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Preface

Since the earliest humans populated the earth, we have gradually tried to understand 
and control the world around us. In trying to understand such phenomena, humans 
began to make predictions to various extents. For instance, humans made predictions 
about motions of the planets, eclipses, cycles of rainfall, and periodicity of certain 
diseases. However, in the last few decades, the complexity of these predictions have 
outpaced our abilities to predict.

Luckily, the dawn of electronic computers is increasing our abilities to predict nature, 
although the problems we are facing now are far more complex than the problems we 
faced a century ago.

The ability of machines to demonstrate advanced cognitive skills in taking decisions, 
learning, perceiving the environment, predicting certain behavior, and processing 
written or spoken languages, among other skills, makes the discipline of artificial 
intelligence of paramount importance in today’s world.

This book compiles a wide range of applications in Deep Learning in two sections: 
“Deep Learning Applications” and “Future Trends of Deep Learning.”

This work will be of interest to students and researchers alike, as I did my best to 
comprise quality research contributions with a number of different applications.

Marco A. Aceves-Fernández, Ph.D.
Faculty of Engineering,

Universidad Autónoma de Querétaro,
Querétaro, México
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Chapter 1

Advancements in Deep Learning 
Theory and Applications: 
Perspective in 2020 and beyond
Md Nazmus Saadat and Muhammad Shuaib

Abstract

The aim of this chapter is to introduce newcomers to deep learning, deep 
learning platforms, algorithms, applications, and open-source datasets. This 
chapter will give you a broad overview of the term deep learning, in context to deep 
learning machine learning, and Artificial Intelligence (AI) is also introduced. In 
Introduction, there is a brief overview of the research achievements of deep learn-
ing. After Introduction, a brief history of deep learning has been also discussed. The 
history started from a famous scientist called Allen Turing (1951) to 2020. In the 
start of a chapter after Introduction, there are some commonly used terminologies, 
which are used in deep learning. The main focus is on the most recent applications, 
the most commonly used algorithms, modern platforms, and relevant open-source 
databases or datasets available online. While discussing the most recent applica-
tions and platforms of deep learning, their scope in future is also discussed. Future 
research directions are discussed in applications and platforms. The natural 
language processing and auto-pilot vehicles were considered the state-of-the-art 
application, and these applications still need a good portion of further research. 
Any reader from undergraduate and postgraduate students, data scientist, and 
researchers would be benefitted from this.

Keywords: deep learning, machine learning, artificial intelligence, neural networks

1. Introduction

Deep learning is focusing comprehensively on video, image, text and audio 
recognition, autonomous driving, robotics, healthcare, etc. [1]. Deep learning 
is a result orientated field of study that why getting very much attention from 
researcher and academicians. The Rina Dechter introduced the word of deep 
learning in 1986, the main motivation behind the advent of field deep learning was 
making an intelligent machine that mimic the human brain. In humans, the brain 
is the most important and decision-making organ; brain takes decision based on 
sight, smell, touch, and sounds. The brain also can store memory and solve complex 
problems based on their experience.

For the last few decades, the researchers dreamed of making a machine that 
is as intelligent as, like our brains, they started studying the biological structure 
and working of the human brain. Making a robot that performs certain duties and 
self-driving cars is to reduce roadside incidents. Because according to the World 
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Health Organization (WHO), 1.35 million people die every year in road incidents 
[2] and approximately 90% of the incidents are due to human errors [3]. To develop 
state-of-the-art devices for the applications listed above, ones need to think in 
a different way of programming a device to make it artificially intelligent. Deep 
learning is one of the most innovative paradigms that make it possible up to some 
extent. In deep learning, the word deep indicates the number of layers through 
which data are converted from input to the desired output. It is difficult for a new 
researcher or student to recognize any project whether it is from artificial intel-
ligence machine learning or deep learning because all these overlap each other some 
way or the other. Machine learning is any sort of computer program that can learn 
by their own without having specially programmed by the programmer. There are 
two types of machine learning: supervised learning and unsupervised learning. In 
supervised learning, you teach or train the machine with a fully labeled data, the 
machine learns from the labeled data and then anticipate the unforeseen data. In 
supervised learning, the machine can only give you correct output when the input 
is already experienced in training phase; it is based on experience; the more is the 
training dataset or experience of your machine the higher is the chances of getting 
the actual output. It is a time-consuming process and also required a lot of expertise 
in data science. On the other hand, in unsupervised learning, supervision of a 
model is not needed, rather the model work on its own catches new data and discov-
ers the information inside the data. It usually deals with label-less data; compared to 
supervised learning, unsupervised learning is more complicated. It is usually used 
to find features and unknown patterns.

Deep learning models are agile and result oriented in terms of complicated 
abstractions. Deep learning models are mostly based on ANN, categorically CNNs, 
although there are deep belief networks, generative models, propositional formulas 
and Boltzmann machine also play their part (Figure 1).

Deep learning has been evaluated as a game-changer in AI and computer vision. 
Today, state-of-the-art object detection is possible only due to deep learning [4]; 
traditional methods of object detection are not enough to cater with detection so 
smartly. To understand the whole image of object detection, it is not necessary 

Figure 1. 
Deep learning a subset of machine learning and AI.
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to only focus on image classification, but to precisely calculate the concept and 
locations of the objects in every image, that is, object detection which is based on 
face detection, pedestrian detection, and skeleton detection [5]. Deep learning 
has cutting-edge technology and has application in every field of life ranging from 
computational to healthcare. It has a very deep impact on the life of the people or 
societies because its application is always the need of the day. The deep learning also 
gains significant importance due to new and flourishing field called big data analyt-
ics. Big data analytics is the number of complicated processes examining large and 
varied data sets, or it is also defined as techniques and methods used to identify the 
hidden patterns, unknown correlations market trends, and customer preference 
from huge dataset. Big data analytics can offer various business benefits, that is, 
more effective marketing strategies, better customer service, improved operational 
efficiency, etc.

Deep learning is an emerging area of research and modern application. The deep 
learning is a very widespread and demanding field now-days, it covers industry, 
business, and healthcare; it combines all the hot research-oriented fields, that is, 
IoT, e-health-care, cybersecurity, bioinformatics, optimization, and cyber-physical 
systems; these all are seen interdependent. Gartner has proposed top ten technol-
ogy trends for 2020, some of them are, hyper-automation, human augmentation, 
AI Security, IoT, Autonomous things; etc.; all are related to AI, machine learning, 
and deep learning some way or the other. Surely, deep learning will bring a bunch 
of innovations to everywhere whether it is industry, health-care or business intel-
ligence. According to Ref. [6], machine learning and AI will be used more in 2020 
experts says in the survey conducted by the computer-world.

In 2019, many researchers, academicians, and teachers claimed that deep learn-
ing is over because it cannot do common-sense reasoning; Rodney Brooks a profes-
sor in MIT says that some popular press started stories that the deep learning will 
be over by 2020. In 2020, hybrid, interdisciplinary, collaborative, and open-minded 
research is expected to add more contribution. The topics that are expected to be 
more prevalent in 2020 are common-sense reasoning, active learning and life-long 
learning, multi-modal and multi-task learning, open-domain dialogue conversa-
tion, medical applications and autonomous vehicles, ethics that includes privacy, 
confidentiality, and biases, and finally robotics.

There are two most common deep learning platforms: TensorFlow and PyTorch; 
these two platforms compete; and this competition is very fruitful for the com-
munity; TensorFlow is easy to use, integrated with Keras; while on the other hand, 
Pytorch has TPU support, etc. In 2020, it is expected to have a platform which can 
easily transform a TensorFlow model to Pytorch and vice versa. There is a need to 
develop an actively developed stable reinforcement learning framework. The higher 
layers of abstractions are expected in 2020 like Keras, so that machine learning is 
used outside the machine learning fields.

1.1 History

Deep learning is a sub branch of machine learning, and machine learning is a sub 
branch of artificial intelligence. Deep learning is a set of algorithms that processes 
large set of data and imitates the thinking process. The history of deep leaning 
is started from 1943, when Warren McCulloch and Walter Pitts created a neural 
network-based computer model. There basic aim was to mimic thought process of 
human brain; they used algorithms and mathematics to make the threshold logic 
to mimic human thought process. Alan Turing called the father of AI concluded 
in 1951 that the machines would not take much time in started thinking of their 
own; at some point of time, they would be able to talk to each other; and it is 
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also expected that they would take the control of the universe. In context to this, 
the frank Rosenblatt introduced single and multi-layer artificial neural network 
(1957–1962). The history amazed us when the world champion of chess player 
called Kasparov was defeated by Deep blue computer in 1997. In 1957–62, the single 
layer and multi-layer perceptron’s was introduced. The first deep feedforward 
general purpose learning algorithm multilayer perceptron’s by Alexey Icakhnenko 
and Lapa was published in 1967. In 1971, a deep network with eight layers trained 
by the group method of data handling algorithm was described already. The idea 
of backpropagation, Recurrent Neural Network (RNN), and restricted Boltzmann 
machine (RBM) was introduced in 1970–1986. In 1979-1998, the Convolution 
Neural Network (CNN), Bidirectional RNN, and long short-term memory (LSTM) 
were the state of the art. The deep belief network (DBN) was introduced by Geoff 
Hinton in 2006. The data sets called ImageNet and AlexNet that was created in 
2009. Generative Adversarial Network (GAN) is a class of machine learning sys-
tem invented by Ian Goodfellow and his colleagues in 2014. Coming up in history 
in 2016 Google DeepMind challenge match between Alpha Go versus Lee Sedol, 
the AlphaGo win all the matches from a world champion Lee Sedol. AlfaGo and 
AlfaZero are computer programs developed by artificial intelligence research 
company called DeepMind in (2016–2017); it plays the board game Go. The trans-
former introduced in 2017–19 a deep learning model used specially used for Natural 
language Processing (NLP). Although there is a lot of community contributed to the 
deep learning but Yann LeCun, Geoffrey Hinton, and Yoshua Bengio have received 
Turing awards in 2018.

2. Deep network topologies

2.1 Deep neural network (DNN)

In DNN, there is multilayer perceptron or hidden layer between the input 
and output. All the layers are connected to previous layers; by going through 
each layer, the network estimates the exact output based on the weights and 
activation function. Through DNN, we can model any complex non-linear 
relation. The backbone of the DNN is the characteristic of learning about the 
feature that is most relevant to the targets [7]. The DNN has research gap in 
model selection, training dynamics, by using graph convolution neural network 
combination optimization, and Bayesian neural network for estimation of 
uncertainty. There are a lot of applications for DNN, that is, computer vision, 
machine translation, social network filtering, playing board, video games, and 
medical diagnosis (Figure 2).

2.2 Recurrent neural network (RNN)

RNN is a type of deep learning network that is used specifically when there 
is sequential data or time-series, that is, video, speech, etc. The RNN usually 
maintained the data from the previous state to the next state. It is called recurrent 
because it performs the same function for each input, while the output is differ-
ent because it also depends on past calculations. The state-of-the-art topic of deep 
learning with RNN is Long Short-Term Memory Network (LSTM). RNN provides 
the solution to many problems, that is, intelligent transportation system [8], solving 
time-varying matrix inversion [9], and many more. The RNN is famous for sen-
tence evaluation and linguistic data processing (Figure 3).
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2.3 Deep belief network (DBN)

DBN is a probabilistic unsupervised deep learning algorithm. It has many layers 
of hidden variables. To solve the more complex problems, it needs more hidden 
layers; each layer is a special statistical relation with the other layer. DBN can learn 
probabilistically; after learning, BDN needs training under supervisor to perform 
classification. The DBN is used to recognize clusters and generates images, video 
sequences, and motion-capture data (Figure 4).

2.4 Boltzmann machine (BM)

The BM is a network that is a uniformly attached, neuron-like unit, which 
is responsible for taking decisions stochastically about whether to be off or on. 
Computational problems are solved through BM like search, optimization, and 
learning problem. Many features are uncovered in learning algorithm that shows 

Figure 2. 
Deep neural network.

Figure 3. 
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classification. The DBN is used to recognize clusters and generates images, video 
sequences, and motion-capture data (Figure 4).
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The BM is a network that is a uniformly attached, neuron-like unit, which 
is responsible for taking decisions stochastically about whether to be off or on. 
Computational problems are solved through BM like search, optimization, and 
learning problem. Many features are uncovered in learning algorithm that shows 
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very complex behavior in training dataset. Boltzmann machine is used for classifi-
cation and dimensionality reduction.

2.5 Restricted Boltzmann machine (RBM)

RBM introduced in 1986 by Smolensky: two layers visible and hidden units, 
while there is no connection between visible-visible and hidden-hidden. It can 
learn a probability distribution over a collection of datasets. The applications of 
RBM are features learning, collaborative filtering, dimensionality reduction, and 
classification.

2.6 Convolutional neural network (CNN)

In CNN, the layers are delicately connected to input layer as well as each other. 
There is a specific function for each neuron of the subsequent layer like it is only 
responsible for only a part of the input. CNN is now widely used for remote sensing, 
computer vision, audio, and text processing [10].

2.7 Deep auto-encoder

Just like others, deep auto-encoder has also many hidden layers. The difference 
between a simple auto-encoder and deep-auto-encoder is the simple auto-encoder 
that has one hidden layer, while the deep-auto-encoder has many hidden layers. In 
deep-auto-encoder, the training is complex normally, you need to train one hid-
den layer first to reconstruct the structure of the input data, and this input data 
are further used to train other hidden layers and so on. Some applications of deep 
auto-encoder are image extraction, image generation recommendation system, and 
sequence to sequence prediction.

2.8 Gradient descent (GD)

GD is used to reduce the overall cost function; it is considered as an optimization 
algorithm and is widely used for determination of coefficient function in machine 
learning. When there is not possible to estimate the parameters analytically, then 

Figure 4. 
Deep belief network.
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GD is used to calculate the desired parameters. Using the GD weight of the model is 
updated for every epoch. It is used for supervised machine learning.

2.9 Stochastic gradient descent (SGD)

Just like GD, SGD is also an optimization algorithm but GD is used when the 
datasets are small, while SGD is usually used when the datasets are large, and SD 
becomes very costly if used for a large number of datasets.

3. Application of deep learning

Deep learning is new and state-of-the-art technology used for large scale appli-
cations now-days. Deep learning (also called differential programming or structure 
learning) is member of a large family of machine learning class. It is edge-cutting 
technology used for many different new research fields which are stated below.

3.1 Deep learning in automatic speech recognition

The automatic speech recognition is the convincing application of deep learning. 
Speech recognition means making speech as in input to a machine that can make 
the input process very easy and has a hundred of other advantages as well, that is, 
illiterate people can also use technology, speech coding, text to speech synthesis, 
speech recognition, speaker recognition, speech enhancement, speech segmenta-
tion, language identification, and many more [11]. The speech is the natural form of 
communication, hence it is considered a very convincing application.

3.2 Image recognition

Image recognition based on deep learning becomes very famous and accurate 
result-oriented technology based on the training and experience of machine. Deep 
learning plays a very important part in image recognition and image classification in 
underwater target recognition [12] although the images from underwater are always 
noisy and deteriorated. MNIST is one of the most renowned examples used for 
image classification, below is the simple of dataset of MNIST dataset (Figure 5).

3.3 Natural language processing

LSTM helps a lot in language modeling and machine translation [13]; language 
modeling task is to understand the language. To implement the language, models' 
neural networks are used. Google translate is the most famous and widely used 
application in this regard; Google translate is used for more than 100 languages 
all over the world. It also used LSTM; and it learns from millions of examples and 
translates the whole sentence rather than word by word translation. BERT (Google) 
is one of the most common technologies in this field achieved a lot of benchmarks, 
that is, sentence classification, sentence pair classification, sentence pair similar-
ity, sentence tagging, create contextualized words embedding, question answering, 
and multiple-choice questions. There are some other transformer-based language 
models developed in 2019, which are XLNet (Google/CMU), RoBERTa (Facebook), 
Distil BERT (hugging Face), CTRL (Salesforce), GPT-2 (Open-AI), ALBERT 
(Google), and Magatron (NVIDIA). Magatron is the largest transformer model ever 
trained. It has 8.3 million parameters transformer language model. XLNet is the 
best transformer in terms of performance; XLNet outperforms BERT on 20 tasks 
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Just like GD, SGD is also an optimization algorithm but GD is used when the 
datasets are small, while SGD is usually used when the datasets are large, and SD 
becomes very costly if used for a large number of datasets.

3. Application of deep learning

Deep learning is new and state-of-the-art technology used for large scale appli-
cations now-days. Deep learning (also called differential programming or structure 
learning) is member of a large family of machine learning class. It is edge-cutting 
technology used for many different new research fields which are stated below.

3.1 Deep learning in automatic speech recognition

The automatic speech recognition is the convincing application of deep learning. 
Speech recognition means making speech as in input to a machine that can make 
the input process very easy and has a hundred of other advantages as well, that is, 
illiterate people can also use technology, speech coding, text to speech synthesis, 
speech recognition, speaker recognition, speech enhancement, speech segmenta-
tion, language identification, and many more [11]. The speech is the natural form of 
communication, hence it is considered a very convincing application.

3.2 Image recognition

Image recognition based on deep learning becomes very famous and accurate 
result-oriented technology based on the training and experience of machine. Deep 
learning plays a very important part in image recognition and image classification in 
underwater target recognition [12] although the images from underwater are always 
noisy and deteriorated. MNIST is one of the most renowned examples used for 
image classification, below is the simple of dataset of MNIST dataset (Figure 5).

3.3 Natural language processing

LSTM helps a lot in language modeling and machine translation [13]; language 
modeling task is to understand the language. To implement the language, models' 
neural networks are used. Google translate is the most famous and widely used 
application in this regard; Google translate is used for more than 100 languages 
all over the world. It also used LSTM; and it learns from millions of examples and 
translates the whole sentence rather than word by word translation. BERT (Google) 
is one of the most common technologies in this field achieved a lot of benchmarks, 
that is, sentence classification, sentence pair classification, sentence pair similar-
ity, sentence tagging, create contextualized words embedding, question answering, 
and multiple-choice questions. There are some other transformer-based language 
models developed in 2019, which are XLNet (Google/CMU), RoBERTa (Facebook), 
Distil BERT (hugging Face), CTRL (Salesforce), GPT-2 (Open-AI), ALBERT 
(Google), and Magatron (NVIDIA). Magatron is the largest transformer model ever 
trained. It has 8.3 million parameters transformer language model. XLNet is the 
best transformer in terms of performance; XLNet outperforms BERT on 20 tasks 
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often by a large margin. ALBERT developed by Google is used to reduce the param-
eters via cross-layer parameters sharing. The state of the artwork in this domain 
is about multi-domain task-oriented dialogue system [14]. In 2020, it expected 
to combine common sense reasoning with language models, extending language 
model context to thousands of words and to have more focus on open-domain 
dialogue (Figure 6).

3.4 Games and robotics

Robots are the agents who are artificially intelligent and working in the real-
world replacing humans. OpenAI and Dota 2 are popular games; in 2017, 1v1 bot 
beats top professional Dota 2 players; in 2018, OpenAI five lost two games against 
top Dota 2 player, while in 2019, OpenAI five beat OG team (the world champion in 
2018). The OpenAI five win in 2019 is only because of the more training compute; 
the current version of OpenAI has consumed 800 petaflops/day and experiences 
about 45,000 years of dota self-play over 10 real-time months. The current ver-
sion has 99.9%-win rate versus the 2018 version. It is one of the best experiences 
in deep learning that systems that learn to play with each other and incrementally 

Figure 5. 
Image example of handwritten digits from the MNIST dataset.

Figure 6. 
NLP and deep learning.
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improving. OpenAI Rubiks Cube Manipulation is another example from Robotics. 
The researchers are expecting in 2020 to implement reinforcement-learning meth-
ods in the manipulation of real-world interaction tasks. In games, experts are loss 
from different machines, using these machines to assist human experts in discover-
ing new strategies. Waymo a company that is focusing on developing auto-pilot like 
Tesla in October 2018; they have 10 million miles on road and now in 2020 they have 
20 million miles on road 20,000 of classes for structure test, also initiated testing 
without having a safety driver.

3.5 Financial fraud detection

Deep learning is playing a very important role in financial fraud detection. With 
the advent of technology and a significant amount of e-commerce platforms, the 
number of e-payments is increasing day by day chances of financial fraud, which is 
also a source of headache for banks and other financial institutions. Thus, focusing 
on fraud detection is a hot area of research. The author of [15] used auto-encoder 
for financial fraud detection [16]. This research uses deep learning model for fraud 
detection, while [17] proposed a solution to fraud detection using machine learning 
approach.

3.6 Deep learning in health-care

In this modern era of computing, deep learning also produced best results medi-
cal and health care, that is, deep learning is used for cancer cell coordination, organ 
segmentation, protein folding, lesion detection, and image enhancement in the 
field of medicine. There are several other issues like [18–21] and much more where 
deep learning is directly involved in the suggestion of the ultimate solution to the 
problem in healthcare.

3.7 Military

Deep learning is used for making many different military devices used in wars 
or other spy services. The military is also working on robots to train the robots to 
handle the critical situation through these robots. The militaries of some countries 
are making their weapons more intelligent using AI. In a war zone, AI can be 
embedded in the robots for remote surgical support in healthcare.

3.8 Cybersecurity

Cybersecurity is also one of the hot research areas; deep learning models are 
used for the cybersecurity of the Internet of Things (IoT) [22]. The IoT devices are 
usually low power devices having power-constrained that's why always vulnerable 
to external threats. Deep learning models can detect threats more accurately than 
any other technology. The author of [23] used deep learning and machine learning 
for intrusion, spam, and malware detection.

4. Modern deep learning platforms

Open-sources deep learning platforms discussed in this section. It will provide 
a quick review of the open-source platforms for beginners and mediocre because 
every platform has its pros and cons.
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cal and health care, that is, deep learning is used for cancer cell coordination, organ 
segmentation, protein folding, lesion detection, and image enhancement in the 
field of medicine. There are several other issues like [18–21] and much more where 
deep learning is directly involved in the suggestion of the ultimate solution to the 
problem in healthcare.

3.7 Military

Deep learning is used for making many different military devices used in wars 
or other spy services. The military is also working on robots to train the robots to 
handle the critical situation through these robots. The militaries of some countries 
are making their weapons more intelligent using AI. In a war zone, AI can be 
embedded in the robots for remote surgical support in healthcare.
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Cybersecurity is also one of the hot research areas; deep learning models are 
used for the cybersecurity of the Internet of Things (IoT) [22]. The IoT devices are 
usually low power devices having power-constrained that's why always vulnerable 
to external threats. Deep learning models can detect threats more accurately than 
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4. Modern deep learning platforms

Open-sources deep learning platforms discussed in this section. It will provide 
a quick review of the open-source platforms for beginners and mediocre because 
every platform has its pros and cons.
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4.1 TensorFlow

The TensorFlow is new and open-source platform for differential programming; 
it was developed by Google team called Google brain and was first released in 2015 
[24]. In February 2017, they released version 1.0.0; TensorFlow can work on CPU 
and GPU; it is available for Mac, Linux, and windows and also for mobile com-
puting platform android and iOS. It is the most famous machine learning library 
in the world today. Its best-supported client language is python but there is also 
interface available in C++, Java, and GO. It is easy to use and have Keras integration. 
TensorFlow has many of its versions available like for mobiles TensorFlow lite, for 
industry TensorFlow Serving, etc.

4.2 Pytorch

Pytorch is also machine learning and deep learning library, based on torch 
library. It was initially released by Facebook's AI Research lab (FAIR) in 2016. 
Pytorch has two high-level features, Tensor computing with graphics processing 
units (GPU), and auto-diff based deep neural network. It is too easy in Pytorch to 
move tensors to and from GPU. Pytorch Mobile is the version of Pytorch used for 
mobiles. There are some key features of Pytorch; the first feature is called impera-
tive programming; most of the python code is imperative; this type of program-
ming is more flexible. The other feature of Pytorch is dynamic computation graphs, 
it run time the system generates the graph structure, dynamic graph work well for 
dynamic networks like RNN, dynamic graph also makes debugging very easy. The 
Pytorch provides maximum flexibility and speed during implementing and build-
ing deep neural network.

4.3 Theano

Theano is designed by Montreal Institute for Learning Algorithms (MILA), 
which is very famous after their deployment, but unfortunately, there is no sup-
port after version 1.0.0 (November 2017). It is a python library designed for code 
compilation optimization [25]; it is primarily used for mathematical operations 
like multi-dimensional arrays. Theano was far better than other python libraries 
like Numpy in terms of speed, computing symbolic graphs, and stability optimiza-
tions. Tensor operations, GPU computation, and parallelism are also supported by 
Theano.

4.4 Microsoft cognitive toolkit (CNTK)

CNTK is used for commercial-grade distributed deep learning. It can be used as 
a standalone tool for machine learning or also can be included as a library in C++ 
programs, python, and C#; its model evaluation functionality can be also used 
from Java programs. It supports ONNX that allows sharing model with frameworks 
Caffe2, MXNet, and PyTorch [26]. CNTK can be used only on Linux and Windows. 
The CNTK is considered as a powerful machine learning platform similar surge of 
performance as compared to other widely used platforms [27].

4.5 Keras

Keras is a powerful library written in python; it uses TensorFlow, Theano, and 
CNTK as a framework because it does not have their framework. Keras can work on 
GPUs and CPUs and can also support RNNs and CNNs. The beauty of Keras is it has 
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the ability of fast and easy prototyping; Keras is user-friendly. It has been ranged 
one of the most cited API in 2018 and has enough number of users on board.

4.6 Deep learning 4J

It is distributed open-source, robust deep learning framework for Java designed 
by Skymind [28] which is added a lot to Java ecosystem and eclipse foundation. 
It has compatibility with Clojure and Scala APIs just like Keras; it is also able to 
work with both CPUs and GPUs. It is widely used for academics and industrial 
applications.

4.7 Torch

It is a scientific computing open-source machine learning framework released in 
October 2002; it is not able to work on CPUs; it is only made to focus on GPUs accel-
erated computing. It is developed in programming language C and based on Lua, a 
contribute in a LuaJIT, a scripting language. Max OSX and Ubuntu 12+ can use this 
framework, although they have Platform for Windows, but their implementations 
are not supported officially [29].

4.8 Caffe and Caffe2

CAFFE (Convolutional Architecture for Fast Feature Embedding) created by 
Berkeley AI Research (BAIR) is a framework for deep learning. It is developed 
in C++ with a python interface. Caffe2 was introduced by the research group of 
Facebook in 2017, but Caffe2 was merged in PyTorch in March 2018. It supports 
multiple platforms, that is, Mac OS X, Windows, Linux, iOS, and Android [30].

4.9 Apache MXNet

An MXNet is a fast-scalable deep learning platform that supports many pro-
gramming languages, i.e., Scala, Julia, C++, R, Python, Gluon API, and Perl APIs. 
Like Torch, it is also made only for GPUs, and it is very competent in multi GPUs 
implementations. The Apache MXNet is scalable flexible and portable, and due to 
these qualities, it attracts many users.

5. Training algorithms

One of the most important parts of deep learning is learning algorithms. The 
deep neural network can be differentiated only through the number of layers; if the 
number of layers increases, the network becomes deeper and more complex. Each 
layer has its specific function or can detect or help in the detection of the special 
feature.

According to the author [31], if the problem is face recognition, the first layer 
has the responsibility to recognize edges, the second has to detect higher features 
such as the nose, eye, ears, etc., the next layer can further dig out the features, and 
so on. Thus, each layer is developed earlier to the development of training algorithm 
like gradient descent; that's why these kinds of classifiers are not suitable for a 
dataset with huge volume or variation. This was discussed by Yann et al. [32]; they 
further concluded that a system with less manual and more automatic design can 
give better results in pattern recognition.



Advances and Applications in Deep Learning

12

4.1 TensorFlow

The TensorFlow is new and open-source platform for differential programming; 
it was developed by Google team called Google brain and was first released in 2015 
[24]. In February 2017, they released version 1.0.0; TensorFlow can work on CPU 
and GPU; it is available for Mac, Linux, and windows and also for mobile com-
puting platform android and iOS. It is the most famous machine learning library 
in the world today. Its best-supported client language is python but there is also 
interface available in C++, Java, and GO. It is easy to use and have Keras integration. 
TensorFlow has many of its versions available like for mobiles TensorFlow lite, for 
industry TensorFlow Serving, etc.

4.2 Pytorch

Pytorch is also machine learning and deep learning library, based on torch 
library. It was initially released by Facebook's AI Research lab (FAIR) in 2016. 
Pytorch has two high-level features, Tensor computing with graphics processing 
units (GPU), and auto-diff based deep neural network. It is too easy in Pytorch to 
move tensors to and from GPU. Pytorch Mobile is the version of Pytorch used for 
mobiles. There are some key features of Pytorch; the first feature is called impera-
tive programming; most of the python code is imperative; this type of program-
ming is more flexible. The other feature of Pytorch is dynamic computation graphs, 
it run time the system generates the graph structure, dynamic graph work well for 
dynamic networks like RNN, dynamic graph also makes debugging very easy. The 
Pytorch provides maximum flexibility and speed during implementing and build-
ing deep neural network.

4.3 Theano

Theano is designed by Montreal Institute for Learning Algorithms (MILA), 
which is very famous after their deployment, but unfortunately, there is no sup-
port after version 1.0.0 (November 2017). It is a python library designed for code 
compilation optimization [25]; it is primarily used for mathematical operations 
like multi-dimensional arrays. Theano was far better than other python libraries 
like Numpy in terms of speed, computing symbolic graphs, and stability optimiza-
tions. Tensor operations, GPU computation, and parallelism are also supported by 
Theano.

4.4 Microsoft cognitive toolkit (CNTK)

CNTK is used for commercial-grade distributed deep learning. It can be used as 
a standalone tool for machine learning or also can be included as a library in C++ 
programs, python, and C#; its model evaluation functionality can be also used 
from Java programs. It supports ONNX that allows sharing model with frameworks 
Caffe2, MXNet, and PyTorch [26]. CNTK can be used only on Linux and Windows. 
The CNTK is considered as a powerful machine learning platform similar surge of 
performance as compared to other widely used platforms [27].

4.5 Keras

Keras is a powerful library written in python; it uses TensorFlow, Theano, and 
CNTK as a framework because it does not have their framework. Keras can work on 
GPUs and CPUs and can also support RNNs and CNNs. The beauty of Keras is it has 

13

Advancements in Deep Learning Theory and Applications: Perspective in 2020 and beyond
DOI: http://dx.doi.org/10.5772/intechopen.92271

the ability of fast and easy prototyping; Keras is user-friendly. It has been ranged 
one of the most cited API in 2018 and has enough number of users on board.

4.6 Deep learning 4J

It is distributed open-source, robust deep learning framework for Java designed 
by Skymind [28] which is added a lot to Java ecosystem and eclipse foundation. 
It has compatibility with Clojure and Scala APIs just like Keras; it is also able to 
work with both CPUs and GPUs. It is widely used for academics and industrial 
applications.

4.7 Torch

It is a scientific computing open-source machine learning framework released in 
October 2002; it is not able to work on CPUs; it is only made to focus on GPUs accel-
erated computing. It is developed in programming language C and based on Lua, a 
contribute in a LuaJIT, a scripting language. Max OSX and Ubuntu 12+ can use this 
framework, although they have Platform for Windows, but their implementations 
are not supported officially [29].

4.8 Caffe and Caffe2

CAFFE (Convolutional Architecture for Fast Feature Embedding) created by 
Berkeley AI Research (BAIR) is a framework for deep learning. It is developed 
in C++ with a python interface. Caffe2 was introduced by the research group of 
Facebook in 2017, but Caffe2 was merged in PyTorch in March 2018. It supports 
multiple platforms, that is, Mac OS X, Windows, Linux, iOS, and Android [30].

4.9 Apache MXNet

An MXNet is a fast-scalable deep learning platform that supports many pro-
gramming languages, i.e., Scala, Julia, C++, R, Python, Gluon API, and Perl APIs. 
Like Torch, it is also made only for GPUs, and it is very competent in multi GPUs 
implementations. The Apache MXNet is scalable flexible and portable, and due to 
these qualities, it attracts many users.

5. Training algorithms

One of the most important parts of deep learning is learning algorithms. The 
deep neural network can be differentiated only through the number of layers; if the 
number of layers increases, the network becomes deeper and more complex. Each 
layer has its specific function or can detect or help in the detection of the special 
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Backpropagation is the solution; it takes information from the data without 
going through classifiers and finds the representation needed for recognition. List 
of few famous training algorithms is listed below.

5.1 Gradient descent

In statistics, data science, and machine learning, we optimize a lot of stuffs; 
when we fit a line with linear regression, we optimize the intercept and slope; 
when we use logistic regression, we optimize a squiggle; when we use t-SNE, we 
optimize clusters. The gradient descent is used to optimize all these and tons of 
others as well.

Gradient descent algorithm is similar to Newton's roots finding algorithm of 2D 
function. The methodology is very simple; just pick a point randomly on a curve 
and move toward the right or left along x-axis depending on the positive and nega-
tive value of the slope of the function at the given point up-till the value of y-axis, 
that is, function or f(x) becomes zero. There is the same concept behind the gradi-
ent descent; we move or traverse along a specific path in many-dimensional space 
weight when the error rate is reduced to your limits than we stop. It is one of the 
underlying concepts for most of deep learning and machine learning algorithms.

  C =   1 _ 2     (Yexpected − Yactual)    2   (1)

5.2 Stochastic gradient descent

A method used for optimizing an objective function with the iterative method is 
called stochastic gradient descent. It can also be called gradient descent optimiza-
tion. Stochastic gradient descent would randomly pick one sample for each step 
and from that, just use this one sample to calculate the derivatives, thus in super 
sample example, stochastic gradient descent reduced the number of terms by 
computed by 3.

If we had one million samples than the stochastic gradient descent would reduce 
the number of terms by computed by factor of one million. In stochastic gradient 
descent, when minibatch of the number of samples finished running than updates 
are applied, in here update of weights is more frequent, so we reach a global mini-
mum in less time (Figure 7).

Figure 7. 
Comparison of GD and SGD.
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5.3 Momentum

In stochastic gradient descent to update the weight or to calculate step size, a fixed 
multiplier is used as a learning rate; this can cause the update to overshoot a potential-
minima; if the gradient is too steep or delay, the convergence of the gradient is noisy. 
The concept of momentum used in Physics is velocity exponentially decreasing an 
average of gradient [33]. This prevents the descent going in the wrong direction.

5.4 Levenberg-Marquardt algorithm

This type of algorithm is used for curve fitting or non-linear least-squares 
problems. This algorithm is also called as deep least-square; these kinds of issues 
arise usually in the least-squares curve fitting. It was first introduced by Kenneth 
Levenberg in 1944, although it was rediscovered by statistician called Donald 
Marquardt in 1963.

5.5 Backpropagation through time

It is one of the famous and standard methods used to train the recurrent neural 
network. It was developed independently by several researchers. Unlike general-
purpose optimization techniques, it is faster in training RNN. The backpropagation 
through time also has issues with local optima [34].

6. Routine challenges of deep learning

According to Google trends graph more and more expert and professionals 
have attracted toward deep learning in last five year; the percentage of profession-
als increased from 12 to 100% [35, 36]. Deep learning is used everywhere, that is, 
bio-informatics, computer vision, IoT security, health-care, e-commerce, digital 
marketing, natural language processing, and many more [37, 38]. Because of the 
very hot research area, there must have some challenges which are enlisted below.

6.1 Non-contributing columns or inputs

When dealing with data or making a model, several inputs are not necessary for 
finding any feature, so it is advised to drop un-necessary attributes. There is also 
necessary to find one best column and make it separate from the dataset; it can be 
done using numpy array in Keras; but it is difficult and challenging to find best 
match attribute.

6.2 Number of hidden layers

The number of hidden layers is directly propositional to computational com-
plexity and deepness of the network. To deal with a large number of layers require a 
high computational cost, difficult to manage a large number of neurons.

6.3 Optimization algorithms

In model optimizations, gradient descent optimizer helps to make the model 
cost minimum by adjusting the value; choosing an optimizer is also a challenging 
task to do, because sometimes it makes your cost of model high rather than decreas-
ing the model cost.
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6.4 Loss function

Is from the name indicate loss function, it estimates the loss or the difference 
between the expected outcome and the actual outcome the formula for loss func-
tion is listed below.

  Floss = Expected outcome − actual outcome  (2)

There are many different ways to calculate the loss function; choosing a loss 
function is also one of the essential and challenging tasks of deep learning

6.5 Activation function

There are many different activation functions; every activation function does 
not produce the same results; sigmoid activation function shows good results 
with binary classification problem. One needs to be careful about Tanh activation 
function because of the vanishing gradient problem. In multi-labeled classification, 
softmax is the best option; Relu should be used when there is much zeros in the 
input side because Relu is good in dead neuron generation. It is also a point to use 
the required activation function.

6.6 Epoch

When the dataset is passed backwards and forward through the whole neural 
network, it is called one epoch, as after every epoch value of weights assigned is 
analyzed to make model. The weights are changed, checked, and tested in every 
cycle for the same dataset simulation. The main memory is keeping the record 
of all the training data; sometimes it is not possible to keep all the record in main 
memory, like for larger datasets, so the epoch is brought to memory in divided or 
batches form, and finally the result is represented as an epoch output. Dealing with 
epoch is also a challenging task in deep learning.

7. Available open-source datasets

Research in machine learning and deep learning is started since last many 
decades hence significant improvement it brings to the society in terms of various 
application-based on deep learning and machine learning. There are many freely 
available datasets on the web which can be used by researchers for various purposes.

Image datasets (Table 1):

Pascal VOC MS COCO

MNIST handwritten digits NORB

CIFAR10/CIFAR100 color images data set with COIL100

Caltech101 Google’s Open Images

Caltech 256 COIL 20

The dataset of street view LabelMe

STL-10 ImageNet

Table 1. 
Open source image datasets.
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Geospatial datasets available online:

1. NEXRAD

2. OpenstreetMAP

3. Landsat8

Dataset available for text (Table 2):

Artificial datasets:

1. Arcade Universe

2. Dataset inspired from baby-AIschool

3. All images and question datasets

4. Deep vs. shallow comparison ICML

5. Background correlation

6. Rectangles data

7. Mnist variations

Facial datasets (Table 3):

Google books 
Ngrams

Yelp open dataset 20 newsgroups

UCI’s Spambase 
(Older)

Prediction UCI machine learning 
repository

Text classification 
datasets

SQuAD Google books 
Ngrams

Broadcast news WikiText

Penn Treebank Reuters news 
dataset

Billion words dataset: Common crawl

Table 2. 
Text open-source datasets.

Labeled faces in the 
wild

UMD faces annotated 
dataset

CASIA WebFace facial

MS-Celeb-1M Olivetti Multi-Pie

JACFEE FERET mmifacedb

Indian face database The Yale face database Mut1nyFace/head segmentation dataset

Table 3. 
Databases for face recognitions.
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Recent additions of datasets (Table 4):

Video datasets:

For video only one and big and diverse labeled dataset available is 
Youtube-8M [39].

The UZH-FPV drone 
racing dataset

North Korean missile test 
database

Flickr-Faces-HQ Dataset (FFHQ )

Hotels-50K MIMIC-CXR Google Audioset

Two new evaluation 
data-sets

Open-source biometric data 
recognition

Uber 2B trip data

Yelp Open Dataset Core50 Data portals

Open data monitor Quandl data portal Mutiny face/head segmentation 
dataset

Awesome public dataset Head CT scan dataset Open datasets

WAPo Chess dataset NLP datasets

Table 4. 
Free databases developed recently.
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Chapter 2

Advances in Convolutional Neural
Networks
Wen Xu, Jing He, Yanfeng Shu and Hui Zheng

Abstract

Deep Learning, also known as deep representation learning, has dramatically
improved the performances on a variety of learning tasks and achieved tremendous
successes in the past few years. Specifically, artificial neural networks are mainly
studied, which mainly include Multilayer Perceptrons (MLPs), Convolutional Neu-
ral Networks (CNNs) and Recurrent Neural Networks (RNNs). Among these net-
works, CNNs got the most attention due to the kernel methods with the weight
sharing mechanism, and achieved state-of-the-art in many domains, especially
computer vision. In this research, we conduct a comprehensive survey related to the
recent improvements in CNNs, and we demonstrate these advances from the low
level to the high level, including the convolution operations, convolutional layers,
architecture design, loss functions, and advanced applications.

Keywords: deep learning, CNNs, kernel methods, weight sharing,
comprehensive survey

1. Introduction

Convolutional Neural Networks (CNNs) are specially designed to handle data
that consists of multiple arrays/matrixes such as an image composed of three
matrixes in RGB channels [1]. The key idea behind CNNs is the convolution oper-
ation, which is to use multiple small kernels/filters to extract local features by
sliding over the same input. Each kernel can output a feature map and all the feature
maps are concatenated together, this is also known as a convolutional layer and it is
the core component in a CNN. Note that these concatenated maps can be further
processed by the next layer. To reduce the computational cost, the pooling opera-
tion such as maximum pooling is usually applied on these feature maps. A typical
CNN is usually structured as a series of layers, including multiple convolutional
layers and a few of fully connected layers. For example, the famous LeNet [2]
consists of two convolutional layers and three fully connected layers, and the
pooling operation is used after each convolutional layer.

In addition to building a neural network, a loss function is essential to measure
the model performance. Therefore, the process of training a CNN model is
transformed into an optimization problem, which normally seeks to minimize the
value of the loss function over the training data. Specifically, a gradient-descent
based algorithm is usually adopted to iteratively optimize the parameters in a CNN.

Figure 1 shows the high-level abstraction of CNNs in this survey. Specifically,
we firstly introduce two types of convolution operations in Section 2. Then four
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methods are summarized for constructing convolutional layers in CNNs in Section
3. In Section 4, we group the current CNN architectures into three types: encoder,
encoder-decoder and GANs. Next, we discuss two main types of loss functions in
Section 5. In Section 6, we give the advanced applications based on the three types
of CNN structures. Finally in Section 7, we conclude this research and give future
trends.

2. Convolution operations

The main reason why CNNs are so successful on a variety of problems is that
kernels (also known as filters) with fixed numbers of parameters are adopted to
handle spacial data such as images. In particular the weight sharing mechanism can
help reduce the number of parameters for low computational cost while remaining
the spacial invariance properties. In general, there are mainly two types of convo-
lution operations, including basic convolution and transposed convolution.

2.1 Basic convolution and dilated kernels

As shown on the left in Figure 2, convolution operation essentially is a linear
model for the local spacial input. Specifically, it only performs the sum of element-
wise dot products between the local input and the kernels (usually including a bias),
and output a value after an activation function. Each kernel slides overall spacial
locations in the input with a fixed step. The result is that we can get an 1-channel
feature map. Note that there are generally many kernels in one convolutional layer,
and all of the output feature maps are concatenated together, e.g., if the number of
kernels used in this convolutional layer isDO, we can get anO∈R3�3�DO feature map.

While the kernel size of 3� 3 is widely used in current CNNs, we may need
large receptive fields in the input for observing more information during each
convolution operation. However, if we directly increase the size of kernels such as

Figure 1.
High-level abstraction of convolutional neural networks in this survey.

Figure 2.
Left:A demonstration of basic 2D convolution with a 3� 3�DI kernel (stride = 1, padding = 0), I∈R5�5�DI is
the spacial input and O∈R3�3 is the 1-channel output feature map. Right:A dilated kernel for increasing the
receptive fields in the input, where the empty space between each element represents 0.

24

Advances and Applications in Deep Learning

K ¼ 9� 9�DI, where DI is the depth of input, the total number of parameters will
increase dramatically and the computational cost will be prohibitive. In practical, as
shown on the right in Figure 2, we can insert zeros between each element in the
kernels and get dilated kernels. For example, dilated kernels have been applied in
many tasks such as image segmentation [3], translation tasks [4] and speech
recognition [5].

2.2 Transposed convolution and dilated kernels

Normally the size of output feature maps generated from the basic convolution
is smaller than the input space (i.e., the dimension of input I is 5� 5�DI and the
dimension of output O is 3� 3 in Figure 2), which results in high-level abstraction
by using multiple convolutional layers. Transposed convolution can be seen as a
reverse idea from basic convolution. Its primary purpose is to obtain an output
feature map that is bigger than the input space. As shown on the left in Figure 3, the
size of the input I is 2� 2�DI, after transposed convolution, we can have a 4� 4
feature map O. Specifically, during transposed convolution, each output filed in O is
just the kernel multiplied by the scalar value of one element in I.

Similarly, we can still use dilated kernels in transposed convolution. The main
reason why we need transposed convolution is that it is the fundamental idea to
construct a decoder network, which is used to map a latent space into an output
image, such as the decoders in U-Net [6] and GANs. Specifically, the transposed
convolution is widely used in tasks such as model visualization [7], image segmen-
tation [6], image classification [8] and image super-resolution [9].

3. Convolutional layers

The core components in CNNs are convolutional layers. In the last section, we
have demonstrated two types of convolution operations and they are the main idea
to construct convolutional layers. In this part, we summarize the main methods in
deep learning for building convolutional layers, including basic convolutional
layers, convolutional layers with shortcut connection, convolutional layers with
mixed kernels and convolutional capsule layers.

3.1 Basic convolutional layers

Recall that there are normally DO kernels in one convolutional layer, where DO
also denotes the depth of the output feature map. In other words, the number of

Figure 3.
Left: A demonstration of transposed 2D convolution with a 3� 3�DI kernel (stride = 1, padding = 0),
I∈R2�2�DI is the spacial input and O∈R4�4 is the 1-channel output feature map. Note that the receptive
fields in O can overlap and we normally sum the values where output overlaps. Right: A dilated kernel for
increasing the receptive fields in the input, where the empty space between each element represents 0.
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channels in the output map depends on the number of kernels used in the
convolutional layer. More formally, we can denote it as

O ¼
XDO

i¼1
I ∗Ki (1)

where ∗ represents the convolution operation which has been addressed above,P
denotes the concatenation operation and O∈RWOHODO is the output feature map.

After convolution operation, a no-linear activation function is applied on each
element in the concatenated feature map, which can be denoted as

O ¼ σ Oð Þ (2)

While there are many variants related to the activation function, the typical ones
which are widely adopted are ReLU σ xð Þ ¼ max 0, xð Þ, tanh σ xð Þ ¼ ex�e�x

exþe�x and
sigmoid σ xð Þ ¼ 1

1þe�x. Note that the non-linear activation functions are essential for
building multi-layer networks, as it shows that a two-layer network with enough
neurons can uniformly approximate any functions, which is also known as universal
approximation theorem [10].

Note that after convolution operation, the width and height of the output feature
map O∈RWOHODO are usually close to the width and height of the input I∈RWIHIDI .
To further reduce the dimensions of the output feature maps for reducing compu-
tational cost, the pooling operation is widely used in the current CNNs. Specifically,
for 2D pooling operation, two main hyper-parameters are involved: the filter size
F � F and stride S. And after pooling operation, the width of the feature map O
is reduced to WO ¼ WO � Fð Þ=Sþ 1 and the height of the feature map O is
HO ¼ HO � Fð Þ=Sþ 1. In brief, we can have

O ¼ pool Oð Þ (3)

where poolðÞ denotes the pooling operation discussed above. Typical pooling
operations includes max-pooling and average-pooling. A general choice to conduct
pooling operation is to use stride ¼ 2 with 2� 2 filter, which means that each 4
pixels in the 2D feature map Owill be compressed into 1 pixel. Using a toy example,

suppose that there are only four pixels O ¼ 1 2

3 4

� �
, then poolmax Oð Þ ¼ 4½ � or

poolavg Oð Þ ¼ 2:5½ �.

3.2 Convolutional layers with shortcut connection

It is true that deep neural networks normally can learn better representation
from the data than shallow neural networks. However, stacking more layers in a
CNN can lead to the problems of vanishing or exploding gradients, which make the
networks hard to optimize. A simple and effective way to address this problem is to
use shortcut connections, which can help directly transform the information from
the previous layer to the current layer in a network.

O ¼ σ
XDO

i¼1
Icurrent ∗Ki

 !
⊕ Iprevious

 !
(4)

Note that ⊕ can denote two types of operations.
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• Element-Wise Sum: Each element in Icurrent is added by the corresponding
element in Iprevious, which means that the dimensions of Icurrent and Iprevious must
be the same, and the result is that we can get an output O of the same size. This
type of operation is well known as identity shortcut connection and it is the
core idea in ResNet [11, 12]. The main advantage is that it does not add any
extra parameters or computational complexity. The disadvantage is due to its
inflexible.

• Concatenation:We can concatenate the current output and previous input
together. Suppose the size of the current output feature map is WHDO and the
size of the previous input is WHDI, after concatenation, we can have a
concatenated feature map O with a size of WH DO þDIð Þ. Note that the widths
and heights of input and output must be the same. The advantage is that we
can remain the information from the previous layers. The disadvantage is that
we have to use extra parameters to handle the concatenated feature map O.
(i.e., the depth of kernels for processing feature map O is DO þDIð Þ.)
Specifically, this type of convolutional layers is broadly adopted in networks
for image segmentation such as U-Net [6].

3.3 Convolutional layers with mixed kernels

So far we have demonstrated that we normally use many convolutional kernels
with the same size in one convolutional layer such as 3� 3. To enlarge the receptive
field, we may adopt the dilated kernels instead. However, it is difficult to know
what size of kernels we should use in a CNN. Naturally, we may apply different
sizes of kernels in each convolutional layer. E.g., both 1� 1, 3� 3 and 5� 5 kernels
are adopted in one convolutional layer. More formally, we define one convolutional
layer with mixed kernels as

O ¼ σ
XD1

O

i¼1
I ∗K1�1

i þ
XD2

O

i¼1
I ∗K3�3

i þ
XD3

O

i¼1
I ∗K5�5

i þ pool Ið Þ
0
@

1
A (5)

where pool(I) denotes the pooling operation such as max-pooling. Therefore,
the size of the output feature map is WOHO D1

O þD2
O þD3

O þDI
� �

.
However, if we directly add different sizes of kernels in one convolutional layer,

the computational cost involved will increase sharply. In the inception module
[13, 14], a 1� 1 convolutional layer is applied before 3� 3 and 5� 5 convolutional
layers in order to reduce the convolutional cost.

3.4 Convolutional capsule layers

“The pooling operation used in convolutional neural networks is a big mistake and
the fact that it works so well is a disaster.”—Geoffrey Hinton.

In general, pooling operation is essential to reduce the size of output feature
maps so that we can obtain high-level abstractions from input by stacking multiple
convolutional layers in a CNN. However, the cost is that some information in the
feature maps has been abandoned such as conducting max-pooling.

In 2017 [15], Hinton et al. proposed an alluring version of convolutional archi-
tectures, which is known as capsule networks, followed by the updated versions in
2018 [16] and 2019 [17]. The convolutional capsule layers in capsule networks are
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use shortcut connections, which can help directly transform the information from
the previous layer to the current layer in a network.

O ¼ σ
XDO

i¼1
Icurrent ∗Ki

 !
⊕ Iprevious

 !
(4)

Note that ⊕ can denote two types of operations.
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• Element-Wise Sum: Each element in Icurrent is added by the corresponding
element in Iprevious, which means that the dimensions of Icurrent and Iprevious must
be the same, and the result is that we can get an output O of the same size. This
type of operation is well known as identity shortcut connection and it is the
core idea in ResNet [11, 12]. The main advantage is that it does not add any
extra parameters or computational complexity. The disadvantage is due to its
inflexible.

• Concatenation:We can concatenate the current output and previous input
together. Suppose the size of the current output feature map is WHDO and the
size of the previous input is WHDI, after concatenation, we can have a
concatenated feature map O with a size of WH DO þDIð Þ. Note that the widths
and heights of input and output must be the same. The advantage is that we
can remain the information from the previous layers. The disadvantage is that
we have to use extra parameters to handle the concatenated feature map O.
(i.e., the depth of kernels for processing feature map O is DO þDIð Þ.)
Specifically, this type of convolutional layers is broadly adopted in networks
for image segmentation such as U-Net [6].

3.3 Convolutional layers with mixed kernels

So far we have demonstrated that we normally use many convolutional kernels
with the same size in one convolutional layer such as 3� 3. To enlarge the receptive
field, we may adopt the dilated kernels instead. However, it is difficult to know
what size of kernels we should use in a CNN. Naturally, we may apply different
sizes of kernels in each convolutional layer. E.g., both 1� 1, 3� 3 and 5� 5 kernels
are adopted in one convolutional layer. More formally, we define one convolutional
layer with mixed kernels as

O ¼ σ
XD1

O

i¼1
I ∗K1�1

i þ
XD2

O

i¼1
I ∗K3�3

i þ
XD3

O

i¼1
I ∗K5�5

i þ pool Ið Þ
0
@

1
A (5)

where pool(I) denotes the pooling operation such as max-pooling. Therefore,
the size of the output feature map is WOHO D1

O þD2
O þD3

O þDI
� �

.
However, if we directly add different sizes of kernels in one convolutional layer,

the computational cost involved will increase sharply. In the inception module
[13, 14], a 1� 1 convolutional layer is applied before 3� 3 and 5� 5 convolutional
layers in order to reduce the convolutional cost.

3.4 Convolutional capsule layers

“The pooling operation used in convolutional neural networks is a big mistake and
the fact that it works so well is a disaster.”—Geoffrey Hinton.

In general, pooling operation is essential to reduce the size of output feature
maps so that we can obtain high-level abstractions from input by stacking multiple
convolutional layers in a CNN. However, the cost is that some information in the
feature maps has been abandoned such as conducting max-pooling.

In 2017 [15], Hinton et al. proposed an alluring version of convolutional archi-
tectures, which is known as capsule networks, followed by the updated versions in
2018 [16] and 2019 [17]. The convolutional capsule layers in capsule networks are
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very similar to the traditional convolutional layers. The main difference is that each
capsule (i.e., an element in convolutional feature maps) has a weight matrix Wij

(i.e., the sizes are 8� 16 in [15] and 4� 4 in [16] respectively).

4. Architecture design

Although numerous variants of CNN architectures for solving different tasks
are proposed from the deep learning community every year, their essential
components and over-all structures are very similar. We group the recent classic
network structures into three main types, including encoder, encoder-decoder and
GANs.

4.1 Encoder

In 1990, LeCun et al. proposed a seminal network called LeNet [2], which help
establish the modern CNN structure. Since then, many new methods and composi-
tions are proposed to handle the difficulties encountered in training deep networks
for challenging tasks such as objective detection and recognition in computer vision.
Some representative works in recent years are AlexNet [18], ZFNet [7], VGGNet
[19], GoogleNet [13], ResNet [11], Inception [14]. As mentioned earlier, new
methods for constructing convolutional layers in these networks are proposed, e.g.,
shortcut connection [11] and mixed kernels [14, 20].

In general, the above-mentioned networks can all be regarded as encoders, in
which each input such as an image is encoded into a high-level feature representa-
tion, as shown on the left in Figure 4. And this encoded representation can be
further used for, such as image classification, object detection etc. In some litera-
tures, an encoder is also called as a feature extractor. Specifically, the basic
convolutional layers are the main components for constructing an encoder network,
by stacking multiple layers, each layer in the network can learn high-level abstrac-
tions from previous layers [1]. More formally, an encoder network can be written as

Z ¼ F encoder X;Θð Þ (6)

where X is the input, Θ is the parameters to learn (e.g., kernels and bias) in the
network and Z denotes the encoded representation such as a vector.

4.2 Encoder-decoder

In some specific tasks such as image segmentation [20], our goal is to map an
input image to a segmented output image rather than an abstraction. An encoder-
decoder structure is specifically designed for solving this type of task. There are

Figure 4.
Left: An encoder network. Middle: An encoder-decoder network. Right: Generative adversarial networks.
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many possible ways to implement an encoder-decoder structure, and many variants
have also been proposed to improve the drawbacks in the last few years. A naive
version of encoder-decoder network which was introduced in [20] can be denoted as

Z ¼ F encoder X; θencoderð Þ (7)

X̂ ¼ F decoder Z; θdecoderð Þ (8)

where F encoder denotes an encoder CNN to map an input sample to a representa-
tion Z and F decoder represents a decoder CNN to reconstruct the input sample with
Z. Specifically, CNN encoders usually conducts basic convolution operations (i.e.,
Section 2.1) and CNN decoders perform transposed convolution operations (i.e.,
Section 2.2).

As shown in the middle in Figure 4, an encoder-decoder network is still one
complete network and we can train it with an end-to-end method. Note that there
are generally many convolutional layers in each coder network, which results that it
can be challenging to train a deep encoder-decoder network directly. Recall that the
shortcut connection is often adopted to address the problems in deep CNNs. Natu-
rally, we can add connections between the encoder and the decoder. An influential
network based on this idea is U-Net [6], which is widely applied in many challeng-
ing domains such as medical image segmentation. The above two equations can also
be rewritten as a composition of two functions.

X̂ ¼ F decoder∘F encoder X;Θð Þ ¼ F autoencoder X;Θð Þ (9)

Specifically, in unsupervised learning, an encoder-decoder network is also well
known as autoencoder. And there are many variants of autoencoders proposed in
recent years, some famous ones including variational autoencoder [21], denoising
variational autoencoder [22] and conditional variational autoencoder [23, 24].

4.3 GANs

Since generative adversarial networks were firstly proposed by Goodfellow et al.
[25] in 2014, this type of architectures for playing two-player minimax game has
been most extensively studied. Partly because it is an unsupervised learning method
and we can obtain a fancy generator network which can help generate fake exam-
ples from a latent space (i.e., a vector with some random noise). On the right in
Figure 4 shows the basic structure of GANs, in which a generator network can map
some input noise into a fake example and make it look as real as possible and a
discriminator network always tries to identify the fake sample from its input. By
iteratively training the two players, they can both improve their methods. More
formally, we can have

Ŷ ¼D G L; θG
� �

;Xreal; θD
� �

(10)

where G denotes the generator function and D represents the discriminator
function. L is the latent space input in the generator, and its output is a fake
example. Xreal is the real samples we have collected. And Ŷ ∈ 0, 1½ � is the predicted
result of the discriminator to show whether the input is real or fake.

As shown in Table 1, numerous variants of GANs architectures can be found in
the recently published literatures and we broadly summarize these representative
networks according to their published time. Note that the fundamental methods
behind these architectures are very similar.
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many possible ways to implement an encoder-decoder structure, and many variants
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version of encoder-decoder network which was introduced in [20] can be denoted as
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Z. Specifically, CNN encoders usually conducts basic convolution operations (i.e.,
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can be challenging to train a deep encoder-decoder network directly. Recall that the
shortcut connection is often adopted to address the problems in deep CNNs. Natu-
rally, we can add connections between the encoder and the decoder. An influential
network based on this idea is U-Net [6], which is widely applied in many challeng-
ing domains such as medical image segmentation. The above two equations can also
be rewritten as a composition of two functions.

X̂ ¼ F decoder∘F encoder X;Θð Þ ¼ F autoencoder X;Θð Þ (9)

Specifically, in unsupervised learning, an encoder-decoder network is also well
known as autoencoder. And there are many variants of autoencoders proposed in
recent years, some famous ones including variational autoencoder [21], denoising
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4.3 GANs
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[25] in 2014, this type of architectures for playing two-player minimax game has
been most extensively studied. Partly because it is an unsupervised learning method
and we can obtain a fancy generator network which can help generate fake exam-
ples from a latent space (i.e., a vector with some random noise). On the right in
Figure 4 shows the basic structure of GANs, in which a generator network can map
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discriminator network always tries to identify the fake sample from its input. By
iteratively training the two players, they can both improve their methods. More
formally, we can have
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where G denotes the generator function and D represents the discriminator
function. L is the latent space input in the generator, and its output is a fake
example. Xreal is the real samples we have collected. And Ŷ ∈ 0, 1½ � is the predicted
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networks according to their published time. Note that the fundamental methods
behind these architectures are very similar.
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5. Loss functions

Before introducing the loss functions, we need to understand that the ultimate
goal to train a neural network F X;Θð Þ is to find a suitable set of parameters Θ so
that our model can achieve good performance on the unseen samples (i.e., test
dataset). The typical way to search Θ in machine learning is to use loss functions as a
criterion during training. In other words, training neural networks is equivalent to
optimizing the loss functions by back-propagation. Accurately, a loss function out-
puts a scalar value which is regarded as a criterion for measuring the difference
between the predicted result and the true label over one sample. And during train-
ing, our goal is to minimize the scalar value over m training samples (i.e., cost
function). Therefore, as shown in Figure 1, loss functions play a significant role in
constructing CNNs.

J ¼ 1
m

Xm
i¼1
Li (11)

where Li denotes a loss function for the training sample i, and J is often known
as cost function, which is just the mean of the sum of the losses over m training
samples (i.e., usually a batch of m training samples is fed into a CNN during each
iteration of training).

Name Year Summary

GANs [25] 2014 The original version of GANs, where G and D are implemented
with fully connected neural networks.

Conditional GANs [26] 2014 Labels are included in G and D.
Laplacian Pyramid GANs
[27]

2015 CNNs with the laplacian pyramid method.

Deep Convolutional GANs
[28]

2015 Transposed convolutional layers are used to construct G.

Bidirectional GANs [29] 2016 An extra encoder was adopted based on the traditional GANs.

Semi-supervised GANs
[30]

2016 The D can also classify the real samples while distinguishing the
real and fake.

InfoGANs [31] 2016 An extra classifier was added into the GANs.

Energy-based GANs [32] 2016 The D was replaced with an encoder-decoder network.

Auxiliary Classifier GANs
[33]

2017 An auxiliary classifier was used in the D.

Progressive GANs [34] 2017 Progressive steps are adopted to explain the networks.

BigGANs [35] 2018 A large GANs with self-attention module and hinge loss.

Self-attention GANs [36] 2019 The self-attention mechanism is proposed to build G and D.
Label-noise Robust GANs
[37]

2019 A noise transition model is included in D.

AutoGANs [38] 2019 The neural architecture search algorithm is used to obtain G and D.
Your Local GANs [39] 2020 A new local sparse attention layer was proposed.

MSG-GANs [40] 2020 There are connections from G to D.

Table 1.
Representative architectures of GANs in recent years.
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Note that there are numerous variants of loss functions used in the deep learning
literature. However, the fundamental theories behind them are very similar. We
group them into two categories, namely Divergence Loss Functions and Margin
Loss Functions. And we also introduce six typical and classic loss functions that are
commonly used for training neural networks.

5.1 Divergence loss functions

Divergence loss functions denote a family of loss functions based on computing
the divergences between the predicted results and true labels, mainly including
Kullback-Leibler Divergence, Log Loss, Mean Squared Error.

5.1.1 Kullback-Leibler divergence

Before introducing the Kullback–Leibler divergence, we need to understand that
the fundamental goal of deep learning is to learn a data distribution Q over the
training dataset so that Q is close to the true data distribution P. Back in 1951,
Kullback-Leibler divergence was proposed to measure the difference between two
distributions on the same probability space [41]. It is defined as

DKL PkQð Þ ¼
X
X

P Xð ÞlogP Xð Þ �
X
X

P Xð ÞlogQ Xð Þ

¼
X
X

P Xð Þ log P Xð Þ
Q Xð Þ

(12)

where DKL PkQð Þ denotes the Kullback–Leibler divergence from Q to P.P
XP Xð ÞlogP Xð Þ is the entropy of P and

P
XP Xð ÞlogQ Xð Þ is the cross entropy of P

and Q. There is also a symmetrized form of the Kullback–Leibler divergence, which
is known as the Jensen–Shannon divergence. It is a measure of the similarity
between P and Q .

JSD PkQð Þ ¼ 1
2
DKL PkPþQ

2

� �
þ 1
2
DKL QkPþ Q

2

� �
(13)

Specifically, JSD PkQð Þ ¼ 0 means the two distributions are the same. Therefore,
if we minimize the Jensen-Shannon divergence, we can make the distribution Q
close to the distribution P. More Specifically, if Q denotes the distribution on data,
and P represents the distribution which is learned by a CNN model. By minimizing
the divergence, we can learn a model which is close to the true data distribution.
This is the main idea of GANs. The loss function of GANs is defined as

min
G

max
D

: X�P Xð Þ logD X;ΘDð Þ þ L�Q Lð Þ log 1�D G L;ΘGð Þ;ΘDð Þð Þ (14)

where G denotes the generator and D denotes the discriminator. And our goal is
to try to make Q G Lð Þð Þ close to P Xð Þ. In other words, when the generative distribu-
tion of fake examples is close to the distribution of real samples, the discriminator
cannot distinguish between the fake and the real.

5.1.2 Log loss

Log loss is widely used in the current deep neural networks due to its simplicity
and power. The binary log loss function is defined as
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Note that there are numerous variants of loss functions used in the deep learning
literature. However, the fundamental theories behind them are very similar. We
group them into two categories, namely Divergence Loss Functions and Margin
Loss Functions. And we also introduce six typical and classic loss functions that are
commonly used for training neural networks.
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Specifically, JSD PkQð Þ ¼ 0 means the two distributions are the same. Therefore,
if we minimize the Jensen-Shannon divergence, we can make the distribution Q
close to the distribution P. More Specifically, if Q denotes the distribution on data,
and P represents the distribution which is learned by a CNN model. By minimizing
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where G denotes the generator and D denotes the discriminator. And our goal is
to try to make Q G Lð Þð Þ close to P Xð Þ. In other words, when the generative distribu-
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Lbinary ¼ �Ylog Ŷ
� �� 1� Yð Þ log 1� Ŷ

� �
Y ∈ 0, 1½ �ð Þ (15)

where Y ∈ 0, 1½ � denotes the binary label for a sample and Ŷ is the predicted
result, (i.e., given a training sample with its corresponding label X,Yf g, we can
have an output predicted result with an encoder network Ŷ ¼ F encoder X,Θð Þ.)

When the learning task is multi-class classification, each sample label is normally

encoded with the one-hot-encoding format, which can be denoted as Y ¼
y1, y2, … , ynclass
� �T, i.e., if the label is 3, then only y3 ¼ 1 and the others are all given
the value of 0. Therefore, the log loss for one sample can be written as

Llog ¼ �
Xnclass
i¼1

1 yi ¼ 1
� �

log ŷi
� �

(16)

where ŷi is the predicted result for the true label yi. 1 yi ¼ 1
� �

denotes the
indicator function, which means that its output is 1 if yi ¼ 1, otherwise it outputs 0.

We may wonder why the log loss is a reasonable choice. Informally, let Y
denotes the data distribution and Ŷ denotes the distribution leaned by our model,
then based on Kullback–Leibler divergence, we can have

DKL YkŶ� � ¼
X

YlogY �
X

YlogŶ (17)

And our goal is to minimize the divergence between Y and Ŷ so that the
distribution obtained by our model is close to the true data distribution. Because
the term

P
YlogY is the entropy related to data, and we only need to optimize the

cross entropy term �PYlogŶ. Therefore, log loss is also well known as
cross-entropy loss.

5.1.3 Mean squared error

Probably the mean squared error is one of the most familiar loss functions as it is
really like the least square loss function. It directly calculates the difference between
the predicted result and the true label, which is denoted as

Lmean ¼ � 1
2

Y � Ŷ
� �2

(18)

One example which can help us deeply understand the mean squared error is
that minimize the mean squared loss of a linear regression model is equivalent to
maximum likelihood. In other words, this is a method to optimize the parameters of
our model so that the distribution learned by our model is most probable under the
observed training data. Therefore, the fundamental goal is still the same as above,
which is to make the model distribution and the data distribution as close as
possible.

5.2 Margin loss functions

Margin loss functions represent a family of margin maximizing loss functions.
The typical functions include Hinge Loss, Contrastive Loss and Triplet Loss. Unlike
the divergence loss functions, margin loss functions calculate the relative distances
between outputs and they are more flexible in terms of training data.
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5.2.1 Hinge loss

Hinge loss is well known to train Support Vector Machine classifiers. Specifi-
cally, there are two main types of hinge losses. The first type is for each sample with
only one correct label, it is denoted as

Lhinge ¼
Xnclass

i6¼k
max 0,Δþ ŷi � ŷk

� �p yk ¼ 1,
Xnclass

i 6¼k
yi ¼ 0

 !
(19)

where yi denotes each element in the one-hot-encoding label, yk is the correct
class. ŷi represents the predicted result of our neural network for each class. Δ ¼ 1 is
the standard choice for the margin. If p ¼ 1, the above loss denotes the standard
Hinge loss, and if p ¼ 2, it is the Squared Hinge loss.

However, in real tasks such as attribute classification, each samples can have
multiple correct labels. e.g., a photo posted on Facebook may include a set of
hashtags. Therefore, the second type for multiple labels is

Lhinge ¼
Xnclass
i¼1

max 0,Δ� δ yi ¼ 1
� �

ŷi
� �p (20)

where δ yi ¼ 1
� � ¼ þ1 if yi ¼ 1, otherwise δ yi ¼ 1

� � ¼ �1. Δ ¼ 1 is still the
common choice for the margin and p ¼ 1 or p ¼ 2.

5.2.2 Contrastive loss

Contrastive loss is specially designed for measuring the similarity of a pair of
training samples. Considering two pairs of samples Xa,Xp

� �
and Xa,Xnf g, where

Xa is known as an anchor sample and Xp denotes the positive sample and Xn

represents the negative sample, Specifically, if the pair Xa,Xp
� �

is matching, then
the loss for the pair is the distance between their outputs from the network
d Za,Zp
� �

. While if the pair Xa,Xnf g is not matching and the distance of their
outputs from the model is small than the pre-defined margin 0,Δ� d Za,Znð Þð Þ>0,
then we need also to calculate the loss. Formally, we can have

Lcontrastive ¼
d Za,Zp
� �

if matched pair

max 0,Δ� d Za,Znð Þð Þ if unmatched pair

 
(21)

where d can be the Euclidean distance, (i.e., d Za,Zp
� �Þ ¼ Za � Znk k2). Alterna-

tively, the above equation can be rewritten as

Lcontrastive ¼ yd Za,Zp
� �þ 1� yð Þmax 0,Δ� d Za,Znð Þð Þ (22)

where y ¼ 1 if the given pair is matching, otherwise y ¼ 0. Δ is the margin which
can affect the loss calculating for the unmatched pairs.

5.2.3 Triplet loss

Triplet loss looks similar to the contrastive loss, but it is a measure of the
difference between the matched pair and the unmatched pair. Considering three
samples Xa,Xp,Xn

� �
, the Triplet loss is denoted as

33

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512



Lbinary ¼ �Ylog Ŷ
� �� 1� Yð Þ log 1� Ŷ

� �
Y ∈ 0, 1½ �ð Þ (15)

where Y ∈ 0, 1½ � denotes the binary label for a sample and Ŷ is the predicted
result, (i.e., given a training sample with its corresponding label X,Yf g, we can
have an output predicted result with an encoder network Ŷ ¼ F encoder X,Θð Þ.)

When the learning task is multi-class classification, each sample label is normally

encoded with the one-hot-encoding format, which can be denoted as Y ¼
y1, y2, … , ynclass
� �T, i.e., if the label is 3, then only y3 ¼ 1 and the others are all given
the value of 0. Therefore, the log loss for one sample can be written as

Llog ¼ �
Xnclass
i¼1

1 yi ¼ 1
� �

log ŷi
� �

(16)

where ŷi is the predicted result for the true label yi. 1 yi ¼ 1
� �

denotes the
indicator function, which means that its output is 1 if yi ¼ 1, otherwise it outputs 0.

We may wonder why the log loss is a reasonable choice. Informally, let Y
denotes the data distribution and Ŷ denotes the distribution leaned by our model,
then based on Kullback–Leibler divergence, we can have

DKL YkŶ� � ¼
X

YlogY �
X

YlogŶ (17)

And our goal is to minimize the divergence between Y and Ŷ so that the
distribution obtained by our model is close to the true data distribution. Because
the term

P
YlogY is the entropy related to data, and we only need to optimize the

cross entropy term �PYlogŶ. Therefore, log loss is also well known as
cross-entropy loss.

5.1.3 Mean squared error

Probably the mean squared error is one of the most familiar loss functions as it is
really like the least square loss function. It directly calculates the difference between
the predicted result and the true label, which is denoted as

Lmean ¼ � 1
2

Y � Ŷ
� �2

(18)

One example which can help us deeply understand the mean squared error is
that minimize the mean squared loss of a linear regression model is equivalent to
maximum likelihood. In other words, this is a method to optimize the parameters of
our model so that the distribution learned by our model is most probable under the
observed training data. Therefore, the fundamental goal is still the same as above,
which is to make the model distribution and the data distribution as close as
possible.

5.2 Margin loss functions

Margin loss functions represent a family of margin maximizing loss functions.
The typical functions include Hinge Loss, Contrastive Loss and Triplet Loss. Unlike
the divergence loss functions, margin loss functions calculate the relative distances
between outputs and they are more flexible in terms of training data.
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5.2.1 Hinge loss

Hinge loss is well known to train Support Vector Machine classifiers. Specifi-
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Lhinge ¼
Xnclass

i6¼k
max 0,Δþ ŷi � ŷk

� �p yk ¼ 1,
Xnclass

i 6¼k
yi ¼ 0

 !
(19)

where yi denotes each element in the one-hot-encoding label, yk is the correct
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max 0,Δ� δ yi ¼ 1
� �

ŷi
� �p (20)
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is matching, then
the loss for the pair is the distance between their outputs from the network
d Za,Zp
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. While if the pair Xa,Xnf g is not matching and the distance of their
outputs from the model is small than the pre-defined margin 0,Δ� d Za,Znð Þð Þ>0,
then we need also to calculate the loss. Formally, we can have
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where d can be the Euclidean distance, (i.e., d Za,Zp
� �Þ ¼ Za � Znk k2). Alterna-

tively, the above equation can be rewritten as
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where y ¼ 1 if the given pair is matching, otherwise y ¼ 0. Δ is the margin which
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Triplet loss looks similar to the contrastive loss, but it is a measure of the
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Ltriplet ¼ max 0,Δþ d Za,Zp
� �� d Za,Znð Þ� �

(23)

Note that minimize the loss function is equivalent to minimizing the distances of
matched pairs and maximizing the distances of unmatched pairs.

6. Advanced applications

One of the most exciting areas in deep learning is that we can apply neural
networks to a numerous number of applications that cannot be solved well or be
handled by the traditional machine learning method. In this section, we summarize
the typical advances that CNNs has achieved based on the three types of CNN
structures.

6.1 Applications with encoders

6.1.1 Image classification

A basic task in machine learning is classification, which is the problem of iden-
tifying to which of a list of labels a new sample belongs, such as the well-known
CIFAR-10 dataset, in which there are 10 categories of images and the goal is to train
a model for correctly classifying an unseen image based on observing the training
dataset. In particular, CNNs have made many breakthroughs on large scale image
datasets such as the ImageNet challenge [18]. As mentioned in Section 4.1, the
classic encoders such as AlexNet [18], ZFNet [7], VGGNet [19], GoogleNet [13],
ResNet [11], Inception [14] are regarded as the milestones in the past few years. The
successes of these encoders are all based on supervised learning, which means that
manual labelling is essential for the dataset such as the ImageNet dataset [42].
Specifically, a labeled dataset is normally divided into training and test dataset (may
also include a validation dataset), and our goal is to achieve good performance on
the test dataset after training a neural network with the training dataset, and the
pre-trained model can be further used for classifying new images that are from the
same data distribution space.

Classification can also be treated as a fundamental problem in machine learning,
the successes of these encoders on image classification also help establish the foun-
dation for many other applications. Specifically, we can utilize an encoder to extract
high-level representation from the low-level input image, and the obtained repre-
sentation can be further used for many other applications.

6.1.2 Object detection

In addition to image classification, object detection is also very important in
computer vision. Image classification gives us the answer to what a given image is,
and object detection is about telling us the specific positions of objects in an image.
Specifically, the goal is to train an encoder to output a suitable bounding box and
associated class probabilities for each object in a given image. Two typical methods
are widely used in the current computer vision, including YOLO [43] and SSD [44].
The core idea of YOLO is that object detection is treated as an regression problem,
which means that each image is divided into multiple grids and each grid cell
outputs a pre-defined number of bounding boxes, the corresponding confidence for
each box and class probabilities [43]. Since the first version of YOLO was proposed,
the updated versions have also been proposed. SSD is a more simple method, which

34

Advances and Applications in Deep Learning

utilizes a set of default boxes with different aspect ratios, and each box outputs the
shape offsets and the class confidences [44].

6.1.3 Pose estimation

The multiple levels of representations learned in the multiple layers of CNNs can
also be used for solving the task of human-body pose estimation. Specifically, there
are mainly two types of approaches, including regression of body joint coordinates
and heat-map for each body part. In 2014, a framework called DeepPose [45] was
introduced to learn pose estimation by a deep CNN, in which estimating human-
body pose is equivalent to regressing the body joint coordinates. There are also some
extension works based on this method, such as a process called iterative error
feedback [46], which encompasses both the input and output spaces of CNN for
enhancing the performance. In 2014, Tompson et al. [47] propose a hybrid archi-
tecture which consists of a CNN and a Markov Random Field, in particular the
output of the CNN for an input image is a heat-map. Some recent works based on
the heat-map method such as [48], in which a multi-context attention mechanism
was proposed to incorporate with CNNs.

6.2 Applications with encoder-decoders

6.2.1 Image restoration

The operation of image restoration is to recover a damaged or corrupt image for
the clean image such as image denoising and super-resolution. Therefore, a natural
way to implement this idea is to utilize a pre-trained encoder-decoder network,
where the encoder can map a noise image into a high-level representation, and the
decoder can transform the representation into an original image. For example, Mao
et al. [49] apply a deep convolutional encoder-decoder network for image restora-
tion, in particular the shortcut connection method is adopted between the encoder
and decoder, which has been demonstrated in Section 3.2. And the transposed
convolution is used for constructing the decoder network, as mentioned in Section
2.2. Similar work in [50] has also been introduced for image restoration, in which a
residual method is used in the network (i.e., in Section 3.2).

6.2.2 Image segmentation

The task of image segmentation is to map an input image into a segmented output
image. The encoder-decoder networks have been developed dramatically in recent
years and achieve a significant impact on computer vision. Specifically, there are
mainly two types of tasks including semantic segmentation and instance segmenta-
tion. In 2015, Long et al. [20] firstly showed that an end-to-end fully CNN can achieve
state-of-art in image segmentation tasks. Similar work has also been introduced in [6]
in 2015, in which a U-Net architecture is proposed for medical image segmentation,
and the main advance in this architecture is that the shortcut connection method is
also used between the encoder and decoder network. Since then, a series of papers
based on these two methods have been published. In particular nowadays the U-Net
based architectures are widely used for the medical image diagnosis.

6.2.3 Image captioning

One of the exciting applications achieved by CNNs is image captioning, which is
to describe the content of an input image with natural language. The basic idea is as
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Ltriplet ¼ max 0,Δþ d Za,Zp
� �� d Za,Znð Þ� �

(23)

Note that minimize the loss function is equivalent to minimizing the distances of
matched pairs and maximizing the distances of unmatched pairs.

6. Advanced applications

One of the most exciting areas in deep learning is that we can apply neural
networks to a numerous number of applications that cannot be solved well or be
handled by the traditional machine learning method. In this section, we summarize
the typical advances that CNNs has achieved based on the three types of CNN
structures.

6.1 Applications with encoders

6.1.1 Image classification

A basic task in machine learning is classification, which is the problem of iden-
tifying to which of a list of labels a new sample belongs, such as the well-known
CIFAR-10 dataset, in which there are 10 categories of images and the goal is to train
a model for correctly classifying an unseen image based on observing the training
dataset. In particular, CNNs have made many breakthroughs on large scale image
datasets such as the ImageNet challenge [18]. As mentioned in Section 4.1, the
classic encoders such as AlexNet [18], ZFNet [7], VGGNet [19], GoogleNet [13],
ResNet [11], Inception [14] are regarded as the milestones in the past few years. The
successes of these encoders are all based on supervised learning, which means that
manual labelling is essential for the dataset such as the ImageNet dataset [42].
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pre-trained model can be further used for classifying new images that are from the
same data distribution space.

Classification can also be treated as a fundamental problem in machine learning,
the successes of these encoders on image classification also help establish the foun-
dation for many other applications. Specifically, we can utilize an encoder to extract
high-level representation from the low-level input image, and the obtained repre-
sentation can be further used for many other applications.

6.1.2 Object detection

In addition to image classification, object detection is also very important in
computer vision. Image classification gives us the answer to what a given image is,
and object detection is about telling us the specific positions of objects in an image.
Specifically, the goal is to train an encoder to output a suitable bounding box and
associated class probabilities for each object in a given image. Two typical methods
are widely used in the current computer vision, including YOLO [43] and SSD [44].
The core idea of YOLO is that object detection is treated as an regression problem,
which means that each image is divided into multiple grids and each grid cell
outputs a pre-defined number of bounding boxes, the corresponding confidence for
each box and class probabilities [43]. Since the first version of YOLO was proposed,
the updated versions have also been proposed. SSD is a more simple method, which
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utilizes a set of default boxes with different aspect ratios, and each box outputs the
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The multiple levels of representations learned in the multiple layers of CNNs can
also be used for solving the task of human-body pose estimation. Specifically, there
are mainly two types of approaches, including regression of body joint coordinates
and heat-map for each body part. In 2014, a framework called DeepPose [45] was
introduced to learn pose estimation by a deep CNN, in which estimating human-
body pose is equivalent to regressing the body joint coordinates. There are also some
extension works based on this method, such as a process called iterative error
feedback [46], which encompasses both the input and output spaces of CNN for
enhancing the performance. In 2014, Tompson et al. [47] propose a hybrid archi-
tecture which consists of a CNN and a Markov Random Field, in particular the
output of the CNN for an input image is a heat-map. Some recent works based on
the heat-map method such as [48], in which a multi-context attention mechanism
was proposed to incorporate with CNNs.

6.2 Applications with encoder-decoders

6.2.1 Image restoration

The operation of image restoration is to recover a damaged or corrupt image for
the clean image such as image denoising and super-resolution. Therefore, a natural
way to implement this idea is to utilize a pre-trained encoder-decoder network,
where the encoder can map a noise image into a high-level representation, and the
decoder can transform the representation into an original image. For example, Mao
et al. [49] apply a deep convolutional encoder-decoder network for image restora-
tion, in particular the shortcut connection method is adopted between the encoder
and decoder, which has been demonstrated in Section 3.2. And the transposed
convolution is used for constructing the decoder network, as mentioned in Section
2.2. Similar work in [50] has also been introduced for image restoration, in which a
residual method is used in the network (i.e., in Section 3.2).

6.2.2 Image segmentation

The task of image segmentation is to map an input image into a segmented output
image. The encoder-decoder networks have been developed dramatically in recent
years and achieve a significant impact on computer vision. Specifically, there are
mainly two types of tasks including semantic segmentation and instance segmenta-
tion. In 2015, Long et al. [20] firstly showed that an end-to-end fully CNN can achieve
state-of-art in image segmentation tasks. Similar work has also been introduced in [6]
in 2015, in which a U-Net architecture is proposed for medical image segmentation,
and the main advance in this architecture is that the shortcut connection method is
also used between the encoder and decoder network. Since then, a series of papers
based on these two methods have been published. In particular nowadays the U-Net
based architectures are widely used for the medical image diagnosis.

6.2.3 Image captioning

One of the exciting applications achieved by CNNs is image captioning, which is
to describe the content of an input image with natural language. The basic idea is as
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follows: Firstly, a pre-trained CNN encoder is used to extract some high-level
features from an input image. Secondly, these features are typically fed into an
recurrent neural network for generating a sentence. For example, Li et al. [51]
proposed a fully convolutional localization network for extracting representation
from images and the decoder for generating captions is LSTM. Recently, attention
mechanism has been widely used for sequence processing and achieved significant
improvements such as machine translation, Huang et al. [52] introduce an encoder-
decoder framework, where an attention module is used in the encoder and decoder
respectively. Specifically, the encoder is a CNN based network.

6.2.4 Speech processing

Note that speech signals exhibit spectral variations and correlations, CNNs are
very suitable to reduce them. Therefore, CNNs can also be utilized for the task of
speech processing, such as speech recognition. Sainath1 et al. [53] applied deep
CNNs for large vocabulary speech tasks. In [54–56], the CNNs are used for speech
recognition. And the fundamental methods are very similar, both of them use the
CNNs to extract features from the raw input, and then these features are fed into an
decoder for the specific learning tasks.

6.3 Applications with GANs

6.3.1 Image generation

The most typical application of GANs is to generate fake examples. Recall that
there normally are two dependent networks in GANs, including G and D. Once the
training process is finished, we can utilize G to generate fake samples from the
training dataset.

Generating fake samples can be regarded as data augmentation, which means
that these fake data can be further used to train models. Note that deep learning is
also well known as a data-driven approach. In particular most of the advances that
deep neural networks achieved are based on supervised learning. Specifically, the
current successful neural network models usually consist of millions of parameters.
And annotated data is essential to optimize these parameters for guaranteeing the
model accuracy when conducting supervised learning. However, manually labeling
data is time-consuming and expensive, especially in some specific domains such as
medicine. Even more severe is that it can be hard to collect enough data due to the
privacy concerns. There are numerous works to utilize GANs for enhancing model
performance. E.g., in [57], a semi-supervised framework based on GANs is applied
to semantic segmentation in order to address the lack of annotations. [58] is a work
of utilizing synthetic medical images for enhancing the performance of liver lesion
classification.

Despite the successes of GANs, generating high-resolution, diverse samples is
still a challenging task. In [35], they introduce the progressive GANs which can
generate high-resolution human faces. Another impressive work to generate realis-
tic photographs is BigGANs [36].

6.3.2 Image translation

Another interesting application derived from GANs is image translation. While
there are many specific applications, we summarize them into three categories,
including translation of image to image, translation of text to image and translation
of image to super-resolution.
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Image to Image: The task of image-to-image translation is to learn a mapping
G Xð Þ ! Y. E.g., Isola et al. [59] apply conditional GANs for an image-to-image task
and achieve impressive results such as mapping sketches to photographs, black-
white photographs to color etc. Another typical work is the CycleGANs [60], which
can transfer a style of an image into another.

Text to Image: One of the interesting works from GANs is to synthesis a
realistic image based on some text descriptions. E.g., “There is a little bird with red
feather.” Some representative works include: Reed et al. [61] introduce a text-
conditional convolutional GANs. Zhang et al. [62] apply a StackGANs to synthesize
high-quality images from text.

Super Resolution: The task of super-resolution is to map a low-resolution image
to a high-resolution image. In 2017, ledig et al. [63] propose a framework named as
SRGAN, which is regarded as the first work that has the ability to generate photo-
realistic images for 4X upscaling factors. Specifically, the loss functions used in their
framework consist of an adversarial loss and a content loss. In particular the content
loss can help remain the original content from the input images.

6.3.3 Image editing

Image editing is regarded as a fundamental problem in computer vision. The
emergence of GANs has also brought new chances for this task. In the past few
years, GANs have been developed for image editing, such as image inpainting and
image matting.

Image inpainting: The task of image inpainting is to recover an arbitrary dam-
aged region in an image. Specifically, we can utilize the algorithm to learn the
content and style of the image and generate the damaged part based on the input
image, such as [64], in which they introduce a context encoder for natural image
inpainting. And in [65, 66], their works mainly focus on human face completion.

Image matting: The goal of image matting is to separate the foreground object
from the background in an image. This technique can be used for a wide range of
applications such as photo editing and video post-production. And there are also
some representative works such as [67, 68].

7. Summary and future trends

In this research, we have conducted a hierarchically-structured survey of the
main components in CNNs from the low level to the high level, namely, convolu-
tion operations, convolutional layers, architecture design, loss functions. In addition
to introducing the recent advances of these aspects in CNNs, we have also discussed
the advanced applications based on the three types of architectures including
encoder, encoder-decoder and GANs, from which we can see that CNNs have made
numerous breakthroughs and achieved state-of-the-art in computer vision, natural
language processing and speech recognition, especially these fantastic results based
on GANs.

From the above analyses, we can summarize that the current development
tendencies in CNNs mainly focus on designing new architectures and loss functions.
Because these two aspects are the core parts when applying CNNs into various types
of tasks. On the other hand, the fundamental ideas behind these various applica-
tions are very similar, as summarized above.

However, there are still many disadvantages in the current deep learning. The
first problem is the requirement of large-scale datasets, in particular constructing a
labeled dataset is very time-consuming and expensive such as in the medical

37

Advances in Convolutional Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.93512
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decoder for the specific learning tasks.
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there normally are two dependent networks in GANs, including G and D. Once the
training process is finished, we can utilize G to generate fake samples from the
training dataset.

Generating fake samples can be regarded as data augmentation, which means
that these fake data can be further used to train models. Note that deep learning is
also well known as a data-driven approach. In particular most of the advances that
deep neural networks achieved are based on supervised learning. Specifically, the
current successful neural network models usually consist of millions of parameters.
And annotated data is essential to optimize these parameters for guaranteeing the
model accuracy when conducting supervised learning. However, manually labeling
data is time-consuming and expensive, especially in some specific domains such as
medicine. Even more severe is that it can be hard to collect enough data due to the
privacy concerns. There are numerous works to utilize GANs for enhancing model
performance. E.g., in [57], a semi-supervised framework based on GANs is applied
to semantic segmentation in order to address the lack of annotations. [58] is a work
of utilizing synthetic medical images for enhancing the performance of liver lesion
classification.

Despite the successes of GANs, generating high-resolution, diverse samples is
still a challenging task. In [35], they introduce the progressive GANs which can
generate high-resolution human faces. Another impressive work to generate realis-
tic photographs is BigGANs [36].

6.3.2 Image translation

Another interesting application derived from GANs is image translation. While
there are many specific applications, we summarize them into three categories,
including translation of image to image, translation of text to image and translation
of image to super-resolution.
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Image to Image: The task of image-to-image translation is to learn a mapping
G Xð Þ ! Y. E.g., Isola et al. [59] apply conditional GANs for an image-to-image task
and achieve impressive results such as mapping sketches to photographs, black-
white photographs to color etc. Another typical work is the CycleGANs [60], which
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realistic image based on some text descriptions. E.g., “There is a little bird with red
feather.” Some representative works include: Reed et al. [61] introduce a text-
conditional convolutional GANs. Zhang et al. [62] apply a StackGANs to synthesize
high-quality images from text.

Super Resolution: The task of super-resolution is to map a low-resolution image
to a high-resolution image. In 2017, ledig et al. [63] propose a framework named as
SRGAN, which is regarded as the first work that has the ability to generate photo-
realistic images for 4X upscaling factors. Specifically, the loss functions used in their
framework consist of an adversarial loss and a content loss. In particular the content
loss can help remain the original content from the input images.
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encoder, encoder-decoder and GANs, from which we can see that CNNs have made
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From the above analyses, we can summarize that the current development
tendencies in CNNs mainly focus on designing new architectures and loss functions.
Because these two aspects are the core parts when applying CNNs into various types
of tasks. On the other hand, the fundamental ideas behind these various applica-
tions are very similar, as summarized above.

However, there are still many disadvantages in the current deep learning. The
first problem is the requirement of large-scale datasets, in particular constructing a
labeled dataset is very time-consuming and expensive such as in the medical
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domain. Therefore, we need to pay much more attention to semi-supervised learn-
ing and unsupervised learning. The second disadvantage is the high computational
cost related to training deep CNNs, as the current standard CNN structures become
deeper and deeper and they usually consists of millions of parameters. The third
issue is that applying CNNs into tasks is not an easy job and it usually requires
professional skills and experiences, because training a network involves a lot of
hyper-parameters to tune, such as the number of kernels in each layer, the size of
kernels, the total number of layers, learning rate etc.

Future work should focus on deep learning theory as the solid theory for
supporting the current neural models is lacking. Unlike other machine learning
algorithms such as support vector machines that have obvious mathematical logic, it
is usually very hard to totally understand why a deep network can achieve such an
excellent performance on a task. Therefore, based on the current developments of
deep learning, we give three trends on which we need to work in the future: Neural
Topologies such as the graph neural networks, Uncertainty Estimation such as
Bayesian neural networks and Privacy Preservation.
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Chapter 3

Transfer Learning and Deep
Domain Adaptation
Wen Xu, Jing He and Yanfeng Shu

Abstract

Transfer learning is an emerging technique in machine learning, by which we
can solve a new task with the knowledge obtained from an old task in order to
address the lack of labeled data. In particular deep domain adaptation (a branch of
transfer learning) gets the most attention in recently published articles. The intui-
tion behind this is that deep neural networks usually have a large capacity to learn
representation from one dataset and part of the information can be further used for
a new task. In this research, we firstly present the complete scenarios of transfer
learning according to the domains and tasks. Secondly, we conduct a comprehen-
sive survey related to deep domain adaptation and categorize the recent advances
into three types based on implementing approaches: fine-tuning networks,
adversarial domain adaptation, and sample-reconstruction approaches. Thirdly, we
discuss the details of these methods and introduce some typical real-world applica-
tions. Finally, we conclude our work and explore some potential issues to be further
addressed.

Keywords: transfer learning, deep domain adaptation, fine-tuning,
adversarial domain adaptation, sample-reconstruction

1. Introduction

Inspired by the biological neurons, deep neural networks are well known for
their ability to learn data representation from a huge amount of labeled data such as
the famous convolutional neural networks (CNNs). Specifically, given a specific
task such as image classification, we usually need to train a deep neural network
from scratch with enough training data so that our model can achieve acceptable
performance. However, sufficient training data for a new task is not always avail-
able as manually collecting and annotating data are labor-intensive and expensive.
Especially in some specific domains such as healthcare, a privacy concern is also
raised. Meanwhile, training a deep network with a large dataset is usually time-
consuming and involves huge computational resources. Intuitively, it is not realistic
and practical to learn from zero, because the real way we humans learn is that we
usually try to solve a new task based on the knowledge obtained from past experi-
ences. For example, once we have learned a programming language (e.g., Java), we
can easily learn a new one (e.g., Python) as the basic programming fundamentals
are the same.

Transfer Learning is an inspiring method that can help apply the knowledge
gained from a source task to a new/target task. Specifically, the goal of transfer
learning is to obtain some transferable representations between the source domain
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and target domain and utilize the stored knowledge to improve the performance on
the target task. Note that transfer learning is an extensive research topic that
involves many learning methods. In particular, deep domain adaptation gets the
most attention in recent years among these methods. Therefore, after briefly intro-
ducing the transfer learning in this research, we pay our attention to analyzing and
discussing the recent advances in deep domain adaptation.

The rest of this chapter is structured as follows. In Section 2, we give an over-
view and specific definitions of transfer learning. In Section 3, we summarize the
main approaches for deep domain adaptation. In Section 4, 5 and 6, we discuss the
details for conducting deep domain adaptation. The recent applications based on
deep domain adaptation methods are also introduced in Section 7. Finally, we
conclude this research and discuss future trends in Section 8.

2. Overview

We first give some notations and definitions which match those from the survey
paper written by Pan et al. [1], and these notations are also widely adopted in many
other survey papers such as [2, 3].

Definition 1 (Domain [1]) Given a specific datasetX ¼ X1, … ,Xnf g∈X , whereX
denotes the feature space, and a marginal probability distribution on the dataset P Xð Þ.
A domain can be defined asD ¼ X ,P Xð Þf g. Therefore, a domain consists of two
components: the feature space and the marginal probability distribution on the dataset.

Definition 2 (Task [1]) Given a specific dataset X ¼ X1, … ,Xnf g∈X and their
labels Y ¼ Y1, … ,Ynf g∈Y, where Y denotes the label space. A task can be defined
as T ¼ Y,F Xð Þf g, where F is an objective predictive function to learn, which can
be seen as a conditional distribution P YjXð Þ.

Definition 3 (Transfer Learning [1]) Given a source domain Ds and its
corresponding task T s, where the learned function F s can be interpreted as some
knowledge obtained in Ds and T s. Our goal is to get the target predictive function
F t for target task T t with target domainDt. Transfer learning aims to help improve
the performance of F t by utilizing the knowledge F s, where Ds 6¼Dt or T s 6¼ T t.

In short, transfer learning can be simply denoted as

Ds,T s !Dt,T t (1)

Transfer learning is a very broad research subject in machine learning. In this
research, we mainly focus on transfer learning based on deep neural networks (i.e.,
deep learning). Therefore, as shown in Figure 1, based onDs 6¼Dt or T s 6¼ T t, we
can have three scenarios when applying transfer learning. Note that whenDs ¼Dt

and T s ¼ T t, the problem becomes a traditional deep learning task. In such case, a
dataset is usually divided into a training datasetDs and a test training datasetDt, then
we can train a neural network F onDs and apply the pre-trained model F toDt.

When Ds ¼Dt and T s 6¼ T t, transfer learning is usually transformed into a
multi-task learning problem. Since the source domain and the target domain share
the same feature space, we can utilize one giant neural network to solve different
types of tasks at the same time. For example, multi-task learning is widely used in
the autopilot system. Given an input image, we can utilize a deep neural network
that has enough capacity to recognize the cars, the pedestrians, traffic signs, and the
locations of these objectives in the image.

WhenDs 6¼Dt and T s ¼ T t, deep domain adaptation technique is usually used
to transfer the knowledge from the source to the target. In general, the goal of
domain adaptation is to learn a mapping function F to reduce the domain
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divergence between Ds and Dt including distribution shift and different feature
spaces. Formally, the definition of domain adaptation can be defined as.

Definition 4 (Domain Adaptation) Given a source domainDs for task T s and a
target domain Dt for task T t, where Ds 6¼Dt. Domain adaptation aims to learn a
predictive function F t so that the knowledge obtained from Ds and T s can be used
for enhancing F t. In other words, the domain divergence is adapted in F t.

WhenDs 6¼Dt and T s 6¼ T t, transfer learning should be conducted carefully. If
the data in source domainDs is very different from that in target domainDt, brute-
force transfer may hurt the performance of predictive function F t, not to mention
the scenario when source task T s and target task T t are also different. From a
literature review of deep learning, we notice that there is little research in this
scenario and it is still an open question.

In summary, the above definitions give us the answer to what to transfer, and the
four scenarios demonstrate the research issue of when to transfer. As shown inFigure 2,
in contrast to the categorization of transfer learning that is introduced in the survey
paper [1], our discussions mainly focus on transfer learning in deep neural networks. In
the following sections, we pay our attention to how to transfer. Specifically, we will
introduce and summarize three main methods for deep domain adaptation.

Figure 1.
Hierarchically-structured taxonomy of transfer learning in this survey.

Figure 2.
Categorization of transfer learning based on labels. (The image is from Pan [1]).
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3. Deep domain adaptation

According to the definition of domain adaptation, we assume that the tasks of
the source domain and target domain are the same, and the data in the source
domain and target domain are different but related (i.e.,Ds 6¼Dt and T s ¼ T t). In
general, the goal of domain adaptation is to reduce the domain distribution dis-
crepancy between the source domain and the target domain so that the knowledge
learned from the source domain can be further applied to the target domain.

Compared with the traditional shallow method, deep domain adaptation mainly
focuses on utilizing deep neural networks to improve the performance of the pre-
dictive function F t. Formally, a neural network can be denoted as

Ŷ ¼ F X;Θð Þ (2)

where F denotes a neural network and Θ is a set of parameters, Ŷ represents the
predicted label of input X. The deep neural architecture is usually specifically
designed to learn representation with back-propagation from the source and target
data for domain adaptation. The intuition behind domain adaptation is that we can
find some domain-invariant schemes or sharing features from related datasets. In
other words, we ensure that the internal representations learned from related
domains in deep neural networks are indiscriminating. In this section, based on the
published works in recent years, we discuss how to reduce the domain divergence in
deep neural networks and categorize deep domain adaptation approaches into three
main ways, including fine-tuning networks, domain-adversarial learning, and
sample-reconstruction approach.

3.1 Categorization based on implementing approaches

3.1.1 Fine-tuning networks

A natural way to reduce the domain shift is to fine-tune the pre-trained networks
with the data in the target domain, as the past researches show that the internal
representations of deep convolutional neural networks learned from large datasets,
such as ImageNet, can be effectively used for solving a variety of tasks in computer
vision. Specifically, for a pre-trained model such as VGG [4] or ResNet [5], we can
keep its earlier layers fixed/frozen and only fine-tune the weights in the high-level
portion of the network by continuing back-propagation. Or we can fine-tune all the
layers if needed. The main idea behind this is that the learned low-level representa-
tions in the earlier layers mainly consist of generic features such as the edge detec-
tor. During fine-tuning the networks, the discrepancy between the source domain
and target domain is usually measured by a criterion such as class labels based
criterion, and statistic criterion. Instead of directly using the measurement as a
criterion to adjust networks, regularization techniques can also be used for fine-
tuning, which mainly includes parameter regularization and sample regularization.

3.1.2 Adversarial domain adaptation

Generative Adversarial Networks (GANs) are a promising method and get the
most attention due to its unsupervised learning approach and the flexibility of
generator design. Since the first version of GANs is proposed by Goodfellow et al.
[6], many variants based on it have been proposed for solving different types of
tasks. Specifically, there are normally two networks in GANs, namely a generator
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and a discriminator. The generator can synthesize fake examples from an input
space called latent space and the discriminator can distinguish real samples from
fake. By alternately training these two players, both of them can enhance their
abilities. The fundamental idea behind GANs is that we want the data distribution
learned by the generator is close to the true data distribution. And this is very
similar to the principle of domain adaptation, which is that the learned data distri-
bution between the source domain and the target domain is close to each other (i.e.,
domain confusion). For example, a representative work related to adversarial
domain adaptation is [7], in which a generalized framework based on GANs is
introduced. Instead of using GANs for domain-adversarial learning, a more simple
but powerful method is to add a domain classifier into a general deep network for
encouraging domain confusion [8].

3.1.3 Data-reconstruction approaches

Data-reconstruction approaches are a type of deep domain adaptation method
that utilizes the deep encoder-decoder architectures, where the encoder networks
are used for the tasks and the decoder network can be treated as an auxiliary task to
ensure that the learned features between the source domain and target domain are
invariant or sharing. There are mainly two types of methods to conduct data recon-
struction: (1) A typical way is by utilizing an encoder-decoder deep network for
domain adaptation such as [9]; (2) Another way is to conduct sample reconstruc-
tion based on GANs such as cycle GANs [10].

3.1.4 Hybrid approaches

In general, the core idea of deep domain adaptation is to learn indiscriminating
internal representations from the source domain and target domain with deep
neural networks. Therefore, we can combine different kinds of approaches
discussed above to enhance the overall performance. For example, in [11], they
adopt both the encoder-decoder reconstruction method and the statistic criterion
method.

3.2 Categorization based on learning methods

Based on whether there are labels in the target domain datasets, we can further
divide the above approaches into supervised learning and unsupervised learning.
Note that the unsupervised learning methods can be generalized and applied to
semi-supervised cases, therefore, we mainly discuss these two methods in this
research. Table 1 shows the categorization of deep domain adaptation based on
whether the labels are needed in the target domain. A similar categorization is also
introduced in [12].

3.3 Categorization based on data space

In some survey papers, the domain adaptation methods can also be categorized
into two main methods based on the similarity of data space. (1) Homogeneous
domain adaptation represents that the source data space and the target data space is
the same (i.e., X s ¼ X t). E.g., the source dataset consists of some images of cars
from open public datasets, and the images of cars in the target dataset are manually
collected from the real world. (2) Heterogeneous domain adaptation represents that
the datasets are from different data space (i.e., X s 6¼ X t). E.g., text vs. images.
Figure 3 presents the topology that is introduced in [12].
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4. Fine-tuning networks

In the last section, we categorize the main methods to conduct domain adapta-
tion with deep neural networks and give some high-level information. In this
section, we firstly discuss the details of four approaches for fine-tuning networks in
Table 1.

4.1 Label criterion

The most basic approach to conduct domain adaptation is to fine-tune a pre-
trained network with labeled data from the target domain. Hence, we assume that
the labels in the target dataset are available and we can utilize a supervised learning
approach to adjust the weights/parameters in the network. Based on the definition
of the task, our target task T t based on label criterion approach is

T t ¼ L Yt, Ŷt
� � ¼ L Yt,F t Xt;Θð Þð Þ (3)

where L denotes a loss function, such as the cross-entropy loss L Y, Ŷ
� � ¼

�Ylog Ŷ
� �� 1� Yð Þ log 1� Ŷ

� �
, which is commonly used in many works. Note that

Θ is a set of parameters which is normally initialized with weights from the
pre-trained model.

As discussed in Section 3.1, a question is that how many layers in the neural
network we should freeze. In general, there are two main factors that can influence
the fine-tuning procedure: the size of the target dataset and its similarity to the
source domain. Based on the two factors, some common rules of thumb are intro-
duced in [13]. One typical work is [14], in which a unified supervised method for

Supervised Unsupervised

Fine-tuning Label criterion ✓

Statistic criterion ✓

Parameter regularization ✓ ✓

Sample regularization ✓ ✓

Adversarial-domain Domain classifier ✓

Target data generating ✓

Sample-reconstruction Encoder-decoder-based ✓

GAN-based ✓

Table 1.
Categorization of deep domain adaptation based on whether the labels in the target domain are available.

Figure 3.
Categorization of domain adaptation based on feature space. (The image is from Wang [12]).
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deep domain adaptation is proposed. Another problem is that what if there are no
labels in the target dataset. Therefore, an unsupervised learning method must be
applied to the target dataset for domain confusion.

4.2 Statistic criterion

From the definition of domain adaptation, we see that the fundamental goal is to
reduce the domain divergence between the source domain and target domain so
that the function F t can achieve good performance on the target domain. There-
fore, it’s important and valuable to use a criterion to measure the divergence
between different domains. In other words, we need to have a measurement of the
difference of probability distributions from different datasets.

Maximum Mean Discrepancy (MMD) [15] is a well-known criterion that is
widely adopted in deep domain adaptation such as [16, 17]. Specifically, MMD
computes the mean squared difference between the two datasets, which can be
defined as
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where ϕðÞ denotes the feature space map. In practice, we can use the kernel
method kðÞ to make MMD be computed easily (i.e., Gaussian kernel).

H -divergence [18] is a more general theory to measure the domain divergence,
which is defined as

dH Ds,Dtð Þ ¼ 2 sup
h∈H

Pr
xs�Ds

h xsð Þ ¼ 1½ � � Pr
xt�Dt

h xtð Þ ¼ 1½ �
����

���� (5)

where h∈H is a binary classifier (i.e., hypothesis). For example, in [19],
domain-adversarial networks are proposed based on this statistic criterion (note
that this method can belong to the approach of domain-adversarial learning).

4.3 Parameter regularization

Note that for fine-tuning networks with the label criterion or the statistic crite-
rion, the weights in the networks are usually shared between the source domain and
target domain. In contrast to these methods, some researchers argue that the weights
for each domain should be related but not shared. Based on this idea, the authors in
[20] propose a two-stream architecture with a weight regularization method. Two
types of regularizers are introduced: L2 norm or in an exponential form.
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deep domain adaptation is proposed. Another problem is that what if there are no
labels in the target dataset. Therefore, an unsupervised learning method must be
applied to the target dataset for domain confusion.

4.2 Statistic criterion

From the definition of domain adaptation, we see that the fundamental goal is to
reduce the domain divergence between the source domain and target domain so
that the function F t can achieve good performance on the target domain. There-
fore, it’s important and valuable to use a criterion to measure the divergence
between different domains. In other words, we need to have a measurement of the
difference of probability distributions from different datasets.

Maximum Mean Discrepancy (MMD) [15] is a well-known criterion that is
widely adopted in deep domain adaptation such as [16, 17]. Specifically, MMD
computes the mean squared difference between the two datasets, which can be
defined as
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where ϕðÞ denotes the feature space map. In practice, we can use the kernel
method kðÞ to make MMD be computed easily (i.e., Gaussian kernel).

H -divergence [18] is a more general theory to measure the domain divergence,
which is defined as
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where h∈H is a binary classifier (i.e., hypothesis). For example, in [19],
domain-adversarial networks are proposed based on this statistic criterion (note
that this method can belong to the approach of domain-adversarial learning).

4.3 Parameter regularization

Note that for fine-tuning networks with the label criterion or the statistic crite-
rion, the weights in the networks are usually shared between the source domain and
target domain. In contrast to these methods, some researchers argue that the weights
for each domain should be related but not shared. Based on this idea, the authors in
[20] propose a two-stream architecture with a weight regularization method. Two
types of regularizers are introduced: L2 norm or in an exponential form.
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where a j and b j are different parameters in each layer. Rather than using two
networks for domain adaptation, in [21], they introduce a domain guided method to
drop some weights in the networks directly.

4.4 Sample regularization

Alternatively, instead of adapting the parameters in the networks, we can re-
weight the data in each layer of feed-forward neural networks. The typical method
to reduce internal covariate shit in deep neural networks is to conduct batch
normalization during training [22].

x̂i ¼ γ
xi � μffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ε
p þ β (7)

Note that xi usually denotes the hidden activation of input sample xi in each
layer of a neural network (e.g., the output feature map of each convolutional layer).
μ ¼ 1

B

PB
i¼1xi and σ ¼ 1

B

PB
i¼1 xi � μð Þ2. B is the batch size, γ and β are two hyper-

parameters to learn. Based on this method, [23] propose a revised method for
practical domain adaptation. And in [24], researchers adopt instance normalization
for stylization.

5. Adversarial domain adaptation

Instead of directly fine-tuning networks, adversarial domain adaptation is an
appealing alternative to unsupervised learning. It mainly addresses the problem that
there are abundant labeled data in the source domain but sparse/limited unlabeled
samples in the target domain. The core idea of the adversarial domain adaptation is
based on GANs. Specifically, a generalized architecture to implement this idea is
proposed in [7]. In this section, we detail two main ideas: target data generating and
domain classifier.

5.1 Target data generating

To overcome the limitation of sparse unlabeled data, target data generating is an
approach to directly generate samples with labels for the target domain so that we
can utilize them to train a classifier for the new task. One representative work is the
CoGANs [25], in which there are two GANs involved: one for processing the labeled
data in the source domain and another for processing the unlabeled data in the
target domain. Part of the weights in the two generators is shared/tied in order to
reduce the domain divergence. In addition to two discriminators for classifying the
fake and real samples, there is also an extra classifier to classify the samples based
on the information of labels in the source domain. By jointly training these two
GANs, we can generate unlimited pairs of data, in which each pair consists of a
synthetic source sample and a synthetic target sample and each pair shares the same
label. Therefore, after finishing jointly training the two GANs, the pre-trained extra
classifier is the function F t that we need for solving the new task. Similar work can
also be found in [26], in which a transformation in the pixel space is introduced.

In summary, target data generating is a domain adaptation approach that focuses
on generating target data, which can also be treated as an auxiliary task to reduce
domain shift by a weight sharing mechanism between two GANs. The main disad-
vantage is that the training cost for generating synthesized samples with two GANs
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is expensive especially when the target datasets consist of large-size samples such as
high-resolution images.

5.2 Domain classifier

Instead of directly synthesizing labeled data for domain adaptation, an alterna-
tive way is to add an extra domain classifier to enough domain confusion. The role
of domain classifier is similar to that of the discriminator in GANs, it can distinguish
the data between the source domain and target domain (the discriminator in GANs
is responsible for recognizing the fake from the real data). With the help of an
adversarial learning approach, the domain classifier can help the network learn
domain-invariant representation from the source domain and the target domain. In
other words, the trained model can be directly used for the target/new task.

Therefore, the key is how to conduct adversarial learning with the domain
classifier. In [8], a gradient reversal layer (GRL) before domain classifier is intro-
duced to maximize the gradients for encouraging domain confusion (we normally
minimize the gradients for reducing the scalar value of a loss function). In [27], a
domain confusion loss is proposed beside the domain classifier loss.

6. Sample-reconstruction approaches

The core idea of the data-reconstruction approach is to utilize the reconstruction
as an auxiliary task for encouraging domain confusion in an unsupervised manner.
In this section, we discuss two types of approaches that are mainly addressed in
recent years, including the encoder-decoder-based method and the GANs-based
method.

6.1 Encoder-decoder-based approaches

To reconstruct the samples, the basic method is that we can adopt an auto-
encoder framework, in which there is an encoder network and decoder network.
The encoder can map an input sample into a hidden representation and the decoder
can reconstruct the input sample based on the hidden representation. In particular,
the encoder-decoder networks for domain adaptation typically involve a shared
encoder between the source domain and target domain so that the encoder can learn
some domain-invariant representation. An earlier work can be found in [9], in
which the stacked denoising auto-encoder is adopted for sentiment classification.

Recently, a typical work called deep reconstruction-classification networks is
introduced in [11], in which the encoder and decoder are both implemented with
convolutional networks. Specifically, the convolutional encoder is used for super-
vised classification of the labeled data from the source domain. Meanwhile, it also
maps the unlabeled data from the target domain into hidden representation, which
is further decoded by the convolutional encoder for reconstructing the input. By
jointly training these networks with the data from the source and target domains,
the shared encoder can learn some common representations from both datasets,
which results in domain adaptation. Other similar work based on auto-encoder can
also be found in [11, 28].

6.2 GAN-based approaches

Traditionally, the GANs [6] consists of a generator and discriminator, where the
generator can be seen as a decoder network which can decode some random noise

53

Transfer Learning and Deep Domain Adaptation
DOI: http://dx.doi.org/10.5772/intechopen.94072



where a j and b j are different parameters in each layer. Rather than using two
networks for domain adaptation, in [21], they introduce a domain guided method to
drop some weights in the networks directly.

4.4 Sample regularization

Alternatively, instead of adapting the parameters in the networks, we can re-
weight the data in each layer of feed-forward neural networks. The typical method
to reduce internal covariate shit in deep neural networks is to conduct batch
normalization during training [22].

x̂i ¼ γ
xi � μffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ε
p þ β (7)

Note that xi usually denotes the hidden activation of input sample xi in each
layer of a neural network (e.g., the output feature map of each convolutional layer).
μ ¼ 1

B

PB
i¼1xi and σ ¼ 1

B

PB
i¼1 xi � μð Þ2. B is the batch size, γ and β are two hyper-

parameters to learn. Based on this method, [23] propose a revised method for
practical domain adaptation. And in [24], researchers adopt instance normalization
for stylization.

5. Adversarial domain adaptation

Instead of directly fine-tuning networks, adversarial domain adaptation is an
appealing alternative to unsupervised learning. It mainly addresses the problem that
there are abundant labeled data in the source domain but sparse/limited unlabeled
samples in the target domain. The core idea of the adversarial domain adaptation is
based on GANs. Specifically, a generalized architecture to implement this idea is
proposed in [7]. In this section, we detail two main ideas: target data generating and
domain classifier.

5.1 Target data generating

To overcome the limitation of sparse unlabeled data, target data generating is an
approach to directly generate samples with labels for the target domain so that we
can utilize them to train a classifier for the new task. One representative work is the
CoGANs [25], in which there are two GANs involved: one for processing the labeled
data in the source domain and another for processing the unlabeled data in the
target domain. Part of the weights in the two generators is shared/tied in order to
reduce the domain divergence. In addition to two discriminators for classifying the
fake and real samples, there is also an extra classifier to classify the samples based
on the information of labels in the source domain. By jointly training these two
GANs, we can generate unlimited pairs of data, in which each pair consists of a
synthetic source sample and a synthetic target sample and each pair shares the same
label. Therefore, after finishing jointly training the two GANs, the pre-trained extra
classifier is the function F t that we need for solving the new task. Similar work can
also be found in [26], in which a transformation in the pixel space is introduced.
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into a fake sample and the discriminator can be treated as an encoder network
which is used to encode the sample into some high-level features for classification
(i.e., fake or real). Instead of just using a decoder network as the generator, a typical
work known as Cycle GANs is proposed in [10], in which the generator is
implemented with an encoder-decoder network. Specifically, this encoder-decoder
generator is used for dual learning: G xsð Þ ! xt and F xtð Þ ! xs. And the discrimina-
tor also has two roles: to distinguish between the fake xt and real xt, and to
distinguish between the fake xs and real xs. By alternatively training these two
players in GANs, the encoder-decoder generator can lean a reversible mapping
function. In other words, the domain-invariant features are obtained from two
different datasets. However, one remaining problem is that the encoder-decoder
network usually consists of millions of parameters, with enough capacity, it can
map an input image from the source domain to any random image which is close to
the target domain. Therefore, in addition to using the standard adversarial loss for
training the GANs, the consistency loss (i.e., L1 norm) is also proposed to make sure
that F G xð Þð Þ≈x.

Lcyc G,Fð Þ ¼ xs�data xsð Þ F G xsð Þð Þ � xsk k1 þ xt�data xtð Þ F G xtð Þð Þ � xtk k1 (8)

where G xsð Þ denotes fake xt and F G xsð Þð Þ is reconstructed xs (i.e., F xtð Þ ! xs).
Inspired by the Cycle GANs, many variants based on encoder-decoder generator
are proposed for domain adaptation, such as the Disco GANs [29] and the Dual
GANs [30].

7. Applications

As shown in Figure 1, the scope of transfer learning is far beyond traditional
machine learning. Theoretically, the problems addressed by deep learning can also
be solved by transfer learning. In this section, we narrow the discussion to the
typical real-world applications based on deep domain adaptation. In Section 7.1, we
summarize the most methods discussed above for computer vision. In Section 7.2,
we discuss the applications beyond the context of image processing, including
natural language processing, speech recognition and other real-world applications
based on processing time-serial data.

7.1 Applications in computer vision

7.1.1 Image classification and recognition

Classification is a fundamental and most basic problem in machine learning,
most of the above methods are introduced to address this problem. Therefore, we
pay our attention to the advances that deep domain adaptation can bring for image
classification, rather than repeatedly introducing them. Probably the most well-
known example is fine-tuning a giant network that is pre-trained with the ImageNet
dataset for real-world applications such as pet recognition. Despite the fact that
manually collecting data is time-consuming and expensive, the data collected from
the real-world is usually imbalanced (e.g., there are only 100 images of class A but
10,000 images of class B). If we train a classifier from scratch, the performance can
be poor because it cannot learn enough knowledge from the limited samples (e.g.,
class A). However, if we utilize a pre-trained model based on the well-collected
ImageNet and fine-tune it, the problem caused by an imbalance dataset will be
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reduced because the model has already obtained rich knowledge from the source
domain.

Another typical real-world application that we can gain benefits from domain
adaptation is face recognition. A general approach to solve this problem is to train a
model based on a dataset of labeled face images. In contrast, the large-scale
unlabeled video datasets are always available. However, the divergence of data in
the video is usually limited and there remains a clear gap between these two
different domains. In order to utilize the rich information from video and overcome
these challenges, the authors in [31] propose a framework for face recognition in
unlabeled video based on the adversarial domain adaptation approach.

7.1.2 Object detection

The recent object detection methods are mainly driven by two approaches:
Faster R-CNN [32] and YOLO [33]. Specifically, two tasks are mainly involved in
object detection: The first one is to detect whether there are objects in an input
image (i.e., to output the bounding box of each object in the image); Meanwhile, the
object in each bounding box is also classified. Object detection is a very common
learning task in many real-world applications such as intelligent surveillance sys-
tems [34]. By utilizing domain adaptation approaches for the new task of object
detection in the wild, the Domain Adaptive Faster R-CNN is introduced in [35].
And the core idea is also to utilize domain classifier with GRL to encourage domain
confusion (i.e., in Section 5.2). Another recent similar work is also discussed in [36],
in which the GRL is also adopted and the process of conducting domain adaptation
is divided into two stages called progress domain adaptation.

7.1.3 Image segmentation

The convolutional encoder-decoder architecture has achieved great success for
image segmentation in recent years. Specifically, given an input image, the
convolutional encoder-decoder network can map this image into a pixel-level clas-
sification image (i.e., each pixel is classified with a label). The problem of domain
shifts can also appear in this task, which results in poor performance on a new
domain. In [37], the researchers introduce a domain adversarial learning method
which includes both global and category-specific techniques. They argue that two
factors can cause domain shift: the global changes between the two distinct domains
and the category-specific changes. (i.e., the distribution of cars from two different
cities may be different.) Based on this assumption, two new loss functions are
introduced, one is used for reducing the global distribution shift between the source
images and target images and the other is used for adapting the category-specific
divergence between the target images and the transferring label statistics. Instead of
just using a simple adversarial objective, the authors in [38] propose an iterative
optimization procedure based on GANs for addressing domain shift.

7.1.4 Image-to-image translation

As mentioned in Section 6.2, Cycle GANs [10] is a typical method for image-to-
image translation based on deep domain adaptation. In general, image-to-image
translation denotes that we can map an image from the source domain to the target
domain and vice versa. One real task that is also addressed in Cycle GANs is the
style transfer application. To our best knowledge, the algorithm of neural style
transfer is firstly proposed in [39], the core idea in this paper is how to define the
content loss and style loss between the source data and the target data. Actually, it
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As shown in Figure 1, the scope of transfer learning is far beyond traditional
machine learning. Theoretically, the problems addressed by deep learning can also
be solved by transfer learning. In this section, we narrow the discussion to the
typical real-world applications based on deep domain adaptation. In Section 7.1, we
summarize the most methods discussed above for computer vision. In Section 7.2,
we discuss the applications beyond the context of image processing, including
natural language processing, speech recognition and other real-world applications
based on processing time-serial data.

7.1 Applications in computer vision

7.1.1 Image classification and recognition

Classification is a fundamental and most basic problem in machine learning,
most of the above methods are introduced to address this problem. Therefore, we
pay our attention to the advances that deep domain adaptation can bring for image
classification, rather than repeatedly introducing them. Probably the most well-
known example is fine-tuning a giant network that is pre-trained with the ImageNet
dataset for real-world applications such as pet recognition. Despite the fact that
manually collecting data is time-consuming and expensive, the data collected from
the real-world is usually imbalanced (e.g., there are only 100 images of class A but
10,000 images of class B). If we train a classifier from scratch, the performance can
be poor because it cannot learn enough knowledge from the limited samples (e.g.,
class A). However, if we utilize a pre-trained model based on the well-collected
ImageNet and fine-tune it, the problem caused by an imbalance dataset will be
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reduced because the model has already obtained rich knowledge from the source
domain.

Another typical real-world application that we can gain benefits from domain
adaptation is face recognition. A general approach to solve this problem is to train a
model based on a dataset of labeled face images. In contrast, the large-scale
unlabeled video datasets are always available. However, the divergence of data in
the video is usually limited and there remains a clear gap between these two
different domains. In order to utilize the rich information from video and overcome
these challenges, the authors in [31] propose a framework for face recognition in
unlabeled video based on the adversarial domain adaptation approach.

7.1.2 Object detection

The recent object detection methods are mainly driven by two approaches:
Faster R-CNN [32] and YOLO [33]. Specifically, two tasks are mainly involved in
object detection: The first one is to detect whether there are objects in an input
image (i.e., to output the bounding box of each object in the image); Meanwhile, the
object in each bounding box is also classified. Object detection is a very common
learning task in many real-world applications such as intelligent surveillance sys-
tems [34]. By utilizing domain adaptation approaches for the new task of object
detection in the wild, the Domain Adaptive Faster R-CNN is introduced in [35].
And the core idea is also to utilize domain classifier with GRL to encourage domain
confusion (i.e., in Section 5.2). Another recent similar work is also discussed in [36],
in which the GRL is also adopted and the process of conducting domain adaptation
is divided into two stages called progress domain adaptation.

7.1.3 Image segmentation

The convolutional encoder-decoder architecture has achieved great success for
image segmentation in recent years. Specifically, given an input image, the
convolutional encoder-decoder network can map this image into a pixel-level clas-
sification image (i.e., each pixel is classified with a label). The problem of domain
shifts can also appear in this task, which results in poor performance on a new
domain. In [37], the researchers introduce a domain adversarial learning method
which includes both global and category-specific techniques. They argue that two
factors can cause domain shift: the global changes between the two distinct domains
and the category-specific changes. (i.e., the distribution of cars from two different
cities may be different.) Based on this assumption, two new loss functions are
introduced, one is used for reducing the global distribution shift between the source
images and target images and the other is used for adapting the category-specific
divergence between the target images and the transferring label statistics. Instead of
just using a simple adversarial objective, the authors in [38] propose an iterative
optimization procedure based on GANs for addressing domain shift.

7.1.4 Image-to-image translation

As mentioned in Section 6.2, Cycle GANs [10] is a typical method for image-to-
image translation based on deep domain adaptation. In general, image-to-image
translation denotes that we can map an image from the source domain to the target
domain and vice versa. One real task that is also addressed in Cycle GANs is the
style transfer application. To our best knowledge, the algorithm of neural style
transfer is firstly proposed in [39], the core idea in this paper is how to define the
content loss and style loss between the source data and the target data. Actually, it
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can be treated as a statistic criterion approach which is discussed in Section 4.2.
In the paper of demystifying neural style transfer [40], the authors show that
matching Gram matrices (i.e., style loss) is equivalent to minimize the MMD (i.e.,
Eq. 4). Based on this argument, they introduce several style transfer methods by
utilizing different types of kernel functions in the MMD and achieve impressive
results.

7.1.5 Image caption

An interesting but challenging task is to utilize deep neural networks to describe
an input image with natural language, which is well known as the image caption.
Specifically, the goal of image caption is to learn a mapping function F t, so that we
can get F t Imageð Þ ! Text and vice versa. Note that there are two different data
space involved in this task: a dataset with images vs. a dataset with text. Therefore,
based on the categorization methods which are discussed in Section 3.3, image
caption belongs to heterogeneous domain adaptation. A general method to imple-
ment this idea is to utilize a CNN-RNN architecture (i.e., recurrent neural net-
work), where the CNN is used for encoding an input image to some hidden
representation and the RNN can decode the representation to some sentences which
can describe the content of this image. In particular, the CNN is usually pre-trained
based on the ImageNet and then we can re-train it in the CNN-RNN [41].

When we apply an image-caption model which is trained from image dataset A
on image dataset B, the performance will degrade due to the distribution change or
domain shift of two datasets. To address this problem, the work in [42] introduces
an adversarial learning method to address unpaired data in the target domain for
image caption (i.e., adversarial domain adaptation approach in Section 5). In [43],
the authors propose a dual learning method for addressing this problem, which
involves two steps: (1) A CNN-RNN model is trained with sufficient labeled data in
the source domain. (2) The model is then fine-tuned with limited target data. The
core idea of dual learning mechanism involved a reverse mapping process: the
model firstly maps an input target image to text (i.e., CNN � RNN Imageð Þ ! Text)
and the text is then mapped back to an image by a generator network, which is
further distinguished by a discriminator network. Therefore, the work in [43]
belongs to sample-reconstruction approach (i.e., in Section 6).

7.2 Applications beyond computer vision

7.2.1 Natural language processing

Deep domain adaptation technique is also used for solving a variety of tasks in
processing natural language. In [44], an effective domain mixing method for
machine translation is introduced. The core idea is to jointly train domain discrim-
ination and translation networks. The authors in [45] propose aspect-augmented
adversarial networks for text classification. The main idea is to adopt a domain
classifier, which has been discussed in Section 5.2. Recently, an interesting research
area is to utilize neural models to automatically generate answers based on the input
questions, which is also known as questions answering. However, the main chal-
lenge to train models is that it is usually difficult to collect a large dataset of labeled
question-answer pairs. Therefore, domain adaptation is a natural choice to address
this problem. E.g., in [46], a framework called generative domain-adaptive nets is
introduced. Specifically, a generative model is used to generate questions from the
unlabeled text for enhancing the model performance. Other applications of domain
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adaptation can also be found in sentence specificity prediction [47], where the
specificity denotes the quality of a sentence that belongs to a specific subject.

7.2.2 Speech recognition

A typical real-world application is to transcribe speech into text, which is also
known as automatic speech recognition. Domain adaptation is also suitable for
addressing the training-testing mismatch of speech recognition that is caused by the
shift of data distribution between different datasets. For example, a neural model
trained on a manually collected dataset may generalize poorly in the real-world
application of speech recognition due to the environmental noises. In [48], an
adaptive teacher-student learning method is proposed for domain adaptation in
speech recognition systems. In [49], the domain classifier that is discussed above is
also adopted for robust speech recognition. Similar work can also be found in [50],
in which the adversarial learning method for domain adaptation is also used for
addressing the unseen recoding conditions.

7.2.3 Time-series data processing

Domain adaptation can also enhance the performance of processing many other
time-series datasets such as healthcare time-series datasets [51], in which the
authors present a variational recurrent adversarial method for domain adaptation.
The main idea is to learn domain-invariant temporal latent representations of mul-
tivariate time-series data. Another real-world task that involves time-series data is
to build diver assistant systems. In [52], an auxiliary domain classifier is also
adopted to enhance the performance of recurrent neural networks for driving
maneuvers anticipation. And the core idea in this paper is also to learn sharing
features from different datasets by the domain classifier. An interesting work
related to inertial information processing is introduced in [53], in which a novel
framework called MotionTransformer is proposed for extracting domain-invariant
features of raw sequences.

8. Conclusion

In this chapter, we firstly introduce the background and explain why transfer
learning is important for helping learn real-world tasks. Then we give a strict
definition of transfer learning and its scope. In particular, we pay our attention to
deep domain adaptation, which is a subset of transfer learning and it mainly
addresses the situation where we have different but related datasets for a common
learning task. Next, we categorize the deep domain adaptation based on three
aspects: the specific implementing approaches, the learning methods, and the data
space. In general, deep domain adaptation is one type of method that mainly utilizes
deep neural networks to reduce the domain shift or data distribution so that we can
enhance the performance of the target task with the help of the knowledge obtained
from the source domain. Specifically, we mainly discuss the recent advanced
methods for domain adaptation from the deep learning community, including fine-
tuning networks, adversarial domain adaptation, and data-reconstruction
approaches. Finally, we introduce and summarize the typical real-world applica-
tions in computer vision from recently published articles, from which we can see
that the unsupervised learning approach based on GANs gets the most attention. In
addition, we discuss many other applications beyond the context of image
processing. And we notice that many deep domain adaptation methods that are
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can be treated as a statistic criterion approach which is discussed in Section 4.2.
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matching Gram matrices (i.e., style loss) is equivalent to minimize the MMD (i.e.,
Eq. 4). Based on this argument, they introduce several style transfer methods by
utilizing different types of kernel functions in the MMD and achieve impressive
results.

7.1.5 Image caption

An interesting but challenging task is to utilize deep neural networks to describe
an input image with natural language, which is well known as the image caption.
Specifically, the goal of image caption is to learn a mapping function F t, so that we
can get F t Imageð Þ ! Text and vice versa. Note that there are two different data
space involved in this task: a dataset with images vs. a dataset with text. Therefore,
based on the categorization methods which are discussed in Section 3.3, image
caption belongs to heterogeneous domain adaptation. A general method to imple-
ment this idea is to utilize a CNN-RNN architecture (i.e., recurrent neural net-
work), where the CNN is used for encoding an input image to some hidden
representation and the RNN can decode the representation to some sentences which
can describe the content of this image. In particular, the CNN is usually pre-trained
based on the ImageNet and then we can re-train it in the CNN-RNN [41].

When we apply an image-caption model which is trained from image dataset A
on image dataset B, the performance will degrade due to the distribution change or
domain shift of two datasets. To address this problem, the work in [42] introduces
an adversarial learning method to address unpaired data in the target domain for
image caption (i.e., adversarial domain adaptation approach in Section 5). In [43],
the authors propose a dual learning method for addressing this problem, which
involves two steps: (1) A CNN-RNN model is trained with sufficient labeled data in
the source domain. (2) The model is then fine-tuned with limited target data. The
core idea of dual learning mechanism involved a reverse mapping process: the
model firstly maps an input target image to text (i.e., CNN � RNN Imageð Þ ! Text)
and the text is then mapped back to an image by a generator network, which is
further distinguished by a discriminator network. Therefore, the work in [43]
belongs to sample-reconstruction approach (i.e., in Section 6).

7.2 Applications beyond computer vision

7.2.1 Natural language processing

Deep domain adaptation technique is also used for solving a variety of tasks in
processing natural language. In [44], an effective domain mixing method for
machine translation is introduced. The core idea is to jointly train domain discrim-
ination and translation networks. The authors in [45] propose aspect-augmented
adversarial networks for text classification. The main idea is to adopt a domain
classifier, which has been discussed in Section 5.2. Recently, an interesting research
area is to utilize neural models to automatically generate answers based on the input
questions, which is also known as questions answering. However, the main chal-
lenge to train models is that it is usually difficult to collect a large dataset of labeled
question-answer pairs. Therefore, domain adaptation is a natural choice to address
this problem. E.g., in [46], a framework called generative domain-adaptive nets is
introduced. Specifically, a generative model is used to generate questions from the
unlabeled text for enhancing the model performance. Other applications of domain
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adaptation can also be found in sentence specificity prediction [47], where the
specificity denotes the quality of a sentence that belongs to a specific subject.

7.2.2 Speech recognition

A typical real-world application is to transcribe speech into text, which is also
known as automatic speech recognition. Domain adaptation is also suitable for
addressing the training-testing mismatch of speech recognition that is caused by the
shift of data distribution between different datasets. For example, a neural model
trained on a manually collected dataset may generalize poorly in the real-world
application of speech recognition due to the environmental noises. In [48], an
adaptive teacher-student learning method is proposed for domain adaptation in
speech recognition systems. In [49], the domain classifier that is discussed above is
also adopted for robust speech recognition. Similar work can also be found in [50],
in which the adversarial learning method for domain adaptation is also used for
addressing the unseen recoding conditions.

7.2.3 Time-series data processing

Domain adaptation can also enhance the performance of processing many other
time-series datasets such as healthcare time-series datasets [51], in which the
authors present a variational recurrent adversarial method for domain adaptation.
The main idea is to learn domain-invariant temporal latent representations of mul-
tivariate time-series data. Another real-world task that involves time-series data is
to build diver assistant systems. In [52], an auxiliary domain classifier is also
adopted to enhance the performance of recurrent neural networks for driving
maneuvers anticipation. And the core idea in this paper is also to learn sharing
features from different datasets by the domain classifier. An interesting work
related to inertial information processing is introduced in [53], in which a novel
framework called MotionTransformer is proposed for extracting domain-invariant
features of raw sequences.

8. Conclusion

In this chapter, we firstly introduce the background and explain why transfer
learning is important for helping learn real-world tasks. Then we give a strict
definition of transfer learning and its scope. In particular, we pay our attention to
deep domain adaptation, which is a subset of transfer learning and it mainly
addresses the situation where we have different but related datasets for a common
learning task. Next, we categorize the deep domain adaptation based on three
aspects: the specific implementing approaches, the learning methods, and the data
space. In general, deep domain adaptation is one type of method that mainly utilizes
deep neural networks to reduce the domain shift or data distribution so that we can
enhance the performance of the target task with the help of the knowledge obtained
from the source domain. Specifically, we mainly discuss the recent advanced
methods for domain adaptation from the deep learning community, including fine-
tuning networks, adversarial domain adaptation, and data-reconstruction
approaches. Finally, we introduce and summarize the typical real-world applica-
tions in computer vision from recently published articles, from which we can see
that the unsupervised learning approach based on GANs gets the most attention. In
addition, we discuss many other applications beyond the context of image
processing. And we notice that many deep domain adaptation methods that are
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initially proposed for processing images are also suitable for addressing a variety of
tasks in natural language processing, speech recognition, and time-series data
processing.

Although deep domain adaptation has been successfully used for solving various
types of tasks, we should be careful to conduct transfer learning, as brute-force
transfer may hurt the performance of our model. The above applications mainly
focus on homogeneous domain adaptation, which means that the data between the
source domain and the target domain is related and we assume that deep neural
networks can find some shared representation from these two domains. However,
the data collected from real-world may not always meet this requirement. There-
fore, the future challenge is how to apply a heterogeneous domain adaptation
method effectively. From the above analyses, we notice that transfer learning has
been mainly applied to a limited scale of applications. Therefore, more challenges
are also needed to address in the future such as logical inference and graph neural
networks based tasks.

Acknowledgements

This work is supported by China Scholarship Council and Data61 from CSIRO,
Australia.

Conflict of interest

The authors declare no conflict of interest.

Author details

Wen Xu1,2, Jing He1* and Yanfeng Shu2

1 Swinburne University of Technology, Australia

2 Data61, CSIRO, Australia

*Address all correspondence to: jinghe@swin.edu.au

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

58

Advances and Applications in Deep Learning

References

[1] Pan SJ, Yang Q. A survey on transfer
learning. IEEE Transactions on
knowledge and data engineering. 2009
Oct 16;22(10):1345–59.

[2]Weiss K, Khoshgoftaar TM, Wang D.
A survey of transfer learning. Journal of
Big data. 2016 Dec 1;3(1):9.

[3] Zhang J, Li W, Ogunbona P. Transfer
learning for cross-dataset recognition: a
survey. arXiv preprint arXiv:
1705.04396. 2017 May.

[4] Simonyan K, Zisserman A. Very deep
convolutional networks for large-scale
image recognition. arXiv preprint arXiv:
1409.1556. 2014 Sep 4.

[5] He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
InProceedings of the IEEE conference
on computer vision and pattern
recognition 2016 (pp. 770–778).

[6] Goodfellow I, Pouget-Abadie J,
Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y.
Generative adversarial nets. InAdvances
in neural information processing
systems 2014 (pp. 2672–2680).

[7] Tzeng E, Hoffman J, Saenko K,
Darrell T. Adversarial discriminative
domain adaptation. InProceedings of
the IEEE conference on computer vision
and pattern recognition 2017 (pp. 7167–
7176).

[8] Ganin Y, Lempitsky V. Unsupervised
domain adaptation by backpropagation.
InInternational conference on machine
learning 2015 Jun 1 (pp. 1180–1189).

[9] Ghifary M, Kleijn WB, Zhang M,
Balduzzi D, Li W. Deep reconstruction-
classification networks for unsupervised
domain adaptation. InEuropean
Conference on Computer Vision
2016 Oct 8 (pp. 597–613). Springer,
Cham.

[10] Zhu JY, Park T, Isola P, Efros AA.
Unpaired image-to-image translation
using cycle-consistent adversarial
networks. InProceedings of the IEEE
international conference on computer
vision 2017 (pp. 2223–2232).

[11] Bousmalis K, Trigeorgis G,
Silberman N, Krishnan D, Erhan D.
Domain separation networks.
InAdvances in neural information
processing systems 2016 (pp. 343–351).

[12] Wang M, Deng W. Deep visual
domain adaptation: A survey.
Neurocomputing. 2018 Oct 27;312:
135–53.

[13] Chu B, Madhavan V, Beijbom O,
Hoffman J, Darrell T. Best practices for
fine-tuning visual classifiers to new
domains. InEuropean conference on
computer vision 2016 Oct 8 (pp. 435–
442). Springer, Cham.

[14] Motiian S, Piccirilli M, Adjeroh DA,
Doretto G. Unified deep supervised
domain adaptation and generalization.
InProceedings of the IEEE International
Conference on Computer Vision 2017
(pp. 5715–5725).

[15] Borgwardt KM, Gretton A,
Rasch MJ, Kriegel HP, Schölkopf B,
Smola AJ. Integrating structured
biological data by kernel maximum
mean discrepancy. Bioinformatics. 2006
Jul 15;22(14):e49–57.

[16] Long M, Zhu H, Wang J, Jordan MI.
Unsupervised domain adaptation with
residual transfer networks. InAdvances
in neural information processing
systems 2016 (pp. 136–144).

[17] Long M, Zhu H, Wang J, Jordan MI.
Deep transfer learning with joint
adaptation networks. InInternational
conference on machine learning 2017 Jul
17 (pp. 2208–2217).

59

Transfer Learning and Deep Domain Adaptation
DOI: http://dx.doi.org/10.5772/intechopen.94072



initially proposed for processing images are also suitable for addressing a variety of
tasks in natural language processing, speech recognition, and time-series data
processing.

Although deep domain adaptation has been successfully used for solving various
types of tasks, we should be careful to conduct transfer learning, as brute-force
transfer may hurt the performance of our model. The above applications mainly
focus on homogeneous domain adaptation, which means that the data between the
source domain and the target domain is related and we assume that deep neural
networks can find some shared representation from these two domains. However,
the data collected from real-world may not always meet this requirement. There-
fore, the future challenge is how to apply a heterogeneous domain adaptation
method effectively. From the above analyses, we notice that transfer learning has
been mainly applied to a limited scale of applications. Therefore, more challenges
are also needed to address in the future such as logical inference and graph neural
networks based tasks.

Acknowledgements

This work is supported by China Scholarship Council and Data61 from CSIRO,
Australia.

Conflict of interest

The authors declare no conflict of interest.

Author details

Wen Xu1,2, Jing He1* and Yanfeng Shu2

1 Swinburne University of Technology, Australia

2 Data61, CSIRO, Australia

*Address all correspondence to: jinghe@swin.edu.au

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

58

Advances and Applications in Deep Learning

References

[1] Pan SJ, Yang Q. A survey on transfer
learning. IEEE Transactions on
knowledge and data engineering. 2009
Oct 16;22(10):1345–59.

[2]Weiss K, Khoshgoftaar TM, Wang D.
A survey of transfer learning. Journal of
Big data. 2016 Dec 1;3(1):9.

[3] Zhang J, Li W, Ogunbona P. Transfer
learning for cross-dataset recognition: a
survey. arXiv preprint arXiv:
1705.04396. 2017 May.

[4] Simonyan K, Zisserman A. Very deep
convolutional networks for large-scale
image recognition. arXiv preprint arXiv:
1409.1556. 2014 Sep 4.

[5] He K, Zhang X, Ren S, Sun J. Deep
residual learning for image recognition.
InProceedings of the IEEE conference
on computer vision and pattern
recognition 2016 (pp. 770–778).

[6] Goodfellow I, Pouget-Abadie J,
Mirza M, Xu B, Warde-Farley D,
Ozair S, Courville A, Bengio Y.
Generative adversarial nets. InAdvances
in neural information processing
systems 2014 (pp. 2672–2680).

[7] Tzeng E, Hoffman J, Saenko K,
Darrell T. Adversarial discriminative
domain adaptation. InProceedings of
the IEEE conference on computer vision
and pattern recognition 2017 (pp. 7167–
7176).

[8] Ganin Y, Lempitsky V. Unsupervised
domain adaptation by backpropagation.
InInternational conference on machine
learning 2015 Jun 1 (pp. 1180–1189).

[9] Ghifary M, Kleijn WB, Zhang M,
Balduzzi D, Li W. Deep reconstruction-
classification networks for unsupervised
domain adaptation. InEuropean
Conference on Computer Vision
2016 Oct 8 (pp. 597–613). Springer,
Cham.

[10] Zhu JY, Park T, Isola P, Efros AA.
Unpaired image-to-image translation
using cycle-consistent adversarial
networks. InProceedings of the IEEE
international conference on computer
vision 2017 (pp. 2223–2232).

[11] Bousmalis K, Trigeorgis G,
Silberman N, Krishnan D, Erhan D.
Domain separation networks.
InAdvances in neural information
processing systems 2016 (pp. 343–351).

[12] Wang M, Deng W. Deep visual
domain adaptation: A survey.
Neurocomputing. 2018 Oct 27;312:
135–53.

[13] Chu B, Madhavan V, Beijbom O,
Hoffman J, Darrell T. Best practices for
fine-tuning visual classifiers to new
domains. InEuropean conference on
computer vision 2016 Oct 8 (pp. 435–
442). Springer, Cham.

[14] Motiian S, Piccirilli M, Adjeroh DA,
Doretto G. Unified deep supervised
domain adaptation and generalization.
InProceedings of the IEEE International
Conference on Computer Vision 2017
(pp. 5715–5725).

[15] Borgwardt KM, Gretton A,
Rasch MJ, Kriegel HP, Schölkopf B,
Smola AJ. Integrating structured
biological data by kernel maximum
mean discrepancy. Bioinformatics. 2006
Jul 15;22(14):e49–57.

[16] Long M, Zhu H, Wang J, Jordan MI.
Unsupervised domain adaptation with
residual transfer networks. InAdvances
in neural information processing
systems 2016 (pp. 136–144).

[17] Long M, Zhu H, Wang J, Jordan MI.
Deep transfer learning with joint
adaptation networks. InInternational
conference on machine learning 2017 Jul
17 (pp. 2208–2217).

59

Transfer Learning and Deep Domain Adaptation
DOI: http://dx.doi.org/10.5772/intechopen.94072



[18] Ben-David S, Blitzer J, Crammer K,
Kulesza A, Pereira F, Vaughan JW. A
theory of learning from different
domains. Machine learning. 2010 May 1;
79(1–2):151–75.

[19] Ganin Y, Ustinova E, Ajakan H,
Germain P, Larochelle H, Laviolette F,
Marchand M, Lempitsky V. Domain-
adversarial training of neural networks.
The Journal of Machine Learning
Research. 2016 Jan 1;17(1):2096–30.

[20] Rozantsev A, Salzmann M, Fua P.
Beyond sharing weights for deep
domain adaptation. IEEE transactions
on pattern analysis and machine
intelligence. 2018 Mar 8;41(4):801–14.

[21] Xiao T, Li H, OuyangW,Wang X.
Learning deep feature representations
with domain guided dropout for person
re-identification. InProceedings of the
IEEE conference on computer vision and
pattern recognition 2016 (pp. 1249–1258).

[22] Ioffe S, Szegedy C. Batch
normalization: Accelerating deep
network training by reducing internal
covariate shift. arXiv preprint arXiv:
1502.03167. 2015 Feb 11.

[23] Li Y, Wang N, Shi J, Liu J, Hou X.
Revisiting batch normalization for
practical domain adaptation. arXiv
preprint arXiv:1603.04779. 2016 Mar 15.

[24] Ulyanov D, Vedaldi A,
Lempitsky V. Improved texture
networks: Maximizing quality and
diversity in feed-forward stylization and
texture synthesis. In Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition 2017
(pp. 6924–6932).

[25] Liu MY, Tuzel O. Coupled
generative adversarial networks.
InAdvances in neural information
processing systems 2016 (pp. 469–477).

[26] Bousmalis K, Silberman N,
Dohan D, Erhan D, Krishnan D.

Unsupervised pixel-level domain
adaptation with generative adversarial
networks. InProceedings of the IEEE
conference on computer vision and
pattern recognition 2017 (pp. 3722–
3731).

[27] Tzeng E, Hoffman J, Darrell T,
Saenko K. Simultaneous deep transfer
across domains and tasks. InProceedings
of the IEEE International Conference on
Computer Vision 2015 (pp. 4068–
4076).

[28] Ghifary M, Bastiaan Kleijn W,
Zhang M, Balduzzi D. Domain
generalization for object recognition
with multi-task autoencoders.
InProceedings of the IEEE international
conference on computer vision 2015
(pp. 2551–2559).

[29] Kim T, Cha M, Kim H, Lee JK,
Kim J. Learning to discover cross-
domain relations with generative
adversarial networks. arXiv preprint
arXiv:1703.05192. 2017 Mar 15.

[30] Yi Z, Zhang H, Tan P, Gong M.
Dualgan: Unsupervised dual learning for
image-to-image translation.
InProceedings of the IEEE international
conference on computer vision 2017
(pp. 2849–2857).

[31] Sohn K, Liu S, Zhong G, Yu X,
Yang MH, Chandraker M. Unsupervised
domain adaptation for face recognition
in unlabeled videos. InProceedings of
the IEEE International Conference on
Computer Vision 2017 (pp. 3210–3218).

[32] Ren S, He K, Girshick R, Sun J.
Faster r-cnn: Towards real-time object
detection with region proposal
networks. InAdvances in neural
information processing systems 2015
(pp. 91–99).

[33] Redmon J, Divvala S, Girshick R,
Farhadi A. You only look once: Unified,
real-time object detection.
InProceedings of the IEEE conference

60

Advances and Applications in Deep Learning

on computer vision and pattern
recognition 2016 (pp. 779–788).

[34] Xu W, He J, Zhang HL, Mao B,
Cao J. Real-time target detection and
recognition with deep convolutional
networks for intelligent visual
surveillance. InProceedings of the 9th
International Conference on Utility and
Cloud Computing 2016 Dec 6 (pp. 321–
326).

[35] Chen Y, Li W, Sakaridis C, Dai D,
Van Gool L. Domain adaptive faster r-
cnn for object detection in the wild.
InProceedings of the IEEE conference
on computer vision and pattern
recognition 2018 (pp. 3339–3348).

[36] Hsu HK, Yao CH, Tsai YH,
Hung WC, Tseng HY, Singh M,
Yang MH. Progressive domain
adaptation for object detection. InThe
IEEE Winter Conference on
Applications of Computer Vision 2020
(pp. 749–757).

[37] Hoffman J, Wang D, Yu F,
Darrell T. Fcns in the wild: Pixel-level
adversarial and constraint-based
adaptation. arXiv preprint arXiv:
1612.02649. 2016 Dec 8.

[38] Sankaranarayanan S, Balaji Y, Jain A,
Nam Lim S, Chellappa R. Learning from
synthetic data: Addressing domain shift
for semantic segmentation. InProceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition 2018
(pp. 3752–3761).

[39] Gatys LA, Ecker AS, Bethge M. A
neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576. 2015 Aug 26.

[40] Li Y,Wang N, Liu J, Hou X.
Demystifying neural style transfer. arXiv
preprint arXiv:1701.01036. 2017 Jan 4.

[41] Johnson J, Karpathy A, Fei-Fei L.
Densecap: Fully convolutional localization
networks for dense captioning.
InProceedings of the IEEE conference on

computer vision and pattern recognition
2016 (pp. 4565–4574).

[42] Chen TH, Liao YH, Chuang CY,
Hsu WT, Fu J, Sun M. Show, adapt and
tell: Adversarial training of cross-
domain image captioner. InProceedings
of the IEEE international conference on
computer vision 2017 (pp. 521–530).

[43] Zhao W, Xu W, Yang M, Ye J,
Zhao Z, Feng Y, Qiao Y. Dual learning
for cross-domain image captioning.
InProceedings of the 2017 ACM on
Conference on Information and
Knowledge Management 2017 Nov 6
(pp. 29–38).

[44] Britz D, Le Q, Pryzant R. Effective
domain mixing for neural machine
translation. InProceedings of the Second
Conference on Machine Translation
2017 Sep (pp. 118–126).

[45] Zhang Y, Barzilay R, Jaakkola T.
Aspect-augmented adversarial networks
for domain adaptation. Transactions of
the Association for Computational
Linguistics. 2017 Dec;5:515–28.

[46] Yang Z, Hu J, Salakhutdinov R,
Cohen WW. Semi-supervised qa with
generative domain-adaptive nets. arXiv
preprint arXiv:1702.02206. 2017 Feb 7.

[47] Ko WJ, Durrett G, Li JJ. Domain
agnostic real-valued specificity
prediction. InProceedings of the AAAI
Conference on Artificial Intelligence
2019 Jul 17 (Vol. 33, pp. 6610–6617).

[48] Meng Z, Li J, Gaur Y, Gong Y.
Domain adaptation via teacher-student
learning for end-to-end speech
recognition. In2019 IEEE Automatic
Speech Recognition and Understanding
Workshop (ASRU) 2019 Dec 14
(pp. 268–275). IEEE.

[49] Sun S, Zhang B, Xie L, Zhang Y. An
unsupervised deep domain adaptation
approach for robust speech recognition.
Neurocomputing. 2017 Sep 27;257:79–87.

61

Transfer Learning and Deep Domain Adaptation
DOI: http://dx.doi.org/10.5772/intechopen.94072



[18] Ben-David S, Blitzer J, Crammer K,
Kulesza A, Pereira F, Vaughan JW. A
theory of learning from different
domains. Machine learning. 2010 May 1;
79(1–2):151–75.

[19] Ganin Y, Ustinova E, Ajakan H,
Germain P, Larochelle H, Laviolette F,
Marchand M, Lempitsky V. Domain-
adversarial training of neural networks.
The Journal of Machine Learning
Research. 2016 Jan 1;17(1):2096–30.

[20] Rozantsev A, Salzmann M, Fua P.
Beyond sharing weights for deep
domain adaptation. IEEE transactions
on pattern analysis and machine
intelligence. 2018 Mar 8;41(4):801–14.

[21] Xiao T, Li H, OuyangW,Wang X.
Learning deep feature representations
with domain guided dropout for person
re-identification. InProceedings of the
IEEE conference on computer vision and
pattern recognition 2016 (pp. 1249–1258).

[22] Ioffe S, Szegedy C. Batch
normalization: Accelerating deep
network training by reducing internal
covariate shift. arXiv preprint arXiv:
1502.03167. 2015 Feb 11.

[23] Li Y, Wang N, Shi J, Liu J, Hou X.
Revisiting batch normalization for
practical domain adaptation. arXiv
preprint arXiv:1603.04779. 2016 Mar 15.

[24] Ulyanov D, Vedaldi A,
Lempitsky V. Improved texture
networks: Maximizing quality and
diversity in feed-forward stylization and
texture synthesis. In Proceedings of the
IEEE Conference on Computer Vision
and Pattern Recognition 2017
(pp. 6924–6932).

[25] Liu MY, Tuzel O. Coupled
generative adversarial networks.
InAdvances in neural information
processing systems 2016 (pp. 469–477).

[26] Bousmalis K, Silberman N,
Dohan D, Erhan D, Krishnan D.

Unsupervised pixel-level domain
adaptation with generative adversarial
networks. InProceedings of the IEEE
conference on computer vision and
pattern recognition 2017 (pp. 3722–
3731).

[27] Tzeng E, Hoffman J, Darrell T,
Saenko K. Simultaneous deep transfer
across domains and tasks. InProceedings
of the IEEE International Conference on
Computer Vision 2015 (pp. 4068–
4076).

[28] Ghifary M, Bastiaan Kleijn W,
Zhang M, Balduzzi D. Domain
generalization for object recognition
with multi-task autoencoders.
InProceedings of the IEEE international
conference on computer vision 2015
(pp. 2551–2559).

[29] Kim T, Cha M, Kim H, Lee JK,
Kim J. Learning to discover cross-
domain relations with generative
adversarial networks. arXiv preprint
arXiv:1703.05192. 2017 Mar 15.

[30] Yi Z, Zhang H, Tan P, Gong M.
Dualgan: Unsupervised dual learning for
image-to-image translation.
InProceedings of the IEEE international
conference on computer vision 2017
(pp. 2849–2857).

[31] Sohn K, Liu S, Zhong G, Yu X,
Yang MH, Chandraker M. Unsupervised
domain adaptation for face recognition
in unlabeled videos. InProceedings of
the IEEE International Conference on
Computer Vision 2017 (pp. 3210–3218).

[32] Ren S, He K, Girshick R, Sun J.
Faster r-cnn: Towards real-time object
detection with region proposal
networks. InAdvances in neural
information processing systems 2015
(pp. 91–99).

[33] Redmon J, Divvala S, Girshick R,
Farhadi A. You only look once: Unified,
real-time object detection.
InProceedings of the IEEE conference

60

Advances and Applications in Deep Learning

on computer vision and pattern
recognition 2016 (pp. 779–788).

[34] Xu W, He J, Zhang HL, Mao B,
Cao J. Real-time target detection and
recognition with deep convolutional
networks for intelligent visual
surveillance. InProceedings of the 9th
International Conference on Utility and
Cloud Computing 2016 Dec 6 (pp. 321–
326).

[35] Chen Y, Li W, Sakaridis C, Dai D,
Van Gool L. Domain adaptive faster r-
cnn for object detection in the wild.
InProceedings of the IEEE conference
on computer vision and pattern
recognition 2018 (pp. 3339–3348).

[36] Hsu HK, Yao CH, Tsai YH,
Hung WC, Tseng HY, Singh M,
Yang MH. Progressive domain
adaptation for object detection. InThe
IEEE Winter Conference on
Applications of Computer Vision 2020
(pp. 749–757).

[37] Hoffman J, Wang D, Yu F,
Darrell T. Fcns in the wild: Pixel-level
adversarial and constraint-based
adaptation. arXiv preprint arXiv:
1612.02649. 2016 Dec 8.

[38] Sankaranarayanan S, Balaji Y, Jain A,
Nam Lim S, Chellappa R. Learning from
synthetic data: Addressing domain shift
for semantic segmentation. InProceedings
of the IEEE Conference on Computer
Vision and Pattern Recognition 2018
(pp. 3752–3761).

[39] Gatys LA, Ecker AS, Bethge M. A
neural algorithm of artistic style. arXiv
preprint arXiv:1508.06576. 2015 Aug 26.

[40] Li Y,Wang N, Liu J, Hou X.
Demystifying neural style transfer. arXiv
preprint arXiv:1701.01036. 2017 Jan 4.

[41] Johnson J, Karpathy A, Fei-Fei L.
Densecap: Fully convolutional localization
networks for dense captioning.
InProceedings of the IEEE conference on

computer vision and pattern recognition
2016 (pp. 4565–4574).

[42] Chen TH, Liao YH, Chuang CY,
Hsu WT, Fu J, Sun M. Show, adapt and
tell: Adversarial training of cross-
domain image captioner. InProceedings
of the IEEE international conference on
computer vision 2017 (pp. 521–530).

[43] Zhao W, Xu W, Yang M, Ye J,
Zhao Z, Feng Y, Qiao Y. Dual learning
for cross-domain image captioning.
InProceedings of the 2017 ACM on
Conference on Information and
Knowledge Management 2017 Nov 6
(pp. 29–38).

[44] Britz D, Le Q, Pryzant R. Effective
domain mixing for neural machine
translation. InProceedings of the Second
Conference on Machine Translation
2017 Sep (pp. 118–126).

[45] Zhang Y, Barzilay R, Jaakkola T.
Aspect-augmented adversarial networks
for domain adaptation. Transactions of
the Association for Computational
Linguistics. 2017 Dec;5:515–28.

[46] Yang Z, Hu J, Salakhutdinov R,
Cohen WW. Semi-supervised qa with
generative domain-adaptive nets. arXiv
preprint arXiv:1702.02206. 2017 Feb 7.

[47] Ko WJ, Durrett G, Li JJ. Domain
agnostic real-valued specificity
prediction. InProceedings of the AAAI
Conference on Artificial Intelligence
2019 Jul 17 (Vol. 33, pp. 6610–6617).

[48] Meng Z, Li J, Gaur Y, Gong Y.
Domain adaptation via teacher-student
learning for end-to-end speech
recognition. In2019 IEEE Automatic
Speech Recognition and Understanding
Workshop (ASRU) 2019 Dec 14
(pp. 268–275). IEEE.

[49] Sun S, Zhang B, Xie L, Zhang Y. An
unsupervised deep domain adaptation
approach for robust speech recognition.
Neurocomputing. 2017 Sep 27;257:79–87.

61

Transfer Learning and Deep Domain Adaptation
DOI: http://dx.doi.org/10.5772/intechopen.94072



[50] Denisov P, Vu NT, Font MF.
Unsupervised domain adaptation by
adversarial learning for robust speech
recognition. InSpeech Communication;
13th ITG-Symposium 2018 Oct 10
(pp. 1–5). VDE.

[51] Purushotham S, Carvalho W,
Nilanon T, Liu Y. Variational recurrent
adversarial deep domain adaptation.

[52] Tonutti M, Ruffaldi E, Cattaneo A,
Avizzano CA. Robust and subject-
independent driving manoeuvre
anticipation through Domain-
Adversarial Recurrent Neural Networks.
Robotics and Autonomous Systems.
2019 May 1;115:162–73.

[53] Chen C, Miao Y, Lu CX, Xie L,
Blunsom P, Markham A, Trigoni N.
Motiontransformer: Transferring neural
inertial tracking between domains.
InProceedings of the AAAI Conference
on Artificial Intelligence 2019 Jul 17
(Vol. 33, pp. 8009–8016).

62

Advances and Applications in Deep Learning

63

Section 2

Future Trends of Deep 
Learning



[50] Denisov P, Vu NT, Font MF.
Unsupervised domain adaptation by
adversarial learning for robust speech
recognition. InSpeech Communication;
13th ITG-Symposium 2018 Oct 10
(pp. 1–5). VDE.

[51] Purushotham S, Carvalho W,
Nilanon T, Liu Y. Variational recurrent
adversarial deep domain adaptation.

[52] Tonutti M, Ruffaldi E, Cattaneo A,
Avizzano CA. Robust and subject-
independent driving manoeuvre
anticipation through Domain-
Adversarial Recurrent Neural Networks.
Robotics and Autonomous Systems.
2019 May 1;115:162–73.

[53] Chen C, Miao Y, Lu CX, Xie L,
Blunsom P, Markham A, Trigoni N.
Motiontransformer: Transferring neural
inertial tracking between domains.
InProceedings of the AAAI Conference
on Artificial Intelligence 2019 Jul 17
(Vol. 33, pp. 8009–8016).

62

Advances and Applications in Deep Learning

63

Section 2

Future Trends of Deep 
Learning



65

Chapter 4

Deep Learning Enabled 
Nanophotonics
Lujun Huang, Lei Xu and Andrey E. Miroshnichenko

Abstract

Deep learning has become a vital approach to solving a big-data-driven problem. 
It has found tremendous applications in computer vision and natural language 
processing. More recently, deep learning has been widely used in optimising the 
performance of nanophotonic devices, where the conventional computational 
approach may require much computation time and significant computation source. 
In this chapter, we briefly review the recent progress of deep learning in nanopho-
tonics. We overview the applications of the deep learning approach to optimising 
the various nanophotonic devices. It includes multilayer structures, plasmonic/
dielectric metasurfaces and plasmonic chiral metamaterials. Also, nanophotonic 
can directly serve as an ideal platform to mimic optical neural networks based on 
nonlinear optical media, which in turn help to achieve high-performance photonic 
chips that may not be realised based on conventional design method.

Keywords: deep learning, inverse design, plasmonic metasurface, dielectric 
metasurface, chiral metamaterials, all-optical neural network

1. Introduction

In the past several decades, nanophotonics has been demonstrated as an ideal 
platform to manipulate the light-matter interaction and engineer the wavefront of 
the electromagnetic wave at will. The rapid development on nanophotonics has led 
to tremendous applications ranged from lasing, Lidar, biosensor, LED, photodetec-
tor, integrated photonic circuit, invisibility cloak, etc. Nanophotonics covers many 
exciting topics: photonic crystal, plasmonics, metamaterials, and nanophotonics 
based on some novel materials (e.g., two-dimensional materials, perovskite). 
Currently, the building blocks for nanophotonics are made from either metallic or 
dielectric elements with regular shapes, such as rectangular wire, cylinder, cuboids, 
and sphere for plasmonic and dielectric metasurfaces. Usually, limited parameters 
are provided for such a regular structure, and, thus, the optimisation process can be 
done in a reasonable short time. For example, a single dielectric cylinder with only 
two parameters, including diameter and height, are involved. Due to the limited 
freedom, the performance of photonic devices based on the regular pattern is far 
away from the optimal one. Inverse design method has been widely used to tackle 
this problem because the full parameter space can be explored [1]. Conventional 
inverse design methods that include topology optimisation, genetic algorithm, 
steep descent, and particle swarming optimisation shown in Figure 1a, however, 
require the vast computational source and take a long time to find the optimal 
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local structure. As a branch of machine learning, deep learning has received much 
attention worldwide because it can efficiently process and analyse a vast number of 
datasets. It has already found great success in computer vision and speech recogni-
tion. Recently, researchers and scientists have applied it to quantum optics, material 
design and optimisation of nanophotonic devices due to its outstanding capability 
of finding optimal solution from enormous data. At the same time, the computa-
tional cost is much lower compared to other inverse design methods [2, 3]. Several 
neural networks including deep neural network, generative neural network and 
convolutional neural network are frequently used to retrieve the optimal struc-
ture parameters for irregular structure with limited sets of data and shorter time 
when many structure parameters are involved for opmisation. This book chapter 
is organised as follows: In Section 2, we will discuss the inverse design enabled by 
deep learning on four different topics: multilayer structure, plasmonic metasur-
face, dielectric metasurface, chiral metamaterials (See Figure 1b). In Section 3, 
we review the recent progress on all-optical neural networks. Then, concluding 
remarks and outlook are presented in Section 4.

2. Optimisation of nanophotonics design by deep learning

Recently, deep learning using an artificial neural network has emerged as a revo-
lutionary and powerful methodology in nanophotonics field. Applying the deep 
learning algorithms to the nanophotonic inverse design can introduce remarkable 
design flexibility which is very challenging and even impossible to achieve based on 
conventional optimisation approaches [1]. In this section, we will provide a brief 
review of the implementation of deep learning to solve nanophotonic inverse design 
problems.

2.1 Design of multilayer nanostructures by deep learning

Multilayer nanostructures can exhibit unique optical properties including field 
enhancements and distributions, special transmission/reflection spectra, based on 
the interference of different modes supported by different layers in the nanostruc-
tures. Machine learning has emerged as a more and more promising tool to solve 
the inverse design of photonic nanostructures. It will enable effective inverse design 
by simultaneously considering various inter-linked parameters such as geometric 

Figure 1. 
(a) Inverse design methods in nanophotonics. (b) Application of deep learning in nanophotonics.
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parameters, material types, etc., simultaneously (unlike the current regular 
approaches, which optimise one or two parameters only, at a time).

A recent work done by Peurifoy et al. has demonstrated using deep neural 
network (DNN) to relate the geometry of SiO2/TiO2 multilayer spherical core-shell 
nanoparticles with their light-scattering properties (Figure 2a) [4]. The transfer 
matrix method has been used to analytically solve the scatterings to generate 50,000 
different combinations of the shell thickness as the total examples for training, 
validation, and testing. The forward learning model was a fully-connected dense 
feed-forward network with four hidden layers. The inputs were set to be the thick-
ness of each shell of the nanoparticles, and the outputs were the corresponding scat-
tering cross section spectra. During the learning process, the output of the network 
was compared with the target response to provide a loss function against which the 
weights can be trained and updated. After the forward-feeding training process, by 
fixing the weights, and setting the inputs as a trainable variable and fix the output 
to the desired output, they run the neural network backwardly, let the neural 
networks to iterate the inputs and provide the desired geometry to give the target 
spectrum. After training, as can be seen from Figure 2a, for an arbitrarily given 
spectrum (blue curve), the DNN can successfully predict the thickness of each shell 
of the nanoparticles that can generate a similar scattering spectrum as wanted, with 
some minor deviations.

A further improvement of this approach is to take into account the different 
material combinations for the core-shell nanoparticles. In another work done by So 
et al., they have considered a simultaneous inverse design of materials and struc-
tural parameters using the deep learning network (Figure 2b) [5]. Here, they use 
the network to map the extinction spectra of the electric dipole (ED) and magnetic 
dipole (MD) to the core-shell nanoparticles, including the material information and 
shell thicknesses. The DL model consists of two networks: a designed network to 
learn a mapping from optical properties to design parameters, and a spectrum 
network to learn from design parameters to optical properties. Here, in order to 
adapt the network to the different types of input data (materials and thicknesses), 
the loss function has been devised accordingly by the weighted average of material 

Figure 2. 
Application of DL for multilayer nanostructure design: (a) using DNN to retrieve the layer thicknesses of a 
multilayer particle based on its scattering spectrum. Inset: Network architecture. (b) Left: Geometry of 
three-layered core-shell nanoparticles with changeable materials and thicknesses. Right: Network architecture. 
(c) Left: Multilayer thin films of 2SiO  and 3 4Si N . Right: The architecture of the tandem network composed of 
an inverse design network and a forward modelling network. (d) Left: Evolution of the training cost of the 
network. Right: Performance of the network using a Gaussian-shaped spectrum.
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and structural losses: ( )design structure material1l l lρ ρ= + −  with ρ  the weight of the  
structural error, which is also set as a hyper-parameter to be adjusted during the 
training process. The loss structurel  was evaluated by the mean absolute error 

( ) ( )2
MSE

1, n nn
l x y x y

n
= −∑ , while the loss function for the materials materiall  was 

evaluated by binary cross-entropy with logits loss ( ) ( ) ( ) ( )( )BCE , 1 log 1l x y ylog x y xσ σ = − + − −  , 
with x and y being the target and output, respectively, and ( )xσ  is the Sigmoid 
function. After training, the network has demonstrated great ability to realise the 
inverse design for different types of problems, including spectral tuning the electric 
or magnetic resonances, or overlapping them which potentially facilitate the inverse 
design of nanostructures with specific functions, such as zero-forward (first Kerker 
condition) or zero-backwards (second Kerker condition) scatterings [6, 7].

A similar network has also been used to explore the optical transmission spectra 
from multilayer thin films (Figure 2c, d) [8]. Here, Liu et al. combined the forward 
network modelling and inverse design in tandem architecture to overcome the 
data inconsistency which originates from the non-uniqueness in inverse scattering 
problems, i.e., the same optical responses can correspond to different designs. This 
non-uniqueness of the response-to-design mapping will cause conflicting examples 
within the training set and might lead to non-convergence of the neural network. 
The TN architecture consists of an inverse-design network connected to a forward 
model network. The forward network learns the mapping from the structural 
parameters to the optical responses and is trained separately first. After the for-
ward network is trained, it is placed after the inverse-design model network, and 
its network weights remain fixed during the training of the inverse-design model 
network. The inverse-design network learns a mapping from the optical responses 
to the structural parameters. After the training process, such a DNN can efficiently 
predict the geometry of a device which is both promising and much faster as com-
pared with the conventional electromagnetic solvers. As shown in the right diagram 
of Figure 2d, the learning curve of this tandem neural network has demonstrated 
a fast convergence during the training process. The structures designed by the 
network matches the desired transmission spectra with high fidelity.

2.2 Design of plasmonic metasurfaces by deep learning

Plasmonic metasurfaces have become the building blocks for the meta-optics 
field. It allows for manipulating the wavefront of the electromagnetic wave at will. 
In this section, we are going to give a summary of the current status applying deep 
learning approach for inversely designing plasmonic metasurfaces.

In recent years, with the burgeoning field of metasurfaces, deep learning has 
emerged as a powerful tool for realising efficient inverse design of different types 
of plasmonic metasurfaces for different applications including spectral control, 
near-field design [9–11]. In 2018, Malkiel et al. introduced a novel bidirectional 
DNN model which can realise both the design and characterisation of plasmonic 
metasurfaces [12]. The network consists of two standard DNNs: a geometry-
predicting network (GPN) to solve the inverse design and a spectrum-predicting 
network (SPN) to solve the spectra prediction tasks for plasmonic metasurfaces 
of “H”-shaped gold nanostructures. They have shown that by combing these two 
networks and optimise them together, they can co-adapt to each other, which is more 
effective than training them separately, as shown in Figure 3a. The training data 
for the GPN consists of three groups of data: desired spectra for x-polarised pump 
and y-polarised pump, and the materials’ properties. Each group of data is fed into a 
different layer and three DNNs in parallel before they join the fully connected joint 
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layers. This architecture has considered the differences of properties in the inputs’ 
data, thus allows a better performance of the networks suitable for the nanophotonic 
design. After that, they were using the predicted geometry from the GPN to feed the 
SPN and returns the predicted transmission spectra as the outputs. Then the back-
propagation is used to optimise both networks. The networks show excellent agree-
ment between the measurements, predictions and simulations, as demonstrated by 
two examples shown in Figure 3b using the network to realise the inverse design of 
“H”-shaped gold metasurfaces for target spectra.

As the structural complexity grows, the generation of the training data sets takes 
enormous time. Furthermore, the requirement for more degrees of freedom in 
metasurface patterns makes the problems more and more challenging for conven-
tional neural networks. To solve this issue, generative adversarial network (GAN) 
has been employed for metasurface designs recently [13]. A GAN involves placing 
two neural networks (a generator and a critic) in competition with each other and 
trying to reach an optimum, as shown in Figure 3c. Here, the simulator was first 
pretrained using 6500 full-wave finite element method (FEM) simulations for 
metasurfaces with different shapes. After the training, the simulator was used to 
approximate the transmission spectra of any input patterns rather than using the 
full-wave FEM simulations to do it. This has significantly reduced the number of 
datasets for the network. The generator is used to produce the metasurface patterns 
in response to a given input spectra T, and then fed into the simulator to get the 
approximated spectra T′. The critic will compare the original input geometric data 
corresponding to T and the generated patterns from the generator and guide the 
generator to produce patterns that share common features with the geometric input 
data. Figure 3d gives one example demonstrating the excellent performance of this 
network on predicting and identifying the structure to produce the target spectra 
with only minor deviations.

2.3 Design of dielectric metasurface by deep learning

Recently, dielectric metasurface has triggered extensive interests in the past 
decades. Analogous to metallic nanostructures supporting plasmonic resonance, 
high index dielectric nanostructures provide multipole electric and magnetic 

Figure 3. 
Application of DL for plasmonic metasurfaces inverse design: (a) architecture of the DNN composed of xxx. 
(b) Demonstration of the inverse design of “H”-shaped gold metasurfaces. (c) The architecture of a proposed 
GAN model composed of a generator, a simulator, and a critic. (d) Transmission spectra of the original (left) 
and generated (right) patterns from the proposed GAN approach.
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approximate the transmission spectra of any input patterns rather than using the 
full-wave FEM simulations to do it. This has significantly reduced the number of 
datasets for the network. The generator is used to produce the metasurface patterns 
in response to a given input spectra T, and then fed into the simulator to get the 
approximated spectra T′. The critic will compare the original input geometric data 
corresponding to T and the generated patterns from the generator and guide the 
generator to produce patterns that share common features with the geometric input 
data. Figure 3d gives one example demonstrating the excellent performance of this 
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resonance (also called as Mie resonance), which enable 2π phase coverage without 
ease. Besides, the intrinsic material loss is much lower for high index semiconductor 
than the counterpart of noble metals. These two unique properties make it possible 
to develop high-performance photonic devices based on dielectric metasurface. 
Although dielectric metasurfaces with such regular elements have much better 
performance compared to the plasmonic metasurfaces, they still do not reach the 
optimal one with the best efficiency. In order to further improve the performance of 
dielectric metasurface, inverse design approaches, including adjoint-based topology 
optimisation and genetic algorithms, have been widely used. The iterative optimisa-
tion methods lead to the findings of devices with high efficiency with irregular 
patterns which are usually beyond human intuition. However, these methods rely 
on extremely heavy computation, making them hard to apply to sophisticated 
devices featured by a very high dimensional design space. The recently developed 
deep learning approach, which is based on artificial neural networks, is viewed as 
the perfect solution of dealing massive data while reducing the computation cost. 
It has already found great success in computer vision and natural language process-
ing. Recently, researchers have transferred deep learning to the inverse design of 
nanophotonic devices. Up to date, most frequently used neural networks in the 
design of dielectric metasurfaces are DNN, GAN, and convolution neural networks 
(CNN) In the following, we will illustrate them one by one and also discuss their 
unique strengths and drawbacks.

DNN with fully connected layers has been demonstrated as a versatile and effi-
cient way of engineering a high-Q resonance with desired characteristics, including 
linewidth, amplitude, and spectral location [14]. The structure considered here is 
double identical silicon nanobars sitting on the substrate, as shown in Figure 4b. 
The width and length of nanobars are,, respectively, denoted as W and L while the 
centre to centre distance between nanobars is denoted as 2x0. To reduce the struc-
ture complexity, the period of the unit cell and the thickness of silicon bars are fixed 
as p = 900 nm and t = 150 nm, respectively. Previous studies have demonstrated that 

Figure 4. 
(a) The architecture of the tandem network, which consists of inverse-design model network followed by 
the pretrained forward mode network. (b) Schematic drawing of the unit cell made of two identical silicon 
nanobar. Inverse design of metasurface supporting Fano profile spectra (c) λ0 = 1450 nm and 1500 nm, 
Δλ = 15 nm, q = 0.8. (d) λ0 = 1500 nm, Δλ = 10 nm, q = 0.3 and q = 0.5. (e) λ0 = 1500 nm, Δλ = 5 nm and 
Δλ = 15 nm, q = 0.7. (f) Schematic of the conditional GLOnet for metagrating design. (g) Optimised efficiency 
of metagrating from the conditional GLOnet.
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such an array structure support a Fano resonance induced by the quasi bound state 
in the continuum. Since there are three parameters to be tuned, it is very challenging 
to find the desired structure parameters by one by one brute-force searching when 
the spectrum response is predefined. DNN can correctly address this issue in an 
reduced time period. 25,000 sets of the training data are randomly generated with 
rigorous coupled-wave analysis (RCWA). It is worth noting that it is straightforward 
and easy to train the network mapping from structure parameters to reflection/
transmission spectrum because one set of structure parameters can only produce a 
given spectrum. The objective is to search the structure parameter for the desired 
spectra response. It might be challenging to use an only forward neural network to 
find out the required parameters because the non-uniqueness issue arises. In other 
words, different designs may produce the same far-field electromagnetic response 
because the optical resonance is mainly governed by the volume of structure but 
shows weak dependence on the structure shape. To solve this one-to-many issue, 
as shown in Figure 4a, a Tandem neural network consisting of inverse design 
model network and the forward model network is proposed. More specifically, the 
forward network is trained first to learn the mapping from structure parameters 
to the optical response. After the training of the forward network is done, inverse 
design model network is trained while the weight and bias for the forward network 
are fixed. Once the full training process is completed, one can retrieve the structure 
parameters in several milliseconds while the optical spectrum is predefined. In 
order to test the validity of Tandem network, Figure 4c–e compares the predefined 
spectrum and predicted spectrum of Fano resonance with different wavelength, 
linewidth and amplitude. The excellent agreement can be found between two, 
indicating the effectiveness of the deep learning approach in the inverse design of 
nanophotonics. Note that only amplitude of transmission spectrum is considered 
here. In many applications of dielectric metasurface (e.g., metalens), both ampli-
tude and phase should be considered to shape the wavefront of electromagnetic 
wave. Since optical resonance is always accompanied by π phase-shift, which may 
make training difficult for phase spectra because it is better to be differentiated for 
output parameters (i.e., phase or amplitude). Instead of using phase and amplitude, 
researchers adopt both real and imaginary parts of the reflection/transmission 
spectrum as the output of training data.

Moreover, because of the huge mismatch between the dimensions of input and 
output, a revised neural network was applied. The first standard linear neural net-
work was replaced with the bilinear tensor layer that can correlate two entity vectors 
in multiple dimensions. Training results indicated that modified neural network 
converges faster than the standard linear neural network. This is because input 
parameters are interdependent on each other. Taking an array of dielectric nanodisk 
as an example, the structure is fully described by four parameters: refractive index 
of materials, radius and height of disk, the gap between disks. As we mentioned 
previously, the optical resonance is mainly determined by the refractive index and 
volume of structures. In other words, the spectrum response is governed by permit-
tivity (ε = n2) and volume (V = πr2h). Therefore, multiplication of two entities by 
bilinear tensor can better describe the nonlinearity, and thus facilitate the training 
process. However, it is worth pointing out that there are some limitations on deep 
neural network. First, the design solution retrieved from deep learning must fall 
into the boundary of the training data set. Second, it only works for structure 
defined by several simple parameters. When more parameters are involved, tens, 
hundreds of thousands of training data are required to guarantee the prediction 
accuracy. As a consequence, generating such a large amount of data may consume a 
long time and cause a high computational cost. Moreover, it will be challenging to 
train the data for dielectric metasurface with free form geometry via DNN.
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the pretrained forward mode network. (b) Schematic drawing of the unit cell made of two identical silicon 
nanobar. Inverse design of metasurface supporting Fano profile spectra (c) λ0 = 1450 nm and 1500 nm, 
Δλ = 15 nm, q = 0.8. (d) λ0 = 1500 nm, Δλ = 10 nm, q = 0.3 and q = 0.5. (e) λ0 = 1500 nm, Δλ = 5 nm and 
Δλ = 15 nm, q = 0.7. (f) Schematic of the conditional GLOnet for metagrating design. (g) Optimised efficiency 
of metagrating from the conditional GLOnet.

71

Deep Learning Enabled Nanophotonics
DOI: http://dx.doi.org/10.5772/intechopen.93289
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shows weak dependence on the structure shape. To solve this one-to-many issue, 
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GAN has been found to overcome the above limitations effectively. GAN is 
originally proposed in the computer vision. It is capable of creating artificial images 
that even cannot be distinguished from true images by the computers [15]. GAN has 
been successfully applied to the design of subwavelength scale metallic nanostruc-
tures and multifunctional dielectric metasurface [13, 16]. The operation principles 
of GAN in the design of metasurface are described as follows. The unit cell of the 
metasurface is divided into N*N (i.e., N = 32, 64) pixel images while the thickness 
of structure and period of the unit cell is fixed. There are two neural networks in 
GAN: generator and discriminator. The generator networks try to create the image 
so that it cannot be differentiated to the real image. In contrast, the discriminator 
networks are trained to distinguish the image produced by the generator from the 
real image sets. The competing process between these two networks leads to the 
creation of artificial images that cannot be distinguished from the real one. In fact, 
the topology optimisation method or deep learning approach does not always work 
alone. They can be combined together to build up a new generative network. Such 
a generative network has been proposed to optimise the efficiency of metagrat-
ing at large angle across a broadband wavelength range because it took both the 
advantages of GAN and adjoint-based topology optimisation [17]. Although GAN 
requires less training sets, the training data may be optimised first and thus demand 
more computation source. More recently, global topology optimisation networks 
(GLOnets) was proposed by Jiang et al. from Stanford [18, 19]. It incorporates the 
adjoint-based optimisation into the generative neural networks. Unlike DNN and 
GAN methods, it does not require pre-calculation of training data based on the 
electromagnetic solver. Instead, it adopts the generator networks followed by the 
adjoint-based topology optimiser, allowing for direct learning the physical relation-
ship between geometry parameters of the device and electromagnetic response, as 
shown in Figure 4f. Such a global optimiser does not only reduce the computation 
time but also further improve the efficiency of metagrating at large angles com-
pared to the topology optimisation method (See Figure 4g).

2.4 Design of chiral metamaterials by deep learning

Another example of deep learning’s application in nanophotonics is to design 
plasmonic chiral metamaterials [20, 21]. Chirality corresponds to the structure–
property of an object which cannot superpose to its mirror image by any combina-
tion of rotation and translation. It shows different response under the illumination 
of left circular polarisation (LCP) and right circular polarisation (RCP) incidence. 
This concept is originated from molecules or ions in chemistry. However, the optical 
chirality in nature is extremely weak due to the small interaction volume in the 
visible wavelength. The emergence of metamaterials makes it possible to realise a 
strong optical chiral response. It is well established that a pair of rotating gold split-
ring resonators (SRRs) separated by a dielectric spacer can induce strong chirality. 
The question of how to optimise the chirality at the given frequency still remain 
unanswered because so many parameters involved make it difficult to find out the 
optimal design [20]. The advent of machine learning approach provided the pos-
sibility of processing many parameters at once in a reasonable short time. Ma et al. 
developed a deep learning-based model to design and optimise three-dimensional 
plasmonic chiral metamaterials at the desired wavelength. The structure they 
considered is shown in Figure 5a. The period of the unit cell is fixed as 2.5 μm while 
the thickness and width of gold SRR are set as 200 nm and 50 nm, respectively. 
Other parameters, such as length of top and bottom SRR (l1 and l2), top and bottom 
dielectric space layer (t1 and t2), and the twisted angle α between two SRRs, are set 
as input parameters. For output parameters, 201 points are sampled in the reflection 
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spectrum from 30 to 80 THz. Here, four characteristic reflection spectra that 
include RLL (LCP-input: LCP-output), RLR (LCP-input: LCP-output), RRR (RCP-
input: RCP-output) and chirality spectrum are investigated as output parameters. 
Figure 5b shows the structure of DNN that consists of primary networks (PN) 
and auxiliary network (AN). Both networks have a forward path and an inverse 
path. For the forward path of PN, the huge mismatch of dimension between input 
parameters (1 × 5) and output parameters (3 × 201) makes it hard to converge. This 
is especially obvious around the resonant frequency. To avoid this issue, a neural 
tensor network followed by the unsampled module is used. Instead of using DNN 
with fully connected layers that are formed by simply linear recombination from 
previous neurons, the first hidden layer is replaced as the neural tensor network 
to model second-order relationships because the input parameters are not inde-
pendent with each other. Figure 5c compares the reflection spectra obtained from 
electromagnetic simulation and prediction of PN. The excellent agreement can be 
found for most wavelengths except around resonant wavelengths. This issue is well 
addressed by introducing another AN which learns the relationship between struc-
tural parameters and chirality spectrum. The results are shown in Figure 5d. After 
finishing the training both PN and AN, one can construct any chirality spectrum 
feature by single or double resonances as well as optimise the chirality at predefined 
spectrum. Note that such networks are not the only one which can design and 
optimise the chiral metamaterials. Li et al. developed a self-consistent framework 
termed BoNet (Bayesian optimisation (BO) and CNN) [21], which can conduct self-
learning on the optical properties of nanostructure (i.e., near field and far-field). 
The unit cell of structure, as shown in Figure 5e, is divided into 40 × 40 pixels, 
where the empty area is denoted as 0, and the gold brick area is denoted as 1. Other 
parameters, such as period and thickness, are fixed. DNN used here is composed 
of convolution layers followed by several fully connected layers (see Figure 5f). 
Successful training on the BoNet can help to optimise the chirality at an arbitrary 

Figure 5. 
(a) Schematic drawing of unit cell for chiral metamaterials. (b) Architecture of neural network used for 
the inverse design of chiral metamaterials. (c) Reflection spectra calculated from numerical simulation and 
predicted from DNN. (d) Chirality spectra for both numerical simulation and DNN prediction. (e) Schematic 
drawing of unit cells of structure used for inverse design. (f) Schematic of BoNet for optimisation of the far-
field spectrum. (g) BoNet predicted and experimental verification of far-field circular dichroism spectra at the 
desired wavelength of 650, 700, 750 and 800 nm.
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spectrum from 30 to 80 THz. Here, four characteristic reflection spectra that 
include RLL (LCP-input: LCP-output), RLR (LCP-input: LCP-output), RRR (RCP-
input: RCP-output) and chirality spectrum are investigated as output parameters. 
Figure 5b shows the structure of DNN that consists of primary networks (PN) 
and auxiliary network (AN). Both networks have a forward path and an inverse 
path. For the forward path of PN, the huge mismatch of dimension between input 
parameters (1 × 5) and output parameters (3 × 201) makes it hard to converge. This 
is especially obvious around the resonant frequency. To avoid this issue, a neural 
tensor network followed by the unsampled module is used. Instead of using DNN 
with fully connected layers that are formed by simply linear recombination from 
previous neurons, the first hidden layer is replaced as the neural tensor network 
to model second-order relationships because the input parameters are not inde-
pendent with each other. Figure 5c compares the reflection spectra obtained from 
electromagnetic simulation and prediction of PN. The excellent agreement can be 
found for most wavelengths except around resonant wavelengths. This issue is well 
addressed by introducing another AN which learns the relationship between struc-
tural parameters and chirality spectrum. The results are shown in Figure 5d. After 
finishing the training both PN and AN, one can construct any chirality spectrum 
feature by single or double resonances as well as optimise the chirality at predefined 
spectrum. Note that such networks are not the only one which can design and 
optimise the chiral metamaterials. Li et al. developed a self-consistent framework 
termed BoNet (Bayesian optimisation (BO) and CNN) [21], which can conduct self-
learning on the optical properties of nanostructure (i.e., near field and far-field). 
The unit cell of structure, as shown in Figure 5e, is divided into 40 × 40 pixels, 
where the empty area is denoted as 0, and the gold brick area is denoted as 1. Other 
parameters, such as period and thickness, are fixed. DNN used here is composed 
of convolution layers followed by several fully connected layers (see Figure 5f). 
Successful training on the BoNet can help to optimise the chirality at an arbitrary 

Figure 5. 
(a) Schematic drawing of unit cell for chiral metamaterials. (b) Architecture of neural network used for 
the inverse design of chiral metamaterials. (c) Reflection spectra calculated from numerical simulation and 
predicted from DNN. (d) Chirality spectra for both numerical simulation and DNN prediction. (e) Schematic 
drawing of unit cells of structure used for inverse design. (f) Schematic of BoNet for optimisation of the far-
field spectrum. (g) BoNet predicted and experimental verification of far-field circular dichroism spectra at the 
desired wavelength of 650, 700, 750 and 800 nm.
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wavelength in the visible wavelength range. Figure 5g shows the chirality spectra of 
measurement and prediction from BoNet. The discrepancy can be attributed to the 
tolerance of fabrication and measurements.

3. All-optical neural networks

As was discussed above, neural networks have been successfully used to solve 
rather complex problems in nanophotonics in particular. There are two funda-
mentally different alternatives for the implementation of neural networks: a 
software simulation in conventional computers or a particular hardware solution 
capable of dramatically decreasing execution time. Software simulation can be 
useful to develop and debug new algorithms, as well as to benchmark them using 
small networks. However, if large networks are to be used, software simulation is 
not enough. The problem is the time required for the learning process, which can 
increase exponentially with the size of the network.

At the same time, there are ongoing attempts to implement this architecture in a 
hardware form, which should allow for substantial gains for scaling and distributed 
approaches. Digital circuits are usually implemented by using robust CMOS tech-
nology, where the neuron state summation is realised via common multipliers and 
adders. The activation function is more complicated to implement, which require a 
highly nonlinear response. One of the technical difficulties is related to the imple-
mentation of communication channels. In general, the connection scales as a square 
of the number of inputs. One of the solutions to this problem can be provided by 
optical networks, where the communication channels do not need to be hard-wired 
[22, 23]. Also, in free space, light waves can cross each other without affecting the 
carrying information. Other benefits include low energy to transmit the signal 
and high switching time up to 40 GHz. Thus, analogue optical technology allows 
to implement artificial neural networks directly in hardware, with data encoded 
in pulses of light and neurons made from optical elements, such as lenses, prisms, 
beam splitters, waveguides and spatial light modulators (SLMs), see Figure 6a. In 
particular, SLMs are used for algebraic operations, including matrix multiplication 
with a specific phase mask design [24].

Figure 6. 
(a) Schematic of a generic two-layer artificial optical neural network with linear operation realised via 
programmable SLM and nonlinear activation by employing nonlinear media. (b) Optical micrograph and 
highlighted region of the implemented optical neural network of 22-mode on-chip interference unit. The system 
acts as an optical FPGA. Matrix multiplication and amplification are realised fully optically via Mach-
Zehnder interferometer (MZI) phase-shifters.
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Recently, another approach to realise optical neural networks was based on 
Mach-Zehnder interferometers (MZIs) to calculate matrix products [25, 26], see 
Figure 6b. By carefully manipulating a specific phase shift between a coherent pair 
of incoming light pulses allow to multiply a two-element vector, encoded in the 
amplitude of the pulses, by a two-by-two matrix [27, 28]. An array of the interfer-
ometers can then perform arbitrary matrix operations, which is widely used, for 
example, in the boson sampling approach.

One of the main challenges for the successful realisation of the optical neural 
networks is to find a suitable implementation of the activation function. Due to its 
inherent nonlinear response, light pulses are required to interact with a nonlinear 
media. Various nonlinear effects have been proposed for such functionality. To avoid 
optical signal loss, mostly dielectric materials have been considered. It includes 
photorefractive crystals, liquid crystals, and various semiconductors [29]. Most 
promising nonlinear effects are based on harmonics generation, phase conjugation, 
optical limiter, and bistable response. Recently, researchers from The Hong Kong 
University of Science and Technology proposed a new approach based on cold atoms 
exhibiting electromagnetic induced transparency effect to implement the nonlinear 
activation function [24]. Importantly, it requires very weak laser power and is based 
on nonlinear quantum interference. It is also possible to produce different activation 
functions by varying the positions of counterpropagating beams.

The group from the University of Münster has suggested an alternative approach 
by exploiting the wavelength-division multiplexing (WDM) to transport and sum 
multiple pulses at different wavelengths using single waveguides [30]. Importantly, 
they suggest a phase-change material (PCM) for both linear summing and nonlin-
ear firing. In this approach, each neuron is implemented as a ring-shaped resonator 
of varying diameters to tap light signals with corresponding resonant wavelengths 
from a common waveguide. When the total power of all those signals exceeds a 
certain threshold, they then switch another piece of PCM, this time embedded in a 
resonator at the neuron’s output.

Despite recent progress in all-optical implementation of neural networks, various 
groups investigated hybrid optoelectronic systems in which neurons convert signals 
from light into electricity and then back to light. The group from Princeton suggested 
using electro-absorption modulation for the optimal integrated photonics imple-
mentation of the neural networks [31]. One of the essential aspects is the integration 
density. The electro-optical induced nonlinearity is realised by using photodiode cou-
plers. Moreover, it also allows for spiking signal processing, which enables the direct 
implementation of neuromorphic computing. It led to the development of a new and 
quite promising platform of neuromorphic photonics combining the advantages of 
optics and electronics to build systems with high efficiency, high interconnectivity 
and high information density.

4. Conclusion and outlook

Although deep learning was proposed and found great success in the context of 
computer vision and speech/image recognition, it has become a powerful approach 
to solve complex problems in biology, physics and chemistry. As a branch of 
physics, nanophotonics has witnessed huge progress based on deep learning. Deep 
learning allows us to inversely design nanophotonic devices with even less computa-
tion source and time compared to conventional computational approaches, such as 
topology optimisation and genetic algorithm. Currently, the research interests and 
efforts are still fast-growing and expanding in deep learning-enabled nanophoton-
ics. More research opportunities may be brought in this area.
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On the one hand, although deep learning has been successfully applied to 
retrieve the structure parameters for any given spectrum, it remains an opening 
question that whether it is possible to realise narrowband or broadband absorbers 
at the specified wavelength or wavelength range. On the other hand, by combining 
deep learning and topology optimisation, beam steering at relatively large deflec-
tion angle with high efficiency has been demonstrated for single- or bi-operation 
wavelengths. Next step is to utilise deep learning to optimise the metasurface design 
with multi-functionalities further. For example, current broadband achromatic 
metalens has limited focusing efficiency. We believe the deep learning can entirely 
overcome this limitation by providing more irregular combinations of metaatoms 
that cannot be found by regular cylinder metaatoms. Finally, since nanophotonics 
offers a powerful and versatile platform to realise optical neural networks, more 
advanced and fast photonic chips that can bypass the computational capability 
based on traditional electric chips will be developed and paved the way toward the 
photonic computer.
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learning methods available today. These deep learning methods can yield highly 
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1. Introduction

Explainable artificial intelligence (xAI) is one of the research topics that has 
been intriguing in recent years. Today, even if we are at the beginning of under-
standing this type of models, the studies that show interesting results about this 
issue are getting more and more intensive. In the near future, it is predicted that 
there will be years when the interpretability of artificial intelligence and deep meta-
learning models is frequently explored [1]. It is thought to be a solution to overcome 
constraints in classical deep learning methods.

In classical artificial intelligence approaches, we frequently encounter deep 
learning methods available today. Currently, in classical deep learning methods, 
input data and target (class) information can be trained with high performance 
and tested with new data input [2]. These deep learning methods can yield highly 
effective results according to the data set size, data set quality, the methods used 
in feature extraction, the hyper parameter set used in deep learning models, the 
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network allow it to recognize things at different levels of abstraction. For example, 
in a structure designed to recognize dogs, the lower layers recognize simple things 
such as outlines or color; the upper layers recognize more complex things like fur 
or eyes, and the upper layers define them all as a dog. Presumably speaking, the 
same approach can be applied to other inputs that lead a machine to teach itself. 
For example, it can be easily applied to the sounds that make up the words in the 
speech, the letters and words that form the sentences in the text, or the steering 
movements required to drive.

However, there are important shortcomings that current deep learning models 
are currently inadequate [4]. For deep learning, huge data sets are needed to 
train on, and these data sets must be inclusive/unbiased, and of good quality [5]. 
In addition, traditional deep learning requires a lot of time to train models for 
satisfying their purpose with an admissible amount of accuracy and relevancy [6]. 
Although deep learning is autonomous, it is highly susceptible to errors. Assume 
that an algorithm is trained with data sets small enough to not be inclusive [4]. The 
models trained by this way cause to irrelevant responses (biased predictions coming 
from a biased training set) being displayed to users [7]. One of the most important 
problems in artificial learning models is transparency and interpretability [8]. 
These artificial neural network-based models are black box models that generalize 
the data transmitted to it and learn from the data. Therefore, the relational link 
between input and output is not observable [9]. In other words, when you receive 
an output data against the input data, the deep learning model cannot provide the 
information for which reason the output is generated. The user cannot fully grasp 
the internal functions of these models and cannot find answers to question why and 
how the answers the models produce [10]. This situation creates difficulties in the 
application areas of these models in many aspects. For example, you stopped a taxi 
and got on it. The driver is such a driver that when he takes you to your destination, 
he turns right, turns left, and tries to get you on a strange route than you expect, 
but when you ask why he did so, he cannot give you a satisfactory answer. Would 
you be nervous? If there is no problem for you, you can ride an autonomous vehicle 
without a driver. As another example, when you go to the doctor, the doctor you 
send your complaint asks for tests and when you have those tests and send it to the 
doctor, the doctor tells you what your illness is. Even though he says his treatment, 
he does not give explanatory information about the cause of your illness. In this 
case, questions remain about what caused the disease and you would not be satisfied 
with the doctor. This is an important open point in artificial neural networks and 
deep learning models.

The explainable artificial intelligence (xAI) approach can be considered as an 
area at the intersection of several areas. One of these areas is the end user explana-
tion section that includes social sciences. This area provides artificial intelligence to 
gain cognitive abilities. Another area is the human machine interface, where it can 
demonstrate the ability to explain; because explainable artificial intelligence needs 
a very high-level interaction with the user. And finally, deep learning models are an 
important part of an explicable artificial intelligence approach (Figure 1).

In this new approach, it is aimed to provide the user with the ability to explain 
the output data produced as well as being trained at high performance with the input 
data and target (class) information and tested with the new data input as in the clas-
sical machine learning models. This will create a new generation artificial intelligence 
approach that can establish a cause and effect relationship between input and output. 
It will also be the mechanism of monitoring the reliability of artificial intelligence 
from the user point of view. While a classic deep learning model can answer “what” 
or “who” questions, learning models in explainable artificial intelligence approaches 
can also answer “why,” “how,” “where,” and “when” questions [10] (Figure 2).
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Figure 1. 
Explainable artificial intelligence (xAI) [8].

Figure 2. 
How can explainable artificial intelligence (xAI) be reliable [11]?

Figure 3. 
Machine learning models with respect to accuracy-explainability domain [12].
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Explainability and accuracy are two separate domains. In general, models that 
are advantageous in terms of accuracy and performance are not very successful in 
terms of explainability. Likewise, methods with high explainability are also dis-
advantageous in terms of accuracy. When methods such as classical deep learning 
models, artificial neural networks support vector machines are utilized, they do 
not give reasons why, and how their outputs created in terms of explainability. On 
the other hand, they are very successful in accuracy  and performance. Rule-based 
structures, decision trees, regression algorithms, and graphical methods are good 
explainability but not advantageous in terms of performance and accuracy. At this 
point, explanatory artificial intelligence (xAI), which is targeted to be at the highest 
level of both explainability and accuracy and performance, reveals its importance at 
this point (Figure 3).

2. Related works

There is a transformation of machine learning that has been going on since the 
1950s, sometimes faster and sometimes slower. The most studied and remarkable 
area in the recent past is artificial learning, which aims to model the live decision sys-
tem, behavior, and responses. Successful results in the field of artificial learning led 
to the rapid increase of AI applications. Further studies promise to be autonomous 
systems capable of self-perception, learning, decision-making, and action [13].

Especially after the 1990s, although deep learning concept and foundations 
go back to the past, the accompanying recurrent neural networks, convolutional 
neural networks, deep reinforcement learning, and adversarial generative networks 
have achieved remarkable successes. Although successful results are obtained, these 
systems are insufficient in terms of explaining the decisions and actions to human 
users and there are limits.

The U.S. Department of Defense (DoD) explains that it is facing the chal-
lenges posed by autonomous and symbiotic systems, which are becoming smarter 
with each passing day. Explaining artificial intelligence or especially explanatory 
machine learning is important in terms of being a preview that users will encounter 
machines with human-like artificial intelligence in the future [14, 15]. Explained 
artificial intelligence is one of the Defense Advanced Research Projects Agency 
(DARPA) programs aimed at the development of a new generation of artificial 
intelligence systems, where they understand the context and environment in which 
machines operate and build descriptive models that enable them to characterize 
the real world phenomenon over time. For this purpose, DARPA recently issued a 
call letter for the Explainable Artificial Intelligence (XAI)—Explanatory Artificial 
Intelligence project [15]. Within the scope of the project, it is aimed to develop a 
system of machine learning techniques that focus on machine learning and human-
machine interaction, and produce explanatory models that will enable end users to 
understand, trust, and manage emerging artificial intelligence systems. According 
to the researchers from DARPA, the striking successes in machine learning have led 
to a huge explosion in new AI capabilities that enable the production of autonomous 
systems that perceive, learn, decide, and act on their own. Although these systems 
provide tremendous benefits, their effectiveness is limited due to the inability to 
explain machine decisions and actions to human users.

The Explanatory Artificial Intelligence project aims to develop the machine 
learning and computer-human interaction tools to ensure that the end user, who 
depends on decisions, recommendations, or actions produced by the artificial 
intelligence system, understands the reason behind the system’s decisions [1]. 
For example, an intelligence analyst who gets recommendations from big data 
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analytics algorithms may need to understand why the algorithm advises to examine 
a particular activity further. Similarly, the operator, who tests a newly developed 
autonomous system, has to understand how he makes his own decisions to 
determine how the system will use it in future tasks.

The xAI tools will provide end users with explanations of individual decisions, 
which will enable them to understand the strengths and weaknesses of the system 
in general, give an idea of how the system will behave in the future, and perhaps 
teach how to correct the system's mistakes. The XAI project addresses three research 
and development challenges: how to build more models, how to design an explana-
tion interface, and how to understand psychological requirements for effective 
 explanations [2].

For the first problem, the xAI project aims to develop machine learning tech-
niques to be able to manufacture explanatory models. To solve the second challenge, 
the program envisions integrating state-of-the-art human-machine interaction 
techniques with new principles, strategies, and techniques to produce effective 
explanations. To solve the third problem, the xAI project plans to summarize, 
disseminate, and apply existing psychological theory explanations. There are two 
technical areas in the program: the first is to develop an explanatory learning system 
with an explanatory model and an explanation interface; and the second technical 
area covers psychological theories of explanation [8].

In 2016, a self-driving car was launched on quiet roads in Monmouth County, 
New Jersey. This experimental tool developed by researchers at chip maker Nvidia 
did not look different from other autonomous cars; however, Google was different 
from what Tesla or General Motors introduced and showed the rising power of arti-
ficial intelligence. The car had not even followed a single instruction provided by an 
engineer or a programmer. Instead, it relied entirely on an algorithm that allowed 
him to learn to drive by watching a person driving [3]. It was an impressive success 
to have a car self-driving in this way. But it was also somewhat upsetting as it was 
not entirely clear how the car made its own decisions. The information from the 
vehicle’s sensors went directly to a huge artificial neural network that processes the 
data and then delivers the commands needed to operate the steering wheel, brakes, 
and other structures. The results seem to match the reactions you can expect from 
a human driver. But what if one day something unexpected happens; hits a tree or 
stops at the green light? According to the current situation, it may be difficult to 
find the cause. The system is so complex that even the engineers who designed it can 
find it difficult to pinpoint the cause of any action. Moreover, you cannot ask this; 
there is no obvious way to design such a system that can always explain why it does 
what it does. The mysterious mind of this vehicle points to a vague-looking issue of 
artificial intelligence. Artificial intelligence technology, which is located at the base 
of the car and known as deep learning, has proven to be very strong in problem-
solving in recent years, and this technology has been widely applied in works such 
as image content estimation, voice recognition, and language translation. Now the 
same methods can be used to diagnose lethal diseases, make million-dollar business 
decisions, etc. to change all industries.

Currently, the mathematical models are used to help determine who will be on 
parole, who will be approved to borrow money, and who will be hired. If you can 
access these mathematical models, it is possible to understand their reasoning. But 
banks, the military, employers, and others are now turning their attention to more 
complex machine learning approaches. These approaches can make automated deci-
sion-making completely incomprehensible. The most common of these approaches 
represents deep learning, a fundamentally different way of programming com-
puters. Whether it is an investment decision or a medical decision, or a military 
decision, you do not want to rely solely on a “black box” method [1]. There is 
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already a debate that it is a fundamental legal right to question a system of artificial 
intelligence about how it arrived at its conclusions. Starting in the summer of 2018, 
the European Union may require companies to provide users with an explanation of 
the decisions made by automated systems. This may be impossible even for systems 
that look comparatively simple on the surface, such as applications and Websites 
that use deep learning to offer advertising or song suggestions. Computers perform-
ing these services have programmed themselves and have done so in ways we cannot 
understand. Even the engineers who build these applications cannot fully explain 
their behavior.

As technology advances, we can go beyond some thresholds where using arti-
ficial intelligence in recent times requires a leap of faith. The mankind, of course, 
are not always able to fully explain our thought processes; but we find a variety 
of methods to intuitively trust people and measure them. Will this be possible for 
machines that think and make decisions differently than a person does? We have 
never built machines that operate in ways that their manufacturers do not under-
stand. How long can we hope to communicate and deal with intelligent machines 
that can be unpredictable or incomprehensible? These questions take a journey 
toward new technology research on artificial intelligence algorithms, from Google 
to Apple and many other places between them, including a conversation with one of 
the greatest thinkers of our time.

3. Explainable artificial intelligence (xAI)

You cannot see how the deep neural network works just by looking inside. The 
reasoning of a network is embedded in the behavior of thousands of nerves, which 
are stacked and tied to tens or even hundreds of layers, mixed together. Each of the 
nerves in the first layer receives an input, such as the voltage of a pixel in an image, 
and then performs a calculation before sending a new signal as an output. This 
output is sent to the next layer in a complex network, and this process continues 
until a general output is produced. There is also a process known as back propaga-
tion that modifies the calculations of individual nerves so that a network learns to 
produce a desired output. Because deep learning is inherently a dark black box by 
nature, artificial learning models designed with millions of artificial nerve cells 
with hundreds of layers like traditional deep learning models are not infallible [1]. 
Their reliability is questioned when simple pixel changes can be seriously misleaded 
by causing significant deviations in the weight values in all layers of the neural 
network, especially in an example such as a one-pixel attack [16]. So, it becomes 
inevitable to ask the question of how it can succeed or fail. With the success of this 
type of advanced applications, its complexity also increases and its understanding/
clarity becomes difficult.

It is aimed to have the ability to explain the reasons of new artificial learning 
systems, identify their strengths and weaknesses, and understand how they will 
behave in the future. For an ideal artificial intelligence system, the best accuracy 
and best performance, as well as the best explainability and the best interpret-
ability are required within the cause-effect relationship. The strategy developed 
to achieve this goal is to develop new or modified artificial learning techniques 
that will produce more explicable models. These models are aimed to be combined 
with state-of-the-art human-computer interactive interface techniques that can 
be translated into understandable and useful explanation dialogs for the end user 
(Figure 4).

In this structure, unlike the classical deep learning approaches, two different 
elements draw attention as well as a new machine learning process. One of these 
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is the explanatory model and the other is the explanation interface. The process of 
deep neural network-based machine learning is explained at the core of the artifi-
cial intelligence approach. Among the known deep learning models, autoencoder, 
convolutional, recurrent (LSTM), deep belief network, or deep reinforcement 
learning can be preferred. However, it is also possible to use a hybrid structure 
where several deep learning approaches are used together. Autoencoder-type model 
of deep neural networks are multilayered perceptron structure. In convolution 
neural network-type models, layers consist of convolutional layer, ReLU activation 
function, and max pool layer. A conventional component of the LSTM is composed 
of a memory cell including input, output, and forget gates. For training, the back-
propagation through time algorithm can be preferred. Although the most common 
form of deep reinforcement learning models is deep Q network (DQN), many 
different variations of this model can be addressed. Many different algorithms are 
used as optimization algorithm. Gradient-based algorithms are the most common 
form of these algorithms (Figure 5).

Explainable model is an adaptive rule-based reasoning system. It is a structure 
that reveals the cause-effect relations between input data and the results obtained 
from the machine learning process. This causal structure learns the rules with its 
own internal deep learning method. In this way, the explanatory artificial intel-
ligence model allows it to explore the causes and develop new strategies against 
different situations [20].

The explanation interface is a part of the user interaction. It is similar to the 
question-answer interface in voice digital assistants. This interface consists of a 
decoder that evaluates the demands of the user and an encoder unit that enables the 
responses from the explanatory model, which constitutes the causal mechanism of 
the explainable artificial intelligence, to the user (Figure 6).

In fact, the large networks of semantic technologies (entities) and relationships 
associated with Knowledge Graphs (KGs) provide a useful solution for the issue 
of understandability, several reasoning mechanisms, ranging from consistency 
checking to causal inference [21]. The ontologies realizing these reasoning 
procedures provide a formal representation of semantic entities and relationships 
relevant to a particular sphere of knowledge [21]. The input data, hidden layers, 
encoded features, and predicted output of deep learning models are passed into 
knowledge graphs (KGs) or concepts and relationships of ontologies (knowledge 

Figure 4. 
Explainable artificial intelligence (xAI) project proposed by DARPA [14, 15].
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matching) [21]. Generally, the internal functioning of algorithms to be more 
transparent and comprehensible can be realized by knowledge matching of deep 
learning components, including input features, hidden unit and layers, and output 
predictions with KGs and ontology components [21]. Besides that, the conditions 
for advanced explanations, cross-disciplinary and interactive explanations are 
enabled by query and reasoning mechanisms of KGs and ontologies [21].

Although explanatory artificial intelligence forms are of very different struc-
tures, all modules such as this explanation interface, explanatory model, and deep 
learning work in coordination with each other. For example, while a deep learning 
process estimates classes, such as the explanatory artificial intelligence model (xAI 
tool) developed by IBM, the concept features data obtained from this process, and 
another deep learning process using the same input data set produces an explana-
tory output for the predicted class label output [22] (Figure 7).

Figure 5. 
Deep learning models: (a) autoencoder [17], (b) convolutional neural network [18], and (c) recurrent 
(LSTM) neural network [19].
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At this point, the explainable artificial intelligence (xAI) tool developed by 
IBM is referred as a self-explaining neural network (SENN) which can be trained 
end-to-end with back-propagation in case of that g depends on its arguments in 
a continuous way [18]. The input is transformed into a small set of interpretable 
basis features by a concept encoder [22]. The relevance scores are produced by 
an input-dependent parametrizer. A prediction to be generated is merged by an 
aggregation function. The full model to behave locally as a linear function on 
h(x) with parameters  θ (x), producing interpretation of both concepts and rel-
evances, is induced by the robustness loss on the parametrizer [22].  θ (x) modeling 
capacity is important so that the model richness realizing higher-capacity archi-
tectures is sustained although the concepts are chosen to be raw inputs (i.e., h is 
the identity).

Figure 6. 
Semantic knowledge matching for explainable artificial intelligence model [21].

Figure 7. 
Explainable artificial intelligence (xAI) tool developed by IBM [22].
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4. Meta-learning

As research and technology on machine learning progresses, artificial intel-
ligence agents consistently display impressive learning performances that meet and 
exceed the cognitive skills of people in different fields. However, most AI programs 
are based on computing technology and even reinforcement learning (RL) models 
that try to regularly improve their knowledge to match human performance. By 
contrast, people can quickly learn new skills of new skills, simply by having a new 
skill [23]. The learning of the human brain so efficiently has surprised neuroscien-
tists for years.

In traditional deep learning approaches, the system develops a data-specific 
model that is transmitted to it by learning from the data. The learning system will 
perform a certain task only for a certain environment. In the case of another envi-
ronment, when a very different data is transmitted to it, this deep learning model 
will be insufficient to perform the task [24]. This issue reveals hard constraints in 
utilizing machine learning or data mining methods, since the relationship between 
the learning problem and the effectiveness of different learning algorithms is not 
yet understood. Under ideal conditions, a system should be designed in which the 
quality of the data given to the system differs and it can easily adapt to changes in 
different environments [25]. The deep learning methods used in the current situa-
tion are not successful in these situations. At this point, meta-learning, which learns 
to learn, is an integrated and hierarchical learning model over several different 
environmental models [26, 27]. As a subfield of machine learning, meta-learning 
learning algorithms are applied on metadata about machine learning experiments. 
Instead of classical machine learning approaches that only learn a specific task with 
single massive dataset, meta-learning is a high-level machine learning approach that 
learns other tasks together. Therefore, this approach requires a hierarchical struc-
ture that learns to learn a new task with distributed hierarchically structured meta-
data. It is generally applied for hyper parameter adjustment; recent applications 
have started to focus on a small number of learning. For example, if the system has 
already learned a few different models or tasks, meta-learning can generalize them 
and learn how to learn more efficiently. In this way, it can learn new tasks efficiently 
and create a structure that can easily adapt to changes in multiple tasks in different 
environments.

People are good at figuring out the meaning of a word after seeing it used only 
in a few sentences. Similarly, we want our ML algorithms to be generalized to new 
tasks, without the need for a large data set each time, and to change behavior after a 
few samples. In typical learning (on a single dataset), each sample targets pair func-
tions as a training point. However, in a small number of learning situations, each 
“new” sample area is actually another task in itself. In other words, understanding 
the way that you use unique words in a particular social environment becomes a 
new task for your language-understanding model, and when you enter a different 
social environment, it means that the system can adapt to a different language-
understanding model than before since it requires to dominate the words that are 
specific to that social environment. To make sure an ML framework can behave 
similarly, we have to train it on multiple tasks on its own, so we make each data set a 
new example of training [28] (Figure 8).

An alternative is to handle the task consecutively as a sequential input array and 
create a repetitive model that can create a representation of this array for a new task. 
Typically, in this case, we have a single training process with a memory or attention 
repetitive network [30]. This approach also gives good results, especially when the 
installations are properly designed for the task. The calculation performed by the 
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optimizer during the meta-forward transition is very similar to the calculation of a 
repetitive network [31]. It repeatedly applies the same parameters over a series of 
inputs (consecutive weights and gradients of the model during learning). In prac-
tice, this means that we meet a common problem with repetitive networks. Since 
the models are not trained to get rid of training errors, they have trouble returning 
to a safe path when they make mistakes, and the models have difficulty generalizing 
longer sequences than those used in the order in which they were used. In order to 
overcome these problems, if the model learns an action policy related to the current 
educational situation, reinforcement learning approaches can be preferred [32] 
(Figure 9).

Formal reinforcement learning algorithm learns a policy for only single task.

   θ   ∗  =  argmax𝜃𝜃  
 
     E  𝜋𝜋𝜋𝜋 (τ)    (R (τ) )   (1)

Figure 8. 
Meta-learning approach [29].

Figure 9. 
(a) Meta-reinforcement learning (stack of sub-policies representation) [33] and (b) meta-reinforcement 
learning (inner-outer loop representation) [34].
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In meta-reinforcement learning, there are two distinct processes. One of them 
is adaptation (inner-loop) behaving ordinary RL policy learning to produce sub-
policy where   ϕ  i   =  f  θ   ( ℳ  i  )   for each environment (task)   ℳ  i   .

   θ   ∗  =  argmax𝜃𝜃  
 
     ∑ 

i=1
  

n
     E  π ϕ  i   (τ)    [R (τ) ]   (2)

Another process is meta-training (outer-loop), which is described as meta-
policy learning from all sub-policies in the adaptation process (inner-loop).

One of the main differentiers between the human brain and artificial intel-
ligence structures such as deep neural networks, is the brain that utilizes different 
chemicals known as neurotransmitters to perform different cognitive functions. 
A new study by DeepMind believes that one of these neurotransmitters plays an 
important role in the brain's ability to quickly learn new topics. Dopamine acts as a 
reward system that strengthens connections between neurons in the brain.

The DeepMind team has used different meta-reinforcement learning techniques 
that simulate the role of dopamine in the learning process. Meta-learning trained a 
repetitive neural network (representing the prefrontal cortex) using standard deep 
reinforcement learning techniques (representing the role of dopamine) and then 
compared the activity dynamics of the repetitive network with actual data from 
previous findings in neuroscience experiments [27]. Recurrent networks are a good 
example of meta-learning because they can internalize past actions and observa-
tions and then use these experiences while training on various tasks.

The meta-learning model recreated the Harlow experiment by saying a virtual 
computer screen and randomly selected images, and the experiment showed that 
the “meta-RL agent” was learned in a similar way to the animals found in the 
Harlow Experiment, even when presented with the Harlow Experiment. All new 
images were never seen before. The meta-learning agent quickly adapted to differ-
ent tasks with different rules and structures.

5. Explainable meta-reinforcement learning (xMRL)

In this section, we will discuss the development of deep reinforcement learning 
models with an explicable approach to artificial intelligence. Deep reinforcement 
learning models are machine learning models that learn what action to take accord-
ing to status and reward information by maximizing reward [27]. Generally, it 
is widely preferred in robotic, autonomous driverless vehicles, unmanned aerial 
vehicles, and games. Explanatory artificial intelligence, on the other hand, provides 
the knowledge of why action should be taken against the situation and reward 
for deep reinforcement learning models. In this way, it will be possible to gain 
the causal decision-making ability of the model by revealing the relational links 
between the input and output of the developed agent (Figure 10).

In addition, it is possible to learn the reward derivation mechanism by using 
the inverse reinforcement learning model [36, 37]. In this case, unlike the previous 
approach, a meta-cognitive artificial intelligence model that can adapt to other 
environments instead of just one environment is developed [38, 39]. Taken together 
with the explainable artificial intelligence approach, it will be possible for the devel-
oped agent to develop his own strategy by establishing a cause-effect relationship. 
For example, the explainable meta-reinforcement learning agent to be developed 
means that in terms of meta-learning, it can learn to play Go, chess, checkers, and 
even learn and adapt when it is encountering a new game, and in terms of explain-
able artificial intelligence, it means that being aware of why it is doing any specific 
action against a move made by the opponent, it can explain this.
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6. Discussion and concluding remarks

Next generation artificial intelligence structures are expected to have a hierar-
chical meta-learning ability that can adapt to many different environments, besides 
being a causal and explanatory power by establishing a cause-effect relationship. 
For this, serious effort is still needed to create flexible and interpretable models that 
can hold opinions from many different disciplines together and work in harmony.

We cannot ignore the advantages this will give us. For example, if we start with a 
medical application, after the patient data is examined, both the physician must under-
stand and explain to the patient why he/she suggested that the explanatory decision 
support system suggested to the related patient that there was a “risk of heart attack.” 
At the same time, as a meta-learning agent of this system, it has the same ability against 
all other diseases and it will be possible to develop appropriate treatment strategies.

While coming to this stage, what data is evaluated first is another important 
criterion. It is also necessary to explain what data is needed and why, and what is 
needed for proper evaluation. In the future, next generation deep learning and arti-
ficial intelligence forms are expected to reach the level of intelligence (singularity), 
which has higher performance and ability than human level. Artificial intelligence 
and deep learning structures mentioned in this section are thought to shed light on 
reaching these levels. In particular, it can be said that meta-learning approaches are 
capable of supporting the formation of structures that learn and adapt to multiple 
tasks and are also called general artificial intelligence (AGI). In the same way, it can 
be stated that artificial intelligence structures will help the formation of self-aware-
ness and artificial consciousness structures based on content and causality.

Figure 10. 
(a) Reinforcement learning and (b) inverse reinforcement learning [35].
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In meta-reinforcement learning, there are two distinct processes. One of them 
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policy where   ϕ  i   =  f  θ   ( ℳ  i  )   for each environment (task)   ℳ  i   .

   θ   ∗  =  argmax𝜃𝜃  
 
     ∑ 

i=1
  

n
     E  π ϕ  i   (τ)    [R (τ) ]   (2)

Another process is meta-training (outer-loop), which is described as meta-
policy learning from all sub-policies in the adaptation process (inner-loop).
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Chapter 6

Dynamic Decision-Making for
Stabilized Deep Learning Software
Platforms
Soohyun Park, Dohyun Kim and Joongheon Kim

Abstract

This chapter introduces a dynamic and low-complexity decision-making algo-
rithm which aims at time-average utility maximization in real-time deep learning
platforms, inspired by Lyapunov optimization. In deep learning computation, large
delays can happen due to the fact that it is computationally expensive. Thus, handling
the delays is an important issue for the commercialization of deep learning algo-
rithms. In this chapter, the proposed algorithm observes system delays at first for-
mulated by queue-backlog, and then it dynamically conducts sequential decision-
making under the tradeoff between utility (i.e., deep learning performance) and
system delays. In order to evaluate the proposed decision-making algorithm, the
performance evaluation results with real-world data are presented under the applica-
tions of super-resolution frameworks. Lastly, this chapter summarizes that the
Lyapunov optimization algorithm can be used in various emerging applications.

Keywords: Lyapunov optimization, stochastic optimization, real-time computing,
deep learning platforms, computer vision platforms

1. Introduction

Nowadays, many machine learning and deep learning algorithms have been
developed in various applications such as computer vision, natural language
processing, and so forth. Furthermore, the performances of the algorithms are
getting better. Thus, the developments of machine learning and deep learning
algorithms become mature. However, the research contributions which are focusing
on the real-world implementation of the algorithms are relatively less than the
developments of the algorithms themselves.

In order to operate the deep learning algorithms in real-world applications, it is
essential to think about the real-time computation. Thus, the consideration of delay
handling is desired because deep learning algorithm computation generally intro-
duces large delays [1].

In communications and networks research literature, there exists a well-known
stochastic optimization algorithm which is for utility function maximization while
maintaining system stability. Here, the stability is modeled with queue, and then
the algorithm aims at the optimization computation while stabilizing the queue
dynamics. In order to formulate the stability, the queue is mathematically modeled
with Lyapunov drift [2].
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Lyapunov optimization algorithm can be used in various emerging applications.
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1. Introduction

Nowadays, many machine learning and deep learning algorithms have been
developed in various applications such as computer vision, natural language
processing, and so forth. Furthermore, the performances of the algorithms are
getting better. Thus, the developments of machine learning and deep learning
algorithms become mature. However, the research contributions which are focusing
on the real-world implementation of the algorithms are relatively less than the
developments of the algorithms themselves.

In order to operate the deep learning algorithms in real-world applications, it is
essential to think about the real-time computation. Thus, the consideration of delay
handling is desired because deep learning algorithm computation generally intro-
duces large delays [1].

In communications and networks research literature, there exists a well-known
stochastic optimization algorithm which is for utility function maximization while
maintaining system stability. Here, the stability is modeled with queue, and then
the algorithm aims at the optimization computation while stabilizing the queue
dynamics. In order to formulate the stability, the queue is mathematically modeled
with Lyapunov drift [2].
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This algorithm is designed inspired by Lyapunov control theory, and thus, it is
named to Lyapunov optimization theory [2]. In this chapter, the basic theory,
examples, and discussions of the Lyapunov optimization theory are presented.
Then, the use of Lyapunov optimization theory for real-time computer vision and
deep learning platforms is discussed. Furthermore, the performance evaluation
results with real-world deep learning framework computation (e.g., real-world
image super-resolution computation results with various models) are presented in
various aspects. Finally, the emerging applications will be introduced.

2. Stabilized control for reliable deep learning platforms

In this section, Lyapunov optimization theory which is for time-average optimi-
zation subject to stability is introduced at first (refer to Section 2.1), and then
example-based explanation is presented (refer to Section 2.2). Finally, related dis-
cussions are organized (refer to Section 2.3).

2.1 Theory

In this section, we introduce the Lyapunov optimization theory which aims at
time-average penalty function minimization subject to queue stability. Notice that
the time-average penalty function minimization can be equivalently converted to
time-average utility function maximization. The Lyapunov optimization theory can
be used when the tradeoff exists between utility and stability. For example, it can be
obviously seen that the tradeoff exists when current decision-making is optimal in
terms of the minimization of penalty function, whereas the operation of the deci-
sion takes a lot of time, i.e., thus it introduces delays (i.e., queue-backlog increases
in the system). Then, the optimal decision can be dynamically time-varying because
focusing on utility maximization (i.e., penalty function minimization) is better
when the delay in the current system is not serious (i.e., queueing delay is small or
marginal). On the other hand, the optimal decision will be for the delay reduction
when the delay in the current system is large. In this case, the decision should be for
delay reduction while sacrificing certain amounts of utility maximization (or pen-
alty function minimization).

Suppose that our time-average penalty function is denoted by P α t½ �ð Þ and it
should be minimized and our control action decision-making is denoted by α t½ �.
Then, the queue dynamics in the system, i.e., Q t½ �, can be formulated as follows:

Q tþ 1½ � ¼ max Q t½ � þ a α t½ �ð Þ � b α t½ �ð Þ, 0f g (1)

Q 0½ � ¼ 0 (2)

where a α t½ �ð Þ is an arrival process at Q t½ � at t when our control action decision-
making is α t½ �. In (1), b α t½ �ð Þ is a departure/service process at Q t½ � when our control
action decision-making is α t½ � at t.

In this section, control action decision-making should be made in each unit time
for time-average penalty function minimization subject to queue stability. Then, the
mathematical program for minimizing time-average penalty function, P α t½ �ð Þwhere
the control action decision-making at t is α t½ �, can be presented as follows:

min : lim
t!∞

Xt�1
τ¼0

P α τ½ �ð Þ (3)
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Subject to queue stability:

lim
t!∞

1
t

Xt�1
τ¼0

Q τ½ �<∞: (4)

In (3), P α t½ �ð Þ stands for the penalty function when a control action decision-
making is α t½ � at t.

As mentioned, the Lyapunov optimization theory can be used when tradeoff
between utility maximization (or penalty function minimization) and delays exists.
Based on this nature, drift-plus-penalty (DPP) algorithm [2–4] is designed for
maximizing the time-average utility subject to queue stability. Here, the Lyapunov
function is defined as L Q t½ �ð Þ ¼ 1

2 Q t½ �ð Þ2, and let Δ :ð Þ be a conditional quadratic
Lyapunov function which is formulated as  L Q tþ 1½ �ð Þ � L Q t½ �ð ÞjQ t½ �½ �, which is
called as the drift on t. According to [2], this dynamic policy is designed to achieve
queue stability by minimizing an upper bound of our considering penalty function
on DPP which is given by

Δ Q t½ �ð Þ þ V P α t½ �ð Þ½ �, (5)

where V is a tradeoff coefficient. The upper bound on the drift of the Lyapunov
function at t is derived as follows:

L Q tþ 1½ �ð Þ � L Q t½ �ð Þ ¼ 1
2

Q tþ 1½ �2 � Q t½ �2
� ��

(6)

≤
1
2

a α t½ �ð Þ2 þ b α t½ �ð Þ2
� �

þQ t½ � a α t½ �ð Þ � b α t½ �ð Þð Þ: (7)

Therefore, the upper bound of the conditional Lyapunov drift can be derived as
follows:

Δ Q tð Þð Þ ¼  L Q tþ 1½ �ð Þ � L Q t½ �ð ÞjQ t½ �½ �
≤Cþ  Q t½ � a α t½ �ð Þ � b α t½ �ð Þ∣Q t½ �ð �,½

(8)

where C is a constant given by

1
2
 a α t½ �ð Þ2 þ b α t½ �ð Þ2jQ t½ �
h i

≤C, (9)

which supposes that the arrival and departure process rates are upper bounded.
Due to the fact that C is a constant, minimizing the upper bound on DPP is as
follows:

V P α t½ �ð Þ½ � þ  Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ �: (10)

Algorithm 1. Stabilized Time-Average Penalty Function Minimization

Initialize:
1: t 0;
2: Q t½ �  0;
3: Decision Action: ∀α t½ �∈A
Time-Average Penalty Function Minimization subject to Stability
4: while t≤T do // T: operation time
5: Observe Q t½ �;
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Initialize:
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6: T ∗  ∞;
7: for α t½ �∈A do
8: T  V � P α t½ �ð Þ þQ t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ;
9: if T ≤ T ∗ then
10: T ∗  T ;
11: α ∗ tþ 1½ �  α t½ �;
12: end if
13: end for
14: end while

Finally, the dynamic control action decision-making α t½ � in each unit time t for
time-average penalty function P α t½ �ð Þminimization subject to queue stability can be
formulated as follows based on the Lyapunov optimization theory:

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � P α t½ �ð Þ þ Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (11)

where A is the set of all possible control actions and α ∗ tþ 1½ � is the optimal
control action decision-making for the next time slot.

In order to verify whether (11) works correctly or not, following two example
cases can be considerable:

• Case 1: Suppose Q t½ �≈∞. Then

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � P α t½ �ð Þ þQ t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (12)

≈ arg min
α t½ �∈A

a α t½ �ð Þ � b α t½ �ð Þ½ �: (13)

Then, (13) shows that control action decision-making should works as follows,
i.e., (i) the arrival process should be minimized, and (ii) the departure process
should be maximized. Both cases are for stabilizing the queue, i.e., it should be
beneficial when Q t½ �≈∞.

• Case 2: Suppose Q t½ � ¼ 0. Then

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � P α t½ �ð Þ þ Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (14)

¼ arg min
α t½ �∈A

V � P α t½ �ð Þ: (15)

Then, (15) shows that control action decision-making should work for minimiz-
ing the given penalty function. This is semantically reasonable because focusing on
our main objective is possible because stability does not need to be considered
because Q t½ � ¼ 0.

The pseudo-code of the proposed time-average penalty function minimization
algorithm is presented in Algorithm 1. From line 1 to line 3, all variables and
parameters are initialized. The algorithm works in each unit time as shown in line 4.
In line 5, current queue-backlog Q t½ � is observed to be used in (11). From line 7 to
line 13, the main computation procedure for (11) is described.

Up to now, the time-average penalty function minimization is considered. Based
on the theory, the dynamic control action decision-making α t½ � in each unit time t
for time-average utility function U α t½ �ð Þmaximization subject to queue stability can
be formulated as follows:
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α ∗ tþ 1½ �  argmax
α t½ �∈A

V �U α t½ �ð Þ � Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (16)

where A is the set of all possible control actions and α ∗ tþ 1½ � is the optimal
control action decision-making for the next time slot.

2.2 Example: multicore scheduling in mobile devices

In this section, the Lyapunov optimization-based stabilized time-average opti-
mization algorithm is introduced with one simple toy model. In this example,
dynamic core allocation decision-making algorithm is designed which is for time-
average energy consumption minimization subject to queue stability.

As illustrated in Figure 1, mobile smartphone is with the processor which is
equipped with multiple cores. For example, ARM big.LITTLE processors are with
multiple little and big heterogeneous cores.

In this system, the task events will be generated when users generate events,
which are denoted by a t½ � in Figure 1. Then, the events will be located in the task
queue (i.e., Q t½ � in Figure 1). Then, the events can be processed by the multicore
processor. In this case, if many/more cores are allocated in order to process the
events from the queue, the processing can be accelerated which is beneficial in
terms of queue stability. However, it is not good in terms of our main objective, i.e.,
energy consumption minimization. On the other hand, if less cores are allocated,
the processing becomes slow which is harmful in terms of queue stability but is
beneficial in terms of our main objective, i.e., energy consumption minimization.
Finally, the tradeoff can be observed between energy consumption minimization
(i.e., our main objective) and stability. Then, it can be confirmed that Lyapunov
optimization-based algorithm can be used.

In order to design the dynamic core allocation decision-making, α t½ � in each unit
time t for time-average energy consumption E α t½ �ð Þminimization subject to queue
stability can be formulated as follows based on (11):

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � E α t½ �ð Þ þ Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (17)

where A is the set of all possible core allocation combinations and α ∗ tþ 1½ � is the
optimal core allocation decision-making for the next time slot. Here, it is obvious

Figure 1.
Mobile devices with multicore processors.
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Figure 1.
Mobile devices with multicore processors.
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that the arrival process is not controllable (i.i.d. random events); thus, it can be
ignored. Then, the final form of the dynamic decision-making algorithm can be
defined as follows:

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � E α t½ �ð Þ � Q t½ � � b α t½ �ð Þ½ �: (18)

In order to check whether the derived Eq. (18) is correct or not, two example
cases can be considered, i.e., (i) Q t½ �≈∞, and (ii) Q t½ � ¼ 0:

• Busy queue case (Q t½ �≈∞): in this case

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � E α t½ �ð Þ �Q t½ � � b α t½ �ð Þ½ �, (19)

¼ arg min
α t½ �∈A

�b α t½ �ð Þ½ � ¼ argmax
α t½ �∈A

b α t½ �ð Þ, (20)

Thus, the departure process should be accelerated, i.e., more cores should be
allocated. This is semantically true because the fast processing events from the
queue is desired if overflow situations happen.

• Busy queue case (Q t½ � ¼ 0): In this case

α ∗ tþ 1½ �  arg min
α t½ �∈A

V � E α t½ �ð Þ �Q t½ � � b α t½ �ð Þ½ �, (21)

¼ arg min
α t½ �∈A

V � E α t½ �ð Þ, (22)

Thus, less cores should be allocated for energy consumption minimization which
is our main objective. This is semantically true because the given main objective
should be desired if the system is stable, i.e., Q t½ � ¼ 0.

As discussed with examples, the proposed Lyapunov optimization-based
dynamic core allocation decision-making algorithm works as desired.

2.3 Discussions in stabilized control

The proposed dynamic super-resolution model selection algorithm is beneficial
in various aspects, as follows.

2.3.1 Hardware/system-independent self-adaptation

Suppose that this proposed algorithm is implemented in supercomputer-like
high-performance computing machines. In this case, the processing should be fast;
thus, the queue-backlog is always low. Therefore, the system has more chances to
focus on our main objective, i.e., penalty function minimization or utility function
maximization. On the other hand, if the hardware itself is performance/resource
limited (e.g., mobile devices), then the processing speed is also limited due to the
low specifications in processors. Thus, the queue-backlog can be frequently busy
because it may not be able to process many data with the queue even though it
utilizes the fastest model. Therefore, it can be finally observed that the proposed
algorithm is self-adaptive which can adapt depending on the given hardware/
system specifications. It automatically adapts the models based on the given
hardware/system; thus, it does not require system engineer’s trial-and-error tuning.
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Furthermore, the proposed algorithm is reliable according to the fact that the
self-adaptation is for maximizing its utility while maintaining stability.

2.3.2 Low-complexity operation

As shown in Algorithm 1, the computation procedure is iterative for solving
closed-form equation, i.e., (11) and (16). Thus, the computational complexity of the
proposed algorithm is polynomial time, i.e., O Nð Þ, where N is the number of the
given control actions. Thus, it guarantees low-complexity operations.

3. The use of Lyapunov optimization for deep learning platforms

As explained, the Lyapunov optimization theory is a scalable, self-configurable,
low-complexity algorithm which can be used in many applications. In this section,
the use of Lyapunov optimization for deep learning and computer platforms is
discussed in two different ways, i.e., departure process control (refer to Section 3.1)
and arrival process control (refer to Section 3.2). Finally, its related performance
evaluation results are presented (refer to Section 3.3).

3.1 Lyapunov control over departure processes

As illustrated in Figure 2, stabilized real-time computer vision platforms should
be equipped with queues in order to handle bursty traffics. If the queue is busy or
near-overflow, the departure process should be accelerated. Thus, the simplest
model should be used for reducing the corresponding computation. On the other
hand, if the queue is empty, deep learning computation accuracy can be improved
with more sophisticate models because we have enough time to conduct the com-
putation. Thus, multiple models are desired in order to select one depending on
queue backlog.

In Figure 2, multiple models exist, and it can be seen that the simplest model
(i.e., low-resolution model) is able to conduct fast computation, but it presents low
learning accuracy. On the other hand, the most sophisticate model (i.e., high-
resolution model) is good for accurate learning performance, but it introduces
computation delays. Thus, the tradeoff exists between performance and delays, i.e.,

Figure 2.
Lyapunov control over departure processes in real-time computer vision platforms for time-average learning
accuracy maximization subject to queue stability.
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that the arrival process is not controllable (i.i.d. random events); thus, it can be
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α t½ �∈A

V � E α t½ �ð Þ � Q t½ � � b α t½ �ð Þ½ �: (18)
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α ∗ tþ 1½ �  arg min
α t½ �∈A

V � E α t½ �ð Þ �Q t½ � � b α t½ �ð Þ½ �, (19)

¼ arg min
α t½ �∈A

�b α t½ �ð Þ½ � ¼ argmax
α t½ �∈A

b α t½ �ð Þ, (20)
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α t½ �∈A
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¼ arg min
α t½ �∈A

V � E α t½ �ð Þ, (22)
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2.3 Discussions in stabilized control

The proposed dynamic super-resolution model selection algorithm is beneficial
in various aspects, as follows.

2.3.1 Hardware/system-independent self-adaptation

Suppose that this proposed algorithm is implemented in supercomputer-like
high-performance computing machines. In this case, the processing should be fast;
thus, the queue-backlog is always low. Therefore, the system has more chances to
focus on our main objective, i.e., penalty function minimization or utility function
maximization. On the other hand, if the hardware itself is performance/resource
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hardware/system; thus, it does not require system engineer’s trial-and-error tuning.
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Furthermore, the proposed algorithm is reliable according to the fact that the
self-adaptation is for maximizing its utility while maintaining stability.
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Lyapunov optimization theory-based dynamic model selection decision-making
algorithm can be designed as follows:

α ∗ tþ 1½ �  argmax
α t½ �∈A

V � A α t½ �ð Þ �Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (23)

and this can be reformulated as follows due to the fact that the arrival process is
out of control:

α ∗ tþ 1½ �  argmax
α t½ �∈A

V � A α t½ �ð Þ þ Q t½ � � b α t½ �ð Þ½ � (24)

where A α t½ �ð Þ stands for the learning-accuracy when the model selection deci-
sion is α t½ � at t. Here,A is the set of all possible deep learning models, and α ∗ tþ 1½ � is
the optimal control action decision-making for next time slot.

3.2 Lyapunov control over arrival processes

The stabilized real-time computer vision platform in Section 3.1 is novel and
scalable; however it has burden because multiple deep learning models should be
implemented in a single platform.

Thus, a new dynamic control algorithm with a single deep learning model is also
needed for resource-limited systems. As illustrated in Figure 3, our considering
system has a single computer vision and deep learning model in computing plat-
forms. In addition, the queue is in front of the system. Thus, the departure process
is not controllable anymore. In this case, the arrival process should be controllable
in order to control the queue dynamics for stability. Therefore, the arrival image/
video streams should be controlled by handling sample rates. If high-frequency
sampling is available, more signals will be generated, and then the results will be
enqueued. Thus, the arrival process increases. This is beneficial because it increases
computer vision performance due to the fact that more images/videos can be
obtained especially in surveillance applications. On the other hand, i.e., if low-
frequency sampling is conducted, the computer vision performance can be
degraded, whereas the number of arrival process data decreases which is beneficial
in terms of stability. Eventually, the tradeoff between computer vision performance
and delays can be observed. Finally, Lyapunov optimization theory-based sampling
rate selection decision-making algorithm can be designed as follows:

Figure 3.
Lyapunov control over arrival processes in real-time computer vision platforms for time-average learning
accuracy maximization subject to queue stability.
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α ∗ tþ 1½ �  argmax
α t½ �∈A

V � A α t½ �ð Þ � Q t½ � � a α t½ �ð Þ � b α t½ �ð Þð Þ½ � (25)

and this can be reformulated as follows due to the fact that the departure process
is out of control:

α ∗ tþ 1½ �  argmax
α t½ �∈A

V � A α t½ �ð Þ � Q t½ � � a α t½ �ð Þ½ � (26)

where A α t½ �ð Þ stands for the learning accuracy when the sample rate selection
decision is α t½ � at t. Here, A is the set of all possible sample rates, and α ∗ tþ 1½ � is the
optimal control action decision-making for next time slot.

3.3 Performance evaluation and discussions

In this section, the performance evaluation results of the proposed algorithm in
Section 3.1 are presented. The data-intensive simulation-based evaluation is
performed, and then the results are presented in Figure 4. In addition, Table 1
shows the performance of super-resolution depending on the number of hidden
layers. If the number of hidden layers is maximum (i.e., 20 in this research), the
PSNR and structural similarity (SSIM, one of the widely used performance metrics
in super-resolution) values are maximum. However, the computation times (for
CPU-only and CPU-GPU) become slow.

As illustrated in Figure 4, if the models are static (i.e., deep or shallow), the
curves show that the two models are not efficient. The deep model cannot handle
the overflow situations; thus, the queue diverges. On the other hand, the shallow

Figure 4.
Performance evaluation: Queue-backlog (x-axis, unit time; x-axis, queue occupancy (unit: Bits)).

Depth (# of hidden layers) 0 4 6 8 11 14 17 20

PSNR (dB) 30.400 32.560 33.010 33.229 33.379 33.435 33.495 33.523

SSIM 0.8682 0.9100 0.9160 0.9180 0.9200 0.9200 0.9210 0.9220

Processing time (CPU � only) 0.0020 0.3210 0.5468 0.7725 0.9940 1.3170 1.6220 1.9600

Processing time (CPU + GPU) 0.0010 0.0100 0.0120 0.0152 0.0189 0.0224 0.0262 0.0305

Table 1.
Tradeoff between utility and delay obtained from super-resolution performance measurement results
(processing time have measured on 512� 768 images).
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model is too fast; thus, the queue is always empty. This is obviously positive for
stability where the performance in terms of super-resolution performance is the
lowest. Thus, it might be better if the algorithm allows certain amounts of delays in
order to enhance the quality of super-resolution. The proposed algorithm is initially
follows deep model because the queue is idle during the initial phases. If the queue
becomes filled with certain amounts of images (i.e., near threshold), it starts the
control, i.e., self-adaptive, near the unit time of 5800. Thus, the proposed algorithm
starts to select super-resolution models which can handle delays. Thus, it is true that
the proposed algorithm is better than the other two static algorithms.

For the proposed self-adaptive stabilized algorithm, the evaluation with two
processing capabilities (CPU-only platform vs. CPU-GPU platform), it can be
observed that the CPU-GPU platform selects the maximum performance super-
resolution model (i.e., 20 hidden layers in Table 1) 4:36 times more than the CPU-

Figure 5.
Super-resolution computation results. Note that the model for low-resolution is bicubic which has no hidden
layers. (a) Image #1 (low-resolution), (b) image #1 (high-resolution), (c) image #2 (low-resolution), (d)
image #2 (high-resolution), (e) image #3 (low-resolution) and (f) image #3 (high-resolution).
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only platform. It means that the proposed algorithm is self-adaptive depending on
the hardware/platform requirements. This is obviously beneficial in terms of system
engineers because they do not need to conduct trial-and-error-based system
parameter tuning anymore.

In order to confirm the performance of super-resolution models, Figure 5 shows
the super-resolution computation results with real-world images. As can be seen in
the figures, the super-resolution models show better performances if they have
more hidden layers, as shown in Figure 5b, Figure 5d, and Figure 5f. For the super-
resolution computation without hidden layers, this paper uses bicubic interpolation,
as shown in Figure 5a, Figure 5c, and Figure 5e. Finally, these results show that our
considering Lyapunov control algorithms for adaptive deep learning platforms can
make different super-resolution performance depending on queue-backlog size
information.

4. Emerging applications

As presented, the Lyapunov optimization framework is for time-average utility
maximization while achieving queue stability; and this theory is scalable; thus it is
widely applicable [2]. Therefore, there exist many applications based on this algo-
rithm as follows.

4.1 Adaptive video streaming

Kim et al. [3, 5] design a dynamic control algorithm for time-average streaming
quality (i.e., peak-signal-to-noise ratio (PSNR)) maximization subject to transmit
buffer stability in wireless video networks. Koo et al. [6, 7] also propose a novel
dynamic adaptive streaming over HTTP (DASH)-based mechanism for video
streaming quality maximization under the consideration of battery status, LTE data
quota, and stability in hybrid LTE and WiFi networks.

4.2 Networks

Neely et al. [8] proposed a novel dynamic multi-hop routing algorithm which is
for energy-efficient data/packet forwarding in wireless ad hoc and sensor networks
subject to queue stability.

4.3 Security applications: surveillance monitoring

Mo et al. [9] design a deep learning framework for CCTV-based distributed
surveillance applications. In the system, multiple deep learning frameworks exist;
and each deep learning model is with its own configurations. In this situation, there
exists a tradeoff between complexity and performance. Therefore, the proposed
CCTV-based surveillance algorithm adaptively selects a deep learning model
depending on queue-backlog in the system for recognition performance maximiza-
tion subject to CCTV queue stability. Kim et al. [10] also design a novel face
identification deep learning frameworks for CCTV-based surveillance platforms.
Instead of having multiple deep learning models, this system has one learning
system (based on OpenFace open-source software library) and controls the sam-
pling rates of the CCTV camera. Finally, the proposed decision-making algorithm
dynamically selects CCTV sampling rates for recognition performance maximiza-
tion subject to CCTV queue stability.
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parameter tuning anymore.
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buffer stability in wireless video networks. Koo et al. [6, 7] also propose a novel
dynamic adaptive streaming over HTTP (DASH)-based mechanism for video
streaming quality maximization under the consideration of battery status, LTE data
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4.4 Others

The application of Lyapunov optimization-based dynamic control algorithm for
dynamic reinforcement learning policy design is illustrated in [11]. In addition, the
adaptive control algorithms using the Lyapunov optimization framework in stock
market pricing and smart grid are introduced in [12, 13].

5. Conclusions

This chapter introduces a dynamic control decision-making algorithm, inspired
by Lyapunov optimization theory under the situation where the tradeoff between
utility/performance and delays exists. Thus, the dynamic decision-making
algorithms aim at time-average utility maximization (or penalty minimization) in
real-time deep learning platforms. As discussed, the Lyapunov optimization-based
algorithms are scalable, hardware/system-independent, self-configurable, and low-
complexity. Thus, it can be used in various emerging applications such as video
streaming, wireless networks, security applications, and smart grid applications.
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utility/performance and delays exists. Thus, the dynamic decision-making
algorithms aim at time-average utility maximization (or penalty minimization) in
real-time deep learning platforms. As discussed, the Lyapunov optimization-based
algorithms are scalable, hardware/system-independent, self-configurable, and low-
complexity. Thus, it can be used in various emerging applications such as video
streaming, wireless networks, security applications, and smart grid applications.
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