant monitoring of one’s own reading
process is critical to ensure text comprehension. New information has to be com-
pared with the previously formed situation model and checked for inconsisten-
cies and plausibility.

4 The current study

Empirical studies demonstrate that the construction of a situation model is crucial
for solving word problems. However, the situation model is not the focus of current
research when it comes to students’ difficulties in solving word problems. As word
problems are texts that have to be read and understood, in line with the theoretical
background presented, it is to be assumed that the aspects relevant for the compre-
hension of non-mathematical texts also have an effect on the construction of a situ-
ation model when reading mathematical texts. It is important to examine more
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closely, which reading skills contributing to the construction of a situation model
also contribute to solving mathematical word problems and how these skills are
related. This knowledge is vital to shed light on non-mathematical aspects that
make it challenging to solve word problems and to purposefully promote “mathe-
matical” reading comprehension. In order to do so, the study at hand includes
measures of different skills of text comprehension relevant to the construction of a
situation model, rather than a global assessment of reading competence.

The study addresses the following questions: Does the ability to construct a
situation model influence the solution of word problems? Do inference skills
make a contribution to the solution process of word problems? Are comprehen-
sion monitoring and standard for coherence also important parameters for deal-
ing with word problems? How do mathematical processes and reading processes
interact when solving word problems?

The relationships examined here should apply at least to children without
special educational needs, regardless of their language or reading skills since
the cognitive processes behind reading competence are not fundamentally dif-
ferent in first- and second-language learners. Therefore, there are no differences
expected to be observed between students with German as first and German
as second language. That is not to assume that there are no differences in the
level of reading competence and the solving of word problems between those
students, but these are not further examined in the present study, as this study
focuses on relationships between reading subskills and solving word problems.

4.1 Method

The design of the study is correlational. Nevertheless, some hypotheses about
the direction of relations were formulated and being tested by means of a struc-
tural equation model. Structural equation modeling is a statistical procedure
that incorporates the relationship of latent variables and confirms hypotheses
about the validity of measurements. This particular model is based on the theo-
retical findings and assumptions described in the overview above. The good-
ness of fit of the parameters was decisive for the evaluation of the model. A
total of three variants of the model were calculated, one overall model with all
participants and one model each for L1 and L2 learners in order to compare
these subgroups.

The reliability of the different measures was assessed by calculating Cron-
bach’s alpha, whenever this measure was applicable. The present study is part
of a broader project on the relationship between language and mathematical
word problems (Stephany, 2018).
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4.2 Participants

A total of 381 fourth graders from seven schools participated in the study. Chil-
dren with special educational needs, diagnosed dyslexia or dyscalculia as well
as children who had only been learning German for a few weeks were excluded
from the analysis. The resulting sample comprised 352 students aged between
eight and eleven years (M = 9.05; SD = 0.47), 47.9% were girls, 39.3% of the chil-
dren spoke German as their second language. The schools were located in a
range of lower- to middle-class urban areas.

4.3 Assessments and material

4.3.1 Reading skills

Some tasks were used from standardized tests and others were developed to
measure specific components of comprehension skills notably necessary for
the construction of a situation model in the three following areas: inference
skills, comprehension monitoring, and the standard for coherence. Addition-
ally, word-reading ability was measured.

4.3.1.1 Inference skills
The ability to establish local and global references was measured with the ELFE
1–6 subtest “text comprehension” (Lenhard & Schneider, 2006). Children read
short stories, and for each one they had to select one out of four statements that
fits the text the best. It was evaluated how well children established anaphoric
references or build inferences. The reliability of the subtest “text comprehension”
was α = .76. A factor value “inference skill” was calculated with both variables.

4.3.1.2 Comprehension monitoring
An inconsistency detection task was used to measure comprehension monitor-
ing. Children read two short stories containing internal inconsistencies. One
line at the beginning and at the end of each of the stories contained contradic-
tory information (Oakhill et al., 2005). Children were asked to underline any
parts in the stories that did not make sense. Inconsistencies between parts of
texts can be detected only by a continuous comparison with the situation model
constructed so far. Correlation between the inconsistency items in both stories
was r = .30 (p < .001).
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4.3.1.3 Standard for coherence
Based on the considerations of Garner (1981), Oakhill and Cain (2007), and Oak-
hill and Garnham (1988), a questionnaire was constructed in order to find out if
children tend to be “word readers” with a low “standard for coherence.” The
term “word readers” is used for children who consider reading to be exclusively
a decoding activity, that is, who read a text word by word. “[They] manage writ-
ten language as bits and pieces, not as textual wholes” (Garner, 1981: 161). A
questionnaire with seven items was developed. Each item consisted of two con-
flicting statements: one reflected the strategy of word by word reading, and one
statement focused on text comprehension. Some of these statements were used
several times in different combinations. The polarity of the statements was ran-
domized. The children were asked to choose one of the statements. All items
were assigned to three superordinate questions: “What makes a good reader?”
“What makes a text difficult to read?” and “When are you satisfied with yourself
when reading?” Fig. 2 shows an excerpt from the questionnaire. Cronbach’s
alpha for all seven items was α = .53. This is only moderate but sufficient for sci-
entific purposes.

4.3.1.4 Word-reading ability
Word-reading ability was controlled in the study. All children completed the sub-
test “word comprehension” of the German reading comprehension test ELFE 1–6
(Lenhard & Schneider, 2006). Children had to underline the word that matched a
picture. The reliability of the test was high (α = .94).

Fig. 2: Excerpt from the reading questionnaire.
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4.3.2 Mathematical skills

4.3.2.1 Mathematical ability
The subtest “Arithmetic” of the German Mathematics Test DEMAT 3+ (Roick
et al., 2004) was used to assess arithmetic competence. The reliability of the
subtest “arithmetic” was α = .77. In addition, the grades of the participating stu-
dents in mathematics were elicited.

4.3.2.2 Mathematical reading competence
To assess if children tend to use a direct-translation strategy in contrast to a
problem-model strategy a test consisting of three word problems was devel-
oped, which contained additional numerical data that was irrelevant for an-
swering the questions. The children first had to circle the numbers they needed
for the calculations and then they had to solve the tasks. Cronbach’s alpha was
α = .89. To calculate a value “mathematical reading competence” the circled
numbers and the numbers actually used for calculating were combined with
factor analysis.

4.3.2.3 Word problems
To assess the ability to solve word problems, four word problems with two dif-
ferent grades of text coherence were developed (“koala,” “tortoise,” “swallow,”
“ant eater”). This approach controls for the influence of text coherence on the
development of a situation model. All tasks used the topic “records in the ani-
mal world.” Fig. 3 shows one version of the word problem “tortoise.”

With regard to their mathematical content, all word problems corresponded to
the curricular requirements in the field of elementary arithmetic for the fourth

Riesenschildkröten sind die ältesten Tiere der Welt. Sie werden häufig über 200 Jahre 

alt. Die älteste bekannte Riesenschildkröte Adwaita lebte 140 Jahre in einem indischen 

Zoo. Sie wurde aber erst im Alter von 116 Jahren gefangen. Wie alt wurde sie? 

Giant tortoises are the oldest animals in the world. They often grow over 200 years old. 

The oldest known giant tortoise, Adwaita had lived for 140 years in an Indian zoo. 

However, it was captured only at the age of 116 years. How old did it get?

Fig. 3:Word problem “tortoise” in German and translated into English.
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grade. When creating the tasks, it was ensured that in no case a “direct trans-
lation strategy,” that is, an exclusive orientation toward numbers and sup-
posed key words, could lead to the correct solution.

4.3.3 Situation model

A central aspect of the present study was the assessment of the situation model.
The few studies available in mathematics assess the construction of a situation
model indirectly either by rating the tasks (Leiss et al., 2010) or by using the
correct solution as an indicator. In contrast to them, in this study the situa-
tion model was measured via images and statements matching the word prob-
lem. Thus, the situation model was measured independently of mathematical
processes.

In order to obtain a value for the construction of a situation model, three
images and four statements for each word problem were developed. One image
represented the global topic of the word problem (attractor); two images served
as distractors. Fig. 4 shows the images of the word problem “tortoise.” Children
were asked to select the pictures depicting the word problem. In order to select
the corresponding image, the construction of a situation model of the task text is
required, which needs to be validated against the content of the images (Schnotz
& Dutke, 2004).

Furthermore, children were asked to decide whether statements about
the word problem were true or false. For instance, the correct answer required
the inference of local (“The giant tortoise Adwaita was the oldest animal in the
world.”) and global (“The time in freedom and the time in the zoo altogether add
up to the age of the tortoise Adwaita.”) connections in the text of the task. The
correct evaluation of the global statement required the construction of a coherent
situation model of the word problem. To calculate a value “situation model” for
each word problem students’ answers on images and statements were summa-
rized with the help of a factor analysis.

4.4 Procedure

Data collection took place in seven schools after the summer break in a class-
room assessment. The tests were conducted by the author on different days.
The total assessment time per student was 75 min. Each student completed all
four word problems, two high and two low coherent versions. Images and state-
ments had to be processed after solving each word problem without viewing the
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Fig. 4: Image to measure the situation model “tortoise.”.
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text. Thus, the situation model was supposed to be captured at the time of task
processing without being distorted by re-reading the text. In order to rule out
the possibility that word problems are not solved solely due to a lack of prior
knowledge on the topic of the tasks, this likelihood was controlled by activating
and building vocabulary and knowledge on the topic.

5 Results

The hypothesized relationships among variables were evaluated by means of struc-
tural equation modeling. Since not all variables could be transformed into a latent
construct, manifest variables are also represented in the model. Fig. 5 depicts the
model for all participants. The model’s paths and path directions were derived
from a variety of studies and theoretical expectations. To evaluate the fit of the
model the root-mean-square error of approximation (RMSEA) was used. The results
indicate that the fit of the proposed model was good RMSEA= .068; Chi-square
was 146.15 (df = 56), p < .001. These results suggest acceptance of the proposed
model as the most parsimonious. The standardized and unstandardized regression
weights and the significance levels of these variables are depicted in Tab. 1.

5.1 Confirmatory part of the model

Before evaluating the structure model, it is investigated whether the manifest var-
iables make an actual contribution to the respective latent construct. The “situa-
tion model” was assessed through the pictures and statements concerning the
four word problems. These variables (pictures and statements) were combined
into a single factor entering the structural equation model. The confirmatory part
of the structural equation model reveals a moderate fit of these four variables to
the latent construct “situation model.” The loads of the single variables ranged
between .24 and .74. The variables measuring “mathematical performance,” arith-
metical skills and math grade, loaded between .73 and .86 and thus showed a
good fit. Although the factor was constructed by mathematical skills, it is named
“performance” since in the modeling cycle, problem solvers have to performmath
based on their skills. The latent factor “solution” measured by the variables cor-
rect solution path and result (.97 each) also demonstrates a good model fit.
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Fig. 5: Structural equation model for the processing of word problems – all students.
Rectangles represent measured variables; circles represent latent factors. Measurement
errors and structural errors were removed from the figure. Significant and non-significant
paths are displayed; * = path coefficient p < .05; s. model = situation model.

Tab. 1: Standardized and unstandardized regression weights and their levels of
significance.

Unstandardized
regression weight

Standardized
regression
weight

S.E. C.R. p

Word reading → Monitoring . . . . <.
Word reading → Standard for

coherence
. . . . .

Word reading → Inference skill . . . . <.
Monitoring → Inference skill . . . . <.
Standard for
coherence

→ Inference skill . . . . .

Standard for
coherence

→ Situation
model

. . . . .

Monitoring → Situation
model

. . . . <.

Word reading → Situation
model

. . . . .
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5.2 Structural part of the model

In consideration of the structural part of the model, there was a high connection
between the construction of a situation model and the solution (β = .64). The re-
lationship between mathematical performance and the solution was consider-
ably smaller (β = .34). In this model, the ability to solve word problems was
composed of both the skill to construct a situation model and mathematical per-
formance. However, the construction of the situation model was a much better
predictor (and prerequisite) for correct solutions. Although the variable solution
model explained around 41% of the total variance in solving word problems,
mathematical performance explained only 11.6% of it.

The differences in the ability to build a situation model when solving word
problems were explained by 42% of the variance in inference making, monitor-
ing the reading process and the standard for coherence. Furthermore, monitor-
ing the reading process had a moderate, yet significant, impact on inference
making (β = .27) and a direct path to the situation model (β = .23). Higher-level
reading processes are, therefore, responsible for building an adequate situation
model. Word reading had an impact on monitoring (β = .23) and inference making
(β = .47). The direct path from word reading to the latent factor situation model
was somewhat weaker (β = .04, n.s.) than the path from inference making – situa-
tion model (β = .48), meaning higher-order reading skills have a higher impact on

Tab. 1 (continued)

Unstandardized
regression weight

Standardized
regression
weight

S.E. C.R. p

Inference skill → Situation
model

. . . . <.

Inference skill → Mathematical
reading

. . . . <.

Situation
model

→ Mathematical
reading

. . . . <.

Mathematical
reading

→ Mathematical
performance

. . . . <.

Mathematical
performance

→ Solution . . . . <.

Situation
model

→ Solution . . . . <.

Notes. S.E. = Standard error, C.R. = critical ratio.
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the construction of a situation model than basic reading skills, at least when
reading word problems.

According to the model, 35% of the variance in mathematical reading could be
explained by inference skills (β = .30) and the situation model (β = .36). Mathemati-
cal reading, on the other hand, correlated strongly with mathematical performance
(β = .65), and thus explained 42% of the variance in mathematical performance.

5.3 Differential aspects of learning German
as first or as second language

To analyze the differential aspects between L1 and L2 learners, two different mod-
els were calculated. It was assumed that the interconnections in the L2 model are
not substantially different from those in the L1 model, because the cognitive pro-
cesses underlying reading competence are not fundamentally different in first-
and second-language learners. A closer look at both models (Fig. 6) shows
that this assumption can largely be supported since only marginal differences
are revealed.

Fig. 6: Structural equation model for the processing of word problems – German as a first and
as a second language. Rectangles represent measured variables; circles represent latent
factors; measurement errors and structural errors were removed from the figure. Significant
and non-significant paths are displayed; * = path coefficient p < .05; s. model = situation
model; values show L1/L2.
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The core idea of this paper referred to the connection between the construc-
tion of a situation model and the solution of word problems. The part of the
model that refers to this relationship shows no substantial differences between L1
and L2 learners. However, minor variations in the overall model were found con-
cerning the variables involved in the construction of a situation model. It was
found that the ability to decode words had the same minor effect on the construc-
tion of a situation model in L1 and L2 learners. The influence of inference making
and monitoring the construction of a situation model was slightly different in
both groups. However, these differences are marginal and are not of any practical
relevance. The only substantial difference was found in the connections between
the “standard for coherence” and the “situation model” among L1 and L2 learners
(higher correlation for L2 than for L1). This could be due to only a moderate reli-
ability of the questionnaire or a poor understanding of the items.

It was revealed that the effect of the variables “monitoring,” “inference mak-
ing,” and “standard for coherence” on the construction of an situation model are
composed slightly differently for L1 and L2 learners. However, this is hardly of
any practical relevance. The variance of the situation model explained by the
three variables monitoring, inference making, and standard for coherence was
about 39% both for L1 and L2 learners. Hence, the joint influence of these varia-
bles was the same for both groups. In conclusion, the relevance of an adequate
situation model for solving word problems is equally high for both groups.

Both SEM showed a good fit of the RMSEA (RMSEAL1 = .077, n = 214;
RMSEAL2 = .045, n = 138). Chi-square was significant for L1 but not for L2 (Chi-
squareL1 = 122.39 (df = 56), p < .001; Chi-squareL2 = 1,024 (df = 56), p = .085). Due
to the smaller number of L2 participants in contrast to the L1 model, more paths
do not reach significance.

6 Discussion

In this contribution, word problems were presented as texts that have to be read.
To solve a word problem, students not only need to perform the necessary mathe-
matical operations, they also need to read and understand the text of the task.
Therefore, it was assumed that one reason for students’ difficulties with word
problems relates to reading processes, in particular to processes involved in the
construction of a situation model. In recent years, an increasing number of studies
focused on language-related reasons for complications with word problems. In
doing so the main focus was on the task text itself and its linguistic features. Only
a few studies examined students’ reading competences and even fewer focused
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on the problem solvers’ ability to construct a situation model, in order to explain
difficulties and give guidance to foster the solving of word problems in the class-
room. The present study sheds light on the sub-processes necessary for building a
situation model known from psychological reading research.

With the help of various standardized as well as specifically developed
measurement tools, a structural equation model was created to provide answers
to four questions concerning the role of the situation model and the factors in-
volved in its construction in the context of mathematical word problems.

It has been revealed that the situation model has a strong direct effect on the
solution of word problems. This effect is even much stronger than the influence
of mathematical performance on the correct solution. This indicates that not only
mathematical competence but also the construction of a situation model is cru-
cial for the solution of mathematical word problems. If no situation model is con-
structed, as in the “direct translation strategy,” it is usually not possible to solve
the task. Since the present model confirms the relevance of the situation model
also for mathematical word problems, it is even more important to closely exam-
ine the factors influencing the construction of a situation model. The ability to
draw inferences has the strongest influence; that is, children who draw few infer-
ences also construct a situation model less well, and the frequency of solutions is
correspondingly lower.

Furthermore, reading-related metacognitive strategies were considered. The
model shows a significant influence of comprehension monitoring and the “stan-
dard for coherence” on the construction of a situation model. The latter turns out
to be lower than assumed. However, this may also be related to the merely aver-
age reliability of the measurement tool developed for the study and would have
to be re-examined in a further investigation. Still, there is an influence of both
variables. For instance, children who monitor their reading process less and tend
to read texts word by word rather than looking at the text as a whole are less suc-
cessful in building up a situation model even regarding mathematical word prob-
lems. A low standard for building a mental coherence structure, therefore, also
plays a role in solving word problems.

The results of the study demonstrate that especially higher-order processes
of inference making and metacognition have an effect on the construction of a
situation model and thus on the solution process. Competence in word reading,
on the other hand, only indirectly affects the situation model via the ability to
draw inferences. In the model, the situation model also affects mathematical
reading competence: Only when a situation model has been built are adequate
solution strategies applied instead of relying on substitute strategies, such as
focusing on numbers without considering the context.
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Overall, it can be stated that the processes of understanding non-mathematical
texts and mathematical word problems are comparable. Influencing factors that
play a role in reading texts and have been examined in detail in this study are also
relevant for dealing with word problems. Inadequate strategies, in which the situa-
tion model is omitted, such as in the case of the direct translation strategy, might
be a student’s attempt to handle the lack of understanding of a task text. This
indicates that reading promotion must also play a part in mathematics les-
sons. Language classes can do this only to a limited extent since word prob-
lems are a subject-specific genre with its specific characteristics. Accordingly,
Leiss et al. (2010) refer to mathematical reading competence and explicitly de-
mand its promotion in mathematics lessons. The results of the present study
can provide starting points for such support, suggesting that the promotion
of reading in mathematics lessons should start with processes of inference
making. Particularly with mathematical word problems, the establishment of
references on a local and global level is essential. For example, underlining
keywords is not helpful if references cannot be established at all. Therefore,
support should include, for instance, exercises for making references in math-
ematical texts. In this study prior knowledge was controlled for, so no conclu-
sion can be made about its influence. Nevertheless, it seems to be reasonable
to put word problems in mathematics lessons in a common thematic context
and to build up the necessary prior knowledge and vocabulary before working
on the actual task. A stronger focus on comprehension monitoring should also
be part of the teaching of mathematics, for example, by detecting inconsisten-
cies in task texts. Further studies must examine to what extent such methods
are effective and whether they particularly support students with reading dif-
ficulties in solving word problems.

As expected, the observed relationships do not differ substantially between
L1 and L2 learners. The ability to draw inferences and the underlying processes,
as well as standard for coherence or comprehension monitoring, are language
independent. Nonetheless, individual difficulties of some children in this par-
ticular area may still be due to low basic reading skills, limited vocabulary, or
unfamiliarity with certain connectives. However, this can affect L1 learners as
well as L2 learners. Support targeting inference skills should therefore be effec-
tive for all students regardless of their first language.
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Farran Mackay, Jantien Smit, Arthur Bakker, and Ronald Keijzer

Supporting teachers to scaffold
students’ language for mathematical
learning

1 Introduction

Teachers often are unaware of language issues and avoid linguistic challenges in
their classrooms to focus on mathematics (e.g., Van Eerde et al., 2008). Specifi-
cally, teachers typically do not attend to the language students need for mathemat-
ical learning, and rarely know how to support the development of subject-specific
language required for mathematical learning (e.g., Hajer & Norén, 2017). Yet stu-
dents, especially those with low language proficiency, require support from teach-
ers within this subject because shortcomings in subject-specific language can
impede their development of mathematical understanding (Moschkovich, 2010).
Despite the importance of improving language-responsive teaching, there is a
profound lack of opportunity for teachers to develop the required teaching practi-
ces, especially in mathematics (Essien et al., 2016). The required teaching practi-
ces integrate language learning and mathematics in a domain-specific way (Van
Eerde & Hajer, 2009). Although there are some insights into the professional de-
velopment of secondary school teachers (e.g., Prediger, 2019), relatively little is
known about how to support primary school teachers in realizing language-
responsive teaching. This chapter provides insights into how teachers can be
supported within a professional development program (PDP), focusing on genre
awareness and scaffolding students’ language for mathematical learning.

2 Theoretical background

To specify our approach to supporting teachers in a PDP, we first address what
the literature considers essential learning goals for teachers (2.1) before we char-
acterize our approach to designing and evaluating our PDP (2.2).
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2.1 Learning goals for teachers: Genre awareness
and scaffolding language

Key to participating in mathematical discourse is access to the subject-specific
language required for learning mathematics (e.g., Prediger, 2019). Each domain
has not only its own vocabulary but also phrases which learners need to recog-
nize and adequately use to participate successfully (Moschkovich, 2010; Schlep-
pegrell, 2007). Consequently, a PDP should help teachers pay attention to the
required language and establish an environment that allows learners to interact
and communicate at a mathematical level (e.g., Lampert & Cobb, 2003). Genre
pedagogy is a promising approach to explicitly address the language required for
learning in that it provides learners with metalinguistic knowledge about how
(both spoken and written) language is structured and used to achieve particular
goals (e.g., describing or persuading) (Martin, 2009). The notion of genre is typi-
cally associated with certain literary forms, such as poem or novel. In genre peda-
gogy, the notion of genre is mainly used for academic text types used throughout
the curriculum. Six key genres have been distinguished (e.g., narratives, reports).
However, for mathematics education, a more domain-specific investigation and
identification of genres for mathematical learning are needed to centralize lin-
guistic competency explicitly (Moschkovich, 2010).

Using genre pedagogy in mathematics education, Smit et al. (2016) formu-
lated linguistic and structure features needed to identify the mathematical
language to describe and interpret line graphs (see Fig. 1). The linguistic fea-
tures included, for example, subject-specific vocabulary and phrases, and
also the use of an expression of gradation steepness (as in “the graph de-
scends gradually”), as well as general academic language to be employed
when interpreting the graph (e.g., the number of people increases). The struc-
ture features comprised the stages of students’ reasoning about graphs. For
example, students are expected to interpret each part of the graph (e.g., “it
was less busy”) with a description related to the course of the graph (“you
can tell as the graph shows a steep fall”).

Linguistic and structure features of genres can provide teachers with a lens
through which they can identify the language for mathematical learning (Smit
et al., 2016). Through this identification, teachers can become more aware of
the language required for mathematical discourse, and they can then better
support their students express their thoughts in a mathematically accepted way
(e.g. Schleppegrell, 2007).

Next to awareness of genres, it is considered useful for teachers to learn
how to scaffold their students’ language (Gibbons, 2002). Scaffolding, in short,
is temporary, adaptive support, fostering students’ independence regarding a
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particular topic (Maybin et al., 1992). For whole-class scaffolding, Smit et al.
(2013) formulated three key characteristics. The first, diagnosis, is the assess-
ment of the learners’ level and needs. Second, responsiveness is the adaptation
of support to learner’s needs based on a diagnosis. The third characteristic is
handover to independence which is the fading of support as the learner’s inde-
pendence increases.

The literature suggests that teachers can enact several scaffolding strategies
to offer adaptive support (e.g., Gibbons, 2002). Our PDP’s goal was that teachers
would learn to use the scaffolding strategies in Tab. 1 (Smit et al., 2016) in re-
sponse to the diagnoses of students’ language proficiency as part of a language-
responsive approach informed by genre pedagogy.

2.2 Teacher learning within adaptive professional
development

For conceptualizing and analyzing teacher learning in our study, we used a
framework developed by Bakkenes et al. (2010). It distinguishes four main cate-
gories of teacher learning: changes in knowledge and beliefs, intentions for
practice, changes in practice, and emotions.

Number of people at station
People (number)

Time (hours)

500

400

300

200

100

At 06:00 there are 100 people at the station. Between 06:00 and 08:00 the number 

of people increases, as the graph ascends. Between 08:00 and 10:00 the number of 

people decreases; the graph descends. Between 10:00 and 12:00 the number of 

people slowly increases as the graph gradually ascends again. From 12:00 the 

number of people remains the same. The graph is constant.

6 7 8 9 10 11 12 13 14

Fig. 1: Line graph and exemplary text from a domain-specific genre of interpreting line graphs.
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To design a PDP based on previous research on genre pedagogy and scaffold-
ing language, we capitalized on several sources. First, we drew on four learning
activities identified by Bakkenes et al. (2010) as key elements for developing
teacher expertise in the context of educational renewal: (1) learning by experi-
menting; (2) learning in interaction with others; (3) using external sources (e.g.,
publications); and (4) consciously reflecting on one’s teaching practices. Second,
we drew on insights concerning the promotion of language-responsive teaching
(e.g., Hajer & Norén, 2017). Prediger (2019) gained insights into the learning path-
ways and obstacles of secondary school teachers in their development of lan-
guage-responsive teaching practice concerning the identification of language for
mathematical language. Despite these insights, there are still ongoing challenges
in guiding teachers in the identification and therefore support of language for
mathematical learning. One such challenge, as noted by Lyon (2013), is that
teachers need to view language as inherent to one’s classroom culture and not
merely a technical issue to control. As such, the guidance of teachers in the iden-
tification of language for mathematical learning is required to be adaptive to
teachers’ contexts and needs.

A third source used for developing our PDP formed insights on adaptivity –
generally assumed to be an essential characteristic of PDP as teacher learning
depends on numerous factors (Putnam & Borko, 2000). Individual teacher learning

Tab. 1: Strategies for scaffolding language for mathematical learning.

Strategies Example

Reformulating students’ utterances into more
academic wording

[In response to the graph goes higher]
Indeed, the graph rises steeply

Ask students to be more precise or improve their
spoken language

What do you mean by “it”?

Repeat correct student utterances Indeed, the graph descends slowly

Refer to features of the text type Into how many segments can we split
the graph?

Use gestures or drawings to support verbal
reasoning

Gesturing a horizontal axis when
discussing a topic

Remind students (by gesturing or verbally) to use a
designed scaffold (i.e., word list or writing plan) as a
supporting material

The word you are looking for is written
down for you here

Ask students how written text can be produced or
improved

How can we rewrite this using
mathematical wording?
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may be different, and variations across settings need to be acknowledged (e.g.,
Goldsmith et al., 2014). If a PDP is adaptive, it provides the opportunity for partici-
pant teachers to take ownership of the content (e.g., Davis, 2002). To date, little is
known on how adaptivity to teachers’ individual needs can be achieved, which
specific steps must be made in the design of the PDP to allow for this, and what
teacher learning takes place in the context of these efforts.

The aim of the study reported here was to gain insights into how primary
school teachers in an adaptive professional development program (2.2) can be
supported in developing genre awareness and the scaffolding of students’mathe-
matical language (2.1). We ask two questions:
1. What adaptations to the program were necessary to support teacher learning?
2. What did a case-study teacher learn from participating in the program?

3 Methods

We used design research to design and evaluate the PDP. Design research can
be characterized as an interventionist approach to which prediction of and re-
flection on learning processes are central, and where the design of an inter-
vention and the actual research are intertwined (McKenney & Reeves, 2018;
Prediger et al., 2015). The design and redesign of sessions of the PDP were car-
ried out by the second author. She acted as both researcher and teacher edu-
cator within the PDP, with a larger team acting as a soundboard. The PDP
comprised seven monthly group sessions of 2.5 h each.

To achieve adaptivity to the teachers’ needs, several steps were taken. Before
the PDP, the participants completed questionnaires, and a mathematics lesson
was observed to determine the starting point concerning language-responsive
teaching. Throughout the PDP participants completed electronic logs, which the
researcher-educator could access. The role of the participant logs was twofold.
First, the participant logs consisted of open questions designed to promote teach-
ers’ reflection on their learning and classroom practice (Bakkenes et al., 2010) in
the context of the PDP. Second, the participant logs gave insights into teach-
ers’ self-reported learning. Inspired by hypothetical learning trajectories (Simon,
1995), a researcher log was written before each session with the intentions and
expectations for the session. After each session, a reflection document was created
where the researcher log was compared with what actually happened in the ses-
sion. The reflection document plus the most recent participant logs formed the
basis for the researcher log of the next session. As such, the goals of the PDP were
addressed while being adaptive to participants’ needs and levels of understanding.
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3.1 The five participants

One participating teacher (female, 25 years of experience), who taught grade 3
(students aged 8–9), agreed to be a case study to allow for more in-depth in-
sight into the learning processes and development of the participants occur-
ring within the PDP. The second participant (female, 13 years of experience)
taught grade 4. A third participant (female, 27 years of experience) taught
mathematics in a one-on-one setting supporting special education in a main-
stream primary school. The final two participants came from the same school
where one (female, 29 years of experience) and the other (male, 10 years of
experience) taught grade 6.

3.2 Instruments and data collection

Apart from the aforementioned participant and researcher logs, and reflection
documents for each session, the data collection consisted of completed exer-
cises by the participants and verbatim transcription of the interaction between
the researcher-educator and participants from video recordings of each group
session.

To gain more in-depth insight into the responses in the participants’ logs
and PD sessions, two semi-structured interviews of the case-study teacher
were conducted: one between the fourth and fifth group session and the sec-
ond after the final session. The interview timing was chosen to allow for the
characterization of the teacher’s learning throughout the whole PDP. In the
interviews, we asked the teacher to elaborate on points of interest mentioned
in her logs. Audio recordings of both semi-structured interviews were tran-
scribed verbatim.

3.3 Data analysis

3.3.1 Enactment and adaptation of the PDP

Participants’ progress in terms of the learning goals mentioned in Section 2.1
was analyzed to evaluate the need for adaptation of the PDP. To detect these
progressions within the PDP, the researcher logs and reflection documents were
analyzed in the following way. We compared our expectations with what hap-
pened and traced how decisions were made based on new insights. For construct-
ing the narrative presented in 4.1, we focused on the most apparent discrepancies
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between expectations and actual teacher learning. For example, we used Smit
et al. (2016) genre of interpreting line graphs to illustrate what a domain-
specific genre with its linguistic and structure features could look like. How-
ever, we quickly noted that teachers had little affinity with that domain.
Hence we needed to adapt our initial plans and find another example that
was closer to teachers’ own practices. For more details, see Bakker et al.
(2019). The first author created the theme-oriented narratives, after which
the researcher-educator reviewed them; minor updates for clarification were
made.

3.3.2 Teacher’s perceived learning within the PDP

To gain insight into teachers’ learning during the adaptive PDP, the semi-
structured interviews with Mary (pseudonym) were analyzed based on the
aforementioned main categories of Bakkenes et al. (2010) framework for teach-
ers’ self-reported learning.

All utterances in the transcripts of the interviews, in which Mary explicitly re-
ports on a learning outcome, were identified by the observing researcher. Two

Tab. 2: Coding scheme for reported learning outcomes.

Code Global description Example

CKB Change in knowledge/beliefs:
The teacher reports on growing awareness
acquired knowledge, or the teacher reports on
the confirmation of already existing beliefs

I am more aware of the role language
plays in the mathematics classroom.

CP Change in practice:
The teacher reports that things have changed in
his/her way of teaching or students’
participation in the mathematics lessons.

I now prepare my lessons with a
language goal in mind.

IP Intention for practice:
The teacher reports that he/she wants to teach
differently in the future or reports that he/she
wants to hold on to certain teaching practices

I want to spend more attention to
reasoning steps in the future.

E Emotion:
Teacher reports on emotions related to using
the knowledge from the PDP in the classroom,
or reports on being surprised

I was surprised to see the level of
interaction increased in the class.
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independent raters then coded the 126 utterances to measure the inter-rater reli-
ability of the coding process. The coding by the first and second coders resulted
in an agreement of 95.2% and a Cohen’s kappa of .91, meaning the four catego-
ries could be reliably distinguished.

The utterances were placed in chronological order by category to gain insight
into the nature of the reported learning outcome. The utterances were analyzed,
and the observing researcher generated a summary of changes in the four catego-
ries. The researcher-educator read the ordered data to validate the conclusions
drawn from the analysis; minor updates for clarification were made.

4 Results

4.1 Enactment and adaptation of the PD

Analysis of the enactment of the PDP through the researcher and participant
logs, and reflection documents, yielded two separate chronological narratives
focused on the two main themes of the program: genre awareness and scaffold-
ing language. For the latter theme, relatively minor adaptations were made to
the PDP. Therefore we focus in this chapter on the adaptations made for the
theme of genre awareness sharing the chronological narrative.

4.1.1 Narrative of genre awareness

In the first session, the participants were introduced to the identification of lan-
guage required for mathematical learning through the concept of genre. The re-
searcher-educator presented the concept of genre by using an example from the
domain of line graphs (Smit et al., 2016). However, based on the reactions of the
participants, the researcher-educator diagnosed that since line graphs are not
regularly taught in primary school, this example was not close enough to the
teachers’ own practices. As such, the line graph example did not provide suffi-
cient support for the teachers to understand the idea of genres in the domain of
mathematics.

In the second session, the researcher-educator responded by characterizing
two other genres for domains that were closer to the participants’ teaching: esti-
mation and expanded column method for subtraction. During the analysis of
these genres, she drew the attention of the participants not only to the linguistic
features (i.e., general academic language and subject-specific language) but also
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to the structure features (i.e., the required ordering of the steps by students to
give mathematical meaning). While reviewing the in-session completed tasks,
the researcher-educator diagnosed that the participants were still struggling
with the concept of genre. This diagnosis was corroborated when two partici-
pants contacted the researcher-educator to report that they could not grasp
how to complete the homework assignment related to the estimation genre.
The researcher-educator concluded that the notions of linguistic and structure
features of genres were not as fully understood as the researcher-educator had
anticipated they would be at this stage in the PDP and that the term “genre”
was a stumbling block for the participants. During this conversation, the re-
searcher-educator explained the concept of genre in the context of language
for mathematical learning as the text that includes the specific language and
reasoning that is particular to that domain. It was in this conversation that the
term “domain text” was first coined as a concretization to the more technical
concept of a genre, where domain text was considered to be a prototypical
text for a particular domain.

In the third session, the researcher-educator made three fundamental adap-
tations to the PDP. The first was to replace genre by domain text. Rather than
using the more abstract and unfamiliar notion of genre, the researcher-educator
thus responsively reframed the language for mathematical learning as domain
texts that represent typical language usage in the different mathematical do-
mains (deploying particular words and phrases). The second was to shift focus
from identifying the structure features of the spoken or written mathematical
text to identify the reasoning steps needed by students to solve mathematical
problems. This new focus was better aligned with participating teachers’ exist-
ing views on how students can solve mathematical problems. The third adap-
tation was to shift identifying the language for mathematical learning for a
particular mathematical domain, to that for solving a particular mathematical
problem within a domain. This adaptation was regarded as crucial by the partici-
pants and researcher-educator, as each mathematical problem, even within the
same domain, requires its language to be identified in association with the partic-
ular reasoning steps.

In the fourth session, the participants used a domain text preparation template
that was developed as a response to the diagnosis that the participants needed a
scaffolding device for the identification of domain texts based on the completed
homework assignments of the participants. The preparation template included the
identification of reasoning steps and the required language components for solving
the mathematical problem. The participants first had to identify the reasoning
steps needed to solve the problem and then identify the language components
of the domain text. Finally, the participants had to write how a student should
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articulate the solution. While the participants were analyzing videos of language-
focused mathematics classes and the accompanying domain text, the participants
reported that the dual analysis of the video and the domain text helped with their
understanding of the identification of language for mathematical learning. In re-
sponse, the researcher-educator and participants agreed that in the following ses-
sions, every participant should present for peer feedback at least one video of their
language-focused mathematics classes and the associated domain text.

In the fifth session, the teacher-educator led a discussion with the partici-
pants on the differences between a teacher’s instruction (procedural steps) and
students’ thinking (reasoning steps) required to solve a mathematical problem.
The addition of the discussion was based on the analysis of the participants’
homework assignment to develop a domain text. The researcher-educator diag-
nosed an increase in independence as the participants were beginning to iden-
tify words and formulations for their chosen domain. However, as part of their
development of domain texts, three of the five participants were still unable to
centralize student thinking in their identification of reasoning steps and instead
focused on procedural steps. To initiate the discussion and emphasize the im-
portance of centralizing students’ thinking in a lesson, the researcher-educator
asked one participant who had already perceived this difference between proce-
dural steps and reasoning steps, to explain the difference to the other partici-
pants. The discussion clarified the concept of reasoning steps for the other
participants. The participants made comments such as “reasoning steps stimu-
late thinking,” “maybe we give too little attention to reasoning steps,” and
“normally language in the mathematics lesson is focused on the mathematical
procedures, not the reasoning steps of a student.” By the end of the sixth ses-
sion, most of the participants showed some form of independence concerning
reasoning steps during the session: “You get closer to the thinking of the chil-
dren” and, concerning language and reasoning steps, “[language and reasoning
steps] support each other. You can see the thought process in the children.”

In sum, responsive adaptations to genre pedagogy could be characterized as
from a more global to a more local orientation on the one hand, and from more
abstract (i.e., genre with language and structure features for a domain) to more con-
crete notions (i.e., language and reasoning steps for a problem) on the other hand.

4.2 Teacher’s perceived learning within the PDP

The distribution of utterances among the categories of reported learning is shown
in Tab. 3. With 125 utterances in total, the majority of the reported learning out-
comes fell into the category changes in practice.
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In the following subsections, quotes from the interviews (from which interview
is cited in parentheses) and observations are presented to illustrate Mary’s develop-
ment from the mid- to post-interview for each category of reported learning.

4.2.1 Changes in knowledge and beliefs

Based on the analysis of the semi-structured interviews, the changes in knowl-
edge and beliefs primarily concerned the overarching intention of the PDP for
scaffolding language for students’ mathematical learning. The most noticeable
change in Mary’s beliefs was the importance of language in the mathematics
classroom and that “language in a mathematics lesson is not separate, mathemat-
ics and language belong together” (Mid). For Mary, the concept of the scaffolding
language seemed easy to understand as early in the PDP she had formulated for
herself that “they are strategies I can use to help the students use more precise
language” (Mid).

However, with the theme of identification of genres or language required
for mathematical learning, Mary had some conceptual issues. Mary struggled in
shifting her view from considering that the language required for mathematical
learning consists only of vocabulary to viewing it as a means to allow a student
to articulate their reasoning steps. Mary suggested that her difficulties in com-
prehending the concept of reasoning steps may have been due to her choice of
domain. The domain of measuring – at the age of Mary’s class – does not in-
volve a large amount of reasoning knowledge but does involve substantial pro-
cedural knowledge of how to measure. For Mary, this was highlighted when she
reflected on another participant’s domain text where she could immediately
identify the reasoning steps.

Mary reported that the learning structure within the PDP where participants
spent time analyzing their assignments and video recordings of their classroom
interaction as a group was for her valuable and crucial to her learning as “You
cannot do that alone. And also not by reading a book” (Post).

Tab. 3: Distribution of reported learning outcomes among three
categories.

Mid-interview
(Mid)

Post-interview
(Post)

Changes in knowledge and beliefs  

Changes in practice  

Intentions for practice  
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4.2.2 Changes in practice

Mary reported several changes in practice as a result of the PDP. She changed
the preparation of her mathematics lessons to include a language goal. Specifi-
cally, she now considers “what language is important to focus on in the lesson
and how they (learners) can use it” (Post).

By the end of the PDP, Mary reported how several scaffolding language
strategies had become embedded in her class: “how can we say that using
mathematical language? That is a standard sentence I use often” (Mid) and
“discussing with each other how to word it more precisely” (Post). She also rec-
ognized the benefits of not only confirming that her student had used the cor-
rect articulation but asking another student to also try as “it may help the
student who had not yet understood it” (Post).

The focus in Mary’s mathematics class shifted from getting the answer to
allowing the students to articulate their reasoning steps:

The students articulate their reasoning steps. You then know: the answer is not correct
but in how you tried to get there one small step is missing. If you can explain something,
then you understand it. They previously had not been able to articulate that. (Mid)

Mary also observed changes in the form of interaction she had with the students:
“I noticed I have a lot more dialogue with the students” (Mid); “they use the re-
quired terms and often say ‘oh we need to say that using mathematical language’ ”
(Post).

4.2.3 Intentions for practice

In the mid-interview, Mary’s intentions for practice were focused on scaffolding
students’ language required for mathematical learning. In the post-interview,
Mary reported the intention of continuing to work on components of the domain
text, the identification of the articulation of the reasoning steps. Mary also in-
tended to use the knowledge she gained in the PDP, not only in the mathemat-
ics class but to extend scaffolding of language to other subjects: “I think that I
will try it in other subjects” (Post).

In the post-interview, Mary’s reported intentions were not limited to her
learning and practice but also included the dissemination of knowledge to her
colleagues. Mary also noted that the dissemination of the knowledge related to
the scaffolding of language required for mathematical learning is not something
that can be achieved in the short term “but slowly as this is something that
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must be absorbed. This cannot be done in a couple of months. This is something
where you need a year to become more confident about it” (Post).

5 Discussion

The presented study aimed to gain insights into how a professional development
program (PDP) can adaptively support teachers to gain awareness of genres rele-
vant to learning mathematics and scaffold language required for mathematical
learning within their lessons. To fulfil this aim, two aspects of the PDP have been
analyzed. The first was the adaptations made to the PDP and the observations
that triggered these adaptations. The second aspect was the learning reported by
a participating teacher.

The researcher-educator had the opportunity to adapt the contents of the ses-
sions to the needs of the group and individual participants by analyzing the de-
velopment of the teachers in between PDP sessions through reflection documents
and participant logs. Similar to findings in other studies (e.g. Prediger, 2019), the
identification of language for mathematical language proved to be challenging.
For example, the notion of “genre” proved too abstract for the participants to
identify the language for mathematical learning. This led us to use the notion of
“domain text” instead – a move that can be considered practicalizing principled
theoretical knowledge (Bakker et al., 2019; Janssen et al., 2015). The shift from the
abstract to concrete was achieved through using a narrower focus of language
needed for reasoning about and solving a particular mathematical problem
(called “reasoning steps” – “denkstappen” in Dutch). In line with the ap-
proach taken with secondary school teachers (Prediger, 2019), focusing on a
mathematical problem, as opposed to an entire mathematical domain, was
closer to teachers’ own practical experiences. This practicalization of princi-
pled theoretical knowledge was enacted both in the design of the course activ-
ities (e.g., the preparation template) and in interaction with the participants
during sessions.

We give this as an example to underpin a broader call to action for researchers
and educators. Practicalization requires flexibility on the side of the researchers
and educators, a willingness to adapt original plans where the input and knowl-
edge from the participants are employed to judge what works in the context of
their teaching practice. By doing so, researchers and educators have the op-
portunity to concretize the methods and strategies, aligned with the theory in
question, that the teachers can successfully employ in their classrooms. However,
such adaptations should not lead to “lethal mutations” (Brown & Campione, 1996).
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Second, we analyzed what a teacher perceived to have learned from partici-
pating in the PDP. The case-study teacher reported an increase in awareness in
the connection between mathematics and language. She also reported that the
most noticeable impact of the PDP was the change in social norms concerning
mathematical language during the interaction that occurred within her class,
both between herself and the students and between the students themselves, in
line with often reported observations (e.g., Yackel & Cobb, 1996). She reported
how a number of the language scaffolding strategies had become embedded in
her class with the effect that students became accustomed to using the lan-
guage for mathematical learning as well as verbalizing their reasoning steps.

A limitation of our study is that we only analyzed the participants within
the PDP itself and relied on self-report for their teaching in the classroom. The
impact of the PDP on the participating teachers’ classroom enactment and stu-
dents’ mathematical performance was not observed or analyzed, and the extent
of the handover to independence could thus not be fully monitored.

What we as authors have learned about our national case is that when pro-
moting a particular vision on mathematics education, professional development
has to be taken much more seriously. For example, the ideas from Realistic
Mathematics Education have been influential both nationally and internation-
ally (Treffers & van den Heuvel-Panhuizen, 2020) but proved hard to realize in
practice in the Netherlands. The general ideas and curricular materials were in-
sufficient for implementing Realistic Mathematics Education in education (Grave-
meijer et al., 2016), pointing to a lack of investment in professional development.
Thus there should be a focus not only on the education characteristic in question
(in our case language-responsiveness) but also on continued investment in the
professional development that is adaptive to the local context.
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