
Open Source Law, Policy and Practice

Open Source Law, Policy
and Practice

Second Edition

Edited by

AMANDA BRO CK

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© The several contributors 2022

The moral rights of the authors have been asserted

First Edition published in 2013
Second Edition published in 2022

Impression: 1

Some rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, for commercial purposes,

 without the prior permission in writing of Oxford University Press, or as expressly
 permitted by law, by licence or under terms agreed with the appropriate

reprographics rights organization.

This is an open access publication, available online and distributed under the terms of a
Creative Commons Attribution – Non Commercial – No Derivatives 4.0
International licence (CC BY-NC-ND 4.0), a copy of which is available at

http://creativecommons.org/licenses/by-nc-nd/4.0/.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Public sector information reproduced under Open Government Licence v3.0
(http://​www.natio​nala​rchi​ves.gov.uk/​doc/​open-​gov​ernm​ent-​lice​nce/​open-​gov​ernm​ent-​lice​nce.htm)

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data

Data available

Library of Congress Control Number: 2021946683

ISBN 978–​0–​19–​886234–​5

 DOI: 10.1093/​oso/​9780198862345.001.0001

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials

contained in any third party website referenced in this work.

Oxford University Press would like to thank the following organisations and/or
individuals for granting permission for the use of their logos for the cover of this
book:

All Things Open (‘All Things Open’ logo)

Python Software Foundation (‘Python’ and the Python logos are trademarks or re-
gistered trademarks of the Python Software Foundation, used by Oxford University
Press with permission from the Foundation.)

Docker, Inc. (Docker and the Docker logo are trademarks or registered trademarks
of Docker, Inc. in the United States and/or other countries.)

GNOME Foundation (The GNOME logo and GNOME name are registered
trademarks or trademarks of GNOME Foundation in the United States or other
countries.)

Rust Foundation

Vietsch Foundation (‘Vietsch Foundation’ logo)

Open Source Initiative (The OSI logo trademark is the trademark of Open Source
Initiative)

Percona, LLC (‘Percona’ logo)

Nextcloud GmbH (Nextcloud and the Nextcloud Logo is a registered trademark of
Nextcloud GmbH. in Germany and/or other countries.)

Open Innovation Network LLC (‘Open Innovation Network’ logo)

Tidelift, Inc. (‘Tidelift’ logo)

Canonical Limited (‘Ubuntu’ logo - Canonical Limited, Ubuntu, London)

Weaveworks, Inc. (‘Weaveworks’ logo - (c) 2014-2022 Weaveworks, Inc. All rights
reserved.)

The Linux Foundation (The ‘Kubernetes’ logo is a registered trademark of The
Linux Foundation)

Larry Ewing (‘The Tux’ and ‘The GIMP’ logos)

OpenUK (‘OpenUK’ logo)

This book has been a labour of love and is dedicated to the boys I love—Ronan, Rhys,
and Dundee—and to the memory of my father, Chick, for whom I spent twenty-five

years being a lawyer.

Contents

Foreword � xvii
Keith Bergelt
Abbreviations � xix
Contributors � xxv
Table of Cases � xxxi
Table of Legislation � xxxvii
Introduction� xliii

	1	� Open Source as Philosophy, Methodology, and Commerce:
Using Law with Attitude � 1
Ian Walden

		 1.1	� Introduction � 1
		 1.2	� The Legal Treatment of Software � 2
		 1.3	� Open Source as Philosophy and Politics � 7
		 1.4	� ‘Open’ What? � 21
		 1.5	� Open Source as Development Methodology � 30
		 1.6	� Open Source as Commerce � 30
		 1.7	� Enforcing Open Source � 31
		 1.8	� Open Futures � 32
		 1.9	� Concluding Remarks � 32

	2	� Evolving Perspective on Community and Governance � 34
Ross Gardler and Stephen R Walli

		 2.1	� Collaboration and Communities � 34
		 2.2	� Intellectual Assets to Intellectual Property � 35
		 2.3	� Intellectual Property and Industrial Scale � 36
		 2.4	� Early Experiments under Copyright � 36
		 2.5	� The Start of an Engineering Economic Model � 37
		 2.6	� Open ​Source as a Shared Production Model � 39
		 2.7	� Open Source Culture � 40
		 2.8	� Licences to Facilitate Collaboration � 42
		 2.9	� The Politics and Ethics of Open Source � 44
		 2.10	� The Free Software Definition � 45
		 2.11	� The Open ​Source Definition � 46
		 2.12	� Open Source Initiative, a Pragmatic Community � 47
		 2.13	� Pragmatism versus Ethics � 49
		 2.14	� The Apache Software Foundation � 50

x  Contents

		 2.15	� Governance of Open Source � 52
		 2.16	� People versus Process � 53
		 2.17	� The Benevolent Dictator Governance Model � 54
		 2.18	� The Meritocratic Governance Model � 55
		 2.19	� Implications of Licence Choice and IP Management on

Governance Models � 56
		 2.20	� The Rise of Codes of Conducts � 58
		 2.21	� The Business of Open Source � 60
		 2.22	� Open Source Non-​Profits � 65
		 2.23	� Conclusion � 67

PART 1   INTELLECTUAL PROPERT Y, C ORPOR ATE,
AND GOVERNANCE

	3	� Copyright, Contract, and Licensing in Open Source � 71
P McCoy Smith

		 3.1	� Copyright and Software � 71
		 3.2	� Forms of Open Source Licensing � 83
		 3.3	� Software Interaction and Licence Compatibility � 97
		 3.4	� Interpreting Open Source Licences: Contract or

‘Bare Licence’? � 102
		 3.5	� What Makes a Software Licence ‘free’ or ‘open source’? � 107
		 3.6	� Conclusion � 111

	4	� Contributor Agreements � 113
Jilayne Lovejoy

		 4.1	� Project Licence Agreements � 113
		 4.2	� Types of Inbound Agreements for Open Source Projects � 114
		 4.3	� Employee Contributions � 121
		 4.4	� Practical Advice � 123

	5	� Copyright Enforcement � 126
Miriam Ballhausen

		 5.1	� Introduction � 126
		 5.2	� What is Copyright Infringement and What Claims

Can Be Made? � 128
		 5.3	� Enforceability of Open Source Licences and Termination

Provisions—​How? � 129
		 5.4	� Why is Copyright in Open Source so Consistently

Enforced in Germany? � 131
		 5.5	� Who Can Enforce Copyright in Open Source? � 132
		 5.6	� What Are the Key Arguments and Alleged Infringements? � 136
		 5.7	� New Trends � 139

Contents  xi

	6	� Transforming the Supply Chain with Openchain ISO 5230 � 141
Shane Coughlan

		 6.1	� Overview � 141
		 6.2	� Compliance is a Process Challenge that Spans Multiple

Organisations � 142
		 6.3	� Because No Single Company Makes a Finished Device,

No Single Company Can Solve Compliance Challenges � 142
		 6.4	� The Best Solutions Are Often the Simplest, with the Lowest

Barriers to Entry � 142
		 6.5	� OpenChain ISO 5230 is Intended to Make Open Source Licence

Compliance More Predictable, Understandable, and Efficient for
the Software Supply Chain � 143

		 6.6	� A Simple Specification that Explains the Key Requirements of a
Quality Compliance Program � 143

		 6.7	� A Clear and Free Way to Check Conformance with the
Specification � 143

		 6.8	� Reference Material to Support Conformance and with Broader
Questions of Training and Processes � 144

		 6.9	� Community and Support � 144
		 6.10	� Conclusion � 144
		 6.11	� References � 144

	 7	� SPDX and Software Bill of Materials ISO/IEC 5962L 2021 � 145
Kate Stewart

		 7.1	� Why Create a Software Bill of Materials? � 145
		 7.2	� What is an SPDX Document? � 146
		 7.3	� Listening to the Open Source Community Needs � 156
		 7.4	� Tooling and Best Practices to Make it Easy for Developers � 161
		 7.5	� Adoption of SPDX Documents � 161
		 7.6	� Future Directions � 162

	 8	� Corporate Concerns: Audit, Valuation, and Deals � 164
Toby Crick

		 8.1	� Introduction � 164
		 8.2	� Why Understanding Open Source is Important in the

Corporate Context � 166
		 8.3	� Open Source Audit Services � 169
		 8.4	� Valuation � 172
		 8.5	� Issues Arising on M&A � 174
		 8.6	� Investment in Open Source Businesses � 178
		 8.7	� Insolvency � 180
		 8.8	� IPO � 181

	 9	� Trademarks � 183
Pamela Chestek

		 9.1	� Introduction � 183

xii  Contents

		 9.2	� Trademark Law Basics � 184
		 9.3	� Open Source Projects, Products, and Services � 198
		 9.4	� The Community Role in Open Source Trademarks � 201
		 9.5	� Lawful Use of Others’ Trademarks � 204
		 9.6	� Attempts to Limit Competition with Trademarks � 208
		 9.7	� Conclusion � 212

	10	� Patents and the Defensive Response � 213
Malcolm Bain and P McCoy Smith

		 10.1	� Patents and Software � 213
		 10.2	� Patents 101: Why Are Patents Relevant to Open Source? � 217
		 10.3	� Patents and Open Source Interactions � 226
		 10.4	� How Open Source Deals with Patents � 235
		 10.5	� Patent Busting and Patent Pools � 245
		 10.6	� Patent Litigations Initiated Against Open Source � 249
		 10.7	� Conclusions � 252

	11	� Open Source Software in Standard Setting: The Role of
Intellectual Property Right Regimes � 256
Knut Blind, Mirko Böhm, and Nikolaus Thumm

		 11.1	� Introduction � 256
		 11.2	� Results from the Literature � 258
		 11.3	� Insights from Case Studies and Stakeholder Consultation � 263
		 11.4	� Compatibility of Intellectual Property Regimes in Standards

Development Organisations and Open Source Software � 266
		 11.5	� Conclusion � 270

	12	� Export Control � 273
Michael Cheng and Mishi Choudhary

		 12.1	� Introduction � 273
		 12.2	� Export Control Checklist � 274
		 12.3	� Case Study: Application of Export Control Regimes to Open

Source in the US � 276
		 12.4	� Survey of Export Control Regimes � 278
		 12.5	� Recommendations � 281

	13	� Open Source Software and Security: Practices, Governance,
History, and Perceptions � 282
Charles-H Schulz

		 13.1	� Open Source and Security: Myths and Reality � 282
		 13.2	� Open Source Security Governance: Vulnerability Discovery,

Patching, and Disclosure Practices � 286

Contents  xiii

PART 2   THE BUSINESS OF OPEN: EC ONOMICS,
OPEN SOURCE MODELS, AND USAGE

	14	� Sustainability and Open Source � 291
Cristian Parrino

		 14.1	� From Human-​Centred Design to Community-​Centred Design � 292
		 14.2	� The City of Amsterdam Case � 292
		 14.3	� The Emissions Problem and the Role and Complexity of

Supply Chains � 293
		 14.4	� The Carbon-​Negative Data Centre Blue Print � 294
		 14.5	� UN Sustainable Development Goals and

Open Data � 296

	15	� Economics of Open Source � 298
Mirko Böhm

		 15.1	� The Economics of Open Source � 299
		 15.2	� Introduction: Open Source, Law, Politics, and Economics � 299
		 15.3	� Why is Free Software Free? � 301
		 15.4	� Software Freedom and Open Collaboration � 303
		 15.5	� Differentiate or Collaborate! � 305
		 15.6	� Joint Stewardship and Governance � 307
		 15.7	� Contributions, Copyright, and Participation � 308
		 15.8	� Communities, Contributors, and Merit � 309
		 15.9	� Value at the Edge of the Commons � 312
		 15.10	� Open Source-​Related Products and Service � 314
		 15.11	� The Benefits of Open Source in a Business Context � 317
		 15.12	� Differentiating in the Eyes of the Consumer � 319
		 15.13	� The Role of the Volunteer Community � 320
		 15.14	� Competition in the Wider Open Source Community � 322
		 15.15	� Compliance, Social and Market Transactions, and Zero Price � 324
		 15.16	� Open Source as Community-​Provisioned Public Good � 326

	16	� Business and Revenue Models and Commercial Agreements � 329
Amanda Brock

		 16.1	� Introduction � 329
		 16.2	� What is Open Source? � 330
		 16.3	� Business Models and Open Source � 336
		 16.4	� Commercial or Business Models � 343
		 16.5	� Cloud and Open Source in the Last Few Years � 351
		 16.6	� Standards and FRAND � 363
		 16.7	� Open Source Business Models—​Diversity and Success � 364
		 16.8	� Measuring Success and the Values of Open Source � 364
		 16.9	� Open Source and Commercial Contracts � 365

xiv  Contents

	17	� Antitrust, Competition, and Open Source � 369
Carlo Piana

		 17.1	� Introduction � 369
		 17.2	� Abuse of Dominant Position � 370
		 17.3	� Merger Control � 378

	18	� Foundations and Other Organisations � 385
Karen Sandler

		 18.1	� Governance versus Foundations � 386
		 18.2	� The No-​Foundation Solution � 387
		 18.3	� Charities � 387
		 18.4	� Trade Associations � 390
		 18.5	� Aggregating Foundations—​Fiscal Sponsors � 391
		 18.6	� Corporate Initiatives � 391
		 18.7	� A Note of Licensing and Foundations � 392
		 18.8	� Co-​option, Funding, and Confusion around Corporate Models � 392
		 18.9	� Need for Organisational Diversity � 394

	19	� The Rise of the Open Source Program Offices (OSPO) � 395
Nithya Ruff

		 19.1	� The Beginning � 395
		 19.2	� Should You Start An Open Source Program Office (OSPO)? � 396
		 19.3	� The Role of an OSPO, Model Options, and Where Should We

Build It? � 398
		 19.3.1	� Drilling down into OSPO’s components � 400
		 19.4	� How Did OSPOs Get Started and the What is the ToDo Group? � 402
		 19.5	� What is the Impact of an OSPO on an Organisation? � 403
		 19.6	� How to Get Started in Creating Your Own OSPO? � 406
		 19.7	� Conclusion and Attributions � 407

	20	� Cloud Native Development, Containers, and Open Source
Licensing � 408
Richard Fontana

		 20.1	� Overview of Linux Containers � 408
		 20.2	� Containers and the Scope of Copyleft � 410
		 20.3	� Container Images and Source Code Compliance � 416
		 20.4	� Identifying the Licence of a Container � 421
		 20.5	� Containers and Network Services Copyleft � 422
		 20.6	� The Rise of ‘Source-​Available’ Licences Targeting Cloud

Service Providers � 424

	21	� Public Sector and Open Source � 429
Iain G Mitchell KC

		 21.1	� Introduction � 429
		 21.2	� The International Context—​The WTO � 430
		 21.3	� The European Procurement Law Context � 431

Contents  xv

		 21.4	� Issues in Software Procurement � 435
		 21.5	� The UK � 455
		 21.6	� The US � 461
		 21.7	� Conclusion � 465

PART 3   EVERY THING OPEN

	22	� Blockchain and Open Source � 471
Mark Radcliffe

		 22.1	� Blockchain Systems � 473
		 22.2	� Protocols and Clients � 474
		 22.3	� Forking � 475
		 22.4	� Code Review � 477
		 22.5	� Bitcoin Client Licence Analysis � 479
		 22.6	� Ethereum Client Licence History � 481
		 22.7	� Ethereum Client Licence Analysis � 484
		 22.8	� Conclusions � 487

	23	� Open Hardware � 490
Andrew Katz

		 23.1	� Introduction � 490
		 23.2	� What is Hardware? � 490
		 23.3	� A Brief History � 491
		 23.4	� The Open Source Hardware Definition � 493
		 23.5	� Hardware and Reciprocity (Copyleft)—Intellectual Property � 496
		 23.6	� Hardware and Other Forms of Intellectual Property Right � 501
		 23.7	� Specific Open Hardware Licences � 503
		 23.8	� Non-copyleft Hardware Licences � 508
		 23.9	� Open Source Hardware: Development Models � 508
		 23.10	� Conclusion � 511

	24	� Open Everything � 512
Andrew Katz

		 24.1	� Freedom to Use, Study, Modify, and Share � 514
		 24.2	� Open Governance � 516
		 24.3	� Anti-​Lock-​In � 516
		 24.4	� Interrelationship Between Opens � 517
		 24.5	� Openness and Intellectual Property Rights � 518
		 24.6	� Definitions of Openness (and Freedom) in Software � 520
		 24.7	� Open Knowledge � 521
		 24.8	� Open Data � 522
		 24.9	� Open Content � 523
		 24.10	� Creative Commons � 523
		 24.11	� Other Documentation Licences � 525
		 24.12	� Open Hardware (and Open Source Hardware) � 525

xvi  Contents

		 24.13	� Open Data � 526
		 24.14	� Open Software Services � 529
		 24.15	� Open Politics and Open Government � 531
		 24.16	� Open Standards and Open Specifications � 532
		 24.17	� Open Innovation � 535
		 24.18	� Open Publishing, Open Education, and Open Access � 536
		 24.19	� Summary � 538

Appendix � 539
Index � 557

Foreword
Keith Bergelt, CEO, Open Invention Network

Open Source software is the single-​most impactful driver of innovation in the
world today. The fact that it is a social movement supporting the notion of col-
laborative development cross-​sector, cross-​industry, and among and between
individuals of different nationalities, races, and religions allows it to serve as an en-
during model for innovation. No longer is software being developed in corporate
silos where there is a cap on innovative output. By bringing smart people together
from diverse backgrounds and experiences, elegant and functional code is being
produced that would otherwise not be accessible.

While this model may have initially drawn adherents from primarily Western
Europe and the United States, Japanese and Korean companies and individual
coders began to participate actively in Open Source software projects in the mid-​
late 2000s and have been closely followed by Chinese company participants over the
last eight to ten years. In fact, recognition of the inevitability of Open Source has re-
sulted in global participation in Open Source software projects managed by the likes
of the Apache Foundation, Eclipse Foundation, the Linux Foundation, and many
other organisations that have emerged to provide professional project manage-
ment and ensure an efficient path to the release of important code that can be freely
adopted and around which innovative products can be cost-​effectively produced.

As Open Source software has evolved and proliferated in information tech-
nology (IT), telecommunications, electronics, mobile communications, com-
puting, transportation, energy, banking, financial services, fintech, big data, the
Internet of Things (IoT), and many other sectors, the need for knowledgeable and
experienced legal counsel has become acute. Copyright, trademark, and patent
attorneys, in parallel with the explosive level of technical collaboration in Open
Source software project communities, have been working in networks such as those
managed and maintained by the Free Software Foundation Europe (European
Legal Network), Linux Foundation (Member Legal Council), and Open Invention
Network (Asian Legal Network) to share best practices and accelerate Open Source
community-​wide legal proficiency, and through journals like the Journal of Law
Technology and Society (formerly Free and Open Source Software Law Review).

Open Source software projects such as the Software Project Data Exchange (SPDX)
and OpenChain, both explored in this text, have emerged as ISO-​approved stand-
ards to enable content management and process discipline that ensures copyright
compliance as part of comprehensive governance programs. Software compliance
tool companies have also emerged to further support active copyright compliance.

xviii  Foreword

On the patent front, Open Invention Network manages an ever-​growing
3700-​strong network of the largest and most significant patent holding com-
panies in the world, committed to cross-​licensing each others’ patents that
read on core Linux and adjacent Open Source functionality and, in the process,
forebearing patent infringement litigation. In addition, IBM, Microsoft, and the
Linux Foundation have joined with Open Invention Network to found the Unified
Patents’ Open Source Zone and mitigate patent risk to the broader Open Source
community posed by patent assertion entities.

The recurring theme across the Open Source technical and legal communities is
that of collaboration.

Individuals and organisations come together to yield new novelty and innovate
at unprecedented levels. Lawyers, recognising the need to build a community to
protect and nurture the integrity of the social movement that underlies Open
Source technical development, collaborate to enable copyright compliance and pa-
tent risk mitigation in the core of Linux and Open Source project functionality and
generously share their knowledge.

At the end of the day, Open Source is about opportunity and obligation whereby
manifest across the community is an implicit understanding that the opportunity
to enjoy the benefits of co-​opetition through Open Source project participation
requires a concomitant obligation to adhere to a code of legal conduct and set of
social norms.

Abbreviations

	ACTA	 Anti-​Counterfeiting Trade Agreement
	AGPL	 GNU Affero General Public Licence
	AI	 artificial intelligence
	AIA	 America Invents Act
	AOSP	 Android Open Source Project
	API	 application programming interface
	ASF	 Apache Software Foundation
	ASP	 application service provider
	AST	 Allied Security Trust
	BD	 benevolent dictator
	BIOS	 Basic Input/Output System
	BIS	 Bureau of Industry and Security
	BOLO	 Be on the Look Out
	BOM	 Bill of Materials
	BSD	 Berkeley Software Distribution
	BSL	 Business Source Licence
	CAD	 computer-​aided design
	CAL	 Cryptographic Autonomy Licence
	CC	 Creative Commons
	CCBY	 Creative Commons Attribution Licence
	CCL	 Confluent Community Licence
	CC0 1.0	 Creative Commons Universal Public Domain Dedication
	CCS	 Crown Commercial Service
	CDDL	 Common Development and Distribution Licence
	CEO	 Chief Executive Officer
	CI/​CD	 Continuous Integration/​Continuous Development
	CII	 computer-​implemented inventions
	CIO	 Chief Information Officer
	CLA	 contributor licence agreement
	CNC	 computer numerical control
	CNCF	 Cloud Native Computing Foundation
	CONTU	 Commission on New Technological Uses of Copyrighted Works
	COSS	 commercial Open Source software
	COTS	 Commercially available off-​the-​shelf
	CPDA	 Copyright Designs and Patents Act 1988
	CPP	 C++
	CSIS	 Center for Strategic and International Studies
	CSV	 comma-​separated values

xx  Abbreviations

	CTO	 Chief Technical Officer
	DAO	 Decentralized Autonomous Organization
	DCO	 Developer’s Certificate of Origin
	DD	 Debian Developers
	DFARS	 Defense Federal Acquisition Regulations
	DLT	 Distributed Ledger Technology
	DMCA	 Digital Millennium Copyright Act
	DOAJ	 Directory of Open Access Journals
	DoD	 Department of Defense
	DPL	 Debian Project Leader
	DRM	 Digital Rights Management
	DVD	 digital video disc
	EAR	 Export Administration Regulations
	ECJU	 Export Control Joint Unit
	ECtHR	 European Court of human Rights
	ECJ	 European Court of Justice
	EFF	 Electronic Freedom Foundation
	ENC	 Environmental Noise Cancellation
	ENT	 Espace Numérique de Travail
	EPC	 European Patent Convention
	EPL	 Eclipse Public Licence
	EPO	 European Patent Office
	EU	 European Union
	EUPL	 European Public License
	FAQs	 frequently asked questions
	FARS	 Federal Acquisition Regulations
	FDL	 Free Documentation Licence
	FLA	 Fiduciary Licence Agreement
	FLOSS	 Free Libre and Open Source Software
	FMCG	 fast-​moving consumer goods
	FPGA	 field programmable gate array
	FRAND	 fair, reasonable, and non-​discriminatory
	FSD	 Free Software Definition
	FSF	 Free Software Foundation
	FSFE	 Free Software Foundation Europe
	FTC	 Federal Trade Commission
	FTP	 File Transfer Protocol
	FUD	 fear, uncertainty, and doubt
	GATS	 General Agreement on Trade in Services
	GATT	 General Agreement on Tariffs and Trade
	GCC	 GNU C+​+​ Compiler
	GDP	 gross domestic product
	GDPR	 General Data Protection Regulation
	GDS	 Government Digital Service
	GEA	 General Export Authorisation

Abbreviations  xxi

	GPA	 Agreement on Government Procurement
	GPL	 General Public Licence
	HDL	 hardware description language
	HP	 Hewlett Packard
	 ICO	 Initial Coin Offering
	 ICT	 information and communications technology
	 IDABC	 Interoperable Delivery of European eGovernment Services to Public

Administrations, Businesses and Citizens
	 IEA	 International Energy Agency
	 IEC	 International Electrotechnical Commission
	 IETF	 International Engineering Task Force
	 IoT	 Internet of Things
	 IP	 intellectual property
	 IPO	 Initial Public Offering
	 IP	 intellectual property right
	 IPR	 Inter Partes Review
	IRS	 Internal Revenue Service
	 ISO	 International Organization for Standardization
	 IT	 information technology
	 ITAR	 International Traffic in Arms Regulations
	 ITC	 International Trade Court
	 ITU	 International Telecommunication Union
	 JEDEC	 Joint Electron Device Engineering Council Standards Development

Organisation
	KDE	 K Desktop Environment
	LAMP	 Linux, Apache, MySQL, PHP
	LFCF	 Linux Foundation Climate Finance Foundation
	LGPL	 GNU Lesser Public Licence
	LKM	 loadable kernel module
	LoC	 lines of code
	LOT	 Licence on Transfer
	M&A	 mergers and acquisitions
	MNO	 Mobile Network Operator
	MOFCOM	 Ministry of Commerce (China)
	MOST	 Ministry of Science and Technology (China)
	MPL	 Mozilla Public Licence
	NASA	 National Aeronautics and Space Administration
	NC	 Creative Commons Non-​commercial
	NCSA	 The National Cyber Security Alliance
	ND	 no derivatives
	NDA	 non-​disclosure agreement
	NHS	 National Health Service
	NIST	 National Institute of Standard and Technology
	NPEs	 non-​practising entities
	NTIA	 National Telecommunications and Information Administration

xxii  Abbreviations

	OASIS	 Organization for the Advancement of Structured Information Standards
	OCI	 Open Container Initiative
	ODH	 openly designed hardware
	ODI	 Open Data Institute
	OECD	 Organisation for Economic Co-​operation and Development
	OEM	 original equipment manufacturer
	OFAC	 Office of Foreign Assets Control
	OGEL	 open general export licence
	OIN	 Open Invention Network
	OKF	 Open Knowledge Foundation
	on-​prem	 on premises
	OS	 Operating System
	OSD	 Open Source Definition
	OSI	 Open Source Initiative
	OSL	 Open Software License
	OSPO	 Open Source Program Office
	OTC	 Open Source Technology Center
	OTT	 over the top
	OU	 Open University
	OWR	 open when ready
	P2P	 person-​to-​person
	para(s)	 paragraph(s)
	PLoS	 Public Library of Science
	PR	 public relations
	PUBPAT	 Public Patent Foundation
	QAA	 Quality Assurance Agency
	R&D	 research and development
	RAND	 reasonable and non-​discriminatory terms
	RCP	 Rich Client Platform
	RDFa	 Resource Description Framework in Attributes
	RF	 royalty free
	RHEL	 Red Hat Enterprise Linux
	RIT	 Rochester Institute of Technology
	RMS	 Richard M Stallman
	ROI	 return on investment
	RPC	 remote procedure call
	RPM	 RPM Package Manager
	SaaS	 Software as a Service
	SBOM	 software bill of materials
	SCO	 SCO Group
	SDO	 Standards Development Organization
	SEC	 Securities and Exchange Commission
	SEP	 Standard Essential Patent
	SME	 small and medium-​size enterprise
	SOW	 Scope of Work

Abbreviations  xxiii

	SPDX	 Software Project Data Exchange
	SSPL	 Server-​Side Public Licence
	SV	 Satoshi’s Vision
	TCO	 total cost of ownership
	TDF	 The Document Foundation
	TEU	 Treaty on European Union
	TFEU	 Treaty on the Functioning of the European Union
	TPM	 technological protection measures
	TRIPS	 Trade-​Related Aspects of Intellectual Property Rights
	UK	 United Kingdom
	UN	 United Nations
	UNESCO	 United Nations Educational, Scientific and Cultural Organization
	UPC	 Unified Patent Court
	UPC	 Unique Production Code
	US	 United States
	USC	 United States Supreme Court
	USPTO	 US Patent Office
	VC	 venture capital
	W3C	 World Wide Web Consortium
	WIPO	 World Intellectual Property Organization
	WTO	 World Trade Organization

Contributors

Amanda Brock is CEO of OpenUK, the UK organisation for the business of Open
Technology (open source software, open hardware and open data); elected Board Member,
Open Source Initiative; appointed member of the Cabinet Office’s Open Standards Board;
Member of the British Computer Society Inaugural Influence Board; Advisory Board
Member, KDE, Planet Crust, Sustainable Digital Infrastructure Alliance and Mimoto;
Charity Trustee Creative Crieff and GeekZone; and European Representative of the Open
Invention Network. Amanda was awarded the UK Lifetime Achievement Award in the
Women, Influence & Power in Law Awards, 2022, and included in Computer Weekly’s Most
Influential Women and The UK Leaders in Tech long lists in 2021 and 2022. A lawyer of
25 years’ experience, she previously chaired the Open Source and IP Advisory Group of
the United Nations Technology Innovation Labs, sat on the OASIS Open Projects and UK
Government Energy Sector Digitalisation Task Force Advisory Boards and been an ad-
visor to a number of start-ups including Beamery and Everseen. With law degrees from
the University of Glasgow, New York University and Queen Mary and Westfield, University
of London, Amanda was part of the first cohort to study internet law in the UK. She then
spent 25 years practising law and almost 20 of those across companies in a variety of sec-
tors, with a strong technology focus. She was the first lawyer working on the ISP Freeserve
from 1999 and a member of the team which took it to IPO. She joined Canonical early
stage as General Counsel setting up and running the global legal team for 5 years from
2008. A frequent international keynote speaker, Amanda writes regularly for the tech-
nology press, is Editor of Open Source, Law, Policy and Practice, being published by Oxford
University Press in October 2022 with open access sponsored by the Vietsch Foundation.
Listed as one of 20 CEO’s to Watch at https://www.linkedin.com/feed/update/urn:li:activ
ity:6777656310428135424/, https://www.linkedin.com/in/amandabrocktech

Malcolm Bain is an English solicitor and Spanish abogado based in Barcelona, working for
the last twenty years in ICT law and focusing on Open Source and open content projects.
He has advised universities, government, industry, and startups on intellectual property
strategy, management, and licensing, and participated in many conferences and seminars
on the legal aspects of Open Source and open data. He is a member of FSF-​Europe and
CATPL, the Catalan association for free software businesses.

Miriam Ballhausen is a partner at Bird & Bird, LLP, specialising in technology, software,
digital media, copyright, data, and data protection law with a particular focus on the collab-
orative development of Open Source software, open data, and open hardware. She served
on the advisory council of the Legal Network of the Free Software Foundation Europe and
has been involved in several Open Source enforcement cases in Germany. In her daily work,
she regularly works with clients on implementing Open Source licence compliance program
and advises them on all issues related to Open Source.

xxvi  Contributors

Knut Blind took his Bachelor’s degree at Brock University (Canada), prior to finishing his
Diploma in Economics and later his doctoral degree at Freiburg University. Since 1996, he
joined the Fraunhofer Society. Currently, he is head of ‘Innovation and Regulation’ at the
Fraunhofer Institute for Systems and Innovation Research located in in Karlsruhe, Germany.
In April 2006, he was appointed Professor of Innovation Economics at the Faculty of
Economics and Management at the Technische Universität Berlin. Between 2008 and 2016,
he held also the endowed chair of standardisation at the Rotterdam School of Management
of the Erasmus University.

Mirko Böhm is an Open Source software contributor to the KDE Desktop, the Open
Invention Network, the Open Source Initiative, and other projects. He is a visiting lecturer
and researcher on Open Source software at the Technical University of Berlin, a certified
Qt specialist and trainer and a fellow of the Openforum Academy. He leads software engi-
neering projects at Mercedes-​Benz where he applies a wide range of experience as an entre-
preneur, corporate manager, software developer, and German Air Force officer. He lives
with his wife, two children, and two cats in Berlin, Germany.

Michael Cheng is a former network engineer, M&A Attorney, and product manager. He
is currently Vice President, Head of Corporate, Mergers & Acquisitions, and Intellectual
Property at Dapper Labs. Prior to this, Michael was a product manager at Facebook/​Meta
where he represented the company as the face of its investments in Open Source. He has
previously served on the Linux Foundation Board of Directors (Member), ML Commons
(Treasurer), Confidential Computing Consortium (Board Member), Urban Computing
Foundation (Board Member), OpenChain (Board Member), Open Invention Network
Technical Advisory Committee (Member), and the Magma Foundation (Board Chair).

Pamela S. Chestek is the principal of Chestek Legal in Raleigh, North Carolina. She coun-
sels creative communities on Open Source software, brand, and marketing matters. Prior
to returning to private practice, she held in-​house positions at footwear, apparel, and high
technology companies and was an adjunct law professor teaching a course on trademark law
and unfair competition. She is a frequent author of scholarly articles, and her blog, Property,
Intangible, provides analysis of current intellectual property case law. She is admitted to
practice in California, Connecticut, the District of Columbia, Massachusetts, New York, and
North Carolina, and has been certified by the North Carolina Board of Legal Specialization
in Trademark Law.

Mishi Choudhary is a technology lawyer. The Open magazine calls her an emerging legal
guardian of the free and open Internet. She is the Legal Director of the New York-​based
Software Freedom Law Center and Partner at Moglen & Associates. She has served as the
primary legal representative of many of the world’s most significant free software developers
and non-​profit distributors. She advises technology startups and established businesses
around the world on Open Source software licensing and strategy. In 2010, she founded
SFLC.in. Under her direction, SFLC.in has become the premier non-​profit organisation rep-
resenting the rights of Internet users and free software developers in India.

Shane Coughlan is an expert in communication, security, and business development.
His professional accomplishments include building the largest Open Source governance

Contributors  xxvii

community in the world through the OpenChain Project, spearheading the licensing team
that elevated Open Invention Network into the largest patent non-​aggression community
in history and establishing the first global network for Open Source legal experts. He is a
founder of both the first law journal and the first law book dedicated to Open Source. He
currently leads the OpenChain Project, acts as an advisor to both World Mobile and Asylum
Labs, and is a General Assembly Member of OpenForum Europe.

Toby Crick is a partner in Bristows LLP’s technology group and advises on and negoti-
ates commercial, technology, and outsourcing agreements. He has particular expertise in
working with clients to help them manage and structure complex deals and is recognised for
his work on digital transformation projects and his work with clients to manage Open Source
software in regulated environments. He is a Trustee of the UK’s Society for Computers and
Law and lectures widely on IT, e-​commerce, cloud computing, agile software development,
and outsourcing including at ITechLaw, University College London (where he teaches on
Open Source) and Queen Mary University of London.

Richard Fontana is Senior Commercial Counsel at Red Hat. He specialises in legal matters
relating to software development, with a focus on Open Source. He is a former board dir-
ector of the Open Source Initiative. Fontana was previously Senior Director and Associate
General Counsel for Cloud and Open Source at Hewlett-​Packard and Counsel at the
Software Freedom Law Center. Earlier in his career he practised intellectual property and
antitrust law. He is a graduate of the University of Michigan Law School (Juris Doctor), Yale
University (Master of Science in Computer Science), and Wesleyan University (Bachelor of
Arts in History).

Ross Gardler has been working on Open Source software for close to twenty-​five years,
participating in many projects with a focus on building healthy collaboration environments
that create opportunities for open innovation across multiple fields. He served for a number
of years as the President of the Apache Software Foundation and currently serves on the
Board of Directors for OASIS Open at the intersection of rapid Open Source software in-
novation and stable interoperability through the slower but more precise standards process.
He currently works for Microsoft contributing to the growth of Linux workloads on Azure.

Andrew Katz is a solicitor practising in England and has specialised in open technologies
for over 25 years. He leads the Technology team at Moorcrofts LLP in the Thames Valley and
has advised businesses, governments, non-​governmental organisations, and foundations
around the world on open licensing and governance. He is co-​author of the CERN Open
Hardware Licence, and is a visiting researcher at Queen Mary University of London and
the University of Skövde. He lectures frequently, and has written numerous papers on open
technologies. He was lead open hardware author on the European Commission’s 2021 Paper
on the Impact of Open Source Software and Hardware on the EU Economy. He has written
and released software under the GPL.

Jilayne Lovejoy is a US lawyer and community leader who has held various community and
in-​house roles related to Open Source. She co-​leads the Software Package Data Exchange®
(SPDX) legal team, helps maintain the SPDX License List, and co-​authored the FINOS Open
Source License Compliance Handbook, an open-​licensed human and machine-​readable

xxviii  Contributors

handbook for licence compliance. Currently, she is product counsel at Red Hat working on
a variety of issues. Prior roles include legal counsel at Canonical and principal Open Source
counsel at Arm, where she drove improved processes related to Open Source, including
forming and chairing the Arm Open Source Office.

P McCoy Smith is the Founding Attorney at Lex Pan Law LLC, a full-​service technology
and intellectual property law firm, and Opsequio LLC, an Open Source consultancy, both
in Portland, Oregon, USA. He spent 20 years at a Fortune 50 multinational technology
company as an intellectual property attorney, where he ran Open Source legal policies.
He spent eight years in private practice, as a patent litigator and prosecutor, in a New York
City-​based law firm, and three years as a patent examiner at the US Patent & Trademark
Office. He has an honours engineering degree (Colorado State University), a graduate lib-
eral arts degree (Johns Hopkins University), and a law degree (University of Virginia). He
also taught the US patent bar exam, and is on the editorial board of the Journal of Open Law,
Technology & Society. He is licensed to practice law in Oregon, California, and New York,
and to prosecute patent and trademark applications in the US and Canadian Patent &
Trademark Offices.

Iain G Mitchell KC is a member of the Scottish and English Bars, ranked in Chambers
Directory and the Legal 500 for Commercial Litigation, Intellectual Property and
Information Technology law. He is Chair of the Scottish Society for Computers and Law, the
UK expert on the IT Committee of the CCBE, and past Chair of its Surveillance Working
Group. He is a member of the IT Panel of the Bar Council of England & Wales. the legal
panel of Open UK and an Honorary Lecturer in IT Law at Münster University. He is a joint
editor of the Journal of Open Law, Technology and Society.

Cristian Parrino is a tech turned social entrepreneur and sustainability advisor. He is
OpenUK’s Chief Sustainability Officer where he focuses on the intersection of open tech-
nology and societal value. He is also the CEO of childhood cancer charity, the Azaylia
Foundation, and a Board Trustee at citizen science charity, Earthwatch Europe, and youth
climate action charity, InterClimate Network, where he also co-​leads on the Youth Action
Against Climate Change All-​Party Parliamentary Group. Previously, he was the co-​founder
and CEO of sustainable behaviour change startup Greengame, and the Vice President of
Mobile and Online Services at Canonical.

Carlo Piana is a qualified lawyer in Italy and an Open Source software advocate. Former
General Counsel to the Free Software Foundation Europe, which he represented along with
the Samba Team in cornerstone antitrust cases to ensure freedom of interoperability in the
PC and Internet market. In the 2022 he was elected to the Board of the Open Source Initiative
and became a member of the Steering Committee of the Eclipse Oniro Working Group. He
acted in the first reported GPL enforcement case in Italy. He is a founding member of Array,
a boutique IT law firm, and a partner of OpenChain.

Mark Radcliffe is a senior partner who practises in DLA Piper’s Silicon Valley office and
is Co-​Chair of its Blockchain and Digital Assets practice. He has been advising on Open
Source matters for over twenty years, with projects ranging from the development of the
dual licensing model to the open sourcing of the Sun Microsystems’ Solaris operating

Contributors  xxix

system. He serves as outside general counsel of the Open Source Initiative and Apache
Software Foundation on a pro bono basis. He is applying this experience to blockchain
and non-​fungible token issues. He has written and spoken extensively on Open Source
legal issues.

Nithya A Ruff is the Head of the Amazon Open Source Program Office. She drives Open
Source culture and coordination inside of Amazon and engagement with external commu-
nities. Prior to Amazon, she started and grew Comcast and Western Digital’s Open Source
Program Offices. Nithya has been director-​at-​large on the Linux Foundation Board for the
past five years and in 2019 was elected Chair of the influential Linux Foundation Board. She
works actively to advance the mission of the Linux Foundation around building sustainable
ecosystems that are built on open collaboration. She is a passionate advocate and a speaker
for opening doors to new and diverse people in technology and often speaks and writes on
this topic. She graduated with an MS in Computer Science from NDSU and an MBA from
the University of Rochester, Simon Business School and is an aspiring corporate board dir-
ector and governance enthusiast.

Karen Sandler is an attorney and executive director of the Software Freedom Conservancy
(SFC), a non-​profit organisation focused on ethical technology. She is known as a ‘cy-
borg lawyer’ for her advocacy for software freedom as a life-​or-​death issue. She co-​
organises Outreachy, an internship program for those facing under-​representation,
systemic bias, or discrimination in tech. She is a Lecturer-​in-​Law at Columbia Law
School. Prior to SFC, Karen was executive director of the GNOME Foundation.
Before that, she was general counsel of the Software Freedom Law Center.
She received her JD from Columbia Law School where she was a James Kent Scholar, and her
engineering degree from the Cooper Union.

Charles-​H Schulz is a French technologist, free software and open standards advocate.
As a long-​time contributor to the OpenOffice.org project, he helped grow its community
from a few, mostly European communities to over 100 communities and teams of various
sizes. He also contributed to the development and adoption of the OpenDocument Format
standard through the company he co-​founded, Ars Aperta. A former director of the OASIS
Consortium, he has engaged in various digital public policy debates at the European level.
He is a founding member and one of the former directors of the Document Foundation,
home of the LibreOffice project. He has been working in governmental cybersecurity for
several years and is one of the current board members of the Open Information Security
Foundation, and Chief Strategy Officer of Vates, the main developer of the XCP-​ng
hypervisor.

Kate Stewart works with the safety, security, and licence compliance communities to ad-
vance the adoption of best practices into embedded Open Source projects. She was one
of the founders of SPDX and is currently the specification coordinator. Since joining
the Linux Foundation, she has launched the ELISA and Zephyr Projects, as well as sup-
porting other embedded projects. With over thirty years of experience in the software in-
dustry, she has held a variety of roles in software development, architecture, and product
management, primarily in the tooling and embedded ecosystem working with inter-
national teams.

xxx  Contributors

Dr Nikolaus Thumm is Senior Scientific Advisor with the ETH Board in Zurich, Switzerland,
and Associate with Technical University Berlin. Prior to this, he worked for the European
Commission where he was responsible to set up a work program on standardisation,
standard essential patents, licensing, and Open Source. Until 2013, he was Chief Economist
of the European Patent Office. Before this, he worked as Senior Economic Counsellor for the
Swiss Intellectual Property Office. He was chairman of the United Nations’ Advisory Group
on the Protection and Implementation of Intellectual Property Rights for Investment, a
private-​public partnership group. Nikolaus lead numerous international research activ-
ities and holds many publications in the field of standardisation, patenting, and intellectual
property protection.

Dr Ian Walden is Professor of Information and Communications Law and Director of
the Centre for Commercial Law Studies, Queen Mary University of London. His publications
include Media Law and Practice (2009), Free and Open Source Software (2013); Computer
Crimes and Digital Investigations (2nd edn, 2016) and Telecommunications Law and
Regulation (5th edn, 2018). He has been a visiting professor at the universities of Texas,
Melbourne and KU Leuven. He has been involved in law reform projects for the World
Bank, European Commission, Council of Europe, Commonwealth, and UNCTAD, as
well as numerous individual states. Ian was an ‘expert nationaux détaché’ to the European
Commission (1995–​96); Board Member and Trustee of the Internet Watch Foundation
(2004–​09); on the Executive Board of the UK Council for Child Internet Safety (2010–​
12); the Press Complaints Commission (2009–​14); a member of the RUSI Independent
Surveillance Review (2014–​15); a member of the Code Adjudication Panel at the Phone-​
paid Services Authority (2016–​21); a member of the European Commission Expert Group
to support the application of the GDPR (2017–​21), and a Non-​Executive Board Member of
the Jersey Competition Regulatory Authority (2020–​present). Ian is a solicitor and Counsel
to Baker McKenzie. Ian leads Queen Mary’s qLegal initiative and is a principal investigator
on the Cloud Legal Project.

Stephen Walli is a principal program manager in the Open Source Ecosystem Team in the
Azure Office of the CTO. He has collaborated on standards and Open Source projects for
more than thirty years. He is a board member to the Eclipse Foundation and chairs the
Eclipse SDV Working Group, and chairs the Confidential Computing Consortium (Linux
Foundation). He is also adjunct faculty at Johns Hopkins, teaching Open Source Software
Engineering, and is developing the Semesters of Code program. He is working group
chair for an IEEE standard on recommended practices for Open Source software project
governance.

Table of Cases

EUROPEAN COURT OF HUMAN RIGHTS

Ashby Donald and others v France, Appl. Nr. 36769/​08, ECtHR (5th Sec.),
10 January 2013 �� 9

Neij and Sunde Kolmisoppi v Sweden, Appl. Nr. 40397/​12, ECtHR (5th Sec.),
19 February 2013 �� 9

EUROPEAN COURT OF JUSTICE (ALPHABETICAL)

Albany (Case C-​67/​96) [1999] ECRI-​5751�� 436

Bent Mousten Vestergaard v Spøttrup Boligselskab (Case C-​59/​00)
[2001] ECR 1–​09505 ��433, 440

Bezpečnostní softwarová asociace (Case C-​393/​09) [2010] ECR I-​0000���������������������������������� 4

Commission v CAS Succhi di Frutta SpA (Case C-​496/​99) [2004] ECR 2004 I-​03801�������������445
Concordia Bus Finland Oy Ab (Case C-​513/​99) [2002] ECR I-​7251������������������������������������ 441

European Commission v The Netherlands (Case C-​359/​93) [1995] ECR I-​15�������������������� 440
EVN AG and Weinstrom GmbH v Austria (Case C-​448/​01) [2003] ECR I-​14558���������� 441–​42

Fabricom SA v Belgium (Joined Cases C-​21/​03 and C-​34/​03) [2005] ECR I-​1577 ������������ 439

Hoffman-​La Roche, judgment of the European Court of Justice (Hoffmann-​La
Roche & Co. AG v Commission of the European Communities.
Dominant position. Case 85/​76��370–​71

IT Development SAS v Free Mobile SAS, ECLI:EU:C:2019:1099
(Fifth Chamber, CJEU, 18 December 2019)��105–​6

ITV Broadcasting Ltd & ors v TVCatchup Ltd (Case C-​607/​11) 7 March 2013��������������28–​29

Laserdisken ApS v Kulturministeriet (Case C-​479/​04) [2007] 1 CMLR 6������������������������������ 26
L’Oréal SA & Ots v Bellure NV & Ots [2010] ECJ C-​487/​07�� 196

Medipac-​Kazantzidis AE v Venizeleio-​Pananeio (Case C-​6/​05) [2007] ECR 1–​04557 �����������433
Metronome Musik (Case C-​200/​96) [1998] ECR I-​1953�� 26
Microsoft v Commission (Case T-​201/​04) ��374–​76
Monty Program AB v Commission (Case T-​292/​10)�� 382

Nacional de Empresas de Instrumentación Científica, Médica, Técnica y
Dental (FENIN) v Commission of the European Communities
(Case T-​319/​9) [2003] 5 CMLR 1�� 436

Nacional de Empresas de Instrumentación Científica, Médica, Técnica y
Dental (FENIN) v Commission of the European Communities
(Case C-​205/​03) [2006] 5 CMLR 7�� 436

xxxii  Table of Cases

Parking Brixen GmbH v Gemeinde Brixen & Stadtwerke Brixen AG
(Case C-​458/​03) [2005] ECR 1–​08585��433, 439

Poucet and Pistre (Joined Cases C-​159/​91 and C-​160/​91) [1993] ECR I-​637���������������������� 436

SAS Institute Inc. v World Programming Ltd (Case C-​406/​10)
ECLI:EU:C:2012:259, 2 May 2012�� 4, 76, 229

Sociedad General de Autores y Editores de Espana (SGAE) v Rafael Hotels SL
(Case C-​306/​05) 7 December 2006; [2007] ECDR 2 ��28–​29

Solvay SA v Honeywell Fluorine Products Europe BV, Case C-​616/​10
(ECJ 12 July 2012)���224–​25

Synergestic herbicides/​CIBA GEIGY T68/​85�� 254

Telaustria Verlags GmbH and Telefonadress GmbH v Telekom Austria AG
(Case C-​234/​98) [2000] ECR 1–​10770��� 433, 438–​39

UsedSoft GmbH v Oracle International Corp (2012) 3 CMLR 44�� 27

EUROPEAN COURT OF JUSTICE (CHRONOLOGICAL)

Case 85/​76 Hoffman-​La Roche, judgment of the European Court of Justice
(Hoffmann-​La Roche & Co. AG v Commission of the European
Communities. Dominant position��370–​71

Case T-​68/​85 Synergestic herbicides/​CIBA GEIGY�� 254
Cases C-​159/​91 and C-​160/​91 Poucet and Pistre [1993] ECR I-​637 ������������������������������������ 436
Case C-​359/​93 European Commission v The Netherlands [1995] ECR I-​15���������������������� 440
Case C-​67/​96 Albany [1999] ECRI-​5751�� 436
Case C-​200/​96 Metronome Musik [1998] ECR I-​1953�� 26
Case C-​234/​98 Telaustria Verlags GmbH and Telefonadress GmbH v

Telekom Austria AG [2000] ECR 1–​10770��� 433, 438–​39
Case C-​496/​99 Commission v CAS Succhi di Frutta SpA [2004] ECR 2004 I-​03801���������� 445
Case C-​513/​99 Concordia Bus Finland Oy Ab [2002] ECR I-​7251 �������������������������������������� 441
Case C-​59/​00 Bent Mousten Vestergaard v Spøttrup Boligselskab

[2001] ECR 1–​09505 ��433, 440
Case C-​448/​01 EVN AG and Weinstrom GmbH v Austria [2003] ECR I-​14558����������441–​42
Cases C-​21/​03 and C-​34/​03 Fabricom SA v Belgium [2005] ECR I-​1577���������������������������� 439
Case C-​205/​03 Nacional de Empresas de Instrumentación Científica, Médica,

Técnica y Dental (FENIN) v Commission of the European Communities
[2006] 5 CMLR 7 �� 436

Case C-​458/​03 Parking Brixen GmbH v Gemeinde Brixen & Stadtwerke
Brixen AG [2005] ECR 1–​08585��433, 439

Case T-​201/​04 Microsoft v Commission��374–​76
Case C-​479/​04 Laserdisken ApS v Kulturministeriet [2007] 1 CMLR 6 �������������������������������� 26
Case C-​6/​05 Medipac-​Kazantzidis AE v Venizeleio-​Pananeio [2007] ECR 1–​04557 �������� 433
Case C-​306/​05 Sociedad General de Autores y Editores de Espana (SGAE) v

Rafael Hotels SL 7 December 2006; [2007] ECDR 2��28–​29
Case T-​319/​9 Nacional de Empresas de Instrumentación Científica, Médica,

Técnica y Dental (FENIN) v Commission of the European Communities
[2003] 5 CMLR 1 �� 436

Case C-​393/​09 Bezpečnostní softwarová asociace [2010] ECR I-​0000������������������������������������ 4
L’Oréal SA & Ots v Bellure NV & Ots [2010] ECJ C-​487/​07�� 196
Case T-​292/​10 Monty Program AB v Commission�� 382
Case C-​406/​10 SAS Institute Inc. v World Programming Ltd 2 May 2012 ���������������� 4, 76, 229

Table of Cases  xxxiii

Case C-​616/​10 Solvay SA v Honeywell Fluorine Products Europe BV
(ECJ 12 July 2012)���224–​25

UsedSoft GmbH v Oracle International Corp (2012) 3 CMLR 44�� 27
Case C-​607/​11 ITV Broadcasting Ltd & ors v TVCatchup Ltd 7 March 2013������������������28–​29
IT Development SAS v Free Mobile SAS, ECLI:EU:C:2019:1099

(Fifth Chamber, CJEU, 18 December 2019)��105–​6

FRANCE

EDU 4 v AFPA, Cour d’Appel de Paris, Pole 5, Chambre 10, no: 294��������������������������������104–​5

Entre’Ouvert v Orange, Tribunal de grande instance (TGI) of Paris, 3rd chamber,
3rd section (21 June 2019)��105–​6

GERMANY

Anmerkung zu OLG Düsseldorf, U. v. 24.04.2012–​I-​20 U 176/​11�� 186

Welte v D-​Link Deutschland GmbH (2006) LG Frankfurt a.M., 2006–​09–​06,
Case No. 2–​6 O 224/​06�� 29

Welte v Sitecom Deutschland GmbH, District Court of Munich, 19 May 2004,
case 21 O 6123/​04��104–​5

Welte v Skype Technologies S A, District Court of Munich, 12 July 2007,
case 7 O 5245/​07��104–​5

ITALY

Assoli v Ministero del Lavoro (TAR (Regional administrative court) Lazio,
Decision no 428 of 23/​01/​2007�� 447

Consorzio Aziende Metano (Coname) v Comune di Cingia de’Botti C-​231/​03
[2005] ECR I-​07287�� 433

Decision no. 122 of 22/​03/​2010�� 447

SECAP SpA and Santorso Soc. Cooparl v Comune di Torino C-​147/​06 and
C-​148/​06 [2008] ECR I-​03565 �� 433

POLAND

Decision of Krajowa Izba Odwoławcza of 13 January 2009 (file no: KIO/​UZP 1502/​08)�����������449
Decision of Krajowa Izba Odwoławcza of 5 August 2009

(file no: KIO/​UZP 961/​09) �� 449

Judgment of Constitutional Court of 9 March 1988, file no: U 7/​87,
OTK 1988, no 1, poz 1, 14��448–​49

UNITED KINGDOM

Aerotel Ltd v Telco Holdings Ltd [2007] RPC 7 �� 218

Boosey v Whight, 1900 1 Ch. 122, 81 LTNS 265��72–​73

xxxiv  Table of Cases

Carlill v Carbolic Smoke Ball Company [1892] EWCA Civ 1��504–​5
Confetti Records v Warner Music UK Ltd (t/​a East West Records) [2003] EWHC 1274�������� 12–​13

Elekta Ltd v Common Services Agency 2011 SLT 815��442, 448

Football Association Premier League Ltd and others v QC Leisure and others,
Murphy v Media Protection Services Ltd [2012] 1 CMLR 29�� 26

Halliburton Energy Inc’s Patent [2011] EWHC 2508 (Pat)�� 218

Macrossan’s Application 2006 [EWCA]�� 218

Navitaire Inc. v Easyjet Airline Co [2004] EWHC 1725 (Ch)�� 75

R (on the application of Chandler) v Secretary of State for Children, Schools and
Families (2010) CMLR 19�� 434

SAS Inst. Inc. v World Programming Ltd. [2013] EWCA Civ 1482�� 79
SAS Institute Inc. v World Programming Ltd [2013] EWHC 69 (Ch)�������������������������������������� 4
Sidey Ltd v Clackmannanshire Council and Pyramid Joinery and

Construction Ltd [2010] SLT 607�� 434
Sidey Ltd v Clackmannanshire Council [2012] SLT 334��434, 438
St Albans City & DC v International Computers Ltd., [1996] 4 All ER 481������������������������������ 6
Symbian Ltd v Comptroller General of Patents [2008] EWCA Civ 1066������������������������������ 218

The Mayor and Burgesses of the London Borough of Southwark v IBM UK Ltd
[2011] EWHC 549 (TCC)�� 6

UNITED STATES

100 Blacks in Law Enforcement Who Care, Inc. v 100 Blacks Who Care, Inc.,
Opposition No 91190175, 2011 WL 1576733 (TTAB 12 April 2011) �������������������������� 202

American Axle & Manufacturing, Inc. v Neapco Holdings LLC, 939 F.3d 1355
(Fed. Cir. 2019)�� 220

Apple Computer, Inc. v Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983),
cert. dism’d by stip., 464 US 1033 (1984)��72–​73

Apple Inc. v Psystar Corp., 658 F.3d 1150, C.A.9 (Cal.), 2011�� 26
Autodesk, Inc v Dassault Systemes SolidWorks Corp, 685 F. Supp. 2d 1001,

1009 (N.D. Cal. 2009)�� 209

Baker v Selden, 101 US 99 (1879)�� 76
Barcamerica Int’l USA Tr v Tyfield Importers, Inc, 289 F.3d 589, 598 (9th Cir. 2002)�������� 196
Bedrock Computer Technologies LLC v Softlayers Technology Inc.,

Case No. 6:09–​cv-​269 (LED) (E.D. Tex. 2009)��249–​50
Bedrock Computer Technologies LLC v Softlayers Technology Inc.,

Case No. 6:09–​cv-​269 (LED) (E.D. Tex. 15 April 2011)��249–​50
Beltronics USA Inc v Midwest Inventory Distrib, LLC, 562 F.3d 1067,

1072 (10th Cir. 2009)��199, 200
Bernstein v US Department of State 176 F.3d 1132 (9th Cir. 1999) �� 10
Bilski, In re, 545 F.3d 943 (Fed Cir 2008) (en banc) ��219–​20
Bilski v Kappos, No 08–​964, 561 U.S. (2010)��219–​20

Table of Cases  xxxv

Capitol Records LLC v ReDigi Inc., No. 12 Civ. 95 (RJS), 30 March 2013������������������������26–​27
Century 21 Real Estate Corp v Lendingtree, Inc, 425 F.3d 211, 214 (3d Cir. 2005)�������� 199–​200
CLS Bank v Alice Corp 573 US 208 (2014)�� 220
Comm for Idaho’s High Desert, Inc v Yost, 92 F.3d 814, 819–​20 (9th Cir. 1996)��������������201–​2
Compaq Computer Corp v Procom Tech, Inc, 908 F. Supp. 1409, 1423

(S.D. Tex. 1995)�� 209

Diamond v Diehr 450 US 175 (1981)��219–​20

Elasticsearch, Inc v Amazon.com, Inc., No. 3:19–​cv-​06158 (N.D. Cal.)
(complaint filed 27 September 2019)�� 183

Eldred v Ashcroft (01–​618) 537 US 186 (2003)��8–​9
Eva’s Bridal Ltd v Halanick Enter, Inc, 639 F.3d 788 (7th Cir. 2011)�������������������������������������� 196

Feist Publications, Inc., v Rural Telephone Service Co., 499 US 340 [1991] ������������������������ 527

G & C Merriam Co v Syndicate Pub Co, 237 US 618, 622 (1915)�� 186
Gemmer v Surrey Services for Seniors, Inc., No 10–​810, 2010 WL 5129241,

at *20 (E.D. Pa. 13 December 2010)�� 202
Google LLC v Oracle America, Inc., Docket No. 18–​956, Petition for a Writ

of Certiorari (US 24 January 2019)�� 76
Google LLC v Oracle Am., Inc., 593 US _​ , 141 S. Ct. 1183, Docket No. 18–​956, (2021) ��������� 76
Google LLC v Oracle America, Inc., 593 US _​ , 141 S. Ct. 1183, Docket No. 18–​956,

Opinion of the Court at 15 (5 April 2021)��77–​79, 80

Harper & Row Publishers, Inc. v Nation Enterprises 471 US 539, 558 (1985) ��������������������8–​9
Haughton Elevator Co v Seeberger, 85 USPQ 80 (Comm’r Pat 1950) ���������������������������������� 197

Iancu v Luoma, 141 S.Ct. 2845 (US 2020)��250–​51
Intel Corp v Advanced Micro Devices, Inc, 756 F. Supp. 1292, 1298

(N.D. Cal. 1991)�� 188
Intel Corp. v Terabyte Int’l, Inc., 6 F.3d 614, 619 (9th Cir. 1993) �� 200

Jacobsen v Katzer, No. 06–​CV-​01905 JSW, 2007 WL 2358628 (N.D.Cal. 17 August 2007) ���������103–​4
Jacobsen v Katzer, 535 F.3d 1373 (Fed. Cir. 2008)��� 86–​87, 103–​4

Kennedy v Guess, Inc, 806 N.E.2d 776, 786 (Ind. 2004)��211–​12
Kentucky Fried Chicken Corp v Diversified Packaging Corp, 549 F.2d 368,

387 (5th Cir. 1977)�� 196

Liebowitz v Elsevier Sci Ltd, 927 F. Supp. 688, 696 (SDNY 1996)��������������������������������������202–​3
LunaTrex, LLC v Cafasso, 674 F. Supp. 2d 1060, 1062 (S.D. Ind. 2009) ����������������������������202–​3

Mayo Collaborative Services v Prometheus Laboratories, Inc 566 US (2012) ��������������219–​20
Mazer v Stein, 347 US 201 (1954)�� 76
MDY Industries v Blizzard Entertainment, 629 F. 3d 928 C.A.9 (Ariz.), 2010 ����������26, 31–​32
Merck & Co v Mediplan Health Consulting, Inc, 425 F. Supp. 2d 402, 413 (SDNY 2006)�����������205

National Comics Publications, Inc. v Fawcett Publications, Inc. 191 F.2d 594, 90 USPQ 274������������17
Neo4j, Inc v PureThink, LLC, 480 F.Supp.3d 1071 (N.D. Cal. Aug. 20, 2020)������������ 196–​97, 206
Neo4j, Inc. v PureThink, LLC, No. 5:18–​CV-​07182–​EJD, 2021 WL 2483778

(N.D. Cal. 18 May 2021) �� 206

xxxvi  Table of Cases

New Kids on the Block v News Am Publ’g, Inc, 971 F.2d 302, 308 (9th Cir.1992)���������������� 205
Nissen Trampoline Co v Am Trampoline Co, 193 F. Supp. 745, 129 USPQ 210

(S.D. Iowa 1961)�� 197

Oracle Am., Inc. v Google LLC, 750 F.3d 1339 (Fed. Cir. 2014)�� 76
Oracle America, Inc. v Google, Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012),

rev’d and remanded, 750 F.3d 1339 (Fed. Cir. 2014), cert. denied,
135 S. Ct. 2887 (2015)���5, 76, 410–​11

Oracle America, Inc. v Google LLC, 886 F.3d 1179 (Fed. Cir. 2018) �������������������������������������� 76

Polaroid Corp v Polarad Elecs Corp, 287 F.2d 492, 495 (2d Cir. 1961)���������������������������������� 194

Sega Enterprises Ltd v Accolade Inc., 977 F.2d 1510 (9th Cir. 1992) ������������������������������ 80, 209
Sebastian Int’l Inc v Longs Drugs Stores Corp, 53 F.3d 1073, 1076 (9th Cir. 1995)�������������� 199
Shain Inv Co v Cohen, 443 N.E.2d 126, 129 (Mass. App. Ct. 1982) ����������������������������������201–​2
SoftMan Products Co., LLC v Adobe Systems, Inc. (2001) 171 F.Supp.2d 1075��������������26–​27
Software Freedom Conservancy, Inc. v Vizio, Inc. Case No. 8:21–​cv-​01943,

Notice of Removal of Action to Federal Court (C. D. Cal. 29 November 2021)
(Vizio federal case)�� 106

Sound View Innovations, LLC v. Facebook, Inc. Case No. 1:16–​cv-​00116–​RGA
(D. Del. 2019)��250–​51

Sound View Innovations, LLC v Hulu, LLC, Case No. 2:17–​cv-​04146–​JAK-​PLA
(C. D. Cal. 2017)��250–​51

Sound View Innovations, LLC v Sling TV LLC, Case No. 1:19–​cv-​03709–​CMA-​SKC
(D. Col. 2019)��250–​51

Sound View Innovations, LLC v Hulu LLC, Case: 19–​1865 (Fed. Cir. 2 July 2020)���������� 250–​51
St. Denis Parish v Van Straten, Cancellation No 92051378, 2011 WL 5014036,

at *4 (TTAB 28 September 2011)�� 202
State Street Bank & Trust v Signature Financial Services 149 F.3d 1368

(Fed Cir 1998) cert denied; 525 U.S. 1093 (1999)��219–​20

Tiffany (NJ) Inc v eBay Inc, 600 F.3d 93, 102 (2d Cir. 2010) �� 205

UMG Recordings, Inc. v Augusto 628 F.3d 1175 (9th Cir. 2011) ��������������������������������������26–​27
United States v. Arthrex, Inc., 594 U.S._​ , 141 S.Ct. 1970 (2021)��������������������������������������250–​51
Universal City Studios, Inc. v Corley 273 F.3d 429 (2nd Cir. 2001) �� 10

Vernor v Autodesk, Inc., 621 F.3d 1102, C.A.9 (Wash).), 2010��26–​27
Vizio federal case (Software Freedom Conservancy, Inc. v Vizio, Inc.

Case No. 8:21–​cv-​01943, Notice of Removal of Action to Federal Court
(C. D. Cal. 29 November 2021))�� 106

Vizio state case (Case No. 30–​2021–​01226723–​CU-​BC-​CJC (Cal. Super. Ct.,
Orange County, filed 19 October 2021))�� 106

Wallace v Free Software Foundation Inc. (case no. 1:05–​cv-​00618–​JDT-​TAB) ��������������126–​27, 372
White-​Smith Music Publishing Co. v Apollo Co., 209 US 1 (1908)����������������������������������72–​73
Wofford v Apple Inc. (2011)(Case No 11–​CV-​0034 AJB NLS—​ unreported)������������������������� 6

XimpleWare v Versata, Case No. 3:13cv5160 (N.D. Cal. 2013)��249–​50

Zino Davidoff SA v CVS Corp., 571 F.3d 238, 243 (2d Cir. 2009)�� 200

Table of Legislation

EUROPEAN UNION

Decisions

Commission Decisions
Decision C(2008) 764 final of

27 February 2008 ������������������������������ 377
Google Decision C(2018) 4761

final of 18.7.2018��������������������������373–​74
paras 1038–​1046������������������������������������ 373
paras 1114–​1154������������������������������������ 373
paras 1398–​1399������������������������������������ 374

Monti decision, Case COMP/​C-​3/​37.792,
Decision of March 2004 ���������������374, 377

Oracle/​Sun Microsystems, Case
No. COMP/​M.5529, Decision
of 21/​01/​2010 ������������� 373, 380, 381–​82

EPO Board of Appeal Decisions
Computer program I/​IBM

(T1173/​97) �� 218
Computer program II/​IBM

(T 0935/​97)�� 218
Hitachi Decision T 03/​0258���������������������� 219
Ricoh Decision T 03/​0172������������������������ 219

Directives
Directive 71/​305 co-​ordinating

procedures for the award of
public works contracts���������������������� 432

Directive 77/​62 in relation to public
supply contracts�������������������������������� 432

Council Directive 91/​250/​EEC of
14 May 1991 ‘on the legal
protection of computer
programs’ (OJ L122/​42, 17.5.1991),
codified in 2009, as Directive
09/​24/​EC (OJ L111/​16, 5.5.2009)
(Software Directive)������������3–​4, 5–​6, 72

Art 1(1) �� 4
Art 1(2) �� 229
Art 4(1)(b)�� 23
Art 4(1)(c)�� 26
Art 4(2) �� 27

Art 5�� 228
Art 5(1) �� 16
Art 5(2) �� 16
Art 5(3) �� 16
Art 6�� 228
Art 6(1) �� 16
Art 6(1)(b)�� 29

Directives 92/​50/​EEC (Public Services
Contracts)������������������������������������432–​33

Directive 93/​36/​EEC (Public Supply
Contracts)������������������������������������432–​33

Directive 93/​37/​EEC (Public Works
Contracts)������������������������������������432–​33

Directive 96/​9/​EC of the European
Parliament and of the Council
on the legal protection of
databases [1996] OJ L77/​20��������527–​28

Directive 01/​29/​EC ‘on the
harmonisation of certain aspects
of copyright and related rights in
the information society’
(OJ L167/​10, 22.6.2001)
(Information Society Directive)�������� 23

Art 1(2)(a)�� 5–​6
Art 3�� 27
Art 5��16–​17
Art 6(4) �� 5–​6

Directive 2002/​21/​EC of the European
Parliament and the Council of
7 March 2002 on a common
regulatory framework for electronic
communications networks and
services 2002 OJ L108/​33 (the
Electronic communications
Framework Directive)����������������436–​37

Art 15�� 437
Directive 2003/​98/​EC of the European

Parliament and of the Council on
the re-​use of public sector
information [2003] OJ L345 as
amended by Directive 2013/​37/​EU
of the European Parliament and
of the Council [2013]������������������527–​28

xxxviii  Table of Legislation

Directive 2004/​17/​EC of the European
Parliament and of the Council
of 31 March 2004 coordinating
the procurement procedures of
entities operating in the water,
energy, transport and postal
services sectors [30 April 2004]
OJ L134/​1 (The Utilities
Directive)�� 432

Directive 2004/​18/​EC of the
European Parliament and of the
Council of 31 March 2004 on
the coordination of procedures
for the award of public works
contracts, public supply contracts
and public service contracts
[20 April 2004] OJ L134/​114
(The Public Sector Directive),
recast 2014������������������ 432, 434–​35, 439,

445, 446, 451–​52
Art 1(9) �� 436
Art 23�� 442
Art 53�� 441
Art 67(2) ����������������������������������451–​52, 453

Directive 2004/​48 [of the European
Parliament and of the Council
of 29 April 2004 on the
enforcement of intellectual
property rights ���������������������������������� 225

Art 2(1) �� 105
Directive 2006/​114/​EC of the

European Parliament and of the
Council of 12 December 2006
concerning misleading and
comparative advertising (2006)
(Advertising Directive)�������������������� 205

Art 4�� 205
Directive 2007/​66/​EC of the European

Parliament and of the Council
of 11 December 2007 amending
Council Directives 89/​665/​EEC
and 92/​13/​EEC with regard to
improving the effectiveness of
review procedures concerning
the award of public contracts
[20 December 2007] OJ L335/​31
(The Remedies Directive)���������������� 432

Directive 2009/​24/​EC of the
European Parliament and of the
Council of 23 April 2009 on the
legal protection of computer

programs’ Official Journal of the
European Union, L 111/​17,
no. 11 (5 May 2009) �������������� 75t, 75–​76

Directive 11/​83/​EU on consumer
rights (OJ L304/​64, 22.11.2011)

Recital 19�� 6
Art 5(1)(h)�� 6
Art 6(1)(s)�� 6

Directive 2012/​28/​EU ‘on certain
permitted uses of orphan works’
(OJ L299/​5, 27.10.2012)���������������������� 17

Directive 2014/​23/​EU of the
European Parliament and of the
Council of 26 February 2014
on the award of concession
contracts [28th March 2014] OJ
L94/​1 (Concessions Directive)�������� 432

Art 8�� 432
Directive 2014/​24/​EU of the European

Parliament and of the Council of
26th February 2014 and repealing
Directive 2004/​18/​EC on Public
Procurement [28 March 2014]
OJ L94/​65 (Public Procurement
Directive) ������������������������������������432, 433

Pt 3��436–​37
Art 2(1)(5)�� 437
Art 4�� 432
Art 7��436–​37
Art 8��436–​37
Art 12��436–​37
Art 15(2) ��436–​37
Art 15(3) ��436–​37

Directive 2014/​25/​EU of the European
Parliament and of the Council of
26 February 2014 on procurement
by entities operating in the water,
energy, transport and postal
services sectors and repealing
Directive 2004/​17/​EC [28 March
2014] OJ L94/​243 (Utilities
(Sectors) Directive)���������������432, 436–​37

Art 15�� 432
Directive (EU) 2015/​2436 of the

European Parliament and of the
Council of 16 December 2015
to approximate the laws of the
Member States relating to trade
marks (Trademark Directive)

Art 4(c)��� 189
Art 15�� 199

Table of Legislation  xxxix

Regulations
EC Merger Regulation no. 139/​2004 ������ 378
Council Regulation (EC) 428/​2009

(EU Dual-​Use Regulation) (as
amended, including by Council
Regulation (EU) No 1232/​2011) ������� 279

Annex I �� 279
Regulation (EU) 2016/​679 of the

European Parliament and of
the Council on the protection
of natural persons with regard
to the processing of personal
data and on the free movement
of such data (General Data
Protection Regulation) [2016]
OJ L119 (GDPR)������������������323–​24, 528

Art 4(1) �� 528
Regulation (EU) 2017/​1001 of the

European Parliament and of the
Council of 14 June 2017 on the
European Union trade mark
(EU Trademark Regulation)

Art 9(2)(b)�������������������������������������� 186, 195
Art 9(2)(c)�������������������������������������� 186, 195
Art 74�� 192
Art 83(2) ��191–​92

FRANCE

Code des Marchés Publics (Code of
Public Procurement Contracts)

Art R211–​7 �� 446
Art 6, IV��450–​51

Intellectual Property Code
Art L 121–​2�� 11
Art L 121–​4�� 11

GERMANY

Civil Code
ss 305 et seq.��� 130
s 305�� 130
s 307�� 130
s 309�� 130

Copyright Act
s 9��133–​34

GWB (Act Against Restraints of
Competition)

s 97(1)�� 445
VGV Vergabeverordnung

(Procurement Order)������������������������ 445

VOL/​A Vergabe-​und Vertragsordnung
für Leistungen, Teil A (Procurement
Order applicable to services) �����������������445

ITALY

Codice dell’Amministrazione
Digitale’ Dlgs no 82/​2005

Art 4�� 447
Art 6.1 �� 447
Art 6.2 �� 447
Art 6.4 �� 447
Art 5�� 447
Art 68�� 447

Constitution of Italy (1947)
Art 117�� 448

POLAND

Constitution of Poland (1997)
Art 32��448–​49

Law of 29 January 2004 on
Public Procurement Dz U
z 2019, r, poz 1843������������������������������ 449

Art 7�� 449
Law of 11 September 2019 on

Public Procurement Dz U
z 2019 poz 2019���������������������������������� 449

SPAIN

Ley 11/​1986 de Patentes���������������������������� 217
Art 4��217–​18

UNITED KINGDOM

Primary legislation
Copyright Designs and Patents

Act 1988 (CDPA)���������������������������������� 4
Ch IV�� 11
s 12(2)�� 16
ss 16–​21���75t
s 18(3)�� 26
s 21(3)(ab)�� 23
s 29�� 80
ss 50A–​50C�� 80
ss 77–​89�� 11
s 77(2)��12–​13
s 78�� 12
s 87(2)��11–​12
s 88��13–​14

xl  Table of Legislation

s 94��11–​12
s 104�� 12
s 296ZB �� 5–​6

Data Protection Act 2018�������������������������� 528
European Union Withdrawal Act 2018

s 2��455–​56
Freedom of Information Act 2000 ���������� 526
Freedom of Information (Scotland)

Act 2000�� 526
Patents Act 1977 (as amended

1 October 2014) �������������������������������� 217
s 29�� 18
s 36–​2(a) �� 229
s 60�� 214

Public General Acts 1911
c. 46���72–​73
Pt I ��72–​73
s 1(2)(d)��72–​73

Trade Marks Act 1994
s 45�� 18

Secondary legislation
Environmental Information

Regulations 2004 ������������������������������ 526
Export Control Order 2008

Sch 2�� 278
Sch 3�� 278, 279

Public Contracts Regulations 2015
SI 2015/​102�� 455

Public Contracts (Scotland)
Regulations 2015 SI 2015/​446���������� 455

UK Statutory Instruments 1992
No. 3233 The Copyright (Computer
Programs) Regulations ���������������������� 72

UNITED STATES

America Invents Act of September
2011, HR 1246 (112th), now
Public Law 112–​29, Statutes at
Large, 125 Stat. 284 through
125 Stat. 341 (2012) ������������244, 245–​46

Constitution of the United States (1787)
First Amendment�������������������������������������� 9

Consumers Legal Remedies Act������������������ 6
Copyright Act 1980 ������������������������������������ 72
Copyright Law 17 USC (2010)

§ 101��89, 133–​34
§ 106���75t

Digital Millennium Copyright Act
(DMCA)(1998)������������������������������90–​91

Hart–​Scott–​Rodino Act 1976������������������ 378
Patent Act—​ 35 USC

Art 112�� 254
Revised Uniform Partnership

Act 1997��201–​2
Trademark Act of 1946, as amended,

15 USC (2018) (Lanham Act)���������� 186
§ 1052(e)(1)�� 189
§ 1125(a) �� 186, 195
§ 1126(e) �� 190
§ 1127��191–​92
§ 1129�� 210

US Tax Code
s 501c3�� 388

US Code (U.S.C.)
15 USC § 1125(a) ���������������������������������� 186
15 US Code § 2301(1) (1975) ���������������� 91
17 USC § 101��������������������4, 23, 89, 133–​34
17 USC § 102��������������������������������������72–​73
17 USC § 102(b)�������������������������������������� 16
17 USC § 105������������������������������16, 463–​64
17 USC § 106���75t
17 USC § 106(2) �������������������������������������� 23
17 USC § 106A �� 11
17 USC § 107������������������� 16–​17, 78–​79, 80
17 USC § 109(a) �������������������������������������� 26
17 USC § 117�� 16
17 USC § 1201������������������������������������90–​91
17 USC § 1201(f)(1)�������������������������������� 29
17 USC § 1204�� 5–​6
35 USC § 101���������������������������������� 217, 220
35 USC § 103���������������������������������� 217, 220
35 USC § 112���������������������������������� 220, 254
35 USC § 271(a) ������������������������������������ 214
35 USC § 302������������������������������������245–​46

US Code of Federal
Regulations (CFR)

48 CFR, Chapter 1 �������������������������������� 462
48 CFR, Chapter 1, § 2.101 ������������������ 462
48 CFR, Chapter 2 �������������������������������� 462

Visual Artists’ Rights Act 1990������������������ 11

Regulations
Defense Federal Acquisition

Regulations (DFARS)������������������462–​63
Export Administration

Regulations (EAR)����������������������276–​78
Federal Acquisition Regulations

(FARS)��462–​63
International Traffic in Arms

Regulations (ITAR) �������������������������� 276

Table of Legislation  xli

INTERNATIONAL
INSTRUMENTS

(alphabetical list)
Aarhus Convention (1998) ���������������������� 526
Agreement on Government Procurement

(GPA)(1979) and (2014) ���������������431, 456
Agreement on Trade-​Related Aspects

of Intellectual Property Rights
(TRIPS Agreement)

Art 9(1) �� 13
Art 9(2) �� 16

Agreement on a Unified Patent
Court, UPC/​en 34 n. 1
(19 February 2013)������� 217–​18, 224–​25

Berne Convention for the Protection
of Literary and Artistic Works
(9 September 1886; as revised
through 28 September 1979)������������� 11,

13, 74, 75t, 302, 501–​2
Art 2(3) �� 23
Art 6bis(a)�� 11
Art 7(1) �� 16
Art 8���75t
Art 9���75t
Art 11���75t
Art 11bis��75t
Art 11ter���75t
Art 12���75t
Art 14���75t

Charter of Fundamental Rights of
the European Union (2007)

Art 11�� 9
Art 17�� 9

Convention for the Protection of
Human Rights and Fundamental
Freedoms (1950)

Art 10�� 9
First Protocol, Art 1���������������������������������� 9

Council of Europe Convention on
Cybercrime (2001)

Art 32(a) ��15–​16
European Patent Convention (EPC)��������217–​55

Art 52�� 217
Art 52(2) ��218–​19
Art 52(2)(c)�� 16
Art 52(3) ��218–​19
Art 83�� 254

General Agreement on Trade in
Services (GATS)�������������������������������� 431

General Agreement on Tariffs and
Trade (GATT)������������������������������������ 431

Nice Convention Concerning the
International Classification of
Goods and Services For the
Purposes of the Registration
of Marks, 14 June 1957, as last
revised at Geneva, 2 October
1979, 550 UNTS 45��������������������������� 190

Paris Convention for the protection of
industrial property of March 20,
1883, as revised at Brussels on
14 December 1900, at Washington
on 2 June 1911, at The Hague on
6 November 1925, at London
on 2 June 1934, at Lisbon on 31
October 1958, and at Stockholm
on 14 July 1967, 828 UNTS 305
(Paris Convention)������������������������������� 193

Art 6bis��190–​91
Art 6 septies�� 193

Protocol Relating to the Madrid
Agreement Concerning the
International Registration of
Marks, adopted at Madrid, 27 June
1989, as amended on 3 October
2006, and on 12 November 2007���������191

Treaty on European Union (TEU)���������� 438
Art 3(3) �� 431

Treaty on the Functioning of the
European Union (TFEU)�����������432–​34,

438, 465–​66
Pt 3�� 431
Title I �� 431
Art 26�� 431
Art 27�� 431
Art 102��370–​71

TRIPS Agreement see Agreement
on Trade-​Related Aspects of
Intellectual Property Rights

WIPO Copyright Treaty (1996) ��������5–​6, 26
Art 2�� 16
Art 4�� 3–​4
Art 6(2) �� 26
Art 8�� 27

Withdrawal Agreement (2020)����������� 455–​56

Introduction

Amanda Brock, Editor

‘Never doubt that a small group of thoughtful, committed citizens can
change the world: indeed, it’s the only thing that ever has.’

American Cultural Anthropologist, Margaret Mead

It has been a true privilege to be part of a small group of thoughtful, committed
citizens (which grew to be a big group) over the fourteen years since I first stum-
bled into Open Source by joining Canonical, in February 2008. Open Source is
undoubtedly changing the world through collaboration, and the community gen-
erated from this collaboration is special to me.

I use the word community a lot. If you wonder what I mean by it, I am refer-
ring to the ecosystem of people working and contributing to Open Source software
codebases and their environments. Tolerance and understanding sit at the heart of
community. It is certainly at the heart of our Open Source legal and policy com-
munity and most definitely my Open Source community, a group of people, ever
increasing, who have become an extended family to me, working collaboratively to
ensure the sustainability of our technology ecosystem.

Most of those I asked to contribute agreed to write for this book. None of them
were paid. They have deep expertise and I am humbled to edit their work. I am
extraordinarily grateful.

None of them are your lawyers and none are giving you legal advice. They have
shared the benefit of years of experience and hard work. I hope that you will find
this book helpful, but it cannot be a substitute for you taking legal advice when you
need it. Also, each author has written their individual contributions and none have
reviewed or endorsed the others’. End of disclaimer ;-). Please use the book freely
and I hope it helps you to collaborate and build great things.

The first edition, edited by Noam Shentov and Ian Walden, was an inspiration
and has allowed us to expand this edition into a more global text. Their work at
Queen Mary, my alma mater, is greatly appreciated. Thanks to Oxford University
Press for recognising the need for this publication in its first edition.

The excitement of having the Vietsch Foundation fund this book being open ac-
cess is hard for me to express. I could not be more grateful to them and to NLNet’s
Michiel Leenars, for helping me to find that funding. Thank you both. This book
being open access is a gift to anyone who wishes to teach Open Source. Herein lies

xliv  Introduction

your curriculum for the non-coding aspects of Open Source. There is no better
source today. There is no similar text. It is also a gift to communities and businesses
on their journey through Open Source maturation and learning how to curate
their Open Source software.

This book is a one-off. It would take decades to pull together the experience to
create a similar work. I will not edit a third version alone, as I could never have
foreseen the scale of work involved, and any future versions will be edited with
co-editors only.

Thank you to all of the Open Source projects who have allowed us to use their
logos for the cover. I love that we were able to make this happen.

Ian Walden, Open Source as Philosophy, Methodology, and Commerce In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © Ian Walden 2022. DOI: 10.1093/​oso/​9780198862345.003.0001

1
Open Source as Philosophy, Methodology,

and Commerce
Using Law with Attitude

Ian Walden

	1.1	� Introduction � 1
	1.2	� The Legal Treatment of Software � 2
	1.3	� Open Source as Philosophy and

Politics � 7
		 1.3.1	� Freedom of expression � 8
		 1.3.2	� Moral rights � 11
		 1.3.3	� The public domain � 15
		 1.3.4	� Open Source policies � 18

	1.4	� ‘Open’ What? � 21
		 1.4.1	� Modifications � 23
		 1.4.2	� Distribution � 26
	1.5	� Open Source as Development

Methodology � 30
	1.6	� Open Source as Commerce � 30
	1.7	� Enforcing Open Source � 31
	1.8	� Open Futures � 32

  

1.1  Introduction

Software (in my opinion) is the really clever bit of computing! Software is much,
if not most, of what we know as the information and communications technology
(ICT) industries. Software commonly comprises two written forms: source code
and object code.1 Source code is the language in which computer programs are
generally written and which is then compiled into machine-​readable object code
for use by the processor, either in a form distinct from the hardware or incorpor-
ated into it, i.e. firmware. There are numerous programing languages structured
at differing levels of abstraction, representing different generations of programing
language. The conversion between source code and object code cannot be easily
inverted, and this acts as an effective control over the use made of object code (for
interpreted languages, the source code can be obfuscated, meaning that although it
still runs, it is more difficult for a human to understand it). As a consequence, ‘trad-
itional’ commoditised proprietary software has been distributed in object code
form, rather than source code, rendering modification of the software difficult.

	 1	 Although the popularity of so-​called interpreted languages such as Python which is executed dir-
ectly from the source is increasing significantly.

2  Ian Walden

The free and open source software movements (collectively referred to as ‘Open
Source’) subverts this traditional industry model by providing access to the ori-
ginal source code for the user. Such access enables further development of the
software, amending the existing code or writing new lines of code, for personal
or public benefit. The motivations of those that pursue an ‘Open Source’ approach
to software vary considerably, encompassing political, philosophical, and ethical
agendas as much as simple pragmatism. While acknowledging and examining this
spectrum of motives, the editorial stance of the book is one of attempted neutrality
in order to understand and analyse the phenomenon of ‘Open Source’ as a legal
construct.

The central fact of Open Source, the fact that justifies this book, is that
maintaining control over source code relies on the existence and efficacy of intel-
lectual property (IP) laws, particularly copyright law. Copyright law is the primary
statutory tool that achieves the end of openness, although implemented through
private law arrangements at varying points within the software supply chain. This
dependent relationship is itself a cause of concern for some philosophically in fa-
vour of ‘open’, with some predicting (or hoping) that the free software movement”
will bring about the end of copyright as a means for protecting software.2

This book examines various policies, legal, and commercial aspects of the Open
Source phenomenon. For our purposes, Open Source is adopted as convenient
shorthand for a collection of diverse users and communities, whose differences can
be as great as their similarities. The common thread is their reliance on, and use of,
law and legal mechanisms to govern the source code they write, use, and distribute.

This chapter has three main objectives. First, to introduce the subject matter,
Open Source, the environment, and many of the themes that are examined and
analysed throughout this book. Second, the relationship between copyright law
and Open Source is scrutinised, mapping areas of common cause and tension, as
well as areas of legal uncertainty, from both a theoretical and practical perspec-
tive. Finally, the chapter is a study of how private law arrangements can be used
to achieve outcomes that diverge from that intended for the applicable public law
regime: using law with attitude.

1.2  The Legal Treatment of Software

Before embarking on an analysis of how Open Source is used by software devel-
opers and communities, it is necessary to consider the legal treatment of software
from a generic perspective, under IP laws and within the wider legal framework.

	 2	 Eben Moglen, ‘Anarchism Triumphant: Free Software and the Death of Copyright’ in N Elkin-​
Koren and NW Netanel (eds), The Commodification of Information (Amsterdam: Kluwer Law inter-
national, 2002) 107–​31.

Open Source as Philosophy, Methodology, and Commerce  3

Open Source proponents utilise private law mechanisms, i.e. licences (the legal
nature of a licence can vary, as contracts or bare licences, which is examined fur-
ther in Chapter 3)3 and contracts, operating within established public law frame-
works such as copyright, patent, and contract law to achieve a particular desired
outcome. For our purposes, ‘public law’ is used differently from the traditional
concept concerning the relationship between a state and its people. Here, it encom-
passes legal regimes that govern relationships between people, both within and be-
tween jurisdictions.4 These regimes not only grant legal validity and enforceability
to the private law mechanisms but also directly intervene to influence the use of
these mechanisms, prohibiting certain practices, for example, and making deter-
minations about certain conduct.

Uncertainties about how the public law will treat certain industry practices,
including those of the Open Source community, are highlighted throughout the
book. They include whether software should be treated as a good or a service, what
constitutes a modification, whether usage is governed by contract or bare licence
and whether that mechanism results is a transfer of ownership or a right to use.
These questions are sometimes answered through legislative provision or judicial
interpretation, but rarely without generating further areas of doubt. A private law
instrument may itself be expressed in language that can deliberately or acciden-
tally include terms that go beyond what is recognised or acceptable in public law
but which reside unchallenged and unenforceable, or terms which are interpreted
differently by different people or groups through inference or philosophical bent.5
Collectively, such legal uncertainties can have a negative impact on technical and
commercial innovation and development in the ICT industries. As such, one aim
of the book is to try and address some of the uncertainties that surround Open
Source.

In the early days of computing, software was distributed free with hardware, be-
coming a commodity only when it became liberated from the hardware on which
it operated.6 With the emergence of software as a discrete item, an issue arose as
to the most appropriate regime within IP law under which to protect it. The three
leading possibilities were patent law, due to its industrial nature; copyright law, as
a form of expression, or the establishment of some sui generis regime that reflected
the unique features of software.7 The law of confidentiality and trade secrets were

	 3	 This chapter uses this term in a non-​specific manner.
	 4	 This includes regulatory and judicial law-​making, as well as international and EU law.
	 5	 See, e.g., M Herman and J Montague, ‘The elephant in the room: Patent value and FOSS’, paper
presented at the AIPLA Spring Meeting, San Francisco, CA, April 2011. Available at <https://​docpla​yer.
net/​8677​141-​The-​eleph​ant-​in-​the-​room-​pat​ent-​value-​and-​open-​sou​rce-​softw​are-​mich​ele-​her​man-​
davis-​wri​ght-​trema​ine-​llp-​and.html> accessed 21 July 2022.
	 6	 M Schellekens, ‘Free and Open Source Software: An Answer to Commodification?’ in L Guibault
and B Hugenholtz (eds), The Future of the Public Domain: Identifying the Commons in Information Law
(Amsterdam: Kluwer Law International, 2006), at 309.
	 7	 See, e.g., the WIPO ‘Model Provisions on the Protection of Computer Software’, adopted in 1977.

4  Ian Walden

also considered (as discussed later in this chapter). Copyright eventually won the
argument, with computer programs being accepted as a form of ‘literary work’,8
although with some jurisdictions adopting a sub-​set of sui generis rules to reflect
some of the unique issues raised by software.9

What comprises ‘software’ or ‘computer programs’, however, often remains less
clear.10 As noted earlier, software is generally expressed in two forms, source code
and object code, the latter being a ‘translation’ of the former, but both being pro-
tectable subject matter. As with other areas of law, some jurisdictions attempt to de-
fine the concept in law,11 some extend it beyond the source and object code,12 while
others are content to leave it for the courts to interpret on the basis of standard
usage.13 The European Court of Justice (ECJ) examined the scope of the term in
SAS Institute Inc. v World Programming Ltd.,14 holding that a ‘computer program’
does not extend to the functionality of a program, the programing language, or the
format of data files, although the latter two may be copyrightable works in their
own right (paras 29–​46). In not protecting the functionality of a program, the law is
constraining the scope of copyright law, which is supportive of an ‘open’ approach
to the treatment of software as a tool. While the court distinguishes between a pro-
gram and the language in which it is written, the latter often now come in the form
of a program and numerous Open Source programing languages have been devel-
oped, such as Python and Ruby, themselves licensed under Open Source licences.15

As the software industry developed and while uncertainties continued to exist,
software developers tended to rely on trade secrets law and contract as the preferred
mechanisms for protecting their investment. With the clarification and strength-
ening of the copyright regime, from the mid-​1980s until recently, the software in-
dustry has relied on copyright law and licences as the primary means for governing
the use of their software assets. Limitations within copyright law, however, have
seen people look to patent law as offering an alternative strategy for protecting and
exploiting their software (see further Chapters 10). These legal mechanisms have
been supplemented by technical controls that enable rights holders to further con-
trol the use of their work.

	 8	 WIPO Copyright Treaty, art 4. See also the Commission Green Paper, Copyright and the Challenge
of Technology, COM(88) 172 final.
	 9	 For example, Council Directive 91/​250/​EEC of 14 May 1991 ‘on the legal protection of computer
programs’ (OJ L122/​42, 17.5.1991), codified in 2009, as Directive 09/​24/​EC (OJ L111/​16, 5.5.2009),
herein referred to as the ‘Software Directive’.
	 10	 In this chapter, ‘software’ and ‘computer programs’ or ‘programs’ are used interchangeably.
	 11	 For example, US law, at 17 USC § 101.
	 12	 For example, Software Directive, at art 1(1), includes ‘their preparatory design material’.
	 13	 For example, Copyright Designs and Patents Act 1988 (CDPA).
	 14	 Case C-​406/​10, 2 May 2012. See also Case C-​393/​09 Bezpečnostní softwarová asociace [2010]
ECR I-​0000, at paras 34–​41. See the application of the European Court of Justice (ECJ) decision in SAS
Institute Inc. v World Programming Ltd [2013] EWHC 69 (Ch).
	 15	 Note that compilers, which convert source code into object code, are also program(s) with Open
Source versions, such as Open64.

Open Source as Philosophy, Methodology, and Commerce  5

Legal uncertainties continue to exist for the software industry from the oper-
ation of the copyright regime: some are general to copyright law, such as the scope
of usage exceptions; some from the application of the general rules to the specifics
of software, such as its treatment as a collection, compilation, or database; while
others arise from the sui generis rules, such as the right to decompile and the ap-
plicability of copyright to application programing interfaces (APIs).16 What com-
prises copying in a software environment has generated challenges for copyright
law particularly in respect of ‘non-​literal’ copying. Code may be written using dif-
ferent programing languages, enabling a person effectively to copy the internal
‘structure, sequence and organisation’ of another work and/​or its external ‘look
and feel’,17 without copying the form of expression. In some cases, such practices
have been held to constitute infringement, while in others, the courts have held
that a merger between idea and expression has taken place, rendering the subject
matter unprotectable.18 Current industry developments may also result in a shift
away from copyright and patent law and back towards reliance on contract and
trade secrets. Cloud computing and Software as a Service (SaaS) becoming the
norm has enabled applications to be accessed via networks, meaning that suppliers
no longer need to give users either the source code or object code for the programs
they use (see further Chapter 9).

The debate also continues to ebb and flow with regard to the patentability of
computer programs, with the US and Europe exhibiting differing attitudes towards
the issue (see further Chapter 5 at section 5.1). As most Open Source licences em-
anate from the US, which has a liberal approach to software patenting, one conse-
quence is that these licences have increasingly had to devote space to addressing
patent rights, to ensure that the ‘open’ objectives continue to be maintained. Many
within the Open Source community exhibit a greater dislike towards patents, than
towards other forms of IP. There have been public campaigns seeking to prevent
or end software patenting, for which parallels do not exist concerning copyright.19
As such, contentious debates in some areas relating to Open Source, such as stand-
ards, often appear motivated primarily by an objection to patents rather than copy-
right (see further Chapter 11).

Another area of controversy within copyright has been the role of technology
itself as a mechanism for controlling the use and abuse of software. Technological

	 16	 Oracle America, Inc. v. Google, Inc., 872 F.Supp.2d 974 (N.D. Cal. 2012), rev'd and remanded, 750
F.3d 1339 (Fed. Cir. 2014).
	 17	 C Millard, ‘Copyright in Information Technology and Data’ in C Reed (ed), Computer Law, 7th
edn (Oxford: Oxford University Press, 2011), at 7.5.
	 18	 Millard, ‘Copyright in Information Technology and Data’, see note 17. See also Oracle America, Inc.
v Google Inc. (2012) 872 F.Supp.2d 974.
	 19	 Note also that the Pirate Party has campaigned for significant curtailment of the term of copyright,
however, in the case of all material, not just software. This has caused Richard Stallman (founder of the
Free Software Foundation) to argue against this policy as it relates to software, for which he is in favour
of either maintaining longer terms for free software, or establishing a sui generis right, in order to en-
sure that GPL-​style copyleft continues to work.

6  Ian Walden

protection measures (TPM), from ‘dongles’ to bit-​encryption, together with
Digital Rights Management (DRM) techniques, emerged with the growth of the
software industry as a potentially powerful tool in the armoury of rights holders
trying to stem burgeoning, industrial-​scale infringement. In the 1996 World
Intellectual Property Organization (WIPO) Treaty, such techniques were granted
legal recognition and protection under international copyright law,20 appearing
in national laws often in the form of criminal prohibitions.21 Proponents of Open
Source, particularly within the free software movement, have been highly critical
of TPM/​DRM technologies and their use to constraint end-​users, especially where
the controls extend beyond that granted to rightsholders under copyright law.22
In Europe, such concerns were successfully raised with policy-​makers, who pro-
ceeded to place TPM under legal controls designed to limit their abuse.23 While the
provisions have been heavily criticised for being narrowly drawn, overly complex
to apply, and favourable to rights holders, they do represent some form of victory
for Open Source proponents.

Distinct from the governance of software through IP laws, software is devel-
oped, supplied to users, bought and sold as an asset, and comprises part of almost
all modern commercial activity. These activities are generally governed through
contractual agreement between the various parties, whether business, consumers,
or public administrations, either distinct from, or incorporating, any IP licence
terms. While such agreements are primarily established by one or other party or
negotiated, certain mandatory rules of national law will shape these agreements
and, indeed, generate their own uncertainties. As with the initial doubt over which
IP regime should apply to software, there has been an ongoing debate, in both
Europe and the US, about how software supply contracts should be characterised,
as a sale of goods or services or both, or some sui generis category, and the implica-
tions this determination has for the rights and remedies of the user and the obliga-
tions of the supplier.24 European consumer protection rules, for example, impose
an obligation to supply any available information about interoperability between
software and ‘digital content’, which includes computer programs.25

	 20	 Arts 11 and 12 respectively.
	 21	 For example, in the US, 17 USC § 1204 and in the UK, CDPA, s 296ZB.
	 22	 For example, <http://​www.defect​iveb​ydes​ign.org/​> accessed 21 July 2022.
	 23	 For example, Directive 01/​29/​EC ‘on the harmonisation of certain aspects of copyright and re-
lated rights in the information society’ (OJ L167/​10, 22.6.2001), herein referred to as the ‘Information
Society Directive’, at art 6(4). While the Information Society Directive, at art 1(2)(a), does not amend or
affect the provisions under the Software Directive, the TPM provisions would appear to be applicable to
software.
	 24	 For the UK, see, e.g., St Albans City & DC v International Computers Ltd., [1996] 4 All ER 481
and The Mayor and Burgesses of the London Borough of Southwark v IBM UK Ltd [2011] EWHC 549
(TCC). For the US, see Wofford v Apple Inc. (2011)(Case No 11-​CV-​0034 AJB NLS—​unreported),
where the judge held that software was not a tangible good or service for the purposes of California’s
Consumers Legal Remedies Act. See generally the American Law Institute’s Principles of the Law of
Software Contracts, 2009.
	 25	 Directive 11/​83/​EU on consumer rights (OJ L304/​64, 22.11.2011), at recital 19 and arts 5(1)(h) and
6(1)(s).

Open Source as Philosophy, Methodology, and Commerce  7

1.3  Open Source as Philosophy and Politics

While this book examines how public and private law is used by Open Source com-
munities and others, such as governments, it is obviously necessary to begin by
understanding why the law is being used in this way: what is the end being sought
by the means? Inevitably, the whys fall along a broad spectrum, some pursuing and
supporting Open Source on the basis of deeply held philosophical beliefs about
how information and knowledge should be treated in society, while others are
more pragmatic, viewing Open Source as a means of creating better software or
reducing costs for users (see further Chapter 2).

If ‘Open Source’ were simply a development methodology, it would not engender
the types of rhetoric which has been deployed by the proprietary software commu-
nity26 and vice versa.27 Even amongst Open Source proponents, the philosophical
underpinnings are viewed as starkly different, Richard Stallman controversially
and possibly incorrectly noting: ‘Open source is a development methodology; free
software is a social movement.’28 Open Source has also been described as ‘a kind of
recursive philanthropy’29 because of the manner in which participant developers
devote time and energy writing code that they donate to the project community.
Copyleft licences often act in practice to require contributions to be made available
to the community that created the original Open Source software.30 This can be
seen as a legal limitation on a developer’s ability to depart from such philanthropy,
i.e. to change his mind

One recent development in the Open Source field is the issuance of Public
Source modules that are deliberately not made subject to any licence.31 One mo-
tive behind such behaviour is a philosophical rejection of the bureaucratic govern-
ance structures required to make copyright law support Open Source objectives.

	 26	 For example, in 2001, Steve Ballmer, CEO of Microsoft, described Linux as ‘a cancer that attaches
itself in an intellectual property sense to everything it touches’.
	 27	 For example, Richard Stallman: ‘Writing non-​free software is not an ethically legitimate activity,
so if people who do this run into trouble, that’s good!’, available at <http://​lists.kde.org/​?l=​kde-​licens​
ing&m=​892​4904​1326​259&w=​2> accessed 21 July 2022.
	 28	 Richard Stallman, ‘Why open source misses the point of free software’, available at <http://​www.
gnu.org/​phi​loso​phy/​open-​sou​rce-​mis​ses-​the-​point.html> accessed 21 July 2022.
	 29	 George Finney, ‘The Evolution of GPLv3 and Contributor Agreements in Open Source Software’
(2009) 14 Journal of Technology Law and Policy 79–​105.
	 30	 Technically, copyleft licences (such as the GPL family) will ensure that, on distribution of software,
its source is made available to the recipient under the same licence. The distribution (and hence the right
to receive the source) may occur privately. None of the major copyleft licences mandates contributions
back to the community (including all of the GPL family, which is partially why GPLv3 is so complex to
ensure the right of private distribution is maintained). Nonetheless, any private recipient of GPL code
can make the source code (and hence those contributions) available to the community, if they so wish.
Further common development practices (such as the use of publicly accessible Git-​based instances such
as Github and Gitlab also mean that contribution back to the community happens as a matter of course,
unless they fork the project).
	 31	 Simon Phipps, ‘GitHub needs to take Open Source seriously’, InfoWorld, 30 November 2012, available at
<http://​www.infowo​rld.com/​d/​Open Source-​software/​github-​needs-​take-​Open Source-​seriously-​208046>
accessed 21 July 2022.

8  Ian Walden

As noted by one commentator: ‘younger devs today are about POSS—​Post open
source software. f*** the license and governance’. More likely this reflects an issue
with GitHub, the dominant repository, not requiring licences and a lack of under-
standing. GitHub has recently sought to rectify this shortfalling with a notice
making clear that no licence means code is not Open Source.32

As discussed later in this chapter with respect to the public domain, copyright
law cannot be ignored that easily!

Whilst such views may be representative of only a small minority of the devel-
oper community, they may also reflect the entry of the ‘born digital’ generation into
the software industry, many of whom have grown up in an ostensibly copyright-​
free environment, where everything and anything is available from somewhere.

It is beyond the scope of this chapter to analyse the differing shades of belief
and motivation that drive those involved in the free and open source movements.
However, given the dependency on IP laws, particularly copyright, the following
sections consider some philosophical dimensions of copyright law of relevance to
the Open Source community, including in the promotion of freedom of expres-
sion, in the protection of the paternity and integrity of works, as well as the rela-
tionship with the public domain. The last sub-​section shifts from the philosophical
to the political and examines how Open Source has become incorporated by gov-
ernments into public policy initiatives in pursuit of a range of objectives.

1.3.1  Freedom of expression

One of the most quoted slogans of the free software movement is ‘free’ as in ‘free
speech’, not as in ‘free beer’.33 To achieve this free speech, copyright law is used to
facilitate reuse new expression through modification and prevent exclusivity. The
term ‘copyleft’ was chosen to denote that the objective of copyright was being de-
liberately turned on its head: ‘the inverse of “right” ’.34 Copyright is therefore situ-
ated as being antithetical to free speech. This perspective is shared by those that
view the statutory defences to copyright, such as fair use and fair dealing, as mech-
anisms for reconciling free speech with copyright.35

Yet this has not always been, indeed is not now, the only way of viewing the re-
lationship between copyright and free speech. As noted by the US Supreme Court,
as recently as 1985: ‘it should not be forgotten that the Framers intended copy-
right itself to be the engine of free expression. By establishing a marketable right
to the use of one’s expression, copyright supplies the economic incentive to create

	 32	 See <https://​git​hub.com/​rea​dme/​gui​des/​open-​sou​rce-​licens​ing> at tl;dr accessed 21 July 2022.
	 33	 <http://​www.gnu.org/​phi​loso​phy/​free-​sw.html> accessed 21 July 2022.
	 34	 ‘What is copyleft?’, at <http://​www.gnu.org/​copyl​eft/​> accessed 21 July 2022.
	 35	 See, e.g., Patrick Masiyakurima, ‘The Free Speech Benefits of Fair Dealing Defences’ in P Torremans
(ed), Intellectual Property and Human Rights (Amsterdam: Kluwer Law International, 2008) 235–​56.

Open Source as Philosophy, Methodology, and Commerce  9

and disseminate ideas.’36 Here copyright is seen as being supportive of free speech
through the granting of exclusive economic rights. Those rights obviously also ex-
clude certain types of speech, but, so the reasoning goes, as long as the totality of
copyright as an ‘incentive to create’ is greater that the effect of the constraint, the
net outcome is beneficial and copyright law can rightly claim to be a tool of free
speech.37 Alternatively, it has been argued that the purpose of copyright should
not be seen as a spur to creativity and a societal distributive mechanism but rather
as a means to ‘affirm the inherent dignity of the author as a speaking being’, where
acts of infringement are viewed as compelled speech and defences as enabling the
communicative acts of others.38 Whichever perspective you adopt, this ‘paradox’
between copyright as both an enemy and friend of free speech has been the subject
of ongoing debate.39

It is also widely accepted that there has been a shift over recent decades in favour
of copyright as constraint. With the emergence of information-​based economies,
copyright has become central to the protection of economic value in intangible
information assets. As copyright’s economic importance grew, so did calls for
the regime to be extended and strengthened. Greater prevalence, coupled with
enhanced rights and more effective and dissuasive sanctions, has resulted in nu-
merous examples of copyright being used to chill speech, whether political, art-
istic, or commercial.40

Free speech or freedom of expression is a human right expressly recognised in
most legal systems. In some jurisdictions, particularly the US, free speech is ac-
corded pre-​eminent status compared with other rights, such as privacy.41 In
Europe, freedom of expression is granted equal status with other rights, including
the right of property, which includes IP.42 As with copyright, freedom of expression
is not absolute, it is limited in scope, and is generally weighed in the balance against
other protected rights and values.43

	 36	 Harper & Row Publishers, Inc. v Nation Enterprises 471 US 539, 558 (1985). While in Eldred v
Ashcroft (01-​618) 537 US 186 (2003), the Supreme Court noted that ‘copyright’s purpose is to promote
the creation and publication of free expression’ (at 219).
	 37	 For a positive view of this trade-​off, see RA Cass and KN Hylton, Laws of Creation (Cambridge,
MA: Harvard University Press, 2013). For a negative perspective, see M Boldrin and DK Levine, Against
Intellectual Property (Cambridge: Cambridge University Press, 2008).
	 38	 A Drassinower, ‘Copyright Infringement as Compelled Speech’ in Lever (ed), New Frontiers in the
Philosophy of Intellectual Property (Cambridge: Cambridge University Press, 2012) 203–​24.
	 39	 See NW Netanel, Copyright’s Paradox (Oxford: Oxford University Press, 2008) and J Griffiths and U
Suthersanen (eds), Copyright and Free Speech: Comparative and International Analyses (Oxford: Oxford
University Press, 2005).
	 40	 Netanel, Copyright’s Paradox, see note 39, 6.
	 41	 US Constitution, First Amendment, ‘Freedom of Religion, Press and Expression’.
	 42	 Convention for the Protection of Human Rights and Fundamental Freedoms (1950), art 10 and art
1 of the First Protocol. See also the Charter of Fundamental Rights of the European Union (2007), arts
11 and 17.
	 43	 See, in particular, Ashby Donald and others v France, Appl. Nr. 36769/​08, ECtHR (5th Sec.), 10
January 2013, and Neij and Sunde Kolmisoppi v Sweden, Appl. Nr. 40397/​12, ECtHR (5th Sec.), 19
February 2013.

10  Ian Walden

Source code represents a protected form of expression under both free speech
and copyright regimes. While aligned with literary works under copyright law, its
treatment as a form of expression under a human rights analysis varies consider-
ably, depending on the specific circumstance. Equating source code with speech
has resulted in judicial scrutiny when attempts have been made to constrain the
distribution of source code. During the 1990s, governments sought to restrain the
export of cryptographic software under export control rules; treating such code as
‘dual use’, having both civil and military application.44 Export rules (see Chapter
12) have long existed, but in relation to physical items rather than intangible infor-
mation. In trying to update these rules for a digital era, they inevitably came into
conflict with free expression rights. In Bernstein v US Department of State,45 the
US Court of Appeals held that the source code of encryption software was expres-
sive speech for the purposes of the First Amendment and that the existing rules,
as a form of prior restraint, violated the protection granted under it. Conversely,
in Universal City Studios, Inc. v Corley,46 an injunction prohibiting website owners
from posting source code enabling the decryption of movies, or providing links to
such code, was considered a permissible constraint on speech.

Where copyright and freedom of expression critically differ as legal regimes,
however, is in the role of private law mechanisms in the delineation and enforce-
ment of the respective rights and obligations of the parties. Contract and licence
are tools of copyright not of freedom of expression, and it is this feature that
renders copyright such a powerful tool, both in the hands of proprietary rights
holders and, now, for those promoting and protecting Open Source, the ‘com-
mons’, and ‘free culture’.47 While private law is generally viewed as forming a lower
stratum of any legal system, private law engages persons directly in a manner that
the ‘higher’ levels, from the constitution to statutory provision, often fail to do.
People are forced, metaphorically rather than literally, to ‘agree’ to contractual
conditions and a licensee must have notice of the licence terms. Notice and con-
sent are both public law requirements of validity and enforceability for private
law arrangements, but they are also methods for obtaining individual engagement
with the rights and interests of others, even if it is not always supportive. Indeed,
it can be said that it is the private law tools of copyright law which enable the
Open Source community to reassert copyright’s historic role as an ‘engine of free
expression’.

	 44	 For example, Wassenaar Arrangement on export controls for conventional arms and dual-​
use goods and technologies, ‘List of dual-​use goods and technologies’ (December 2019), available at
<https://​www.wassen​aar.org/​> accessed 21 July 2022.
	 45	 176 F.3d 1132 (9th Cir. 1999).
	 46	 273 F.3d 429 (2nd Cir. 2001).
	 47	 See James Boyle, The Public Domain: Enclosing the Commons of the Mind (New Haven, CT: Yale
University Press, 2008) and L Lessig, Free Culture (London: Penguin, 2004).

Open Source as Philosophy, Methodology, and Commerce  11

1.3.2  Moral rights

To the extent that support for Open Source is driven by moral and ethical concerns,
the moral rights regime within copyright law deserves consideration. As Välimäki
has noted: ‘One way to look at open source is to see it promoting the original ideals
of authors’ inalienable rights to control the integrity and paternity of their personal
creations.’48 This section considers the affinity between moral rights and an Open
Source approach.

While copyright is primarily about economic rights, the Berne Convention also
grants authors certain moral rights in respect of their works; commonly referred to
as the right of paternity or attribution and the right of integrity:

Independently of the author’s economic rights, and even after the transfer of the
said rights, the author shall have the right to claim authorship of the work and to
object to any distortion, mutilation or other modification of, or other derogatory
action in relation to, the said work, which would be prejudicial to his honor or
reputation.49

Moral rights reflect a belief, originating in Continental European countries,
that an author of a work has interests in the work that ‘transcend the ordinary mo-
tives of commercial gain’.50 While recognised in the Berne Convention, the treat-
ment of moral rights varies significantly between jurisdictions.51 Common law
countries generally elaborate the least comprehensive regimes, with US copyright
law adopting the narrowest statutory conception.52 By contrast, in civil law coun-
tries moral rights are often more extensive than those provided for in Berne.53

Moral rights exist independently of the economic rights granted under copyright
and are inalienable, generally not capable of being assigned to another,54 although
they can usually be waived.55 This independent existence enables a divergence to
appear between the interests of the creator and the owner of a copyright work. Such
divergence has the potential to create problems for governance in an Open Source

	 48	 M Välimäki, The Rise of Open Source Licensing (Helsinki: Turre Publishing, 2005).
	 49	 Berne Convention for the Protection of Literary and Artistic Works (1886), at art 6bis(a). Inserted
in 1928. Transposed into UK law by Chapter IV of the Copyright Designs and Patents Act 1988,
ss 77–​89.
	 50	 MT Sundara Rajan, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”?’
(2004) 12(1) International Journal of Law and Information Technology 32–​54.
	 51	 See Elizabeth Adeney, The Moral Rights of Authors and Performers: An International and
Comparative Analysis (Oxford: Oxford University Press, 2006).
	 52	 17 USC § 106A ‘Rights of certain authors to attribution and integrity’, inserted by the Visual
Artists’ Rights Act 1990.
	 53	 For example, the French Intellectual Property Code recognises a right of disclosure (art L 121-​2,
‘droit de divulgation’) and a right of display (art L 121-​4, ‘droit de repentir ou de retrait’).
	 54	 For example, CDPA 1988, s 94.
	 55	 CDPA 1988, s 87(2) ‘by instrument in writing signed’, although contract or estoppel may operate in
respect of informal waivers (s 87(4)). Waiver is not always permissible, e.g. France.

12  Ian Walden

software project were certain collaborating creators to try to assert their moral
rights against the entity owning the copyright and exercising control through an
Open Source licence.

The paternity right is bolstered in many copyright systems through the eviden-
tial presumption that the named author is the copyright holder;56 although the
right of paternity must be asserted by the author, in other words brought to the
attention of others, through some means.57 Open Source licences are clearly sup-
portive of the paternity right, especially in respect of acts of redistribution, gener-
ally requiring that any copyright notices be retained, either in copies of the source
code, the original package, or the related documentation.

With respect to modifications, the interrelationship between moral rights and
Open Source is more complex. Indeed, it has been argued that Open Source could
be seen as sundering the traditional link between the integrity of a work and its au-
thor, which historically justified the moral rights doctrine.58 The integrity right is
restricted in scope to modifications and other actions which are ‘prejudicial’ to the
author’s honour or reputation. Non-​prejudicial modifications, such as a derivative
work or an ‘adaptation’, do not constitute an infringement of the right to integrity,
although the right of paternity continues to exist.59 In common law systems, the
evidential burden in an infringement action will generally lie with the claimant
(i.e. the author) to demonstrate to the satisfaction of a court that prejudice results
from the modification to his work.60 In civil law systems, the courts are more likely
to defer to the subjective view of the claimant author as to the work’s derogatory
treatment.61 Derogatory treatment could relate to the content of the work itself,
i.e. rewritten code, or the context within which the code is placed, for example in-
corporation within a disreputable application, such as a virus. The former would
rarely give rise to a claim, since rewritten code which is poor quality, potentially
damaging the reputation of the original author, is unlikely to be taken up by the
community, the collaborative peer-​review nature of Open Source communities
operating as the control mechanism. While actions based on contextual harm
could be constrained by the non-​discriminatory rights of use granted with the
work, this would also raise the possibility of disproportionate interference in the
right of free expression, which is a central element of the Open Source movement.
As such, the integrity right is more akin to defamation, which is seen both as an as-
pect of a person’s right to privacy as well as an exception to the right to freedom of

	 56	 CDPA 1988, s 104.
	 57	 CDPA 1988, s 78.
	 58	 Severine Dusollier, ‘Open Source and Copyleft: Authorship Reconsidered?’ (2002–​2003) 26
Columbia Journal of Law & the Arts 281–​96, at 294.
	 59	 CDPA 1988, s 77(2).
	 60	 See, e.g., Confetti Records v Warner Music UK Ltd (t/​a East West Records) [2003] EWHC 1274, at
paras 149–​157.
	 61	 Ian Eagles and Louise Longdin, ‘Technological Creativity and Moral Rights: A Comparative
Perspective’ (2004) 12(2) International Journal of Law and Information Technology 209, at 234.

Open Source as Philosophy, Methodology, and Commerce  13

expression,62 rather than a mechanism to ‘govern modifications’ akin to the control
paradigm of copyright.63

The relationship between moral rights and software varies between jurisdic-
tions. Most make no distinction, others tailor the rights with respect to software,64
while under English law, computer programs are specifically exempt from the
moral rights regime.65 Such an exemption is not manifest in the Berne Convention
or other international copyright instruments and has not been followed in other
jurisdictions.66 One suggested reason for exempting computer programs from the
moral rights regime is the dependency of ‘programers being able to build on pre-​
existing programs’.67 Protecting integrity, in particular, is therefore seen as a po-
tential obstacle to technical progress and development. This argument, however,
would seem equally applicable to all forms of right that enable control over the
use of information. Another reason given is based on the view that moral rights
are not appropriate for technological or functional works, as opposed to ‘artistic
creations’ or expressive works.68 Such an argument would seem to deny the indi-
viduality that can be expressed through programing or the existence of a distinct
culture that recognises and celebrates ‘elegant’ programing techniques and solu-
tions.69 A third argument has been summarised by the European Commission as
follows: ‘serious doubts exist as to the suitability of their [moral rights] application
to works frequently produced collectively, having a technical, industrial, or com-
mercial character and subject to successive modifications’.70 As well as expressing
reservations about technical/​functional works, the key feature of concern is the
collective nature of the creative process and the extent of modifications to a work
that takes place, common characteristics of Open Source communities (although
also features of closed and proprietary development systems). How could a right of
attribution and integrity operate effectively within such an environment?

On collective attribution, the problem would seem no different in nature from
that applicable to ‘joint authorship’ under copyright law and, indeed, some moral

	 62	 See H Fenwick and G Phillipson, Media Freedom under the Human Rights Act (Oxford: Oxford
University Press, 2006), at 1068–​70.
	 63	 G Vetter, ‘The Collaborative Integrity of Open Source Software’ (2004) 2 Utah Law Review 563–​
700, at 663.
	 64	 For example, France, IPC, art L 121–​7.
	 65	 France, IPC, ss 79(2)(a) and 81(2).
	 66	 The Agreement on Trade-​Related Aspects of Intellectual Property Rights (TRIPS Agreement) ex-
pressly states that the moral rights specified under the Berne Convention do not bestow rights or obliga-
tions under TRIPS (at art 9(1)).
	 67	 Sundara, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”?’, see note 50,
47. See also Vetter, see note 63, at 565, who states that a right of integrity ‘would be counterproductive to
the sequential and successive processes used to develop software’ (663).
	 68	 Sundara, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”?’, see note 50,
at 49 and Vetter, see note 63, at 663.
	 69	 For one description of this culture, see P Himanen, The Hacker Ethic and the Spirit of the
Information Age (London: Vintage, 2001).
	 70	 Commission Communication, Green Paper ‘on copyright and the challenge of technology’,
COM(88) 172 final, 7 June 1988.

14  Ian Walden

right provisions already address such issues.71 Alternatively, while the rights them-
selves may not be assignable, the right to enforce can be delegated to some other
entity,72 which would create greater certainty for both the community and the
users of the code.

On successive modifications, a clear threshold of what constitutes ‘derogatory
treatment’ would be likely to prevent any excessive assertions of a right to integrity.
Indeed, similar to the patent retaliation provisions in Open Source licences (see
further Chapter 5), any person wishing to assert his right to integrity would first
have to ensure that he is not exposed to any similar such claim from any source
code which he modified in the course of producing his contribution, which may
itself be a significant threshold issue. Alternatively, the concept of integrity could
be recast, shifting the locus of protection from individual modifications to the col-
lective output of the community, integrity being infringed where the ‘open’ nature
of the code is undermined through technical or legal means.

The Open Source Initiative (OSI) is the custodian of the Open Source Definition
(OSD) which refers to source code integrity in the following terms:

4. Integrity of The Author’s Source Code
The license may restrict Source Code from being distributed in modified form
only if the license allows the distribution of ‘patch files’ with the source code for
the purpose of modifying the program at build time. The license must explicitly
permit distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the ori-
ginal software.73

The rationale refers both to the right of users to transparency about whose code
they are using as well as the author’s right to protect their reputation. The right of
attribution is not directly referenced, although the OSI content is itself licensed
under the Creative Commons Attribution licence. However, user transparency can
be seen as the flip side of the right of paternity; viewing the right as an obliga-
tion and retention of attribution notices is a common characteristic of licences ap-
proved by the OSI as meeting the OSD.

Creative Commons licences, which are not designed for code, refer to moral
rights, noting that they are not affected by the licence.74 By contrast, the European
Union Public Licence requires the licensor to waive his moral rights, but only ‘in
order to make effective the licence of the economic rights’ provided for under
the licence.75 The Open Database Licence requires the licensor to waive all moral

	 71	 For example, CDPA 1988, s 88.
	 72	 Eagles and Longdin, ‘Technological Creativity and Moral Rights: A Comparative Perspective’, see
note 61, at 216.
	 73	 <http://​ope​nsou​rce.org/​osd-​annota​ted> accessed 21 July 2022.
	 74	 <http://​crea​tive​comm​ons.org/​licen​ses/​by-​nc-​sa/​3.0/​> accessed 21 July 2022.
	 75	 EUPL, v.1.1 (2007), at Clause 2.

Open Source as Philosophy, Methodology, and Commerce  15

rights ‘to the fullest extent possible’ or agree not to assert such rights. If neither op-
tion is permitted by law, the licence cryptically states that ‘the author may retain
their moral rights over certain aspects of the Database’, without specifying what
such aspects may be.76 The GNU General Public License (GPL) makes no reference
to moral rights, which reflects its US origins.

It has been argued that moral-​type rights should be recast for a digital age, ra-
ther than abandoned or avoided.77 Others have suggested that a distinction could
be made between the application of moral rights to object code and source code,
especially when the former generates an audiovisual work.78 Were moral rights to
be reinvigorated as a category of IP, what impact would it have on the Open Source
community? The answer, as with most legal questions, is it depends! As Ginsburg
notes, should moral rights in a digital age ‘be achieved by conveying more informa-
tion about the copy, or by controlling the copy itself?’79 As noted earlier, the attri-
bution right would seem perfectly aligned with the philosophy of the Open Source
movement, subject only to the need to facilitate collective attribution which is gen-
erally implemented in the code headers. It is with respect to modifications that our
historic conception of moral rights may require recasting to reflect the phenomena
of Open Source.

1.3.3  The public domain

The philosophy of the Open Source community is to make source code widely and
freely available for use. As such, it begs the question: why not place the source code
in the public domain, rather than using the tools of copyright law to achieve the
same ends?

The concept of ‘public domain’ information has a specific meaning within IP
law distinct from the state of the information being publicly available.80 In at least
one context, the term ‘Open Source’ has been used in law as a synonym for publicly
available data, rather than software-​related data.81 A ‘public domain’ work is not
subject to any IP rights; it is an alternative state in which information may be. The
literature sometimes confuses these two states. Schellekens, for example, notes that
software in its pre-​commodification state ‘belonged to the public domain’, which
incorrectly equates free, as in speech or beer, with free as in without IP protec-
tion.82 While Boldrin and Levine describes the Open Source movement as having

	 76	 ODbL v.1.0, at Clause 5.
	 77	 See, e.g., Jane Ginsburg, ‘Have Moral Rights Come of (Digital) Age in the United States’ (2001) 9(1)
Cardoza Arts & Entertainment Law Journal 9–​19, 9.
	 78	 For example, Vetter, see note 63.
	 79	 Ginsburg, ‘Have Moral Rights Come of (Digital) Age In the United States’, see note 77, at 17.
	 80	 See L Guibault and B Hugenholtz, The Future of the Public Domain: Identifying the Commons in
Information Law (Amsterdam: Kluwer Law International, 2006).
	 81	 Council of Europe Convention on Cybercrime (2001), at art 32(a).
	 82	 Schellekens, ‘Free and Open Source Software: An Answer to Commodification?’, see note 6, at 309.

16  Ian Walden

‘relinquished its intellectual monopoly’,83 which implies an abandonment of IP
laws rather than their subversion.

There are various reasons why something may not be subject to IP laws. First,
the IP laws that pertain to a particular work can expire. So, for example, copyright
subsists in a literary work for between fifty and seventy years following the death of
the author.84 Differing time periods exist for different forms of IP and in different
jurisdictions, with perpetual protection being possible.85

Second, certain types of information are not considered protectable subject
matter, therefore, a particular IP regime may not apply. Under European patent
law, for example, ‘programs for computers’ are not considered inventions (see fur-
ther Chapter 5, at section 5.1).86 While under US copyright law, works of the US
government are not protectable.87 Copyright also protects forms of expression,
rather than the underlying ideas and principles that generate that expression. As
such, ideas fall outside international88 and national89 copyright regimes and access
to such ideas may require specific statutory protection, as provided for in respect of
computer software under European Union (EU) law.90

Public domain must also be distinguished from exceptions that are carved into
IP regimes. With the latter, the right subsists in the information, but the right
holder is prevented from exercising that right against a particular use made of that
information. In the case of software, for example, European law recognises various
exceptions that permit a lawful user to use the software for error correction or
back-​up purposes.91 Specific provision is also made for a lawful user to obtain pro-
tected information i.e. ‘necessary to achieve the interoperability of an independ-
ently created computer program with other programs’,92 which was designed to
stimulate competition in the software market.

Use exceptions may be drafted broadly, such as the US concept of ‘fair use’,93 or
narrowly list-​specific usage scenarios or purposes, as provided for under EU law.94
Copyright exceptions are a topic of ongoing political debate in many jurisdictions,

	 83	 Boldrin and Levine, Against Intellectual Property, see note 37, at 17.
	 84	 The Berne Convention provides for fifty years (art 7(1)), while UK law provides for seventy years
(CDPA 1988, s 12(2)).
	 85	 That is confidential information, as long as it remains secret; trademarks, provided the registration
is maintained and it does not lose its distinct characteristics; and database right, where a substantial
change or investment is made to the contents.
	 86	 European Patent Convention, art 52(2)(c).
	 87	 17 USC § 105.
	 88	 For example, TRIPS Agreement, art 9(2); Copyright Treaty, art 2.
	 89	 For example, 17 USC §102(b): ‘In no case does copyright protection for an original work of author-
ship extend to any idea, procedure, process, system, method of operation, concept, principle, or dis-
covery, regardless of the form in which it is described, explained, illustrated, or embodied in such work.’
	 90	 Software Directive, at art 5(3).
	 91	 Software Directive, at art 5(1) and (2). See similarly 17 USC § 117.
	 92	 Software Directive, at art 6(1).
	 93	 17 USC § 107.
	 94	 Information Society Directive, see note 23, at art 5.

Open Source as Philosophy, Methodology, and Commerce  17

revolving around what constitutes the right balance between the competing public
interests and rights of control and access. These arguments are, in part, about what
constitutes the proper scope of the public domain, although taking place firmly
within the paradigm of copyright control.

Finally, public domain works should also be distinguished from so-​called or-
phan works, where it is impossible to identify the copyright owner, but which
are still subject to copyright and therefore constrained from being freely used.95
Within the software industry there is another variation of the orphan work, so-​
called abandonware. Here the software remains protected by copyright but the
owner is no longer interested in the code, providing no support or other related
input, and not interested in policing or enforcing against violations of his copy-
right.96 Reasons for abandonment vary, but can obviously include the owner going
out of business.

The initial question, why not place source code in the public domain, generates
two further questions. First, does the applicable IP regime enable a rights holder to
place protected subject matter in the public domain; in other words can they shed
the source code of its protective legal coating? Second, if source code can be placed
in the public domain, what implications does this change of status have in terms of
the ceding a person’s ability to control subsequent users of the code?

In respect of the first issue, the problem is noted in the Creative Commons CC0
Public Domain Dedication: ‘many legal systems effectively prohibit any attempt by
these owners to surrender rights automatically conferred by law, particularly moral
rights, even when the author wishing to do so is well informed and resolute about
doing so and contributing their work to the public domain’. US copyright law rec-
ognises the concept of abandonment, which can be argued as a defence to a claim
of infringement. It requires a defendant to show that the copyright owner intends
to surrender his rights in the work and has overtly acted in a manner evidencing
such intention.97 Whilst this may prove a substantial hurdle in the case of orphan
works, such intent could be easily manifest in an Open Source context through
appropriate notices dedicating the work to the public. No similar doctrine of aban-
donment clearly exists under English law of copyright.98 While in European civil
law jurisdictions, the doctrine appears to be generally unacceptable.99

	 95	 See Directive 2012/​28/​EU ‘on certain permitted uses of orphan works’ (OJ L299/​5, 27.10.2012).
	 96	 See Dennis Khong, ‘Orphan Works, Abandonware and the Missing Mark for Copyrighted Goods’
(2006) 15 International Journal of Law and Information Technology 54–​89, at 54.
	 97	 National Comics Publications, Inc. v Fawcett Publications, Inc. 191 F.2d 594, 90 USPQ 274. See M
W Turetsky, ‘Applying Copyright Abandonment in the Digital Age’ (2010) 19 Duke Law & Technology
Review 22.
	 98	 Philip Johnson, ‘ “Dedicating” Copyright to the Public Domain’ (2008) 71 Modern Law Review
587–​610. Also Copinger and Skone James on Copyright (London: Sweet & Maxwell, 2012), at 6–​88.
	 99	 Emily Hudson and Robert Burrell, ‘Abandonment, Copyright and Orphaned Works: What Does
It Mean to Take the Proprietary Nature of Intellectual Property Rights Seriously?’ (2011) 35 Melbourne
University Law Review 971–​1004.

18  Ian Walden

The difficulties in abandoning copyright is in stark contrast to the treatment of
other IP rights, especially the registered rights, patents, and trade mark,100 as well
as moral rights discussed earlier. As well as a statutory recognition of surrender,
patent rights are also vulnerable to community practices, such as defensive pub-
lication, which can undermine the secrecy required when applying for the patent
(see further Chapter 10).

An alternative would be for the copyright owner to grant a licence to the world,
without any restriction on use. Such a licence remains revocable at the copyright
holders will, however, except where constrained by estoppel.101 The ability to re-
voke would enable a community to respond in the event that their source code was
being used in an unacceptable manner, although the related complexity and legal
uncertainty would represent a significant threshold to the taking of such action.

With regard to the second issue, placing source code in the public domain would
enable a user to incorporate the code within another work, thereby essentially re-​
privatising the code, to the extent that it could not be used except on the terms
granted by the new copyright owner. As such, public domain equates to a loss of
control, undermining the objectives of the Open Source movement.

1.3.4  Open Source policies

A sometimes intensely political area of computing, it is inevitable that Open Source
has come to the attention of politicians and policy-​makers. Historically, politi-
cians in the US and Europe have been highly supportive of IP laws and the need
to strengthen existing rules to reflect the shift to service-​based, information-​led
economies in a rapidly evolving digital environment.

At the same time, however, governments have become increasingly attracted by
Open Source for various reasons. First, as users of ICTs, the public sector has often
experienced significant disappointments with the deployment of ICTs designed
to achieve more efficient and cheaper government. Some have seized upon Open
Source as a means of addressing these past failures, based on assertions about its
technical superiority and its cost advantages. Second, there is a general desire to
stimulate innovation within national economies and Open Source is viewed as
contributing to that objective. Third, the dominance of certain market players,
particularly from the US, has raised concerns about the competitive position of
domestic software industries, which may be bolstered by the adoption of Open

	 100	 Patents Act 1977, s 29 and Trade Marks Act 1994, s 45.
	 101	 Johnson, ‘ “Dedicating” Copyright to the Public Domain’, see note 98, at 607. Additionally, more
esoteric mechanisms may potentially be used, such as the copyright holder executing a deed poll, or en-
tering into a contract with another party under which a licence is granted to ‘everyone’ as a class of third
party beneficiary.

Open Source as Philosophy, Methodology, and Commerce  19

Source.102 Finally, the trend towards more open government, in terms of transpar-
ency, such as freedom of information legislation, has chimed with the concept of
Open Source and its ‘transparency of process’.103

International organisations have embraced Open Source. The United Nations
Educational, Scientific and Cultural Organization (UNESCO) has noted that Open
Source can play a significant role in ensuring attainment of the UN’s Millennium
Development Goals.104 In terms of national, regional, or local government policies
towards Open Source, the Center for Strategic and International Studies (CSIS)
carried out surveys of published policies between 2002 and 2010, which it groups
into four categories:105

	 •	 Research and development (R&D) -​related initiatives, such as encouraging
the formation of Open Source development communities;

	 •	 Awareness and advisory initiatives, where Open Source is brought to the at-
tention of communities of users, again usually the public sector106

	 •	 Granting preferential treatment for Open Source; and
	 •	 Mandating the use of Open Source by public administrations.

The latter two policy categories are variants that directly increase the adoption of
Open Source within the public sector. Over the period, adoption was the most
prevalent policy approach, a finding confirmed in another survey of European
initiatives.107

In general, preferential treatment has targeted the procurement of Open Source-​
related ICTs (‘inbound preference’), ranging from favourable treatment in pro-
curement processes to direct financial subsidy where Open Source is adopted.108 In
some jurisdictions, Open Source has also been adopted as the preferred approach
for the dissemination of public sector developed code (‘outbound preference’).
In 2007, for example, the European Commission approved the ‘European Union
Public Licence’ for the purpose of distributing its own software under a private
law arrangement that corresponded with the requirements of European law.109

	 102	 See Hal Varian and Carl Shapiro, Linux Adoption in the Public Sector: An Economic Analysis
(mimeo, Berkeley, CA: University of Berkeley, 2003).
	 103	 OSI Mission Statement: <http://​ope​nsou​rce.org/​about> accessed 21 July 2022.
	 104	 <https://​en.une​sco.org/​freean​dope​nsou​rces​oftw​are> accessed 21 July 2022.
	 105	 See the March 2010 version: <http://​csis.org/​files/​publ​icat​ion/​1004​16_​O​pen_​Sour​ce_​P​olic​ies.
pdf>. In 2010, some 364 Open Source initiatives were identified from public sources.
	 106	 See, e.g., the European Commission’s ‘Joinup’ initiative: <http://​joi​nup.ec.eur​opa.eu/​> accessed
21 July 2022.
	 107	 Stefano Comino, Fabio Manenti, and Alessandro Rossi, ‘On the Role of Public Policies Supporting
Free/​Open Source Software’ in K. St Amant and B. Still (eds), Handbook of Research on Open Source
Software (IGI Global, 2007) 412–​27.
	 108	 Comino, Manenti, and Rossi, ‘On the Role of Public Policies Supporting Free/​Open Source
Software’, see note 107.
	 109	 See <https://​joi​nup.ec.eur​opa.eu/​col​lect​ion/​eupl/​intro​duct​ion-​eupl-​lice​nce> accessed 21 July
2022.

20  Ian Walden

However, as with R&D initiatives, promoting the use of particular licence terms for
‘publicly’ developed or funded software may itself generate controversy, particu-
larly when choosing the use of copyleft rather than more permissive Open Source
licences.110

Various tools may be used by governments to facilitate Open Source, espe-
cially public procurement procedures and an ‘open’ standards policy (see further
Chapters 21). The former is a demand-​side competition measure, given the pur-
chasing power of the public sector. The latter can improve supply-​side competi-
tion, by facilitating interoperability between devices, software, and data. While
Open Source does not equate with ‘free’, as in no payment or charge, payment is-
sues do arise in the area of standards and patents (see Chapter 16), where there
is an ongoing and very topical debate about whether existing royalty-​bearing or
mandated royalty-​free (RF) fair, reasonable, and non-​discriminatory (FRAND) li-
censing arrangements discriminate against either the proprietary or Open Source
community, resulting in a market failure that justifies government intervention.111

It has been noted that one element in the adoption of pro-​Open Source national
policies has been anti-​Americanism. The CSIS suggests that trends in Open Source
policies may reflect market developments in the proprietary software market. So,
for example, the launch of Windows Vista in 2006–​07 and the resultant criticism
and negative press coincided with a rise in the number of published policies.112
However, companies like Microsoft have been seen to have undertaken a shift from
their anti-​Open Source stance of a decade ago to being amongst the biggest con-
tributors to Open Source today. This can at least partly be attributed to the rise
of Kubernetes and interoperable Cloud Native Software which underpins cloud
computing and the platform economy alongside the vast increase in Open Source
adoption facilitated by GitHub and other repositories.

In terms of implementation, R&D and advisory policy initiatives generally arise
through decision-​making within public administrations, which is likely to reduce
the political capital required for their approval. By contrast, adoption initiatives,
particularly through mandation, will often require, or take, a more ‘legal’ route,
through legislative or regulatory measures. Indeed, proposals for mandation are
usually instigated within national or local legislatures, which increase the possi-
bility of political and legal challenge. The CSIS survey indicates that the failure rate
is considerably greatly for adoption initiatives, with mandation measures experi-
encing more failures than approvals.113

	 110	 See Lawrence Lessig, ‘Open Source Baselines: Compare to What?’ in R W Hahn (ed), Government
Policy Toward Open Source Software (Washington, DC: Brookings Institution Press, 2002) 50–​68, at 64
et seq.
	 111	 See, e.g., M Välimäki and V Oksanen, ‘Patents on Compatibility Standards and Open Source—​Do
Patent Law Exceptions and Royalty-​Free Requirements Make Sense?’ (2005) 2(3) SCRIPTed 397–​406,
at 397.
	 112	 CSIS, see note 105.
	 113	 CSIS, see note 105.

Open Source as Philosophy, Methodology, and Commerce  21

Pro-​Open Source policies have inevitably generated controversy and a re-
sponse from the software and wider ICT industries, generally pitching the pro-
prietary rights holders against the Open Source community. Concerns have also
been raised by academic commentators that such policies can represent ‘indus-
trial policy by stealth’.114 To a degree, the issues are analogous to debates in other
sectors, especially the utility industries, about the best means of achieving open
and competitive markets: does establishing a ‘level playing field’ require some form
of preferential or discriminatory treatment when overcoming certain entrenched
market structures?

1.4  ‘Open’ What?

While the previous sections identified some of the philosophical and political
dimensions that underpin debates about Open Source, they do not provide a
complete description of what ‘open’ means in terms of its distinguishing charac-
teristics. At an abstract level, ‘open’ can be defined positively in terms of the free-
doms users are granted to use, modify, and share something; as specified most
clearly in the ‘four freedoms’ of the Free Software Foundation (FSF) (see fur-
ther Chapter 2).115 Alternatively, ‘open’ can utilise more negative connotations,
through requirements designed to prevent certain behaviours and attempts to
exert control, examples of which can be found in the OSI’s OSD.116 ‘Open’ often
equates to accessibility and transparency. Source code should be made accessible
for examination and scrutiny by others to enable the ideas and principles that
comprise its design and functionality to be discerned and peer reviewed, without
necessarily involving any further ‘use’ in the form of interaction. Although ‘free’
and ‘open’ are seen as denoting difference in an Open Source context, since cost
is often an element in determining whether something is accessible, ‘free’ as in
‘free beer’ often comprises an aspect of what it means to be ‘open’. ‘Open’ can also
imply freedom of choice and conduct, facilitating adoption, take-​up, and use, as
much as rejection and the utilisation of alternatives. Universality is also a con-
notation of ‘open’, which links to issues of standardisation and interoperability,
critical issues for the software industry and examined elsewhere in the book (see
Chapter 11).

The Open Source movement relies upon licences, copyright and patent law
to enable the use of source code by others, specifically its modification and re-
distribution. While ‘use’ is obviously a catch-​all term, as well as a synonym for

	 114	 Josh Lerner and Mark Schankerman, The Co-​Mingled Code (Boston, MA: MIT Press, 2010) at 197.
	 115	 <http://​www.gnu.org/​phi​loso​phy/​free-​sw.html> accessed 21 July 2022.
	 116	 For example, prohibitions on discrimination against persons, groups, or fields of endeavour. See
<http://​ope​nsou​rce.org/​osd-​annota​ted> accessed 21 July 2022.

22  Ian Walden

copying in a digital environment, the focus on acts of modification and re-
distribution are key to the control expressed in licences. A licensor is usually
concerned with how a licensee uses the code in two circumstances: where the
licensee redistributes the code, or where it is modified and then redistributed.
The licensor will want to govern the conduct of users downstream from the li-
censee as much as licensee himself, liberating or restraining depending on your
perspective!

Each of these forms of conduct, use modification and redistribution, can raise
concerns for the original creators. As in many areas of law, uncertainties and
disagreements can exist about the precise meaning of terms used in statutory
copyright regimes, both at a national level and from their interaction in a multi-​
jurisdictional environment. Language is imbued with cultural and historical
meanings that find expression through law and legal interpretation. Private law
mechanisms can therefore be a tool to address such uncertainties, either building
on the existing framework, filling the gaps, or creating an alternative language. The
free software movement, particularly through the GPL, has embraced the latter ap-
proach, using terms and defining concepts that are deliberately disassociated from
those commonly found within copyright law:

Over the years, we learned that some jurisdictions used this same word in their
own copyright laws, but gave it different meanings. We invented these new terms
to make our intent as clear as possible no matter where the license is interpreted.
They are not used in any copyright law in the world, and we provide their defin-
itions directly in the license.117

This attempt to liberate Open Source from national and copyright law prejudices,
whilst deliberately remaining firmly within the jurisdiction of these public law re-
gimes, obviously generates its own challenges and uncertainties for developers and
users, as evidenced by the ongoing, sometimes fiercely argued, debates within the
Open Source community.

The following sections briefly examine the concepts of modification and redis-
tribution within copyright law and some of the implications and debates within the
Open Source community surrounding each concept. Although substantially har-
monised, national copyright laws retain enough particularities and peculiarities to
render coverage of all jurisdictions impossible. As such, the analysis focuses on US,
UK, and EU copyright law.

	 117	 ‘Why did you invent the new terms “propagate” and “convey” in GPLv3?’ in ‘Frequently asked
questions about the GNU licenses’ at <http://​www.gnu.org/​licen​ses/​gpl-​faq.html#WhyPro​paga​teAn​
dCon​vey> accessed 21 July 2022.

Open Source as Philosophy, Methodology, and Commerce  23

1.4.1  Modifications

Modifying source code is an exclusive right granted a right holder.118 What consti-
tutes modification however is much less obvious, varying in terminology and scope
between jurisdictions. The act of modifying source code will also generally involve
an act of reproduction, which begs the question whether these purportedly distinct
rights are effectively inseparable. However, it is widely assumed or accepted that
the distinction has important implications, not least by the Open Source commu-
nity.119 It is therefore necessary to examine the concept in an Open Source context.

As most Open Source licences originate in the US, we start with the term ‘de-
rivative work’, which is widely used and is statutorily defined as:

a work based upon one or more preexisting works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture version, sound re-
cording, art reproduction, abridgment, condensation, or any other form in which
a work may be recast, transformed, or adapted. A work consisting of editorial re-
visions, annotations, elaborations, or other modifications which, as a whole, rep-
resent an original work of authorship, is a ‘derivative work’.120

This is an elaborated version of the definition used in the Berne Convention.121
Under English law, the restricted conduct is the making of an ‘adaptation’, with the
term being given a specific meaning in respect of a computer program, as ‘an ar-
rangement or altered version of the program or a translation of it’,122 which origin-
ates in EU law.123 However, adaptation is more narrowly conceived than the US
concept, which generates its own uncertainty when transplanting US-​originating
licences into an English law context.

A derivative work is granted a new and distinct copyright under US law, al-
though to be derivative, the new work must substantially copy the original and
must involve more than a minimal contribution to the original.124 A derivative
work should also be distinguished from an original work that derives only its ideas
from another work. To create a derivative work requires consent from the original
owner, which is granted under an Open Source licence, subject to conditions such

	 118	 For example, 17 USC § 106(2) and Software Directive at art 4(1)(b). Note that this right is not har-
monised in the EU for other types of work (see Information Society Directive, see note 23).
	 119	 See generally Lothar Determann, ‘Dangerous Liaisons—​Software Combinations as Derivative
Works? Distribution, Installation, and Execution of Linked Programs under Copyright Law, and the
GPL’ (2006) 21(4) Berkeley Technology Law Journal 1421–​98, at 1421.
	 120	 17 USC § 101.
	 121	 Art 2(3): ‘Translations, adaptations, arrangements of music and other alterations of a literary or
artistic work shall be protected as original works without prejudice to the copyright in the original work.’
	 122	 CDPA 1988, s 21(3)(ab). At (4) translation ‘includes a version of the program in which it is con-
verted into or out of a computer language or code or into a different computer language or code’.
	 123	 Software Directive, at art 4(1)(b).
	 124	 Melville Nimmer and David Nimmer, Nimmer on Copyright (US: Matthew Bender) at § 3.01 and
§ 3.03[A].

24  Ian Walden

as paternity notices or contribution back. However, some licence schemes permit
copyright owners to refuse by default to allow derivative works to be created.125 If
the licence conditions are breached, the consent is withdrawn and the owner of the
derivative work can no longer distribute the whole work but could (theoretically)
continue to distribute his contribution. As such, a derivative can be seen as residing
somewhere between a joint work, where the work is viewed as an undivided whole
(see further at section 1.5 of this chapter), and a collective work, where ownership
in the parts are distinct from ownership in the whole.

In a software development context, the focus is on the nature of the interaction
between the component source code written by the various contributors. Is the
contributed code ‘based upon’ an existing work? If it is, then is the contributed
code sufficiently substantial and original to create a derivative work? If it is not,
then is the contributed code sufficiently original to constitute an original work in
its own right, which can then be assembled with other such works to form a com-
pilation or collective work?

One central and highly charged debate within the Open Source community, and
beyond, concerns the concept of ‘linking’ and the legal consequences when Open
Source code interacts with proprietary code through usage. Linking is a normal
feature of programing and usually refers to the interaction between a program and
so-​called library code, which provides reusable functions for multiple and inde-
pendent programs.126 Broadly speaking, the nature of the interaction between two
linked components may either be static or dynamic, according to the decision of
the program designer, the former being generally viewed as an interaction that cre-
ates a derivative work while the latter is not.

The term ‘linking’ is often used in Open Source literature as shorthand for the
multitude of different ways in which distinct pieces of code can interact, inter-
operate, or ‘couple’ with other code; other methods include remote procedure
call (RPC), system calls, and plug-​ins.127 Such interaction matters because where
two or more pieces of code are licensed under different terms (whether propri-
etary or open source) and the resultant work would be considered ‘derivative’ or
similar under copyright law, then uncertainty is generated both about the licence
applicable to the resultant work and whether the modification constitutes an in-
fringement of a licence applicable to any part of the contributing code. Within the
Open Source community, not all modifications are possible, because of licence
incompatibilities, which can prevent two Open Source pieces of code being com-
bined to create a third (see further Chapters 3 and 4). Where a contributing licence
is ‘copyleft’ in nature, such as GPLv2, then the resultant work may have to be made

	 125	 For example, Creative Commons ‘Attribution-​NoDerivs 3.0 unported’.
	 126	 See <http://​en.wikipe​dia.org/​wiki/​Libra​ry_​(comput​ing)> accessed 21 July 2022.
	 127	 See the Free Software Foundation Europe, ‘Working Paper on the legal implication of certain
forms of Software Interactions (a.k.a linking)’, available online at <http://​www.ifos​slr.org/​pub​lic/​Link​
ingD​ocum​ent.odt> accessed 21 July 2022.

Open Source as Philosophy, Methodology, and Commerce  25

subject to that same licence, or the terms of the contributing licence will have been
breached and will terminate. As such, one result of copyleft licensing is that the op-
eration of copyright law, whether through its application or uncertainties about its
application, has led to the use of software development techniques designed specif-
ically to minimise the risk of any interaction triggering a legal consequence.

Indeed, hardware controls have also been developed and deployed specific-
ally to constrain the effective operation of copyleft licences. TiVo, the producer of
digital video recorders, utilised Linux and GNU software within their device, but
designed the system to use digital signatures such that modified versions of the
source code would not run on the device as the digital signatures would not match.
The validity of this approach generated significant controversy within the Open
Source community, with some, particularly the FSF, viewing such ‘TiVoisation’
as unacceptable,128 while others, such as Linus Torvalds, viewed it as a legitimate
business practice.129

As with much in law, the answer to these uncertainties will depend on a range
of factors, specifically the technical nature of the interaction taking place, the
person causing the modification to occur, the jurisdiction in which such modifi-
cation takes place, and the applicable licence. First, all computer code is designed
to interact at some level with something else, whether other code, hardware, or
otherwise. As such, ‘mere’ interaction or interoperation between codes is not suffi-
cient to render the outcome either a work or a derivative work. Works may interact
but remain distinct and separable, each its own copyrighted work. The works may
be used together and be redistributed as a package, but remain distinct within a
collective or composite work,130 also referred to as ‘mere aggregation’.131 Second,
the end-​user receiving the composite work may create a derivative work for his
own purposes, without further redistribution. As such, the end-​user’s conduct may
differ from the intermediary distributor because the conditions of the licence are
only triggered by an act of modification and redistribution. Third, the copyright
law of the jurisdiction in which the interaction takes place may interpret what con-
stitutes a derivative work differently from its neighbouring jurisdictions, whether
more narrowly or broadly. Finally, while the wording of any applicable licence
may not survive judicial review under either a copyright or contractual analysis,
a licensee is generally advised to give due consideration to such wording, which
may differ in important respects from the governing legal framework, particu-
larly when adopting a broad interpretation of what constitutes modification. The
GPLv2, for example, governs not only derived works, but works that ‘in whole or in

	 128	 See <http://​www.gnu.org/​licen​ses/​gpl-​faq.html#Tivo​izat​ion> and GNU GPL v3, at 6, paras 4–​5.
	 129	 See <https://​gro​ups.goo​gle.com/​forum/​?fro​mgro​ups#!topic/​fa.linux.ker​nel/​L5NR​D_​ON​kIk>.
	 130	 For example, Berne, see note 49, at art 2(5).
	 131	 See the GPL FAQs, at <http://​www.gnu.org/​licen​ses/​old-​licen​ses/​gpl-​2.0-​faq.html#Mere​Aggr​
egat​ion> accessed 21 July 2022. See also the GPL v3, at 5.

26  Ian Walden

part contains’132 the licensed code, which would appear to include collective works
where the distinct copyrighted works may interact only in a minimal way.

1.4.2  Distribution

Under the WIPO Copyright Treaty (1996), distribution is recognised an exclusive
right of an author: ‘Authors of literary and artistic works shall enjoy the exclusive
right of authorizing the making available to the public of the original and copies of
their works through sale or other transfer of ownership.’133 Under EU law, the dis-
tribution of computer programs to the public is one of the exclusive rights granted
to the right holder.134

While an act of distribution extends both to the original work and copies, it is
generally only engaged where copying is involved. Under traditional copyright
principles, where a copy of a work is redistributed, without a further copy being
made, then the copyright owner is constrained from prohibiting such conduct
under the doctrine of ‘first sale’135 or ‘exhaustion’136 of the distribution right. The
historic rationale for this doctrine is that the copyright owner should be remuner-
ated for the copy but not for any further economic value derived from its further
sale down a chain of consumers.137 While the doctrine refers to ‘sale’, it is in fact
applicable to other situations where the copy is passed on to others, whether for
remuneration or otherwise.138 In the European Union, the doctrine is also used a
tool to promote the single market and prevent market partitioning,139 which fun-
damentally distinguishes its application from that in the US.

In the US, the exhaustion doctrine has been held not to apply to pure ‘digital
works’ both by the courts and the relevant authorities.140 In addition, the courts
have specifically held in relation to software licences that where the copyright
holder clearly indicates that the user is a licensee, restricts the user’s right to transfer
the licence, and restricts the use made of the software, the first sale doctrine is not

	 132	 GNU GPLv2 (1991), at 2(b).
	 133	 Art 6(1).
	 134	 For example, Software Directive, at art 4(1)(c).
	 135	 17 USC § 109(a).
	 136	 Copyright Treaty, art 6(2).
	 137	 Under EU law, such remuneration should also be that which is ‘appropriate’, rather than the
‘highest possible remuneration’; see Football Association Premier League Ltd and others v QC Leisure
and others, Murphy v Media Protection Services Ltd [2012] 1 CMLR 29, at paras 108–​109.
	 138	 For example, in the UK, the CDPA 1988, s 18(3), refers to a loan.
	 139	 For example, Case C-​200/​96 Metronome Musik [1998] ECR I-​1953, para 14. This principle
is limited to distribution within the EEA and does not apply internationally (see Laserdisken ApS v
Kulturministeriet, Case C-​479/​04, [2007] 1 CMLR 6, at para 24).
	 140	 See Capitol Records LLC v ReDigi Inc., No. 12 Civ. 95 (RJS), 30 March 2013; also US Copyright
Office, DMCA Section 104 Report (August 2001), at 97 et seq.

Open Source as Philosophy, Methodology, and Commerce  27

applicable.141 The doctrine could apply to a software transaction, however, were
the circumstances such that a licensor/​licensee relationship was not successfully
established, but title in the software was held to have transferred instead.142 In the
absence of evidence of an agreement or conduct indicating acceptance by the user,
such so-​called shrink-​wrap, ‘label’, or unilateral licences may not be considered en-
forceable, which equates to the question of whether Open Source licences are con-
sidered contracts or not (see further at Chapter 3).

Under EU law, the exhaustion doctrine is expressly extended to computer
programs,143 although until recently its application was widely seen as being re-
stricted to the distribution of tangible copies. This limitation was recently re-
jected by the ECJ in UsedSoft GmbH v Oracle International Corp (2012).144 Here,
Oracle made client-​server software available for downloading from a website free
of charge, but subject to a usage licence. Oracle offered group licences that per-
mitted up to twenty-​five users, while if a licensee had more users, it would have
to obtain another twenty-​five-​user licence. UsedSoft obtained these group user li-
cences from Oracle’s customers and offered any unused user permissions for sale
to others, which Oracle considered to be an infringing act. The Court held that
where a copy of the program was transferred to a user, whether through a tangible
medium such as a DVD or made available for downloading from a website, to-
gether with a licence granting a right to use the program for an unlimited period,
then that constituted a ‘first sale’ for the purpose of the exhaustion doctrine (para
49).145 Quoting approvingly the Advocate General’s opinion, to distinguish a con-
tract as being either a licence, to which the exhaustion doctrine does not apply, or
a sale, to which it does, would be to undermine the purpose of the provision itself
(para 49). Previously, it had been widely believed that making software available
for download was an act of ‘communication to the public’, which is a different ex-
clusive right granted the right holder and one to which the doctrine of exhaustion
does not apply.146 However, the Court held that the transfer of ownership or ‘sale’
that resulted from the downloading of a copy and the granting of a licence to use
rendered the conduct within the scope of the distribution right (para 52).

One implication of this decision is likely to be to encourage licensors to alter
their distribution model, shifting away from a ‘sale’ business model towards a
‘rental’ subscription model, which also reflects an industry trend towards SaaS

	 141	 Vernor v Autodesk, Inc., 621 F.3d 1102, C.A.9 (Wash).), 2010. See also Apple Inc. v Psystar Corp.,
658 F.3d 1150, C.A.9 (Cal.), 2011 and MDY Industries v Blizzard Entertainment, 629 F. 3d 928 C.A.9
(Ariz.), 2010.
	 142	 UMG Recordings, Inc. v Augusto 628 F.3d 1175 (9th Cir. 2011), which involved the distribution on
digital content on physical CDs. See also SoftMan Products Co., LLC v Adobe Systems, Inc. (2001) 171
F.Supp.2d 1075.
	 143	 Software Directive, art 4(2).
	 144	 3 CMLR 44.
	 145	 Oracle’s licence stated that it was ‘non-​transferable’, but this was effectively ignored by the Court.
	 146	 See Copyright Treaty, art 8 and Information Society Directive, see note 23, art 3.

28  Ian Walden

and cloud computing (see further Chapter 9). For the Open Source community,
however, cloud itself can be seen as an alternative mechanism for restricting the
freedom of users to modify the software they use and depend on, controlling rather
than liberating.

Under Open Source licences, redistribution is not simply about copying the
actual code but also about the conditions under which the recipient receives the
code, either requiring the original rights to be matched throughout the distribu-
tion chain (‘copyleft’) or enabling the substitution of different rights for subsequent
users, which may be more restrictive. The term ‘viral’ has been used to describe the
manner in which certain Open Source licences operate, also referred to as ‘copy-
left’, by imposing obligations down the software distribution chain.147 While all
commercial agreements attempt, to some degree, to ensure that obligations are ap-
propriately reflected either upstream or downstream, the description of copyleft
licences as ‘reciprocal’ (sometimes ‘viral’, although the Open Source community
tends to avoid the term ‘viral’ owning to its derogatory connotations) arises from
the self-​executing nature of the licence, relying on copyright law rather than con-
tract. Other examples of ‘viral’ laws are some export control regimes, which apply
to specific applications such as encryption modules within devices, but can operate
such as to make the whole product subject to, or ‘infected’ by, the control regime.

While the right to ‘distribute’ is commonly used within copyright regimes, con-
cerns about jurisdictional differences about its scope has seen the FSF deploy the
term ‘convey’ in the GPL, defined as follows: ‘a work means any kind of propaga-
tion that enables other parties to make or receive copies. Mere interaction with a
user through a computer network, with no transfer of a copy, is not conveying.’148
The second part of this definition is important in the context of cloud computing
and is examined elsewhere (see Chapter 9).

Under international, regional, and national copyright rules, the concept of dis-
tribution is qualified by the phrase ‘to the public’, which suggests the possibility of
non-​public offerings of copies of a work. Understanding where the boundary exists
between the two can obviously be important in the context of Open Source devel-
opment. The actual numbers of persons in receipt of a work, while a factor for con-
sideration, is likely to be less determinative than the manner in which the copies of
the work were made available; ‘what counts is the general opportunity given to the
public’.149 The ECJ, in Sociedad General de Autores y Editores de Espana (SGAE) v
Rafael Hotels SL,150 has noted in respect of the right to communicate a work to the

	 147	 For example, Andrés Guadamuz Gonzalez, ‘Viral Contracts or Unenforceable Documents?
Contractual Validity of Copyleft Licences’ (2004) 26(8) European Intellectual Property Review 331–​9.
	 148	 GNU GPLv3 (2007), at 0.
	 149	 Sam Ricketson and Jane Ginsburg, International Copyright and Neighbouring Rights (Oxford:
Oxford University Press, 2006), at 11.91.
	 150	 Case C-​306/​05, 7 December 2006; [2007] ECDR 2. See also Case C-​607/​11, ITV Broadcasting Ltd
& ors v TVCatchup Ltd, 7 March 2013.

Open Source as Philosophy, Methodology, and Commerce  29

public, that ‘it is sufficient that the work is made available to the public in such a
way that the persons forming that public may access it’ (para 42). This has potential
implications for the governance of Open Source projects, since the more restrictive
the conditions of participation are made, the stronger the argument that the distri-
bution of code among participants does not constitute an exercise of the exclusive
right in respect of the code, which could trigger certain consequences under the
applicable licence. Conversely, restrictive membership runs counter to the open
collaborative model that underpins Open Source.

The ‘to the public’ qualification is absent from the concept of ‘conveying’ used
in the GPL v3, which raises the question whether certain forms of distribution,
whilst not a breach of copyright law per se, may result in a breach of a licence? In a
development context, for example, code may be distributed to participants within
a community or forum, which extends beyond a single organisation, or demo code
may be given to certain selected customers for the purpose of testing under a non-​
disclosure agreement (NDA). The restricted nature of the distribution would not
appear to be ‘to the public’, yet it could give rise to a technical breach of the GPL
because an ‘other’ party has received a copy. The GPL v3 does provide that convey-
ance may be to ‘others’ but only where it is carried out ‘exclusively on your behalf,
under your direction and control’,151 which recognises the non-​public nature of
the distribution. However, it also states that such conveyance is only permitted for
the ‘purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works’, which would suggest an employer/​
employee, principal/​agent, or customer/​supplier-​like relationship between the
parties, but would not necessarily cover either the community distribution or the
‘testing’ scenario (see also Chapter 9, for its application in a cloud context).

As distribution of the source code and any accompanying text is the central be-
havioural obligation placed on users, disputes have inevitably arisen about whether
this obligation has been properly met, particularly in the context of retail prod-
ucts.152 The code may be distributed on some associated media distributed with the
product, or may be offered to the end-​user, often in the form of a web-​based down-
load. In either case, but often in the latter, uncertainties can arise as to whether the
availability or offer of the code is made sufficiently transparent to the end-​user to
meet the licence requirements. Such issues are analogous to other requirements in
law concerning notice, such as the contractual incorporation of terms, and avail-
ability, such as the decompilation obligation.153 Retail products often generate par-
ticular issues where marketing, design. and brand concerns are to the fore.

	 151	 GNU GPLv3 (2007), at 2.
	 152	 For example, Welte v D-​Link Deutschland GmbH (2006) LG Frankfurt a.M., 2006-​09-​06, Case No.
2-​6 O 224/​06.
	 153	 Software Directive, art 6(1)(b), which restricts the decompilation right where the necessary infor-
mation has been made ‘readily available’. Similar wording is used in the US, at 17 USC § 1201(f)(1).

30  Ian Walden

As with modifications, by focusing on the concept of distribution as the trigger
for certain legal consequences, whether desirable or otherwise, attention inevit-
ably converges on the meaning of the term, with, as in much of law, plenty of scope
for argument and debate. The traditional venue for interpretation is the courts, al-
though there is scant directly applicable guidance available to date. The licensor
is left with the option of trying to draft appropriate and sufficiently precise pro-
visions to address any uncertainties; a complex task in such a rapidly developing
environment.

1.5  Open Source as Development Methodology

Software development or engineering has evolved considerably since the early
days of computing, as processing capacity and programing languages have en-
abled ever more sophisticated systems to be developed. Greater sophistication of
the end product, the source code, has also required more formalised development
processes, in order to address the needs of users adequately, reflect those needs
in feature design, and test and verify the resultant product. Concomitant to these
developments, we have seen the industry try to professionalise itself, establishing
qualifications and standards which programers can obtain and meet. Various
standards and development methodologies have been promulgated to capture
the various stages of software lifecycle and, thereby, improve the quality of source
code,154 such as the ‘Waterfall’ model, Spiral, and Agile. The latter is seen as the
most widely adopted methodology with the Open Source community (see further
Chapter 7).

Open Source communities can also be seen as a development methodology in
their own right, as noted by the OSI:

Open source is a development method for software that harnesses the power of
distributed peer review and transparency of process. The promise of open source
is better quality, higher reliability, more flexibility, lower cost, and an end to
predatory vendor lock-​in.155

1.6  Open Source as Commerce

One recurrent theme has been to acknowledge the philosophical and political
ideas that underpin the Open Source movement whilst at the same time treating

	 154	 For example, ISO/​IEC 12207: 2008 Systems and software engineering—​Software life cycle processes.
	 155	 OSI Mission statement: <http://​ope​nsou​rce.org/​about> accessed 21 July 2022.

Open Source as Philosophy, Methodology, and Commerce  31

Open Source apolitically, i.e. as a reality that organisations need to be aware of, to
act appropriately towards, and consider as an alternative means of doing business.

Awareness is obvious, yet organisations, as much as individuals, exhibit a ten-
dency to turn a blind eye to those things which are not well understood or seem
difficult. In the author’s experience, while the existence, development and deploy-
ment of Open Source is widely known and understood, there is a considerable lack
of knowledge and uncertainty about the legal implications of using Open Source
and its good governance.

Acting appropriately, once aware, requires consideration of how Open Source
may impact the organisation both internally and externally, with regard to sup-
pliers, partners, and customers. Internal considerations include regulating
employee contributions to projects and use of Open Source, while external is-
sues include auditing for Open Source in due diligence procedures (see further
Chapter 8). A key objective of most organisations is to manage their risk and to
protect their assets collectively known as curation.

There is a variety of ways in which Open Source can be used to generate eco-
nomic value, through so-​called hybrid strategies.156 The range of possible business
models reflects the complexity of the ICT ecosystem (see further consideration in
Chapter 16).

1.7  Enforcing Open Source

As discussed throughout this book, the Open Source community relies on copy-
right law and contract law, and to a greater or lesser extent patent and trade mark
law, to govern the conduct of users of their code. As such, user non-​compliance
with either the terms of a licence or the underlying statutory obligations, gives rise
to the possibility of enforcement action being taken against code users, as licen-
sees or otherwise. Indeed, enforcement, or the realistic threat and risk of it, must
be seen as an essential component of any effective legal regime, whether based in
private or public law, although fear of enforcement may not be the primary reason
why laws are respected.157

IP laws provide a range of civil and criminal remedies against infringers, ex-
plored more fully across the IP Chapters of this book, with different remedies
depending on the characterisation of the breach as either being copyright or

	 156	 See R van Wendel de Joode, H de Bruijn, and M van Eeten, ‘Living Apart Together: Hybrid
Business Strategies on the Edge of the Commons’ in Protecting the Virtual Commons (The Hague: Asser
Press, 2003) 93–​107.
	 157	 See further Chris Reed, Making Laws for Cyberspace (Oxford: Oxford University Press, 2012).

32  Ian Walden

contractual in nature,158 which generates another layer of uncertainty for the en-
forcement of Open Source licences.159

Enforcement actions may also arise under other complementary legal regimes,
such as consumer protection laws designed to prevent the defrauding of end-​users.
One example is so-​called subscription traps, where sites offer Open Source soft-
ware for prohibitive and hidden fees, which have been the subject of criminal pro-
ceedings in Germany.160

As well as actions by Open Source rights holders against code users, disputes
also arise between rights holders and other rights holders, whether Open Source or
proprietary. Given the risks and costs associated with enforcement actions, poten-
tial defendants will commonly adopt a range of strategic IP management measures
intended to mitigate such risks, from technical ‘design-​a-​rounds’ to the defensive
acquisition of IP rights (see further Chapter 6, at section 6.9).

1.8  Open Futures

This chapter has identified numerous features of Open Source-​related conduct
which generate legal uncertainties, uncertainties that can operate to the detri-
ment of both proponents and users of Open Source software. These include the
language used in most Open Source licences taken from US copyright law, which
can differ in important respects when transplanted into other jurisdictions. Some
Open Source licences contain terms which have been drafted to address specific
concerns and needs of certain communities, but which may be unfamiliar to many
users of the code released under that licence, and which may also be untested be-
fore the courts. The collaborative working structures in Open Source communities
are also unfamiliar to many and are therefore often ignored or managed poorly, as
well as generating complexities for the application of the law.

Certain developments may also weaken the influence of current Open Source
licence arrangements over time, particularly those pursuing a copyleft philosophy.
In terms of markets, the shift to cloud computing means that software distribution
is becoming less important in a SaaS environment, except in the context of oper-
ation of the physical access device itself. Evolving copyright law, driven as much
through judicial decision-​making as legislative reform, may increasingly con-
strain the application of copyright law to software, reducing its efficacy as a control

	 158	 In the US, see MDY Industries v Blizzard Entertainment, 629 F.3d 928 CA9 (Ariz.), 2010, where the
court held that a contractual breach did not have the necessary ‘nexus between the condition and the
licensor’s exclusive rights of copyright’.
	 159	 See Robert Gomulkiewicz, ‘Enforcement of Open Source Licenses: The MDY Trio’s Inconvenient
Complications’ (2011) 14 Yale Journal of Law and Technology 107–​37.
	 160	 LG Hamburg, Judgment of 21 March 2012, Az 608 KL 8/​11, available at <http://​open​jur.de/​u/​432​
081.html> accessed 21 July 2022.

Open Source as Philosophy, Methodology, and Commerce  33

regime. While from a technical perspective, the use of increasingly sophisticated
techniques designed to limit the interaction of software components subject to di-
vergent licensing arrangements may reduce the viral impact of copyleft licences.

As noted at the start, this chapter has tried to avoid making normative statements
about Open Source. Those that promote defend and use Open Source may pursue
particular philosophical, ethical, or political aims, which are noted and respected.
Instead, the focus has been on how public law regimes, particularly copyright law,
interacts with Open Source software to facilitate and constrain the aims of Open
Source proponents and the use of private law arrangements to achieve specified
outcomes, outcomes that can be designed to subvert the public law settlement. All
the evidence shows Open Source development and usage increasing substantially.
This is likely to result in greater judicial consideration of how the language and law
of Open Source operates, hopefully reducing some areas of uncertainty. What is
more unpredictable, however, is whether governments and legislators will address
the rise of Open Source redesigning areas of public law to reflect the critical role
and unique features of software in society and the economy.

Ross Gardler and Stephen R Walli, Evolving Perspective on Community and Governance In: Open Source Law,
Policy and Practice. Edited by: Amanda Brock, Oxford University Press. © Ross Gardler and Stephen R Walli 2022.
DOI: 10.1093/​oso/​9780198862345.003.0002

2
Evolving Perspective on Community

and Governance
Ross Gardler and Stephen R Walli

	 2.1	� Collaboration and Communities � 34
	 2.2	� Intellectual Assets to Intellectual

Property � 35
	 2.3	� Intellectual Property and

Industrial Scale � 36
	 2.4	� Early Experiments under

Copyright � 36
	 2.5	� The Start of an Engineering

Economic Model � 37
	 2.6	� Open ​Source Software as a Shared

Production Model� 39
	 2.7	� Open Source Culture� 40
	 2.8	� Licences to Facilitate

Collaboration � 42
	 2.9	� The Politics and Ethics of

Open Source � 44
	2.10	� The Free Software Definition � 45
	2.11	� The Open Source Definition� 46

	2.12	� Open Source Initiative, a
Pragmatic Community� 47

	2.13	� Pragmatism versus Ethics � 49
	2.14	� The Apache Software

Foundation � 50
	2.15	� Governance of Open Source � 52
	2.16	� People versus Process � 53
	2.17	� The Benevolent Dictator

Governance Model � 54
	2.18	� The Meritocratic Governance

Model � 55
	2.19	� Implications of Licence Choice

and IP Management on
Governance Models � 56

	2.20	� The Rise of Codes of Conducts � 58
	2.21	� The Business of Open Source � 60
	2.22	� Open Source Non-​Profits� 65
	2.23	� Conclusion � 67

  

2.1  Collaboration and Communities

‘We’ve known how community works, since you had a campfire and I wanted to sit
beside it.’1 This is a simple truism about humans, the societies we build, and their
success. We have collaborated on software since we started writing software, and
this collaboration goes all the way back to the early work on programable com-
puters by von Neumann’s team at Princeton University. Writing good software
is hard work. All the investments that have been made in computer programing
and software engineering in the past seventy years have essentially been about

	 1	 Stephen Walli, ‘What does an adult look like in your community’, speaking at the Community
Leadership Summit, July 2014. www.communityleadershipsummit.com

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  35

writing more and better software in fewer lines of ‘code’. Developers collaborating
in communities, the idea behind Open Source, may well be the best software reuse
strategy society has invented.

To come to that idea, we need to consider a little bit of history around software
sharing, the nature of copyright and licences, and how these communities form,
organise, and govern themselves. Then we can understand better the engineering
economics and business implications.

2.2  Intellectual Assets to Intellectual Property

The creation of complex software requires intellectually challenging effort. There
was a time through the 1950s, 1960s, and 1970s, however, when software was often
created by computer manufacturers and bundled with computers. The cost of the
computer itself far outstripped the human cost of developing software for it.

Conferences, now the heart of this sector, began to be organised by computer
manufacturers in this period, were opportunities to share software practices, ideas,
and the software itself. The IBM conference, started in the 1950s, was in fact called
SHARE. DECUS was the user society that sprang up around Digital Equipment
Corporation computers. As AT&T Bell Labs began to share tapes of the early UNIX
operating system, USENIX emerged as the conference where people began to share
software tools and practices based on it.

In 1980, everything changed. Copyright was applied by the US Congress to
computer software. Copyright is the legal mechanism historically used to protect
the author of code and is discussed in detail in Chapter 3.

It costs money to bring an author’s creation to the masses, and copyright law
gave distributors the legal framework to protect their investment. Once applied to
software, however, what had been intellectual assets that could be freely shared in a
community of like-​minded users transformed to IP protected assets in a protected
distribution system.

In the forty years since copyright was first applied to software, the cost of the
computing hardware has plummeted, while the cost and complexity of computer
software has increased exponentially. Computer hardware, programing languages,
and operating system interfaces have standardised through this period (as both
de facto technologies and through rigorous de jure processes). The creation of the
Internet and World Wide Web through standards of hardware, software interfaces,
and protocols removed friction from the digital distribution pipeline. Software was
no longer printed to media and shipped. Instead, it was distributed and updated
digitally, over the airways, and increasingly for free. These trends together have
enabled a rich and vibrant computer software industry, separated from the com-
puting hardware, to grow and thrive.

36  Ross Gardler and Stephen R Walli

2.3  Intellectual Property and Industrial Scale

Creating a computer program to solve a problem is an intellectual pursuit. If we
write a program for ourselves to solve a problem, it requires knowledge in both
how to solve the problem algorithmically and the knowledge to express the solu-
tion in code so that hardware can execute it. But if we create a computer program
that we share with a small group of ten friends, there is additional work required to
ensure we can package and deliver the software to them. If that number of friends
was to grow to 100, considerably more work is needed to ‘maintain’ the software
package. As with all engineering endeavours, as one scales the number of users of
an artifact, one requires more disciplined practices and processes to manage the
work efficiently in order to create, package, distribute, and support it at scale.

Software companies became extremely efficient at these engineering-​at-​scale
practices over the years. Through the 1980s and 1990s and into the new Millennium,
the software industry grew, selling software protected with its value generated by
copyright. Whether the price was considered a licence royalty, a support contract,
or evolved into an ongoing subscription is somewhat irrelevant. What matters is
the value of the revenue generated. During this period a large number of busi-
nesses and governments created enormous volumes of bespoke software in IT de-
partments. There were many problems that can’t necessarily be solved ‘out of the
box’ by a piece of bought software. The ‘build versus buy’ analysis used is familiar to
every software company product manager and corporate IT manager.

2.4  Early Experiments under Copyright

This dichotomy (bought versus bespoke software solutions) was the world into
which open source software and free software landed and thrived. Although
the application of copyright to computer software means a licence is required
to grant permission and define the terms of that permission or use of the
software’s copyright, the idea of sharing and collaborating on code continued.
Just as software companies created commercial or proprietary licensing agree-
ments to define the terms of use for their customers, developers who wanted
to continue to share and collaborate also needed to create licences to allow
third parties to use and collaborate on their work/​code due to the application
of copyright to code.

Several licensing experiments began in the 1980s and 1990s to enable such
collaboration:

	 •	 Project Athena at MIT was a collaborative experiment between DEC, HP,
and IBM, researchers, and others, leading to the X11 Windowing System and
Kerberos. It was the start of the MIT/​X11 licensing experiment.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  37

	 •	 The early articulation of Free Software ethics began in the early 1980s and led
to the ideas of copyleft, a user’s rights with respect to software, and the GNU
Public License. (We will discuss more about software freedom and ethics later
in this chapter.)

	 •	 The Berkeley Software Distribution (BSD) begun in the Computer Science
Research Group at University of California at Berkeley led to the BSD license
variants that began to show up in other collaborative projects like the early
Apache web server project.

	 •	 The Perl language licensed under the Artistic License was the basis of an enor-
mous community of developers and systems administrators sharing and col-
laborating on the language and tools written in it.

The industry would not think about these early-​stage licences as classes of ‘Open
Source licences’ until the end of the 1990s, but for eighteen years as a consequence
of the need for licences under the copyright regime, developers and companies
continued to share software through licences, as they experimented. They not only
experimented with sharing the code itself but with licences that enabled such col-
laboration around code, just as they had shared for the previous thirty years before
1980 and the application of copyright to code.

2.5  The Start of an Engineering Economic Model

The last piece of the puzzle to understand before going deeper into the discussion
of community and governance is an economic one. Even today, people still ques-
tion Open Source software at a high level as an idea. They do so because it is freely
distributed by developers at zero cost. There is no apparent economic model when
viewed in this simplistic way.

An easy way to provide a perspective is to consider a company consuming Open
Source licensed projects into the company’s software solutions. Every IT manager
and software product manager is familiar with the build-​versus-​buy analysis as dis-
cussed as a method of acquiring software as a solution to a problem.

With liberally licensed and collaboratively developed software projects, there is,
however, a third choice: borrow and share.

An example to set-​up the thinking on this:

	 •	 In a small startup in the late 1990s,2 the engineering team needed control of
their compiler environment building kernel level software on Windows NT

	 2	 An author (Walli) was VP, R&D of Software Systems, building the UNIX front end on Windows NT
1995–​1999. This is a direct example of the costs and decisions around the GCC compiler suite made to
improve the product. Much of the product was developed out of liberally licensed, collaboratively de-
veloped software projects that would not be called ‘open source’ for a couple more years.

38  Ross Gardler and Stephen R Walli

across three architectures (IA-​32, DEC Alpha, MIPS). The Microsoft com-
pilers were insufficient. Buying the Intel compiler would not solve for the
other two computing architectures. The build-​versus-​buy decision did not
meet the startup company’s needs.

	 •	 The GCC compiler suite provided an answer. This collaborative project
was mature and vibrant and ran across the three computing architectures
required.

	 •	 For approximately US$100,000 investment in hiring a compiler engineer, the
company captured US$10 million in value from the GCC project3 in the first
year across all three computing architectures.

	 •	 Now, however, the startup was living on a modified fork from the main GCC
project. This meant they were cut off from easy access to bug fixes, new per-
formance improvements, and new functionality.

	 •	 The startup spent an additional US$40,000 on compiler contractors who were
maintainers in the GCC projects and had their startup changes re-​integrated
upstream into the GCC project head revision.

	 •	 This meant that with the next release from the GCC project, the startup would
be able to directly use the release at minimal integration cost because their
changes were already present in the main GCC project, as well as gaining ac-
cess to all the new work in community.

	 •	 Integration costs for new GCC releases into their product going forward were
then in the order of US$10,000 per major release. The new value built into
GCC over those eighteen months by the broad GCC community was on the
order of an additional US$5 million. This is three orders of magnitude of value
capture over the eighteen months.

Borrow and share enables additional analysis beyond build versus buy.
It is not enough just to borrow. Software is surprisingly dynamic with a steady

flow of changes and bug fixes happening, especially in a vibrant community set-
ting. Sharing back any changes required to use the software, adding these to the
borrowed software, and giving these to the community or project that created the
original software borrowed ensures easier engineering access to the new and fixed
functionality on a go-​forward basis.

It is easy to see why you would use such existing components if they were avail-
able to borrow freely and were of sufficient quality. However, the question remains
as to why one might create such a component project in the first place? Why create
this and do the additional work to build and manage a community around a freely

	 3	 Using a COmparative COst MOdel (COCOMO) calculation on the project size of approximately
750,000 lines-​of-​code (LoC) in 1997. While every software developer can articulate the problems with
LoC as a strict measure of software value, it makes for an interesting relative measure over time, and can
be compared to direct salary and contracting costs.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  39

available component. For those answers one needs to look to innovation model re-
search from Eric von Hippel starting back in the 1980s.

Von Hippel first studied the sailboarding community. While there were a
number of manufacturers, ‘Windsurfer’ being the dominant brand name, none
of these companies was spending heavily on research and development for new
sail-​boarding technologies. There was still a vibrant community of sailboard
‘hackers’ across the community who were cutting, drilling, gluing, and otherwise
experimenting with boards, booms, masts, and sails. The companies were happy to
stand back and to watch and learn, without necessarily making costly mistakes in
bringing to market experiments that did not work or did not capture the commu-
nity imagination. The sailboard aficionados on the cutting edge were not interested
in building companies. They were happy to share their innovations and ideas and
to be sponsored, to be the coaches, consultants, and trainers, and to live on the cut-
ting edge.

The further von Hippel investigated this, the more he discovered these innov-
ation models applied in other areas, eventually doing research in the software do-
main, and directly in the Open Source domain. While one can look to this research
for support for the innovation model, one has to remember that commercialisation
of software only evolved after the application of copyright and that the original
model utilised by the software development community before copyright came
along was one of collaboration and sharing.

2.6  Open Source as a Shared Production Model

Open Source is a number of things and one of these is a software licensing, produc-
tion, and distribution model. As a licensing and distribution mechanism it pro-
vides software under terms that allow users selfishly to do as they please with code
otherwise protected by copyright. However, as we have seen, it is to that selfish
user’s advantage to contribute any changes they make back to the project that ori-
ginally created and distributed the code.

As a means of production, the Open Source model minimises the cost of pro-
duction through efficient collaboration, amortising the cost of creation across all
participants. The Open Source development model allows individuals to bring
their specialist and valuable knowledge and share it with others who may be
equally skilled. In return for their contributions they receive improved software.
The economic justification for contributing is easy to see because a small contri-
bution (relative to the entire project) is rewarded by a more complete solution on a
freely available basis.

Open Source allows individuals and organisations that potentially compete in
the marketplace to collaborate seamlessly on software components and systems
that, once created, are easily shared, avoiding duplication of efforts and investment

40  Ross Gardler and Stephen R Walli

and potentially building better outputs through diverse collaboration. The unre-
stricted distribution of such software results in a larger ecosystem of users which
in turn increases the number of potential collaborators on a go-​forward basis and
thus facilitates a further reduction in the cost of production.

The effectiveness of this model of production can be seen in many Open
Source projects. Consider, for example, the Apache Hadoop project.4 This is an
implementation of Google’s Map Reduce algorithm. Hadoop contains signifi-
cant contributions from many companies that operate in overlapping markets.
Participants include large software companies such as Microsoft, Facebook,
Twitter, and LinkedIn as well as small and medium-​size enterprises (SMEs), uni-
versities, and government organisations. There are even some individuals in-
volved. All contribute on equal terms, regardless of their size, to the production
and maintenance of the Hadoop software. Most contribute in order to reduce the
costs and increase the quality of software that forms a core part of their unique
business models; a few contribute for more personal reasons, such as professional
development.

For this model of production to work it is necessary for each participant to
realise more value than they contribute. Participants must also feel that their future
is protected and that their contributions cannot be abused by other collaborators
now or in the future. It is the combination of a community-​based development
model, backed by modern Internet-​based collaboration tools, and an Open Source
licence that ensures such collaborations are possible. Of course, they must also set
up structures which allow for collaboration within the realms of the antitrust and
competition regimes.

2.7  Open Source Culture

When reading about Open Source one will often find reference to ‘free sofware
or open software community’. This implies a single coherent community that ral-
lies around the Open Source banner and all it represents. However, there is no
such community, just as there is no ‘proprietary community’. There are, instead,
a number of distinct communities who rally around specific software projects, li-
censing models, and development models to address specific needs. These com-
munities do not form a part of a larger coordinated and coherent ‘Open Source
community’, although they may be related in one or more ways with other sub-​
communities. There are therefore a number of distinct clusters of communities that
for a variety of reasons gather in a single place. The following paragraphs examine
some of the common reasons for such clustering.

	 4	 <http://​had​oop.apa​che.org/​> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  41

Clustering can simplify the management of common factors across projects. For
example, IP and project infrastructure facilities might be provided by and held in
a central body. There are multiple places where such gatherings occur, for example
the .NET Foundation5 provides an IP shelter while GitHub and GitLab6 provide
technical infrastructure. This kind of colocation does not, under normal circum-
stances, lead to the creation of a single unified community across projects.

Projects may also gather together in order to share community management
expertise. An example of such a community can be seen in the Apache Software
Foundation (ASF) The ASF has a governance model in which it is not possible to
buy influence. The only currency of value to the ASF is merit in recognition of
productive engagement. This provides a neutral space in which people can openly
collaborate. In such clusters cross-​project collaboration is more likely but it is a by-​
product of standardisation on governance models and IP management rather than
a requirement of the community structure. The ASF famously operates according
to the Apache Way, people before code, exemplifying the importance of the human
community.

Other community structures can be developed to enforce cross-​project collab-
oration. This is useful when a number of organisations choose to collaborate on a
specific set of common shared software projects. In order to enforce a certain level
of commitment to these projects, partners may choose a model in which strategic
influence is a reward for adhering to the rules of participation. Those rules may or
may not involve an element of directly productive contributions to software code.
Such an environment is designed to be less neutral than a pure community model
but they still cannot be controlled by a single participant. An example of such an
organisation is the OpenInfra Foundation7 in which two-​thirds of the Board of
Director seats are essentially ‘paid for’ while the final third are representatives of
the active community regardless of their financial contributions. In these kinds of
clusters collaboration levels across projects are high since there is a very tight focus
and clear strategy for the products being produced from project components.

In busting the myth of ‘the Open Source community’ we need to understand
that the primary driver for collaboration is to benefit from the outputs of the in-
dividual community project rather than to rally behind a generic Open Source
banner. In these cases Open Source is nothing more than a means of production,
however there is one final type of community that is usually referred to as the free
software community.

The free software community feels that open source and its focus on methods
of production are less important. Members of this community prefer the term
‘free software’, rather than ‘open source software’, as they are concerned with the

	 5	 <https://​dotne​tfou​ndat​ion.org/​> accessed 21 July 2022.
	 6	 <http://​git​hub.com> accessed 21 July 2022.
	 7	 <http://​www.openst​ack.org> accessed 21 July 2022.

42  Ross Gardler and Stephen R Walli

provision and protection of software that respects the users’ freedom to run, copy,
distribute, study, change, and improve the software. The free software community
coalesces around the Free Software Foundation (FSF) (see Case Study: The Free
Software Foundation) which provides a legal home for free software but it also de-
livers appropriate support for advocates of the ethical considerations that drive free
software supporters.

These ethical considerations are important but are often seen as overstated by
more pragmatic open source participants. We will discuss this in more detail in
the next section. Having established the importance of this ethical position we
will continue to use the term ‘Open Source’ to mean software that is licensed in
such a way that it is considered to be both open source software and free software.
Where we wish to make a distinction between the legal protection of IP in soft-
ware and the ethical considerations of software freedom we will use the term ‘free
software’.

It can be seen that while there is no single ‘Open Source community’ there are a
great many sub-​communities. These communities are linked by one or more of the
following characteristics:

	 •	 A sharing of a legal structure for IP management
	 •	 Sharing of project infrastructure (website, version control, mailing lists, etc.)
	 •	 Adoption of an agreed collaborative software development model
	 •	 Requirement for a neutral space for collaboration
	 •	 A sharing of common needs that can be solved with software outputs
	 •	 Enforced collaboration on shared software components
	 •	 An ethical belief that all software should be free (as in free speech)
	 •	 Collaborative raising of support whether in funding or resource

2.8  Licences to Facilitate Collaboration

A common factor across all of these communities is the adoption of an Open
Source licence for their collaborative outputs. Experimentation with copyright law
has created the concept of copyleft and a range of licences that protect the IP cre-
ated by each participant whilst allowing for unrestricted distribution of the code.
Today there are many different Open Source licences to choose from and this is
discussed in depth in Chapter 3.

Which licence is chosen by a given project will have significant impact on the
kind of community, and thus the kind of production model, that a project adopts
and plays a surprisingly significant role in community development. As we have
seen, earlier licences began around individual experiments in collaboration, but as
more people and companies became involved, the licences could be seen to fit into
broad categories and the benefits of standardisation became clear.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  43

One group of licences, commonly known as reciprocal or ‘copyleft’, legally en-
force the publication of changes to code, that is, derivative works which incorp-
orate the original code. These licences may impact some business models, such
as the creation of closed, proprietary derivatives from the open code but at the
same time ensure that no third party can abuse the open development model by
simply consuming the projects outputs without publishing their changes (see fur-
ther Chapter 3). In developing copyleft as a concept Richard Stallman, its creator,
played a pun on copyright and protected users from themselves and any desire they
might have not to give back.

At the opposite end of the licensing spectrum are permissive licences. These
allow the adoption of any business model, including the creation of closed,
proprietary derivatives from the openly provided shared code (see further
Chapter 3). These licences rely on economic and community pressure to encourage
contribution back to the project. Permissively licensed projects therefore require a
well-​defined community governance model.

In theory, the idea that all these community projects being shared through copy-
right licences means that the various projects can share their outputs and con-
tribute to one another’s code across the defined communities. Unfortunately, it is
not quite as simple as this. Due to the incompatibility of some licences designed
to prevent non-​free derivatives of free software, such reuse is not always possible.
In summary, permissively licensed code can be reused in code using a reciprocal
(copyleft) licence but the reverse is not always true and this is also explored in more
detail in Chapter 3. This situation is further complicated when we introduce the
concept of ‘partial’ or ‘weak’ copyleft. Partial copyleft licences are ones that only
demand reciprocal sharing of modifications to the free software but also permit
embedding of this code in proprietary products. In some cases, partial copyleft
free software can be included in permissively licensed open source software. It is
out of scope for this chapter to go into detail about open source licence compati-
bility, and this is covered in Chapter 3. It is important to acknowledge the existence
of this concern at this point, since licence choice clearly influences how and when
communities can share their code and, to an extent, the nature of the communities
themselves.

When sharing across projects is facilitated through the use of compatible li-
cences we see immediate benefits in the code production cycle.8 By sharing re-
sources in the production of non-​differentiating code, companies are able to reduce
the cost and increase the quality of outputs. By ‘non-​differentiating software’ we
mean software that does not mark the participants as unique in the marketplace,

	 8	 Dirk Riehle, ‘The Economic Motivation of Open Source Software: Stakeholder Perspectives’ (April
2007) 40(4) IEEE Computer 25–​32 , available from <http://​dir​krie​hle.com/​compu​ter-​scie​nce/​resea​rch/​
2007/​compu​ter-​2007-​arti​cle.html> accessed 21 July 2022.

44  Ross Gardler and Stephen R Walli

whether they provide software, services, or some other output produced through
software use.

Regardless of licence choice not all Open Source software communities are
open, collaborative communities. The licence guarantees that everyone has certain
rights with respect to the use of the software code, but it says nothing about the de-
velopment model adopted. In some cases the owners of the software may choose to
maintain a development model in which only a very limited number of people are
able to participate in the software development decision-​making process. This may
influence potential users’ decisions to use the software or not, which in turn affects
the likelihood of third parties contributing to the production of the software.

A combination of the development model adopted and the licence chosen for
the software will influence the kind of community one can expect to find around a
particular Open Source software project. This, in turn, influences the kind of rev-
enue creation or cost-​saving opportunities available to companies that are pro-
ducing or consuming project components and which is explored more fully in
Chapters 15 and 16 where we explore the economics and commercial models. We
will return to these points later in this chapter, but first we will dig deeper into the
political and ethical considerations that influence the decisions behind community
structure and licence choice.

2.9  The Politics and Ethics of Open Source

So far, we have examined Open Source software in its role as a production tech-
nique in which an IP licensing model defines how the project outputs are shared
outwardly and openly. We have indicated that this is only a part of the story and
that there are also important political and ethical considerations to be taken into
account. The term ‘free software’ may be used to refer to some of these issues.
However, the term ‘open source’ does not necessarily exclude the same arguments
since all open source software is also free software.

The term ‘free software’ was adopted by the FSF and pre-​dates the term open
source software. For some, it is the preferred term and they do not wish to associate
themselves with the term ‘open source’ because it has become ‘associated with a
different approach, a different philosophy, different values, and even a different cri-
terion for which licences are acceptable.’9

Free software must not be confused with ‘freeware’, which is software that can be
acquired at no cost but for which source code is not available. Freeware provides
none of the benefits of code-​sharing that we see in free software. That is, whilst
the cost of the software is zero it is not possible to adapt the software to suit one’s

	 9	 <http://​www.gnu.org/​phi​loso​phy/​free-​softw​are-​for-​free​dom.html> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  45

specific needs. In addition, the lack of source code makes it impossible for users of
that code to share their experience and thus reduce the cost of further development
and software maintenance.

While freeware focuses on the lack of licence fee, free software is considered
to be more of a social movement that adopts a specific IP licensing methodology,
whereas open source is more of a software development movement using a broadly
similar IP licensing model. For the free software movement non-​free software is
a social problem while for the open source movement it is a suboptimal solution.
Whilst the two groups disagree on some basic principles, they do agree, in the
main, on the practical recommendations they make. This section describes the dif-
ferences between the two movements’ basic principles.

It should also not be confused with Public Source or Shareware, which whilst
having the source code publicly available lacks an approved licence granting one
rights to use the code in a free or open source manner and is proprietary.

2.10  The Free Software Definition

The term ‘free software’ refers to software that respects users’ freedom and commu-
nity. Everyone has the freedom to run, copy, distribute, study, change, and improve
the software. These freedoms ensure that users (collectively or individually) are
able, if they so desire, to control the program and what it does for them. The FSF
argues that when users are unable to control the program then the program con-
trols them. As a result such ‘non-​free’ software is sometimes seen as ‘an instrument
of unjust power’.10 Free software is therefore a matter of liberty, not price: ‘free’ as in
‘free speech’, not as in ‘free beer’.11

In order to establish whether or not software is free software, the FSF has defined
four essential freedoms. To be free software the terms under which it is distributed
and used must provide all four freedoms. These are:

	 •	 The freedom to run the program as you wish, for any purpose (freedom 0).
	 •	 The freedom to study how the program works, and change it so it does your

computing as you wish (freedom 1).
	 •	 The freedom to redistribute copies so you can help others (freedom 2).
	 •	 The freedom to distribute copies of your modified versions to others

(freedom 3).

It is important to note that there is nothing in these four freedoms that would in-
dicate that free software is non-​commercial. In fact, the four freedoms ensure that

	 10	 <http://​www.gnu.org/​phi​loso​phy/​free-​sw.html> accessed 21 July 2022.
	 11	 <http://​www.gnu.org/​phi​loso​phy/​free-​sw.html> accessed 21 July 2022.

46  Ross Gardler and Stephen R Walli

commercial use, development, and distribution are possible. Another important
clarification is that the freedom to modify the software does not imply that third
parties must accept your modifications. The value of any changes in the software
is a subjective matter and the four freedoms do not seek to provide any guidance
on the acceptance or otherwise of modifications. They only seek to ensure a users’
right to make and redistribute modifications.

A free software licence may require a change of name and branding for a product
that has been modified, as its trademark may not be available for use on modified
software (see Chapter 9), but as long as these requirements are not onerous they are
not considered to be a restriction on a users’ right to modify (see further Chapter
24). This provision is to enable third parties to build value in their version of the
software and thus generate revenue streams that will pay for further development
of the software.

2.11  The Open Source Definition

We have seen that the four freedoms of free software focus on a perceived social
need for software to be free. We have also seen that whilst the open source move-
ment sees non-​free software as suboptimal, its more pragmatic position serves to
de-​emphasise the ethical requirement for software freedom whilst recognising the
importance of collaboration. Finally, we have seen that whilst the free software and
open source software movements differ in motivation, they agree on most of the
practical recommendations.

The equivalent of the FSF for the open source movement is the Open Source
Initiative (OSI). The OSI provides the Open Source Definition (OSD)12 which de-
fines the ten considerations that an open source licence must address. These are:

	 1.	 Free Redistribution
		 There can be no restrictions that prevent the software being distributed ei-

ther alone or aggregated with other software. This includes no requirement
for royalties or fees. However, as with free software, this does not mean that
open source is non-​commercial.

	 2.	 Source Code
		 Software distributions must include source code in a form that is usable by a

typical programer.
	 3.	 Derived Works
		 The licence must allow derived works that can be distributed under the

same terms as the original software. Note, this requirement does not extend

	 12	 <http://​ope​nsou​rce.org/​docs/​osd> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  47

to other software distributed alongside open source software, only to de-
rivatives of the open source software itself.

	 4.	 Integrity of the Author’s Source Code
		 If there is any restriction on the distribution of modified source code then

it must allow distribution of ‘patch’ files to allow programers to reapply
any modifications made. No restrictions on the distribution of binaries
built from modified source, beyond requiring different branding, are
allowed.

	 5.	 No Discrimination Against Persons or Groups
		 The licence must be identical for all persons and groups.
	 6.	 No Discrimination Against Fields of Endeavour
		 The licence must be identical for all types of use.
	 7.	 Distribution of Licence
		 The rights assigned in the licence must apply to everyone who receives a copy

of the program.
	 8.	 Licence Must Not be Specific to a Product
		 The licence cannot depend on the software being distributed in a specific form

or as part of a specific product.
	 9.	 Licence Must Not Restrict Other Software
		 The licence must not affect other software distributed alongside the licensed

software.
	 10.	 Licence Must Be Technology Neutral
		 No provision of the licence may depend upon a specific technology or style of

interface.

A careful comparison of the OSD and the Four Freedoms will show that they are
compatible. Any software that is open source is also free, and vice versa. As we dis-
cussed earlier, the main difference between the two movements is philosophical
and that the free software movement is driven by social need while the open source
movement is driven by pragmatism. These different motivating factors lead to a pos-
sible division on the type of user that is best served by each model but which in cur-
rent times is largely irrelevant.

2.12  The Open Source Initiative, a Pragmatic Community

The OSI is a non-​profit corporation that was formed in 1998 to educate about and
advocate for the benefits of open source software. It also seeks to build bridges
among different constituencies in the open source community. The OSI defines
open source as ‘a development method for software that harnesses the power of
distributed peer review and transparency of process. The promise of open source

48  Ross Gardler and Stephen R Walli

is better quality, higher reliability, more flexibility, lower cost, and an end to preda-
tory vendor lock-​in.’13

The OSI chose the term ‘open source’ rather than ‘free software’ as it felt that the
latter term had come to be associated with a philosophically and politically focused
group. The OSI sought to focus more on pragmatism and the business case for the
collaborative development of software. While the motivation for their advocacy
was quite different to that of the FSF, the end result is largely the same practical be-
haviour: the development of free and open source software.

The OSI acts as a form of standards body, maintaining the OSD and a trade-
mark that creates a nexus of trust around which developers, users, corporations,
and governments can organise open source cooperation. In order to use the OSI
trademark, software must be released under one of the licences that the OSI have
reviewed and approved as being in conformity with the OSD.

The OSI’s mission to define the conditions under which participants can openly
collaborate on free and open source software is more difficult than the more tightly
bounded mission of the FSF to build only free software or the ASF’s mission to
build only permissively licensed software (see ASF case study, section 2.14). The
OSI seeks to be pragmatic and business-​case driven, but it is hard to imagine a situ-
ation in which all-​comers will converge on a single position.

The difficulty of reaching unanimous consensus across all parties led to the
strange situation in which a foundation created to promote collaboration is itself
a closed organisation. The OSI bylaws14 do not allow a membership to be formed
and thus all authority is vested in the Board of Directors. The Board consists of
between five and twenty-​one individuals, each of whom is elected by the ex-
isting Board of Directors. There are currently (2022) nine members of the Board
of Directors. This arrangement allowed the OSI to complete the difficult task of
defining the OSD and the associated licence approval process. However, this ap-
proach has limited the foundation’s ability to have a significant impact beyond this
initial work.

In 2008 an attempt was made to reform governance of the organisation. The OSI
board invited fifty individuals to join a ‘Chartered Members’ group, forty-​two of
whom agreed. However, this group conducted its business on a private mailing list
and its membership was never made public. The group made no visible progress on
reformation of the OSI.

In 2012 an initiative was undertaken to transition towards a membership based
governance structure. A free Affiliate Membership program has been introduced
for ‘government-recognised non-profit charitable and not-for-profit industry as-
sociations and academic institutions’. Individuals can also join as ‘Individual
Members’ a small fee. A third phase was planned in which corporate members

	 13	 <http://​ope​nsou​rce.org/​> accessed 21 July 2022.
	 14	 <http://​ope​nsou​rce.org/​byl​aws> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  49

would be invited to join, but has not (as of 2022) been implemented. At the time of
writing (late 2022), none of these membership types provide any formal influence
over the foundation as defined by the bylaws.

It is important to note that because the foundation does not generate outputs
that contribute directly to the products and services provided by most commercial
free and open source software companies, it has found it difficult to generate sig-
nificant contributions in the form of volunteer energy. The OSI seeks to be more
effective with the greater financial resources membership will make available. For
example, the current Board of Directors expects the need for ‘dedicated, long-​term
advocacy and organising’ to require the provision of resource such as permanent
staff and/​or fellowship positions organising.15

2.13  Pragmatism versus Ethics

For the open source movement, the focus is on providing the maximum flexibility
for producers of software. That is producers are free to do anything they want, in-
cluding produce non-​free software that incorporates open source software. The
free software movement, on the other hand, seeks to protect the end-​users’ free-
doms by ensuring all software supports the four freedoms.

Where producers choose to produce only free and open source software, users
retain the four freedoms. However, where producers choose to include open
source software in proprietary (non-​free) software, those freedoms are, at least in
part, lost.

The open source movement accepts that some producers of software will con-
tinue to produce proprietary software. This movement therefore seeks to ensure
that all software producers can collaborate on open source software regardless of
their chosen product licence strategy. Since a significant portion of the software
industry is built on the capability of software producers to create false scarcity
through the use of restrictive licensing models, this situation might be seen as a
necessary compromise.

Despite the willingness of the open source movement to accept this compromise
position it would be unreasonable to suggest that this compromise is a necessity.
Ten years ago the author of this chapter for the first edition described the predom-
inant model for software as being a proprietary controlled one. As a consequence
of digital transformation, developer adoption and open source software now being
found in up to 90 per cent of code bases, and up to 70 per cent of code16 in 2022,
this can be seen to be shifting. The pragmatism of the open source movement

	 15	 <http://​ope​nsou​rce.org/​memb​ers> accessed 21 July 2022.
	 16	 Tidelift 2020, <https://​tidel​ift.com/​subsc​ript​ion/​2020-​mana​ged-​open-​sou​rce-​sur​vey> accessed
21 July 2022.

50  Ross Gardler and Stephen R Walli

allows software producers to choose the point at which to draw the line between
open source software and proprietary software.

It is this ability to define one’s own boundaries that enhances the flexibility
for the software producer when engaging with open source software projects.
However, without the legal requirement of a reciprocal or copyleft licence to ensure
project derivatives are also free software, the driver for development collaboration
is less obvious. What is to prevent software producers benefiting from the open
software without contributing to its development?

Whilst there is no financial cost attached to the unrestricted sharing and distri-
bution of open source software there are costs to community partners that choose
to not share their work in return. For example, a user of open source software may
build a product that is in direct competition with other users of that software and
this competition could be damaging to the business of those users that choose to
collaborate openly. However, in this situation the non-​collaborating partner will
bear the full costs of maintenance of the software within their systems while the
collaborating partners will share their costs. For successful re-​users of open code,
the costs associated with this maintenance will increase over time as the user con-
tinues to diverge from the publicly shared code. Consequently, over time, the eco-
nomic pressures to collaborate increase.

Supporters of the more pragmatic open source movement point to these eco-
nomic drivers for collaboration as evidence that, over time, more and more soft-
ware will become a part of the open source project. Supporters of the free software
movement acknowledge this but insist that the process should be accelerated by
ensuring all distributed software (as opposed to modified software for personal
use) must be made available under a free software licence.

2.14  The Apache Software Foundation

The ASF is a hugely influential organisation. It houses some of the most important
Open Source software projects and has a long history of producing successful soft-
ware. It is an example of an organisation that uses permissive licences to maximise
the options for reuse, while a community-​focused development model seeks to en-
sure that all participants have an equal influence on the project’s strategy.

In this discussion we will see that this success is because the original creators
worked hard to define a method of production that was as inclusive as possible.
Unlike, for example, the FSF, the ASF focuses on the means of software production
rather than the legal protection of software freedom. To many this is a suboptimal
approach, but the model has been proven successful and repeatable in well over
356 Apache Projects Directory.

In February 1995 a small group of eight people created the Apache Group. These
people had been independently maintaining the previously aborted, but public

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  51

domain, NCSA web server. They had been sharing ideas and notes and decided
that it was best to provide a level of legal protection and provide a limited amount
of structure around their collaboration. The result was the Apache License V1.0,
a permissive licence that allowed third parties to use the code in any way they de-
sired. The organisational structure was informal but provided a means for coordin-
ated decision-​making within the group.

By 1999 the group had grown to twenty-​one members and a multinational
company wanted to use their software in a mainstream product. However, this
company’s lawyers were concerned about the lack of legal structure behind the
licence. The solution was to create a US-​based public charity (501(c)(3), in the
parlance of the US Internal Revenue Codes). The mission of the foundation is to
‘provide support for the Apache community of Open Source software projects. The
Apache projects are characterised by a collaborative, consensus-​based develop-
ment process, an open and pragmatic software license, and a desire to create high
quality software that leads the way in its field.’ Perhaps more important than the
mission is the tagline the ASF uses: ‘not simply a group of projects sharing a server,
we are a community of developers and users’.17

This emphasis on the ‘community of developers and users’ is present in the
bylaws of the ASF and the licence used. The ASF operates with one simple goal: to
ensure that a community of project developers can do what they do best—​produce
software for the benefit of all. The ASF exists only to provide the social, legal, and
technical infrastructure to facilitate those developers.

The ASF places a very heavy emphasis on the social aspects of collaboration.
All Apache projects adopt a development model that is often called the ‘Apache
Way’. This is a transparent, open, and meritocratic governance model that defines
a small set of rules that all Apache projects observe. These rules ensure appropriate
management of IP rights and community engagement. Those familiar with Apache
projects will recognise that there is often more emphasis placed on community de-
velopment than any other aspect of project management. This is possible because,
for example, much of the legal overhead of managing an Apache project has been
reduced by using a standard licence across all projects which significantly reduces
the overhead in addressing legal issues in individual projects.

An important aspect of this community focus is a constant drive to ensure that
all community members are seen as equal. For this reason the ASF does not pay
for software development. All contributors to an Apache project are considered
volunteers within the project. This means that there are no management struc-
tures within the projects and no individual’s opinion is regarded as more important
than any other. This is supported by a clearly defined meritocratic and consensus-​
based decision-​making process that is surprisingly efficient in its application. This

	 17	 <http://​www.apa​che.org/​> accessed 21 July 2022.

52  Ross Gardler and Stephen R Walli

equality among volunteers is extremely important to the ASF and is fiercely pro-
tected. It is this equality that allows anyone, regardless of the resources available
to them, to contribute in a meaningful way whilst still being protected against the
most serious potential abuses of their time.

The ASF uses economics to ensure contributions are made back to the
Foundation wherever it is strategically appropriate to do so. That is, if a user of
ASF software chooses to modify Apache code without contributing back they are
introducing a maintenance overhead that other participants do not have. This
means that competitors can enter the market and benefit from lower development
and maintenance costs by actively engaging with the community. In many cases
this reduction in costs can make them more competitive in the marketplace.

Traditionally Apache projects have focused on infrastructure components
which are more easily reused in derivative products. However, in 2011 the founda-
tion created its first significant end-​user project in the form of Apache OpenOffice.
This suite of productivity tools is intended to be installed and used as a single
multifunction product. The success of this end-​user product at the ASF is testa-
ment to the Apache model of software development working beyond infrastruc-
ture projects.

The ASF created a structure that has successfully and repeatedly produced Open
Source that is used to deliver immense value to modern business. Its software is
used in large Internet commerce sites, social networks, space-​faring vehicles
and control centres, government agencies, universities, schools, banks, and even
children’s toys. It is hard to imagine any computer that doesn’t have Apache soft-
ware embedded within it somewhere. All this is achieved through the provision of
a genuinely neutral collaboration space, enabled by an Open Source licence, and a
model of meritocratic, bottom-​up decision-​making that is both efficient and fair to
all participants.

2.15  Governance of Open Source

The OSI describes open source as ‘a development method for software that har-
nesses the power of distributed peer review and transparency of process’. Note that
this definition does not reference licences. Nobody will deny that Open Source li-
cences are vital. Once copyright was applied to computer software, conformance
with the four freedoms and/​or the OSI’s OSD can only happen with the application
of an appropriate and approved licences. However, there is more to Open Source
than a licence.

To realise the full potential of Open Source (or its subset open source) as a devel-
opment methodology we also need to consider ‘governance models’, that is how a
project is managed. A clear governance model ensures that all contributors under-
stand how to engage, what is expected of them, and what protections are provided

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  53

for their status as a contributor. That is, it defines the rules of engagement and
decision-​making.

Open Source licences provide the legal framework within which parties collab-
orate. A governance model provides the social framework for that collaboration.
A combination of Open Source licence and a transparent governance are what
makes Open Source successful. So what is a good governance model?

2.16  People versus Process

An Open Source governance model need not be, indeed should not be, a com-
plex document that attempts to cover every possible circumstance. The governance
evolves over time to be the collection of documentation that enables the commu-
nity to get work done as members come and go. It may start with a few processes
and evolve as the project evolves. It captures the processes in such a way as to
transmit the culture to new members. It prevents a project from becoming stuck
because the institutional knowledge resides in a few members’ heads. It is guidance
documentation covering the most common community processes, nothing more.
Examples of such processes may include:

	 •	 How to file a good bug.
	 •	 How to suggest a new feature.
	 •	 How to propose a patch or pull request.
	 •	 How are features for a new release of the software project decided.
	 •	 How are new releases of the software project built.

The governance should recognise that written rules can be both empowering and
constraining. Rules make a process predictable and repeatable, but they can also
make a community resistant to change or even blind to the need for change. The
goal is to create an environment in which people feel comfortable engaging with
the project on a long-​term basis. The governance should hopefully account for its
own evolution.

In reality, most software developers just want to be able to get work done in an ef-
ficient way. This is especially true in a community-​led Open Source project. A good
governance model is therefore about enabling flexibility, empowering individuals
to lead on specific activities, and preventing (occasionally resolving) conflict.

However, this in turn can present a problem. Many people find working in a self-​
directed, bottom-​up, collaborative environment challenging. This is where lead-
ership comes in. In an Open Source project leadership is not about directing but
instead is about getting results and empowering others.

A common concern about community-​led Open Source projects is that they will
quickly descend into anarchy because they adopt a bottom-​up, leaderless approach

54  Ross Gardler and Stephen R Walli

to coordination. Finding the right balance between bottom-​up anarchy and top-​
down leadership is hard. This is where the governance model applies. It provides
the social scaffolding for collaboration. It empowers individuals who just want to
get things done and it provides mechanisms by which community deadlocks can
be broken.

An Open Source licence is only a small part of this governance model. As we
discussed earlier, some licences legally enforce a sharing of code modifications.
Others depend upon economic and social pressures. Choosing the right licence
and the right style of project governance is critical to the success of an Open Source
project. It is important to understand some of the choices a project must make
about its social governance.

Sections 2.17 and 2.18 outline two examples of common governance models in
communities. These two approaches appear to be diametrically opposed. The first
is the benevolent dictator model, where a single individual has absolute authority.
The second is the meritocratic model, where valuable contributions are rewarded
with collective leadership authority. Once you understand both of these ‘extremes’
you’ll see that, in practice, they are not as dissimilar as they first seem.

2.17  The Benevolent Dictator Governance Model

A benevolent dictator (BD) is an individual who has complete control over the
decision-​making process in an Open Source project. Linus Torvalds18 is perhaps
the most well-​known benevolent dictator. Being a BD is not an easy job. It re-
quires diplomacy and community building skills, in-​depth technical knowledge
of all aspects of the project, and exceptional levels of commitment and dedication.
However, as Linus’ Linux Kernel19 project illustrates, it can be very effective.

The BD model relies heavily on the fact that an Open Source licence allows
anyone to take the code and spin up their own project or fork. This means that
although the leader has full control over their project, they must still work to en-
sure that community needs are met. Failure to do so will result in a splintering of
the community as objectors set up their own projects based on the same code and
the community walk off with their code base. A BD who wishes to create a vibrant
community project must therefore seek to ensure each decision is both understood
and supported by as many community members as possible. Consequently, diplo-
macy, mediation, and clarity are just three of the softer skills that a BD needs.

Although BDs are usually highly skilled from a technical perspective, they are
unlikely to be the best person to make every technical decision. A good BD recog-
nises this and seeks to enable the community to collectively make decisions under

	 18	 <http://​en.wikipe​dia.org/​wiki/​Lin​us_​T​orva​lds> accessed 21 July 2022.
	 19	 <http://​www.ker​nel.org/​> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  55

the guidance of the most skilled members. When the community is unable to reach
consensus, the BD will intervene by making what they believe to be the most ap-
propriate decision. In this way a BD seeks to prevent the project from becoming
paralysed by indecision.

It is therefore the BD’s job to resolve disputes within the community and to
ensure that the project is able to progress in a coordinated way. In turn, it is the
community’s job to guide the decisions of the BD through active engagement and
contribution. Consequently, the BD model can scale because in the majority of
cases, the BD is not needed to allow the community to progress.

Typically, the BD is self-​appointed. They will usually be the originator of the
project or their appointed successor. In many ways, the role of the BD is less about
dictatorship and more about leadership and diplomacy. The key is to ensure that, as
the project expands, the right people (those who concur with the BD’s vision) are
recognised as community leaders. A BD who does not have or does not maintain a
following within a project will quickly find the project has forked and themselves
usurped.

2.18  The Meritocratic Governance Model

In centralised models of governance, the gating of contributions through a single
individual becomes a bottleneck. A meritocracy recognises this and provides a de-
fined mechanism by which individuals can earn direct influence over the project.
This process is quite different to approaches within which employment status, ex-
perience, or financial contributions might earn ‘power’. In the meritocratic model,
anyone contributing in any positive way earns equal authority. This process of
empowering those who contribute scales very well. Furthermore, it minimises fric-
tion because it recognises power and influence as scarce resources. Newcomers are
seen as volunteers that want to help, rather than people that want to grab a share of
that scarce resource. A true meritocracy lacks artificial filters for contributions that
are commonly found in other models. An example of such artificial filters is the
ability to buy influence with cash rather than technical contribution. This lack of
artificial filter ensures the broadest possible range of contributors who are aligned
to a common goal. When managed well this process creates an environment in
which everyone, regardless of their relationships outside a project, can collaborate.
However, because there is no defined leader there needs to be a clear set of rules
by which the community operates. Failure to provide clear rules of engagement
usually results in a model that looks more like a top-​down leadership model than a
bottom-​up community model.

A meritocracy is typically leaderless; that is, whoever is best equipped to lead
in any specific situation will be the leader for that situation only. People lead
through action, not authority; they don’t have any more authority than any other

56  Ross Gardler and Stephen R Walli

participant. This often causes newcomers to meritocracy to assume that a project
will inevitably grind to a halt since it will be unable to make decisions. In a healthy
meritocracy it is possible for those with less experience to drive a given objective
forwards through action, but since all work is in the open, those with more ex-
perience (but less time) will provide feedback. Where that feedback is seen as ap-
propriate it will be recognised as meritorious and included in the final outputs.
Fortunately, in software development, the vast majority of decisions are easily re-
versible. So long as missteps are identified early, they can be reversed with min-
imal negative impact. Consequently, most decisions in a software project are made
through a process called ‘lazy consensus’ where the community lazily assumes that
anyone with sufficient merit to take action is going to do so with good intentions.
The community reviews all actions quickly and, if necessary, raise, discuss, and
act upon any objections. In the unlikely event that consensus cannot be reached, a
conflict resolution process is enacted.

Potentially controversial actions may be brought to the community’s atten-
tion for feedback and approval prior to work being carried out. This can reduce
the number of ‘roll-​backs’ necessary since consensus is sought before work com-
mences. Since those with merit have already demonstrated a sensitivity to when
this is necessary there need not be hard rules in place to manage this, all that is
needed is full transparency on all actions and their motivation.

2.19  Implications of Licence Choice and IP Management
on Governance Models

The BD presents an organisationally simple model that can work extremely well,
but only if the right leader can be found. The meritocratic model, on the other
hand, does not depend on the availability of a single individual to act as project
leader; however, it brings with it a more complex social structure that requires
more engaged governance processes.

A potential downside of the benevolent dictator model is that it requires the
community to trust a single individual completely, both today and in an undefined
future. For many people, this dependence on a central figure puts the project at
risk since individual circumstances change, as do employers’ objectives. In a mer-
itocratic model, contributors need not put their trust in a single individual but
they must, at the very least, actively monitor the community to ensure it remains
aligned to their own goals. The use of an Open Source licence, which allows any
community member to ‘fork’ the project and make it their own, goes some way
towards protecting the community. However, the choice of licence and the treat-
ment of contributed IP can have a significant effect on a community’s confidence
in this model.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  57

As an example of this interplay between licence choice, IP management, and
project governance, consider the fact that a reciprocal licence coupled with copy-
right assignment of all contributions centralises legal control. The concern here
is that it is not difficult to acquire full control of the Open Source project. This is
especially true when a BD can exercise complete control over the project. With
full control of both the legal and community aspects of the project it would be
possible to act in ways counter to the community’s interests. At its extreme this
would mean the copyright holder can make all future development work propri-
etary while third-​party contributors would still be bound by the original reciprocal
Open Source licence. Thus there can be significant potential benefit to the ‘owner’
of a centralised, copyleft project.

In order to minimise the risk, one could seek to manage copyright in third-​party
contributions differently. For example, rather than centralising ownership in an
organisation that can be acquired, one could use a suitable non-​profit vehicle. This
can ensure the safe-​keeping of all contributions for the community because, for
example, it would not be possible to purchase the assets of the non-​profit copy-
right owner. Alternatively, one could avoid centralising copyright in the first place.
This is achieved by only requiring contributors to grant a licence to reuse contribu-
tions in Open Source software, as opposed to assigning copyright to a centralised
owner. In this instance re-​licensing of the code would require the permission of all
contributors.

It is also possible to minimise the impact of a community leader closing future
developments by using a permissive licence rather than a reciprocal one. This does
not prevent the creation of proprietary derivatives, but it does mean that all com-
munity members have equal rights to do so. However, in this instance we have
moved the problem from being a legal one to becoming a social one. As we have
seen in earlier sections, this tension between the pragmatic and ethical case for
open source versus free software requires some careful consideration.

The matrix following presents an overview of the kinds of project that are cre-
ated by various combinations of licence and copyright ownership. It should be
noted that there is a third licence type, known as ‘partial copyleft’ which is not dis-
played in this model. A common partial copyleft licence is the GNU Lesser Public
License (LGPL). This licence requires any derivatives of the code to be released
under the LGPL, that is it is reciprocal. However, unlike a full copyleft licence such
as the General Public License (GPL), LGPL code can be included in unmodified
form in proprietary products. We have not included discussion of this licence type
here in order to simplify this chapter. We feel justified in this decision since the FSF
does not recommend the use of partial copyleft licences in most circumstances20

	 20	 <http://​www.gnu.org/​phi​loso​phy/​why-​not-​lgpl.html> accessed 21 July 2022.

58  Ross Gardler and Stephen R Walli

(despite the fact that the FSF is the author of the LGPL). Licensing is discussed in
depth at Chapter 3 and contribution at Chapter 4.

Copyright Ownership Model
Centralised Distributed

Licence type Reciprocal Economic Community
All licensees have the same rights under a re-
ciprocal licence and thus the status of copyright
owner has no special bearing. All licensees are
free to share modifications or to withhold them.

Copyleft Owned community Enforced community
Under a reciprocal
licence all licensees
have the same rights.
All modifications af-
fected by the licence
must be made available
under the same licence.
However, the centralisa-
tion of copyright means
that the copyright
holder is not bound by
this same requirement
and may choose to issue
modifications under a
different licence.

Under a reciprocal li-
cence all licensees have
the same rights. All
modifications made by
licensees must be made
available under the
same licence. Where
copyright in each con-
tribution is owned by
individual contribu-
tors no single entity is
entitled to withhold
modifications affected
by the licence.

It is outside the scope of this chapter to explore the many interactions between
licence choice and project governance. Our intention here is to simply high-
light the interrelationships between the two by providing a few illustrative ex-
amples. As you continue to read this book you will come to identify many more
cross-​dependencies between the legal and social models of Open Source software
development.

2.20  The Rise of Codes of Conducts

There is a governance trend in the past decade that is on the rise and ubiquitous,
and that is for Open Source projects to have a code of conduct or respect. This

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  59

most likely comes about as several industry trends are reflected in Open Source
communities.

Over the past couple of decades, we have seen a rise in companies having such
codes of conducts. They are sometimes dressed up as standards of business con-
duct or business ethics. They are sometimes based around a theme such as ‘trust’
or ‘integrity’. Good ones always set expectations for how the relationship with the
company as an employee, customer, or partner should be viewed.

Over several decades, a recognition and a growing number of studies across a
collection of industries have demonstrated that diverse teams build better value
for companies’ long term and have measurable impact on the bottom line. While
some of the early studies may have been focused narrowly on gender, more recent
studies have demonstrated such bottom-​line impact from diverse teams in more
nuanced ways. The software development profession is one such male-​dominated
profession and therefore the earlier period of software collaboration was equally
imbalanced.

As these communities were online communities, communications were typic-
ally email distribution lists, online forums, and chatrooms. Without a company
responsible directly for such communications channels, and with many channels
allowing for the complete anonymity of the participants, some conversations could
degenerate, becoming aggressive to the point of toxicity. Even in situations where
participants were well known to one another, there are many documented inci-
dents where conversational styles could be direct or blunt to the point of rudeness.
Such bad behaviour can have a lasting effect on a project. One documented case
showed that while the worst participants were finally driven from the community,
the general participation in the community overall had dropped by 20 per cent and
never recovered.21

Conferences supporting Open Source licensed projects became some of the first
places to support a code of conduct as organisers worked to encourage more di-
verse participation in the conference itself. That model seems to have carried into
the projects themselves. Some of the older projects recognised the need for more
diverse participation from contributors and by extension their maintainers as they
worked to refresh the original group that was approaching retirement age. Modern
well-​run projects now typically support a code of conduct. Non-​profits supporting
projects generally encourage their projects to have such a code of conduct.

A generally acknowledged well-​written code of conduct is the Contributor
Covenant. Started in 2014, a group has been maintaining the document and re-
leasing new versions.22 It generally reflects new developments in a broad collection

	 21	 D Berholz, ‘Assholes are Ruining Your Project’, available at <https://​redm​onk.com/​tv/​2012/​04/​06/​
assho​les-​are-​ruin​ing-​your-​proj​ect-​don​nie-​berkh​olz-​redm​onk/​> accessed 21 July 2022.
	 22	 <https://​www.cont​ribu​tor-​coven​ant.org/​> accessed 21 July 2022.

60  Ross Gardler and Stephen R Walli

of Open Source project communities and is run as an Open Source project in itself
(using a Creative Commons licence as it is document based).

As more projects adopt such codes of conduct, best practices are also growing.
One interesting case in 2018 demonstrated in a large community with a code of
conduct that they didn’t have a policy for what to do when there was a reported
code of conduct violation. The principle organisers in that project immediately
spent a few days adding such a policy to respond quickly and decisively to the situ-
ation in front of them.

2.21  The Business of Open Source

We have considered the models of collaborative community building and liber-
ally licensed sharing with respect to Open Source project communities and gov-
ernance. A detailed consideration of these in a commercial context is made in
Chapter 16. There are two models for utilisation of Open Source software at a
high level: a company can consume project components and Open Source, and a
company can produce project components and Open Source. It is easy to see how
a company with a broad software portfolio could do both and many companies
move from being consumers to producers or contributors over time as is discussed
further in Chapter 19.

We have already seen the easy economics behind consuming such projects in
the GCC example earlier in the chapter using our borrow-​and-​share concept. It is
a source of rapid value capture and defrays engineering development and main-
tenance costs over time for the component. It is also a direct source of innovation.
Perhaps the best example of such value capture is Red Hat Inc. and the Red Hat
Enterprise Linux product, as well as their own Fedora community distribution
project. They invest modestly in the Linux kernel community23 but reap enor-
mous value.

An easy modern example of a vibrant community evolving around a project
with companies pulling the project component into company products and serv-
ices for customers, is the Kubernetes project. This Open Source project was started
by Google, and Google invested to build a vibrant, diverse community around
the project. The project’s IP is held neutrally in a non-​profit, the Cloud Native
Computing Foundation (CNCF), giving other partners and members confidence
that the ownership and management of the message is a level playing field. Many
companies then pull from the Kubernetes project components to build and offer
their own Kubernetes-​based orchestration services, plumbing in their own net-
work and storage drivers, management portals, and billing services. CNCF and

	 23	 2017 State of Linux Kernel Development, <https://​go.par​dot.com/​l/​6342/​2017-​10-​24/​3xr​3f2/​
6342/​188​781/​Publica​tion​_​Lin​uxKe​rnel​Repo​rt_​2​017.pdf> accessed 21 July 2022, p 14.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  61

Kubernetes are amongst the greatest success stories of Open Source and underpin
much of cloud computing today.

The products around Kubernetes have a valuation today in the trillions of US
dollars and investment in the tens of billions of dollars based on the CNCF cloud
landscape. In the way that Linux sits at the core of a large proportion of today’s
server market, so Kubernetes sits at the core of much of the cloud infrastructure,
creating not only a community but also an ecosystem.

This distinction between project and product is key. When he was CEO for
MySQL Inc., Mårten Mickos offered the observation:

The community has time and no money; customers have money and no time.24
Community projects are not customer products. A company working with open
source component projects needs to know when it is engaging community mem-
bers, and when its talking to customers. These are distinct conversations with dif-
ferent goals and metrics for success.

When a company or public body produces its own open source components
to share, one needs to do so thoughtfully. At a high level, a software company, one
selling solutions to customers largely based on building software, builds software
of three types:

	 •	 Context: Software tools used to build customer-​facing products.
	 •	 Complement value add: Software that supports core products and services,

creating a richer customer experience, and making the products and services
sticky.

	 •	 Core value proposition: The software at the heart of the company’s solution to
customers, sometimes called a single vendor product.

Investing in building a modest community around ‘Context’ projects provides easy,
modest returns. A good example is Netflix and the Spinnaker CI/​CD (Continuous
Integration/​Continuous Development) pipeline project. There is nothing about
Spinnaker that is core to the delivery of streaming video to all of its customers’ de-
vices. It is enabling software. Sharing it and others use of it creates a validation of
the toolset and approach to the problem through wider use; innovation capture as
others stress-​test the Spinnaker project in new environments and contribute back;
and recruiting benefits both as culture advertisement and as screening and self-​
selection for the problem space. There is little risk or liability management needed
that can’t be absorbed by the company and so the value of building a community is
plain to see.

A good example of a ‘Complement’ project is the Microsoft Azure CLI. It is an
Open Source project from Microsoft that provides a command-​line interface to

	 24	 Keynote at the Open Source Business Conference, 2006, San Francisco.

62  Ross Gardler and Stephen R Walli

Azure cloud services instead of the main Azure management portal. Investing
in building community allows for deep partner engagement and customer co-​
creation, where partners and customers commit with Microsoft to the core tech-
nologies. You can see this in other larger-​scale projects from companies: Microsoft
with VS Code and .NET Core, and Red Hat with OpenShift.

The investment made by the parent company in building community needs to
be long-​term and should be scaled up to meet expected returns and anchored on
core products and services. Individual developers may not buy software in today’s
world, but operational deployment in production data centres depends upon de-
pendable, supported products being used.

Open sourcing by publishing software under an OSI License (and possibly
building community) around a company’s core value to customers requires deep
practice in Open Source and experience to be able to separate the ‘software’ that
makes up the customer solution from the customers’ perceived value of the so-
lution. Red Hat did this exceptionally well over a thirty-​year period. After ten
years, Red Hat pivoted from competing to be the best Linux distribution (distro)
using Red Hat Linux, to becoming cheap-​UNIX-​on-​Intel-​servers in the data
centre with Red Hat Enterprise Linux (RHEL) reacting to the shift in the market-
place and the move to cloud or platform as opposed to on premises (or on-​prem),
as their customers began scaling up their data centres. There was no confusion
around Linux being a liberally licensed project and the value of RHEL to paying
customers in this new environment.

Likewise, Red Hat carefully managed its trademarks and brands. It chose the
route of distinct enterprise and community brands to ensure that customers clearly
understood what was delivered as a commercial product as opposed to the com-
munity version. Using the company brand on a community project instead of a
customer product may confuse customers and community members further, al-
though some companies creating Open Source work with a single brand across
both and deal with a difficult trademark dance and associated brand value issues,
as discussed in Chapter 9 on trademarks and Chapter 16 on business models.

A quotation from Theodore Levitt captures the challenge best: ‘People don’t
want to buy a quarter-​inch drill. They want a quarter-​inch hole!’ Ensuring that
you understand the problem you solve for your customers and can explain it in
terms other than the software itself means that you might be able to have healthy
Open Source project components in the heart of your core value proposition to
customers.

Managing healthy project communities created in a company can be a chal-
lenge. Context projects easily fit into an engineering department. Complement
projects need product alignment. Core projects are the company’s bread-​and-​
butter. Companies often make the mistake with Complement and Core projects
in believing that there will be a conversion ratio of some kind from community
project member to paid product customer.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  63

This confusion may arise from a misunderstanding of Geoffrey Moore’s chasm
metaphor.25 His model proposed that there is a gap between the cutting-​edge first
customers for a product and the more risk-​averse early majority on the bell curve
of technology adoption, and he proposed ways to cross this ‘chasm’. There has been
a collection of companies attempting to attract early adopters by publishing the
core of their solution as an Open Source project.

The problem with early project adopters is they are not customers. They are
giving the company valuable time (but per Mickos, ‘have no money’). They are
validating the project technology without valuing the customer-​facing solution.
Indeed, early adopting, sophisticated community members may be happy to solve
their problems using their time but never get close to becoming customers. There
is also the risk that they further confuse a company’s actual customers and part-
ners. Trying to sell to these community members only serves to infuriate them. Of
course, some early customers may appear in the project community to validate the
technology (as project) and may solve their problem, then be interested in buying
the product, but if a software company doesn’t know how to create the different
on-​ramps to separate community from customers, it will create headaches for
everyone.

Open Source projects that sit on company core-​value propositions fre-
quently have awkward community dynamics. All the discussions of commu-
nity building and governance earlier in the chapter assumed honest intent to
build a community of equal participants, even when organised around a ben-
evolent dictatorship. A company with a core-​value project can have difficulty
separating its views of product features and value from project functionality.
These companies have primary ownership of the assets and they need to drive
business.

	 •	 If the company is trying to run the project around the basic functionality but
sell ‘enterprise’ features (sometimes referred to as an Open Core business
model), they often run into potential partners and sophisticated end-​users
trying to contribute the enterprise features into the project rather than be-
coming full partners or paying customers.

	 •	 Partners want relationships based on co-​investment, co-​marketing, and
co-​selling. They generally are not interested in simply contributing to the
OSI-​licensed project to the primary benefit of the company holding the
project.

	 •	 Competitors and potential partners can use the OSI-​licensed project outright
to support their customers without engaging in any partner relationship of
mutual growth and benefit with the project originator.

	 25	 G Moore, Crossing the Chasm, 3rd edn (New York, NY: Harper Business, 1995).

64  Ross Gardler and Stephen R Walli

	 •	 Competitors and potential partners can further begin differentiating with
their own features in their own products and services depending on the
licensing.

	 •	 Venture Capital (VC) funders whose core interest is return on revenue may
also drive the company further down these roads in respect of Complement
and Core products and issues such as the community reaction and forking as
a response to this, as was seen in early 2021 with Elastic, become an inevitable
consequence of these.

If the project-​owning company attempts to curtail the community discussion too
harshly, and there is no real community engagement in the project, then the com-
pany risks their message to customers that the solution provides the customer the
benefits of an open code base and open innovation as opposed to Open Source, in a
shared source or public source way.

If the company has invested in building a vibrant community, it may upset the
very community members that are its strongest advocates and if it pushes them too
far, the company risks a fork in its community members or product. There have
been few occasions in the past twenty-​five years where a community around a pro-
ject has been stressed to the point of fracture, but it happens if the conditions are
right26 and the 2021 Elastic situation was one such example.

The tensions created in some businesses trying to use Open Source projects as
their core offering have led in recent years to the companies having to re-​licence
the software under non-​OSI licences, and led their investors to call in frustration
for a re-​evaluation of the OSD which has been met by the OSI with a very firm ‘no’,
based on the need for continued certainty in this space.

A third way using shared source or public source are lesser-​known alternatives
to Open Source which do not, due to their nature, have an Open Source licence
but a proprietary licence for the code and also are unlikely to build community
or receive the benefits that it brings. Although there has been some drive to create
movements and traction around these concepts over several years and again in
2021 following on from Elastic’s move to the proprietary SSPL licence, no real trac-
tion has ever occurred, and this is probably due to the lack of developer commu-
nity engagement that these alternatives have, and it seems very unlikely that these
will really gain traction.

Companies creating Open Source project components in context and comple-
ment spaces are powerful tools for engineering, partner, and customer co-​creation.
Companies publishing the core of their value proposition as an Open Source
project need careful messaging and planning, as is discussed in some detail in
Chapter 16.

	 26	 Memorable examples of community forks include: GCC vs EGCS, OpenOffice vs LibreOffice,
Jenkins vs Hudson, Compiere vs Adempiere, ownCloud vs Nextcloud.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  65

All of this really boils down to the simple view that Open Source projects are
powerful tools to capture value and innovation, and community engagement is a
great way to protect and grow that investment, but at the end of the day, a software
company still needs to run the business. This can be seen in the simple compari-
sons in public company filings.

Whilst Red Hat reported a gross profit margin of 84.91 per cent in 2019;
Microsoft, a leading provider of proprietary solutions, reported gross profit mar-
gins of 64.4 per cent as on 30 June 2022. Apple, a leading supplier of hardware
supported by proprietary software, reported 43.31 per cent as on 30 June 2022, and
Google, a software-​based service provider, reported 56.75 per cent margins as on
30 June 2022.27 All of these companies use and contribute to Open Source soft-
ware. But only one of them can be considered an Open Source software business
in the sense that all their products are available under an Open Source software li-
cence: Red Hat. So, whilst Open Source as a central concept in a business plan must
be carefully thought through, it is clearly not without merit.

2.22  Open Source Non-​Profits

We have discussed a number of non-​profits through this chapter. These organisa-
tions have provided valuable structure to the work of successful Open Source pro-
ject communities, and have enabled a great deal of success for subsequent uses of
the project components in businesses. We have met each of them from a historical
perspective and each was an experiment conducted at the time to address a par-
ticular challenge. It is important to take a look at them now collectively as they are
becoming more common, and understanding their structure and use will hope-
fully create better outcomes.

Successful Open Source project communities do the work to build on-​ramps
to attract users, developers (many of whom will selfishly experiment rather than
contribute to the open source community), and hopefully encourage developers to
become contributors. Contributions are the life blood of successful projects.

There comes a time, however, when the project reaches a point in its growth
where companies want to become users and contributors to the project, and a
company’s risk management profile is often higher than casual participants in an
Open Source licensed project. At the same time, as a project grows, so does the li-
ability of the project maintainers. These two constraints limit a project’s ability to
grow. Non-​profit corporate legal structures can alleviate both problems.

	 27	 All gross margin statistics from <http://​ycha​rts.com> accessed 21 July 2022.

66  Ross Gardler and Stephen R Walli

	 •	 The corporate framework removes personal liability from maintainers and IP
holders.

	 •	 It organises IP management around the copyright and trademarks in a neutral
and improved manner.

Solving for these two problems enables companies with higher risk management
needs to consume project components into customer-​facing products and con-
tribute back to those projects. This then expands the user and contributor pool and
by extension (hopefully) the maintainer pool. In extending the contributor pool, it
can do so with full-​time employees, depending on the nature of the project and its
use in products.

This doesn’t create a market but it enables broader use and enables more parti-
cipants in a project community. The non-​profit creates safety around the code base
which allows a market to form. In market design terms, a non-​profit can make the
market bigger and safer.

Non-​profit organisations hold the bank account, can sign contracts (for con-
ferences, etc), can provide standardised infrastructure services, and can also pro-
vide messaging and educational services. From a market design perspective, it
allows information to flow freely to all project participants (users/​contributors/​
maintainers).

A class of non-​profits have been structured as member organisations over the
past twenty years, and this allows companies to invest collectively in supporting
Open Source licensed projects with services for growth, and providing a common
messaging platform, while providing anti-​trust protection to the members. These
are explored in more detail in Chapter 18.

All of this sounds like a great boost to Open Source projects but there are con-
siderations to be managed:

	 •	 Work needs to be done. In the same way that a project is only as successful as
the participants willing to work on it, so to with non-​profit organisations.

	 •	 Creating the legal framework and basic accounting services costs money.
A group of funders who care needs to invest to create and maintain the
non-​profit.

	 •	 Growth depends on healthy projects. Non-​profits can’t make unhealthy com-
munity cultures healthy. Indeed, non-​profits amplify the existing culture.

	 •	 If a company-​owned Open Source project is brought into a non-​profit struc-
ture and there is already tension in how the community is managed with
respect to project and product, the non-​profit can’t solve for the culture
mismatch

Indeed, you can end up with a collection of struggling projects around a message.
Non-​profit members often create a set of messages around the projects within the

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE  67

organisation. This messaging platform is important in and of itself and can become
the centre of gravity for the non-​profit rather than supporting the proprietary pro-
jects themselves.

Non-​profits are important organisations in the Open Source jigsaw puzzle. But
it is important to understand their uses and limitations and these are discussed fur-
ther at Chapter 18.

2.23  Conclusion

Collaboration of the type we find in Open Source software is not a new concept.
We have been building collaboration for individual and group benefit for at least
as long as we have been defending our territory. Proprietary software teams may
choose to collaborate beyond their organisational borders but here, sharing is the
exception rather than the rule.

Open Source software communities and business teams, on the other hand,
make sharing the default position. They rely upon the fact that the reproduc-
tion of completed software components does not consume a scarce resource.
Furthermore, company participants in Open Source communities recognise that
because large portions of their products can be standardised and thus shared with
collaborators at minimal cost, there is an opportunity to reduce the initial cost of
production and ongoing costs of maintenance for their businesses.

Fundamental to the success of this model of software production is the adoption
of an Open Source licence. It is the licence that protects each participant from ex-
ploitation. The licence seeks to ensure that all contributors remain on equal terms.
For this to work one needs to consider carefully both the licence chosen and the
processes adopted to allow the software to be released under this licence. Chapter 3
will explore, in detail, the role of Open Source licences.

PART 1

INTELLECTUAL PROPERT Y,
CORPORATE, AND GOVERNANCE

P McCoy Smith, Copyright, Contract, and Licensing in Open Source In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © P McCoy Smith 2022. DOI: 10.1093/​oso/​9780198862345.003.0003

3
Copyright, Contract, and Licensing in

Open Source
P McCoy Smith

	3.1	� Copyright and Software � 71
		 3.1.1	� The history of software and

copyright � 71
		 3.1.2	� The author’s rights in software

copyright � 74
		 3.1.3	� Exceptions to the author’s rights

in software copyright � 75
		 3.1.4	� Derivative works in software

copyright � 81
	3.2	� Forms of Open Source Licensing� 83
		 3.2.1	� Permissive licensing � 84
		 3.2.2	� Copyleft licensing � 87
	3.3	� Software Interaction and Licence

Compatibility � 97
		 3.3.1	� The linking question � 97

		 3.3.2	� Specific compatibility
issues � 98

	3.4	� Interpreting Open Source
Licences: Contract or
‘Bare Licence’?� 102

		 3.4.1	� Open Source licences as
bare licences� 103

		 3.4.2	� Open Source licences
as contracts� 105

	3.5	� What Makes a Software Licence
‘free’ or ‘open source’? � 107

		 3.5.1	� Free software licences � 107
		 3.5.2	� Open source software

licences� 108
	3.6	� Conclusion � 111

  

3.1  Copyright and Software

3.1.1  The history of software and copyright

Although the history of manmade computing devices reaches into antiquity,1 it
was not until the development, beginning in the 1950s, of high-​level programing
languages for authoring and editing computer instructions,2 together with existing
systems for transcribing and loading those instructions into a computing device,

	 1	 Jo Marchant, ‘Decoding the Antikythera Mechanism, the First Computer’ Smithsonian Magazine
(February 2015) <https://​www.smi​thso​nian​mag.com/​hist​ory/​decod​ing-​anti​kyth​era-​mechan​ism-​first-​
compu​ter-​180953​979/​> accessed 11 November 2019.
	 2	 FORTRAN (a portmanteau of ‘formula translation’), first used in 1954, is generally considered to be
the first high-​level programing language, and remained the dominant programing language for scientific
and mathematical computing well into the late twentieth century. See ‘Fortran’, Techopedia, <https://​
www.tec​hope​dia.com/​def​init​ion/​24111/​fort​ran> accessed 21 December 2016. In fact, several important
benchmarks for measuring and comparing performance in supercomputing use FORTRAN, given its
frequent use in highly complex scientific and mathematical calculations. See SPEC CPU®2017 Floating
Point <http://​www.spec.org/​cpu2​017/​Docs/​#ben​chma​rks> accessed 13 April 2022.

72  P McCoy Smith

that software began to resemble those things—​such as literary or other artistic
works—​for which Intellectual Property (IP) rights had previously been extended.
The ability to author, adapt, reproduce, and systematically load programing in-
structions into a computing device using a combination of a writable medium,
and a high-​level programing language—​understandable to a multitude of human
programers and (after compilation) computing machines—​first began to cause
computer scientists, lawyers, and legislators to contemplate forms of IP protection
that might be used for programs created using a combination of these mechanisms.

In the 1960s, the potential for using copyright as a mechanism for securing ex-
clusive rights to computer code started to emerge, and test cases were attempted
in the US to establish the application of copyright to software.3 Thereafter, the
Commission on New Technological Uses of Copyrighted Works (CONTU) was
established in the US in order to study what, if any, IP protection might be appro-
priate for ‘new’ technologies like software.4

CONTU’s eventual report, issued in 1978, recommended that copyright protec-
tion should be available for computer programs composed of  ‘a set of statements or
instructions to be used directly or indirectly in a computer in order to bring about a
certain result’.5 This recommendation was not without dissent,6 as some committee
members felt that computer software was primarily or exclusively functional and
therefore not an appropriate target for copyright protection, but instead should
only be protectable by patent. The US Congress amended the US Copyright Act in
1980 to specify that computer software was within its scope.

The change made in US copyright law to reflect the recognition that software fell
within its ambit were later included in law in the UK7 and the EU8 to give similar
recognition.

Modern computing devices are typically configured using, and have data
input in, information in a format often referred to as ‘binaries’ or ‘executables’,9
instantiated as a lengthy string of ‘1’ and ‘0’ values. In the early days of the ap-
plication of copyright to software, there remained the question of whether that

	 3	 See George D Carey, ‘Copyright Registration and Computer Programs’ (1964) 11 Bulletin of the
Copyright Society of the United States of America 362, at 363; General Atomic Division of General
Dynamics, ‘Gaze-​2, A One-​Dimensional, Multigroup, Neutron Diffusion Theory Code for the IBM-​
7090’, US Copyright Registration No. A607663 (registered 1 January 1963) (a FORTRAN program, con-
sidered to be the first registered copyright on software in the US).
	 4	 National Commission on New Technology Uses of Copyrighted Works, ‘Final Report’ (31 July
1978) (CONTU Report).
	 5	 CONTU Report, see note 4, Ch. 3.
	 6	 CONTU Report, see note 4, Ch. 3, Concurrence of Commissioner Nimmer (arguing that only cer-
tain types of computer programs should be afforded copyright protection) and Dissent of Commissioner
Hersey (arguing that copyright protections should not be afforded to computer programs at all).
	 7	 See UK Statutory Instruments 1992 No. 3233 The Copyright (Computer Programs) Regulations.
	 8	 See Council Directive on the Legal Protection of Computer Programs, 34 OJ EUR. Comm. Mr.
(No. L 122) 42 (1991).
	 9	 See Encyclopaedia Britannica, ‘Binary Code’ (19 January 2020) <https://​www.bri​tann​ica.com/​
tec​hnol​ogy/​bin​ary-​code> accessed 10 February 2020; PC Magazine Encyclopedia, ‘Executable Code’
<https://​www.pcmag.com/​encyc​lope​dia/​term/​exe​cuta​ble-​code> accessed 10 February 2020.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  73

form of software was eligible for copyright protection, given the seemingly pure
functionality of the way that code was used and its general incomprehensibility in
that format to even skilled programers. A similar issue had confronted courts in
both the US and the UK in the early twentieth century, in cases involving ‘piano
rolls’.10 In both countries, the courts determined that this format was not an in-
fringement of the copyright in the underlying musical composition: ‘[T]‌o play
an instrument from a sheet of music which appears to the eye is one thing; to play
an instrument with a perforated sheet which itself forms part of the mechanism
which produces the music is quite another thing’,11 and ‘These perforated rolls
are parts of a machine which, when duly applied and properly operated in con-
nection with the mechanism to which they are adapted, produce musical tones
in harmonious combination. But we cannot think that they are copies within the
meaning of the copyright act.’12 Although these decisions would—​if still applic-
able today—​provide a sound basis for denying copyright rights to (or at least,
disallowing infringement claims by source code authors against) executable code
created using copyrightable source code, subsequent legislative developments re-
versed the outcome of those decisions.13 The piano roll decisions, and subsequent
legislative changes to reverse them and later to bring computer software within
the purview of copyright, were influential—​if not dispositive—​on the question
of whether executable code fell within the protection of copyright when chal-
lenges to that proposition were made in the early 1980s.14 As a result, it is without
question that a programer’s copyright rights subsist in any instantiation of their
authored code—​from the form in which the author originally wrote it (in most
cases, source code), to any subsequent human or machine translation of it into
any intermediate or final format (e.g. object code or executables/​binaries), that is
understandable by a computing device and upon which it may act, as long as the
work otherwise falls within the boundaries of copyright and outside of any excep-
tions thereto.

	 10	 A piano roll was a long roll of paper with punched holes which, when fed into a specially adapted
piano (called a ‘player piano’) would convert the information on that roll into played music. See
Encyclopaedia Britannica, ‘Player Piano’ (9 September 2019) <https://​www.bri​tann​ica.com/​art/​pla​yer-​
piano> accessed 10 February 2020.
	 11	 Boosey v Whight, 1900 1 Ch. 122, 81 LTNS 265.
	 12	 White-​Smith Music Publishing Co. v Apollo Co., 209 US 1 (1908).
	 13	 See Kal Raustiala and Christopher Jon Sprigman, ‘Scales of justice: How a terrible Supreme Court
decision about player pianos made the cover song what it is today’ Slate (12 May 2014) <https://​slate.
com/​tec​hnol​ogy/​2014/​05/​white-​smith-​music-​case-​a-​terri​ble-​1908-​supr​eme-​court-​decis​ion-​on-​pla​
yer-​pia​nos.html> accessed 13 April 2022; UK Public General Acts 1911 c. 46, Part I, Section 1(2)(d)
(‘in the case of a literary, dramatic, or musical work, to make any record, perforated roll, . . . or other
contriavance by means of which the work may be mechanically performed or delivered’); 17 USC § 102
(2018) (‘Copyright protection subsists . . . in original works of authorship fixed in any tangible medium
of expression, now known or later developed, from which they can be perceived, reproduced, or other-
wise communicated, either directly or with the aid of a machine or device.’).
	 14	 See Apple Computer, Inc. v Franklin Computer Corp., 714 F.2d 1240 (3d Cir. 1983), cert. dism’d by
stip., 464 US 1033 (1984).

74  P McCoy Smith

3.1.2  The author’s rights in software copyright

Copyright defines a set of legal rights which are granted—​via national law, but
in most jurisdictions consistent with the Berne Convention for the Protection of
Literary and Artistic Works15—​to the authors of a work eligible for protection.
As discussed earlier, although the question of whether software fell within the
copyright protection regime was not resolved at the time that computer software
was reaching a state where it began to resemble a work of authorship, legislation,
treaties, and to a certain extent national court decisions, have firmly established
that copyright protects such works, in any form they take.16

Copyright gives exclusive rights to the author to have dominion over certain
activities of others when those activities involve the works to which the author has
received copyright protection. A recitation of verbs articulates the actions of others
over which the copyright holder may either grant permission to do (via licence), or
prevent from doing (via enforcement actions) (see Table 3.1).

National laws articulate these rights using slightly different terminology, al-
though doing so generally in conformance with the Berne Convention framework;
because many of the Open Source licences in common use were first drafted in the
US, they often use the terminology from US copyright law (together with, or as an
alternative to, the Berne Convention formulation). For this reason, any particular
Open Source licence may have a degree of ambiguity as to whether all relevant
copyright rights are conveyed, expressly or by implication; as shown in Table 3.1
above, there is a potential concordance of, inter alia, the verbs used in US copyright
law with the verbs used in other national law or international treaties.

Open Source licences all express their permissions using at least some of these
verbs,17 and virtually all attach certain conditions (even if fairly minimal and easy
to satisfy, as with permissive licences) to those permissions so as to keep the li-
censed code Open Source, or at least allow users to understand the code is based
upon Open Source code, and possibly to seek out and receive the corresponding
source upon which the code is based.

	 15	 Berne Convention for the Protection of Literary and Artistic Works (9 September 1886; as revised
through 28 September 1979).
	 16	 It is notable that the Berne Convention does not specify that software falls within its ambit. See
Geoffrey S Kercsmar, ‘Computer Software & Copyright Law: The Growth of Intellectual Property Rights
in Germany’ (1 May 1997) 15(3) Penn State International Law Review article 7, at 567. Subsequent
treaties, however, have established that Berne Convention compliance does include providing copy-
right protection to software. See Michael Lehmann, ‘TRIPS, the Berne Convention, and Legal Hybrids’
(December 1994) 94(8) Columbia Law Review 2621, at 2625.
	 17	 Note that many of the older licences may not use the term ‘copyright’ when authorising activities.
Nevertheless, using verbs that come from national laws, or international treaties, governing copyright,
would generally be interpreted to confer copyright rights. The extent to which leaving out some of the
copyright verbs from a licence permission should be interpreted as a reservation of that right by the au-
thor, or instead the non-​recited verbs should be understood by implication also to be granted, is an un-
resolved issue with some Open Source licences. See, e.g., Andrew Sinclair, ‘Licence Profile: BSD’ (2015)
1(1) Journal of Open Law, Technology & Society 1, at 3.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  75

3.1.3  Exceptions to the author’s rights in software copyright

3.1.3.1 � Non-​copyrightability
Although the copyrightability of software, in both source and binary form, has
been well-​established worldwide since at least 1993,18 there has always been a ten-
sion in providing copyright protection to software given that software is composed
of a substantial amount of material that is highly functional.19 The European Union
has made clear in its own software directive that:

[O]‌nly the expression of a computer program is protected . . . ideas and prin-
ciples which underlie any element of a program, including those which underlie
its interfaces, are not protected by copyright under this Directive. In accordance
with this principle of copyright, to the extent that logic, algorithms and program-
ming languages comprise ideas and principles, those ideas and principles are not

Table 3.1  Potential Concordance of Copyright Verbs in Various Treaties and
National Laws

Berne
Conventiona

UK Copyright Actb EU Copyright
Directivec

US Copyright
Lawd

Translating Adapting Translating Preparing
Derivative Works

Reproducing Copying Reproducing Reproducing

Performing Performing Performing

Broadcasting Showing, Playing,
Communicating

Distributing Distributing,
Displaying

Reciting

Communicating Issuing copies Distributing Distributing

Adapting Adapting Adapting,
Altering

Preparing
Derivative Works

Arranging Arranging Preparing
Derivative Works

a See Berne Convention, see note 15, arts 8, 9, 11, 11bis, 11ter, 12, 14.
b See UK Copyright, Designs and Patents Act 1988, §§ 16–​21.
c See Directive 2009/​24/​EC of the European Parliament and of the Council of 23 April 2009 on the legal
protection of computer programs (Codified version) (2009).
d See 17 USC §106 (2010).

	 18	 See Lehmann, ‘TRIPS, the Berne Convention, and Legal Hybrids’, note 16, at 2625.
	 19	 Navitaire Inc. v Easyjet Airline Co [2004] EWHC 1725 (Ch).

76  P McCoy Smith

protected under this Directive. In accordance with the legislation and case-​law of
the Member States and the international copyright conventions, the expression of
those ideas and principles is to be protected by copyright.20

The US has a similar concept, the so-​called idea/​expression dichotomy, established
via a long line of court decisions.21

Navigating the distinction between that in software which is not copyrightable
(and thus available for non-​authors to use without adhering to the conditions of
any particular licence), and that which is, is not an insubstantial task. The European
Court of Justice (ECJ) addressed this issue in 2012 SAS Institute case,22 stating ‘the
ideas and principles which underlie any element of a computer program, including
those which underlie its interfaces, are not protected by copyright’.23 A similar
issue in the US was the subject of a long-​standing and significantly publicised legal
dispute, eventually resolved by the Supreme Court of the US.24 That dispute in-
volved an allegation by Oracle that Google copied certain application programing
interfaces (APIs), and possibly other information,25 from Oracle’s Java programs
without the benefit of a licence from Oracle. Google was successful at the trial court
level in arguing that everything they copied was non-​copyrightable,26 while Oracle
was successful at the intermediate appeal court level in arguing that some of what
was copied was copyrightable.27 Subsequently, the case was sent to the trial court,
where a jury determined that Google’s copying fell within the ‘fair use’ exceptions
to US copyright law.28 That determination was also overturned by the intermediate
appeal court.29 Thus, the US Supreme Court was presented with two questions:
(i) were the interfaces copied by Google copyrightable at all, and (ii) if they were
copyrightable, was Google’s copying nevertheless permissible as ‘fair use’ under US
copyright law?30

	 20	 ‘Directive 2009/​24/​EC of the European Parliament and of the Council of 23 April 2009 on the
legal protection of computer programs’ Official Journal of the European Union, L 111/​17, no. 11 (5
May 2009).
	 21	 See Baker v Selden, 101 US 99 (1879); Mazer v Stein, 347 US 201 (1954).
	 22	 See SAS Institute Inc. v World Programming Ltd, ECLI:EU:C:2012:259 (2 May 2012).
	 23	 SAS Institute, see note 26, at 31.
	 24	 See Google LLC v Oracle Am., Inc., 593 US _​ , 141 S. Ct. 1183, Docket No. 18–​956, (2021).
	 25	 Part of the dispute between Google and Oracle, and part of the reason why the trial court and inter-
mediate appeal court rendered differing decisions on copyrightability, relates to whether what Google
copied was necessary to interface with Java, or not. See Oracle America, Inc. v Google LLC, 886 F.3d 1179
(Fed. Cir. 2018) (analysis of the necessity of 11,500 lines of copied code to allow interoperability).
	 26	 Oracle Am., Inc. v Google LLC, 872 F. Supp. 2d 974 (N.D. Cal. 2012).
	 27	 Oracle Am., Inc. v Google LLC, 750 F.3d 1339 (Fed. Cir. 2014).
	 28	 David Goldman, ‘Jury sides with Google in billion dollar Oracle suit’, CNN Business (26 May
2016) <https://​money.cnn.com/​2016/​05/​26/​tec​hnol​ogy/​goo​gle-​ora​cle/​index.html> accessed 6
April 2021.
	 29	 Oracle America, Inc. v Google LLC, 886 F.3d 1179 at 106 (Fed. Cir. 2018).
	 30	 Google LLC v Oracle America, Inc., Docket No. 18–​956, Petition for a Writ of Certiorari (US 24
January 2019).

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  77

Unlike the ECJ in the SAS Institute decision, the US Supreme Court in Google
v Oracle avoided squarely addressing the issue of the copyrightability of software
interfaces:

Given the rapidly changing technological, economic, and business-​related cir-
cumstances, we believe we should not answer more than is necessary to resolve
the parties’ dispute. We shall assume, but purely for argument’s sake, that the en-
tire [Oracle] Java API falls within the definition of that which can be copyrighted.
We shall ask instead whether Google’s use of part of that API was ‘fair use.’31

Analysing the question of whether Google’s reproduction of certain interfaces32
from Oracle’s Java SE program was fair use, the US Supreme Court ultimately de-
cided that Google’s reproduction fell within the ‘fair use’ provisions of US copy-
right law.33 Although the decision is complex, and goes through a detailed analysis
of all the statutory fair use factors, perhaps the two most important aspects of the
decision analysing whether the use of software interfaces are subject to copyright
claims by the authors of those interfaces related to the questions of ‘transforma-
tive use’ and the manner in which future courts may decide fair use questions in
software copyright disputes. On the question of ‘transformative use’, the Court in
Google v Oracle stated:

Here, Google’s use of the [Oracle] Java API seeks to create new products. . . . To the
extent that Google used parts of the [Oracle] Java API to create a new platform
that could be readily used by programmers, its use was consistent with the cre-
ative ‘progress’ that is the basic constitutional objective of copyright itself.34

Thus, it could well be that, under the Google v Oracle fair use test, most reproduc-
tions of software interfaces in the US in order to create new, interoperable but non-​
competitive software will be found to be not subject to the copyright claims of the
authors of those interfaces, because such uses will be determined to be ‘transforma-
tive’. If so, the outcome in the US on software interfaces may not be much different
than the outcome in the EU under the SAS Institute decision. Future decisions in

	 31	 Google LLC v Oracle America, Inc., 593 US _​_​_​, 141 S. Ct. 1183, Docket No. 18-​956, Opinion of the
Court at 15 (5 April 2021). The dissenting opinion in that decision criticised the majority’s failure to ad-
dress the copyrightability question. Google LLC v Oracle America, Inc., see note 34, Dissenting Opinion
at 1–​2.
	 32	 Although the Google v Oracle decision often refers to ‘Java APIs’ and ‘interfaces’, the discussion fo-
cuses exclusively on Google’s reproduction of the method, class, and package structures used in certain
parts of Java most useful in smartphones for programers familiar with the schema in Java. Google LLC
v Oracle America, Inc., 593 US _​_​_​, 141 S. Ct. 1183, Docket No. 18-​956, Opinion of the Court at 26 (5
April 2021).
	 33	 Google LLC v Oracle America, Inc., 593 US _​_​_​, 141 S. Ct. 1183, Docket No. 18-​956, Opinion of the
Court at 1 (5 April 2021).
	 34	 Google LLC v Oracle America, Inc., see note 37, at 25.

78  P McCoy Smith

the US applying the fair use analysis to different software interface scenarios may
clarify if this is indeed the case.35

The Google v Oracle decision also clarified an important point on ‘fair use’ ana-
lyses in copyright disputes:

‘In this case, the ultimate “fair use” question primarily involves legal work. “Fair
use” was originally a concept fashioned by judges . . . Our cases still provide legal
interpretation of the fair use provision. And those interpretations provide general
guidance for future cases.’36

This finding is an important procedural point in US law as it may result in early
hearings in software copyright disputes to resolve the ‘primarily legal’ question of
fair use. Early hearings on the legal question of patent claim interpretation have now
become a regular part of patent litigation practice in the US.37 Such procedures, if
adopted in the future, could have curtailed the nearly eleven-​year litigation history of
the Google v Oracle dispute. Nevertheless, unless there are future developments in the
US on the question of software copyrights in general, or software copyright interfaces
in particular, there will be greater ambiguity about the use of such interfaces, and the
effort required to resolve them, in the US than there currently is in the EU.

The question of what parts of software are subject to copyright protections and
which are free for anyone to use without fear of a claim of copyright infringement or
licence violation is an important issue when analysing the effect of Open Source li-
cences on downstream recipients. This is particularly the case with copyleft licences,
as the downstream recipient may not need to follow the licence’s requirement to use
the same licence, if they are using only material for which either copyright protec-
tion does not extend, or for which the right of ‘fair use’ or ‘fair dealing’ (or equiva-
lents) applies. In the EU, the SAS Institute case provides some concrete guidance on
this question; the courts in the US have not resolved this issue as conclusively, as the
US Supreme Court’s decision in Google v Oracle left the question to a case-​by-​case,
legal analysis somewhat dependent upon underlying facts. As a result, distributors

	 35	 An early, and thoughtful, analysis of this question—​written after the SAS Institute decision but
almost a decade before the ultimate decision in Google v Oracle—​may be found at Walter van Holst,
‘Less May Be More: Copyleft, -​Right and the Case Law on APIs on Both Sides of the Atlantic’ (2005)
5(1) Journal of Open Law, Technology & Society at 5 <https://​jolts.world/​index.php/​jolts/​arti​cle/​view/​
72/​143> accessed 6 April 2021. In that analysis, the author concludes that ‘ [w]‌hen taking the most re-
cent jurisprudence on software APIs [i.e., SAS Institute] into account, one can argue that the LGPL is not
really the Lesser GPL, but that the GPL is based on a by now outdated understanding of software copy-
right and effectively becomes equal to the LGPL’. Von Holst, ‘Less May Be More’, at 13. This conclusion
may also follow if the Google v Oracle decision is ultimately determined to be very near to the outcome
in SAS Institute.
	 36	 Google LLC v Oracle America, Inc., 593 US _​_​_​, 141 S. Ct. 1183, Docket No. 18-​956, Opinion of the
Court at 19 (5 April 2021).
	 37	 Edward Brunet, ‘Markman Hearings, Summary Judgment, and Judicial Discretion’ (2005) 9(1)
Lewis & Clark Law Review 93, at 95–​96.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  79

and recipients of code under Open Source licences may be forced to analyse the
question of whether the use of software interfaces require adherence to the Open
Source licence terms depending on whether the use is within, or without, the US. If
the use is in the US, a detailed factual analysis of the circumstances in which soft-
ware interfaces are reproduced, under the fair use tests under US copyright law,38
may be required—​at least until such time as future court decisions provide greater
guidance on when reproduction of software interfaces is not ‘fair use’.39

3.1.3.2 � Functional dictation and merger doctrine
Authored material that would otherwise be copyrightable expression has
nevertheless been found not to be subject to copyright protection when the ex-
pression is directed to an idea that is incapable of being expressed, as a practical
matter, in more than one or a small number of ways. In the UK, this concept has
been established under the rationale ‘that if expression is dictated by technical
function then the criterion of originality [required for copyright protection]
is not satisfied’.40 In the US, this concept is designated the ‘merger doctrine’—​
that the copyrightable expression in a work of authorship has ‘merged’ with the
non-​copyrightable idea being expressed, when that idea is incapable of being ex-
pressed, as a practical matter, in more than one or a small number of ways.41
Although in many ways non-​copyrightability and functional dictation/​merger
doctrine cover similar territory and rely on related statutory bases and case law,
the latter doctrine does admit of the possibility of arguing that—​even though
there may be multiple ways of expressing certain ideas, facts, systems, or pro-
cesses through code—​to the extent that those multiple ways are unduly con-
straining on the ability of other authors to capture those ideas, facts, systems,
or processes without running afoul of a different author’s copyrights, protection
under copyright should not be afforded.

	 38	 17 USC § 107.
	 39	 Although the newness of the Google v Oracle decision has meant there is limited commentary
on its potential import on software development practices in the US, at least one commenter has in-
dicated that reproduction of code for interoperability may be found to be fair use given recent court
decisions, including Google v Oracle, emphasising transformative uses of copyrighted materials as being
more often than not fair. ‘Google’s Supreme Court win could actually benefit the little guy’ MarketPlace
(6 April 2021) <https://​www.mark​etpl​ace.org/​shows/​mark​etpl​ace-​tech/​goog​les-​supr​eme-​court-​win-​
could-​actua​lly-​bene​fit-​the-​lit​tle-​guy-​ora​cle-​java/​> accessed 6 April 2021.
	 40	 See SAS Inst. Inc. v World Programming Ltd. [2013] EWCA Civ 1482, [31]–​[33], available at
<http://​www.bai​lii.org/​ew/​cases/​EWCA/​Civ/​2013/​1482.html> accessed 13 April 2022.
	 41	 See Pamela Samuelson, ‘Reconceptualizing Copyright’s Merger Doctrine’ (2017) 63 Journal of the
Copyright Office Society of the United States of America 417–​70, available at <https://​pap​ers.ssrn.com/​
sol3/​Deliv​ery.cfm/​SSR​N_​ID​2763​903_​code​1160​955.pdf?abs​trac​tid=​2763​903&mirid=​1&type=​2>.
Professor Samuelson argues that merger doctrine in the US is not just limited to preventing ‘ideas’ from
being captured and restricted as copyrightable expression, but that instead there are other dichotomies
that the merger doctrine also covers, including ‘fact/​expression’, ‘process/​expression’, ‘system/​expres-
sion’, Samuelson, ‘Reconceptualizing Copyright’s Merger Doctrine’ at 417–​70. Each of these dichoto-
mies represent a possible limitation on the ability to claim copyright protection on certain aspects of
computer software.

80  P McCoy Smith

3.1.3.3 � ‘Fair dealing’ and ‘fair use’
The law in both the UK and the US allows for certain ‘fair’ exercises of the exclu-
sive rights of a copyright holder without subjecting those exercises to infringement
liability. In the UK, this exception to the holder’s rights is called ‘fair dealing’;42 in
the US, the exception is called ‘fair use’.43 Despite the similarities in the names, the
effect—​particularly in the area of software—​can be quite different. In the US, ‘fair
use’ has been the foundation of a number of defences to claims of copyright in-
fringement for software,44 and in fact fair use was the basis upon which the Oracle v
Google dispute was decided by the Supreme Court of the US.45 Fair use as a defence
to a claim of copyright infringement in the US is defined in statute and is analysed
using a multifactored factual analysis not specific to the use that is being made; a
court must analyse:

	 •	 the purpose and character of the use, including whether such use is of a com-
mercial nature or is for non-​profit educational purposes;

	 •	 the nature of the copyrighted work;
	 •	 the amount and substantiality of the portion used in relation to the copy-

righted work as a whole; and
	 •	 the effect of the use upon the potential market for or value of the copyrighted

work.46

In contrast, fair dealing in the UK is much more specific to the type of use being
made, and specifically excludes many uses of computer software from its ambit.47
Instead of relying upon fair dealing to address certain ‘fair’ uses of computer soft-
ware, the UK Copyright Act sets forth, in sections separate from the defined uses
under fair dealing, specific acts relative to computer software which are explicitly
excluded from infringement:48

	 •	 making any back up copy;
	 •	 converting it into a higher-​level language;
	 •	 decompiling it to obtain the information necessary to create an independent

program which can be operated with the program so decompiled, or with an-
other program;

	 42	 UK Copyright Act, see note 18, §§ 29.
	 43	 17 USC § 107 (1992).
	 44	 See, e.g., Sega Enterprises Ltd v Accolade Inc., 977 F.2d 1510 (9th Cir. 1992).
	 45	 Google LLC v Oracle Am., Inc., 593 US _​_​_​, Docket No. 18-​956, Opinion of the Court at 1 (5
April 2021).
	 46	 17 USC § 107 (1992).
	 47	 UK Copyright Act, see note 18, § 29 (excluding converting a computer program to a higher-​level
language, copying incidental to such a conversion, and observing, studying or testing the functioning of
a computer program in order to determine the ideas and principles which underlie any element of the
program).
	 48	 UK Copyright Act, see note 18, §§ 50A–​50C.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  81

	 •	 observing, studying, or testing the functioning of the program in order to de-
termine the ideas and principles which underlie any element of the program;

	 •	 copying it or adapting it for the purpose of correcting errors in it.

In summary, US law admits of perhaps a broader range of acts concerning software
that might be considered ‘fair’ and outside of the threat of infringement claims, but
in order to establish that such use is ‘fair’, the accused infringer is subject to a de-
tailed factual analysis amenable to differing interpretations. In the UK, in contrast,
the activities considered ‘fair’ are much more narrowly circumscribed, but are po-
tentially much easier to establish factually.

3.1.4  Derivative works in software copyright

3.1.4.1 � A brief summary of computer software architecture
and interactions

The many ways in which a particular piece of software can be configured to interact
with other pieces of software is far beyond the scope of this chapter, and is suffi-
ciently malleable with new developments in technology, that it would be virtually
impossible to discuss all the different ways such interactions can occur, and the li-
censing and copyright implications that result. Nevertheless, the process of writing
source code, converting that source code into executable code, delivering that exe-
cutable code to a target computing device, and executing that executable code on
that target device, often fall into certain general techniques that it is of use to de-
scribe them in brief to discuss common use cases that frequently raise questions
with regard to the effect of certain Open Source licences. Figure 3.1 represents a
common software build scenario.

One or more modules A and B are written in source code by human programers.
A software tool called a compiler is used to both convert the source modules into a
format called object code, and (possibly) to intermingle parts of A and B together
into a unitary object module AB. There may also be standard libraries or other
pre-​existing code modules which the object module AB is designed to make use of.

These libraries can be used by the compiled code AB in one of two ways—​via a
static link or a dynamic link. In a static link, the object code AB is input into a tool
called a linker, together with object code of the library SL, to form a unitary binary
ABSL, all of which is distributed to a user to be executed or run on their com-
puting machine. In a dynamic link, the object code AB is distributed to the user
under the assumption or expectation that the library which the object code AB is
designed to use is already installed on the user’s computing machine or will be sep-
arately obtained by the user. The combination of AB and the library DL is not made
until ‘run-​time’, in other words the two are combined together in the computing
machine’s memory upon execution of the object file AB.

82  P McCoy Smith

There is an additional piece of software that may be used for which free and open
source licensing issues are implicated. A loadable kernel module (often abbrevi-
ated as LKM) is a piece of code (in most cases, drivers written to allow the kernel
of the operating system—​which manages the computing machine’s resources—​to
make use of certain components within the computing machine) that is dynam-
ically loaded into the operating system kernel at execution, rather than integrated
into the kernel itself.

The concepts outlined above may be of importance to understand when
interpreting the impact of certain free and open source licensing, particularly the
copyleft licences which purport to apply their terms to programs which may be
combined or linked, as discussed in more detail in section 3.2.2 later in this chapter.

3.1.4.2 � Derivative works and Open Source
A number of Open Source licences use the term ‘derivate works’ to define the
scope of certain activities related to the modification, adaptation, or translation
of the licensed code.49 As discussed earlier in section 3.1.2, ‘derivative works’ is

Module
Source Code A

Module
Source Code B

Dynamic Library
DL

Static Library
Source Code SL

Operating System OS

Loadable Kernel Module LKM

Compiler

Object Code
AB

Linker

Compiler

Object Code
SL

Executable Code
ABSL

Compilation Step

Linking Step

Execution Step

Executable Code
ABSL

Distribution/Loading Step

Executable Code
AB

Figure 3.1  Common Software Build Scenarios

	 49	 See, inter alia, GPLv2, § 0.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  83

a concept from US copyright law which encompasses things like modification,
translation, adaptation, and arranging in international copyright treaties or non-​
US national laws, but it does not have universal meaning that is consistent across
national laws,50 or even within courts in the US.51 The boundaries of what is or is
not a derivative work, or is equivalent or corelated in non-​US law, is also circum-
scribed by the exceptions to copyright protection and enforceability set forth in
section 3.1.3 earlier in this chapter. Because of this, any interpretation of the rights
granted under an Open Source licence, or the obligations attached to that grant,
will be subject to potential ambiguity to the extent it references derivative works
without further clarifying what types of derivative works are governed by the terms
of the licence. More detail on how that ambiguity works in practice can be found in
section 3.2.2 later in this chapter.

3.2  Forms of Open Source Licensing

As discussed in more detail in Chapter 1, Open Source licensing is—​at its heart—​a
philosophical movement which seeks to upend or reverse the more conventional
‘proprietary’ model where the rights required to make productive use of some
useful thing are granted restrictively, and in most cases without any rights to study,
learn, and adapt the underlying architecture or design of that thing. In order to put
into practice this philosophy, there must be legal rights granted, and those rights
need to be granted in a way that is consistent with that philosophy. One of the most
important forms of legal rights used to achieve this aim is copyright—​specifically,
the copyright in both the source and executable forms of software discussed in
more detail in section 3.1.2 earlier in this chapter.

In the late 1980s,52 two alternative ways of achieving the overall aims of the free
and open source philosophy were (roughly) simultaneously created: permissive li-
censing and copyleft licensing. Each of these models have numerous variants, and
at least copyleft has two generally recognised sub-​variants—​‘strong’ copyleft and
‘weak’ copyleft, but both models share certain common characteristics and in cer-
tain cases can be used in a complementary way. Practitioners are nevertheless cau-
tioned that there are also significant incompatibility issues between some of these

	 50	 Till Jaeger, ‘Enforcement of the GNU GPL in Germany and Europe’ (2010) 1 Journal of Intellectual
Property, Information Technology and E-​Commerce Law 34, at 36.
	 51	 Omar Johnny, Marc Miller, and Mark Webbink, ‘Copyright in Open Source Software—​
Understanding the Boundaries’ (2010) 2(1) Journal of Open Law, Technology & Society 13, at 24.
	 52	 The earliest examples of licences satisfying both the Free Software Definition and the Open Source
Definition, the MIT licence, the BSD licence, and the GPL licence, date—​at their earliest instantiation—​
from 1987, 1988, and 1989, respectively. See Gordon Haff, ‘The Mysterious History of the MIT License’
opensource.org (26 April 2019), <https://​ope​nsou​rce.com/​arti​cle/​19/​4/​hist​ory-​mit-​lice​nse> accessed
19 January 2020; Richard Stallman, ‘New General Public License’ (February 1989) <https://​gro​ups.goo​
gle.com/​forum/​#!msg/​gnu.annou​nce/​m0Jj​j_​64​PeQ/​8xL1x​kVKJ​b8J> accessed 9 March 2020.

84  P McCoy Smith

licences, and understanding when and where particular licences can be used in a
complementary way, and where such licences create unresolvable conflicts, is very
much dependent upon the text of the particular licences used, the state of copy-
right law in the particular jurisdiction where the licence might be enforced, a good
understanding of the particular programing paradigm being used, and how that
programing paradigm maps to the licence texts at issue and copyright law in the
particular jurisdiction in question.

Most free and open source licences allow the user to make ‘private’ use of the
software—​meaning that anything the user does without allowing access to others
imposes no legal obligations on that user.53 It is when the user seeks to allow others
access to that software—​typically by distributing the software, or a modified ver-
sion of the software—​that the licence imposes legal obligations on that user. Many
of those obligations are similar amongst all licences, whilst others differ in standard
ways that allow categorisation and subcategorisation between licences. Those cat-
egorisations and sub-​categorisations are discussed in more depth in the following
sections.

3.2.1  Permissive licensing

3.2.1.1 � The BSD and MIT licences
The BSD54 and MIT55 licences are the oldest free and open source licences still in use
to this day. Both are quite similar in the way that they are structured and the obliga-
tions that they impose upon the recipient, although there are some subtle differences
that might cause an author to choose one over the other, or for a court or arbiter to
determine that they have different legal effect. Both licences grant broad licences, at
least under copyright. Both oblige preservation of copyright notices for those who
exercise the licence grants. Both oblige that a copy of the licence text be provided for
any exercise of the licence grants. Both disclaim liability on behalf of the authors.

	 53	 The Free Software Foundation’s so-​called Freedom Zero—​ ‘The freedom to run the program as you
wish, for any purpose’—​generally contemplates this concept. See Free Software Foundation, ‘What is
Free Software? The Free Software Definition’ <https://​www.gnu.org/​phi​loso​phy/​free-​sw.html.en> ac-
cessed 29 February 2020. As noted later in the chapter, certain Open Source licences test this concept.
	 54	 There is no single ‘BSD’ licence; there are numerous variants, generally differentiated by the
number of clauses they contain. Thus, 4-​Clause BSD <https://​spdx.org/​licen​ses/​BSD-​4-​Cla​use.html>,
3-​Clause BSD <https://​spdx.org/​licen​ses/​BSD-​3-​Cla​use.html>, 2-​Clause BSD <https://​spdx.org/​licen​
ses/​BSD-​2-​Cla​use.html>, 1-​Clause BSD <https://​spdx.org/​licen​ses/​BSD-​1-​Cla​use.html>, and 0-​Clause
BSD <https://​spdx.org/​licen​ses/​0BSD.html> accessed 21 July 2022. The 4-​Clause BSD contains an ‘ad-
vertising clause’ which is generally considered to create compliance issues, and is thus generally dis-
favoured. See Sinclair, ‘Licence Profile: BSD’, see note 21, at 4–​5.
	 55	 There is also some dispute as to whether there is more than one ‘MIT’ licence. See GNU Operating
System, ‘Various licenses and comments about them’, <https://​www.gnu.org/​licen​ses/​lice​nse-​list.
html#Expat> accessed 10 March 2020. The version approved by the Open Source Initiative is gener-
ally considered the canonical version, and is the version discussed later in the chapter. See <https://
opensource.org/licenses/MIT>.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  85

The effect of both licences is to allow recipients to exercise the author’s copyright
rights, without imposing any obligations on the recipients to use the same licence
for any further downstream distribution.56 They are thus permissive in the way
in which they allow alternative licensing models to be exercised by recipients—​
including, restrictive, ‘proprietary’ licensing, and copyleft licensing.

One distinction between the two licences is that the MIT license expresses its
grant using a non-​statutory term (‘deal in’), and then recites US statutory verbs
as non-​limiting examples: ‘[p]‌ermission is . . . granted . . . to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, . . . and/​or sell copies’ (emphasis added), whereas the
BSD license uses fewer verbs, and uses them directly in the grant: ‘[r]edistribution
and use . . ., with or without modification, are permitted’ (emphasis added). Another
distinction is that the MIT license explicitly allows sublicensing, whereas the BSD
license, if it does so, does so indirectly—​using the term ‘redistribution’. The extent
to which these distinctions are meaningful has yet to be adjudicated, and the two li-
cences are generally considered to be relatively interchangeable in the permissions
they give and the obligations they impose on those permissions.

3.2.1.2 � The Apache licence
In 2000, the ASF published an alternative form of a permissive licence; that li-
cence is now on its second—​and by far most commonly used—​iteration, the
Apache Software License 2.0 (the Apache 2.0). The Apache 2.0 license, drafted
more than a decade after the BSD and MIT licenses came into being, was designed
to address some perceived ambiguities or missing features in those two licences,
in particular a more robust set of definitions of the licence grants themselves57
(and the parties to whom they extend) express granting of patent rights (with
the inclusion of a patent ‘defensive suspension’ clause to revoke patent rights to
those entities taking assertive patent actions against the licensed software) and
other features designed to make the licence terms more consistent with generally

	 56	 There is a fairly small minority of users of these licences who have argued that the requirement
to provide a copy of the licence obliges the recipient to use that licence, thus rendering these licences
copyleft. See Anonymous Coward, ‘Theo de Raadt on Relicensing BSD Code’, OpenBSD Journal (13
September 2007) <http://​undea​dly.org/​cgi?act​ion=​arti​cle&sid=​200​7091​3014​315> accessed 13 April
2022. The general consensus is, however, to the contrary and re-​licensing under different terms—​
including restrictive proprietary licences and copyleft licences—​is a common practice with permis-
sively licensed software.
	 57	 Of particular interest is the manner in which the Apache 2.0 licence defines the scope of modifi-
cations/​derivative works that are subject to the Apache 2.0 licence terms. The Definition section of the
Apache 2.0 licence states that ‘[f]‌or the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof .’ Given the overall permissive nature of the licence, this clarification of the
scope of the grant may be in practice relatively insubstantial, although it could be an important dis-
tinction in some architectural scenarios given that avoiding the application of the Apache 2.0 licence to
certain works may be useful because of the incompatibility of the Apache 2.0 licence with certain of the
GNU family of licences. See section 3.3.2.3 later in this chapter.

86  P McCoy Smith

accepted licence drafting standards. Nevertheless, the overall effect of the copy-
right licence grants in the Apache 2.0 licence are intended to be the same as those
of the BSD and MIT licenses discussed earlier, requiring preservation of copy-
right notices and providing a copy of the licence with the code, but otherwise
permissively allowing the recipient of the code to use terms of its own choosing,
including proprietary licensing, or copyleft licensing, when that recipient exer-
cises the granted copyright licences. As discussed in more detail in section 3.3.2.3,
there are certain caveats to the overall permissive nature of the Apache 2.0 li-
cence: the GNU family of licences. The Free Software Foundation (FSF) has stated
that the Apache 2.0 license is incompatible with GPLv2;58 although the ASF dis-
agrees with this assessment, it nevertheless states that with regard to use of GPLv2,
‘you should always try to obey the constraints expressed by the copyright holder
when redistributing their work’.59 This incompatibility introduces certain com-
plications in architecting software stacks that may include Apache 2.0 and GPLv2
code (in particular, the Linux kernel of the GNU/​Linux operating system, which
is licensed under GPLv2), and could very well be the reason why the more recent,
and more carefully drafted, Apache 2.0 license has not supplanted the continued
popularity of the BSD and MIT licenses as de facto choice when selecting a per-
missive licence.

3.2.1.3 � Other permissive licences
There are a large number of permissive licence variants currently listed as either
approved by the Open Source Initiative (OSI) or determined to be free software
licences by the FSF. The vast majority of these licences are variants of the BSD
(which itself has numerous variants) or MIT licenses, and a handful of Apache 2.0
variants as well, and thus would generally operate in a manner similar to those li-
cences. Nevertheless, when confronted by these numerous variants, it is advisable
to read their terms carefully as some variants may introduce additional complica-
tions or incompatibilities.60 Two other permissive licences that have some degree
of popularity and which practitioners may encounter and thus need to familiarise
themselves with are: the Academic Free License61 and the Artistic License.62 The

	 58	 See FSF Licence Comments, see note 59, <https://​www.gnu.org/​licen​ses/​lice​nse-​list.html#apac​he2>
accessed 21 July 2022. Note that by the logic used in the FSF’s commentary on the Apache 2.0 licence,
Apache 2.0 is likely also to be incompatible with the Affero GPLv1.0 and 2.0 licences, and partially in-
compatible with the Lesser GPLv2.1 licence.
	 59	 Apache Software Foundation, ‘GPL Compatibility’ <https://​www.apa​che.org/​lic​ensl​icen​ces/​GPL-​
compat​ibil​ity.html> accessed 10 March 2020.
	 60	 For example, licences with so-​called advertising clauses may be incompatible with many other
Open Source licences. See GNU Operating System, ‘The BSD License Problem’ <https://​www.gnu.org/​
licen​ses/​bsd.html> accessed 10 March 2020.
	 61	 Open Source Initiative, ‘Academic Free Licence (“AFL”) v. 3.0’ <https://​ope​nsou​rce.org/​licen​ses/​
AFL-​3.0> accessed 10 March 2020.
	 62	 Open Source Initiative, ‘Artistic Licence v. 2.0’ <https://​ope​nsou​rce.org/​licen​ses/​Artis​tic-​2.0> ac-
cessed 10 March 2020.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  87

Academic Free License is designed to be somewhat similar in operation to the
Apache 2.0 license in that it has more robust drafting and has specific reference
to patent rights; it is also notable in that its author has explicitly stated that that
licence is designed to operate as a contract,63 thus explicitly settling the ‘bare li-
cence versus contract’ debate—​discussed in section 3.4 later in this chapter—​for
that licence. The Artistic Licence is notable in that it was the subject of one of the
first, and still one of the leading, cases in the US examining the operation of Open
Source licensing.64 That decision, at a minimum, demonstrates that although per-
missive licences are designed to be easy to comply with and to allow flexibility to
the recipient in modifying and combining code while also being able to choose its
own licence, failure to comply with even the simplest licence conditions in a per-
missive licence can result in enforcement action and could be found to be a viola-
tion of the author’s copyright rights.65

3.2.2  Copyleft licensing

The second broad category of Open Source software license types are the copyleft66
licences. In all but one very important way, copyleft licences are designed to op-
erate in a way similar to the permissive licences—​a broad grant of copyright rights
(and in virtually every copyleft licence, at least an attempt to do the same with pa-
tent rights), a requirement to preserve copyright notices, and a requirement to pro-
vide a copy of the licence with the code. The important distinction is that copyleft
licences require certain exercises of the author’s copyright rights to be licensed
under identical terms. Thus, copyleft licences put limitations on the recipient’s
ability to use other licensing models (e.g. proprietary, or permissive, or even a dif-
ferent copyleft licence) for their own downstream activities. Copyleft licences are
often broken into two subcategories: ‘strong’ copyleft and ‘weak’ copyleft. ‘Strong’
copyleft licences, in general, are designed to have fewer exclusions67 to the require-
ment to use the same licence when exercising the author’s copyright rights, whereas

	 63	 Lawrence Rosen, ‘Open Source Licensing: Software Freedom and Intellectual Property Law’
(Prentice Hall: Upper Saddle River, NJ, 2005) at 181.
	 64	 Jacobsen v Katzer, 535 F.3d 1373 (Fed. Cir. 2008).
	 65	 Jacobsen v Katzer, note 64, at 1382.
	 66	 ‘Copyleft’ is a coined term intended to be a pun on ‘copyright’, contrasting the highly permissive
terms of that family of licences with the generally perceived highly restrictive nature of copyright pro-
tection and copyright licensing in the software industry. An additional pun for copyleft, ‘all rights re-
versed’, is a play on the now-​obsolete notification that used to often accompany copyrighted works, ‘all
rights reserved’.
	 67	 Although strong copyleft licences are generally designed to require the use of the same licence
when the recipient exercises the author’s copyright rights, even the strongest of copyleft licences
(GPLv2, GPLv3, AGPLv1, and AGPLv3) all allow the recipient to engage in some form of private modi-
fication of the code without triggering the obligations of those licences. See, e.g., GPLv3 § 0 (definition
of ‘propagate’).

88  P McCoy Smith

‘weak’ copyleft licences are designed specifically to articulate circumstances where
an exercise of the author’s copyright rights is permitted while allowing for alterna-
tive licensing (again, be it permissive, or proprietary, or a different copyleft licence)
of code resulting from that exercise. The strong copyleft licences typically require
that derivative works (or some other formulation intended to capture that concept
under both the law of the US and other jurisdictions) cannot be distributed under
any other licence.

3.2.2.1 � The GNU family of licences
Copyleft licensing was pioneered by—​and the term ‘copyleft’ was indeed coined
by—​the FSF. The FSF maintains a family of copyleft licences—​all under the ‘GNU’68
moniker—​all intended to allow different forms of copyleft to be used, depending
on the degree of copyleft obligation to be imposed on the user. This family of li-
cences can generally be divided into the ‘strong copyleft’—​GPLv2, GPLv3,
AGPLv1 and AGPLv3—​and ‘weak copyleft’—​LGPLv2.1 and LGPLv3.0—variants.

3.2.2.1.1 � The GNU General Public Licence (GPL)
3.2.2.1.1.1 GPLv2  The GNU General Public License, version 2 (‘GPLv2’) is a
strong copyleft licence first published by the FSF in 1991. It grants the right to
exercise enumerated copyright rights (copy, distribute, and modify the software),
under the condition that the resulting software is again distributed69 under the
identical conditions of GPLv2. As with other Open Source licences, GPLv2 re-
quires including the GPLv2 licence text, providing the source code for any dis-
tributed executables, and making reference to the disclaimer of warranty. GPLv2
states that failure to follow the licence terms results in the revocation of the li-
cence, although third parties (such as downstream recipients) are unaffected by
such failure. The obligation to grant access to the source code in case of distri-
bution of executable copies requires providing ‘Complete Corresponding Source
Code’, defined as ‘all the source code for all modules it contains, plus any asso-
ciated interface definition files, plus the scripts used to control compilation and
installation of the executable’.70

GPLv2, by its own terms, extends the obligations to a ‘work based on the
Program’, defined as ‘any derivative work under copyright law; that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications
and/​or translated into another language’.71 However, GPLv2 also states that ‘mere

	 68	 ‘GNU’ is a recursive acronym for ‘GNU’s not UNIX’, an express acknowledgement that the FSF was
attempting to create—​using the GNU family of licences—​a computer operating system intended to be
an alternative to the then-​ubiquitous UNIX operating system.
	 69	 It is notable that the licence obligations in GPLv2 are attached upon ‘distribution’ of code covered
by that licence; the licence itself makes clear that merely running the program can be done without need
to follow the licence obligations. See GPLv2, § 0.
	 70	 GPLv2, § 3. This detailed definition is intended to prevent source distributions which are not amen-
able to modification and compilation because of scripts or tools not otherwise available to distributees.
	 71	 GPLv2, § 0.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  89

aggregation of another work not based on the Program with the Program . . . on a
volume of a storage or distribution medium does not bring the other work under
the scope of this License’.72 GPLv2 further states that when sections of the new work

are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permis-
sions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.73

GPLv2 states that the licence is designed ‘to exercise the right to control the distri-
bution of derivative or collective works based on the Program’;74 thus any analysis
of whether GPLv2 would apply to a particular use and distribution of code under
that licence would need to consider the question of whether a derivative work or
collective work has been created.75

As may be clear from the earlier discussion, determining what particular exer-
cises of copyright rights under GPLv2 obligate the licensor to follow the terms of
that licence is not explicitly clear; this issue is made even more thorny by the fact
that which does, and does not, fall outside of the realm of ‘derivative works’ under
US Copyright law (from whence the term ‘derivative works’ in the licence comes)
for software is not well-​defined and in fact subject to a number of different tests.76

GPLv2’s obligations purport to apply to any derivative or collective works; any-
thing that is outside the definition of a derivative or collective work should not be
affected by the licence’s obligations. According to the FSF—​stewards of GPLv2—​a
work that links to code licensed under GPLv2 (statically or dynamically) forms
part of the modified work and it must be treated accordingly.77 This assertion is a
matter of some controversy, and many commentators believe that although static
linking arguably does require the linked program to be licensed under GPLv2, dy-
namic linking should not.78

	 72	 GPLv2, § 2.
	 73	 GPLv2, § 2.
	 74	 GPLv2, § 2.
	 75	 ‘Collective works’ are a concept under US Copyright Law, 17 USC § 101, defined as ‘a work . . . in
which a number of contributions, constituting separate and independent works in themselves, are as-
sembled into a collective whole’. GPLv2 does not make clear the distinction between covered ‘collective
works’ and uncovered ‘mere aggregations’.
	 76	 See section 3.1.4.2 of this chapter.
	 77	 See Free Software Foundation, ‘Frequently Asked Questions About the GNU Licenses’ <https://​
www.gnu.org/​licen​ses/​gpl-​faq.en.html#GPL​Stat​icVs​Dyna​mic> accessed 29 February 2020.
	 78	 See, e.g., Malcolm Bain, ‘Software Interactions and the GNU General Public License’ (2010) 2(2)
Journal of Open Law, Technology & Society 165, at 177.

90  P McCoy Smith

In the end, the GPLv2 licence in part depends on the degree of current ambi-
guity around the scope of derivative works (or, in other jurisdictions, the acts of
adapting/​arranging/​translating of copyrighted works). As more decisions are
rendered interpreting the scope of copyright in software—​such as, for example,
whether certain interfaces in software are copyrightable at all79—​or the specific
provisions of ‘work based on the Program’ under GPLv2, more clarity may be pro-
vided as to how broadly that licence applies to other programs that may work with
or around GPLv2 licensed code.

3.2.2.1.1.2 GPLv3  In 2007, the FSF published the GNU General Public License,
version 3.0 (GPLv3).80 GPLv3 was intended to modernise GPLv2 in several ways
considered to be important to the FSF, including: (i) ‘internationalising’ the lan-
guage to make it less US law-​centric; (ii) adding clearer and more specific condi-
tions and obligations around patent rights; and (iii) addressing certain behaviours
considered to be antithetical to software freedom, but which it was believed were
not addressed adequately in GPLv2.81

Many of the same rights and obligations that existed in GPLv2 were preserved in
GPLv3, albeit with slightly updated language; thus, much of the discussion of GPLv2
in section 3.2.2.1.1 earlier in this chapter would apply equally to GPLv3.82 GPLv3
does explicitly state that it intends to capture, under the obligation to provide source
code, ‘dynamically linked subprograms that the work is specifically designed to re-
quire’,83 thus making explicit in the licence text that which was only referenced in a
FSF FAQ for GPLv2—​that dynamic linking was considered by the FSF to require
the program so linked to be licensed under GPLv3. As discussed earlier in section
3.2.2.1.1 with reference to GPLv2, whether dynamic linking would—​under copy-
right law—​require the linked program to be licensed according to the terms of the
program to which it is linked is a matter of some dispute that is currently unresolved.

GPLv3 also attempts to address concerns raised by the passage of the Digital
Millennium Copyright Act (DMCA)84 in the US in 1998—​an Act not in effect

	 79	 See Section 3.1.3.1 above.
	 80	 GNU Operating System, ‘GNU General Public License’ <https://​www.gnu.org/​licen​ses/​gpl-​
3.0.html> accessed 29 June 2007.
	 81	 See Free Software Foundation, ‘GPLv3 First Discussion Draft Rationale’ (16 January 2006), <http://​
gplv3.fsf.org/​gpl-​ration​ale-​2006-​01-​16.pdf> accessed 13 April 2022.
	 82	 One change between GPLv2 and GPLv3 that may be merely a wording clarification to capture
international norms is that the licence obligations in GPLv3 are triggered upon ‘conveyance’, a defined
term which includes an embedded defined term, ‘propagation’, which term includes, but is not limited
to, distribution. See GPLv3, § 0. The definition of ‘propagation’ in GPLv3 references both direct and
secondary liability under copyright law, and thus attempts to capture acts that would only be infringing
on licensor’s rights upon acts by third parties. The legal effect of this definitional change is as-​yet un-
determined, although it likely is an attempt—​together with the definition of ‘Corresponding Source’ in
§ 1—​to cover dynamic linking.
	 83	 GPLv3, § 1.
	 84	 17 USC § 1201 (1999).

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  91

at the time of publication of GPLv2 in 1991. GPLv3 provides that no work cov-
ered by the licence may be deemed part of an effective technological protection
measure under any applicable law;85 since ‘technological protection measures’ is
a term from the DMCA, this provision is aimed squarely at that law and any re-
lated laws outside the US, attempting to allow copyright holders a right of action
against those circumventing various technical means designed to prevent access to
the copyrighted works, such as Digital Rights Management (DRM). Given all the
other obligations of GPLv3 to provide Complete Corresponding Source, as well
as to license under the terms of GPLv3, it is difficult to foresee scenarios where a
technological protection measure could be built into GPLv3 code to adequately
invoke the DMCA or related laws. Nevertheless, the drafters of GPLv3 were suffi-
ciently concerned that users might attempt to do so that they made explicit that it
was prohibited by that licence.

GPLv3 also includes a requirement intended to prevent certain hardware manu-
facturers from using GPLv3 code on their devices but including technical mech-
anisms in that hardware—​such as installation keys—​to prevent the hardware
user from modifying, installing, and running the GPLv3 code on that device. The
‘Installation Information’86 section of GPLv3 is complex and admits of several ex-
ceptions whereby a hardware maker would not be required to comply. Perhaps the
most important exception is that it only applies to a certain subsegment of hard-
ware devices, so-​called User Products. The definition of a ‘User Product’ for which
‘Installation Information’ must be provided under GPLv3 is derived from a defin-
ition in consumer protection laws in the US;87 the interpretive law surrounding
that consumer protection law—​and possibly corresponding consumer protection
laws outside the US—​is likely to guide a court in understanding the sorts of devices
to which that provision applies. For such products, encryption keys, hardware
checksums, or other technical information needed to install and operate modi-
fied GPLv3 software on such products would need to be provided as ‘Complete
Corresponding Source’.88

3.2.2.1.2  The GNU Lesser General Public Licence (LGPL) 
The FSF realised that in certain circumstances, it would not be pragmatic to license
all code under a ‘strong’ copyleft licence like one of the GPL licences. For example,
certain libraries might be of greater use, and enjoy greater adoption, if they did not
impose copyleft requirements on any program making use of that library. As a result,

	 85	 GPLv3, § 3.
	 86	 GPLv3, § 6.
	 87	 15 US Code § 2301(1) (1975).
	 88	 For a detailed explanation of how the ‘Installation Information’ requirement of GPLv3 works and
how it relates—​if at all—​to requirements in GPLv2, see P McCoy Smith, ‘ “Installation Information”,
GPLv2 and GPLv3: What is it and what must you provide?’ (27 September 2021) Linux Foundation
Open Source Summit <https://​www.yout​ube.com/​watch?v=​6W3L​BlkO​pDM&t=​2s> accessed 8
June 2022.

92  P McCoy Smith

the FSF created a licence—​initially named the ‘Library General Public License’ but
later changed to be called the ‘LGPL’—​designed to be a ‘weak’ copyleft version of
GPL. Like GPL, there exist two common versions in current use—​LGPLv2.1, and
LGPLv3. The text of LGPLv2.1 corresponds, with notable exceptions, to the text of
GPLv2, whereas the text of LGPLv3 corresponds, again with notable exceptions, to
GPLv3. As such, much of the discussion above with regard to GPLv2 and GPLv3
would apply to their counterpart LGPL versions.

The first exception—​found in both LGPLv2.1 and LGPLv3—​states that an appli-
cation may make use of the following header file elements of code licensed under
LGPL without the requirements of LGPL applying to that application: ‘numerical
parameters, data structure layouts and accessors, or small macros, inline functions
and templates (ten or fewer lines in length)’.89 This first exception recognises that
there may be a need for some limited use to be made of parts of those header files
in order for an application to interoperate (or to be statically linked) with the LGPL
code, but that such uses should not force the application itself to be subject to the
obligations of LGPL. This exception thus provides a form of a defined de minimus
or fair use/​fair dealing exception to the copyleft obligations of LGPL.

The second exception—​also found in both LGPLv2.1 and LGPLv3—​allows
the creation of ‘Combined Works’ (a work ‘produced by combining or linking’ an
application with the LGPL code, which Combined Work may be licensed under
‘terms of your choice’, i.e., any licence terms, not just LGPL).90 The only limitation
on this exception is that the ‘terms of your choice’ do not ‘effectively . . . restrict
modification of the portions of the Library contained in the Combined Work and
reverse engineering for debugging such modifications’, together with requiring
the source code for the LGPL portion of the Combined Work, and a notification
that LGPL applies to that portion. This second exception recognises that many li-
braries, or other commonly-​referenced software components, will need to be com-
bined together—​such as by linking—​and to oblige the entire combined work to be
licensed under LGPL would decrease the use of such libraries. Thus, the second
exception is designed to allow any licence choice (copyleft, permissive, or even pro-
prietary), as long as the recipient of the combined work has the ability to modify
and recombine the LGPL code, and to do effective debugging of the modified and
recombined code. This particular exception has never been tested in court, and
the FSF’s own frequently asked questions (FAQs) do not explain in detail how one
would need to present a non-​LGPL licensed combined work to a licensee, but at a
minimum, would require providing the source code for the LGPL part of that com-
bined work under LGPL, and at least ensuring that any facilities in the combined
work—​such as symbols used by symbolic debugging tools—​are not removed from
the object code of the application to which the LGPL part is linked.

	 89	 LGPLv2.1, § 5; LGPLv3, § 3.
	 90	 LGPLv2.1, § 6; LGPLv3, § 4.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  93

3.2.2.1.3  The GNU Affero General Public Licence (AGPL) 
The GNU Affero General Public Licence (AGPL) is the third licence in the GPL family
of licences maintained by the FSF. Its intent is to close the ‘ASP (application service
provider) loophole’ in GPL: namely, that because GPL’s obligations only apply to code
that is either distributed (GPLv2) or conveyed (GPLv3), entities offering Software as
a Service (‘SaaS’) under either GPLv2 or GPLv3, such that the software is accessed
by third parties—​but only over a network such that the code is never distributed to
them—​are not obliged to supply source code to those third parties. AGPL closes this
‘loophole’ by adding an additional condition triggering an obligation to provide source:

if you modify the Program, your modified version must prominently offer all
users interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding Source
of your version by providing access to the Corresponding Source from a network
server at no charge, through some standard or customary means of facilitating
copying of software.91

The AGPL exists in two versions: AGPLv1,92 which contains terms similar to
GPLv2 (but for the additional condition recited earlier) and AGPLv3, which con-
tains terms similar to GPLv3 (but for the additional condition recited earlier).
A more detailed description of AGPL and its effect on cloud computing and SaaS
can be found in Chapter 17.

3.2.2.1.4  Other copyleft licences: MPL and EPL 
Although there are but a few other Open Source licences that attempt to create a strong
copyleft effect, there are two very prominent other Open Source licences that create
a weak copyleft effect: The Mozilla Public License (MPL)93 and the Eclipse Public
License (EPL).94 Both of these licences are an effort—​similar to the effort made with
the Apache 2.0 license—​to address some perceived ambiguities or missing features in
LGPL, as well as to provide a clearer and more easy-​to-​use definition of the circum-
stances when non-​copyleft code can make use of code licensed under those licences.

The MPL exists in two versions—​MPLv1.195 and MPLv2.0.96 Both are weak
copyleft licences written by the Mozilla Foundation, with version 2.0 being an

	 91	 GNU Operating System, ‘GNU Affero General Public License, Version 3’, § 13, <https://​www.gnu.
org/​licen​ses/​agpl-​3.0.en.html> accessed 19 November 2007.
	 92	 Software Package Data Exchange (SPDX), ‘Affero General Public License v1.0 only’ <https://​spdx.
org/​licen​ses/​AGPL-​1.0-​only.html> accessed 11 March 2020.
	 93	 Mozilla Foundation, ‘Mozilla Public License’ <https://​www.mozi​lla.org/​en-​US/​MPL/​> accessed
11 March 2020.
	 94	 Eclipse Foundation, ‘Eclipse Public License—​v 2.0’ <https://​www.ecli​pse.org/​legal/​epl-​2.0/​> ac-
cessed 11March 2020.
	 95	 Mozilla Foundation, ‘Mozilla Public License Version 1.1’ <https://​www.mozi​lla.org/​en-​US/​MPL/​
1.1/​> accessed 11 March 2020 (MPLv1.0).
	 96	 Mozilla Foundation, ‘Mozilla Public License Version 2.0’ <https://​www.mozi​lla.org/​en-​US/​MPL/​
2.0/​> accessed 11 March 2020 (MPLv2.0).

94  P McCoy Smith

updated version having improved terminology. Like the Apache 2.0 license
versus the MIT and BSD licenses, MPL attempts to improve upon issues in
LGPL—​for example, by addressing patent rights via an express patent grant, in-
cluding defensive termination conditions for that grant, and by having more ro-
bust definitions and terms. The MPL licences are also an attempt to make a much
clearer, and easier to understand and use in practice, distinction between code
that must be copyleft and code that need not be. This distinction is set forth in the
definitions of ‘Modifications’ to the ‘Covered Software’ provided under MPL:97

‘ “Modifications” means any of the following: any file in Source Code Form that
results from an addition to, deletion from, or modification of the contents of
Covered Software; or any new file in Source Code Form that contains any Covered
Software.’ MPL also make clear that putting together such files into a ‘Larger
Work’ does not subject the entire result to the MPL: ‘ “Larger Work” means a work
that combines Covered Software with other material, in a separate file or files, that
is not Covered Software.98 . . . You may create and distribute a Larger Work under
terms of Your choice, provided that You also comply with the requirements of this
Licence for the Covered Software.’99

Although the file-​based distinction between that which must be MPL and
that which need not is likely to be much easier to navigate than the exceptions
to copyleft in LGPL, there is one potential ambiguity that bears a cautious ap-
proach: when creating a new file, designed to not be subject to MPL but intended
to work with it, MPL states that ‘Covered Software’ is defined as ‘Source Code
Form to which the initial Contributor has attached the notice in Exhibit A, the
Executable Form of such Source Code Form, and Modifications of such Source
Code Form, in each case including portions thereof ’.100 Note the degree of recur-
sion between the definition of ‘Covered Code’ and ‘Modifications’, where each
includes reference to the other. A file that is separate from Covered Code, but
which may need to reproduce elements (such as interfaces) in order to work with
that Covered Code, could be argued to thus fall within the obligation to license
that file only under MPL and to produce source code for that file. The Mozilla
Foundation attempts to clarify this issue in its FAQs:

Q11: . . . If I use MPL-​licensed code in my proprietary application, will I have to
give all the source code away?

No. The license requires that Modifications (as defined in Section 1.10 of the
license) must be licensed under the MPL and made available to anyone to whom
you distribute the Source Code. However, new files containing no MPL-​licensed

	 97	 MPLv2.0, § 1.10.
	 98	 MPLv2.0, § 1.7.
	 99	 MPLv2.0, § 3.3.
	 100	 MPLv2.0, § 1.4.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  95

code are not Modifications, and therefore do not need to be distributed under the
terms of the MPL, even if you create a Larger Work . . . . This allows, for example,
programs using MPL-​licensed code to be statically linked to and distributed as part
of a larger proprietary piece of software, which would not generally be possible under
the terms of stronger copyleft licenses.101

Given the statement about static linking in the MPL FAQs, it is certainly also the
case that dynamic linking of these files would not cause the MPL to attach to the
file so linked. The extent the FAQs would be dispositive on the issue of linking of
MPL and non-​MPL files has yet to be determined, although the fact that the li-
cence steward, the Mozilla Foundation, accepts this distinction is likely to be found
highly persuasive.

The EPL also exists in two versions—​EPLv1.0102 and EPLv2.0.103 Both are weak
copyleft licences written by the Eclipse Foundation, with version 2.0 being an up-
dated version having improved terminology. Like MPL, EPL attempts to improve
upon issues in LGPLv2.1: patent rights, patent defensive termination, and more ro-
bust definitions and terms. EPLv2.0 has a slight advantage over MPLv2.0 in that it
removes from the terms of the licence the ambiguity around including interfacing
code in order to allow non-​EPL-​licensed code to interoperate with EPL-​licensed
code:104

‘Modified Works’ shall mean any work in Source Code or other form that re-
sults from an addition to, deletion from, or modification of the contents of the
Program, including, for purposes of clarity any new file in Source Code form that
contains any contents of the Program. Modified Works shall not include works that
contain only declarations, interfaces, types, classes, structures, or files of the Program
solely in each case in order to link to, bind by name, or subclass the Program or
Modified Works thereof.105

	 101	 Mozilla Foundation, ‘MPL 2.0 FAQ’ <https://​www.mozi​lla.org/​en-​US/​MPL/​2.0/​FAQ/​> accessed
2 March 2020 (emphasis added).
	 102	 Eclipse Foundation, ‘Eclipse Public License—​v 1.0’ <https://​www.ecli​pse.org/​legal/​epl-​v10.html>
accessed 11 March 2020.
	 103	 Eclipse Foundation, ‘Eclipse Public License—​v 2.0’ <https://​www.ecli​pse.org/​legal/​epl-​2.0/​> ac-
cessed 11 March 2020 (EPLv2).
	 104	 The ambiguity present in MPLv2.0 also existed in EPLv1.0, which defined a ‘Contribution’ not
covered by the licence as ‘additions to the Program which: (i) are separate modules of software distrib-
uted in conjunction with the Program under their own licence agreement, and (ii) are not derivative
works of the Program’ (emphasis added). The reference back to the idea of derivative works begged
the question of whether the use of interfacing code that might legally result in the creation of a deriva-
tive work would curtail the exception and make EPLv1.0 closer to a strong copyleft licence. See Katie
Osborne, ‘License Profile: The Eclipse Public License’ (2015) 1(1) Journal of Open Law, Technology &
Society 1, at 6 <https://​jolts.world/​index.php/​jolts/​arti​cle/​view/​73/​211>.
	 105	 EPLv2.0, § 1 (emphasis added).

96  P McCoy Smith

In this way, EPLv2.0 makes much clearer the distinction between EPL and non-​
EPL files and acknowledges that in order for such files to work together there may
need to be reproduction of certain interfacing code from the EPL files. The defin-
ition of ‘Modified Works’ in EPLv2.0 thus acknowledges that such reproduction
does not spread the licence to that file.

3.2.2.1.5  ‘Weak copyleft’ exception practice 
In certain circumstances, authors have chosen to license their code under a strong
copyleft licence but have attempted to provide a particular weak copyleft effect to
enable certain uses of the code without imposing strong copyleft requirements on
that code. Two of the most notable examples of this is the so-​called sys call ex-
ception that is used with the Linux kernel (part of the GNU/​Linux operating
system) and the ‘runtime’ exception used with the GNU C+​+​ Compiler (GCC).
In each case, a version of GPL is used for the base code licence, but the authors
have included a notice (usually included immediately above the licence text, or in a
‘README’ file appended to the source code) to spell out that for certain uses, GPL
would not apply.

The Linux kernel, licensed under GPLv2, includes the following exception
(often called the ‘sys call’ or ‘system call’ exception), authored by the original au-
thor of that kernel, Linus Torvalds:

NOTE! This copyright does *not* cover user programs that use kernel services
by normal system calls—​this is merely considered normal use of the kernel, and
does *not* fall under the heading of ‘derived work’. Also note that the GPL below
is copyrighted by the Free Software Foundation, but the instance of code that it re-
fers to (the Linux kernel) is copyrighted by me and others who actually wrote it.106

In this way, the authors of the Linux kernel attempt to weaken some of the effect of
GPLv2 against their authored code by making clear that as authors, and therefore
granters of the licence, certain uses that other code might make of facilities in the
kernel, even if in the law of a relevant jurisdiction might be considered a deriva-
tive work subject to the requirements of GPLv2, are not considered so by those
authors. In this way, for this particular code, GPLv2 is turned into a weak copyleft
licence, but not using the definitions of exceptions to the licence that are used in,
inter alia, LGPL.

The GCC also uses an exception to specify that certain uses of the code from that
tool—​licensed under GPLv3—​do not spread the licence attached to that code.107

	 106	 <https://​git​hub.com/​torva​lds/​linux/​blob/​mas​ter/​LICEN​SES/​exc​epti​ons/​Linux-​sysc​all-​note> ac-
cessed 13 April 2022.
	 107	 GNU Operating System, ‘GCC Runtime Library Exception version 3.1’ (31 March 2009) <https://​
www.gnu.org/​licen​ses/​gcc-​except​ion-​3.1.en.html> accessed 13 April 2022.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  97

The wording of the exception itself is somewhat complex, but the intent of the ex-
ception is described before the text of that exception:

When you use GCC to compile a program, GCC may combine portions of certain
GCC header files and runtime libraries with the compiled program. The purpose
of this Exception is to allow compilation of non-​GPL (including proprietary)
programs to use, in this way, the header files and runtime libraries covered by this
Exception.108

The purpose of this exception is to prevent mere use of the tool to compile code
from causing the resulting compiled code to be GPL—​thus limiting the use of the
tool itself to only GPLv3 licensed programs.109

There are numerous other examples of software licensed under an Open Source
licence where the authors have granted some form of exception where certain uses
of their code are not obliged to comply with all or part of the terms of that licence;
it is good practice, when confronted with situations where a proposed use of Open
Source licensed software might result in a less than desirable licensing outcome (ei-
ther a licence conflict, or the requirement to use a licence that may be undesirable
in a particular usage case) to examine the source code repository to see if an author
exception has been granted.

3.3  Software Interaction and Licence Compatibility

3.3.1  The linking question

As described in section 3.1.4.1, linking—​either statically, before run-​time, or dy-
namically, during run-​time—​is a relatively common programing technique to
allow two or more software programs or modules to operate together or to be com-
bined. There has long been a debate about the effect of linking on programs licensed
using Open Source licences—​particularly copyleft licences.110 Some licences, like
Apache, attempt to make clear that irrespective of whether the law in a particular
jurisdiction would find a particular type of link to create a derivative work, cer-
tain forms of linking do not cause the licence to apply to the result. In that case, it
is relatively safe to assume that such an exception would be found controlling on
the question of applicability of the licence. Other licences, like GPLv3, attempt to
make clear that certain types of linking should be considered to create a derivative

	 108	 ‘GCC Runtime Library Exception version 3.1’ see note 111.
	 109	 GNU Operating System, ‘GCC Runtime Library Exception Rationale and FAQ’ <https://​www.
gnu.org/​licen​ses/​gcc-​except​ion-​3.1-​faq.html> accessed 11 March 2020.
	 110	 Bain, ‘Software Interactions and the GNU General Public License’, see note 83, at 177.

98  P McCoy Smith

work (or at least, to be governed by the terms of the licence) and therefore cause the
licence to apply to the result. Whether the courts in a particular jurisdiction would
find such a statement of intent applicable is an as-​yet unresolved issue.

There is also an important issue concerning the particular jurisdiction in
which the linking question is confronted. The term ‘derivative work’ has a statu-
tory meaning under US law, although it is subject to different interpretive tests at
the present, as discussed in more detail in section 3.1.4.2 earlier in this chapter. In
other jurisdictions such as those in the UK and EU, the analysis is not even that
clear-​cut, due to the lack of definition of the term.

3.3.1.1 � Other interaction issues: technical impediments
The Linux kernel, licensed under GPLv2 only, instituted—​in around 2002—​a
technical impediment intended to discourage the loading of LKMs at run-​time
which were not licensed under GPLv2 or a GPLv2 compatible licence.111 This
technical impediment issues an error message (‘Kernel is Tainted for following
reasons: Proprietary module was loaded’) when such a non-​GPLv2 compatibly li-
censed LKM is loaded by the kernel.112 In general, the community of Linux kernel
developers and maintainers believe that run-​time LKMs that are ‘proprietary’ (typ-
ically closed source, but this impediment would also display a message for LKMs
licensed under a non-​GPLv2-​compatible licence) should not be allowed, and
this technical impediment was intended to discourage the creation or use of such
LKMs.113 There have been efforts to circumvent this technical impediment in order
to allow the loading of proprietary LKMs without the display of the warning mes-
sage, although the reaction by the kernel maintainer community to such efforts is
decidedly negative if not hostile.114 Avoiding such impediments to allow proprietary
LKMs to load may also potentially run afoul of laws—​like the DMCA in the US—​
intended to prevent circumvention of technological impediments by way of DRM.

3.3.2  Specific compatibility issues

Navigating which of the many Open Source licences are compatible with one an-
other, and under what technical conditions and in which legal jurisdictions, is a
highly complex issue. The answer will depend at least in part on how two or more
pieces of software interact with one another, the extent to which interfaces or other

	 111	 Linux Kernel Mailing List (LKML), ‘The tainted message’ (26 April 2002), <http://​lkml.iu.edu/​
hyperm​ail/​linux/​ker​nel/​0204.3/​0428.html> accessed 13 April 2022.
	 112	 Linux Kernel, ‘The Linux kernel user’s and administrator’s guide: Tainted kernels’, <https://​www.
ker​nel.org/​doc/​html/​lat​est/​admin-​guide/​tain​ted-​kern​els.html> accessed 11 March 2020.
	 113	 Linux.com, ‘Tainted love: proprietary drivers and the Linux kernel’ (28 April 2004), <https://​
www.linux.com/​news/​tain​ted-​love-​prop​riet​ary-​driv​ers-​and-​linux-​ker​nel/​> accessed 13 April 2022.
	 114	 LKML, ‘Linuxant/​Conexant HSF/​HCF modem drivers unlocked’ (29 October 2004) <http://​
lkml.iu.edu/​hyperm​ail/​linux/​ker​nel/​0410.3/​2190.html> accessed 13 April 2022.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  99

code may need to be reproduced to facilitate that interaction, the specific wording
of the licences involved, and whether there are any exceptions granted by the au-
thors that might contemplate and except out from general licence conditions cer-
tain types of interactions. The discussion which follows attempts to summarise
these compatibility issues, but practitioners are cautioned that there are many dif-
ferent factors that need to be considered, and the law on, inter alia, copyrightability,
functional dictation/​merger doctrine, and fair dealing/​fair use continue to evolve,
and cases still being considered as of publication may significantly impact ques-
tions related to compatibility.

Table 3.2 is a graphical representation intended to summarise how the licences
discussed earlier are, are not, or may possibly be, compatible. A single-​headed
arrow represents ‘one way’ compatibility—​that is the licence at the start of the
arrow is compatible with the licence at the end of the arrow, but not vice versa;
and a double-​headed arrow represents ‘two way’ compatibility, that is the licences
are compatible in either direction. A solid line means compatibility in all circum-
stances, a dashed line means compatibility in certain circumstances, and a dotted
line means there is an unresolved debate about whether compatibility exists. An ‘X’
means there is no compatibility in either direction. Note that this chart does not
take into account that there may be some degree of compatibility in certain specific

Table 3.2  Compatibility between Certain Open Source Licences

GPLv2

GPLv3 X GPLv3

AGPLv3 X AGPLv3

LGPLv2.1 X LGPLv2.1

LGPLv3.0 X X LGPLv3.0

Mozilla Mozilla

Eclipse X X X Eclipse

BSD BSD

MIT MIT

Apache
2.0

X =​ Two-​way incompatibility
 =​ One-​way compatibility (in direction of arrow)
 =​ One-​way partial compatibility (in direction of arrow)

 =​ Two-​way compatibility

 =​ Two-​way partial compatibility

100  P McCoy Smith

circumstances as a result of author exceptions, as discussed in section 3.2.2.1.5
earlier, or licence statements that allow the user to receive the code under later ver-
sions of the licence, as discussed in section 3.3.2.1 which follows.

3.3.2.1 � ‘Strong’ copyleft licences
Those licences which are generally referred to as having ‘strong’ copyleft provi-
sions have the hallmark of imposing their terms on any downstream exercise of
the right to make modifications (or in the case of the US, create ‘derivative works’).
Because of this, attempting to interoperate ‘strong’ copyleft licensed code with
code that has any terms that might conflict with the terms in the ‘strong’ copy-
left licence, presents potential compatibility problems that puts the interoperating
code at risk of violating the ‘strong’ copyleft licence’s terms (as well as the terms for
the interoperating code). In this way, the strong copyleft licences (GPLv2, GPLv3,
AGPL) are generally incompatible with one another. There are a few exceptions to
this general rule. First, there has been a practice for a number of authors of code li-
censed under GPLv2 to include a statement that the code is licensed under ‘GPLv2
or any later version’.115 Code licensed under this form of a GPLv2 licence notice
is compatible with GPLv3; otherwise, code licensed under GPLv2 only (which
is the case with the Linux kernel)116 is incompatible with GPLv3, LGPLv3, and
AGPLv3.117 Second, the newer versions of the GNU family of licences were de-
signed to allow a certain degree of one-​way compatibility with one another; thus,
LGPLv3 may be combined with GPLv3 as long as the resulting combination is li-
censed GPLv3;118 similarly, AGPLv3 includes a provision that allows combinations
with GPLv3, as long as the resulting combination is licensed GPLv3.119 Third,
LGPLv2.1 includes a section stating that ‘You may opt to apply the terms of the or-
dinary GNU General Public License instead of this License to a given copy’ of code
licensed under LGPLv2.1;120 thus LGPLv2.1 is one-​way compatible with GPLv2
and GPLv3.

3.3.2.2 � ‘Weak’ copyleft licences
The weak copyleft licences tend to have limited compatibility. A weak copyleft li-
cence typically stipulates that derivative content must be licensed under that same
licence, but admits of articulated exceptions to that general rule.

	 115	 <https://​spdx.org/​licen​ses/​GPL-​2.0-​or-​later.html> accessed 13 April 2022.
	 116	 Kernel.org, ‘Working with the kernel development community: Linux kernel licensing rules’
<https://​www.ker​nel.org/​doc/​html/​lat​est/​proc​ess/​lice​nse-​rules.html> accessed 11 March 2020.
	 117	 Free Software Foundation, ‘Frequently Asked Questions about the GNU Licenses’ <https://​www.
gnu.org/​licen​ses/​gpl-​faq.en.html#AllCo​mpat​ibil​ity> accessed 3 March 2020 (the chart does not ad-
dress AGPLv3, but by the logic of GPLv3 incompatibility, AGPLv3 would be equally incompatible).
	 118	 FSF, ‘Frequently Asked Questions about the GNU Licenses’ see note 121.
	 119	 AGPLv3, § 13.
	 120	 LGPLv2.1, § 3.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  101

The MPL includes provisions, Sections 1.12 and 3.3, designed to allow combin-
ations with the GNU family of licences, such that combinations of the two would
be governed by the terms of the GNU-​family licence. Thus, MPL is one-​way com-
patible with GPLv2.1, GPLv3, LGPLv2.1, LGPLv3, and AGPLv3.121 With regard
to the EPL, depending on which version of MPL and EPL, and the way in which
code under MPL and EPL are designed to interoperate, there is the potential for
the licences to be compatible; this is primarily an issue of whether the code is main-
tained in separate files, as discussed in more detail in section 3.2.2.1.4 earlier in this
chapter.

The EPL, in contrast, does not include a provision designed to allow compati-
bility with the GNU family of licences; thus the EPL is incompatible with all of
GPLv2.1, GPLv3, and AGPLv3.122 With respect to LGPLv2.1 and LGPLv3, it is pos-
sible to construct an interaction between code under EPL and one of the LGPL
licences, as long as doing so falls within the exceptions in both licences discussed in
more detailed in sections 3.2.2.1.2 and 3.2.2.1.4 earlier.

Finally, LGPLv2.1 would normally be considered incompatible with LGPLv3,
for many of the same reasons that GPLv2 is considered incompatible with GPLv3.
However, LGPLv2.1 includes a provision that allows re-​licensing of LGPLv2.1 code
under GPLv2 or any later version of that licence.123 LGPLv3 includes a similar pro-
vision.124 Thus, LGPLv2.1 and LGPLv3 can be made compatible, but the result
would be licensing under GPLv3.125

3.3.2.3 � MIT and BSD
Few complications arise with respect to compatibility between and with the per-
missive licences; indeed, it is a feature of these licences to provide broad compati-
bility. Copying and linking (which would appear to fall within the broad grant of
rights in these licences) are broadly permitted by MIT and BSD, with only minimal
requirements. Thus, as shown in Table 3.2, both of these licences are one-​way com-
patible with all the Open Source licences discussed above, and are two-​way com-
patible with each other and with Apache.

3.3.2.4 � Apache
The Apache License also has a goal of being highly permissive and broadly compat-
ible, in the same way as MIT and BSD. In most instances, as shown in Table 2 above,

	 121	 Free Software Foundation, ‘Various licenses and comments about them’ <https://​www.gnu.org/​
licen​ses/​lice​nse-​list.html#MPL-​2.0> accessed 11 March 2020.
	 122	 Free Software Foundation, ‘Various licenses and comments about them’ <https://​www.gnu.org/​
licen​ses/​lice​nse-​list.html#EPL> accessed 11 March 2020.
	 123	 LGPLv2.1, § 3.
	 124	 LGPLv3, § 2b.
	 125	 Free Software Foundation, ‘Frequently Asked Questions about the GNU licenses’ <https://​www.
gnu.org/​licen​ses/​gpl-​faq.en.html#AllCo​mpat​ibil​ity> accessed 11 March 2020.

102  P McCoy Smith

the Apache License achieves that goal—​being one-​way compatible with most of
the licences discussed above, and two-​way compatible with MIT and BSD.

The Apache License does present a complication with regard to the GNU family
of licences. The FSF has stated that the Apache 2.0 license is incompatible with
GPLv2.126Although the ASF disagrees with this assessment, it nevertheless states
that with regard to use of GPLv2, ‘you should always try to obey the constraints
expressed by the copyright holder when redistributing their work’.127 This incom-
patibility introduces certain complications in architecting software stacks that may
include Apache 2.0 and GPLv2 code (in particular, the Linux kernel of the GNU/​
Linux operating system, which is licensed under GPLv2 only), and could very well
be the reason why the more recent, and more carefully drafted, Apache 2.0 license
has not supplanted the continued popularity of the BSD and MIT licences as de
facto choice when selecting a permissive licence. Note that this incompatibility
does not exist for the later generations of the GNU family of licences—​GPLv3,
LGPLv3, and AGPLv3—​as it was an express goal during the process of updating
those licences to allow them to be Apache License one-​way compatible.128 Thus,
as reflected in Table 3.2, the Apache License is arguably one-​way compatible with
GPLv2, partially one-​way compatible with LGPLv2.1, and fully one-​way compat-
ible with GPLv3, LGPLv3, and AGPLv3.

3.4  Interpreting Open Source Licences:
Contract or ‘Bare Licence’?

Although a discussion of specific enforcement cases and issues are described and
analysed in detail in Chapter 5, there has been a long-​standing debate amongst
Open Source licence drafters, users, and potential enforcers over the question of
whether such licences operate as ‘bare licences’, or should be interpreted and en-
forced as contracts. This question can be thought of—​until very recently—​as sig-
nificantly academic, and much of the debate has been in academic circles but is
nonetheless important when a particular author is (i) choosing a licence for their
work, or (ii) considering enforcing that licence against another person or entity
which they believe to be failing to comply with its terms. Although there is as yet
no definitive answer to this debate—​and in fact, the answer may be dependent
upon the particular licence being enforced, and possibly the jurisdiction in which

	 126	 See FSF Licence Comments, see note 59, <https://​www.gnu.org/​licen​ses/​lice​nse-​list.html#apac​
he2>. Note that by the logic used in the FSF’s commentary on the Apache 2.0 licence, Apache 2.0 would
likely be also incompatible with the Affero GPLv1.0 licence, and partially incompatible with the Lesser
GPLv2.1 licence.
	 127	 Apache Software Foundation, ‘GPL compatibility’ <https://​www.apa​che.org/​licen​ses/​GPL-​
compat​ibil​ity.html> accessed 10 March 2020.
	 128	 Brett Smith, ‘A Quick Guide to GPLv3’ <https://​www.gnu.org/​licen​ses/​quick-​guide-​gplv3.html>
accessed 11 March 2020.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  103

enforcement is contemplated—​the trend in adjudication would appear to be sup-
portive of the bare licence theory of licence interpretation and enforcement, or
indeed possibly that either theory could be pursued by an author of software li-
censed under an Open Source licence, in the event they desire to engage in licence
enforcement.

3.4.1  Open Source licences as bare licences

It has long been the position of the FSF that the licences over which it exercises
stewardship operate as ‘bare licences’.129 Under this theory, the author grants a uni-
lateral permission, under the IP rights either expressly enumerated in the licence
text, or impliedly granted as a result of the structure and text of the licence and con-
ditions under which it was granted, to engage in activities the author would other-
wise have exclusive rights to practice.

Thinking of Open Source licences—​or at least those licences that do not expli-
citly present themselves as contracts between the author(s) and licensee(s)—​as
mere unilateral permission from the author to each particular user, provides some
potentially advantageous benefits to the author(s). First, the necessity to worry
about the fundamental requirements for establishing the existence of a contract—​
offer, acceptance, consideration, intent, certainty, and completeness130—​need not
be established in order to pursue a violator, nor may privity of contract with the
particular violator need be established. Second, given the numerous variations in
rules governing contract law (which, for example, are analysed state-​by-​state in
the US), viewing an Open Source licence as merely a permission under certain IP
rights which—​if not followed—​result in a claim for violation of those rights, may
allow the application of more uniform law, and provide more flexibility and ease in
pursuing remedies, than pursuing relief under contract.131

The trend of enforcement and judicial interpretation of Open Source software
licences suggests that the bare licence theory of Open Source licence interpretation
and enforcement is valid, and may be preferable to those authors wishing to exer-
cise their right of enforcement against accused licence violators.

The Jacobsen v Katzer132 case in the US led the way—​at least in common law
jurisdictions—​in validating the bare licence theory of Open Source software

	 129	 See Eben Moglen and Richard Stallman, ‘Transcript of Opening Session of the First International
GPLv3 Conference’, 16 January 2006 <http://​www.ifso.ie/​docume​nts/​gplv3-​lau​nch-​2006-​01-​16.html>
accessed 16 January 2020. Eben Moglen, ‘Enforcing the GNU GPL’ (10 September 2001), <https://​www.
gnu.org/​phi​loso​phy/​enforc​ing-​gpl.html> accessed 28 February 2020.
	 130	 Catharine MacMillan and Richard Stone, ‘Elements of the law of contract’ (2012) University of
London International Programmes, <https://​www.dphu.org/​uplo​ads/​attac​heme​nts/​books/​books​_​407​
1_​0.pdf> accessed 13 April 2022.
	 131	 See GPLv3 Transcript, note 28.
	 132	 Jacobsen v Katzer, 535 F.3d 1373 (Fed. Cir. 2008).

104  P McCoy Smith

licensing. The Jacobsen case involved enforcement of the terms of the Artistic
Licence,133 a permissive licence that includes obligations to include attribution
notices and to identify modifications made. The defendant used code licensed by
the plaintiff under the Artistic License, but failed to provide attribution or identify
modifications. According to the District Court in Jacobsen, defendant’s violation
of the requirements of the Artistic License constituted a breach of contract, rather
than use of the plaintiff ’s copyrights outside of the conditions of the licence and
thus copyright infringement.134 The Court of Appeals for the Federal Circuit over-
ruled the District Court’s ruling, holding that the requirements of Artistic License
were not independent contractual covenants but merely conditions attached to
the copyright grant. Because the defendant’s actions had gone beyond the scope of
the licence—​by failing to comply with the fairly minimal conditions of the Artistic
License—​an action for copyright infringement could be brought by the author, and
remedies for copyright infringement could be sought.135

Given the similarity in the grants and conditions between the Artistic License
and the BSD and MIT Licenses, it would seem likely that at least those licences
would also be interpreted to operate as bare licences, at least in the US, under the
reasoning of the Jacobsen v Katzer decision. As noted earlier, the FSF—​stewards of
the GNU family of licences—​has long advocated that those licences are also bare
licences and not contracts, and commentators have acknowledged that that may
be a viable interpretation of those licences.136 Although there is no clear UK case
regarding the bare licence versus contract issue concerning Open Source licensing,
some commentators believe the rationale of Jacbosen v Katzer would equally apply
there.137

Civil law jurisdictions also appear to generally accept the bare licence theory as
at least one way to interpret Open Source licences.138 A recent decision of the ECJ,
upon appeal of a decision emanating from France, seems to bear out the theory

	 133	 Ironically, given that this case is perhaps the most consequential decisions interpreting the obli-
gations of an Open Source licence, it involves one of the least popular Open Source licences. See Ben
Balter, ‘Open Source License Usage of GitHub.com’ The GitHub Blog (9 March 2015), <https://​git​hub.
blog/​2015-​03-​09-​open-​sou​rce-​lice​nse-​usage-​on-​git​hub-​com/​> accessed 3 February 2021 (showing the
Artistic Licence as the seventh most used of sixteen open source licences on GitHub).
	 134	 Jacobsen v Katzer, No. 06-​CV-​01905 JSW, 2007 WL 2358628 (N.D.Cal. 17 August 2007).
	 135	 Jacobsen v Katzer, 535 F.3d 1373 at 1381–​3 (Fed. Cir. 2008).
	 136	 Mark Henley, ‘Jacobsen v Katzer and Kamind Associates—​An English Legal Perspective’ (2009)
1(1) Journal of Open Law, Technology and Society 41, at 43 (2009); Noah Shemtov, ‘FOSS License: Bare
License or Contract’, presentation available at <https://​web.ua.es/​es/​contra​tos-​id/​doc​umen​tos/​iti​pupd​
ate2​011/​shem​tov.pdf> accessed 12 March 2020.
	 137	 Shemtov, ‘FOSS License: Bare License or Contract’, see note 140.
	 138	 German cases include Welte v Sitecom Deutschland GmbH, District Court of Munich, 19 May
2004, case 21 O 6123/​04; Welte v Skype Technologies S A, District Court of Munich, 12 July 2007, case 7
O 5245/​07. A French case, EDU 4 v AFPA, Cour d’Appel de Paris, Pole 5, Chambre 10, no: 294, discusses
GPL although not in detail. See Martin von Willebrand, ‘Case Law Report: A Look at EDU 4 v. AFPA,
also Known as the “Paris GPL case” ’ (2009) 1(2) Journal of Open Law, Technology and Society 123, at
123–​26.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  105

that a copyright licence violation can indeed be pursued whether or not there may
be a contractual basis for a claim against the licence violator:

According to Article 2(1) of Directive 2004/​48 [of the European Parliament
and of the Council of 29 April 2004 on the enforcement of intellectual property
rights], that directive applies to ‘any infringement of intellectual property rights.’
It is apparent from the wording of that provision, in particular from the adjective
‘any’, that that directive must be interpreted as also covering infringements re-
sulting from the breach of a contractual clause relating to the exploitation of an
intellectual property right, including that of an author of a computer program.139

3.4.2  Open Source licences as contracts

There is a relatively robust line of argument that Open Source licences—​or at least
a selected subset of Open Source licences—​operate as valid contracts between the
authors of the licensed code and the recipients of that code.140 Others have argued
to the contrary:

A contract . . . is an exchange of obligations, either of promises for promises, or
of promises of future performance, for present performance, or payment. The
idea that ‘licenses’ to use patents or copyrights must be contracts is an artefact of
twentieth-​century practice, in which licensors offered an exchange of promises
with users: ‘We will give you a copy of our copyrighted work,’ in essence, ‘if you
pay us and promise to enter into certain obligations concerning the work.’141

As discussed earlier, several of the more commonly-​used Open Source licences are
likely to be evaluated as bare licences—​if the author chose to present that theory to
a judicial tribunal—​although the interpretive decisions validating that theory do
not preclude an author from also pursuing a claim for breach of contract.

 At least one court has interpreted GPLv2 under a contractual analysis and
has rejected the application of a ‘bare licence’ theory for enforcement of that li-
cence. In the French court decision in Entre’Ouvert v Orange,142 the court—​in

	 139	 IT Development SAS v Free Mobile SAS, ECLI:EU:C:2019:1099 (Fifth Chamber, CJEU, 18
December 2019). Compare that decision to the outcome in Entre’Overt v Orange, Tribunal de grande
instance (TGI) of Paris, 3rd chamber, 3rd section (21 June 2019), discussed in section 3.4.2 below.
	 140	 See Robert W Gomulkiewicz, ‘How Copyleft Uses License Rights to Succeed in the Open Source
Software Revolution and the Implications for Article 2B’ (1999) 36 Houston Law Review 179, at 194;
Rosen, ‘Open Source Licensing’, see note 67, at 57–​66.
	 141	 Eben Moglen, quoted in Pamela Jones, ‘The GPL is a License, Not a Contract’ lwn.net (3 December
2003) <https://​lwn.net/​Artic​les/​61292/​> accessed 2 March 2020.
	 142	 Entre’Ouvert v Orange, Tribunal de grande instance (TGI) of Paris, 3rd chamber, 3rd section (21
June 2019) <https://​www.lega​lis.net/​jur​ispr​uden​ces/​tgi-​de-​paris-​3eme-​ch-​3eme-​sect​ion-​jugem​ent-​
du-​21-​juin-​2019/​> accessed 8 June 2022.

106  P McCoy Smith

interpreting a claim of failure to follow the requirements of GPLv2—​stated that
because Entre’Ouvert was seeking compensation for damage caused by Orange’s
failure to perform obligations in GPLv2—​specifically providing source code—​the
defendant was not operating outside of the GPLv2 license and as a result the only
claim Entre’Ouvert could pursue was under French contract law, for a contractual
breach of the requirements of GPLv2.143 This decision would appear to be conflict
with the ECJ’s interpretation of French law in IT Development SAS v Free Mobile
SAS,144 despite the Entre’Ouvert decision being issued previously, but which was
not cited in the IT Development decision. The extent to which this conflict will be
resolved, and its effect on potential enforcement actions in France, have not yet
been clearly established.

 In 2021, a lawsuit was filed in the US with the intent of definitively establishing
not only a contract theory for the GPL family of licences, but also to open up the pos-
sibility that recipients of Open Source—​rather than just authors of Open Source—​
could enforce the terms of those licences. In Software Freedom Conservancy, Inc.
v Vizio, Inc.,145 a lawsuit was filed—​in the state courts of California—​to enforce
GPLv2 based on allegations that ‘complete corresponding source’ had not been
provided to purchasers of products sold by Vizio containing GPLv2 binaries.146
The Software Freedom Conservancy, as one of the purchasers, asserted it was a
third-​party beneficiary of the contractual right in GPLv2 to receive source code,
and therefore had the right to sue to enforce that licence.147 In response, Vizio at-
tempted to have that lawsuit ‘removed’ (transferred) from state court to US federal
court, arguing that any violation of GPLv2 may only be pursued as a claim of copy-
right infringement, which are heard exclusively in US federal courts.148 The fed-
eral court decided that violations of the obligation to provide source under GPLv2
could be pursued as a matter of contract law, and therefore US state courts could
decide such claims under state contract law.149 Thus, at least in the US, the potential
for pursuing GPL violation claims as copyright infringements, in US federal courts,
and as contract breaches, in US state courts, may be a possibility—​depending on
the eventual outcome of the Vizio litigation.

At least some Open Source licences intentionally present themselves as con-
tracts as well as licences.150 At a minimum, the most popular Open Source licences

	 143	 Entre’Ouvert v Orange, note 146.
	 144	 IT Development SAS v Free Mobile SAS, ECLI:EU:C:2019:1099 (Fifth Chamber, CJEU).
	 145	 Case No. 30-​2021-​01226723-​CU-​BC-​CJC (Cal. Super. Ct., Orange County, filed 19 October
2021) (Vizio state case).
	 146	 Vizio state case, note 149, Complaint at paras 48–​77.
	 147	 Vizio state case, note 149, Complaint at paras 87–​126.
	 148	 Software Freedom Conservancy, Inc. v Vizio, Inc. Case No. 8:21-​cv-​01943, Notice of Removal of
Action to Federal Court (C. D. Cal. 29 November 2021) (Vizio federal case).
	 149	 Vizio federal case, note 152, Order Granting Plaintiff ’s Motion for Remand (C. D. Cal. 13
May 2022).
	 150	 Rosen, ‘Open Source Licensing’, see note 67, at 59 (discussing the Academic Free License and the
Open Software License).

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  107

do not explicitly preclude an interpretation that they could be enforced as bare li-
cences, but only as contracts. Given the weight of both enforcement theories, and
judicial decisions to date, it seems clear that the contract theory could remain a
minority theory of Open Source software licensing interpretation, and is unlikely
to a majority theory of license enforcement absent a significant decision calling
into question the application of the bare licence theory to particular licences or in
particular jurisdictions.

3.5  What Makes a Software Licence ‘free’ or ‘open source’?

Although this volume refers to ‘free and open source licences collectively as open
source, that use does not necessarily represent a unitary concept. ‘Free and open
source’ licensing actually represent two different, but significantly coextensive,
classes of licences: ‘free’ software licences, and ‘open source’ software licences.

3.5.1  Free software licences

The class of ‘free’ software licences is typically recognised as those licences that
meet the Free Software Definition (FSD),151 as maintained by the FSF, and that
have been validated by the FSF and added to their list of free software licences.152
The FSD is a four-​part test against which licences are measured to determine if they
promote the FSF’s concept of ‘software freedom’:

	 •	 The freedom to run the program as you wish, for any purpose (freedom 0).
	 •	 The freedom to study how the program works, and change it so it does your

computing as you wish (freedom 1). Access to the source code is a precondi-
tion for this.

	 •	 The freedom to redistribute copies so you can help others (freedom 2).
	 •	 The freedom to distribute copies of your modified versions to others (freedom

3). By doing this you can give the whole community a chance to benefit from
your changes. Access to the source code is a precondition for this.153

The FSF’s ‘four freedoms’ are the minimum standards necessary for a particular
software licence to be considered a ‘free software’ licence; as the FSF states:

	 151	 GNU Operating System, ‘What is free software? The Free Software Definition’ <https://​www.gnu.
org/​phi​loso​phy/​free-​sw.html.en> accessed 4 February 2021.
	 152	 GNU Operating System, ‘Various licenses and comments about them: software licenses’ <https://​
www.gnu.org/​licen​ses/​lice​nse-​list.html#Softw​areL​icen​ses> accessed 4 February 2021.
	 153	 FSD, see note 146.

108  P McCoy Smith

[C]‌riteria such as those stated in this free software definition require careful
thought for their interpretation. To decide whether a specific software license
qualifies as a free software license, we judge it based on these criteria to determine
whether it fits their spirit as well as the precise words. If a license includes uncon-
scionable restrictions, we reject it, even if we did not anticipate the issue in these
criteria. Sometimes a license requirement raises an issue that calls for extensive
thought, including discussions with a lawyer, before we can decide if the require-
ment is acceptable. When we reach a conclusion about a new issue, we often up-
date these criteria to make it easier to see why certain licenses do or don’t qualify.154

The FSF maintains an extensive list of software licences that it has determined,
based on the criteria discussed earlier, meet its standards in order to qualify as
a ‘free software’ licence, as well as a list of licences which it has determined are
‘non-​free’ because they fail these criteria.155 The ‘free software’ licences are subdiv-
ided in two categories: ‘free software’ licence that are ‘GPL-​compatible’ and those
that are ‘GPL-​incompatible’.156 The measure of GPL compatibility is determined
by evaluating whether the licence in question is one-​way compatible with GPL.157
GPL compatibility is an important criterion for the FSF, as the FSF promotes the
GPL as the optimal licence for software freedom.158

There is no formal process for validating that a licence is a ‘free software’ licence
and therefore to add a licence to the FSF’s list of ‘free software’ licence; licences may
be submitted via email to the FSF, but there is no formal review process or timeline
specified by the FSF for making such decisions or adding licences to its lists.159

3.5.2  Open source software licences

The class of ‘open source’ software licences is recognised as those licences that meet
the Open Source Definition (OSD), as maintained by the OSI, and that have been
validated by an approval process run by the OSI. The OSD is a ten-​part test against
which licences are measured to determine if are ‘open source’:

	 1.	 Free Redistribution
		 The license shall not restrict any party from selling or giving away the soft-

ware as a component of an aggregate software distribution containing

	 154	 FSD, see note 146.
	 155	 FSF Software License List, see note 147.
	 156	 FSF Software License List, see note 147.
	 157	 GNU Project, ‘What does it mean to say a license is “compatible with the GPL?” ’ <https://​www.
gnu.org/​licen​ses/​gpl-​faq.html#Wha​tDoe​sCom​patM​ean> accessed 5 February 2021.
	 158	 GNU Project, ‘Why you shouldn’t use the Lesser GPL for your next library’ <https://​www.gnu.
org/​licen​ses/​why-​not-​lgpl.html> accessed 5 February 2021.
	 159	 FSF Software License List, see note 147.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  109

programs from several different sources. The license shall not require a roy-
alty or other fee for such sale.

	 2.	 Source Code
		 The program must include source code, and must allow distribution in

source code as well as compiled form. Where some form of a product is
not distributed with source code, there must be a well-​publicized means
of obtaining the source code for no more than a reasonable reproduction
cost, preferably downloading via the Internet without charge. The source
code must be the preferred form in which a programmer would modify the
program. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

	 3.	 Derived Works
		 The license must allow modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original
software.

	 4.	 Integrity of The Author’s Source Code
 		 . . . The license must explicitly permit distribution of software built from

modified source code. . . .
	 5.	 No Discrimination Against Persons or Groups
		 The license must not discriminate against any person or group of persons.
	 6.	 No Discrimination Against Fields of Endeavor
		 The license must not restrict anyone from making use of the program in a

specific field of endeavor. . . .
	 7.	 Distribution of License
		 The rights attached to the program must apply to all to whom the program

is redistributed without the need for execution of an additional license by
those parties.

	 8.	 License Must Not Be Specific to a Product
		 The rights attached to the program must not depend on the program’s being

part of a particular software distribution. . . .
	 9.	 License Must Not Restrict Other Software
		 The license must not place restrictions on other software that is distributed

along with the licensed software. . . .
	 10.	 License Must Be Technology-​Neutral
		 No provision of the license may be predicated on any individual technology

or style of interface.160

The OSI maintains an extensive list of software licences that it has determined,
based on the criteria discussed earlier, meet its standards in order to qualify as an

	 160	 Open Source Initiative, ‘The Open Source Definition’ <https://​ope​nsou​rce.org/​osd> accessed 5
February 2021.

110  P McCoy Smith

‘open source’ licence.161 The list is sorted into one sub categorisation, established
by the OSI, so as to identify licences that are ‘are popular, widely used, or have
strong communities’, as well as other subcategories of licences that do not meet that
test.162 The ‘popular, widely used, or have strong communities’ licences as identi-
fied by the OSI are:

	 •	 Apache License 2.0
	 •	 BSD 3-​Clause and BSD 2-​Clause Licenses
	 •	 All versions of GPL
	 •	 All versions of LGPL
	 •	 MIT License
	 •	 Mozilla Public License 2.0
	 •	 Common Development and Distribution License (CDDL)
	 •	 Eclipse Public License version 2.0

Unlike the ‘free software’ licence list maintained by the FSF, the OSI has a formal,
documented process for submitting, evaluating, and approving licences to add
to the list of ‘open source’ licences.163 Licence submitters are requested to pro-
vide the following information concerning the licence for which they request OSI
approval:

	 •	 Rationale: Clearly state rationale for a new license
	 •	 Distinguish: Compare to and contrast with the most similar OSI-​approved

license(s)
	 •	 Legal review: Describe any legal review the license has been through, and pro-

vide results of any legal analysis if available
	 •	 Proliferation category: Recommend which license proliferation category is

appropriate164

The process itself is administered using a mailing list through which OSI members
may submit comments, criticisms, or suggested changes regarding submitted li-
cences, after which the OSI board conducts a vote as to whether a submitted licence
should be added to the OSI ‘open source’ licence list, or other alternative actions
are taken:

	 161	 Open Source Initiative, ‘[Open Source] Licenses by Name’ <https://​ope​nsou​rce.org/​licen​ses/​
alpha​beti​cal> accessed 5 February 2021.
	 162	 Open Source Initiative, ‘[Open Source] Licenses by Category’ <https://​ope​nsou​rce.org/​licen​ses>
accessed 5 February 2021.
	 163	 Open Source Initiative, ‘The License Review Process’ <https://​ope​nsou​rce.org/​appro​val> ac-
cessed 5 February 2021.
	 164	 OSI License Review Process, see note 158.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE  111

	 •	 Defer for another 30-​day discussion cycle, if community discussion of con-
formance of the license to the OSD remains active.

	 •	 Approve if, after taking into consideration community discussion, the OSI
determines that the license conforms to the OSD and guarantees software
freedom. A license may be approved on the condition that a change be made,
but in general a license requiring changes will have to be resubmitted.

	 •	 Reject if (a) the OSI determines that the license cannot practically be rem-
edied to adequately guarantee software freedom, or (b) there is sufficient
consensus emerging from community discussion that the license should be
rejected for substantive reasons, or (c) the license is problematic for non-​
substantive reasons (for example, it is poorly drafted or significantly duplica-
tive of one or more existing OSI-​approved licenses).

	 •	 Withhold approval, if (a) the OSI determines that approval would require re-
working the license and (b) the license submitter appears willing and able to
revise the license constructively.165

Although the OSI licence review process is open and relatively transparent, it has
not been without controversy in some circumstances, and submitters have with-
drawn licences from approval that they maintain are conformant with the OSD but
which have encountered opposition during the approval process.166

3.6  Conclusion

Although the applicability of copyright to software—​in any form that it may take—​
is by now well-​established, and despite the over thirty-​year history of Open Source
licensing, there remain many unresolved questions about how software copyright
should be analysed legally, or how certain aspects of Open Source software licences
would be found to operate, if put to the test via court or other challenges.

Chapter 5 addresses the enforcement cases that have been pursued, and this
chapter gives an overview of that which is—​at the present—​known about the oper-
ation of Open Source licences alone, or together with other licences.

Practitioners attempting to give advice on complex questions of licence inter-
pretation in view of particular software programing and architectural scenarios
should be cautious to appreciate that many questions remain unanswered, and
the views expressed by many commentators can diverge, sometime quite radic-
ally. In addition, the answer to certain thorny questions about, for example, under

	 165	 OSI License Review Process, see note 158.
	 166	 Elliot Horowitz, ‘Approval: Server Side Public License, Version 2 (SSPL v2)’ (9 March 2019) <http://​
lists.ope​nsou​rce.org/​piperm​ail/​lice​nse-​revie​w_​li​sts.ope​nsou​rce.org/​2019-​March/​003​989.html> accessed
5 February 2021.

112  P McCoy Smith

what conditions a copyleft licence imposes its obligations on other software may
be highly dependent upon the exact wording of that licence, the general state of
copyright law interpretation both internationally, and nationally in the particular
jurisdiction in which the software is being used, and the extent to which a deciding
or interpreting body views the terms of that licence as the mere grant of enumer-
ated copyright rights subject to certain conditions, or a reciprocal licence between
the authors of the copyleft licensed code and the authors of the other software code.
There are a handful of decided cases, in both the US and EU, which give some gen-
eral guidance about how these issues might be resolved, but there is much room
for additional decisions which could very well upend the way that Open Source
licences are interpreted, and used in practice, today.

Jilayne Lovejoy, Contributor Agreements In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Jilayne Lovejoy 2022. DOI: 10.1093/​oso/​9780198862345.003.0004

4
Contributor Agreements

Jilayne Lovejoy

	4.1	� Project Licence Agreements � 113
	4.2	� Types of Inbound Agreements for

Open Source Projects� 114
		 4.2.1	� Inbound =​ outbound � 114
		 4.2.2	� Developer’s Certificate

of Origin � 116

		 4.2.3	� Contributor Licence
Agreements � 117

		 4.2.4	� Copyright assignment � 120
	4.3	� Employee Contributions � 121
	4.4	� Practical Advice � 123
		 4.4.1	� Best approach? � 123

  

4.1  Project Licence Agreements

From a legal perspective, regardless of how the project is organised or governed,
there are two licences or agreements for every Open Source project.

‘Inbound’ refers to the licence or agreement under which contributions are
made to the Open Source project.

‘Outbound’ refers to the licence under which end-​users use the Open Source
project.

As used here, the terms inbound and outbound are relative to the Open Source
project.

There may be other licences for other content related to the project like docu-
mentation or data, but for our purposes here, we are discussing the licences or
agreements as related to the code.

Chapter 3 considered outbound Open Source licences in detail and further
chapters will discuss details regarding compliance and other aspects of those li-
cences. These outbound licences for Open Source projects are, ostensibly, what
makes the software ‘free and open’.

However, if there is more than one person or entity working on an Open Source
project, then there must be some legal understanding as to the inbound agreement
governing contributions to the project. Recall that code can be assumed to have
copyright and that restricts the use of a work (code) unless explicit permission is
given, which amounts to a licence to use the code whether in writing or not. No use
can be made without a licence or a transfer of the right of the creator. Thus, in order
for the open collaborative model to work, the copyrightable code contributions

114  Jilayne Lovejoy

made to the project must be accompanied by a licence or some other transfer of
rights. Without this the project would not be able to use those contributions.

A successful Open Source project will have contributors who must have clarity
as to what the project can do (or not do) with their contributions. Likewise, con-
tributors to a project should have clarity as to what rights they are giving the project.

Choosing an inbound licence, is more than a legal exercise. The Open Source
movement was born from developers and engineers, not lawyers. Successful Open
Source software projects approach licensing decisions within the larger context of
the values, perspectives, and common practices of their community.

4.2  Types of Inbound Agreements for Open Source Projects

4.2.1  Inbound =​ outbound

‘Inbound=​outbound’ refers to when contributions are accepted by the project
under the same licence as the project’s outbound licence. The contributor grants a
licence to the project and each recipient of their contribution to the project under
the same terms and conditions as the licence which users receive the project.

Copyright ownership remains with each contributor as this is a licence not an
assignment. This distinction is often confused and sometimes the document titled,
‘contributor licence agreement’ (CLA), may be used on documents which are in
fact assignments and vice versa. On that basis, it is important to inspect the actual
document terms closely. A licence means that the contributor retains the owner-
ship of the code and has the ability to do as they wish with the same code outside of
the project, including licensing the same contribution code to someone else under
a different licence.

Using the same licence for inbound and outbound provides a clean and equal
set of rights coming into the project and going out, removing the need to ana-
lyse differences between inbound and outbound rights for discrepancies or
inconsistencies.

Although there are no reliable statistics on inbound licensing to Open Source
projects currently available, inbound =​ outbound is considered by far the most
widely used and was the default for early Open Source projects. The model was
so ubiquitous that the need for it to be named did not arise and the term ‘in-
bound =​ outbound’ was not coined until around 2010, when Richard Fontana,
legal counsel at Red Hat, began using it in presentations and articles.1

Around that time in Open Source’s history Contributor Licence Agreements
(CLA) became more widely used, usually by well-​known foundations or cor-
porations and the Open Source community suddenly discovered a need to

	 1	 <https://​ref.fedor​apeo​ple.org/​font​ana-​linux​con.html> accessed 13 April 2022.

Contributor Agreements  115

distinguish the newer approach (i.e., CLAs) from what had been the norm (in-
bound=​outbound).

If a specific inbound licence is not identified, the general assumption is that con-
tributions are made under the project’s outbound licence for that contribution at
the time it was made, but for a number of reasons it is better to be explicit.

Inbound =​ outbound is easiest for both projects and contributors. It is likely
that most contributors will already be familiar with the outbound licence (espe-
cially if it is an Open Source Initiative (OSI) approved licence) and thus, under-
stand the rights they are giving to the project without the need to consult a lawyer.
This is especially helpful for individual developers who may not have access to a
lawyer. It also makes the approval process easier for contributions from developers
or entities with lawyers who need to review the inbound licence terms for contri-
butions to Open Source projects made on behalf of the entity.

There is little to no administrative work beyond including a copy of the licence
and indicating it applies for both inbound and outbound code. Unlike a contributor
agreement or assignment, the inbound =​ outbound model does not require the
project to have a single person or entity with which to execute the agreement and
hold the intellectual property rights.

Many developers and advocates prefer the inbound =​ outbound licensing model
due to the egalitarian nature of the arrangement via symmetrical rights for con-
tributors and users. Federated copyright ownership across contributors generally
means that there is no potential single point of failure in a centralised accumula-
tion of copyright licences or ownership, as with other models discussed later in
the chapter. Copyright ownership being distributed among the contributors means
the project must adhere to the wishes of each of the contributors in terms of major
changes. For example, the only way the project could change the outbound licence
across all code is to get every contributor’s permission to do so.

Whilst there are differences in joint copyright enforcement in different jurisdic-
tions, only copyright holders in the code have the legal ‘standing’ to enforce their
rights against an infringing third party. Licence enforcement in this environment
is not left to a single legal entity.

Detractors of inbound =​ outbound equally argue the difficulty in changing a
project licence as a downside of this model but this must be weighed against the
value of equality and fairness in contributions.

The LLVM project which uses inbound =​ outbound, undertook a licence change
which included creating a foundation in order to have an entity that could imple-
ment the legal agreement to instantiate the agreement to the change of licence with
all the contributors.2 Their revised developer policy acknowledges the challenge of
this task and states the rationale as follows:

	 2	 <https://​fou​ndat​ion.llvm.org/​docs/​reli​cens​ing/​> accessed 13 April 2022.

116  Jilayne Lovejoy

changing the LLVM license requires tracking down the contributors to LLVM
and getting them to agree that a license change is acceptable for their contribu-
tions. We feel that a high burden for relicensing is good for the project, because
contributors do not have to fear that their code will be used in a way with which
they disagree.3

Similarly, VLC also undertook a similar re-​licensing effort citing, in addition to
other factors, author’s rights under French law.4

The licence can be changed under the inbound =​ outbound model but inevitably
requires more work which may be a deterrent to licence change and which many
developers view as a good thing.

4.2.2  Developer’s Certificate of Origin

Unlike the other inbound agreements discussed in this chapter, the Developer’s
Certificate of Origin (DCO) is neither a licence nor an assignment. It has no ex-
press language granting rights from the contributor to the project. In fact, the DCO
refers to submitting the contribution ‘under the Open Source licence indicated in
the file’.5 For this reason, the DCO is a compliment to the inbound =​ outbound
licence model and is generally not compatible with a contributor licence or assign-
ment agreement.

The DCO is a statement affirming the contributor owns or has proper rights to
contribute the code to the project. It also includes (as of v1.1, created in 2005) an
acknowledgement that the contribution is a public record and any personal infor-
mation required for sign-​off will be maintained and redistributed as consistent
with the Open Source project and licence.6 Each contributor indicates agreement
to the DCO by ‘signing off ’ with their name and email address in each commit
message.

The DCO was originally created for the Linux kernel in 2004 in response to the
SCO lawsuits. The SCO Group brought a series of lawsuits against Linux vendors
and users in 2003–​2004 claiming copyright infringement, among other claims, of
certain copyrighted code from UNIX that was contributed to Linux. The details in
terms of the copyright ownership, legal proceedings, and various lawsuits are quite
lengthy, highly contested, and spanned a decade or more.

One impact was an analysis of where specific code came from in the Linux
kernel. Current-​day tracking of contributed code did not exist at this point. The

	 3	 <https://​llvm.org/​docs/​Deve​lope​rPol​icy.html#copyri​ght> accessed 30 June 2022.
	 4	 <https://​lwn.net/​Artic​les/​525​718/​> accessed 13 April 2022.
	 5	 <https://​devel​oper​cert​ific​ate.org/​> accessed 13 April 2022.
	 6	 <https://​lwn.net/​Artic​les/​139​916/​> accessed 13 April 2022.

Contributor Agreements  117

Linux kernel community sought to connect contributors to copyrighted contribu-
tions and also to communicate to Linux developers that they had some responsi-
bility regarding where their contributed code came from.

The use of a CLA for the Linux kernel was discussed and rejected due to its ad-
ministrative burden and potential interference with the values of freedom and in-
dividualism. The ideas underpinning the DCO was personal accountability and
keeping the representation and sign-​off within the source control system. This
could then be used to track all contributions made by a specific person.

4.2.2.1 � Why use it?
Open Source software developers largely like the developer-​friendly DCO; agree-
ment with the DCO is effected via a Git command.7 It has since been adopted by
many Open Source projects beyond Linux and is just about as low-​friction as in-
bound =​ outbound but provides more assurance to the project owner by way of the
representation each contributor makes as to the provenance of their contributions.

4.2.3  Contributor Licence Agreements

Some projects use a different licence for incoming contributions from their out-
bound licence referred to as a CLA. At the most basic level, a CLA is an inbound
licence under which an Open Source project receives contributions. The distinc-
tion from inbound =​ outbound is that with a CLA, the inbound licence terms are
not the same as the outbound licence. The grants under a CLA may vary from the
outbound licence grant, but the inbound licence must be as broad or broader than
the outbound.

As a CLA is a licence, copyright ownership remains with the author. Developer
communities frequently misunderstand this and CLAs are frequently discussed as
if they are assignments, a fact not made better by the confusion of these terms in
some inbound documentation.

Unless explicitly agreed otherwise in the CLA, standing to enforce copyright in-
fringement does not transfer to the project owner but remains with each copyright
author/​contributor.

The licence grant in a CLA usually has minimal or no conditions, which gives the
project owner greater flexibility in the outbound licence of the project or a change
to that. A broad grant to the project with no conditions means the project owner
can licence the code out under different or multiple licences or change the out-
bound licence without needing the permission of other contributors. For example,
Elasticsearch and Kibana changed the project outbound license from Apache-2.0,

	 7	 <https://​git-​scm.com/​docs/​git-​com​mit#Docume​ntat​ion/​git-​com​mit.txt-​-​s> accessed 13 April 2022.

118  Jilayne Lovejoy

an OSI-approved licence, to a choice of two more restrictive, non-Open Source
licences in 2021 to the distastes of many contributors who had contributed their
code to the Open Source projects.8

That being said, CLAs may also include obligations upon the project owner,
such as requiring the outbound licence to be Open Source or articulating a licence
change process. This may alleviate developer concerns that projects will later swap
an Open Source project to a proprietary licence.

In order to effect a CLA where all contributors grant a licence to the project,
there must be a central legal entity at the recipient project to execute the legal
agreement and to hold the licence grants. This might be an individual, a non-​profit
entity (whether charitable or trade organisation) or a corporation. In contrast to
the decentralised and egalitarian nature inbound =​ outbound, use of a CLA gener-
ally means a centralised entity holds greater rights and power over the project than
its contributors.

CLAs first appeared in the early or mid-​2000s at a point of more formal cor-
porate involvement in Open Source software projects and movement.

In the early 2010s after much community discussion a trend of turning away
from the use of CLAs evolved, as noted by several high-​profile project’s public
announcements.9

Today’s focus in this area relates to automating the signature, sometimes at the
expense of a real discussion as to the purpose or efficacy of the CLA for the given
project.

The most well-​known, often copied, and perhaps the earliest CLA is from the
ASF. As a result of its not-​for-​profit status and goal of maintaining Open Source
software, certain aspects of its CLAs are not appropriate in the context of a cor-
porate project owner.

Nevertheless, many corporations have used the Apache CLA, usually with
changes ranging from minor to more extensive modifications. Such changes create
a certain amount of overhead for contributors and their lawyers reviewing some-
thing that looks similar, but requiring a careful look to spot the differences.

Unlike Open Source licences generally, there is not a large, developed body of
‘standard’ CLAs. Although you may hear people refer to ‘CLA’ as if it is a consistent,
defined term, it is important to remember that CLAs are specific to the project and
vary in terms. One must be careful when making assumptions about how CLAs
work or what specific grants they require from contributors.

Several projects have created a standardised approach as an effort to reduce
overall friction in the use of CLAs. Project Harmony began in 2010 led by Canonical
with the intention of creating a suit of standard contribution agreements and

	 8	 <https://www.elastic.co/pricing/faq/licensing> accessed 13 April 2022.
	 9	 <https://​www.infowo​rld.com/​arti​cle/​2608​020/​red-​hat-​-​joy​ent-​-​and-​oth​ers-​break-​down-​licens​
ing-​barri​ers.html> accessed 13 April 2022.

Contributor Agreements  119

includes an online ‘agreement selector’ that helps build a CLA or a copyright as-
signment agreement based on answers.10 Canonical adopted a CLA from this suite.

ContributorAgreements.org also has a similar build-​an-​agreement interface.11
This also includes the Fiduciary Licence Agreement (FLA), a project sponsored
by the Free Software Foundation (FSF) Europe which aims to create an agreement
whereby copyright is concentrated in one entity and that entity is obligated to en-
sure the software remains free and open.12

These projects were collaborative efforts among Open Source legal experts. If a
CLA must be used, these projects provide a good starting point by way of a com-
munity process with world-​leading experts, that resulted in vetted drafting.

4.2.3.1 � Why use it?
CLAs are sometimes preferred by company lawyers as they meet the company’s
standard documentation and as the project owner, it allows them to more easily
use a different outbound licence.

CLAs need to be drafted and implemented in a way to allow this goal. In order
for the project owner to ensure the ability to change or use a different outbound li-
cence, a CLA must be obtained from every contributor who has contributed code
to the project that surpasses the threshold of copyright-​ability. However, to avoid
any question, a project may adopt a policy of requiring a signed CLA for every con-
tribution, no matter how insignificant.

A common business case for use of a CLA in order to use different outbound
licences is for projects run by a company where the code is offered under both an
Open Source (usually a copyleft licence) and proprietary licence, often referred to
as ‘dual licensing’. In this case, using a CLA also allows the option of fully closing
the code and ceasing to offer later versions under an Open Source licence.

Some Open Source projects may want to retain the ability to provide code under
different Open Source licences or contribute the same code to other Open Source
projects. For example, if the project code was to be used under either Apache-2 .0
or GPL-2.0 (due to these licences being deemed incompatible by the FSF), contri-
butions under a CLA could allow such disjunctive outbound licensing. Of course,
this result could also be achieved via inbound =​ outbound by accepting contribu-
tions under both licences.

As noted earlier, this power to differ the outbound licence comes at the cost of
egalitarian nature of inbound =​ outbound projects, an important constituent of the
collaborative model for many.

	 10	 <http://​www.harmon​yagr​eeme​nts.org/​index.html> accessed 13 April 2022; <https://​en.wikipe​
dia.org/​wiki/​Proje​ct_​H​armo​ny_​(FOS​S_​gr​oup)> accessed 13 April 2022.
	 11	 <http://​contri​buto​ragr​eeme​nts.org/​> accessed 13 April 2022.
	 12	 <https://​fsfe.org/​news/​2017/​news-​20171​013-​01.en.html> accessed 13 April 2022.

120  Jilayne Lovejoy

Some developers simply refuse to contribute to CLA based projects for this
reason; others may not bother with the hassle of signing something. There is
no doubt that the use of a CLA carries an administrative cost. Where an entity
is contributing by way of its employee representatives, tracking who is a current
employee and authorised to contribute under the entity’s CLA also needs to be
taken into account and this also requires ensuring that CLAs are in the correct
contributor’s name.

4.2.4  Copyright assignment

A copyright assignment is not a licence. It is the full transfer of all transferable
rights in copyright in the code such that the contributor relinquishes copyright
ownership. Because full copyright ownership is transferred from the contributor to
the project owner, the contributor can no longer exercise any of the rights associ-
ated with copyright ownership, such as copying, creating derivative works, further
assignment, enforcing their copyright, etc. Rights like moral rights (the right to be
identified as author of the code) which cannot be waived or assigned in some coun-
tries may not transfer.

Copyright assignment agreements often include a broad licence grant-​back to
the contributor, giving the contributors all rights other than ownership thus al-
lowing the contributor to otherwise use the code. In many cases they may also li-
cence the code as they choose. The contributor essentially becomes a licensee of
the work they originally created and then contributed to the project, instead of
its owner.

These agreements may also include a specific patent grant that follows the copy-
right in the contributions. Because copyright ownership is transferred, this also
means that the right to enforce the licence lies with the project owner to which the
copyright was assigned.

Assignment agreements may contain other contractual terms such as represen-
tations by the contributor or a promise by the project owner to use a certain out-
bound licence and so require scrutiny, particularly if not industry standard.

A full assignment can only be made from the originator of the code once. That
is, if a contributor assigns code to one project, they cannot later assign it to another
project, thus potentially limiting the ability for the same code to be contributed to
multiple projects. While this possibility is remote due to the rare use of assignment
agreements, it is perhaps an unanticipated hindrance that should still be considered.

Similar to a CLA, there needs to be a legal entity with which to execute the assign-
ment agreement and to which the intellectual property (IP) rights are transferred.
Again, this could be an individual person, a non-​profit entity, or a corporation. In
most jurisdictions, assignments must be executed in writing and in some have the
added complexity of requiring to be ‘delivered as a deed’.

Contributor Agreements  121

Perhaps the most well-​known use of an assignment agreement is for the GNU
projects maintained by the FSF. Despite being a non-​profit charity with a mission
for supporting free software, the assignment agreement has caused much conster-
nation among developers over the years.13 FSF’s stated rationale for using rests on
FSF’s ability to register the copyright work in the US more easily and to enforce the
licence.14 Given the reception to the FSF’s assignment agreement over the years,
most other projects have steered away from this option.

4.2.4.1 � Why use it?
An assignment agreement provides ultimate control for the project owner.
Assuming the agreement does not place obligations on the project owner, the pro-
ject owner can use any outbound licence, register the copyright in the US, and en-
force the copyright in the contributions as if it wrote the code itself.

Assignment agreements require the highest level of legal review and the highest
burden on contributors. To an even greater extent than CLAs, there is limited
standardised body of agreements or accepted text, although Project Harmony did
create one.

Copyright assignments from each contributor to the project creates the greatest
asymmetry in terms of rights. If developers are uncomfortable with CLAs, assign-
ments are cause for even more heartburn.

Some companies or projects that used assignment agreements in the past have
dropped them over time. Due to the friction assignments cause in a collaborative
environment, Open Source counsel with experience will generally advise against
their use but for the rarest of cases.15

4.3  Employee Contributions

Some lawyers like CLAs because they assume that an employee contributing on
behalf of their employer will check with their legal department and get proper ap-
proval before agreeing to the CLA and contributing to the project. The rationale
here is that employee contributors may not be authorised signatories for their em-
ployer and only authorised signatories can bind a legal entity. Thus, using a legal
agreement (in the form of a CLA or assignment) that requires a signature will
trigger legal review and the signature process within the contributing corporation.
This then ensures that the proper authority was obtained for whatever IP rights
were granted to the Open Source project via the contributor agreement.

	 13	 See <https://​lwn.net/​Artic​les/​414​523/​> and <https://​lwn.net/​Artic​les/​529​522/​> as examples, both
accessed 13 April 2022.
	 14	 <https://​www.fsf.org/​bulle​tin/​2014/​spr​ing/​copyri​ght-​ass​ignm​ent-​at-​the-​fsf> accessed 13 April
2022.
	 15	 For this reason, the next section mentions only CLAs.

122  Jilayne Lovejoy

From the perspective of the project owner, the concern here is that an employee
contributing without the proper permission of their employer could result in that
employer later trying to assert that it did not grant the rights associated with the li-
cence for the Open Source project, potentially via an infringement suit.

For these reasons, a CLA (or assignment agreement) gives comfort over in-
bound =​ outbound where no formal signature is required for inbound contribu-
tions. Proponents of using CLAs for the purpose of obtaining proper authority
for the reasons stated earlier put themselves in a bind; this view, taken completely,
would mean only contributing to and consuming Open Source software that also
uses a CLA. Such a position is untenable in today’s software reality.

The rise of automation for signing CLAs confuses the goal of strict authority
as it places the signature in the hands of the contributor by including in the CLA
a representation that the employee/​contributor has authority to sign, author-
isation to bind their employer legally, or both as required by the nature of the
relationship.

Such clauses put the onus back on the contributor to contribute only what they
have the rights to. This is essentially the same as using the DCO. Similarly, if there
is a later issue, the project has recourse against the employee/​contributor, not the
employer.

While this position regarding authority to bind an entity may hold technical
legal merit, it ignores history and the practical reality of Open Source project gov-
ernance and community norms.

In thirty years of the vast majority of Open Source projects using inbound =​ out-
bound, there have been precious few instances of an employer objecting after the
fact to contributions made by employees resulting in a challenge for the project.
Obtaining proper permission and an authorised signature assumes employers have
a process to follow and employees follow it.

In reality, this may not be the case and employees may sign legal agreements,
perhaps unwittingly, in order to make contributions and move on. While those
employees may not have formal signing authority, they probably have enough ap-
parent authority to create a binding agreement.

The proliferation of the inbound =​ outbound model has been a huge part of the
success of Open Source software in allowing a low-​friction path to collaboration.
To call that into doubt based on an academic legal analysis ignores the broader
picture and defies industry practice since the inception of Open Source software.
Using a legal process (i.e. the process for obtaining an authorised signature) as the
gatekeeper for Open Source contributions is neither practical nor good practice;
lawyers need to work hard to train their developers and engineers about Open
Source best practices, not assume that some rigid internal legal approval process
will save them.

As corporate Open Source involvement has increased, it has become more
common for companies to put in place appropriate internal processes for approval

Contributor Agreements  123

to contribute to Open Source projects via programs to manage, strategize, and pro-
mote their Open Source involvement.16 Everyone can agree that this is the right
approach and it is considered further at Chapter 21.

4.4  Practical Advice

4.4.1  Best approach?

The best approach for the legal agreement governing your Open Source project
ultimately depends on the goals of the project. For the vast majority of projects,
inbound =​ outbound works just fine. Any inbound agreement that introduces fric-
tion to the collaborative project should be chosen for a solid reason only and im-
plemented in such a way that is consistent with the intended goal of its use.

When weighing the pros and cons of each approach for a given project, con-
siderations beyond the legal technicalities must be included. Community con-
siderations must weigh in, such as how the legal arrangement will be viewed by
potential contributors to the project, common practices for the given community,
long-​term uses for the code, and so forth. Successful Open Source projects are not
merely defined as code that lots of people use but as communities set up to foster
collaboration. One of the most common entry points to an Open Source project
community occurs when someone wants to contribute code. Thus, how contribu-
tions are handled is a first impression with a lasting impact.

Ideally, whatever the licensing model for a given Open Source project, there
should be clarity as to what and why it is such, and be implemented in a way as to
realise its goals.

When the licensing of an Open Source project is unclear, incomplete, or missing
in any way, it wastes time and can ultimately hinder or prevent use or contribu-
tions. Clear and upfront information as to the licence(s) that apply(ies) to the pro-
ject not only gives newcomers easy access to information, but also signals that this
is an Open Source project.

In particular, using machine-​readable standards for communicating this infor-
mation (where possible) helps downstream users leverage automation of software
management in Open Source licence compliance.

As discussed in more detail in subsequent chapters, advancements continue to
be made in terms of providing outbound licence information or identifying such
information with automated tooling, usually related to the goal of Open Source
licence compliance. However, progress on getting projects to identify the inbound

	 16	 See, for example, programs to facilitate such activities: <https://​www.openc​hain​proj​ect.org/​> and
<https://​todogr​oup.org/​> both accessed 13 April 2022.

124  Jilayne Lovejoy

licence more clearly for their project lags behind. Following are practical tips for
communicating the licence information for Open Source projects, both inbound
and outbound.

	 (1)	 Identify the outbound licence
	 (a)	 Licence file: Place the complete text of the licence in its own file at the

top-​level directory or an appropriately named subdirectory if there is
more than one licence text.

	 (b)	 File-​level licence notice: Place the SPDX-​License-​Identifier tag for
the outbound licence in every file at or near the top of the file in a
comment. The SPDX-​License-​Identifier syntax may consist of a single
SPDX-Licence-Identifier or an SPDX Licence Expression to represent
a single licence or a compound set of licences (respectively) that apply
to that file. For more information on the use of SPDX identifiers, see
<https://​spdx.org/​ids> or <https://​spdx.org/​ids-​how> accessed 13
April 2022.

	 1.3.	 Identify the outbound licence in your README and project website (if
applicable). Include a concise statement as to the outbound licence in
your README, preferably in a section called ‘licence’ and link to your
LICENCE file. The same statement can be used on your project web-
site, if you have one.

	 2.	 Identify the inbound licence
	 (a)	 Include a copy of the inbound licence. If your project uses a different

licence or agreement than the outbound licence, such as a CLA or as-
signment agreement, include a full copy of the text of that agreement at
the top-​level directory.

	 (b)	 Identify the inbound licence in your README and project website (if
applicable). Include a concise statement as to the inbound licence in
your README, preferably in a section called ‘licence’ and link to the
relevant file. The same statement can be used on your project website, if
you have one.

	 (c)	 Contributing file. Place a file at the top-​level directory called
CONTRIBUTING, and include the inbound licence information with
a link to the agreement. This file can also include information about
how to contribute to your project, coding standards, etc.

Examples of licence-​related README statements, which would also include links
in the appropriate places:

“This software is provided under the BSD 3-​Clause licence. Contributions to
the project are accepted under the same licence.”

Contributor Agreements  125

“This software is provided under the BSD 3-​Clause licence. Contributions to
this project are accepted under the same licence with developer sign-​off
under the Developer’s Certificate of Origin as described in Contributing.”

“This software is provided under the BSD 3-​Clause licence. Before you con-
tribute, you will need to sign the Contributor Licence Agreement.”

Miriam Ballhausen, Copyright Enforcement In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Miriam Ballhausen 2022. DOI: 10.1093/​oso/​9780198862345.003.0005

5
Copyright Enforcement

Miriam Belhausen

	5.1	� Introduction � 126
	5.2	� What is Copyright Infringement

and What Claims Can Be Made? � 128
		 5.2.1	� Copyright protection of

software � 128
		 5.2.2	� Open Source licensing� 128
	5.3	� Enforceability of Open Source

Licences and Termination
Provisions—​How?� 129

	5.4	� Why is Copyright in Open
Source so Consistently
Enforced in Germany?� 131

	5.5	� Who Can Enforce Copyright
in Open Source?� 132

		 5.5.1	� Ownership of copyright � 132
		 5.5.2	� Enforcement of copyright � 134
	5.6	� What Are the Key Arguments

and Alleged Infringements? � 136
		 5.6.1	� Obligation to provide the

source code � 136
		 5.6.2	� Obligation to provide the

licence text � 138
	5.7	� New Trends � 139
		 5.7.1	� Cure commitment � 139
		 5.7.2	� OpenChain � 140

  

5.1  Introduction

The enforcement of rights in Open Source began with the odd case being brought,
but these enforcement efforts have constantly increased since the mid-​2000s.1
This is especially true for Germany, where for the last decade there has been a high
double-​digit number of cases per year.2 An outline of the cases and court decisions,
which enable strategic and disruptive enforcement around Open Source licensing,
the protected usage of code, and the copyright in that code is set out below (for

	 1	 An overview over the existing case law globally is available in Heather Meeker, Open Source for
Business, 2nd edn (Kindle Direct Publishing Platform, 2017) Chapter 19; an overview especially over
German case law is available from the ‘Institut für Rechtsfragen der Freien und Open Source Software’
(in English: Institute for Legal Issues of Open Source) under <<https://​ifr​oss.git​hub.io/​ifr​OSS/​Cases.
Additionally, there were further cases, such as Wallace v Free Software Foundation, where the US District
Court for the Southern District of Indiana dismissed a claim based on antitrust violations of the FSF;
see <https://​cyber​law.stanf​ord.edu/​packet​s003​771.shtml> accessed 14 April 2022, or several cases against
several companies based on copyright in BusyBox, or by Artifex Software, Inc. based on copyright in
MuPDF. However, the main purpose of the chapter is to highlight decisions and aspects which are not only
relevant under specific circumstances but lay the groundwork for enforcing copyright in Open Source.
	 2	 This is a conservative estimate based on available file numbers, however, most of these cases are set-
tled out of court.

COPYRIGHT ENFORCEMENT  127

summaries of other Open Source-​related court decisions, please see Chapter 3, es-
pecially under sections 3.1 and 3.4.1).

Most of these cases follow the same pattern. They are initiated through a cease
and desist letter sent by the copyright owner to a company (cases against individ-
uals are less common) using their Open Source-licensed code and who is perceived
to be infringing that code’s Open Source licence, requesting that the licensee refrain
from using the specific Open Source code unless the applicable licence is complied
with. The cease and desist letter will also set a short deadline for the licensee to sign
a declaration that they will cease and desist from the perceived infringing behav-
iour and notifies the licensee/​user of the copyright holder’s intent to pursue their
claims against the infringing behaviour in court, unless the declaration is signed.

With that in mind, Open Source-​related copyright enforcement (like many
areas of copyright enforcement) has become highly standardised to a point where
often largely identical cease and desist letters are sent to various recipients.3 This
has an impact of commoditising the process and reducing costs, making these en-
forcement actions much more accessible to individual developers and community-​
driven projects.

Against this background, this chapter will focus on the ‘What?’, ‘How?’, ‘Why?’,
and ‘Who?’, as well as the key arguments in relation to the enforcement of copy-
right in Open Source:

	 (1)	 What an enforceable copyright infringement is.
	 (2)	 How can copyright in Open Source be enforced?
	 (3)	 Why are copyright in Open Source so consistently enforced in Germany?
	 (4)	 Who can enforce copyright in Open Source?
	 (5)	 What are the key arguments, alleged infringements, and court decisions on

licence compliance?

Each of these questions can be answered and discussed extensively for every
legal system and especially with regard to specific procedural aspects of German
law. Respective overviews and discussions are regularly available in law jour-
nals and law reports.4 This chapter is intended to answer these questions more
broadly and especially to provide an overview over what to consider when fa-
cing or considering bringing an Open Source-​related copyright enforcement
action.

	 3	 This occasionally even includes copy-​pasting the allegations and the file number.
	 4	 See, e.g., Marcus von Welser, ‘Opposing the Monetization of Linux: McHardy v. Geniatech &
Addressing Copyright “Trolling” in Germany’ (2018) 10(1) Journal of Open Law, Technology & Society
9–​20, available at <https://​jolts.world/​index.php/​jolts/​arti​cle/​view/​128>, or Till Jaeger, ‘Praktische
Umsetzung von Lizenzbedingungen der GNU General Public Licence (GPL) und Grenzen ihrer
Durchsetzbarkeit’ (2019) Computer & Recht 765–​9, which includes detailed discussions on the calcula-
tion of contractual penalties based on declarations to cease and desist under German law.

128  Miriam Belhausen

5.2  What is Copyright Infringement and What
Claims Can Be Made?

For copyright in Open Source to be enforceable, the following aspects need to be
considered. Software in general and Open Source in particular need to be pro-
tected by copyright law (see section 5.2.1) in favour of the copyright holder (see
section 5.5). This copyright needs to be generally enforceable (see section 5.2.3),
even though rights of use to the Open Source are broadly granted by the copyright
owner under any Open Source licence (see section 5.2.2).

5.2.1  Copyright protection of software

Software—​usually referred to as ‘computer programs’5 in the respective legal
texts—​is widely protected as literary work (i.e. the same as books or this chapter for
example) under applicable copyright law, provided that the software embodies an
author’s original creation.

Such copyright protection has been assumed for application programing interfaces
(APIs) by the US Court of Appeals for the Federal Circuit in 2014. This decision is part
of recently resolved legal dispute between Oracle America, Inc. (Oracle) and Google,
Inc. (Google), in which Oracle claimed copyright and patent protection for several
APIs, which are part of the Java technology. The technology had originally been
owned by Sun Microsystems, which was purchased by Oracle. The APIs were included
in earlier versions of the Android operating system. While the copyrightability of APIs
was (re-​)considered by the US Supreme Court, the Court was considered whether
Google’s use of the APIs constitutes fair use, which had been argued by Google, but
rejected by the lower instance court. The detail of are discussed in Chapter 3.

All rights of use to the software (e.g. the right to distribute, the right to modifica-
tion) initially lie with the software developer.6 Third parties (i.e. anyone who is not
the software developer) may only use the software, if and to the extent rights of use
are granted (licensed) to them.

5.2.2  Open Source licensing

Rights of use to software are granted through licences. Such rights may be granted
in various ways, including as simple/​single right of use with others having the same

	 5	 In line with the Model Provisions made available by the World Intellectual Property Organization
(WIPO) a computer program is ‘a set of instructions capable, when incorporated in a machine-​readable
medium, of causing a machine having information-​processing capabilities to indicate, perform or
achieve a particular result’; Model Provisions available at http://​www.wipo.int/​mdocsa​rchi​ves/​AGC​P_​
NG​O_​IV​_​77/​AGCP​_​NGO​_​IV_​8_​E.pdf> accessed 14 April 2022.
	 6	 Exceptions to this rule may apply depending on the applicable copyright law (e.g. in case of em-
ployment relationships the rights of use may lie with the employer).

COPYRIGHT ENFORCEMENT  129

rights, or exclusively so that the licensee is the only one who may lawfully exercise
a particular right or as a sole licence where the licensee is granted a simple/​single
licence, but is in a similar position to the exclusive licensee, because apart from the
licensee only the licensor may continue to use the software.

A licence may be territorially restricted (e.g. for the European Union (EU) only)
or granted worldwide; it may be restricted in time (e.g. for a year, as happens with
hardcover books, before they become available as paperback) or it may be perpetu-
ally granted, it may be RF or paid, and may be incumbered by a field of use restric-
tion or granted for varying types of use, for example for the reproduction in whole
or in part, for the translation, adaptation, arrangement, or other modification, for
the distribution of the computer program or for making it publicly available, or li-
cences may be granted to cover all of these types of use.

These licensing options always exist irrespective of whether software is licensed
on a proprietary basis or as Open Source and ‘but all OSI-approved licenses are
perpetual’.

All Open Source licences make use of these options in a particular way so that
rights of use are granted to the farthest extent possible to ensure that every licensee
has, as described in the Free Software Foundation’s (FSF) Four Freedoms:

	 (1)	 The freedom to run the program as desired, for any purpose.
	 (2)	 The freedom to study how the program works, and change it so it does com-

puting as desired.
	 (3)	 The freedom to redistribute copies.
	 (4)	 The freedom to distribute copies of modified versions, thus giving the whole

community a chance to benefit from changes made.7

and in the OSD as explained in Chapter 3.

5.3  Enforceability of Open Source Licences and Termination
Provisions—​How?

At the outset of the enforcement of copyright in Open Source, the broad grant
of rights and freedoms in the licences was regularly used to argue that the copy-
right holder waived all their rights of use, which initially exist (see section 5.2.1),
when licensing software under an Open Source licence. This argument was put to
a test by Sitecom, who had been sued by Harald Welte for the infringement of his

	 7	 These criteria, referred to as the four freedoms, were defined by the Free Software Foundation to
determine, if licence terms qualify as free; see ‘What is free software’, available at <https://​www.gnu.org/​
phi​loso​phy/​free-​sw.en.html> accessed 14 April 2022. They are similar to the ten criteria that were later
identified by the OSD to qualify software as being licensed as Open Source software; see ‘The Open
Source Definition’, available at <https://​ope​nsou​rce.org/​osd> accessed 14 April 2022.

130  Miriam Belhausen

copyright in netfilter/​iptables, which is part of the Linux kernel. The court ruled in
favour of the enforceability of Open Source licences and held that:

one cannot perceive the conditions of the GPL . . . as containing a waiver of copy-
right and related legal rights. To the contrary, the users . . . rely on the concept
of copyright and the copyright law in order to protect and secure their under-
standing of how software must be developed and distributed going forward.8

This argument was confirmed and applied also by Welte./​.Versatel, where the
Regional Court of Berlin also clarified that licensing software under the GPLv2.0
does not mean that rights to this software are waived.9

In Welte./​.Sitecom, the Regional Court in Munich further clarified that the en-
forceability of Open Source licences and especially the obligations they define,
is not excluded by the (especially strict) German laws on general terms and con-
ditions.10 These laws define both formal11 and content requirements, especially
prohibiting specific terms.12 In addition to these specific provisions, German law
generally prohibits all provisions, which are ‘unreasonably disadvantageous’ for
the party, to whom the general terms and conditions are proposed.13 In case of
Open Source licences, this is the licensee.

In light of these requirements, all Open Source licences include terms, which
are invalid under German law and would therefore generally not be enforceable.
However, in Welte./​.Sitecom, the court concluded that this was not the case for the
termination of rights in (e.g. in Section 4 GPLv2.0). Despite Sitecom’s argument,
the court held that the termination was not unreasonably disadvantageous for the
licensee and was therefore valid and enforceable. As it only applied in cases where
the licensee did not comply with the licence’s requirements, the termination’s nega-
tive effects did not unreasonably disadvantage the licensee. In any event, the court
held, the licensee could not ‘cherry pick’, claiming that the Open Source licence
was validly granting rights of use but invalid with regard to the obligations it put
forward and the conditions under which the rights of use were granted. Given the
tight connection between the grant of rights and the requirements, the court held,

	 8	 District Court of Munich, decision dating from 19 May 2004, file number 21 O 6123/​04—​Sitecom./​
.Welte, available at <https://​www.ifr​oss.org/​Fremd​arti​kel/​jud​gmen​t_​dc​_​mun​ich_​gpl.pdf > (in English)
and <https://​www.ifr​oss.org/​Fremd​arti​kel/​urt​eil_​lg_​m​uenc​hen_​gpl.pdf> (in German), both accessed
14 April 2022.
	 9	 Regional Court of Berlin, decision dating from 21 February 2006, file number 16 O 134/​06—​
Welte./​.Versatel, available at <https://​www.tele​medi​cus.info/​urte​ile/​Urheb​erre​cht/​Open-​Sou​rce/​556-​
LG-​Ber​lin-​Az-​16-​O-​13406-​Verst​oss-​gegen-​GPL-​WLAN-​Rou​ter.html> (in German).
	 10	 The relevant provisions are included in sections 305 et seq. of the German Civil Code. An English
translation is available here: <https://​www.gese​tze-​im-​inter​net.de/​engli​sch_​bgb/​>.
	 11	 Section 305 German Civil Code, for example, defines how terms and conditions need to be made
available to even become part of a contractual agreement.
	 12	 Section 309 German Civil Code, for example, excludes limitations of liability to a large extent.
	 13	 The respective provision can be found in Section 307 German Civil Code.

COPYRIGHT ENFORCEMENT  131

any argument in favour of the licence obligations being invalid would need to be
applied to the Open Source licence as a whole and would include the grant of rights
as well, thus leaving the defendant entirely without a licence and therefore even
more certainly in breach of copyright.

5.4  Why is Copyright in Open Source so Consistently
Enforced in Germany?

As is clear from Open Source cases across the globe, copyright in Open Source can
be enforced under many jurisdictions worldwide. Nonetheless and as mentioned
on the outset of this chapter, Germany sees a disproportionately high number of
enforcement cases which regularly involve organisations that are non-​compliant in
other jurisdictions, not only in Germany.

This begs the question of why copyright in Open Source is so consistently en-
forced in Germany.

The main reason for this territorially focused enforcement lies in the proced-
ural laws which are favourable to claimants for several reasons. Most importantly,
copyright can be enforced in preliminary proceedings, serving the purpose of pro-
tecting the right holder14 in cases where an infringement of the rights is either im-
minent or already happening. In these cases, the right holder can file for a cease
and desist order once he has requested the infringer to cease and desist from (fur-
ther) infringements by means of a cease and desist letter. This cease and desist letter
needs to demand that the infringer signs a declaration to cease and desist with
penalty provision. If the infringer does not comply with the right holder’s demand
to sign a declaration to cease and desist, such an order can be filed for. The cease
and desist order may then be passed within days and often without the infringer
being involved. To ensure a fair hearing, the infringer may later object to the court
order, however until a date for an oral hearing is set, the infringer needs to abide by
the court order and will normally not be able to continue to distribute the affected
products.

As these orders are passed in such speedy proceedings and given the lowered
burden of proof for the claimant, cease and desist orders are only valid for six
months, after which they expire. This time period, or rather the risk of being or-
dered to cease and desist from the distribution of products for such a period of
time and its impact on the user’s products and potential impact on the supply
chain, often suffices to put enough pressure on the defendant to react to any copy-
right owner’s claim to cease and desist from an infringement of Open Source li-
cences in Germany.

	 14	 These options are not only available to copyright owners but for all other right holders as well, pro-
vided that there is a need for preliminary and immediate protection to avoid further infringements.

132  Miriam Belhausen

Where the copyright owner’s key focus is on ensuring that an organisation
complies with Open Source licence terms, such preliminary proceedings are an
effective tool. However, where proceedings are used to obtain as much money as
possible out of a court settlement or declaration to cease and desist as possible, thus
allowing the copyright owner to trigger penalty payments at will, there is a high
risk that the enforcement may become formalistic and that a copyright owner may
suggest very detailed licence interpretation, which may both be impractical and
harmful for the Open Source community at large. To safeguard against this, the
Software Freedom Conservancy,15 the FSF,16 and the Netfilter project,17 organisa-
tions which hold code on behalf of developers, whose work is detailed further in
Chapter 18, and whose code is often the subject of enforcement actions relating to
Open Source, defined principles of community-​oriented General Public License
(GPL) enforcement, aiming to ensure that any enforcement action taking by in-
dividual Open Source copyright owners is consistent in ensuring compliance and
that it is not centred on generating payments.

5.5  Who Can Enforce Copyright in Open Source?

The third key question relates to who can drive the enforcement. The answer to this
question has implications from a material and a procedural law perspective.

5.5.1  Ownership of copyright

As a general rule, the copyright is owned by the author of the code, that is the indi-
vidual developer, unless:

	 (1)	 The code was developed as work for hire, so that the employer is considered
the author even if an employee actually created the work;

	 (2)	 the copyright was assigned; or
	 (3)	 the (commercial) copyright was (exclusively) attributed or licensed to a

third party.

Whether any, some, or all of these exceptions are relevant depends on the respective
jurisdiction and the applicable copyright law.

	 15	 See ‘The Principles of Community-​Oriented GPL Enforcement’, available at <https://​sfcons​erva​
ncy.org/​copyl​eft-​com​plia​nce/​pri​ncip​les.html> accessed 14 April 2022.
	 16	 See ‘The Principles of Community-​Oriented GPL Enforcement’, available at <https://​www.fsf.org/​
licens​ing/​enfo​rcem​ent-​pri​ncip​les> accessed 14 April 2022.
	 17	 See ‘The statement of netfilter project on GPL enforcement’, available at <https://​www.netfil​ter.
org/​files/​statem​ent.pdf> accessed 14 April 2022.

COPYRIGHT ENFORCEMENT  133

With regard to Open Source projects, all of the concepts, which are roughly out-
lined earlier, may be relevant. There may be an individual developer licensing an en-
tire piece of code under an Open Source licence. Code may also have been developed
by employees of a company and/​or developers engaged to create code as a work for
hire. Subsequently, the code may have been licensed as Open Source by the employing
or hiring entity, respectively the assignee. However, Open Source projects generally
follow a collaborative approach and receive contributions from various developers.
The set-​up of this collaboration has a bearing on the copyright ownership and, more
precisely, on who may drive enforcement around copyright.

Very roughly outlined, Open Source projects fall into the following three categories,
where the following are likely to apply:

	 (1)	 If separate pieces of code or individual programs are brought together in one
project, the developers of each separate piece of code or each individual pro-
gram are likely to be individual and separate owners of copyright in their com-
pound work.

	 (2)	 If code is developed jointly by several developers, these developers may jointly
hold the copyright to the developed code, provided they intend to create a joint
program, defined a common task to which each of them contributes, their de-
velopment followed a joint idea, and cannot be commercialised individually
across the individual contributions.

	 (3)	 Thirdly, contributions within Open Source projects may build on, expand,
and amend the pre-​existing code. In this case, both the pre-​existing code,
the contribution (provided it surpasses the threshold for copyright protec-
tion), and the work formed by the pre-​existing code and the contribution
are individually protected by copyright. For the third category the jurisdic-
tion and applicable law are likely to have a bearing on the copyright owner-
ship in the work created from the pre-​existing code and the contribution(s).
Depending on the jurisdiction and applicable law, the work created from
pre-​existing code and the contribution(s) may, for example, qualify as adap-
tation (e.g. under Section 9 German Copyright Act) or as collective work
(e.g. under the US Copyright Act 17 USC § 101). The qualification as adap-
tation or collective work in turn determines the copyright ownership in
the work and ultimately in the Open Source project as a whole. In case of
an adaptation, the copyright in the adaptation are owned by the creator of
the adaptation, who is of course dependent on a licence covering the adap-
tation from the owners of the copyright in the pre-​existing works. If the
work created from the pre-​existing code and the contribution(s) qualifies
as collective work, as is assumed for the Linux kernel under US law,18 the

	 18	 See Linus Torvald’s statement available at: <https://​ipfs.io/​ipfs/​QmdA5WkDNALetBn4iFe​SepH​
jdLG​JdxP​BwZy​Y47i​r1bZ​GAK/​comp/​linux/​collec​tive​_​wor​k_​co​pyri​ght.html> accessed 14 April 2022.

134  Miriam Belhausen

copyright in the collective work are owned by the collector, that is the cre-
ator of the collective work, who is arguably the initiator of the Open Source
project.

Many Open Source projects, especially those which are sufficiently complex, will
include a mix of the three types of collaborations and thus copyright ownership,19
but the differentiation between them must be kept in mind as it impacts who may
drive the enforcement. Although there are some exceptions under some copyright
laws, as a general rule the enforcement may be driven by the copyright owner only.
Accordingly, in case of individual ownership of copyright, the individual owner
may drive the enforcement. In case of joint ownership, though, enforcement may
require a joint action from all copyright owners or at least demand claims to be
filed so that performance is due to all joint copyright owners. In the third scenario,
the enforcement may generally be driven by each individual developer for their in-
dividual contribution and provided it surpasses the creativity threshold. This is the
case with the enforcement actions in Germany, although courts have occasionally
rejected claims, because the copyrightability of the individual contribution had not
been sufficiently demonstrated.20 Furthermore, depending on the type of collab-
oration and the set-​up of the project, the author of the code may transfer or assign
their rights to the project. In case of such transfer and assignment, the copyright
enforcement may only be driven by the project as such or, depending on the setup
at hand, by the recipient of the rights.

5.5.2  Enforcement of copyright

From a procedural perspective, the key questions particularly relate to the copy-
right owner’s standing in court. To have standing, meaning the ability to enforce
copyright in court, the claimant needs to be able to prove ownership of copyright in
the Open Source (project) whose licence they claim is infringed.

In Hellwig./​.VMWare, the Higher Regional Court in Hamburg laid out what
this requires with regard to Open Source, demanding the claimant to prove the
following:

	 (1)	 The claimant needs to prove that he holds rights to the Open Source, for which
the licence has been (supposedly) infringed. In case of contributions to an
Open Source project, this requires the claimant to demonstrate precisely

	 19	 Till Jaeger and Axel Metzger, Open Source Software, 5th edn (Nördlingen: C.H. Beck) para 203.
	 20	 Higher Regional Court Hamburg, decision dating from 28 February 2019, file number 5 U 146/​
16—​Hellwig./​.VMWare.

COPYRIGHT ENFORCEMENT  135

which contributions he made and which parts of the entire Open Source
project’s code these contributions relate to.

	 (2)	 Secondly, the claimant needs to show that these contributions (alone) are a
copyrightable work under applicable copyright law. This usually requires in-
formation on and proof of the specific functionality of the code within the
Open Source project, whereas proving that the Open Source project as such
surpasses the threshold was found to be insufficient. An argument to the
contrary, the court held, could not be based on the German Federal Court
of Justice’s ‘Fash 2000’ decision, according to which ‘complex’ software was
assumed to meet the requirements of copyrightable software under the
German copyright act, unless proven otherwise. According to the Higher
Regional Court of Hamburg, this assumption applies only in cases where
the contribution itself constitutes complex software. Where that is not the
case, the full burden of proving the contribution as such is copyrightable lies
with the claimant.

	 (3)	 Thirdly, to have standing, the claimant needs to prove that his contributions,
which surpass the threshold of copyrightable work, were used by the defendant
in their products.21

In Hellwig./​.VMWare, the Higher Regional Court in Hamburg held that this re-
quires the claimant to show specifically which of his contributions to the original
Open Source project the defendant is using in their products. Merely providing
the entire code the defendant is using and information on contributions to the ori-
ginal Open Source project does not suffice, as it cannot be inferred from them that
parts of the claimant’s code which are separately protectable under (copyright) law
were used by the defendant. The same, the court held, applies regarding header
files in which the claimant is named as the header files alone do not prove that the
defendant uses contributions made by the claimant or that these contributions sur-
pass the threshold of copyrightable works.22

In its decision dating from 20 November 2017, the Regional Court in Hamburg23
found the claimant’s argument that extracted strings were matched to verify that
a component was included in the defendant’s products to be sufficient.24 The de-
fendant, on the other hand, was required to clarify and prove which components

	 21	 Higher Regional Court Hamburg, decision dating from 28 February 2019, file number 5 U 146/​
16—​Hellwig./​.VMWare.
	 22	 Higher Regional Court Hamburg, decision dating from 28 February 2019, file number 5 U 146/​
16—​Hellwig./​.VMWare.
	 23	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 24	 The claimant had additionally argued that copyrightable contributions of his were mandatory for
the product to be network-​compatible and therefore had to be included in the defendant’s products.
The appeal against the Regional Court of Hamburg’s decision is currently lies with the Higher Regional
Court of Hamburg, file number 5 U 231/​17.

136  Miriam Belhausen

were included in the product25 if he wanted to argue that the claimant’s component
were not included. Merely challenging that the components to which the claimant
held copyright were included in the defendant’s product was not sufficient, the
court held. Given that the relevant software was a key component of the products
the defendant was selling, the court argued that he would have been easily able
to clarify which components it consisted of and thus to demonstrate if, contrary
to the claimant’s position, the claimant’s component was in fact not included. The
argument that the defendant would have had to engage external expertise to make
such determination26 was dismissed.

5.6  What Are the Key Arguments and Alleged Infringements?

As Germany has seen so many cases revolving around the enforcement of copy-
right in Open Source, German courts have ruled on several aspects of many key li-
cence requirements, especially on the interpretation of (i) the obligation to provide
the complete corresponding source code and (ii) the obligation to accompany the
product with the licence text.

At the outset, the courts’ position had always been that the burden of proof for
the infringement lies with the claimant. In a more recent case, the Higher Regional
Court in Hamburg held, though, that the defendant must prove his right to use the
Open Source27 and thus to present facts and evidence of his compliance with the
respective licences’ obligations.

5.6.1  Obligation to provide the source code

5.6.1.1 � Complete corresponding source code
Under all Open Source licences, a key factor in compliance with the obligation to
provide the source code is for the source code to be ‘complete corresponding’. This
requirement was first interpreted by the Regional Court in Hamburg in 2013,28
which ruled that for the source code to be complete corresponding, the following
must be met:

	 -​	 The compilation date of the firmware in the product may not be earlier than
the date in the source code that is provided along with the firmware;

	 25	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 26	 In the case at hand the defendant was only selling products he had imported.
	 27	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 28	 Regional Court of Hamburg, decision dating from 14 June 2013, file number 308 O 10/​13.

COPYRIGHT ENFORCEMENT  137

	 -​	 The version numbers of the components in the firmware in the product need to
match the version numbers of the respective components in the source code.

In 2017, the Regional Court in Hamburg further clarified that the scripts to control
compilation and installation (as defined by the GPLv2.0) need to be included for
the source code to be complete corresponding.29

5.6.1.2 � Written offer
In the latter case, the court in Hamburg then further ruled on the requirements a
written offer needs to meet.30

The claimant had used the following written offer, which the court found to be
incompliant with the GPLv2.0’s requirements.

This product contains Free Software which is licensed under the GNU General
Public License. After you purchase this product, you may procure, modify or dis-
tribute the source code of the GPL/​LGPL software that is used in this product.

If you contact our Support Center, we will provide you with a CD-​ROM of the
source code that is used, charging only the actual expensed involved. However,
please be Side that we cannot provide guarantee with the source code, and there is
also no technical support for the source code from us.

The court based its finding mainly on the offer’s restriction, that the source code
could only be requested ‘after you purchase this product’. This, the court ruled, cre-
ated the impression that only customers could request a copy of the source code,
while the GPLv2.0 required the offer to be made to any third party.

A clarification that the offer was valid for at least three years was not found to
be necessary, though. The court argued that the GPLv2.0’s wording requiring the
licensee to ‘accompany . . . [the binary code] with a written offer, valid for at least
three years’, was ambiguous and thus needed to be interpreted to the licensor’s
(claimant’s) disadvantage.31 The provision, the court ruled, could be interpreted to
require the licensor only to uphold the written offer for at least three years, while
it did not necessarily require the licensor to specify the duration of validity in the
written offer itself.

Finally, the court ruled that the written offer is only formally made if the text
is immediately accessible, easily identifiable, and constantly available with the
binaries.32

	 29	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 30	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 31	 The court arrived at this conclusion based on the German law on general terms and conditions,
especially Section 305c para 2 BGB, according to which any ambiguous provision must be interpreted
to the disadvantage of the party who is proposing the general terms and conditions.
	 32	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.

138  Miriam Belhausen

5.6.1.3 � Offering the source code for download
The court then applied this test to cases where the firmware was offered online
for download. In this case, the Regional Court in Hamburg ruled, it would gener-
ally suffice if the written offer or the source code itself was available via link only,
provided that the average user can easily determine that the source code is avail-
able via the link. For that, the actual download option cannot be further than two
clicks away from the site where the firmware is made available, and the references
must be clearly marked and placed in close proximity to the firmware. Making the
source code available on a separate page, which is used to provide download op-
tions for the source code of various products, was held to be insufficient, unless
there was a direct link from the firmware download to the complete corresponding
source code.33

In any event, providing the source code for download only suffices to comply
with the obligations if the firmware is also (only) offered for download. For firm-
ware which is distributed as part of a product, the source code needs to be with
the product. Referencing a download option in the product’s manual, for example,
does not suffice.34

5.6.2  Obligation to provide the licence text

The obligation to provide the licence text was first interpreted by German courts in
Welte./​.Skype, where the Regional Court in Munich held that merely referencing
the GPLv2.0 did not suffice because it required the user to research the terms of the
licence. Therefore a (full) copy of the licence text had to be made available with the
product, respectively the firmware it contains.35

The licence text needs to be available in full. This, the court held in 2017, in-
cludes the preamble and the provisions under ‘How to Apply These Terms to Your
New Programs’, because section 2 GPLv2.0 required the licensor to provide a ‘copy
of this Licence’, not ‘a copy of these Terms and Conditions’. As indicated by the sub-
heading ‘End of Terms and Conditions’, the preamble, and the actual licence terms
form the ‘Terms and Conditions’, which jointly with the instructions on applica-
tion form the ‘Licence’.36

The Regional Court in Hamburg further clarified the requirements, especially in
cases where the firmware was offered for download. They held that either the full

	 33	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 34	 LG München I, Urteil vom 12.07.2007—​7 O 5245/​07.
	 35	 Regional Court of Munich I, decision dating from 12 July 2007, file number 7 O 5245/​07—​Welte./​
.Skype, available at: <https://​www.tele​medi​cus.info/​urt​eil/​lg-​muenc​hen-​lizen​zver​letz​ung-​der-​gpl/​>
(in German) accessed 21 July 2022.
	 36	 The court further concluded that the failure to include the instructions at the end of the licence
also meant that the obligation to provide the disclaimer was not complied with.

COPYRIGHT ENFORCEMENT  139

licence text needs to be available directly on the website from where the firmware
can be downloaded, or this full licence text needs to provide a direct link to it from
the download page. The link was only found to suffice if the full licence text was im-
mediately accessible, easily identifiable, and constantly available, meaning that the
average user needs to be able to access the licence information via the link, which
therefore needs to be in close proximity to where the firmware can be downloaded.
To achieve sufficient clarity, the link needs to be clearly marked as a reference to the
licence. However, it was found to be sufficient if the link referenced a manual, as
users expect manuals to include the licence terms as well.37

5.7  New Trends

More recently, Open Source users and the Open Source community at large have
started to challenge the claims they are repeatedly facing more aggressively. There
are two key trends that have been developing over the last years. The GPL cooper-
ation commitment and the OpenChain project.

5.7.1  Cure commitment

Under section 4 GPLv2.0 the licensor’s rights are terminated with immediate effect
in a case of incompliance. In contrast, section 8 paragraph 3 GPLv3.0 allows for a
grace period of thirty days to come into compliance in case of a first-​time notifi-
cation of a licence violation.38 The licence is not terminated, if the violation is re-
solved within thirty days following notification of non-​compliance.

The GPL cooperation commitment aims to achieve the same for Open Source
licensed under the terms of the GPLv2.0. It is closely connected to the Linux Kernel
Enforcement Statement, by which the GPLv3.0’s cure provisions were adopted for
the Linux kernel by many but not all contributors.39 They acknowledge the right of
every contributor to enforce their rights individually but stated that they wanted to
ensure that any such enforcement was conducted in the communities’ best interest
and therefore allowed for a grace period of thirty days to come into compliance. If
observed, any enforcement actions are intended to be inadmissible.

	 37	 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/​15.
	 38	 Section 8 para 3 GPLv3.0 reads: ‘Moreover, your licence from a particular copyright holder is re-
instated permanently if the copyright holder notifies you of the violation by some reasonable means,
this is the first time you have received notice of violation of this Licence (for any work) from that copy-
right holder, and you cure the violation prior to 30 days after your receipt of the notice.’
	 39	 <https://​www.ker​nel.org/​doc/​html/​v4.16/​proc​ess/​ker​nel-​enfo​rcem​ent-​statem​ent.html> accessed
14 April 2022.

140  Miriam Belhausen

In light of the Regional Court of Halle’s decision on the GPLv3.0’s cure provi-
sion,40 neither the cure commitment nor the enforcement statement are likely to
effectively exclude enforcement actions, even in case of a first-​time violation that is
cured within thirty days. The licensor has a reasonable interest in effective preven-
tion of future infringements, which under German law requires a declaration to
cease and desist including a penalty provision. Accordingly, even if the cure com-
mitment and the enforcement statement are globally adopted, enforcement are
likely to continue as before in Germany.

5.7.2  OpenChain

In contrast to the cure commitment and enforcement statement, the OpenChain
project discussed in detail in Chapter 6 takes a more global approach, aiming to
make compliance with applicable Open Source licences simpler and more con-
sistent and thus establishing trust in the Open Source from which software so-
lutions are built. As the OpenChain specification defines key requirements of a
high-​quality Open Source compliance program, mere conformance with this
specification does not exclude incompliance of a single software deliverable and
will therefore not prevent cease and desist claims. However, the ability to dem-
onstrate compliance with the project’s specification may be effectively used by the
licensee to meet the burden of proof obligations as defined by the Regional Court
in Hamburg (see introduction to section 5.5).

	 40	 Regional Court of Halle, decision dating from 27 July 2015, file number 4 O 133/​15.

Shane Coughlan, Transforming the Supply Chain with Openchain ISO 5230 In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © Shane Coughlan 2022.
DOI: 10.1093/​oso/​9780198862345.003.0006

6
Transforming the Supply Chain with

Openchain ISO 5230
Shane Coughlan

	 6.1	� Overview � 141
	 6.2	� Compliance is a Process

Challenge that Spans Multiple
Organisations� 142

	 6.3	� Because No Single Company
Makes a Finished Device, No
Single Company Can Solve
Compliance Challenges � 142

	 6.4	� The Best Solutions Are Often
the Simplest, with the Lowest
Barriers to Entry � 142

	 6.5	� OpenChain ISO 5230 is Intended
to Make Open Source Licence
Compliance More Predictable,
Understandable, and Efficient for
the Software Supply Chain� 143

	 6.6	� A Simple Specification that
Explains the Key Requirements
of a Quality Compliance
Program � 143

	 6.7	� A Clear and Free Way to
Check Conformance with the
Specification � 143

	 6.8	� Reference Material to Support
Conformance and with Broader
Questions of Training and
Processes � 144

	 6.9	� Community and Support � 144
	6.10	� Conclusion � 144
	6.11	� References� 144

  

6.1  Overview

OpenChain ISO 5230 increases Open Source compliance in the supply chain. This
issue, which may be incorrectly characterised as solely a legal concern or as low pri-
ority from a business perspective, is inherently tied to ensuring that Open Source
is as useful as possible with as little friction as possible. In a nutshell, because Open
Source is about the use of third-​party code, compliance is the nexus of where
equality of access, safety of use, and reduction of risk can be found. OpenChain
ISO 5230 is built to increase trust between organisations to accomplish this.

Today many companies understand Open Source and act as major supporters of
Open Source development. However, addressing Open Source licence compliance
in a systematic, industry-​wide manner has proven to be a somewhat elusive chal-
lenge. The global IT market has not yet seen a significant reduction in the number
of Open Source compliance issues discoverable in areas like consumer electronics
over the last decade.

142  Shane Coughlan

The majority of compliance issues originate in the midst of sharing multiple
hardware and software components between numerous entities. The global supply
chain is long, and the participants are simultaneously intertwined and disparate.
It is perfectly possible to have companies making hardware, companies making
software, and companies doing both collaborating around a relatively small com-
ponent. The results in terms of products are often outstanding but the challenge of
keeping track of everything is substantial.

6.2  Compliance is a Process Challenge that Spans
Multiple Organisations

Open Source presents a specific challenge in the global supply chain. This is not
because Open Source is inherently complex but rather due to the varying degrees
of exposure and domain knowledge that companies possess. By way of example,
a company developing a small component that requires a device driver may have
staff entirely unfamiliar with Open Source. One mistake, one misunderstanding,
and one component deployed in dozens of devices can present an issue. Most com-
pliance challenges arise from mistakes. Few, if any, originate with intent.

Ultimately solving Open Source compliance challenges involves solving Open
Source compliance in the supply chain. This is no small task: there are thousands of com-
panies across dozens of national borders using numerous languages in play. The solution
lies beyond the realm of inter-​company negotiation. To address Open Source compli-
ance challenges, the global supply chain must align behind certain shared approaches.

6.3  Because No Single Company Makes a Finished Device, No
Single Company Can Solve Compliance Challenges

Awareness of this fact and the provision of a practical solution are two different
matters. It takes time for ideas and suggested approaches to percolate and mature.
It took input from lawyers and managers and developers and political scientists. It
took, in short, a while for the ingenuity of the human community to bounce ideas
back and forth until a simple, clear approach could be found.

6.4  The Best Solutions Are Often the Simplest, with the
Lowest Barriers to Entry

The OpenChain Project formally launched in October 2016 and is hosted by the
Linux Foundation. It originated in discussions that occurred three years earlier
and continued at an increasing pace until a formal project was born. The basic
idea was simple: identify key recommended processes for effective Open Source

TRANSFORMING THE SUPPLY CHAIN WITH OPENCHAIN ISO 5230  143

management. The goal was equally clear: reduce bottlenecks and risk when using
third-​party code to make Open Source licence compliance simple and consistent
across the supply chain. The key intention was to pull things together in a manner
that balanced comprehensiveness, broad applicability, and real-​world usability.

6.5  OpenChain ISO 5230 is Intended to Make Open Source
Licence Compliance More Predictable, Understandable, and

Efficient for the Software Supply Chain

The OpenChain Project is building and disseminating an industry standard for li-
cence compliance. It is designed to be the foundation for Open Source compliance
in the supply chain. Engagement and adoption are simple, free, and supported by a
vibrant community backed by leading multinationals across multiple sectors.

There are three interconnected parts to the OpenChain Project. A Specification
that defines the core requirements of a quality compliance program. A Conformance
method that helps organisations display adherence to these requirements.
A Curriculum to provide basic Open Source processes and best practices.

6.6  A Simple Specification that Explains the Key
Requirements of a Quality Compliance Program

The core of the OpenChain Project is the Specification. This identifies a series of
processes designed to help organisations of any size address Open Source com-
pliance issues effectively. The main goal of organisations using the OpenChain
ISO 5230 Specification is to become conformant. This means that their organisa-
tion must meet the requirements of a certain version of the OpenChain ISO 5230
Specification. A conformant organisation can advertise this fact on its website and
promotional material, helping to ensure that potential suppliers and customers
understand and can trust its approach to Open Source compliance.

6.7  A Clear and Free Way to Check Conformance
with the Specification

OpenChain ISO 5230 Conformance can be checked via a free online self-​certification
questionnaire provided by the OpenChain Project. This is the quickest, easiest, and most
effective way to check and confirm adherence to the OpenChain ISO 5230 Specification.
There is also a manual conformance document available for organisations whose pro-
cess requires a paper review or disallows web-​based submissions. Both the online
and the manual conformance can be completed at a pace decided by the conforming
organisation, and both methods remain private until a submission is completed.

144  Shane Coughlan

6.8  Reference Material to Support Conformance and
with Broader Questions of Training and Processes

OpenChain Project provides extensive reference material to help organisations
meet certain aspects of the OpenChain ISO 5230 Specification. These provide a
generic, refined, and clear example of an Open Source compliance process or sup-
port documents that can either be used directly or incorporated into existing com-
pany materials. OpenChain Project reference material is available with very few
restrictions to ensure organisations can use it in as many ways as possible. To ac-
complish this, it is licensed as Creative Commons—​Zero (CC-​0), effectively public
domain, so remixing or sharing the material freely for any purpose is possible.

6.9  Community and Support

The OpenChain Project provides what is believed to be a compelling approach
to making Open Source compliance more consistent and more effective across
multiple market segments. However, good ideas need implementation, and in
the context of Open Source this inevitably hinges on the creation of a supporting
community. The OpenChain Project at the time of writing has twenty Platinum
Members that support its development and adoption, and a growing global com-
munity containing hundreds of companies.

At its core, the OpenChain Project is about providing a simple, clear method of
building trust between organisations that rely on each other to share code and create
products. Any organisation that is OpenChain ISO 5230 conformant is aligning behind
key requirements that their peers agree are required in a quality compliance program.
This is about confirming overarching processes and policies, while allowing the specifics
of each process and policy to be crafted by each organisation to suit its specific needs.

6.10  Conclusion

The OpenChain ISO 5230 Specification is ready for adoption by any organisation
that creates, uses or distributes free and Open Source code. The online conform-
ance is free of charge, the mailing list and Work Team calls are open to everyone.
Arguably, this is the first time a single, unifying approach to addressing the chal-
lenge of Open Source open compliance in the supply chain exists.

6.11  References

• OpenChain Project: <https://​www.openc​hain​proj​ect.org/​> accessed 14 April 2022.

Kate Stewart, SPDX and Software Bill of Materials In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Kate Stewart 2022. DOI: 10.1093/​oso/​9780198862345.003.0007

7
SPDX and Software Bill of Materials

ISO/IEC 5962L 2021
Kate Stewart

	7.1	� Why Create a Software Bill of
Materials? � 145

	7.2	� What is an SPDX Document? � 146
		 7.2.1	� Overview of an SPDX document � 147
	7.3	� Listening to the Open Source

Community Needs � 156
		 7.3.1	� SPDX License List � 156

		 7.3.2	� Clarifying licensing and
metadata information in
source code � 159

	7.4	� Tooling and Best Practices to
Make it Easy for Developers � 161

	7.5	� Adoption of SPDX Documents � 161
	7.6	� Future Directions � 162

  

7.1  Why Create a Software Bill of Materials?

When the Software Package Data Exchange® (SPDX) project1 was started in 2010,
it was with a simple goal of being able to share summary information about a soft-
ware package between the creator and consumer. At that time, to comply with the
licences in Open Source, you had to find them in the source code. This resulted in
hours of ‘grep’ing’ or working with commercial source scanning tools, and once
you had the details, you didn’t have a good way of sharing them. After comparing
notes and recognising there was a group of managers, lawyers, and developers frus-
trated by the same problem, we started a grassroots effort to standardise the infor-
mation that we wanted to share and it became hosted at the Linux Foundation. We
needed to be able to capture the known information about Open Source software
as well as proprietary software, as products are created from both.

Over the years, more use cases were identified that we wanted to share informa-
tion about, and so additional capabilities were added to the SPDX specification.2
We recognised early on that we wanted to be able to tell if the information we’d re-
corded about a package was stale, so we added the ability to record a cryptographic
hash of the object being described. We wanted to know if the information was
complete—​had files been removed or added—​so a verification code was included.

	 1	 <https://​spdx.dev> accessed 22 June 2022.
	 2	 <https://​spdx.git​hub.io/​spdx-​spec/​> accessed 22 June 2022.

146  Kate Stewart

We saw the need to record an arbitrary level of software components, so the defin-
ition of package was extended to encompass ‘any group of elements’ (which proved
very useful for recording information about containers and all their layers). Being
able to understand if there are vulnerabilities associated with a package is another
use case that has been recognised in the last five years as an important reason to
have available an accurate summary of software being used on a system. Once an
accurate software bill of materials (SBOM) is made available with products, it sim-
plifies the effort. An SPDX document is able to represent an SBOM3.

7.2  What is an SPDX Document?

The SPDX specification defines a common language for communicating the com-
ponents, relationships between components, licenses, security information, and
copyrights associated with software. An SBOM needs to be precise and unam-
biguous in order accurately to identify the code being used in products and enable
identification of any security vulnerabilities associated with that code. An accurate
manifest contained in an SBOM also enables product creators to identify the li-
cense obligations. When we have a common language to communicate these con-
cepts, information can be effectively shared, and it does not need to be regenerated
at each step in the supply chain.

By providing a common syntax and vocabulary for organisations and communities
to share this SBOM data, compliance can be automated, and this improved transpar-
ency facilitates vulnerability identification and remediation. Prior to the instigation of
this standard SBOM within SPDX and its adoption industry, the need to meet an array
of customer requirements to summarise the software metadata and licensing placed
a huge barrier to entry and a burden on suppliers of Open Source software packages.

Before any concept is added to the SPDX specification it has to be added to
the SPDX data model. Each SPDX bill of materials document is based on a full
data model implementation and identifier syntax. This permits exchange be-
tween data output formats and formal validation of the correctness of the SPDX
document. The project started off with two recognised file types, tag:value
(.spdx) and Resource Description Framework in Attributes (RDFa). Over
time, support to translate into spreadsheets was added. In the SPDX specifi-
cation 2.2 release, the additional output file formats of JSON, YAML, and XML
have been added to the formats supported in the 2.1 release (RDFa, tag:value,
spreadsheet). Further information on the SPDX data model can be found in
Annex C of the SPDX Specification, version 2.2,4 and on the SPDX web site.5

	 3	 <https://​ntia.gov/​rep​ort/​2021/​mini​mum-​eleme​nts-​softw​are-​bill-​materi​als-​sbom> accessed 22
June 2022.
	 4	 <https://​spdx.git​hub.io/​spdx-​spec/​RDF-​obj​ect-​model-​and-​ide​ntif​ier-​syn​tax/​> accessed 22 June 2022.
	 5	 <https://​spdx.org/​rdf/​terms/​> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS  147

Converting between multiple file types is made possible by having that underlying
SPDX data model to guide the mappings.

7.2.1  Overview of an SPDX document

The SPDX specification describes the necessary sections and fields to produce a
valid SPDX document. This grassroots effort has had participation over the years
from a wide variety of software developers, systems and tool vendors, foundations,
and the legal community, all committed to creating a common language for prod-
ucts, components, and software packages to be able to exchange SBOM data effi-
ciently and effectively.

Each SPDX document can be composed from the following (see Figure 7.1):

	 -​	 Document Creation Information: One instance is required for each SPDX
document produced. It provides the necessary information for forward and
backward compatibility for processing tools (version numbers, license for
data, authors, etc.)

	 -​	 Package Information: A package in an SPDX document can be used to describe
a product, container, component, packaged upstream project sources, con-
tents of a tarball, etc. It is just a way of grouping together items that share some
common context. It is not necessary to have a package wrapping a set of files.

SPDX v2.2 Document may contain:

Document Creation Information

Package Information

File Information

Snippet Information

Relationships

Annotations

Other Licensing Information

Figure 7.1  SPDX Document Overview

148  Kate Stewart

	 -​	 File Information: A file’s important meta information, including its name,
checksum licences, and copyright, is summarised here.

	 -​	 Snippet Information: Snippets can optionally be used when a file is known to
have some content that has been included from another original source. They
are useful for denoting when part of a file may have been originally created
under another licence.

	 -​	 Other Licensing Information: The SPDX License List6 does not represent all
possible licences that can be found in files (such as uncommon or non-​source-​
available licences), so this section provides a way to summarise other licences
that may be present in software being described.

	 -​	 Relationships: Most of the different ways that SPDX documents, packages,
files, and snippets can be related to each other can be described with these
relationships.

	 -​	 Annotations: Annotations are usually created when someone reviews
the SPDX document and wants to pass on information from their review.
However, if the SPDX document author wants to store extra information that
doesn’t fit into the other categories, this mechanism can be used.

The only section that is mandatory in the SBOM, is the ‘Document Creation
Information’ section for each document, all the rest are optional (see Figure 7.2).
The creator can choose which sections (and subset of the fields in each section) that
describe the software and metadata information to be shared.

7.2.1.1 � Document Creation Information
There must be a ‘Document Creation Information’ section for each SPDX docu-
ment. In it, seven of the fields are required to be filled out. The version of the SPDX
specification used to generate the document is the first field, as it provides the key

	 6	 <https://​spdx.org/​licen​ses/​> accessed 14 April 2022.

Mandatory
X 1.0

1.0
2.0
2.0
2.0
2.0
1.2

1.0

1.0
1.0
1.1

X
X
X
X

X

X

D
oc

um
en

t C
re

at
io

n
In

fo
rm

at
io

n

Added Field name
2.1 SPDX Version
2.2 Data License
2.3 SPDX Identi�er
2.4 Document Name
2.5 SPDX Document Namespace
2.6 External Document Reference
2.7 License List Version

2.8 Creator

2.9 Created
2.10 Creator Comment
2.11 Document Comment

which version of SPDX?
data in document: CC0-1.0
id of the document itself

URI

when document created.
how was the �le created?
• Manual review (who, when)
• Tool (id, version, when)
when?
Comments on creator?
comments on this document?

Comment

Figure 7.2  Document Creation Information

SPDX AND SOFTWARE BILL OF MATERIALS  149

to understand which fields are in each document. Each SPDX document is re-
quired to be under the CC0-​1.0 licence,7 and this is denoted by the ‘Data License’
field. Other mandatory elements in this section are the self-​identification of the
document and the ‘Document Namespace’, as well as who created the document
and when.

Each field has a specific grammar associated with it and rules for parsing. Details
of each field, rationale for the field, and parsing guidance can be found in the
Document Creation Information section of the specification.8

An example of this section expressed as tag:value is:

SPDXVersion: SPDX-​2.2

DataLicense: CC0-​1.0

SPDXID: SPDXRef-​DOCUMENT

DocumentName: SPDX document for Time version 1.7

DocumentNamespace:http://​spdx.org/​docume​nts/​d3e9f​ef0-​00a0-​4b39-​

bb28-​ff3dc​75c7​200

LicenseListVersion: 2.5

Creator: Tool: Source Auditor Open Source Console

Creator: Organisation: Source Auditor Inc.

Created: 2018-​09-​26T11:44:51Z

7.2.1.2 � Package Information
If there is a grouping of elements (commonly files, but could be grouping of

packages, etc.) to be described, then a package section should be created (see Figure
7.3). This section can be used to represent a product, a container, an upstream
project source repository, or even an archive, basically any distributable compo-
nent. If there are no files associated with this package in the document, then ‘Files
Analyzed’ should be set to false to indicate this. By using the ‘External Reference’
field, the package can be linked to security information as well as to public reposi-
tories, in addition to any ‘Package Download Location’ provided.

There are three mandatory fields associated with describing licensing of the
package. The ‘Concluded License’ is filled in by the creator after looking at ‘All
License Information from Package’ and ‘Declared License’ information. As an ex-
ample, the Zephyr project sources9 are primarily Apache-​2.0 but include some files
under BSD-​3-​Clause. So a binary built from the Zephyr project source code would
have a ‘Concluded License’ of ‘Apache-​2.0 AND BSD-​3-​Clause’, the ‘Declared
License’ would probably be ‘Apache-​2.0’ based on the contents of the LICENSE
file,10 and ‘All License Information from Package’ would include lines for both

	 7	 <https://​spdx.org/​licen​ses/​CC0-​1.0.html> accessed 22 June 2022.
	 8	 <https://​spdx.git​hub.io/​spdx-​spec/​docum​ent-​creat​ion-​info​rmat​ion/​> accessed 22 June 2022.
	 9	 <https://​git​hub.com/​zephyr​proj​ect-​rtos/​zep​hyr> accessed 22 June 2022.
	 10	 <https://​git​hub.com/​zephyr​proj​ect-​rtos/​zep​hyr/​blob/​main/​LICE​NSE> accessed 22 June 2022.

150  Kate Stewart

Apache-​2.0 and for BSD-​3-​Clause. For all licensing fields, if the SPDX docu-
ment creator does not know (or does not wish to state) the applicable licence, the
NOASSERTION term can be used.

Details of each field, rationale for the field, and parsing guidance can be found at
the website in the footnote.11

An example of a package expressed as tag:value is:

PackageName: GNU Time

SPDXID: SPDXRef-​1

PackageVersion: 1.7

PackageFileName: time-​1.7.tar.gz

PackageSupplier: Organisation: GNU

PackageOriginator: Organisation: GNU

PackageDownloadLocation: https://​ftp.gnu.org/​gnu/​time/​

PackageVerificationCode: dd5cf0b17bfef4284c6c22471b277de7beac407c

PackageChecksum: SHA1: dde0c28c7426960736933f3e763320680356cc6a

PackageLicenseConcluded: GPL-​2.0+​

PackageLicenseInfoFromFiles: GPL-​2.0+​

PackageLicenseInfoFromFiles: MIT

Mandatory

Pa
ck

ag
e I

nf
or

m
at

io
n

(C
on

tin
ue

d
on

 R
ev

er
se

)
X
X

X

X

X
X
X

X

1.0
2.0
1.0
1.0
1.0
1.0
1.0
2.1
1.0
1.0
1.2
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
2.0
2.1
2.1

3.1 Package Name
3.2 Package SPDX Identi�er
3.3 Package Version
3.4 Package File Name
3.5 Package supplier
3.6 Package Originator

formal name by originator
unique ID

actual �le name for package

download URL
�les associated with package?
special algorithm

project homepage

any copyrights declared?

3.7 Package Download Location
3.8 Files Analyzed
3.9 Package Veri�cation Code
3.10 Package Checksum
3.11 Package Home Page
3.12 Source Information
3.13 Concluded License
3.14 All Licenses Information from Package
3.15 Declared License
3.16 Comments on License
3.17 Copyright Text
3.18 Package Summary Description
3.11 Package Detailed Description
3.12 Package Comment
3.13 External Reference
3.14 External Reference Comment

Added Field Name Comment

Figure 7.3  Package Information

	 11	 <https://​spdx.git​hub.io/​spdx-​spec/​pack​age-​info​rmat​ion/​> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS  151

PackageLicenseInfoFromFiles: GPL-​2.0

PackageLicenseDeclared: GPL-​2.0+​

PackageCopyrightText: <text>Copyright (C) 1990, 91, 92, 93, 96 Free

Software Foundation, Inc.</​text>

PackageSummary: <text>The `time’ command runs another program,

then displays information about the resources used by that pro-

gram, collected by the system while the program was running.

</​text>

PackageDescription: <text>The ̀ time’ command runs another program,

then displays information about the resources used by that pro-

gram, collected by the system while the program was running. You

can select which information is reported and the format in which

it is shown, or have `time’ save the information in a file in-

stead of displaying it on the screen.</​text>

7.2.1.3 � File Information
Each individual file to be summarised must have a name and a checksum associ-
ated with it (see Figure 7.4).

If there is any ‘License Information in File’, then it should be documented either
by an ID from the SPDX License List or via a ‘LicenseRef-​’ for licences not on the
list (see ‘Other-Licensing-Information’ section). In some cases, the information
found in the file may not be the ‘Concluded License’ for that file, and so a second
mandatory field is expected. If there is any copyright notice in the file it should also
be included.

In the above table, some fields are marked as deprecated and should not be used,
however they were present in prior versions of this section.

Fi
le

 In
fo

rm
at

io
n

Mandatory
X 1.0

2.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.1
1.2
1.2
1.2

4.1 File Name what is name of �le
4.2 File SPDX Identi�er
4.3 File Type
4.4 File Checksum
4.5 Concluded License

unique ID
source, binary, ...
SHA1, MD5, SHA256
by SPDX document creator
detected by scanning �le

deprecated
deprecated
deprecated

deprecated

if Notice found in �le
if Contributor info in �le

4.6 License Information in File
4.7 Comments on License
4.8 Copyright Text
4.9 Artifact of Project Name
4.10 Artifact of Project Homepage
4.11 Artifact of Project URI
4.12 File Comment
4.13 File Notice
4.14 File Contributor
4.15 File Dependencies

X

X
X
X

X

Added Field Name Comment

Figure 7.4  File Information

152  Kate Stewart

Details of each field, rationale for the field, and parsing guidance can be found in
the website in the footnote.12

An example of a file expressed as tag:value is:

FileName: ./​time.c

SPDXID: SPDXRef-​4

FileType: SOURCE

FileChecksum: SHA1: 712d7f9dfde674283596ae2088550e3ff23ae1ba

LicenseConcluded: GPL-​2.0+​

LicenseInfoInFile: NOASSERTION

FileCopyrightText: <text>Copyright Free Software Foundation, Inc</​text>

7.2.1.4 � Snippet Information
Each instance of ‘Snippet Information’ needs to be associated with a specific ‘File
Information’ section in an SPDX document via the File’s ‘SPDX Identifier’ (see
Figure 7.5). The ‘Snippet Byte Range’ field is used to identify the part of the file
being described. The ‘Snippet Concluded License’ and any ‘Snippet Copyright
Text’ are also required to be documented when a snippet section is used, though
they can be filled in with NOASSERTION as with packages and files.

Details of each field, rationale for the field, and parsing guidance can be found at
website noted in the footnote.13

An example of a snippet expressed as tag:value is:

SnippetSPDXID: SPDXRef-​5

SnippetFromFileSPDXID: SPDXRef-​2

SnippetByteRange: 889:9002

SnippetLineRange: 24:245

SnippetLicenseConcluded: Apache-​2.0

	 12	 <https://​spdx.git​hub.io/​spdx-​spec/​file-​info​rmat​ion/​> accessed 22 June 2022.
	 13	 <https://​spdx.git​hub.io/​spdx-​spec/​snip​pet-​info​rmat​ion/​> accessed 22 June 2022.

Sn
ip

pe
t I

nf
or

m
at

io
n

Mandatory
X 2.1 5.1 Snippet SPDX identi�er

5.2 Snippet from File SPDX Identi�er
5.3 Snippet Byte Range
5.4 Snippet Line Range
5.5 Snippet Concluded License
5.6 License Information in Snippet
5.7 Snippet Comments on License
5.8 Snippet Copyright Text
5.9 Snippet Comments
5.10 Snippet Name

unique ID
unique ID
number:number
number:number
By SPDX document creator
detected by scanning �le

for convenience

2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1

X
X

X

X

Added Field Name Comment

Figure 7.5  Snippet Information

SPDX AND SOFTWARE BILL OF MATERIALS  153

LicenseInfoInSnippet: BSD-​2-​Clause-​FreeBSD

SnippetCopyrightText: <text>Copyright 2001-​2016 The Apache Software

Foundation</​text>

SnippetComment: <text> This snippet should have a related package

with an external referenced, however, the maven-​plugin only sup-

ports external references for the main package </​text>

SnippetName: Apache Commons Math v. 3.6.1

7.2.1.5 � Other Licensing Information
One instance of ‘Other Licensing Information’ should be created for every unique
license or licensing information reference detected in the files or packages de-
scribed in the document that does NOT match one of the licenses on the SPDX
License List (see Figure 7.6).14

Each found license documented must have a ‘License Identifier’ assigned to the

verbatim ‘Extracted Text’ found. The ‘License Identifier’ is required to start with the
prefix ‘LicenseRef-​’ to help identify it in the rest of the document. In some cases,
the extracted license may have a formal name in other contexts, and the ‘License
Name’ is an optional field to permit recording this if known.

Details of each field, rationale for the field, and parsing guidance can be found at
the website noted in the footnote.15

An example of an extracted licence expressed as tag:value is:

LicenseID: LicenseRef-​FaustProprietary

ExtractedText: <text>FAUST, INC. PROPRIETARY LICENSE:

FAUST, INC. grants you a non-​exclusive right to use, modify, and

distribute the file provided that (a) you distribute all copies and/​

or modifications of this file, whether in source or binary form,

under the same license, and (b) you hereby irrevocably transfer and

assign the ownership of your soul to Faust, Inc. In the event the

6.5 License Comment unique ID1.1

Mandatory Added Field Name Comment
X 1.0 6.1 License Identi�er

6.2 Extracted Text
6.3 License Name
6.4 License Cross Reference

LicenseRef-uniqueID
text found during scans
formal name
text found during scans

1.0
1.1
1.1

X

O
th

er
 L

ic
en

sin
g

In
fo

rm
at

io
n*

Figure 7.6  Other Licensing Information

	 14	 <https://​spdx.org/​licen​ses/​> accessed 22 June 2022.
	 15	 <https://​spdx.git​hub.io/​spdx-​spec/​other-​licens​ing-​info​rmat​ion-​detec​ted/​> accessed 22 June
2022.

154  Kate Stewart

fair market value of your soul is less than $100 US, you agree to

compensate Faust, Inc. for the difference.Copyright (C) 2016 Faust

Inc. All, and I mean ALL, rights are reserved.</​text>

LicenseName: Faust (really) Proprietary License

LicenseComment: <text>This license was extracted from the file

InsufficientKarmaException</​text>

7.2.1.6 � Relationships
This field can be used to provide information about the relationship between two
SPDX specification elements. For example, you can represent a relationship be-
tween Snippets, Files, Packages, or SPDX documents.

The relationships between two elements that are supported are:

	 •	 DESCRIBES, DESCRIBED_​BY
	 •	 CONTAINS, CONTAINED_​BY
	 •	 GENERATES, GENERATED_​FROM
	 •	 ANCESTOR_​OF, DESCENDANT_​OF
	 •	 VARIANT_​OF, COPY_​OF
	 •	 DISTRIBUTION_​ARTIFACT, PATCH_​FOR, PATCH_​APPLIED
	 •	 FILE_​ADDED, FILE_​DELETED, FILE_​MODIFIED
	 •	 EXPANDED_​FROM_​ARCHIVE
	 •	 DYNAMIC_​LINK, STATIC_​LINK
	 •	 DATA_​FILE_​OF, TEST_​CASE_​OF, BUILD_​TOOL_​OF, DOCUMENTATION_​OF
	 •	 OPTIONAL_​COMPONENT_​OF, METAFILE_​OF, PACKAGE_​OF
	 •	 AMENDS
	 •	 PREREQUISITE_​FOR, HAS_​PREREQUISITE
	 •	 OTHER

This set of relationships was determined by examining common use cases in the
supply chain. Others can be added if a use case can be shown not to be able to be rep-
resented with the current set by opening a new issue against the SPDX specification.16

A detailed description and examples of each relationship can be found at the
website noted in the footnote.17

A Relationship would follow a file or package section, and may have a comment
associated with it:

Relationship: SPDXRef-​2 PREREQUISITE_​FOR SPDXRef-​1

RelationshipComment: <text>The package foo.tgz is a prerequisite

for building the executable bar.</​text>

	 16	 <https://​git​hub.com/​spdx/​spdx-​spec/​iss​ues> accessed 22 June 2022.
	 17	 <https://​spdx.git​hub.io/​spdx-​spec/​relati​onsh​ips-​betw​een-​SPDX-​eleme​nts/​> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS  155

7.2.1.7 � Annotations
This section permits a person, organisation, or tool to add comments about elem-
ents in an SPDX document (see Figure 7.7). Comments can be made on snippets,
files, packages, or the entire document. Annotations are usually created when
someone reviews the file, but if an author wants to store extra information about
one of the elements during creation, this can be used as well. If an annotation is to
be made, all the sections need to be filled out. More details on the fields and values
can be found at the website in the footnote.18

An example annotation could look like:

Annotator: Person: John Smith

AnnotationDate: 2018-​01-​29T18:30:22Z

AnnotationType: REVIEW SPDXREF: SPDXRef-​5

AnnotationComment: <text>Copyright on snippet should be Copyright

2010-​2012 CS Systèmes d’Information</​text>

7.2.1.8 � Specification evolution
If there is a use case you’re not sure how to represent with the specification, you
are encouraged to contact the volunteers at spdx-​tech@lists.spdx.org and ask
about it, or if you prefer, open an issue in the spdx-​specification github repo.19 If
a community member can’t figure out a solution, the use case will be added to the
topics for the specification team to address in future revisions. As illustrated by the
publishing history, this is a living specification, and continues to evolve to suit the
needs of the users.

Publishing History

	 •	 2011/​08—​SPDX 1.0—​handles packages
	 •	 2012/​08—​SPDX 1.1—​fixed flaw in package verification algorithm
	 •	 2013/​10—​SPDX 1.2—​improved interaction with License List, additional

fields for documenting project info

	 18	 <https://​spdx.git​hub.io/​spdx-​spec/​anno​tati​ons/​> accessed 22 June 2022.
	 19	 <https://​git​hub.com/​spdx/​spdx-​spec/​iss​ues> accessed 22 June 2022.

8.5 Annotation Comment free form information2.0

Mandatory Added Field Name Comment

X 2.0 8.1 Annotator

8.2 Annotation Date
8.3 Annotation Type
8.4 SPDX Identi�er Reference

the person, company, or tool
which provided the annotation

reviewer or other
unique ID

2.0
2.0
2.0

X
X
X
X

A
nn

ot
at

io
ns

*

Figure 7.7  Annotations

156  Kate Stewart

	 •	 2015/​05—​SPDX 2.0—​added ability to handle multiple packages, relation-
ships between packages and files, annotations

	 •	 2016/​11—​SPDX 2.1—​added snippets, support for external references
(CPEs, etc.)

	 •	 2019/​06—​SPDX 2.1.1—​move specification source to github repo to facilitate
wider transparency and tracking

	 •	 2020/​05—​SPDX 2.2—​added SPDX Lite profile, additional support for ex-
ternal references (PURL, SWHid, etc.), and support for different file formats
(.json, .yaml, .xml)

	 •	 2020/​07—​SPDX 2.2.1—​same fields as SPDX 2.2 but reformatted for ISO
submission

	 •	 2020/​10—​Specification submitted to ISO for balloting
	 •	 2021/​03—​Balloting concludes, SPDX specification is ‘Approved’
	 •	 2021/​08—​SPDX specification is published as ISO/​IEC 5962:202120

	 •	 2022/​04—​SPDX 2.2.2 published including typo fixes and clarifications

7.3  Listening to the Open Source Community Needs

The SPDX project21 was created by developers, supply chain, security, and legal
professionals collaborating with each other. This interdisciplinary team has been
incrementally refining the SPDX specification (currently at version 2.2.2) and the
list of recognised licenses (currently at version 3.17) over time, as the community
is asked how to share specific information and licenses. If there is a use case you’re
not sure how to represent with the specification, you are encouraged to contact the
volunteers and ask about it or open an issue against the specification.22 If someone
can’t figure out a solution, the use case will be added to the topics for the specifica-
tion team to address.

7.3.1  SPDX License List

The SPDX License List23 is a list of commonly found licenses and exceptions used
in Free and Open Source software and other collaborative projects, including
software, documentation, hardware, data, etc. The purpose of the list is to enable
easy and efficient identification of licences and exceptions and to be able to store

	 20	 <https://​www.iso.org/​stand​ard/​81870.html> accessed 22 June 2022.
	 21	 <https://​spdx.dev/​> accessed 22 June 2022.
	 22	 <https://​spdx.git​hub.io/​spdx-​spec/​> accessed 22 June 2022.
	 23	 <https://​spdx.org/​licen​ses/​> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS  157

references in SPDX documents, in source files, or elsewhere. Use of these standard
licence identifiers streamlines licence identification across the supply chain while
reducing redundant work. They are recognised by an increasing number of up-
stream Open Source projects, companies, organisations, governments, and tool
vendors.

The SPDX License List includes a standardised short identifier, full name,
vetted licence text including matching guidelines markup as appropriate, and a
canonical permanent URL for each licence and exception. When you go to the
SPDX License List website, you’ll see the SPDX License List table as illustrated in
Figure 7.8

The first thing to note is the SPDX License List version number. It is im-
portant to keep in mind that this is a living list and gets updated approximately
every three months. If you don’t see a licence you are commonly encountering
in Open Source code, please feel free to send a request for proposing a li-
cense or an exception to be added to the SPDX License List as directed on the
webpage.24

The SPDX License List can also be programatically accessed as well so that the
license text and matching guidelines can be used by your organisation’s tools. The
recommended way to get programatic access to the latest version of the License
List is through the License List data project on GitHub,25 rather than scraping
the website. The repository there contains various generated data formats for the
SPDX License List, including JSON, RDFa/​HTML, RDF NT, RDF turtle, RDF/​
XML, and HTML, as well as a simple text version. More details on how to ac-
cess the SPDX License List programatically can be found at the website in the
footnote.26

	 24	 <https://​git​hub.com/​spdx/​lice​nse-​list-​XML/​blob/​mas​ter/​CONTR​IBUT​ING.md> accessed 22
June 2022.
	 25	 <https://​git​hub.com/​spdx/​lice​nse-​list-​data> accessed 22 June 2022.
	 26	 <https://​git​hub.com/​spdx/​lice​nse-​list-​data/​blob/​mas​ter/​access​ingL​icen​ses.md> accessed 22
June 2022.

Figure 7.8  SPDX Licence List Table

158  Kate Stewart

In the SPDX License List table shown in Figure 7.8, you’ll see the columns for:

	 •	 Full Name of the licence.
	 •	 Identifier for the licence. This ‘short identifier’ also gets referred to as the

SPDX license ID in some places.
	 •	 FSF Free/​Libre? If the licence is considered free by the Free Software

Foundation (FSF), this field will indicate ‘Y’, otherwise it is left blank
	 •	 Is OSI Approved? If the licence is approved by the Open Source Initiative , this

field will indicate ‘Y’, otherwise it is left blank
	 •	 A link to License Text of the license. The full text of the licence is provided as

well as any standard headers associated with a licence.

If you click on the column headers it will sort the SPDX License List table by those
fields.

By clicking on the ‘Full Name’ or the ‘License Text’ you’ll also be taken to a ca-
nonical permanent URL for that license that provides more information about the
license. The permanent URL can be found by appending the short identifier and
‘.html’ to the ‘https://​spdx.org/​licen​ses/​’ prefix. An example of the GPL-​2.0-​only
license page is reproduced later in this chapter.

SPDX AND SOFTWARE BILL OF MATERIALS  159

7.3.2  Clarifying licensing and metadata information
in source code

Accurately identifying the licence for Open Source software is important for
licence compliance. However, determining the licence can sometimes be diffi-
cult due to a lack of information or ambiguous information. Even when there is
some licensing information present, a lack of consistent ways of expressing the
licence can make automating the task of licence detection very difficult, thus re-
quiring significant amounts of manual human effort. There are some commer-
cial tools applying machine learning to this problem to reduce the false positives
and train the licence scanners, but a better solution is to fix the problem at the
upstream source.

The SPDX project liked the simplicity of this approach introduced by the U-​
Boot project in 2013,27 and formally adopted the syntax for embedding ‘SPDX
License Identifier’ tags into the project and documented the syntax in SPDX speci-
fication from version 2.1 onwards.28

The SPDX License Identifier syntax used with short identifiers from the SPDX
License List (referred to as SPDX License IDs) can be used to indicate relevant
licence information at any level, from package to the source code file level. The
‘SPDX License Identifier’ phrase and a license expression29 formed of SPDX
Licence IDs in a single-​line comment form a precise, concise, and language-​
neutral way to document the licensing that is simple to machine process. This
leads to source code that is easier to read, which appeals to developers, as well as
enabling the licensing information to be trivially searchable via grep and to travel
with the source code.

To use SPDX License IDs in your project’s source code, just add a single line in
the following format, tailored to your license(s) and the comment style for that file’s
language. For example:

//​ SPDX-​License-​Identifier: MIT

/​* SPDX-​License-​Identifier: MIT OR Apache-​2.0 */​

SPDX-​License-​Identifier: GPL-​2.0-​or-​later

	 27	 <https://​git.denx.de/​?p=​u-​boot.git;a=​com​mit;h=​eca3aeb352c96​4bdb​28b8​e191​d632​6370​245e​
03f> accessed 22 June 2022.
	 28	 <https://​spdx.git​hub.io/​spdx-​spec/​using-​SPDX-​short-​iden​tifi​ers-​in-​sou​rce-​files/​> accessed June
2022.
	 29	 <https://​spdx.dev/​ids> accessed 14 April 2022.

160  Kate Stewart

To learn more about how to use SPDX License IDs with your source code,
please see the documentation in the SPDX project,30 and David Wheeler’s
tutorial.31

The use of these short identifiers to identify the licences has been adopted by
other upstream Open Source projects and repositories, including GitHub in its li-
cences’ application programing interface (API).32 In addition to U-​boot, Linux is
transitioning to use the SPDX License IDs, and newer projects like Zephyr and
Hyperledger Fabric have adopted them right from the start as a best practice.33
Indeed, to achieve the Core Infrastructure Initiative’s gold badge, each file in the
source code must have a licence, and the recommended way is to use an SPDX
License ID.34

The project MUST include a license statement in each
source file. This MAY be done by including the fol-
lowing inside a comment near the beginning of each
file: SPDX-​License-​Identifier: [SPDX license expres-
sion for project].

When SPDX License IDs are used, gathering license information across your pro-
ject files can start to become as easy as running ‘grep’. If a source file gets reused in a
different package, the licence information travels with the source, reducing the risk
of licence identification errors, and making licence compliance in the recipient pro-
ject easier. By using SPDX License IDs in licence expressions, the meaning of licence
combinations is understood more accurately. Stating ‘this file is MPL/​MIT’ is am-
biguous and leaves recipients unclear about their compliance requirements. Stating
‘MPL-​2.0 AND MIT’ or ‘MPL-​2.0 OR MIT’ specifies precisely whether the licensee
must comply with both licence, or either licence, when redistributing the file.

As illustrated by the transition underway in the Linux kernel,35 SPDX License
IDs can be adopted gradually. You can start by adding SPDX License IDs to new
files without changing anything already present in your codebase.

	 30	 <https://​spdx.dev/​ids-​how> accessed 22 June 2022.
	 31	 <https://​git​hub.com/​david-​a-​whee​ler/​spdx-​tutor​ial> accessed 22 June 2022.
	 32	 <https://​develo​per.git​hub.com/​v3/​licen​ses/​> accessed 22 June 2022.
	 33	 <https://​spdx.dev/​ids-​where> accessed 22 June 2022.
	 34	 <https://​git​hub.com/​cor​einf​rast​ruct​ure/​best-​practi​ces-​badge/​blob/​mas​ter/​doc/​other.md#bas​ics-​1>
accessed 22 June 2022.
	 35	 <https://​git.ker​nel.org/​pub/​scm/​linux/​ker​nel/​git/​torva​lds/​linux.git/​tree/​Docume​ntat​ion/​proc​
ess/​lice​nse-​rules.rst> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS  161

7.4  Tooling and Best Practices to Make it
Easy for Developers

In 2017, the Free Software Foundation Europe (FSFE) created a project called
REUSE.software36 that provided guidance for Open Source projects on how to
apply the SPDX License Identifiers into projects. The REUSE.software guidelines
were followed for adding SPDX License Identifiers into the Linux kernel later that
year.37 In addition to the guidelines propose by the REUSE.software project, there
is also a linter tool that can generate an SBOM automatically, if the guidelines are
followed.38

The SPDX project also maintains a set of Java-​,39 Python-​,40 and Go-​41 based
tools to help with validation of SPDX documents and conversion between the sup-
ported file types. These libraries are available for other tool creators to use, and can
simplify the creation and consumption of SPDX documents with their software. As
with the Specification and License List, suggestions for improvement to the SPDX
tools are also appreciated.

7.5  Adoption of SPDX Documents

The use of SPDX as a recognised SBOM format has been slowly improving over
the last six years. A key factor was the introduction of the open source scan-
ning tool FOSSology42 being able to output SPDX documents in 2016, and then
adding the capability to consume them in 2019. Before then, the only scanning
tools able to work with the format were proprietary. Other Open Source tools
have since become available to help with specific workflows, and this is acceler-
ating adoption.

Another key factor was the growing adoption of the OpenChain Specification
that calls for the ability to create a Bill of Material (BOM) for the software in its
conformance criteria.43 Following on from OpenChain becoming an ISO standard

	 36	 <https://​reuse.softw​are/​> accessed 22 June 2022.
	 37	 <https://​git.ker​nel.org/​pub/​scm/​linux/​ker​nel/​git/​torva​lds/​linux.git/​tree/​Docume​ntat​ion/​proc​
ess/​lice​nse-​rules.rst> accessed 22 June 2022.
	 38	 <https://​git​hub.com/​fsfe/​reuse-​tool> accessed 22 June 2022.
	 39	 <https://​git​hub.com/​spdx/​tools/​> accessed 22 June 2022.
	 40	 <https://​git​hub.com/​spdx/​tools-​pyt​hon> accessed 22 June 2022.
	 41	 <https://​git​hub.com/​spdx/​tools-​gol​ang> accessed 22 June 2022.
	 42	 <https://​www.fossol​ogy.org/​> accessed 22 June 2022.
	 43	 <https://​wiki.linu​xfou​ndat​ion.org/​_​me​dia/​opench​ain/​opench​ains​pec-​2.0.pdf> accessed 22
June 2022.

162  Kate Stewart

(ISO/​IEC 5230:2020), as discussed in Chapter 6, procurement departments in the
supply chain will be more likely to expect to see an SBOM with delivery of soft-
ware and producing this will be simpler. The SPDX specification became an inter-
national standard (ISO/​IEC 5962L2021) in 2021.

In June 2018, the National Telecommunications and Information
Administration (NTIA) engaged stakeholders across multiple industries to dis-
cuss software transparency and determine what a minimum viable SBOM is, and
what file formats could support this information. SPDX was recognised as a valid
standard to support SBOMs in the wrap up of the 2019 Phase 1 work.44 Phase 2
used SPDX to share data between medical device manufacturers and health de-
livery organisations.

Over the recent years, there has been a growing awareness in the industry that
there is a need to improve the transparency of the software running on systems.
In November 2020, the EU put out the ENISA report, ‘Guidelines for Securing
the Internet of Things’, which calls out as a best practice to provide a SBOM for
Internet of Things (IoT) devices.45 On 12 May 2021, the US Biden Administration
issued a Cybersecurity executive order, calling for a best practices in Enhancing
Software Supply Chain Security (Section 4) to ‘providing a purchaser a Software
Bill of Materials (SBOM) for each product directly or by publishing it on a public
website’ (Section 4(e)(vii)).46

 7.6  Future Directions

There are several use cases the SPDX community is considering how best to rep-
resent as it works towards the next version of the specification. From the NTIA
SBOM framing working group efforts,47 as well as the OpenChain Japan team ef-
forts in creating the SPDX Lite profile,48 it became clear that having a minimal base
set of fields to just represent the manifest and relationships was needed. The SPDX
community is working to refactor the specification into a basic set of fields (called

	 44	 <https://​www.ntia.gov/​SBOM> accessed 22 June2022.
	 45	 <https://​www.enisa.eur​opa.eu/​publi​cati​ons/​gui​deli​nes-​for-​secur​ing-​the-​inter​net-​of-​thi​ngs> ac-
cessed 14 April 2022.
	 46	 <https://​www.fede​ralr​egis​ter.gov/​docume​nts/​2021/​05/​17/​2021-​10460/​improv​ing-​the-​nati​ons-​
cybers​ecur​ity> accessed 22 June 2022.
	 47	 <https://​www.ntia.gov/​SBOM> accessed 22 June 2022.
	 48	 <https://​spdx.git​hub.io/​spdx-​spec/​SPDX-​Lite/​> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS  163

core) with optional profiles, to handle specific domain information like licensing,
security, pedigree, provenance, and usage. If you have use cases in these areas, and
want to participate in the discussion, please open an issue on GitHub,49 or send
mail to spdx-​tech@lists.spdx.org.

	 49	 <https://​git​hub.com/​spdx/​spdx-​spec/​iss​ues> accessed 22 June 2022.

Toby Crick, Corporate Concerns In: Open Source Law, Policy and Practice. Edited by: Amanda Brock, Oxford University Press.
© Toby Crick 2022. DOI: 10.1093/​oso/​9780198862345.003.0008

8
Corporate Concerns
Audit, Valuation, and Deals

Toby Crick

	8.1	� Introduction � 164
		 8.1.1	� Open Source and corporate

culture � 164
		 8.1.2	� Widespread use of

Open Source � 165
		 8.1.3	� Managing the use of Open

Source in the enterprise � 165
	8.2	� Why Understanding Open Source

 is Important in the Corporate
Context � 166

		 8.2.1	� Good practice � 166
		 8.2.2	� Key risks � 166
	8.3	� Open Source Audit Services � 169
		 8.3.1	� The context within which

Open Source audits
take place � 169

		 8.3.2	� Purpose of Open Source audit � 170
		 8.3.3	� Audit process � 170
	8.4	� Valuation � 172
		 8.4.1	� How technology assets can

contribute to the valuation of a
business � 172

		 8.4.2	� How can a business reliant on
something distributed for free be
given a value? � 172

	8.5	� Issues Arising on M&A � 174
		 8.5.1	� M&A process � 174
		 8.5.2	� Importance of Open Source � 175
	8.6	� Investment in Open Source

Businesses � 178
		 8.6.1	� Similarities and differences to

M&A process � 178
		 8.6.2	� The investment lifecycle � 179
		 8.6.3	� Debt and equity � 179
		 8.6.4	� Risks and controversies � 179
	8.7	� Insolvency � 180
		 8.7.1	� What happens to Open Source

assets on insolvency? � 180
		 8.7.2	� ‘Going open’ � 181
	8.8	� IPO � 181
		 8.8.1	� Issues with Open Source

that arise on a listing � 181
		 8.8.2	� Valuation � 182
		 8.8.3	� Where to list? � 182

  

8.1  Introduction

8.1.1  Open Source and corporate culture

Not so long ago there was a view amongst Chief Information Officers (CIOs),
investors, and board-​level executives that Open Source software (let alone free
and open innovation) was an anathema to the key metrics they were measured
against: maintaining value within the corporation with a view to maximising
revenue and profitability and ultimately only considering shareholder or in-
vestor value.

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  165

Even as they adopted Linux-​based servers and admired the business models of
companies such as Red Hat, the prevailing view was that Open Source was for hob-
byists and activists, not for ‘proper’ corporations.

8.1.2  Widespread use of Open Source

It is safe to say that this point of view is now entirely out of date. Once in a while an
investor or advisor may flag a concern about Open Source but the undoubted bene-
fits Open Source can bring to an enterprise in terms of time to market, reduced
software development cost, and improved code quality is now widely understood.
Indeed, the use of Open Source by enterprises in their own code development and
in the third-​party products they licence to use to operate their businesses is now
standard practice.

As further discussed in Chapter 19 this process of use to contribution, has no
doubt been helped by the wider adoption of permissive licence models (such as
MIT or Apache) as discussed in Chapter 2, and means that today, the use of Open
Source is seen as less likely to put at risk future monetisation opportunities and
may in some cases be the heart of a monetisation opportunity.

One cannot imagine today a Chief Executive Officer (CEO), CIO, or investor
mandating that ‘no Open Source shall be used in this company’. Instead, they, and
technology investors in particular, would be more likely to have significant con-
cerns about an over-​reliance on proprietary code than they would over the well-​
managed use of Open Source or a company that was not aware of its dependence
on Open Source software.

8.1.3  Managing the use of Open Source in the enterprise

Of course, just like any other activity involving technology and software, the use
of Open Source is not without risk. What is surprising is that now that the use of
Open Source is standard across the corporate world, the use of sensible risk man-
agement protocols in relation to such use is not also standard. This is particularly
surprising given the exponential growth of tools and processes aimed at risk man-
agement being made available to users and developers of Open Source. Examples
of governance and risk support tools like the ISO standard Open Chain discussed
in Chapter 6 abound and are part of the Open Source community’s journey to
standardised good practice.

It is clear that there is an expectation today that enterprises will utilise such
tools and processes and will need to demonstrate such use to investors and regu-
lators alike that they have an adequate Open Source policy and processes in place

166  Toby Crick

to manage governance and risk of their use of and, if appropriate, contribution to,
Open Source software.

This chapter:

	 •​	 looks at code audits and the good practices around managing and logging the
enterprise’s code base across proprietary third-​party tools, third-​party Open
Source tools, and its own internally produced code (see section 8.3 later in this
chapter) that an enterprise can deploy;

	 •​	 then considers how Open Source can add value to a business or even become a
valuable business in and of itself (see section 8.4);

	 •​	 sets out how the process of mergers and acquisitions (M&A), investment,
and ultimately an Initial Public Offering (IPO) should be adapted where a
key asset of a target business (whether used internally or to create revenue) is
Open Source; and

	 •​	 investment around Open Source.

8.2  Why Understanding Open Source is Important in the
Corporate Context

8.2.1  Good practice

As noted earlier and throughout this book, the ease of use and low initial cost of
Open Source means that its use is now very widespread and Open Source projects
have an advantage of their packages and products being able to scale quickly and
without lengthy procurement processes. However, even though Open Source is
‘freely’ available and is generally also cost-​free, there are significant issues that can
impact on its commercial and legal attractiveness.

It is essential that these issues are understood and managed. There is a wide
body of work describing best practice and a huge and growing ecosystem of service
providers and consultants whose business it is to help enterprises manage their use
of Open Source in a risk-​appropriate manner.

8.2.2  Key risks

The risks associated with the use of Open Source are briefly considered here.

8.2.2.1 � Copyleft and ‘viral impact’ of Open Source
As discussed in detail in Chapters 2 and 3, some Open Source is licensed for use
on terms that require any onward distribution of such software (even in other
products) to be licensed on the same terms through the mechanism of copyleft

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  167

or reciprocal licences. Enterprises must be aware of this and ensure that they do
not bundle copyleft code in with their commercial products in a way that could
cause a viral impact, however technologists are more than familiar with the ways
in which to manage this risk and that the solution to avoiding ‘viral infection’ (a
term loathed by the Open Source development communities) is to manage linking
by ensuring it is dynamic not static and to use other technological solutions such
as RCP1 in order to avoid the derivative work issue which causes such a risk. This
requires suitable internal processes and flags in the use of code under such licences
and is a great example of a technical solution to a legal problem.

As fully discussed in Chapter 3, the compatibility of this code with other Open
Source software also needs to be considered.

8.2.2.2 � Lack of IP infringement claim protection
Open Source licences do not include any IP warranty or indemnity protection in
relation to IP infringement claims and indeed the well written ones specifically
disclaim any implied liabilities. This is due to their free, no-​cost nature.2 When
compared to proprietary software, where the licensor in theory knows the gen-
esis of the software and can be reasonably confident of no copyright infringement
(and to a lesser extent, patent infringement), we see the proprietary companies of-
fering higher levels of indemnity around copyright. However, in recent years their
willingness to take on liability for patent risk has significantly reduced, somewhat
levelling the playing field. Of course, the indemnity from a proprietary vendor
is provided in return for a licence fee or royalty and this is part of a calculation
around the cost of software. The cost of insurance for such liability may be an alter-
native to the licensing fee.

Whilst single product Open Source companies and aggregators like Red Hat
may offer some level of protection with subscription, upstream licensors of Open
Source are unlikely to provide any such comfort.

This means licensees/​users of Open Source are potentially exposed to third-​
party IP infringement claims with no recourse against the upstream licensors (who
may be an individual uploading code via GitHub or a large corporation). However,
the value of a corporate indemnity from a proprietary vendor is as good as the
vendor or their insurer. In this respect use of insurance for Open Source is a way
to level the playing field if this is a particular concern to a user or licensor of Open
Source software.

	 1	 A Rich Client Platform (RCP) is a computer program allowing the creation of Java applications in a
portable and reusable manner.
	 2	 If, however, Open Source is provided by a commercial supplier with add on subscription or services
(e.g. from a vendor like Red Hat or Tidelift), then a level of indemnity may be provided as part of this
service, similar to the indemnities provided by proprietary software providers. Even here such indem-
nity protection is unlikely to include IP infringement claims.

168  Toby Crick

The financial and reputational impact of being found liable in, or even just
having to defend, an IP infringement claim will be disruptive for a business. When
coupled with the potential loss of the right to use a business-​critical program or
Open Source which underpins a significant revenue stream, it is crucial that this
risk is considered when managing or investing in an enterprise that uses Open
Source and good practices such as the use of Open Chain are followed to alle-
viate risk.

While the risk of an IP infringement claim exists, the actual risk of such a claim
is, in practice, low.

8.2.2.3 � Lack of performance warranties or support and maintenance
If an enterprise downloads Open Source from the web it will have a right to use,
modify, etc. in accordance with the licence, but without a paid relationship with
a provider, the enterprise will have no liability protection around the quality or
fitness for purpose of the Open Source. While in practice the risk of an IP infringe-
ment claim is low, the risk of an issue arising with code or the way the code inter-
operates with other systems used by the enterprise is much more real and requires
internal skills in integrating the code in an appropriate way and in assessing the
suitability of the code. Open Source software ecosystems have been quick to build
and are extensive around certain code like Linux and Kubernetes but an enter-
prise will need to have knowledge of such ecosystems and the skills to use them to
benefit from the risk mitigation they offer.

8.2.2.4 � Scalability and robustness
In a similar vein, if an enterprise opts to download and use Open Source, it be-
comes responsible for ensuring that the code is robust and reliable and its use can
scale up to meet enterprise level requirements and any requirements in the service
levels of contracts with its own customers.

8.2.2.5 � Security vulnerabilities
All software is at risk of being hacked and of security breaches as is more fully dis-
cussed at Chapter 13. Open Source systems are potentially more at risk because
their code is free and open but at the same time may be better protected and fixes
may be easier (and cheaper) to apply. Their open nature does indeed mean that
anyone can look at it and improve it but also anyone can look at it, find vulnerabil-
ities, and exploit them.

Given the fact that (unless you sign up to obtain the same from a specialist
vendor) there is no software vendor pushing out security patches to users and ra-
ther the user is dependent on the ecosystem of maintainers for a project, a well-​led
IT department will monitor and manage its Open Source estate for vulnerabilities.
Part of this process will include considering maintenance and management of se-
curity vulnerabilities in an Open Source project in its choice of enterprise usage of

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  169

Open Source and its assessment of individual packages it chooses to bring into its
business, and its ongoing assessment for vulnerabilities. At a fundamental level for
all software, not just Open Source software, a well-​run IT department will ensure
that if a patch is made available (e.g. for Open Source, on GitHub) it is applied.3

This has been reflected in a number of recent moves to improve maintenance
of critical Open Source projects by organisations like the Linux Foundation and
in commercial models offering single vendor aggregation and packaging of Open
Source software by companies like Tidelift.

Of course, security is also identified as a reason to move from simply being a
user of Open Source to being a participant in key projects contributing and gaining
the ability to help shape the development of the product features.

8.2.2.6 � Summary
An understanding of the commercial risks of using Open Source is often the
starting point of an organisation’s engagement with Open Source and is the reason
that initial engagement with Open Source may come from the legal department. As
we will see, there are a range of steps a well-​advised enterprise can take to manage
these risks and in building its policies and practices and if it evolves in its Open
Source journey to building an Open Source Program Office and these are more
fully covered in Chapter 19.

8.3  Open Source Audit Services

8.3.1  The context within which Open Source audits take place

Best practice is, of course, to ensure that all code used in an enterprise is logged and
managed as it is created, licensed in from a software vendor, or downloaded from
an Open Source repository.4 However, many (possibly most) organisations do not
do this and even those that do need to test their own logs against ‘reality’ to ensure
what they have logged is indeed what they use.

This is crucial in the context of managing the security of an enterprise’s sys-
tems but takes on particular importance when an enterprise is being acquired,
going through an Initial Public Offering (IPO) or is about to receive significant
investment.

	 3	 It is alleged that hackers got into ‘Panama Papers’ law firm Mossack Fonseca’s systems via its Open
Source website and client portals. The alleged issue was not that those systems had vulnerabilities but
that Mossack Fonseca had not updated the systems to fix known security vulnerabilities: <https://​
www.ther​egis​ter.co.uk/​2016/​04/​07/​panama_​papers​_​unp​atch​ed_​w​ordp​ress​_​dru​pal/​> accessed 14
April 2022.
	 4	 Clearly, enterprises whose business is the creation and licensing of Open Source code are much
more likely to maintain an up-​to-​date code base than those that simply use software to enable their en-
terprise to operate.

170  Toby Crick

In such circumstances even an enterprise with an incredibly well-​managed
code base is likely to need to undertake a software audit to demonstrate this and to
supply a contractual commitment to its investors or as part of its disclosure docu-
mentation5. For most enterprises—​particularly those with perhaps less robust
systems—​a code audit may well start from scratch with little or anything to go on in
terms of existing code logs.

8.3.2  Purpose of Open Source audit

While one aim of an Open Source audit will be to verify that the enterprise’s own
records are up to date and correct, generally speaking the aim of the audit is to:

	 •​	 identify the Open Source used by the enterprise;
	 •​	 identify the licence terms applicable to the code used;
	 •​	 identify how the Open Source is used and interactions with other packages

(e.g. is it only used internally or is packaged up into solutions sold, or other-
wise made available to customers, by the enterprise);

	 •​	 identify whether and to what extent matters such as security patching and
other support and maintenance activities are undertaken in relation to the
Open Source code used by the enterprise;

	 •​	 identify any code licensed out by the enterprise on Open Source terms (and if
so, which terms are applied).

Enterprises seeking investment, IPO, or sale would be well advised to carry out
internal audits before beginning an investment round, IPO, or sale process as then
they will be prepared for the inevitable investigation an investor or acquirer may
undertake. Ultimately, the aim of an audit is to assess risk and consider how well-​
managed the enterprise’s Open Source estate is.

8.3.3  Audit process

There are two main approaches to audit.

8.3.3.1 � Automated audit
As the title implies, this is a process whereby the enterprise’s code base is ex-
posed to a software tool that ‘crawls’ over it and compares the code line by line to
an inventory of Open Source the tool provider maintains. There are a number of

	 5	 ‘Disclosure’ is the process, often undertaken in an M&A transaction, whereby a target shares infor-
mation about itself and its assets with a potential purchaser; see section 8.5.1 later in this chapter.

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  171

commercial providers, the most well-​known being Flexera and Black Duck. Other
services, including free, Open Source-​based ones such as Open Sourceology, are
available.

Typically the automated service is used as part of a regular update and review
process undertaken within an enterprise. In the context of a major piece of M&A
or an investment—​particularly into a technology or software business—​the auto-
mated tools would be supplemented by a human-​led expert audit.

It is worth noting that an audit tool can only ever be as good as its code base, in
other words the code base that it is run against.

8.3.3.2 � Expert audit
This is a human process, where experts review the enterprise’s use of software and
its logs and other records. This typically also involves interviews with developers
and other members of the IT department.

Expert audits would also need to involve an automated ‘code crawling’ audit.
The expert audit team then use the output of that automated audit to inform their
report and focus their further investigations and enquiries. Unlike where an in-
ternal IT team or a mainstream advisor or deal team member from an investor or
acquirer reviews an automated audit report, the expert audit team would generally
be better able to spot issues in an automated report or make further enquiries ra-
ther than just rely on the first output of the automated report.

The expert auditors can also form a view on the wider health of the way in
which an enterprise manages its code and the related risks. Often the first thing
they will want to see is the internal policies and Open Source logs (i.e. as ref-
erenced in section 8.2.3 earlier in this chapter). In the context of M&A and in-
vestments, a good report from an auditor can be a key piece of due diligence
for the target company while a bad report can be of crucial importance to the
incoming owners/​investors. At worst, a poor audit report can prevent a deal from
happening but more often it reveals issues that the target must address in order
for the sale to proceed.

Finally, it is worth noting in the context of expert audits that whilst there is still
a place for this the increasing scale of the number of packages used, sometimes in
their thousands, has reduced the possibility of a manual, line-​by-​line code review
and fix by audit teams.

8.3.3.3 � Pros and cons
In simple terms, the automated reviews are good insofar as they go. They change
over time and different tools have different strengths and weaknesses, but collect-
ively none are perfect and the tools cannot in and of themselves show how robust
or well run an enterprise’s technology is.

They have to be interpreted and for regular internal audits that is probably fine.
The enterprise’s team can use the output to inform their investments and strategies.

172  Toby Crick

However, for a major investment (either preparing for one or undertaking one),
investing in a full expert audit probably does make sense.

Of course, the major downside of an expert audit is cost. They are expensive and,
for a simple business with either little reliance on Open Source outside the enter-
prise or little use of Open Source, they may not be needed.

A well-​managed Open Source policy and processes being in place in an organ-
isation in advance of this clearly significantly reduces the burden of this process.
It is also worth noting that where issues arise in an audit, in the main the fixes are
technical, not legal, and begin by considering the removal of any unused code that
has been flagged as an issue that may not be used, swapping problem code and then
building technical fixes or workarounds.

8.4  Valuation

8.4.1  How technology assets can contribute to the valuation
of a business

Generally a business is worth what someone is willing to pay for it based on cash
flows, profitability, etc., but sometimes just the ‘technology assets’ of a business give
rise to its valuation. In other words, an investor or acquirer of an enterprise may
consider that the target’s products have such potential either to enhance the value
of the investor or acquirer’s other technologies or, marketed or ‘monetised’ differ-
ently, could achieve a value on their own such that it is worth investing in them.

8.4.2  How can a business reliant on something distributed
for free be given a value?

If an enterprise uses a suite of third-​party Open Source components to run its op-
erations ultra-​efficiently but does not derive revenue from making its tools avail-
able to third parties, then clearly the value of its technology to it (and any future
group it may be acquired by) relates to its ability to drive value from the business,
not from the software itself. In such instances, investors will be seeking to ensure
that the Open Source estate is used lawfully and prudently but they will not have
the same focus on identifying whether the Open Source in itself can deliver value to
the business (and them, as investors).

8.4.2.1 � Valuation where Open Source is core to the business’s revenue and
growth prospects

Where the creation and distribution of Open Source is core to a business then how
it is valued becomes a key issue that any investor (or entity seeking investment)

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  173

must consider. As discussed in Chapters 2, 15, and 16, the answer to the question
posed in the heading above is that there are a range of ways to identify revenue
streams that a business that has Open Source at its core can take advantage of.

When it comes to assessing value in the context of an investment round, an M&A
deal, or an IPO, interested parties need to consider the business’ Open Source as-
sets, its knowledge, skills, and knowhow related to the use and exploitation of those
assets, and—​and this is fundamental—​the viability of its business model.

A valuation is based on the return an investor (or buyer) expects to get from its
investment. Assuming that a business has secured and managed its Open Source
assets and knowhow, then the key to valuation becomes what the existing manage-
ment or the management of a business looking to acquire an Open Source-​based
business thinks it can generate.

Here, care is needed. There have been a number of examples of hugely successful
IPOs or trade sales of Open Source businesses (notably Github’s sale to Microsoft
and RedHat’s to IBM), but in other cases businesses backed by private equity in-
vestors seeking a rapid scale up in revenue and, above all, profitability have given
rise to issues of underperformance (at least in relation to the expectations investors
had of the business) and licence changes.

When assessing the value of an Open Source-​based business, its ability to grow
revenues and maintain long-​term profitability should be carefully assessed. The
metrics traditionally applied to proprietary technology businesses may not work
and may be more attuned to an Open Core-​type model (see Chapter 16).6

Clearly the more well established an Open Source business’s commercial of-
fering is, the easier it is to ascribe a value to it. Even here though, care is needed
as the ability of a business to grow revenue or to turn healthy revenues that are
also matched by high costs (e.g. in investing in and maintaining a code base) must
be considered by an investor or acquirer. There is of course also a question of
whether there is a need to update the approach to valuation of Open Source-​based
businesses.

8.4.3  How ill-​managed Open Source assets can undermine
the valuation of a business for IPO, acquisition, and investment

In this context it is worth considering the counterfactual: where poor use of Open
Source can undermine a valuation. Consider, for example, a situation where a com-
pany is licensing a product on a proprietary basis but has, in fact, packaged up
and compiled a range of truly copyleft Open Source components and, either due to

	 6	 The concept of open core is akin to freemium type offerings in the AppStore or GooglePlay whereby
a core product is made available on Open Source terms but additional functionality is licensed, and paid
for, on a proprietary software model.

174  Toby Crick

ignorance or as blatant fraud, failed to declare this when it on-​licences them to its
customers.

Potentially that company’s entire revenue stream was earned by breaching the
terms of the copyleft licences it was party to in creating its own code’s core compo-
nents. In such situations investors or acquirers may either walk away from the deal,
revalue the deal, or require the sellers to invest substantial sums in reworking their
code and put sale proceeds at risk should their original mistake in wrongly com-
mercialising copyleft code come to light.

8.5  Issues Arising on M&A

There are two main situations where Open Source will need to be considered in an
M&A context. The most obvious is where the target is a technology business (i.e.
generates revenue and profits from the development and sale or licensing of soft-
ware or other technology). However, since all businesses use technology and most
in a digital world both license software in and generate their own for internal use,
in all but the most non-​technology deals, how any business uses Open Source will
still need to be considered in an M&A context.

8.5.1  M&A process

While the role of this chapter (let alone this book) is not to set out in detail how
M&A transactions (or investments or IPOs) work, in order to consider how to
manage Open Source issues in the M&A context it is probably worth a quick sum-
mary of the M&A deal process.

Typically, a company will either put itself up for sale or be approached by a poten-
tial acquirer. In the latter case the parties then tend to agree an outline of a proposed
deal or Heads of Terms before the buyer engages in process of investigation known as
Due Diligence. In the former case the seller may provide initial due diligence infor-
mation to potential bidders before moving to Heads of Terms and full Due Diligence
with an agreed bidder moving to contract. There are of course many different per-
mutations (before you even consider contested public company takeovers), but this
process of agreeing an outline deal and then carrying out investigations to make sure
the deal is worth the money is the standard approach established over decades.

In parallel to the diligence process the parties will negotiate a substantive sale
and purchase agreement or contract. This will, amongst other things, set out a
series of Warranties (effectively promises) from the seller about the health and well-​
being of its business. Alongside these warranties the seller will make Disclosures
effectively stating that whilst, for example, it warrants that all of its systems and

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  175

procedures comply with whatever standard the buyer wants, in certain respects it
has fallen short.

How strong the warranties provided are and how broad the disclosures are be-
comes a key area of negotiation between the parties. This is due to the fact that
ultimately, if the deal closes and the buyer discovers that all is not well with its
newly acquired business, it will rely on the warranties to seek recompense from
the seller (i.e. the former owners of the company) and the seller will seek to avoid
those claims by stating it made full disclosures and that the buyer ‘knew what it was
getting’.

It is worth noting that under English law, warranties, indemnities, and con-
ditions have very established meanings and consequences set out by decades of
case law and the actual meanings of these and consequences of their inclusion
can be somewhat different for the US and the UK (and different again in other
jurisdictions), yet the inclusion of these and their high-​level purpose is the same
in most markets and jurisdictions, albeit local law principles must be applied
on top.

In England, a breach of a warranty will allow the recipient to claim damages
and a breach of a condition may allow for the contract to be set aside. English
judges reserve the right to decide whether something is a warranty or condition,
regardless of what it is described as in a contract. Generally in M&A deals, the
contract makes clear which is intended to be which and where remedies are only
financial or can lead to the complete reversal of the transaction (the latter being
very rare).

In many cases warranties will be backed by indemnities, which are statements
of what a party’s liability will be and what for, or a promise that if something either
happens or does not happen an amount will be paid. The word indemnity has no
magic meaning and the value of an indemnity will depend on what it actually says
and commits the party granting it to.

8.5.2  Importance of Open Source

As noted earlier, how important Open Source is to an M&A deal depends on
the business—​if the business sells software or services based on it, then under-
standing the code base is crucial; if the business is a tech-​enabled business then
understanding its code base is also crucial; but if it is a normal digital business that
might use some Open Source in the back office or infrastructure, then it may be
less so.

At each stage of the deal—​Heads of Terms, Due Diligence, in the sale and pur-
chase agreement’s Warranties and the linked Disclosures—​Open Source will need
to be considered.

176  Toby Crick

8.5.2.1 � Issues related to Open Source
8.5.2.1.1 � Head of terms
In any technology-​related M&A deal the Heads of Terms should recognise the ex-
istence of Open Source and call out the level of its importance to the business being
acquired. How much detail the Heads of Terms go into will depend on the business
and the Open Source it uses but typically you would expect the Heads of Terms to
state that there will be a process to verify the importance of Open Source and what
Open Source there is.

At this stage both parties should consider if there will be an Open Source audit
and if it is possible to obtain the results before full diligence starts in order to avoid
nasty surprises (and unnecessary costs down the line). Where a company that is
reliant on Open Source puts itself up for sale it would be common for it to have
undertaken internal audits prior to starting the sale process in order to ensure that
its code base is ‘clean’ and its procedures (even if this involves some reverse engi-
neering) are in line with good practice.

It is typically prudent to identify early if the Open Source used by the target in-
cludes true copyleft material and in particular whether it is being distributed as
part of the target’s activities and if so, what impact that has on deal. The impact may
be that there is no deal, hence the importance for a company seeking to sell itself to
carry out internal audits before starting a sale process.

8.5.2.1.2 � Due diligence
During the due diligence process the buyer will seek to gain as much informa-
tion as it can on areas it sees as particularly risky. Where the target relies on Open
Source the key questions to ask are to see a list of all Open Source components, to
seek confirmation (either by automated or full expert audit) that such list is com-
plete, and to see the target’s Open Source use and management policies, and to gain
an understanding of how well such policies are observed. Where the seller/​target is
a software company, it might share the output of its own software audit but a pur-
chaser might want to appoint a third-​party auditor to undertake an automated or
possibly automated plus expert audit.

At section 8.3.1 earlier the importance of code logs is discussed; it goes without
saying that if the diligence process reveals that an enterprise’s code logs are up to
date and correct this will be a big diligence ‘win’ and give confidence to an investor
or acquirer. Conversely if it shows the logs are wrong or out of date this will indi-
cate a culture of poor housekeeping and undermanaged risk control procedures
and may lead to the deal unravelling, the price dropping, or the warranties being
tightened up considerably.

Where the deal involves competitors then the target may well want to limit
how much information it shares (and of course if competition law/​anti-​trust is-
sues may arise, both parties will have to be careful as to how much information
is shared). This is where a third-​party audit can be helpful. The third party can

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  177

identify key risks and issues but not share any details of code or product strategies
with the buyer.

8.5.2.1.3 � Warranties
Where an audit has been undertaken there is likely to be a requirement for a war-
ranty around that audit. It can only ever be as wide as the provider of the audit,
whose contract terms are likely to take little liability for the accuracy. An audit war-
ranty will generally refer to the audit being undertaken by the agreed provider and
state that identified issues have been rectified and be accompanied by a disclosure
of the final signed off audit document or a link to the code base, depending on scale.

It would now be unusual for a buyer to seek a warranty in an agreement stating
that the target did not use Open Source.

However, it remains common to see warranties that:

	 •​	 There are ‘no copyleft’ components used in materials distributed to
customers—​here the seller may try and ensure that it has an exception where
they are distributed in a way that does not put its core product at risk of also
being deemed copyleft, and this may be a simple technical structuring issue;

	 •​	 there is ‘no Open Source other than as disclosed’ used in the business—​
here the seller may want to try and apply a materiality threshold or link to
an audit report and this should be qualified by reference to the audit pro-
vider; and

	 •​	 any Open Source materials licensed to third parties are licensed ‘in full com-
pliance with the terms of the Open Source licences granted to the seller’ and
‘all licence requirements are complied with in relation to the distribution of
Open Source software’—​while a seemingly simple commitment, many busi-
nesses struggle to commit to this warranty fully. A business’ ability to stand
behind this warranty will require a business to have in place sensible policies
and compliance procedures to manage the process of licence compliance in
relation to the utilisation of the code (e.g. by ensuring attribution in headers
and making source code available). Again, a technical requirement or solution
emphasising the need for the legal people working on such warranties to work
closely with the technical team in ensuring compliance with the warranties
offered is key to a business’s ability to sign up to this type of warranty in a sale
and purchase (or investment) agreement.

8.5.2.1.4 � Disclaimer of warranties
In software licences, it has increasingly become market practice for the licensor
to disclaim any IP or performance warranties (and exclude from third-​party IP
infringement indemnities) any issues related to third-​party Open Source com-
ponents. Instead the licence will state that such components are provided ‘as is’
and/​or oblige a customer to take responsibility for downloading the Open Source

178  Toby Crick

components required to make a solution work on its own account. This is con-
sidered further in Chapters 3 and 16.

It should be clearly understood that this type of disclaimer is much harder to ob-
tain in an M&A context. If, for example, the target distributes Open Source-​based
products, both the vendor and buyer will need to undertake careful diligence and
a detailed negotiation and disclosure process to understand and allocate the risks
that using Open Source—​particularly undocumented use of Open Source—​may
give rise to, and businesses with a significant reliance on Open Source software
may need to work to ensure that their counterparties understand the inappropri-
ateness of wide-​ranging warranties and why there is a need for warranty disclaimer
from their acquirers and investors.

8.5.2.1.5 � Disclosures
The process of disclosure is the seller’s opportunity to avoid liability for breach of
warranty by formally disclosing any breaches it is aware of. This is where the dili-
gence the parties have undertaken comes into its own.

Where the seller is selling a software business (or a software-​rich business that
is active in other sectors), it would be prudent to undertake an audit in order to be
aware of its Open Source risks and to disclose against them. Of course, complying
with good Open Source housekeeping principles around governance and compli-
ance at an earlier stage will reduce the burden on this when an actual transaction
is underway.

A common approach is to disclose issues but to undertake to address them (e.g.
by ripping and replacing code that has been wrongly used) before completion of
the deal.

Where the target uses Open Source but does not commercially exploit Open
Source by distributing products containing Open Source components, the dis-
closures are likely to be much more wide ranging (and the related warranties less
onerous) than where Open Source is core to the business which is the subject of the
acquisition or investment.

8.6  Investment in Open Source Businesses

8.6.1  Similarities and differences to M&A process

While in an M&A transaction the owner of the underlying company will change
(sometimes along with its senior management), in an investment transaction the
existing owners and the management are likely to remain with the business.

For the purposes of this chapter the legal and structural differences between the
two types of transaction do not require detailed analysis but a key difference is that

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  179

there tends to be a less rigorous process of warranty and disclosure and instead
there is much more focus on diligence.

8.6.2  The investment lifecycle

Technology businesses typically seek investment as they grow. A startup is likely to
have a fast and loose approach to the use of code and a lack of budget to undertake
detailed audits and maintain robust risk protocols but as a startup moves to scale
up its operations and seek serious investment it will need to start the process of re-
viewing and managing its Open Source estate.

Here early investors can provide assistance (clearly it is in their interest to get
things right early so as to protect their investment when, in due course, further in-
vestment comes in) by helping the startup to put in place good practice processes
and procedures.

Then as subsequent rounds of investment come into the business, the processes
and procedures used to manage its code base can scale up.

8.6.3  Debt and equity

It is worth noting that many investments come as a mix of equity investment (con-
tributing capital to the business in exchange for shares) and debt (lending money
to the business possibly with a view to turning that into equity later).

If the business’s main asset is its Open Source code base, the investor should
think long and hard about the security it has over such an asset. If the Open Source
has been published to the world, then should the business become insolvent, taking
ownership of the business’s assets may be of limited value as its main asset may be
freely available for anyone to use.

8.6.4  Risks and controversies

As discussed at section 8.4.2 earlier, where private equity (or other investors
seeking a rapid return from an investment in an Open Source-​based business)
consider making an investment, extreme care needs to be taken to understand the
Open Source products, the customer/​user base, and the viability of any commer-
cialisation model that it is proposed the business adopt or scale up.

Sometimes, moves to commercialise a well-​established (and royalty-​free)
Open Source product whether by making it ‘Open Core’ discussed more fully in
Chapter 16, something users effectively have to pay to use updated versions of or

180  Toby Crick

pay for additional service offerings to make them fully usable, can attract contro-
versy and even backlash from users.

In other instances, the hopes and expectations of management or investors
around their ability to commercialise their core Open Source offering prove un-
founded as the market (or users) find ways to work around the commercial of-
fering but still access the Open Source code.

It is common for investors to seek assurances from a target’s management as to
the viability of a business plan so the care here is double edged. Incumbent man-
agement/​owners and their advisors should consider how strong they really think
their future prospects are as, of course, should anyone seeking to invest.

8.7  Insolvency

8.7.1  What happens to Open Source assets on insolvency?

There is a common misconception that Open Source is not owned. This is wrong,
someone (or a corporation, a collective, or a foundation) owns any copyright work
and Open Source is, at some level, about the licensing of the copyright arising in
software code, as is fully explained in Chapters 2 and 3.

As we have seen, there is value in owning Open Source but often the ability to
monetise Open Source comes from expertise in how it works and how to improve
and enhance it rather than in owning the actual code (which of course has been
distributed freely to the world).

In the event an entity that owns a suite of Open Source becomes insolvent,
those tasked with seeking to salvage value from the assets of the insolvent busi-
ness (referred to here as the ‘insolvency practitioner’) will not be able sud-
denly to make the codebase proprietary. If the software has been distributed
‘to the world’ on a free and open basis then that code will remain out there, free
and open.

Instead the insolvency practitioner may seek to find value in the knowhow re-
maining inside the enterprise, but since much of that is likely to be in the minds of
the employees who created it there is a risk of no value remaining in an insolvent
Open Source business.

If the owner of some Open Source is wound up without any sale of its assets,
then while its code may still exist, there will no longer be a legal owner of that code.
On a practical level this may not matter as the code will still be used, enhanced, and
changed, but legally following a chain of title may become futile.

It is also possible to pick up existing licensed Open Source code from an in-
solvent company and to fork the project.

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS  181

8.7.2  ‘Going open’

Where a business has a proprietary code base but is looking at insolvency, the board
may decide to make its code base open so that the individuals associated with the
company can then move on and use their knowhow to operate the software (which
would, by this point, be Open Source).

Such an approach is not without risk and, depending on the exact facts and the
insolvency law applicable in the jurisdiction in which the company is based, the in-
solvency practitioner may be able to set aside any such attempt.

A similar approach can be applied with less risk to code that was already opened
by an organisation.

8.8  IPO

8.8.1  Issues with Open Source that arise on a listing

As with M&A and investment, an IPO (i.e. an initial public offering or listing
of shares on a stock exchange) sees a company seek to transfer its ownership.
The difference with an IPO is that instead of a buyer or trade investor under-
taking robust due diligence and agreeing a bespoke M&A or investment agree-
ment, the company and its advisors are under a duty to disclose to the stock
exchange (and thus potential buyers of shares) all material facts about the
business. Once the IPO takes place, unlike with an M&A deal sale and pur-
chase agreement or an investment deal’s terms, shareholders will have limited
contractual rights against the company or those who sold shares when it went
public.

Prior to a listing, a company issues a document—​or prospectus—​describing
what it does, how it manages itself, and what it sees as its future prospects.

For some businesses that merely use Open Source, the only reference they may
make to Open Source in their prospectus is to state they manage their IT systems in
a prudent manner (albeit they will need to ensure they do if they make such a state-
ment), but where a key asset of the business is Open Source much fuller descrip-
tions of the policies relating to the creation and use of Open Source will be required
and the business will need to show how it will manage its Open Source assets to
deliver value to shareholders.

When preparing a prospectus, the company’s management and its advisors must
satisfy themselves that the statements they are making as to the way Open Source
is managed and maintained and the potential future value of its Open Source assets
(or related revenue streams).

182  Toby Crick

8.8.2  Valuation

Where an IPO is of a well-​established Open Source business with strong revenues,
it is likely that the prospectus can point to this and make the case that the business
is correctly valued. As noted earlier however, where the IPO is seeking investment
based on the prospects of commercialisation (or increasing commercialisation) of
an Open Source or Open Core product then management of and advisors to the
business looking to list will need to be very careful in their assessment of the prom-
ises they are making to IPO investors.

8.8.3  Where to list?

Any business contemplating an IPO will engage investment banking-​type advisors
who will consider which stock exchange has the most advantageous rules for the
nature of the activities the business undertakes, investors who understand the in-
dustry the business operates in, and that, ultimately, can deliver the best price for
the shares.

Pamela Chestek, Trademarks In: Open Source Law, Policy and Practice. Edited by: Amanda Brock, Oxford University Press.
© Pamela Chestek 2022. DOI: 10.1093/​oso/​9780198862345.003.0009

9
Trademarks

Pamela Chestek

	9.1	� Introduction � 183
	9.2	� Trademark Law Basics � 184
		 9.2.1	� Definition and function � 184
		 9.2.2	� Territoriality � 187
		 9.2.3	� Distinctiveness � 187
		 9.2.4	� Registration � 189
		 9.2.5	� Ownership and licensing � 192
		 9.2.6	� Enforcement of trademark

rights � 193
		 9.2.7	� Abandonment and

genericism � 196
	9.3	� Open Source Projects,

Products, and Services � 198
		 9.3.1	� Licensed redistribution � 198
		 9.3.2	� Distribution of unmodified

software by others without a
trademark licence � 199

		 9.3.3	� Distribution of modified software
without a trademark licence � 199

		 9.3.4	� Ancillary goods and services � 201

	9.4	� The Community Role in Open
Source Trademarks � 201

		 9.4.1	� Ownership models � 201
		 9.4.2	� Enforcement � 203
	9.5	� Lawful Use of Others’ Trademarks � 204
		 9.5.1	� Non-​confusing use � 204
		 9.5.2	� ‘Forking’ � 204
		 9.5.3	� Referential use � 205
		 9.5.4	� Trademark licences in Open

Source licences � 206
		 9.5.5	� Trade dress � 207
		 9.5.6	� Trademark guidelines

and policies � 208
	9.6	� Attempts to Limit Competition

with Trademarks � 208
		 9.6.1	� Functional use of trademarks � 209
		 9.6.2	� Trademarks and ‘further

restrictions’ � 210
		 9.6.3	� Requiring display of trademarks � 210
	9.7	� Conclusion � 212

  

9.1  Introduction

Trademarks play a significant role in the Open Source ecosystem –​ while copy-
rights and patents are freely shared in Open Source licensing, trademarks are not.
A project’s reputation is at stake if it allows malicious software, software of poor
quality, or software that does not function as expected, to be distributed under the
same name.1 Open Source projects can, and therefore generally do, exercise their
exclusive rights under trademark law.

	 1	 For example, Elasticsearch filed a trademark infringement lawsuit against Amazon, Elasticsearch,
Inc v Amazon.com, Inc., No. 3:19-​cv-​06158 (N.D. Cal.) (complaint filed 27 September 2019). In it,
Elasticsearch alleged that the Amazon products ‘Amazon Elasticsearch Service’ and ‘Open Distro
for Elasticsearch’, which are based on, but not identical to, Elasticsearch’s Open Source products, in-
fringed Elasticsearch’s trademark rights. Amazon ultimately renamed its version of Elasticsearch to
‘Amazon OpenSearch Service’. ‘Amazon Elasticsearch Service is now Amazon OpenSearch Service and
Supports OpenSearch 1.0’ AWS News Blog (September 2021) <https://​aws.ama​zon.com/​blogs/​aws/​ama​

184  Pamela Chestek

The same trademark law applies in the Open Source world as across all other
industries. The challenge lies in working in a field that has a practice of freely
sharing and owes some of its existence to community contribution and collab-
orative creation. The trademark practitioner trained in traditional industries may
have to rethink their approach to issues. Traditional practices in trademark law are
sometimes more maximalist than may be necessary and Open Source trademark
counsel should be willing to examine their own beliefs and knowledge of trade-
mark law to ensure that their advice is best suited to the project’s ideals.

Some trademark doctrines are also more important in the software field, and
Open Source software more specifically, than for other types of goods and services.
Trademark fair use, naked licensing, the functionality doctrine, and ownership law
are all particularly relevant in the Open Source software field.

Section 9.2 of the chapter covers the basics of trademark law. Section 9.3 pro-
vides background on the types of goods and services one typically finds associ-
ated with Open Source projects; section 9.4 discusses an aspect of trademark law
that is fairly unique to Open Source, the role of community engagement; section
9.5 discusses theories for the lawful use of another’s trademark; and section 9.6
closes with a discussion of various ways a trademark owner might try to undo the
Open Source licence using trademark law as the vehicle since copyright is largely
unavailable.

Because Open Source is international, the chapter attempts to describe trade-
mark law normalised across jurisdictions, largely the US, the UK, and EU. The au-
thor is admitted to practise in the US, so the chapter tends towards a US viewpoint.
The reader should consider the information here as advisory only and research the
specifics of any country’s laws before taking action.

9.2  Trademark Law Basics

9.2.1  Definition and function

A trademark is a word, phrase, symbol, design, or characteristic that identifies and
distinguishes the source of the goods or services of one party from those of others.
Trademarks and service marks can include colours, scents, and sounds.2 The term

zon-​elasti​csea​rch-​serv​ice-​is-​now-​ama​zon-​ope​nsea​rch-​serv​ice-​and-​suppo​rts-​ope​nsea​rch-​10/​> ac-
cessed 14 April 2022. The parties thereafter settled their lawsuit. ‘Elastic and Amazon Reach Agreement
on Trademark Infringement Lawsuit’ Elastic Blog (16 February 2022) <https://​www.elas​tic.co/​blog/​elas​
tic-​and-​ama​zon-​reach-​agreem​ent-​on-​tradem​ark-​infri​ngem​ent-​laws​uit> accessed 14 April 2022 (‘Now
the only Elasticsearch service on AWS and the AWS Marketplace is Elastic Cloud.’).

	 2	 See, e.g., US Reg No 2901090 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​76408​109&caseT​ype=​SERIAL​
_​NO&sea​rchT​ype =​ statu​sSea​rch> accessed 30 November 2019, for ‘the color chocolate brown, which
is the approximate equivalent of Pantone Matching System 462C, as applied to the entire surface of

TRADEMARKS  185

‘service mark’ is used for services and ‘trademark’ is used for goods, although the
words ‘trademark’ and ‘mark’ are also frequently used to encompass both goods
and services. The terms ‘trademark’ and ‘mark’ will be used interchangeably in this
chapter for both trademarks and service marks. ‘Trade dress’ is a term used for the
‘get up’ or dress of a product, meaning the packaging for the product, the configur-
ation of the product itself, or the décor or environment in which services are per-
formed, such as the interior design of a chain restaurant.

The concept of ‘brand’ is similar to ‘trademark’. A ‘brand’ is a marketing term
used to describe the entire engagement of a consumer with a product or business.
The ‘trademark’ is a vessel for the brand identity, the tangible manifestation that the
consumer associates with the product or business.

A trademark is not simply the word or symbol standing alone, but the word or
symbol as used in association with particular goods or services. This is what allows
the same word ‘Delta’ to be used as a trademark for an airline,3 for faucets,4 and for
a dental insurance plan.5

A trademark identifies a single, unique source. However, the consumer does not
have to be able to identify the source by name. The quality of being a trademark, ra-
ther than simply a word, means that consumers recognise that the word or symbol
indicates that the goods or services originate from one particular entity, differenti-
ated from others of like kind in the market.

Trademarks are often described as having ‘goodwill’. ‘Business goodwill’ in a
larger sense is the value created by the likelihood that a consumer will be a repeat
user of the same product or service. This can be because of a favourable or long-​
term use of a location (such as a gas station on an easily accessible corner which
builds repeat loyalty), a product available nowhere else (such as one protected by
a patent), or a positive experience with employees. ‘Trademark goodwill’ is specif-
ically the customer’s willingness to acquire (or avoid) a product or service because
the customer has a quality association with the trademark, such as wanting to re-
purchase a product because it has known attributes, to have the cachet of owning

vehicles and uniforms’ owned by United Parcel Service of America, Inc.; US Reg No 5467089 <http://​
tsdr.uspto.gov/​#cas​eNum​ber=​87335​817&caseT​ype=​SERIAL​_​NO&sea​rchT​ype =​ statu​sSea​rch> ac-
cessed 30 November 2019, for ‘a scent of a sweet, slightly musky, vanilla fragrance, with slight over-
tones of cherry, combined with the smell of a salted, wheat-​based dough’, i.e. Play-​Doh®, owned by
Hasbro, Inc.; US Reg No 1395550 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​73553​567&caseT​ype=​SERIAL​
_​NO&sea​rchT​ype=​statu​sSea​rch> accessed 30 November 2019, for ‘a lion roaring’ owned by Metro-​
Goldwyn-​Mayer Lion Corp., audio file at <http://​tsdr.uspto.gov/​doc​umen​tvie​wer?cas​eId=​sn7​3553​
567&docId=​SPE201​6060​2144​513#docIn​dex=​11&page=​1> accessed 30 November 2019.

	 3	 US Reg No 924004 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​72017​621&caseT​ype=​SERIAL​_​NO&sea​
rchT​ype=​statu​sSea​rch> accessed 3 December 2019.
	 4	 US Reg No 668880 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​72030​385&caseT​ype=​SERIAL​_​NO&sea​
rchT​ype=​statu​sSea​rch> accessed 3 December 2019.
	 5	 US Reg No 1665228 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​74084​185&caseT​ype=​SERIAL​_​
NO&sea​rchT​ype=​statu​sSea​rch> accessed 3 December 2019.

186  Pamela Chestek

a branded product, or because the consumer sees the mark on a new type of goods
and trusts the trademark owner to purvey goods of equal quality in this new field.

Although a trademark always identifies a single source, the way a trademark is
used may indicate different types of relationships with that source. A trademark
may indicate the source of manufacture, ‘I made this’; that the trademark owner
controls the quality of the goods and services but did not make them, such as in a
franchisor–​franchise relationship; that the trademark owner has endorsed or ap-
proved the third-​party’s goods and services, such as licensed sports team apparel
and promotional items; or that the trademark owner is simply advertising, such
as venue naming rights. The consumer will understand these different relation-
ships based on where the trademark is placed, whether other trademarks are also
used, wording that may clarify the relationship, and the consumer’s common sense
and familiarity with how businesses operate. It will be a trademark infringement to
suggest to consumers that any of these relationships exist if they are not true.6

These relationships are all commonly found in the Open Source context. The use
of a mark as an indicator of ‘manufacturing’ or source will be use of the mark on
the software that is available from the canonical or ‘blessed’ repository. An example
of its use as an indicator of quality might be use by those distributors authorised
by the particular project, such as ‘Linux’ branded distributions; an example of the
endorsement relationship might be event sponsorship; and an example of the ad-
vertising relationship might be the use of the mark on promotional goods such as
stickers and socks.

Where a product is copyrightable content, such as software, the work’s title may
function only as the name of the work, not as a source identifier, or it may also
function as a source identifier. ‘Harry Potter’ is a trademark for books, movies, and
all sorts of related goods, but ‘The Sun Also Rises’ is not. There is also a policy
interest in ensuring that trademark rights do not interfere with the publication of
a work by others after the copyright has expired.7 This interest in reproducing for-
merly copyrighted works, however, has to be balanced against the interest in pro-
tecting the public from confusion, so even where the title owner cannot show the
title functions as a trademark, the law may nevertheless prevent deceptive use.8

	 6	 See, e.g., US Trademark Act of 1946, as amended, 15 USC § 1125(a) (2018) (hereafter Lanham
Act), stating that it is an infringement for a person to use any word, term, name, symbol, or device
(design) where it is likely to cause confusion as to affiliation, connection, association, origin, spon-
sorship, or approval of goods, services, or commercial activities; Regulation (EU) 2017/​1001 of the
European Parliament and of the Council of 14 June 2017 on the European Union trade mark (hereafter
EU Trademark Regulation) art 9(2)(b) –​(c), giving the trademark proprietor the exclusive right to pre-
vent third parties from using a trademark if there exists a likelihood of confusion, including a likelihood
of association, or where a sign takes unfair advantage of, or is detrimental to, the distinctive character or
the repute of the EU trade mark.
	 7	 G & C Merriam Co v Syndicate Pub Co, 237 US 618, 622 (1915) (‘[U]‌pon the termination of [the
copyright on the work] there passes to the public the right to use the generic name by which the publica-
tion has been known during the existence of the exclusive right conferred by the copyright.’).
	 8	 Anmerkung zu OLG Düsseldorf, U. v. 24.04.2012-​I-​20 U 176/​11 <http://​germ​anit​law.com/​wp-​
cont​ent/​uplo​ads/​2012/​05/​Hig​her-​Regio​nal-​Court-​Dues​seld​orf-​final.pdf> accessed 17 January 2020

TRADEMARKS  187

A common misunderstanding is that the name of an Open Source project
cannot function as a trademark because the licence for the work permits the cre-
ation of a number of different versions of the work, all with different qualities and
characteristics, and therefore the trademark function is not satisfied. This is not
accurate, as will be discussed in more detail in section 9.3.

9.2.2  Territoriality

Trademarks are territorial. Virtually every country in the world has a trademark
registration system and laws regarding the infringement of trademarks. There
are some registration systems that cross borders; for example, the single Benelux
trademark register is for Belgium, the Netherlands, and Luxembourg. The EU
Trademark is a registration enforceable in all the member countries of the EU,
overlaying and in addition to each country’s national registration system.9 This is
similar to the US, where there are state registration systems as well as a national
registration system.

Because each country has its own trademark laws, whether a word or symbol
can function as a trademark, whether a trademark can be registered, whether there
is a likelihood of confusion between any two given marks, and whether one might
have enforceable rights in an unregistered trademark, may be answered differently
in each country.

9.2.3  Distinctiveness

The concept of ‘distinctiveness’ is a term of art that is fundamental to trademarks—​
the difference between something that is just a word or an attractive design and a
trademark is whether the word or symbol is ‘distinctive’, that is the consumer rec-
ognises it as indicating a single source.

The concept is further broken down into ‘inherent distinctiveness’ and ‘acquired
distinctiveness’, also known as ‘secondary meaning’. A word, symbol, or design
will be inherently distinctive if, because of its nature, a consumer will immediately

(English translation; holding that defendant could use the ‘Enigma’ work title for software modified for
its hardware platform and configuration as long as the use did not violate generally accepted practices
of trademark and commerce, which in the case of Open Source meant that the essential functions of
the defendant’s version of the software are identical, plug-​ins and/​or extensions of third parties remain
compatible, and the defendant abides by the conditions of the GPL licence).

	 9	 As a consequence of ‘Brexit’, trademarks that were registered in the EU as of 31 December 2020
were ‘cloned’ in the UK trademark registry, so that the owner now has registrations in both jurisdic-
tions. Pending applications were not cloned and the owners have to apply anew to register the trade-
marks in the UK.

188  Pamela Chestek

recognise it as a trademark. Where a word, symbol, or design is not inherently dis-
tinctive, in some cases it can acquire distinctiveness, meaning that although the
consumer might not have immediately grasped that the word or symbol is being
used as a trademark, over time through exposure they will have learned to asso-
ciate the word or symbol with a particular product or service, or family of products
or services. A mark that is not distinctive cannot be successfully registered.

Trademark law has developed rules for when a word or symbol will be con-
sidered inherently distinctive and when they can never be considered inherently
distinctive, or might never acquire distinctiveness. It is conceptualised as a spec-
trum. On one end, a made-​up or ‘coined’ word will be considered inherently dis-
tinctive, immediately entitled to protection as a trademark. Because they have no
other meaning, we recognise immediately that they are trademarks. The same is
true of ‘arbitrary’ trademarks, which are dictionary words but used in a way that
has no relationship to the product or service, such as CAMEL for cigarettes.

The US has another concept for describing a category of inherent distinctive-
ness, which is ‘suggestive’. A ‘suggestive’ mark is one that suggests the nature of a
product or service or one of its attributes without actually describing the product
or service, such as AIRBUS for airplanes.

On the other end of the spectrum, a word that is ‘generic’, meaning that it is
a common name for the product or service, can never function as a trademark,
even if consumers associate the word with only one product (such as a category-​
creating product, like in-​line skates). This will happen where the trademark is used
as the category name for the goods or services rather than a brand identifier.10
Trademarks for software in general are susceptible to becoming genericised be-
cause any particular software product may have unique attributes not shared by
other programs, so consumers use the trademark to refer to the software with those
particular characteristics. When there are thereafter new market entrants making
similar software with similar attributes, consumers may nevertheless refer to the
new entrant’s goods using the same term that was meant to be a trademark (see
section 9.2.7 for the loss of rights due to genericism).

In addition to generic terms, words, symbols, or designs that are ‘functional’
will not be protected as a trademark. Functionality is generally at issue when a
product’s shape is claimed as a trademark, such as uniquely shaped fan blades. If
the fan blades are uniquely shaped because they provide a functional benefit, such
as moving air more efficiently, then they will not also be protected as a trademark.

	 10	 An example of a term that a court concluded was a generic term rather than a trademark is ‘386’
for a computer chip. Intel Corp v Advanced Micro Devices, Inc, 756 F. Supp. 1292, 1298 (N.D. Cal. 1991).
This is also a territorial distinction; ‘hoover’ is generic in the UK but a registered trademark in the US,
US Reg No 5181636 <https://​tsdr.uspto.gov/​#cas​eNum​ber=​87172​024&caseT​ype=​SERIAL​_​NO&sea​
rchT​ype=​statu​sSea​rch> accessed 27 February 2021. ‘Aspirin’ is generic in the US but a trademark regis-
tered in Germany since 1899, German Reg No 36433 <https://​regis​ter.dpma.de/​DPMAr​egis​ter/​marke/​
regis​ter/​36433/​DE> accessed 27 February 2021.

TRADEMARKS  189

Moving back along the spectrum towards inherent distinctiveness, words that
are ‘merely descriptive’11 do not immediately function as trademarks but may
over time acquire distinctiveness and function as a trademark, and be registrable
as such, after they have acquired it. A word will be considered ‘merely descrip-
tive’ when it states an attribute, feature, end result, or use of the product or service
bearing the mark. Examples of merely descriptive terms that acquired distinctive-
ness are LYFT for computer software for coordinating transportation services12
and STEELCASE for metal office furniture.13 Similarly, geographically descriptive
terms, surnames, and laudatory terms like ‘best’ or ‘premium’ are not inherently
distinctive but sometimes can be shown to be functioning as trademarks with ap-
propriate proof.

9.2.4  Registration

In the ideal world, a new name will have been ‘cleared’ before the project started
using it, in other words various relevant sources, including trademark registers,
were searched to determine whether anyone else has already registered the same
or similar mark for the same or similar services and whether the new user might
be inadvertently infringing another’s already existing registered or unregistered
trademark rights. But probably most Open Source projects will have adopted
a name without much thought given to whether others might be using a similar
name for a similar product or project. Nevertheless, even though if the project
mark is already in use, it may still be useful to have searches performed before re-
gistering to learn what obstacles might present themselves during the registration
process. Some countries examine trademark applications on ‘relative’ grounds;
that is, whether there is a trademark already registered that the new application will
be too similar to. Many trademark owners also have trademark ‘watches’ which are
services that report on the filing or publication14 of trademark applications similar
to their watched mark. The application process itself is therefore likely to bring the

	 11	 Lanham Act, see note 6, § 1052(e)(1). The equivalent under EU law is trademarks that ‘consist
exclusively of signs or indications which may serve, in trade, to designate the kind, quality, quantity,
intended purpose, value, geographical origin, or the time of production of the goods or of rendering of
the service, or other characteristics of the goods or services’. Directive (EU) 2015/​2436 of the European
Parliament and of the Council of 16 December 2015 to approximate the laws of the Member States re-
lating to trade marks (hereafter Trademark Directive) art 4(c).
	 12	 US Reg No 4686618 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​85743​120&caseT​ype=​SERIAL​_​
NO&sea​rchT​ype=​statu​sSea​rch> accessed 1 December 2019.
	 13	 US Reg No 534526, http://​tsdr.uspto.gov/​#cas​eNum​ber=​534​526&cas​eSea​rchT​ype=​US_​APPL​
ICAT​ION&caseT​ype=​DEFA​ULT&sea​rchT​ype=​statu​sSea​rch accessed 12 January 2020.
	 14	 In virtually every country the trademark registration process includes a step called ‘publication’,
which is publishing the application or registration specifically for the purpose of giving notice to third
parties so they have the opportunity to oppose the applications or registrations that they believe are
problematic.

190  Pamela Chestek

project’s trademark to the attention of owners of similar trademarks, which should
be taken into account before registering.

In addition to relative grounds, trademarks are also examined, and some-
times refused registration, on ‘absolute’ grounds, which include descriptiveness,
genericism, and a number of other statutory bars.15 A trademark counsel will be
able to identify the possible bases for refusal and aid in determining the best pro-
cedural approach for registration.

9.2.4.1 � Trademarks and service marks
A trademark registration identifies the mark and the goods and services for which
registration is granted. The mark can be a word per se, a word in stylised form,
a logo, a sound, a colour, trade dress, and so forth. Most countries divide goods
and services into ‘classes’ using a classification system described in an international
treaty.16

For Open Source, common core classes are 9 (electrical and scientific appar-
atus goods including software), 38 (telecommunications services), 41 (education
services), and 42 (computer and scientific services), but others may also be rele-
vant depending on the function of the software, such as security in Class 45. The
relevant classes may change over time as more related goods and services become
available. Promotional goods may be included in many classes; for example, Class
16 includes stickers, Class 21 includes glassware, and Class 25 is for apparel.

In almost all countries, one can register a trademark before the use of the mark
has started. However, in the US, as a general rule the trademark must be used be-
fore the registration will be granted.17 One can file an application on an ‘intent to
use’ basis to hold a place in line, but the registration will not be granted until the
owner has submitted proof of use to the US trademark office. But even in those
countries that do not require proof of use before registration, one can cancel a
trademark after a statutory period of time, generally three or five years, on the basis
that the proprietor is not using the mark.

The legal significance of a registration differs from country to country. The
owner of the senior rights will always prevail over the owner of junior rights, but
whether or not the mark is registered will also affect who will prevail in a con-
flict. There are two main legal premises: (i) trademark rights accrue through use,
with registration serving as government recognition of the existing rights; and (ii)
trademark rights are granted through registration. However, the division described

	 15	 There are a variety of issues raised around the world, such as deception, geographic
misdescriptiveness, that the word is surname, and a prohibition on registering flags and coats of arms.
	 16	 Nice Convention Concerning the International Classification of Goods and Services For the
Purposes of the Registration of Marks, 14 June 1957, as last revised at Geneva, 2 October 1979, 550
UNTS 45.
	 17	 By international treaty, the foreign owner of a trademark registered in their own country can ob-
tain a registration in the US without having used the mark in the US first, although the owner must still
have an intent to use the mark in the US. Lanham Act, see note 6, § 1126(e).

TRADEMARKS  191

is more simplistic than the laws any country has enacted and a country’s trademark
system is likely to be a blend of both concepts. For example, in the US an unregis-
tered trademark is as readily enforceable as a registered trademark, except that the
owner will have to prove the validity of the mark in court rather than before the
US Patent and Trademark Office. In the UK, one can prevent infringement of an
unregistered trademark if the wrongdoing rises to the level of ‘passing off ’, which
is a false representation that causes confusion or deception and is more difficult to
prove than infringement of an unregistered trademark in the US. In the EU, one
can rely on prior unregistered rights to oppose or cancel the registration of a junior
user but cannot sue for infringement unless the mark is considered a ‘well-​known’
mark.18 In yet other countries, unregistered rights are of no value at all, unless the
mark is well-​known. Although it is often not feasible to register every trademark
in every country, registration should be the preference rather than hoping that un-
registered rights will be adequate.

The Madrid Protocol is an international treaty19 for the management of
International Registrations. Despite the name, an International Registration is not
an independently enforceable trademark registration. Instead, the Madrid system
is a unified application system. One has a ‘basic’ application or registration in one’s
home country. This basic application or registration is used as a basis for filing an
International Application, claiming the same mark and description of goods and
services as the basic application. At the time the applicant files the International
Application, the applicant also requests ‘extensions of protection’ or ‘designates’
member countries of its choosing out of the 100+​ countries that are members of
the Madrid Protocol. Each country thereafter examines the designation under its
local legal standards and, if allowed, the designation is enforceable as if it was a
registration filed originally in that country.

9.2.4.2 � Certification and collective marks
Certification and collective marks are special types of trademarks recognised in
some countries. A certification mark is where one certifies the goods or services of a
third party. A certification mark cannot be used to certify one’s own goods.20 A cer-
tification mark is therefore used for the case where a third party is ensuring that
others’ goods and services meet a standard, such as the ‘Underwriters Laboratory’

	 18	 ‘Well-​known’ marks are given special treatment by treaty. Paris Convention for the protection of
industrial property of March 20, 1883, as revised at Brussels on 14 December 1900, at Washington on 2
June 1911, at The Hague on 6 November 1925, at London on 2 June 1934, at Lisbon on 31 October 1958,
and at Stockholm on 14 July 1967, 828 UNTS 305 (hereafter the Paris Convention) art 6bis.
	 19	 Protocol Relating to the Madrid Agreement Concerning the International Registration of Marks,
adopted at Madrid, 27 June 1989, as amended on 3 October 2006, and on 12 November 2007 <https://​
wipo​lex.wipo.int/​en/​text/​283​484> accessed 18 January 2020.
	 20	 Lanham Act, see note 6, § 1127; EU Trademark Regulation, see note 6, art 83(2).

192  Pamela Chestek

seal used on electrical equipment.21 The use restriction mean that a certification
mark cannot be used by an Open Source project as a way to provide assurances that
third party hosts have authentic software,22 but a certification mark can be useful
to an organisation like the Open Source Hardware Association, which certifies that
goods comply with the Open Hardware Definition.23

Collective marks are owned by an organisation whose members can use the
mark to indicate their membership in the organisation and to identify their own
goods and services as coming from a member of the organisation,24 such as the
mark UNICODE used to indicate membership in an association of those who use
a computer encoding system utilising 16 bits.25 An Open Source project could own
a collective mark and allow its members to indicate they are members of the pro-
ject. However, a collective mark would be of low value for uses relating to software
goods, since the collective mark indicates only the bona fides of the producer, not
that the goods that each produce are uniform.

It is particularly prudent for the Open Source project to register its trademark.
Because of the collaborative way that Open Source products are created, there may
be many individuals who have a sense of ownership over the software and the pro-
ject as a whole and there may also be authorised forks or permitted variations of a
product. The application process may assist the project in guiding thinking around
the question of appropriate ownership and permitted third-​party usage.

The freedom for all to make copies of the software and distribute it also lends it-
self to a claim that the trademark is a generic term that cannot be owned, or that the
trademark has lost its source-​identifying meaning because it can be used by many
(see section 9.2.7). Registration will be a barrier to challenges of this type.

9.2.5  Ownership and licensing

In the US, as a use-​based country, the basic premise is that a trademark is owned
by the entity that controls the quality of goods or services with which the mark is
used. If the application is not filed by the person or entity who actually controls the
quality of the goods or services, the application or registration will be invalid.26

	 21	 US Reg No 782589, <http://​tsdr.uspto.gov/​#cas​eNum​ber=​72185​169&caseT​ype=​SERIAL​_​
NO&sea​rchT​ype=​statu​sSea​rch> accessed 19 January 2020, EU Appln No 017277311, <https://​euipo.
eur​opa.eu/​eSea​rch/​#deta​ils/​tra​dema​rks/​017277​311> accessed 19 January 2020.
	 22	 This is simply a licensed use.
	 23	 US Reg No 5479050 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​87473​889&caseT​ype=​SERIAL​_​
NO&sea​rchT​ype=​statu​sSea​rch> accessed 19 January 2020.
	 24	 Lanham Act, see note 6, § 1127; EU Trademark Regulation, see note 6, art 74.
	 25	 US Reg No 1981995 <http://​tsdr.uspto.gov/​#cas​eNum​ber=​74575​181&caseT​ype=​SERIAL​_​
NO&sea​rchT​ype=​statu​sSea​rch> accessed 17 January 2020.
	 26	 For further information on ownership of Open Source trademarks, see Pamela S Chestek, ‘Who
Owns the Project Name?’ (2013) 5(2) International Free and Open Source Software Law Review 105.

TRADEMARKS  193

It can sometimes be difficult to tell who is controlling the quality of the goods
and services. Take, for example, a distributor that selects pre-​existing products for
private labelling. The manufacturer exercises control through its manufacturing
process, but the distributor exercises control through its selection of the manufac-
turer. They may end up in a conflict over who the true mark owner is.27

In countries or regions where rights are primarily based on registration, such
as the EU, the owner of the mark will be the one to whom the registration was
granted, although there may be other defences that invalidate the registration, such
as bad faith or fraud. For example, if an opportunist registers a trademark used by
another, intending to sue the true owner for infringement or extract payment once
the true owner tries to file their own application, the registration may be vulnerable
to cancellation for bad faith.28

A trademark licence grants permission to use a trademark. They can be ex-
pressed in an oral or written agreement or a licence may be implied in conduct.
A trademark owner can be both a manufacturer in its own right and licence others
to manufacture, for example, to increase capacity. The trademark owner can li-
cence others to create goods or services for convenience, such as outsourcing con-
ference organisation, or because it does not have the facilities or expertise, such as
the manufacture of promotional goods.

Use of an Open Source trademark by a third party will be lawful for one of two
reasons: the person using the mark is a licensee (see section 9.5.4 explaining that
Open Source licences themselves do not grant a trademark licence) or the use is a
non-​infringing one that trademark law cannot prevent, such as referential use (see
section 9.5.3).

It is important for Open Source projects to decide which words, logos, or marks
they will register and to establish appropriate guidelines for where use is permis-
sible, particularly where there may be community contribution and use, such as a
user group (see section 9.5.6).

9.2.6  Enforcement of trademark rights

Trademark rights are not an absolute right to use a particular word in any context
or even within the specific context of the relevant goods and services. One may
only prevent another’s use of the trademark where the use will cause a very specific
type of harm, either a ‘likelihood of confusion’ or ‘dilution’.

	 27	 It is so common that the Paris Convention states specifically that if a representative or agent regis-
ters a proprietor’s mark in a different country, the proprietor can oppose or cancel the registration or
seek the transfer. Paris Convention (n18) art 6 septies.
	 28	 Several Provisions for Regulating Application for Trade Mark Registration arts 3–​4, <http://​www.
sipo.gov.cn/​zfgg/​1143​015.htm> accessed 18 January 2020.

194  Pamela Chestek

9.2.6.1 � Likelihood of confusion
The fundamental purpose of trademark law is to prevent a ‘likelihood of confu-
sion’ between the goods or services produced by one entity and those of another,
and it will be a trademark infringement where a likelihood of confusion has not
been avoided. However, there are as many different legal standards for ‘likelihood
of confusion’ as there are judicial systems.

Nevertheless, the basic inquiry will always consider the degree of similarity of
the two trademarks and the degree of similarity of the goods and services. As a rule
of thumb, the more similar the marks are the less similar the goods or services will
have to be for consumers to be confused, and the more similar the goods and serv-
ices are the less similar the marks will have to be.

In the US, all the different courts of appeal have different legal tests, but the con-
clusion is not likely to differ between courts. One typical formulation considers:

	 •	 the strength of the mark
	 •	 the degree of similarity between the two marks
	 •	 the proximity of the products or services
	 •	 the likelihood that the prior owner will bridge the gap
	 •	 actual confusion
	 •	 whether the defendant acted in bad faith
	 •	 the quality of the defendant’s product
	 •	 the degree of care exercised by the consumer in the transaction
	 •	 other relevant variables29

To elaborate on some of the factors, the ‘strength’ of the mark refers both to in-
herent distinctiveness and acquired distinctiveness (see section 9.2.3). The role of
strength in a likelihood of confusion analysis is that consumers are less likely to
confuse marks that have a significant degree of descriptiveness or ubiquity, even
if the mark has acquired distinctiveness and is therefore functioning as a mark.
For example, the word ‘Enterprise’ is commonly used for a version of a software
program optimised for a large-​scale corporate user. Because of consumers’ famil-
iarity with the term and its common use, they have acclimated to seeing the same
word used by different companies and therefore are less likely to believe that two
software programs sharing only the common word ‘enterprise’ are from the same
source.30

‘Proximity of the goods’ means how similar the parties’ goods and services are
to each other, and ‘bridging the gap’ means the likelihood that the two parties’

	 29	 Polaroid Corp v Polarad Elecs Corp, 287 F.2d 492, 495 (2d Cir. 1961).
	 30	 For example, MYSQL ENTERPRISE (EU Reg No 005708532), PUPPET ENTERPRISE (EU Reg
No 013258901), and HEWLETT PACKARD ENTERPRISE (EU Reg No 013906185) are all registered
in the EU for goods or services related to databases.

TRADEMARKS  195

goods and services might move closer together. Lumber and storage sheds are
not particularly similar, but a lumberyard might ‘bridge the gap’ by selling pre-​
manufactured sheds.

Legal intervention is available upon proof of a likelihood of confusion in order
to prevent harm to consumers. Actual confusion, such as misdirected complaints
or goods returned to the wrong party, is compelling evidence that the harm is in-
deed occurring. Actual confusion is therefore evidence that the legal wrong, likeli-
hood of confusion, is occurring.

Bad faith is considered on the theory that if one is trying to create confusion,
one is likely to succeed in doing so. Thus good faith is not generally relevant, only
bad faith.

Some transactions are done hastily, such as the purchase of a small food item.
Consumers spend a great deal of time investigating other transactions, such as pur-
chasing a vehicle. The less care spent on the transaction, the more likely it is a con-
sumer will be confused.

In the EU, trademark infringement is either per se, without requiring further
proof of likelihood of confusion—​in the case of ‘double identity’, meaning that the
marks are the same and the goods and services are the same31—​or upon proof of
likelihood of confusion, where the accused trademark is identical with, or similar
to, the EU trade mark and is used in relation to goods or services which are iden-
tical with, or similar to, the goods or services for which the EU trade mark is
registered.32

However, trademark infringement is not simply confusion as to origin of a
product or service. As discussed in section 9.2.1, use of a trademark may indicate
different kinds of relationships, such as approval or endorsement. Confusion about
any of these types of relationships will also be a trademark infringement.33

9.2.6.2 � Dilution
Trademark ‘dilution’ refers to use of a mark by a third party in a way that will tend to
weaken the uniqueness of the owner’s mark. A trademark is associated with goods
and services, allowing coexisting uses where the goods and services are sufficiently
distant that consumers will not be confused (see section 9.2.1, giving examples of
coexisting use of the same words for different goods and services). However, there
is a theory that a third-​party’s use of a mark strongly associated with a different en-
tity can nevertheless harm the original user even in the absence of confusion. One
harm is in the form of ‘blurring’, where, instead of one unique source association,

	 31	 EU Trademark Regulation, see note 6, art 9(2)(b).
	 32	 EU Trademark Regulation, see note 6, art 9(2)(c).
	 33	 Lanham Act, see note 6, § 1125(a) (including confusion as to the affiliation, connection, or associ-
ation of one person with another, or confusion as to the origin, sponsorship, or approval of goods, serv-
ices, or commercial activities); EU Trademark Regulation, see note 6, art 9(2)(c) (stating that likelihood
of confusion includes the likelihood of association).

196  Pamela Chestek

the consumer now makes two, albeit non-​confusing, associations. An example
would be GOOGLE used for sunglasses—​the consumer is aware that Google does
not manufacture sunglasses, but now associates the word ‘Google’ with two things,
search engines and sunglasses.

Another type of harm is ‘tarnishment’, which is where the junior user’s product
is unsavoury, unflattering, or offensive and that negative association is visited on
the senior user also, to its detriment. Another category sometimes categorised as
dilution is ‘free riding’, where another takes unfair advantage of a consumer’s posi-
tive association with a trademark for their own gain, such as using too much of a
mark in comparative advertising.34

9.2.7  Abandonment and genericism

There are a number of ways that trademarks can be invalidated, but two are most
relevant in the field of Open Source software: abandonment, more particularly a
type of involuntary abandonment called naked licensing; and loss of trademark
significance, more particularly where a once distinctive term becomes the generic
word for the goods or services.

9.2.7.1 � Naked licensing
‘Naked licensing’, a concept fairly specific to US law, is where the licensor makes no
effort to control the quality of the goods or services of its licensee. Some courts take
a harsh view of the practice, punishing a licensor because of the possibility that un-
controlled licensees will produce goods of varying quality, in theory harming con-
sumers. In its most harsh implementation, no proof that the goods have varied or
that there was any harm to a consumer is required.35 The principle has been applied
even in cases where there is only one uncontrolled licensee.36 Other courts apply a
less draconian standard, requiring that the uncontrolled licensing have actually re-
sulted in a loss of trademark significance before a mark is forfeited through naked
licensing.37

The risk of a naked licence challenge is of concern to Open Source projects be-
cause the Open Source licence allows anyone not only to reproduce the software
but also modify it. Different distributors’ versions may differ from the canonical
source, including in potentially significant ways. If the Open Source project allows

	 34	 L’Oréal SA & Ots v Bellure NV & Ots [2010] ECJ C-​487/​07.
	 35	 Barcamerica Int’l USA Tr v Tyfield Importers, Inc, 289 F.3d 589, 598 (9th Cir. 2002) (‘The point is
that customers are entitled to assume that the nature and quality of goods and services sold under the
mark at all licensed outlets will be consistent and predictable.’).
	 36	 Eva’s Bridal Ltd v Halanick Enter, Inc, 639 F.3d 788 (7th Cir. 2011).
	 37	 Kentucky Fried Chicken Corp v Diversified Packaging Corp, 549 F.2d 368, 387 (5th Cir. 1977).

TRADEMARKS  197

any and all modifications of the software to be branded with the project trade-
mark, it risks a successful challenge that the trademark is invalid due to naked li-
censing (see section 9.5.6 discussing including licences in trademark guidelines).
There is a trial court decision rejecting a claim of naked licensing premised solely
on the theory that software was available under a General Public License (GPL)
and a GNU Affero General Public License (AGPL),38 but an Open Source trade-
mark owner must still ensure that it does not grant trademark licences for unfet-
tered use and adequately exercises control over the uses pursuant to the licences it
does grant.

9.2.7.2 � Loss of trademark significance through genericism
A trademark will not function as a trademark if instead the word or design is ‘gen-
eric’. A generic term is one that that identifies products and services generally,
not specific to any particular source. A term originally coined as a trademark can
evolve into the generic term for the category, such as ‘escalator’ and ‘trampoline’,
both of which were registered trademarks in the US but later invalidated because
they had become generic terms.39

Because it is a question of consumer perception, a trademark owner may not
be able to prevent genericide of its own mark. Consumers may assign meaning no
matter what kind of effort the trademark owner employs to prevent it. However, a
trademark owner that actively encourages generic use is likely to succeed in losing
its trademark rights. While all trademark owners want their brand to ‘own the cat-
egory’, encouraging consumers to treat the brand as synonymous with the category
will teach consumers that the term is the generic term for the entire category, not
an indicator for one particular source for the type of good.

Software in general may be at a higher risk than other kinds of goods for
genericide because software products tend to have unique characteristics or func-
tionality, so there may not be an apt or known common name that adequately de-
scribes the software. If the trademark owner is not on guard, the trademark is then
used as that category name for all new entrants into the field. The trademark owner
therefore needs to ensure that it is doing what it can to differentiate the mark from
the category for the consumer’s benefit. Xerox Corporation periodically runs ad-
vertising campaigns reminding consumers that the correct term for reproducing
document is ‘photocopying’, not ‘Xeroxing’ and Velcro BVBA runs the same type of
campaign for ‘hook and loop fastener’.

	 38	 After stating that the GPL and AGPL licences do not incorporate a trademark licence, con-
cluding: ‘Defendants have not identified any case, and the Court is not aware of any, in which a trade-
mark owner was found to have engaged in naked licensing where no trademark license existed.’ Neo4j,
Inc v PureThink, LLC, 480 F.Supp.3d 1071, 1078 (N.D. Cal. 2020).
	 39	 Haughton Elevator Co v Seeberger, 85 USPQ 80 (Comm’r Pat 1950); Nissen Trampoline Co v Am
Trampoline Co, 193 F. Supp. 745, 129 USPQ 210 (S.D. Iowa 1961).

198  Pamela Chestek

9.3  Open Source Projects, Products, and Services

Open Source projects produce a product, software, but Open Source projects will
have goods and services that extend far beyond that. Open Source projects typic-
ally create documentation and often provide support services through support-​
dedicated live chat channels. Projects may provide training, such as local meetups
or conferences. They will often create, or allow the creation of, promotional goods
like apparel, stickers, mugs, and pens. The Open Source project will be able to
register, and assert rights in, its trademark for the software itself and for these add-
itional goods and services.

Beyond that, and perhaps uniquely different from other kinds of businesses, the
Open Source project is also a community of contributors. The Open Source pro-
ject often consists of a group of individuals who are working in a communal way
towards a common goal. In addition to producing software, the project may do
work dedicated to the enrichment and development of the interests of the commu-
nity or the improvement of society. It may be a public interest charity performing
charitable services, like fundraising to provide financial support to underprivil-
eged members.

The Open Source project will be the producer of the goods and services itself,
such as software, documentation, and support services, but it is also likely to be
the licensor of the trademark. Typical licensing relationships in Open Source
are permissions given by the Open Source project to fans, local groups, or spon-
sors to create promotional goods or for the outsourcing of event organising.
A licence might be granted to one who is going to represent the software pro-
ject at a booth at a conference, allowing a person to indicate they represent the
software project when they have no official relationship with the project. As
the trademark owner, the Open Source project has the right to determine in
exactly what ways others may use its trademark and in what ways they cannot.
However, because of the potential loss of rights through naked licensing (see
section 9.2.7.1 on naked licensing), the Open Source project is well-​advised to
ensure that the scope and requirements of the licences are clear and met by its
licensees (see section 9.5.6 on using trademark guidelines to grant trademark li-
cences). At the same time Open Source projects must balance giving their com-
munities enough rights to maintain engagement and recognise the contribution
from those communities.

9.3.1  Licensed redistribution

The Open Source licence permits the reproduction and modification of the soft-
ware by third parties. For purposes of legal analysis, this can be analogised to a
trademark licensor engaging another to manufacture goods on its behalf.

TRADEMARKS  199

Where the trademark owner enlists others to manufacture or offer services,
the actual manufacturer or service provider is a trademark licensee and the trade-
mark owner-​licensor will dictate to a greater or lesser degree what characteristics
the goods or services will have; for example, materials, dimensions, tolerances,
manufacturing processes, and quality control checks (if the licensor does not dic-
tate to some degree the quality of the goods, or at least inspect them, the licence
is a naked licence as discussed in section 9.2.7.1). If the manufacturer-​licensee
meets the standards set by the trademark owner-​licensor, the manufacturer will
be allowed to use the trademark on the goods. If the goods are substandard but the
manufacturer nevertheless uses the mark on the goods, the goods will be infringing
(see section 9.5.6 for discussion of standards that an Open Source project will want
to consider in developing its trademark licence).

9.3.2  Distribution of unmodified software by others without a
trademark licence

Trademark exhaustion or exhaustion of rights, also known as the ‘first sale’ doc-
trine, allows a third party to use a trademark to resell a product, but this doctrine
extends only to stocking, displaying, and reselling an existing, tangible product.40
In the EU, this may mean that where goods or services are made available in a
member state, that exhausts rights across all states under the concept of free move-
ment of goods and services upon which the EU is based.

As applied to Open Source, while there is a copyright licence that allows for the
lawful creation of copies, if exhaustion is to apply to the trademark use, one may
use the trademark for only those copies distributed in the exact form of the soft-
ware as provided by the project owner; that is, for executable code only in execut-
able form and for source code only in source code form.41

9.3.3  Distribution of modified software without a
trademark licence

Although the Open Source licence allows anyone to reproduce the software, those
reproducing it are not entitled to represent that modified software is the same as
the original, as using the same trademark for the modified software would do. The

	 40	 Sebastian Int’l Inc v Longs Drugs Stores Corp, 53 F.3d 1073, 1076 (9th Cir. 1995); Beltronics USA
Inc v Midwest Inventory Distrib, LLC, 562 F.3d 1067, 1072 (10th Cir. 2009) (hereafter Beltronics);
Trademark Directive, see note 12, art 15.
	 41	 The Slackware project is an example of this standard. Slackware, ‘Slackware Trademark Policy’
<http://​www.slackw​are.com/​tradem​ark/​tradem​ark.php> accessed 16 December 2019 (‘In order to be
called “Slackware”, the distribution may not be altered from the way it appears on the central FTP site’).

200  Pamela Chestek

exhaustion doctrine also does not extend to use of the mark for a different product
altogether; for example, executable code created by a third party from project
source code.

Where the product, in this case code, is not identical to what has been distrib-
uted by the trademark owner, the question of whether it can be distributed under
the same mark in the absence of a licence then becomes whether there are material
differences between the original goods and what the defendant is distributing.42 If
there is no material difference, the product will not be considered infringing. The
situation has not been addressed in the unique context of Open Source, but ma-
teriality does often come up in two situations: parallel imports, also known as ‘grey
market’ goods, and cases where goods have been repaired or remanufactured.

Typically, parallel imports are thought of as foreign-​manufactured goods sold
in a different country without the consent of the trademark holder, but the legal
theory also applies to domestic goods. There will be material differences, and
therefore a trademark infringement, when the trademark owner’s quality con-
trol measures have been thwarted, such as by removing a manufacturer’s Unique
Production Code (UPC) when the manufacturer used it for quality control pur-
poses.43 Applying this to the Open Source context, if a digital signature is used for
the quality control of Open Source software product, much like a UPC, distributing
code without the correct signature is likely to be considered a material alteration.44
Thus, an Open Source project is well within its rights to prevent use of the trade-
mark for anything but its own signed files but may elect to tolerate some changes.
The Mozilla trademark policy reflects the former position45 and the Document
Foundation the latter.46 It will be helpful to users for the Open Source project to
state its position publicly in its trademark guidelines.

	 42	 Beltronics, see note 40, 1072.
	 43	 Zino Davidoff SA v CVS Corp., 571 F.3d 238, 243 (2d Cir. 2009).
	 44	 Zino Davidoff SA v CVS Corp. (finding that UPC codes on perfume boxes were an adequate
quality control measure). Similarly, a product can be repaired or reconditioned and resold under the
original trademark, but only so long as the reconditioning or repair is not so extensive that it would be
a misnomer to call the article by its original name. Intel Corp. v Terabyte Int’l, Inc., 6 F.3d 614, 619 (9th
Cir. 1993).
	 45	 The Mozilla Foundation, ‘Distribution Policy for Mozilla Software’ <https://​www.mozi​lla.org/​en-​
US/​fou​ndat​ion/​tra​dema​rks/​distr​ibut​ion-​pol​icy/​> accessed 8 December 2019, states ‘if you make any
changes to Firefox or other Mozilla software, you may not redistribute that product using any Mozilla
trademark without Mozilla’s prior written consent and, typically, a distribution agreement with Mozilla’.
	 46	 See, e.g., The Document Foundation (TDF) trademark policy, which allows others to use the
LibreOffice trademark on software in substantially unmodified form where ‘substantially unmodified’
means ‘built from the source code provided by TDF, possibly with minor modifications including but
not limited to: the enabling or disabling of certain features by default, translations into other languages,
changes required for compatibility with a particular operating system distribution, the inclusion of bug-​
fix patches, or the bundling of additional fonts, templates, artwork and extensions)’. The Document
Foundation, ‘Policies & TradeMark Policy’ (2017) <https://​wiki.doc​umen​tfou​ndat​ion.org/​TDF/​Polic​
ies/​Trade​mark​_​Pol​icy> accessed 17 January 2020.

TRADEMARKS  201

9.3.4  Ancillary goods and services

An Open Source project may have as wide a range of goods and services as any
commercial business. The project may sponsor conferences. The project may
create formal training program and a substantial set of documentation. These are
all goods and services for which registration can and probably should be sought.
Where they are provided by a third party, it is a licensing relationship and the pro-
ject should undertake appropriate steps to ensure that the third-​party provider is a
controlled licensee.

Projects will also have promotional goods. These will most likely be licensed
goods. For these types of goods, the quality control required may be no more than
the selection of an appropriate vendor for the goods.47

9.4  The Community Role in Open Source Trademarks

9.4.1  Ownership models

Trademarks must have owners, but ownership in Open Source projects may not be
clear because of the various development models (see further Chapter 2). It may be
that, when a project starts, one individual is the main decision-​maker—​they have
written the bulk of the code, picked the name, and set up the source code reposi-
tory and website. In this situation the owner of the trademark would fairly clearly
be the individual.

It may be instead that the ownership of the mark vests in more than one person;
for example, where two or more individuals collaborate equally to create the pro-
ject. This, in theory, could be problematic if the two owners acted independently,
because it may mean that the trademark is not functioning as a mark, that is as a
sole source identifier.48 Nevertheless, where the individuals are contributing to the
same code base the risk is minimal since there is only one product.

Where individuals are acting in concert, they may, in fact, be deemed a common
law partnership or unincorporated voluntary association. Neither type of legal

	 47	 Restatement (Third) of Unfair Competition § 33, cmt. c (1995) (‘The expectations of consumers
depend in part on the character of the licensee’s use. If a licensee uses the trademark of a beer or soft
drink manufacturer on clothing or glassware, for example, prospective purchasers may be unlikely to
assume that the owner of the trademark has more than perfunctory involvement in the production or
quality of the licensee’s goods even if the manner of use clearly indicates sponsorship by the trademark
owner. On the other hand, if the licensee’s use is on goods similar or identical to those produced by the
trademark owner, purchasers may be likely to assume that the goods are actually manufactured by the
owner of the mark. Greater control by the licensor may then be necessary to safeguard the interests of
consumers who may purchase the goods on the basis of the licensor’s reputation for quality.’).
	 48	 J Thomas McCarthy, McCarthy on Trademarks and Unfair Competition, 5th edn (Eagen,
MN: Thomson Reuters, March 2021 update) § 16.40 (March 2021 update) (disfavouring joint
ownership).

202  Pamela Chestek

entity requires any filing or formal act to come into existence;49 instead, they will
exist because the law imposes legal structure on concerted acts.

Informal legal organisations are not uncommon. Courts have had to deal with
trademark disputes with many kinds of volunteer organisations, like church
groups, charities, and clubs. The typical scenario is that a group of individuals will
come together to work on a common project or interest, have a falling out, and
each then claim to own the name50—​a scenario that can easily arise with an Open
Source project.51

With Open Source projects, however, because there generally is some thought
about project governance and perhaps documentation of it, the project may be
better off than other types of organisations when a court is trying to identify the
owner. A ‘benevolent dictator’ model may mean that the so-​called dictator owns
the trademark because the person is the ultimate decision-​maker about the fin-
ished product.52 A meritocracy model may indicate that it is a partnership or vol-
untary association that owns the mark.

But there is risk in leaving the question of who owns the mark for a court to sort
out. If ownership is challenged in a schism, an adjudicator may indeed find that the
project (whether it is an individual, partnership, or unincorporated association)
is the owner of the project trademark and prohibit the challenger from using the

	 49	 See Revised Uniform Partnership Act 1997 (stating that a partnership has been formed where
there is ‘the association of two or more persons to carry on as co-​owners a business for profit forms a
partnership, whether or not the persons intend to form a partnership’); Comm for Idaho’s High Desert,
Inc v Yost, 92 F.3d 814, 819–​20 (9th Cir. 1996) (noting that under federal law, an ‘unincorporated asso-
ciation’ is ‘a voluntary group of persons, without a charter, formed by mutual consent for the purpose of
promoting a common objective’.). It may also be a ‘joint venture’, Shain Inv Co v Cohen, 443 N.E.2d 126,
129 (Mass. App. Ct. 1982) (describing a joint venture as ‘a partnership of a sort or, at least, it has many of
its characteristics. It differs, however, from a partnership in that it is ordinarily, although not necessarily,
limited to a single enterprise, whereas a partnership is usually formed for the transaction of a general
business. ’).
	 50	 See, e.g., Gemmer v Surrey Services for Seniors, Inc., No 10–​810, 2010 WL 5129241, at *20 (E.D.
Pa. 13 December 2010) (senior centre, not the volunteer who thought of the name for and organised a
charitable event, owned the trademark for the event); St. Denis Parish v Van Straten, Cancellation No
92051378, 2011 WL 5014036, at *4 (TTAB 28 September 2011) (same); 100 Blacks in Law Enforcement
Who Care, Inc. v 100 Blacks Who Care, Inc., Opposition No 91190175, 2011 WL 1576733, at *4 (TTAB
12 April 2011) (deciding which of two factions of an organisation was the owner of the trademark).
	 51	 For example, Tim Fox created the Virt.x project while at Vmware. When he departed Vmware
for Red Hat, Vmware demanded he turn over the Vert.x Github project, the Vert.x Google Group,
the domain vertx.io, and the Vert.x blog. Google Groups, ‘An Important Announcement to the Virt.x
Community’ (2013) <https://​gro​ups.goo​gle.com/​forum/​#!msg/​vertx/​gnpG​SxX7​PzI/​BGhj2​PqSc​Y8J>
accessed 19 January 2020. Ultimately everyone agreed to move the project to an independent owner,
the Eclipse Foundation. Google Groups, ‘Community: Please Make Any Objections Known!’ (2013)
<https://​gro​ups.goo​gle.com/​d/​msg/​vertx/​WIuY​5M6R​luM/​gAvWf​txSe​gUJ> accessed 19 January 2020.
	 52	 The Linux operating system is an example of a benevolent dictator model: one individual,
Linus Torvalds, ultimately decides what is included in the Linux kernel. Linux Kernel Newbies,
‘KernelDevViewpoint’ (2013) <http://​kernel​newb​ies.org/​Ker​nelD​evVi​ewpo​int> accessed 29
December 2019 (describing how patches ultimately are added to the Linux kernel, with Linus Torvalds
deciding what to merge). He also owns the US trademark registration, US Reg No 1916230 <http://​tsdr.
uspto.gov/​#cas​eNum​ber=​74560​867&caseT​ype=​SERIAL​_​NO&sea​rchT​ype=​statu​sSea​rch> accessed 19
January 2020.

TRADEMARKS  203

mark. If an Open Source project was unlucky, though, after a falling out it may
find that there is a stalemate and no-​one will be allowed to use the name from then
onwards.53

It is therefore best to remove as much ambiguity as possible about who owns the
trademark. In practical terms, this means that the project should publicly state who
owns the mark, make it clear who may act on behalf of the trademark owner, and
allow only the owner to enter into agreements regarding the marks. For example,
trademark guidelines should name the owner and provide contact information for
how to reach someone with authority to permit use of the mark.54

9.4.2  Enforcement

The legal bases for enforcement of trademark rights are the same for Open Source
marks as they are for any other trademarks. What is different is the social environ-
ment in which trademark enforcement takes place. Because the Open Source ethos
is one of sharing, the accused party may believe that their use of the name is either
authorised by the software licence or should be tolerated in the spirit of sharing.
Some Open Source participants take a position that no intellectual property rights
should be enforced, including trademark rights. A community member may con-
tact an infringer directly on behalf of the project, an action that is consistent with
the project’s practice of openness and transparency, but that may put the legal case
in a weaker position.

The communal nature of the field and the multiple stakeholders in a project may
also create some unexpected effects in conflicts with non-​Open Source parties.
When an Open Source trademark is attacked, the project community, as well as the
Open Source community at large, is likely to rise to defend the trademark.55 The
Open Source project also may not be willing to agree with terms typically found
in settlement agreements, such as confidentiality of payments or agreeing not to
speak publicly about the case.

	 53	 See, e.g., LunaTrex, LLC v Cafasso, 674 F. Supp. 2d 1060, 1062 (S.D. Ind. 2009); Liebowitz v Elsevier
Sci Ltd, 927 F. Supp. 688, 696 (SDNY 1996).
	 54	 See, e.g., Gnome Foundation, ‘Legal and Trademarks’ <https://​www.gnome.org/​fou​ndat​ion/​
legal-​and-​tra​dema​rks/​> accessed 29 December 2019 (stating: ‘One of the functions that the GNOME
Foundation provides is to act as the legal owner for such GNOME project assets as the GNOME name
and the GNOME foot. We must protect these trademarks in order to keep them. Therefore, we have
some guidelines for their use and a standard agreement for user groups. These cover many common
situations; if you need permission to use the GNOME trademarks in other ways or have other ques-
tions, please contact licensing@gnome.org.’).
	 55	 The GNOME Foundation was able to raise over US$100,000 when Groupon tried to adopt
GNOME as a trademark for a point-​of-​sale system, after which Groupon abandoned its trademark ap-
plications. Wayback Machine capture of GNOME Foundation, ‘Thank you for helping the GNOME
Foundation defend the GNOME trademark!’ <https://​web.arch​ive.org/​web/​201​4111​4123​747/​http://​
gnome.org:80/​grou​pon/​> accessed 20 December 2019.

204  Pamela Chestek

9.5  Lawful Use of Others’ Trademarks

Absent a contract, a trademark owner cannot stop lawful uses of its trademarks by
third parties. This section describes the ways that a third party may lawfully use
a project’s trademark. There are, however, no bright lines. Legal issues in trade-
mark law are generally fact-​intensive, with a minor change in the factual situation
making the difference between an infringing use and a non-​infringing use and the
ultimate legal conclusion in the hands of the courts.

9.5.1  Non-​confusing use

Simplistically, a non-​confusing, non-​diluting use is not actionable. Section 9.2.6.1
describes how trademark infringement takes into account the similarity of the
marks, the similarity of the goods and services, the parties’ trade channels, and
the strength of the trademarks, and other factors. Where the marks are sufficiently
different, or the goods and services are sufficiently different, the relevant audience
will not make an association between the two and no legal wrong has occurred.
This is the reason that FORD can be used by both a car company56 and a modelling
agency.57

9.5.2  ‘Forking’

The term ‘forking’ has two meanings. The term ‘fork’ is sometimes used to mean a
branch created in a version control system. However, the term ‘fork’ was originally
used to describe when a developer would elect to exercise their rights under the
licence to copy and use the software but wanted to take the software in a different
direction. The developer therefore created a new project that started with the same
code but thereafter diverged. LibreOffice is a fork of OpenOffice, MariaDB a fork
of MySQL, Jenkins a fork of Hudson, and EGCS a fork of GCC, which later was re-
named back to GCC.

When the software diverges, it will be confusing for the two projects to share the
same name, or names that are highly similar. It also may be that the original project
is unhappy with the fork and is not willing to entertain the use of a mark too similar
to the original.58 Whether there is likelihood of confusion will be assessed in the

	 56	 FORD, EU Reg No 004670618 <https://​euipo.eur​opa.eu/​eSea​rch/​#deta​ils/​tra​dema​rks/​004670​
618> accessed 19 January 2020.
	 57	 FORD MODELS, EU Reg No 005188412 https://​euipo.eur​opa.eu/​eSea​rch/​#deta​ils/​tra​dema​rks/​
005188​412 accessed 19 January 2020.
	 58	 See, e.g., Hudson Labs, ‘Hudson’s Future’ (2011) https://​web.arch​ive.org/​web/​201​1011​2133​740/​
http://​www.hud​son-​labs.org/​cont​ent/​huds​ons-​fut​ure> accessed 19 January 2020 (because the current

TRADEMARKS  205

same way that it will be for goods not sharing their origin, with the additional fact
that the similarity of the goods is a given.

The second kind of fork is where the name of the project will also be copied over
when a branch is created in a version control system. Arguably, the project making
the code available implied a trademark licence by using a version control system
that will force, at least initially, the use of the same name. This use may be justified
as a referential use, as discussed in section 9.5.3. Nevertheless, once the software is
modified this situation will most likely be analysed in the same way discussed in
section 9.3.3.

9.5.3  Referential use

The need to use another’s mark occurs frequently in the software industry as a
whole because it is often necessary to include information about the compatibility
of software. Users must be told that the application software is compatible with
specific operating systems or what dependencies are required.

The doctrine of referential or nominative fair use allows a defendant to use a
plaintiff ’s trademark to identify the plaintiff ’s goods as long as there is no likelihood
of confusion about the source of the defendant’s product or the mark-​holder’s rela-
tionship with the defendant.59 For the defence to apply, the trademark use must be
in reference to the original product, not the copyist’s.60 The requirement that like-
lihood of confusion will not occur will generally mean that the referred-​to mark is
not used more than absolutely necessary to convey the needed information. Under
this standard, it will rarely be the case that the use of a logo can be justified as re-
quired for the purpose of conveying the requisite information; generally the word
alone will do.

In the US, the situation is addressed by interpreting trademark law doctrine. The
EU approaches this situation through the Directive concerning misleading and
comparative advertising.61 The Directive lists a number of conditions that must be
met for another’s mark to be used in advertising, including that the use not create
confusion, that it not take unfair advantage of the referred-​to mark, and that it ob-
jectively compares the goods or services.62

owner would not agree to a transfer of the name ‘Hudson’, the fork chose the name ‘Jenkins’ which
‘evokes the same sort of English butler feel’.).

	 59	 Tiffany (NJ) Inc v eBay Inc, 600 F.3d 93, 102 (2d Cir. 2010), quoting Merck & Co v Mediplan Health
Consulting, Inc, 425 F. Supp. 2d 402, 413 (SDNY 2006).
	 60	 New Kids on the Block v News Am Publ’g, Inc, 971 F.2d 302, 308 (9th Cir.1992); Century 21 Real
Estate Corp v Lendingtree, Inc, 425 F.3d 211, 214 (3d Cir. 2005).
	 61	 Directive 2006/​114/​EC of the European Parliament and of the Council of 12 December 2006 con-
cerning misleading and comparative advertising (2006) (hereafter Advertising Directive).
	 62	 Advertising Directive, see note 61, art 4.

206  Pamela Chestek

However, a person who offers modified software, or builds a new executable
file from source code and labels it with the trademark is not using that trademark
nominatively to describe the original project’s executable code goods. Rather, it is
using the mark as the name for its own newly created version of the product.63 The
use for new goods that are the developer’s own creation will not be a referential,
nominative fair use.64

9.5.4  Trademark licences in Open Source licences

As a general rule, the Open Source licence does not include, either expressly or
impliedly, a trademark licence.65 The author is aware of only one Open Source
Initiative-​approved licence that imposes a duty to use a trademark.66 To the con-
trary, a number of licences state expressly that no trademark licence is granted in
the Open Source licence.67

The Apache License version 2.068 is sometimes described as having a trademark
licence. It refers to trademarks in two places: ‘You must retain, in the Source form
of any Derivative Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work’ and ‘This License does not
grant permission to use the trade names, trademarks, service marks, or product
names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE

	 63	 See, e.g., OpenJDK, ‘OpenJDK Trademark Notice Version 1.1’ (2008) <http://​open​jdk.java.net/​
legal/​open​jdk-​tradem​ark-​not​ice.html> (‘The Name may also be used in connection with descriptions
of the Software that constitute “fair use,” such as “derived from the OpenJDK code base” or “based on
the OpenJDK source code.’).
	 64	 See Neo4j, Inc. v PureThink, LLC, No. 5:18-​CV-​07182-​EJD, 2021 WL 2483778 (N.D. Cal. 18
May 2021) (holding that modifying Open Source Neo4j software, but calling the modified version
‘Government Packages for Neo4j’ and ‘Neo4j Enterprise’ was not a nominative fair use but an infringing
use of the trademark for the defendant’s own product).
	 65	 For a discussion about why the Open Source Definition and the Free Software Definition do not
address trademark rights, see Pamela S Chestek, ‘The Uneasy Role of Trade Marks in Free and Open
Source Software: You Can Share My Code, But You Can’t Share My Brand’ (2012) 7 Journal of Intellectual
Property Law and Practice 126, 129–​30. There is also a US decision stating expressly ‘[t]‌he GPL and
AGPL are copyright licenses, not trademark licenses’. Neo4j, Inc v PureThink, LLC, 480 F.Supp.3d 1071,
1077 (N.D. Cal. Aug. 20, 2020).
	 66	 ‘Common Public Attribution License Version 1.0’ <https://​spdx.org/​licen​ses/​CPAL-​1.0.html>
accessed 19 January 2020. The author could not find any software licensed under this licence. In the
Debian Project’s opinion, the licence is not an Open Source licence because of the attribution require-
ment. Debian Project, ‘DFSGLicenses’ <https://​wiki.deb​ian.org/​DFSGL​icen​ses#Lic​ense​s_​th​at_​a​re_​D​
FSG-​incom​pati​ble> accessed 8 December 2019.
	 67	 See, e.g., ‘Academic Free License version 3.0’ § 4 <https://​spdx.org/​licen​ses/​AFL-​3.0.html> ac-
cessed 19 January 2020; ‘Attribution Assurance License’ § 3 <https://​spdx.org/​licen​ses/​AAL.html> ac-
cessed 19 January 2020; ‘Microsoft Public License’ § 3(A) <https://​spdx.org/​licen​ses/​arch​ive/​arc​hive​d_​
ll​_​v2.4/​MS-​PL.html> accessed 19 January 2020; ‘Mozilla Public License version 2.0’ § 2.1(a) <https://​
www.mozi​lla.org/​en-​US/​MPL/​2.0/​> accessed 19 January 2020.
	 68	 The Apache Software Foundation, ‘Apache License, Version 2.0’ <https://​www.apa​che.org/​>licen​
ses/​LICE​NSE-​2.0> accessed 18 January 2020.

TRADEMARKS  207

file.’ The first sentence is a requirement that one keep trademark notices but does
not require that a trademark be used as the product name. The latter sentence is
best understood as an acknowledgment that others may use the Apache trademark
referentially (see section 9.5.3), a right that is implicit in all the other Open Source
licences.

At one point the Mozilla project used a technical approach to prevent the use
of its mark for modified software. It had a ‘branding switch’, asking that those who
modified the software build a version using a switch that would remove the of-
ficial branding.69 As another example, the Fedora Project offers a set of ‘generic
logos’ that can be used to replace the Fedora trademarks without breaking any of
the functionality of the software if a user is not willing to comply with the Fedora
trademark restrictions.70

Some Open Source projects, as advocates of free culture, have granted copyright
licences for their logos.71 This, however, is not a grant of a trademark licence: al-
though another may use the design as a graphic design, the project can still enforce
its trademark rights against a use of the logo for similar goods and services. There
is some risk, however, that a court might decide that the express copyright licence
can be construed as granting a licence for all uses, including trademark-​infringing
ones. Projects may want to consider whether the policy choice of granting a copy-
right licence for a trademark is worth the risk of third-​party use of their mark in a
way that might create confusion.

9.5.5  Trade dress

In the context of software, ‘trade dress’, also called ‘get up’, will be the appearance or
‘look and feel’ of a graphical interface for the product. When copying Open Source
that has graphical elements, the reuse of the software will necessarily reproduce the
look and feel of the origin software. If, however, a project wants to retain exclusivity
of its look and feel, as with trademarks it may have to contend with defences that the
trade dress was impliedly licensed or that the trade dress is functional (see section
9.6.1) and therefore the downstream user’s use is lawful. A project can likely avoid
the problem altogether by segregating its trade dress into easily removed folders72
or not making the design elements available in publicly accessible source code.

	 69	 Debian Project, ‘Debian Bug report logs—​#354622, Uses Mozilla Firefox trademark without per-
mission’ (2006) <https://​bugs.deb​ian.org/​cgi-​bin/​bugrep​ort.cgi?bug=​354​622;msg=​20> accessed 19
January 2020.
	 70	 Fedora Project, ‘generic-​logos’ <https://​pag​ure.io/​gene​ric-​logos/​tree/​mas​ter> accessed 19 January
2020. The generic logos are licensed under GPL and LGPL licences.
	 71	 See Debian Project, ‘Debian Logos’ <https://​www.deb​ian.org/​logos/​> accessed 8 December 2019
(granting a licence to the official logo under the GNU GPL version 3 or alternatively the Creative
Commons Attribution ShareAlike 3.0 Unported License).
	 72	 See note 80.

208  Pamela Chestek

9.5.6  Trademark guidelines and policies

It is common in the software industry for software companies to publish guidelines
on how others may use their trademark. For proprietary companies, trademark
guidelines are often just instructions on how the trademark owner would like third
parties to use their mark, with guidance on matters such as where to place the ®
symbol and not to use the mark a noun. However, because Open Source software
includes the right to reproduce the software, and because Open Source software
projects will often want to allow third parties at least some use the mark, trademark
guidelines for Open Source projects become more critical.

The Open Source project trademark guidelines will provide information to the
user about what the project considers a lawful use of the mark, in particular guid-
ance to redistributors and modifiers about when the mark may be used for repro-
duced software and when it may not be (see section 9.3.3 on use of the mark on
modified software). Although it may ultimately be a legal question, downstream
users of the software will know the project’s view and that they may use the trade-
mark in ways described by the trademark owner without any risk.

Unlike proprietary software trademark guidelines, the Open Source trademark
guidelines may also grant licences (see section 9.3.1 on licensing Open Source
trademarks). For example, the ANDROID mark can only be used for ‘Android-​
compatible’ devices,73 which are devices that meet Google’s well-​defined, testable
standard for compatibility.74 If the trademark guidelines provide a sufficiently de-
tailed description of the quality of the goods and services with which the mark
can be used, a naked licensing defence may be avoided (see section 9.2.7.1). For
example, standards for promotional goods might consist of approved vendors or
manufacturing standards for the goods, for example ‘100% heavyweight cotton’.
A licence allowing a local meet-​up group to use the trademark might include
parameters on cost to attend and limits on the subject matter of the meetings.75

9.6  Attempts to Limit Competition with Trademarks

Some have tried to find a way to use trademarks to monetise Open Source directly
or indirectly when the most common mechanism for revenue generation, the grant
of a copyright licence in exchange for payment, is unavailable. They may consider

	 73	 Android Developers, ‘Brand Guidelines’ <https://​develo​per.andr​oid.com/​dis​trib​ute/​market​ing-​
tools/​brand-​gui​deli​nes> accessed 29 December 2019 (stating that the ‘Android’ name and the Android
logo are not part of the assets available through the Android Open Source Project).
	 74	 Android Source, ‘Android 10 Compatibility Definition’ <https://​sou​rce.andr​oid.com/​compat​ibil​
ity/​andr​oid-​cdd.html> accessed 20 December 2019.
	 75	 Model Trademark Guidelines is a set of model guidelines designed for Open Source projects.
‘Model Trademark Guidelines’ <http://​model​trad​emar​kgui​deli​nes.org/​index.php/​Home:_​Mod​el_​
T​rade​mark​_​Gui​deli​nes> accessed 15 January 2020.

TRADEMARKS  209

instead the licensing of another proprietary right, the trademark, for a revenue
stream or they may want to force the use of the project trademark for purposes of
advertising. The strategies described in the following subsections are not likely to
succeed.

9.6.1  Functional use of trademarks

One concept is that placing the trademark in the source code, such that the software
will be non-​functional if the trademark is removed, and then selling a licence to the
trademark, can be used to generate revenue. The trademark may be used in file names
or commands, or it can be an image file that breaks the build if not present.

These efforts are likely to fail under the trademark functionality doctrine.
One cannot infringe a trademark if the trademark is ‘functional’. A product fea-
ture is functional if it is essential to the use or purpose of the article or if it af-
fects the cost or quality of the article.76 In Sega Enterprises Ltd. v Accolade, Inc.,77
Accolade produced game cartridges that were compatible with the Sega gaming
console. Game cartridges produced by Sega used what Sega called its ‘trademark
security system’. A game cartridge contained an initialisation code, four bytes of
data consisting of the letters ‘S-​E-​G-​A’, that prompted a screen display of the Sega
trademark. Sega testified that it had used the trademark this way deliberately so
that Sega would have a claim for trademark infringement against counterfeiters.
Accolade reproduced the initialisation code so that its cartridges would play on
the Sega console, prompting a display of the trademark even though the cartridge
was not an authentic Sega cartridge. When Sega sued Accolade for both copyright
and trademark infringement, the court held that Sega had used its trademark in a
functional way and Accolade’s use of the initialisation code was not a trademark
infringement.78

One might also run into GPL compliance problems if trademarks are used in
a way that interferes with the operation of the software. According to Richard
Stallman,79 if it is easy to find and remove the trademarks, restrictions on the re-​use

	 76	 Inwood Labs, Inc v Ives Labs, Inc, 456 US 844, 851 (1982).
	 77	 977 F.2d 1510, 1531 (9th Cir. 1992), as amended (6 January 1993).
	 78	 See also Compaq Computer Corp v Procom Tech, Inc, 908 F. Supp. 1409, 1423 (S.D. Tex. 1995) (re-
quired presence of company name in partition before values would be written was a functional use of a
trademark). In a similar vein, Autodesk disavowed any claim that the file extension .dwg could function
as a trademark because it was functional, although it could be a trademark when used as a logo. ‘Put
differently, anyone in the world is free to use “.dwg” as a file extension as far as Autodesk is concerned.’
Autodesk, Inc v Dassault Systemes SolidWorks Corp, 685 F. Supp. 2d 1001, 1009 (N.D. Cal. 2009).
	 79	 Richard Stallman is the founder and past president of the Free Software Foundation. Free Software
Foundation, ‘Richard M. Stallman Resigns’ (2019) <https://​www.fsf.org/​news/​rich​ard-​m-​stall​man-​resi​
gns> accessed 15 December 2019.

210  Pamela Chestek

of trademarks is not inconsistent with the GPLv2.80 Conversely, if it is difficult to
remove them, the restrictions on use of trademarks may be considered inconsistent
with the GPL family of licences.

9.6.2  Trademarks and ‘further restrictions’

Some have suggested that Section 7 of the GNU GPLv3 permits requiring use of a
trademark. This is not correct.

In general, one cannot add more restrictions to the GPLv3.81 Section 7 of
GPLv3, however, permits a defined set of supplemental terms, one of which is a
term ‘Requiring preservation of specified reasonable legal notices or author attri-
butions in that material or in the Appropriate Legal Notices displayed by works
containing it’.82 However, a trademark is neither a ‘legal notice’ nor ‘author attri-
bution’. A trademark is not a legal notice because there is no requirement that a
product have a trademark.83 The ‘attribution’ to an author is the name of the creator
of copyrightable content,84 not the name of the company vending the goods. The
GPLv3 also refers specifically to trademarks in a different subsection of Section 7,85
demonstrating that the drafters knew the difference between trademarks, legal no-
tices, and attributions.

9.6.3  Requiring display of trademarks

It is not uncommon for an Open Source licensor to believe that it can gain an advan-
tage, at least reputational, by requiring the use of its trademark for its software. There
was a point where ‘badgeware’ licences were popular,86 with this typical language:

	 80	 Richard Stallman, ‘[Savannah-​hackers] Re: Issue of Trademark Logo Images in Source
Distribution’ (2004) <http://​lists.gnu.org/​arch​ive/​html/​savan​nah-​hack​ers/​2004-​11/​msg00​508.html>
accessed 15 January 2020 (‘It is no problem if the program contains trademarked images and names,
provided the trademark usage and requirements don’t make it difficult in practice to change the pro-
gram and publish a modified version. In other words, it has to be easy to find and remove the trade-
marks, if and when the trademark conditions require this.’).
	 81	 GPLv3 § 10.
	 82	 GPLv3 § 7(b).
	 83	 In contrast, trademark marking through use of the encircled R symbol or a trademark legend,
Lanham Act, see note 6, § 1129, is likely to be considered a trademark notice. However, these are ancil-
lary to trademarks, not the trademark itself. And no marking will be required if the trademark is not
present.
	 84	 Black’s Law Dictionary, 11th edn (Eagen, MN: Thomason Reuters, 2019) (defining ‘attribution
right’ as ‘a person’s right to be credited as a work’s author, to have one’s name appear in connection with
a work, or to forbid the use of one’s name in connection with a work that the person did not create’.)
	 85	 GPLv3 § 7(e).
	 86	 At one point, twenty Open Source software companies were reported to be using this licensing
language. Rick Moen, ‘When is an Open Source License Open Source?’ (2007) <https://​web.arch​ive.
org/​web/​201​6122​0023​005/​http://​www.linux​gaze​tte.net/​141/​misc/​lg/​when_​is_​an_​open​_​sou​rce_​lice​

TRADEMARKS  211

This License does not grant any rights to use the trademarks ‘SugarCRM’ and
the ‘SugarCRM’ logos even if such marks are included in the Original Code or
Modifications.

However, in addition to the other notice obligations, all copies of the Covered
Code in Executable and Source Code form distributed must, as a form of attribu-
tion of the original author, include on each user interface screen (i) the ‘Powered
by SugarCRM’ logo . . . .87

This licence, and the practice of requiring use of the trademark more generally, is
inadvisable for several reasons.

In the licence, ‘Covered Code’ is defined as both the original code and any modi-
fications of it, where modifications include additions, deletions, and new files.88 No
matter how much the downstream user has changed the code, it will be considered
‘Covered Code’, with the resulting requirement that the origin code’s trademark
be displayed. Since the licensor has no control over their modifications, the trade-
mark is at risk of being invalidated as a naked licence (see section 9.2.7.1).

And rather than burnishing the Open Source licensor’s reputation, it is equally
possible that it will harm the licensor’s reputation. Changes made downstream may
break the software, or the code may be changed for malicious reasons. For example,
the Mozilla Firefox browser, distributed at no cost, was used in a ‘subscription trap’
scheme to charge for the software.89 The trademark owner who requires the use

nse_​open​_​sou​rce.html> accessed 19 January 2020 (‘SugarCRM started the trend, and the other dozen-​
odd firms (Socialtext, Alfresco, Zimbra, Qlusters, Jitterbit, Scalix, MuleSource, Dimdim, Agnitas
AG, Openbravo, Emu Software, Terracotta, Cognizo Technologies, ValueCard, KnowledgeTree,
OpenCountry, 1BizCom, MedSphere, vTiger) literally copied their so-​called “MPL-​style” license, with
minor variations.’).

	 87	 ‘SugarCRM Public License v1.1.3’ <https://​spdx.org/​licen​ses/​Sugar​CRM-​1.1.3.html> accessed
12 December. The licence continues: ‘In addition, the “Powered by SugarCRM” logo must be visible
to all users and be located at the very bottom center of each user interface screen. Notwithstanding
the above, the dimensions of the ‘Powered By SugarCRM’ logo must be at least 106 × 23 pixels. When
users click on the “Powered by SugarCRM” logo it must direct them back to http://​www.sug​arfo​rge.
org. . . .’

Also, the disclaimer that there is no licence granted to the trademark, yet requiring that the trade-
mark be used, is irreconcilably inconsistent. Frequently software trademark guidelines include a state-
ment that one may use a trademark as long as there is no suggestion of affiliation or endorsement. See,
e.g., Wordpress Foundation, ‘WordPress Foundation Trademark Policy’ <http://​word​pres​sfou​ndat​ion.
org/​tradem​ark-​pol​icy/​> accessed 19 January 2020 (‘All other WordPress-​related businesses or projects
can use the WordPress name and logo to refer to and explain their services, but they cannot use them
as part of a product, project, service, domain, or company name and they cannot use them in any way
that suggests an affiliation with or endorsement by the WordPress Foundation or the WordPress Open
Source project. ’). Perhaps a party’s claim that no licence is granted while simultaneously requiring use
of the trademark is an inartful effort to convey that using the logo is not meant to suggest that there is
any affiliation or endorsement by the party of the subsequent distribution.
	 88	 ‘SugarCRM Public License v1.1.3’ see note 87.
	 89	 Michael Kerrisk, LWN.net ‘Mozilla’s Trademark Enforcement Experience’ (2013) <https://​lwn.
net/​Artic​les/​546​678/​> accessed 19 January 2020.

212  Pamela Chestek

of its trademark will suffer reputational harm from the substandard software or
fraudulent use and may risk creating liability itself for the bad acts of others.90

9.7  Conclusion

Trademarks are the only proprietary right that can be fully exercised by Open
Source projects. The law treats Open Source trademarks no differently than any
other trademark, but the Open Source field has special considerations, both the
particular ethos of the parties and the specific doctrines that commonly arise, that
the trademark solicitor should consider when engaging in trademark work.

	 90	 Kennedy v Guess, Inc, 806 N.E.2d 776, 786 (Ind. 2004) (holding that trademark licensors may have
liability for personal injury claims for products they have licensed).

Malcolm Bain and P McCoy Smith, Patents and the Defensive Response In: Open Source Law, Policy and
Practice. Edited by: Amanda Brock, Oxford University Press. © Malcolm Bain and P McCoy Smith 2022.
DOI: 10.1093/​oso/​9780198862345.003.0010

10
Patents and the Defensive Response

Malcolm Bain and P McCoy Smith

	10.1	� Patents and Software � 213
	10.2	� Patents 101: Why Are Patents

Relevant to Open Source? � 217
		 10.2.1	� In Europe � 217
		 10.2.2	� In the US� 219
		 10.2.3	� Differences with

copyright � 222
		 10.2.4	� Patent remedies � 224
	10.3	� Patents and Open

Source Interactions � 226
		 10.3.1	� Development and

Innovation in Open
Source � 226

		 10.3.2	� Frictions with the patent
regime: differences
in concept � 227

		 10.3.3	� Patent frictions in practice � 229
	10.4	� How Open Source Deals

with Patents � 235

		 10.4.1	� Patent clauses in Open
Source licences � 235

		 10.4.2	� First-​generation Open
Source licences � 235

		 10.4.3	� Second-​generation Open
Source licences � 237

		 10.4.4	� ‘Patent defensive suspension’
clauses � 240

		 10.4.5	� Open Source software as
prior art, peer to patent, and
defensive publication � 243

	10.5	� Patent Busting and Patent
Pools � 245

	10.6	� Patent Litigations Initiated
Against Open Source � 249

	10.7	� Conclusions � 252
		 10.7.1	� If you can’t beat them . . .

should you join them? � 252
		 10.7.2	� Patent reform � 253

  

10.1  Patents and Software

As discussed in more detail in Chapter 3, the foundation of Open Source licensing
is copyright, and in the beginning, consideration of patent rights and patent li-
cences was not paramount. The BSD license,1 one of the first Open Source licences
created (circa 1988), states its licence grant as follows:

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

. . . Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	 1	 There are several different variants of the BSD licence; this text is reproduced from the ‘BSD 3-​
clause license’—​the most commonly used BSD variant—​as found on the Open Source Initiative’s web-
site. <https://​ope​nsou​rce.org/​licen​ses/​BSD-​3-​Cla​use> accessed 12 August 2020.

214  Malcolm Bain and P McCoy Smith

. . . Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/​or
other materials provided with the distribution. . . .

No express mention is made of patents in this grant, although at least one verb—​
‘use’2—​that is an exclusive right of a patent holder is recited.3 Similarly, the MIT
License, another early Open Source licence created around the same time as the
BSD License, states its grant as follows:

Permission is hereby granted, free of charge, . . . to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/​or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so

Thus, the MIT License4 uses at least two of the verbs—​‘use’ and ‘sell’—​that are
exclusive rights of a patent holder. At least one commentator has argued that
MIT’s open ended grant ‘to deal in the Software without restriction’, followed
by exemplary verbs from copyright and patent rights, confers a complete patent
licence.5

Nevertheless, concerns have long been raised about the scope of patent rights
that might be conferred—​or might be withheld—​in the early Open Source li-
cences. More recent Open Source licences approved by the Open Source Initiative
(OSI)—​for example the GNU General Public License version 3 (GPLv3 2007) and
the Mozilla Public Licence version 2 (MPLv2 2012)—​deal quite extensively with
patents. For example, relevant portions of the MPLv26 read:

	 2.1.	 Grants
	 Each Contributor hereby grants You a world-​wide, RF, non-​exclusive license:. . .

under Patent Claims of such Contributor to make, use, sell, offer for sale, have

	 2	 For example, UK Patents Act 1977 § 60; 35 USC § 271(a).
	 3	 Despite the fact that the general licence grant of the BSD licence is more than thirty years old,
there continues to be a debate as to whether any patent rights are conferred by a licensor that chooses
to use that licence with their software. Compare David Kappos and Miling Harrington, ‘The Truth
About OSS-​FRAND: By All Indications, Compatible Models in Standards Settings’ (2019) 20(2)
Columbia University Science and Technology Law Review 240–​50 with Van Lindberg, ‘OSS and
FRAND: Complementary Models for Innovation and Development’ (2019) 20(2) Columbia University
Science and Technology Law Review 251–​70.
	 4	 Open Source Initiative, ‘MIT License’ <https://​ope​nsou​rce.org/​licen​ses/​MIT> accessed 18
August 2020.
	 5	 Scott Peterson, ‘Why so little love for the patent grant in the MIT License?’ Opensource.com
(23 March 2018) <https://​ope​nsou​rce.com/​arti​cle/​18/​3/​pat​ent-​grant-​mit-​lice​nse> accessed 19
March 2021.
	 6	 Open Source Initiative, ‘Mozilla Public License’ <http://​ope​nsou​rce.org/​licen​ses/​MPL-​2.0> ac-
cessed 12 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  215

made, import, and otherwise transfer either its Contributions or its Contributor
Version.

	 2.3	 Limitations on Grant Scope
		 . . . [N]‌o patent license is granted by a Contributor . . . for any code that a

Contributor has removed from Covered Software; or for infringements caused
by: (i) Your and any other third party’s modifications of Covered Software, or (ii)
the combination of its Contributions with other software (except as part of its
Contributor Version); or under Patent Claims infringed by Covered Software in
the absence of its Contributions.

	 . . .
	 5.2.	 If You initiate litigation against any entity by asserting a patent infringe-

ment claim (excluding declaratory judgment actions, counter-​claims, and cross-​
claims) alleging that a Contributor Version directly or indirectly infringes any
patent, then the rights granted to You by any and all Contributors for the Covered
Software under Section 2.1 of this License shall terminate.

The GNU General Public License was perhaps the first Open Source License to
discuss patent rights in any detail; the second version of the GNU General Public
License (version 2, in 1991), indicated that software patents were considered a risk
for free software. Version 2 of that license, GPLv2, warned of patent threats in its pre-
amble: ‘[A]‌ny free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licences, in effect making the program proprietary. . . .’ GPLv2 includes pro-
visions purporting to deal with patents, in a clause referred to by the Free Software
Foundation (FSF)—​the GPL’s authors—​as the ‘Liberty or Death clause’. ‘[T]he
clause that says if somebody uses a patent or something else to effectively make a
program non-​free then it cannot be distributed at all.’7 ‘[P]atents not only do not
assist in the production of innovative software, they can potentially destroy the free
software production system, which is the world’s most important source of software
innovation.’8 While over the years Open Source licences themselves have become
more sophisticated with regard to patents—​at least to the extent that they make ex-
plicit that those that contribute code under an Open Source licence do not reserve
the right to assert their patents against those making use of their contributions—​
there is only so much licences can do to guard against the threat of patent assertions,
as a licence only binds those that make use of the rights granted under that licence.
Although the threat of patent assertions made against Open Source by patent

	 7	 FSFE, ‘Transcript of Richard Stallman at the 2nd international GPLv3 conference; 21st April 2006’
<fsfe.org/​campaigns/​gplv3/​fisl-​rms-​transcript.en.html> accessed 12 August 2020.
	 8	 Eben Moglen, ‘Free software matters: Patently controversial’ Moglen Law (2001) <http://​mog​len.
law.colum​bia.edu/​publi​cati​ons/​lu-​16.html> accessed 12 August 2020.

216  Malcolm Bain and P McCoy Smith

holders who are not participants (via contributions, or via exercising licence grants)
has been recognised since at least the release of GPLv2 in 1991, it has only been
more recently that initiatives involving the Open Source community have been set
up to fend off the threat of the use of patents to limit the creation and use of free soft-
ware. One example is the Open Invention Network,9 a patent pool for providing pa-
tent non-​assertion commitments to the GNU/​Linux operating system ecosystem.

What seems paradoxical is that patents and free software appear to share the
same basic objective: to promote development and innovation through trans-
parency and disclosure. It is on the basis of disclosing and sharing knowledge (in
patent applications) or through access to source code (in Open Source) that new
inventions or innovations may be made over existing technology, whether in an
incremental manner or by ‘intuitive’ leaps. Even the legal technique established for
promoting inventions via the patent system—that is granting exclusive rights that
may be exercised by the inventor to control the exploitation of the invention by
others—should not have been a problem: a similar legal framework of exclusive
rights in the area of copyright has been used by the free software community from
the start as the very basis for granting and ensuring software freedoms.10

However, there are significant friction areas between the two models or ap-
proaches to innovation; particularly the fact that patents provide for exclusive con-
trol over all and any implementations of a patented idea—​as that idea is defined in
a granted patent claim—​and not just an expression of that idea as with copyright,
which gives rise to problems and potential legal risks for free software. The purpose
of this chapter is to explore these issues, to understand how the Open Source com-
munity tries to deal with patents with the aim of ensuring software freedoms, and
concludes by commenting on proposals that have been made to remedy the situ-
ation and mitigate the risks.

Therefore, in this chapter we first look at why patents are relevant to Open
Source—​briefly, the question of software patentability and the differences with
copyright, and then, taking into account the free software development and li-
censing models, we consider what the impacts are for Open Source: the inter-
relations and frictions areas between free software licensing models and patents.
Next, how patents are dealt with by the community from a structural point of
view—​particularly patent-​related licensing provisions in free software licences—​is
reviewed. A discussion of the litigation environment, specifically as it relates to pa-
tent assertions against Open Source, is discussed. Finally, how the risks posed by
patents—​or the way patents are wielded—​to the Open Source community may be
mitigated, if not removed entirely, are summarised.

	 9	 Open Invention Network <http://​www.openi​nven​tion​netw​ork.com> accessed 9 March 2021.
	 10	 Richard Stallman, ‘The Free Software Definition’ in Free Software, Free Society: The Selected Essays
of Richard M. Stallman, 2nd edn (Boston, MA: GNU Press, Free Software Foundation, 2002–​10) 43–​6,
available at <http://​www.gnu.org/​phi​loso​phy/​fsfs/​rms-​ess​ays.pdf> accessed 23 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  217

10.2  Patents 101: Why Are Patents Relevant to Open Source?

Patents are exclusionary rights11 granted to inventors over an invention, conveying
to the patent holder rights to exclude anyone else from exploiting the invention as
claimed in the patent in the specific territory for which the patent is granted, for a
limited period. In return, the patent holder is obligated to provide a full disclosure
of the invention to the public. Patents are granted on application to territorial pa-
tent offices (e.g., the UK Intellectual Property Office), after examination for patent-
ability, as well as other eligibility criteria, under the applicable rules.

10.2.1  In Europe

Within Europe, patents are regulated on a regional basis by the European Patent
Convention (EPC), which creates a European patent with potential effects in the
territories of the signatories to the Convention, and on national bases by the cor-
responding national patent laws, for example the UK Patents Act 1977, or the
Spanish Ley 11/​1986 de Patentes. In this chapter we will mainly comment on the
EPC provisions with respect to software, though it is important to note that it is
the national courts applying the law of the member states who ultimately decide
on patent validity or infringement, though they tend to follow the European Patent
Office (EPO) practice and Board of Appeal decisions.

The state of patenting for software has long been controversial, and there are
many arguments as to whether software does or should constitute patentable sub-
ject matter. Patents are granted for inventions in all fields of technology that are
new, involve an inventive step,12 and are capable of industrial application.13 The
EPC does not define what is an ‘invention’. It does, however, provide a negative
limitation, giving examples of what are not to be regarded as inventions. Relevant
for the purposes of Open Source is the specific exclusion, under Article 52(2)(c)
EPC, of ‘programs for computers’.

However, this exclusion is then limited by Article 52.3, which provides that
these items are excluded ‘only to the extent to which a European patent applica-
tion relates to such subject matter or activities as such’. It is these last two words, ‘as
such’, that have caused an ongoing and acrimonious debate about software patent-
ability under the EPC, and also under the European national legislations, many of
which provide a translation or approximation of this double exclusion/​limitation

	 11	 Patents are not ‘exclusive’ rights, i.e. a positive and exclusive right to do something, but rather a
negative right to exclude others from implementing the claims granted in the patent document.
	 12	 In the US, this concept is referred to as ’non-​obviousness’. See 35 USC § 103.
	 13	 EPC, Article 52. In the US, a related—​but not completely analogous—​requirement is ’usefulness’.
See 35 USC § 101.

218  Malcolm Bain and P McCoy Smith

with regard to software,14 and which ultimately is the benchmark against which the
validity of the European patent is measured.15

It is not the purpose of this chapter to review the situation of software pat-
entability within Europe, as we aim to focus on the interaction between soft-
ware patents—​however well or justifiably granted—​and Open Source.16 Suffice
to say that the EPO has long been granting patents over what have been named
‘computer-​implemented inventions’ (CII), on the basis that they are granting pa-
tents over inventions that have technical character and a technical effect that goes
beyond the normal interaction of the software with the computer, although iron-
ically ‘technical’ is not defined in the EPC.17 European national courts (with some
reticence, it was once thought, in England and Wales, but that has proven not to
be so) are upholding those grants.18 What is more, in the light of the debate about
software patentability, the Enlarged Board of the EPO rejected the EPO President’s
request to undertake a full review of the situation, at the instigation of the English
High Court, considering that the ‘case law’ created by the EPO Boards of Appeal is
sufficiently clear.19

Indeed, if the Boards continue to follow the precepts of T 1173/​97 IBM it fol-
lows that a claim to a computer implemented method or a computer program
on a computer-​readable storage medium will never fall within the exclusion of
claimed subject-​matter under Articles 52(2) and (3) EPC, just as a claim to a pic-
ture on a cup will also never fall under this exclusion. However, this does not
mean that the list of subject-​matters in Article 52(2) EPC (including in particular
‘programs for computers’) has no effect on such claims. An elaborate system for

	 14	 For example, Spanish Patent Act 11/​1986, art 4.
	 15	 The proposed Unified Patent Court, approved by the European Council of Ministers and European
Parliament, does not exclude software patents per se, but does have limits to enforcing such patents
consistent with European Parliament directives allowing for reverse compilation and interoperability.
Agreement on a Unified Patent Court, UPC/​en 34 n. 1 (19 February 2013).
	 16	 There are a significant number of thoughtful papers written on this subject. See Noam Shemtov,
‘Software Patents and Open Source Models in Europe: Does the FOSS Community Need to Worry
About Current Attitudes at the EPO?’ (2010) 2(2) Journal of Open Learning, Technology & Society
(JOLTS) 151–​64; Avi Freeman, ‘Patentable Subject Matter: The View From Europe’ (2011) 3(1) Journal
of Open Learning, Technology & Society 59–​80; Colleen Chien, ‘From Arms Race to Marketplace: The
Complex Patent Ecosystem and Its Implications for the Patent System’ (2010) 62 Hastings Law Journal
297–​356; Mark Lemley, ‘Software Patents and the Return of Functional Claiming’ 2013 Wisconsin
Law Review 905–​64, available at <http://​ssrn.com/​abstr​act=​2117​302 or <http://​dx.doi.org/​10.2139/​
ssrn.2117​302> accessed 21 July 2022.
	 17	 EPO Board of Appeal Decisions: Computer program I/​IBM (T1173/​97) and Computer program
II/​IBM (T 0935/​97). See EPO, Guidelines for Examination in the European Patent Office, G-​II 3.6
(2019), available at <https://​www.epo.org/​law-​pract​ice/​legal-​texts/​html/​gui​deli​nes/​e/​g_​ii_​3_​6.htm>
accessed 24 August 2020.
	 18	 For example, Aerotel Ltd v Telco Holdings Ltd [2007] RPC 7; Macrossan’s Application 2006 [EWCA],
followed by Symbian Ltd v Comptroller General of Patents [2008] EWCA Civ 1066; Halliburton Energy
Inc’s Patent [2011] EWHC 2508 (Pat).
	 19	 Enlarged Board of Appeal Opinion G3/​08. For commentary, see Freeman, ‘Patentable Subject
Matter: The View From Europe’, note 16.

PATENTS AND THE DEFENSIVE RESPONSE  219

taking that effect into account in the assessment of whether there is an inventive
step has been developed, as laid out in T 154/​04, Duns. While it is not the task
of the Enlarged Board in this Opinion to judge whether this system is correct,
since none of the questions put relate directly to its use, it is evident from its fre-
quent use in decisions of the Boards of Appeal that the list of ‘non-​inventions’ in
Article 52(2) EPC can play a very important role in determining whether claimed
subject-​matter is inventive . . . It would appear that the case law, as summarised
in T 154/​04, has created a practicable system for delimiting the innovations for
which a patent may be granted.

In practice, as stated on various occasions by examiners of the EPO,20 while they
consider software-​based inventions with technical effect as patentable subject
matter, many software patent applications are being rejected on the basis of lack
of novelty (the second hurdle, considering ‘patentable subject matter’ as the first)
or lack of inventive step (the third hurdle).21 In particular, mere computer-​ or
software-​based automation of constraints imposed by non-​technical aspects—
specifically those that are excluded by the EPC—notably mental acts, games, busi-
ness methods, or methods for presenting information, are allegedly not being
granted patent protection.22

10.2.2  In the US

In the US, for many years the leading decisions in the debate on software patent-
ability were the US Supreme Court’s decision in Diamond v Diehr23 and subse-
quently State Street Bank & Trust v Signature Financial Services24 where the Court
of Appeals for the Federal Circuit held that a computerised algorithm for man-
aging an investment fund structure constituted patentable subject matter which
should be evaluated under the usual US tests of usefulness, novelty, and non-​
obviousness.25 Subsequently, in In re Bilski, the Federal Circuit seemed to have

	 20	 See, e.g., EPO presentation by Eugenio Archontopoulos, ‘Spot the Differences, A Computer-​
implemented Invention or a Software Patent?’ (6th Annual Conference of the EPIP Association,
Brussels, 2011) <https://​www.resea​rchg​ate.net/​publ​icat​ion/​230818897_​Spo​t_​th​e_​di​ffer​ence​_​a_​c​ompu​
ter-​implemented_​inv​enti​on_​o​r_​a_​soft​ware​_​pat​ent> accessed 16 June 2022.;
	 21	 In particular, features making no contribution to the technical character cannot support the pres-
ence of inventive step (Comvik (T0641/​00) and Duns Licensing (T0154/​04)). Also, Hanon ‘What makes
an Invention—​How patent applications are examined at the European Patent Office’, see note 20, and
Archontopoulos, ‘Spot the Differences, A Computer-​implemented Invention or a Software Patent?’ see
note 20.
	 22	 Ricoh Decision T 03/​0172; Hitachi Decision T 03/​0258.
	 23	 450 US 175 (1981).
	 24	 149 F.3d 1368 (Fed Cir 1998) cert denied; 525 U.S. 1093 (1999).
	 25	 See Christopher Ogden, ‘Patentability of Algorithms after State Street Bank: The Death of the
Physicality Requirement’ (2000) 10(82) Journal of Patent and Trademark Office Society 491–​513.

220  Malcolm Bain and P McCoy Smith

begun to apply a more strict approach towards software patentability:26 it found
that a patent on a method of hedging financial risk in commodity trading claimed
‘neither a new machine nor a transformation of matter’, and thus was too abstract
and non-​patentable subject matter. However, the US Supreme Court then miti-
gated this analysis, to a certain extent, holding that the ‘machine-​or-​transformation
test’ is not the only test for determining the patent eligibility of a process (but ra-
ther ‘a useful and important clue . . . an investigative tool, for determining whether
some claimed inventions are processes under §101’).27 And in Mayo Collaborative
Services v Prometheus Laboratories, Inc,28 the US Supreme Court reaffirmed the
judicially created exception that makes ‘laws of nature, natural phenomena, and
abstract ideas’ ineligible for patenting, leading some to believe that there was an
opening of the judicial ‘door’ to making the argument that software code is merely
a series of mathematical algorithms and, as such, a description of abstract laws of
nature.

The US Supreme Court’s later decision in CLS Bank v Alice Corp29 buttressed
the importance of the non-​software decision in Mayo, on software-​related pat-
entability determinations. Much like Bilski, Alice related to implementation of a
business method: in Alice, a software-​implemented system for managing escrow
debt. In finding that particular invention patent-​ineligible, the US Supreme Court
stated that a two-​step ‘Mayo framework’ should be used in evaluating patent eligi-
bility questions: the first step is to determine whether the challenged patent claim
contains an ‘abstract idea’, such as an algorithm, method of computation, or other
general principle; if it does, then the second step is to determine whether the chal-
lenged patent adds to the abstract idea an ‘additional feature’ that embodies an ‘in-
ventive concept’. 30 If so, the challenged claim is patent-​eligible.31

	 26	 In re Bilski 545 F.3d 943 (Fed Cir 2008) (en banc). For comment, see, e.g., Dennis Crouch, ‘In re
Bilski: Patentable Process Must Either (1) Be Tied to a particular machine or (2) Transform a Particular
Article’ PatentlyO (30 October 2008) <http://​www.patent​lyo.com/​pat​ent/​2008/​10/​in-​re-​bil​ski.html>>
accessed 19 March 2021.
	 27	 Bilski v Kappos, No 08-​964, 561 U.S. (2010). Comment by Crouch, ‘In re Bilski’, see note 26.
	 28	 Mayo Collaborative Services v Prometheus Laboratories, Inc 566 US (2012). Decision available at
<http://​www.supre​meco​urt.gov/​opini​ons/​11pdf/​10-​1150.pdf> accessed 19 March 2021.
	 29	 573 US 208 (2014).
	 30	 The addition of the ‘inventive concept’ test to patent eligibility determinations under Alice has
been widely criticised as improperly conflating the non-​obviousness requirement of 35 USC § 103 with
the general patent eligibility requirements of 35 USC § 101. See Paxton Lewis, ‘The Conflation of Patent
Eligibility and Obviousness: Alice’s Substitution of Section 103’ (2017) 1 Utah OnLaw: The Utah Law
Review Supplement Article 1, 13-​32..
	 31	 The Bilski-​Mayo-​Alice triumvirate of US Supreme Court eligibility cases may not have entirely
settled the question of how to evaluate whether a patent is directed to merely an ‘abstract idea’ and
thus patent-​ineligible. The Court of Appeals for the Federal Circuit’s decision in American Axle
& Manufacturing, Inc. v Neapco Holdings LLC, 939 F.3d 1355 (Fed. Cir. 2019) has been argued to
import yet another statutory requirement—​enablement under 35 USC § 112—​into the ‘abstract
idea’ analysis. David Taylor, ‘Opinion Summary—​American Axle & Manufacturing, Inc. v. Neapco
Holdings LLC’ Federal Circuit Blog (31 July 2020) <https://​fed​circ​uitb​log.com/​2020/​07/​31/​opin​

PATENTS AND THE DEFENSIVE RESPONSE  221

Despite continued questions about the manner in which to evaluate the eligi-
bility for patenting of software in the US, the number of ‘software patents’ being
granted does not appear to have slowed down. This has also led to questions not
only about whether many of the ‘software patents’ granted in the US—​particularly
those in the period between the State Street and Bilski & Alice decisions—​are weak,
if not trivial, and might ultimately fail upon a challenge as to eligibility under the
current, or to be outlined in the future, test. In the interim, commentators have
remarked upon the creation of patent ‘thickets’ of overlapping and poor-​quality
patents, which close down innovation and may make it difficult to operate in the
software sector.32

So, all in all, current industry practice, the pressure from large software industry
companies and other non-​industry players such as non-​practising entities, com-
bined with the lack of resources and time for reviewing patents at the patent offices
and the lack of access to relevant prior art in the field,33 together mean that software
patents have been and are still being granted over software implemented processes
and methods on both sides of the Atlantic as well as in Japan, another key juris-
diction. Specific examples include security algorithms for encryption, audiovisual
data codification and decodification (‘codecs’), online data back-​up, graphical user
interface features, ‘one-​click’ online shopping systems, frames for displaying infor-
mation on computer interfaces, and the list goes on.34

ion-​summ​ary-​ameri​can-​axle-​manufa​ctur​ing-​inc-​v-​nea​pco-​holdi​ngs-​llc/​> accessed 28 August
2020. There seems to be some likelihood that the contours of the test for determining patent eli-
gibility for claims argued to be directed to ‘abstract ideas’ have yet to be fully defined in the US,
and there was thought to be a reasonably likelihood that the US Supreme Court might take up the
American Axle case to further clarify patent eligibility—​which might include clarifying patent eli-
gibility for software in the US. Eileen McDermott, ‘Solicitor General Tells SCOTUS CAFC Got it
Wrong in American Axle, Recommends Granting’ IP Watchdog (24 May 2022) https://​www.ipw​
atch​dog.com/​2022/​05/​24/​solici​tor-​gene​ral-​tells-​sco​tus-​cafc-​got-​wrong-​ameri​can-​axle-​rec​omme​
nds-​grant​ing/​id=​149​248/​> accessed 14 June 2022 (noting that the Solicitor General of the US—​the
office which offers the US Government’s position on cases before the Supreme Court of the US—​had
requested that that court reexamine patent eligibility through that case). Much to the surprise of
many who felt that the American Axle case was an ideal vehicle for further clarifying (or possibly
changing) the patent-​eligibility standards in the US, the US Supreme Court ultimately declined to
review that decision. See Blake Brittain, ‘U.S. Supreme Court rejects American Axle case on patent
eligibility’, Yahoo! News (30 June 2022) <https://​news.yahoo.com/​u-​supr​eme-​court-​reje​cts-​ameri​
can-​171958​332.html> accessed 30 June 2022.

	 32	 Rosa Ballardini, ‘The Software Patent Thicket: A Matter of Disclosure’ (2009) 6(2) SCRIPTed
<https://​scr​ipt-​ed.org/​wp-​cont​ent/​uplo​ads/​2016/​07/​6-​2-​Bal​lard​ini.pdf> accessed 19 March 2021,
DOI: 10.2966/​scrip.060209.207.
	 33	 Software patenting has a long history, dating back to at least the late 1960s. Gene Quinn, ‘The
History of Software Patents in the US’ IP Watchdog (30 November 2014) <https://​www.ipw​atch​dog.
com/​2014/​11/​30/​the-​hist​ory-​of-​softw​are-​pate​nts-​in-​the-​uni​ted-​sta​tes/​> accessed 19 March 2021.
Nevertheless, for quite some period, there was little ‘prior art’ previously published in a meaningful
manner —​particularly in patent office databases—​for disclosure against subsequent patenting.
	 34	 An interesting series of software patents can be found at the End Soft Patents wiki, ‘Example soft-
ware patents’ <http://​en.swpat.org/​wiki/​Examp​le_​s​oftw​are_​pate​nts> accessed 19 March 2021.

222  Malcolm Bain and P McCoy Smith

10.2.3  Differences with copyright

When a patent is granted on a software-​based invention or CII, it doesn’t just grant
exclusionary rights over the exploitation of a specific implementation of that in-
vention, but any implementation of the invention that meets all the elements of
any claim in that patent—it protects the functional features of the ‘invention’, the
underlying methodologies, in any manner or form of expression. This is in contrast
with copyright protection, which only protects the expression embodied in either
the source or binary code of the software.

This means that while copyright protection is generally weaker than patent pro-
tection, it is more specific, referring only to the concrete expression of the code
developed by the programer. This has the advantages of providing legal certainty
with regard to what exactly is prohibited or restricted by copyright, particularly
verbatim copying,35 and what is permitted—alternative or clean room develop-
ment of similar functions, incremental development of additional functionalities,
or complementary development of other programs using software interfaces and
interoperability characteristics. Being more specific and restricted to expression,
copyright enables a much broader range of alternative implementations and im-
provements of a same idea or function, through different algorithms, coding lan-
guages, or architectures.

There is a crucial distinction between the way patent and copyright concepts
respond to the challenge free software poses. Copyright law is primarily intended
to cover expressions, not ideas. So, if in a particular instance software copyright
inhibits progress in making better, more reliable, or more effective software, the
inhibition can be overcome: it is always possible for programers, with sufficient
guidance and appropriate measures to prevent copying, to sit down and rewrite
from scratch whatever program needs to be available in a freely modifiable version.
This may be time-​consuming, but it cannot be forbidden. Patent law, in contrast,
prohibits anyone from practising the claimed subject matter of the patent without
licence. It does not matter how you came by the idea the patent discloses, even if
you invented it for yourself in complete ignorance of the patent and any prior art it
references: without a licence you cannot implement, in any way, the claimed sub-
ject matter of what may be quite general claims.36 This enables patent holders po-
tentially to restrict competition by other developers wishing to implement similar
functionalities in their own programs using completely different code expressions.
Patents can also seem vaguer or less definite, particularly in the way software pa-
tents have been drafted in the time before the Bilski, Mayo, and Alice decisions in

	 35	 To a major extent, although there are always questions about non-​verbatim copying and derivative
works which the courts deal with on a fairly regular basis.
	 36	 Eben Moglen, ‘Free Software Matters: The Patent Problem’ Moglen Law (9 October 2000) <http://​
mog​len.law.colum​bia.edu/​publi​cati​ons/​lu-​05.html> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  223

the US. It is often quite difficult to determine exactly if the implementation of a
software process may infringe an existing patent, as there is no way to ‘clean room’
develop code to avoid a patent. This creates significant legal uncertainty.

The law on software patents, unlike software copyright in jurisdictions like the
European Union (EU), provides no exemption for interfaces. As an interface is a
set of definitions or specification of a method or process (for using the program or
data), it is particularly prone to being ‘patentable’. So not only is there the potential
for patents foreclosing specific computer-​based processes but also there may be
patents over software interfaces that may be required to connect with and use soft-
ware processes.

Another significant difference between copyright and patents (relevant for
Open Source) is the characteristics and structures of creation and ownership of
rights: copyright in a software program belongs originally to its creator (or the
company where the creator works), who has invested time and effort in devel-
oping the code, and the rights may be licensed or assigned, usually to someone who
wishes to use or further develop the program. Thus, copyright rights are generally
held by parties interested in exploiting the software. A patent is first owned by its
inventor, who may or may not be a software developer. As there is not necessarily
any ‘software development’ involved in inventing a process that may be embodied
by software, the patent rights may be held by any party, who may or may not be
interested in implementing the patented process or method, and in some cases
may be held by a party interested in controlling or precluding the use by others of
the patented process or method.

This situation is illustrated by what have been now called ‘non-​practising
entities’ (NPEs) (often pejoratively described as ‘patent trolls’).37 These are persons
or companies that do not have any particular interest themselves in exploiting the
software that implements the patented processes, but only in asserting the patent
rights against participants in the software industry interested in the invention, as
a mechanism to extract royalty or other payments. NPEs also are less susceptible
to external pressures that would otherwise forestall their use of patents to inhibit
software use and deployment—​because they have no business other than to assert
patents, counter-​assertions or business pressures are generally ineffective. While
assertions of this sort are a legitimate function of patent rights, this creates a signifi-
cant imbalance in the software sector and can constitute a major block on innov-
ation.38 This is not to say that there are not ‘copyright trolls’, monetising copyrights

	 37	 Wikipedia, ‘Patent troll’ <http://​en.wikipe​dia.org/​wiki/​Paten​t_​tr​oll> accessed 19 March 2021.
	 38	 For commentary, see James Bessen, Michael Meurer, and Jennifer Ford, ‘The Private and Social
Costs of Patent Trolls’ (19 September 2011) Boston University School of Law, Law and Economics
Research Paper No. 11-​45 <http://​ssrn.com/​abstr​act=​1930​272> or <http://​dx.doi.org/​10.2139/​
ssrn.1930​272>.

224  Malcolm Bain and P McCoy Smith

through litigation.39 We will comment further on this later, when looking at the
interactions and frictions between Open Source and patents.

10.2.4  Patent remedies

The remedies available to patent holders in the case of infringement are important
to understand the potential effect of patents against Open Source. National courts
in Europe are competent to hear infringement cases and determine remedies of
both the national equivalents of European patents and patents issued directly by
their national offices. However, except for very limited circumstances, the national
court’s decision will only apply in its territory, and if the infringement occurs in
several states, then proceedings would have to be brought independently in each
country.40 This is likely to change when the Unified Patent Court (UPC)41 comes
to fruition. The UPC will be a specialised patent court with exclusive jurisdiction
for litigation relating to European patents and European patents with unitary ef-
fect (unitary patents). In practice, absent a UPC, Germany seems to be one of the
favourite states to start infringement proceedings, as those proceedings are rela-
tively cheaper and faster there (many decisions are made under the fast injunction

	 39	 In the early 2000s, SCO was accused of being a ‘copyright troll’ against UNIX and Linux. David
Kravets, ‘Copyright troll loses high-​stakes Unix battle’ Wired (31 March 2010) <https://​www.wired.
com/​2010/​03/​unix-​cop​yrig​hts/​#ixzz0y​UsnF​xzG> accessed 28 August 2020. More recently, an indi-
vidual named Patrick McHardy has been accused of being a ‘copyright troll’ as the result of GPL viola-
tion lawsuits filed in Germany. Ieva Giedrimaite, ‘Copyright trolling: Abusive litigation based on a GPL
compliance’ The IP Kitten (24 February 2019) <https://​ipkit​ten.blogs​pot.com/​2019/​02/​copyri​ght-​troll​
ing-​abus​ive-​lit​igat​ion.html> accessed 28 August 2020.
	 40	 It is possible to bring action against the defendant in its jurisdiction of residence and the local
courts may in this case handle infringements across the relevant EU territories based on the origin of
infringement with the defendant in its residential jurisdiction. There is also a practice in Dutch courts of
granting cross-​border injunctions in patent cases, although the circumstances under which can be done
are likely limited to summary proceedings. Renaud Dupont, ‘Cross-​border injunctions are back in the
Netherlands’ Lexology (27 September 2011) <https://​www.lexol​ogy.com/​libr​ary/​det​ail.aspx?g=​2b5e8​
ef1-​bf5a-​46fd-​8499-​61f76​6c83​424> accessed 29 August 2020. See also Solvay SA v Honeywell Fluorine
Products Europe BV, Case C-​616/​10 (ECJ 12 July 2012).
	 41	 The Agreement on the UPC was endorsed by EU ministers in the Competitiveness Council on
10 December 2012 and by the European Parliament on 11 December 2012; because of Brexit and an
adverse ruling from the German Federal Constitutional Court, the Unified Patent Court was for some
time believed not to have achieve sufficient ratification to commence, and many predicted that it would
not be instituted. James Nurton, ‘German decision puts Unified Patent Court agreement in jeopardy’
IP Watchdog (20 March 2020) <https://​www.ipw​atch​dog.com/​2020/​03/​20/​ger​man-​decis​ion-​puts-​unif​
ied-​pat​ent-​court-​agreem​ent-​jeopa​rdy/​id=​120​013/​> accessed 29 August 2020. However, Germany
eventually ratified the UPC, setting the UPC up to commence operation in 2022 or 2023—​although
there still remain questions as to whether the UK is required to ratify and participate in the UPC.
Christoph Crützen, Benjamin Beck, and Maximilian Kücking, ‘Germany Ratifies EU Unified Patent
Court (UPC) Agreement, but Prospects for the UPC Remain Uncertain’, Mayer Brown blog (18 August
2021) <https://​www.may​erbr​own.com/​en/​persp​ecti​ves-​eve​nts/​publi​cati​ons/​2021/​08/​ger-​germ​any-​
ratif​ies-​eu-​unif​ied-​pat​ent-​court-​agreem​ent> accessed 14 June 2022.

PATENTS AND THE DEFENSIVE RESPONSE  225

procedure), something that has been seen in the case of the Apple v Samsung pro-
ceedings relating to Samsung’s ‘Galaxy’ tablet.42

Remedies have been broadly harmonised across the EU through Directive
2004/​48/​EC of the European Parliament and of the Council of 29 April 2004 on
the enforcement of intellectual property (IP) rights.43 Remedies include both pre-
cautionary measures, such as preliminary injunctions and seizure, as well as per-
manent orders and monetary damages.

As the patent holder’s main goal is to stop the infringing party’s actions, it will
mainly aim for preliminary and then permanent injunctions to cease the manu-
facture, distribution, commercialisation, and use of the infringing product. In
addition, at the preliminary stage the patentee may request an order to seize or pro-
duce for audit products, tools (including computer equipment), production plants,
books of account, invoices, and advertising materials, the latter in order to collect
documentary evidence of the infringement and its extent; and a blocking order to
stop imports at the national borders. In the extreme, a patentee may also request
freezing the allegedly infringing party’s bank accounts. Thereafter, when infringe-
ment is finally determined, the rights holder can request a declaration of the val-
idity of the patent and the destruction of the infringing items.

If infringement is found, damages may be applied for to compensate for the
infringing activities, either as accounts for profits made, monetary compensation
for lost profit of the patent holder, or the fees the patentee would have charged for
granting a licence (probably the preferred method, as proving lost profits or trying
to work out the infringer’s illegitimate profit made on the basis of the patented
item, can be difficult).

We will see in the following section how difficult it is to apply these concepts in
the Open Source software context. Not only is identifying infringers of a CII im-
plemented in Open Source potentially unknown or difficult to identify or locate
(assuming that the Open Source project is the ‘person’ infringing a third party’s pa-
tent), but also it can be extraordinarily difficult to prevent distribution of intangible
goods (that may infringe on patent rights) on the Internet.44

This is not the case when the software is embedded in hardware devices, such as
smart phones, set-​top boxes, or routers, where the patent holder may pursue any
member of the supply chain (in particular the retailer and the importer) to obtain
the injunctive relief and subsequent claim for damages. This is probably one of the

	 42	 See Chris Foresman, ‘Apple stops Samsung, wins EU-​wide injunction against Galaxy’ ArsTecnica (9
August 2011) <http://​arst​echn​ica.com/​apple/​2011/​08/​sams​ung-​fac​ing-​eu-​wide-​inj​unct​ion-​agai​nst-​gal​axy-​
tab-​101> accessed 14 June 2022. Germany is a preferred venue, see comment by Kevin O’Brien, ‘German
Courts at Epicenter of Global Patent Battles Among Tech Rivals’ New York Times (8 April 2012) available at
<http://​www.nyti​mes.com/​2012/​04/​09/​tec​hnol​ogy/​09iht-​paten​t09.html> accessed 19 March 2021.
	 43	 Official Journal of the European Union L157 of 30 April 2004.
	 44	 See, e.g., how OpenSuSE community deals with audiovisual codecs encumbered by pa-
tents: OpenSuSE wiki, ‘Restricted formats’ <https://​en.opens​use.org/​Res​tric​ted_​form​ats> accessed 19
March 2021.

226  Malcolm Bain and P McCoy Smith

reasons patent litigation has been so popular in the mobile device industry, as there
are specific goods or devices to identify for remedial action.

Thus, there are a series of reasons why patents are relevant to software, in par-
ticular their very existence with respect to software implemented inventions, their
nature and scope, and their differences with copyright, many of which, as we will
see next, enter into conflict with the principles and reality of Open Source.

10.3  Patents and Open Source Interactions

To understand the interactions between Open Source software and patents, we
must briefly review the nature and characteristics of Open Source and its devel-
opment process. As we will then see in this section, these are not particularly well-​
suited to the patent system (as legislated and practised), leading to a variety of areas
and types of friction. In the next section of this chapter, we will look at how the
Open Source community tries to deal with these frictions, both in the licensing
regimes and in practice.

10.3.1  Development and Innovation in Open Source

Open Source is software that is distributed under an Open Source licence. These
licences are broad, RF licences that allow all persons to use, copy, modify, and dis-
tribute the original code and its derivative works.45 Thus Open Source is character-
ised by the granting to others of the ability to exploit the software, with access to its
source code as a requirement to be able to enjoy those rights.

Any Open Source licence is in fact a practical expression of the ideals and ob-
jectives of the software creators, using copyright rights (and in some cases, patent
rights) to allow and enforce openness and freedom with respect to the software
code and the knowledge contained therein. Open Source licensing increases public
accessibility to this knowledge. Under copyleft licences,46 a sub-​group of Open
Source licences, this knowledge and these freedoms to exploit and innovate are
guaranteed for all third parties through obligations to maintain the free software li-
censing terms in downstream distributions of the product and its derivative works.

In practice, this usually leads to a decentralised software development model,
the ‘bazaar’, as Eric Raymond has called it,47 whereby developers from all parts
of the world may participate in and contribute to an Open Source project. These

	 45	 Stallman, ‘The Free Software Definition’, note 10. See also Open Source Initiative, ‘Open Source
Definition’ available at <https://​ope​nsou​rce.org/​osd> accessed 19 March 2021.
	 46	 Stallman, ‘The Free Software Definition’, note 10.
	 47	 Eric Raymond, ‘The Cathedral and the Bazaar’ (2000) <http://​www.catb.org/​~esr/​writi​ngs/​cathed​
ral-​baz​aar/​cathed​ral-​baz​aar> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  227

participants form what has generically been called the ‘community’ of the project,
and these communities together form the ‘Open Source community’ or move-
ment as a whole. These communities are extremely heterogeneous, including indi-
vidual programers and users, institutions, companies, and public bodies, and can
be formed by one or two persons, or a significant number of participants such as
the Open Document or GNU/​Linux communities.48 The community participants,
acting usually remotely over the web, maintain, develop, and correct the project
software according to a roadmap that may or may not be an agreed ‘master’ docu-
ment. In some communities, such as the Mozilla, Ubuntu, or Alfresco projects,
the project may be led or structured by a foundation or corporate entity, which
guides development and may exploit the software (or services based on the soft-
ware) commercially.

Innovation in these communities is varied, either incremental—​developers
building on previous contributions made by themselves or other participants, or
complementary—​developing new functionalities and modules through standard
and open interfaces. However, in all circumstances, innovation is based on the
principles of freedom and openness: taking advantage of broad rights to copy,
share, and improve the code, along with open access to the source and interoper-
ability information of the project code.49

The certainty provided by the standardised copyright licensing terms estab-
lished by the project Open Source licence provides reliability and trust among the
participants, increasing network effects and providing a strong basis for further
innovation.50 In transaction cost analysis terms, this ‘lowers the informational and
transactional cost of licensing, as the terms are standard and transparent to all par-
ties, so there is no information asymmetry and no need to negotiate terms’. 51

10.3.2  Frictions with the patent regime: differences in concept

This form of innovation through sharing, however, runs counter to the justification
for patent protection, which is based on the historical and theoretical foundation

	 48	 See, e.g., Linux Foundation Annual Report 2020, estimating 890,000 contributors, including
44,000 ‘core developers’. Linux Foundation, ‘Annual Report 2020’ (2020) <https://​www.linu​xfou​ndat​
ion.org/​wp-​cont​ent/​uplo​ads/​2020-​Linux-​Fou​ndat​ion-​Ann​ual-​Report​_​120​520.pdf> accessed 19
March 2021.
	 49	 Chris diBona, ‘Introduction’ in Chris DiBona, Sam Ockman, and Mark Stone (eds), Open
Sources: Voices from the Open Source Revolution (Sebastopol, CA: O’Reilly Media, 1999) 1–​18.
	 50	 Notwithstanding the difficulties of interpreting certain licences in certain conditions, for ex-
ample, the copyleft scope of the GPL. However, the most vibrant Open Source community, the Linux
Community, uses the GPLv2 as its legal foundation, showing that this is not an impediment to innov-
ation and sharing.
	 51	 Jason Schultz and Jennifer Urban, ‘Protecting Open Innovation: The Defensive Patent License as
a New Approach to Patent Threats, Transaction Costs, and Tactical Disarmament’ (2012) 26 Harvard
Journal of Law and Technology 1, 15.

228  Malcolm Bain and P McCoy Smith

of IP rights regimes, that of providing economic incentives to creativity and in-
novation through the artificial creation of exclusivity,52 although this exclusivity
does eventually end and the patent subject matter enters the public domain, upon
expiration of a patent’s term. Yochai Benkler, among others, has clearly argued that
in the information society, as exemplified by free software production models, this
justification is not necessarily correct, as there are (many) other incentives to in-
novation, including curiosity, need, benefits to reputation, the simple desire to
share knowledge, or stimulating demand for a related product or service.53

Patents also offer the risk of over protection: going back to the historical debate
of how to protect and incentivise the creation of software, there were arguments
against the broad protection granted by patent rights over ‘any’ implementation
of a particular process, its functionalities, its interoperability, and the impossi-
bility of carrying out reverse engineering, as being too wide and hindering com-
petition and innovation in this sector.54 Recognising this, the copyright legal
regime for software—​at least in the EU—​provides express exclusions for inter-
operability and reverse engineering to study the principles and ideas behind
a software program, for example to be able to reproduce in a new manner its
functionalities.55

This is particularly important for Open Source, one of whose main areas of de-
velopment is the reverse engineering of proprietary software formats and function-
alities, to create and distribute under Open Source licence terms both programs
with similar features and software that is interoperable with proprietary formats
(e.g., OpenOffice.org/​LibreOffice or SAMBA).56

	 52	 See, e.g., Paul David ‘Intellectual Property Institutions and the Panda’s Thumb: Patents, Copyright,
and Trade Secrets in Economic Theory and History’ in Mitchel Wallerstein, Mary Mogee, and Robin
Schoen (eds), Global Dimensions of Intellectual Property Rights in Science and Technology (National
Academy Press: Washington, DC, 1993) 19–​62; or Gillian Hadfield, ‘The Economics of Copyright’
(Columbia University Press: New York, 1992) 38 Copyright Law Symposium 1-​46; reviewed in Christian
Handke, ‘The Economics of Copyright and Digitisation: A Report on the Literature and the Need for
Further Research’ (London: World Economic Press, 2010). For counter arguments, see Michele Boldrin
and David Levine, Against Intellectual Monopoly (Cambridge: Cambridge University Press, 2008) esp.
ch 7, ‘Defenses of Intellectual Monopoly’.
	 53	 Yochai Benkler, The Wealth of Networks: How Social Production Transforms Markets and Freedom
(New Haven, CT: Yale Press, 2006) at 63. Collaborative development models are also described in
various articles in DiBona et al. (eds), Open Sources: Voices from the Open Source Revolution, see note
49; and, e.g., Chris DiBona, ‘Open Source and Proprietary Software Development’ in Chris DiBona,
Danese Cooper, and Mark Stone (eds), Open Sources 2.0: The Continuing Evolution (Sebastopol,
CA: O’Reilly Media, 2006) 21–36.
	 54	 See debates of WIPO, Advisory Group of Governmental Experts on the Protection of Computer
Programs, Copyright (WIPO’s monthly bulletin) March 1971, 5–​40; and WIPO Group of Experts on the
Legal Protection of Computer Software, Draft Treaty for the Protection of Computer Software (Geneva,
13–​17 June 1983).
	 55	 See WIPO Model Provisions for the Protection of Software 1983 and, e.g., EC Software Directive,
arts. 5 and 6.
	 56	 Libre Office: <http://​www.libr​eoff​ice.org> and Samba: <http://​www.samba.org> accessed 19
March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  229

In SAS Institute v Worldwide Programming,57 the European Court of Justice
(ECJ) reviewed the question of the protection by copyright of software functional-
ities, in the context of innovation and technical progress, concluding that:

[o]‌n the basis of those considerations, it must be stated that, with regard to the
elements of a computer program which are the subject of Questions 1 to 5, nei-
ther the functionality of a computer program nor the programming language and
the format of data files used in a computer program in order to exploit certain of
its functions constitute a form of expression of that program for the purposes of
Article 1(2) of Directive 91/​250.

As the Advocate General states in point 57 of his Opinion, to accept that
the functionality of a computer program can be protected by copyright would
amount to making it possible to monopolise ideas, to the detriment of techno-
logical progress and industrial development.58

However, what is granted by the copyright regime (reverse engineering and inter-
operability), can be taken away by the patent regime. And although the copyright
and patent regimes should ideally be complementary and non-​exclusionary, an
outcome in which one regime gives a right that the other regime takes away seems
illogical taking into account that the objectives of the two regimes, to incentivise
and reward creativity and innovation, are basically the same.

10.3.3  Patent frictions in practice

Not just on a theoretical basis but also in practice, there are a significant number of
friction areas between the legal regime for patents, and Open Source and its pro-
duction and distribution models.

First, as regards obtaining patents—​if the Open Source community did ever
want to patent inventive processes of a project—​in environments where innov-
ation is incremental and distributed throughout a community, it may be difficult if
not impossible to determine who would qualify as an inventor. And who ultimately
should be the beneficiary and rights holder of the patent rights resulting from com-
munity development? There is often no such figure or entity to hold them, other
than all the individuals who contributed to the conception of the invention itself.59

	 57	 SAS Institute Inc v World Programming Ltd, C-​406/​10.
	 58	 ECJ decision C-​406/​10, paras. 39, 40.
	 59	 Joint ownership of a patent by a collection of developers can introduce complexities (or simplici-
ties), depending on the jurisdiction in which the patent is granted. For example, in the US, all named
inventors would have the right to exploit (use for their own purposes) the patent, including licensing
it to others—​including under an Open Source licence—​without having to account (i.e. pay) any of the
other inventors. This is not the case in other countries, including the UK (where consent is required
from other inventors for an inventor to grant licences). See Raymond Millien, ‘The Default Law of Joint

230  Malcolm Bain and P McCoy Smith

Second, from a risk analysis point of view, the risk of infringing copyright in
software is far lower than the risk of infringing a patent. Copyright infringement
can be avoided by implementing good development practices and (if need be) cre-
ating new and independent versions of copyrighted software. With regard to Open
Source licensed code, it is in fact quite difficult to infringe copyright, as most ex-
clusive copyright rights in the original code that you may be working on or with,
are granted. Conversely, a patent over a software process can stop anyone from
making, using, or selling the patented invention, even if there is no copying of the
inventor’s original software (if any). This means that it may be impossible to avoid
infringing a patent regardless of how much care is taken, particularly essential pa-
tents on standards. In the early 2000s, there was at least one published assertion
that the GNU/​Linux operating system might infringe some 280 software patents,60
although there was substantial debate about the meaning of that assertion.61 What’s
more, the source code availability of Open Source allows a patent-​based plaintiff
to evaluate infringement easily, while a reverse-​engineered patent infringement
evaluation of binary code would be more difficult. ‘Software patents are dangerous
to software developers because they impose monopolies on software ideas. It is
not feasible or safe to develop nontrivial software if you must thread a maze of pa-
tents.’62 Moreover, it is argued that this situation is worse for Open Source than for
proprietary projects.63 As we have commented, Open Source is often developed
by many people—​volunteers—​in ‘open’ communities. These communities rarely
have any company or institution providing (legal or financial) support, and thus
the individual developers might be more vulnerable to litigation. They certainly
don’t have the financial resources to cover the cost of dealing with patent issues,
which can cost thousands if not millions of Euros. However, a counter-​argument
is that these individuals are not worth pursuing by patent holders, which may be
one of the reasons that to date there are few if any patent-​based cases against non-​
commercial Open Source projects.64

However, the counter to this is that any corporate end-​users could be viewed
as vulnerable to attack. While copyright focuses on the potentially infringing

IP Ownership’ IP Watchdog (18 February 2016) <https://​www.ipw​atch​dog.com/​2016/​02/​18/​the-​defa​
ult-​law-​of-​joint-​ip-​owners​hip/​id=​66154/​> accessed 19 March 2021; UK Patents Act 1977 (as amended)
§ 36-​2(a) (1 October 2014).

	 60	 See Daniel Lyons, ‘Linux Scare Tactics’ Forbes Magazine (8 February 2004) <http://​www.for​bes.
com/​2004/​08/​02/​cz_​d​l_​08​02li​nux.html> accessed 19 March 2021; and Open Source Risk Management
Position Paper—​Mitigating Patent Risks (2 August 2004).
	 61	 Steven Vaughn-​Nichols, ‘Author of Linux Patent Study Says Ballmer Got It Wrong’ EWeek (19
November 2004) <https://​www.eweek.com/​serv​ers/​aut​hor-​of-​linux-​pat​ent-​study-​says-​ball​mer-​got-​it-​
wrong> accessed 29 August 2020.
	 62	 Richard Stallman, ‘Europe’s ‘Unitary Patent’ Could Mean Unlimited Software Patents’ <http://​
www.gnu.org/​phi​loso​phy/​euro​pes-​unit​ary-​pat​ent.html> accessed 19 March 2021.
	 63	 Jason Morgan, ‘Chaining Open Source Software: The Case Against Software Patents’ (1999)
<https://​gro​ups.csail.mit.edu/​mac/​proje​cts/​lpf/​Pate​nts/​chain​ing-​oss.html> accessed 19 March 2021.
	 64	 For more detail about patent litigation against Open Source, see section 10.6 later in this chapter.

PATENTS AND THE DEFENSIVE RESPONSE  231

copying, transformation, and distribution of software (thus acts carried out by per-
sons in the software industry), any person who also uses software that infringes a
patent is liable and can have monetary damages and an injunction awarded against
them, regardless of whether they were aware of the patent or had any intent to in-
fringe it, and regardless of whether they have any technical or other expertise in
dealing with patents. This has a significant impact across industry, raising devel-
opment expenses, and increasing legal risks and insurance premiums. This also
hinders the uptake of the Open Source projects’ output through fear of litigation,
or making it more expensive by encouraging participants to take a royalty-​bearing
patent licence.

For a non-​commercial Open Source project (and most commercial ones too),
taking a patent licence can introduce difficulties. Patent licences and associated
royalties are usually based on usage, and an Open Source project rarely if ever
knows how its software is used, improved, or redistributed. In addition, in the event
of using any Open Source under copyleft licences, in particular GPLv2, the patent
licence would have to contemplate redistribution of the code unencumbered by
any downstream patent restrictions so to enable the code to remain free; the patent
holder would have to be willing to grant wide downstream user rights, something
they are unlikely to be willing to do, absent any numerical data on usage.65

We cannot just buy a patent license, because though free software isn’t always free
like free beer, it cannot exist at all unless it is free like free speech: everyone has to
be allowed to take free code from one place and use it in another, or build on it, so
long as she is willing to share and share alike.66

For certain copyleft licences, it can be difficult to achieve compatibility with copy-
left licensing and receive the benefit of a patent licence, even a patent licence
granted on RAND (reasonable and non-​discriminatory terms),67 although Red
Hat has achieved it through its widely publicised agreement with Firestar. But Red
Hat is in the unique position of having both the financial means and legal resources
to negotiate such a licence.68

	 65	 See Section 7 of the GPLv2 available at <http://​www.gnu.org/​licen​ses/​old-​licen​ses/​gpl-​2.0.html>
accessed 19 March 2021. GPLv3, in contrast, has more limited restrictions upon further distribution in
cases where the distributor has a patent licence allowing such distribution. See Section 11 of the GPLv3
available at <https://​www.gnu.org/​licen​ses/​gpl-​3.0.en.html> accessed 19 March 2021.
	 66	 Moglen, ‘Free software matters: Patently controversial’, see note 8.
	 67	 Discussed at length in Iain Mitchell and Stephen Mason, ‘Compatibility of The Licensing of
Embedded Patents with Open Source Licensing Terms’ (2010) 3(1) Journal of Open Law, Technology
& Society (JOLTS) 25–​58 < https://​jolts.world/​index.php/​jolts/​arti​cle/​view/​57/​100 > accessed 15
June 2022.
	 68	 See Red Hat press release, Red Hat Legal Team, ‘Red Hat Puts Patent Issues to Rest’ Red Hat Blog
(11 June 2008) <http://​www.red​hat.com/​about/​news/​arch​ive/​2008/​6/​red-​hat-​puts-​pat​ent-​issue-​to-​
rest> accessed 19 March 2021.

232  Malcolm Bain and P McCoy Smith

Often in cases of (corporate) patent litigation, the parties involved can and often
do come to settlement through cross-​licensing and patent peace agreements. These
agreements are non-​aggression agreements providing each party royalty-​free ac-
cess to a determined part of the other party’s patent portfolio and often to specified
products. This is prevalent in areas such as hardware manufacturing or biotech,
and RF cross-​licences are quite common in the computer hardware and software
industry among proprietary companies. However, the nature of Open Source
makes cross-​licensing potentially non-​viable; first, very few (if any) Open Source
projects have any patents with which to ‘trade’ with a potential patent asserter.
Second, there may not be a particular institution or entity with which to negotiate
such an agreement—with the exception of corporate sponsored developments,
such as Red Hat, which as we have mentioned, can and have negotiated patent li-
cences; in addition, the GNOME Foundation recently negotiated a settlement of
a patent assertion made against some of its Open Source.69 Third, any potential
legal entanglement due to software patents creates uncertainty and significant fear
within the project community. Few Open Source projects are going to go near any
patented technology or process—​if they ever get to know about it—​merely due to
the risk of patent litigation and the transaction costs for dealing with the patent
situation.

It has been argued, in the context of patents over standards, that from an eco-
nomic perspective patent licences and royalties may be compatible with Open
Source development models (this is fully discussed in Chapter 12): it is just a
question of implementing an appropriate technological or business process for li-
censing and collecting the dues.70 Indeed, there are Open Source projects such as
Fluendo71 whose very existence and business model lies in dealing with patents
rights over audiovisual codecs, and interested third parties can purchase licences
to these patent rights so as to implement and distribute proprietary patented co-
decs in Open Source multimedia environments. However, above and beyond the
legal incompatibility when using copyleft licences, most non-​commercial (and
many commercial) Open Source projects are particularly incompatible with
royalty-​bearing technologies, since an essential characteristic of the project is to
share the code easily among community participants (including users), and they
have no visibility or control of downstream users. Requiring even minimal roy-
alties would greatly hinder the freedom of developers to share and distribute the
code they write.

This is reinforced by the sheer number of software-​related patents that are ap-
plied for and issued annually (particularly in the United States), as well as the legal

	 69	 See section 10.6 later in this chapter.
	 70	 Jay Kesan, ‘The Fallacy of OSS Discrimination by FRAND Licensing: An Empirical Analysis’ (22
February 2011) Illinois Public Law Research Paper No 10–​14.
	 71	 Available at Fluendo <http://​www.flue​ndo.com> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  233

uncertainty about many of those that are issued (for lack of novelty, inventiveness,
or patentable subject matter, as discussed earlier).72 It would be impossible—​if not
counterproductive, as they could then be claimed to be knowingly infringing a
patent, if subsequently litigated—​for software developers to read through all the
software patents relevant in their area of expertise (let alone ‘all’ software patents
generally), and subsequently take an informed view on the validity, or not, of those
patents.

Another significant area of concern for the Open Source community is the
accumulation of patents in proprietary software companies. Usually, large com-
panies like IBM use patents defensively. As they know that other companies in
the industry will apply for patents, and then may sue for patent infringement
in order to gain a competitive advantage, a company that wants to defend itself
files for its own patents to use against its competitors. This either creates a mas-
sive patent war, such as that that has occurred in the mobile device industry,73
or creates a détente or hold-​off between the company and its competitors where
each could sue the other in a similar way, so neither one does (and eventually
they enter into cross-​licensing agreements such as those mentioned earlier).
However, members of the Open Source community have historically shown
concern with large proprietary corporations asserting patent claims, directly or
through associated patent assertion and licensing entities such as Intellectual
Ventures,74 to acquire a range of software patents that they can potentially use in
the future to attack and try to restrict the development and distribution of Open
Source software.

Finally, and this is linked to the previous point, we must mention NPEs.75 These
entities accumulate patents solely for the purpose of demanding patent royal-
ties from third parties, and do not themselves ‘practise’ or implement their pa-
tents or for that matter conduct any business other than licensing and asserting
their patents. They do not make, use, import, sell, or offer for sale anything that
could be infringing, inoculating them against countersuits. There are a significant
number of these entities, such as Acacia Research Group, or Intellectual Ventures,
holding large portfolios of patents (Intellectual Ventures is alleged to hold over
30,000 existing patents).76 While NPEs typically target their activities against the

	 72	 Ballardini, ‘The Software Patent Thicket’, 207, see note 32.
	 73	 Involving Samsung, HTC, Motorola, and Apple, among others. See Don Reisinger, ‘A look back at
the great Apple-​Samsung patent war’ EWeek (8 August 2014) <https://​www.eweek.com/​mob​ile/​a-​look-​
back-​at-​the-​great-​apple-​sams​ung-​pat​ent-​war/​> accessed 19 March 2021.
	 74	 Dennis Crouch, ‘Intellectual Ventures: Revealing Investors’ PatentlyO (18 May 20122) <http://​
www.patent​lyo.com/​pat​ent/​2011/​05/​intel​lect​ual-​ventu​res-​reveal​ing-​invest​ors.html> accessed 19
March 2021.
	 75	 See Brian Yeh, ‘An Overview of the “Patent Trolls” Debate’ (2012) Congressional Research Service,
<https://​sgp.fas.org/​crs/​misc/​R42​668.pdf> accessed 15 June 2022, for a good overview of this problem.
	 76	 Todd Bishop, ‘Intellectual Ventures sues HP, Dell and others over patents’ Geekwire (12 July 2011)
<http://​www.geekw​ire.com/​2011/​intel​lect​ual-​ventu​res-​sues-​hp-​dell-​pate​nts> accessed 19 March 2021.

234  Malcolm Bain and P McCoy Smith

products and services of commercial entities, in particular proprietary software
companies with funds to pay for royalties, they have also targeted Open Source,
both Open Source-​based commercial entities such as Red Hat, who had to deal,
for example, with Firestar,77 and non-​commercial Open Source foundations such
as the GNOME Foundation, who had to deal with Rothschild Patent Imaging
(see section 10.6 later in this chapter). As opposed to litigation against industrial
entities, where (negatively) the threat of patent retaliation or (positively) the offer
of a cross-​licence may be made, it is nearly impossible to use such a strategy against
NPEs, leaving only the expensive (prohibitively so, for Open Source communities)
options of paying a royalty or challenging the validity or infringement of the al-
leged patents, or abandoning the allegedly infringing software altogether.

Thus, in the end the patenting regime for software serves to benefit nearly ex-
clusively large (proprietary) software companies with economic resources to apply
for, defend, and litigate software patents, potentially to the detriment of the Open
Source communities who are behind many of the current innovations in informa-
tion and communications technology (ICT), unless efforts are made to assist these
communities with patent threats.

In summary, software patents are expensive to acquire and enforce, and outside
most Open Source projects’ economic capabilities. They are also considered philo-
sophically, culturally, and politically anathema to many Open Source communities
and their members, as a restriction on their innovation. In addition, there is a percep-
tion that many of the patents that represent a potential threat against Open Source
may be of dubious validity, due to lack of novelty or inventiveness—​particularly
given the continued development of tests for abstractness in the US. Even when they
appear to be acquired for ‘defensive’ or other altruistic purposes, there has been no
guarantee against someone later ‘weaponising’ them for use in an offensive attack.78

This has led the Open Source community in many cases to reject the current legal
regime whose uncertainty enables obtaining patent protection (in any form, even the
allegedly ‘highly filtered’ protection granted by the EPO) for software, arguing on
the one hand that the whole system is too expensive for Open Source projects and
small software publishers to benefit from (if they wanted to) and, on basis of their
own experience and that of the software industry as a whole, that copyright provides
sufficiently strong protection for software and incentive to innovate and create more.

In a now often quoted memo, Bill Gates said in 1991: ‘If people had understood
how patents would be granted when most of today’s ideas were invented, and had
taken out patents, the industry would be at a complete standstill today.’79 On this

	 77	 Floyd Marinescu, ‘Red Hat Sued Over Hibernate 3 ORM Patent Infringement Claim’ Infoq (30
June 2006) <http://​www.infoq.com/​news/​Red​Hat-​Sued-​Due-​to-​Hibern​ate-​3-​O> accessed 19 March
2021, settled in 2008.
	 78	 Schultz and Urban, ‘Protecting Open Innovation’, see note 51.
	 79	 Bill Gates, ‘Challenges and Strategy Memo’ (16 May 1991) <http://​en.swpat.org/​wiki/​Bil​l_​Ga​
tes_​on_​s​oftw​are_​pate​nts> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  235

issue Richard Stallman stated in 2004: ‘Software patents are the software project
equivalent of land mines: each design decision carries a risk of stepping on a pa-
tent, which can destroy your project. Because every such patent covers some idea
and the use of that idea, which by giving monopoly on patents inhibits the develop-
ment of software.’80

10.4  How Open Source Deals with Patents

We now turn to see how the community has reacted to and deals with the sev-
eral interactions and friction areas between patents and Open Source, and the per-
ceived patent threat.

The Open Source community’s actions in this respect can be divided into two
types of action: preventive measures, to minimise the impact of software patents
on software freedoms, and reactive measures, taking action to neutralise current
patent threats to free software development.

10.4.1  Patent clauses in Open Source licences

The first and most ‘structural’ preventive measure to deal with software patents is
the incorporation of patent-​related terms in Open Source licences. As we noted
in the introduction, an Open Source project’s community norms and guidelines
are reflected in the chosen licence terms: they set out the rules for participation, in
particular for contributing to and using the project software. The community has
leveraged the licences to set out rules regarding patent grants and non-​assertion
among participants.

10.4.2  First-​generation Open Source licences

The first generation of Open Source licences, particularly the permissive licences
such as the BSD and X11/​MIT licences, did not expressly mention patent rights,
though based on the wording of the licences there are arguments that either an
express or at least an implicit licence is granted.81 Some legal writers believe that
implicit patent licences are uncertain and not binding (in particular when there is

	 80	 Richard Stallman, ‘Fighting Software Patents—​Singly and Together’ (2004) <http://​www.gnu.org/​
phi​loso​phy/​fight​ing-​softw​are-​pate​nts.html> accessed 19 March 2021.
	 81	 Van Lindberg, ‘OSS and FRAND’, see note 3; Peterson, ‘Why so little love for the patent grant in the
MIT License?’, see note 5.

236  Malcolm Bain and P McCoy Smith

no consideration), giving rise to questions regarding their scope or duration, the
impact of combing potentially patented software distributed under these licences
with other programs or hardware, and the creation of derivative works, or that the
licences licence copyright rights only and no patent rights are conveyed.82 This is
not a happy situation with regard to legal certainty for the Open Source commu-
nity, and while these licences are still popular, contributors and users with concern
about potential patent assertions, or who own significant patent portfolios and
wish to have greater certainty about which part of their portfolio is being licensed,
may eschew these licences in favour of more recent versions with explicit patent
provisions.

Where a company did want to use one of these more permissive licences (Google
Inc, in this instance, with regard to WebM VP8 video codec technologies), it added
a patent licence grant and peace terms in an additional clause, tying the patent
grant to its implementation of the patent claims.83 The impact of this is twofold: the
code that Google has distributed is effectively granted under the MIT licence, a
recognised and standard Open Source licence permitting easy use and adoption,
while users of Google’s version of the code are given comfort and protection as re-
gards claims with respect to patents that Google and other contributors may hold
in the codec.84 Enhanced versions of the MIT and BSD licences—​the Universal
Permissive Licence85 and the ‘BSD+​Patent’ licence,86were also created to take the
basic framework of the MIT and BSD licences and add to it an explicit patent grant.

The GPLv2, first published in 1991, included wording directed to patents, with a
stated aim of making GPL’d software redistribution incompatible with software pa-
tents rights assertion—​either by contributors or licensees of contributors. GPLv2
does not have an express patent grant or non-​assertion covenant. While a licence
by the original creator cannot take away patent assertion rights of a third-​party
patent holder (rights to restrict distribution and use of a software that embodies
the patent for example against payment of a royalty), what it can do is prevent the
redistribution of the original software at all if such distribution under the terms of
the GPL2 is prevented by patents encumbering the software; hence the name of
Clause 7 of GPLv2, ‘liberty or death’:87

	 82	 Heather Meeker, The Open Source Alternative (Trenton, NJ: John Wiley and Sons, 2008); Kappos
and Harrington, ‘The Truth About OSS-​FRAND’, see note 3.
	 83	 Google’s WebM, ‘Additional IP Rights Grant (Patents)’ <http://​www.webm​proj​ect.org/​lice​nse/​add​
itio​nal> accessed 19 March 2019.
	 84	 This of course does not guarantee that ‘all’ potential patent rights in the codec are licensed, as
Google may not hold all those rights.
	 85	 Open Source Initiative, ‘Universal Permissive Licence’ <https://​ope​nsou​rce.org/​licen​ses/​UPL> ac-
cessed 30 August 2020.
	 86	 Open Source Initiative, ‘BSD+​Patent Licence’ <https://​ope​nsou​rce.org/​licen​ses/​BSDplu​sPat​ent>
accessed 29 August 2020.
	 87	 This phraseology is based upon a famous speech in early US history. ‘Give me liberty, or give me
death!’ Wikipedia <https://​en.wikipe​dia.org/​wiki/​Give​_​me_​libe​rty,_​or_​gi​ve_​m​e_​de​ath!> accessed 29
August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  237

If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the condi-
tions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-​free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.88

The GPLv2 also forbids imposing any additional restrictions (such as patent en-
cumbrances) on the rights granted by the licence to the recipients of the software.
If a distributor does so, for example by asserting patent rights, their licence under
the GPL is terminated. This effectively means that a patent holder who distrib-
utes a software program based on GPLv2 code, embodying one or more of its pa-
tents, may no longer assert those patent rights against downstream licensees who
redistribute that program onwards,89 or who incorporate the program in their
own product. What is more, this has the effect that if a GPLv2 licensee does get a
third-​party patent licence to exploit the software, then to be able to redistribute it
they must effectively ensure that all downstream licensees are covered. This was
made explicit in GPLv3, published in 2007,90 and Red Hat achieved this in its
agreement with Firestar (with respect to one of its Open Source programs, called
Hibernate).91

10.4.3  Second-​generation Open Source licences

As Open Source software and the Open Source licensing model gained more popu-
larity into the late 1990s, and as simultaneously it became clearer that software pa-
tents would be found in jurisdictions around the world to satisfy the requirements
of national law, there developed a desire for Open Source licences with clear and

	 88	 GNU Operating System, ‘GNU General Public License, version 2, (1991) <http://​www.webm​proj​
ect.org/​lice​nse/​add​itio​nal> accessed 19 March 2021.
	 89	 The impediment on patent assertion is based upon the theory that the ‘liberty or death’ provision
of GPLv2 includes an implied patent licence. Richard Stallman, ‘Why Upgrade to GPL Version 3’ Free
Software Foundation (31 May 2007) <http://​gplv3.fsf.org/​rms-​why.html> accessed 29 August 2020. The
extent to which an implied patent licence would be found in GPLv2, and of what scope that licence
would have, is an unresolved issue which led to a more detailed, express, patent licence being included
in GPLv3.
	 90	 GNU, ‘GNU General Public License’ <https://​www.gnu.org/​licen​ses/​gpl-​3.0.html> accessed 19
March 2021.
	 91	 Maureen O’Gara, ‘Red Hat Settles Patent Claims Against It’ DZone (11 June 2008) <https://​dzone.
com/​artic​les/​red-​hat-​sett​les-​pat​ent-​cla​ims-​> accessed 19 March 2021.

238  Malcolm Bain and P McCoy Smith

express terms around patent rights. One of the first organisations to take on this
issue was Netscape, which was considering freeing its ‘Navigator’ web browser in
1998. That browser was released under the Netscape Public Licence92 (later mi-
grated into the Mozilla Public Licence 1.1), which included express patent provi-
sions. Since that time, most newly created and OSI-​approved Open Source licences
also include an express patent licence grant of some scope.

The development of patent provisions in second-​generation Open Source li-
cences generally addresses two separate, but arguably related, issues. First, they
grant an express patent licence to patent rights that the initial developer, or any
contributor to the project, may have in their contribution. These express patent
licences are in a variety of different forms, and each have differently expressed
language, so determining exactly which patent rights are granted, and by whom,
and for what, requires detailed analysis of the particular licence and the particular
grant. Second, many—​but not all—​patent provisions in second-​generation Open
Source licences provide for defensive patent grant suspension (sometimes referred
to as ‘patent retaliation’), specifying conditions under which the express patent
grant from authors or contributors is terminated or suspended in the event of a
party that has received a licence initiating some form of patent litigation or other
patent assertion with respect to the software.93

The ASF 2.0 License (2004)94 provides a patent provision template that can
serve as a model for an appropriate express patent licence grant, as well as a de-
fensive patent grant suspension. The ASF 2.0 licence includes an express patent
licence from each contributor to ‘make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work’. This grant covers the contributor’s contribu-
tion by itself, or when that contribution is combined with the software to which
it is contributed. Similarly, the Mozilla Public License (MPL) 2.0 (2012)95 con-
tains an express patent grant covering the present and future patents rights of a
contributor for the ‘making, using, selling, offering for sale, having made, im-
port, or transfer of either [the Contributor’s] Contributions or its Contributor

	 92	 The Mozilla Foundation ’Netscape Public License 1.0’ <https://​webs​ite-​arch​ive.mozi​lla.org/​www.
mozi​lla.org/​mpl/​mpl/​npl/​1.0/​> accessed 30 August 2020.
	 93	 The particular scope of the defensive patent grant suspension is important in evaluating whether
a licence containing it may properly be considered an Open Source licence. Facebook, as one example,
created a licence which included a defensive patent grant suspension provision that suspended the ex-
press patent grant in the event of any patent assertion against Facebook, whether or not that asser-
tion related to the software licensed under that grant. This provision was roundly criticised as being
non-​reciprocal and was later withdrawn by Facebook. Sarah Gooding, ‘Facebook to Re-​license React
after Backlash from Open Source Community’ WordPress Tavern (25 September 2017) <https://​wptav​
ern.com/​faceb​ook-​to-​re-​lice​nse-​react-​after-​backl​ash-​from-​open-​sou​rce-​commun​ity> accessed 30
August 2020.
	 94	 The Apache Software Foundation, ‘Apache License, Version 2.0’ <http://​www.apa​che.org/​licen​ses/​
LICE​NSE-​2.0.html> accessed 19 March 2021.
	 95	 Mozilla Foundation, ‘Mozilla Public License Version 2.0’ (MPLv2.0) <http://​www.mozi​lla.org/​
MPL/​2.0> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  239

Version’,96 and excludes deletions from, or modifications made to, the code, or
combinations of the code with other software or devices, or the code in the ab-
sence of the contribution by that particular contributor.97

GPLv3 (2007) also has an express patent grant; Section 11 provides that ‘[e]‌ach
contributor grants you [the user] a non-​exclusive, worldwide, RF patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version’. The ‘contributor version’ is defined as ‘[any copyrightable work licensed]
or a work on which [that copyrightable work] is based’ which a copyright holder
authorises use under the GPLv3 licence. ‘Essential patent claims’ in GPLv3 are de-
fined as:

all patent claims owned or controlled by the contributor, whether already ac-
quired or hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further modifica-
tion of the contributor version. For purposes of this definition, ‘control’ includes
the right to grant patent sublicenses in a manner consistent with the requirements
of this License.

The last point regarding ‘control’ is interesting, as in practice it permitted the flexi-
bility for Red Hat to acquire downstream patent sublicensing rights from Firestar,
so as to ensure valid onward GPL-​based licensing of the Firestar patents to which
Red Hat received a license. GPLv3 also allows alternative mechanism to allow a dis-
tributor of GPLv3 code to receive the benefit of a patent licence yet ensure that the
source code remains available to the public.98 GPLv3 has another patent-​related
requirement, drafted in response to a transaction between Microsoft and Novell,99
which was designed to prevent unusually structured business deals believed to be a
‘work around’ to the concept of ‘liberty or death’.100

	 96	 MPLv2.0, see note 95, Section 2.1(b). The ‘Contributor Version’ in this section is defined as
‘the combination of the Contributions of others (if any) used by a Contributor and that particular
Contributor’s Contribution’, similar to the way the Apache 2.0 licence covers combinations.
	 97	 MPLv2.0, see note 95, Section 2.3.
	 98	 ‘If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of this
License, through a publicly available network server or other readily accessible means, then you
must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself
of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent
with the requirements of this License, to extend the patent license to downstream recipients.’ GPLv3,
Section 11.
	 99	 Cath Everett, ‘Inside the Microsoft-​Novell deal’ ZDNet (30 April 2007) <https://​www.zdnet.com/​
arti​cle/​ins​ide-​the-​micros​oft-​nov​ell-​deal/​> accessed 30 August 2020.
	 100	 This is reinforced by a paragraph in cl. 11 of the GPLv3 that provide for this very situation: If,
pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorising them to use, propagate, modify or convey a specific copy of the covered

240  Malcolm Bain and P McCoy Smith

These clauses in each of the above-​discussed licences, as well as many other
licences approved by the OSI since 1998, ensure that users of software under
these licences get the specified patent rights from the upstream contributors to
the work. This does not mean that use of the software is free of patent risks, as
third parties may have patent rights over the work and may not have granted the
user any licence, and in many cases, subsequent changes made to the program
after distribution by a patent holder may be unlicensed. Nevertheless, the user is
protected from patent claims by the contributors, who—​if the contribution is of
original code—​are usually the persons most likely to have any patent rights in that
contribution.

10.4.4  ‘Patent defensive suspension’ clauses

Patent defensive suspension clauses come in several different ‘flavours’,
depending on the scope and conditions for triggering the clause. These provi-
sions are often structured as a condition of the original licence grant—​either just
the patent grant, or all grants, including copyrights. Most are structured to pro-
tect the specific software to which a patent holder is licensed; a few against any
suits based on patent rights over any software, not just the licensed software, al-
though these broader provisions are now looked upon as non-​reciprocally dis-
criminatory and violative of Open Source Definition 5.101 The provision may
also revoke patent rights, or all rights granted under the Open Source licence. In
Table 10.1 we will look at four licences, chronologically the MPLv2.0, Apache v2,
EPLv2, and GPLv3.

What do these provisions achieve? On the one hand, as noted, Open Source par-
ticipants using software under these licences have a certain degree of safety from

work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it’. The overall aim of this is to ensure a level playing field, and guarantee freedoms
for the whole chain of licensees taking a copy of the code under the GPL. ‘You may not convey a cov-
ered work if you are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your activity of con-
veying the work, and under which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection with copies of the covered
work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work, unless you entered into that arrange-
ment, or that patent license was granted, prior to 28 March 2007.’ This provision was specifically aimed
at the Microsoft/Novell transaction.

	 101	 OSD 5 states that an open source licence must have ‘No Discrimination Against Persons or
Groups’. Open Source Initiative, ‘The Open Source Definition’ <https://​ope​nsou​rce.org/​osd> accessed
30 August 2020. Any provision that takes licences away from entities asserting patents outside of the
particular project to which a licence is granted is believed, by many, to violate this non-​discrimination
provision.

PATENTS AND THE DEFENSIVE RESPONSE  241

Table 10.1  Comparison of Defensive Suspension Clauses

Mozilla 2.0: Section 5.2

If You initiate litigation against any entity
by asserting a patent infringement claim
(excluding declaratory judgment actions,
counter-​claims, and cross-​claims) alleging
that a Contributor Version directly or
indirectly infringes any patent, then
the rights granted to You by any and all
Contributors for the Covered Software
under [the copyright and patent licence]
Section . . . of this License shall terminate.

This clause is of a scope relatively common for
defensive suspension clauses, although it does
include a suspension not only of patent licences,
but other licences as well in the event of a patent
assertion against the software. Note that it does
allow such an assertion in the form of a counter
claim or cross-​claim (a claim that is filed in
response to an initial claim against the patent
asserter), which may provide for some litigation
strategy gaming tactics to retain the benefit of
the licences but still assert patents against the
software.

Apache 2.0: Section 3

If You institute patent litigation against
any entity (including a cross-​claim or
counterclaim in a lawsuit) alleging that
the Work or a Contribution incorporated
within the Work constitutes direct or
contributory patent infringement, then any
patent licenses granted to You under this
License for that Work shall terminate as of
the date such litigation is filed.

The defensive suspension clause in Apache
2.0 licence is similar to Mozilla 2.0, although
it only revokes potential patent right grants; it
does not purport to terminate any copyright
licence. It also does not exclude cross-​claims or
counterclaims, like Mozilla 2.0.

Eclipse Public License 2.0: Section 7

If Recipient institutes patent litigation
against any entity (including a cross-​claim
or counterclaim in a lawsuit) alleging that
the Program itself (excluding combinations
of the Program with other software or
hardware) infringes such Recipient’s
patent(s), then such Recipient’s rights
granted under Section 2(b) [the patent
licence Section] shall terminate as of the
date such litigation is filed.

This section is similar to Apache 2.0, in that
it only suspends patent licences, and, like
Apache 2.0, does not exclude cross-​claims
or counterclaims, thus preventing potential
litigation strategies to preserve the licence grant
while still asserting patents. Unlike the Common
Public Licence, a predecessor of Eclipse which
has been deprecated, it does not attempt to
suspend patent licences for assertions against
other software.

GPLv3: Section 10

You may not impose any further restrictions
on the exercise of the rights granted or
affirmed under this License. For example,
you may not impose a license fee, royalty, or
other charge for exercise of rights granted
under this License, and you may not initiate
litigation (including a cross-​claim or
counterclaim in a lawsuit) alleging that any
patent claim is infringed by making, using,
selling, offering for sale, or importing the
Program or any portion of it.

GPLv3 maintains similar ‘liberty or death’
provisions as its version 2, commented on in
the introduction (now called ‘No Surrender
of Others’ Freedom’ clause), and includes this
patent peace clause. Breach of this undertaking
(not to initiate patent-​based litigation with
respect to the software in question) would
mean breach of the licence, and revocation of
all licence rights (both copyright, and patent)
subject to the reinstatement provisions (e.g. if
the litigation is withdrawn). GPLv3 does not
limit this litigation against ‘developers’ but would
cover litigation against ‘any entity’, similar to
the Apache and Eclipse licences commented on
earlier.

242  Malcolm Bain and P McCoy Smith

patent-​related threats from upstream contributors as a result of the express patent
licence grants, and downstream licensees as a result of the patent defensive sus-
pension provisions; this provides a degree of ‘patent peace’ among community
participants. The more participants involved in the community, particularly large
patent-​holding entities, the greater the peace, and all the more so if the licence is
copyleft, and thus maintains the same licensing terms downstream and throughout
the community of users. This contributes to the ideals of the Open Source commu-
nity, of providing safe access to knowledge of Open Source technologies, and de-
rivative works thereof, and freedom to innovate. ‘Licensees and their sublicensees
should not be able to benefit from Open Source while at the same time forcing the
licensor to pay royalties for patents embodied in that very software.’102 However,
the scope of this protection does vary, and it is important (especially for patent-​
holding users or contributors to Open Source projects) to understand the scope
of the express or implied patent licence clauses as well as defensive suspension
provisions, and how they interact with their patent portfolios. These clauses may
discourage patent holders from participating in communities, either because the
patent licence grants are too broad—​or too indeterminate—​or because the defen-
sive suspension provision curtails their ability to assert their own patent portfolio
against entities towards whom they wish to maintain a strong patent position. An
example of this is where a company drafted a modification to the MPL1.1 in order
to protect their portfolio, rather than use the standard version of the licence,103
or in the case where additional patent provisions have been appended to existing
Open Source licences.104

In addition, there may be questions of validity of parts of these clauses. First,
with regard to ‘future’ acquired patents and patent rights, and second, with regard
to extending the benefits of the clauses to non-​licensees, or extending the obliga-
tions either to future users (holding other patents) of the Open Source technolo-
gies, or future holders of relevant patents (for example, through acquisition), who
may be able to argue they are not party to the original bargain. This may be a ques-
tion of privity of contract, if licences are deemed to be contracts in this respect;
though for licences that are considered to be unilateral authorisations (and not
contracts), the provisions would only be effective against licensees (i.e. users) of the
code, as a condition of the licence grant.

	 102	 Lawrence Rosen, ‘Dealing with Patents in Software Licences’ Linux Journal (1 January 2002)
<http://​www.linux​jour​nal.com/​arti​cle/​5575> accessed 19 March 2021.
	 103	 MXM Public license submission, OSI Review, ‘For approval: MXM Public license’ (8 April
2009) <https://​lists.ope​nsou​rce.org/​piperm​ail/​lice​nse-​revie​w_​li​sts.ope​nsou​rce.org/​2009-​April/​000​
722.html>, commented on by Glyn Moody ‘Should an Open Source Licence Ever Be Patent-​Agnostic?’
Linux Journal (9 April 2009) <https://​www.linux​jour​nal.com/​cont​ent/​sho​uld-​open-​sou​rce-​lice​nce-​
ever-​be-​pat​ent-​agnos​tic> both accessed 19 March 2021.
	 104	 David Thompson, ‘Reading the Fine Print in Facebook React’s Open Source License’ White Source
(17 May 2017) <https://​resour​ces.whit​esou​rces​oftw​are.com/​blog-​whit​esou​rce/​read​ing-​the-​fine-​print-​
in-​faceb​ook-​react-​s-​open-​sou​rce-​lice​nse> accessed 30 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  243

10.4.5  Open Source as prior art, peer to patent, and
defensive publication

Another way of the dealing with the negative impacts of software patents in a pre-
ventive manner is to help avoid those patents being granted ab initio. Although ef-
forts to get software processes—​CIIs—​totally excluded (in theory and in practice)
from patentability have largely been unsuccessful in most of the jurisdictions of the
world, there have been other projects that have claimed to try to reduce, during the
patent examination process, poor-​quality applications on the basis of lack of con-
formity with the main requirements for patentability: novelty and inventive step.

One criticism of the patent application examination process, in terms of quality,
is that patent examiners rely heavily on databases of issued patents and published
patent application, and occasionally scientific publications, to discover prior art.
This means that a significant amount, if not all, of previously published software and
software-​related documentation—​both proprietary and Open Source—​may not be
taken into account during the prior art search stage of the examination process.105

Open Source as Prior Art was a project launched in 2005 as an initiative to en-
able Open Source software repositories to be considered during this prior art search
stage, ‘improving accessibility by patent examiners and others to electronically
published source code and its related documentation as a source of prior art’.106
Unfortunately, software in online repositories is not published in a manner that can
easily be mapped against the way patent applications describe the claimed methods
or processes. To ensure such software is taken into consideration, it needs to be time
stamped, documented, and ideally categorised or described in a manner that can be
searched. While this aim was laudable, in practice it has been found to be particu-
larly difficult and time-​consuming, so it seems the project is currently inactive.

In another attempt at improving patent quality, ‘Peer to Patent’ was a project
launched by the US Patent Office (USPTO) together with New York University
Law School, aimed at taking advantage of the software community to supply the
USPTO with information and discussion relevant to assessing the claims of patent
applications during the examination process, opening this process to public par-
ticipation and ‘community reviewing’. The goal of this project was to help third par-
ties identify, submit, and rank prior art that is relevant to a patent application. The
results of the initial phases of this project resulted in several patent applications
being rejected or narrowed as a consequence of peer reviewing.107

	 105	 ‘Do USPTO examiners search open-​source codebases?’ StackExchange (22 September
2012) <https://​pate​nts.stacke​xcha​nge.com/​questi​ons/​401/​do-​uspto-​examin​ers-​sea​rch-​open-​sou​rce-​
codeba​ses> accessed 31 August 2020.
	 106	 The Linux Foundation, ‘Open Source as Prior Art (OSAPA)’ <https://​wiki.linu​xfou​ndat​ion.org/​
osapa/​start> accessed 19 March 2021.
	 107	 See results commented on by Andrea Casillas, ‘Peer to Patent Pilot 2 Results’ <http://​www.sli​desh​
are.net/​acas​illa​s11/​peer-​to-​pat​ent-​pilot-​2> accessed 30 August 2020.

244  Malcolm Bain and P McCoy Smith

While there have been several criticisms,108 and although the project was even-
tually discontinued, Peer to Patent has been seen as one of the factors leading to
the creation of certain new processes for improving the quality of patents under
the US America Invents Act of September 2011,109 notably the possibility for third
parties to file pre-​issuance submissions,110 prior art something similar to the ob-
servations phase of European Patent applications.111 In addition, the Peer to Patent
project has highlighted the need to take into account all prior art, not just in theory
but also in practice, that is relevant to the patent applications that a patent office
is reviewing: websites, journals, textbooks, software development, user manuals,
and other non-​patent databases. Community involvement and online discussion
also helps find this information. This has a positive economic effect, as avoiding ab
initio the granting of poor-​quality and/​or invalid patents is significantly cheaper
than a re-​examination or post-​grant review processes, or invalidity procedures be-
fore the courts. Ideally, prior art submitted in this way would gradually reduce the
ability of non-​practising entities holding poor-​quality patents to threaten Open
Source projects.

As a third leg in the strategy for avoiding ‘bad patents’, defensive publication is
coming to be seen as one of the most efficient and effective measures. IBM, for forty
years, produced a publication of inventions, which it developed but did not seek to
patent, as a mechanism for establishing prior art that might prevent others from
later attempting to patent the same or similar technology.112 Linux Defenders,113
a program for defending the Linux operating system and the Open Source com-
munity as a whole against patent concerns and threats, and which also supported
the Peer to Patent project, was an initiative to support defensive publication, by
directing to a website ‘Technical Disclosure Commons’,114 designed as a repository
for individuals to make dated publications of technology disclosures for prior art
purposes.

The Technical Disclosure Commons site provides a mechanism for developers
and creators to submit a publication that is date-​stamped so as to establish its public
disclosure date for prior art purposes, with the goal that patent examiners and pa-
tent challengers may review and use these disclosures as prior art. The publications
are posted to the IP.com prior art database, which allows patent offices worldwide
to include these publications in their patent searches.

	 108	 Summarised at Wikipedia, ‘Peer-​to-​Patent Criticisms’ <http://​en.wikipe​dia.org/​wiki/​Peer-​to-​Pat​
ent#Cri​tici​sms> accessed 30 August 2020.
	 109	 HR 1246 (112th), now Public Law 112–​29, Statutes at Large, 125 Stat. 284 through 125 Stat. 341 (2012).
	 110	 35 USC 122(e).
	 111	 WIPO has also taken up this idea for PCT applications, WIPO, ‘Patent Cooperation Treaty (PCT)
Working Group’ (14–​18 June 2010) <http://​193.5.93.80/​edocs/​mdocs/​pct/​en/​pct_​w​g_​3/​pct​_​wg_​3_​
6.pdf> accessed 30 August 2020.
	 112	 ‘IBM Technical Disclosure Bulletin’ Wikipedia <https://​en.wikipe​dia.org/​wiki/​IBM_​Te​chni​
cal_​Disc​losu​re_​B​ulle​tin> accessed 30 August 2020.
	 113	 Linux Defenders: <http://​lin​uxde​fend​ers.org> accessed 30 August 2020.
	 114	 Technical Disclosure Commons <https://​www.tdcomm​ons.org/​> accessed 30 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  245

10.5  Patent Busting and Patent Pools

The measures described earlier to make available and accessible more prior art
so that those patents that are granted truly meet the tests of novelty and non-​
obviousness/​inventive step are aimed at preventing the granting of poor-​quality
patents, not only in the software sector but in all technology fields. Another ques-
tion for the Open Source community has been: what can be done about existing
poor-​quality patents that can be used to threaten the Open Source—​and indeed
proprietary software—​communities and result in claims for unreasonable patent
royalties or potentially injunctive remedies to stop distribution? This is a question
of ‘problem containment’ and the strongest proposals so far focus on post-​grant
patent review, and creating defensive patent pools to protect specific areas of tech-
nology. Notably, these proposals are centred in the US, where the software and
business method patent problem is believed to be most acute.

As regards patent review, there have been several community initiatives: one was
the Linux Defenders project called ‘Post-​Issue Peer to Patent’ which was designed
to solicit prior art contributions from Linux and the broader Open Source com-
munity to permit the invalidation of previously issued patents that were issued in
error because of the patent office’s lack of awareness of relevant prior art. Like many
of the initiatives discussed earlier, this project is no longer operational. Another is
the ‘Patent Busters’ project, launched in 2004 by Electronic Freedom Foundation
(EFF),115 which organised collaborative community efforts to challenge existing
patents that it had pinpointed as being particularly harmful to innovation. It then
filed challenges to those patents it determined were not properly granted, which
it had done with a certain degree of success.116 The Patent Busters project does
not appear to have taken any steps to ‘bust’ a patent since approximately 2016. The
Public Patent Foundation (PUBPAT)117 ran a similar project, with the aim of chal-
lenging through post-​grant challenges US patents believed to be invalid. This pro-
ject worked in all areas of technology, not just software,118 although its activities
have not been updated since 2015.

These actions have been supported in the US by the introduction in 2011 of
post-​grant review processes under the America Invents Act (AIA). One part of this
legislation allows third parties to submit ‘post-grant review’ invalidity challenges

	 115	 EFF, ‘Patent Busting Project’ <https://​www.eff.org/​iss​ues/​pat​ent-​bust​ing-​proj​ect> accessed 16
June 2022.
	 116	 EFF at one time listed ten patents that challenged or wished to challenge under this project, with
various degrees of success including complete invalidation (‘busted’), narrowing, or some form of
post-​issuance reevaluation being initiated by the USPTO. Wikipedia, ‘Patent Busting Project’, <https://​
en.wikipe​dia.org/​wiki/​Pat​ent_​Bust​ing_​Proj​ect> accessed 16 June 2022.
	 117	 Public Patent Foundation, ‘Undeserved Patents and Unsound Patent Policy Harm the Public’
<http://​www.pub​pat.org> accessed 31 August 2020.
	 118	 Successes are listed at Public Patent Foundation, ‘Protecting the public domain’ <http://​www.pub​
pat.org/​Pro​tect​ing.htm> accessed 31 August 2020.

246  Malcolm Bain and P McCoy Smith

of a recently granted patent, within nine months of issuance.119 Grounds for in-
validity include lack of novelty, obviousness, as well as non-​compliance with de-
scription, enablement, or patent eligibility rules. Another part of this legislation
allows third parties to submit ‘inter partes review’ invalidity challenges at any time
after 9 months from issuance, but only challenges for lack of novelty or obvious-
ness based on patents or printed publications.120 In the past, prior to the AIA, the
only mechanism for patent challenges—​the filing of an ex parte or inter partes
re-​examination—​had to be based upon prior art patents or printed publications.
The challenges represent a potentially cheaper mechanism for contesting the val-
idity of an issued US patent than litigation, although the filing fees alone—​over US
$40,000.00—​and the length and complexity of the procedures mean that such chal-
lenges can often mean costs in the hundreds of thousands of US dollars.121

One other mechanism to address patent threats is the creation of a defensive
patent pool. The Open Invention Network (OIN),122 controls a patent pool and
has the mandate to defend Open Source—as defined in a Linux System Definition
which began with core Linux but which today includes over 2,000 other Open
Source packages—from patent attacks. It was launched in 2005, by six founding
companies123 and has received investment from four additional large technology
industry participants124 as well as its founders. OIN is free to join and works, at
its simplest, on the basis of a mutual hold harmless, or commitment not to sue,
amongst its 3,500 licensees, each of whom, like its founders, sign up to the same
non-​negotiable licence terms.

OIN has so far acquired a large (1,500+​) portfolio of patents purchased at a cost
in excess of US $100 million, ‘all available royalty-​free to any company, institution
or individual that agrees not to assert its patents against the Linux System’. OIN
will therefore buy patents (i) to stop them falling into the hands of non-​practising
entities, who might otherwise assert them against Linux-​based companies;125 and
(ii) to provide a portfolio of patents that can be asserted against companies that
attack Linux.126 In fact, OIN partnered with Allied Security Trust to intercept

	 119	 35 USC 321.
	 120	 35 USC 311.
	 121	 Challenges to patents in the US based on prior art patents or printed publications using ex parte
re-​examination continue to be available, 35 USC § 302, and are likely much cheaper, but these proceed-
ings can often be one-​sided in favour of the patent holder and therefore generally are only used when
the prior art is particularly strong.
	 122	 OIN <http://​www.openi​nven​tion​netw​ork.com> accessed 31 August 2020.
	 123	 IBM, Phillips, NEC, Sony, Novell, and Red Hat.
	 124	 Canonical, TomTom, Google, and Nissan.
	 125	 See, e.g., OIN’s purchase of twenty-​two Silicon Graphics patents that Microsoft placed with
Allied Security Trust to sell: Paula Rooney, ‘OIN Outmanuevers Microsoft, Buys Linux Patents’ ZDnet
(9 September 2009) <http://​www.zdnet.com/​blog/​Open Source/​oin-​outmanuevers-​microsoft-​buys-​
linux-​patents/​4800> accessed 31 August 2020.
	 126	 See, e.g., OIN’s transfer of four patents to Salesforce.com after Salesforce.com was sued for patent
infringement by Microsoft: Florian Mueller, ‘The OIN gave Salesforce.com four patents to assert against
Microsoft’ Fosspatents (31 May 2011) <http://​www.foss​pate​nts.com/​2011/​05/​oin-​gave-​salesf​orce​com-​
four-​pate​nts-​to.html> accessed 31 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  247

Microsoft patents that were alleged to read on Open Source functionality and avoid
those patents and associated claim charts from being ‘washed’ through Allied
Security Trust (AST)—where they could have been licensed to AST’s members be-
fore being passed to an NPE to have the claim charts enforced through litigation.127

Because all of the patents of all of the members of OIN are in effect licensed RF
to all the other members in relation to the Linux System, that equates to a collective
patent portfolio of over an estimated 350,000 patents and applications pledged not
to be asserted against the Linux System software.

OIN acted successfully to convey patents from its extensive portfolio to
Salesforce.com when it was sued for patent infringement of FAT filesystem patents
by Microsoft. Rather than expose itself to a potential injunction, the counterclaim
by Salesforce of the patents received from OIN precipitated a rapid settlement by
Microsoft.128 In addition, in at least one other action that has been made public,
when TomTom was also sued by Microsoft over exFAT filesystem patents the
spectre of OIN’s conveyance of patents to TomTom coupled with TomTom’s own
patents that were used in the actual counterclaim was sufficient to trigger a settle-
ment for a fraction of the original damage claim.129 While there is little statistical
data available regarding patent threats and assertions, the fact that OIN has rou-
tinely provided prior art to companies in the Open Source community at risk of, or
actively in, litigation indicates that OIN’s involvement may serve a useful vehicle to
reduce patent threats in core Linux and the adjacent Open Source software space.

The foregoing NPE interventions notwithstanding, OIN historically was designed
to primarily work to mitigate practising entity patent risk but since Microsoft became
a member of the OIN Community in late 2018,130 OIN has pivoted to put increasing
focus on mitigating NPE risk. In addition to working with the Open Source tech-
nical community to identify prior art to be shared with Community members who
are at risk or in litigation, OIN has also joined with the Linux Foundation, IBM, and
Microsoft to found and fund the Unified Patents’ Open Source Zone to enable the
mitigation of risk from NPE-​owned patents that read on Open Source functionality.

OIN is a defensive entity and not an assertion entity; that is, it has not itself
commenced litigation against companies attacking Open Source using its ex-
isting patent portfolio, although OIN has sold hundreds of patents to companies in

	 127	 Nick Wingfield, ‘Group of Microsoft Rivals Nears Patent Deal in Bid to Protect Linux’, Wall Street
Journal (8 September 2009) <https://www.wsj.com/articles/SB125236988735891147> accessed 19
August 2022.
	 128	 Florian Mueller, ‘The OIN Gave Salesforce.com Four Patents to Assert against Microsoft’, FOSS
Patents (31 May 2011) <http://www.fosspatents.com/2011/05/oin-gave-salesforcecom-four-patents-to.
html> accessed 19 August 2022.
	 129	 See comment by Software Freedom Law Center, ‘Settled, But Not Over Yet’ (30 March
2009) <http://​www.soft​ware​free​dom.org/​news/​2009/​mar/​30/​sett​led-​not-​over-​yet> accessed 31
August 2020.
	 130	 Navneet Akash, ‘Microsoft Joins OIN, Makes 60,000 Patents Open-​Source’, C#Corner (12 October
2018) <https://​www.c-​shar​pcor​ner.com/​news/​micros​oft-​joins-​oin-​makes-​60000-​pate​nts-​ope​nsou​rce>
accessed 15 June 2022.

248  Malcolm Bain and P McCoy Smith

litigation or at risk from operating companies poised to assert patents containing
Open Source-​related claims.

In addition to OIN, it has been suggested that an assertion entity (Fair Troll)
acting on behalf of the Open Source community to recoup sums paid in patent
licensing might have attractions.131 Given that the Open Source community in
general has been vocally anti-​software patent, creation of such an entity with com-
munity support seems unlikely.

In March 2013, Google published a proposal to establish and standardise de-
fensive patent pools, with the objective of reducing patent litigation concerns, par-
ticularly by NPEs.132 One particular part of this proposal that eventually came into
fruition was the proposal of a Licence on Transfer (LOT) regime whereby com-
panies would band together and commit that they would grant one another licences
to their patents, even if those companies did not have in place any existing patent li-
cence arrangements between them, in the event that one of their patents was sold or
otherwise transferred to an entity that might be non-​practising. This resulted in the
formation of the LOT Network, in 2014, to achieve exactly this result.133 The net-
work has grown to over 1,000 participants in a relatively short period and, though
the benefits of this network extend only to members and it is not an Open Source-​
specific solution in the manner of OIN, companies active in Open Source can gain
protection from NPE risk by joining LOT; large companies pay a modest annual fee
while companies below a certain size receive complimentary membership.

Finally, during the 2000s, various companies made patent pledges in favour of in-
dividuals and groups working on Open Source—unilateral promises not to assert
patents against developers, provided that certain conditions are met. These pledges
are intended to operate as an enforceable covenant not to sue, and equitable estoppel
should preclude the patent holder from bringing suit against those within the safe
harbour defined by the pledge.

Notable patent pledges include Red Hat,134 Nokia,135 and IBM.136 Note also
that many of these pledges may have been expanded by the joining of some of the

	 131	 Florian Mueller, ‘The DPL and the “Fair Troll” business model: make money fighting patents with
patents’ FOSS Patents (18 May 2010) <http://​www.foss​pate​nts.com/​2010/​05/​dpl-​and-​fair-​troll-​busin​
ess-​model-​make.html> accessed 31 August 2020.
	 132	 Eric Schulman, ‘Working together to reduce patent litigation’ Google Public Policy Blog (12 March
2013) <http://​goo​glep​ubli​cpol​icy.blogs​pot.co.uk/​2013/​03/​work​ing-​toget​her-​to-​red​uce-​pat​ent.html>
accessed 31 August 2020.
	 133	 ‘How We Protect Members’ LOT Network <https://​lot​net.com/​how-​we-​prot​ect-​memb​ers/​> ac-
cessed 31 August 2020.
	 134	 Promise at Red Hat, ‘Statement of Position and Our Promise on Software Patents’ <http://​www.
red​hat.com/​legal/​patent​_​pol​icy.html> accessed 31 August 2020.
	 135	 ‘Nokia announces patent support to the Linux Kernel’ Phys.org (26 May 2005) <https://​phys.org/​
news/​2005-​05-​nokia-​pat​ent-​linux-​ker​nel.html> accessed 31 August 2020. This pledge has a number
of different qualifications, including ‘[w]‌ith respect to new functionality introduced into future Linux
Kernel releases, Nokia reserves the right to declare that the Patent Statement shall not apply’.
	 136	 IBM, ‘IBM Pledges 500 U.S. Patents to Open Source in Support of Innovation and Open
Standards’ (11 January 2005) <http://​www-​03.ibm.com/​press/​us/​en/​press​rele​ase/​7473.wss> accessed
31 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE  249

pledging entities to OIN—​including Microsoft in October 2018, which has been
followed by an extension of the Linux Definition to add the Microsoft exFAT pa-
tents into the Linux System Definition and OIN’s pool.

One major unresolved issue is whether a pledge binds a new owner of a patent,
an issue of great practical significance given the powerful and accelerating trend
for major patent holders to divest some parts of their patent portfolio to patent
assertion entities. This issue is also being considered in the context of whether
FRAND obligations bind successors in title, as discussed in Chapter 11 .

10.6  Patent Litigations Initiated Against Open Source

Although concerns about the impact of patents against Open Source have been raised
for at least thirty years (since GPLv2 identified patents as a concern in its preamble
and the ‘liberty or death’ clause) and although numerous measures, as discussed
earlier, have been implemented to address those concerns, actual threats (at least in
the form of patent infringement suits filed against Open Source) have been surpris-
ingly rare and generally resolved in a way favourable to the Open Source model. This
data is somewhat contrary to the general trend of patent infringement litigation fil-
ings, which have shown, in the US, a steady-​state of such filings by practicing entities,
and a variable—​but gradually increasing—​trend of filings by NPEs.137 Global trends
also seem to indicate an increasing rate of patent infringement suit filings by NPEs.138

Although rare, there have been a few instances of patent infringement liti-
gation filed against software licensed under an Open Source licence. In almost
every instance, these litigations have been filed either ancillary to a separate,
non-​patent, dispute,139 and in almost all cases, the patent is asserted against a
for-​profit entity that makes Open Source software part of its overall revenue-​
producing product profile.140 In the one case where an actual verdict of patent

	 137	 See RPX Corporation, ‘What 15 Years of U.S. Patent Litigation Data Reveal About the IP Market’
RPX Insights (25 January 2021) <https://​insi​ght.rpxc​orp.com/​news/​65081-​what-​15-​years-​of-​us-​pat​
ent-​lit​igat​ion-​data-​rev​eal-​about-​the-​ip-​mar​ket> accessed 20 March 2021.
	 138	 See Michael Crichton, Gregory Gramenopoulos, Vincenzo Jandoli, et al., ‘Global Patent
Litigation: Trends, Tools, and Strategies to Enforce Your Patent Rights Globally’ Strafford (2 June 2020)
<http://​media.straf​ford​pub.com/​produ​cts/​glo​bal-​pat​ent-​lit​igat​ion-​tre​nds-​tools-​and-​str​ateg​ies-​to-​
enfo​rce-​your-​pat​ent-​rig​hts-​globa​lly-​2020-​06-​02/​prese​ntat​ion.pdf> accessed 20 March 2021.
	 139	 See, e.g., XimpleWare v Versata, Case No. 3:13cv5160 (N.D. Cal. 2013) (a copyright infringe-
ment action for failure to abide by GPLv2) and XimpleWare v Versata, Case No. 5:13cv5161 (N.D. Cal.
2013) (a corresponding patent complaint for patent infringement resulting from the failure to abide by
GPLv2). These two suits, as well as other associated suits, were eventually settled. Sylvia Jakob, ‘Versata
saga settled with prejudice’ ifrOSS News (19 March 2015) <https://​www.ifr​oss.org/​?q=​en/​arti​kel/​vers​
ata-​saga-​sett​led-​prejud​ice-​1> accessed 20 March 2021. Details of the terms of settlement are not public.
	 140	 See, e.g., Bedrock Computer Technologies LLC v Softlayers Technology Inc., Case No. 6:09-​cv-​269
(LED) (E.D. Tex. 2009), which involved a patent infringement claim against Google, and others, for
features in the Linux kernel. Google initially lost the claim and was assessed damages of U S$5,000,000.
Steven Vaughn-​Nichols, ‘Idiotic Anti-​Linux & Google Patent Decision’ ZDNet (21 April 2011) <https://​

250  Malcolm Bain and P McCoy Smith

infringement was found, and damages were assessed for that infringement, the
verdict was rendered in summary fashion via a jury (thus not providing a detailed
explanation of how the patent was infringed by the accused Open Source)141 and
was shortly thereafter settled and dismissed without explanation as to the terms
of the settlement.

One of the earlier patent litigation assertions against Open Source software was
a claim made against Red Hat’s distribution of JBoss’s Hibernate object-​relational
mapping tool (licensed under GPLv2) by the patent holder FireStar.142 No court
decision was rendered in that litigation, but upon settlement, Red Hat did make
a statement assuring the Open Source community that that settlement was fully
conformant with Red Hat’s patent obligations under the ‘liberty or death’ provi-
sions of GPLv2:

The covered products include all software distributed under Red Hat’s brands,
as well as upstream predecessor versions. The settlement also protects derivative
works of, or combination products using, the covered products from any patent
claim based in any respect on the covered products. Essentially, all that have in-
novated to create, or that will innovate with, software distributed under Red Hat
brands are protected, as are Red Hat customers.

‘Red Hat’s settlement satisfies the most stringent patent provisions in FOSS li-
censes, is consistent with the letter and spirit of all versions of the GPL and pro-
vides patent safety for developers, distributors and users of FOSS software,’ said
Richard Fontana, FOSS Licensing and Patent Counsel at Red Hat.143

A more recent patent litigation involving Open Source, which demonstrates the
complex interplay of patent infringement assertions, the various mechanisms for
challenging patents (both administratively and in court, in the United States),
and continued controversy about the legitimacy of the mechanism for admin-
istratively challenging patents using Inter Partes Review (IPR) can be found
in the activities of the patent holder Sound View Innovations (Sound View).
Beginning in 2016, Sound View filed a series of patent infringement lawsuits—​in

www.zdnet.com/​arti​cle/​idio​tic-​anti-​linux-​goo​gle-​pat​ent-​decis​ion/​> accessed 20 March 2021. The
case was eventually settled, with regard to Google, and dismissed, see Order Vacating Verdict and
Dismissing Claims and Counterclaims (18 May 2011) available at <https://​docs.jus​tia.com/​cases/​fede​
ral/​distr​ict-​cou​rts/​texas/​txe​dce/​6:2009​cv00​269/​116​887/​830> accessed 20 March 2021, although details
of that settlement are not public.

	 141	 Jury Verdict, Bedrock Computer Technologies LLC v Softlayers Technology Inc., Case No. 6:09-​cv-​
269 (LED) (E.D. Tex. 15 April 2011) available at <https://​docs.jus​tia.com/​cases/​fede​ral/​distr​ict-​cou​rts/​
texas/​txe​dce/​6:2009​cv00​269/​116​887/​746> accessed 20 March 2021.
	 142	 Paula Rooney, ‘FireStar Files Suit Against Red Hat’ CRN (7 July 2006) <https://​www.crn.com/​
news/​appli​cati​ons-​os/​190300​990/​fires​tar-​files-​suit-​agai​nst-​red-​hat.htm> accessed 20 March 2021.
	 143	 Red Hat, ‘Red Hat Puts Patent Issue to Rest’ Red Hat Press Release (11 June 2008) <https://​www.
red​hat.com/​en/​about/​press-​relea​ses/​pat​ent> accessed 20 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  251

Delaware,144 California,145 and Colorado146 in the US—​accusing a variety of dif-
ferent companies, and a number of different technologies used by those com-
panies, of infringing a portfolio of as many as seven US patents. At least some of
these patents were claimed to be infringed by Hadoop data processing software
(licensed under the ASF 2.0 Licence) and the JQuery JavaScript library (licensed
under the MIT licence).147 The Sound View patent asserted against Hadoop,
US Patent No. 6,125,371 was eventually ruled invalid as the result of an IP filed
against it, and that ruling was upheld by the US Court of Appeals for the Federal
Circuit.148

Although non-​commercial Open Source projects have historically avoided pa-
tent infringement suits, there is at least one, recent, incident of a direct assertion of
patent litigation claims against an Open Source project itself, rather than a com-
mercial entity making a business of distributing Open Source.149 Rothschild Patent
Imaging (RPI), an NPE associated with an inventor with a large number of patents
held by many different NPEs, sued the GNOME Foundation’s ‘Shotwell’ feature
(licensed under LGPLv2.1) for patent infringement.150 The patent lawsuit against
the GNOME Foundation was ultimately settled with RPI granting a licence to all
software—​not just Shotwell, or GNOME code—​licensed under an OSI-​approved
licence, without payment of any royalty, fee, or settlement amount, to any patent
originating from the same inventor.151 The scope of that settlement,152 like the
settlement with FireStar by Red Hat, may also have been driven by the ‘liberty
or death’ patent provisions that, like in GPLv2, exist in LGPLv2.1. The Executive
Director of the GNOME Foundation, Neil McGovern, expressed complete sat-
isfaction with the ultimate resolution of that patent dispute: ‘McGovern said he
was ‘exceptionally pleased with the outcome . . . I felt it was incredibly important
to send a message to the entire patent assertion industry that basically you don’t go

	 144	 Sound View Innovations, LLC v. Facebook, Inc. Case No. 1:16-​cv-​00116-​RGA (D. Del. 2019).
	 145	 Sound View Innovations, LLC v Hulu, LLC, Case No. 2:17-​cv-​04146-​JAK-​PLA (C. D. Cal. 2017).
	 146	 Sound View Innovations, LLC v Sling TV LLC, Case No. 1:19-​cv-​03709-​CMA-​SKC (D. Col. 2019).
	 147	 Adam Philipp, ‘Sound View Claims Open Source Software Infringes Patents’ AeonLaw (22 May
2019) <https://​aeon​law.com/​blog/​2019/​05/​22/​sound-​view-​cla​ims-​open-​sou​rce-​softw​are-​infrin​ges-​
pate​nts/​> accessed 21 March 2021.
	 148	 Sound View Innovations, LLC v Hulu LLC, Case: 19-​1865 (Fed. Cir. 2 July 2020).
	 149	 Campbell Kwan, ‘GNOME faces ‘baseless’ patent lawsuit for organising images’ ZDNet (26
September 2019) <https://​www.zdnet.com/​arti​cle/​gnome-​faces-​basel​ess-​laws​uit-​from-​pat​ent-​troll/​>
accessed 29 August 2020.
	 150	 Richard Speed, ‘Fairytale for 2019: GNOME to battle a patent troll in court’ The Register (25
September 2019) <https://​www.ther​egis​ter.com/​2019/​09/​25/​gno​me_​s​ueba​ll_​s​hotw​ell/​> accessed 20
March 2021. Amanda Brock and Matt Berkowitz, ‘GNOME
	 151	 Amanda Brock and Matt Berkowitz, ‘GNOME Settles Litigation, Extends Patent Coverage to all
Open Source Initiative Licensing’ The New Stack (30 July 2020) <https://​then​ewst​ack.io/​gnome-​sett​les-​
lit​igat​ion-​exte​nds-​pat​ent-​cover​age-​to-​all-​open-​sou​rce-​ini​tiat​ive-​licens​ing/​> accessed 29 August 2020.
	 152	 The GNOME Foundation did not made the settlement agreement and licence terms public, and
all mention of the lawsuit and settlement have been scrubbed from the GNOME Foundation’s website.
The settlement agreement was nevertheless posted by others, and can be found at the following lo-
cation: <https://​blog.hansen​part​ners​hip.com/​wp-​uplo​ads/​2020/​09/​GNOM​E_​fi​nal_​agre​emen​t_​5-​20_​
wit​h_​sc​hedu​les.pdf> accessed 20 June 2022.

252  Malcolm Bain and P McCoy Smith

after open source projects. It won’t end well for you.’153 Whether the patent litiga-
tion against the GNOME Foundation represents an anomaly, or the start of a trend
of NPEs asserting patents directly against projects themselves, remains to be seen.

10.7  Conclusions

The Open Source community attitude to patents has gone from raising the issue—​
rejecting software patents on principle—​to implementing sophisticated mechan-
isms for dealing with them, both on a structural basis (in Open Source licences)
and in public and private initiatives. Looking back at the initial objective of ex-
ploring the relationship between patents and Open Source, it can be seen that there
are several areas of friction, creating risk and uncertainty. However, the different
mechanisms mentioned that aim to reduce these issues are far from completing the
task. What more can be done?

10.7.1  If you can’t beat them . . . should you join them?

One view to take is that as the software patent system seems to be here to stay (in
one form or another), the Open Source community should become a participant
in the system if it wishes to protect itself from the threats of patent thickets, patent
lawsuits, International Trade Commission (ITC) proceedings, patent-​encumbered
standards, and high awards in the event of infringement findings.154 This means
not only applying for patents and using them as to support defensive countermeas-
ures (something in which Open Invention Network is actively involved) or aggres-
sive measures, potentially creating patent pools for Open Source environments,
but also providing Open Source technologies and ideas as searchable prior art and
eventually taking a patent licence over Open Source technologies in terms that
benefit the whole community, and which comply with copyleft licensing terms.155

However, this comprehensive approach is difficult in economic terms, consid-
ering the modest financial status of the great majority of Open Source projects

	 153	 Tim Anderson, ‘ “This was bigger than GNOME and bigger than just this case.” GNOME Foundation
exec director talks patent trolls and much, much more’ The Register (23 October 2020) <https://​www.ther​
egis​ter.com/​2020/​10/​23/​thi​s_​wa​s_​bi​gger​_​the​n_​gn​ome/​> accessed 20 March 2021. After the settlement
was made, a separate challenge to the Rothschild patent involved in the GNOME Foundation patent law-
suit was made in the USPTO, resulting in every claim in that patent being cancelled, thus reverting the
subject matter of the Rothschild patent asserted against GNOME to the public domain. See OSI Staff,
‘GNOME patent troll stripped of patent rights’, Voices of Open Source (28 April 2022) <https://​blog.ope​
nsou​rce.org/​gnome-​pat​ent-​troll-​strip​ped-​of-​pat​ent-​rig​hts/​> accessed 20 June 2022.
	 154	 See, e.g., the arguments of Schultz and Urban,‘Protecting Open Innovation’, note 51.
	 155	 Two representative examples would be the settlements negotiated to resolve the FireStar against
Red Hat, and the Rothschild assertion against GNOME, both of which were reported to have been set-
tled under community-​beneficial licence terms (see section 10.6 earlier).

PATENTS AND THE DEFENSIVE RESPONSE  253

(commercial or not), because they require substantial industry backing, such as
the way in which the OIN and its various initiatives have the financial backing
of significant market players such as Philips, NEC, Sony, IBM, Red Hat, Google,
Toyota, and SUSE.

10.7.2  Patent reform

More recently, there have been a number of proposals for patent reform, the idea
being that in the context of these conflicts, rather than forcing Open Source de-
velopment to change and adapt its ways and methods (which have been proven
to provide significant innovation and contribution to the ‘Progress of Science and
useful Arts’)156 to a legal framework that is unaligned with the functioning of the
Open Source model, that instead the legal system itself that should be improved.
Indeed, there are those that argue that the patent system in general has not led to
greater innovation, especially in the field of software, as much as constituting a
block on innovation and progress.157

Some writers have suggested significantly modifying the patent system, redu-
cing the strength of patent protection, if not getting rid of patents altogether (at
least for software), a view taken not only by the FSF158 and the Foundation for a
Free Information Infrastructure159 but also some leading academics in the field.160
Proposals include expressly eliminating or limiting software as patentable subject
matter, tailoring the length of patent protection to software (to a period of much
less than the current twenty years from first filing), or awarding patents only when

	 156	 US Const, Art I, s 8, cl 8, known as the patent and copyright clause.
	 157	 James Bessen and Michael Meurer, Patent Failure (Princeton, NJ: Princeton University Press,
2008), have found evidence that patents can actually harm innovation. Eric von Hippel concluded
that ‘empirical data seem to suggest that the patent grant has little value to innovators in most fields’
in Eric von Hippel, Sources of Innovation (Oxford: Oxford University Press, 1988) available online at
<http://​web.mit.edu/​evhip​pel/​www/​sour​ces.htm> accessed 19 March 2021. In The Wealth of Networks
(New Haven, CT: Yale University Press, 2006), Yochai Benkler suggests that patents may result in a
drop in productivity. In Josh Lerner, ‘Patent Protection and Innovation over 150 Years’ (Nat’l Bureau
of Economic Research, Working Paper No 8977, 2002), the author noted that strengthening available
patent protection tended to yield less patenting of new innovations by domestic inventors, which may
correlate with reduced rates of technological innovation.
	 158	 Richard M Stallman, ‘Software Patents—​Obstacles to Software Development’ in Free Software,
Free Society: The Selected Essays of Richard M. Stallman , see note 10.
	 159	 FFII <http://​www.ffii.org>; and Stop Software Patents, ‘Petition to stop software patents in Europe’
<https://​www.devr​oom.io/​2010/​01/​19/​sign-​the-​petit​ion-​stop-​eu-​softw​are-​pate​nts/​> both accessed 19
March 2021.
	 160	 Boldrin and Levine, Against Intellectual Monopoly, see note 52, conclude that ‘a system that at
one time served to limit the power of royalty to reward favoured individuals with monopolies has be-
come with the passage of time a system that serves primarily to encourage failing monopolists to inhibit
competition by blocking innovation’ (at 20). See also James Bessen and Michael Meurer, ‘The private
costs of patent litigation’ (Boston University School of Law Working Paper Series, Law and Economics,
Working Paper No 07–​08, online at <http://​dx.doi.org/​10.2139/​ssrn.983​736> accessed 19 March 2021),
the authors conclude: ‘In the worst case, the net effect of patents today may be to reduce the profits of
public firms and to possibly impose disincentives on innovative activity as well.’

254  Malcolm Bain and P McCoy Smith

strictly needed on economic grounds (although the latter would be difficult given
that most patent offices are ill-​equipped to evaluate economic data).

Along similar lines, other more moderate changes have been proposed, to limit
the effect of patents in the context of software. At a conference on Patent Reform at
Santa Clara Law School,161 Professor Mark Lemley, one of the leading advocates of
patent reform in the US, suggested that the interpretation of US patent law should
be tightened up, to prevent software patents from being drafted in general func-
tional terms (thus prohibiting any implementation of the functional idea, creating
an overbroad patent), and limit enforceable claims to the actual algorithms dis-
closed by the patentees and their equivalents. This rule is something is argued that
the courts in the US should be doing under the Patent Act of 1952,162 increasing
disclosure obligations for software related patents and details of computer im-
plemented functional claims, obliging applicants, for example, to use diagrams,
flowcharts, or pseudocodes along with a clear description of the invention in nat-
ural language, and reducing the abstract nature of claims. This idea is also of some
interest to the European Patent Convention regime, which generally allows func-
tional claims but only to the extent that any more precise definition would reduce
the scope of the invention (which is in fact the very purpose of ruling out func-
tional claims).163 The EPO Guidelines develop this, prohibiting attempts to define
an invention purely in terms of the result to be achieved (thus claiming the under-
lying technical problem), particularly if a claim is formulated in such a way as to
embrace other means, or all means, of performing the function.164

Another suggested idea is not to attack the upstream source of the problem, the
patentability of software, which is proving to be fairly immutable,165 but to limit
the effect or enforceability of software patents on the market, reducing the liability
risk for Open Source projects and users. One proposal is to legislate a ‘safe har-
bour’ from patent claims for software that runs on ‘general purpose machines’
(PCs and servers, terminal and mobile devices such as smart phones, routers, and
set-​top boxes, and so forth).166 This may seem rather conservative, for example
it would not apply to specifically programed hardware devices, and doesn’t really
deal with existing patents (unless the effect would be retroactive with regard to

	 161	 Santa Clara Law, ‘Solutions to the Software Patent Problem’ (16 November 2012) <https://​law.scu.
edu/​hight​ech/​2012-​soluti​ons-​to-​the-​softw​are-​pat​ent-​prob​lem/​> accessed 19 March 2021.
	 162	 US Patent Act—​35 USC, Article 112. See Mark Lemley and Julie Cohen, ‘Patent Scope and
Innovation in the Software Industry’ (2001) 89 California Law Review 1. See also Ballardini, ‘The
Software Patent Thicket’, see note 32.
	 163	 Article 83 EPC. See Synergestic herbicides/​CIBA GEIGY T68/​85, and subsequent cases.
	 164	 EPO Guidelines, C-​III, 4.10 and 6.5.
	 165	 See the summary of the debate around software patents that occurred in the EU in Free Software
Foundation-​Europe, ‘Software Patents in Europe’, FSFE Activities <https://​fsfe.org/​act​ivit​ies/​swpat/​
swpat.en.html> accessed 20 June 2022.
	 166	 Richard Stallman, ‘Let’s Limit the Effect of Software Patents, Since We Can’t Eliminate Them’
Wired (1 November 2012) <http://​www.wired.com/​opin​ion/​2012/​11/​rich​ard-​stall​man-​softw​are-​pate​
nts> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE  255

issued patents). Another suggested approach is to focus on interoperability and
standards and only allow software patents to be enforced against implementations
of standards where the patents had been previously declared during the standard
setting process. ‘All other software contexts should become off-​limits for patent
enforcement.’167

In the absence of any reform—​a prospect that the Open Source community
has advocated for more than twenty years but has never come close to fruition—​
Open Source projects must resort to classic defence strategies to deal with patent
risks: obtaining a licence, proving non-​infringement, proving invalidity due to
lack of novelty, obviousness/lack of inventive step, or inventiveness (or requesting
review, on the same bases), getting legal opinion support for invalidity or non-​
infringement (to reduce claims of wilful infringement), looking for other grounds
for non-​enforceability such as expiry, and eventually, of course, the technical solu-
tion of designing around the patent.168

	 167	 Simon Phipps, ‘Stop patent mischief by curbing patent enforcement’ Infoworld (9 November
2012) <http://​www.infowo​rld.com/​d/​open-​sou​rce-​softw​are/​stop-​pat​ent-​misch​ief-​curb​ing-​pat​ent-​
enfo​rcem​ent-​206​658> accessed 19 March 2021.
	 168	 See Richard Fontana et al, ‘A Legal Issues Primer for Open Source and Free Software Projects’
Software Freedom Law Center (2008) <http://​www.soft​ware​free​dom.org/​resour​ces/​2008/​foss-​pri​mer.
html> accessed 19 March 2021.

Knut Blind, Mirko Böhm, and Nikolaus Thumm, Open Source Software in Standard Setting In: Open Source Law, Policy
and Practice. Edited by: Amanda Brock, Oxford University Press. © Knut Blind, Mirko Böhm, and Nikolaus Thumm 2022.
DOI: 10.1093/​oso/​9780198862345.003.0011

11
Open Source Software in Standard Setting

The Role of Intellectual Property Right Regimes

Knut Blind, Mirko Böhm, and Nikolaus Thumm

	11.1	� Introduction � 256
	11.2	� Results from the Literature � 258
		 11.2.1	� Standards implemented

as Open Source software
(‘standard first’) � 258

		 11.2.2	� Open Source code as input
into a standard (‘software
implementation first’) � 259

		 11.2.3	� Open Source software
and standardisation in
parallel (‘standard and
implementation of the
standard in parallel’) � 261

		 11.2.4	� Summary of the literature � 262
	11.3	� Insights from Case Studies and

Stakeholder Consultation � 263
	11.4	� Compatibility of Intellectual

Property Regimes in Standards
Development Organisations
and Open Source Software � 266

	11.5	� Conclusion � 270

  

11.1  Introduction

In the communication ‘Setting out the EU Approach to Standard Essential Patents’
the European Commission1 announced in 2017 that it would analyse comple-
mentary possibilities for interaction and differences between Open Source soft-
ware and standardisation processes, and recommend solutions for the smooth
cooperation between standardisation and Open Source. Prior to this, the inter-
face between Open Source software and standardisation had been only marginally
touched both by researchers and practitioners in standardisation bodies or Open
Source communities.

	 1	 European Commission, ‘Communication from the Commission to the Institutions on Setting out
the EU approach to Standard Essential Patents’ <https://​ec.eur​opa.eu/​docsr​oom/​docume​nts/​26583>
accessed 11 March 2021

OPEN SOURCE SOFTWARE IN STANDARD SETTING  257

This chapter builds on results of the European Commission report by Blind
and Böhm2 on the interrelation between standardisation and Open Source soft-
ware, which refers in particular to the interaction between Open Source soft-
ware and FRAND (fair, reasonable and non-​discriminatory) patent licences in
standardisation. FRAND commitments aim to ensure that essential technology
protected by intellectual property rights (IP) included in a standard is made avail-
able to users of that standard on fair, reasonable, and non-​discriminatory terms.
FRAND commitments aim to prevent IP holders from refusing to license patents
and from charging licensees excessive fees (unfair or unreasonable) for standard
implemented patented technologies.

The intersection of Open Source software and FRAND licensing and its in-
tegration into the process of standard setting is considered throughout this
chapter. It does not consider other FRAND licensing related issues, nor does it
analyse specific FRAND court decisions. Comino, Manenti, and Thumm3 pro-
vide an overview of the wider FRAND-​related economic issues, and Baron
and Pentheroudakis4 provide a comprehensive analysis of the most important
FRAND court cases.

The complex interface of Open Source and standardisation processes is analysed
with a specific focus on the role of IP including FRAND licensing. Standards and
Open Source development are both processes widely adopted in the information
and communications technology (ICT) industry to develop innovative technolo-
gies and drive their adoption in the market. Innovators and policy makers often
assume that a closer collaboration between standards and Open Source develop-
ment would be mutually beneficial. The interaction between the two is however
not yet fully understood, in particular with regards to how the IP regimes applied
by these organisations influence their ability and motivation to cooperate. Most
Standards Development Organisations (SDOs) use FRAND licensing terms, while
widely used Open Source licences like the General Public Licence (GPL) are largely
incompatible with these terms.5

	 2	 Knut Blind, Mirko Böhm, and Nikolaus Thumm (ed), The Relationship between Open Source
Software and Standard Setting (Brussels: European Commission 2019).
	 3	 Stefano Comino, Fabio Manenti, and Nikolaus Thumm, ‘The Role of Patents in Information and
Communication Technologies. A Survey of the Literature’ (2019) 33(2) Journal of Economic Surveys
404–​30.
	 4	 Justus Baron, Chryssoula Pentheroudakis, and Nikolaus Thumm, (ed), Licensing Terms of Standard
Essential Patents, A Comprehensive Analysis of Cases (Brussels: European Commission 2017).
	 5	 Catharina Maracke, ‘Free and Open Source Software and FRAND‐based Patent Licenses: How to
Mediate between Standard Essential Patent and Free and Open Source Software’ (2019) 22(3–​4) The
Journal of World Intellectual Property 78–​102.

258  Knut Blind, Mirko Böhm, and Nikolaus Thumm

11.2  Results from the Literature

Relevant studies are divided into three categories, according to Lundell and
Gamalielsson,6 and Clark,7 without immediately taking into account the tension
between Open Source software licences and the FRAND regime regarding patents:

	 •​	 The first cases begin were standardisation projects within formal or informal
standardisation bodies but are eventually implemented as Open Source
projects.

	 •​	 The second option is the initial implementation of software via Open Source
projects, followed by a standardisation process.

	 •​	 The third and last option is the parallel development of standards and their
implementation as Open Source .

11.2.1  Standards implemented as Open Source software
(‘standard first’)

Examples of the implementation of standards via Open Source software are
discussed but are mainly developed in SDOs under a RF licensing scheme, for
example the Organization for the Advancement of Structured Information
Standards (OASIS) and the World Wide Web Consortium (W3C). According
to Phipps,8 these SDOs are characterised by an implementation-​oriented ra-
ther than requirement-​oriented standardisation approach. There are also some
standards published by the SDOs using the FRAND regime. However, there
are no declarations of Standard Essential Patents (SEPs) referring to these
standards.

Nevertheless, due to the general contradiction between the FRAND regime and
some Open Source licences, there is still a latent fear of conflicts with potential SEP
holders, and the popular GPL licence is not compatible with FRAND.

	 6	 Björn Lundell and Jonas Gamalielsson ‘On the Potential for Improved Standardisation through
the Use of Open Source Working Methods in Various Standardisation Organisations: How Can Open
Source Projects Contribute to the Development of IT Standards’ in Kai Jakobs and Knut Blind (eds),
Digitalisation: Challenge and Opportunity for Standardisation: Proceedings of the 22nd EURAS Annual
Standardisation Conference (Mainz: Verlag Mainz, 2017) 137–​55.
	 7	 Jamie Clark, ‘Konvergenz, Zusammenarbeit und intelligentes Einkaufen in offenen Standards
und Open Source (Diashow)’ (ITU/​NGMN Joint Workshop on OS, San Diego 2016) <https://​www.sli​
desh​are.net/​Jami​eCla​rk1/​oasis-​at-​itun​gmn-​conv​erge​nce-​collab​orat​ion-​and-​smart-​shopp​ing-​in-​open
standards-​and-​Open Source-​81474699> accessed 7 March 2021.
	 8	 Simon Phipps ‘Open Source and FRAND: Why Legal Issues Are the False Lens to Understand the
Open Source and FRAND issue’ OpenForum Europe (2019) <http://​www.open​foru​meur​ope.org/​wp-​
cont​ent/​uplo​ads/​2019/​03/​OFA_​-​_​Opi​nion​_​Pap​er_​-​_​Si​mon_​Phip​ps_​-​_​OS​S_​an​d_​FR​AND.pdf> ac-
cessed 7 March 2021.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  259

There is some assertion that Open Source software licences, such as the MIT or
BSD licences, may be compatible with FRAND.9 However, there is no general con-
sensus on this conclusion, as others argue10 equally that these are only complemen-
tary licences and are not compatible.11 Furthermore, the idea of incompatibility of
specific licence systems with a FRAND regime is supported by a significant per-
centage of Open Source programers.12

The concerns of the Open Source software communities regarding the lack of
clarity of FRAND licensing conditions is becoming more important due to the
increasing relevance of the successful implementation of standards for quality and
success. These may also, as with other patent concerns, be countered in a number
of defensive IP structures as discussed in Chapter 10.

11.2.2  Open Source code as input into a standard
(‘software implementation first’)

The second category, according to Lundell and Gamalielson,13 is character-
ised by the initial implementation of software, which ultimately leads to tech-
nical specifications of standards, which Phipps14 also calls ‘implementation-​led
standardisation’. In this scenario, a software implementation precedes the develop-
ment and approval of the technical specifications of a standard published by either
a formal and/​or informal SDO. According to Li,15 it is generally more complicated
for SDOs to use Open Source working practices to develop standards.

In addition to the inclusion of software code in the technical specifications of
standards, the functions of the code can also be transferred to a standard. Li16
makes a distinction here between the different licences applicable to the Open
Source code. If the licence does not contain a patent clause, the patent issue is still
important under the policy of the relevant SDO, possibly subject to a FRAND
obligation (under Li 2017). However, if a licence contains a patent clause, the pa-
tent right in that licence is granted on an RF basis and leaves open the question of

	 9	 David Kappos and Miling Harrington, ‘The Truth About OSS-​FRAND: By All Indications,
Compatible Models in Standard Settings’ (2019) XX The Columbia Science and Technology Law Review.
	 10	 European Commission, ‘Implementation of FRAND standards in Open Source: Business as usual
or Mission impossible?’, see note 3.
	 11	 Phipps ‘Open Source and FRAND’, see note 8.
	 12	 Rudi Bekkers and Andrew Updegrove, A Study on Intellectual Property Rights Policy and Practice of
a Representative Group of Standards Setting Organizations Worldwide (Washington: National Research
Council, 2012)
	 13	 Lundell and Gamalielsson ‘On the Potential for Improved Standardisation’, see note 6.
	 14	 Phipps ‘Open Source and FRAND’, see note 8.
	 15	 Jingze Li ‘Licensing tensions in the context of the inclusion of Open Source in the context of formal
standard setting—​The case of Apache V.2 in ETSI as a beginning’ ITU Kaleidoscope (2017) <https://​iee​
expl​ore.ieee.org/​docum​ent/​8246​986> accessed 7 March 2021.
	 16	 Li ‘Licensing tensions in the context of the inclusion of Open Source in the context of formal
standard setting’, see note 15.

260  Knut Blind, Mirko Böhm, and Nikolaus Thumm

whether SDOs can require patent holders who contribute patents to the standard
to license these under FRAND licensing, where there is already an Open Source
licence with RF patent licences, and how any inherent conflict between the two
would be resolved. Li17 states that this is not yet established in the current IP regu-
lations of the SDOs.

Since most SDOs have not incorporated specific rules for licensing Open Source
code into the specifications of standards, Li18 concludes that the Open Source li-
censing terms are the ‘only clearly applicable rule’. Consequently, the granting of
RF licences for the use of the code in embedded standard technologies should be
applied.

However, such rules could be a strong disincentive for at least some innovators
holding patents, as this would remove the possibility of charging royalties on SEPs,
which might be one of the main incentives for many innovators to contribute to
standardisation.19 In the survey by Blind and colleagues,20 patent-​owning com-
panies rated the relevance of the freedom of action achieved by a standard as a
much higher incentive than any associated royalty payment.

In addition to the conflict between the licensing conditions for Open Source and
patents, there is a systemic conflict in licensing software under the Open Source
licensing conditions and patents under FRAND. Open Source licences follow a
cascade effect that restricts implementers in other areas not covered by FRAND.21
Although patents are used free of charge, licences generally contain a ‘patent retali-
ation clause’ that prevents recipients from litigating against the work, including the
patented contribution by terminating the patent right. This is intended to prevent
implementers from filing a lawful lawsuit if they find that their patents contained
in the same work have been infringed. However, the current IPR regimes of the
SDOs guarantee patent holders this possibility.

In summary, the current frameworks utilised by both formal SDOs and informal
consortia seem to allow the integration of Open Source into their standard devel-
opment process and standards. SDOs, such as W3C and OASIS, have more of an
RF culture with regard to patents and consequently have a rather limited number
or no SEPs at all, and are pioneers in launching proactive initiatives to include
Open Source in their standards. Despite the challenges for SDOs using FRAND,
the exclusion of Open Source code from the specifications of the standards is not a

	 17	 Li ‘Licensing tensions in the context of the inclusion of Open Source in the context of formal
standard setting’, see note 15.
	 18	 Li ‘Licensing tensions in the context of the inclusion of Open Source in the context of formal
standard setting’, see note 15.
	 19	 For example, Josh Lerner and Jean Tirol ‘Standard-​Essential Patents’ (2015) 123(3) Journal of
Political Economy 547–​86
	 20	 Knut Blind, Rainer Bierhals, Eric Iversen, et al, Study on the Interaction between Standardization
and Intellectual Property (Karlsruhe: Fraunhofer Institute for Systems and Innovation Research, 2002)
	 21	 Li ‘Licensing tensions in the context of the inclusion of Open Source in the context of formal
standard setting’, see note 15.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  261

sustainable strategy, as the available code base is already large and widely adopted
which continues to grow.

In addition, some Open Source communities claim to set de facto standards,
which calls into question both formal SDOs and informal consortia.22

Finally, both the increasing competition between SDOs and consortia and the
additional competition from the Open Source communities as additional standard
setters are likely to increase the pressure to cooperate with the latter. Industry
standards can be developed through competition between communities, with no
formal specification at all.

11.2.3  Open Source and standardisation in parallel (‘standard
and implementation of the standard in parallel’)

In the two previous categories, a clear distinction was made between the starting
point of the process and the transfer to the other area. Category three, however,
represents the interaction between the development of technical specifications of
a standard together with the development of one (or more) implementation(s) of
technical specifications of a standard in Open Source software.

Lundell and Gamalielsson,23 who further develop Gamalielsson and col-
leagues,24 analyse the bi-​directional influences between the Open Source project
Drupal, which is distributed under the copyleft GPLv2.0 licence, and the develop-
ment of the RDFa standard for data exchange on the web at the W3C. Support for
RDFa 1.0 was achieved in Drupal through its first implementation in the core of
Drupal 7 (RDFa is implemented in a separate module in Drupal).25

The summary of the findings in connection with the third category of parallel
developments in Open Source and standardisation confirms the observations
made in connection with the first and second categories. In the early days of the
Internet, the International Engineering Task Force (IETF), as a consortium driven
by individual members, like Open Source projects, was involved in the develop-
ment of an email format in parallel with Open Source projects. The few cases of
close interaction between Open Source and standardisation are mainly concen-
trated in consortia with a strict RF and rather patent-​incompatible licensing policy,
that is W3C or OASIS. It has already been noted that they are in a better position to
integrate input from Open Source projects, as opposed to the formal SDOs that use
the FRAND structure.

	 22	 Andrew Updegrove ‘Licensing standards that contain code: Heads or tails?’ ConsortiumInfo.org
(2015), <http://​www.con​sort​iumi​nfo.org/​standa​rdsb​log/​artic​les/​licens​ing-​standa​rds-​incl​ude-​code-​
heads-​or-​tails> accessed 7 March 2021.
	 23	 Lundell and Gamalielsson ‘On the Potential for Improved Standardisation’, see note 6.
	 24	 Jonas Gamalielsson, Björn Lundell, Jonas Feist et al, ‘On Organizational Influences in Software
Standards and Their Open Source Implementation’ (2015) 67 Information and Software Technology 30–​43.
	 25	 Lundell and Gamalielsson ‘On the Potential for Improved Standardisation’, see note 6.

262  Knut Blind, Mirko Böhm, and Nikolaus Thumm

The recursive integration of inputs from standardisation or Open Source can
lead to a ‘virtuous circle’ of standards of higher quality and wider dissemination. In
contrast the challenges for the FRAND-​based SDOs and consortia will also create
difficulties for parallel innovation developments. In the long term, higher quality
standards due to Open Source inputs and their wider dissemination through Open
Source adoption will further increase the pressure on formal SDOs and informal
consortia under the FRAND regime.

The limited focus of SDOs on copyright in general and on software or Open
Source in particular has a number of economic implications. First, the few SDOs
or consortia that deal explicitly with software are able to develop a stronger profile
in the standardisation of topics based on software alone or on the combination
of software and hardware. Here, the actors with a need for standardisation obvi-
ously decide according to the perceived competencies of SDOs, including govern-
ance in connection with software. Secondly, the FRAND regime, which is relevant
for the licensing of SEPs established in traditional SDOs, in other words mem-
bers of the International Organization for Standardization (ISO), and therefore
guided by ISO/​ International Electrotechnical Commission (IEC)/​International
Telecommunication Union (ITU) policies on IP,26 does not necessarily attract
contributors to Open Source used to more RF-​dominated licensing systems.
Therefore, separation or division of labour is likely to continue in the future, des-
pite the considerable efforts of ETSI, in particular, to find solutions for the coexist-
ence of FRAND and Open Source licences, as expressed by some of its members
in the Fair Standards Alliance.27 Secondly, the rather strict RF-​based policies of
OASIS and W3C,28 which follow the Open Source licensing regime, facilitate the
implementation of their standards. Thirdly, the IP policy of SDOs in relation to
software is linked to their business models, especially those that do not make their
services freely available. It is more difficult to sell standards under a freely licensed
regime that integrates Open Source into standards. However, this area of tension
has not yet been addressed in the rules of the SDOs and consortia.

11.2.4  Summary of the literature

The background, as presented in the literature review, leads to very general con-
clusions regarding the growing importance of standard-​setting processes and their
use of IP, not only patents but also copyright to software. The general assessment

	 26	 Justus Baron, Jorge Contreras, Martin Husovec, et al, and Nikolaus Thumm (ed), Making the
Rules; The Governance of Standard Development Organizations and their Policies on Intellectual Property
Rights (Brussels: European Commission 2019).
	 27	 Fair Standards Alliance ‘The Importance of Maintaining the Open Source Software Value Proposition’
(Brussels: Fair Standards Alliance, 2017) <http://​www.fair-​standa​rds.org/​wp-​cont​ent/​uplo​ads/​2016/​08/​
FSA-​Main​tain​ing-​The-​Open source-​Software-​Value-​Proposition.pdf> accessed 7 March 2021
	 28	 Baron, Contreras, Husovec, et al, and Thumm (ed), Making the Rules, see note 26.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  263

is that standardisation plays a multidimensional role; it mediates between science-​
and technology-​driven research and innovation and demand-​oriented innovation
policy,29 which is framed by various regulatory regimes. Patents and software, in-
cluding Open Source, are the main IP rights used as input for ICT standardisation
and are also relevant for the accessibility of ICT standardisation results. Therefore,
the use of IP in standardisation processes adds another dimension.

In general, standards are developed by a number of different actors in a volun-
tary, consensus-​based process. In view of the associated increasing diversity of
interests of the actors involved in standard-​setting, governance in standard-​setting
determines the success of SDOs in terms of integrating the various interests, which
is also called for by the European Commission. Effective rule-​setting and govern-
ance of SDOs are critical to the successful development and, ultimately, implemen-
tation of standards. IP policies developed by SDOs will have to take into account
not only specific rules and procedures for FRAND licensing relevant to patents but
even more so the treatment of Open Source .

11.3  Insights from Case Studies and Stakeholder Consultation

The recent study by Blind and Böhm30 for the European Commission comprises a
detailed empirical investigation of the interaction between standard development
organisations and Open Source communities. It is based on twenty case studies, a
survey of stakeholders (more than 300 respondents) from SDOs and Open Source
and an expert workshop. The case study analysis revealed different views on the na-
ture of possible collaboration between SDOs and the wider Open Source commu-
nity. The most commonly used thinking model for ‘working with the Open Source
community’ within SDOs is the expectation that SDOs will develop specifications
into standards, and the Open Source community will then implement them. This
approach is based on the assumption that a specification is initially created as part
of a standards development process, and the creation of a concrete, compliant
product is left to the implementers competing in the market. As discussed, this
specification-​oriented approach to standardisation is only used in a minority of
Open Source instances.

The cases and literature revealed that two-​thirds of these can be considered as
highly innovative, large-​scale collaborations that have found broad or sometimes
worldwide acceptance, for example Java, Linux, and PDF. Almost one-​third had a
significant impact on a specific market segment. In the most recent cases, no im-
pact has been realised as of yet, although they are considered innovative by the

	 29	 OECD, Demand-​Side Innovation Policy (OECD 2011).
	 30	 Blind, Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.

264  Knut Blind, Mirko Böhm, and Nikolaus Thumm

participants. About half of the cases achieved market-​wide relevance across several
industries as basic technologies or by promoting business-​critical infrastructure.

There is no clear definition of industrial sectors and sub-​sectors concerned,
as technologies dealt with in the case studies have many uses. As a general cross-​
industry trend, computer and telecommunications systems are becoming funda-
mental technologies for various products and business processes.

The choice of an early, parallel, or late approach to standardisation neither limits
the chances of success of a project nor is a specific approach as a prerequisite for a
successful standard. However, the incubation of new technologies and functions
today is more often done through joint implementations or reference implemen-
tations under Open Source licences. Most of the innovations to which the cases
refer are presented to the SDOs as soon as proven implementations exist and are
generally available. Some participants in the case studies stressed that they do not
see the development of standards as a means of creating real innovation but as a
means of building industry consensus on available technologies to enable econ-
omies of scale. In general, models of governance and cooperation must be seen by
the relevant actors as appropriate to motivate them to participate, since the most
widespread technologies are also those that attract a large number of participants
in their development.

In summary, the case studies have developed a partial focus on the networks and
telecommunications sub-​sector. This was expected since the interaction between
standards and development is naturally located at software–​hardware interfaces
and the telecommunications industry has a more established history of standards
practices. The cases show that there are numerous successful collaborations be-
tween standards and Open Source development and that they have developed ma-
ture, well-​established governance, such as ECMA TC39 or ISO JTC1.31 Both Open
Source and SDO procedures are suitable for the development of technical solutions
on both a small and large scale. Those of the observed collaborations that intro-
duced explicit patent licensing systems opted for RF ex ante licensing with sym-
metrical terms between contributors and between domestic and foreign licences.
SDOs are usually not the driving force for technical developments. More often,
Open Source communities hatch new technical solutions until they become candi-
dates for standardisation and market penetration. The Open Source umbrella or-
ganisations and foundations (see Chapter 18) increasingly offer functions such as
platforms for collaboration and consensus building, which have traditionally been
provided by SDOs.

In the study by Blind and Böhm,32 stakeholders were also asked about their as-
sessment of the interaction between Open Source and standardisation in terms of

	 31	 Baron, Contreras, Husovec, et al, and Thumm (ed), Making the Rules, see note 26.
	 32	 Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  265

efficiency and results. The majority of participants saw a positive effect of this link.
In particular, around 70 per cent of respondents saw a positive impact on the de-
velopment of specifications for technical solutions contributing to interoperability
and on the implementation of technical solutions. The benefit of standardisation
lies less in the idea of new technical solutions and more in their validation and
ultimately in their dissemination, since only about 60 per cent of those sur-
veyed expect positive effects in this area. Negative effects of the interaction on
standardisation are generally not to be expected. The distinction between small
and large organisations shows that the former tend to expect a positive impact on
the identification of possible technical solutions, that is the idea finding, and the
drafting of specifications of technical solutions, that is interoperability, while the
latter see the benefits particularly in the implementation of technical solutions.

Looking at the effects of interaction on Open Source, we observe an even higher
proportion of respondents perceiving positive effects. More than 75 per cent expect
a positive impact on the development of specifications for technical solutions, par-
ticularly in the context of interoperability, and on the implementation of technical
solutions. While about 70 per cent see positive effects on Open Source both for the
identification of possible technical solutions and their dissemination, less than 60
per cent of the respondents expect positive impulses for the validation of technical
solutions. Again, no negative effects were found. The distinction between small

0%

26

26

26

26

26
16

15
11

16

16

16

16

Identi�cation of possible technical solutions
(ideation)

Creation of speci�cation of technical solutions
(interoperability)

Implementation of technical solutions

Validation of technical solutions

Fostering the di�usion of technical solutions

Other e�ects

25% 50% 75% 100%

% <250 % 250+

Figure 11.1  Positive impact of interconnection of Open Source and standardisation
on efficiency and results of Open Source—​SMO vs LO
Source: Blind and Böhm 2019, p. 156.
Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.

266  Knut Blind, Mirko Böhm, and Nikolaus Thumm

and large organisations, in contrast to the expected impact on standardisation,
shows that the former expect rather positive effects on the validation and dissem-
ination of technical solutions while larger organisations again see the advantages in
the implementation of technical solutions, but also in the identification of possible
technical solutions in the field of Open Source.

Comparing all assessments of networking in terms of efficiency and results, it
becomes clear that smaller organisations perceive the knowledge flow from Open
Source to SDOs in such a way that the latter receive new ideas as input for tech-
nical solutions. Larger organisations see advantages for SDOs of Open Source in
implementing technical solutions. In contrast, smaller organisations experience
positive effects of standardisation on Open Source on the validation and dissemin-
ation of technical solutions. There are a complementary impacts explained by the
size of the organisations.

11.4  Compatibility of Intellectual Property Regimes
in Standards Development Organisations and

Open Source Software

The limited research that deals explicitly with the interaction of SEP licences and
Open Source focuses primarily on the legal compatibility of Open Source licences
with the FRAND licensing of SEP. This is an important dimension of interaction
since any directly contradictory condition in a given combination of Open Source
and FRAND licence would prohibit a combination of the two works in a product.
However, Blind and Böhm,33 as well as Maracke34 and Phipps,35 point out that an-
swering the question of legal compatibility is not a sufficient precondition for pos-
sible cooperation between SDOs and Open Source.

Blind and Böhm36 find that the question of legal incompatibility can only be
assessed in relation to a specific contractual situation and the individual condi-
tions applied in the specific Open Source and FRAND licences. Legal compati-
bility checks only produce useful results in a specific licensing relationship with
a specific Open Source licence in conjunction with specific FRAND terms. Even
if a case does not show any incompatibilities, this only means that cooperation is
legally possible, not that participants from SDOs and Open Source software would
be willing to participate and contribute to a common result. The legal compati-
bility of the licensing conditions is a necessary condition, but not sufficient to

	 33	 Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.
	 34	 Maracke, ‘Free and Open Source Software and FRAND‐based Patent Licenses’, see note 5.
	 35	 Phipps ‘Open Source and FRAND’, see note 8.
	 36	 Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  267

establish a successful cooperation between the SDOs and the Open Source soft-
ware communities.

IP regimes serve different purposes in SDOs and in Open Source communities.
Open Source licences mirror and follow collaboration models and represent how
participants imagine the jointly created products to be used, resulting in a classifi-
cation into strong-​copyleft, weak-​copyleft, and permissive Open Source licences.
Governance within the Open Source communities initially developed as a model
of cooperation and is then reinforced by choice of one or more licences.

In contrast, the IP frameworks of SDOs regulate how participants engage and
how conflicts are resolved. Special attention is paid to how participants can later
withdraw from pre-​competitive collaboration in SDOs and compete again in prod-
ucts that implement the developed standard. This rationale is alien to the Open
Source communities, as they do not intend to re-​enter the competitive arena once
a functional area is covered by an industry standard Open Source implementa-
tion. This contradiction could predict the idea that an Open Source community is
creating reference implementations to a standard alongside other competing im-
plementations. In the same context, Open Source communities see no benefit in
participating in the development of standards only to facilitate alternative or com-
peting implementations.

The investigation by Blind and Böhm37 does not provide evidence that the
limited cooperation between standards and Open Source development is caused
by the uncertainty about the legal compatibility between SDOs and Open Source
in the IP regimes. Most of the Open Source projects observed in this study use li-
cences with reciprocal conditions or explicit patent grants and interacted product-
ively with the SDOs relevant for their market segment. Some SDOs have responded
to Open Source-​related market changes by introducing flexible, or toll-​free IP re-
gimes such as W3C and OASIS, and adopting Open Source inspired methods of
collaboration. The study by Blind and Böhm38 does not find a need to reconcile
SDOs and Open Source IP policies. With the exception of the telecommunications
subsector, there seems to be no conflict between SDOs’ IP policies and the policy
of Open Source IPs.

It seems that in practice participants adapt to the methods of cooperation and
IP policies applied by the communities with which they cooperate, compromising
between the contribution of their own IP and access to the overall contributions of
the participants. For activities at the interface between standards and Open Source
development, this usually means the introduction of a RF patent licensing policy
for all examined cases except ETSI-​NFV and OpenAirInterface, which actively

	 37	 Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.
	 38	 Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.

268  Knut Blind, Mirko Böhm, and Nikolaus Thumm

anticipate the inclusion of FRAND-​licensed SEPs in the developed standards. This
expectation of RF licensing is considered acceptable and is not an obstacle to co-
operation or the development of relevant standards.

In contrast to the distinction between licence-​free and FRAND used in
standardisation, several licensing models have been developed for Open Source, as
discussed in Chapter 3. Looking at the most common regimes the Apache Licence
2.0, the MIT Licence, and the GPLv2.0 are the three most common in the study by
Blind and Böhm,39 followed by the GNU 3 and the BSD Licence 2.0. This ranking
largely corresponds to the already publicly available data, which confirms both
the validity of the selected cases and the representativeness of the sample. Less
common are the GNU LGPL 2.1, the Simplified BSD Licence, the GNU LGPL 3.0,
and the Eclipse Public Licence.

In addition to the significant differences in the general attractiveness of the
various Open Source licensing models, there are discrepancies between larger and
smaller organisations. The latter prefer both the GNU General Public Licence 3.0
and the GNU LGPL 3.0 and the former are inclined towards the permissive MIT
and BSD licences. In the case studies, however, it can be observed that many licence
selections are made in the early phase of an Open Source project and are never
changed. This supports the assertion that licence choice in communities follows
the collaborative model that contributors seek, and that newer projects with more
corporate contributors more often choose licences with explicit patent clauses,
as in the Apache 2 or GPL 3 licences, as opposed to implicit or missing patent li-
cence terms.

Overall, a framework for patent licensing has been established, either through
the use of Open Source licences, which involve the granting of patents owned by
the participants or by requiring a declaration by the SEP or a commitment by the
participants to patent licensing. Although host organisations allow an option for
FRAND-​based patent licensing in several cases, almost all cases have opted for a
RF patent licensing policy. This is either because patents whose claims cover stand-
ardised functionality have expired, as in the case of C+​+​, or because the working
group aims to make the standard freely available, with the policy of no fees being
implemented through a contributor licence agreement.

In case of conflict, the strict separation between Open Source and FRAND li-
cences is still the preferred option, followed by negotiations to find solutions based
on the experiences reported in specific cases. If no solutions are found, small or-
ganisations, in particular, will withdraw from standardisation. Another possibility
is the use of pure copyright licences, which explicitly exclude patent licensing
rights that are negotiated separately. Such licences are not recognised as Open

	 39	 Blind and Böhm, and Thumm (ed), The Relationship between Open Source Software and Standard
Setting, see note 2.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  269

Source licences according to the Open Source Definition. Sometimes more flexible
IP models are used in SDOs, which allow IP schemes and even withdrawal from
Open Source software on a case-​by-​case basis. This is less likely than withdrawal
from standardisation.

While there are no convincing constructive solutions for conflicts between
Open Source and licensing models in standardisation, some approaches to general
cooperation between standardisation and Open Source software are more prom-
ising, especially from the perspective of smaller organisations:

	 •​	 First, the stakeholders call for greater flexibility in the patent policy of SDOs.
	 •​	 Secondly, new processes for integrating Open Source into standardisation.
	 •​	 Thirdly, not only is a more flexible patent policy called for, but it is even

proposed that SDOs change their patent policy in the direction of licence
freedom.

	 •​	 Fourthly the use of Open Invention Network or equivalents with respect to
the patents in the SEPs or subject to FRAND licensing.

	 •​	 There are also new governance and conflict resolution models, the use of li-
cences that explicitly exclude patent rights, and finally, a direct combination of
SDOs and Open Source communities.

Avg. <250 Avg. 250+

Apache License 2.0

1 2 3 4 5

MIT License

GNU General Public License (GPL 2.0)

GNU General Public License (GNU) 3.0

BSD License 2.0 (3-clause, New or Revised) License

GNU Lesser General Public License (LGPL) 2.1

Simpli�ed BSD License (BSD)

GNU Lesser General Public License (LGPL) 3.0

Other Licenses

Eclipse Public License (EPL)

Artistic License (Perl)

Microso� Public License

ISC License
OpenAirInterface (OAI) So�ware Alliance License Model

Figure 11.2  Participation in Open Source activities with various copyright licences—​
SMO vs LO (Scale: 1 =​ ‘Never’; 2 =​ ‘Rarely’; 3 =​ ‘Sometimes’; 4 =​ ‘Often’; 5 =​ ‘Always’)
Source: Blind and Böhm 2019, p. 159.
Blind, Böhm, and Thumm (eds), The Relationship between Open Source Software and Standard Setting,
see note 2.

270  Knut Blind, Mirko Böhm, and Nikolaus Thumm

11.5  Conclusion

The development of the IP framework in the ICT sector is complicated by the on-
going hardware commodification, which leads to the predominant use of off-​the-​
shelf general-​purpose computers that integrate virtually all primary ICT functions
such as computing, storage, networking, or telecommunications, and peripherals.
Manufacturers face a market situation in which they need access to an extensive
and comprehensive set of IP held by different players to produce competitive prod-
ucts. This means that standards and Open Source development must be analysed in
combination when assessing governance standards and IP frameworks in the ICT
sector. Market players are aware of this situation and have, in part, already adjusted
by generally preferring consensus-​oriented cooperation. Formal rules serve as a
fallback for conflict resolution and may not form a practical day to day solution.

Compatibility between Open Source and FRAND licence conditions is recog-
nised as a prerequisite for collaboration but is not communicated as a practical
problem and is considered solvable. Legal compatibility is a necessity but not a
sufficient condition for possible collaborations of SDOs and Open Source. Only a
small number of licences are relevant in practice, which reduces the problem space
for the analysis of the compatibility of Open Source software and FRAND licences.

Regarding the existence of conflicts between the various copyright licences
and the licensing models in standardisation, in particular FRAND, both the GPL
2.0 and 3.0 and the LGPL 2.1 and 3.0 are mentioned by the majority of the stake-
holders. Even with incompatibilities between Open Source licences and SDO IP
frameworks, the stakeholders typically resolved these issues or worked around
them driven by the common interest in the collaborative development of a stand-
ardised technology.

In case of conflicts, the strict separation between Open Source software and
FRAND licensing is still the preferred option, followed by negotiations to find so-
lutions supported, and if no solutions are found, in particular small organisations
withdraw from standardisation.

Another less popular option is the use of copyright-​only licences explicitly ex-
cluding patent licence rights, which are negotiated separately.

SDO governance focuses on the legal and IP framework and is implemented
within policy constraints in a self-​regulatory manner, building on the basic policies
defined in interaction with policy-​makers (for an overview of different SDO IP
governance models see the reference by Baron and others).40 Open Source govern-
ance is anchored in cooperation models and builds on as yet unregulated authority
within the autonomous group of contributors. Open Source governance continues

	 40	 Baron, Contreras, Husovec, et al (eds), Making the Rules, see note 26.

OPEN SOURCE SOFTWARE IN STANDARD SETTING  271

to converge, with volunteer-​led communities relying on more implicit govern-
ance standards and industry-​led Open Source communities, creating more ex-
plicit rules in increasingly normalised project charters and governance structures.
Governance in SDOs and Open Source communities still differ in key aspects of
philosophy and implementation, which is a significant obstacle for collaboration.

SDO processes are inclusive in terms of involving a broadly defined group of
stakeholders. They are also integrated into industry and policy-​making. Open
Source communities usually include companies, other organisations, and indi-
vidual software developers without any systematic multi-​stakeholder engagement.
There is a strong overlap of participants in the development of standards and Open
Source, especially for large companies. Overall, Open Source processes have a
merit-​based structure and are less accessible to policy-​makers and difficult to in-
fluence in line with industrial and innovation policy objectives.

Both SDO and Open Source communities are capable of small to large collab-
orations (in terms of the number of participants) and small to significant R&D
investments. The Open Source umbrella organisations increasingly provide plat-
forms for cooperation and consensus building, traditionally provided by SDOs.
The broader use of implementation first and parallel approaches to standardisation
influences the utility of specifications concerning the value of common deploy-
ments. This changes the role of standards themselves, as standards and the devel-
opment of Open Source become alternatives to achieve market dissemination for
a technology. Open Source is a new challenge for innovation management as it
creates an innovative, state-​of-​the-​art technology offered with the attributes of a
consumer good, with the potential for accelerated mass adoption, which have trad-
itionally been seen as opposites and public goods.

Globalisation and online collaboration are shaping the landscape of Open Source
communities and SDOs to the extent that interactions are based primarily on rele-
vance in the respective market segment and less on formal recognition. However,
formal recognition still serves a purpose as it signals, for example, relevance for
security standards and for a reliable basic policy accepted by policy-​makers. The
converging functions of SDO and Open Source umbrella organisations offer actors
a choice of platforms that did not previously exist. Both approaches are successful
in providing interoperability and competitive, innovative technical solutions. In
both cases, access to a wide range of technologies needed to produce competitive
products is key to the freedom of action of the implementers.

Three scenarios were observed: specification-​first, implementation-​first, and
parallel standardisation. The ‘Specification First’ approach is becoming less im-
portant in relative terms but is still essential in specification-​driven technology
areas. In particular, the parallel approach to standardisation represents some of the
successful interactions between standards and Open Source development and can
lead to higher quality standards, more innovation, and better implementation.

272  Knut Blind, Mirko Böhm, and Nikolaus Thumm

Innovation policy focuses on the framework conditions for IP and the orienta-
tion of research and development financing towards increasing competitiveness
and promoting the development of technological champions and industrial com-
petence areas. Open Source processes represent a viable additional approach for
the development of technical standards. The success of Open Source communities
is driven by their dynamic capacity for innovation.

Mishi Choudaray and Michael Cheng, Export Control In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Mishi Choudaray and Michael Cheng 2022. DOI: 10.1093/​oso/​9780198862345.003.0012

12
Export Control

Mishi Choudaray and Michael Cheng

	12.1	� Introduction � 273
	12.2	� Export Control Checklist � 274
		 12.2.1	� Pre-​emption and conflicts

of laws � 274
		 12.2.2	� Subject matter � 274
		 12.2.3	� Definition of export,

re-​export, deemed export � 275
		 12.2.4	� Entity-​based restrictions � 275
		 12.2.5	� Exception for publicly

available technology � 275

	12.3	� Case Study: Application of
Export Control Regimes to
Open Source in the US � 276

	12.4	� Survey of Export Control
Regimes � 278

		 12.4.1	� United Kingdom� 278
		 12.4.2	� European Union� 279
		 12.4.3	� China � 280
	12.5	� Recommendations � 281

  

12.1  Introduction

Export control is one of many types of trade regulation that governments use to
promote their economic, diplomatic, and national security interests through inter-
national commerce. Other forms of trade regulation include sanctions, tariffs, em-
bargoes, and the closely related import control regime, among others. Similar to
any other policy-​making exercise, trade regulation will often have unintended side
effects in areas outside of policy-​makers’ then-​current core objectives and prior-
ities. The distributed manner in which Open Source and other decentralised col-
laboration models (such as blockchain) are developed, improved, and licensed in
the context of international trade will often create such side effects and continue to
create novel questions of how to apply trade regulations designed for more trad-
itional means of commerce.

The complexity of navigating trade regulation is loosely driven by trajectories
of trade liberalisation and economic nationalism. Understanding how the policy-​
makers will wield the specific types of technologies that impact your organisation
will be critical in formulating long-​term plans for how your organisation will meet
the challenges or capture the opportunities presented by a changing geopolitical
landscape.

In this chapter, we will first present a checklist with common issues when ana-
lysing export control issues in Open Source, followed by an example of how export

274  Mishi Choudaray and Michael Cheng

control regimes have been applied to Open Source ecosystems in the US, and a
survey of the applicable export control regimes in the UK, the EU, and China.

12.2  Export Control Checklist

12.2.1  Pre-​emption and conflicts of laws

In many jurisdictions, export control regimes are pre-​empted by other forms of
trade regulation or other national laws and regulations, particularly comprehen-
sive or list-​based sanctions, some of which may overlap and in some cases conflict.
These need to be analysed as a first step prior to starting any substantive export
control analysis. Export control analysis in some cases may also need to be fol-
lowed by import control analysis, as many jurisdictions outright prohibit or re-
quire licensure for the import of certain technologies or products.

12.2.2  Subject matter

Jurisdiction over what technology is subject to export control regimes is commonly
based on the origin of the technology created and where additional elements were
added. This may go so far as to consider where individual components originated.
Governments typically assert export control jurisdiction over materials with a
minimum level of technology or materials that originate domestically. The critical
and sometimes challenging question becomes what exactly is the minimum level
of technology that is needed to subject an otherwise foreign piece of technology to
domestic export control regulations. The answer to the question typically depends
on what the technology is and the export destination, among other factors. The
answer may also prescribe a value threshold (the relative value of a specific com-
ponent vis-​a-​vis an entire product) for whether or not a component is subject to
domestic export control regimes.

In the context of Open Source (and with complex technology products with
global supply chains), unless you are in a position conclusively and easily to iden-
tify the origin of all contributions or components, it may be most practical to as-
sume that multiple export control regimes apply from all jurisdictions from which
at least some contributions originate. Unless there is a convincing case for deter-
mining that a particular regime does not have jurisdiction, it is rarely fruitful to
invest time into digging into the origin of contributors for Open Source. Moreover,
the economics of Open Source development make it inherently challenging to
value specific contributions.

EXPORT CONTROL  275

12.2.3  Definition of export, re-​export, deemed export

In general, export control regimes have taken a fairly broad view on what activ-
ities constitute an export for the purposes of falling within the jurisdiction of a
particular regime. Typically, no sale or exchange is required, and even domestic
disclosures of source code to foreign nationals may be deemed an export. Export
control regulations also often follow the path of domestic origin technology, so
transfers across international borders completely outside the domestic borders of a
given regime may also be subject to a ‘long arm reach’ regulation. Given the broad
definition of what activities would fall within export control regimes, most rou-
tine operations of Open Source projects involving the transfer or sharing of infor-
mation about source code would probably qualify as an ‘export’ under such broad
definitions.

12.2.4  Entity-​based restrictions

Similar to the way that national and international sanctions work, export control
regimes may also call out specific entities (including specified affiliates) that may
not receive even basic or foundational technology without a specific approval or
licence from the relevant government entity.

12.2.5  Exception for publicly available technology

Some export control regimes may provide specific exemptions for technology or
materials that are made publicly available or produced in the pursuit of scientific
research. These exemptions provide the most compelling basis on which to assert
that fully public Open Source development does not fall within the jurisdiction
of export control regulations. The prevailing interpretation is that in most cases,
forks, pull requests, issues, merges, branches, and other activities conducted in
public repositories fall within such exemptions.

It is important to note these exceptions may not apply to the private transfers of
publicly developed, Open Source technology. For example, if one were to take pub-
licly developed materials that are otherwise subject to export control regulations
and then export those materials in a private or commercial context, a normal ex-
port control analysis may apply. Similarly, hybrid models of Open Source develop-
ment (also known as ‘Open Core’, as discussed in Chapter 16) may also be subject
to export control regulations to the extent that parts of their development are used
for the creation of software-​based commercial products.

At the time of writing, a grey area exists in the case of the development of tech-
nology that is destined to be open sourced but which either not immediately open

276  Mishi Choudaray and Michael Cheng

to the public or developed or published in public (a practice still common in com-
panies and the public sector) or where some or all of the materials are not eventu-
ally publicly made available.

12.3  Case Study: Application of Export Control Regimes
to Open Source in the US

The US, where many of the Open Source projects are structurally headquartered
or have large bodies of contributors, employs multiple export control regula-
tion regimes to achieve a variety of national security, foreign policy, military, and
economic purposes. Each export control regulation system is limited in scope: a
schedule describes the goods, data, or persons subject to export control under the
regime.

As a general matter the regulatory regimes can be distinguished between item-​
based and transaction-​based controls. The Export Administration Regulations
(EAR) and International Traffic in Arms Regulations (ITAR) are item-​based while
the sanctions regimes administered by the Office of Foreign Assets Control (OFAC)
are typically transaction based. While EAR and ITAR are organised around the
what of an export, OFAC is organised primarily around the who.

ITAR regulates the export of all defence articles (including technical data) and
defence services. The United States also restricts exports to specific foreign nations
and individuals for foreign policy reasons and restricts exports of some specially
controlled technologies like nuclear power. These regulations are not within the
scope of this chapter.

Unless your Open Source is primarily a ‘defence article’, the relevant agency is
the Bureau of Industry and Security (BIS) which sits under the US Department
of Commerce that administers export control regulations for software. BIS regu-
lations: the Export Administration Regulations (EAR), arguably pose the biggest
regulatory obstacle for the distribution of Open Source software. The EAR has
jurisdiction over a broad scope of activities including posting of software on the
Internet.

BIS is responsible for export controls on ‘dual-​use’ commodities, software, and
technology. An item is ‘dual-​use’ when it has both commercial and military uses.
There are no EAR obligations associated with the item unless it is exported (in-
cluding deemed exports as described earlier), re-​exported, or transferred.

These are specially defined terms in the EAR. Certain foreign-​made items that
contain less than a de minimis amount of US origin content are not subject to
the EAR.

Generally speaking, a ‘US origin’ item subject to the EAR is one which was:

	 (1)	 produced or originated in the US,

EXPORT CONTROL  277

	 (2)	 a foreign-​made product that contains more than a specified percentage of
US-​controlled content (the de minimis rule), and/​or

	 (3)	 a foreign-​made product based on certain US-​origin technology or software
and is intended for shipment to specified destinations.

US origin items subject to the EAR, including technical data, cannot be exported
or re-​exported from the US without authorisation. ‘Exporting’ means an actual
shipment, transfer, or transmission out of the US or a transfer of such software in
the US to a non-​US person, an embassy, or affiliate of a foreign country. This also
includes downloading or causing the downloading of encryption software to lo-
cations (including electronic bulletin boards, Internet file transfer protocols, and
World Wide Web sites) outside the United States. Re-​exporting is the transfer of a
US origin item from one foreign country to another or the transfer of a US origin
item between foreign nationals.

With respect to Open Source software, foreign-​made software that ‘incorp-
orates’ controlled US origin software remains subject to the EAR unless the US
origin item represents a de minimis portion of the final product. The determin-
ation of whether particular Open Source software contains greater than a de min-
imis amount of controlled US origin software is generally based on the economic
value of the US origin software and the total economic value of the finished soft-
ware. Typical thresholds for de minimis calculations include 25 per cent, 10 per
cent, and 0 per cent, depending upon the nature of the item and the intended
destination.

The production of Open Source software is an international endeavour with de-
velopers based in countries around the world. Many large Open Source software
projects are likely to include contributions that are considered US origin goods,
potentially bringing such projects under the jurisdiction of BIS. While many
Open Source software projects do make an effort to track contributors, projects
do not typically record the information necessary to determine if a contribution
should be considered a US origin good. Therefore, it is generally best to assume
that large Open Source software projects are subject to US export controls, par-
ticularly if the Open Source software project is not publicly available. However,
persons exporting Open Source software under the regulations may be able to
receive authorisation to export software either by applying for and receiving a li-
cence, or by qualifying for a licensing exception.

In contrast to software that is not publicly available, most ‘publicly available’
software is not subject to the EAR. Open source software distributed under an OSI-​
approved licence will generally be considered publicly available, because Open
Source software is typically distributed in a manner that makes source and object
code generally accessible to any interested party. While Open Source code itself
may be publicly available and not subject to the EAR, an item is not considered

278  Mishi Choudaray and Michael Cheng

publicly available merely because it incorporates or calls to publicly available Open
Source code. Rather, a newly created software that incorporates other publicly
available software would still need to be evaluated as a whole under the EAR.

Another caveat to the ‘publicly available’ exception for software subject to the
EAR is publicly available software that contains or is designed to make use of en-
cryption technology or software. This can include linking to an external appli-
cation or library containing encryption functionality; software does not need to
contain the encryption function itself in order to fall under the EAR. Today, the use
of encryption is pervasive. Encryption functionality is standard in everything from
web browsers and email clients to word processors and operating systems. Hence,
the EAR has the potential to impact a major portion of Open Source software pro-
jects substantially.

Insofar as an Open Source software product contains encryption, compli-
ance with the EAR can be achieved by notifying BIS and the ENC Encryption
Request Coordinator via email of the Internet location (e.g. URL or Internet ad-
dress) of the publicly available encryption source code. In addition, if you posted
the source code on the Internet, you must notify BIS and the ENC Encryption
Request Coordinator each time the Internet location is changed, but you are
not required to notify them of updates or modifications made to the encryption
source code at the previously notified location. Per instructions issued by the
agency, an item is not considered publicly available merely because it incorporates
or calls to publicly available Open Source code. Instead, it requires separate evalu-
ation as a whole under the EAR because a new item with encryption functionality
has been created.

12.4  Survey of Export Control Regimes

12.4.1  UK

The applicability of European export control and free movement laws to the
UK, ended on 31 December 2020. The UK requires an export licence before
the export of controlled military goods, software and technology and items on
the UK dual-​use list from the UK to another country. These items are listed in
Schedule 2 and 3 to the Export Control Order 2008. Software can be assessed
against the UK Strategic Export Control Lists to determine whether or not it is
controlled.

Dual-​use items, that can be used for civil or military purposes and associated
technology and software, may be exported under national general export author-
isations, such as the UK’s open general export licences (OGELs—​pre-​published
licences) that the exporter needs to register for via the SPIRE licensing database.

EXPORT CONTROL  279

The Export Control Joint Unit (ECJU), part of the Department of International
Trade, administers the UK’s system of export controls and licensing for mili-
tary and dual-​use items, issues OGELs and undertakes compliance audits. UK-​
controlled dual-​use items are specified in Schedule 3 to the Export Control Order
2008 and include related technology.

12.4.2  EU

EU export controls apply to items (including software and technology) that are
dual-​use items. Additional controls apply to certain specific sanctions lists which
may need checked by the regime applicable to dual-​use items is the export control
regime most likely to be relevant to commercial software.

The categories of software that are subject to EU export control on dual-​use
items are listed in Annex 1 of Council Regulation (EC) 428/​2009 (EU Dual-​Use
Regulation) (as amended, including by Council Regulation (EU) No 1232/​2011)
include:

	 •	 cryptography for data confidentiality having in excess of 56 bits of symmetric
key length and the use of an asymmetric algorithm where the factorisation of
integers is in excess of 512 bits.

	 •	 consumer, mobile phone, and end-​user banking products, are excluded from
export control and are listed in an Annex.

The definition of ‘export’ under the EU Dual-​Use Regulation is broad and in add-
ition to physical exports include transmission of software or technology by elec-
tronic media to a destination outside the EU and also includes making available in
an electronic form such software and technology to legal and natural persons and
partnerships outside the EU. The burden of compliance under the EU Dual-​Use
Regulation falls on the ‘exporter’ which is defined in the regulation but could in-
clude a project or individual.

The EU Commission has introduced a number of General Export Authorisations
(GEA), including a GEA for the export of all dual-​use items (including encryp-
tion software) to Australia, Canada, Japan, New Zealand, Norway, Switzerland (in-
cluding Liechtenstein), and the US (EU001) and a further GEA to a wider range of
countries for some but not all dual-​use items (including some but not all encryp-
tion software protocols) (EU002).

Each of these includes:

	 •	 the destinations to which exports are permitted;
	 •	 the items that may be exported to those destination; and
	 •	 any conditions of use

280  Mishi Choudaray and Michael Cheng

GEAs are valid in all member states across the EU meaning that a company es-
tablished in one EU Member State may export from that or any other Member
State under the GEA providing it complies with the GEA and any additional
requirements.

‘Dual-​use’ products (such as encryption software) are not generally subject to
any export controls between EU Member States.

In addition to the EU regime, Member State laws also control certain dual-​use
software.

The balance between the US and the EU creates some complications due to dif-
ferences in approaches between the export control regime in the US and the EU.
For example, US export controls include an exemption for ‘mass market’ items
(see US ‘Mass Market’ guidance) that is less restrictive than the EU exemption for
products that are generally available to the public (see EU Guidance note 1/​2016).
Software can therefore be covered by the US ‘mass market’ exemption but still be
subject to the EU export control regime.

12.4.3  China

China updated its export control law impacting software in 2020 for the first time
in over. decade. Regulations on the Administration of the Import and Export of
Technology, together with the Measures for the Administration of Technology
Import and Export Contract Registration and the Measures for the Administration
of Export-​Prohibited and Export-​Restricted Technologies.

This applies to exporting controlled items produced by domestic and inter-
national branches or subsidiaries in China. It also extends to the export of con-
trolled items by individuals and legal and non-​legal entities, so having the potential
reach to capture software produced by individuals, projects, and companies in
China, to the extent that software is deemed to be a controlled item.

A number of emerging technologies have been included indicating an increased
focus on software.

Items are split into three categories:

	 •	 Export prohibited—​banned;
	 •	 Export restricted—​restricted subject to the approval of the Ministry of

Commerce (MOFCOM); and
	 •	 Freely transferable

The Ministry of Commerce (MOFCOM) and the Ministry of Science and
Technology (MOST) maintain a ‘Catalogue’ of export-​prohibited and export-​
restricted technologies. This covers transferring technology outside of China, ‘in
the form of trade, investment or economic and technological cooperation’.

EXPORT CONTROL  281

On a de minimus basis the following constitute an act of export:

	 •	 assignment of patents or patent applications;
	 •	 licence of patents; transfer of know-​how; and
	 •	 technical services.

Open Source software may clearly fall under this.
Like the US legislation this covers dual-​use items, in other words items which

can be used for military and non-​military purposes. It also applies to items which
can impact China’s national security and interest or performance of international
obligations. International treaties may well include provisions relating to software
and this may well be of relevance.

The laws extend to goods, technology, services, and data that involve or relate to
any of the controlled items. Export of software may require a licence, and transfers
between nationals and foreign employees could be caught. Export of any restricted
technology requires both a pre-​approval and post-​verification by MOFCOM.

A compliance program is recommended, and may be necessary for Open Source
software projects incorporating contributions from China.

12.5  Recommendations

It is always advisable to hire an attorney well versed in export control compliance
in your jurisdiction and train your in-​house compliance teams for compliance
with the myriad, dynamic regulations. Open Source software is typically contrib-
uted to and distributed in a way that makes compliance with export control record
keeping requirements simple, because all source code is licensed under the terms
of an OSI-​approved Open Source licence and disseminated to the public without
restrictions and there are few, if any, documents related to exporting opens-​source
software.

Nevertheless, always follow notifications and advisories from the relevant agen-
cies and government departments for comprehensive information on export li-
censing requirements and policies, keep exhaustive records and ask for opinions in
case of any doubt. Violations of these regulations may be subject to both criminal
and administrative penalties.

Charles-​H Schulz, Open Source Software and Security In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Charles-​H Schulz 2022. DOI: 10.1093/​oso/​9780198862345.003.0013

13
Open Source Software and Security

Practices, Governance, History, and Perceptions

Charles-​H Schulz

	13.1	� Open Source and Security:
Myths and Reality � 282

		 13.1.1	� Software and security: an
unresolved relationship � 282

		 13.1.2	� Heartbleed: the rise and
fall of a model � 283

	13.2	� Open Source Security
Governance: Vulnerability

Discovery, Patching, and
Disclosure Practices � 286

		 13.2.1	� How is security managed
in Open Source projects? � 286

		 13.2.2	� Confidentiality and
disclosure � 288

  

13.1  Open Source and Security: Myths and Reality

It is customary to read or hear that when it comes to Open Source Software, secure
code is not only expected but also a reality. The problem with this kind of assertion
is that any security professional will point out that appearances can be deceptive
and that there is no system good enough to ensure perfect security whether Open
Source or proprietary. This remark applies to pretty much anything: people, goods,
buildings, monetary and financial assets, and, of course, software.

13.1.1  Software and security: an unresolved relationship

The history of computing pays little attention to the security aspects of
cybersecurity, let alone software security. The emergence of computer viruses in
the early 1980s was greeted with shock and disbelief, while the very notion that
code should be secured in its execution, let alone written with security in mind has
not prevailed until well into the 1990s.

There are several reasons for this, the most prevalent and simplest one being
that the very notion that a computer could be ‘attacked’ by anything other than
physical means was a rather far-​fetched idea to many people for a long time. Other
reasons range from the way computers emerged and started to be used; from the

Open Source Software and Security  283

beginning computers were used in environments that were at least tightly controlled
in theory: university laboratories, government, military, large companies. Even
where networked computers were running, it was fundamentally a network where
agents and entities knew each other and the network topology was well mapped out.

Be that as it may, the IT industry and its customers have been slow to take
cybersecurity seriously; only in the late 2010s have we seen a clear spike in security
spending and a strong growth in the cybersecurity ecosystem, and only in the light
of massive cyberattacks, with widespread infestation of malware and political tur-
moil caused as a consequence.

The importance of software security, however, took an unexpected turn in the early
2000s, when the debate on the respective merits of Open Source versus proprietary
software was raging. One of the arguments of the proponents of software freedom
was and still is that software developed publicly and collaboratively is fundamentally
more secure than software developed in a black box with no transparency or external
access to its source code. The contrarian thesis was that public and open access to
source code was precisely a potential segue for attackers to study the source code and
exploit vulnerabilities that are baked into the software from its inception.

As it stood, however, both software development and distribution models were
fundamentally at odds with proper security concerns and practices. If anything,
the gap between the reality and the claimed advantages of each party was widening
further down the road.

We will discuss the reality of the two assertions later in the chapter.

13.1.2  Heartbleed: the rise and fall of a model

Let’s now turn this to the assertion that security management works much better
in Open Source than in proprietary software. The first documented claim that
one model is better than the others may be found in the Eric S Raymond’s sem-
inal book, The Cathedral and the Bazaar.1,2 This was amplified later in works by
renowned scholars such as Yochai Benkler,3,4 the assertion could be summarised
in the following way: given the scrutiny of ‘many eyeballs’, vulnerabilities and bugs
can be detected early in the development and release process of software, and such
scrutiny is only possible with Open Source development models because of their
intrinsic public nature and openness to feedback and contribution.

It is true that both vulnerabilities and bugs may be detected early because of
the open way in which Open Source gets developed and distributed, and there is

	 1	 Raymond, The Cathedral & the Bazaar Musings on Linux and Open Source by an Accidental
Revolutionary (California, USA: O’Reilly Press, 1999).
	 2	 Raymond, The Cathedral & the Bazaar, see note 1.
	 3	 Yochai Benkler, ‘Coase’s Penguin, or Linux and the Nature of the Firm’ (2002) 112 Yale Law Journal.
	 4	 Benkler, ‘Coase’s Penguin’, see note 3. II. C. ‘Markets, Hierarchies, and Peer Production as
Information-​Processing Systems’.

284  Charles-H Schulz

plenty of data suggesting that early detection of vulnerabilities and bugs happens
on a regular basis for a lot of Open Source. In this case, the ‘proof of the pudding is
in the eating’: online tools and platforms designed specifically to allow public scru-
tiny of the code are common practice for Open Source such as bug-​reporting tools
in the form of public issue trackers, quality assurance platforms designed to track
and manage team work on pre-​existing code, public code repositories, automated
tests, unit and functional testing of software, etc. These tools are used on a daily
basis by Open Source developers to improve the quality of their code, and bugs as
well as vulnerabilities are identified regularly.

One could, however, object that such tools tend to be used by proprietary soft-
ware, only used in a private fashion, and shared inside a software vendor’s own de-
velopment team. Lessons learned from the world of Open Source would however
point out that the public nature and open access to the code are what brings true
scrutiny, not the tools themselves.

In this way, one may rephrase the assertion in the following way: public scrutiny
ensures software security and quality.

Whilst it may be true that many eyes make bugs shallow from a quality perspec-
tive, it would not take long to disprove this notion form a security perspective.

In 2014, a vulnerability was discovered in the ubiquitous OpenSSL encryption
library. Dubbed ‘Heartbleed’5 this vulnerability exposed encryption keys critical
to a broad variety of systems, including most servers and IT infrastructure on the
planet. While the patch fixing the vulnerability was trivial, the sheer existence of
the vulnerability for several months went squarely against the notion of the public
nature of the code being a guarantee for software security.

In fact, the nitty-​gritty details of what exactly happened seem to suggest an
all too human and organisational problem. Industries kept on relying on the
OpenSSL library for their most critical software and systems, yet never bothered
to enquire as to who its developers were. The OpenSSL developers, in turn, were
not able to attract revenues from their work and sadly, had to devote less and less
time to their project in order to make ends meet with paid work on other soft-
ware. OpenSSL appeared in a much cruder light: an understaffed, unpaid devel-
oper team, unrecognised and with little time to improve the codebase while the
world was not watching. Quite simply, OpenSSL was a critical Open Source project
with few eyeballs, well-​publicised, with open access, but no-​one seemed interested
in improving its security and quality. The initial assertion that Open Source does
security better showed serious cracks.

In the aftermath of the Heartbleed affair, the Linux Foundation joined efforts
with industry and US government to create the ‘Common Infrastructure Initiative’
designed to ensure that people working permanently on critical low-​level Open
Source would receive resources and constant security oversight to ensure that the
code is adequately maintained on a go-​forward basis.

	 5	 Reference CVE description on the Mitre’s CVE base: CVE-​2014-​0160.

Open Source Software and Security  285

The Heartbleed vulnerability was in many ways a critical moment for many in
the software industry to recognise that Open Source is not inherently safer because
of a software licence or the mere fact of open access to the source code. Rather, it
became clear that vulnerabilities may affect Open Source just like proprietary soft-
ware and that the openness of the code speaks in favour of the trust we can have in
it, not in inherently better security.

As we will see in the next section, Open Source projects have been practising
security management and devised processes to deal with vulnerability, disclosure
and patching for many, many years. The results of such a practice have led to a
much-​improved way to deal with security issues and better overall software quality.
In this way, it is possible to revisit the assertion that ‘given many eyeballs’ software
can be made more secure.

Unfortunately Heartbleed was not the end. In December 2021, the Apache Log4J
vulnerability “Shell4J” had global impact. Proprietary software platforms discovered
it in their codebases as well as it impacting Open Source users. A perfect case study
in supply chain transparency. Shell4J, the Biden Ordnance, war in Ukraine/bad
actors and geo-political shift all impact governments globally. National infrastruc-
ture, including critical national infrastructure has digitalised. It is software defined,
therefore built on Open Source. Governments are scrambling to catch-up, taking
steps to secure all software infrastructure including Open Source.

In May 2021, the Biden Administration issued an Ordnance (Biden Ordnance)6
on Open Source software security, supply chain and use of Software Bill of Materials
(SBoMs), discussed in Chapter 8, creating a dramatic increase in use of SBOMs in
the US. In 2022, a draft Open Source regulation has been tabled in the US7 and in
Europe the Cyber Security Act8 also lifts much of the Biden Ordnance. The Open
Source Software Foundation (OpenSSF)9 held meetings with the WhiteHouse
through 2021/210 with 20 top vendors. Its outputs—a 10 point action plan, multi-
million dollar funding for the “Alpha Omega”11 project from Google and Micorsoft
supporting improved security for example funding the Rust Foundation and inter-
national activities like OpenUK’s Summer of Open Source Software Security.12

Users of Open Source are responsible for its curation—ensuring it is well imple-
mented, governed and maintained/kept secure. Open Source software producers
can also support this in their practices. Curation and security will continue to be a
key focus beyond the date of writing of this chapter.

	 6	 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-
order-on-improving-the-nations-cybersecurity/
	 7	 https://www.govinfo.gov/content/pkg/BILLS-117s4913is/pdf/BILLS-117s4913is.pdf
	 8	 https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act
	 9	 https://openssf.org/
	 10	 https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/13/readout-of-white-
house-meeting-on-software-security/
	 11	 https://openssf.org/community/alpha-omega/
	 12	 https://openuk.uk/security/

286  Charles-H Schulz

13.2  Open Source Security Governance: Vulnerability
Discovery, Patching, and Disclosure Practices

There is something of a paradox in discussing security processes and vulnerability
disclosure for an Open Source project. After all, one might be excused in thinking
there would be very little of that in an environment where everything is supposed
to be open and public. In practice however, openness is always about the code, but
not necessarily about the process.

It is important to note that the following description below applies mostly to well
organised and somewhat large Open Source projects. It is not necessarily the case for
smaller scale projects with less resources, fewer developers, who are less used overall.

13.2.1  How is security managed in Open Source projects?

In fact, there are and have been security management processes implemented in-
side Open Source projects at least since the late-​1990s.13

What these security management processes entail are made of roughly four
elements:

	 •	 a dedicated, invite-​only security mailing list;
	 •	 a commitment to handle and fix vulnerabilities either urgently or assign them

a high priority (unless they are not considered non-​critical);
	 •​	 some coordination with the broader ecosystem in order to identify and

understand better how some common form of vulnerabilities or even ongoing
attacks affect not just the project but a broader range of software; and

	 •​	 some form of active security watch or bug-​hunting program that can be con-
ducted on a regular or even continuous basis.

Each of these four elements must be reviewed in a bit more detail.

13.2.1.1 � A dedicated, invite-​only security mailing list
This is perhaps the simplest and oldest tool to manage the security of Open
Source projects. Such a mailing list may be run in several different ways, from a
community’s core developers discussing and interacting with people who may
have found a vulnerability to a closed list receiving input from a public, dedicated
email alias which anyone can write to in order to send a vulnerability report. This
is the first level of coordination for security management and such a mailing list is
essentially the only or the main place where security vulnerabilities are discussed
and actual remediation is considered.

	 13	 Reference CVE description on the Mitre’s CVE base: CVE-​1999-​0077.

Open Source Software and Security  287

13.2.1.2 � A commitment to handle and fix vulnerabilities
This commitment is a bit trickier to explain as it relies on a process involving mostly
the expertise of the project’s own developers, their own resources, and their actual as-
sessment of each vulnerability. While as a general rule there is a strong commitment
from Open Source projects to fix security vulnerabilities found in their software,
the criticality of the vulnerability and the impact analysis of the project’s developers
really come into play. Also this particular process that highlights the practical rift
between the assertion that given enough public scrutiny any Open Source code can
be kept secure enough. In reality, things tend to play out in a much more subtle way.

The commitment to fix critical flaws or vulnerabilities should in any case be con-
sidered as a given for every project. Whether the developer(s) can fix it or believe
the vulnerability is critical enough to fix is, however, a different matter altogether.

To start with, the developer may not have enough time or even skills to fix the
part of the code affected by the vulnerability. This was essentially the problem with
the Heartbleed vulnerability. It wasn’t a matter of skill but time, as the vulnerability
was fairly trivial. The development team, however, had overlooked it for months
and had not conducted any particular code analysis that would have allowed them
to detect it. In this case, a combination of lack of time, resources, and interest.

The second level is the developer’s understanding of the vulnerability. Once the
vulnerability has been reported, the developer has to assess the criticality of the
vulnerability. If the vulnerability is deemed to not be critical or not critical enough,
the development of a patch and its release may be delayed, and sometimes in a sub-
stantial way. The developer’s own understanding may obviously be seen as a point
of failure in an Open Source project’s security process. It is nonetheless the direct
consequence of the developers’ own independence.

13.2.1.3 � Coordination with the broader ecosystem
While this point is by no means mandatory, several Open Source projects tend to
coordinate with others on security matters. It is particularly true when projects have
some form of interdependence or share some similarity in purpose or code. Examples
may be found among Linux distributions, Open Source licensed web browsers or of-
fice suites. This coordination is quite useful and allows projects to share newly dis-
covered vulnerabilities and then to coordinate the release of patches.

13.2.1.4 � Active vulnerability watch
Some larger-​scale Open Source projects have started to implement active vulner-
ability watch processes such as regular bug-​bounty campaigns. These processes
tend to be effective in identifying existing vulnerabilities, but they demand re-
sources and the availability of the project’s developers to deliver security patches
on a near-​constant basis. While bug-​bounty campaigns and other similar active
security watch processes are a growing trend, they are by no means considered a
standard security process among Open Source projects.

288  Charles-H Schulz

13.2.2  Confidentiality and disclosure

It may seem surprising to discuss confidentiality of security-​related information
in the context of Open Source communities. There is however a good case to be
made for keeping some part of security related information confidential, at least
for some period of time.

One should start by defining why specific information related to vulnerabilities
is not immediately disclosed and kept private. Software security circles and people
are not necessarily the same as the ones found in Open Source projects. As such,
the culture may not be exactly the same and publicity of code may not be seen as a
value in itself. More precisely, there is an understanding that timing is an important
element in software security. Regardless of its licence, any given software may have
published vulnerabilities (patched or left unpatched) that are documented; it may
also have undocumented and unreported vulnerabilities—​also known as 0 Days—​
that have been discovered by one or several attackers. It may also be discovered by a
developer or security researcher and as a result it could and should be reported and
documented. The exact interval between a vulnerability report and its disclosure—​
usually quickly followed by a proper fix—​is a time when information about the
vulnerability is considered private or even confidential.

This allows for the project’s developers to run their own assessment of the vul-
nerability properly and prepare a proper patch. It also helps in obfuscating the very
existence of the vulnerability to the public, thereby reducing the risk its exploit-
ation by even more attackers.

Over the course of time, vulnerability disclosure models or processes have been
established, leading to a process usually known as a ‘Responsible Disclosure’ pro-
cess. While Responsible Disclosure is a mainstream practice, there are security
experts who oppose it and favour a model in which the vulnerability is disclosed
at soon as it is known by the Open Source project. This process is known as Full
Disclosure but is seldom used.

Responsible Disclosure may certainly be understood as a departure from the
full public model of Open Source projects where code development, bug-​tracking
and releases are essentially fully open and public. It is, however, an exception to the
openness rule that is limited both in time and scope and allows Open Source pro-
jects to interact with the broader IT ecosystem. Software security remains a some-
what particular field even for Open Source and a possible way to understand its
constraints is that just like in the physical world, security is primarily a collective
matter. As such, proper cybersecurity can adapt quite well to software freedom and
Open Source, but still has its own imperatives.

PART 2

THE BUSINESS OF OPEN:
ECONOMICS, OPEN SOURCE

MODELS, AND USAGE

Cristian Parrino, Sustainability and Open Source In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Cristian Parrino 2022. DOI: 10.1093/​oso/​9780198862345.003.0014

14
Sustainability and Open Source

Cristian Parrino

	14.1	� From Human-​Centred Design to
Community-​Centred Design � 292

	14.2	� The City of Amsterdam
Case Study � 292

	14.3	� The Emissions Problem and
the Role and Complexity of
Supply Chains � 293

	14.4	� The Carbon-​Negative Data
Case Blue Print � 294

	14.5	� The UN Sustainable
Development Goals and
Open Data � 296

  

Sustainability is the challenge of our time and the problem set is broad: increased
inequality; deepening social and financial exclusion; climate change; air, land,
and ocean pollution; the ecosystem breakdown that can lead to pandemics. These
problems are all related and share the same root cause: an economic model which
is relentless in its pursuit of perpetual growth at the expense of people and planet.

In 2015, the United Nations General Assembly published the Sustainable
Development Goals (SDGs) as its blueprint of seventeen interlinked global goals to
tackle this generational challenge and provide a better and more sustainable future
for all, intended to be achieved by 2030.1

The transformation required isn’t just about decarbonisation but is a sys-
temic transformation, one which starts with shifting to an economic model
that prioritises prosperity, which economist Kate Raworth defines in her book
Doughnut Economics as the aim of meeting the needs of all people within the means
of the living planet.2 Doing so involves creating a regenerative and distributive
economic model which ensures that a social foundation is met for people across
health, education, income and work, peace and justice, political voice, social eq-
uity, gender equality, housing, networks, energy, water, and food, while at the same
time staying within an ecological ceiling that protects our planet from climate

	 1	 <https://​www.un.org/​sus​tain​able​deve​lopm​ent/​sust​aina​ble-​deve​lopm​ent-​goals/​> accessed 16 April 2022.
	 2	 Kate Raworth (ed), Doughnut Economics: Seven Ways to Think Like a 21st-​Century Economist
(London: Random House, 2017).

292  Cristian Parrino

change, ocean acidification, chemical pollution, freshwater withdrawals, land con-
version, biodiversity loss, air pollution, and the depletion of the ozone layer.

Given the multi-​decade complexity required for this kind of transformation, it
is imperative that the Open Technology principles of collaboration, decentralisa-
tion, and collective equity, as well as Open Technology’s (hardware, software, and
data) fundamentals of transparency, circularity, and accessibility play a central, en-
abling role.

14.1  From Human-​Centred Design to Community-​
Centred Design

Many of the valued and accepted innovation frameworks used to develop serv-
ices, products, and standards such as human-​centred design and design thinking
view people solely as individuals or, even worse, consumers. They are focused on
identifying individual user needs and how they can be fulfilled with more prod-
ucts and stickier services, and the role of technology is primarily to drive oper-
ational efficiency, hockey-​stick growth and profit. These innovation frameworks
are designed from a position of privilege, conceived by Ivy League academia, made
popular by Silicon Valley and their venture capitalists, and turned into toolkits by
big consultancies, all of whom are more often than not a white, male, and from
an affluent background. The result is that people aren’t considered in relation to
their communities, and society itself isn’t considered at all. At a time when we must
design solutions that take into account the people and planet systems that we im-
pact, individual-​centric innovation frameworks that design out society cannot be
accepted.

Creating products, services, and standards that are fairer, more inclusive, and
empowering for people, which design out structural inequality and are regen-
erative towards the planet requires a move towards a community-​centred design
model, underpinned by cooperation, transparency, decentralisation, and collective
equity; in other words, an Open Technology model.

14.2  The City of Amsterdam Case Study

The City of Amsterdam is using Open Technology and community-​centred design
to rebuild its economic model and post-​pandemic recovery around the principles
of economic prosperity. In April 2020 it became the first municipality in the world
to publish—​as an Open Technology framework—​its ‘City Doughnut’, and its plan
to emerge from the COVID-​19 crisis as a city that ensures a good life for everyone,
within the earth’s natural boundaries. The vision is to transition Amsterdam into
a circular city—​one in which waste and pollution are designed out, products

SUSTAINABILITY AND OPEN Source  293

and materials are kept in use for as long as possible, and natural resources are
regenerated—​adopting open and smarter approaches to managing scarce raw ma-
terials, production, and consumption, and creating more green jobs.

The Amsterdam City Doughnut is the open tool that is being used to drive this
transformation.3 It provides a holistic view to inform policy decisions and imple-
ment circularity which will initially focus on its three priority value chains: food,
consumer goods, and the built environment.

These were identified by the city as the three most impactful value chains in
terms of economic and ecological impact. A third of the city’s food is wasted, the
use of consumer goods is responsible for a massive ecological footprint, and 40 per
cent of all waste produced in the city is generated by the built environment.

Across each of these value chains, the city outlines interventions around short-
ening and localising the supply chain, reducing natural resource use and consump-
tion, and making the most of waste streams. Over 200 organisations in the city are
openly collaborating on Amsterdam’s transformation.

14.3  The Emissions Problem and the Role and Complexity
of Supply Chains

The World Economic Forum estimates that eight supply chains are responsible for
more than 50 per cent of global greenhouse gas (GHG) emissions.4 These include
food, construction, fashion, fast-​moving consumer goods (FMCG), electronics,
automotive, professional services, and freight. Emissions generated by the supply
chain are known as Scope 3, which include upstream emissions from procured
products, transport of suppliers, and business travel, as well as downstream emis-
sion from the transport of products, usage of sold products, and product disposal.
In Scope 1 are the emissions generated by the operations under an organisation’s
control, while Scope 2 comprises the emissions generated from the use of energy
purchased from third parties. Across these eight supply chains, Scope 3 represents
77–​95 per cent of an organisation’s true cost in terms of GHG emissions. Businesses
have largely focused on reducing Scope 1 and Scope 2 emissions, in part because of
the complexity of supply chains, and in part because of a misperception of the costs
associated with transforming them into zero-​emissions supply chains.

According to the same World Economic Forum report, net-​zero supply chains
would hardly increase end-​consumer costs. Around 40 per cent of all emissions
in these supply chains could be abated with readily available and affordable levers

	 3	 <https://​www.kate​rawo​rth.com/​wp/​wp-​cont​ent/​uplo​ads/​2020/​04/​20200​406-​AMS-​portr​ait-​EN-​
Sin​gle-​page-​web-​420x21​0mm.pdf> accessed 16 April 2022.
	 4	 <http://​www3.wefo​rum.org/​docs/​WEF_​Net_​Zero_​Challenge_​The_​Su​pply​_​Cha​in_​O​ppor​tuni​
ty_​2​021.pdf> accessed 16 April 2022.

294  Cristian Parrino

such as circularity, efficiency, and renewable power, with only marginal impact on
product costs. Even with zero supply chain emissions, end-​consumer costs would
go up by 1 to 4 per cent at the most in the medium term.

Decarbonising supply chains is hard as organisations struggle to get the data
needed to set the targets and standards that their suppliers must follow. Supply
chains are fragmented across geographies and legislations, so decarbonisation re-
quires open collaboration and action at the industry level.

Open principles and technology must be the basis of the transparent framework
for the target setting, emissions disclosure, and progress dashboards for companies
to decarbonise their supply chains. They are also essential for the enablement of
circularity in order for products and materials to be kept in use as long as possible
in order to decrease reliance on new natural resources.

14.4  The Carbon-​Negative Data Centre Case Blue Print

The role of open hardware, software, and data in the carbon-​negative data centre
of the future blueprint being proposed by an OpenUK-​led international consor-
tium at COP26 is a comprehensive demonstration of how Open Technology is
fundamental to enabling the circularity required to achieve dematerialisation and
decarbonisation across the backbone of the information and communication tech-
nology (ICT) industry.

The Shift Project estimates5 that on its current path, the global ICT industry
could be on track to grow from around 4 per cent of global GHG today to nearly 8
per cent by 2025. The gradual shift to renewable energy, while important, is a small
part of the solution. There are more than 50 million tonnes of e-​waste produced
annually—​this number is growing and we are running out of the earth’s minerals
required for electronic components.

Data centres are the backbone of the ICT industry and their scale is important
and immense. The International Energy Agency (IEA) estimates6 that demand
for data and digital services is expected to continue its exponential growth over
the coming years, with global Internet traffic expected to double by 2022 to 4.2
zettabytes per year (4.2 trillion gigabytes). At the same time, the number of mobile
Internet users is projected to increase from 3.8 billion in 2019 to 5 billion by 2025,
while the number of Internet of Things (IoT) connections is expected to double
from 12 billion to 25 billion.

	 5	 <https://​thes​hift​proj​ect.org/​wp-​cont​ent/​uplo​ads/​2019/​03/​Lean-​ICT-​Rep​ort_​The-​Shift-​Proje​ct_​2​
019.pdf> accessed 16 April 2022.
	 6	 <https://​www.iea.org/​repo​rts/​data-​cent​res-​and-​data-​trans​miss​ion-​netwo​rks> accessed 16
April 2022.

SUSTAINABILITY AND OPEN Source  295

It is clear that the ICT industry is going in the wrong direction on carbon and
climate mitigation. Bold and responsible action is urgently needed and the op-
portunity to do so clearly emerges: Operational phase energy (Scope 1 and 2) effi-
ciency is essential, but only a small piece of the equation. Scope 3 emissions in the
supply chain also require intense focus and mitigation and, in this case, via circular
data centre infrastructure and corresponding solutions.

The answer is in wholly circular, edge-​based carbon-​negative data centres based
on the Three Opens of technology (hardware, software, and data)). The data centre
needs to be fully transparent, particularly as many of the organisations that are an-
nouncing plans for their own net-​zero data centres are doing so in silos and in a
closed manner so processes, insights, and economies of scale are seldomly shared and
implemented with all industry constituents in the interest of the collective solution.

The OpenUK blueprint is based on the circular principles of designing out waste
and pollution, keeping products and materials in use, and regenerating natural sys-
tems in the process, focusing on three key pillars:

	 1.	 Decarbonisation of all key layers of the data centre. For Scope 1 and 2 direct
emissions, this includes reuse of existing and abandoned buildings, full en-
ergy efficiency in the built environment, powered by renewable energy
sources, local or district level heat-​recovery solutions, and the electrification
of the transportation fleet and of onsite fossil fuel processes such as steam.
For Scope 3 indirect supply chain emissions that require a circular solution,
the blueprint calls for the reuse of servers and components to the fullest ex-
tent, onsite and offsite repair and lifecycle extension of server and network
hardware, reduction and offset of product transportation miles, and respon-
sible packaging solutions. Then, sharing the learnings linked to reuse, disas-
sembly, reassembly, and recycling to all partners in the supply chain by using
creative commons for the blueprint and outputs themselves.

	 2.	 Adoption of an open technology platform across hardware, software, and
data (the Three Opens) and carbon accounting frameworks used as the
critical backbone in enabling circular, carbon-​negative data centres. Open
Source software enables release of licensed and copyrighted source code;
open hardware enables the release of the designs of tangible artifacts, and
open data relies on the notion of transparency and that data should be freely
available to everyone. All rely on the principles of collaboration and public
benefit which is key to an effective circular economy.

	 3.	 Commitment to increased transparency, inclusive economy, and equitable
access—​all are key components needed to build trust within communi-
ties and transform digital infrastructures into a holistic solution that con-
tribute to sustainable cities (SDG 11). For example, the waste heat created
from powering rows and rows of servers in a data centre can be recycled into
homes, reducing the data centre’s use of electricity for cooling, while at the

296  Cristian Parrino

same time decreasing the reliance on natural gas to heat homes and lowering
heating costs for marginalised communities who could benefit from the local
proximity of an edge-​based data centre infrastructure which donates its heat
outputs back to the grid in the local district.

14.5  The UN Sustainable Development Goals and Open Data

The seventeen SDGs were originally developed by an open working group of thirty
member states, facilitated by the United Nations, who worked together to develop
a set of action-​oriented goals designed to balance the economic, social, and en-
vironmental dimensions of sustainable development. An open application pro-
graming interface (API) and open database,7 maintained by the United Nations
Statistics Division, underpin the SDGs to help member states achieve the goals and
measure progress in meeting them. It provides critical information on natural re-
sources, government operations, public services, and population demographics.
For the SDGs, open data is a facilitator of standards, a tool for accountability, and a
base of evidence for assessing impact.

According to a World Bank report on Open Data for Sustainable Development,8
open data plays a critical role in fostering economic growth and job creation,
improving the efficiency and effectiveness of public services, increasing transpar-
ency, accountability and citizen participation, and facilitating better information
sharing within government to improve resilience and deploy resources effect-
ively in emergency situations. The report outlines the role open data can have in
establishing standards, impact assessments, and accountability:

Standards: By encouraging open data standards, sustainable development ini-
tiatives can build from existing datasets, schemas, and databases to contribute
to the broader evidence base. There is a need to establish a global consensus on
principles and standards to be able to compare data across sectors. An example is
Icebreaker One,9 which gathers data from financial markets, public sector insti-
tutions, asset owners, and the scientific community to enable global data market-
places that will help investors deliver innovative financing to address the climate
and biodiversity crises. Similarly, the Linux Foundation announced its Climate
Finance Foundation (LFCF) which is building the OS-​Climate platform,10 an
initiative with the goal of empowering investors, banks, insurers, companies,
governments, non-​governmental organisations (NGOs), and academia with

	 7	 <https://​unst​ats-​und​esa.opend​ata.arc​gis.com accessed> 16 April 2022.
	 8	 <https://​pubd​ocs.worldb​ank.org/​en/​741​0814​4123​0716​917/​Open Data-​for-​Sustainable-​development-​
PN-​FINAL-​ONLINE-​September1.pdf> accessed 16 April 2022.
	 9	 <https://​icebre​aker​one.org/​miss​ion/​> accessed 16 April 2022.
	 10	 <https://​www.os-​clim​ate.org> accessed 16 April 2022.</​FN>

SUSTAINABILITY AND OPEN Source  297

artificial intelligence-​enhanced open analytics and open data to address climate
risk and opportunity.

Impact assessment: Facilitated by standards, open data can help gauge the im-
pact of development initiatives over time, geographies, and topical areas. For ex-
ample, open data can help establish benchmarks to measure progress against the
SDGs, both within each country and between countries. It can reveal inequalities
and disparities in income, wealth, and access to government services and provide
a basis for assessing progress over time.

Accountability: By releasing open data about a full range of SDG initiatives,
government institutions can show their commitment to the SDGs and hold them-
selves accountable for the results. This transparency and accountability can also
help engage citizens in working on the SDGs.

For example, for SDG-​14 (Life Below Water), government data can be combined
with citizen science in order to monitor fishing, pollution, and water quality. For
SDG-​5 (Gender Equality), open data can expose shortcomings in the way that
health, education, and business serve women and girls. For SDG-​7 (Affordable and
Clean Energy) open data can be used to monitor consumption, energy sources,
and distribution hops in order to help shift to locally produced affordable, clean
and renewable sources, as well as identify ways to extend or decentralise the grid
to ensure inclusive access. For SDG-​11 (Sustainable Cities and Communities),
open data is an essential tool for rethinking and improving urban infrastructure,
as we are seeing across many smart city initiatives around the world. For SDG-​12
(Responsible Consumption and Production), open data can track geolocated con-
sumption and production patterns in order to identify ways to redistribute excess
to solve shortages elsewhere and regulate overproduction and waste creation. For
SDG-​8 (Decent Work and Economic Growth), which would be better served by
a Decent Work and Economic Prosperity headline, open data can be the tool that
helps develop green job skills and support entrepreneurship by identifying the in-
clusive and regenerative products and services required to shift wealth back into
local communities.

The UN’s SDGs set an ambitious agenda for progress on the world’s most chal-
lenging problems by 2030. The problem set is broad, complex, and requires urgent
action, and open data has the potential to be a universal resource to help achieve
and measure the SDGs. Combined with open collaboration, open data can be fun-
damental in accelerating progress against the SDGs.

Mirko Böhm, Economics of Open Source In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Mirko Böhm 2022. DOI: 10.1093/​oso/​9780198862345.003.0015

15
Economics of Open Source

Mirko Böhm

	 15.1	� The Economics of Open
Source � 299

	 15.2	� Introduction: Open Source,
Law, Politics, and Economics � 299

	 15.3	� Why is Free Software Free? � 301
	 15.4	� Software Freedom and Open

Collaboration � 303
		 15.4.1	� Methodologies � 304
	 15.5	� Differentiate or Collaborate! � 305
	 15.6	� Joint Stewardship and

Governance � 307
	 15.7	� Contributions, Copyright,

and Participation � 308
	 15.8	� Communities, Contributors,

and Merit � 309
	 15.9	� Value at the Edge of the

Commons � 312

		 15.9.1	� The global upstream/​
downstream network � 313

	15.10	� Open Source-​Related
Products and Service � 314

	15.11	� The Benefits of Open Source
in a Business Context � 317

	15.12	� Differentiating in the Eyes of
the Consumer � 319

	15.13	� The Role of the Volunteer
Community � 320

	15.14	� Competition in the Wider
Open Source Community � 322

	15.15	� Compliance, Social and
Market Transactions, and
Zero Price � 324

	15.16	� Open Source as Community-​
Provisioned Public Good � 326

  

The relationship between Open Source and economics is fundamental since the
collaborative creation of software and its utilisation are economic activities. There
is a value that businesses can generate with products that include or consist solely
of Open Source, and a potential cost saving in its use. The work of the wider Open
Source community is coordinated and software is created by different elements of
the Open Source ecosystem. It is integrated as an intermediate or final product into
consumer applications that deliver concrete, useful functionality. Open Source is
unique in that it is simultaneously state-​of-​the-​art technology, a commodity, and
a public good. Open Source communities are social groups of individual and or-
ganisational contributors that participate voluntarily in the production of public
information goods.

Communities are able to resolve issues without the coordination provided
by a central authority like the state. Overall, the wider Open Source community

ECONOMICS OF OPEN SOURCE  299

contributes positively to the common good. This shapes how Open Source col-
laboration relates to market competition and the value propositions of businesses.
Today, collaboration spans both unpaid or volunteer participation and industry
contributions that are made in the course of employment or under the guidance
of a commercial sponsor. This chapter develops a basic taxonomy based on a com-
bination of the revenue model, the type of good, and the differentiating aspects of
Open Source-​based products. It positions Open Source in its relation to economics
and discusses the different behavioural norms like reciprocity and fairness that
participants apply to the social transactions of Open Source collaboration, as well
as the impact of Open Source on the technology stock of society.

15.1  The Economics of Open Source

In recent years, Open Source has gone through a remarkable transition from an
exotic pastime of idealists into a mainstay of software engineering practice. Today’s
communities are a diverse mix of individual volunteers and industry contributors
who collaborate on software development, while simultaneously competing in-
tensively in business. Open Source is used pervasively throughout the informa-
tion and communications technology (ICT) sector. Such pervasive adoption is
inevitably driven by sound economic arguments that appeal to many actors with
differing motivations and self-​interest, indicating that there is a theoretical founda-
tion for the mass appeal of Open Source collaboration and for the reconciliation of
self-​interest or business rationale with collaboration on the development of Open
Source technologies.

15.2  Introduction: Open Source, Law, Politics, and Economics

Open Source itself is first and foremost source code and therefore software. This is
the way many people see it—​as an amazing pool of free software modules to select
and build upon. However, that is not the whole story. Free licensing of source code
combined with collaborative and accessible development processes create a rela-
tionship between Open Source and a cross-​section of society. Richard Stallman,
the founder of the Free Software Foundation (FSF), insisted that ‘free software is
a social movement’.1 Software is a form of technology with wide-​ranging social
implications. In a society which has digitised, it impacts a diverse range of issues,
including civil liberties and human rights, access to the means of production of
goods and services, methods of collaboration, and many others. Three of these

	 1	 Richard M Stallman and Lawrence Lessig, Free Software, Free Society: Selected Essays of Richard
M. Stallman (SoHo Books, 2010).

300  Mirko Böhm

relationships that have attracted particular attention in recent years are those be-
tween Open Source and law; politics, and economics.

The interaction between Open Source and law manifests itself in Open Source
licensing and compliance. Source code that is created by humans is covered by
copyright, as explained in Chapter 3. In most cases, explicit permission from the
copyright owners is required to use the code due to the application of copyright.
Open Source licences are the mechanism by which authors give permission to third
parties to use their work. These licences form the basis of the legal relationship be-
tween the authors and the users. Disagreements between the owner/licensor and
licensees are resolved by recourse to legal processes. Other legal frameworks that
intersect with Open Source include the potential to own and infringe patents in the
software in some jurisdictions, as discussed in Chapter 10. Chapter 9 explores the
use of trademarks to designate product origin. Contributors sometimes appoint
fiduciaries that represent their rights or enter into agreements with communi-
ties or businesses and these are explored in foundations at Chapter 18. Questions
also arise around liability for code which is either negligently or maliciously con-
structed. Issues around rights and obligations around the development, distribu-
tion and use of Open Source today are dealt with primarily through private law.

How Open Source and politics relate is possibly more abstract, but already
hinted at in Stallman’s statement quoted earlier.

Open Source initially challenged how the software industry innovated, by
shifting from a proprietary or closed to an open and collaborative model. As soft-
ware has become increasingly important in many different sectors of the economy,
through a process of digitalisation, the effects of Open Source innovation have be-
come pervasive. In particular, the collaboration methods developed by the wider
Open Source community have inspired related changes in business activity around
software development and also inspired changes in areas not directly associated,
such as open access in science, open data, or open hardware (see Chapter 23). As
part of this shift in how knowledge is transferred and monetised and how technical
standards are developed and adopted, Open Source has offered new and alterna-
tive approaches to innovation.

Other changes go deeper and reflect technological development over the last
two decades. Ubiquitous Internet access combined with Open Source enables pre-
viously unfeasible participatory forms of decision-​making in society, alternative
approaches to knowledge transfer, and opportunities for provisioning public infor-
mation and communications technology (ICT) infrastructure, with reduced lock-​
in to specific technology providers. The gig economy has transformed the labour
market and impacted employment patterns and worker mobility. Understanding
of the societal changes caused by the Internet with resilient connectivity, conver-
gence, and software freedom is still at an early stage, which is why this chapter fo-
cuses primarily on the micro-​economic effects of Open Source.

ECONOMICS OF OPEN SOURCE  301

The relationship between Open Source and economics is fundamental.
Economics studies how our societies produce and trade goods and how individual
actors make decisions when participating in that process. From an economic and,
probably, a legal perspective, software is considered to be a good. When consid-
ering economics, it would traditionally need to be traded to be useful.

Development of software and in particular Open Source is an inherent part
of the economy. In the case of Open Source its contributions to gross domestic
product (GDP) may be difficult to measure since using it is generally not accom-
panied by a monetary exchange (although there is no prohibition on such it is not
the norm).

Open Source is a software good with specific properties. In particular, it is avail-
able without significant restrictions and in unlimited quantities and allows every
interested party to use and improve the existing source code, build upon it, and
redistribute that modified version. This raises two key questions:

	 •	 What incentivises an individual to consume and to contribute to Open
Source?; and

	 •	 What creates the balance between supply and demand so that the market
is provided with the software that is needed in the necessary quality and
quantities?

From a macro-​economic perspective, a choice that affects us all is how so-
ciety may react to the changes that Open Source imposes on it. They could
be rejected, for example because they threaten jobs in established businesses.
They could be tolerated, because the benefits of innovation outweigh the po-
tential costs. Or Open Source could be facilitated, invested in, protected, and
supported because of a belief that it is a beneficial pillar of the digital society.
To make that choice, it is necessary to understand the overall impact of Open
Source on society.

15.3  Why is Free Software Free?

There is an unfortunate confusion based on the meaning of the term free in the
English language. It means both free as in free of charge as well as free as in freedom
or liberty. In the case of Open Source, it is free as in liberty, but generally also free
of charge, licence fee, or royalty. To understand the economics of Open Source, we
must also consider not only what makes Open Source free but also why our society
embraces a model where important software technology is developed in an open,
collaborative model.

Software begins its life as the human-​readable source code. Without the applica-
tion of intellectual property (IP) protection in the form of copyright, source code

302  Mirko Böhm

can be regarded as merely information. Information is produced, traded, and has
value, making it a good in the economic sense. Information however has proper-
ties that make it special, in particular intangible. It is ‘costly to produce but cheap
to reproduce’:2 today, reproducing (making a copy of) information on a computer
practically incurs no cost at all and, increasingly, all information relevant to human
activity and existence is represented in digital form on computers.

When humans consume information, for example by reading source code or ex-
periencing a piece of music, they convert it into knowledge, a process that cannot
easily be reversed (some say information is difficult to dispossess). Information
generally available on the Internet can be consumed by any interested user, making
it non-​excludable. Each user’s experience will be mostly unaffected by the fact
that others are consuming the same information at the same time, making it non-​
rivalrous. Products that both non-​excludable and non-​rivalrous are defined as
public goods. Information without property protection is either secret or poten-
tially available to everybody.

There is a dilemma in that it takes effort and creativity to produce valuable in-
formation while it is easy and cheap to reproduce it. This is well-​understood, and
one of the foundations of the Berne Convention,3 a pillar of international copyright
law ratified by all developed countries in the world. It posits that authors acquire
copyright on their works as soon as they are ‘fixed’, and that others need explicit
permission (a licence) from the copyright owner to use, reproduce, and distribute
their works. By giving authors a legal instrument to manage who has access to their
works, copyright provides the framework that makes intangible information goods
tradeable.

In most traditional uses, copyright and its licensing are applied to restrict the
number of available copies of a work. In a competitive environment, a good that
is available with unlimited supply will converge on a price of zero. This fact in-
centivises rights holders to limit the number of copies available in the market. For
example, reproductions of paintings may be limited and books printed in batches.
Binding the information good to a medium for transport illustrates its intangible
nature. The number of copies of the medium is restricted as a means to limit supply
and to maintain a non-​zero price. If the cost of creating another copy is very low, as
for example with digital music streamed from the Internet, subscription models are
an example of a tool to generate revenue based on the aggregated market demand.

Open Source moves a step forward in the application of copyright to digital
goods. It applies the same concepts of authorship and licensing discussed so far and
applies terms that make the software available in unlimited supply. All Open Source
licences guarantee that users have the rights to use, study, modify, and redistribute

	 2	 Carl Shapiro and Hal R Varian, Information Rules: A Strategic Guide to the Network Economy
(Cambridge, MA: Harvard Business Review Press, 1998).
	 3	 <https://www.wipo.int/treaties/en/ip/berne/​> accessed 11 March 2021.

ECONOMICS OF OPEN SOURCE  303

the software. Since everybody and anybody can redistribute the code, any piece of
Open Source is available to the general public once released and very difficult (if
not impossible) to retract. That means a piece of software released under an Open
Source licence begins life as a public good, and is made into a private good by the
copyright acquired by the author, and then reverted to a public good again by the
application of the Open Source licence.

However, since users have the right to use the code on the terms chosen by the
author, these may contain obligations or restrictions. For example, attribution, as
in naming the authors of the used Open Source building blocks in all reuse is a
minimum requirement in these licences. The class of reciprocal, ‘copyleft’, Open
Source licences require that users distribute their own modifications under the
same terms, ensuring that the software remains Open Source even if modified.

The use of traditional copyright licensing in a way that enables sharing and user
freedoms, effectively playing the IP right at its own game to revert its impact, is a
‘stroke of genius’ attributed to Richard Stallman. As a consequence of this action,
all Open Source licences are anchored in the author’s copyright and precluded the
need for an Open Source-​specific legal framework or ‘lex Open Source’.

15.4  Software Freedom and Open Collaboration

The basic concept of Open Source mixes two perspectives, that of free software as a
product and that of open and collaborative processes for the development of soft-
ware. A typical understanding is that an Open Source product is both free and also
developed in an open, transparent collaborative process. These two perspectives
are distinct.

Software is considered Open Source if it is made available under an accepted
Open Source licence. Today’s understanding of the formal requirements for code
to be Open Source builds upon the ‘four freedoms of software’ as laid out by the
Free Software Foundation (FSF)4 and more generally the Open Source Definition
(OSD) maintained by the Open Source Initiative (OSI).5 All Open Source licences
give the users of the software at least four essential rights, namely to use, study,
modify, and redistribute the software without discrimination between who uses
the software and for what purpose. This definition does not prescribe in what way
the software is created.

Open Source contributors may not consider their works to be products since
they are not sold in the market. In the context of this article, the term ‘product’
is understood as a good made available for another’s use. The requirement is that
having been produced the good is made available, not that it is being sold at a price.

	 4	 <https://​www.gnu.org/​phi​loso​phy/​free-​sw.en.html> accessed 11 March 2021.
	 5	 <https://​ope​nsou​rce.org/​osd> accessed 11 March 2021.

304  Mirko Böhm

Various goods are made available for free even though they are costly to produce,
for example in state-​provided free education.

15.4.1  Methodologies

Open Source may be created in a community process where interested parties may
participate and contribute to its production based on the merit of their contribu-
tions. What if any requirements of this openness exist is still the subject of an on-
going debate. In most communities, it means that all contributors are welcome and
should be treated respectfully and equally.

However, there are businesses that maintain control over an Open Source
product or a commercial version of it, while accepting outside contributions.
A company may act as a commercial sponsor to an Open Source product, usually
combining it with offering a complementary commercial version or support, such
as Canonical sponsoring the Ubuntu operating system.

Another form of development is the release of projects originally developed in-​
house under an Open Source licence, like Google’s Kubernetes.

Many projects today start as industry collaborations where businesses cooperate
on the development of a foundational technology or an industry standard. Such
projects are often set up at Open Source foundations, as elaborated in Chapter 18.

Some refer to this by saying ‘there is more than one FOSS [Free and Open
Source Software] way’.6 Since this Open Source governance is less standardised
than Open Source licensing, it is assessed indirectly by measuring accountability,
transparency, or the accessibility of the community decision-​making processes.7
Calling software Open Source conveys certain positive values on the code and may
be used by businesses in marketing, whether accurately or otherwise, adding to the
confusion.

The distinct merits of Open Source products and open collaboration are each
economically relevant. Similar to inventions, Open Source products become part
of the technology stock of society and influence the state of the art of products
and production processes. Due to their free nature they may be the subject of both
rapid adoption and ubiquity.

Even though Open Source is usually distributed freely, its functionality has
an impact that has value and therefore impacts GDP. Open Source development
processes enable efficiency gains that contribute to economic growth for example
through improved interoperability or as a consequence of their free adoption may
eliminate duplicated efforts.

	 6	 <https://​ope​nsou​rce.com/​Open Source-​way> accessed 11 March 2021.
	 7	 Mirko Böhm, ‘The Emergence of Governance Norms in Volunteer Driven Open Source
Communities’ (2019) 11(1) Journal of Open Law, Technology & Society 3–​39.

ECONOMICS OF OPEN SOURCE  305

15.5  Differentiate or Collaborate!

According to the Maddison project database,8 real GDP per capita in Germany in-
creased more than twenty-​fourfold between 1850 and the year 2000. Other indus-
trialised countries show similar increases.

GDP per capita depends primarily on the technology stock applied to pro-
duction since it does not increase if more people produce the same amount per
person. It is plain to see that the dramatic increases in the standard of living ex-
perienced in this period depend heavily on technical innovation. While it is dif-
ficult to provide a clear definition of what innovation is,9 its effects are real. It
is the improvement of the technology stock available in an economy that leads
to increases in real GDP per capita and lays the foundation to improve the gen-
eral standard of living. In plain terms, it is the ‘work smarter’ aspect of economic
growth.

Innovation is tied closely to competition.10 Competition in a free market is a
somewhat Darwinian concept that is supposed to keep businesses honest and
aligned with consumer interests. Businesses that are out of touch with the needs
of their consumers tend to fail and be replaced by better-​performing competitors.
Since most of the well-​developed economies in the world are market economies,
it is often assumed that competition is necessary for economic performance.
Competition, however, comes at a cost. Schumpeter aptly describes one such cost
as ‘creative destruction’.11 By introducing improved products and manufacturing
methods, the value of earlier investments in outmoded products and now-​
redundant facilities are destroyed.

A further cost of competition are invention races. It is common in the startup
culture of the ICT sector today for multiple new ventures to invest in the same
trend or solution to a problem, only to drop out of the race once there is a clear
winner. The others who did not win this race fail to deliver return to their in-
vestors. This issue is especially apparent in patent races, where the first inventor
to be granted a patent wins, leaving the competitors in the dust with almost fin-
ished inventions that are now mostly worthless due to the monopolistic IP protec-
tion afforded to the first to register a patent. However, competitive markets provide
high-​quality products at low prices to consumers. The benefits clearly outweigh the
costs. Competition appears to be a ‘least-​bad’ approach, one that makes businesses

	 8	 Jutt Bolt, R. Inklaar, H. De Jong, and J. L. Van Zanden, ‘Rebasing “Maddison”: New Income Comparisons
and the Shape of Long-​Run Economic Development’ GGDC Research Memorandum 174 (2018).
	 9	 OECD and Eurostat, Oslo Manual 2018: Guidelines for Collecting, Reporting and Using Data
on Innovation, 4th Edition, The Measurement of Scientific, Technological and Innovation Activities
(Luxembourg: OECD Publishing, 2018) <https://doi.org/10.1787/9789264304604-en>.
	 10	 Philippe Aghion, Nick Bloom, Richard Blundell, Rachel Griffith, et al, ‘Competition and
Innovation: An Inverted-​U Relationship’ (May 2005) 120(2) The Quarterly Journal of Economics 701–​
28, doi:10.1093/​qje/​120.2.701.
	 11	 Joseph A Schumpeter, Capitalism, Socialism and Democracy (London: Routledge, 2010).

306  Mirko Böhm

work for the consumer at an acceptable cost. This is reminiscent of Churchill who
described democracy as ‘the worst form of government, except for all the others’.12

In every economy, regardless of the type of government, competitive and co-
operative processes coexist. Competing businesses may cooperate on standards
development. Public goods, like education, may be cooperatively provisioned by
the state in a centralised fashion. Decentralised cooperative production has, how-
ever, historically represented a negligible segment of the economy.

Such collaboration has always existed in the form of neighbourly help or bar-​
raising.13 It has generally been limited in scope by proximity and shared interest.
Today, the Internet enables global collaboration on Open Source development and
proximity is no longer geographically restrained, which in turn allows interested
parties to collaborate globally.

The beginning of the Open Source ecosystem and the development of the
Internet coincided. Together they triggered advances in collaboration techniques
like wikis, issue trackers, and revision control systems that enabled widely dis-
persed groups to work together.

Open Source offers an alternative to market competition that enables partici-
pants to collaborate where they do not plan to differentiate.

Differentiation is businesses’ understanding or belief of what product features
convince consumers to choose their products over those of their competitors. While
those differentiating features are developed in-​house and usually kept proprietary,
there is no business reason to invest in the development of non-​differentiating func-
tionality individually, duplicating efforts of competitors. For example, every com-
puting device needs an operating system, which is a complex and crucial piece of
software. Consumers, however, almost never interact directly with it and are usually
indifferent as to which operating system their device uses. While in the 1990’s it was
still common that every printer manufacturer developed their own firmware, today
almost all of them are based on Linux. The same logic applies to the foundational
software stack in general that is used to build consumer-​focusing applications.

It is assumed today that devices contain over 80 per cent Open Source software14
with the remainder being proprietary, differentiating code, which has been called
the Pareto Principle of Software.

This trend comes with a drawback. To be able to build competitive products, a
business must, in addition to the use of its own differentiating code, use the avail-
able Open Source software stack of non-​differentiating software to the fullest ex-
tent possible, since its competitors will do so, and otherwise undercut their cost. As
Open Source reduces research and development (R&D) cost, with such costs being
shared across the creators of the code, this is factored into product prices today.

	 12	 <https://​winst​onch​urch​ill.org/​resour​ces/​quo​tes/​the-​worst-​form-​of-​gov​ernm​ent/​> accessed 11
March 2021.
	 13	 <http://​amish​amer​ica.com/​what-​happ​ens-​at-​an-​amish-​barn-​rais​ing/​> accessed 11 March 2021.
	 14	 ‘Vulnerabilities in the Core: Preliminary Report and Census II of Open Source Software’ (The
Linux Foundation & The Laboratory for Innovation Science at Harvard, 2020).

ECONOMICS OF OPEN SOURCE  307

As a consequence of this ‘differentiate or collaborate!’ has become a mantra
in today’s ICT industry, as the guide to decision-​making for competitive,
differentiating product features.

15.6  Joint Stewardship and Governance

By integrating Open Source, producers acquire crucial functionality for their de-
vices at the expense of a partial loss of control over the software functionality of
their products. Much of Open Source is developed in an open innovation model as
opposed to the traditional confidential corporate R&D models.15 As a consequence
of ongoing collaboration by the development community, incremental changes to
the Open Source modules are routinely and continuously shared between the par-
ticipants, usually in the form of commits to a version control system such as Git.16
Users benefit from gaining access to the aggregated contributions of other partici-
pants, the value of which commonly outweighs the cost of their own contributions.
For industry contributors, participating in Open Source development is primarily
an approach to save costs and increase speed of innovation by pooling R&D re-
sources in cooperation with other participants.

One consequence of this collaborative innovation approach is that the devel-
oped Open Source functionality is available to everybody, also including non-​
participating parties. It is also available to contributors’ competitors as others
cannot be restricted from using the same code and building upon it or modifying
it. By attracting contributions from many diverse stakeholders, Open Source can
be very innovative and represent the current state of the art in a specific field. At the
same time, it is considered a commodity in that the functionality it provides loses
its differentiating value and becomes generally available to the whole world.

The combination of innovativeness, commodity character, and being a public
good makes Open Source rather unique. It drives the innovativeness of the wider
Open Source community and explains why Open Source development contributes
positively to the common good.

It is possible to use Open Source without ever participating in its develop-
ment. Indeed, an overwhelming number of users fall into this category. Passive
consumers, however, will be unable to influence the technical development of
the software beyond making feature requests in communities. This exposes them
to business continuity risks. As the development of the software continues, it
may deteriorate in quality or deviate from the functionality needs of the passive
consumer’s application.

	 15	 Henry Chesbrough, Wim Vanhaverbeke, and Joel West, Open Innovation: Researching a New
Paradigm (Oxford: Oxford University Press on Demand, 2006).
	 16	 <https://​git-​scm.com/​> accessed 11 March 2021.

308  Mirko Böhm

Businesses consuming Open Source therefore have a stake in the viability of
the ongoing development of the Open Source components they use. By engaging
in the community and investing in shared development efforts for that software,
businesses ensure that the Open Source products they consume match their func-
tionality and quality requirements and, importantly, that it will continue to be
maintained and secure. Invested consumers of Open Source often become con-
tributors to it in the long term. The process is a cycle where users frequently begin
to participate in both the creation of the software as well as in the governance of the
community that develops it as a way actively to manage their own business risk of
growing dependence on the Open Source components they use.

15.7  Contributions, Copyright, and Participation

Participants contribute code to Open Source projects which is the subject of copy-
right. The resulting releases of the packages usually contain contributions from
many different contributors. Each release builds upon the earlier versions as a de-
rivative work. Since the contributor base of Open Source projects fluctuates over
time, the set of rights holders changes with every new release. Some contributors
only submit a single patch that fixes a bug they discovered, others participate long
term and may even evolve into core developers or maintainers of projects. As all
Open Source licences guarantee the same minimum set of freedoms to all users,
the question of who owns the code in an Open Source project may be more rele-
vant for the individual reputation of the contributors than to the adoption or the
value of the software. Many Open Source developers care strongly about being
properly attributed for their work as this builds their reputation and their personal
value, despite there being minimal restrictions on the distribution of the software
they created.

The contributors who currently develop and maintain an Open Source project
are typically a subset of all of the copyright holders. The contributions of their pre-
decessors facilitate the continued development of the software and the prior parti-
cipants’ licence decision will impact release of new versions. The current group of
contributors assumes joint stewardship over the technical development of the pro-
ject and the management of the community (whether or not they are joint owners).

To become an active stakeholder in an Open Source project, newcomers must
engage with the community that develops it. Since contributor fluctuation is quite
normal in Open Source communities, a key aspect of community governance is to
ensure continuity in the event of changing participants. In communities that have
been active for a period of time, the currently active stakeholders steer the pro-
ject on behalf of themselves and the previous contributors who are likely copyright
holders on the code, but who no longer participate in the project. In some organ-
isations, being an active contributor or qualifying for membership in the technical

ECONOMICS OF OPEN SOURCE  309

or administrative steering bodies is tied to a financial contribution or organisa-
tional membership fee. These fees are nominal in communities but may be quite
substantial in foundations and may depend on the size or turnover of the contrib-
uting organisations. They cover administrative, governance, and community man-
agement costs. The software the community produces is still Open Source and free
to use, irrespective of such fees. Governance and Open Source licensing are two
separate dimensions.

15.8  Communities, Contributors, and Merit

The term community is crucial to Open Source but can confuse as it is used with
different connotations. To understand how Open Source is produced, it is neces-
sary to distinguish Open Source communities from other organisations and to
derive the specific functions performed by communities from this. Some people
intuitively assume that Open Source communities consist primarily of enthusiastic
volunteers collaborating for the common good. This is, however, not necessarily
the case, and increasingly businesses and paid developers make up significant pro-
portions of community.

The mix of different types of contributors like individual volunteers, businesses,
or community staff is referred to as community composition. Quantitatively, most
contributions originate from businesses and the majority of individual contributors
participate in Open Source development as part of their employment,17 making
the communities hybrid or heterogenous in their composition. While licensing de-
fines whether a piece of code is Open Source or not, the openness of a community
is defined by its governance norms. Communities with many diverse participants
typically prefer open, transparent, and accountable governance processes.

Producing Open Source is of course a necessary aspect of any Open Source
community, but not sufficient for a definition. Different entities, state authorities,
or anonymous donors may release code under Open Source licences without ever
engaging with others to build a community.

Open Source communities differ in how their products are created, which is a
question of governance. Especially volunteer-​driven communities care strongly
about the values they communicate to their potential participants. The KDE
Manifesto, for example, lists open governance, free software, inclusivity, innov-
ation, common ownership, and end-​user focus as essentials.18

	 17	 D. Riehle, P. Riemer, C. Kolassa and M. Schmidt, ‘Paid vs. Volunteer Work in Open Source,’ 2014
47th Hawaii International Conference on System Sciences, Waikoloa, HI (2014), 3286–95, doi: 10.1109/
HICSS.2014.407.
	 18	 <https://​manife​sto.kde.org/​> accessed 11 March 2021.

310  Mirko Böhm

A contributor is an individual or organisation that invests resources in the cre-
ation of a community product. If a contributing developer is employed by an
organisation, the employer pays the salary and may gain the copyright on the con-
tributed code. In many organisations individual developers are allowed to con-
tribute in their own name. This creates a lack of clarity as to whether an individual
contributes on their own account, that of an employer, or one of a number of or-
ganisations with whom they are associated.

In the case of doubt, from a governance perspective the entity to be considered
the contributor should be the one that has the authority to decide what effort to
contribute and to what product or community. Depending on the internal arrange-
ment, this may be the individual or the company.

There are many different types of possible contributions, not just the provision
of code. Other examples are organising a community event, translating software to
local languages, maintaining the community web site or writing newsletters. The
different types can be normalised to contributions of time, money, or knowledge in
the form of experience or expertise. By participating, contributors gain merit in the
community which defines their standing within their peer group. Merit develops
organically based, for example, on technical expertise, long-​term commitment, or
the social role and reputation of the individual. Merit or the value of contributions
are at times difficult to measure in quantitative terms.

While Open Source licences govern the contributor–​user relationship, govern-
ance structures govern the contributor–​community relationship.

Contributors participate in Open Source development and engage with the
community voluntarily and based on their own desires. Even though anybody
can use, study, modify, and redistribute Open Source, nobody can be forced or co-
erced to contribute to it, and arguably there is no moral imperative to do so. Any
individual or organisation that contributes decides that it is the right thing to do
for them.19 Engagement in Open Source communities may be explained based on
Hirschman’s concept of exit, voice, and loyalty. Hirschman researched consumer
loyalty based on ‘a conceptual ultimatum that confronts consumers in the face of
deteriorating quality of goods: either “exit” or “voice” ’.20 Long-​term consumers
of a product develop loyalty to it in that they would rather continue to use it and
do not wish to change to a different one. When applying Hirschman’s concept to
Open Source, the change of quality is that of the governance of the community,
while the loyalty is that of a long-​time participant. The option of having a voice in
Open Source comes from engaging in the community to maintain its quality and
to participate in joint stewardship. The exit option is to stop participating and to

	 19	 Josh Lerner and Jean Tirole, ‘The Economics of Technology Sharing: Open Source and Beyond’
(2005) 19(2) Journal of Economic Perspectives 99–​120.
	 20	 Albert O. Hirschman, Exit, Voice, and Loyalty: Responses to Decline in Firms, Organizations, and
States (Cambridge, MA: Harvard University Press, 1970).

ECONOMICS OF OPEN SOURCE  311

disengage from the community. Over time, contributors tend to feel very strongly
about their communities and develop a sense of belonging. When considering
whether or not to continue to participate, they often prefer not to let their fellow
contributors down.

A specific form of exit in Open Source occurs where there is a fork. A fork is
a split of the development community where a group of contributors establishes
a new ‘centre of development’21 to continue the development of their own sep-
arate version of a product. Well-​known forks are the LibreOffice/​OpenOffice
Elasticsearch/Opensearch and the OwnCloud/​Nextcloud splits. Forks are a cor-
rective measure that ensures that community governance stays aligned with the
interests of the currently active contributors.

They are made possible by the essential provisions of Open Source licences and
almost always represent an issue with community governance, illustrating further
the duality of Open Source licensing and community governance as separate di-
mensions. Forks come at a cost, for example in the form of a split of the contributor
base, added technical complexity, or interoperability issues, which is why contribu-
tors do not take this step lightly.

This fact focuses the community on whether there is a less destructive way
of tackling the issue which instigated the possibility of forking in the first place.
Accordingly, the threat of forking provides additional checks and balances over
how the community governs itself.

Voluntary participation together with the potential of forks keep contributor
interests and community governance in line.

The combination of licensing and governance provides a suitable definition of
what makes an Open Source community: An Open Source community ‘is . . . a so-
cial group of contributors that participate voluntarily in the production of public
information goods’.22 The two functions that communities need to provide based
on this definition are:

	 -​	 community governance, which determines the perceived quality of the organ-
isation in the eyes of the contributors and influences their voice-​or-​exit deci-
sions; and

	 -​	 community management as the task to motivate contributors to join, actively
participate in the community, and to stay active instead of exiting.

Contributors join communities if they expect to achieve their goals more easily
as part of the group compared to working alone. This comes as a trade-​off, as to
become a part of the community, a share of the contributor’s investment needs to

	 21	 <https://​ope​nsou​rce.com/​arti​cle/​19/​1/​fork​ing-​good> accessed 11 March 2021.
	 22	 Böhm, ‘The Emergence of Governance Norms in Volunteer Driven Open Source Communities’,
see note 7.

312  Mirko Böhm

be directed towards being a community member as opposed to the development
effort.

The term governance refers to all of the processes of social organisation and co-
ordination within the group. Essential aspects of community governance include
the explicit and implicit organisational structure, the decision-​making and conflict
resolution processes, and the social order of the community.

The reasons why communities experience contributor fluctuation can be con-
ceptually separated into changes in motives and changes in motivation. The mo-
tives of a contributor may change based on external developments. People may
graduate from university where they enjoyed Open Source development, or start a
family and intend to spend more time with their kids, or change jobs and now work
on different things. Communities need to accept and possibly even encourage such
changes as a sign of a healthy personal development. Changes in motivation, how-
ever, are caused by internal community processes that affect organisational quality
as perceived by the participant. They are determined by the community’s govern-
ance norms and maintained through community management. How the commu-
nity makes decisions and resolves conflicts, the impact of speaking up to influence
the group, how decisions are enforced in the face of voluntary participation, the
support the community provides to the creative development process, and the
delineation of community members and outsiders all influence the perceived
quality of the organisation. Contributors participate voluntarily in Open Source
communities. They engage in the production as well as the governance processes.
Communities facilitate contributions through their governance and attract con-
tributors through community management.

15.9  Value at the Edge of the Commons

At the intersection of Open Source and business there is an apparent tragedy of the
commons.23 Developing Open Source is a virtuous effort that contributes positively
to society by improving the available technology stock. At the individual level, con-
tributors are passionate about their work and love what they do. On the other hand,
many businesses that aim to create value by developing and building upon Open
Source technologies struggle to find viable business models. Some have questioned
the sustainability of the Open Source development model as a whole even though
the wider Open Source community is thriving.

One source of confusion in this context is the much-​repeated question of ‘how
to make money with Open Source’. This question is difficult to answer because it
reduces benefiting from Open Source to capturing value through the generation

	 23	 Garett Hardin, ‘The Tragedy of the Commons’ (December 1968) 162(3859) Science 1243–​8.

ECONOMICS OF OPEN SOURCE  313

of revenue which is explored more fully at Chapter 16. It has long been established
that there is no special Open Source economy.24 Instead, the production of Open
Source follows basic economic principles in a process that can be explained by
breaking down more systematically how businesses benefit from Open Source.

15.9.1  The global upstream/​downstream network

To illustrate how to position businesses in the Open Source value chain, it is ne-
cessary first to look at how the wider Open Source community organises itself.
Individual communities develop specific Open Source products representing parts
that need to be integrated into consumer-​focused software and hardware products
in order to be useful. The mechanism that coordinates the efforts of the various
specialised communities is called the global upstream/​downstream network. This
network integrates the work of the various specialised communities into a tech-
nology stack suitable for end-​users or as platforms for commercial products. This
upstream/​downstream model of collaboration within the wider Open Source
community uses the mental image of a large river that collects the water from many
tributaries (the communities) and delivers it to the ocean (the users).

No central decision-​making body exists to coordinate within the global up-
stream/​downstream network; instead, the communities operate autonomously
and react to the stimulus from feedback and contributions in a competition for
relevance and adoption of their solutions. Product improvements originate in the
communities and are integrated ‘down the stream’ by more and more complex ag-
gregated products. Feedback such as bug reports and requests for improvements,
but also patches meant for integration into the upstream projects, are generated
closer to the users, and then travel ‘up the stream’ to be eventually integrated by
the originating community for that package. Practically all relevant Open Source
solutions are part of this network that coordinates between supply and demand of
Open Source contributions, resulting in complex, highly integrated products, for
example Linux distributions or device platforms like Android or Yocto.

All copyright licensing within the wider Open Source community is automatic
and transitive. It is automatic in that no negotiation takes place between the au-
thors and the users of the software, and use of the software is subject to the terms
on which is it is licensed. Licensing is transitive in that everybody in possession of
the software is able to redistribute it to make it available to any other party without
the need to refer back to the original author. By way of the combination of auto-
matic and transitive licensing, the wider Open Source community avoids potential
‘anti-​commons’ situations. In an anti-​commons situation, the effort to acquire all

	 24	 Steven Weber, The Success of Open Source (Cambridge, MA: Harvard University Press, 2004).

314  Mirko Böhm

necessary IP becomes prohibitively high, resulting in an underuse of available as-
sets.25 The widespread reuse and integration of Open Source solutions in the up-
stream/​downstream network potentially results in an exponential increase in the
number of licensing relationships that can easily produce an anti-​commons situ-
ation. It is therefore essential for the functioning of the global upstream/​down-
stream network that all necessary rights are acquired ex ante and without the need
for negotiation. This is one reason why patent holders have found it difficult to
combine the use of Open Source with revenue-​bearing patent licensing. To avoid
the necessary negotiations with patent holders after the software has already
been used, the Open Source community tends not to adopt patent encumbered
technologies.26

15.10  Open Source-​Related Products and Service

Businesses operating in the Open Source ecosystem offer a combination of goods
and services. These terms are loaded with different meanings, for example based on
whether what is sold by the business is a unit of a good or billable hours. To avoid
confusion, the distinction made in our context is that offering a product requires
the right to do so, for example based on the ownership of physical goods or the
rights to sell commercial software licences or redistribute code, while services can
be sold in a way that they complement a good somebody else possesses.

Applied to Open Source, businesses must make a choice regarding how to
manage IP related to the value proposition they offer to consumers. To pursue
product-​based business strategies, they must retain appropriate rights over the
complete product source code, for example through the application of contributor
licence agreements (CLAs) as discussed in Chapter 4. These agreements ensure
that the business has the necessary rights to sell proprietary licences to the soft-
ware, at the expense of creating asymmetry between the contributors to the soft-
ware: While those participants that submit improvements and bug fixes under the
CLA can contribute to and use the software as Open Source, only one entity has the
rights to benefit commercially from it. Such ‘single-​vendor’ business models re-
quire a strong market position usually based on thought leadership and innovative-
ness that convinces external contributors to participate.27 MySQL, Qt, or Asterisk
are examples of products that have been successfully developed under such a goods
model. In contrast, offering services related to Open Source products does not

	 25	 Michael A Heller, ‘The Tragedy of the Anticommons: Property in the Transition from Marx to
Markets’ (1998) Harvard Law Review (1998): 621–​88.
	 26	 Knut Blind and Mirko Böhm, The Relationship Between Open Source Software and Standard Setting
in Nikolaus Thumm (ed) (Brussels: Publications Office of the European Union, 2019).
	 27	 Dirk Riehle, ‘The Single-​Vendor Commercial Open Course Business Model’ (November 2010)
Information Systems and E-​Business Management 1–​13.

ECONOMICS OF OPEN SOURCE  315

require appropriation of the software by the vendor of the service. Anybody with
the necessary expertise may offer support, custom development, or operate Open
Source-​based solutions for clients without the need to own the copyright to the ori-
ginal code and companies may offer support for code that is distributed by others.

Using this distinction between goods and services as the basis for revenue gen-
eration, Open Source-​based value propositions can be further broken down based
on their function in the value chain. Software products may be used as founda-
tional technology or as consumer technology.

Foundational technologies are the intermediate products or building blocks of
the tech sector that provide common functionality from the operating system to
web-​based communication or user interface frameworks. They are combined by
manufacturers into more consumer-​ready devices, even though the consumers
often do not know or necessarily care which exact software the device contains so
long as it does the job.

Consumer products are made to satisfy concrete needs rather than for reuse or
as means of production. Open Source solutions such as operating systems, a boot
loader to prepare the device and start it running, programing language runtimes
or databases are common building blocks used in many devices that consumers
expect but are usually indifferent to. Even most proprietary software regularly also
includes common Open Source modules for these.

Businesses may offer either vertical integration where they operate Open Source
as a service for their customers or offer services that are complementary to the
product itself.

Building custom websites based on an Open Source web framework vertically
integrates the framework into a higher-​level application. Similarly, a cloud pro-
vider that provides instances of an Open Source database vertically integrates the
software into their main product, the operation of data centres. To provide vertical
integration, the service vendor requires expertise on how to use the underlying
software modules and domain knowledge about the intended application, but—​
unless the vendor wishes to extend their functionality—​not necessarily knowledge
on how to develop the software. Vertical integration creates value in the eye of the
consumer on top of the underlying Open Source solutions.

Complementary services in comparison focus on supporting the Open Source
modules themselves, as in custom feature development or long-​term mainten-
ance of a library. Instead of building higher-​level functionality, they make founda-
tional technologies viable for inclusion into other products or for use in different
domains. Since the Open Source ecosystem is built upon the idea that everybody
can maintain and extend the software, complementary services are an essential
element of it. Many Open Source developers make a living from being the main
contributors to software modules and getting hired to improve or extend them.
Such services are not free. The philosophy that the software should be free while
it is at least partially developed commercially is an inherent idea of Open Source.

316  Mirko Böhm

Even selling copies of the software is explicitly allowed by the terms of Open Source
licences, which is represented by the slogan that ‘Open Source is commercial’.28
Instead, the Open Source community distinguishes between Open Source and
proprietary software based on the licences applied.

Vertical integration requires a higher grade of domain knowledge, while hori-
zontal complementary services require more technical expertise about how a spe-
cific software module is implemented. The vendors involved similarly develop into
different roles. Vertical integrators often regard the Open Source modules used as
stable and complete and focus on providing them to a wide range of customers.
Horizontal service vendors care about the software as something to maintain and
improve. They contribute more changes to the software compared to the vertical
integrators, sometimes leading to criticism that those only use the software without
‘giving back to the community’. In particular, businesses that pursue growth strat-
egies based on Open Source technologies, sometimes funded by venture capital,
find it difficult to convert vertical integrators into paying customers. Since there is
no obligation to contribute back or to ‘pay a fair share’, these difficulties illustrate
problems in the underlying business models rather than with the sustainability of
Open Source development. To be able to offer convincing value propositions to po-
tential customers, businesses need to maintain a level of control over the goods they
are selling. Open Source in itself as a public good does not provide this leverage.

Businesses have tried to combine Open Source with various approaches to
capture its value. The single-​vendor model mentioned previously is one of them.
Others include trademark licensing programs, the acquisition of patents parallel
to software development, or attempts to control the market by enforcing the use of
standards covered by SEPs.29 All of these approaches represent a trade-​off between
software freedom and capturing value in a business.

In summary, the Open Source-​based value propositions can be broken
down into:

	 -​	 foundational versus consumer-​oriented products; and
	 -​	 vertically integrated versus horizontally complementary services.

The vast majority of well-​known businesses in Open Source sell services, a fact
sometimes obscured by services being marketed in a way that is similar to phys-
ical goods.

The subscriptions to technical support that Red Hat offers are a service com-
plementary to the Linux distribution that contains thousands of software package

	 28	 <https://​www.gnu.org/​phi​loso​phy/​sell​ing.html> accessed 11 March 2021.
	 29	 Björn Lundell, Jonas Gamalielsson, and Andrew Katz, ‘On Implementation of Open Standards in
Software: To What Extent Can ISO Standards Be Implemented in Open Source Software?’ (2015) 13(1)
International Journal of Standardization Research 47–​73.

ECONOMICS OF OPEN SOURCE  317

developed by the wider Open Source community which Red Hat does not need
to own. GitLab (the company) offers hosted software development infrastructure
as a vertically integrated or support for on-​premise installations as a complemen-
tary service based on GitLab (the software). GitHub hosts many important Open
Source projects, even though it offers a vertically integrated service that itself is
not free software. Android phones are proprietary consumer products based on an
Open Source foundation, the Android Open Source Project.30

15.11  The Benefits of Open Source in a Business Context

The success of Open Source has incentivised entrepreneurs to build revenue
streams based on it, as is discussed in detail at Chapter 16. However, ‘making money
with Open Source’ is only one way a business can benefit from Open Source. With
regards to business strategy, there are three possible scenarios regarding how Open
Source can be useful to businesses:

	 -​	 Open Source can be useful without the goal of direct financial benefit, or
	 -​	 it can be used to directly to generate revenue by being sold, or
	 -​	 it may provide a way to reduce the cost of a product.

All three scenarios are relevant in practice. Many software engineering tools like
compilers, build systems or programing language environments today are de-
veloped in an Open Source-​first approach. These tools enable ecosystems of
specialised functionality and drive developer engagement through knowledge
transfer. By standardising their ICT infrastructure and engineering toolchains,
through Open Source, a business can significantly reduce up-​front expenditures
and focus the R&D budget on consumer-​relevant product functionality which it
believes drives consumer choice. Similarly, Open Source enables interoperability,
for example through shared application programing interfaces (APIs), which al-
lows independent organisations to build solutions that integrate with each other.

A different approach is the loss-​leader -​ software products like web browsers that
are distributed as Open Source to attract consumers and market other value pro-
positions. All these approaches benefit businesses indirectly without generating
revenue for them.

To build revenue streams, businesses can offer products or goods for licensing or
use them to offer integrated or complementary services.

In the single-​vendor case, all rights to the source code are controlled by the
vendor, enabling them to license the same source code to different customers

	 30	 <https://​sou​rce.andr​oid.com/​> accessed 11 March 2021.

318  Mirko Böhm

under different terms. This dual-​licensing or multi-​licensing approach represents
a price differentiation mechanism that allows vendors to achieve a larger market
share through the additional adoption of those consumers who choose the Open
Source solution out of a preference for the licence or to save cost. The product is
typically offered under a copyleft Open Source licence that requires customers to
disclose their own source code, with the alternative offer to buy commercial li-
cences to avoid this requirement so promoting the uptake of commercial licences
to avoid concerns, with respect to the use and impact of such copyleft code.

Because the necessary CLAs create asymmetry between the contributors, this
approach is controversial in Open Source communities, as was seen in January
2021, when Elastic moved two of its products from Apache 2.0 to the proprietary
SSPL licence and was able to do so only because it had received CLAs from its com-
munity of contributors.

For a company to achieve a reputation in the market that enables it to apply
multi-​licensing approaches requires thought leadership and innovation to build
the necessary goodwill with both contributors and consumers. Few are suc-
cessful and failing companies risk to losing external contributions and may end up
carrying the development cost of the complete product. There is also a risk of forks,
which was the consequence in the Elastic situation.

A third benefit is cost reduction in building software or devices. In the simplest
case, substituting a proprietary software module with an equivalent Open Source
implementation eliminates the licensing effort and importantly cost or royalty.

More commonly, the required functionality is needed by many companies but
not readily available in the market. This incentivises businesses to pool R&D cost
with others that have the same needs, effectively reducing their own investment
to a fraction of the overall cost. In such a set-​up, participants generally expect to
be equals amongst the other contributors. Open Source licensing facilitates the
collaboration. Projects are commonly set up as not-​for-​profit organisations or at
Open Source foundations and typically industry-​driven as is discussed further in
Chapter 18.

The same company may develop different parts of its product portfolio under
different models. It is quite common that manufacturers compete in the same
market segment with their products while at the same time collaborating in Open
Source projects. Since the Open Source product itself is always free to all interested
users and for all purposes, a ‘good business model is simply one that succeeds in
creating additional value at the edge of the commons’.31 One essential question for
every Open Source-​related strategy is how the business benefits from its participa-
tion in the Open Source ecosystem by one of these three approaches:

	 31	 Weber, The Success of Open Source, see note 24.

ECONOMICS OF OPEN SOURCE  319

	 •​	 by generating revenue; or
	 •​	 by reducing cost, or
	 •​	 by realising other non-​financial benefits.

15.12  Differentiating in the Eyes of the Consumer

Businesses decide where to compete and where to collaborate based on what they
expect to be differentiating product features that convince consumers to prefer
their products over those of their competitors. Common product features are best
implemented using existing Open Source solutions both to share R&D cost with
other contributors and to benefit from the joint expertise of the stakeholders in-
volved. The differentiating product features are more commonly developed in-​
house by the vendors themselves and not Open Source. Embedded or mobile
devices today share a large part of their foundational software modules, while they
implement user experience and application-​specific business logic elements as
proprietary software.

This differentiation is exclusively in the eyes of the consumer. There are two
common logical fallacies:

	 •​	 First, contributors assume that because they invested time and resources into
developing a product, they are entitled to compensation. Unfortunately, it is
quite common that businesses make the wrong bet and develop products that
are not convincing to consumers. In an open economy, the ‘fair compensation’
a business should expect as the return on R&D investments is the value the
market assigns to the product. Only by focusing investments towards those
product features that consumers value can a business be successful in the
market.

	 •	 Secondly, Open Source developers sometimes expect that because they have
contributed valuable code, consumers should work with them and hire them
for example for ongoing development or operational support. There is, how-
ever, no intrinsic value for the consumer or a vertical integrator in a business
relationship with the core developers of a software unless this relationship
benefits both sides beyond the free licence to the software, for example by
adding value through knowledge transfer.

Developers and businesses that produce Open Source solutions must find ways to
differentiate their value propositions. Positive differentiators include:

	 •​	 the perception of quality and innovativeness based on the joint expertise of
different stakeholders who participate in its development;

320  Mirko Böhm

	 •	 enhanced trust based on the ability to verify the functionality and integrity of
the software;

	 •​	 the sustainability of the development model;
	 •​	 reduced lock-​in; and
	 •​	 the option to procure maintenance and feature development work from a var-

iety of providers and other factors that promise that the software is useful to
the consumer in the long term.

Many of these positive connotations that Open Source vendors can utilise to dif-
ferentiate are influenced by the impression of community health, which is com-
monly assessed with metrics like the number of independent organisations and
individuals participating in the Open Source development process or the overall
number of contributions raised by the community. These metrics reflect negatively
on single-​vendor models and partially explain the hesitation especially of vertical
integrators to engage in a business relationship.

While the assumption that corporate Open Source users in particular should
return a ‘fair share’ to its developers is understandable, there is no imperative to
contribute from the individualistic economic perspective (it could be explained by
other disciplines).

However, conflicts based on free-​riding behaviour are rare in the Open Source
ecosystem, and almost all involve Open Source vendors that implement the single-​
vendor model.

Some Open Source vendors, particularly those with venture capital (VC)
funding criticise their users and the community for not giving enough back to
them. This ‘community bashing’ is reminiscent of politicians that criticise their
electorate for exercising their free will not to support their policies. More rationally,
the behaviour of the consumers can be explained by the negative differentiation ef-
fects that is caused by the reintroduced vendor lock-​in or the lack of sustainability
of the software development process caused by the absence of a healthy, diverse
developer community.

In short, some single-​vendor Open Source businesses attempt to reintroduce
proprietary software development models and strong vendor lock-​in based on an
Open Source product, which reduces software freedom. These attempts contribute
to the negative reputation of contributor licence agreements that the vendors re-
quire to pursue these strategies.

15.13  The Role of the Volunteer Community

In the discussion of the economics of Open Source, the focus is less on the vol-
unteer community since it contributes only a fraction of the overall Open Source

ECONOMICS OF OPEN SOURCE  321

development effort and is less engaged in the larger Open Source foundations
and the discussion of commercial models. The volunteer community is, however,
a core element of the wider Open Source ecosystem. This is illustrated by the
early success and market adoption of Open Source that happened when busi-
ness participation in community development was still considered an extrava-
gance. The volunteer community acts as a driver that stimulates Open Source
innovativeness.

The individual motivation of volunteers to participate in Open Source de-
velopment differs from the business rationale outlined earlier. Developers start
contributing to Open Source projects based on their own interests and technical
needs and over time evolve a deeper engagement with the developer community
to gain a sense of achievement and belonging. Open Source culture builds on the
careful, transparent, and consensus-​focused governance that the communities
set up based on the paradigm of voluntary participation and the correctives af-
fected by the possibility of forks. Many contributors consider Open Source devel-
opment something worth fighting for. They focus more heavily on the virtuosity
of contributing and the benefits of Open Source to society. Software freedom has
more importance to them than the availability of the source code. As such, the
engagement of the decentralised Open Source developer community provides
an important safeguard of software freedom and represents the interests of civil
society.32

From the perspective of participating individuals, the positive freedom to use,
study, modify, and redistribute the software gains more emphasis compared to
the absence of constraints. This perspective has defined the debate on openness
and freedom indicative in the histories of the FSF and the OSI as opposed to the
industry-​led Open Source foundations. Representation of the decentralised vol-
unteer community of Open Source contributors often focuses on charitable goals
and is separate from industry-​led foundations which are essentially trade associ-
ations. This makes volunteer community organisations natural counter-​parts for
policy-​makers and gives them a sometimes oversized credibility and reputation as
trusted advisers. Compared to the industry associations, volunteer organisations
operate on small budgets and staff. There is a generally fluid transition from being
a volunteer contributor to a corporate one upon graduation or with the creation
of start-​up businesses, emphasising the importance of Open Source as a know-
ledge transfer mechanism. The volunteer community is an essential and necessary
part of the wider Open Source ecosystem that supports the competitiveness of the
software market and the alignment of technical innovation with the interests of
society.

	 32	 Böhm, ‘The Emergence of Governance Norms in Volunteer Driven Open Source Communities’,
see note 7.

322  Mirko Böhm

15.14  Competition in the Wider Open Source Community

As there is generally no direct remuneration for Open Source contributions, com-
petition in the Open Source ecosystem is not about revenue or market share.
Contributions are not market transactions in which two parties negotiate a trade
they assume to be of similar value for both sides. However, the Open Source com-
munity exhibits a fast pace of innovation, develops new state-​of-​the-​art tech-
nology, and swiftly reacts to changes in the technology needs of the consumers.
There is competition within the communities, between the communities in the
Open Source ecosystem and with the rest of the market and even government.

Within the communities, contributors compete for the integration of their code
to be released with the community products. Since the motivation of individual
contributors is often driven by non-​monetary factors like a sense of achievement,
positive creativity, or pride, the effort that is invested into an incremental im-
provement of a specific feature is at times higher than justified purely by technical
requirements. This perfectionist attitude of ‘it is done when it is done’ enhances
overall product quality. The prestige of proven contributions to important Open
Source projects or a good reputation as a contributor is valuable enough that in the
software sector, they come to be considered a part of the developer CV. This com-
bined with the potential global participation of individual developers makes for a
rather fierce intra-​community competition.33

Open Source communities compete with each other for the adoption and in-
tegration of their solutions within the global upstream/​downstream network
and eventually the consumer market. This mindset drives the acquisition of new
contributors and the continued development of the software that defines the
relevance of the community and its ability to facilitate contributions and raise
funding. Participants in Open Source communities bet on the adoption of their
community’s software to help them realise the benefits from their contributions.
This inter-​community competition for relevance and adoption causes swift techno-
logical cycles that displace even well-​known solutions with a large contributor
base once a more promising alternative emerges, as illustrated by the competition
between the OpenStack and Kubernetes communities. The participants in these
communities frequently stay involved and continue to contribute to Open Source,
however they quickly shift attention and contributions to the newly dominant so-
lutions. While individual communities grow and shrink, the overall community of
Open Source participants seems to mostly grow slowly and steadily. The upstream/​
downstream network exhibits powerful positive externalities of community health

	 33	 Y. Yu, G. Yin, H. Wang, and T. Wang ‘Exploring the Patterns of Social Behavior in GitHub’ in
Proceedings of the 1st International Workshop on Crowd-​Based Software Development Methods and
Technologies, CrowdSoft 2014, 31–36.

ECONOMICS OF OPEN SOURCE  323

and size and fast adoption of new technologies similar to the tipping markets of
Internet products.34

When Open Source products substitute proprietary products, the community
competes with private enterprise. The inherent freedoms and public good char-
acter of Open Source make it difficult for businesses to compete since they need to
offer strong value propositions to justify a non-​zero price. This kind of one-​to-​one
competition between free and commercial products was however more common
in the earlier days of Open Source adoption as a way to challenge the market
position of entrenched incumbent software vendors, resulting, for example, in
LibreOffice, the Linux kernel, and Apache. Collaborating on Open Source solu-
tions challenged the market position of the incumbents and forced their products
to be more consumer-​oriented, without necessarily replacing them. Markets for
some proprietary products have practically disappeared, such as those for com-
mercial software development tools or proprietary embedded operating systems.
In these cases, collaboratively developed products perform better based on a wide
stakeholder participation in the development process. Today, especially industry
participants have adopted a conceptual separation between a competitive zone
where consumer-​oriented, differentiating product features are developed and a
collaborative zone that creates the underlying non-​differentiating functionality.
Different behaviour is expected in these zones. The competitive zone covers a
smaller part of the overall software of a device or application and functions mostly
unchanged in terms of development processes and IPR management compared to
traditional R&D. In the collaborative zone, a key principle is joint stewardship over
the community products with the expectation of ex ante licensing of all relevant IP.
Based on this collaborative approach, businesses engage in a model of ‘Continuous
Non-​Differentiating Cooperation’.35

An under-​researched aspect of Open Source community collaboration is the
way it competes with state actors. Open Source offers technical solutions that may
challenge established political processes, as for example in e-​democracy applica-
tions, and facilitates new forms of political participation. The production of private
goods is coordinated primarily within firms or between firms in markets, while
public goods are mostly provisioned by the state.36 Open Source enables a ‘fourth
transactional framework’37 that provisions public goods in an alternative, decen-
tralised fashion.

The cross-​border collaboration of Open Source communities also challenges es-
tablished policy frameworks, which is of particular relevance with Brexit and other

	 34	 Shapiro and Varian, Information Rules, see note 2.
	 35	 Blind and Böhm, ‘The Relationship Between Open Source Software and Standard Setting’, see
note 26.
	 36	 Ronald H Coase, ‘The Nature of the Firm’ (November 1937) new series 4(16) Economica 386–​405.
	 37	 Yochai Benkler, ‘Coase’s Penguin, or, Linux and “the Nature of the Firm” ’ (December 2002) 112(3)
The Yale Law Journal 369+​.

324  Mirko Böhm

geo-​political shifts in the US, China, and Europe, in particular calls for digital sov-
ereignty. However, local legislation like the European General Data Protection
Regulation (GDPR) and governmental policies such as the Chinese ‘Great Firewall’
still have significant impact. There is not much research on the potential competi-
tion between the Open Source community and government at this juncture. This
may, however, become an important field of inquiry for both developing and de-
veloped countries, especially as the impact of Open Source correlates with policy
objectives like the United Nations Sustainable Development Goals.38

Overall, the wider Open Source community represents a very competitive envir-
onment that results in fast-​paced technical innovation, reduced barriers to entry,
and a challenge to incumbent market positions. The introduction of Open Source
both from a licensing and a collaboration perspective usually increases competi-
tion by providing alternative models and approaches. Open Source community
governance norms are, however, not fully standardised, with a theoretical possi-
bility that participants may form market-​controlling clubs and it is normal to have
antitrust or competition policies to avoid this. The public good character of Open
Source combined with open, transparent governance norms generally inhibit pos-
sible anticompetitive behaviour. A key contribution of Open Source to economic
growth is the provision of baseline technologies that represent the current state of
the art and are available to everyone.

15.15  Compliance, Social and Market Transactions, and
Zero Price

Key effects of Open Source collaboration include:

	 -​	 the reduction of transaction cost of participation and
	 -​	 the reduction of barriers to entry for newcomers.

Reduced transaction cost opens the collaboration process to an overall larger
constituency and in particular invites participants for whom staff cost and mem-
bership fees, for example in traditional standards development have been a chal-
lenge, namely small and medium-​sized enterprises (SMEs).39 Reduced barriers to
entry for newcomers improve the chances for example of university spin-​offs and
start-​up companies to compete with incumbents, improving competitiveness.40
These benefits depend on efficient IP management across the whole Open Source

	 38	 <https://​sdgs.un.org/​> accessed 11 March 2021.
	 39	 Blind and Böhm, ‘The Relationship Between Open Source Software and Standard Setting’, see
note 26.
	 40	 Frank Nagle, ‘Government Technology Policy, Social Value, and National Competitiveness,’
Harvard Business School Strategy Unit Working Paper, no. 19–​103 (2019): 1–​50.

ECONOMICS OF OPEN SOURCE  325

ecosystem. An implicit expectation of Open Source compliance towards all parti-
cipants requires adherence to the obligations from all consumed Open Source li-
cences and is regarded as a hygiene factor by the wider Open Source community.
Hygiene factors create dissatisfaction by their absence.41 In the context of Open
Source, compliance is considered as a tool of the trade. Uncertainty about the com-
pliance of suppliers and consumers or necessary litigation undermine the fabric of
the global upstream/​downstream network by negating the reductions in transac-
tion cost of participation and re-​erecting barriers to entry.

Open Source is made freely available to everybody. A price of zero triggers a
different response in actors even compared to a bargain low price. It transforms
the exchange between communities and consumers from a market transaction
where parties negotiate for gains at the others expense to a social exchange with
an agreement on behaviour that is beneficial to everybody involved. Asking for
remuneration or negotiating over commitments constitutes anti-​social behaviour
in a social exchange. Instead, there is an expectation of fairness and reciprocity.42
This explains why Open Source compliance should not be managed as a risk but
considered an imperative.

Reciprocal licences model Open Source usage as a social transaction by asking
the consumer to act similarly to the licensor. They aim at symmetry between con-
tributors and users and at ensuring that using the software remains a social ex-
change for the long term. Because it is intuitively understood that even a small
number of bad actors reduce the overall willingness to engage in social exchanges,
the Open Source community is sensitive to licence violations and willing to litigate
against them.43 This attitude of the wider Open Source community is in line with
recent research that shows a weakening of social norms in the face of even a few
bad examples.44 Considering Open Source participation as a social exchange again
helps to explain the negative reputation of CLAs since they are based on market
exchanges. Contributing as an individual to a single-​vendor product under CLA
is more similar to paying taxes than to bringing a dish to a dinner with friends.45
Similarly, programs that put out bounties for adding features or fixing bugs re-
frame contributing to Open Source as a market transaction.

A framework for social transactions is disrupted as soon as any party starts
negotiating about remuneration, which is why the Open Source community avoids
any form of negotiation of terms between contributor and consumer. Instead,
Open Source licences are ex ante agreements where all rights necessary to build the

	 41	 F Herzberg, B Mausner, and BB Snyderman, The Motivation to Work (New Brunswick, US and
London, UK: Transaction Publishers, 1993).
	 42	 Dan Ariely, Uri Gneezy, and Ernan Haruvy, ‘Social Norms and the Price of Zero’ (2018) 28(2)
Journal of Consumer Psychology 180–​91.
	 43	 <https://​gpl-​vio​lati​ons.org/​> accessed 11 March 2021.
	 44	 Ariely, Gneezy, and Haruvy, ‘Social Norms and the Price of Zero, see note 42.
	 45	 Benkler, ‘Coase’s Penguin, or, Linux and “the Nature of the Firm” ’, see note 37.

326  Mirko Böhm

desired outcome are secured from the start. The agreements are standardised into
a number of approved licences that model the three basic modes of Open Source
collaboration:

	 •​	 strong copyleft,
	 •​	 weak copyleft, and
	 •​	 and permissive.

Only a small number of licences are used in recent practice and new licences are
rarely approved. Combining Open Source licensing with other rights such as pa-
tents or trademarks that require ex post licensing of terms has generally not been
successful.46

Maintaining licence compliance has gained considerable complexity due in
particular to modern hardware devices such as general-​purpose computers that
include all sorts of computing, storage, user interface, and networking function-
ality.47 Manufacturers are required to document the complete use of Open Source
in the devices according to the obligations from the licences contained in them.
Recent initiatives aim at reducing this complexity to ensure the viability of the
Open Source supply chain.48 Industry and community best practices in this con-
text continue to evolve.49

15.16  Open Source as Community-​Provisioned Public Good

Open Source affects society at all layers of the economy. Individuals participate
for their own reasons and learn valuable skills. They find enjoyment, a sense of
achievement, and belonging and opportunities to be a productive part of some-
thing bigger: the wider Open Source community.

Businesses find both threats and opportunities from Open Source. It greases
competition and fosters the innovativeness of the tech sector by providing free
baseline technologies, potentially weakening market positions of incumbents and
causing creative destruction of existing assets. On the other hand, Open Source
offers plenty of business opportunities and faster, cheaper ways to produce modern
applications and devices.

For every Open Source-​derived product a business intends to market, it needs
to answer (at least) these three questions to describe the value proposition to the
consumer:

	 46	 Blind and Böhm, ‘The Relationship Between Open Source Software and Standard Setting’, see
note 26.
	 47	 Armijn Hemel and Shane Coughlan, Practical GPL Compliance (Linux Foundation, 2017).
	 48	 <https://​www.openc​hain​proj​ect.org/​> accessed 11 March 2021.
	 49	 <https://​reuse.softw​are/​> accessed 11 March 2021.

ECONOMICS OF OPEN SOURCE  327

	 •	 What is the revenue model of the product? Is the goal to provide a defined
functionality at the lowest possible cost, or to induce indirect benefits without
directly generating revenue, or is the product meant to be sold in the market
to establish a revenue stream?

	 •	 What type of Open Source-​related good is it? Is it a service of either the hori-
zontal complementary or the vertically integrated kind, or is it a product
which may either consumer-​oriented or a foundational technology?

	 •	 What is different about what their offer? The business needs to market the
product to the consumer based on differentiating product features, while in-
cluding the expected but non-​differentiating features at low cost in order to
sell the product at competitive prices.

Based on the answers, participants can derive ways to build and market their prod-
ucts. Some combinations represent well-​known approaches. Kubernetes and Linux
are non-​differentiating foundational technologies that reduce the cost to operate
data centres or build devices. They are developed at Open Source foundations in a
model where participants pool R&D cost. ChromeOS and clang are differentiating
consumer technology that realise indirect benefits by enabling developer ecosys-
tems or marketing complementary services. They are developed as Open Source
by a single company or a small group of stakeholders. Android phones and propri-
etary apps in general are differentiating consumer-​oriented products intended to
generate revenue. Their differentiating features are developed in-​house while they
build on foundational technologies developed in collaboration with others.

Not all combinations of answers have been successful in the market. Building
differentiating consumer-​oriented products as Open Source that are supposed to
directly generate revenue lacks the necessary differentiation in the eyes of the con-
sumer. These approaches suffer from an inherent contradiction that the purpose of
a business is differentiation in the market, while the essence of Open Source is to
be non-​differentiating. An alternative is the Red Hat model to differentiate based
on services that complement the free product. By answering how they create add-
itional value on the edge of the commons, businesses can embrace Open Source
and benefit from it.

From a macro-​economic perspective, Open Source is a toolbox that is part of the
available technology. Software only has a tangible effect if it is executed in an ap-
plication or device. Because of that, there is no possible economic downside from
the development effort itself of the wider Open Source community at the macro
level, while Open Source is proven to be useful and drive innovation. Hence Open
Source contributes positively to the common good.

Where Open Source participation is regarded as a social transaction, free riding
is not common. By resolving the free rider problem, Open Source development
processes open up the possibility for the decentralised collaborative development
of public information goods at a large scale.

328  Mirko Böhm

Open Source benefits society by combining innovative state-​of-​the-​art tech-
nologies that are at the same time commodities and public goods and can be cre-
ated without the need for a central authority. As such, Open Source has become
a part of the political sphere. Political systems should be designed so that they
serve society even if the stakeholders involved—​citizens, politicians, businesses,
and others—​act in their own self-​interest. Open Source provides the tools and
processes to make this possible for the creation of software technology and infor-
mation goods in general. It fills an economic gap by enabling the decentralised pro-
vision of non-​market goods potentially at a global scale. By connecting individuals
and organisations in the production process, Open Source bridges the formal and
informal economy. This enables grassroots and volunteer initiatives to have an im-
pact, as illustrated by the successes of the early volunteer-​driven communities. The
mechanisms described in this chapter—​types of goods, competition versus collab-
oration, differentiation—​are agnostic to economic systems and observable in all of
today’s societies. There is however a direct relationship between software freedom
and individual freedom—​self-​identification, the way Open Source contributors
choose what to contribute and where—​depends on civil liberties.50

Open Source provisions public goods in the absence of centralised authority.
There is a long way to go to realise this ideal, but the first steps are complete. A good
next step will be to stop asking ‘how can I make money with Open Source’ and start
asking ‘How can I, my business or society realise the benefits from Open Source?’

	 50	 Karl Raimund Popper, The Open Society and Its Enemies (London: Routledge & Kegan Paul, 1957).

Amanda Brock, Business and Revenue Models and Commercial Agreements In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © Amanda Brock 2022. DOI: 10.1093/​oso/​9780198862345.003.0016

16
Business and Revenue Models and

Commercial Agreements
Amanda Brock

	16.1	� Introduction � 329
	16.2	� What is Open Source? � 330
		 16.2.1	� Overview � 330
		 16.2.2	� It may look like Open

Source but it’s proprietary � 331
	16.3	� Business Models and

Open Source � 336
		 16.3.1	� Open Source is not a

business model � 336
		 16.3.2	� Open Source communities,

forking, and maintenance
		 16.3.3	� Evolving from a community

to a business � 340
		 16.3.4	� Open Source and businesses � 342
	16.4	� Commercial or Business Models � 343
		 16.4.1	� Data and its impact on

business models � 343
		 16.4.2	� Pureplay Open Source

businesses� 344
	16.5	� Cloud and Open Source in

the Last Few Years � 351
		 16.5.1	� Platform companies � 351
		 16.5.2	� Platform companies and

Open Source � 352

		 16.5.3	� Open Core and strip mining � 354
	16.6	� Standards and FRAND � 363
	16.7	� Open Source Business Models—​

Diversity and Success � 364
	16.8	� Measuring Success and the

Values of Open Source � 364
		 16.8.1	� Total cost of ownership

or total cost of enterprise
and other economic
descriptions � 364

	16.9	� Open Source and Commercial
Contracts � 365

		 16.9.1	� Service contract not a licence � 365
		 16.9.2	� Open Source Definition
		 16.9.3	� Derivative works: GPL or

copyleft compilation issue � 366
		 16.9.4	� Open Source licence-specific

requirements� 366
		 16.9.5	� Warranties, representations,

and indemnities � 367
		 16.9.6	� Subscription or insurance � 367
		 16.9.7	� Agile, SOW, and project

governance � 368

  

16.1  Introduction

To understand how revenue is generated in businesses basing their products or
services on Open Source licensed software it is necessary to understand what Open
Source software is. Armed with that understanding one can consider the appli-
cation of possible business models. Open Source may be many things, beyond its
legal categorisation, but Open Source is not of itself a business model nor was it
ever intended to be one. Generating revenue and finding a suitable business model

330  Amanda Brock

for businesses based on Open Source licensed software, is the holy grail to many
interested in Open Source today.

This chapter sets out:

	 -​	 What Open Source is and what it is not;
	 -​	 A consideration of possible revenue and business models;
	 -​	 Recent business challenges around Open Source; and
	 -​	 Commercial contracts.

16.2  What is Open Source?

16.2.1  Overview

The Open Source movement evolved as a reaction to restrictions in sharing and col-
laborative development of code which arose as a consequence of proprietary software
licensing, along with developers’ desire to share and collaborate on software develop-
ment. Developers made a very conscious decision to move away from proprietary soft-
ware licensing to Open Source. As Mark Shuttleworth, Founder and CEO of Canonical,
points out in his Open Source Underdogs Podcast,1 an individual’s experience or en-
gagement with Open Source will shape their opinion of what it is. That may be as part of
a community, through a corporate collaboration, or perhaps by engaging with a foun-
dation, each interaction being very different. This disparity of experience and under-
standing helps us understand why the term Open Source may become confused.

In a legal sense, Open Source is defined by ownership and licensing of software.
In the early years of software development, copyright did not apply to software.
Code could be freely used by all, not just the creator of the code, without the need
for a licence. There was no applicable intellectual property (IP) protecting the code
from third-​party usage and necessitating a licence to use another’s code. From the
1960s onward, copyright has been applied to software through legislation (see de-
tails of the evolution of copyright law to code in Chapter 3). The effect of this is to
restrict a third-​party’s use of the software to the grants made by the owner of the
software as set out in the applicable licence.

Over time, ownership and licensing of software evolved to form the basis of
the legal characterisation of software splitting it into either proprietary or Open
Source. A single licence will be categorised as either Open Source or proprietary,
never both. That is not to say that there could not be other categories of software li-
censing in the future but today only these two mutually exclusive licence types exist.

	 1	 <http://​bit.ly/​37cR​5Cc> accessed 17 April 2022. Any quotations from Mark Shuttleworth in this
chapter can be found in this podcast and its associated transcript.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  331

To be categorised as Open Source, a software licence should meet the require-
ments of the Open Source Definition (OSD) stewarded by the Open Source
Initiative (OSI) and the simplest way to ensure this is for it to be approved by
the OSI (licensing is explored in detail in Chapter 3). Code licensed on an OSI
approved licence is classed as Open Source, and code licensed on unapproved li-
cences is proprietary. When software is made available under an OSI approved
licence, the software is Open Source software. Others may try to broaden this
definition referring to Free Software, etc., but I find this simplest and attempts
to broaden this can be misleading or the consequence of intentional Fear,
Uncertainty and Doubt (FUD).

Software can however be ‘dual-​licensed’ and distributed on both an Open Source
and a proprietary licence and so be characterised in both categories dependent on
the licence the code is distributed on, whereas a licence cannot be both.

16.2.2  It may look like Open Source but it’s proprietary

Code distributed under a proprietary licence is classed as proprietary software
but instances of confusion have arisen where proprietary licensed code has been
described as Open Source, whether intentional FUD or through a failure in
understanding.

16.2.2.1 � Public or shared source
Creative Commons licences are not designed for software and should not be ap-
plied to software. They form a good basis for commons licensing of non-​code
assets such as documents (see Chapter 24), but equally Open Source software li-
cences should not be used for non-​code assets.

Creative Commons includes a category of Non-​Commercial Licensing where
the recipient of a licence may use licensed materials but may not use them for com-
mercial purposes. There is no equivalent to this concept in Open Source and there
is occasional confusion around this distinction even amongst experienced mem-
bers of the legal community.

Licences for software that are classified as Non-​Commercial cannot meet the
OSD as they breach Definition 6, requiring “no discrimination on field of en-
deavour”. On this basis no Non-​Commercial licences approved by the OSI exist. In
turn, any licence restricting usage to non-​commercial purposes restricts a field of
endeavour and so is a proprietary licence.

This situation has caused some businesses issues in recent years. As a conse-
quence, lawyer Heather Meeker drafted both the Commons Clause working
around Definition 6 and the Server Side Public Licence (SSPL). These were drafted
for clients unhappy with the consequences of Open Source licensing on their busi-
ness (this is explained in detail in section 16.9 of this Chapter). Despite having

332  Amanda Brock

chosen to license their code on an Open Source licence, these businesses became
uncomfortable over time with the consequences of third-​party commercial use of
that Open Source licensed software. In reality, they shifted away from Open Source
to proprietary licensing by adding the Commons Clause or shifting to SSPL.

Public source or shared source licences, like the SSPL, grant access to source
code, as would be expected of Open Source software and may meet some OSD
requirements but don’t comply with the OSD in full. They are not Open Source li-
cences. The OSI confirmed that SSPL is not Open Source2 and described attempts
to say it was Open Source as ‘Fauxpen’.

Adding a clause to an OSI approved licence as the Commons Clause does,
also renders an otherwise Open Source licence proprietary. Meeker designed the
Commons Clause to be added to the Open Source Apache Licence to restrict usage
of the licensed code for commercial or for-​profit purposes. Its guidance says it is
applied to ‘specific projects to satisfy urgent business or legal requirements without
resorting to fully “closed sourcing” ’. The implication is that there are shades of
Open Source licensing. But there are no shades of Open Source. It goes on to say
that ‘applying the Commons Clause to an Open Source project will mean the source
code is available, and meets many of the elements of the Open Source Definition,
such as free access to the source code, freedom to modify and to re-​distribute, but
not all of them. So, to avoid confusion, it is best not to call Commons Clause soft-
ware “open source”.’ It is however not *best* not to call Commons Clause software
Open Source. Commons Clause software is not Open Source and should not be
called Open Source. The name itself implies an association with the ‘Commons’
and therefore with Open which appears disingenuous and an attempt to wrongly
imply it is Open Source. The Commons Clause was vilified by the Open Source
communities.

Open Source and commons licences are publicly available standards and re-
usable; proprietary licences are not as a matter of course named and shared in
this way. Applying this commons or open naming practice to proprietary soft-
ware licences has added to confusion and FUD implying this is Open Source.
The business history of the evolution of these is considered later in depth at
section 16.5.

Whilst Open Source may be many things to different people, it was neither de-
signed to be a business model nor to accommodate business models or revenue
generation. Any revenue generation or business model that uses Open Source soft-
ware is distinct from the software’s being Open Source. To be successful the busi-
ness model must be complementary.

Open Source has disrupted the very lucrative proprietary licensing, royalty-​
based, business model. This disruption to the proprietary revenue model was

	 2	 <https://​ope​nsou​rce.org/​node/​1099> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  333

met with an unsurprising backlash. For many years FUD was circulated around
Open Source in response to the challenge it posed to the proprietary licensing
revenue models. There is still an element of FUD today, from some proprietary
software companies but many now embrace Open Source, and from companies
that built their businesses on Open Source only to decide at a later stage that even
where they are successful, the Open Source nature of the licence means they have
not generated enough revenue and they have switched future releases to being
proprietary.

A second issue emerged as later generations of software developers adopted
Open Source as the norm. This generation is referred to by Open Source writer,
former lawyer and businessman, Matt Asay,3 as the ‘GitHub Generation’.4 Unlike
the first-​generation of developers who consciously and deliberately shifted away
from proprietary coding to Open Source, this later generation has been taught
Open Source methodologies as the norm when taught to code but apparently not
taught the nuances and consequences of licensing or the principles of Open Source.
This lack of understanding that developing code in the open or sharing source is
not enough to make code Open Source risks the longevity of their favoured devel-
opment methodology.

Asay writes: ‘The GitHub generation seems determined to take open source
to its logical conclusion: releasing most software under no license at all.
Personally, I didn’t like that. I wanted (and still want) people to care about these
issues. But most don’t.’5 In reality, education and skills development could fix
this issue. JetStack founder, Matt Barker,6 called out ‘Education, Education,
Education’, in his first report as OpenUK Entrepreneur in Residence and
emphasised the need for an understanding of business models and revenue
generation. Without this understanding and respect for Open Source’s nuances
and with the inevitable FUD and pushback from disrupted markets Open
Source might not survive beyond this generation. The risk Asay points out
is an unintended return to proprietary software. This is not a natural conclu-
sion to the evolution of Open Source but the risk of a lack of understanding of
what it is.

Additionally practical issues have added to the GitHub generation’s confusion.
GitHub is the most popular public repository for distributed development and
did not require a licence for code released. It has gone some way to rectify this by
adding the statement:

	 3	 <https://​www.linke​din.com/​in/​mja​say/​> accessed 17 April 2022.
	 4	 <https://​then​ewst​ack.io/​the-​new-​stack-​what-​Open Source-​means-​for-​the-​github-​generation/​>
accessed 17 April 2022.
	 5	 <https://​www.infowo​rld.com/​arti​cle/​3640​617/​elas​tic-​keeps-​tick​ing.html> accessed 17 April 2022.
	 6	 Open.UK Founders Forum, ‘Entrepreneur in Residence and Founders Forum Initial Findings,
November 2021’ <http://​bit.ly/​3FVR​Dy1> accessed 17 April 2022.

334  Amanda Brock

You’re under no obligation to choose a license. However, without a license, the de-
fault copyright laws apply, meaning that you retain all rights to your source code
and no one may reproduce, distribute, or create derivative works from your work.
If you’re creating an Open Source project, we strongly encourage you to include
an open source license. The Open Source Guide provides additional guidance on
choosing the correct license for your project.7

This represents a practical step forward designed to support good practice.

16.2.2.3 � Ethical licensing and other positive actions with
negative consequences

Attempts to modify or extend the OSD have not only been based on commercial
challenges. A second example comes from ethical licensing where restrictions
apply to usage of licensed code for purposes deemed unethical by the licensor.
Irrespective of the rights and wrongs or ethics of the field of usage that is purported
to be restricted, code licensed in this restricted way cannot be Open Source. Even
if a restriction is well intended, it doesn’t comply with the OSD. Ethical licences
proposed to the OSI, have not been approved. They should not be considered Open
Source but proprietary.

This has most recently been seen with attempts to restrict access to code by those
in Russia, following the war in Ukraine and known as ‘Protestware’.

Adding a non-​binding provision to a licence indicating a desire that the code
not be used in a particular sector and embedding the message in the code header
alongside the attribution provision could allow the request to travel with the code
making this wish known without impacting the OSI approved licence. The down-
side is that the notice is not binding on a user but a mere request. Bram Moolenaar8
goes a step further in the VIM text editor using ‘Charitywear’ where his message to
‘Help the poor children in Uganda’ is in the actual code itself and visible as the code
runs. Like the header notice, this request does not change the licence or stop code
distributed under it being Open Source.

A non-​binding clause in the licence might achieve the same but risks under-
mining the licence as a non-​approved addition to an approved licence. In light of
the Commons Clause, discussion this would be unwise.

16.2.2.3 � Public domain
In some jurisdictions there is a concept of public domain where code placed in
this is freely usable without restriction. This legal concept does not exist univer-
sally and anything not clearly stated in writing runs the risk of confusion meaning

	 7	 <https://​docs.git​hub.com/​en/​repos​itor​ies/​manag​ing-​your-​repo​sito​rys-​setti​ngs-​and-​featu​res/​cust​
omiz​ing-​your-​rep​osit​ory/​licens​ing-​a-​rep​osit​ory> accessed 17 April 2022.
	 8	 <https://​en.wikipe​dia.org/​wiki/​Bra​m_​Mo​olen​aar> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  335

its use will be prohibited in many businesses’ Open Source policies. It is always
advisable to use a written licence for code distribution and not to rely on this
concept.

16.2.2.4 � Standards FRAND and Open Source
Awareness of a conflict between closed standards and Open Source is relatively
recent (see Chapter 11). As Open Source has become prevalent in Telcos, Mobile
Network Operators (MNOs) and their ecosystems including certain Software on
Chip companies, the concept of fair, reasonable, and non-​discriminatory (FRAND)
source patent licensing in Standards has become relevant to Open Source. MNOs
are heavy users of standards and the associated SEPs licensed on a FRAND basis,
with significant royalty revenue streams attached to these. Patent holders appear
to have influenced the development of SEPs with their patents becoming royalty
bearing SEPs. As a consequence the forensics of Standards development have be-
come very relevant.

Definition 7 of the OSD requires that ‘[t]‌he rights attached to the program must
apply to all to whom the program is redistributed without the need for execution of
an additional licence by those parties’. As a consequence of this, it is likely not pos-
sible to require a further licence, for example a SEP, being executed to enable the
use of the Open Source licensed code.

The MNO network is relatively immature, and over the four decades of their
existence they have experienced a constant flux and diminution of their revenue
models, from the rise of (Over the Tops) OTTs like What’s App to restrictions on
roaming charges. Understandably, they are resistant to losing SEP royalties through
adoption of Open Source and are fighting back by spreading FUD. Unfortunately,
their choice is to retain these royalties, to use Open Source or to find a carve out for
Open Source like the Open Invention Network. This structure was used by the US
Department of Justice in the Rock Star Consortium acquisition of Nortel’s patents.

Currently, unhelpful conversations in standards organisations dominated by
MNOs are suggesting the redefinition of Open Source to facilitate their patent roy-
alties. This is unworkable as Open Source is relied on by millions of users. It could
of course lead to a new FRAND Source proprietary model. This would be propri-
etary and not Open Source licensing. Again, Open Source should not be bent or
redefined to suit a market even one as wealthy and powerful as the MNOs. The
MNOs cannot have their Open Source cake and eat patent royalties.

16.2.2.5 � Inner source
This term appeared in the 1980s, and Klass-​Jan Stol and Danese Cooper’s book9
on the topic explains converting internal development practices to something

	 9	 Klaas-​Jan Stol and Danese Cooper, Adopting InnerSource (Sebastopol: O’Reilly Media,
2018) <http://​bit.ly/​2rF3​H6f> accessed 17 April 2022.

336  Amanda Brock

collaborative that uses Open Source behaviours, methodologies, and processes
to manage code development but which may create code that is neither publicly
shared nor Open Source. It’s a great way for organisations to work and many adopt
inner source practices as a stepping-​stone in their journey to Open Source.

16.3  Business Models and Open Source

16.3.1  Open Source is not a business model

Mark Shuttleworth explains that Open Source cannot be understood by looking
through the ‘lens of the past’ with the perspective of analogue tech, which was
proprietary and held in the hands of a few large companies. His ‘forward-​looking’
digital lens sees today’s Open Source software in the hands of the many.

Some split Open Source into Community and Commercial Open Source.
Community is built by volunteers in free time and Commercial is developed
through business to generate revenue. Ultimately creating either has a cost that
needs to be met whether by donation or payment without even considering profit.
A key challenge for Open Source is covering these costs and generating revenue
where the software is licensed RF or given away i.e. how to generate revenue if the
secret sauce is not a secret.

Whilst a community may simply need to pay for its own excellence to ensure on-
going maintenance of the code, it will have overheads like community events, legal
and governance advice, and, in some cases, paying those who maintain the code.
Businesses aim to generate levels of revenue that lead to profit despite having given
away the software they develop, and, as Shuttleworth points out, ‘enabling your
own competition with the benefit of your inventions’. He goes on to say that this
can be ‘financially and emotionally very draining’. That will be particularly so if the
business model is not right for the commercial environment. He adds that ‘in the
future, if you are not Open Source, you will be niche’, and that ‘Categories’ will be
defined in Open Source. Ultimately this requires appropriate revenue and business
models to sit alongside the distribution of Open Source.

Open Source as a concept should not be confused with a business model, and
assumptions that Open Source ought to deliver a business model fail. In October
2008, Matt Aslett produced the first report on business models and Open Source at
451.10 Whilst there have been huge shifts in technology and this evolution has had
a massive impact on the adoption of Open Source, the associated business models
have largely remained consistent.

	 10	 <https://​451r​esea​rch.com/​anal​yst-​team/​anal​yst/​Matt+​Asl​ett> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  337

Wikipedia describes a business model as the way ‘an organisation creates, de-
livers, and captures value, in economic, social, cultural or other contexts’. Open
Source is a form of software licensing, a socio-​political movement, a way to collab-
orate, or a development methodology, depending on the lens you approach it with
but is not of itself a business model.

I developed a simple ‘What if Theory’ to use when discussing setting up a busi-
ness or open sourcing code that will be used in a business.

What if you build your business on software and share it under an Open Source
licence and somebody else uses it?

What if you build your business on software and share it under an Open Source
licence and somebody else uses it to make money?

What if you build your business on software and share it under an Open Source
licence and somebody else uses it to make more money than you make or even a lot
of money?

If the answers to the ‘What ifs’ is not that they are OK and fundamental to how
Open Source works, or if you do not have a business model that you believe will
override any discomfort they cause you, then I suggest you do not open source your
business’ software and that Open Source is not for you. This will avoid the later pain
felt by the likes of Redis Labs or Elastic, explored in section 16.5 of this chapter.

Open Source creates values beyond economic value. These societal values, such
as diversity of innovation, community, sustainability (as in the United Nations’
Seventeen Sustainable Development Goals), collaboration, and the ability to gen-
erate ubiquity rapidly as well as to scale at an unprecedented pace, thereby creating
business opportunity, that may however outweigh any downsides.

16.3.2  Open Source communities, forking, and maintenance

Anyone may start an Open Source project, but it would be lonely to do so on your
own. A key benefit of Open Source is building a diverse community of contributors
to innovate. Not just developers, but creators of documents, community organ-
isers, and governance experts are all needed. Projects were historically frequently
self-​funded and not set up with the intention of generating revenue. Open Source
was effectively the forerunner to crowd sourcing and a basis for the establishment
of collective equity models.

As projects grow, they need governance and potentially a fiduciary such as a
foundation or a commercial entity (see Chapter 18) facilitating activities like
signing binding documents, opening bank accounts, practical organisational ac-
tivities, as well as protecting IP for that community (see Chapter 9). Some projects
morphed into businesses with a commercial sponsor and contributors shifted to
being employees. Hashicorp is a great example of this (see section 16.5 later in this
chapter).

338  Amanda Brock

Communities do not necessarily make life easy for their commercial sponsors.
As Sid Sijbrandij of Gitlab points out: ‘Open Source has always required a social
contract between the owners of the project and the community that uses and con-
tributes to it.’11 Communities are quick to call commercial organisations to account
if they fail to meet their end of that contract.

Communities have a superpower -​ the ability to fork an Open Source pro-
ject: taking project code and creating their own version of it under a new name
to avoid trademark issues. This is sometimes referred to as ‘Lifting and Shifting’.
Code, as opposed to money, talks. The version of the code with the most contribu-
tions following a fork is generally considered the winner. The ability to keep leader-
ship in check through the risk of the threat of a fork is one of the great strengths of
an Open Source community.

Communities today include volunteer and corporate communities and in some
cases a mix of the two. The volunteer community, like the KDE or Free Software
Foundation Europe communities are discussed by Mirko Böhm.12 He explores
their governance, development, and the potential risk that the corporate sponsors
may not align with the communities.

Frank Karlitscheck,13 founder of Nextcloud, built OwnCloud, raised almost
US$10 million of investment, and then in 2016 forked the software he had founded
at OwnCloud and walked away from its investor money to set up his new business
Nextcloud.14 Nextcloud operates on a business of around forty employees and a
community of over 2,000. Community is everything for Nextcloud. As Frank says,
this is very unusual in business. Nextcloud has gone from strength to strength
through the pandemic and is seeing significant growth.

Another example of a fork is Elasticsearch which was effectively forked by its
commercial sponsor Elastic moving to a proprietary licence in 2021, leaving its
Open Source version to be picked up by a community. In contrast to Nextcloud,
Elastic’s non-​employed community was small.

Corporate communities may be evolved by a single company/​vendor or formed
by collaboration across companies working in co-​opetition often utilising a neu-
tral foundation as the home for the code and its governance. Business-​based com-
munities have evolved over the last decade or so, causing foundations like Linux
and the Eclipse Foundations to transition into stable homes for a range of projects.
With Kubernetes to Hyperledger, and code valued at over $16 billion, the Linux in
the Linux Foundation has become a misnomer; it is a Foundation of Foundations.

Foundations discern which projects to include as either the code is critical to the
infrastructure and eco-​system and included due to its utility and purpose, or it has

	 11	 <https://​about.git​lab.com/​blog/​2019/​07/​05/​thoug​hts-​on-​open-​sou​rce/​> accessed 17 April 2022.
	 12	 <https://​jolts.world/​index.php/​jolts/​arti​cle/​view/​131> accessed 17 April 2022.
	 13	 <https://​en.wikipe​dia.org/​wiki/​Frank_​Karl​itsc​hek> accessed 17 April 2022.
	 14	 <https://​zd.net/​2SIt​Ewy> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  339

corporate backers who will fund its administration and evolution. Corporate parti-
cipants fund their desired projects through membership, paying to participate at dif-
ferent levels in projects and through employee developer hours contributed to projects.

Code built in the open and code that has been open sourced are different. Some
organisations open source their code once created, ‘throwing it over the wall’. Other
organisations create their code in the open and allow third parties to contribute
from the get-​go, being truly Open Source in their methodologies as opposed to open
sourcing code. Either approach may evolve into a healthy community over time.

It is always worth knowing if there is a community or if code is largely created by a
single company. Drupal, for example, has 114,702 users actively contributing to the
project, while around 99 per cent of MongoDB’s code is written by the company’s
employees, reflecting their very different natures. The research and development
(R&D) benefits of community contributions ought to be critical in any Open
Source. A project like Kubernetes, open sourced by Google, is a great example of a
community success story and a massive R&D contribution being made from a truly
diverse community with global impact, despite having started life as a Google-​only
project. Considering companies creating Open Source, a lack of community or a
community made up of company employees should raise alarm bells. The risk of
the company shifting away from Open Source appears greater where this is the case.

Sustainability—​(the potential longevity of a well-​maintained project)—​and
risk, where this is a small community or a community that diminishes over time,
was thrust to the public eye with the Heartbleed virus and again in 2021 with Log4J
(see Chapter 14 for detail). The issue of funding code maintenance is current and
important and very relevant to ensuring secure Open Source. In 2016, Nadia
Eghbal, published ‘Roads and Bridges: The Unseen Labour Behind Our Digital
Infrastructure’.15 Her ‘Request for Commits’ podcast is worth listening to; if you
only have time for one episode, listen to the Finale.16 In particular, her work fo-
cuses on the issue that ‘support doesn’t scale’. The problem, as Eghbal identifies,
isn’t just money but is also a question of governance and the need for many hands
in a community. Tidelift’s Maintainer surveys may offer a more complete and up-​
to-​date picture, the 2021 survey being the most recent at the time of writing.17 The
discussion around the nature of Open Source and security which inevitably re-
quires code maintenance is very alive as the book goes to press.

Tidelift pays maintainers through subscription. Its founders have all worked at
Red Hat and their model shows more than a nod to the Red Hat subscription model,
with professional maintainers working on Tidelift’s code releases allowing business
use of Open Source through a fixed-​cost subscription to a Tidelift-​sanitised and

	 15	 Nadia Eghbal. Roads and Bridges: The Unseen Labor Behind Our Digital Infrastructure (New York,
NY: Ford Foundation, 14 July 2016).
	 16	 <http://​bit.ly/​2tgm​cOJ> accessed 17 April 2022.
	 17	 <https://​tidel​ift.com/​subsc​ript​ion/​the-​tidel​ift-​mai​ntai​ner-​sur​vey> accessed 17 April 2022.

340  Amanda Brock

maintained version of the selected Open Source code. Subscriptions are then spent
by Tidelift on enhancing and maintaining the packages that they distribute. If there
is not a maintainer for an identified package then funds are set aside for a main-
tainer to join them with that funded incentive. This is subscription for a service as
opposed to a royalty for code, with Tidelift acting as an intermediating agent be-
tween the maintainers and the subscription payers.

Open Teams,18 on the other hand, facilitates a marketplace as broker matching
service providers with those needing services. GitCoin19 rewards contribution
with quadratic funding,20 being a form of matching funding for public good, col-
lecting monies from the community, and redistributing them to the community.
All are attempts to support the maintenance of Open Source and to support secure
and sustainably maintained Open Source.

In small projects, trying to maintain them may be a huge burden on an indi-
vidual and risk individual burn out or change in circumstances. Tooling automa-
tion and allowing automated contributions of course helps this. Tools like Semantic
Release create complete release automation. We have also seen a shift in this and
improvements on maintenance of projects as can be seen in the Tidelift Report.

With mass adoption in the public sector it may be time to consider the need
for government funding at scale, classification of Open Source as a ‘public good’
as well as being in the ‘Commons’, and to look to state funding not only to build
infrastructure but to ensure adequate long-​term maintenance and security of com-
munity Open Source projects with mass adoption. The concept of ‘Curation’ as a
generic term for the work necessary to ensure Open Source in public infrastruc-
ture is safe and maintained and ‘Stewardship’ for the holding of this code, were
embryonic as the book went to press.21

16.3.3  Evolving from a community to a business

Armon Dadgar, co-​founder of Hashicorp, describes the evolution of a community
into a business beautifully in his a16z.com podcast:22

it didn’t start necessarily as thinking about turning the open source into the busi-
ness. It was more about recognising that there’s a clear market gap in terms of,
in our case, DevOps tooling . . . And then realising it’s very hard to become a

	 18	 <http://​www.opente​ams.com> accessed 17 April 2022.
	 19	 <https://​gitc​oin.co/​> accessed 17 April 2022.
	 20	 <https://​hido​raha​cks.med​ium.com/​what-​is-​quadra​tic-​vot​ing-​fund​ing-​how-​did-​we-​impr​ove-​it-​
70989​e813​cf9#:~:text=​With%20a%20qu​adra​tic%20fund​ing%20al​gori​thm,by%20Gitc​oin%20qu​adra​
tic%20fund​ing%20gra​nts> accessed 17 July 2022.
	 21	 Kate Rawson’s Doughnut Economics Action Lab considers this: <https://​doughn​utec​onom​ics.
org/​about-​dough​nut-​econom​ics> accessed 17 April 2022.
	 22	 A16z.com/​.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  341

large sustainable project if you have negative cash flow . . . if you’re solving a large
enough problem, you eventually need teams of dozens, hundreds, thousands to
work on that problem. You need a business. There has to be a top line connected
to your bottom line.

The number of projects starting in this way today, without considering the po-
tential of their code to become a business asset for the founders, is unsurprisingly
much less than was historically the case. Clearly it is essential to understand the im-
pact and associated risk from Open Source licensing to a proposed business model
and to select an appropriate revenue or business model before you choose to open
source your software.

Bear in mind that if you open source code, the inevitable consequence is that
others including your competitors may freely adopt and exploit the innovations li-
censed without benefit to your company. You open source with the knowledge that
future funders may have different views on revenue generation. Open Source may
risk being abused as a marketing tool, to benefit from its facilitating rapid scale and
ubiquity, but its communities do not view their contributions as marketing assets.

Businesses’ ability to use Open Source code without payment to the provider is
fundamental to the mass adoption and success of Open Source in business over the
last decade but it creates the risk that a third party may commercialise your code and
that ‘one day you have a company the next day, that’s a feature of a cloud platform’.23

Adam Jacobs, explains:24

Let me be 100% clear: this is not a failure of Open Source. This is the deepest, most
fundamental truth about Open Source and Free Software in action. That you, as
a user, have rights. That those rights are not contingent on the ability of someone
else to capture value. That those rights extend to everyone, [including AWS]—​ or
they don’t exist at all.

Mark Shuttleworth points out that companies distributing Open Source soft-
ware need users and adoption or they won’t have a business, but this creates reli-
ance on users remembering to ‘treat others as you would like to be treated’.

James Watters, Senior Vice-​President of Product at Pivotal,25 suggests that ‘if
you have the right relationships with customers they will be just as happy to give
an Open Source company money as a proprietary one’. Of course this isn’t through
outdated licensing royalties but services, support, or possibly a subscription model.
Open Source allows innovative, high-​end, feature-​rich, and enterprise-​ready soft-
ware products with unimaginable breadth.

	 23	 <https://​open​sour​ceun​derd​ogs.com/​epis​ode-​40-​pivo​tal-​james-​watt​ers/​> accessed 17 April 2022.
	 24	 <https://​med​ium.com/​sust​aina​ble-​free-​and-​Open Source-​communities/​free-​software-​is-​the-​
only-​winner-​in-​elastic-​nv-​vs-​aws-​9416f2a0a7f5> accessed 17 April 2022.
	 25	 <http://​bit.ly/​39nR​pQr> accessed 17 April 2022.

342  Amanda Brock

16.3.4  Open Source and businesses

Matt Aslett’s 2008 report26 stated: ‘Open Source is not a business model. It is a de-
velopment and distribution model that is enabled by a licensing tactic.’

The 2010 follow-​up added that ‘[t]‌here is an increased focus on Open Source as
a development model for the creation of software to be monetised indirectly, rather
than a licensing strategy to spread adoption for direct monetisation’. ‘How is it pos-
sible to generate revenue from something that is free?’ ‘What products and services
do Open Source vendors provide that customers are prepared to pay for?’

The Report recognised the following business models with ‘vendors’ selling
services around Open Source, not the code or licences to the code:

	 •​	 Commercial licences—​dual-​licensing;
	 •​	 Subscriptions—​annual, repeatable support and service agreements;
	 •​	 Service/​Support—​ad hoc support;
	 •​	 Embedded hardware—​software distributed embedded by hardware vendor;
	 •​	 Embedded software—​Open Source is embedded within commercial software;
	 •​	 Software as a Service (SaaS);
	 •​	 Advertising—​funded by associated advertising;
	 •​	 Custom development—​pay for the software to be customised; and
	 •​	 Other products and services.

Another of the classic works on the commercial models of Open Source is John
Koenig’s seven optimisation strategies27 which includes similar models:

	 •​	 Dual licensing;
	 •​	 Support;
	 •	 Consultancy;
	 •​	 Patronage;
	 •​	 Hosted;
	 •​	 Optimisation; and
	 •​	 Embedded.

All have merit and relevance in any assessment of business models today. Since
these publications by Aslett and Koenig, and Eghbal’s 2016 ‘Roads and Bridges’,
there have been a couple of major shifts that hugely impacted business and public
sector adoption of Open Source and inevitably impacted associated business
models.

	 26	 <https://​451r​esea​rch.com/​anal​yst-​team/​anal​yst/​Matt+​Asl​ett> accessed 17 April 2022.
	 27	 John Koenig, ‘Seven Open Source business strategies for competitive advantage’ (2022) <http://​bit.
ly/​2ZLT​PUZ> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  343

The first is the pervasiveness of cloud computing creating a level of friction be-
tween platform companies and businesses based on Open Source, in particular the
Open Core companies.

The second and possibly single biggest facilitator of Open Source adoption
in business is the creation of Git by Linus Torvalds and Junio Hamano in 2005.
This led to the development and irreversible growth of web-​based repositories
facilitating dispersed working, for example GitHub and GitLab. They hugely im-
pact business usage of Open Source by enabling engineers to take and use Open
Source from these repositories in their organisations without a traditional, often
lengthy and outdated, procurement process, the pain of reaching legal agreement,
or obtaining financial approval before trying the code. Proprietary code simply
cannot compete with this opportunity. The rise of Dev Ops and Git Ops have also
had their impact.

Removing friction and the need for understanding risk and benefits of Open
Source in procurement has shifted the success of Open Source massively and facili-
tated its ubiquity. Organisational shift from contracting rules to robust policies and
procedures, implementing standards like Open Chain in Licensing (see Chapter 6)
and SPDX for supply chain management (see Chapter 7) follows naturally.

For companies distributing Open Source, this has shifted the consideration
from how to market code to businesses for their adoption to developing services
that businesses will clearly require following adoption with a consequential focus
shift from outbound marketing promoting the existence of a product to inbound
marketing responding to requests for help and support with the product already
being used.

The seminal The Cathedral and The Bazaar,28 Eric Raymond’s book on Open
Source, emphasised the advantages of distributed, collaborative development com-
pared to the controlled and closed development practices of proprietary software
vendors as one of the first texts on Open Source. By 2008, Aslett29 noted that this
Bazaar model was not occurring as Raymond might have expected and the closed
Cathedral model remained popular. The shift to the Bazaar in the last decade
can largely be accounted for by this practical facilitation through Git and public
repositories.

16.4  Commercial or Business Models

16.4.1  Data and its impact on business models

Data is king or the new oil.

	 28	 <https://​en.wikipe​dia.org/​wiki/​The_​C​athe​dral​_​and​_​the​_​Baz​aar> accessed 17 April 2022.
	 29	 <https://​451r​esea​rch.com/​anal​yst-​team/​anal​yst/​Matt+​Asl​ett> accessed 17 April 2022.

344  Amanda Brock

As Sam Tuke, former CEO of PhPLists, says:30

We’ve seen . . . companies for which data is the real product, which create services
around the data, which empowers them to provide services to consumers for free.
They’ve done phenomenally well, they’ve scaled incredibly. Open Source prod-
ucts are in quite a good position to compete on that level, because when you have
a good Open Source product; you have a wide-​scale adoption; it’s hard to compete
with free, we still have big advantages in terms of distribution, in terms of buy-​in
from technical decision makers.

Open Source removes the need for paywalls to develop this further, promoting
ethical data collection, allowing a data-​based asset to be developed, and value to
be created. An Open Source product has the opportunity to become the de facto
standard through mass adoption. If data capture is associated with the services
(which in Open Source is not always the norm), then value in that data may offer a
clear path to revenue.

The recent focus on data sovereignty, changes in privacy laws, and international
data transfers along with geopolitical shifts, mean that the ubiquity of Open Source
infrastructure supporting the management of data in a transparent and trusted
way facilitates that localisation and control. Federated data models, like Gaia X in
Europe, being built on Open Source will enhance this and we are likely to see an
evolution of revenue and business models in this area.

16.4.2  Pureplay Open Source businesses

16.4.2.1 � Open Source software with services and consultancy
Nextcloud, HortonWorks, and Canonical have been great examples of this, of-
fering Open Source software with support offerings and consulting services as
their commercial model, not generally relying on a core with proprietary code or
subscription.

‘Support doesn’t scale’, they say, yet founders like Shannon Williams of Rancher31
made a pure support model work. Rancher’s support was part of a lock-​change
and not sold purely for Rancher’s own code but also provided to support alterna-
tive code offerings. This pattern is increasingly evident in companies like Percona,
which run successful pureplay Open Source-​based businesses and multi-​product
support (i.e. support not only their own but third party software). This multi party
model is likely to be the future of support. Businesses like Aiven are betting on it.

	 30	 <https://​open​sour​ceun​derd​ogs.com/​epis​ode-​23-​phpl​ist-​open-​sou​rce-​email-​market​ing-​with-​
sam-​tuke/​> accessed 17 April 2022.
	 31	 OpenSource Underdogs podcast (10 December 2019) <http://​bit.ly/​37st​vSp> accessed 17
April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  345

Their own product is the route to market and being Open Source enables its
pace of adoption and scaling up, but Shannon is clear that developing a business
around this needs confidence in your product, to walk away from unviable deals,
and to pivot the price point to allow the business growth covering the cost of the
ongoing development of the Open Source code. He says making the support model
work requires two things:

	 1.	 useful tech; and
	 2.	 a quality product.

Notably Rancher had a 2,000-​strong Slack community and interestingly, a bigger
user community than a contributor one. Rancher’s business grew to 200 staff be-
fore being acquired by SUSE in 2020. Companies like Canonical and Rancher have
reached real scale in support but they also provide consulting services and feature
driven investment from customers.

16.4.2.2 � The ‘copyleft’ model
The ‘copyleft’ tradition began with the GNU General Public Licence (GPL) aiming
to prevent proprietary forks that might be possible with permissive licensing by re-
quiring source code publication on distribution. The Open Source Affero General
Public Licence (AGPL) and the related but proprietary SSPL follow copyleft. They
are intended to address competitive hosted services and require code publication
where there is no distribution and the code is used in a hosted or platform model
unlike most copyleft licensing which requires publication on distribution.

Nextcloud’s founder Frank Karlitsheck advocates for copyleft business models32
because they:

	 •	 ‘Create the best communities. All contributors are equal.
	 •	 Mean Forks are always possible, nobody is special. This enforces the best re-

sults. Anyone can fork it and make it better.
	 •	 Enable a global upstream/​downstream network. It allows us to stand on the

shoulders of giants. There are no code islands.
	 •	 Work with the best developers, because they like Open Source
	 •	 Mean Ecosystems are key, GPL creates an equal playing field.
	 •	 Create good community governance.
	 •	 Remove vendor lock-​in. Fair relations lead to happy customers.
	 •	 Mean owning the code is not important. The value of a company is in the

people.’

Karlitsheck’s view is one based on collective equity, and perhaps its transparency al-
lows for the most sustainable business model but perhaps they are not so appealing

	 32	 <https://​www.yout​ube.com/​watch?v=​Y3b7​4UZX​5s0> accessed 17 April 2022.

346  Amanda Brock

to venture capitalists investing in companies like Elastic and MongoDB. Their main
driver may appear to be shareholder value and generating a short-​term return on
investment. We are living in a time of shift in business and these broader values of
Open Source may be more recognised and form the basis of a new economy and
capitalism by the time the third edition of this book is published. Certainly, they
align with a more equitable and sustainable approach to business.

16.4.2.3 � Open Core or COSS
In 2008, Aslett identified that most companies mixed software under both Open
Source and proprietary licences, which is the basis of Open Core, and which re-
mains prevalent as a commercial model across Open Source today.

16.4.2.3.1 � COSS—​commercial Open Source software
Freemium/​Premium requires two versions of a product, one free and one with
greater functionality which is charged for. It is frequently used as a model in the
provision of music or content services, such as Spotify. It is a common business
model in start-​ups allowing them to hook a customer base with a free product and
encourage subscription purchase for add-​on services.

‘Open Core’, commercial Open Source software or ‘COSS’ is a term coined
by Joseph Jacks, founder of OSS Capital.33 Open Source is not freemium, says
Jacks. ‘Freemium is permissioned. Open-​Source is permissionless.’34 The senti-
ment of Open Source being unbounded where anyone can take the Open Source
code without a further permission beyond its Open Source licence. Open Core is
‘limited by feature but not by users’ as in Jacks’ unbounded Open Source, with a
commercial version or add-​ons available as proprietary or bundled with services
such as support.

To be commercially usable, Open Source software does not need to be Open
Core. By definition (the OSD) all Open Source software can be used commercially.
Since 2018, certain Open Core companies’ reactions to the utilisation of their
Open Source code by big cloud companies and, in particular, AWS, have been high
profile. Understanding the recent history of the Open Core companies and their
actions since 2018 is important and explored at section 16.5 later in this chapter.

16.4.2.3.2 � Tight and Loose Open Core
Adam Jacob, CEO of System Initiative and Co-​Founder of Chef, describes Open
Core as falling into two categories: Loose and Tight.35 In his ‘Medium’ post, he con-
textualises this:

	 33	 <https://​oss.capi​tal/​> accessed 17 April 2022.
	 34	 <https://​coss.media/​for-​an-​open future/​> accessed 17 April 2022.
	 35	 <https://​med​ium.com/​sust​aina​ble-​free-​and-​open-​sou​rce-​comm​unit​ies/​free-​softw​are-​is-​the-​
only-​win​ner-​in-​elas​tic-​nv-​vs-​aws-​9416f​2a0a​7f5> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  347

‘Open Source covers those core values with a sheen of business value. It says
that the collaboration and community fostered by those values is a better way
of building software, and a better way of building business value’ and ‘very fre-
quently has little to no acquisition cost—​it is both free to receive and trivial to ac-
quire. Open Source says this is a huge business value upside—​that getting people
easy, low friction access to your software creates a much larger pool of potential
customers.’

Riding atop both of these concepts is that of being a community. When we work
together on a piece of software for a common purpose, we form a community. In
the case where our communities include commercial ambition, we move beyond
just thinking about the software’s best interest. We also care about our own share of
the pie: how much of the money is my money? How much is yours? Is it ‘fairly’ dis-
tributed? If we find a way to work together, for the common good of everyone, we
stay together. When we can’t, like any other community, we splinter.

16.4.2.3.3 � Tight Open Core
Jacob goes on to explain that Tight Open Core allows for the business benefits and
value of Open Source including collaboration in the commons, low-​friction ac-
quisition of users and growth of a community, with its primary functionality being
under an Open Source licence. Direct, often critical, features are only available
via proprietary licensing, and fundamentally the code serves the function of the
commercial ‘master’ (note not a commercial sponsor) as opposed to a community.
Community exists to fuel the company’s generation of economic value as opposed
to fulfilling the values of Open Source. In this scenario, the company’s interests sit
above any community desires or interests impacting the value and sustainability of
its community. Unsurprisingly, OSD Definition 6, requiring no discrimination on
field of endeavour or use, thereby prohibiting restriction on a commercial entity’s
ability to take and reuse Open Source, creates a potential threat to their businesses
and revenue models.

This also creates a potential risk to other users as ‘Tight Open Core is antithet-
ical to the creation of sustainable Open Source communities’.

This is also emphasised by VM (Vicky) Brasseur, who says in her blog:36 ‘If
these companies actually cared about the projects, they would have invested the
resources to build stronger communities around them.’ The obvious conclu-
sion is that the stronger a community around a company, the more sustainable
its business is.

	 36	 <https://​anonym​oush​ash.vmb​rass​eur.com/​2019/​06/​07/​the-​prob​lem-​with-​ama​zon-​and-​Open
Source-​isnt-​amazon/​> accessed 17 April 2022.

348  Amanda Brock

16.4.2.3.4 � Loose Open Core
Jacob suggests37 that in Loose Open Core, ‘you build stuff around the core [Open
Source] software, and then monetize that . . . But it was disconnected from the core
value prop[osition]; you could still just use the core of the software to do whatever
you wanted, without having to do a lot of work.’

In both Jacob’s Loose and Tight models, companies and their communities
build features around an Open Core, but in the Loose model the Open Source core
can be used without the purchase of the proprietary add-​on and the core is likely to
have more utility on a stand-​alone basis. Here the friction between community and
corporate interests is less and the company aligns more with the values of Open
Source. This Loose Open Core kind of model has more likelihood of being sustain-
able as Open Source.

The value of community versus pure economic gain is at the heart of this.
‘I think being Open Source is not enough to create that community on its own.

But that community can only exist around products that are Open Source. Because
otherwise you’re a fan. And I’m a fan of so many things, but they’re not my church;
they’re not my place, they’re not my people’, Jacob writes.38

As Karlitsheck recognises, the non-​economic or societal values, such as com-
munity, are fundamental to pure-​play Open Source. It’s increasingly clear that
companies using Open Source in business without subscribing to the values (in-
cluding Community) build their Open Source on their own, with limited contribu-
tions and visibly small communities.

These companies pay lip service to Open Source and are those most likely to use
(perhaps abuse) Open Source simply to gain traction and adoption which may lack
depth or understanding of the non-​economic benefits and be nothing more than a
transitory marketing tool.

When Chef moved from Open Core to a pureplay Open Source model, Adam
Jacob wrote:

I couldn’t be more thrilled. For me, it eliminates the longest-​running source of
friction and frustration from my time at Chef. On the one hand, we have a com-
munity that cares about the software, and about each other, where we develop
the software in concert with our users and customers. On the other, we produced
a proprietary software stack, which we use to make money. Deciding what’s in,
and what’s out, or where to focus, was the hardest part of the job at Chef. I’m
stoked nobody has to do it anymore. I’m stoked we can have the entire company
participating in the Open Source community, rather than burning out a few

	 37	 <https://​change​log.com/​podc​ast/​353> accessed 17 April 2022.
	 38	 <https://​change​log.com/​podc​ast/​460> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  349

dedicated heroes. I’m stoked we no longer have to justify the value of what we do
in terms of what we hold back from collaborating with people on.39

16.4.2.4 � Enterprise open source and the subscription model
Enterprise Open Source software is defined by Joe Brockmeir as an enterprise
‘product [that] requires testing, performance tuning, and [to] be proactively exam-
ined for security flaws. It needs to have a security team that stands behind it, and
processes for responding to new security vulnerabilities and notifying users about
security issues and how to remediate them’.40 In an Enterprise Edition its commu-
nity may be the business’ main competitor, but increasingly third-​party competi-
tors offer services and support not only for the code they develop but also for those
third-​party products.

In a subscription model, whilst the software is technically Open Source, add-​on
services are provided in this duality. The distro may not be available without paying
for a service and the service will be curated to meet professional needs such as legal
and governance requirements, security, support, and up-​time, etc. This will often
be a bundle of services.

Red Hat is the best-​known business using this model. It was sold to IBM for $34
billion in June 2019, the biggest tech transaction in history up to that point of time.
Its success in subscription with Red Hat Enterprise Linux is one of the biggest eco-
nomic successes in Open Source.

SUSE, which describes itself as the biggest independent Open Source company
IPO’d in 2021. It also follows this model. Tidelift follows a similar model but with a
twist, providing a subscription model for a suite of sanitised o curated third-​party
software packages which it pays maintainers to update, etc.

16.4.2.5 � Certification, trademark licensing
Learning platform Moodle is a great example of Open Source with revenue gener-
ated from its platform which allows anyone to build a learning management system,
whilst as founder Martin Dougiamas says:41 ‘The business model of Moodle is to-
tally designed to support the project but still achieve[s]‌ the mission of providing
the software for free, Open Source, and has all the benefits that it does.’ Moodle
works like a not-​for-​profit with all funding going back into the organisation, and

	 39	 <https://​med​ium.com/​@adam​hjk/​good​bye-​open core-​good-​riddance-​to-​bad-​rubbish-​ae3355316494>
accessed 17 April 2022.
	 40	 <https://​www.red​hat.com/​en/​blog/​what-​ent​erpr​ise-​open-​sou​rce> accessed 17 April 2022.
	 41	 <https://​www.edsu​rge.com/​news/​2017-​05-​02-​why-​moo​dle-​s-​mas​term​ind-​mar​tin-​dougia​
mas-​still-​belie​ves-​in-​edt​ech-​after-​two-​deca​des#:~:text=​The%20b​usin​ess%20mo​del%20of%20Moo​
dle,the%20b​enef​its%20t​hat%20it%20d​oes.&text=​Most%20of%20our%20inc​ome%20co​mes,certif​
ied%20co​mpan​ies%20t​hat%20do%20s​ervi​ces> accessed 17 April 2022.

350  Amanda Brock

‘[m]ost of [their] income comes from Moodle partners, which are certified com-
panies that do services.’

In this model certification is based on trademark licensing and the use of a regis-
tered mark being licensed in a commercial context (see Chapter 9).

16.4.2.6 � Embedded software embedded in devices
Software is embedded in the firmware or chip in a device, in order to control the
device which might not generally be considered to be a computer, and in a world in-
creasingly focusing on the Internet of Things (IoT) and smart devices, it is something
that is only going to become more common. Whilst some of the shift to Open Source
may have been unintentional, today there is an ever-​increasing and intentional move
to the use of Open Source software in these devices. Key to compliance with licensing
and Open Source governance is of course understanding what Open Source is being
used and there is an increased focus on supply chain and bill of materials.

Understanding the code used or distributed is important in all utilisation but
particularly so here, as code licences, particularly copyleft, come with obligations
to make the source available and the need to consider interactions with proprietary
software used. Failures in this area have led to litigation (see Chapter 5).

Revenue is generated from device build savings and with good governance in
place including maintenance on an ongoing basis, Open Source may generate sig-
nificant cost savings.

16.4.2.7 � Foundation and financial fiduciary models
Foundations (see Chapter 18) have rapidly become the acceptable code hosting
vehicle for corporate collaboration in Open Source.42 Foundations like Linux,
Apache, and Eclipse host projects alongside sub-​foundations such as Linux
Foundations’ Cloud Native Code Foundation.

Cost management and governance issues are removed and foundations may act
as fiscal sponsors supporting smaller projects. From very US-​orientated begin-
nings there has been a shift to Europe with Eclipse Foundation moving the en-
tire company and operations there, whilst the OASIS Standards Body and Linux
Foundation set up entities in Brussels, and China set up the Atom Foundation.43 In
the US this model is accompanied with tax breaks and advantages.

One example of collaborative or crowdsourced financing through a foundation
is the GNOME Foundation, which twice raised collective funding to fight litiga-
tion, recently raising $150,000 for a patent defence.44 Not all fundraising is de-
fensive and many Open Source projects have relied on collective contributions.
Everyone’s contribution in a healthy community is different depending on the

	 42	 <https://​fou​ndat​ion.gnome.org/​2020/​05/​20/​pat​ent-​case-​agai​nst-​gnome-​resol​ved> accessed
17 April 2022.​
	 43	 <https://​www.opena​tom.org> accessed 17 April 2022.
	 44	 <https://​news.ycom​bina​tor.com/​item?id=​23256​240> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  351

resources available to them and some contribute skills and time to the collective
benefit of Open Source initiatives.

Individual benefactors donating to Open Source projects have also initiated this
structure for their projects. WhatsApp founder Brian Acton invested $50 million
from the sale of WhatsApp into Open Source Signal creating the Signal Foundation
dedicated to helping people have access to private communication through an en-
crypted messaging app.45

16.4.2.8 � Software as a Service, open SaaS, platform, and cloud
The Software as a Service (SaaS) model can be somewhat controversial. Vendors
host, support, and maintain software in the cloud and charge a recurring fee for
hosting and supporting a user’s access to the service. A large proportion of the soft-
ware behind the scenes is Open Source but the services may not be seen to be Open
Source. This forms the basis of cloud computing, particularly the public cloud.

Users don’t host or access code but receive a service benefiting from it. They
may not know what software is used. An open SaaS product has on the face of it the
same benefits as a proprietary SaaS product, including cost and potentially envir-
onmental savings, rapid deployment, and maintenance and ongoing development
by experts whose core business is expertise in the software underlying the service.

Shifting to this model has as an inevitable consequence moving enterprises away
from running software on-​premise (on-​prem).

There is a need for some context and discussions of the impact of this in the last
few years.

16.5  Cloud and Open Source in the Last Few Years

16.5.1  Platform companies

Adept use of digital technology isn’t enough to make a business successful. In The
Business of Platforms,46 a successful platform must have a sustainable business. To
be a sustainable business, the authors point out that a platform must be ‘financially
viable and politically and publicly acceptable’. They must perform better than their
competitors. This is also true of all businesses.

The authors split platforms into two types, ‘innovation platforms’ which facili-
tate the development of new products and services, by way of building an eco-
system, like Android where monetisation comes from sale of other services; and
‘transaction platforms’, where the monetisation tends to come from the facilitation

	 45	 <https://​en.wikipe​dia.org/​wiki/​Bria​n_​Ac​ton> accessed 17 April 2022.
	 46	 Michael A Cusmano, Annabelle Gower, and David B Yoffe, The Business of Platforms (New York:
Harper Collins 2019).

352  Amanda Brock

of the sale of goods and services. Of course, some are hybrids, which support both
types, that is a combination of product and platform businesses, either in the same
business or same platform infrastructure.

Innovation platforms tend to be four to five times bigger and three times more
valuable and spend more on R&D as a percentage of revenues, but transaction plat-
forms are growing faster in terms of revenues and market capitalisation and traded
at higher ratios of market values relative to sales—​investors often consider trans-
action platforms more valuable relative to their revenue when compared to innov-
ation platforms.

In the case of Open Source, the platforms we are thinking of are generally the
former: innovation platforms.

16.5.2  Platform companies and Open Source

The shift from ‘on-​premise’ to ‘cloud or platform’ technology has massively affected
Open Source. The scale and reach of the cloud companies arguably impact a much
broader category of business beyond Open Source but the ability through its li-
censing structure to use Open Source in a platform without contributing back or
doing so in a limited way, whilst reaping the benefits, has left many sore.

Cloud servers, artificial intelligence (AI), and IoT are largely built on Open
Source. It is the methodology of choice for new innovations. This didn’t happen
overnight but over decades. Technology previously in the hands of a few companies
has evolved into the hands of the many. Platforms have become cost effective par-
tially by sharing the cost of development through Open Source.

Pre-​pandemic key sectors had digitalised. Today, almost all businesses have
digitalised and many recognise that they, their competitors, and even other sectors
need the same digital infrastructure and technologies to allow operations in this
new digitalised world. They require the same features. The cost of developing those
are driven down through use of Open Source creating cost-​effective and non-​
differentiated platforms through collaboration (see Chapter 15). Cost is the wrong
focus, despite it being the most common, and the values of collaboration include
skills development, diversity, and building better and more innovative and sustain-
able code as well as ‘community’, and the ability to recycle and reuse.

Open Source is the submarine that powers the digital economy by stealth. It is
there and everything is built on it, but perhaps the C-​suite is not yet fully aware of
its true value to their businesses.

Understanding this non-​differentiated use of a code stack and the value of Open
Source across a sector as the sector digitalises is an understanding that develops
gradually, often over a two-​ to five-​year period. In early-​stage digitalisation, a
sector moves to development of code at scale or as infrastructure, and a business
or a sector will not understand what really matters. That understanding develops

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  353

with time and experience. As participants ultimately drive to the same innovation
goals, costs are saved, and better code produced through collaboration on digital
development.

Simon Wardley47 was Director of Cloud at Canonical in 2010 and he often dis-
cusses the overwhelming success Canonical had, gaining over 70 per cent of the
cloud operating systems market almost overnight. A runaway success.

However, the Ubuntu operating system was ‘free’ using Open Source licensing
with no royalty charged for usage and Canonical’s support-​type business model
had understandably been developed for a different on-​premise environment.
Cloud was relatively new and evolving. It relied on the need for implementation
and other engineering, consultancy, and support services being bought by enter-
prise users for configuration, implementation, and customisation. These were not
needed in the cloud platforms and the success was ‘free’.

Support and subscription differ as the software that support is sold for is readily
usable without a subscription, whereas a subscription-​based product is likely sold
as enterprise-​ready. Cloud companies could use the enterprise-​ready Ubuntu
without buying support services. This was a key differentiator from Red Hat’s sub-
scription model, requiring regular payment for a useful operating system.

As cloud companies do not generally distribute code to their users but build
their services on top of it and sell services (SaaS), the copyleft obligation triggered
by distribution of Open Source licensed copyleft code in licences like the GPL is
not triggered by this kind of usage.

Canonical founder Mark Shuttleworth48 had the personal means to fund the
Canonical commercial sponsorship of Ubuntu and business. This may have had an
unexpected consequence in the cloud story as Canonical’s experience may, despite
being an early-​stage warning to other providers, not have been obvious to them.

From 2010, this shift to the cloud or platform economy grew and grew. Many
companies set up businesses and developed software as Open Source then built
businesses around it, years after Canonical experienced the impact of this new
cloud model.

A decade after detailed discussions of business models for Open Source based
businesses had begun considering the impact of cloud and its interaction with
Open Source, understanding Open Source licensing and the nuances and respon-
sibility of community contributions, might reasonably be considered to have been
a necessary basic consideration in open sourcing code or setting up a business
based on it.

In 2019, Matt Asay described Open Source as being what underdogs do
to win.49 In 2021, after a stint at the cloud company AWS, Asay returned to his

	 47	 <https://​en.wikipe​dia.org/​wiki/​Simon_​Ward​ley> accessed 17 April 2022.
	 48	 <https://​en.wikipe​dia.org/​wiki/​Mark_​S​hutt​lewo​rth> accessed 17 April 2022.
	 49	 <https://​www.techr​epub​lic.com/​arti​cle/​whats-​rea​lly-​beh​ind-​mic​roso​fts-​love-​of-​Open Source/​>
accessed 17 April 2022.

354  Amanda Brock

former employer, MongoDB (which has a Tight Open Core model). Around the
same time,50 he describes companies contributing to open source as ‘selfish’, ex-
plaining that:

[d]‌evelopers may contribute for the sheer love of code; companies don’t.
Never . . . Resources are finite. If a company spends money and resources to con-
tribute code, it’s because they’ve done the math and believe they’ll earn a return
on that investment . . . The reason will be as with Google and others, to help drive
greater customer adoption of its own products. This is just how (Open Source)
business works.

Companies do indeed contribute because it makes good business sense. Others
argue that it is not those contributing who are selfish but the companies who use
Open Source without contributing back who are selfish, and indeed short sighted.

16.5.3  Open Core and strip mining

16.5.3.1 � Background
In the last few years a number of Open Source, mainly Open Core, companies
complained that the use of their Open Source software by cloud companies at-
tracted inadequate financial compensation or contribution back to the upstream
Open Source project from those cloud companies. The companies complaining
were making money but were not happy with how much of the revenue cloud
companies generated was shared with them. Some of the most vocal companies,
Elastic51 and MongoDB amongst them, were very profitable before the allegations
and continue to be now.

SaaS Squatting52 describes when a large SaaS or cloud company uses Open
Source technology, which is freely available to it but doesn’t contribute financially
in return despite the Open Source usage generating large revenues, even if this
failure to share effectively undermines the company that’s developing the Open
Source software being used.

Strip mining is a US term. It is an analogy to a federal law from the mid-​1970’s
designed to curb abuses by companies strip mining the land for coal in an abusive
way. The alleged ‘strip mining’ small companies’ software and in particular Open
Source software by large cloud companies has become a very public debate.

	 50	 <https://​www.infowo​rld.com/​arti​cle/​3632​360/​Open Source-​is-​selfish.html> accessed 17
April 2022.
	 51	 <https://​www.infowo​rld.com/​arti​cle/​3640​617/​elas​tic-​keeps-​tick​ing.html> accessed 17 April 2022.
	 52	 Michael Schwarz of Gluu and host of Open Source Underdogs.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  355

A group of seven founders and CEOs including Elastic and MongoDB’s thought
this use of this software was an abuse, according to the New York Times.53

Amazon was equally vociferous in its response that Open Source licences al-
lowed its use of the code in this way and that it had done nothing wrong.

Whilst strip mining coal may be illegal under US federal law, using code whose
originator has freely chosen to license it under an Open Source licence is entirely
legal as pointed out by AWS’s Andy Guttman in AWS’s blogpost response.54

The seven CEOs apparently considered suing Amazon. One of those, from
Elastic, had already commenced litigation for trademark infringement of its
Elasticsearch product which settled in February 2022, without details being shared.
The story appearing in the New York Times is indicative of the importance of Open
Source to the cloud infrastructure at this juncture in history, combined with the
platform companies’ power and need to use Open Source as well as the high sums
at stake.

16.5.3.2 � MongoDB and SSPL
Database company MongoDB changed its licence from the Open Source AGPL
to the proprietary SSPL, which requires the source code of the entire service be
released under the SSPL, if it incorporates an SSPL-​licensed component. Bruce
Perens,55 co-​author of the OSD, argued that the SSPL violated Definition 9 of the
OSD, that the ‘licence must not restrict other software’ as SSPL forces any SaaS
software aggregated with the SSPL licensed software, even if not a derivative of that
software, to nevertheless be Open Source.

The SSPL was withdrawn from the OSI’s licence approval process so was not re-
jected by the OSI but equally was not approved. It was probably removed as its au-
thors recognised that it would not receive OSI approval. It is therefore a proprietary
licence. Several major Linux distributions dropped MongoDB after the change.

John Mark Walker56 says that the ‘emergence of the Open Source business
model as a distinct class pushes companies that adopt it into a narrow-​banded de-
cision matrix that presents limited options for future changes if the need to pivot
arises’. In the emergence of cloud and Open Core, certain companies have given
away their IP assets in their entirety via Open Source licences without first having
a robust business model (perhaps it would be helpful to consider my ‘What If ’ ana-
lysis, at section 16.2).

	 53	 Daisuke Wakabayashi, ‘Prime leverage: how Amazon wields power in the technology world’
New York Times (16 December 2019) <https://​nyti.ms/​2u1B​Xti> accessed 17 April 2022.
	 54	 <https://​aws.ama​zon.com/​blogs/​ope​nsou​rce/​sett​ing-​the-​rec​ord-​strai​ght-​aws-​open-​sou​rce/​> ac-
cessed 17 April 2022.
	 55	 <https://​en.wikipe​dia.org/​wiki/​Bruce​_​Per​ens> accessed 17 April 2022.
	 56	 <https://​med​ium.com/​@johnm​ark/​OpenSource-​business-​models-​considered-​harmful-​
2e697256b1e3> accessed 17 April 2022.

356  Amanda Brock

Once the decision to use Open Source software is made, it is not possible to take
back what has been given Open Source. It is possible to shift future distribution but
the places to shift to are limited and generally mean to a proprietary place where
focus purely on revenue has trumped the benefits of community and collaboration.

Dev Ittycheria, CEO of Mongo DB, was clear that ‘We [Mongo] open sourced
as a freemium strategy; to drive adoption’. He effectively acknowledges that Open
Source was no more than a marketing strategy to MongoDB, a statement he later
confirmed he did not regret making despite its causing huge offence to communi-
ties whose work had created the MongoDB products. Mongo’s stock rose 203 per
cent between its announcement that it would be changing the terms of the licence
to a proprietary licence in October 2018, and June 2020.57 That does not mean it
would not have seen the same trajectory had it remained on its Open Source li-
cence. We will never know.

In Mongo’s case there is little opportunity to give the benefit of the doubt and
consider this a lack of understanding. MongoDB’s community contributions were
very limited and its Open Core model was Tight Open Core.

16.5.3.3 � Redis Labs and the Commons Clause
Redis Labs made its Redis plugins subject to the ‘Commons Clause’, a restriction on
the sale of the software which it added to the existing Apache Licence terms. The
Commons Clause was created for Redis in 2018 as a response to platform or cloud
companies.

Following criticism, this was changed in 2019 to the ‘Redis Source Available
Licence’, a proprietary licence which forbids sale of the software as part of ‘a data-
base, a caching engine, a stream processing engine, a search engine, an indexing
engine or an ML/​DL/​AI serving engine’. The last versions of the modules licensed
solely under the Apache Licence were forked and are maintained by community
members under the GoodFORM project.

16.5.3.4 � Cloudera
Cloudera and Hortonworks merged in 2017. Cloudera was a major contributor to
Open Source projects, but its business model was based on selling licensed soft-
ware. Hortonworks, however, sold support and services for Open Source software
on a subscription basis. A blog by Charles Zedlewski and Arun Murthy in 2019 and
updated in 2020 says:

Prior to the merger, the two companies distributed their products under some-
what different Open Source licensing models. Aligning the two models was one
of the last items on our merger to-​do list. Meanwhile over the past few years,

	 57	 <https://​www.proto​col.com/​ent​erpr​ise/​mong​odb-​OpenSource-​database> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  357

we’ve seen many of our industry peers revise their Open Source licensing strat-
egies, . . . plan to consolidate and transition the small number of projects cur-
rently licensed by Cloudera under closed source licenses to Open Source licenses

and ‘[a]‌ll of our Open Source licenses will adhere to one of two OSI approved li-
censes: the Apache License, Version 2, or the GNU Affero General Public License,
Version 3 (‘AGPL’). We considered a modified Open Source license but determined
that it was important that we use community-​accepted licenses.’

16.5.3.5 � Confluent
Some components of the Confluent Platform moved from Apache 2.0 to the
Confluent Community Licence (CCL)58 but this does not impact Apache Kafka,
the core Open Source software. This move was less controversial, despite being a
move away from Open Source in as much as Confluent did not claim that the CCL
is an Open Source licence.

16.5.3.6 � Chef
Chef was Open Core and moved to pure Open Source and Apache licensing in
2019, but then moved back to Open Core, removing its free distro and shifting to
subscription, along the lines of the Red Hat model.59

16.5.3.7 � Cockroach Labs
In 2017, Cockroach’s website said:

It’s a delicate balancing act. Building paid ‘enterprise’ features for Open Source software
can feel dirty. Paid features diminish the Open Source appeal and can lead to substan-
tial community angst. On the other hand, it’s disheartening to see mammoth cloud
service providers repackaging OSS for substantial gain without finding ways to foster
the Open Source ecosystem, or hundred-​billion-​dollar multinationals foregoing sup-
port licenses from struggling OSS companies. If you’re serious about building a com-
pany around Open Source software, you must walk a narrow path: introduce paid
features too soon, and risk curtailing adoption. Introduce paid features too late, and
risk encouraging economic free riders. Stray too far in either direction and your ef-
forts will ultimately continue only as unpaid Open Source contributions.

It goes on to state: ‘Enterprise features we introduce will be contained in source files
covered by a new license, called the CockroachDB Community License (CCL).

	 58	 <https://​digiti​zing​pola​ris.com/​is-​conflu​ent-​still-​Open Source-​72c579d0d7dd?gi=​639c1c0191c0>
accessed 17 April 2022.
	 59	 Adam Jacob, ‘The war for the soul of open source’ The Changelog <https://​change​log.com/​podc​ast/​
353> accessed 17 April 2022.

358  Amanda Brock

The source code will still be available, but because it does not include the free redis-
tribution right, it’s not Open Source by definition.’ Showing a real understanding of
Open Source and clarifying that a ‘ “pure’ FLOSS distribution will also be available,
with enterprise features absent, for those that require it.’

In June 2019, Cockroach made this public statement on its website:

our past outlook on the right business model relied on a crucial norm in the OSS
world: that companies could build a business around a strong Open Source core
product without a much larger technology platform company coming along and
offering the same product as a service. That norm no longer holds.

Cockroach Labs then moved from AGPL to MariaDB’s proprietary Business
Source Licence (BSL), whilst being advised by Michael (Monty) Widenius, Maria
DB’s founder. On this shift away from Open Source to a very clear Open Core
model they commented:

In order to continue building a strong Open Source core, this restriction has a rolling
time limit: three years after each release, the license converts to the standard Apache
2.0 license. Our goal in relicensing with a time restriction is two-​pronged: to simul-
taneously create a competitive database as a service (DBaaS) while also providing a
guarantee that the core product will become pure open source.

Interestingly, the BSL licence requires users to license/​pay for support in par-
ticular circumstances but has no real teeth to monitor or enforce the requirement
to obtain a commercial licence and requires the user to act honourably and contact
Cockroach to purchase a commercial licence.

As Cockroach founder, Peter Mattis said in his Open Source UnderDogs
podcast,60 they had not yet had to deal with issues with the platform companies
but could see these approaching, in a couple of years’ time as they scaled. The
Cockroach website is very clear:

Competitors have always been legally allowed to offer another company’s OSS
product as a service. Now, we’re finally seeing it take place. We’re witnessing the
rise of highly-​integrated providers taking advantage of their unique position to
offer ‘as-​a-​service’ versions of OSS products and offer a superior user experience
as a consequence of their integrations. We’ve most recently seen it happen with
Amazon’s forked version of Elasticsearch. Another option we considered was
adopting a three-​tier model: Open Source core, enterprise components, and a
middle ground of features that are not open source but available at no cost. This

	 60	 <http://​bit.ly/​2sFW​kf7> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  359

is a popular model, and more or less the model we have seen until now. However,
this creates bad incentives for our company. It creates pressure to avoid creating
new features in the core and do as much work as possible in the non-​Open Source
components. Basically, we would be tempted to sell our core users short by per-
manently putting our most exciting features behind an enterprise license. If you
squint towards the horizon, this model does not bode well for the Open Source
ecosystem.

When asked if he would start another Open Source company Peter’s response—​
‘yes, but as a SaaS company’, not on-​site—​was interesting and very telling. He
pointed out the difficulties in making money out of a pure Open Source model for
companies beyond Red Hat with its paid (distro including) subscription, and the
possibility that the state of the technology means that SaaS is a constant oppor-
tunity at this point, and the only viable one for Open Source.

16.5.3.8 � Elastic
The first line of Elastic’s ‘About’ page61 states: ‘Open Source is how a project like
Elasticsearch goes from a few downloads in 2010 to over 250 million in 2018’, ac-
knowledging the value in business creation and engagement that Open Source
brings to any new product. Undoubtedly increased uptake occurs through its
simple licensing, zero cost, and process simplicity, all of which ‘facilitates excep-
tionally rapid adoption’.

The merits of Open Source are lauded in terms of product quality. ‘But Open
Source is not just an effective way to distribute software. It’s an effective way to
make the best product possible’, and community ‘building software is good but
building a community around your software is better’.

Building an Open Source business can have its challenges, and we’ve learned a lot
from observing others. Some Open Source companies base their bottom line on
a support-​only business model. We believe this approach puts what’s best for the
company and what’s best for the user in direct conflict with one another, where
one can only succeed if the other struggles. This approach lacks the incentive
to make the product easy to use or empower customers to be successful since
the company’s revenue is based upon customers needing regular support. Some
Open Source companies fork a commercial (or ‘enterprise’) offering from an ori-
ginal open source project. We believe this fractures the project code and com-
munity. It also undermines community trust, limits product testing, and dilutes
product quality, ultimately competing with the business efficiency gained from

	 61	 <https://​www.elas​tic.co/​about/​why-​Open Source> accessed 17 April 2022.

360  Amanda Brock

Open Source software in the first place. So, we’ve built our business differently.
Ours aims to strike a healthy balance between Open Source and commercial code
in a single, open software stack in addition to support and services. It is up to us
to deliver users with enough value (and therefore reason) across all our offerings
to invest in us. As a result, we can engineer products that are easy to use and reli-
able, empower our users to be skilled and knowledgeable, and still be a successful
company.

Elastic described this approach as ‘dev-​first not dev-​only’, in other words it relied
on ‘Developer Zero’ to upload and kick the tyres of its Open Source software then
expect adoption to happen more widely across the organisation until ‘[e]‌ventually,
a decision-​maker or executive takes notice and makes a call on whether or not to
formally invest in Elastic’.

Dev-​first does not require an Open Core model, and indeed all Open Source
based businesses and business models rely on this ability to gain traction.
In February 2018, Elastic Founder and CEO, Shay Bannon, announced in a
blogpost62 ‘that whilst the company and his commitment to Open Source went
deep, Elastic had created a business around the technology which could manage
investment and would choose who it charged to use its code and who could use
that for free’.

An Enterprise Edition was not the business model of choice at Elastic and they
moved to Open Core, producing commercial (proprietary) software that would
move to open over time. ‘High-​value features’ would be identified and offered as
commercial extensions to the core software, which remained open. The commer-
cial extensions would be licensed on the proprietary ‘Elastic Licence Agreement’
and identified tools and packages moved to an Apache licence and open sourced
over time.

In January 2021, however, Bannon found himself in the eye of a storm when he
released a second blog post, ‘Doubling Down on Open Part Two’,63 the headline
implying a greater commitment to Open Source activity when the company was
shifting further away from Open Source and moving Elasticsearch to the propri-
etary SSPL licence.

This license change ensures our community and customers have free and open
access to use, modify, redistribute, and collaborate on the code. It also protects
our continued investment in developing products that we distribute for free and
in the open by restricting [Cloud] service providers from offering Elasticsearch
and Kibana as a service without contributing back.

	 62	 <https://​www.elas​tic.co/​blog/​doubl​ing-​down-​on-​open> accessed 17 April 2022.
	 63	 <https://​www.elas​tic.co/​blog/​licens​ing-​cha​nge> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  361

Bannon goes on to point out that:

[t]‌his change in source code licensing has no impact on the overwhelming ma-
jority of our user community who use our default distribution for free. It also has
no impact on our cloud customers or self-​managed software customers. In recent
years, the market has evolved, and the community has come to appreciate that
Open Source companies need to better protect their software to continue to in-
novate and make the investments required.

All in all, a very clear and directed action aimed at the cloud platforms.
This resulted in the original Open Source licensed Elasticsearch effectively

being forked. The newly SSPL licensed version of Elasticsearch is the fork. The
original code has been renamed Open Search and is maintained by AWS, a
move described by Salil Deshpande in Tech Crunch as both ‘self-​interested and
rational’.

VM (Vicky) Brasseur explained:64

These projects are not being relicensed to protect them from Amazon. Claiming
that they are is at best naive and at worst wilfully lying. These companies are re-
licensing projects to cover for the fact that they are ignorant of how to run a suc-
cessful business. They knowingly released their secret sauce under permissive
licenses and have discovered that doing so means that competitors can create
more compelling product offerings based upon the same technology. This is en-
tirely in accordance not only with the licenses that these companies knowingly
chose, but also with a competitive market. The only problem with this is that it
came as a surprise to these ‘Open Source’ companies and now they’re reacting
poorly.

Use of the Elasticsearch name by Amazon historically had triggered trademark liti-
gation, which Elastic settled in 2022 without details being shared but the existence
of which serves as a reminder of the importance of trademark registrations, policy,
and strategy.

In 2021, Matt Asay wrote:

For all the sound and fury, Elastic, the company, seems to be doing quite well.
Elasticsearch, the code, doesn’t seem to be struggling, either . . . sometimes we
imagine a developer’s choices are strictly binary: open or closed. But as the
Elasticsearch example suggests, developers aren’t nearly so simpleminded.65

	 64	 <https://​anonym​oush​ash.vmb​rass​eur.com/​2019/​06/​07/​the-​prob​lem-​with-​ama​zon-​and-​Open
Source-​isnt-​amazon/​> accessed 17 April 2022.
	 65	 <https://​www.infowo​rld.com/​arti​cle/​3640​617/​elas​tic-​keeps-​tick​ing.html> accessed 17 April 2022.

362  Amanda Brock

Asay’s implication of a half-​way house between Open Source and proprietary code
is unhelpful and at the present time misleading. Code is either Open Source or pro-
prietary. Whilst there may be room for a future evolution of a third categorisation,
that does not yet exist.

Asay also references a number of companies who continue to use the Open
Source version of Elastic’s product like Aiven, whose Lorna Mitchell says:

We’ve been in with AWS on the OpenSearch fork since the beginning, partners
and library maintainers, not actually core maintainers yet, and we are switching
all our Elasticsearch customers to our new managed Opensearch, which they
seem happy about. We have an upstream contributor in our OSPO, I’m named in
the releases. My personal take is that when people buy a service they might not be
so bothered—​but a lot of people were running Elasticsearch themselves on-​prem
and it’s that quiet majority that will move to OpenSearch, rather than the Elastic
Cloud subscribers.

Notably this would not show up in the economics of MongoDB’s service
proposition.

16.5.3.9 � Grafana Labs
Following on from the Elasticsearch controversy, Grafana Labs also reacted to the
cloud situation in April 2021. Perhaps with the benefit of hindsight and Bannon
and Elastic’s experience, Raj Dutta shifted to the Open Source AGPL licence and
carefully managed interaction with the community and public announcement on
the move, with a Q&A from staff to Dutta shared publicly.66

We believe in Open Source and are not in the business of trying to redefine what
that means. AGPLv3 is an OSI-​approved license that meets all criteria for Free
and Open Source Software. SSPL is not OSI-​approved. We considered SSPL and
watched community response to the decisions that MongoDB and Elastic made.
We really respect their decisions, but we’ve decided that we want to keep Grafana
Labs software under OSI-​approved licenses, because the support of the Open
Source community is very important to us.

16.5.3.10 � Conclusion
There has been FUD around this topic. VM Brassuer eloquently sums it up: ‘This
is a big steaming pile of bullshit . . . Fingers need to be wagged here but not at
Amazon.’67

	 66	 <https://​graf​ana.com/​blog/​2021/​04/​20/​qa-​with-​our-​ceo-​on-​reli​cens​ing/​> accessed 17 April 2022.
	 67	 <https://​anonym​oush​ash.vmb​rass​eur.com/​2019/​06/​07/​the-​prob​lem-​with-​ama​zon-​and-​Open
Source-​isnt-​amazon/​> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  363

Open Source was never designed to be a business model and cannot be re-
lied on to provide one. A careful understanding of potential business models
and a decision-​making process that considers the potentials of these and the
risk of sharing code that will potentially be the business’ crown jewels ought
to be gone through before code is made Open Source or built on an Open
Source model.

Giving the last word on this to Adam Jacobs, of Chef, who said:

Let me be 100% clear: this is not a failure of Open Source. This is the deepest, most
fundamental truth about Open Source and Free Software in action. That you, as
a user, have rights. That those rights are not contingent on the ability of someone
else to capture value. That those rights extend to everyone, including AWS—​or
they don’t exist at all.

Jacob’s analysis is very compelling.
The cloud and the platform economy has clearly created issues for Open Source,

but they are not the first and won’t be the last challenge to its definition and
parameters.

A decade ago, operating system wars, bundling and other tactics to close
down Open Source challengers in the mobile, desktop, and enterprise markets
were top of the agenda. To my mind such challenges will ebb and flow as new
technologies and models evolve. Open Source cannot be redefined to meet each
challenge that comes along. Inevitably, the adoption of Open Source will shift
markets.

16.6  Standards and FRAND

The next challenge is already upon us: standards and the friction of FRAND
licensing and Open Source licensing. A whole chapter has been devoted to
this.

As a market the MNOs are only a few decades old but are vast and wealthy. They
have seen more pivots and changes in revenue generation than almost any market,
with changes in roaming tariffs and the challenges of the OTTs like WhatsApp
putting services ‘over the top’ of the mobile networks, and eating their lunch and
their data revenue stream. At this juncture, they are unlikely to give up the very
lucrative SEP and FRAND royalty revenue without a fight. The additional li-
cence requirement of FRAND does not sit with Open Source, and attempts by the
MNOs to have their cake and eat it, by benefitting from Open Source yet retaining
these royalties, are doomed in the long term to fail, but not without a fight (see
Chapters 3 and 20).

This area will be one of the key areas to watch in the next few years.

364  Amanda Brock

16.7  Open Source Business Models—​Diversity and Success

As a consequence of the success of Open Source, we now see it everywhere.
One size rarely fits all in anything, but certainly cannot in a digitalised world

where all companies today create, distribute, or have their products consumed
using software. All companies have become software companies. If all companies
are software companies and the best and majority of software is Open Source,
then inevitably all companies might be considered to be Open Source companies.
There can be no denying that all companies are Open Source software users. In our
platform-​driven world, many have huge savings in the total cost of enterprise from
Open Source software.

There is a huge diversity in the types of enterprises using Open Source to operate
their businesses and manage their infrastructure, from bus companies to banks. In
the platform and SaaS economy billions, perhaps trillions of dollars, are saved by
the platform model, and each and every one of us benefits from this and the plat-
form companies of course benefit from Open Source. Yet, we have no idea of the
value generated. We have no idea of the cost to enterprise and each of their con-
sumers without Open Source underlying their businesses.

Mark Shuttleworth recognised that ‘There isn’t going to be one approach that
essentially enables Open Source to be relevant across the full spectrum of tech-
nology, because the full spectrum of technology is a very broad spectrum. And so,
people yelling at each other and saying, ‘You don’t understand’ is probably mostly a
symptom of the fact that people are coming from lots of different backgrounds and
making naive assumptions about what it’s like in the other person’s shoes.

16.8  Measuring Success and the Values of Open Source

16.8.1  Total cost of ownership or total cost of enterprise and
other economic descriptions

When we look at the measures of success in businesses around Open Source, we
often see the economic term ‘total cost of ownership’ (TCO). It is even used as late
as 2021 in the European Commission Study on the value of Open Source.68

The Commission’s first working group on Open Source, in 1998, focused on:

Total Cost of Ownership, because IT platforms were mostly the same for every
company and most proprietary software vendors were focusing on TCO alone
to push their own IT infrastructure. It was the most widely used economic

	 68	 <https://​open​foru​meur​ope.org/​open-​sou​rce-​imp​act-​study/​> accessed 17 April 2022.

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  365

framework for measuring things. The overall idea behind TCO is simply not ad-
equate today, because the concept of IT infrastructure is not the same anymore.
We are not measuring productivity or the value generated by their employees.
Companies have a whole different perception of what the user is, Carlo Daffara
explained.69

Today, many researchers are working on a shift away from this method of eco-
nomic valuation of Open Source and moving from a GDP-​based and inbound
(lines of code created and number of developers) approach to investment and
utilisation.

There is some discussion of the economics of Open Source in Chapter 15, but
like commercial models value calculation is likely to evolve significantly before the
next edition of this book. Increasingly research is also looking at the societal values
of Open Source too.

16.9  Open Source and Commercial Contracts

The contractual issues and requirements around Open Source software are largely
simpler than might be expected. Key to understand is that the contract being
drafted is most likely to be a service contract, not a software licence. Open Source
software is provided on an OSI approved licence and any services provided by an
associated business will be under a service agreement, not a software distribution
agreement (unless additional software is being commissioned). Being clear on this
avoids the vast majority of inappropriate negotiation around software distribution
which one would expect in a proprietary software agreement. Contracts used for
agile software services are generally most appropriate and focus on governance and
regular updates and decision-​making.

More than once during my time negotiating Open Source contracts, I was ap-
proached by opposing counsel after the negotiation, confirming that they wished
they had listened to my initial advice not to use their standard proprietary software
distribution contracts for Open Source deals. Software distribution contracts are of
course not generally appropriate for the provision of services.

16.9.1  Service contract not a licence

In looking at the service agreement there is a single important thread irrespective
of the applicable commercial model. The Open Source code which the contracts
relate to is already distributed on a licence. Any contract involving this code should

	 69	 <https://​ope​nuk.uk/​stat​eofo​pen-​phase-​one-​rep​ort/​> accessed 17 April 2022.

366  Amanda Brock

not try to create a licence but ought to consider what software is being delivered
and provide a bill of materials list. Whilst this practice was normalised as an ap-
pendix to the contract this can be difficult with the scale of software packages to
which a contract may apply today and with changes over time.

A great deal of work is happening to standardise these lists of software dis-
tributed and to manage supply chain. Previously described as Manifest, BOM,
Certificate of Originality, amongst many other names we generally refer to this
as a Software Bill of Materials (SBOM). The SPDX International Organization for
Standardization (ISO) approved standard is the key standard for Open Source
SBOMs. This is further explained in Chapter 7.

There may be a need for provisions around mistaken manifests and inaccuracy
in the SBOM.

If additional code is to be developed, then there may be a need for a licence
provision for that, and if there is, what this contains depends on whether the de-
liverable will itself be Open Source, when an Open Source licence will apply or
proprietary, which will necessitate the drafting of a proprietary licence within the
contract and of course the ownership of the code must be considered.

16.9.2  Open Source Definition

As a matter of good practice, Open Source should be defined, and however this is
done the OSD must be complied with. I recommend requiring an OSI-​approved
licence.

16.9.3  Derivative works: GPL or copyleft compilation issue

The long-​time fear of commercial enterprises has been the perceived risk of strong
copyleft Open Source code being combined with proprietary code that the owner
cares about. The perceived risk is that of a derivative work being created with a re-
quirement for the proprietary code to be shared on an Open Source licence. This
legal concept is discussed at length in Chapter 2. However, to my mind, the solu-
tions are practical more than legal and ensuring that a derivative work is not cre-
ated, if the risk of this is in fact an issue, can be managed by an engineering team’s
technical and not legal practices.

16.9.4  Open Source licence-​specific requirements

Complying with the licence terms is the overarching requirement and this may
include practical activities like making source available, updating headers in code,

BUSINESS AND REVENUE MODELS AND COMMERCIAL AGREEMENTS  367

and managing attributions. From a contract perspective, a simple clause requiring
licence compliance with appropriate remedies is the best route to achieve this.
Like many provisions in an agile contract, the details should be in the governance
and form part of a company’s policies and procedures around use, distribution,
and contribution to Open Source software. The Open Chain project tools are one
helpful route to creating these good practices. The focus should not be on listing
these out in the body of a contract.

16.9.5  Warranties, representations, and indemnities

These terms have specific meanings under English and Scots law. This is not the
same across the US and other jurisdictions. In the UK, the consequences of the use
of each of these terms and the breaches of these provisions are different and they
should be used with some care and understanding an analysis of which goes be-
yond the remit of this book.

For Open Source software, applying warranties, indemnities and undertakings
that had become the norm in a proprietary software contracts is not appropriate.
Instead, a contract for Open Source should reflect the terms of the Open Source li-
cences, which specifically exclude many of the traditional warranties such as fit for
purpose or satisfactory quality and liability.

Traditional warranties for the delivery of a service which the contract is for, are
appropriate and reasonable.

The risk grid created by Andrew Katz, Carlo Piana, Malcolm Bain, and myself
as part of my learning process on joining Canonical70 is freely available and a good
place to start learning about the balance of power in such supply and consump-
tion and what is reasonable in Open Source contracts. Katz has updated and main-
tained multiple versions of the grid to support your considerations.71

The reason many of the warranties are excluded and inappropriate is that the
Open Source software, unlike proprietary software, is generally provided free of
charge and payment makes a difference to the balance of risk and associated liabil-
ities accepted by the provider.

16.9.6  Subscription or insurance

Liability can only realistically be taken by the supplier for the distribution of Open
Source software where there is an economic transfer (payment) directly relating
to the software. This may take the form of a subscription model or be paid for

	 70	 <https://​www.jolts.world/​index.php/​jolts/​arti​cle/​view/​10/​10> accessed 17 April 2022.
	 71	 <https://​www.jolts.world/​index.php/​jolts/​arti​cle/​view/​10>

368  Amanda Brock

insurance. The most obvious way in which revenue might attach to the distribution
of Open Source software per se is in the sanitisation of the software by a company
taking responsibility for it. Companies like Red Hat and Tidelift effectively include
a level of liability for some risks in the software within their subscription charges.

It would be extremely unwise for any organisation to take liability for risk be-
yond the level to which or categories of liability to which it is able to insure unless
they are generating revenue of a scale to make self insurance viable. On the other
side of the deal, any company relying on either contractual unlimited liability or
extremely high levels of liability or indemnity in the event of a risk in Open Source
software being triggered, such as an IP dispute, is unlikely to see that reliance being
satisfied.

A more appropriate approach is to look for indemnity terms and levels which
the provider might reasonably be able to stand behind. If a small company or even
a large one takes unlimited or high levels of liability without question, alarm bells
should be ringing.

Should liability for a particular risk really be of concern, this is something that
should involve insurers and a contractual requirement stating that insurance is
bought and renewed for the length of the contract and the ongoing limitation pe-
riod beyond the end of the contract, during which time the risk would subsist. It
may also be wise to note an interest on the insurance policy.

16.9.7  Agile, SOW, and project governance

Again, although somewhat beyond the remit of this chapter it is useful to under-
stand that the traditional approach of a waterfall contract with a rigid Statement of
Work (SOW) is not appropriate to the development of projects using Open Source.
Strong project governance, regular meeting points, with clear measurables and
consequences of these not being met are far more appropriate to a structure for
Open Source, which is almost without exception developed in an agile way. Meet
frequently, fail fast.

Carlo Piana, Antitrust, Competition, and Open Source In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Carlo Piana 2022. DOI: 10.1093/​oso/​9780198862345.003.0017

17
Antitrust, Competition, and Open Source

Carlo Piana

	17.1	� Introduction � 369
	17.2	� Abuse of Dominant Position � 370
		 17.2.1	� Concept � 370
		 17.2.2	� Predatory pricing and the

Android case � 371
		 17.2.3	� The Microsoft case and

the fairness of RAND
conditions � 374

	17.3	� Merger Control � 378
		 17.3.1	� Concept � 378
		 17.3.2	� Oracle/​Sun

Microsystems � 378
		 17.3.3	� IBM/​Red Hat � 382

  

17.1  Introduction

Antitrust is a subset of competition law. It mainly deals with failures of the market
to work properly because of certain behaviours and actions of the competing firms,
said actions being otherwise legal if taken in isolation, but failing the competition
test because they have the scope and the effect of limiting competition. Other le-
gislation is directed at ensuring the proper working of the market, including un-
fair competition, public procurement (where public entities must ensure parity of
arms between potential competitors and the best deal in the public interest), public
control by independent market regulations in cases where a market can only work
under artificial conditions, as in natural monopolies, and state aid.

In this chapter we will address antitrust only, mainly from a European perspec-
tive, but with some consideration of the US.

Antitrust is a collective name for different types of legislation. It includes at least
prohibition of cartels (agreements between undertakings and concerted practices),
of abuse of dominant position or ‘monopolisation’, and merger control. These areas
of antitrust differ considerably. Cartels require the coordinated effort of more than
one undertaking, whereas abuse of dominant position is in principle a practice
committed by a single undertaking. Enforcement of cartel and abuse of dominant
position rules mostly apply ex post facto, when the illegal practices have displayed
some of their effects. Conversely, merger control happens before a merger between
two undertakings has become effective, requiring notification of certain deals

370  Carlo Piana

before they are consummated, therefore it is mostly ex ante and it requires a not-
able amount of forward-​looking evaluation by the antitrust authorities.

It is not self-​evident—​or perhaps it has not been evident—​why antitrust should
be an area of concern for Open Source, if not when projects and businesses are on
the receiving end of anticompetitive practices. After all, in the software industry,
we have observed large and wealthy corporations thriving by monetising soft-
ware in a proprietary fashion; Open Source has for a long time been seen as only a
vague competitive threat to a collective dominance of this side of the software in-
dustry. This is the case of the two-​decades-​long antitrust actions to limit Microsoft
dominance—​and abuse thereof—​in the PC operating systems market. After a long
ineffective line of actions, agreements, new threats, and repeated abuses, the com-
petitive landscape in some markets consisted of Microsoft dominating and other
firms left without any hope of posing significant competitive constraint where it
mattered (and most of the time depending and relying on Microsoft’s own plat-
form one way or the other). In the meantime a few Open Source initiatives resisted
and gained some traction in the very markets Microsoft dominated, and by their
nature could not be easily removed. Open Source as such was expressly targeted
by anticompetitive and FUD1 tactics. Eventually, Samba—​an Open Source im-
plementation of certain Microsoft networking protocols—​was one of the driving
forces that succeeded in a litigation following through a decision of the European
Commission finding Microsoft liable of abuse of dominant position.

On the other hand, Open Source-​making firms and projects have been put
under antitrust scrutiny only to a limited extent but nonetheless cases have existed.
Almost unnoticed, there has been at least one attempt to accuse Open Source pro-
jects of price fixing and predatory pricing. The same accusation was moved in a
more widely known antitrust initiative against Google’s Android operating system,
an implementation of Linux (probably the largest and most successful Open
Source project ever) for mobile devices.

In another case, the spotlight was put on the merger between two major software
firms when Oracle notified the European Commission of its intention to merge
with Sun Microsystems, the steward of four important Open Source projects, in-
cluding the very successful and widely used database engine MySQL.

17.2  Abuse of Dominant Position

17.2.1  Concept

There is no precise legislative definition of when a firm holds a dominant pos-
ition. Article 102 of the Treaty on the Functioning of the European Union (TFEU)2

	 1	 FUD: fear, uncertainty, and doubt.
	 2	 Any abuse by one or more undertakings of a dominant position within the internal market or in a
substantial part of it shall be prohibited as incompatible with the internal market in so far as it may affect
trade between member states. Such abuse may, in particular, consist in:

ANTITRUST, COMPETITION, AND OPEN SOURCE  371

does not go any further than proclaiming that abusing a dominant position is pro-
hibited, and does not give any further detail of what is dominance and when it is
abused. Dominance is frequently associated with market share: the higher the share
in a market, the more likely the entity has dominance. In essence, dominance is
found when a firm is in a position which shields it from effective competition from
other firms and enables it to act independently of its customers.3 In other words,
a dominant firm has considerable power stemming from its market share and al-
lowed by the overall structure of the competitive landscape, the structure of the
market, the control it exerts over certain facilities, the existence of barriers to entry,
and the absence of alternative goods or services in adjacent markets which could
fulfil the same needs of the customers.

Achieving and maintaining dominance—​or even a monopoly—​is not prohib-
ited. Dominance imposes additional obligations upon the dominant undertaking
in terms of fair competition. For instance, unlike any other firm, a dominant
company could be required to deal with a competitor under fair and reasonable
conditions when it holds an essential facility without which a competitor cannot
effectively compete and which is not available otherwise. In the Microsoft case, this
essential facility was found in certain de facto client–​server and server–​server net-
work protocols, which it was required to license to competitors.

17.2.2  Predatory pricing and the Android case

Predatory pricing is a practice whereby a dominant company trades below cost
with the intent of marginalising and excluding competition. The traditional theory
claims that once the competition has been effectively excluded, the dominant com-
pany can then recoup its losses by raising its prices, and therein lies the anticom-
petitiveness and abusive nature of the practice. In other words, the savings for the
consumer are only temporary, then negatively compensated by the higher prices
that follow in a monopoly or in a heavily dominated oligopoly.

However, the recouping of the costs with higher prices at a later stage when
competition is eliminated is only the most evident possible reason for predatory

	 (i)	 directly or indirectly imposing unfair purchase or selling prices or other unfair trading
conditions;

	 (ii)	 limiting production, markets, or technical development to the prejudice of consumers;
	 (iii)	 applying dissimilar conditions to equivalent transactions with other trading parties,

thereby placing them at a competitive disadvantage;
	 (iv)	 making the conclusion of contracts subject to acceptance by the other parties of supple-

mentary obligations which, by their nature or according to commercial usage, have no
connection with the subject of such contracts.

	 3	 See the judgment of the European Court of Justice in Hoffman-​La Roche,. (Hoffmann-​La Roche &
Co. AG v Commission of the European Communities. Dominant position. Case 85/​76).

372  Carlo Piana

pricing. The legal theory does not require this particular intent to find abusive be-
haviour. Another possible reason is eliminating potential competition and raising
barriers to entry in an adjacent dominated market (‘tying’ is a similar case, when
two products are sold together so that the second product or service comes for
free together with a dominant one). The required intent—​which needs not to be
subjectively proven—​is directed to the elimination of competition through excessive
reduction of prices. An actual loss on marginal cost is neither sufficient nor re-
quired, and the simple intent without an excessive reduction of prices is also irrele-
vant; for instance, it is possible to charge a very low price if—​due to synergies and
scale economy that is unavailable to competitors and not obtained or maintained
through other abusive actions—​that price is still remunerative.4 Below-​cost sales
are also considered irrelevant if maintained only for short terms (e.g. ‘sell-​offs’).

The discussion of how a price can be considered abusively low is interesting, but
beyond the scope of this book. Zero is a price that many would consider below any
admissible threshold. Despite this, there is no indication that the price of Open
Source software must always be zero; the rights granted by Open Source licences
and the near absence of distribution costs make it unlikely that anybody would
pay more than zero for acquiring a further copy of the software they have already
obtained. But is the zero price unjustified and would a zero-​priced copy of Open
Source software be labelled as predatory? Such a claim has been attempted in the
past—​and failed.

The first reported case was brought against the Free Software Foundation (FSF),
an organisation central to Open Source, by Daniel Wallace. The case was dismissed
on preliminary grounds, on the basis that the plaintiff failed to properly prove the
claim of harm to competition.5

The second case worth mentioning is of a much higher profile and had a some-
what more ambitious target: Google’s Open Source operating system, Android.6
Android is an Open Source project, at least at its roots. Built on the top of the same
kernel as GNU/​Linux (i.e. Linux), Android as a distribution is made freely down-
loadable from a public Open Source project named AOSP (Android Open Source
Project).7

	 4	 See Moritz Lorenz, An Introduction to EU Competition Law (Cambridge: Cambridge University
Press, 2013) 230–​2.
	 5	 See Wallace v Free Software Foundation Inc. (case no. 1:05-​cv-​00618-​JDT-​TAB) <https://​www.
courtl​iste​ner.com/​doc​ket/​4633​603/​wall​ace-​v-​free-​softw​are-​fou​ndat​ion-​inc/​> accessed 18 April 2022.
The order states: ‘Mr. Wallace’s alleged injury relates only to his personal inability or unwillingness to
enter into the software market because his efforts might not be rewarded financially. This injury consti-
tutes harm to Mr. Wallace as a competitor, not harm to consumers specifically, or harm to competition
in general.’
	 6	 The author has had access to the complaint of FairSearch, but cannot discuss its particulars here
as its distribution was limited and covered by procedural secrecy. No copy of it has been made publicly
available.
	 7	 <https://​sou​rce.andr​oid.com/​> accessed 18 April 2022.

ANTITRUST, COMPETITION, AND OPEN SOURCE  373

The claim was brought—​amidst other apparently better-​founded claims, and
was the first to expressly target the mobile platforms—​by a coalition of firms
claiming to be affected by abusive conduct of Google both in the mobile software
sector and in the search engine business, FairSearch.8

The only public disclosure of the claim in the Android case comes from the
public statement of the complainant,9 and it concentrates more on the ‘bait and
switch’ strategy (i.e. releasing as Open Source software, but offering a more pro-
prietary version to the original equipment manufacturer (OEM) marketplace) and
fails to discuss the basis of the predatory behaviour in the case. It was mentioned in
a laconic period in another press release.10 The specialised press reported it11 and
other parties, including the Free Software Foundation Europe (FSFE), commented
negatively on this particular angle of the case.12

This part of the claim failed to impress the Commission and was not picked up,
unlike other points made by FairSearch which made their way into a landmark de-
cision issued by the Commission (the Google Decision).13

While failing to provide any more useful detail as to the alleged anti-​competitive
nature of Open Source, the Google Decision provides a very insightful view of
how the complexity of antitrust issues is almost impossible to resolve with current
legal instruments and theories in a real-​life scenario, and requires a great deal of
discretional and creative law-​making by the Commission (as well as other antitrust
authorities) and judges.

But from the Google Decision the importance of the forking option14 granted by
the Open Source licensing of the software emerges clearly. As in the Oracle Decision,
discussed shortly, the competitive pressure of being able to fork and therefore the
value of forks in providing a way out of lock-​in is discussed.15 Conversely, the parts
of Android that are not Open Source offer a striking comparison and show the
negative impact that this licensing regime has on competitiveness.16

	 8	 <http://​fai​rsea​rch.org/​> accessed 18 April 2022.
	 9	 <http://​fai​rsea​rch.org/​summ​ary-​of-​the-​fai​rsea​rch-​compla​int-​to-​the-​eu-​agai​nst-​goo​gle/​> ac-
cessed 18 April 2022.
	 10	 <http://​fai​rsea​rch.org/​fai​rsea​rch-​eu-​goog​les-​andr​oid-​tro​jan-​horse-​domin​ate-​mob​ile-​mark​ets/​>
accessed 18 April 2022. ‘Google’s predatory distribution of Android at below-​cost makes it difficult for
other providers of operating systems to recoup investments in competing with Google’s dominant mo-
bile platform, the complaint says.’
	 11	 <https://​arst​echn​ica.com/​tech-​pol​icy/​2013/​04/​opin​ion-​antitr​ust-​compla​int-​agai​nst-​andr​oid-​is-​
an-​att​ack-​on-​open-​sou​rce/​> accessed 18 April 2022.
	 12	 <https://​fsfe.org/​act​ivit​ies/​pol​icy/​eu/​20130​729.EC.Fai​rsea​rch.let​ter.en.html> accessed 18 April
2022. The author assisted FSFE with the submission.
	 13	 <https://​ec.eur​opa.eu/​comp​etit​ion/​antitr​ust/​cases/​dec_​d​ocs/​40099/​40099​_​999​3_​3.pdf> accessed
18 April 2022.
	 14	 See discussion of forking at Chapter 22.
	 15	 Google Decision, paras 1038–​1046: ‘For the reasons set out in this Section, the Commission con-
cludes that Android forks constitute a credible competitive threat to Google.’
	 16	 Google Decision, paras 1114–​1154.

374  Carlo Piana

Therefore, the first two behavioural remedies in the Google Decision with re-
gard to the licensing of Google Search and Google Play Store prohibit Google from
discriminating against forks of Android.17

17.2.3  The Microsoft case and the fairness of RAND conditions

It is undeniable that there has been a lot of historical tension between the com-
pany making Windows or the Office suite, and the Open Source camp. All of the
sudden, in 2003–​2004, this tension materialised in court, when two comparatively
small outfits, FSFE18 and the Samba team,19 decided to join a handful of companies
and industry associations to side with the European Commission and defend its
antitrust decision of March 2004.20 The case has been a seminal one in forced li-
censing, following through a line of cases that started with McGill and continued
with IMS Health later. The decision imposed a requirement to release complete
documentation of certain network protocols, that Microsoft imposed as de facto
standards, under reasonable and non-​discriminatory conditions (RAND) in a
timely fashion. More accurately, the case had another side to it, relating to the tying
of multimedia software to Windows, but this second angle is totally irrelevant to
our analysis. Technically, the Monti decision found an abuse of a dominant pos-
ition in the workgroup server market for both server to server and client to server
protocols for file, printing, and authentication services.

Despite it being considered one of the most important antitrust cases to date,
the first part of this story has little to do with Open Source, but because of the
strategic importance of having FSFE and the Samba team on the sides of the
Commission, after the initial complainant (Sun Microsystem), one of the most
impacted companies (Novell), as well as an industry association (CCIA), decided
to withdraw from the case through settlement under monetary compensation and
in one case (Novell) through a merger, eventually Open Source became a center-
piece of it. Open Source was barely mentioned in the final decision21 that found
almost entirely in favour of the Commission and upheld only one minor part of

	 17	 Google Decision, paras 1398–​1399.
	 18	 <https://​fsfe.org> accessed 18 April 2022.
	 19	 <https://​www.samba.org/​> accessed 18 April 2022.
	 20	 Case COMP/​C-​3/​37.792 (<https://​ec.eur​opa.eu/​comp​etit​ion/​antitr​ust/​cases/​dec_​d​ocs/​37792/​
37792​_​417​7_​3.pdf> accessed 18 April 2022). Microsoft also known as the ‘Monti decision’, from the
name of the Commissioner to antitrust of that time, Professor Mario Monti. For a comprehensive ana-
lysis of the economics, see Nicholas Banasevic and Per Hellström, ‘Windows into the World of Abuse of
Dominance: An Analysis of the Commission’s 2004 Microsoft’s Decision and the CFI’s 2007 Judgment’
in Luca Rubini (ed), Microsoft on Trial: Legal and Economic Analysis of a Transatlantic Antitrust Case
(Cheltenham: Edward Elgar Publishing, 2000) 47–​75. Per Hellström was the lawyer defending the
Commission in Court and Nicholas Banasevic was the lead economist in the case team.
	 21	 Case T-​201/​04 Microsoft v Commission.

ANTITRUST, COMPETITION, AND OPEN SOURCE  375

the case, despite the importance of the knowledge that Samba disclosed in the
case, which was instrumental in dismantling the arguments on the impossibility
and danger of releasing Microsoft’s protocols to make them available to com-
peting interoperable implementations.22 The implementation of this, conversely,
has been the phase where the Open Source nature of the main ‘competitor’ to
Microsoft’s own implementation—​in fact the only competing independent one—​
played a major role and posed the deepest questions from a legal and technical
point of view.

Microsoft decided not to appeal the judgment of the Court of First Instance
(now General Court), therefore case T-​201/​04 became final.23 The Decision, even
after the partial amendment imposed by the Court, still required behavioural rem-
edies and an implementation that was difficult to bring to completion. The obli-
gation was, in summary twofold: on the one hand, the documentation had to be
prepared in a way that conveyed all the relevant information and permitted inter-
ested third parties to appraise the nature, content, and value of the information.
In other words, it needed to be timely, complete, and accurate. On the other hand,
the documentation—​once ready—​had to be released to all interested parties under
RAND conditions.

The first part, disclosure of information, basically consisted of merely technical
issues. Nevertheless, reportedly the documentation required many man-​years
work to create something retroactively that ought to be documented in the first
place, but surprisingly it had not. Microsoft reported to the parties in the compli-
ance process that it had to conceive a totally new system to collect and organise the
relevant information. In addition, there was a lot of debate on what the scope of the
disclosure was. In a nutshell, Microsoft claimed only the ‘on-​the-​wire’ protocols
were requested; conversely the Commission (and the Decision) confirmed that the
extent of release was to everything necessary to permit full interoperability (in-
cluding internal states, if relevant).

The second part, conversely, presented unexpected challenges, including a
special subset presented by Open Source. ‘RAND’, per se, means nothing. What
competitors required was a full-​fledged technology transfer agreement negotiated
directly. But because the conditions ought to be non-​discriminatory, individual ne-
gotiation was out of question. In a commercial negotiation, the free will of the par-
ties is paramount: if a party does not like what it is being offered, it can simply walk

	 22	 A personal note of gratitude goes to the members of the team, in particular Andrew ‘Tridge’
Tridgell, Volker Lendecke, and Jeremy Allison, who supported the team the author led as counsel of
record.
	 23	 Even before the case was decided on its merits, Microsoft had been slapped with a decision finding
non-​compliance with the Decision, after its first attempt to block its application was rejected in the in-
terim case before the Court of First Instance, T-​201/​2004-​R <https://​ec.eur​opa.eu/​comp​etit​ion/​antitr​
ust/​cases/​dec_​d​ocs/​37792/​37792​_​218​6_​8.pdf> accessed 18 April 2022.

376  Carlo Piana

away. In this case it was not a free negotiation, it was more akin to a collective bar-
gain process. A lot of negotiation effort was spent on what fee structure ought to be
put in place and how valuable the protocol information was, thus what a reasonable
fee could have been. To make things more complicated, there were two ‘intellectual
property’ (IP) matters to be considered: patents and trade secrets. According to the
jurisprudence and the law of the European Union (EU), patents bring a presump-
tion of valuable technology, therefore they are in principle royalty-​generating.
Trade secrets, conversely, can be valuable because of their inherent innovation and
contribution to technology, or simply because of their strategic role of being a secret.
The Decision clearly stated that Microsoft was entitled to receive compensation for
the disclosure of trade secrets only based on the value of the released information,
separating the technical merit from the strategic value of foreclosing competition.
Using Samba’s words as argued in court, if the information was not secret because
it was valuable, but it was valuable because it had been kept secret, Microsoft could
not have been allowed to benefit from the very anticompetitive behaviour it was
forced to put a stop to.

Considering Open Source, this situation brought an additional angle, which is
common to the entire matter of interaction between (open) standards and Open
Source. On the one hand, requiring running (or per copy) royalties defies the very
nature of Open Source, that by its nature is freely available, not registered, and so
cannot impose reporting obligations. On the other hand, speaking of trade secrets,
once the secret information is properly implemented as Open Source, distributing
properly commented source code inevitably discloses a lot—​if not the entirety—​of
the implemented secrets. Microsoft’s proposals included a secrecy commitment
on the source code, which was considered by the Samba team to be a clear dis-
crimination against their licensing model (GNU General Public Licence version
3 (GPLv3)). Furthermore, at least initially, Microsoft insisted that the licence must
be a full bundle of all the rights; therefore, an approaching licensee ought to license
both trade secrets and patents.

Microsoft retorted that the incompatibility with their proposal and the li-
censing model of their competitors was not their fault, that it was a self-​inflicted
problem, since the licensing chosen by Samba was a free choice which could not
be attributed to Microsoft, and in the alternative Samba could have mixed pro-
prietary and Open Source software. The Samba team argued that this line of rea-
soning was very convenient, as Open Source was the only remaining competition
after all the proprietary players had been forced out of the market, showing that
only Open Source had been resilient against anticompetitive attacks; therefore,
excluding the only viable competition form the remedies was a self-​denying prop-
osition. As per the issue of bundling, a competitor could have decided it did not
need a licence under the patents, for many different reasons, including that it
could have sold the implementation where patents were not valid; or it could have
decided to challenge them in court if enforced against it; or it could try to invent

ANTITRUST, COMPETITION, AND OPEN SOURCE  377

around patents; or again a licensee could reserve to take a separate licence only
after being successfully in building an in vitro implementation, for which patents
are not relevant.

The Commission decided that Microsoft had both completed the documenta-
tion and offered RAND conditions in compliance with the Monti Decision only as
of 22 October 2007. On that date Microsoft offered a licence without running roy-
alties under trade secrets and an optional patent licence based on global revenues
of the implementation. It also conceded that only partial confidentiality was re-
quired on the very documentation, but not on the implementation in source code.
Consequently the Commission established a final date when Microsoft ceased to
be non-​compliant, and fixed the final amount of fines for non-​compliance in fur-
ther €899 million.24

However, the Samba team was not satisfied with the compliance deci-
sion and started a negotiation directly with Microsoft, although at this point
Microsoft was not compelled to make further concessions. In the final agree-
ment, signed on December 2007, it included partial assurances with regard to
patents, using a ‘speak up soon, or shut up completely’ approach, meaning new
hitherto unlisted patents could not be asserted against implementations of the
licensed protocols if a complete notice was not given to the licensee as soon as
the patented invention was implemented in a beta release of Microsoft own
implementation.25

That was not the end, however. A further appeal was brought by Microsoft
against the compliance decision, arguing that the concessions had been made under
undue constraint by the Commission, which ought to have accepted Microsoft’s
conditions much earlier. Most of these further requests by the Commission, that
according to Microsoft had unlawfully delayed a complete clearance, were those
changes required to accommodate Open Source licensees. Therefore, again, the
Samba team and FSFE teamed up to appear in Court as interested third parties
and argued against the Microsoft line, in particular when it tried to diminish the
role and rights of Open Source players and ex post rejecting the need to concede
to them what it was forced to concede. Nearly ten years after the entire process
started, on 27 June 2012 the General Court (the new name of the former Court of
First Instance) found against the Microsoft appeal, only granted a slight reduction
of the total amount of fines, but overall upholding the position of the Commission
and indirectly that of the Samba team and of FSFE with regard to the licensing to
Open Source.

	 24	 Decision C(2008) 764 final of 27 February 2008 <https://​ec.eur​opa.eu/​comp​etit​ion/​antitr​ust/​
cases/​dec_​d​ocs/​37792/​37792​_​399​7_​9.pdf> accessed 18 April 2022.
	 25	 A clear and concise description can be found in Andrew Tridgell’s blog post ‘Samba and the PFIF’
<https://​www.samba.org/​samba/​PFIF/​> accessed 18 April 2022.2022.

378  Carlo Piana

17.3  Merger Control

17.3.1  Concept

Unlike cartels—​which are almost invariably secret and which may be made of
implicit agreements for collusive practice to the detriment of competition—​
competing firms can agree upon very open and publicly disclosed agreements,
which likewise could have permanent and structural impact over the market and
reduce the overall competitive situation. This is the case of mergers and in general
all cases of market concentration, which may include disposition of assets between
two competing businesses.

Therefore, all transactions involving two or more competitors that exceed
certain thresholds must be notified to the antitrust authorities well before being
fully brought to completion, with disclosure of the relevant facts and figures.
The antitrust authority must therefore assess if such deals are likely to raise anti-
trust concerns and need more scrutiny or conversely whether approval can be
rubber-​stamped.

When merger transactions involve global firms, potentially all jurisdictions
could be involved, making clearance a very complicated issue. While formally,
there is little difference between the US and Europe (as well as many other jur-
isdictions where a single transaction might be relevant), the outcome could be
greatly divergent. In the US the Federal Trade Commission (FTC) is entrusted
with merger control under the Hart–​Scott–​Rodino Act.26 In Europe the European
Commission is in charge under the Merger Regulation.27

The attitude towards mergers and their compatibility with a competitive market,
and ultimately the desirable level of competition of a given market, is a matter of
policy and economy, as well as a matter of legal assessment. In recent times—​at the
time of writing—​a more liberal attitude from US authorities, more likely to allow
for concentration of market power in few players can be observed compared to a
more conservative attitude from the European ones, which are more likely to pre-
serve diversity of players. The Oracle/​Sun Microsystem—​which will be discussed
next—​is one of those cases where this difference has been more strikingly noted.

17.3.2  Oracle/​Sun Microsystems

Sun Microsystem can be considered an early adopter—​among large and estab-
lished IT-​producing corporations—​of the Open Source paradigm. During the

	 26	 <https://​www.ftc.gov/​enfo​rcem​ent/​premer​ger-​notif​icat​ion-​prog​ram> accessed 18 April 2022.
	 27	 EC Merger Regulation no. 139/​2004, see <https://​eur-​lex.eur​opa.eu/​legal-​cont​ent/​EN/​ALL/​?uri=​
CELEX:320​04R0​139> accessed 18 April 2022.

ANTITRUST, COMPETITION, AND OPEN SOURCE  379

last few years of its existence as an independent firm, Sun had an important port-
folio of relevant and acknowledged Open Source products. Two of them resulted
from ‘open sourcing’—​at least to large extent—​their own flagship software prod-
ucts, namely Java and Solaris;28 two of them were acquired—​at different degrees of
maturity—​through a merger of existing projects led by independent firms. From
the acquisition of StarDivision GmbH, Sun gained control of StarOffice, a com-
petitor of Microsoft Office, which it renamed and published as Open Source under
the brand ‘OpenOffice.org’.

From the acquisition of MySQL AB, a Finnish operation in the business of Open
Source database engines, Sun obtained control over MySQL, a largely adopted and
successful database which became widely popular during the so-​called dotcom
revolution, because it provided the database component to the widely used LAMP
platform and through this popular set-​up permitted a large number of startups to
thrive and rapidly grow between the end of twentieth century and the first decade
of the twenty-​first century.29

By the end of the first decade of the twenty-​first century, it became apparent that
Sun was approaching the last days of its independent life and was a potential target
for hostile takeovers. Rumours of an imminent merger with IBM spread during
2010 and the early months of 2011. Eventually, merger talks apparently died off,
and there was speculation of less-​than-​friendly takeovers. These were replaced by
the rather unexpected announcement that Oracle Corp was the intended buyer of
the Silicon Valley operation for the astounding figure of US$7.4 billion.

The deal was sealed in reportedly record time and the antitrust authorities
received notification of it. The FTC, as widely expected, cleared the merger
without any noticeable delay despite some Sun technologies could be con-
sidered relevant for the competitive setup of the market: the most valuable one
was apparently Java. Because Java was used by many competitors of Oracle, and
it was an important building block for software platforms running many work-
loads where Oracle was also ubiquitous, that was the single issue where atten-
tion was directed.

Very little attention was given to the other pieces: not on Solaris (which was
relevant only in niche segments); not on OpenOffice.org (whose market share was
negligible in front of the über-​dominant Microsoft Office); not even on MySQL,
which was thought incapable of scaling up and becoming a competitive threat to
Oracle’s own database, which in turn was considered too expensive to be viable for
the workloads where MySQL was dominant. By everyone except Michael ‘Monty’

	 28	 Sun Solaris is a Unix-​like operating system. Java is a both a programing language and an environ-
ment providing libraries, a virtual machine for execution of code that is cross-​platform by nature.
	 29	 LAMP stands for Linux, Apache, MySQL, PHP; respectively the operating system, the web server,
the database engine, and the programing language that was used to build Internet-​interactive websites
and web applications on an Open Source stack.

380  Carlo Piana

Widenius, the founder of MySQL AB and ‘father’ of MySQL, who filed a complaint
with the European Commission.30

The complaint by Mr Widenius was thoroughly considered by the European
Commission, which opened a ‘phase 2’ on 3 September 2011, after two requests for
information directed to competitors and database customers. This had the effect
of stopping the clock for the merger, which was put on hold during this procedure.
Eventually, after the phase 2 of the merger control case lapsed, the Commission is-
sued a ‘Statement of Objections’, which is a formal document stating the case for a
decision finding against the merger, allowing the concerned companies and all the
interested parties to present their views and be heard in an impartial, finely regu-
lated, administrative procedure.31

Indeed, the Statement of Objections, a rather voluminous document consisting
of in excess of 150 pages, provided among other—​for us—​less interesting parts a
somewhat insightful description of the economics behind Open Source projects,
manly of the same nature as MySQL, which was Open Source licensed (its main
licence being the GNU GPLv2 with some linking exceptions), but not run as a ‘typ-
ical’ Open Source project. MySQL in terms of development was developed in a
‘silo’ fashion, with one single company holding the entirety of its copyright, which
it exploited in a ‘dual-​licensing’ scheme. Eventually the case ended with a decision
finding the merger compatible with the market, after a hearing was held (Decision
of 21/​01/​2010 in Case No. COMP/​M.5529—​Oracle/​Sun Microsystems, hereinafter
Oracle Decision).32

One of the major points that Oracle used to respond to the competitive concerns
of the Commission was that because MySQL was indeed totally licensed as Open
Source, the incentives for Oracle to thwart its success and its alleged likelihood to
pose a competitive threat to Oracle’s own product were largely overstated. Oracle’s
argument was that in the case of its becoming a poor steward of the project, the
threat of a fork was sufficient to stop any such scheme, because a competitor, or
collaborative project, could pick it up and become almost overnight a more vi-
able alternative—​something that happened with OpenOffice.org, which in a few
months became a recessive project compared to LibreOffice, a community fork of
it. Indeed, Oracle pointed out that a few forks of MySQL already existed, including
the one started by Monty Widenius himself (MariaDB).

Widenius and the supporting parties to his position retorted with a rather solid
point, at least in theory, that deserves attention. They claimed that a company or a

	 30	 The entire case file (non-​confidential) can be found at <https://​ec.eur​opa.eu/​comp​etit​ion/​eloj​ade/​
isef/​case_​deta​ils.cfm?proc_​c​ode=​2_​M_​5​529> accessed 18 April 2022.
	 31	 I have personally been retained by the lawyers advising Oracle at this time, but all information
I provide herewith comes from public sources and I will try to provide a dispassionate recount of what
I have partly personally witnessed.
	 32	 <https://​ec.eur​opa.eu/​comp​etit​ion/​merg​ers/​cases/​decisi​ons/​m552​9_​20​1001​21_​2​0682​_​en.pdf>
accessed 18 April 2022.

ANTITRUST, COMPETITION, AND OPEN SOURCE  381

community not owning the copyright over the project might not set up a credible
fork against the copyright holder as it would be at competitive disadvantage being
unable to obtain the proceedings from the ‘proprietary’ licensing of the forked pro-
ject, as MySQL’s owner, being left with less rewarding sources of financing as ‘sup-
port services’. While in theory this was valid, the point falls flat on its face as there
was—​and in general there still is—​no evidence that for a project to be successful
and resourceful it needs to be able to exploit code in a proprietary fashion.33 The
existence of several projects in similar fields that do not rely on proprietary exploit-
ation can be considered convincing counterfactuals.34 Whether or not this claim
was well founded, the fact that this could indeed have been convincing if proven
is relevant in our analysis. While it cannot be argued that control over copyright
is a necessary precondition for any project to be successful, on the one hand there
might be projects that need such control and therefore a fork would be gravely dis-
advantaged and could be no competitive threat; on the other hand, it is apparent
that projects which are currently not owned by a single entity, but are successful
none the less, are more likely to also be successful if forked. If that was the case, a
merger of its principal steward with a competitor would not pose the same com-
petitive challenges as if the steward was also the sole copyright holder or relied on
proprietary exploitation of the solution or of parts thereof. Open Source is there-
fore demonstrated to be a relevant issue for merger regulation issues. But more im-
portantly control of copyright (or lack thereof) could be far more relevant.

The investigation came to an end when Oracle published certain unilat-
eral pledges made to solve the antitrust concerns of the Commission, and
the Commission published a decision where it found the merger compatible
with the market in the light of the commitments. Despite being favourable, the
Oracle Decision is severely critical towards the merger and goes to great lengths
to describe, for instance, why a fork of MySQL would not have been successful.35

	 33	 The Oracle Decision discusses the IP implications of a fork, including this very argument, in
paras 715–​749, which is less than convincing as it poses too much emphasis on proprietary exploit-
ation, which reflects a decade-​old analysis coming from even older view of what constitutes an incentive
to invest and whether it is feasible to invest in ‘pure’ Open Source initiatives, as if GPL-​only projects
could not attract relevant investments from independent companies, like Linux quite evidently shows.
In a way, the Commission was right, because it looked at MySQL as a non-​pure Open Source project,
but it failed to see what a fork, as a pure Open Source project, could have become. In all honesty, the
Commission only had a few instruments and not much experience to rely on for a forward-​looking
analysis, and it relied on ‘conventional wisdom’, rather than the one—​in hindsight correct—​proposed
by Oracle, which included the supporting document by Professor Eben Moglen, mentioned in foot-
notes 457 and 459 of that Decision. The Decision in the IBM/​Red Hat case, which we discuss later in this
chapter, is much more informative and forward-​looking in such respect.
	 34	 A counterfactual is in the economic analysis, a real-​life evidence that can prove (or disprove) a
claim by showing that if the logical premises of such claims were right, such examples would not exist.
In this case, the fact that numerous examples of thriving projects without proprietary control of copy-
right would disprove that this is a requirement, unless other elements were added. In the absence of in
vitro controlled experiments—​which are at least impractical in economy—​the search of a counterfac-
tual in the next best solution to prove an economic theory.
	 35	 See paras 678–​750 in the Oracle Decision.

382  Carlo Piana

Personally, I believe that many of the concerns have been overestimated. However,
the decision remains a very useful basis for any analysis of the economic dynamics
involving an Open Source project both from an antitrust perspective and in
general.

The decision of the Commission was challenged in court, but the case has been
withdrawn from the docket before reaching the oral phase.36

17.3.3  IBM/​Red Hat

As history repeats itself but never in the same way—​and sometimes with strik-
ingly different outcomes—​another merger came to relevance in more recent times.
When IBM Corp. announced its intention to merge with Red Hat Inc., in 2018,
many saw in it a potentially controversial and heavily litigated merger control case,
similar to what happened a few years before with Sun/​Oracle. The ingredients were
all there. Red Hat is by far the largest and most successful full Open Source com-
pany. It is steward of some of the most popular Open Source projects, sometimes
having the largest share if not the entirety of the copyright of said projects. IBM
and Red Hat, in addition, might have many more points of overlap than Oracle and
MySQL had in the previous case. They are in the same space both for workloads
and intended clientele (including the lucrative and more concentrated high-​end
sector of many markets, chiefly middleware). Size-​wise, this transaction is almost
five times larger than Sun/​Oracle.

The current doctrine of mergers states that vertical mergers are, as a general
rule, pro-​competitive, while horizontal mergers are more likely to be anticompeti-
tive. Larger transactions may be difficult to fit into only one of these two categories,
as they have elements of both. IBM and Red Hat have different offerings. In par-
ticular, Red Hat is an important business partner of IBM with its Linux distribu-
tion and related services. In addition, their middleware services occupy the same
space. Potentially, after the merger (actual and potential) competition became
significantly lowered, what would the options be? In similar cases, there are two
main alternatives: assessing the entire transaction as a whole and weighing the
preponderance of effects, whether they are pro-​ or anticompetitive and clear or
prohibit the transaction as a whole; the alternative could be to consider that the
pro-​competitive effect prevails, but decide that the anticompetitive part is also im-
portant and has effects which are incompatible with the market, therefore clearing
the transaction under condition of divestiture.

	 36	 Case T-​292/​10 Monty Program AB v Commission, <http://​curia.eur​opa.eu/​juris/​docum​ent/​docum​
ent.jsf?docid=​78981&docl​ang=​en> accessed 18 April 2022. The author was counsel of record for one of
the intervening parties and cannot further discuss the particulars.

ANTITRUST, COMPETITION, AND OPEN SOURCE  383

When the business is mainly based on an Open Source product which you
develop in a fully collaborative environment, what does divesting an Open Source
business entail? Would it imply a prohibition for the divesting entity to trade the
product or the services? Divestiture in general means giving assets to an inde-
pendent firm that will develop the business externally to the firm resulting from
merger. But what is ‘business’ in an Open Source project developed in the open,
and the divesting company is only the major corporate steward of it? As frequently
happens in Open Source, common wisdom is reversed: forcing divestiture of an
Open Source project would achieve counterintuitive effects.

First and foremost, what would the divesting company sell? Copyright? That
would mean little, if the work is of a collective nature and no copyright holder can
separate its contributions from the others. Trademarks? However, a product trade-
mark associated to an Open Source project would have less intrinsic value and
the interactions with the project’s trademark policies would bind the hands of the
new owner anyway. A service trademark, conversely, would probably mean also
divesting support services, personnel, contracts, and platforms. Patents? In case of
Red Hat there were a few patents, but Red Hat pledges to put those patents at the
service of the communities and has a general non-​assertion policy, which is pre-
sumed to be enforceable against Red Hat itself and successors thereto.

Divesting an Open Source project leaving it without strong corporate support
is likely to mean making it less worthy for corporate use. If the project thrives
anyway, it probably means that the competitive threat would have been higher with
an additional supporting entity. In the case of Red Hat, it is difficult to separate how
the product is worthwhile or its value from the reputation of its corporate steward.
Even if the project was assigned to an independent foundation, would this attract
sufficient corporate sponsors and development energy to make it an equally viable
project for business use?

Eventually, despite expectations of a second-​phase procedure by the
Commission, the merger was cleared without any further requirements, after
receiving a similar unconditional clearance by the FTC. With reference to the
overlapping middleware services offerings, it was found that existing and potential
competition would have been significant unaffected. The Open Source nature of
Red Hat’s offering and the potential reaction of the community (and of developers)
should the merged entity decide to degrade their support to the project, have
conversely had a central role in justifying an immediate clearance, which went at
length analysing the competition aspects of Open Source projects and is a valuable
source for understanding further.

 For a summary of the case see <https://​ec.eur​opa.eu/​comp​etit​ion/​eloj​ade/​isef/​
case_​deta​ils.cfm?proc_​c​ode=​2_​M_​9​205>. The assessment of the Commission
reads, in a nutshell, as follows (para 569, p 122):

384  Carlo Piana

Overall, the Commission considers that the Merged Entity will not have the
ability and incentive to delay the development of Open Source projects it is in-
volved in or otherwise redirect them to reduce the emergence of competing prod-
ucts or reduce the competitive pressure of existing products. This is based on the
following general reasons and on the specific reasons set out below at paragraphs
(583) to (602).

The decision can be found at <https://​ec.eur​opa.eu/​comp​etit​ion/​merg​ers/​cases/​
decisi​ons/​m9205​_​120​0_​3.pdf> accessed 18 April 2022.

Karen Sandler, Foundations and Other Organisations In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Karen Sandler 2022. DOI: 10.1093/​oso/​9780198862345.003.0018

18
Foundations and Other Organisations

Karen Sandler

	18.1	� Governance versus Foundations � 386
	18.2	� The No-​Foundation Solution � 387
	18.3	� Charities � 387
	18.4	� Trade Associations � 390
	18.5	� Aggregating Foundations—​

Fiscal Sponsors � 391
	18.6	� Corporate Initiatives � 391

	18.7	� A Note of Licensing and
Foundations � 392

	18.8	� Co-​option, Funding, and
Confusion around
Corporate Models � 392

	18.9	� Need for Organisational
Diversity � 394

  

Free and Open Source software represents an impressive coordination of contribu-
tions of many people across different geographies, cultures, and motivations. Over the
years, Open Source communities have forged mechanisms to facilitate this collabor-
ation that codify priorities and ground rules that work together. Often, these mechan-
isms are embodied as legal organisations around major Open Source initiatives. This
chapter will explore the main types of foundations that serve to forward Open Source.

The term ‘community’ is used in many ways in Open Source, often without pre-
cision. Companies will talk about how they ‘give back to the community’ or expect
‘the community will contribute’ when code is thrown over the wall and published
as a fait accompli. People hold jobs with titles like ‘community manager’ who don’t
actually manage anyone in the loosely defined group of people comprising em-
ployees of other companies as well as volunteer hobbyists. Indeed, many of the
terms used in Open Source are similarly imprecise and used in ways that only pro-
mote the agenda of the speaker. Even what comprises an Open Source ‘project’
is up for interpretation and could mean work on a narrow stand-​alone piece of
software or it could mean efforts on diverse pieces of software that are loosely con-
nected. Here, we will use the term community to refer to any group of contributors
self-​organising into a group1 and Open Source project to refer to the software that
is the subject of that effort.

	 1	 The use of the term ‘community’ here is informed by the use of the term by the Outreachy intern-
ship program, a diversity initiative that provides paid, remote internships to people subject to systemic

386  Karen Sandler

18.1  Governance versus Foundations

While this chapter focuses on the legal structures seen in the Open Source
world, those structures emerge from the relationships established early in a
community’s collaboration. The choice of legal structure or foundation can em-
body the ideals and principles of the underlying community and define the rules
of engagement, but often those relationships establish more organically. Some
communities make their decisions by informal consent, others by following a
charismatic leader,2 some by adopting more formal majority decision-​making,
and still others by giving authority to those contributing the most. These re-
lationships are discussed in Chapter 2 and often morph into an informal gov-
ernance structure that may or may not be reflected in the legal construct that is
overlaid by a foundation.

The community’s governance could be identical with the corporate governance
of a legal structure or it may be largely unrelated. Some communities have specif-
ically formed foundations where the technical direction of the project is divorced
from the foundation. While a foundation can successfully fill a financial and other
supporting role to the project without steering its technical direction, models
where the foundation operates with a distinct governance structure from the tech-
nical governance can lead to tension in the community. Those foundations can
be ineffectual as the organisation uses its resources without a focus on the major
technical problems of a project. Organisational leadership often lacks the respect
of the community at large, which impairs its ability to build relationships and en-
hance collaboration. Conversely, a project can have a successful governance model
independent of any legal structure. Open Source projects by nature value trans-
parency and are predicated on the cooperation of diverse participants, so many
projects organically develop functional governance before any legal foundation is
contemplated.

These issues tend to be more complicated for projects that originate in for-​profit
companies where the interests of a founding corporation to retain control of the
project must be balanced with its desire to work with others, receive contributions,
and develop a community. In those circumstances, governance is the product
of negotiation between prospective business partners and can be more akin to a
Memorandum of Understanding. The economic drivers which impact this have
also been discussed further at Chapter 15.

bias and impacted by underrepresentation in the technical industry of the country they are living in.
Outreachy is a part of Software Freedom Conservancy.

	 2	 Sometimes referred to as a ‘Benevolent Dictator’.

FOUNDATIONS AND OTHER ORGANISATIONS  387

18.2  The No-​Foundation Solution

Other than those that are products of for-​profit companies, most Open Source
projects begin without any legal structure at all. These projects start with a
public repository and a forum or mailing list for conversation about important
topics in the project. Depending on how the community is composed, it can
proceed without any legal organisation for quite some time. Whereas some
foundations once made it their key goal to provide critical infrastructure for
their projects, the reliance on cloud services has made this much less necessary.
The biggest pitfalls of the no-​foundation solution relate to a lack of coordin-
ation around trademarks and other intellectual property choices. In particular,
there have been several cases where a single member of a community filed the
trademark of a project as an individual and subsequently used that trademark
to brand a commercial enterprise without permission or cooperation of the
rest of the community. Because of the absence of a neutral entity to hold the
mark, even though the activity went against the community’s informal govern-
ance and understanding of how they collaborated together, there was no legal
recourse.

A lack of a foundation around an Open Source community may not indicate
a lack of robust formal governance or a lack of legal organisation to hold some of
the rights of a project. An example of this is the Debian project. Debian has over a
thousand Debian Developers (DDs) who are active contributors who have applied
for special voting status in the community which requires passing a comprehen-
sive test about the values of software freedom, the expectations around collabor-
ation in the Debian community, and even about aspects of Open Source licensing
to achieve that DD status. DDs select a Debian Project Leader (DPL) on an an-
nual basis who formally represents the community and appoints the Technical
Committee and FTP Masters, which make important technical decisions for the
project. While Debian affiliates with three organisations, one in the US, one in
France, and one in Switzerland, to accept funds and handle some legal issues, there
is no single foundation that represents the project as a whole and the governance is
wholly divorced from any legal organisation.

18.3  Charities

One of the oldest forms of foundation chosen by Open Source projects is charities,
organised for the public good. With no shareholders and a mission to serve the
public, charities are a way for projects to organise and ensure that no company or
individual can take advantage of the community. Choosing a charitable foundation
signals a commitment by the community to keep an even playing field among indi-
vidual contributors and corporations, big as well as small.

388  Karen Sandler

The Software Freedom Conservancy, GNOME Foundation, and ASF are all ex-
amples of organisations in this model. For charities based in the US, like the ones
listed earlier, the legal structure involves first a state incorporation and then rec-
ognition by the federal Internal Revenue Service (IRS) of the relevant statutory
tax exemption for charities, referred to by its section in the US Tax Code, section
501c3. Within the US, 501c3 organisations must file annual reports that are made
public by the IRS and which disclose critical financial information about the or-
ganisation. Outside of the US, organisations are also formed under comparable
charitable legal rules like, for example as a Stiftung in Germany, like the Document
Foundation.3

Charitable organisations are generally split into two basic categories: ones that
are organised with a voting membership and ones that rely on a self-​perpetuating
board of directors.4 Many of the early Open Source organisations adopted the
membership model, which can bestow voting status on contributors to the pro-
ject. Members are able to run for board seats, become officers and participate in
the elections to appoint those roles. For many of these organisations, members
can earn their status through contributions made in the course of their employ-
ment, but their membership status is expected to be in a personal capacity and not
transferable to another employee at their company. While most Open Source or-
ganisations prioritise transparency and publish board meeting minutes and other
foundation documents, members often have private mailing lists where they dis-
cuss organisational or other sensitive issues that may arise for the project.

There are clear benefits to the membership approach. Creating a class of mem-
bers rewards and elevates regular contributors in the community which encour-
ages continued involvement. It helps make sure that important decisions made on
behalf of the community are made by people who are rooted in that community
and also responsive to the concerns of current contributors. However, member-​
run organisations have clear drawbacks. Member-​elected boards comprise people
who are well-​known contributors to the project but may not have any experience
running a charitable organisation. They may not have the background to under-
stand the organisation’s legal obligations and they may have no experience with
fundraising, public relations (PR), or any of the other activities boards must engage
in to ensure the long-​term success of the organisation. Board members are chosen
from the members who have received the most votes, without taking into consid-
eration the overall composition of the board to have a mix of skills and strengths
(other than making sure that there is not a conflict of interest created by too many

	 3	 See <http://​floss​foun​dati​ons.org/​fou​ndat​ion-​direct​ory> accessed 18 April 2022 for an inclusive list
of Open Source organisations of all kinds.
	 4	 There are a variety of organisations that are organised with hybrid models. For example, the Open
Source Initiative is a 501c3 organisation that has created a class of voting members that is not defined by
the legal governance of the organisation. Whether the existing board accepts the votes of the individual
donor base or the affiliate organisation is at the sole discretion of its self-​perpetuating board.

FOUNDATIONS AND OTHER ORGANISATIONS  389

board members with affiliation to the same employer). Often, the election pro-
cess happens on an annual basis or otherwise so frequently that directors with no
previous board experience are only getting the hang of the position when their
term ends.

In contrast to the membership model, organisations with a self-​perpetuating
board form with a selected group of directors that accepts stewardship of the or-
ganisation. Those directors can create or fill vacancies on the board, change the
foundational documents, allocate resources, and define the overall direction of the
organisation. Some organisations with self-​perpetuating boards have term limits
on their directorships, but most do not. Self-​perpetuating boards often have the
advantage of being assembled thoughtfully, with a combination of members that
provide useful skills to the organisation. A given board may include long-​time
contributors that have the deep respect of the community, along with other mem-
bers that are selected for their profile outside of the community, their connec-
tion with wealthy donors or grant-​making institutions, knowledge of non-​profit
management, or any other number of skills that may be important to a project.
Self-​perpetuating organisations often have the opportunity to perform regular
assessments on their efficacy and can adjust their membership accordingly.
Where there are no term limits, directors may serve on the board for many years,
establishing a knowledge base, dedicated skillset, and a sense of history about the
project and the organisation. A self-​perpetuating board can bring long-​term sta-
bility to a foundation and to a community and avoid drama that can surface during
heated election periods.

As with member-​run organisations, the strengths of the self-​perpetuating board
are also connected to its weaknesses. Self-​perpetuating boards can become out of
touch with the organisation’s community and be ignorant of the current needs of
the project. Because boards are generally composed of volunteers, directors may
decrease the resources they dedicate to the organisation over time and treat the role
as a pro forma obligation. These directors may not have been active participants in
the community for years. Self-​perpetuating boards are also more prone to be im-
pacted by ‘founder’s syndrome’, where a charismatic founder of the organisation
retains a disproportionate amount of influence over its operations and leadership.

Some charities have a paid staff whereas others are entirely run by volunteers.
Organisations that are volunteer run generally rely on working boards of directors.
Charities that have staff largely pay their employees at a level of compensation
that is substantially lower than other foundational models like trade associations
that will be described shortly. As is the case in other charitable causes, these lower
salaries are commensurate with an increased sense of public service and dedication
to a public good.

In contrast with trade associations, charities are necessarily free from corporate
influence, which allows and even mandates the foundation to use its resources best
to do the most good. This often results in more power residing with individual

390  Karen Sandler

contributors to the project rather than their employers, and can provide a stopgap
against corporate focus on quarterly results, allowing communities to think
longer term.

18.4  Trade Associations

Open Source organisations that prioritise the interest of for-​profit interests gen-
erally form as trade associations. These organisations are formed to forward a
common business interest and within the US are often recognised as non-​profit
501c6 organisations. Examples of Open Source trade associations are the Linux
Foundation and the OpenStack Foundation. Most of these organisations have
different levels of corporate membership with the board of directors formed ac-
cording to membership levels. Many use precious metal labels for these levels
(platinum, gold, silver, etc.) where the top-​level members each receive a seat on the
board and the lower levels are able to elect representatives among members of their
level,5 so only a certain number of the lower-​level members are able to hold a board
seat. Some of these boards also include a minority of ‘community’ board positions
that are appointed by the paying member directors.

Trade associations pave the way for smooth corporate participation in Open
Source communities. They often fill an important role of helping to transition cor-
porate Open Source projects to include a broader range of contributors and to in-
crease adoption in the industry. Trade associations are well positioned to provide
professional training courses and certifications. As corporate-​driven organisa-
tions, they are often more polished in presentation and have access to substantial
marketing and PR resources. Where charities are restricted in their activities and
the benefits they can provide to corporate donors, trade associations are able to
highlight their corporate participants and be directly responsive to their interests.
Trade associations are also particularly well suited to run events that feature for-​
profit contributions to Open Source projects and to provide industry networking
and collaboration.

Trade associations are sometimes criticised as being ‘pay to play’, where partici-
pants are only able to maintain influence at the level at which they are able to con-
tribute financially to the organisation. This can have the effect of prioritising the
interests of the top-​level platinum members to the detriment of smaller players.6

	 5	 Charities sometimes also use precious metal labels to indicate their sponsorship levels, though
often use other terminology. For charities, the sponsorship levels are indicated in logo placement on or-
ganisational websites but do not reflect any corresponding control of the organisation via membership
on the board of directors.
	 6	 These issues were highlighted in connection with ArduPilot’s withdrawal from the DroneCode
project. <https://​lwn.net/​Artic​les/​700​479/​> accessed 18 April 2022.

FOUNDATIONS AND OTHER ORGANISATIONS  391

18.5  Aggregating Foundations—​Fiscal Sponsors

In both the charitable and trade association sectors, aggregating foundations
have emerged to act as umbrellas for Open Source projects so that each indi-
vidual community need not form a new legal entity. Modelled as fiscal sponsors,
these organisations allow Open Source projects to join their legal entity which
then provides financial, accounting, administrative, and legal infrastructure
so that projects can receive funds, hold trademarks, sign contracts, run events,
and perform a variety of other roles for the project. These organisations gen-
erally take a percentage of the project’s incoming revenue to fund their oper-
ations. Examples of charitable fiscal sponsors are ASF and Software Freedom
Conservancy.7 Examples of trade association fiscal sponsors are Open Collective
and OpenStack Foundation.

OpenCollective8 is the most prominent example of a group of relatively new
organisations that provide a more limited range of fiscal sponsorship services
and do so in a more automated way, making it easy for Open Source projects
to set up a way to receive and spend funds immediately. However, because
the involvement of the organisation is limited, this approach may exacerbate
problems in a community and can sidestep the establishment of necessary
governance.

18.6  Corporate Initiatives

There has also been increased interest in corporate platforms to perform some of
the roles that traditionally have been the purview of foundations. Companies have
increasingly been hosts of Open Source projects, whether they be start up corpor-
ations funded by venture capital or Fortune 500 companies that keep a sponsorship
and stewardship role in projects they establish or acquire. Platforms encouraging
donations by the donating public have been established by corporations, a prom-
inent recent example being GitHub Sponsors.

Depending on the long-​term goals of the companies backing each initiative, the
role of a single corporate player at the helm of a project may have a chilling effect
on collaboration across the industry or may hamper the development of an inde-
pendent community.

	 7	 This author is the Executive Director of Software Freedom Conservancy.
	 8	 There are multiple organisations affiliated with OpenCollective, including Open Collective
Foundation, which is a charitable organisation.

392  Karen Sandler

18.7  A Note of Licensing and Foundations

While a subject for other chapters of this book, the licence an Open Source com-
munity chooses is fundamental to its governance and organisation. Early in the
history of software freedom, ideological communities were split between those
choosing copyleft licensing and those who preferred non-​copyleft ‘permissive’
licensing. The two camps embodied different ideas of what freedom meant and
whether it was more important that the software remain free in perpetuity or
whether there should instead be freedom to create any derivative work, including
proprietary versions. Over the decades that have followed, most for-​profit cor-
porations came to prefer and even insist on non-​copyleft licences to reduce their
ongoing obligations, retain more control over their software, and in many cases
preserve the possibility of moving to a proprietary approach in future. The ideo-
logical community has largely shifted to prefer copyleft licensing, among other
reasons, to protect against corporate interests. Many of the individuals in the early
anti-​copyleft camp have since come forward as now strongly preferring copyleft as
a result of the fragmentation and problematic behaviour of for-​profit participants.9

In 2015, Martin Fink, the Chief Technical Officer (CTO) of Hewlett Packard
(HP), gave a talk at LinuxCon Europe, in which he described HP’s choice to make
the GNU General Public Licence (GPL) the company’s default licence. In his talk,
he described how a strong copyleft licence establishes a level playing field among
stakeholders. He also made the point that without a copyleft licence, those stake-
holders must establish governance through corporate structures that can be very
expensive and time consuming. Generally, this has played out as Fink described.
To prevent fragmentation and preserve a playing field that remains neutral enough
that a broad base of contributors will participate, non-​copyleft communities es-
tablish expensive boards of directors and invest considerable resources in their
maintenance. Communities formed around copyleft licences can also have expen-
sive foundational structures, but those structures have less at stake. Small players
cannot be pushed out and ideological initiatives around the project are able to
flourish, even for projects that have significant corporate interest and investment.

18.8  Co-​option, Funding, and Confusion
around Corporate Models

Despite the differences in the structure of the foundations in Open Source, char-
ities, trade associations, and other organisations may all take in funds from a

	 9	 For example, Keith Packard spoke in 2020 about the political history of the X Windows System and
how it shaped his views on copyleft. <https://​www.yout​ube.com/​watch?v=​cj02​_​UeU​nGQ> accessed 18
April 2022.

FOUNDATIONS AND OTHER ORGANISATIONS  393

variety of sources. This includes corporate donations and donations from individ-
uals. Unlike most other fields, successful Open Source projects that are founded
for ideological reasons for the public good may also be useful to corporations that
donate to ensure the sustainability of software they rely on, to garner goodwill
from the community with an eye towards talent recruitment or simply for PR logo
placement. Corporate-​driven projects may inspire individuals to donate to them
and offer donor status programs for individuals that use the same terminology as
is traditionally used in the charitable sector. Corporate initiatives have in many
cases more fundamentally co-​opted the rhetoric of the ideologically driven com-
munities and describe their products as ‘making the world better’10 and their ac-
tions as ‘the democratisation of code’. This has led to some confusion about where
the for-​profit interests in the software and the non-​profit ideological movement
begin and end. Both trade associations and charities are ‘non-​profit’. Consequently,
many long-​time Open Source contributors do not understand how different Open
Source projects and their foundations are structured, and how that influences the
way in which they can use their funds and other assets. Because Open Source com-
munities are global, many donors are not in the same country that the organisation
they are giving to is situated and so do not expect to benefit from tax-​deductible
donations to charities. While many organisations follow IRS rules strictly and act
fully in accordance with their organisational model, there are Open Source charit-
able organisations that have not been as diligent and have allowed corporate inter-
ests to drive some of their activities.

Perhaps it was this confusion and obfuscation that resulted in the US IRS put-
ting ‘open source’ on a ‘BOLO’ or ‘Be on the Look Out’ list of words and phrases
that triggered a disproportionately aggressive review by the agency. Flagged organ-
isations found their applications subject to additional documentation requests and
stalled without any feedback on submissions over long periods of time. The BOLO
list primarily included political entries, like ‘tea party’ and ‘occupy’. It also included
‘non-​profit journalism’. The subsequent scandal prompted by the political nature
of most of the BOLO list resulted in an apology, investigation, and several resigna-
tions from IRS leadership. Some Open Source organisations that had applied for
501c3 recognition waited for many years with no response.11 In addition, at around
the same time there was also increased scrutiny of 501c6 applications, including
the prominent rejection of the OpenStack Foundation, subsequently approved on
appeal. Since that time, the IRS has instituted different review processes and many

	 10	 The television show ‘Silicon Valley’ captured this phenomenon powerfully throughout its first
season, with one if its fictional giant tech companies having the slogan ‘Hooli is about making the world
a better place, through minimal message-​oriented transport layers’.
	 11	 See the description of the Yorba Foundation’s IRS refusal of 501c3 tax exemption at <https://​lwn.
net/​Artic​les/​604​885/​> accessed 18 April 2022.

394  Karen Sandler

Open Source charities that clearly articulate their connection to charitable work
have been recognised by the IRS. While the long delays and uneven scrutiny were
clearly inappropriate, it is not surprising that the IRS struggled with evaluating
Open Source organisations.

18.9  Need for Organisational Diversity

While Open Source foundations in many cases provide overlapping services in
overlapping niches, each existing organisation is tailored to particular communi-
ties and particular needs. With a variety of contributors to Open Source, all with
a variety of motivations and goals, it is essential that a wide range of organisations
exist in the sector. Open Source has never been more critical, whether to industry
or to society. As the number and importance of Open Source projects increases, so
does the workload to support those projects and help them thrive. As many foun-
dations as we already have to serve this supporting road, we will need still more
organisations and increased resources given to existing organisations to sustain the
inevitable growth of Open Source in the years to come.

Nithya Ruff, The Rise of the Open Source Program Offices (OSPO) In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © Nithya Ruff 2022. DOI: 10.1093/​oso/​9780198862345.003.0019

19
The Rise of the Open Source Program

Offices (OSPO)
Nithya Ruff

	19.1	� The Beginning � 395
	19.2	� Should You Start an

Open Source Program
Office (OSPO)? � 396

	19.3	� The Role of an OSPO, Model
Options, and Where Should
We Build It? � 398

		 19.3.1	� Drilling down into OSPO’s
components � 400

	19.4	� How Did OSPOs Get Started
and the What is the
ToDo Group? � 402

	19.5	� What is the Impact of an
OSPO on an Organisation? � 403

	19.6	� How to Get Started in Creating
Your Own OSPO? � 406

	19.7	� Conclusion and Attributions � 407

  

19.1  The Beginning

The coming together of the Linux Kernel released by Linus Torvalds in 1991 with
the GNU Tools (created in 1984) started the GNU/​Linux Operating System (OS).
This became a viable alternative for proprietary operating systems and began
the era of widespread Open Source use as is further discussed in Chapter 1. The
General Public Licence (GPL) discussed in Chapter 4 has been widely adopted
and changed how people licensed software. This began a new era in how a sig-
nificant amount of software is created and consumed. Linux has become an un-
derlying operating system of choice for many products and industries—​from the
supercomputer to the phones in our hands, and more. And the Open Source way
of developing and releasing software has now touched components and technolo-
gies in every single area, from cloud to embedded software and even hardware
and data.

Fast forward to 2021, and it is hard to find organisations or enterprises that
do not use Open Source in some way (see Figure 19.1). Technology companies,
in fact, have been using Open Source since the early days. Today, even very trad-
itional industries and governments use Open Source software. What started
as cost-​savings efforts by systems administrators is now intentionally and pro-
actively used for its ability to accelerate innovation. Digital transformation has

396  Nithya Ruff

skyrocketed the scale of Open Source, in terms of usage and reach. Companies
tend to go through a pattern, from usage to contributing to existing projects and
open sourcing their own code. This extended usage has awakened a wide range
of organisations to the value of hiring and supporting Open Source developers.
From legal to human resources, marketing, finance, and customer care (and
everything in between), savvy department heads and business owners began to
manage all aspects of Open Source more actively and strategically. From the start
of this century, we saw the rise of the Open Source manager role in companies
using Open Source software.

19.2  Should You Start an Open Source Program
Office (OSPO)?

OSPOs have become de rigeur from 2020 and many organisations wonder how
they benefit from starting one and, perhaps, why they should invest in one, espe-
cially when they are already consuming Open Source software. What is the ad-
vantage of engaging, beyond just downloading and using the code? This is a valid

Financial Services, Government, Healthcare and Retail
Saw Increased Upstream Contribution to Open Source Projects

Source: “Open Source Programs in the Enterprise - 2020” Survey.
How o�en does your company contribute upstream? 2020, n = 669; 2019, n = 1644, 2020 Industry verticals shown in chart:
Education, n = 42; Manufacturing and raw materials, n = 26; Transportation and automotive, n = 31; Government, n = 25;
Healthcare, n = 31; Retail, n = 18; Financial services, n = 49; Telecom, communications or media, n = 62;
Technology (so�ware or IT), n = 265.

% sometimes or frequently contributing upstream

Technology (so�ware or IT) 56%

48%

38%

33%

30%

29%

26%

24%

23%

27%

40%

42%

35%

24%

44%

47%

48%

57%

Telecom, communications or media

Transportation and automotive

Education

Retail

Financial services

Manufacturing and raw materials

Government

Healthcare

2019 2020

Figure 19.1  Wide Variety of Organisations Contribute to Open Source

THE RISE OF THE OPEN SOURCE PROGRAM OFFICES (OSPO)  397

and inevitable question. The biggest reason to do so is to drive product/​service
intention and strategy proactively, which, incidentally, happens to be the biggest
benefit of engaging with Open Source projects. Proactively driving product/​ser-
vice strategy tends to speed time to market, providing a competitive advantage.

What does this mean? When you ask engaged companies where they derive the
most value from their own Open Source engagement efforts, they often point to pro-
jects that are core to their products—​projects that let them collaborate with industry
peers, learn, and share their stories, experiences, and lessons through various Open
Source foundations and their events and activities. By contrast, opting simply to con-
sume Open Source software without engaging in the process and the community can
place an artificial limit on how much value organisations can realise from that Open
Source software and their ability to influence.

Here are some drivers that may lead organisations to support the development of
an OPSO:

	 •	 Consumption without proper understanding and internal governance can
introduce risk to a company, such as having to depend on poorly maintained
projects, navigate changes in direction, or use certain licences that may be
problematic.

	 •	 Consumption of Open Source resources without contribution can result in the
build-​up of steep technical debt. This translates into increased reliance on forked
software versions, which an organisation would have to support and integrate in-​
house. Forking can cause users to fall behind on security patches and miss out on
ongoing innovation in the mainline project.

	 •	 Consumption without contribution means an organisation has little voice in
the associated Open Source communities. This matters, especially when it may
benefit an organisation to steer a project in a new direction or add important
features that can be highly beneficial to the business and project direction.
Contributions can be strategic, allowing a company to introduce new features
and ways of doing things into the technology stack that can be put to good use
elsewhere.

	 •​	 With Open Source, we rely, to an extent, on external development teams. Failing
to engage with these teams means giving up on the ability to manage and direct a
key development resource.

	 •​	 Without a systematic compliance plan, there is a risk of teams not following li-
cence obligations and other good governance practices, which opens the door to
legal issues.

	 •​	 Perhaps most importantly, leadership in Open Source simultaneously brings
both visibility and engagement. It results in a stronger and more credible tech-
nology brand, which makes a company more attractive in terms of recruiting and
keeping great developers.

398  Nithya Ruff

The results of a 2020 study about perceived ROI (return on investment) from Open
Source benefits are summarised in Figure 19.2.1

19.3  The Role of an OSPO, Model Options, and
Where Should We Build It?

OSPOs often start with one individual who brings a vision of the scope of the
company’s Open Source vision and the OSPO and works hard to customise it for
the company’s unique business needs. Not all companies need the same type of
OSPO. Each organisation should consider the options and create a model that
works well for its individual culture and structure. In particular, an OSPO needs to
help align Open Source engagement with the greater business strategy of the com-
pany. A centralised model works well in a company where a centre of excellence
helps organise and create all policies and processes to manage Open Source work
overseen by the company’s engineering organisations. When there are many divi-
sions, each doing vastly different product work, a decentralised model may work

Frequent Contributors Get High ROI
From Open Source Foundation Membership

Source: “Open Source Programs in the Enterprise - 2020” Survey.
Is your company a member or sponsor of an open source foundation(s)? (e.g., Linux Foundation, Apache Foundation,
Eclipse Foundation, Open JS Foundation) If yes, how valuable is the support and return on your investment you have
received from these open source foundations? Frequently contribute code upstream, n = 95; Sometimes contribute code
upstream, n = 53; Rarely or never contribute code upstream, n = 43.

Return on Investment (ROI)

�ose who frequently contribute code upstream

25.3%

15.1% 39.6% 24.5% 11.3% 9.4%
50%28%

23%

Pie chart does not equal 100%
because of rounding.

16.3% 25.6% 18.6%

2.3%

14% 23.3%

Extremely
High Value

High Value Average
Value

Low Value Extremely
Low Value

Don’t Know

46.3% 17.9%

4.
2%

4.
2%

2.1%
�ose who sometimes contribute code upstream

�ose who rarely or never contribute code upstream

Member or sponsor of an
open source foundation

Figure 19.2  Return on Investment From Open Source Contributions

	 1	 <https://​git​hub.com/​todogr​oup/​sur​vey> accessed 18 April 2022.

THE RISE OF THE OPEN SOURCE PROGRAM OFFICES (OSPO)  399

best. In companies which have strong functional groups, like legal, marketing, and
communications, a matrixed function may work. And in smaller organisations, a
volunteer group or part-​time OSPO may be most effective.

The scope of OSPOs also varies. Some focus only on compliance and work
closely with the legal team and the development teams creating customer-​facing
products. They either run compliance tooling or build it and help to integrate it
into development pipelines, as well as to help teams run scans and publish their
disclosures. Often this type of OSPO is developer-​heavy, because compliance
tooling requires integration, customisation, and scripting to work.

Some OSPOs do a lot of marketing work. They put a specific focus on
evangelising the company’s Open Source work by sponsoring events,
volunteering to speak at departmental meetings, etc. They leave the consump-
tion, contribution, and compliance of Open Source components to the engi-
neering teams to manage.

Increasingly, OSPOs handle multiple aspects of Open Source. The best way to
characterise it is shown in Figure 19.3. Acting as a centre of excellence in all things
Open Source, the OSPO guides the company in getting the highest return from the
use and adoption of Open Source methodologies.

COMMUNICATE

COMPLY CONSUME

CONTRIBUTECULTURE

COLLABORATE

OPEN @
Company

Figure 19.3  Various Functions of an OSPO

400  Nithya Ruff

19.3.1  Drilling down into OSPO’s components

Communication: An OSPO brings together development communities in-
side the company with consistent communications, guidance, and training
on Open Source practices. It amplifies the company’s Open Source work in
the industry, deliberately to elevate the work and create positive relation-
ships in the community. One often sees blogs, podcasts, talks, articles, and
sponsorship from OSPOs at Open Source community events and an OSPO’s
staff gives back to the industry and community through sharing best prac-
tices and other contributions. Besides goodwill, this creates recognition for
the organisation and eases the acceptance of their code; good communica-
tion and relationships also matter when an OSPO’s staff needs community
support.

Consumption: While it is easy for contemporary developers to download and
use Open Source resources from the Internet, it is the OSPO, working with
the legal team, that establishes smart and safe usage policies and practices.
It is important to know and track the origin of downloaded Open Source
code and to understand the health of the community from which resources
were downloaded. Licences are also important. Proactive and consistent
guidelines prevent hundreds of questions flooding into the legal department,
by removing or mitigating confusion for new developers and creating em-
bedded good practices.

Contribution: OSPOs coordinate reviews, guidance, and approval of code con-
tributions from the company to Open Source projects. This is an important
function as there are many elements to making high-​quality contributions
that will be successful. A company has to decide what to keep inside the com-
pany versus what to contribute, why contribution may be helpful, how to
make a high-​quality contribution and to host it in the right location.

Collaboration: The very nature of Open Source work is that it is collaborative,
often on a global scale. Hence, working with projects and foundations in
areas of interest to the company are vital to learning and getting work done.
It is also a great place to learn and share best practices.

Culture: Because engaging with Open Source reaches into many aspects of de-
velopment in a company, it necessarily touches an organisation’s culture on
many levels. It changes the way the company sources and develops code, and
it changes the relationship with upstream sources from vendors to Open
Source communities. It also changes recruitment positively and other pol-
icies inside the company. An entire chapter could be written on the matter of
Open Source, OSPOs, and corporate/​company culture impacts alone.

Compliance: Because Open Source licences come with obligations, compli-
ance is a critical function for any OSPO to take on. Most developers are busy

THE RISE OF THE OPEN SOURCE PROGRAM OFFICES (OSPO)  401

developing, and as such may not pay attention to the licence or its obliga-
tions. It is the OSPO’s responsibility to educate, set guidelines on what is ac-
ceptable, and provide guidance on how to follow the licence requirements.
In this area, an OSPO works closely with any legal and corporate compliance
functions to create policies and guidelines, and with engineering depart-
ments to ensure that risks are managed. An OSPO also answers any ques-
tions that arise on policies and licences.

The structure of an OSPO, where it lives, and the functions it performs are
unique to each company’s needs (see Figure 19.4). Most OSPOs ‘live’ in en-
gineering, to guide developer relations and advocacy functions and to help
manage developer education and requests. They serve as the first line of sup-
port before anything is escalated to legal, marketing, or leadership. OSPOs
can also be housed in a CTO (Chief Technology Office) function, in mar-
keting, or in legal. The best placement of an OSPO tends to be where it is
closest to Open Source developers and users.

Large company OSPOs may have functions at the Director and VP (Vice
President) levels, which closely coordinate with the CTO and/​or Senior Vice
President (SVP) of Engineering. These OSPO leaders work closely with leadership
to provide an Open Source perspective and to stay aligned with business strat-
egies. Smaller companies may appoint a single person at the Senior Manager level
or Principal Engineer level. Because this function stands at the intersection of so

OSPOs Come in All Shapes and Sizes

32%

Area Within Organisation

So�ware engineering
and development 36% 14%

25%

15%

14%

20%

16%

4%

4%

3%

10%

8%

1 employees

2–4 employees

5–9 employees

10+ employees

Don’t know

O�ce of the CTO

IT

Security, compliance
and risk management

Legal

Other

Don’t know

Source: “Open Source Programs in the Enterprise - 2020” Survey.
Le� Chart: Where is the open source program or initiative located within the organisation? If the e�ort is informal, answer
based on who the primary organizers report to. n = 275. Right Chart: How many employees are part of your open source
program? n = 326.’

Dev. relations, marketing
or communications

Number of Employees

Figure 19.4  Where to locate your OSPO and Staffing an OSPO

402  Nithya Ruff

many disciplines and impacts company risk, strategy, transformation, and even
sustainability, it is a function that needs to ensure its strategy is aligned with com-
pany strategy.

19.4  How Did OSPOs Get Started and the What is
the ToDo Group?

It was in the early 2000s that hyperscale technology companies like Google realised
that it was beneficial to dedicate a small organisation to help their developers safely
and smartly use Open Source and follow licences. Google’s Chris Di Bona is cred-
ited with coining the term ‘Open Source Program Office and started with a group
of developers who were Open Source enthusiasts. Residing in engineering, they
acted as the first line of contact for the hundreds of questions that were coming in
from their developers on licences and other Open Source matters. It shielded legal
teams from being overwhelmed by developers directly reaching out to them, usu-
ally with queries related to various licences. According to Chris Di Bono, who leads
the Google OSPO, they saw it as vital way to enable developer productivity and ex-
cellence. That early OSPO also started taking on the function of managing Google’s
relationship with external development communities on behalf of the company.
These were communities of projects that the company used and depended on.
More information about Google’s OSPO can be found at: <https://​ope​nsou​rce.goo​
gle/​>.

In parallel, Intel created an organisation called ‘OTC’ (Open Source Technology
Center) which handled upstream contributions, communicating and advocating
for Open Source projects and helping make many projects enterprise-​ready. One of
the projects Intel championed and continues to Open Source is the Yocto Project,
which is a standard for embedded Linux development today. Intel has historic-
ally been a prolific contributor to the kernel and a great supporter of many Open
Source foundations. Intel’s Open Source work can be found at: <https://​01.org/​>.

Other OSPOs in the early days include Box, Facebook, Twitter, Sun, and many
other mainstream and non-​mainstream technology brands. Comcast started
working in Open Source in the early 2000s and in 2017 it established the Comcast
OSPO because of its scale and strategy to lean-​in to Open Source. Along the way,
the people running the OSPOs often helped OSPOs in other organisations with
questions and best practices. In 2014, a more formal organisation coalesced, called
the ToDo Group, during Facebook’s developer conference ‘@scale’. In 2016, the
ToDo Group became a project in the Linux Foundation. The goal was to create
a neutral place for company OSPOs to share, collaborate on common issues, and
promote and support the growth of OSPOs. The ToDo group is one of the best
places to learn about how to build and run an OSPO. Its members are generous
with their knowledge and time because of their common goal to share and help

THE RISE OF THE OPEN SOURCE PROGRAM OFFICES (OSPO)  403

others to make their OSPOs successful. Many case studies and other information
can be found at: <https://​todogr​oup.org/​about/​>.

The ToDo group defines an OSPO in this way:

An Open Source Program Office (OSPO) is the center of gravity for an
organisation’s open source operations and structure. This can include training de-
velopers, ensuring legal compliance, engaging with and building communities,
and defining policies that govern code usage, distribution, selection, auditing and
more. <https://​todogr​oup.org/​blog/​ospo-​def​init​ion/​>.

Today, large enterprises that use Open Source to speed their innovation typically
establish an OSPO. Comcast’s OSPO and contributions, for example, are housed at
<https://​comc​ast.git​hub.io/​>. CapitalOne’s approach to Open Source can be found
at <https://​www.cap​ital​one.com/​tech/​open-​sou​rce/​>.

Today, governments and universities are starting OSPOs. As such, the OSPO
is a concept well understood for organising Open Source work aligned with the
business and mission of an organisation. As an example of academic OSPOs, the
Rochester Institute of Technology, or RIT, hosts an Open@RIT office; its mission
can be found at: <https://​www.rit.edu/​news/​rit-​crea​tes-​open​rit-​uni​vers​ity-​wide-​
ini​tiat​ive-​all-​thi​ngs-​open>. Notably, the city of Paris is one of the pioneers in
the use of Open Source and the establishment of an OSPO to help promote and
manage its use; here is a link to more information about that effort: <https://​www.
smart​citi​eswo​rld.net/​spec​ial-​repo​rts/​spec​ial-​repo​rts/​paris-​uses-​open-​sou​rce-​to-​
get-​clo​ser-​to-​the-​citi​zen>. As well, here is information on the UK government’s
approach to Open Source: <https://​gds.blog.gov.uk/​about>.

19.5  What is the Impact of an OSPO on an Organisation?

It is easy to claim that Open Source adoption and use happens organically in an
organisation, which leads to dangerous oversimplifications and assumptions along
the lines of ‘why can’t people who have questions just go to legal when they need
to contribute?’ and ‘does an OSPO really make a difference?’ The answer is yes, it
does. Especially in a large or complex organisation, the OSPO can bring a great
deal of order and strategic thinking to Open Source engagement.

Legal and Efficient Use of Open Source Code: For most organisational legal
teams, Open Source activities represent a fraction of their overall responsibilities.
However, there are various elements of Open Source engagement that require legal
guidance, especially as it relates to licences. This is where the OSPO can be a highly
valuable first line of support. OSPOs work hand-​in-​hand with distinct parts of legal
departments to create guidelines, policies, and processes that reduce friction and
create more productivity for developers using and engaging with Open Source.

404  Nithya Ruff

Because it is so easy to download Open Source projects and fragments without
understanding the licence, the matter of community health and security vulner-
abilities can introduce a number of risks. OSPOs establish education and guidance
to make consumption efficient and compliant with policy. An OSPO routinely
fields hundreds of questions about existing and new licences and new software that
developers want to use.

Following licence obligations when shipping Open Source products outside the
organisation is another area of risk that is best handled by an OSPO. Licence obli-
gations typically become activated upon shipment, which means that development
teams need to build the discovery and documentation of their Open Source bill of
materials when releasing a product. OSPOs work with legal colleagues to create
policies around what the company believes can and cannot be used, how to capture
it, and how to present it in the product in a way that standardises and simplifies
compliance. The productivity hit that an organisation can take is high when there is
no clarity on what to do or where to go to with questions.

An OSPO gets involved wherever due diligence is needed, to ensure that Open
Source is being used effectively, and that policies and licence obligations are being
met. Other areas where OSPOs can lend insights and credence is in M&A (Mergers
& Acquisitions), related due diligence, and any investment-​related research organ-
isations make.

OSPOs help organisations make decisions about intellectual property, in terms
of when to open resources versus keeping them inside the company. As such,
OSPOs create governance and provide facilitation on code contributions that de-
velopment teams want to make to the community at large. They ensure that all the
right organisations across the company can weigh in and do the due diligence to
make the contribution and the developer successful. Many steps go into reviewing
and ensuring that Open Source community contributions are secure and of high
quality. Once Open Source items are released, OSPOs help the maintainers and
developers do the right thing, in terms of community growth and maintaining a
healthy community.

Understanding Company’s Use: There’s a lot of value in OSPOs helping drive
developer efficiencies by cataloguing all the Open Source being used and guiding
engineering organisations on duplicative use and dependencies. A canonical case
of this would be seeing that an organisation is using Vue, React, and Angular across
all organisations, is that a good thing for the organisation? Should they standardise
on one to improve onboarding and engineering efficiency? And by understanding
dependencies, a company can manage which communities it works with and how
it responds to security alerts as it knows what is being used and where.

Collaborative Development and Reuse: Because Open Source communi-
ties have existed for decades, they provide particularly good development prac-
tices from which to learn about collaborative development best practices. These
can be brought inside the company to improve both the velocity and quality of

THE RISE OF THE OPEN SOURCE PROGRAM OFFICES (OSPO)  405

development. ‘InnerSource’ is a term used to define bringing Open Source projects
inside the firewall. Such elements include a more componentised architecture,
better documentation, and better governance for others to contribute to the pro-
ject, to name a few. This is a relatively new application of Open Source methodolo-
gies that OSPOs lead inside a company today and represents a big growth area for
OSPOs. For a long time, companies have tried to break down development silos,
leverage talent across the company, to reuse work and not reinvent. InnerSource
does just that. At the most fundamental level, it improves development and engi-
neering practices, by ensuring that even the largest and most diverse organisations
can benefit from the best software development efforts from across their various
divisions and groups. You can check out more information on InnerSource prac-
tices at <http://​.www.Inn​erso​urce​comm​ons.org>.

Collective Innovation: According to a ZDNet article,2 over 78 per cent of firms
use Open Source to run their companies. It is hard to avoid Open Source as most
proprietary products and cloud services all use Open Source innovation in one
form or the other. Clearly if it is in use, making competent use of Open Source
can be a competitive advantage to a company. Strategic questions about where to
Open Source, when the company should keep inside the company, when to release
a project, which communities with which to collaborate, and how to manage com-
munities around company projects can create competitive advantages. It can also
help companies get to market in a way that is ‘faster, better, cheaper’. Open Source is
an acknowledged new way to create de facto standards in a certain technology area.
A solid Open Source reputation often helps attract developers to the company, as
well as helping retain developers inside a company. Managing working with ex-
ternal communities, foundations, and other companies in an efficient way is a key
part of an OSPO’s role, external to the company.

Measuring Value and Total Cost of Ownership: While in the early days of Open
Source, people consumed it because it was free, and we do still see a rise in adoption
in times of financial downturn,3 cost is usually much lower on the list of reasons
why people consume Open Source today. The cost advantages, however, cannot be
ignored, especially in large and publicly held companies, focused on demonstrable
and quarter-​to-​quarter financial returns. Imagine having to create every bit of the
software stack, from scratch, that is commonly used in a product or service. This
slide below from the Linux Foundation shows that ‘best-​in-​class’ companies use 80
per cent Open Source and 20 per cent proprietary software in their product code.
That would take years and cost as much as or more than four times today’s develop-
ment costs if one had to develop all the components in a stack. And as a direct re-
sult, time-​to-​market would suffer. A small team inside a company can do so much

	 2	 <https://​www.zdnet.com/​arti​cle/​its-​an-​open-​sou​rce-​world-​78-​perc​ent-​of-​compan​ies-​run-​open-​
sou​rce-​softw​are/​> accessed 18 April 2022.
	 3	 TideLift Report.

406  Nithya Ruff

more by using the collective innovation of a global community. Besides the use,
companies can access source code and customise it for their use and, by contrib-
uting back, thereby reduce the technical debt of maintaining software. So, the cost
efficiencies associated with using Open Source certainly cannot be ignored.

Total cost of ownership was a convenient economic model when considering on
premises use for Open Source software and has gained acceptance as it is popular
with proprietary companies in a non-​platform environment. It has been ideal to
demonstrate that the costs of software utilisation extend beyond royalty or licence
fees and to demonstrate that Open Source is not free of cost. However, economic
models are discussed in more depth in Chapters 15 and 16.

19.6  How to Get Started in Creating Your Own OSPO?

If you are a serious user of Open Source and want to move with more intention and
strategically, starting an OSPO is an important first step (see Figure 19.5). Some of
the key steps to starting your own OSPO include:

	 1.	 Find a leader for this office who understands deeply how Open Source works
and can bridge the organisation’s business with Open Source strategy. Think
about selecting someone whose full-​time job is to think about Open Source
strategy for the company.

	 2.	 Make sure that the Open Source strategy is well understood and supported
by your organisation’s technical and business leadership, including middle

Moving to Strategic Use of Open Source

29%

80% OSS

Average * Best in class
* Source: Gartner Group

Stra
tegic Use

Customer
Value

Figure 19.5  Best in Class Use of Open Source

THE RISE OF THE OPEN SOURCE PROGRAM OFFICES (OSPO)  407

managers and developers. Without the support of leadership ‘up and down
the chain’, an OSPO becomes merely tactical, and the highest strategic bene-
fits are not fully realisable.

	 3.	 Create an operational model that works for your specific organisation.
Whether centralised or decentralised, establish clear guidelines, processes,
and responsibilities across legal, development, and OSPO, regarding who
does what.

	 4.	 Work with and join foundations and communities that matter to the com-
pany, based on company dependencies. Some of the most important organ-
isations in Open Source today are the Linux Foundation, where hundreds
of projects are housed; the Apache Foundation, where additional hundreds
of key community-​run projects are housed; and the Eclipse Foundation.
There are many other key institutions in Open Source, like the Open Source
Initiative (OSI), that review and approve new licences as aligned with the
Open Source Definition.

	 5.	 Work with other OSPOs in the ToDogroup.org, to learn, share, and collab-
orate on familiar and unfamiliar challenges.

	 6.	 Be visible in the community. Elevate and support the community to thrive
and encourage contributions back to Open Source. Without all companies
contributing back code, time and money, the Open Source commons or col-
lective innovation from which we all benefit will not exist.

19.7  Conclusion and Attributions

Software is at the heart of organisations, accelerating their digital strategy and
transforming how their stakeholders work with the organisation. And most of
today’s software is created using Open Source tools, libraries, services, and meth-
odologies. Open data and open standards are other tools increasingly important
to a company’s digital strategy. Managing this vital supply chain in a proactive and
systematic way is business-​critical for an organisation. OSPOs help companies
understand, organise, and align Open Source strategies to the organisation or
company’s business goals and strategies.

Richard Fontana, Cloud Native Development, Containers, and Open Source Licensing In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © Richard Fontana 2022. DOI: 10.1093/​oso/​9780198862345.003.0020

20
Cloud Native Development, Containers,

and Open Source Licensing
Richard Fontana

	20.1	� Overview of Linux
Containers � 408

	20.2	� Containers and the Scope
of Copyleft � 410

	20.3	� Container Images and
Source Code Compliance � 416

	20.4	� Identifying the Licence of a
Container � 421

	20.5	� Containers and Network
Services Copyleft � 422

	20.6	� The Rise of ‘Source-​Available’
Licences Targeting Cloud
Service Providers � 424

  

20.1  Overview of Linux Containers

A container is a Linux operating system feature that enables isolation of a user-​
space instance from the rest of the system. Containers provide a lightweight form
of virtualisation in comparison to the hardware virtualisation enabled by the use of
hypervisor technology.1 The Docker project popularised an easy way of building
and sharing containerised applications.2 Under this approach, a container image
format, featuring a set of immutable filesystem layers, is used for packaging and
distributing software intended to be run in containers. Container images are de-
livered through a network service known as a registry. A container image may
store hundreds of applications, utilities, and libraries, and typically includes a ‘base
layer’ consisting of a stripped-​down Linux distribution without the kernel. Various
aspects of container technology are now undergoing standardisation by the Open
Container Initiative.3

	 1	 ‘OS-​level virtualization’, <https://​en.wikipe​dia.org/​wiki/​OS-​level​_​vir​tual​izat​ion> accessed
2 August 2020.
	 2	 The Docker community project, launched in 2013, was partially rebranded as ‘Moby’ in 2017. See
‘Moby Project’, <https://​git​hub.com/​moby/​moby> accessed 2 August 2020. There are now alternative
Open Source implementations of Docker-​style container technology, such as the buildah, podman, and
skopeo projects maintained by Red Hat. See ‘Say “Hello” to Buildah, Podman, and Skopeo’, <https://​servi​
cesb​log.red​hat.com/​2019/​10/​09/​say-​hello-​to-​buil​dah-​pod​man-​and-​sko​peo/​> accessed 2 August 2020.
	 3	 ‘Open Container Initiative’, <https://​ope​ncon​tain​ers.org/​> accessed 2 August 2020.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  409

Enterprise cloud computing has become closely associated with a so-​called
cloud native approach to building and running scalable applications in public,
private, and hybrid clouds. Cloud native development centres around the use of
container technology along with the adoption of DevOps practices. Cloud native
applications are structured as a set of containerised microservices, each of which
focuses on performing one service.4 Container orchestration tools, the most widely
adopted of which has been the Kubernetes project, are used to dynamically coord-
inate the multiple containers making up an application.5

Containers typically include a large amount of Open Source software, for the
most part ultimately derived from upstream community projects, even in cases
where the container is focused on providing a proprietary service. This is so for
two overlapping reasons. First, much of the software included in a container image
consists of packages maintained by the underlying Linux distribution the con-
tainer is based on (including the packages in the base layer). Second, container-
ised applications are no different from contemporary non-​containerised software
in that application runtime environments consist largely of Open Source-​licensed
dependencies. The licence makeup of the open source part of a container applica-
tion runtime invariably includes both copyleft and permissive (non-​copyleft) li-
cences. Copyleft licences in the General Public Licence (GPL) family, primarily the
GNU GPL version 2 (GPLv2),6 GNU GPL version 3 (GPLv3),7 and GNU Library
or Lesser GPL versions 2.0 and 2.1 (LGPLv2.08 and LGPLv2.19), are particularly
prevalent in the subset of the container runtime that consists of Linux distribu-
tion packages. This reflects the licence composition of the most fundamental
user-​space packages in mainstream Linux server distributions, which are largely
GPL-​licensed.10

Given the abundance of Open Source software in containers, issues of Open
Source licence interpretation and compliance naturally arise in the container set-
ting. One of the characteristics of the rapid rise of container technology adoption
has been a perceived inattention to Open Source licence compliance by many

	 4	 ‘CNCF Cloud Native Definition v1.0’, <https://​git​hub.com/​cncf/​toc/​blob/​mas​ter/​DEF​INIT​ION.
md> accessed 2 August 2020.
	 5	 ‘Kubernetes’, <https://​kub​erne​tes.io/​> accessed 2 August 2020.
	 6	 <https://​www.gnu.org/​licen​ses/​old-​licen​ses/​gpl-​2.0.en.html> accessed 18 April 2022.
	 7	 <https://​www.gnu.org/​licen​ses/​gpl-​3.0.html> accessed 18 April 2022.
	 8	 <https://​www.gnu.org/​licen​ses/​old-​licen​ses/​lgpl-​2.0.en.html> accessed 18 April 2022.
	 9	 <https://​www.gnu.org/​licen​ses/​old-​licen​ses/​lgpl-​2.1.html> accessed 18 April 2022.
	 10	 See, e.g., Red Hat Universal Base Image 8, <https://​cata​log.red​hat.com/​softw​are/​con​tain​ers/​
ubi8/​ubi/​5c359​854d​70cc​534b​3a37​84e?contai​ner-​tabs=​packa​ges> accessed 18 April 2022. For a good
historically oriented discussion of containers, see Daniel Riek, ‘A Greybeard’s Worst Nightmare: How
Kubernetes and Containers are re-​defining the Linux OS’, <https://​www.red​hat.com/​files/​sum​mit/​sess​
ion-​ass​ets/​2017/​S104​999-​graybe​ard-​rhsum​mit2​017.pdf> accessed 18 April 2022.

410  Richard Fontana

container users.11 To the extent this is a fair assessment, it may reflect the ease
with which a user of container technology can assemble and distribute complex,
Open Source-​based software collections without awareness of their contents or as-
sociated licensing terms. At the same time, because containers may be new and
unfamiliar to lawyers, they may be overly concerned about the impact of Open
Source licence obligations arising out of the use of containers.12

20.2  Containers and the Scope of Copyleft

The ‘scope of copyleft’ issue in Open Source licensing centres on interpretation
of the GPL (see an overview of licensing and copyright at Chapter 3). With the
increasing adoption and awareness of containers, some have raised concerns that
in the container setting the GPL’s copyleft is broader in scope than it would be
in counterpart non-​containerised scenarios.13 This section provides some back-
ground on the issue and explains that containers do not warrant any alteration of
the general interpretation of GPL copyleft.

Three broad technical observations may be useful for understanding the GPL
copyleft scope issue. First, software is typically developed through the compos-
ition of smaller, modular components. The additional components needed by an
application at runtime are termed the runtime dependencies of the application.
With the rise of Open Source, a growing portion of an application’s runtime de-
pendencies are drawn from Open Source project codebases, typically as packaged
by a major Linux distribution or in a standard package repository for a particular
programing language community.14 This characteristic of modern software devel-
opment is particularly evident in containers, since containers isolate an application
along with its user-​space stack.

Second, an application’s dependencies may be divided into two categories, li-
brary dependencies and system dependencies,15 though the distinction is not

	 11	 See Jake Edge, ‘An update on compliance in containers’ (16 April 2019), <https://​lwn.net/​Artic​les/​
786​066/​> accessed 18 April 2022; Armijn Hemel, ‘Docker containers for legal professionals’, <https://​
www.linu​xfou​ndat​ion.org/​publi​cati​ons/​2020/​04/​doc​ker-​con​tain​ers-​for-​legal-​profes​sion​als/​> accessed
18 April 2022.
	 12	 One common use case for containers involves mere internal consumption, which should not jus-
tify concerns about Open Source licence compliance, given that, for all practical purposes, the obliga-
tions of Open Source licences are triggered by distribution.
	 13	 See Richard Fontana, ‘Containers, the GPL, and copyleft: No reason for concern’, 24 January 2018,
<https://​ope​nsou​rce.com/​arti​cle/​18/​1/​con​tain​ers-​gpl-​and-​copyl​eft>; Dirk Riehle, ‘The GNU Public
License v2 in the land of microservices’, 17 June 2020, <https://​dir​krie​hle.com/​2020/​06/​17/​the-​gnu-​
pub​lic-​lice​nse-​v2-​in-​the-​land-​of-​micros​ervi​ces/​> both accessed 8 August 2020.
	 14	 Some important examples of the latter type of package repository are Maven Central, <https://​
repo1.maven.org/​mav​en2/​> (Java); PyPI, <https://​pypi.org/​> (Python); and npm, <https://​www.npmjs.
com/​> (Node.js), all accessed 18 April 2022.
	 15	 This terminology is not widely used but captures a useful distinction. It was suggested to the au-
thor by Van Lindberg in a mailing list discussion.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  411

always clear-​cut. Libraries are collections of modular, reusable software functions
that are called by a program to access their functionality.16 The libraries used by an
application are typically written in the same programing language as the applica-
tion, and the application and the libraries it invokes will typically run in the same
operating system process (i.e. an executing instance of a program). An application’s
system dependencies will generally be run in separate processes and often involve a
different programing language runtime.

Third, as a consequence of various technical and commercial developments in
programing languages and operating systems over the past few decades, software
development can be said to have become increasingly ‘loosely coupled’ in style.
The earliest GPL-​licensed programs in the late 1980s were typically written in C, a
relatively low-​level systems language, and compiled programs typically consisted
of a single executable object code file including all libraries statically linked into the
application.

Today, lower-​level user-​space programs (those that interact more directly
with real or virtual hardware) more typically use dynamically linked libraries
shared among processes, and enterprise application development has increas-
ingly favoured higher-​level programing languages (such as Java, JavaScript, and
Python), which rely on a virtual machine or interpreter and dynamic loading of
library modules.17

The GPL has a number of interrelated requirements associated with the term
copyleft, which may be summarised as follows:

	 1.	 Derivative works of a GPL-​licensed work, if distributed, must be licensed ‘as
a whole’ under the GPL.18

	 2.	 Binary versions of a GPL-​licensed work, if distributed, must be accompanied
by complete corresponding source code in one of a number of specified
ways.19

	 16	 For a good judicial discussion of the related topic of APIs, see Oracle America, Inc. v Google, Inc.,
872 F. Supp. 2d 974 (N.D. Cal. 2012), rev’d, 750 F.3d 1339 (Fed. Cir. 2014), cert. denied, 135 S. Ct. 2887
(2015).
	 17	 See John R Levine, Linkers and Loaders (San Francisco: Morgan Kaufmann Publishers 2000); see also
Mark Radcliffe, ‘Top 10 FOSS issues of 2012’, 11 January 2013, <https://​ope​nsou​rce.com/​law/​13/​1/​top-​
ten-​foss-​2012> accessed 8 August 2020, (noting ‘the rise of “loosely coupled” programming techniques’).
	 18	 GPLv2 § 2; GPLv3 § 5. Note that, unlike GPLv2, GPLv3 does not use the US copyright statutory
term ‘derivative work’, instead relying on a definition of ‘modified version’ that references permissions
under background copyright law. GPLv3 § 0 (‘To “modify” a work means to copy from or adapt all or
part of the work in a fashion requiring copyright permission, other than the making of an exact copy.
The resulting work is called a ‘modified version’ of the earlier work or a work “based on” the earlier
work.’). Despite the change in terminology in GPLv3, informal discussions of GPL copyleft interpret-
ation have generally continued to refer to derivative works even in contexts where GPLv3 is the relevant
licence. GPLv3 is not intended to expand or narrow the general scope of copyleft as it was interpreted
under GPLv2, though in certain specific ways it relaxes the strictures of GPLv2 copyleft (particularly
with respect to compatibility of other licences with the GPL).
	 19	 GPLv2 § 3; GPLv3 § 6. Compliance with this requirement in the container setting is discussed in
the following section.

412  Richard Fontana

	 3.	 Distributors may not impose ‘further restrictions’ on recipients’ exercise of
permissions under the GPL.20

As to the derivative work requirement, the copyleft provisions of GPLv2 more pre-
cisely use the term ‘work based on the Program’, which in turn is defined by ref-
erence to derivative works. The term ‘the Program’ refers to the work originally
licensed under the GPL. GPLv2 defines ‘work based on the Program’ as ‘either the
Program or any derivative work under copyright law; that is to say, a work con-
taining the Program or a portion of it, either verbatim or with modifications and/​
or translated into another language’.21 Some lawyers have seen this as a sweeping
partial redefinition of the statutory term ‘derivative work’ (see also Chapter 3).
However, GPLv2 also has a ‘mere aggregation’ clause that makes clear that the
scope of copyleft, and in particular the breadth of what can be considered a ‘work
based on the Program’, is limited: ‘[M]‌ere aggregation of another work not based
on the Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other work under
the scope of this License.’22

From the earliest years of the GPL in the late 1980s, there has been a debate in the
technical community over the interpretation of ‘derivative work’ as used in GPLv2.
A preoccupation with the derivative work issue later developed among lawyers as
they became more familiar with Open Source licensing. A thorough exploration of
this topic is beyond the scope of this chapter but is dealt with in Chapter 3. It is suf-
ficient to note that there is a long-​standing view, widely held among GPL licensors
and Open Source community members generally, that under the GPL derivative
works encompass notional combinations of a GPL-​licensed work with other soft-
ware having a library dependency relationship with the GPL-​licensed software.

The view that a derivative work of GPL-​licensed software extends across (li-
brary) dependency boundaries in at least some circumstances is largely the
result of the influence of the Free Software Foundation (FSF), the drafter and

	 20	 GPLv2 § 6; GPLv3 § 10.
	 21	 GPLv2 § 0. See also GPLv2, final paragraph (‘This General Public License does not permit
incorporating your program into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Lesser General Public License instead of this License.’).
	 22	 GPLv2 § 2, last para. The more complex counterpart provision of GPLv3 states:

‘A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.’

GPLv3 § 5, last para. Cf. OSD para 9, <https://​ope​nsou​rce.org/​osd/​> (‘The licence must not place re-
strictions on other software that is distributed along with the licensed software’) accessed 21 July 2022.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  413

maintainer of the GPL, on community interpretation of the GPL, particularly
given the general absence of case law interpreting the licence as well as the lack
of helpful case law on the meaning of ‘derivative work’ in the software context.23
It is likely that the FSF’s views on the policy issue—​how far should the GPL
copyleft requirements extend to downstream combinations of GPL and non-​
GPL components—​were influenced by the shift towards more ‘loosely coupled’
programing following the release of GPLv2 in 1991. In some of its interpretive
materials, the FSF has associated derivative work scope with the notion of a
‘single program’. Library dependencies, under this view, were historically static-
ally linked into the same executable file as the rest of the program, and the GPL
should not be interpreted to have a weaker copyleft scope in a ‘loosely coupled’
counterpart program.24

On the other hand, the FSF-​influenced copyleft interpretation would generally
not view system dependencies as falling within GPL copyleft scope. Rather, an ap-
plication and its system dependencies would be ‘mere aggregation’. The FSF pro-
vides a technical rationale:

Where’s the line between two separate programs, and one program with two
parts? This is a legal question, which ultimately judges will decide. We believe
that a proper criterion depends both on the mechanism of communication (exec,
pipes, rpc, function calls within a shared address space, etc.) and the semantics of
the communication (what kinds of information are interchanged).

If the modules are included in the same executable file, they are definitely com-
bined in one program. If modules are designed to run linked together in a shared
address space, that almost surely means combining them into one program.

By contrast, pipes, sockets and command-​line arguments are communication
mechanisms normally used between two separate programs. So when they are
used for communication, the modules normally are separate programs. But if the
semantics of the communication are intimate enough, exchanging complex in-
ternal data structures, that too could be a basis to consider the two parts as com-
bined into a larger program.25

Using examples familiar to technical Unix and Linux users, this explanation relies
on the significance of the process boundary in distinguishing ‘mere aggregation’
from derivative work.

	 23	 See Dan Ravicher, ‘Software Derivative Work: A Jurisdiction Dependent Determination’, 13
November 2002, <https://​www.linux.com/​news/​softw​are-​der​ivat​ive-​work-​juris​dict​ion-​depend​ent-​
determ​inat​ion/​> accessed 8 August 2020.
	 24	 Cf. GPLv3 § 5, last para (definition of ‘Aggregate’ suggests that a work based on the Program does
not include a compilation of works ‘which are not combined . . . such as to form a larger program’).
	 25	 ‘Frequently Asked Questions about the GNU Licenses’, <https://​www.gnu.org/​licen​ses/​gpl-​faq.
en.html> accessed 9 August 2020.

414  Richard Fontana

The limited scope of GPL copyleft is consistent with long-​established practice
and assumptions among distributors and users of traditional (non-​containerised)
Linux. For example, there has never been a serious contention that the GPL ex-
tends to the entirety of Linux user-​space merely because many user-​space pack-
ages are licensed under the GPL. Indeed, many packages in Linux distributions are
under GPL-​incompatible licences. Moreover, proprietary software is commonly
distributed for execution on, along with, or as part of Linux distribution products.
Linux-​based virtual machine images, which are somewhat analogous to container
images, often include proprietary software in addition to GPL-​ licensed and GPL-​
incompatible Open Source software.

We can now address the specific topic of copyleft scope in the container context.
There is anecdotal evidence of a belief that all the code in a container, and perhaps
even all the code in a multi-​container implementation of an application, neces-
sarily becomes subject to the GPL’s copyleft requirements because the container
causes it all to be a derivative work of one or more of the container’s GPL-​licensed
components. Such views are likely to reflect a fear of unfamiliar technology, along
with a misimpression caused by the use of the term ‘container’. To those not tech-
nically knowledgeable about containers, the term might seem to suggest a con-
tainer is analogous to a modular package or a ‘single program’, to use the FSF’s
phrasing. However, containers are so called because of the isolation they achieve,
and not because they ‘contain’ anything.

A company concerned about the potential effects of distributing GPL-​licensed
code along with its own proprietary software might attempt to prohibit its devel-
opers from adding any third-​party GPL code to a container image it plans to push
to a registry or distribute by way of a registry. To the extent the goal is to avoid
distributing GPL-​licensed code, this is a dubious strategy. As noted earlier, the
base layer of any normal container image will include many GPLv2-​ and GPLv3-​
licensed packages. While the company might be able to prevent its developers from
including GPL-​licensed software in the container image layers they create, it gen-
erally cannot guarantee that when it pushes a container image to a registry it will
never push the base layer or other GPL-​code-​containing third-​party-​created layers
that its container image is building on.

In any case, the concern about having both proprietary software and GPL-​
licensed software running in the same container, or distributed in the same
container image, is misplaced, because the two components are no more likely
to have a copyleft-​significant relationship in the containerised case than in the
well-​understood non-​containerised case. In general, unless there are particular
facts suggesting that the two components are not ‘separate and independent’,
the simultaneous inclusion of a proprietary component and a GPL-​licensed
component in a container image will be ‘mere aggregation’, compliant with
and contemplated by the GPL, with no impact on the licensing of either com-
ponent. While in a given situation the relationship between two components

CLOUD NATIVE DEVELOPMENT, CONTAINERS  415

may not be ‘mere aggregation’, the same is true of software running in non-​
containerised user-​space on Linux, or any other mainstream operating system.
That is, there is nothing in the technical makeup of containers or container im-
ages that suggests a need to apply a different, expanded form of copyleft scope
analysis.

It follows that when examining the relationship between code running in a con-
tainer and code running on the same Linux system outside a container, the ‘sep-
arate and independent’ criterion suggested by the GPL text and FSF interpretive
guidance is almost certainly met. The two components in this case will necessarily
run as separate processes, and the whole technical point of using containers is iso-
lation from other software running on the system.

A more practical scenario would involve separate but potentially interacting
containers, as part of a containerised application with a microservices architec-
ture. Each container will undoubtedly have GPLv2 and GPLv3-​licensed soft-
ware, in addition to code under various other Open Source licences. Suppose
one of the interacting containers also has some proprietary code. In the ab-
sence of very unusual facts, copyleft scope should be expected not to extend
across multiple containers. Separate containers run in separate processes.
Communication between containers by way of network interfaces is analogous
to the operating system mechanisms cited by the FSF as examples of mere aggre-
gation (e.g. pipes and sockets). Moreover, a multi-​container microservices sce-
nario would seem to preclude what the FSF calls ‘intimate’ communication, by
definition. While the composition of an application using multiple containers
may not be dispositive of the GPL scope issue, it makes the technical boundaries
between the components more apparent and provides a strong basis for arguing
separateness. Here too there is no technical characteristic of containers or con-
tainer images that suggests application of a different and stricter approach to
copyleft scope analysis.

The preceding discussion suggests that a company concerned about the impact
of GPL code distribution on simultaneously distributed proprietary code might
wish to embrace containerisation as a strategy for minimising copyleft scope con-
cerns, by isolating GPL and proprietary code from one another. This may not
always be practical (e.g. if the GPL code is a system dependency of the propri-
etary code, it may be necessary for it to run in the same container). It would be
more appropriate for such basic architectural decisions to be driven by technical
considerations, rather than often-​unfounded or overblown legal concerns about
the impact of the GPL that fail to account for mere aggregation. While in a non-​
containerised setting the relationship between two interacting components will
often be mere aggregation, the evidence of separateness that containers provide
may be comforting to those who worry (however needlessly) about GPL copy-
left scope.

416  Richard Fontana

20.3  Container Images and Source Code Compliance

Licences classified as copyleft typically impose some requirement on distributors
of binaries to provide source code. As noted earlier, this is true of the GPL with
its relatively elaborate ‘complete corresponding source code’ requirement.26 The
source code disclosure requirements in other, less commonly used copyleft li-
cences are generally worded in a less detailed manner and are often assumed to be
generally satisfied through attention to GPL-​style source compliance, although it
is not clear that this is entirely correct.27 In contrast to source code requirements,
nearly all Open Source licences include requirements of various sorts to preserve
legal notices such as copyright statements, licence notices, licence texts, and in
some cases author attributions.28

Making source code available simultaneously with distribution of binaries is an
efficient way of complying with both types of basic Open Source licence require-
ments, since source code will generally contain all legal notices for which licences
mandate preservation, though this does not appear to be widely recognised by
vendors engaged in Open Source licence compliance efforts.29 Distribution of con-
tainer images, for example distribution by way of a registry, will, of course, give rise
to all the distribution-​triggered Open Source licence requirements that would be
triggered in a non-​containerised setting.

GPLv2 section 3 gives two options for satisfying the corresponding source code
requirement in the case of commercial distribution of object code:30

	 26	 GPLv2 defines complete corresponding source code: ‘For an executable work, complete source
code means all the source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable.’ GPLv2 § 3. GPLv3 defines
the term ‘Corresponding Source’:

‘The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities . . . . For example, Corresponding Source includes
interface definition files associated with source files for the work, and the source code for
shared libraries and dynamically linked subprograms that the work is specifically designed to
require, such as by intimate data communication or control flow between those subprograms
and other parts of the work.’ GPLv3 § 1.

	 27	 See, e.g., Eclipse Public Licence 2.0 § 3.1 (if distributed in object code, ‘the Program must also be
made available as Source Code . . ., and the Contributor must accompany the Program with a statement
that the Source Code for the Program is available under this Agreement, and informs Recipients how
to obtain it in a reasonable manner on or through a medium customarily used for software exchange’);
Mozilla Public Licence 2.0 § 3.2 (‘If You distribute Covered Software in Executable Form then . . . such
Covered Software must also be made available in Source Code Form . . ., and You must inform recipients
of the Executable Form how they can obtain a copy of such Source Code Form by reasonable means in a
timely manner, at a charge no more than the cost of distribution to the recipient’).
	 28	 See, e.g., Apache Licence 2.0 § 4.
	 29	 Jeffrey Robert Kaufman, ‘An economically efficient model for Open Source software license com-
pliance’, 1 September 2017, <https://​ope​nsou​rce.com/​arti​cle/​17/​9/​econo​mica​lly-​effici​ent-​model>;
Heat​her Meeker, ‘Is the container half empty or half full?’, <https://​heathe​rmee​ker.com/​2020/​07/​29/​
is-​the-​contai​ner-​half-​empty-​or-​half-​full/​> both accessed 9 August 2020.
	 30	 For non-​commercial distribution, GPLv2 also allows the distributor to ‘[a]‌ccompany [the ob-
ject code] with the information you received as to the offer to distribute corresponding source code’.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  417

	 a)	 Accompany [the object code] with the complete corresponding machine-​
readable source code, which must be distributed . . . on a medium customarily
used for software interchange; or,

	 b)	 Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-​readable copy of the corresponding
source code, to be distributed . . . on a medium customarily used for software
interchange . . . .

In addition, the last paragraph of section 3 states:

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from
the same place counts as distribution of the source code, even though third par-
ties are not compelled to copy the source along with the object code.

Though it is not immediately obvious from the licence text, this is generally under-
stood as a clarification that the first option (simultaneous source availability) is
available when object code is distributed over a computer network, which of course
today is the normal manner in which object code is commercially distributed. It
should be remembered that when this language was added to GPLv2 in 1991, it
was still common for free software to be distributed using physical tape media, and
large-​scale network distribution of software was still in its infancy.31

The source availability options in GPLv3 for commercial distribution of object
code are similar, though with some notable changes:

	 a)	 Convey the object code in, or embodied in, a physical product (including
a physical distribution medium), accompanied by the Corresponding
Source fixed on a durable physical medium customarily used for software
interchange.

	 b)	 Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at
least three years and valid for as long as you offer spare parts or customer sup-
port for that product model, to give anyone who possesses the object code ei-
ther (1) a copy of the Corresponding Source for all the software in the product
that is covered by this License, on a durable physical medium customarily
used for software interchange, for a price no more than your reasonable cost

GPLv2 § 3(c). GPLv3 has substantially the same option but limits it to being used only ‘occasionally’.
GPLv3 § 6(c).

	 31	 Cf. GPLv1 (1989) § 3 (containing no counterpart to the ‘equivalent access’ clause of GPLv2).

418  Richard Fontana

of physically performing this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

		 . . .
	 d)	 Convey the object code by offering access from a designated place (gratis or

for a charge), and offer equivalent access to the Corresponding Source in the
same way through the same place at no further charge. You need not require
recipients to copy the Corresponding Source along with the object code. If the
place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports
equivalent copying facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source. Regardless of
what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

	 e)	 Convey the object code using peer-​to-​peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are
being offered to the general public at no charge under subsection 6d.32

Under GPLv3 the written offer option appears no longer to be available when dis-
tribution (‘conveying’) of object code is not done by way of a hardware device or
physical storage medium. The simultaneous-​source option, which now explicitly
includes the network binary distribution case, is liberalised somewhat to codify
FSF interpretation of GPLv2.33

The written source offer option is a possible form of source compliance for net-
work binary distribution under GPLv2, and is one commonly chosen by vendors
in that context, perhaps because it can seemingly provide a quick solution for
last-​minute GPL compliance problems. However, written offers have a number of
drawbacks.34

A benefit of the simultaneous source availability approach is that compliance
is fully achieved at the time of object code distribution, whereas with the written
offer option there is an ongoing and somewhat unpredictable source compliance
obligation based on the required term of the offer. Moreover, in addition to its
narrowed availability under GPLv3, it is not clear that the written offer approach
would comply with the source availability requirements of some non-​GPL copy-
left licences, nor would it seem to take care of notice preservation compliance ad-
equately under Open Source licences generally. For these reasons, the written offer

	 32	 GPLv3 § 6.
	 33	 See ‘Frequently Asked Questions about version 2 of the GNU GPL’, <https://​www.gnu.org/​licen​
ses/​old-​licen​ses/​gpl-​2.0-​faq.en.html> accessed 9 August 2020.
	 34	 See Eben Moglen and Mishi Choudhary, Software Freedom Law Center Guide to GPL Compliance,
2nd edn, (2014) 52–54, available at <http://​soft​ware​free​dom.org/​resour​ces/​2014/​SFLC-​Guide_​to_​G​
PL_​C​ompl​ianc​e_​2d​_​ed.pdf> accessed 9 August 2020; Copyleft and the GNU General Public License: A
Comprehensive Tutorial and Guide, part II, § 15.1.2, available at <https://​copyl​eft.org/​guide/​compre​
hens​ive-​gpl-​guidec​h16.html#x21-​13100​015> accessed 9 August 2020.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  419

option should be avoided in the network binary distribution context, including
distribution of container images, other than perhaps as a ‘belt and braces’ mech-
anism. An additional problem with the written offer approach in the container set-
ting is that there is no straightforward way to present the offer to the recipient of
the container image.

Because containers invariably include a large amount of Open Source-​licensed
software, distribution of container images gives rise to the same source availability
requirements that would be triggered in a corresponding non-​containerised distri-
bution setting. However, in some important respects container images differ from
non-​containerised software, in ways that may make Open Source licence compli-
ance more challenging.

In the past, prior to the rise of containers, modular software components were
commonly obtained separately. For example, a Linux user seeking to install some
additional packaged software (corresponding generally to a particular upstream
Open Source project) would install just that package along with any missing de-
pendencies; the resulting distribution event would typically involve a relatively
small number of packages. In contrast, even though containers are often focused
on a particular application or service, a container image will include a heteroge-
neous collection of software—​often hundreds of components, more analogous to
the installation of an entire (non-​containerised) working Linux distribution. This
represents a shift in the focus of software delivery from one driven by how the soft-
ware is built to one driven by how the software is used.35 A typical creator or con-
sumer of a container image will not be aware of the scale and complexity of the
contents of the image, including with respect to licensing.36

In the shift to containers, one compliance-​related challenge concerns the di-
minished role of package management. Prior to the rise of containers, package
maintainers and package management tools played a key role in facilitating source
availability and thus Open Source licence compliance. The focused nature of a
package, the role of a package maintainer in Linux distributions and upstream
language-​specific package repositories, and the tooling that has been built to sup-
port package management systems has resulted in an expectation that the package
maintainer will take responsibility for ensuring that source code is available. In
Linux distributions, at least, tools that build binaries also collect the corresponding
source code into an archive that can be delivered along with the binaries. The result
is that most users of these systems have not needed to be concerned with source

	 35	 Scott K Peterson, ‘Making compliance scalable in a container world’ (9 July 2020),available at
<https://​ope​nsou​rce.com/​arti​cle/​20/​7/​com​plia​nce-​con​tain​ers>; Scott K Peterson, ‘What’s in a con-
tainer image: Meeting the legal challenges’ (31 July 2018), available at <https://​ope​nsou​rce.com/​arti​cle/​
18/​7/​whats-​contai​ner-​image-​meet​ing-​legal-​cha​llen​ges> both accessed 9 August 2020).
	 36	 See Jake Edge, ‘Containers and license compliance’ (2 May 2018), available at <https://​lwn.net/​
Artic​les/​752​982/​> accessed 9 August 2020.

420  Richard Fontana

availability. Source code is routinely available in the same format as the delivery of
the executable software, using the same distribution mechanism.

For example, many Linux distributions use the RPM Package Manager (RPM)
package management technology, in which binary packages are delivered in RPM
format, and corresponding source code is normally available in a corresponding
source RPM. In contrast, there is no convention for making available the source
code corresponding to the executable software in a container image.

Another compliance-​related challenge associated with the adoption of con-
tainer technology is an increase in the number of distributors of Open Source soft-
ware inexperienced with the requirements of Open Source licences. Companies
that are beginning to offer their proprietary applications as container images may
be facing GPL compliance obligations for the first time (see Chapter 5).

Determining what the corresponding source code is for a set of binaries is more
challenging for container images than it is for conventional modular packages.
With traditional server and desktop-​oriented Linux distributions, source code is
normally available to the person building the package. In contrast, binaries in con-
tainer images are typically built using components previously compiled by third
parties other than the container creator. When the container image is built, the
source code for those components may or may not be readily at hand, depending
on how the binaries were acquired and how they were built.

Recently Scott Peterson of Red Hat has described a way of solving these
challenges by implementing a ‘registry-​native’ approach to source code avail-
ability: delivering source code itself as a container image, through container regis-
tries. An Open Container Initiative (OCI)-​conformant container image includes
an image manifest which identifies the other elements of the image, including the
various filesystem layers (each of which is a tar archive) making up the image. In
the registry-​native approach, a list of corresponding source artifacts is arranged as
an image manifest, enabling the registry to serve those source artifacts in the same
way it serves other container image parts. The layers of the source image are those
source artifacts. Tools for moving container images can be directly applied to move
the source artifacts.

There are a number of compliance-​related benefits to adoption of the registry-​
native approach. It clearly satisfies the ‘equivalent access’ criterion of the GPL.37
Compliance is addressed in an efficient manner, at the time of creation of a con-
tainer image, avoiding the need to maintain additional, external processes and

	 37	 Patrick McHardy, a former Netfilter contributor who has gained notoriety through a series of con-
troversial GPL compliance litigation actions in Germany, has reportedly raised GPL non-​compliance
claims based on failure to provide equivalent access. Greg Kroah-​Hartman, ‘Linux Kernel Community
Enforcement Statement’ (16 October 2017), available at <http://​kroah.com/​log/​blog/​2017/​10/​16/​
linux-​ker​nel-​commun​ity-​enfo​rcem​ent-​statem​ent/​> accessed 9 August 2020. While those claims may
be without foundation, they have had the side effect of calling general attention to compliance with the
equivalent access requirement.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  421

mechanisms for making source code available. Compliance is also made port-
able: when an image is moved from one registry to another, it remains in com-
pliance. The same tooling that moves executable container images can be used
to move, store, and serve the source images on all hosting registries. Finally, the
registry-​native approach can take advantage of the deduplication capability that is
inherent in the layered container image format, by storing separate source artifacts
for each of the hundred or more software components from which the container
image is built.38

20.4  Identifying the Licence of a Container

In recent years the term ‘Open Source compliance’ has come to be applied to activ-
ities that do not focus on substantive compliance with provisions of Open Source
licences, but which instead centre upon compiling lists of information about the
Open Source contents of software products.39 The focus is on the discovery of what
Open Source-​derived software is in a product and how such software is licensed, as
well as on how best to maintain, present, and share that information (see Chapter 6
on OpenChain and Chapter 7 on SPDX).

This sort of ‘compliance’ orientation can be expected to be increasingly directed
towards containers as adoption of containers continues to grow. It has already oc-
casionally manifested in discussions and activities in the community and among
companies relating to how to describe or identify the ‘licence’ of a container. These
activities sometimes reveal a failure to appreciate the licensing complexity of con-
tainer images, even among those having technical familiarity with containers.

For example, in the OCI Image Format Specification,40 one of the predefined
annotation keys is ‘org.opencontainers.image.licenses’, which is described as
‘License(s) under which contained software is distributed as an SPDX License
Expression’.41 But a typical container image is built from hundreds of components.
An SPDX licence expression is generally used to convey licensing information for
a single source file, or perhaps a simplified view of the licensing of one package.
Such expressions are designed to allow composite expressions, such as ‘GPL-​2.0-​
or-​later OR BSD-​3-​Clause’.42 The SPDX licence’s (see Chapter 7) expression format
is not designed to represent the complex licensing information details that would

	 38	 For further information on the registry-​native approach, including current and anticipated future
implementation details, see Peterson, ‘Making compliance scalable in a container world, see note 35.
	 39	 See, e.g., <https://​com​plia​nce.linu​xfou​ndat​ion.org/​about/​> (Linux Foundation Open Compliance
Program), accessed 10 August 2020.
	 40	 <https://​git​hub.com/​ope​ncon​tain​ers/​image-​spec> accessed 10 August 2020.
	 41	 <https://​git​hub.com/​ope​ncon​tain​ers/​image-​spec/​blob/​mas​ter/​anno​tati​ons.md#pre-​defi​ned-​ann​
otat​ion-​keys> accessed 10 August 2020.
	 42	 See SPDX Specification v2.2.0, Appendix IV: SPDX License Expressions, available at <https://​spdx.
git​hub.io/​spdx-​spec/​appen​dix-​IV-​SPDX-​lice​nse-​expr​essi​ons/​> accessed 10 August 2020.

422  Richard Fontana

accurately describe a typical container image, which would require an extremely
lengthy conjunctive expression of standardised and ad hoc licence identifiers of
little communicative value to those concerned about identifying issues of sub-
stantive Open Source licence compliance. There is some evidence that the prac-
tice of using Dockerfiles has led to confusion over how to describe the licence of a
container image accurately. A Dockerfile is a text document that contains a set of
commands for assembling a container image.43 Although Dockerfiles tend to be
fairly trivial and non-​expressive, Dockerfiles are sometimes placed under an Open
Source licence through application of a licence notice at the top of the file. In those
cases, it sometimes happens that the nominal Dockerfile licence is mistakenly as-
sumed to be the licence of the set of container images that can be generated from
the Dockerfile. In actuality, a Dockerfile might be licensed under the MIT licence,
while the associated container image will generally have some complex composite
licence that will include GPLv2 and GPLv3.44

Another misconception is that the licence of a container image can be deter-
mined through reverse engineering of the image to attempt to extract licence
texts. This is not a reliable approach because there is no reason to assume that the
image has compliantly included all licence texts and of course reverse engineering
is not legally permissible in all jurisdictions, though reverse engineering is impli-
citly allowed under Open Source licences and therefore is allowed in cases where a
binary file is actually governed by an Open Source licence. Licence files have some-
times been deliberately removed from container images in an effort to make them
smaller.

The best way to discover accurate information about the licensing terms ap-
plicable to a container image is to access the corresponding source code of the
components of the image. This is another argument in favor of the registry-​native
approach discussed in the previous section. With complete source code, scanning
tools like ScanCode Toolkit45 can be used to extract the kinds of legal information
that the user considers important.46

20.5  Containers and Network Services Copyleft

For the most part, copyleft licence requirements, including source code ob-
ligations and restrictions on licensing of derivative works, are triggered by

	 43	 ‘Best practices for writing Dockerfiles’, <https://​docs.doc​ker.com/​deve​lop/​deve​lop-​ima​ges/​dock​
erfi​le_​b​est-​practi​ces/​> accessed 10 August 2020.
	 44	 Hemel, see note 11.
	 45	 <https://​git​hub.com/​nexB/​scanc​ode-​tool​kit> accessed 10 August 2020.
	 46	 Peterson, ‘Making compliance scalable in a container world’, see note 35; see also Peterson, ‘The
source code is the license’ (29 December 2017), <https://​ope​nsou​rce.com/​arti​cle/​17/​12/​sou​rce-​code-​
lice​nse> accessed 10 August 2020.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  423

distribution of copies to third parties. This is true of the GPL and GNU LGPL
in the GPL family, as well as less widely adopted copyleft licences like the
Eclipse Public Licence and Mozilla Public Licence. The growth of web services-​
based applications in the early 2000s gave rise to a concern that the GPL and
other existing copyleft licences had a web services ‘loophole’.47 Then as now,
web services were commonly based in part on upstream Open Source software,
and improvements to that upstream code were not compelled by traditional
copyleft licences to be shared as Open Source-​licensed source code because
such improvements were generally not distributed to third parties in source or
binary form.48

This concern, along with an almost entirely distinct interest among some
vendors in experimentation with copyleft/​proprietary dual-​licensing business
models, led to development of a class of copyleft licences that attempted to extend
the trigger for copyleft licence compliance to non-​distribution scenarios involving
provision of network services to third parties. Most of these licences effectively at-
tempted to redefine ‘distribution’ to capture the network services case;49 these li-
cences are little used today, if not altogether obsolete. The one network services
copyleft licence that has survived this earlier period of experimentation is the GNU
Affero General Public Licence version 3 (AGPLv3), an FSF-​maintained variant of
GPLv3 first released in 2008.50

Instead of defining distribution or ‘conveying’, AGPLv3 implements the ex-
tension of copyleft to the deployment of network services using the defined
term ‘modified version’ (which in GPLv3 is a synonym for ‘work based on the
Program’):51

Notwithstanding any other provision of this License, if you modify the Program,
your modified version must prominently offer all users interacting with it re-
motely through a computer network (if your version supports such interaction)
an opportunity to receive the Corresponding Source of your version by providing
access to the Corresponding Source from a network server at no charge, through
some standard or customary means of facilitating copying of software.52

	 47	 See Tim O’Reilly, ‘The GPL and Software as a Service’ (12 July 2007), <http://​radar.orei​lly.com/​
2007/​07/​the-​gpl-​and-​softw​are-​as-​a-​serv.html> accessed 10 August 2020.
	 48	 See Richard Fontana, ‘The AGPL, Network Copyleft and the Cloud’, <https://www.youtube.com/
watch?v=ncXa0LFeQY0> accessed 21 August 2022 (presentation given for OpenUK Future Leaders
session).
	 49	 See, e.g., Open Software Licence 3.0, available at <https://​ope​nsou​rce.org/​licen​ses/​OSL-​3.0>
accessed 10 August 2020 (defining ‘External Deployment’ as ‘the use, distribution, or communica-
tion of the Original Work or Derivative Works in any way such that the Original Work or Derivative
Works may be used by anyone other than You, whether those works are distributed or communicated
to those persons or made available as an application intended for use over a network” and requiring
that “You must treat any External Deployment by You of the Original Work or a Derivative Work as a
distribution” ’).
	 50	 <https://​www.gnu.org/​licen​ses/​agpl-​3.0.en.html> accessed 10 August 2020.
	 51	 See note 18.
	 52	 AGPLv3 § 13.

424  Richard Fontana

AGPLv3 is sometimes described as a licence designed for ‘cloud’, but this illustrates
the ambiguity surrounding that technology industry term. Particularly in popular
discussion of consumer IT issues, ‘cloud’ is often used as a synonym for software-​as-​
a-​service (SaaS), which itself can be seen as equivalent to providing software func-
tionality remotely through network services. AGPLv3 is indeed designed to capture
the SaaS case. In enterprise computing, however, ‘cloud computing’ tends to refer to
running workloads within ‘clouds’, which are understood to mean public, private,
and hybrid IT environments that abstract, pool, and share scalable resources across
a network.53 The two notions of ‘cloud’ overlap, because SaaS, including familiar
large-​scale consumer web services, is often implemented today using cloud com-
puting techniques, increasingly through the use of containers, container orchestra-
tion, and other methods of cloud native development. It is however entirely possible
to implement SaaS without the use of cloud computing in this specialised sense.

While AGPLv3 is the one notable network services licence to have survived
the earlier period of copyleft licence experimentation in the 2000s, it has never
been widely adopted for Open Source projects. Nevertheless, it is conceivable
that AGPLv3-​licensed packages will be included in a container. This may give rise
to a concern that running a containerised application that includes an AGPLv3
package in production to provide a public-​facing web service—​a common use case
for containers—​will give rise to copyleft obligations, including a requirement to
make source code available to service users.

If the AGPLv3 software is used without modification, which will be typical for
containers since containers largely reuse pre-​built upstream packages without
change, then the network services copyleft requirements of AGPLv3 section 13 are
not triggered.54 In the rarer case in which the container image creator has made
modifications to the AGPLv3-​licensed software, there may be a requirement to
provide the ‘Corresponding Source’ of that software to users, if indeed users are
‘interacting with it remotely’, which will not inherently be the case merely because
a container including such AGPLv3-​licensed software is used in providing the ser-
vice. However, the scope of copyleft in such cases will not extend to ‘mere aggrega-
tion’ within a container and across multiple containers, for all the same reasons that
were given in the discussion of the container image distribution case earlier.

20.6  The Rise of ‘Source-​Available’ Licences Targeting Cloud
Service Providers

Modern cloud computing, including its current container-​driven cloud native
phase, has been enabled by a rich ecosystem of Open Source projects and thus

	 53	 ‘What is cloud computing?’, <https://​www.red​hat.com/​en/​top​ics/​cloud> accessed 10 August 2020.
	 54	 See Jeffrey Robert Kaufman, ‘Do I need to provide access to source code under the AGPLv3 li-
cense?’ (18 January 2017), <https://​ope​nsou​rce.com/​arti​cle/​17/​1/​provid​ing-​corres​pond​ing-​sou​rce-​
agp​lv3-​lice​nse> accessed 10 August 2020.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  425

by Open Source licensing. In the context of projects providing libraries and tools
around web and cloud technology, it has long been observed that Open Source is
increasingly dominated by non-​copyleft licensing.55 The evolution of Open Source
licensing itself does not seem to have been significantly influenced by the industry
shift to cloud. AGPLv3, a product of the pre-​cloud era targeting the ‘web serv-
ices loophole’, has not been widely adopted. In the years since the introduction of
AGPLv3, only one Open Source network services copyleft licence of note has ap-
peared: the Cryptographic Autonomy Licence 1.0 (CAL), which was approved by
the Open Source Initiative (OSI) in 2020.56 The novel features of CAL are its ‘User
Autonomy’ provisions, rather than its mechanism for extending copyleft to net-
work services; in any case, CAL has not yet seen notable adoption beyond its initial
use case in the Holochain project.57

In recent years, much attention has been given to the phenomenon of large third-​
party cloud service providers monetising popular Open Source projects through
offering proprietary ‘wrapper’ services that benefit from operational advantages.58
Companies maintaining such projects (which in many cases involve database tech-
nology),59 generally using some variety of ‘Open Core’ business model, have de-
cried what they regard as ‘strip mining’ of their projects by cloud providers. Several
of these companies have reacted to this development by migrating their projects to
‘source-​available’ licences, so called because they are applied to published source
code and may resemble Open Source licences in certain respects, but they do
not conform to the software freedom norms underlying the OSI’s Open Source
Definition (OSD).60 These source-​available licences are designed more or less ex-
plicitly to limit or prevent cloud providers from offering competing services based
on the same projects, something which is definitionally allowed under any Open
Source licence. Some commentators have described these licences as ‘hybrid’ or
‘non-​compete’ licences.61

The source-​available non-​compete licences deviate from Open Source li-
censing norms in various ways. The Commons Clause,62 which Redis Labs used for

	 55	 See Christine Lemmer-​Webber, ‘A Field Guide to Copyleft Perspectives’ <http://​dus​tycl​oud.org/​
blog/​field-​guide-​to-​copyl​eft/​> accessed 18 April 2022.
	 56	 <https://​ope​nsou​rce.org/​licen​ses/​CAL-​1.0> accessed 18 April 2022.
	 57	 <https://​git​hub.com/​holoch​ain/​holoch​ain> accessed 18 April 2022.
	 58	 See Stephen O’Grady, ‘Tragedy of the Commons Clause’ <https://​redm​onk.com/​sogr​ady/​2018/​09/​
10/​trag​edy-​of-​the-​comm​ons-​cla​use/​> accessed 18 April 2022.
	 59	 See Josh Berkus, ‘Why database projects can’t leave licenses alone’, <https://​www.yout​ube.com/​
watch?v=​uoKc​ueUk​CX4&feat​ure=​youtu.be> accessed 18 April 2022 (presentation given at State of the
Source Summit 2020).
	 60	 <https://​ope​nsou​rce.org/​osd> accessed 18 April 2022 (including requirements that licences
not discriminate against persons or groups and fields of endeavour); see also ‘What is free software?’,
<https://​www.gnu.org/​phi​loso​phy/​free-​sw.en.html> accessed 18 April 2022 (FSF’s Free Software
Definition).
	 61	 Stephen O’Grady, ‘What does Open Source mean in the era of cloud APIs?’, <https://​redm​onk.
com/​sogr​ady/​2019/​01/​25/​Open Source-​cloud-​apis/​> accessed 18 April 2022.
	 62	 <https://​common​scla​use.com/​> accessed 18 April 2022.

426  Richard Fontana

previously AGPLv3-​licensed Redis modules before more recently switching them
to the Redis Source Available Licence,63 supplements a standard Open Source li-
cence with a refusal to grant ‘the right to Sell the Software’. The Redis Source
Available Licence grants permission to ‘use’ the software ‘only as part of Your
Application, but not in connection with any Database Product that is distributed
or otherwise made available by any third party’. CockroachDB uses a variant of the
Business Source Licence that prohibits the licensee from providing CockroachDB
as a service.64 The Timescale Licence, which covers certain parts of Timescale
Community Edition, prohibits using the software to provide a database as a ser-
vice.65 The Fair Source Licence, created by Sourcegraph, requires organisational
licensees to pay for a licence once they exceed a specified threshold of users.66
The Confluent Community Licence prohibits ‘making available any software-​as-​
a-​service, platform-​as-​a-​service, infrastructure-​as-​a-​service or other similar on-
line service that competes with Confluent products or services that provide the
Software’.67

The Server Side Public Licence version 168 (SSPL) deserves closer atten-
tion. SSPL differs from other source-​available non-​compete licences in two
respects: it is based on an Open Source licence text and its licence steward
sought to have the licence legitimised as an Open Source licence. SSPL was
created in 2018 by MongoDB, Inc. for its MongoDB Community Server, which
was previously licensed under AGPLv3. In 2021 it was adopted by Elastic
for its Elasticsearch and Kibana projects as a replacement for the Apache
Licence 2.0.69

Like AGPLv3, SSPL largely reuses the GPLv3 text with few changes. However, in
place of AGPLv3 section 13, SSPL has the following provision:

	 13.	 Offering the Program as a Service.
	 If you make the functionality of the Program or a modified version available to

third parties as a service, you must make the Service Source Code available via
network download to everyone at no charge, under the terms of this License.
Making the functionality of the Program or modified version available to third
parties as a service includes, without limitation, enabling third parties to interact

	 63	 <https://​redisl​abs.com/​wp-​cont​ent/​uplo​ads/​2019/​09/​redis-​sou​rce-​availa​ble-​lice​nse.pdf > ac-
cessed 18 April 2022.
	 64	 Peter Mattis, Ben Darnell, and Spencer Kimball, ‘Why we’re relicensing CockroachDB’, <https://​
www.cockro​achl​abs.com/​blog/​oss-​reli​cens​ing-​cock​roac​hdb/​> accessed 18 April 2022.
	 65	 <https://​www.timesc​ale.com/​legal/​licen​ses> accessed 18 April 2022.
	 66	 <https://​fair.io/​?a> accessed 18 April 2022.
	 67	 <https://​www.conflu​ent.io/​conflu​ent-​commun​ity-​lice​nse> accessed 18 April 2022.
	 68	 <https://​www.mong​odb.com/​licens​ing/​ser​ver-​side-​pub​lic-​lice​nse> accessed 18 April 2022.
	 69	 Shay Banon, ‘Doubling down on open, Part II’, <https://​elas​tic.co/​blog/​licens​ing-​cha​nge> ac-
cessed 18 April 2022.

CLOUD NATIVE DEVELOPMENT, CONTAINERS  427

with the functionality of the Program or modified version remotely through a
computer network, offering a service the value of which entirely or primarily de-
rives from the value of the Program or modified version, or offering a service that
accomplishes for users the primary purpose of the Program or modified version.

‘Service Source Code’ means the Corresponding Source for the Program or
the modified version, and the Corresponding Source for all programs that you use
to make the Program or modified version available as a service, including, without
limitation, management software, user interfaces, application program interfaces,
automation software, monitoring software, backup software, storage software and
hosting software, all such that a user could run an instance of the service using the
Service Source Code you make available.70

The key difference between SSPL section 13 and AGPLv3 section 13 is that the
AGPLv3 Corresponding Source requirement covers only the ‘modified version’ as
that is defined in GPLv3 and AGPLv3. The source code that must be offered to
interacting users is equivalent to what would be required under GPLv3 if an object
code version were being distributed. In SSPL, the required source code extends to
the entire stack of programs used to implement the service, including programs
that would be considered ‘mere aggregation’ of separate and independent programs
under the GPL. Moreover, the entire set of Corresponding Source, including the
source code of all those independent programs, must be provided under SSPL. In
practice this requirement is not possible to comply with (without avoiding pro-
viding a service entirely), because it is not practically possible to form an entire
services stack out of SSPL-​licensed components without implementing much of
that stack from scratch. For this reason, the SSPL section 13 requirement can be re-
garded as a prohibition on providing the software as a service, disguised as a modi-
fication of the GPLv3/​AGPLv3 Corresponding Source requirement.

Unlike the licence stewards of other source-​available non-​compete licences,
MongoDB submitted SSPL for approval by the OSI in 2018. The licence was dis-
cussed over the course of several months on the OSI’s license-​review mailing list,
during which MongoDB submitted a revised draft; reception was largely hostile.
MongoDB withdrew the licence from consideration, likely to avoid formal rejec-
tion by the OSI.71 Objections to the licence from an OSD conformance perspec-
tive generally focused on the anti-​discrimination provisions of the OSD as well
as the spirit, if not the letter, of OSD 9 (‘The license must not place restrictions on
other software that is distributed along with the licensed software. For example,
the licence must not insist that all other programs distributed on the same medium
must be Open Source software.’).

	 70	 Server Side Public Licence § 13 (emphasis added).
	 71	 OSI Board of Directors, ‘The SSPL is not an Open Source license’ (19 January 2021) <https://​ope​
nsou​rce.org/​node/​1099> accessed 18 April 2022.

428  Richard Fontana

The use of source-​available licences has been the subject of much recent con-
troversy in the Open Source technical community, not just because these licences
violate Open Source definitional norms and have been applied to widely used pro-
jects, but also because they are seen as creating confusion around the meaning of
Open Source as an identifying label. Some have complained that the ‘Open Source
companies’ at issue have used Open Source licensing as a means of gaining adop-
tion and thus causing widespread dependency on the projects, raising the costs to
users of switching to alternative Open Source technologies. At the same time, the
effectiveness of the source-​available licence strategy as a protection against com-
petition from cloud providers is doubtful, given the ability of well-​resourced cloud
providers to reimplement, fork, or create application programing interface-​ (API)
compatible alternatives to such projects.72

	 72	 Stephen O’Grady, ‘Cockroach and the source available future’, <https://​redm​onk.com/​sogr​ady/​
2019/​06/​21/​cockro​ach-​sou​rce-​availa​ble> accessed 18 April 2022.

Iain G Mitchell KC, Public Sector and Open Source In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Iain G Mitchell KC 2022. DOI: 10.1093/​oso/​9780198862345.003.0021

21
Public Sector and Open Source

Iain G Mitchell KC

	21.1	� Introduction � 429
	21.2	� The International

Context—​The WTO � 430
	21.3	� The European Procurement

Law Context � 431
	21.4	� Issues in Software Procurement � 435
		 21.4.1	� The policy setting of the

directives � 435
		 21.4.2	� Is there procurement at all? � 436
		 21.4.3	� Cross-​border interest � 438
		 21.4.4	� An own goal? � 439
		 21.4.5	� Issues with the specification � 440

		 21.4.6	� The role of policy � 453
	21.5	� The UK � 455
		 21.5.1	� The legal framework � 455
		 21.5.2	� The policy context � 456
		 21.5.3	� Devolved governments � 460
		 21.5.4	� The third sector � 460
	21.6	� The US � 461
		 21.6.1	 Introduction� 461
		 21.6.2	 The US federal government� 462
		 21.6.3	 US state governments� 464
		 21.6.4	 Conclusion� 465
	21.7	� Conclusion � 465

  

21.1  Introduction

At publication of the first edition, although Open Source software was gaining
in importance, the Microsoft/​Apple duopoly in operating systems appeared to
have acquired a very substantial stifling effect on the operating system market as
discussed in Chapter 17. It took a lot of nerve for users to swim against the tide
of Microsoft Office, and anyone who has tried to create a document either in
Open Source or a proprietary program other than MS Word, save it as a .doc or
.docx file, send it to a recipient, who then tried to open it in MS Office will know
that this was at best a hit and miss operation. A plea to the recipient to install
Open Office seemed to fall on deaf ears and, on balance, it all seemed so much
easier for the author of the document just to go out and purchase a licence for
MS Office.

Since then, a number of factors has created space for Open Source software to
flourish.

First, there has been some accommodation of Open Source by the dominant
players. Microsoft Word 2010 introduced native support for the .odt format, though
both user unfamiliarity and continued use by some users of outdated MS office soft-
ware means that interoperability problems continue to occur.

430  Iain G Mitchell KC

Also, both Microsoft and Apple have sought to some degree to engage with
Open Source,1 as discussed in Chapter 10, but, undoubtedly, the major driver has
been a conscious shift (at least in the case of Microsoft) in its business model, both
in the move to seeing itself as a supplier of software as a service and to participating
consciously not just as a user but as a contributor to Open Source, indeed one of the
biggest in the world. These shifts reflect a major shift in the market towards cloud
computing: what matters is the service sold, more than the software used to pro-
vide the cloud service, although it is generally recognised that the cloud is built on
Open Source software.

Companies with a dominant position can be tempted to abuse it, as discussed in
Chapter 17, and whilst enforcement action can rein in the worst excesses, it is busi-
ness self-​interest which drives the shift from being a minority enthusiasm for geeks
to achieving a significant market share. But the forces which maintain the main
player’s market dominance can often be those same forces which stop a break-
through for competitors.

Historically, Open Source’s clear economic advantages over proprietary soft-
ware caused a gain in market share, despite previous bias towards proprietary
software. To achieve its full potential both requires a level playing field and a suf-
ficiently large user base. Governments have a clear role to play in the creation of
a level playing field, but also, and less obviously, through the medium of public
procurement, have the opportunity to achieve it. Public procurement accounts for,
on average, about 12 per cent of the gross domestic product of the Organisation
for Economic Co-​operation and Development (OECD) countries.2 It is clear that,
on any view, the public sector is a major player in IT procurement—​large enough
to have a significant influence on the respective market shares of Open Source and
proprietary software. The creation of a ‘critical mass’ of public sector customers
serves to encourage private sector buyers.

The public sector can choose to be proactive in its support for Open Source, or
merely to be neutral so that there are, at least, no barriers to the procurement of
Open Source, or, to demonstrate a bias towards particular proprietary solutions.
Whatever the policy, there are both obligations and limits on what a public au-
thority can do as part of the procurement process because public procurement sits
within a framework of international and local laws.

21.2  The International Context—​The WTO

At the international level, the World Trade Organization (WTO) recognises
the key role which public procurement has to play in stimulating world trade. It

	 1	 See, e.g., Matt Asay, ‘Apple is doubling down on Open Source’ Tech Republic, 9 November 2016, <https://​
www.techr​epub​lic.com/​arti​cle/​apple-​is-​doubl​ing-​down-​on-​open-​sou​rce/​> accessed 14 January 2020.
	 2	 OECD website, <https://​www.oecd.org/​gov/​pub​lic-​proc​urem​ent/​> accessed 14 January 2020.

PUBLIC SECTOR AND OPEN SOURCE  431

states on its government procurement gateway that open, transparent, and non-​
discriminatory procurement is generally considered to be the best tool to achieve
value for money but refers also to the use by many governments of procurement to
achieve domestic policy goals. It warns against preferential treatment for domestic
goods, services, and suppliers which discriminates against foreign suppliers and
therefore acts as a trade barrier in this sector.3

Notwithstanding the undoubted importance of government procurement, it was
excluded from the General Agreement on Tariffs and Trade (GATT), and from the
main market access commitments of the General Agreement on Trade in Services
(GATS’. The WTO has sought to plug that gap, with the 1979 first Agreement on
Government Procurement (GPA), which has since been twice renegotiated, the
most recent, 2014 version, currently having twenty signatories, of which one is the
European Union (EU) on behalf of its twenty-​seven member states.4

The Agreement is plurilateral, not binding all members of the WTO but only
those which have chosen to accede to the Agreement, and it does not cover all
forms of government procurement in all signatory states.5

21.3  The European Procurement Law Context

Although a full exposition of public procurement law does not fall within the
scope of this book, it is useful to have a high level understanding of the under-
lying principles in order to understand some of the issues surrounding software
procurement.6

The EU acts within the terms of its Treaty competences which include Article
3(3) of the Treaty on European Union (TEU) which deals with the Single Market.
The Union is given power ‘to adopt measures with the aim of establishing or en-
suring the functioning of the internal market, in accordance with the relevant pro-
visions of the Treaties’.7 Title II makes provision in respect of the Free Movement of
Goods and Title IV for the Free Movement of Persons, Services, and Capital.

	 3	 WTO, ‘Government procurement’ <http://​www.wto.org/​engl​ish/​trato​p_​e/​gpro​c_​e/​gpro​c_​e.htm>
accessed 14 January 2014.
	 4	 The other signatories are Armenia, Australia, Canada, Hong Kong, Iceland, Israel, Japan, Korea,
Liechtenstein, Moldova, Montenegro, the Netherlands with respect to Aruba, Norway, Singapore,
Switzerland, Chinese Taipei, Ukraine, and the US. A further ten members are in the process of acceding.
	 5	 WTO <https://​www.wto.org/​engl​ish/​trato​p_​e/​gpro​c_​e/​gp_​gp​a_​e.htm> accessed on 14
January 2020
	 6	 See, generally, Christopher Bovis, EU Public Procurement Law, 2nd edn (Oxford: Oxford University
Press, 2015); Albert Sanchez-Graells, Public Procurement and the EU Competition Rules, 2nd edn
(Oxford: Hart Publishing, 2015); and Peter Trepte, Public Procurement in the EU: A Practitioner’s Guide,
2nd edn (Oxford: Oxford University Press, 2007).
	 7	 Part 3, Title I (arts 26 and 27) of the Treaty on the Functioning of the European Union (TFEU).

432  Iain G Mitchell KC

The ways in which the Union exercises its competences include Regulations,
which are immediately effective throughout the EU, and Directives, which require
member states to transpose their provisions into their respective national laws.

In the area of public procurement, the first consolidation of procurement rules
came with Directive 71/​305 co-​ordinating procedures for the award of public
works contracts and Directive 77/​62 in relation to public supply contracts, sub-
sequently supplemented, amended, and replaced by Directive 2004/​18/​EC (‘The
Public Sector Directive’);8 Directive 2004/​17/​EC (‘The Utilities Directive’);9
and Directive 2007/​66/​EC (‘The Remedies Directive’),10 collectively referred
to as the Procurement Directives. These were replaced in 2014 by a new set of
Directives: Directive 2014/​24/​EU (the ‘Public Procurement Directive’);11 Directive
2014/​25/​EU (‘the Utilities (Sectors) Directive’);12 and Directive 2014/​23/​EU (‘the
Concessions Directive’).13

Article 4 of the Public Procurement Directive, Article 15 of the Utilities (Sectors)
Directive, and Article 8 of the Concessions Directive set minimum thresholds
below which the Directives do not apply and which, at the time of writing, are
€5,350,000.14 However, that does not mean that contracts of a lower value fall out-
side the European public procurement regime.

At the heart of the Single Market is the abolition of both customs barriers and
non-​tariff barriers, such as differing national standards, and the creation of a level
playing field on which businesses from all of the member states can compete fairly.
At the time of the introduction of the original Procurement Directives15 there was
a concern that public authorities could make direct awards of contracts, cutting
would-​be contractors out of the opportunity to bid. The Procurement Directives
made clear that they aimed to improve the access of service providers to proced-
ures for the award of contracts. Public sector contracts are also governed by both

	 8	 Directive 2004/​18/​EC of the European Parliament and of the Council of 31 March 2004 on the
coordination of procedures for the award of public works contracts, public supply contracts and public
service contracts [20 April 2004] OJ L134/​114.
	 9	 Directive 2004/​17/​EC of the European Parliament and of the Council of 31 March 2004 coordin-
ating the procurement procedures of entities operating in the water, energy, transport and postal serv-
ices sectors [30 April 2004] OJ L134/​1.
	 10	 Directive 2007/​66/​EC of the European Parliament and of the Council of 11 December 2007
amending Council Directives 89/​665/​EEC and 92/​13/​EEC with regard to improving the effectiveness of
review procedures concerning the award of public contracts [20 December 2007] OJ L335/​31.
	 11	 Directive 2014/​24/​EU of the European Parliament and of the Council of 26th February 2014 and
repealing Directive 2004/​18/​EC on Public Procurement [28 March 2014] OJ L94/​65
	 12	 Directive 2014/​25/​EU of the European Parliament and of the Council of 26 February 2014 on pro-
curement by entities operating in the water, energy, transport and postal services sectors and repealing
Directive 2004/​17/​EC [28 March 2014] OJ L94/​243
	 13	 Directive 2014/​23/​EU of the European Parliament and of the Council of 26 February 2014 on the
award of concession contracts [28th March 2014] OJ L94/​1
	 14	 This is the normal threshold, though there are lower thresholds stipulated for certain specified
types of contract.
	 15	 Directives 92/​50/​EEC (Public Services Contracts), 93/​36/​EEC (Public Supply Contracts), and 93/​
37/​EEC (Public Works Contracts).

PUBLIC SECTOR AND OPEN SOURCE  433

the principles laid down in the Treaties, and the principles derived from the Treaty
principles, namely:

	 •	 equal treatment;
	 •	 non-​discrimination;
	 •	 mutual recognition;
	 •	 proportionality; and
	 •	 transparency.

The Public Procurement Directive requires for contracts above threshold that con-
tracting authorities should treat economic operators equally and without discrim-
ination and should act in a transparent and proportionate manner.

The European Court of Justice (ECJ), in Telaustria Verlags GmbH and
Telefonadress GmbH v Telekom Austria AG,16 applied these principles not only to
above-​threshold contracts but also to most below-​threshold contracts.

The Court expanded upon this in Bent Mousten Vestergaard v Spøttrup
Boligselskab,17 stating that ‘the mere fact that the Community legislature con-
sidered that the strict special procedures laid down in those directives are not
appropriate in the case of public contracts of small value does not mean that
those contracts are excluded from the scope of Community law’. Accordingly,
below-​threshold contracts are subject to the Treaty principles, even although
not falling within the scope of the Procurement Directives. Later cases
involving below-​threshold contracts followed, including Parking Brixen GmbH
v Gemeinde Brixen & Stadtwerke Brixen AG18 and Medipac-​Kazantzidis AE v
Venizeleio-​Pananeio.19

However, since the Treaties aim to create a Single Market by ensuring compe-
tition across borders, for the Treaty principles to govern a procurement exercise,
there has to be a cross-​border interest:20

Setting a financial threshold above which contracts are subject to public procure-
ment directives is based on a single premise, that contracts of small value do not
attract operators established outside national borders; such contracts are thus de-
void of Community implications. However, that rebuttable presumption is open
to evidence to the contrary. . . .21

	 16	 Case C-​234/​98 [2000] ECR 1-​10770.
	 17	 Case C-​59/​00 [2001] ECR 1-​09505.
	 18	 Case C-​458/​03 [2005] ECR 1-​08585.
	 19	 Case C-​6/​05 [2007] ECR 1-​04557.
	 20	 Consorzio Aziende Metano (Coname) v Comune di Cingia de’Botti at (Case C-231/03 [2005]
ECR 1-07287)§ 20.
	 21	 See the Advocate General in the conjoined cases of SECAP SpA and Santorso Soc. Cooparl v
Comune di Torino (Cases C-147/06 and 148/06 [2008] ECR 1-03565) at § 23.

434  Iain G Mitchell KC

In its judgment, the court affirmed that, although the strict procedures laid down
in the Directives did not apply to below-​threshold contracts, contracting author-
ities were held still to be bound to comply with the fundamental rules of the Treaty,
including the principle of non-​discrimination on the ground of nationality where
the contracts concerned are of cross-​border interest. It is for the contracting au-
thority to make the initial assessment, though this is open to judicial review.22

The approach of the court is to regard public sector contracts as falling into two
classes: those where there is and those where there is not a cross-​border interest.
It may however be helpful to treat public sector contracts as, in effect, falling into
three classes: those which are of such a negligible value that no cross-​border
interest is likely to arise; those (not falling in the first category) where the con-
tract value falls below threshold, and in which there is a rebuttable presumption
that no cross-​border interest arises, but if that presumption is rebutted, then the
Treaty principles and derived principles are applicable; and those in which the
contract value is above threshold, with a[n]‌ irrebuttable presumption that there
is a cross-​border interest, which are subjected to the strict and detailed rules set
forth in the Procurement Directives.23

Those which are above threshold clearly fall into the first category (cases where
there is a cross-​border interest); those which are below threshold might fit into ei-
ther category depending upon the view taken as to whether the presumption that
there is not a cross-​border interest is overcome by the facts, and the responsibility
for making the judgment of whether a cross-​border interest arises is for the public
body concerned, though any such decision is always open to judicial review.24

Assuming that there is a cross-​border interest and whether or not the contract
value is above threshold, the public authority will be required to conduct the pro-
curement exercise in accordance with the Treaty and derived principles, including
the principles of equal treatment, non-​discrimination, mutual recognition, pro-
portionality, and transparency.

The 2014 Public Sector Directive replicated the procurement procedures set
out under the 2004 Directive, and this is likely to be the normal mode of procure-
ment in the case of an above-​threshold contract. However, the 2014 Public Sector

	 22	 Coname at paragraph 30.
	 23	 For a more detailed analysis of the jurisprudence of the ECJ in this matter, see the submissions
by the present author as Counsel in Sidey Ltd v Clackmannanshire Council and Pyramid Joinery and
Construction Ltd 2010 SLT 607, at §§ 22 et seq.
	 24	 SECAP, see note 21; R (on the application of Chandler) v Secretary of State for Children, Schools
and Families (2010) CMLR 19; Sidey Ltd v Clackmannanshire Council 2012 SLT 334. In the Petition for
Judicial Review (reported 2012 SLT 334) which followed the case just cited, the court determined on the
facts that, in a below-​threshold contract, no cross-​border interest had been engaged, even although the
Council had voluntarily conducted the tendering exercise in question according to the rules for above-​
threshold contracts.

PUBLIC SECTOR AND OPEN SOURCE  435

Directive also introduced several innovative new modes of procurement, including
Design Contests,25 and Innovation Partnerships.26

The Innovation Partnership regime enables contracting authorities, where they
‘identify the need for an innovative product, service or works that cannot be met
by purchasing products, services or works already available on the market’27 to set
up an innovation partnership with one or more partners. The Partnership may be
structured in successive phases in order to develop an innovative product or ser-
vice, and the contracting authority may purchase of the resulting output provided
that it corresponds to the performance levels and maximum costs agreed between
the contracting authorities and the participants.28 This enables greater innovation
through increased flexibility.

Under the 2004 Public Sector Directive, the criterion for selection was either
lowest price or most economically advantageous tender. The 2014 Directive innov-
ated on this by making the most economically advantageous tender the sole basis,
and expanded the criteria for tender assessment to include qualitative, environ-
mental, or social aspects, so long as they are linked to the subject matter of the
contract.

How, then, does this legal structure impact upon questions of software
procurement?

21.4  Issues in Software Procurement

21.4.1  The policy setting of the directives

The 2014 Public Sector Directive provides a hopeful setting in which those who
have innovative solutions can compete on a level playing field. Though not re-
stricted to Open Source, plainly Open Source developers are well placed to benefit
from the more benign ecosystem.

The Directive puts explicit emphasis on innovation, stating29 that research and
innovation, including eco-​innovation and social innovation, are among the main
drivers of future growth, and it urges public authorities to make strategic use of
public procurement to spur innovation.

There are two important qualifications.
First, innovation is encouraged, but, of course, is not obligatory.
Second, the principles, mechanisms, and rules in the Directive apply only where

there is a procurement exercise which falls within its ambit.

	 25	 Arts 78–​82.
	 26	 Art 31.
	 27	 Art 31(1).
	 28	 Art 31(2).
	 29	 Recital 47.

436  Iain G Mitchell KC

What then, are the sorts of issues which are likely to arise when considering the
interface between public procurement and Open Source?

21.4.2  Is there procurement at all?

It is important to stress that the EU procurement regime applies to procurement
by the public sector, which is defined in Article 1(9) of the Public Sector Directive
as including ‘the State, regional or local authorities, and bodies governed by
public law’.

The definition of a body governed by public law is of considerable importance,
encompassing, as it does, bodies which do not have an industrial or commercial
character, placing such bodies within the ambit of the EU procurement regime,
whereas a body not having a commercial or industrial purpose would not be re-
garded as an ‘enterprise’ and so not fall within the ambit of competition law.30

The procurement regime does not apply to the private sector. If a private enter-
prise in its procurement activities, whether in connection with IT purchases or an-
ything else, is opaque and treats potential suppliers unequally, then whatever other
remedies there may be for an aggrieved potential tenderer, there are none under
the European procurement regime.

It also does not apply if there is no procurement. For there to be a procurement
exercise at least two separate parties dealing with each other are required. If the
public authority is developing its own software then securing that software for its
use is not a procurement exercise at all. This applies even if the departments in-
volved are organisationally separated.

This is extended under Article 12 of the Public Procurement Directive which
specifically exempts contracts between certain entities in the public sector and
lays down a number of conditions all of which must be met before the exemption
applies, including that the contracting authority should exercise control (as de-
fined) over the other party. Specific contracts are also excluded from the Public
Procurement Directive, at Part 3 of the Directive. Some are excluded simply be-
cause they are included in the other Directives.31 Also excluded are ‘public con-
tracts and design contests for the principal purpose of permitting the contracting
authorities to provide or exploit public communications networks or to provide
to the public one or more electronic communications services’,32 and certain

	 30	 See the conjoined cases of Cases C-​159/​91 Poucet and C-​160/​91 Pistre [1993] ECR I-​637; Case C-​
67/​96 Albany [1999] ECRI-​5751; and Case T-​319/​9 Nacional de Empresas de Instrumentación Científica,
Médica, Técnica y Dental (FENIN) v Commission of the European Communities [2003] 5 CMLR 1 and,
on appeal, Case C-​205/​03 [2006] 5 CMLR 7.
	 31	 For example, art 7 excludes from the ambit of the Public Procurement Directive the contracts
which fall within the scope of the Utilities (Sector) Directive.
	 32	 Art 8. These are subject to separate regulation under Directive 2002/​21/​EC of the European
Parliament and the Council of 7 March 2002 on a common regulatory framework for electronic

PUBLIC SECTOR AND OPEN SOURCE  437

contracts in the defence and security sector where ‘the essential security interests
of a Member State cannot be guaranteed by less intrusive measures’33 or which are
declared to be secret or requiring special security measures.34

Article 15 presumes that Defence and security sector contracts normally fall
within the ambit of the Directive, so the exception for essential security interests
might shut certain potential contractors out of the market. An example, albeit from
the telecommunications sector, of the sort of issues which may be at play can be
found in the controversy during 2019 on whether any economic operator who
works with or uses the technology of the Chinese company, Huawei, should be per-
mitted to participate in the development of the UK 5G network.35 If a contracting
authority wishes to acquire software, it might do so as part of a larger package,
for example involving services provided by a supplier who uses Open Source soft-
ware or implements an Open Source solution which would fall within the scope
of the Directives. There may also be cases where the contracting authority wishes
simply to acquire the software either with a view to developing the software itself
or simply using it ‘as is’ and might choose to buy the software, or simply down-
load it for free. If it chooses to download it, then, since it is not buying anything,
there is no ‘public contract’ within the meaning of Article 2(1)(5) of the Public
Procurement Directive36 and no procurement exercise falling within the ambit of
EU procurement law.

Paragraph 2.2.4 of the Interoperable Delivery of European eGovernment
Services to Public Administrations, Businesses and Citizens (IDABC) Guideline
on Public Procurement of Open Source Software37 gives guidance on best practice
for downloading, recommending that the public authority should first determine
its acquisition requirements and then should download the relevant software itself
without fee as part of that already-​determined acquisition process, whilst simul-
taneously issuing an invitation to tender for commercially provided services and
support, where required. The Guideline stresses that the downloading of the soft-
ware should be seen as, in effect, an alternative to the step of publishing a tender

communications networks and services 2002 OJ L108/​33 (the Electronic communications Framework
Directive).

	 33	 Art 15 (2).
	 34	 Art 15 (3).
	 35	 See, e.g., Mail Online ‘Huawei fires back at Malcolm Turnbull after he warned Boris Johnson not to
use the Chinese tech giant for its 5G rollout over security fears’ <https://​www.dailym​ail.co.uk/​news/​arti​
cle-​7889​039/​Chin​ese-​firm-​Hua​wei-​slams-​Malc​olm-​Turnbu​lls-​5G-​secur​ity-​warn​ing.html> accessed
15 January 2020
	 36	 Art 2(1)(5): ‘ “ ‘public contracts” means contracts for pecuniary interest concluded in writing be-
tween one or more economic operators and one or more contracting authorities and having as their
object the execution of works, the supply of products or the provision of services’.
	 37	 European eGovernment Services, ‘Guideline on Public Procurement of Open Source Software’
(March 2010) <https://​joi​nup.ec.eur​opa.eu/​sites/​defa​ult/​files/​docum​ent/​2011-​12/​OSS-​proc​urem​ent-​
guidel​ine%20-​final.pdf> accessed 15 January 2020.

438  Iain G Mitchell KC

for the supply of software, and counsels against the unsupervised downloading of
software by individuals within the organisation.

For those interested in the future of Open Source, this is something of a double-​
edged sword as an informed public authority would be able to acquire the Open
Source that it wants, without having to be concerned about possible challenges
from disappointed would-​be tenderers, but if a public authority embarks on a
public procurement exercise, it may end up with a proprietary solution, simply be-
cause there is no Open Source supplier in the race; no-​one would go to the cost and
trouble of submitting a tender with a nil value. Of course there may be nothing to
stop a free software developer tendering at an economic price by bundling in soft-
ware support services, even though the public authority might have downloaded
the same software for free and it may be that most software acquisitions by public
authorities involve some element of added value, even if it is only installing, testing,
and maintaining the solution.

21.4.3  Cross-​border interest

Neither the TEU nor TFEU principles apply to public procurement where there is
no cross-​border interest. It is for the public authority concerned to make that judg-
ment in the first instance, subject to the possibility of judicial review. The public
authority may decide that there is a cross-​border interest, or fail to apply its mind
to the question, and then proceed to run the procurement exercise according to
either the Procurement Directives or the Treaties and derived principles, but risk
finding itself the respondent in a judicial review. This can happen when the public
authority, in conducting a procurement exercise under the EU regime, infringes
any of the principles contained in the Treaties (known as ‘Treaty principles’), or
principles derived therefrom (known as ‘derived principles’) and then seeks to de-
fend itself by asserting that there was no cross-​border interest in the first place.38

Of more concern are cases where the public authority decides that there is no
cross-​border interest and does not put the contract out to tender. How is the would-​
be tenderer to know that he missed the opportunity in the first place? Although
there is a strict requirement on a public authority, to publish a Contract Notice
in the Official Journal in the case of an above-​threshold contract, in the case of a
below-​threshold contract, publication of such a notice is permitted, but not man-
dated.39 If the would-​be tenderer subsequently comes to find out about a failure to
advertise a contract which does engage cross-​border interest (whatever the public

	 38	 This in fact happened in Sidey Ltd v Clackmannanshire Council (2012) SLT 334 though the defence
succeeded only up to a point.
	 39	 Art 51 (6).

PUBLIC SECTOR AND OPEN SOURCE  439

authority may think), then the courts will not be slow to invoke the principle of
transparency to set aside any contract made without sufficient advertising.40

21.4.4  An own goal?

Although a detailed survey of the rules governing the assessment of the eco-
nomic operator’s suitability and competence lies outside the scope of this chapter,
it is worth mentioning the situation where a would-​be tenderer or his employees
have been involved in the preparation of the contracting authority’s invitation to
tender, contract notice, or specification, as in the case of Fabricom.41 Fabricom was
prevented from tendering by a Belgian Royal Decree which imposed an absolute
ban on persons who had been instructed to carry out research or studies or devel-
opment works in connection with public works or services in participating in a
tender.

The ECJ overturned that decree because it was expressed in absolute terms but
recognised the underlying principle of the prohibition of unequal treatment. It
stated, at sections 29–​31 that a person who had participated in preparatory works
may be put at an advantage compared to other tenderers, and there might be a
conflict of interest created by his having the opportunity to influence (even uncon-
sciously) the tender conditions so as to favour him. As a result of this, there would
be a breach of the principle of equal treatment.

However, the Court also decided that the Royal Decree should be amended
to allow for the possibility of a person with such involvement to prove that the
experience which he had acquired was not capable of distorting competition.
A would-​be tenderer should be vigilant for possible involvement by a competitor
at an earlier stage, and a contracting authority should be careful not to run the risk
accidentally of disqualifying a person whom it might have wished had been free
to tender.

This is not to say that a close ongoing cooperation between a public authority
and a contractor is impossible. After all, part of the rationale behind the introduc-
tion of Innovation Partnerships in the 2014 Directive was to overcome the problem
which arose under the previous Directives where, if a public authority partnered
with a private company to develop a new and innovative solution, when that solu-
tion had been developed, it was necessary to launch a new procurement exercise
before awarding a contract to implement that solution. The Innovation Partnership
procedure:

	 40	 Telaustria, see note 16; Parking Brixen, see note 18.
	 41	 Cases C-​21/​03 and C-​34/​03 Fabricom SA v Belgium Cases C-​21/​03 and C-​34/​03 [2005] ECR
I-​ 1577.

440  Iain G Mitchell KC

should allow contracting authorities to establish a long-​term innovation partner-
ship for the development and subsequent purchase of a new, innovative product,
service or works provided that such innovative product or service or innovative
works can be delivered to agreed performance levels and costs, without the need
for a separate procurement procedure for the purchase.42

21.4.5  Issues with the specification

21.4.5.1 � Introduction
The problems which are most likely to be met with in practice are not so much to
do with whether the procurement rules apply at all, or whether a tendering exercise
has been sufficiently advertised, but, rather, whether the technical specification has
been drawn up in a way which unfairly tilts the playing field, for example, by speci-
fying a particular product (such as ‘Microsoft Office’) or, indeed, specifying ‘Open
Source’, or producing an apparently open specification which, upon closer examin-
ation turns out can be met by only one supplier.

21.4.5.2 � Specified products
The law is quite clear that it is forbidden to specify a particular brand or product,
without, at least, adding the words ‘or equivalent’. The leading case is European
Commission v The Netherlands,43 where the tender specification stated that the
operating system required was ‘UNIX’44 and the words ‘or equivalent’ were
not added.

The judgment gives a good flavour of the argument advanced by the Netherlands,
which attempted to set up UNIX as a kind of industry de facto standard so that it
was not necessary to add the words ‘or equivalent’. The Court, however, noted that
parties agreed that UNIX was the name of a specific product and not a standard.
Accordingly, the words ‘or equivalent’ should have been added. Specifying a par-
ticular product is clearly impermissible, even if the product in question has
achieved sufficient market dominance that the uninformed begin to think of it as
some kind of standard.

That said, might the same objection not be taken to specifying ‘Open Source’?
This is a more complex issue, but it is best postponed until after a consideration

of effectively exclusive technical specifications in general.

	 42	 Art 49
	 43	 Case C-​359/​93 [1995] ECR I-​15; see also Case C-​59/​00 Bent Mousten Vestergaard v Spøttrup
Boligselskab Case C-​59/​00 [2001] ECR 1-​09505.
	 44	 A software system developed by Bell Laboratories of ITT (USA) for connecting several computers
of different makes.

PUBLIC SECTOR AND OPEN SOURCE  441

21.4.5.3 � Effectively exclusive technical specifications
Adding the words ‘or equivalent’ may not suffice if there is no equivalent, and how
is equivalence to be judged? What if the technical specification is such that only
one potential tenderer is in a position to meet it?

In Concordia Bus Finland Oy Ab,45 which concerned the awarding by the city of
Helsinki of a contract for the operating of buses for its public transport system, the
contract notice published in the Official Journal stated that the city would select
the most economically advantageous tender rather than the lowest price.46 Where
the ‘most economically advantageous’ criterion is used, the contracting authority
selects a number of criteria, allocates a specific number of points to each, and car-
ries out a scoring exercise on the admissible tenders which have been submitted.
In the interests of transparency, the authority is required to publish the criteria and
points to be allocated to each.

The contract notice specified that additional points would be available for a ten-
derer who used buses with a specified low level of nitrogen oxide and external noise
levels below 77 decibels. The lowest price was offered by Concordia but it was un-
able to meet those specifications, whereas a rival tenderer, HKL (which belonged to
the city), was able to meet these and won the contract. Concordia challenged this
award, inter alia, on the ground of unequal treatment, before the national courts
who, on appeal, referred the matter to the ECJ for a preliminary ruling.

The Court dealt first with the specification, stating that, in determining the most
economically advantageous tender, the contracting authority:

may take criteria relating to the preservation of the environment into consid-
eration, provided that they are linked to the subject-​matter of the contract, do
not confer an unrestricted freedom of choice on the authority, are expressly
mentioned in the contract documents or the tender notice, and comply with
all the fundamental principles of Community law, in particular the principle of
non-​discrimination.

It then applied that principle to the particular facts to find the criteria stipulated in
the contract in question to be permissible.

In considering the circumstance that the criteria shut out other tenderers,
it came to the conclusion that although the criteria limited the number of pos-
sible tenderers, the principle of equal treatment did not prevent the contracting
authority from specifying environmental protection as a criterion in a situation
where the authority’s own transport undertaking was one of the few undertakings
capable of meeting the criteria which had been set. This reasoning was developed

	 45	 Case C-​513/​99 [2002] ECR I-​7251.
	 46	 As noted earlier, lowest price was an alternative which was permissible under art 53 of the 2004
Public Sector Directive.

442  Iain G Mitchell KC

in EVN AG and Weinstrom GmbH v Austria,47 which concerned a contract for the
supply of electricity which stipulated that a minimum proportion of the electricity
should be generated from renewable resources and gave a weighting in the scoring
for electricity generated from renewable sources above that minimum.

The Court found this to be permissible, though with the same provisos as had
been articulated by the Court in Concordia Bus.

Although a contracting authority may set criteria beyond the purely economic,
it cannot arbitrarily select those criteria. From the comments of the Court in
EVN, one might single out the requirements that the criteria should not be such
as to confer an unrestricted freedom of choice on the contracting authority and
should be linked to the subject matter of the contract and, from the comments in
Concordia Bus, the requirement that the criteria should be objectively justifiable.

Following Concordia Bus, the European Commission issued advice that:

[under] the EU public procurement rules, contracting authorities may refer to a
brand name to describe a product only when there are no other possible descrip-
tions that are both sufficiently precise and intelligible to potential tenderers.48

Following this, it would not normally be possible to refer, for example, to ‘MS Office
or equivalent’ or to ‘Intel or equivalent’ microprocessors in public tenders, and it
may be difficult to posit (at least in the IT market) a situation where the qualifica-
tion would come in to play.

This might all seem relatively hopeful in furnishing arguments to mount a chal-
lenge against a procurement exercise where Open Source software providers find
themselves shut out by the technical criteria, but there is a danger that the courts
will judge reasonableness from the perspective of the contracting authority, rather
than on a wider view.

That happened in the Scottish case of Elekta Ltd v Common Services Agency,49
concerning a tendering exercise carried out by the National Health Service (NHS)
in Scotland for the replacement of linear accelerators in all of the cancer units in
NHS hospitals in Scotland. In order to operate properly, a linear accelerator needs
to be controlled by specialised software.

Five out of the six hospitals concerned had systems purchased some years pre-
viously from a company, Varian, which kept its code secret and did not publish
its communications interface, so other manufacturers’ machines could not inter-
operate with it. The NHS did not wish to replace its software system, even although

	 47	 Case C-​448/​01[2003] ECR I-​14558.
	 48	 European Commission release reference IP/​06/​443 dated 4 April 2006; this is also a reference to
Directive 2004/​18/​EC, Article 23.
	 49	 2011 SLT 815.

PUBLIC SECTOR AND OPEN SOURCE  443

by far the most expensive part of the entire system was the hardware which the
NHS sought to replace.50

The technical specification required that the new equipment should be com-
patible with the existing ARIA system and made certain functional requirements
that could not be met without such interoperability. Elekta (and any other potential
tenderer), was effectively shut out of the tender process and raised a legal challenge
against the tender process on the basis of the Treaties and derived principles, in
particular the requirement of equal treatment.

The judge, Lord Glennie, having considered the Concordia Bus and EVN cases,
expressed the view51 that the contracting authority must be entitled to decide upon
the functional requirements which it wishes to satisfy; that the criteria can be sat-
isfied by only one or a limited range of tenderers does not of itself contravene the
principle of equality; and the inclusion of these criteria can only be considered dis-
criminatory if they cannot be justified objectively having regard to the characteris-
tics of the contract and the needs of the contracting authority.

The court found, referring to Concordia Bus, that the principle of equal treat-
ment was not infringed and that in setting the criteria the contracting authority
had not specified a specific product, Varian.

However, the judge commented that the authority operated a rolling replace-
ment program and did not wish to replace its present system, but observed that
Elekta’s representative had not argued that the criteria were not objectively justi-
fiable, and, on that basis, reached the view that ‘no purpose would be served by
requiring the defender to invite tenders for something other than what they in fact
want’.52

This is a classic case of vendor lock-​in. The reason why the NHS needed its new
and extremely expensive equipment to be interoperable with the Varian system
was that because of a decision made in the past, it is locked forever into Varian’s
system, or at least for so long as it continues to operate a rolling replacement
system. Indeed, the present procurement exercise compounded the situation as the
hospital which was not locked in was to have its RMS system replaced as well as its
linear accelerator, with the inevitable effect that it too would be locked in for the fu-
ture. Further, it shuts out competition, giving Varian an effective monopoly.

It may be arguable that the case was correctly decided on the basis of the argu-
ments that were presented to the court, but a more hopeful alternative reading is
that the case was badly argued.

The key lies in the requirement for objective justifiability of the criteria set
against Elekta’s incomprehensible decision to decline to argue that the criteria were

	 50	 The contract value was £21 million, excluding value-​added tax.
	 51	 At para 14.
	 52	 At para 20.

444  Iain G Mitchell KC

not objectively justifiable and represents a lost opportunity to advance this area of
the law in what, it is suggested, is its natural direction of travel.

There is a similar, though much earlier case in Spain,53 where the ECJ found that
it was permissible to specify that the software should be MS Windows compatible.

One might have some reservations about the reasoning in that case, particularly
the view expressed by the Court that one accords greater flexibility to public ad-
ministrations in software procurement than in other forms of procurement, which
scarcely seems justifiable in procurement law but, in view of the requirement for
objective verification, it may be that we are left with a decision which is difficult to
reconcile with the underlying principles of procurement law.

Much more hopeful, however, is a recent decision of the Tribunal Administratif
de Strasbourg54 in which a company, SAS Anywhere Services, claimed to have been
excluded from a procurement process conducted by the Prefect of the Grand Est
region. The Region sought to enter into a framework agreement for the develop-
ment and maintenance of a collaborative platform operated by two regional direct-
orates (the Directorates of Food, Agriculture and Forests, and of the Environment,
Planning and Housing). The platform ran on proprietary software sold by Interstis
Partenaires and known as ‘Interstis’, of which neither the source code nor docu-
mentation were made available to potential tenderers other than the Interstis
Partenaires itself. SAS argued that this made it functionally impossible for them to
tender, whereas the Region argued that since actual interaction with the software
was not required at the stage of tendering for the framework contract, the absence
of such material did not infringe upon the requirement for equal treatment.

The Tribunal decided that the lack of information relating to the functionality
of the software led to a lack of equal treatment amongst potential tenderers; as it
gave only Interstis Partenaires the information needed to assess the complexity and
volume of the source code, notwithstanding that the lodging of a tender did not
require any intervention in the software itself before conclusion of the framework
agreement.

21.4.5.4 � Specifying Open Source
Open Source is not a brand name nor an identifiable product, so including a re-
quirement in a tender specification for the use of Open Source software ought not
to cause problems under the Netherlands and Bent Mousten Vestergaard line of
authority. It would not restrict competition to only one supplier or group of sup-
pliers: anyone can seek to tender.

Open Source might be regarded as having a non-​technical characteristic, that
is the licensing terms under which it is written, or even a technical character-
istic; namely the ability of the source code to be used and modified, whereas with

	 53	 Sentencia del Tribunal Supremo de 6 de Julio de 2004 (Supreme Court decision 6 July 2004).
	 54	 TA Strasbourg, 16 avr. 2019 n 1901892.

PUBLIC SECTOR AND OPEN SOURCE  445

proprietary software the source code may neither be provided nor legally be cap-
able of modification. Viewed in this light, one is firmly in Concordia Bus territory,
and the issues relate to whether such a requirement can be objectively justified.

Notwithstanding this legal analysis, in practice some doubt appears to have sur-
rounded whether a technical specification may specifically call for ‘Open Source’.
Under the auspices of the European Commission, the IDABC in March 2010 pub-
lished the Guideline on Public Procurement of Open Source Software,55 paragraph
2.4 of which recommended against using the term ‘Open Source’ but instead re-
commended using functional requirements ‘which may include properties that are
equivalent to the characteristics of Open Source software, or the characteristics of
open standards’.

However, it is made clear that the Guideline is intended as a guide to good prac-
tice, and not as legal advice56 and, in that context, one can understand why this
recommendation is made.

The Public Sector Directive clarifies that award criteria must be detailed with
the necessary transparency enabling all tenderers to be reasonably informed of the
criteria.57 It might be thought that the phrase ‘Open Source’ could be open to being
differently understood by different potential tenderers and so lack the necessary
transparency. Certainly a reference to functional characteristics might be thought
preferable. Equally, if there were a concern over the use of the term, then the neces-
sary transparency could equally be assured by referring to a recognised definition
of that term, such as that provided by the OSI requiring the application of an ap-
proved licence.58

There has also been some discussion at the level of individual member states of
whether or not specific reference to ‘Open Source’ can be made in a Specification.
There has been little by way of guidance from the courts on this matter, though
there are some useful indications in France, Italy, and Germany.

In Germany, the Directives are transcribed and public procurement regu-
lated inter alia by VGV Vergabeverordnung (Procurement Order)59 and VOL/​
A Vergabe-​ und Vertragsordnung für Leistungen, Teil A (Procurement Order ap-
plicable to services). Those rules are required to conform to the principle of the
Wettbewerbsprinzip by virtue of section 97(1) GWB (Act Against Restraints of
Competition). This principle requires that all applicants should be treated equally,
and distinctions made only on the grounds of technical qualifications, efficiency,
and reliability.60

	 55	 See note 37.
	 56	 Disclaimer at end of para 1.
	 57	 Recital 90 of the preamble, and see also Case C-​496/​99 Commission v CAS Succhi di Frutta SpA
[2004] ECR 2004 I-​03801 in relation to the 2004 Public Sector Directive.
	 58	 Open Source Initiative, <https://​ope​nsou​rce.org/​> accessed 8 February 2020.
	 59	 The paragraphs particularly applicable to Open Source are paras 4–​7.
	 60	 Section 97(4).

446  Iain G Mitchell KC

Section 7 of VOL/​A requires the specification in the tender documents for the
procurement of software to be kept neutral, though section 7(3) does permit speci-
fication of Open Source software where reasonable, based on the type of the offer.

Interpreting these provisions, some writers have argued that specifying ‘Open
Source’ would be in breach of the principle,61 whereas other writers have suggested
that, if the public body is able to explain why it is only Open Source which would
fulfil their requirements, it would be permissible to specify Open Source.62 It has
been suggested that such reasons for the specification of Open Source may lie in
higher security requirements which may indicate a need to alter the source code
against ‘back door’ hacking, or a need for the contracting authority to acquire an
Open Source licence together with the source code to allow it to develop or modify
the software to meet its particular requirements.

In France, there is a similar legislative provision. The Directive is implemented
by the Code des Marchés Publics (Code of Public Procurement Contracts). Article
R211-​7,63 of the Code prohibits, inter alia, references to a trade mark, patents or
type except where justified by the object of the contract or, exceptionally ‘where a
sufficiently precise and intelligible description of the object of the contract is not
possible without it, and provided that it is accompanied by the words ‘or equiva-
lent’. Previously, the Conseil d’État had held that reference to a specific trade mark
is permissible if it is the only means of describing the requirements of the con-
tracting authority and provided that such reference is accompanied by the words
‘or equivalent’.64

Apart from this general principle, no case in France has concerned a tender
for the acquisition of Open Source as a species of good, though there is one case
which deals with it in the context of the public procurement of services, a decision
of the Conseil d’État dated 30 September 2011 regarding the Region of Picardie65
(req no 350 43 Région Picardie). In that case, the Region of Picardie, as an ac-
quiring authority, launched a procedure for the award of a public contract in order
to ‘carry out, exploit, maintain and host’ an Open Source solution for the Digital
Work Platform ‘Lilie’ (Espace Numérique de Travail (ENT)) for use in the colleges
of the region. Two companies claimed that the Region failed to guarantee equal
access and treatment to all tenderers contending that the technical specifications
drawn up by the Region, by referring to an Open Source solution, had the effect of
favouring certain undertakings.

	 61	 Dirk Heckmann, ‘IT-​Vergabe, Open source-​Software and Vergaberecht’ [2004] Computer und
Recht 401, 408.
	 62	 ‘Rechtliche Aspekte der Nutzung, Verbreitung und Weiterenwicklung von Open source-​
Software, November 2011’. Bundesbeauftragte fur Informatsionstechnik, Begleitdocument zum
Migrationsleitfaden 4.0, s 30.
	 63	 As inserted by Décret no. 2018-​1075 of 3 December 2018.
	 64	 Conseil d’État, 11 September 2006, Commune de Saran c Ste Gallaud, req no 257545.
	 65	 Req no. 350 43 Région Picardie.

PUBLIC SECTOR AND OPEN SOURCE  447

Given the nature of the public procurement in question, the aim of which was
not to supply software, but to provide a service related to the software, the Conseil
d’État held that the mention of the Open Source solution in the technical specifi-
cations neither favoured nor penalised any potential tenderer. Indeed, the Conseil
d’État pointed out that the Open Source being freely accessible, changeable, and
adaptable by each company, to specify it in the technical specifications did not have
the result of favouring any one tenderer over another.

It is important to emphasise that this case addresses the issue of public procure-
ment of services (to carry out, exploit, maintain, and host the Open Source solu-
tion) and does not deal with the supplying of that Open Source solution (which
may be regarded as public procurement of goods). The specific question of whether
it is lawful for a contracting authority to specify Open Source in an exercise for the
public procurement of goods remains a question which the French courts have yet
to address.66

In Italy, in 2010, there was an important decision of the Constitutional Court
regarding a regional law enacted by the Region of Piedmont67 where the relevant
regional law permitted contracting authorities, when assessing tenders, to give
greater weight to those tenders that provided for the use of Open Source.

The then-​applicable national law regarding public software procurement68 re-
quired a contracting authority to choose amongst a number of specified options,
one of which was Open Source. That choice was required to be made on the basis
of a technical and commercial comparison,69 but no further guidance was given in
the national law as to how to carry out that comparison, so the general principles of
procurement law applied.

The regional law had sought to give a boost to Open Source software by requiring
the Region to use software applications of which the source code was available to it,
and which it could freely modify to adapt the applications to its needs,70 providing
that, in the procurement of software, the Region should give preferential treatment
to free software and software where the source code is accessible71 and provided
that if the Region were to choose proprietary software, it was required to justify the
reasons for its choice.72 Similarly a preference for Open Source was expressed in
other provisions regarding data protection73 and publicly accessible documents.74

	 66	 See La Semaine Juridique Entreprises et Affaires no. 48, 1 Décembre 2011, 1854.
	 67	 Decision no. 122 of 22/​03/​2010 available at <http//​www.corte​cost​titu​zion​ale.it/​> accessed 18
January 2020. See also Carlo Piana, ‘Italian Constitutional Court Gives Way to Free Software Friendly
Laws’ (2010) 2 IFOSS Law Review 61–66.
	 68	 ‘Codice dell’Amministrazione Digitale’ Dlgs no 82/​2005. Article 68.
	 69	 Assoli v Ministero del Lavoro (TAR (Regional administrative court) Lazio, Decision no 428 of 23/​
01/​2007.
	 70	 Art 6.1.
	 71	 Art 6.2.
	 72	 Art 6.4.
	 73	 Art 5.
	 74	 Art 4.

448  Iain G Mitchell KC

The national government challenged those provisions in terms of Article 117 of
the Italian Constitution, as being in conflict with the rules of competition law laid
down by the jurisprudence of the ECJ and the National Code of Public Contracts.
The national government argued that the Region had to remain neutral in respect
of the different technologies which might compete in a procurement exercise, that
naming one particular technology over all others was clearly prohibited, and by ex-
tension, that giving preferential treatment to certain technologies, including or ‘on
the basis of ’ their licensing regime, should also be prohibited.

The court’s analysis was that a requirement for open code is not a technical re-
quirement but refers to a legal characteristic. It is open to contracting authorities to
specify which licensing regime they require.

As Piana argued,75 the distinction was based upon not only the technical and
economic merit of the tenders but a non-​technical characteristic, namely the na-
ture of the legal rights offered.

In 2012, Article 68 of the Codice dell’ Amministrazione Digitale76 was amended
to permit the use of Proprietary Software only where the comparative assessment
demonstrates the impossibility of adopting Open Source software solutions or
other solutions already developed in the public administration. This text was fur-
ther amended later in 2012 by adding a sixth option (cloud computing) to the ex-
isting five, specifying in greater detail the criteria to be used in the comparative
assessment,77 and slightly rewording the text of the final sub-​paragraph to clarify
its meaning.

21.4.5.5 � Excluding Open Source
The other side of the same coin is the issue of whether a contracting authority can
specifically exclude Open Source solutions. Logically that may be so, consistently
with Concordia Bus, provided that there is an objectively justifiable reason for
doing so, though the issue that seems to be encountered more frequently is simply
a specification which, in functional terms excludes Open Source.

Examples of functional exclusion can be found in Elekta Ltd v Common Services
Agency78 and the SAS Anywhere Services case.79

Interestingly, the debate in Poland regarding Open Source in procurement
specifications seems to have been conducted in terms of the explicit exclusion of
Open Source, rather than a positive requirement for Open Source. The principle of
equal treatment is found not only in the Treaties, but is enshrined in national law
in Article 32 of the Polish Constitution, which provides: ‘Everyone is equal before
the law. Everyone has the right to equal treatment by public authorities. No one

	 75	 Piana, see note 67.
	 76	 See note 68.
	 77	 Including interoperability and use of open standards.
	 78	 See note 49.
	 79	 See note 54.

PUBLIC SECTOR AND OPEN SOURCE  449

shall be discriminated against in political, social or economic life for any reason.’
According to the Constitutional Court, this means that persons who can be char-
acterised by the same important feature are required to be treated equally without
any adverse or favourable discrimination.80

Public authorities carrying out procurement exercises are bound both by this
over-​riding constitutional requirement, as well also as by the Polish laws on public
procurement.

Public procurement in Poland was previously governed by the Law of 29 January
2004 on Public Procurement,81 but the new regime, under the Law of 11 September
2019 on Public Procurement,82 entered into force on 1 January 2021.

Under Article 7 of the 2004 Law, public authorities were obliged to prepare and
conduct public procurement proceedings in a manner which ensured fair compe-
tition and equal treatment of suppliers. All the activities related to the preparation
and carrying out of a procurement exercise were required to be conducted impar-
tially and objectively. Article 29(2) contained a general prohibition on framing the
tender specification, in such a way as would hinder fair competition, and Article
29(3) prohibited describing the object of the contract by reference to trade marks,
patents, or origin, unless such description is justified by (i) the specific nature of
the contract, and (ii) the inability of the public authority is to describe sufficiently
the object of the tender by means of precise terms. Further, where such a reference
was made, the description must be followed by the phrase ‘or equivalent’.

The net result83 was that all requirements had to be justified by the real and ob-
jective needs of the acquiring authorities. Only such limitation as was justified by
real needs did not violate the law.84 The formulation of mandatory requirements
without reasons was forbidden and considered as discrimination.85 The new re-
gime makes similar provision.

In commenting upon this, Krzysztof Siewicz (a leading Polish legal writer) com-
mented that the effect of this is that a public authority may not exclude or refuse
to choose software just because it is Open Source software.86 Any requirements
which lead to the exclusion of Open Source software are required to be objectively
justified. He suggests that a formulation of requirements which excludes providers
of free software, would seem not to be objectively justifiable since, as he explains,
Open Source software differs from closed or proprietary software because of
the wider range of users’ rights, but there is no objective reason why it could not

	 80	 Judgment of Constitutional Court of 9 March 1988, file no: U 7/​87, OTK 1988, no 1, poz 1, 14.
	 81	 Dz U z 2019, r, poz 1843.
	 82	 Dz U z 2019 poz 2019.
	 83	 Consistently with the position in EU law.
	 84	 Decision of Krajowa Izba Odwoławcza of 5 August 2009 (file no: KIO/​UZP 961/​09).
	 85	 Decision of Krajowa Izba Odwoławcza of 13 January 2009 (file no: KIO/​UZP 1502/​08).
	 86	 Krzysztof Siewicz, Prawne aspekty zamowień publicznych na oprogramowanie (Poznań: Fundacja
Wolnego i Otwartego Oprogramowania, 2010) 15, previously available at <http://​www.fwioo.pl/​media/​
atta​chme​nts/​prawne_​aspekty_​zamowien_​pu​blic​znyc​h_​na​_​opr​ogra​mowa​nie.pdf> accessed 21 July 2022.

450  Iain G Mitchell KC

have the same or similar functionality. According to Siewicz, this means that the
public authority may not refuse to choose software just because it is Open Source
software.87

21.4.5.6 � Summary
What then are the conclusions which can be drawn from all of this?

The application of the Treaties and derived principles is, according to the jur-
isprudence of the ECJ, quite clear: a contracting authority may generally not ex-
press a requirement or a preference for a particular named product or system. That
prevents a specification which names UNIX, Intel, or Microsoft. However, that
does not prevent its use with the addition of the magic words ‘or equivalent’. But
if there is no real equivalent, the words ‘or equivalent’ are, in reality, writ in water.
This amounts to much the same thing as a specification which, functionally, closes
down competition because it can be met by only one tenderer, or, at any rate, a very
limited number of tenderers.

That situation is governed by the principles articulated in Concordia Bus. Such a
closed or exclusive specification may be permissible, provided that the contracting
authority can articulate reasons for drawing up the specification in those terms.
But merely having reasons, which seem to the contracting authority to be good
ones, is not enough. The absolute requirement, as the Advocate General makes
clear in Concordia Bus, is that the reasons should be objectively justifiable. Note
the combination of words: the focus is on justifiability and, what is more, objective
justifiability.

These objectively justifiable reasons may relate to technical characteristics or
non-​technical characteristics. The Piedmont case appears to have been founded
upon the proposition that Open Source software was preferred for its non-​technical
characteristics, but it is worth bearing in mind the peculiar circumstances in which
the argument came to be based in Italian constitutional and administrative law,
drawing on competition law, albeit that the context was acknowledged as involving
procurement law principles. However, if one looks at the ECJ jurisprudence,
ignoring the special Italian context, it is difficult to see why, in theory, a decision to
specify Open Source software or to exclude Open Source software could not be jus-
tified on technical as well as non-​technical grounds. Both would be equally permis-
sible, provided that the contracting authority’s reasons were objectively justifiable.

Similarly, the distinction drawn in the Picardie case between procurement of
goods and procurement of services may not be of importance, for a decision to
prefer or exclude Open Source solutions might equally be justified whether the
procurement exercise relates to goods or to services, though it might be that the
actual reasons may differ depending on whether the procurement exercise was

	 87	 Siewicz, see note 86.

PUBLIC SECTOR AND OPEN SOURCE  451

characterised as one for goods or for services. It may be that, in the Picardie case,
the Conseil d’État was mindful of the provisions of Article 6, IV of the Code des
Marchés Publics with its references to ‘products’ and was reluctant to engage with
whether Open Source software was a product, especially as the case could be (and
was) decided without having reference to that issue.

It seems reasonably clear that ‘Open Source’ is not a specific product or brand,
such as would bring into play the Netherlands and Bent Mousten Vestergaard prin-
ciples. Accordingly, it is difficult to understand why there is academic disagreement in
Germany on this point.

What it comes back to is that the seemingly absolute rules suffer exception where
the contracting authority’s reasons for departing from them are objectively justifiable,
and one may be slow to state, categorically, as Siewicz does, that the exclusion of Open
Source can never be justified (any more than one can assert that stipulating for it can
always be justified). In any given case, what matters is the objective justifiability of the
reasons.

It is for this reason that one might part company with the comments of Lord
Glennie in Elekta if, in saying that a contracting authority ‘cannot, in the inter-
ests of equal treatment, be compelled to seek tenders for something it does
not want’, he intended to lay down a rule of general application. Not only is
the object of the tender something which the contracting authority wants, and
must have its reasons for wanting, but also those reasons must be objectively
justifiable.

21.4.5.7 � Arguing objective justifiability
It may be that, in any given case, the ingenuity of the litigants will be able to produce
plausible reasons why a decision by a contracting authority as to its requirements
was or was not objectively justifiable. Such arguments may involve the economics of
Open Source as against proprietary software or may involve technical issues or non-​
technical issues such as the licensing regime. That said, in the extensive jurisprudence
and the policy thrust of the directives, and especially the 2014 Public Sector Directive
with its focus on encouraging innovation, there is a wide range of potential arguments
that might be used to assist those who wish to justify a selection (or attack the exclu-
sion) of Open Source.

First, there is the economic argument. The underlying criticism of the rea-
soning of NHS Scotland in the Elekta case is that its decision to remain locked
in was based on headline cost, and took no account of the ongoing cost of per-
petuating (indeed, extending) lock-​in. That this is not objectively justifiable is
arguable from first principles, but it is in any event made explicit in the 2014
Public Sector Directive by the inclusion of lifecycle costing in Article 67(2) as
an element in ascertaining the most economically advantageous tender read
together with Article 68 setting out in detail what falls to be considered in a

452  Iain G Mitchell KC

lifecycle costing exercise. Further, the UK Government Paper, ‘Open Standards
Principles: For software interoperability, data and document formats in govern-
ment IT specifications’88 states, at page 14: ‘Short-​term financial savings based
only on cost could risk longer-​term lock-​in and are not necessarily the most cost-​
effective in terms of whole-​life or when broader cross-​government working or
re-​use is considered’ and at pages 15 and 16:

As part of examining the total cost of ownership of a government IT solution, the
costs of exit for a component should be estimated at the start of implementation.
As unlocking costs are identified, these must be associated with the incumbent
supplier/​system and not be associated with cost of new IT projects.

The paper recommends that in those exceptional cases where extensions to legacy
solutions have been agreed, there should be formulated a ‘pragmatic exit manage-
ment strategy’. Two important warning notes should be sounded. These comments
are made in the context of a policy on open standards and they are intended to
bind only the UK Government and not the devolved national governments, local
government or other public bodies. Whatever the context, the comments clearly
embrace procurement policy; and, more importantly, the reasoning is compelling
and indeed is echoed in the 2014 Directive. If the rationale of these comments is
borne in mind, it is extremely difficult to see how anyone could have thought that,
on economic grounds alone, the contracting authority’s decision in Elekta could
have been objectively justifiable.

So far as the technical and non-​technical policy arguments are concerned,
Article 67(2) of the 2014 Directive explicitly states:

The most economically advantageous tender from the point of view of the con-
tracting authority shall be identified on the basis of the price or cost, using a cost-​
effectiveness approach, such as life-​cycle costing in accordance with Article 68,
and may include the best price-​quality ratio, which shall be assessed on the basis
of criteria, including qualitative, environmental and/​or social aspects, linked to
the subject-​matter of the public contract in question. Such criteria may comprise,
for instance:

	quality, including technical merit, aesthetic and functional characteristics,
accessibility, design for all users, social, environmental and innovative char-
acteristics and trading and its conditions . . . .

	 88	 HM Government, ‘Open Standards Principles’ (2012) <https://​www.gov.uk/​gov​ernm​ent/​uplo​
ads/​sys​tem/​uplo​ads/​atta​chme​nt_​d​ata/​file/​78892/​Open Standards-​Principles-​FINAL.pdf> accessed 30
January 2020.

PUBLIC SECTOR AND OPEN SOURCE  453

This new, and innovation-​friendly regime gives plenty of scope to justify a require-
ment for Open Source software and, consequently, more scope for challenging as
not being objectively justified a decision to exclude Open Source, whether specific-
ally or by way of an unduly restrictive specification. Such a legislative environment
provides fertile soil for the further adoption of Open Source software.

21.4.6  The role of policy

A legal structure may be influenced by and reflect underlying policies, as with
Article 67(2) of the 2014 Directive, but essentially it is a neutral framework pro-
viding no more than a mechanism for the implementation of policies.

At the EU level, a foundational document in the development of an Open
Source-​friendly policy environment was the European Interoperability Framework
Communication of 23 March, 201789 which called for the removal of barriers to
a digital single market in the EU. This was followed by the Tallin Declaration on
e-​Government of 6 October 2017,90 in which the EU Member States unanimously
called upon the Commission: ‘to consider strengthening the requirements for the
use of open source solutions and standards when (re)building of ICT systems and
solutions takes place with EU funding, including by an appropriate open licence
policy—​by 2020’. Further impetus was given by the EU Parliament’s July 2020
Briefing Paper on Digital Sovereignty for Europe.91 The avowed aim of the paper is
the development of ‘a new policy approach designed to enhance Europe's strategic
autonomy in the digital field’. There are clear signals in the text that as part of that
vision, the European Parliament sees the importance of open solutions.

Unlike the older UK policies discussed later in this chapter, the Briefing Paper
recognises the transition from software as a product to the platform or cloud
economy as the relevant model of service delivery. It sees the need to adopt:

a forward looking approach to digital markets' regulation and to make online
platform eco-​systems and online activities more open, fair and predictable. In par-
ticular, rules imposing algorithm transparency and neutrality, and data-​sharing
and interoperability could be considered. Finally, in a long-​term perspective,
fostering policies to build digital tools and solutions (e.g. operating systems and
mobile platforms) that avoid technology lockins and foster open, yet still secure,
digital ecosystems in the EU could be explored.92

	 89	 European Interoperability Framework–​Implementation Strategy (COM(2017) 134).
	 90	 <https://​ec.eur​opa.eu/​digi​tal-​sin​gle-​mar​ket/​en/​news/​mini​ster​ial-​decl​arat​ion-​egov​ernm​ent-​tall​
inn-​decl​arat​ion> accessed 19 April 2022.
	 91	 <https://​www.europ​arl.eur​opa.eu/​RegD​ata/​etu​des/​BRIE/​2020/​651​992/​EPRS_​BRI(2020)651992​
_​EN.pdf> accessed 19 April 2022.
	 92	 Digital Sovereignty for Europe, see note 91, page 8.

454  Iain G Mitchell KC

It lists a number of possible initiatives, including, as Initiative 1, the creation of
an EU-​wide cloud and data infrastructure.93 Initiative 2394 (‘Foster open digital
ecosystems’) calls on the EU Institutions to ‘[a]‌ssess whether the EU framework
should promote digital tools and solutions (e.g. operating systems) that avoid
technology lock-​ins’. It is noteworthy that initiative 1 is already being addressed
in that the proposed EU Cloud is being built on Open Source software through
the Gaia X Project.

Then, in October 2020, the EU Commission published its Open Source Software
Strategy 2020–​2023—​Think Open.95

The Introduction sets out a clear-​eyed vision of the importance of Open Source.
It speaks of a desire: ‘to bring Europe’s people together in an inclusive, open ap-
proach, to find new opportunities and transition to an inclusive, better digital en-
vironment that is ready for the realities of today’s global economy. In all of this,
open source software has a role to play’. The document recognises the pervasive-
ness of Open Source software which is frequently missed by business and public
sector users alike:

“Open source is present everywhere. All around the world, companies and
public services are using the open source collaborative methods to innovate and
build new solutions. It powers the cloud and provides professional tools for big
data and for information and knowledge management. It is in supercomputers,
blockchain, the internet of things and artificial intelligence. It is in the internet.
It is in our phones and our TVs. It provides us with streaming media. It is in
our cars. It runs Europe’s air traffic control. The chances are that, in any new
project involving software, from kitchen appliances, through web-​based public
services to highly specialised industrial tools, most of the code will be based on
open source

and ‘[t]‌he 2020–​2023 open source strategy reinforces the Commission’s in-
ternal working culture that is already largely based on the principles of open
source. However, it will also help the Commission change some of its techno-
logical and information management processes.’

Section 2, Vision, states: ‘The Commission leverages the transformative, in-
novative, and collaborative power of open source, encouraging the sharing and
reuse of software solutions, knowledge and expertise, to deliver better European
services that enrich society and focus on lowering costs to that society.’ The gov-
erning principles of the policy are stated to be:96

	 93	 Initiative 1, page 9.
	 94	 Page 10.
	 95	 <https://​ec.eur​opa.eu/​info/​sites/​info/​files/​en_​e​c_​op​en_​s​ourc​e_​st​rate​gy_​2​020-​2023.pdf> accessed
19 April 2022.
	 96	 Part 5, page 8.

PUBLIC SECTOR AND OPEN SOURCE  455

Think Open -​ Open-​source solutions will be preferred when equivalent in func-
tionalities, total cost and cybersecurity

Transform—​We harness the working principles of open source; we innovate
and co-​create, share and reuse, and together build user-​centric, data-​driven
public services

Share—​We share our code and enable incidental contributions to related open-​
source projects.

Contribute -​ We strive to be an active member of the diverse open-​source
ecosystem.

Secure—​We make sure the code we use and the code we share is free from vul-
nerabilities by applying continuous security testing.

Stay in control—​We promote open standards and specifications that are imple-
mented and distributed in open source.

The Commission has also set up an OSPO, and is calling for these to be built
across member states, taking the learning of the private sector OSPO discussed in
Chapter 19 to the public sector.

These developments indicate a clear understanding of Open Source as a crit-
ical element in delivering on EU digital market policy commitments and provide
the policy impetus required to encourage contracting authorities both at EU level
and in the member states to use the legal structures creatively and in a manner
delivering on the policy commitment to Open Source.

21.5  The UK

21.5.1  The legal framework

At the time of writing, EU law remains applicable to the UK as retained EU law,
even although the UK ended its membership of the European Union at 11.00 p.m.
GMT on 31 January 2020 and the transition period came to an end on 31 December
2020 with the Withdrawal Treaty. The existing rules will continue to apply unless
amended in the future. The EU procurement regime comprises both the Treaty
principles and the relevant EU Directives which are transposed into English and
Scots law by, respectively, the Public Contracts Regulations 201597 and the Public
Contracts (Scotland) Regulations 2015,98 and so the rules contained within the
Directives will also continue to apply as UK domestic law.

The UK government paper ‘Public-​sector procurement under the EU
Withdrawal Agreement—​Information for public authorities, businesses and other

	 97	 SI 2015/​102.
	 98	 SI 2015/​446.

456  Iain G Mitchell KC

organisations on the outcomes for public procurement after 31 January 2020’99
confirms that under the Agreement, ‘EU procurement law will continue to apply
beyond the end of the transition period and for procurement procedures ongoing
at the end of the transition period, the existing regulatory regime will continue up
until award’.

The UK is a member of the WTO Agreement on Government Procurement
(GPA)100 through its former EU membership and intends to apply for member-
ship of the GPA in its own right post Brexit.101 The GPA covers government and
sub-​government entities as listed and each signatory may specify which entities it
wishes to make subject to the regime and which thresholds to apply. An up-​to-​date
list is maintained on the WTO website.102

21.5.2  The policy context

21.5.2.1 � Organisational structure:
The UK government has been widely regarded as being at the leading edge in its
policies on Open Source software since around 2012, when an industry-​focused
Cabinet Office Committee advised the government on the development of an
Open Source strategy. The UK was also a signatory to the Tallinn Declaration in
2017 and has a consistent record of seeking to promote interoperability and the
creation of a level playing field in the procurement of Open Source.

Although the UK does not have any legislation requiring the use of or governing
the use of Open Source software, it does have a Technology Code of Practice103
which requires public administrations to ‘be open and use open’.

At UK government level, the primary responsibility for Open Source lies with
the Government Digital Service (GDS), a part of the Cabinet Office. Within the
GDS, a new Central Digital and Data Office for Government was set up in 2021
and a GDS Chief Digital Officer role created, reporting into the Cabinet Office.
Amongst the new roles will be those supporting Crown Commercial Services on
reforming technology procurement.

The Cabinet Office team is in control of the overall user experience across all
digital channels and the team reports to the Secretary of State for Culture, Media
and Sport (DCMS). Its responsibilities include: setting and enforcement of stand-
ards for digital services; building platforms and services; supporting the use of
emerging technologies in the public sector; and leading the Digital, Data and

	 99	 European Union Withdrawal Act section 2.
	 100	 See note 4.
	 101	 Department for International Trade, Preparing for our future UK trade policy, 9 October 2017.
	 102	 <https://​e-​gpa.wto.org/​en/​Agreem​ent/​Lat​est> accessed 18 February 2020.
	 103	 <https://​www.gov.uk/​gov​ernm​ent/​publi​cati​ons/​tec​hnol​ogy-​code-​of-​pract​ice/​tec​hnol​ogy-​code-​
of-​pract​ice> accessed 12 April 2021.

PUBLIC SECTOR AND OPEN SOURCE  457

Technology function for the government. Although the responsibilities do not in-
clude any specific responsibility for Open Source software, given the policy con-
text, this can be regarded as being implicit in its remit.

The Crown Commercial Service (CCS) is an executive agency also sponsored by
the Cabinet Office. It manages and implements the UK government’s Open Source
software policy ‘GOV.UK’ and has responsibility for its procurement.

21.5.2.2 � Development of UK government policy
21.5.2.2.1 � Open Source strategy for government
The UK government published this strategy document setting out the actions
which needed to be taken by government to provide a level playing field be-
tween Open Source and proprietary software in the procurement process.104
The opening lines read: ‘This business plan has been developed as means of
establishing how government will address its commitment to creating a level
playing field for open source software.’ The strategy’s key objectives included
‘strengthening the skills of public servants and suppliers in open source; and en-
suring that open source, sharing, reuse and collaborative development are em-
bedded in the culture of the government’. Although a resounding commitment
to Open Source, there had not been an update to this strategy produced since
2010 until the 2022 Digital and Technology Playbook, which follows similar
principles.

21.5.2.2.2 � Advisory groups’ business plan
This business plan, which was published in 2010, remains publicly available.105
When it was published, it was world-​leading and has been replicated in a number
of other countries. Although the plan needs to be updated to take account of the
considerable changes in the digital market coming from the transition to plat-
form and cloud-​based services, its principles remain relevant. Indeed, the work
currently being undertaken by the EU institutions is fully in line with those
principles.

21.5.2.2.3 � The Government ICT Strategy
This Strategy document, issued by the Cabinet Office in 2011, aims to ensure the
creation of a level playing field for Open Source software and the procurement of
Open Source solutions.106 The government established various groups that aimed

	 104	 <https://​www.gov.uk/​gov​ernm​ent/​publi​cati​ons/​Open Source-​open standards-​and-​re-​use-​
government-​action-​plan> accessed 19 April 2022.
	 105	 <https://​www.wha​tdot​heyk​now.com/​requ​est/​72114/​respo​nse/​189​441/​att​ach/​3/​Annex%20
A%20O​pen%20Sou​rce%20S​trat​egy%20O​verv​iew.pdf?coo​kie_​pass​thro​ugh=​1> accessed 12
April 2021.
	 106	 <https://​ass​ets.pub​lish​ing.serv​ice.gov.uk/​gov​ernm​ent/​uplo​ads/​sys​tem/​uplo​ads/​atta​chme​nt_​d​
ata/​file/​85968/​uk-​gov​ernm​ent-​gov​ernm​ent-​ict-​str​ateg​y_​0.pdf> accessed 12 April 2021.

458  Iain G Mitchell KC

‘to educate, promote and facilitate the technical and cultural change needed to
increase the use of open source across government’, including the Open Source
Implementation Group, the System Integrator Forum, and the Government Open
Source Advisory Panel, although the only group which remains active today is the
Cabinet Office Open Standards Board.

21.5.2.2.4 � Procurement Policy Note 8/​11—​Procurement of open Source IT
This Policy Note was published in 2011 jointly by the Cabinet Office, Efficiency and
Reform Group and the CCS in order to encourage the use of Open Source by gov-
ernment departments. It states that when purchasing ICT solutions, ‘government
departments should ensure that open source software is fairly considered’.107

21.5.2.2.5 � The Open Standards Principles policy document
The Open Standards Principles policy document108 published by the UK govern-
ment in 2012 aims to promote the use of open standards by public administrations.
The policy document outlines principles for the selection and specification of open
standards that can be implemented in both open source and proprietary software
solutions.

21.5.2.2.6 � The G-​Cloud procurement system
Set up by the UK government in 2012, this system is used as a mechanism for the
conducting of public procurements. This system itself contains a number of digital
services and inevitably some of these are or include Open Source software. G-​
Cloud 12, its latest iteration, was released in early 2020.

21.5.2.2.7 � The Government Transformation Strategy 2017–​2020
The publication of this strategy in 2017109 was an important development. The ob-
jectives of the strategy include: ‘to create, operate, iterate and embed good use of
shared platforms and reusable business capabilities to speed up transformation—​
including shared patterns, components and establishing open standards’. Although
open standards are referred to, Open Source is not. However, the strategy does con-
tain the following commitment: ‘Building on the Digital Marketplace’s approach,
we will embed user-​centred, design-​led, data-​driven and open approaches in pro-
curement and contracting across government by 2020.’

	 107	 <https://​www.gov.uk/​gov​ernm​ent/​publi​cati​ons/​proc​urem​ent-​pol​icy-​note-​8-​11-​proc​urem​ent-​
of-​Open Source> accessed 19 April 2022.
	 108	 <https://​ass​ets.pub​lish​ing.serv​ice.gov.uk/​gov​ernm​ent/​uplo​ads/​sys​tem/​uplo​ads/​atta​chme​nt_​d​
ata/​file/​78892/​Open-​Standa​rds-​Pri​ncip​les-​FINAL.pdf> accessed 19 April 2022.
	 109	 <https://​www.gov.uk/​gov​ernm​ent/​publi​cati​ons/​gov​ernm​ent-​tra​nsfo​rmat​ion-​strat​egy-​2017-​to-​
2020/​gov​ernm​ent-​tra​nsfo​rmat​ion-​strat​egy> accessed 19 April 2022.

PUBLIC SECTOR AND OPEN SOURCE  459

21.5.2.2.8 � Technology Code of Practice
This Code,110 which remains current as of April 2021, includes a specific recom-
mendation,111 ‘Be Open and Use Open Source’, stating: ‘Publish your code and use
open source to improve transparency, flexibility and accountability’, and detailed
guidance is given in support of that recommendation.

21.5.2.2.9 � The Local Digital Declaration
This is a joint initiative by the UK Ministry for Housing, Communities and Local
Government, GDS, and a collection of local authorities and sector bodies from
across the UK to encourage public authorities below the level of the UK govern-
ment to improve IT procurement practices.112 It does not lay down binding policies
but takes the form of a Declaration which public authorities are invited to sign. The
Declaration refers to open standards but not specifically to Open Source software.

21.5.2.3 � Recent developments at UK level
The above policy documents appear to show willingness, as far as the implemen-
tation of forward-​looking IT procurement practices is concerned. However, as in
fact implemented, the policies did not have teeth and did not lead to widespread
adoption of Open Source across the public sector until recently. This is encour-
aging, but because the policy landscape is fragmented, made up of a patchwork of
policies some of which are a decade old, it is arguable that these policies are ripe
for review at the same time as the current review of the National Data and Digital
Strategies which is now under way.

DCMS produced a Data Strategy Consultation in 2019, and has announced that
the Data Strategy will be issued in parts through the course of the year. The respon-
sible Minister has confirmed that this will be updated from the existing strategies.
However, at the time of writing the finalised strategy document is awaited and ten
priorities have been issued by Oliver Dowden, Minister DCMS, none of which in-
clude or recognise opens-​source software.

A further development is the proposed appointment by the Cabinet Office of
a new publicly appointed Open Standards Advisory Board. In 2021 the Cabinet
Office announced that it was seeking to appoint a group of ten advisors for the
Standards field and rolled Open Source software into the work of this group. The
announcement also recognised the importance of standards to technology devel-
opment, and it is likely that advice on Open Source software will form an important
subset of the work of this Board.

Policy initiatives are important, but of equal importance is the government
being seen to lead by example. In this regard, amongst a number of notable recent

	 110	 <https://​www.gov.uk/​gov​ernm​ent/​publi​cati​ons/​gov​ernm​ent-​tra​nsfo​rmat​ion-​strat​egy-​2017-​to-​
2020/​gov​ernm​ent-​tra​nsfo​rmat​ion-​strat​egy> accessed 19 April 2022.
	 111	 Point 3—​see <https://​www.gov.uk/​guida​nce/​be-​open-​and-​use-​open-​sou​rce
	 112	 <https://​local​digi​tal.gov.uk/​decl​arat​ion/​> accessed 19 April 2022.

460  Iain G Mitchell KC

adoptions of Open Source within the UK public sector has been the COVID-​19
Test and Trace app created by NHSX, the digital arm of the NHS. NHSX develops
code on a policy of open sourcing all code developed by it with its preferred licence
being the MPL (Mozilla Public Licence). The code developed by NHSX, including
the test and trace app, is not developed in the open but shared on completion via
an Open Source software repository in GitHub (a popular public repository for the
sharing of code with an Open Source licence).

The UK government has been criticised for this approach, being compared un-
favourably to other governments such as the German federal government which
developed its code in the open as well as licensing it as Open Source software.
Because it was able to take community contributions during this development pro-
cess, this significantly improved the outputs. Nonetheless, this does demonstrate a
real investment by the UK government in the open solutions.

21.5.3  Devolved governments

The devolved government in Scotland has its own procurement regime, which
builds on the EU regime. The UK government hosts a GitHub repository of its
Open Source content and contribution guidelines.

The Scottish government has launched several Open Source initiatives, in-
cluding its own NHSX COVID-​19 app which is based upon the app provided by
the Irish commercial vendor Nearform to the government of the Irish Republic.
The base app was donated to the Linux Foundation, which is now the app's main-
tainer. The Scottish, Northern Irish, and Irish governments each have their own
iteration of this app, with the potential for the respective apps to work cross border.

21.5.4  The third sector

21.5.4.1 � OpenUK
A third-​sector organisation, OpenUK, has been identified by the European
Commission as the main actor in the UK in advocacy around Open Source. Its
Legal and Policy group hosts a Future Leaders Group which has published a review
of Open Source procurement by CCS.113

21.5.4.2 � The State of Open
Phase one of the OpenUK report, The State of Open, was published in March
2021.114

	 113	 <http://​www.Ope​nuk.uk/​stat​eofo​pen> accessed 19 April 2022.
	 114	 <https://​ope​nuk.uk/​wp-​cont​ent/​uplo​ads/​2021/​07/​State-​of-​Open-​Phase-​Two.pdf> accessed 30
June 2022.

PUBLIC SECTOR AND OPEN SOURCE  461

The report discusses the contribution of Open Source to the UK economy. The
most recent verifiable figures showed 126,000 developers actively contributing to
open source software projects in the UK with up to £43.15 billion contributed to
the UK economy each year through open source working, though these figures
were likely to be out of date. Pre-​Brexit, the UK was the EU’s largest Open Source
contributor, considerably ahead of Germany and France. As a consequence of
Brexit, the EU Commission, in its 2021 Report,115 reduced the reported number of
open source developers in the EU by 230,000 (though it considered that reduction
to be overly conservative). This source therefore suggests that the true number of
open source developers in the UK today is likely to be nearer 200,000 and the value
to the UK economy significantly higher.

As the OpenUK report discloses, the UK is the fifth largest contributor to the
Cloud Native Environment, one of the world’s largest contributors to Open Source,
and has one of the world’s largest numbers of users. Many of the users and con-
tributors to Open Source are not involved in avowedly Open Source companies but
are working in mainstream business, in other technology companies, or working
remotely for international companies, or across the public sector.

21.5.4.3 � Conclusion
From the above, we see that the UK is a major player in the field of Open Source
and other open technologies. This is reflected in the public sector where there has
been a direct government commitment to open technologies and software since as
long ago as 2010. Though some of the procurement policies which were developed
are now becoming out of date, and not fully suited to the changed economic envir-
onment in which cloud has gained an increasingly dominant position, a review of
these policies is now underway. When completed, it is likely to contribute to the
UK’s retaining its strong position. In short, in the field of public procurement of IT,
the future for Open Source looks bright in the UK public sector.

21.6  The US

21.6.1  Introduction

The government sector in the US includes an immense federal government—​by
many counts the largest single procurer of goods in the world116—​over fifty state,

	 115	 ‘The impact of open source software and hardware on technological independence, competi-
tiveness, and innovation in the EU economy’, see <https://​digi​tal-​strat​egy.ec.eur​opa.eu/​en/​libr​ary/​
study-​about-​imp​act-​open-​sou​rce-​softw​are-​and-​hardw​are-​techno​logi​cal-​indep​ende​nce-​comp​etit​iven​
ess-​and> accessed 30 June 2022.
	 116	 Brett Bachman, ‘The US government is the world’s largest purchaser of consumer goods. Amazon
wants a piece’ Vox.com (May 1, 2019) <https://​www.vox.com/​the-​goods/​2019/​5/​1/​18524​111/​ama​zon-​
busin​ess-​gov​ernm​ent-​pur​chas​ing-​state-​city-​local> accessed 19 April 2022.

462  Iain G Mitchell KC

tribal and territorial governments, and thousands of different county and muni-
cipality governments. Each of these entities is a potential procurer of software—​
including Open Source—​and each generally has some degree of autonomy in
setting the rules and regulations which govern the criteria, preferences, and pro-
cedures for software procurement. It is beyond the scope of this chapter to detail
the many different policies governing procurement of software for all of these
entities , but the various policies which have from time to time been published by
the federal government and the larger state governments serve to give a good illus-
tration of the state of public procurement in the US.

However, because policies have been published does not necessarily mean
that smaller public entities in the US are familiar with them and follow them.
Furthermore, in many cases, there may not exist specific policies concerning pro-
curement of proprietary software as against Open Source, making it difficult to
discern whether a given entity may favour or disfavour the procurement of Open
Source.

21.6.2  The US federal government

With regard to the US federal government, procurement is dictated by two
significant—​and voluminous—​sets of procurement regulations: the Federal
Acquisition Regulations (FARS),117 (used for US government procurement outside
the US), the Department of Defense (DoD), and the Defense Federal Acquisition
Regulations (DFARS),118 used for procurement by the DoD. The DoD is, within
the vast public procurement entity that is the US federal government, by far the
largest procurer.119

Recognising that procuring relatively low-​cost, low-​volume, or non-​
government-​specific items, including software, might not be done effectively by
dictating that the supplier follow all the guidance of FARS and DFARS, there is
an exception in both regulations for ‘Commercially available off-​the-​shelf ’ items
(COTS), defined as any ‘item of supply’ that is either sold or offered to government
in the same form in which it is sold.120

	 117	 48 CFR, Chapter 1. This chapter of the federal Code of Regulations sets for general guidelines
(exclusive of the DoD) for all federal agencies; chapters 3 et seq. outline specific procurement rules for
individual federal agencies that may differ from the general FARS.
	 118	 48 CFR, Chapter 2.
	 119	 For fiscal year 2007, the DoD represented roughly three-​quarters of the procurement budget
of the entire US federal government. Federal Procurement Data System—​Next Generation ‘Federal
Procurement Report, FY 2007’ <https://​www.fpds.gov/​downlo​ads/​FPR_​Repo​rts/​fy_​2​007/​Total%20
Fede​ral%20V​iew.pdf> accessed 19 April 2022, at pages 17 and 18.
	 120	 48 CFR, Chapter 1, § 2.101.

PUBLIC SECTOR AND OPEN SOURCE  463

The FARS also contemplates the acquisition of ‘commercial computer software’,
defined as ‘any computer software that is a commercial item’, where a ‘commer-
cial item’ is defined as being sold, leased, licened, or offered as such to the gen-
eral public. The federal government has made clear that Open Source, which is of
course specifically designed to be licensed to the general public, qualifies as both
as ‘commercial computer software’ and as a COTS under the FARS and DFARS re-
gulations despite the lack of its being sold or offered for sale.121 As such, it may be
procured by the U.S. federal government outside the rigours of standard procure-
ment procedures, much as any off-​the-​shelf consumer proprietary software may be
so acquired.

In addition to standard questions of direct procurement of software that may be
offered under an Open Source licence, the US government has launched a number
of initiatives in an effort to make sure that a percentage of the code that it develops
internally, or that it procures externally, will eventually be released under free
and Open Source licence terms. In 2016, the Chief Information Officer and Chief
Acquisition Officer of the US released a memorandum announcing a policy that
established a pilot program requiring at least 20 per cent of new custom code to be
developed as Open Source for a three-​year period and for metrics to be gathered
during that time.

The results of this pilot program have been summarised in a recent article,
indicating a substantial increase in the use of Open Source and the hosting of Open
Source projects by the federal government, and that ‘most [US federal govern-
ment] agencies see value in using and publishing Open Source, agencies seeking
more guidance’.122

Assuming this trend continues, the US federal government may continue to ad-
vance as both a consumer and a creator of software released under free and Open
Source licence terms.

It is also notable that at least one agency of the US federal government has its
own OSI-​approved Open Source licence: the National Aeronautics and Space
Administration (NASA) Open Source Agreement.123 This licence was drafted, at
least in part, so as to address some issues said to be unique to copyright ownership
and licensing with US federal government authored, or US federal government
contracted-​for, software. This licence has been criticised as containing ambiguities
that may be hindering its use.124 Efforts to revise the licence to address these and

	 121	 Chief Information Officer, US Department of Defense, ‘DoD Open Source Software (OSS)
FAQ’ part 4.1<https://​dod​cio.defe​nse.gov/​Open-​Sou​rce-​Softw​are-​FAQ/​#Q:_​Is_​open_​source_​s​oftw​
are_​comm​erci​al_​s​oftw​are.3F_​Is_​it_​C​OTS.3F> accessed 16 July 2020.
	 122	 Joseph Castle, ‘Happy 3rd Birthday Code.gov!’ (20 November 2019) <https://​digi​tal.gov/​pdf/​
Happy​3rdB​DayC​ode.gov.pdf> accessed 19 April 2022.
	 123	 <https://​ope​nsou​rce.org/​licen​ses/​NASA-​1.3> accessed 19 April 2022.
	 124	 National Academies of Sciences, Engineering, and Medicine, ‘Open Source Software Policy
Options for NASA Earth and Space Sciences’ § 2.4.2. (2018). <https://​www.nap.edu/​read/​25217/​chap​
ter/​4#23> accessed 19 April 2022.

464  Iain G Mitchell KC

other concerns (including concerns that because the US federal government may
not own US copyrights,125 the licence might be partially ineffective) were ultim-
ately unsuccessful, and the revised licence was rejected for approval by the OSI.126
Nevertheless, there are numerous examples of software released on <http://​www.
code.gov> (the US federal government’s Source Code repository) under a var-
iety of other OSI-​approved Open Source licences, although the most common li-
cences used seem to be from the non-​OSI-​approved Creative Commons licence
family. NASA has also been notable in 2021 in its utilisation of Open Source in the
Perseverance Rover landing on Mars and for including Open Source and in par-
ticular Linux in this.

21.6.3  US state governments

Spurred on in part by the actions of the US federal government, at least one state
of the US has announced its own policies and portals for Open Source develop-
ment and use. California, by far the largest state in terms of population in the US,
launched its own policies in 2018;127 the policies are directed primarily to ensuring
that California state government agencies are sharing code between themselves,
and do not appear to require licences that would generally be considered free
and Open Source, or that this code should be made accessible to the public. The
California government's GitHub repository128 does include a handful of projects,
including several that are licensed under OSI-​approved open source licences.

Other large US state governments (Texas, Florida, and New York are the next
largest states in the US by population) do not have clearly articulated policies
favouring or encouraging Open Source use by those governments. Given that the
policy announcements by the US federal government are relatively new, having
been issued in 2016, the fact that many US states have not developed a coherent
policy on Open Source, or code repositories where the public may have access to
state government developed or contracted-​for software, may be a symptom of US
states adopting policies reactively rather than proactively. Even the City of San
Francisco—​arguably the centre of the tech world—​lacks any sort of coherent policy
or practice encouraging use and adoption of Open Source code.129 The adoption of

	 125	 17 USC § 105.
	 126	 Open Source Initiative, ‘License Committee Report—​January 2017’ (9 January 2017) <https://​
lists.ope​nsou​rce.org/​piperm​ail/​lice​nse-​revie​w_​li​sts.ope​nsou​rce.org/​2017-​Janu​ary/​002​933.html> ac-
cessed 19 April 2022.
	 127	 ‘Code California Playbook’ <https://​codeca​gov-​playb​ook.read​thed​ocs.io/​en/​lat​est/​pol​icy/​> ac-
cessed 16 July 2020.
	 128	 <https://​git​hub.com/​CA-​CODE-​Works> accessed 19 April 2022.
	 129	 Charles Belle, ‘Open Source & The City: Making SFGov a Leader in Tech Policy’ Reset San
Francisco <https://​www.resets​anfr​anci​sco.org/​bet​ter-​gov​ernm​ent/​Open Source-​city-​making-​sfgov-​
leader-​tech-​policy/​> accessed 16 July 2020.

PUBLIC SECTOR AND OPEN SOURCE  465

a policy by the state of California may lead other states—​or smaller governmental
units like counties or municipalities—​to model policies based on the leads given by
the US federal government or California.

21.6.4  Conclusion

In summary then, despite the lead that private industry in the US has in developing,
hosting, and sharing Open Source, it is surprising that governmental entities in the
US lag behind their peers in other countries in setting official policies and prac-
tices to encourage these practices. The Open Source communities are optimistic in
light of the change of President and the appointment of a Special Assistant to the
President and Director of Technology, David Recordon, who has a background in
Open Source and open standards.

21.7  Conclusion

Where then stands the relationship between public procurement and Open
Source?

At the time of the first edition of this book, the business model largely involved
the delivery of a software solution as such, and developers and suppliers could find
themselves effectively, and often unfairly, shut out of procurement contracts by
the creation of inappropriate contract specifications or the application of inappro-
priate award criteria. With now an increasing reliance on software as a service, that
problem may be masked to some extent, because contracting authorities judge the
service offer which is provided rather than the software itself. However, the under-
lying software can be essential to achieving and maintaining service levels and pro-
viding innovative and cost-​effective solutions: the apparent issue may be masked
but it still lurks there and, indeed, there are still plenty of procurement exercises
which do explicitly concern themselves with software.

For Open Source developers and providers, the applicable procurement regime
still matters more than ever.

The EU legal regime is robust and detailed, with relatively clear legislative pro-
visions. It covers, by means of the Directives, high-​value tenders and by means of
the Treaty Principles (as interpreted by the courts) below-​threshold procurement
(at any rate, so long as there is a potential cross-​border interest). This regime avow-
edly and explicitly seeks to encourage innovation, both by allowing wider consid-
erations than merely price in the criteria by which tenders may fall to be judged,
including an explicit commitment to lifecycle costing as part of those criteria and
by the mechanism of innovation partnerships. The nature of the legal structures is
broadly favourable to Open Source developers and suppliers who can make out a

466  Iain G Mitchell KC

good commercial case for the use of Open Source—​a case which members of the
Open Source community are well able to put.

These comments apply equally to the market in the UK, and with its history of
Open Source-​friendly policies and ongoing policy reviews, the future for Open
Source remains hopeful. Of course, there are doubts and uncertainties arising
from Brexit. For example, will the UK actually succeed in becoming a member of
the GPA in its own right? Which entities and thresholds will the UK government
list in the Annexes? What opportunities will there continue to be for UK com-
panies to participate in EU public procurements and for EU companies to par-
ticipate in UK public procurement exercises? Assuming there is an equivalence to
the EU procurement thresholds, small and medium-​sized enterprises depend on
getting a steady stream of below-​threshold work, but what will be the opportun-
ities for UK companies to participate in below threshold procurement exercises
in the EU?

The WTO’s GPA is certainly of some assistance in allowing UK participation in
public procurement exercises in both the EU and elsewhere, but it falls far short of
the robust in-​depth regime provided by EU law.

By contrast with the comprehensive and detailed regime in Europe, public
sector procurement in the US is governed by a patchwork of different regimes, only
some of which are what could be described as ‘open source friendly’, and such rules
as there are, are relatively underdeveloped. The present state of Open Source pro-
curement in the public sector in the US compares unfavourably with both the pri-
vate sector in the US and with the EU and UK where there is a well-​developed legal
structure to govern procurement decisions.

The discussion, however, is not merely about legal structures. You can use legal
structures to lead a horse to water, but you cannot make it drink: there has to be a
will on the part of public authorities not necessarily to specify Open Source as such
so much as to specify criteria which do not shut out Open Source. Members of the
Open Source community can be confident that, in a fair fight, the advantages of
Open Source will see off the proprietary opposition. The trick is to ensure the fair-
ness of that fight.

The legal rules creating the playing field are relatively clear, though given the
practical experience, one might be forgiven for thinking that the law is more com-
plex than it is. In particular, it is clear under the EU procurement regime that all
procurement exercises where there is a cross-​border interest, whether above or
below threshold, have to conform to the Treaty and derived principles, including
transparency and equal treatment. Those principles exclude the limiting of tech-
nical specifications to named proprietary software but permit the specification of
Open Source in general, or a functional definition which permits or even favours
Open Source. The key is that the requirements of the specification (whether
favouring or excluding Open Source) have to pass the test of being objectively
justified.

PUBLIC SECTOR AND OPEN SOURCE  467

It is questionable how far, in many tendering exercises, objective justification
for the choices made was really a consideration, or, at least, the justifications were
being looked at too narrowly by the contracting authority, and it may be open to
question whether wider issues such as vendor lock-​in were considered.

In the final analysis, procurement law is about how contracting authorities go
about contracting, but it is neutral as to the content of the outcome of the tender
exercise, provided the process meets the requirements of, inter alia, transparency
and equal treatment. Those requirements may go some way towards levelling the
playing field for Open Source, but an essential element (especially for public au-
thorities who may have got too comfortable with their existing proprietary solu-
tions) is clear and coherent public policy guidance.130

Public procurement can be a valuable tool in levelling the playing field, but it
would be a mistake to see it as a panacea. Also critical to ensuring proper compe-
tition is the requirement for interoperability discussed further in Chapter 17.131
Without interoperability, proper competition is prevented: vendor lock-​in can
happen too easily.

Since the first edition of this book, the GPA has gathered more signatories; the
EU (and UK) regime is now, more than ever, receptive to the broader concerns
which Open Source is better equipped to meet than proprietary rivals may be, and
the EU and UK policy climate looks promising.

	 130	 See, for example, 21.4.2 and 21.5.6 above.
	 131	

PART 3

EVERY THING OPEN

Mark Radcliffe, Blockchain and Open Source In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Mark Radcliffe 2022. DOI: 10.1093/​oso/​9780198862345.003.0022

22
Blockchain and Open Source

Mark Radcliffe

	22.1	� Blockchain Systems � 473
	22.2	� Protocols and Clients � 474
	22.3	� Forking � 475
	22.4	� Code Review � 477
	22.5	� Bitcoin Client Licence Analysis � 479
		 22.5.1	� Bitcoin core client � 479
		 22.5.2	� Bitcoin SV client � 480
	22.6	� Ethereum Client Licence History � 481

	22.7	� Ethereum Client Licence
Analysis � 484

		 22.7.1	� CPP client � 484
		 22.7.2	� Parity client � 484
		 22.7.3	� Go client � 485
		 22.7.4	� Hyperledger Besu client � 485
		 22.7.5	� EOS � 486
		 22.7.6	� Corda � 486
	22.8	� Conclusions � 487

  

Blockchain technology has been described as one of the most important tech-
nologies in the last five years. It has potential application to multiple industries
and provides the opportunity to significantly improve existing business processes
and enable new businesses and on occasion. The discussion of the use of ‘Open
Source’ in blockchain requires an understanding of blockchain technology and the
broader category of Distributed Ledger Technology (DLT). The Cambridge Centre
for Alternative Financing (the Centre) in its 2018 ‘Distributed Ledger Technology
Systems: A Conceptual Framework’ (Cambridge Report)1 notes:

Distributed ledger technology (DLT) has established itself as an umbrella term
to designate multi-​party systems that operate in an environment with no central
operator or authority, despite parties who may be unreliable or malicious (‘adver-
sarial environment’). Blockchain technology is often considered a specific subset
of the broader DLT universe that uses a particular data structure consisting of a
chain of hash-​linked blocks of data.2

	 1	 Michel Rauchs, Andrew Glidden, Brian Gordon, et al. and Cambridge Centre for Alternative
Financing, ‘Distributed Ledger Technology Systems: A Conceptual Framework’ August 2018) <https://​
www.jbs.cam.ac.uk/​facu​lty-​resea​rch/​cent​res/​alte​rnat​ive-​fina​nce/​publi​cati​ons/​dist​ribu​ted-​led​ger-​tec​
hnol​ogy-​syst​ems/​> accessed 30 June 2022.
	 2	 Cambridge Centre for Alternative Financing, ‘Distributed Ledger Technology Systems: A
Conceptual Framework’, n.1, 12.

472  Mark Radcliffe

After reviewing how third parties have defined DLT and the limitations of those
definitions, the Cambridge Report suggests the following definition which is very
useful:

A DLT system is a system of electronic records that
	 i.	 enables a network of independent participants to establish a consensus

around
	 ii.	 the authoritative ordering of cryptographically-​validated (‘signed’)

transactions.
	 iii.	 These records are made persistent by replicating the data across multiple

nodes, and tamper-​evident by linking them by cryptographic hashes.
	 iv.	 The shared result of the reconciliation/​consensus process—​the ‘ledger’—​

serves as the authoritative version for these records.3

As noted earlier, one of the major challenges of discussing the use of Open
Source software in blockchain systems is understanding the technical details
of the software stack. However, the terms used to describe DLT are ambiguous.
The Cambridge Report describes this problem as follows: ‘The DLT ecosystem is
plagued with the use of incomplete and inconsistent definitions and a lack of stand-
ardised terminology, creating a needlessly complicated landscape for everyone
from experienced policymakers and developers to individuals venturing into the
field for the first time’,4 and

[a]‌dding to the challenge is that on the one hand, definitions are sometimes
too specific, technical and inaccessible to general audiences; while on the
other hand, some are too simplistic and broad so that no meaningful differ-
ence to more traditional database architectures can be observed. Either way,
a lack of common terminology has resulted in misconceptions and the wide-
spread formation of unrealistic expectations as to what this technology can
achieve.5

However, industry groups are trying to standardise or, at least, clarify these different
terms such as the work on tokens found in the Token Technology Framework, ini-
tially developed by the Token Taxonomy Initiative and now being managed by the
Interwork Alliance.

Given this reality, this summary has made a number of choices to avoid undue
complexity: (i) the chapter will use the term ‘blockchain’ rather than DLT because
it is more common and most of the software reviewed are blockchains; (ii) the

	 3	 Cambridge Centre, ‘DLT Systems’, see n. 1, 20.
	 4	 Cambridge Centre, ‘DLT Systems’, see note 1, 10.
	 5	 Cambridge Centre, ‘DLT Systems’, see note 1, 81.

BLOCKCHAIN AND OPEN SOURCE  473

chapter will use common terms such as node and block with the understanding
that their meanings may vary among different blockchains; and (iii) these systems
are so constantly evolving and this discussion is based on code audits by the Black
Duck Audit team at Synopsys, Inc. in September 2020 (and in the case of Besu and
Corda, January 2020) but are not publicly available.6

The Cambridge Report divides blockchain into three layers: (i) the protocol
layer; (ii) the network layer; and (iii) the data layer.7 This chapter will focus on the
‘protocol layer’ software such as Bitcoin, Ethereum, EOS, and Cordera. However,
the software stack for blockchain systems which build on top of these protocol
layers is very complex and varies based on the blockchain system. The protocol
layers, such as Bitcoin and Ethereum, are sometimes referred to as ‘Layer 1’ or
the ‘base layer’. Some blockchain systems also have ‘Layer 2’ software such as the
‘Lightening Network’ for Bitcoin. Blockchain systems also host application soft-
ware, with smart contacts, tokens, and ‘DApps’, all of which are software.

22.1  Blockchain Systems

This section will provide a more detailed discussion of blockchain technology.
Blockchain can be summarised as a distributed ledger based on blocks on which
transactions are recorded based on a consensus protocol; some blockchains, par-
ticularly public blockchains such as Ethereum and Bitcoin, are decentralised. The
transaction ledger is maintained simultaneously across a network of unrelated
computers or servers called ‘nodes’, like a spreadsheet that is duplicated thousands
of times across a network of computers. The decentralisation of a blockchain net-
work is not a simple matter of counting the number of nodes in the network be-
cause blockchain networks using the Proof of Work consensus protocol have found
that ‘miners’ aggregate into ‘mining pools’ who work together to solve the crypto-
graphic problems needed to get the right to publish the next block. The ledger con-
tains a continuous and complete record (the ‘chain’) of all transactions performed
which are grouped into blocks: a block is only added to the chain if the nodes,
which are members in the blockchain system, reach consensus on the next ‘valid’
block to be added to the chain. A transaction can only be verified and form part of
a candidate block if the nodes on the network needed by such a network's protocol
confirm that the transaction is valid; the method of determining this issue is called
the ‘consensus’ protocol.

A critical factor in the choice of consensus protocol for a blockchain system
is whether the system is public (‘permissionless’) like the Internet or struc-
tured within a private group like an intranet (‘permissioned’). ‘Permissioned’

	 6	 These are private scans and are not available on the Internet.
	 7	 Cambridge Centre, ‘DLT Systems’, see note 1, 11.

474  Mark Radcliffe

blockchains permit only certain pre-​approved participants to join the blockchain
system. Consequently, these blockchains can use a much wider number of con-
sensus protocols and the members can agree on rules that govern how the blocks
are recorded.

The best-​known consensus protocol is ‘Proof of Work’ which is used by the two
most widely known ‘permissionless’ blockchains, Bitcoin and Ethereum. The Proof
of Work consensus protocol requires that the ‘miner’ solve a computationally in-
tense cryptographic puzzle to get the right to publish the next block. However, other
types of consensus protocol exist. For example, the National Institute of Standard
and Technology ‘Blockchain Technology Overview’ (NIST Overview) describes
two other consensus protocols: Proof of Stake and Round Robin Consensus.8
Blockchains can also change their consensus protocol: the Ethereum blockchain is
moving to Proof of Stake as its new consensus protocol in 2002.

The ‘block’ is the fundamental unit of a blockchain system, and the data fields in
a typical block are described by NIST Overview as follows:

	 •	 The block number, also known as block height
	 •	 The current block hash value
	 •	 The previous block hash value
	 •	 The Merkle tree root hash (defined later in this chapter)
	 •	 A timestamp
	 •	 The size of the block
	 •	 The nonce value, which is a number manipulated by the mining node to solve

the hash puzzle that gives them the right to publish the block
	 •	 A list of transactions included within the block9

Once information is entered on the blockchain, it is extremely difficult to alter: a
blockchain system lacks a centralised point of vulnerability for hackers to exploit
and each block includes the previous block’s ‘hash’ of all previous blocks, so any
attempts to alter any transaction with the blockchain are easily detectable because
every block in the chain is affected. However, blockchains can be changed as de-
scribed shortly in the section on forking.

22.2  Protocols and Clients

One unusual aspect of some blockchain systems is the existence of ‘separate’
codebases which provide the same functionality. The rules of a blockchain system

	 8	 National Institute of Standards and Technology (NIST), US Department of Commerce, ‘Blockchain
Technology Overview’, Draft NISTIR 8202 (January 2018), 29–​30. <https://​doi.org/​10.6028/​NIST.
IR.8202> accessed 30 June 2022.
	 9	 NIST, ‘Blockchain Overview’, see note 8, 15–​16.

BLOCKCHAIN AND OPEN SOURCE  475

are described as a ‘protocol’; the codebase which implements the protocol is de-
scribed as a ‘client’. These codebases are developed and maintained by different
parties and frequently use different licences. For example, Ethereum has many cli-
ents, including Hyperledger Besu, CPP, Go, Quorum, and Parity. This chapter will
review the Open Source licences of three of these ‘clients’ for Ethereum.

22.3  Forking

Although forking is frequently described as a critical advantage of Open Source
software, it rarely happens to established Open Source projects. However, forks are
more frequent in blockchain networks and take on significant importance. Since
blockchains rely on a ‘chain’ of blocks using the protocol layer software, an update
to such software will have different effects based on the nature of the update. The
NIST Report describes the effects as follows:

A soft fork is a change to the technology that will not completely prevent users
who do not adopt the change (e.g., an update to the latest version) from using
the changed blockchain system. Since non-​updated nodes will recognize the new
blocks as valid, a soft fork can be backwards compatible, only requiring that a ma-
jority of nodes upgrade to enforce the new soft fork rules.10

An example of a soft fork of the Bitcoin blockchain was BIP 66 which dealt with
signature validation.

A hard fork is a change to the technology that will completely prevent users who
do not adopt it from using the changed blockchain system. Under a hard fork, the
blockchain protocol will change in a manner that requires users to either upgrade
to stay with the developer’s ‘main fork’ or to continue on the original path without
the upgrades. Users on different hard forks cannot interact with one another. Any
change to the block structure, such as the hashing algorithm choice, will require
a hard fork.11

The best-​known hard fork is the fork of the Ethereum blockchain to reverse prob-
lems in the smart contract which ran the Decentralized Autonomous Organization
(DAO) in 2016. The DAO was designed to automate investments in projects for the
Ethereum blockchain. The DAO raised about 12.7 million Ether which was worth
about US$150 million at the time. The DAO was hacked, and the hacker diverted
about $50 million in Ether, but it was temporarily ‘locked up’ due to the terms of

	 10	 NIST, ‘Blockchain Overview’, see note 8, 29.
	 11	 NIST, ‘Blockchain Overview’, see note 8, 29–​30.

476  Mark Radcliffe

the smart contract, and the hacker could not get access to it for twenty-​seven days.
After considering a soft fork, certain developers proposed a hard fork which was
implemented. However, the hard fork needed to be implemented by the node op-
erators, and about 89 per cent of the node operators accepted the new code and im-
plemented the hard fork. The Ethereum blockchain split into two chains: Ethereum
and Ethereum Classic. The Ethereum blockchain was composed of the nodes that
accepted the software upgrade to reverse the Ether investments in the DAO. The
Ethereum Classic blockchain was composed of the nodes that did not accept the
software upgrade to reverse the Ether investments in the DAO.

The philosophy of blockchain developers, with its focus on decentralisation
and empowerment of communities, ensured that Open Source licences would be
a natural fit for blockchain projects. Moreover, several of the early blockchain de-
velopers had participated in other Open Source projects. Early projects such as
Bitcoin and Ethereum were informally organised. The early days of the Ethereum
project were described in detail in the recent book, The Infinite Machine: How an
Army of Crypto-​Hackers in Building the Next Internet with Ethereum.12 Yet, Open
Source licensing has two major philosophies: permissive and copyleft. The licences
implementing these philosophies have very different obligations. The developers
of three of the early Ethereum clients selected copyleft licences. However, the de-
centralised nature of blockchain projects could raise challenges with the compli-
ance obligations of copyleft licences.

The different elements of technology underpinning blockchain has been in ex-
istence for decades, including e-​cash protocols from the 1980s and 1990s, but the
combination of technologies is revolutionary. It was described in Bitcoin: A Peer-​
to-​Peer Electronic Cash System (‘Bitcoin Whitepaper’)13 sent to an email list by
Satoshi Nakamoto (who is still unknown) in 2009. The Bitcoin Whitepaper put
these technologies together and started the blockchain revolution. Further, the
Bitcoin Whitepaper described a digital asset with no backing or ‘intrinsic value’
and without a centralised issuer. The Bitcoin Whitepaper also described the con-
cept of ‘distributed consensus’ to validate the new blocks in the chain. Bitcoin was
very successful as a store of value, but its limitations as a more general platform for
distributed applications encouraged Vitalik Buterin to develop a more flexible al-
ternative. During 2013 and 2014, he worked on designing the Ethereum protocol.
A group of developers assisted to work out the technical details of the Ethereum
blockchain as described in the Infinite Machine. The first client of the Ethereum
blockchain was distributed in early 2015.

	 12	 Camilo Russo, The Infinite Machine: How an Army of Crypto-​Hackers in Building the Next
Internet with Ethereum (New York, NY: Harper Business, 2020).
	 13	 Satoshi Nakamoto, ‘Bitcoin: A peer-​to-​peer electronic cash’ (31 October 2008) <https://​bitc​oin.
org/​en/​bitc​oin-​paper> accessed 10 December 2020.

BLOCKCHAIN AND OPEN SOURCE  477

22.4  Code Review

We have reviewed the codebases of two Bitcoin clients and four Ethereum clients
as well as two new blockchain platforms, EOS and R3’s Corda. EOS and Corda are
both platforms developed by corporations.

The audits were performed by the Black Duck Audit team at Synopsys, Inc.
which is one of the leading Open Source scanning companies. These audits in-
volve expert analysis using sophisticated software tools built on Black Duck
KnowledgeBase™ comprising the code from millions of Open Source projects. The
Black Duck audit process is described on the Synopsys website.14 As those who
have used Black Duck services are aware, the scan is the first step in understanding
the licences of a project and its compliance. Once the scan is complete, the actual
interaction of the software files must be reviewed based on potentially conflicting
obligations in their licences. For example, the General Public Licence version 2
(GPLv2) has obligations that conflict with the obligations of the Apache Software
Licence version 2 (Apache), but this conflict in obligations is only relevant if the
projects under these two licences interact in a way which would trigger the obliga-
tions in the licence. In this case, the Apache licensed project would need to interact
with the GPLv2 licensed project in a manner which creates a ‘derivative work’ as
defined in the GPLv2. The review of this interaction is very technical and fact in-
tensive. The author has not been able to perform this level of review, so the notes
on the scans are indicative of potential problems rather than confirmed problems.
Black Duck reports provide the total number of files in the project and distin-
guishes between the files which are in Black Duck KnowledgeBase (which the au-
thor refers to as ‘third-party open source software’) and the files which are not in
their database and, thus, are assumed to be original. The third-party Open Source
software may be complete projects or ‘snippets’ from other projects. Black Duck
reports also use three terms in describing potential conflicts: broach reach, narrow
reach, and component. A ‘broad reach’ conflict ‘refers to the fact that (i) the reach
of the licence goes well beyond the Open Source code that the licence comes with
or (ii) it’s difficult to use the code in a way that avoids a conflict. It refers to licences
which apply to the entire derivative work (such as GPLv2).15 A ‘narrow reach’ con-
flict refers to ‘[l]‌icenses in this category also have a declared conflict. However, they
typically have less reach or are easier to use appropriately to prevent a conflict.’ The
Common Development and Distribution Licence is an example of a licence in this
category. Generally, licences in this category generally have a narrower scope for
interaction with third-​party files.16 A ‘component conflict’ refers to a ‘status with

	 14	 <https://​www.synop​sys.com/​softw​are-​integr​ity/​mana​ged-​servi​ces/​Open Source-​software-​audit.
html> accessed 10 December 2020.
	 15	 <https://​www.synop​sys.com/​blogs/​softw​are-​secur​ity/​Open Source-​license-​risks/​> accessed 10
December 2020.
	 16	 <https://​www.synop​sys.com/​blogs/​softw​are-​secur​ity/​Open Source-​license-​risks/​> accessed 10
December 2020.

478  Mark Radcliffe

two or more components have licences that conflict with one another but can be
used safely by themselves in a commercial codebase’.17 Such licences do not conflict
with the ‘declared’ project licence but potentially conflict with the licences for other
components.

The scans for the projects based on Java (HyperLedger Besu and R3’s Corda)
were limited to the code in the GitHub repository because these files are typically
calling other .jar files for the dependencies, and .jar files are generally considered
dynamically linked. Most Open Source lawyers believe that dynamic linking rarely
triggers obligations under Open Source licence between linked projects. However,
the codebases for both Bitcoin clients, the other three Ethereum clients, and EOS
in Github were built using their dependencies, and the scan is based on the ‘built’
project.

Black Duck based on its audits of software for its clients estimated in 2021 that
seventy five percent (75%) of the code in software programs used by corporations
is Open Source software.

The Bitcoin clients have significant amount of third-​party Open Source pro-
jects: 78 per cent and 83 per cent. Both clients are under permissive licences, the
MIT licence and a variant of the MIT licence. The Bitcoin clients also have a sig-
nificant number of potential conflicts: Bitcoin SV (19 per cent) and Bitcoin (16 per
cent) which suggests the difficulty of managing Open Source compliance in decen-
tralised projects.

The earliest three Ethereum clients also included very significant amounts of
third-​party Open Source projects with 77 per cent, 84 per cent, and 88 per cent.
They were also offered under copyleft project licences which require management
of contributions to ensure compliance with the copyleft project licences. They
also have a significant number of potential conflicts with the CPP Client (25 per
cent), Parity Client (9 per cent), and Go Client (14 per cent). On the other hand,
the Ethereum client developed by Pegasys, Hyperledger Besu, has very low third-​
party Open Source projects at 1 per cent. It is licensed under the Apache Software
Licence version 2 to make it more attractive to corporate users.

The two company run projects, Corda and EOS, have very different profiles. R3’s
Corda has only 5 per cent third-​party Open Source projects and has only 9 per cent
potential licence conflicts. Corda is under a permissive licence, Apache Software
Licence version 2. EOS has 42 per cent third-​party Open Source projects with 24
per cent potential licence conflicts. EOS is under the MIT licence.

	 17	 <https://​www.synop​sys.com/​blogs/​softw​are-​secur​ity/​Open Source-​license-​risks/​> accessed 10
December 2020.

BLOCKCHAIN AND OPEN SOURCE  479

22.5  Bitcoin Client Licence Analysis

Bitcoin is the first blockchain and is based on the Bitcoin Whitepaper by Satoshi
Nakamoto which was published in 2008. The original Bitcoin client was released
on 9 January 2009. This history of Bitcoin and its clients is complex and opaque.
Bitcoin.org lists fifty-​four Bitcoin clients. The chapter will review two of the more
commonly used clients.

Bitcoin Core was initially named Bitcoin-​Qt. It was the third Bitcoin client
and developed by Wladimir van der Laan based on the original reference code by
Satoshi Nakamoto. Bitcoin-​Qt version 0.5.0 was released on 1 November 2011.
Bitcoin-​Qt introduced a front end that uses the Qt user interface toolkit.

Bitcoin SV (Satoshi’s Vision) is a fork of Bitcoin Cash client. Bitcoin Cash was
released on 1 August 2017 as part of the ‘bitcoin scalability debate.’ The hard
fork of Bitcoin Cash resulted in two competing coins: Bitcoin ABC (Adjustable
Blocksize Cap) and Bitcoin SV. The fork was due to a disagreement over how to
best solve the problem of ‘scalability’ in the Bitcoin blockchain. Bitcoin SV was
led by Craig Wright who claims to be Satoshi Nakamoto, the original developer
of Bitcoin.

22.5.1  Bitcoin core client

The scan of the Bitcoin Core client is for Version 0.19.0.1. and was performed on
4 September 2020. The project licence is MIT. The project includes 83 per cent
third-​party Open Source software. The project has 30,390 files of which 25,194
files include third-​party Open Source software. These third-party Open Source
files have seventy-six different third-party Open Source components under
twenty-nine different Open Source licences. Synopsys noted that 16 per cent of
the components are licenced under licences which could potentially cause con-
flicts. Under the BlackDuck analysis, three files (within one component) have a
‘broader reach’ licence conflict and no files have a ‘narrower reach’ licence con-
flict. The Bitcoin Core client has 1,009 files within eleven components that have
potential component conflicts. The licences for the components of the project
include many traditional Open Source licences including many copyleft licences
such as General Public Licence version 2 (or later) (GPLv2+​), General Public
Licence version 3 (or later) (GPLv3+​), Affero General Public Licence version
3, LGPL version 2.1 (or later), and LGPL version 3 (or later), as well as many
permissive licences. However, it includes some unusual licences such as Licence
for AMD64 Patch by Mikhail Teterin which provides a licence under Berkeley
Software Distribution (BSD) but prohibits ‘use by owners of Che Guevarra para-
phernalia’ where possible.

480  Mark Radcliffe

22.5.2  Bitcoin SV client

The scan of the Bitcoin SV client is for Version 1.0.0 and was performed on 4
September 2020. The project licence is Open BSV Licence, a licence specially
drafted for the project (and it has not been submitted for or approved by the Open
Source Initiative (OSI) as an ‘Open Source’ licence). The original text of the Open
BSV Licence is set forth below:

The Open BSV License

Copyright (c) 2019 The Bitcoin SV developers
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the ‘Software’), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/​or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

1—​The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
2—​The Software, and any software that is derived from the Software or parts

thereof,
can only be used on the Bitcoin SV blockchain. The Bitcoin SV blockchain is

defined,
for purposes of this license, as the Bitcoin blockchain containing block height

#556767
with this hash: 000000000000000001d956714215d96ffc00e0afda4cd0a96c96f8

d802b1662b.
THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.18

The Open BSV Licence is the MIT licence with the addition of the following
sentence:

	 18	 <https://​git​hub.com/​bitc​oin-​sv/​bitc​oin-​sv/​com​mit/​e6474ba84db58​d8ad​f013​54a8​c129​31a9​d7e8​
d3d> accessed 10 December 2020.

BLOCKCHAIN AND OPEN SOURCE  481

2—​The Software, and any software that is derived from the Software or parts
thereof,

can only be used on the Bitcoin SV blockchain. The Bitcoin SV blockchain is
defined,

for purposes of this license, as the Bitcoin blockchain containing block height
#556767

with this hash: 000000000000000001d956714215d96ffc00e0afda4cd0a96c96f8
d802b1662b.

This modification is meant to prevent forking. However, it is not consistent
with the Open Source Definition (OSD) and thus would probably be rejected
by the OSI if it was submitted to qualify as ‘open source’. This provision would
also be inconsistent with the terms of the GPLv2+​ and GPLv3+​ if the projects
licensed under the GPLv2+​ and GPLv3+​ interact with the project licensed
under the Open BSV Licence in a manner which creates a ‘derivative work’ or
‘modification’.

The project includes 78 per cent third-​party Open Source software. The
project has 41,268 files of which 32,365 files include third-​party Open Source
software. These third-​party Open Source files have seventy-​nine different third-​
party Open Source components under twenty-​seven different Open Source li-
cences. BlackDuck noted that 19 per cent of the components are licensed under
licences which could potentially cause conflicts. Under the BlackDuck analysis,
three files (within one component) have a ‘broader reach’ licence conflict and no
files have a ‘narrower reach’ licence conflict. The project also includes 7,291 files
within fourteen components that have potential component conflicts. Similar
to the Bitcoin Core project, the licences for the project include many traditional
Open Source licences including many copyleft licences such as GPLv2+​, GPLv3+​,
Affero General Public Licence version 3, LGPL version 2.1 (or later), and LGPL
version 3 (or later), as well as many permissive licences. Once again, similar
to Bitcoin Core project, it includes some unusual licences such as Licence for
AMD64 Patch by Mikhail Teterin (just as in Bitcoin Core) which provides a li-
cence under BSD but prohibits ‘use by owners of Che Guevarra paraphernalia’
where possible.

22.6  Ethereum Client Licence History

We are fortunate to have insight into the discussions concerning licensing of one of
the first Ethereum clients, cpp-ethereum (sometimes referred to as the C++ client
and now named ‘aleth’) (“CPP Client”) through the assistance of one of the partici-
pants in these discussions. He worked as part of the team of developers on the CPP
Client and tried to organise a relicensing of the project.

482  Mark Radcliffe

The CPP Client was developed primarily by Gavin Wood both before and during
the meetings in Switzerland among the Ethereum founders about how to legally
structure the Ethereum project. The discussion of the licences started in December
2013 with a wider range of proposals from public domain to permissive to copyleft:

Thursday, 26 December 2013
[16:29:14] vbuterins: also, for formality’s sake, we should nail down the
licenses for all of our open source stuff
[16:29:27] vbuterins: I’ll make mine public domain
[16:31:20] Charles Hoskinson: BSD, Apache, MIT
[16:31:33] Charles Hoskinson: You could also use GNU
[16:34:45] Charles Hoskinson: <http://​ope​nsou​rce.org/​licen​ses>
Friday, 27 December 2013
[09:37:17] gavofyork: i’ve gone with GPLv2.19

Gavin Wood (gavofyork), the major author of the CPP Client, decided upon
GPLv2. After Gavin’s announcement, the developers continued to argue on
Github20 about the appropriate licence for the CPP Client. One developer asserted
that the GPLv2 was ‘too restrictive’. Vitalik Buterin suggested CC0 Another devel-
oper stated that CC0 goes ‘too far’ and suggested the use of, the Creative Commons
Attribution Licence (CCBY).21 Although Gavin Wood initially adopted GPLv2, he
quickly switched to ‘GPLv3 and future versions’ (GPLv3+​). This dialog continued
with Gavin Wood promising in January 2014 that the ‘license will be changed to
something more liberal in due course’. In a posting on 11 July 2014, Nick Savers
stated that Vitalik Buterin had selected ‘MIT’ for the CPP Client on 1 February.
However, Gavin Wood responded that ‘license is and has always been GPL’ on 15
October 2014.Yet, the dialogue continued with a developer on 7 December 2014,
stating:

When is due course?
But now the issue is closed. If you actively want to hinder the adoption of this
code, keep the GPL license. Many companies will not take the risk of building
their solutions on GPL code, or likely can’t even find a business case for it all. If
you want to protect the direction of the code, then at least use LGPL. (Though
MIT is clearly the simplest license to understand.)

For us GPL is a no go—​we would have to use the Go or Python or Java imple-
mentation, even though C+​+​ would fit much better.

	 19	 <https://​git​hub.com/​ether​eum/​aleth/​iss​ues/​3> accessed 10 December 2020.
	 20	 <https://​git​hub.com/​ether​eum/​aleth/​iss​ues/​3> accessed 10 December 2020.
	 21	 <https://​crea​tive​comm​ons.org/​licen​ses/​by/​4.0/​> accessed 17 July 2022.

BLOCKCHAIN AND OPEN SOURCE  483

However, realistically, probably no one is going to implement a clean room
implementation from scratch in C+​+​. If strict clean room principles are em-
ployed, the team doing it can’t even look at your C+​+​ code, unless they want to
use GPL too.22

Gavin Woods responded the next day to the question of ‘when is due course’ with
‘[a]‌fter the PoC, release series. Specifically alpha or beta. At present, I expect we
will move the core to LGPL.’ However, this change was never made.

In 2016, Bob Summerwill started a campaign to change the licence from
GPLv3+​ to a permissive licence. During the discussions, several developers noted
that they had signed an agreement to shift the licence of the CPP Client to MIT in
August 2015, but the documents appeared to have been lost and a number of the
developers had not signed it. Bob started his formal campaign in May 2016 with a
message to the developers in the CPP Client:

As you are probably aware, efforts were made in 2015 to clarify the licensing of
various components within Ethereum, namely liberalizing the core to encourage
the broadest possible adoption for Ethereum. We never completed that effort.

The licensing for cpp-​ethereum itself has flip-​flopped a few times and we aren’t
in a particular clear state right at the moment. To my knowledge we have never
had a Contributor License Agreement (<https://​en.wikipe​dia.org/​wiki/​Contri​
buto​r_​Li​cens​e_​Ag​reem​ent>) as is standard on many FOSS [Free and Open
Source Software] projects.

The purpose of a CLA is to ensure that the guardian of a project’s outputs has
the necessary ownership or grants of rights over all contributions to allow them to
distribute under the chosen licence.

With more and more projects looking to build on top of Ethereum, it is im-
portant that we have appropriate licensing and most important CLARITY of
licensing:-​)

In particular, we have an opportunity for Ethereum to become a founda-
tional piece of Hyperledger, following Vitalik’s very successful presentation to the
Hyperledger Tech Steering Committee in April, but that cannot happen while we
have ambiguity of licensing and copyright.23

On 26 August 2016, he announced that he was circulating the documents to devel-
opers to change the licence to Apache Software Licence version 2. He then spent
the next five months trying to get the developers to sign the necessary documents
to change the licence. However, he was not successful, in part because Gavin Wood,

	 22	 <https://​git​hub.com/​ether​eum/​aleth/​iss​ues/​3218> accessed 10 December 2020.
	 23	 <https://​git​hub.com/​ether​eum/​aleth/​iss​ues/​575> accessed 10 December 2020.

484  Mark Radcliffe

the largest copyright holder in the CPP Client, would not agree to sign the transi-
tion documentation.

22.7  Ethereum Client Licence Analysis

We will now turn to analysis of the scans of the four major Ethereum clients: (i)
CPP Client; (ii) Go client; (iii) Parity client; and (iv) HyperLedger Besu client.

22.7.1  CPP client

The scan of the CPP Client is for Version 1.8.0 and was performed on September
4, 2020. As noted above, the CPP Client was one of the first clients developed
for Ethereum. Gavin Wood started the work and did most of the initial coding.
The project licence is GPLv3+​. The choice of this licence was subject to extensive
discussion and attempts to change it to a permissive licence as discussed above.
The project includes 84 per cent third-​party Open Source software. The project
has 28,298 files of which 23,703 files are third-​party Open Source software. These
third-​party Open Source files have 123 different third-​party Open Source com-
ponents under thirty different Open Source licences. The Black Duck report indi-
cated that 25 per cent of the components are licenced under licences which could
potentially cause conflicts. Under the BlackDuck analysis, 350 files (within seven
components) have a ‘broader reach’ licence conflict and four files within one com-
ponent have a ‘narrower reach’ licence conflict. The CPP Client also includes 4,401
files within twenty-​three components that have potential ‘component conflicts’.
The project includes some unusual licences such as the Licence for Caramel (a li-
cence from Trustees of the University of Illinois and University of Notre Dame)
which requires a notice in the documentation and the ‘Crypto Licence’ which pro-
vides that twelve individuals agree to place twenty projects in the public domain.

22.7.2  Parity client

The scan of the Parity Client is for Version 2.6.8 and was performed on 4
September 2020. After Gavin Wood left the group of founders of Ethereum and
his role as Chief Technical Officer of the Ethereum Foundation, he helped start
Parity Technologies (Parity) in 2015. Parity developed this new Ethereum client.
The project licence is GPLv3. The project includes 88 per cent third-​party Open
Source software. The project has 11,364 files of which 9,980 files include third-​
party Open Source software. These third-​party Open Source files have 361 dif-
ferent third-​party Open Source components under twenty-​three different Open

BLOCKCHAIN AND OPEN SOURCE  485

Source licences. BlackDuck noted that 9 per cent of the components are licensed
under licences which could potentially cause conflicts. Under the BlackDuck ana-
lysis, 158 files (within twelve components) have a ‘broader reach’ licence conflict
and forty-​five files within four components have a ‘narrower reach’ licence conflict.
The Parity Client also includes 1,708 files within sixteen components that have po-
tential ‘component conflicts’. The licences for the project include many traditional
Open Source licences, but it includes one unusual licence, the Unicode Licence for
Data Files and Software 2004.

22.7.3  Go client

The scan of the Go Client is for Version 1.9.9 and was performed on 4 September 2020.
The Go client (now named ‘Geth’) was one of the first three Ethereum clients. It was
developed at the same time as CPP Client. Jeffrey Wilcke started the work and did
most of the initial coding. Jeffrey Wilcke worked with Gavin Wood to ensure that both
clients worked on the Ethereum network. The project licence is LGPL version 3 or
later versions (LGPLv3+​’. The project includes 77 per cent third-​party Open Source
software. The project has 13,379 files of which 10,263 files include third-​party Open
Source software. These third-party Open Source files have 106 different third-party
Open Source components under twelve different Open Source licences. Black Duck
analysis noted that 14 per cent of the components are licenced under licences which
could potentially cause conflicts. Under the Black Duck analysis, 100 files (within one
component) have a ‘broader reach’ licence conflict but no ‘narrower reach’ licence
conflict. The Go Client also includes 5,133 files within fourteen components that have
potential ‘component conflicts.’

22.7.4  Hyperledger Besu client

The scan of the Hyperledger Besu Client (Besu Client) is for Version 1.4.0 and was
performed on 23 January 2020. The Besu Client, originally named Pantheon, was
developed by the Pegasys team, an affiliate of Consensys. The Pantheon project
was developed to make the Ethereum blockchain more attractive to enterprises by
using the Java language and adopting the permissive Apache Software Licence. In
an interview with Coindesk, Faisal Khan, head of strategy and business develop-
ment at Pegasys, stated: ‘When I used to work on the consulting side of the house at
ConsenSys, basically legal departments would just throw up a roadblock if you try
to use a GPL in production.’24

	 24	 <https://​www.coind​esk.com/​ether​eum-​softw​are-​cli​ent-​ent​erpr​ise-​panth​eon-​pega​sys-​consen​
sys> accessed 10 December 2020.

486  Mark Radcliffe

After its launch, Pegasys donated Pantheon to the Hyperledger Project of the
Linux Foundation, and it was renamed Hyperledger Besu. The project licence is
Apache Software Licence version 2. The project includes less than 1 per cent third-​
party Open Source software. The project has 2,714 files of which five files include
third-​party Open Source software under six different Open Source licences. These
five files have thirty-​two different third-​party Open Source components. The Open
Source licences for the components are virtually all permissive licences except for
OpenJDK which is licensed under GPLv2 with the Classpath exception. Under the
BlackDuck analysis, one file (within one component) has a ‘broader reach’ licence
conflict. The Hyperledger Besu Client does not have any files with potential ‘com-
ponent conflicts’.

22.7.5  EOS

EOSIO is the blockchain software developed by a private company, Block.one. The
EOSIO software is based on a white paper published on 17 September 2017. Block.
one hosted one of the largest Initial Coin Offerings (ICOs), selling over 900 million
tokens, raising several billion dollars. The Securities and Exchange Commission
(SEC) asserted that the ICO was an unregistered securities offering and Block.one
settled with the SEC for $24 million in 2019. Version 1 of the EOSIO software was
released on 2 June 2018.

The scan of the EOSIO software is for Version 2.0.0 and was performed on 4
September 2020. The EOSIO software is licensed under the MIT licence. The pro-
ject includes 42 per cent third-​party Open Source software. The project has 13,799
files of which 5,735 files include third-​party Open Source software. These third-​
party Open Source files have ninety-​nine different third-​party Open Source com-
ponents under twenty-​four different Open Source licences. Black Duck noted that
23 per cent of the components are licensed under licences which could potentially
cause conflicts. In addition, two components were from a proprietary third party.
Under the BlackDuck analysis, none of the projects have ‘broader reach’ licence
conflict or ‘narrower reach’ licence conflict. The EOSIO software also includes
2,013 files within twenty-​three components that have potential component con-
flicts. Although the EOSIO project licence is the permissive MIT licence, the pro-
ject includes a number of components under copyleft licences including GPLv2
and GPLv3.

22.7.6  Corda

Corda is the blockchain software developed by a private company, R3, and, ini-
tially, a consortium of financial institutions. Although the Corda software was

BLOCKCHAIN AND OPEN SOURCE  487

initially released in April 2016, it was quickly released as an Open Source licence
on 30 November 2016. At the time, David Rutter, the CEO of R3, noted:

Blindly investing millions of dollars in small, disparate technology projects is not
appropriate for banks at a time when budgets are stretched. The risk of backing
the wrong horse could far outweigh the potential gains. Given that the power
of this technology lies in its network effect, the consortium model is the ideal
method to get it off the drawing board and into the wholesale financial markets.25

The scan of the Corda software is for Version 4.4 and was performed on 23
January 2020. The Corda software is licensed under the Apache Licence ver-
sion 2 and includes very little third-​party Open Source software. The project in-
cludes 5 per cent third-​party Open Source software. The project has 3,235 files
of which 159 files include third-​party Open Source software. These third-​party
Open Source files come from 168 different third-​party Open Source components
under twenty-​three different Open Source licences. Synopsys noted that 9 per
cent of the components are licensed under licences which could potentially cause
conflicts. Under the BlackDuck analysis, four files (within three components)
have a ‘broader reach’ licence conflict and seven files (within seven components)
have a ‘narrower reach’ licence conflict. The Corda software also has four files
within six components that have potential ‘component conflicts’. Although the
Corda project licence is the Apache Software Licence version 2, the project in-
cludes some files under GPLv2 with the Classpath exception, LGPL version 2.1
and LGPL version 3.0.

22.8  Conclusions

Open Source software is critical to the success of the blockchain ecosystem, but it
has not received much attention. This review of project licence selection and bill of
materials results in two major conclusions.

The first conclusion is the difference in approach relating to project licence se-
lection for the Bitcoin and Ethereum clients as well as the blockchain software
developed by corporations, EOS and Corda. The project licences for the initial
Ethereum clients, the CPP Client, Parity Client, and Go Clients were copyleft li-
cences, the most restrictive licences. Although copyleft licences are widely used
outside of the blockchain markets, they impose significant compliance problems
because of their uncertain scope and, consequently, are viewed as risky by cor-
porations. The discussion of project licence selection for the CPP Client which is

	 25	 <https://​www.reut​ers.com/​arti​cle/​idUSKC​N12K​17E> accessed 10 December 2020.

488  Mark Radcliffe

recorded in Github is remarkable for the lack of reference to the experience of other
Open Source projects in the last thirty years as well as the lack of any advice from
lawyers. The selection of GPLv3 +​ for the CPP Client was very unusual because the
GPLv3 licence has not been widely adopted due to its complexity. In my experi-
ence, the discussion echoes licence selection discussions for projects in the early
2000s. The last twenty years has resulted in most Open Source software projects
which need corporate adoption for success. Particularly, ‘infrastructure’ or plat-
form software is licensed under a permissive licence with the Apache licence being
very popular. The reluctance of corporations to adopt Ethereum due to licence
considerations became sufficiently serious that Consensys, the Ethereum-​focused
conglomerate, arranged to have a new Ethereum client developed so it could be li-
censed under a permissive licence. This client, the Hyperledger Besu client (origin-
ally the Pantheon client), was licensed under the Apache licence. Faisal Khan, head
of strategy and business development at Pegasys, was very direct about this goal
in an interview with Coindesk: ‘When I used to work on the consulting side of the
house at ConsenSys, basically legal departments would just throw up a roadblock
if you try to use a GPL in production.’26 The project licence for Bitcoin Core is the
permissive licence, MIT. MIT appears to be the preferred licence of many Bitcoin
clients and their forks. We do not have a record of how this selection was made,
but it significantly reduces the complexity of licence compliance. The project li-
cence selection for corporate developed platforms, such as EOS and Corda, reflect
an understanding of the challenges of copyleft licences. Both platforms are licensed
under ‘permissive’ licences, MIT for EOS and Apache for Corda.

The second and more challenging issue is licence compliance in a ‘decentralised’
platform. This issue is particularly serious for the three initial Ethereum clients
which are licensed under copyleft licences which require more careful attention to
licence compliance than permissive licences. Once again, the results are different
between the ‘decentralised’ software platforms such as the Bitcoin clients and the
first three Ethereum clients and the corporate developed software. The decentral-
ised software platforms, such as the Bitcoin clients, have a significant amount of
third-​party Open Source projects: 78 per cent and 83 per cent. The Bitcoin clients
also have a significant number of potential conflicts: Bitcoin SV (19 per cent) and
Bitcoin Core (16 per cent). Similarly, the three earliest Ethereum clients also in-
cluded very significant amounts of third-​party Open Source projects with 77 per
cent, 84 per cent, and 88 per cent. They also have a significant number of potential
licence conflicts with the CPP Client (25 per cent), Parity Client (9 per cent), and Go
Client (14 per cent). On the other hand, the corporate developed Ethereum client
(developed by Pegasys) and the one of two corporate developed blockchain plat-
forms had a much lower amount of third-​party Open Source projects: Hyperledger

	 26	 <https://​www.coind​esk.com/​ether​eum-​softw​are-​cli​ent-​ent​erpr​ise-​panth​eon-​pega​sys-​consen​
sys> accessed 10 December 2020.

BLOCKCHAIN AND OPEN SOURCE  489

Besu (1 per cent) and Corda (5 per cent). They also have lower percentages of po-
tential licence conflicts: Hyperledger Besu (only one potential conflict) and Corda
(9 per cent). EOS is an outlier in this group of blockchain software developed by
corporations with 42 per cent third-​party Open Source projects and 24 per cent
potential licence conflicts.

This chapter has not addressed the potential issues arising from the interaction
of the software at Level 1 with the software implementing Level 2 functionality and
DApps. The blockchain ecosystem is complex and multilayered with a strong de-
pendence on Open Source software. This complexity and the decentralised nature
of the blockchain projects means that Open Source licence selection and compli-
ance are likely to be important issues in the blockchain ecosystem for the foresee-
able future.

Andrew Katz, Open Hardware In: Open Source Law, Policy and Practice. Edited by: Amanda Brock, Oxford University Press.
© Andrew Katz 2022. DOI: 10.1093/​oso/​9780198862345.003.0023

23
Open Hardware

Andrew Katz

	23.1	� Introduction � 490
	23.2	� What is Hardware? � 490
	23.3	� A Brief History � 491
	23.4	� The Open Source Hardware

Definition � 493
		 23.4.1	� The Open Source Hardware

Statement of Principles � 493
		 23.4.2	� The Open Source Hardware

Definition � 493
	23.5 � Hardware and Reciprocity

(Copyleft)—Intellectual
Property� 496
23.5.1 � Reciprocity and the costs

of reverse engineering� 498
23.5.2  The boundary problem� 499

23.5.3 � The competing copylefts
problem� 501

	23.6 � Hardware and Other Forms of
Intellectual Property Right� 501
23.6.1  Patents� 501
23.6.2 � Design rights, database

rights, and other intellectual
property rights� 503

	 23.7	� Specific Open Hardware
Licences � 503

	23.8 � Non-​copyleft Hardware
licences � 508

	 23.9	� Open Source Hardware:
Development Models � 508

	23.10 � Conclusion � 511
  

23.1  Introduction

Open hardware has taken a slower and more cautious route to success than Open
Source software, and in many ways lags behind it. At this juncture, there are far fewer
businesses operating in the world of open hardware, and those businesses are less
prominent and successful (although there are signs that this is rapidly changing).
There are also far fewer specific open hardware licences than Open Source licences
(which many will say is a good thing), and there are still fundamental questions about
the applicability of various different forms of intellectual property right (IP) to dif-
ferent aspects of hardware.

23.2  What is Hardware?

Hardware can cover everything from printed circuit boards to silicon chip designs,
to cases for computer hardware, to mechanical devices, artistic objects, and even
liquids like cola or beer. Ultimately, some physical matter—​atoms—​must be in-
volved. Whereas information, software, and content as intangible assets can remain

OPEN HARDWARE  491

in the abstract domain1 (in some cases, until the instant they are used or consumed
by someone), it is a characteristic of hardware that it consists of physical material.

23.3  A Brief History

The concept of ‘openness’ only became necessary to counterbalance societal or le-
gislative processes which began to apply restrictions such as copyright or patent—​
to ‘close’—​what had inevitably, in its embryonic stages, been open. As explored in
Chapter 24, ‘openness’ (in the sense of freedom of use) only becomes an issue for
hardware, as with any asset class, once the law or norms restricted the use of that
hardware through the imposition of IP. As we will see shortly, IP affects hardware,
although the scope and effect of coverage can be quite different from the way in
which IP affects software.

The evident success of Open Source instigated the exploration of a similar con-
cept for hardware: open hardware or open source hardware.2 For example, Bruce
Perens, one of the founders of the Open Source Initiative (OSI), established the
Open Hardware Certification Program in 1997.3 This was a process which allowed
organisations providing electronic devices to self-​certify that the interfaces of their
designs were documented in order to facilitate the programing of device driver
software. The focus, therefore, was not so much on the design documentation for
the device itself but the ability for the device (e.g. a printer) to be accessible to a
broad range of software. This would give comfort to purchasers of the equipment
that it would (at least in theory) be possible for them to continue to use their equip-
ment should they change their operating system, or if the manufacturer of the
equipment went out of business and no longer provided software updates.4

Other initiatives focused more on the design of the hardware itself, such
as FreeIO and the OpenGraphics project, and, in parallel, the growing maker

	 1	 More recently, this is usually digital, but information can exist in analogue form which is still ab-
stract such as a series of fluctuations in the magnetic domains on a tape medium such as a compact
cassette.
	 2	 Although the definition of ‘open source hardware’ promulgated by the Open Source Hardware
Association (see later in the chapter), there is no such consistent definition for ‘open hardware’.
Originally, ‘open hardware’ was used for hardware with freely available interface information (even if
there was no access to the designs for the hardware coupled with a right to modify and recreate them)
and ‘open source hardware’ for hardware where the designs were available for copying, modification,
making, and distributing the product, and redistribution of the product and the design. The definitions
are now somewhat blurred: for example, the CERN Open Hardware Licence is very much intended to
allow the designs to be made available, so to that extent it may also be considered to be an Open Source
Hardware licence.
	 3	 <https://​web.arch​ive.org/​web/​199​8121​2031​618/​http://​www.openh​ardw​are.org/​> accessed 20 April
2022.
	 4	 See n 3.

492  Andrew Katz

movement, meetups, and groups developed such as the Open Source Hardware
Camp5 and OGGCamp, both in the UK. In 2010, the first Open Hardware Summit
was held in New York, and the germ of an open source hardware definition was es-
tablished, and developed throughout that year, with version 1.0 finally published
in early 2011.6 The Open Source Hardware Association has proven to be longer
lasting than many previous open hardware associations, and held its 10th and 11th
summits (albeit virtually, owing to COVID-​19) in 2020 and 2021. As well as pro-
moting the Open Source Hardware Definition, and holding an annual summit, it
has a certification program which allows organisations providing Open Source
Hardware (OSHW) to obtain a certification that their designs are compliant.7 At
the time of writing, 1,484 hardware designs were certified.8

Between 2010 and 2022, open hardware has matured, with the growing success
of projects such as Arduino (a family of open source hardware microcontroller
boards), RepRap (a 3D printer which is itself available as open hardware), and,
more recently, open source chip designs such as those based on the RISC-​V in-
struction set architecture. The BBC launched a low-​cost open hardware microcon-
troller aimed at education (the micro:bit) in 2015 with the first units delivered to
children in 2016.

Open hardware also gained ground in research and academia: as well as RepRap
mentioned earlier, which was developed by Adrian Bowyer at Bath University,
CERN launched the White Rabbit Project, a mechanism for timing events to sub-​
nanosecond accuracy using the well-​understood Ethernet networking protocol
as its base. The project was initiated as a result of proposals presented by Javier
Serrano in 2008, and also led to launch of the CERN Open Hardware Repository
and the launch of the first version of the CERN Open Hardware Licence in 2011.9

A particularly interesting area of open source hardware is open source silicon.
Silicon chip designs have been released under Open Source licences for some time
(e.g. Sun Microsystems released OpenSPARC under the GNU General Public
License version 2.0 (GPLv2) in 2005). Since then, several chip designs have been
released under Open Source licences,10 and companies such as Western Digital
Corporation and SiFive have developed products using microprocessor core de-
signs based on the Risc-​V instruction set architecture. SiFive has at the date of
writing received a total of US$365.5 million in investment, giving it an overall

	 5	 Now incorporated into the splendidly named Wuthering Bytes tech festival which takes place in
Yorkshire in the UK every year (with a name like that, where else?). <https://​wut​heri​ngby​tes.com/​> ac-
cessed 20 April 2022.
	 6	 <https://​fre​edom​defi​ned.org/​OSHW> accessed 20 April 2022.
	 7	 <https://​certif​icat​ion.oshwa.org> accessed 20 April 2022.
	 8	 <https://​certif​icat​ion.oshwa.org/​list.html> accessed 20 April 2022.
	 9	 Javier Serrano is still involved in both projects and is a member of the core drafting team for the
CERN OHL.
	 10	 A Katz ‘A Survey of Open Processor Core Licensing’, JOLTS Vol 10.1 <https://​www.jolts.world/​
index.php/​jolts/​arti​cle/​view/​130> accessed 20 April 2022.

OPEN HARDWARE  493

market value of over US$1 billion at the share value for the most recent funding
round.11

Perhaps the most significant indicator that open source hardware has come of
age is that the European Commission in 2019 issued a call for tenders for a research
project with a scope which explicitly covers open hardware, to examine techno-
logical independence, competitiveness, and innovation in the EU economy.12 The
final report was delivered in March 2021.

23.4  The Open Source Hardware Definition

The Open Source Hardware Definition and its associated Statement of Principles
rely heavily on the Open Source Definition (OSD) developed by the OSI, and the
Four Freedoms of the Free Software Foundation, respectively. It is a nice illustra-
tion of the close relationship between these two venerable Open Source definitions
that they can be combined into, effectively, a single unified definition for open
source hardware (OSHW).13

23.4.1  The Open Source Hardware Statement of Principles

Open source hardware is hardware whose design is made publicly available so
that anyone can study, modify, distribute, make, and sell the design or hardware
based on that design. The hardware’s source, the design from which it is made,
is available in the preferred format for making modifications to it. Ideally, open
source hardware uses readily-​available components and materials, standard pro-
cesses, open infrastructure, unrestricted content, and open-​source design tools to
maximize the ability of individuals to make and use hardware. Open source hard-
ware gives people the freedom to control their technology while sharing know-
ledge and encouraging commerce through the open exchange of designs.

23.4.2  The Open Source Hardware Definition

Introduction

Open Source Hardware (OSHW) is a term for tangible artifacts—​machines, de-
vices, or other physical things—​whose design has been released to the public in
such a way that anyone can make, modify, distribute, and use those things. This

	 11	 <https://​www.cru​nchb​ase.com/​organ​izat​ion/​sif​ive> accessed 17 June 2022.
	 12	 <https://​ec.eur​opa.eu/​digi​tal-​sin​gle-​mar​ket/​en/​news/​call-​tend​ers-​study-​imp​act-​open-​sou​rce-​
softw​are-​and-​hardw​are-​techno​logi​cal-​indep​ende​nce> accessed 20 April 2022.
	 13	 <https://​www.oshwa.org/​def​init​ion/​> accessed 20 April 2022.

494  Andrew Katz

definition is intended to help provide guidelines for the development and evalu-
ation of licenses for Open Source Hardware.

Hardware is different from software in that physical resources must always be
committed for the creation of physical goods. Accordingly, persons or companies
producing items (‘products’) under an OSHW license have an obligation to make
it clear that such products are not manufactured, sold, warrantied, or otherwise
sanctioned by the original designer and also not to make use of any trademarks
owned by the original designer.

The distribution terms of Open Source Hardware must comply with the fol-
lowing criteria:

1.  Documentation
The hardware must be released with documentation including design files, and
must allow modification and distribution of the design files. Where documenta-
tion is not furnished with the physical product, there must be a well-​publicised
means of obtaining this documentation for no more than a reasonable reproduc-
tion cost, preferably downloading via the Internet without charge. The documen-
tation must include design files in the preferred format for making changes, for
example the native file format of a CAD program. Deliberately obfuscated design
files are not allowed. Intermediate forms analogous to compiled computer code—​
such as printer-​ready copper artwork from a CAD program—​are not allowed as
substitutes. The license may require that the design files are provided in fully-​
documented, open format(s).

2.  Scope
The documentation for the hardware must clearly specify what portion of the

design, if not all, is being released under the license.
3.  Necessary Software
If the licensed design requires software, embedded or otherwise, to operate

properly and fulfill its essential functions, then the license may require that one of
the following conditions are met:

a) � The interfaces are sufficiently documented such that it could reasonably
be considered straightforward to write open source software that allows
the device to operate properly and fulfil its essential functions. For ex-
ample, this may include the use of detailed signal timing diagrams or
pseudocode to clearly illustrate the interface in operation.

b) � The necessary software is released under an OSI-​approved open source
license.

4.  Derived Works
The license shall allow modifications and derived works, and shall allow them

to be distributed under the same terms as the license of the original work. The
license shall allow for the manufacture, sale, distribution, and use of products
created from the design files, the design files themselves, and derivatives thereof.

OPEN HARDWARE  495

5.  Free redistribution
The license shall not restrict any party from selling or giving away the project

documentation. The license shall not require a royalty or other fee for such sale. The
license shall not require any royalty or fee related to the sale of derived works.

6.  Attribution
The license may require derived documents, and copyright notices associated

with devices, to provide attribution to the licensors when distributing design files,
manufactured products, and/​or derivatives thereof. The license may require that
this information be accessible to the end-​user using the device normally, but shall
not specify a specific format of display. The license may require derived works to
carry a different name or version number from the original design.

7.  No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.
8.  No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the work (including

manufactured hardware) in a specific field of endeavour. For example, it must not
restrict the hardware from being used in a business, or from being used in nuclear
research.

9.  Distribution of License
The rights granted by the license must apply to all to whom the work is re-

distributed without the need for execution of an additional license by those
parties.

10.  License Must Not Be Specific to a Product
The rights granted by the license must not depend on the licensed work being

part of a particular product. If a portion is extracted from a work and used or
distributed within the terms of the license, all parties to whom that work is re-
distributed should have the same rights as those that are granted for the ori-
ginal work.

11.  License Must Not Restrict Other Hardware or Software
The license must not place restrictions on other items that are aggregated with

the licensed work but not derivative of it. For example, the license must not insist
that all other hardware sold with the licensed item be open source, nor that only
open source software be used external to the device.

12.  License Must Be Technology-​Neutral
No provision of the license may be predicated on any individual technology,

specific part or component, material, or style of interface or use thereof.

These definitions, like the Four Freedoms and the OSD on which they are based,
focus very much on licensing and, accordingly, they rely heavily on the under-
lying IP applicable to hardware.14 However, hardware provides some significant

	 14	 These principles should be interpreted consistently with the equivalent principles in the Open
Source Definition: see C hapters 1, 3, and 16 for more details.

496  Andrew Katz

challenges, as the intellectual property regime which potentially applies to it is
somewhat more complex than that applicable to software.

23.5  Hardware and Reciprocity (Copyleft)—
Intellectual Property

Primarily, software is governed by copyright (it is generally treated by copyright
law in a similar way to a literary work). Patents and other IP such as database right
can also affect software, but IP applies to hardware in a more complex and incon-
sistent way. An upshot of this is that it is more difficult to apply reciprocal licensing
obligations to hardware designs. Note that it is becoming common to use the term
‘reciprocal’ in preference to ‘copyleft’ in relation to open hardware licensing be-
cause hardware is dependent on a broader range of intellectual property rights than
copyright alone, so it is potentially misleading to use the term ‘copyleft’ with its
close association to copyright. In this chapter, you can regard the terms as broadly
interchangeable.

As explained in Chapter 3, reciprocity relies on there being some form of IP
which can apply each time an item is distributed. For copyleft, the relevant form is
copyright. Every time IP impinges there is the opportunity to apply a condition to
the licence which is being granted, and reciprocity works because the condition is
that the item being distributed must itself be licensed on the same reciprocal terms.
This perpetuates the licence each time the relevant item (or a derivative of it) is
distributed.

If the act of distribution (or any of the necessary precursors to distribution, such
as copying or making the item available to the public) requires no licence under
any IP, then the distribution of the item cannot be controlled through application
of a conditional licence to IP because there is no opportunity to apply a condition
(such as the one implementing copyleft).

To take an extreme example: it is obvious that a work, such as the Great Gatsby
(which is now in the public domain because the copyright in it has expired) cannot
be subject to any copyright licence, so it is not possible to apply any copyleft restric-
tions to it.15

	 15	 Richard Stallman (founder of the Free Software Foundation) was aware of this when he criticised
the Swedish Pirate Party’s recommendations for a very short period of copyright (five years). At the end
of five years, under its plans, computer software would enter the public domain and therefore what was
previously available under the GPL would be capable of being incorporated into proprietary software
without the requirement for the corresponding source being made available. In other words, the core
purpose of the GPL—​to ensure that free software remained free—​would be defeated after five years.
This offended Stallman’s anti-​closure view that free software must remain free, and after considering
(and rejecting) a special exception for software which would extend the Pirate Party’s proposed five-​
year term of copyright for the specific purpose of allowing the GPL’s copyleft mechanism to continue
working for longer, he concluded that it would be better for the source code for non-​free software to be
placed in escrow and automatically released at the end of the five-​year term.

OPEN HARDWARE  497

When a piece of software is distributed, it will almost invariably have been
copied and then made available to the public before the distribution takes place.
Any one of these acts is likely to be and can be presumed to be affected by copy-
right, and therefore performing that act will require a licence and consequently
provide an opportunity to apply a copyleft condition.

With hardware, it is not necessarily the case that making an item to a design,
or making the item available to the public, or physically transferring the item to
someone else, requires some form of licence under which the condition can be
applied. An example of this is the OpenCola. As its name suggests, OpenCola
is a Coca-​Cola-​style drink, differing significantly from Coke in that its recipe is
publicly available16 and licensed under the GNU General Public License (GPL).
However, because making a drink to a recipe is not an act which is restricted by
copyright, doing so does not require a licence and therefore provides no oppor-
tunity for the licensor of the recipe to require anyone making OpenCola (or a
variant) to make the recipe available to them. If OpenCola was software source
code, then the act of compiling the source to make the executable software would
be creating an adaptation (or depending on the jurisdiction’s terminology, a de-
rivative work) which would be an act restricted by copyright, for which a licence
(in this case, the GPL) is required. In this example, the GPL’s copyleft condition
would therefore kick in, and the licensee would be required to provide (or offer to
provide) a copy of the source code. For OpenCola, the copyleft effect would not
extend to the product itself.17

In brief, whereas almost any activity involving software—​running it,
distributing it, copying it, amending it—​will involve an act reserved to the copy-
right owner, it is by no means clear that similar acts relating to hardware are simi-
larly controlled.18

Some major open hardware licences, the CERN Open Hardware Licence
family19 (other than in the case of CERN, the permissive variant), and the TAPR
Open Hardware License,20 seek to apply a form of reciprocity. The lack of impinge-
ment of IP on hardware causes issues for both licence models, as will be discussed
shortly.21 They use very different techniques to achieve their aim.

	 16	 <https://​web.arch​ive.org/​web/​200​1021​8075​323/​http://​www.openc​ola.com/​downl​oad/​3_​so​ftdr​
ink/​form​ula.shtml> accessed 20 April 2022.
	 17	 It would extend to the text of the recipe though: if the licensee transfers the recipe text so someone
else, that recipient would have the right to change it, and distribute it, and if they did so, that distribution
would also have to be subject to the GPL.
	 18	 Except in relation to patent, which is dealt with later in this chapter.
	 19	 <http://​www.ohwr.org/​proje​cts/​cern​ohl/​wiki> accessed 20 April 2022.
	 20	 <http://​www.tapr.org/​ohl.html> accessed 20 April 2022.
	 21	 For further analysis of these issues, see A Katz, <http://​www.ifos​slr.org/​ifos​slr/​arti​cle/​view/​69
(2012), and Richard Stallman (1999) <http://​www.lin​uxto​day.com/​inf​rast​ruct​ure/​199906​2200​505N​
WLF> both accessed 20 April 2022.

498  Andrew Katz

Application of reciprocity to open source hardware is not only problematic
from an IP perspective. There are also challenges from an economic and practical
perspective.

23.5.1  Reciprocity and the costs of reverse engineering

The cost of making a bit-​for-​bit copy of a piece of software is close to zero. In contrast,
because hardware involves physical material, there will always be some cost involved
in instantiating a piece of hardware. For example, even if the hardware can be repli-
cated by 3D printing, the cost of the feedstock needs to be considered. Many hard-
ware designs will be too complex to be replicated using a 3D printer: for example,
the front suspension sub-​assembly for a car may require milling and machining of
the steel components which make it up. Even if the design documentation includes
CNC (computer numerical control) files to control the machine tools such as a lathe
and milling machine, the effort required in setting the machines up, monitoring
them, and finishing and assembling the mechanical components is significantly
greater than the effort required to compile the binary of a piece of software from the
source code or, even more simply, copying an existing binary.22

If a piece of software is covered by a copyleft licence, such as the GPL, someone
wishing to make use of the functionality of that software has two options from a
copyright perspective.23 They can either agree to comply with the terms of the GPL,
and simply copy the software, essentially for zero cost, accepting the copyleft (and
other) requirements of the GPL, or they can decide to expend engineering effort to
replicate the functionality of the software by reverse engineering and recreating it.

Recall that copyright protects the expression of an idea and not the underlying
idea itself (although that may potentially be subject to patent protection).24 Thus it
is possible to determine the functionality (idea) of a piece of software, and then rep-
licate that software independently (using a different expression), so that the rights
in the new piece of software belong to its author, and it may be exploited freely by
that author without reference to the rights holders of the original piece of software25
(assuming no patent issues). Compaq famously employed a reverse-​engineering

	 22	 Other issues that may be significant are the capital cost of the equipment itself, physical space re-
quired to house it, the environment (e.g. humidity, temperature, security), energy supply, and so on. We
explore these in brief later in this chapter.
	 23	 For completeness, two further options are to ignore the licence and infringe the copyright (with
the legal consequences that that might entail), or to persuade the copyright owners of the software to
grant a licence which is more amenable (possibly at a price)—​something Richard Stallman calls buying
exceptions to the GPL.
	 24	 This is somewhat of an over simplification, since it ignores rights that may exist in the structure,
sequence, and organisation of the code and its equivalent in other jurisdictions.
	 25	 Ignoring, for the time being, other rights, particularly patent rights, that may cover the original
software.

OPEN HARDWARE  499

and rewrite (a ‘clean room’) technique to replicate the BIOS26 of the original IBM
PC. This enabled Compaq to create the first legal IBM PC clones.

A similar reverse-​engineering technique can be employed with hardware, such
as mechanical and electronic devices.27

To take an extreme example, there is a monumental difference in cost between
taking a copy of the Linux kernel (almost zero) and in replicating its functionality
by reverse engineering and recoding it. Even in 2008, when the Linux Kernel was
vastly simpler than it is now, the cost of coding the kernel from scratch was es-
timated by the Linux Foundation at $1.4 billion.28 It is not surprising that busi-
nesses opt to comply with the GPL rather than try to recreate their own compatible
kernel.29

The economics for hardware are liable to be different. Given that the instanti-
ation of any piece of hardware is liable to require non-​trivial effort in any event,
the differential in cost between re-​engineering a design in a way which does not
impinge on any intellectual property rights, and using an existing open hardware
design (and agreeing to comply with the conditions applicable to it) is likely to be
smaller than the equivalent scenario in software. The extent to which this is true
will vary significantly between types of hardware: it is less likely to be true for de-
vices such as microprocessor designs than it is for mechanical suspension parts, for
example.

Therefore, before seeking to apply a copyleft (or other form of reciprocal) licence
to hardware, it is important to consider the characteristics of the hardware being
licensed: the additional complexity imposed by a copyleft licence may not be justi-
fied if it is trivially easy to design around the requirements in any event.

23.5.2  The boundary problem

If copyleft is to work effectively in open hardware, there must be some clear limit to
the degree to which the copyleft element of a design is intended to affect the rest of

	 26	 Basic Input Output System. This is a relatively small piece of software embedded in the read-​only
memory of a PC which provides a basic hardware interface to the computer’s memory and peripherals,
and an interface to the operating system, such as Windows or (later) Linux. If a PC from a manufac-
turer other than IBM could be made to run a BIOS which was functionally compatible with the IBM PC
BIOS, this would enable it to run software, including the operating system, which was originally written
for the IBM PC.
	 27	 As we have seen, it is by no means clear that the hardware itself is covered by copyright.
Accordingly, the process of creating an alternate design containing the same functionality, free of any IP,
is relatively more straightforward for hardware than for software. Furthermore, it is even simpler when
open hardware is concerned, because the design documentation will be available.
	 28	 <https://​www.linu​xfou​ndat​ion.org/​press-​rele​ase/​2008/​10/​linux-​fou​ndat​ion-​publis​hes-​study-​est​
imat​ing-​the-​value-​of-​linux/​> accessed 20 April 2022.
	 29	 Another option is for businesses needing a Unix-​like kernel who are not keen on using software
covered by the GPL to adopt FreeBSD, which is licensed under the more liberal BSD licence.

500  Andrew Katz

the design. For example, if a wheel hub is released under an open source hardware
licence, does that mean that if it is included in a front suspension sub-​assembly,
that whole of that sub-​assembly will become subject to the copyleft licence? What
if that sub-​assembly is incorporated into a car: does that copyleft impact the whole
car and mean that the design for the whole car must be released under the same
licence? These issues exist for Open Source as well, but the boundaries are reason-
ably well understood (even so, they continue to generate a great deal of debate).
The definitions are somewhat easier in the software world—​the Mozilla licence,
for example, is intended to apply file-​level copyleft, where the term ‘file’ is reason-
ably well understood; at least it is much better understood than a vague term like
‘sub-​assembly’.

The boundary problem also applies in terms of the components of which a de-
sign is composed. What level of detail is required? To take the example of a wheel
hub once more: the hub is likely to require components such as a ball bearing as-
sembly. Ball bearings are available in a number of common sizes and specifica-
tions and consist of two concentric hardened steel rings (races) with a number of
hardened steel balls in between them. A reciprocal open source hardware licence
may require that the complete design materials for the product are required. Strict
interpretation could require that the wheel hub design also contains complete
documentation for manufacturing the ball bearing, which in turn would require
complete documentation for manufacturing the steel balls. To take this to a ridicu-
lous extreme, instructions would be required for the manufacture of the entire hub
assembly from its constituent atoms.30 This is not a problem (generally) with soft-
ware because, ultimately, the source code provides enough information to compile
the object code of the software: this is equivalent to saying that there is enough in-
formation for the software to be manufactured out of the ‘atoms’ which software is
made of—​the binary digits 1 and 0.

By considering both the tangible nature of hardware and the breadth of the
range of classes and categories of item to which the term ‘hardware’ can apply, un-
like the much simpler category of software covered in Open Source licensing, the
additional complexities become clear.

The reciprocal variants of the current version of the CERN Open Hardware
Licence (version 2) address this issue by exempting from the requirement to
provide the complete design documentation, any components which qualify as
‘Available Components’. We look at this mechanism in greater depth below.

	 30	 An explanation for this oversight may be that many people think of open hardware as being mainly
electronic devices. Electronic construction tends to consist of components, such as resistors, capacitors,
ICs, transistors, and inductors, all being soldered onto a circuit board. The components are all standard
items, with well understood specifications, and therefore, it is fairly clear that the level of abstraction
required of the design is at component level.

OPEN HARDWARE  501

23.5.3  The competing copylefts problem

It is clear that if a copyleft licence requires derivatives to be released under exactly
the same licence, then it becomes impossible to combine two works into a third,
being a derivative of both the original works, if each of the original works is sub-
ject to a different copyleft licence. For example, it is not possible to license a work
consisting of combined GPL and OSL (Open Software License) components under
only the GPL (as required by the GPL) and only the OSL (as required by the OSL).
The requirements of the two licences cannot be satisfied simultaneously.

This is a well-​known problem for Open Source, with compatibility lacking be-
tween even different versions of the GPL.31

The practical issue is that the effectiveness of an open project is understood to
grow, as a network effect, in proportion to the square of the participants.32 The set
of all software released under a particular copyleft licence can be considered to be
a commons, in which all components are freely able to interact. If two commons
of software projects under different licences are unable to interoperate, then each
commons on its own would be a quarter as effective, in terms of potential inter-
actions between the two commons combined.

Attempts have been made to deal with restrictions on interaction: some Open
Source licences explicitly allow relicensing under similar licences. For example,
the European Union Public Licence (EUPL) allows relicensing under the GPL.
However, care has to be taken in allowing relicensing. If someone has chosen a
licence with relatively strong copyleft then they are unlikely to be happy with the
ability of anyone downstream to choose a licence which has weaker copyleft, or no
copyleft at all.

Therefore, learning from what has gone before in the world of software, there
should ideally be only one copyleft Open Source hardware licence (or a family
of intercompatible licences), to prevent licence incompatibility through licence
proliferation.

23.6  Hardware and Other Forms of Intellectual
Property Right

23.6.1  Patents

Copyright has been an effective way of controlling the use and exploitation of
software (and the implementation of copyleft), in part because, under the Berne

	 31	 Unless there is an option to take a later version, for example, GPLv2 or later is compatible with
GPL v3.
	 32	 Metcalfe’s law.

502  Andrew Katz

Convention, it arises automatically, without the formality of any assertion or regis-
tration. Patents, in contrast, may provide a number of opportunities to impinge
on the use and exploitation of a piece of hardware but require extensive formality
and budget to obtain and maintain. At first glance, it may seem that if patents give
a number of opportunities for a licence to impinge during the lifecycle of a piece of
hardware that copyright does not, then for a hardware licence to be effective, and,
in particular, for it to be able to implement copyleft, it should concentrate on pa-
tents rather than copyright.

This assumption has a number of difficulties:

	 1.	 It has been noted that a characteristic of the Open Source development
model is that there is a low barrier to entry for participants. Each participant
in a software project will automatically obtain copyright in the work that he
or she submits, and this can form the basis of the licensing applicable to the
project, both in relation to third parties and also in relation to the relation-
ship between the participants themselves (as in the case of the Linux kernel,
for example), or the participant and the project sponsor. In contrast, patent
protection is not automatic, so there has to be a more complex mechanism
in place to mediate the relationship between the participants, the sponsor (if
any) and the end users. This will have to take into account the issues set out
shortly.

	 2.	 Even relatively small pieces of software code may attract copyright protec-
tion. A smaller number of designs, whether hardware or software, will poten-
tially have the necessary quality of inventiveness and novelty to qualify as a
patentable invention.

	 3.	 Patents are expensive and take time to apply for. This militates against many
open projects, which have minimal funding. It also requires that some mech-
anism is in place to decide how funding is obtained, and is spent, and which
inventions are worthy of being applied for.

	 4.	 Patentable inventions need to be kept secret at the initial stages. This
means in practice that information about the invention needs to be kept to
a small number of people until (dependent upon jurisdiction) it has been
filed. This adds complexity (non-​disclosure agreements need to be entered
into, and the various recipients of the information need to be trustworthy),
and, crucially, it is contrary to commonly employed Open Source commu-
nity development models, as it is directly in opposition to the principles
of ‘given enough eyeballs, all bugs are shallow’ and ‘release early, release
often’.

	 5.	 A patent is only effective in the jurisdiction in which it is granted. Worldwide
coverage requires multiple patent applications and grants, and this multipli-
cation rapidly becomes very expensive.

OPEN HARDWARE  503

That is not to say that is impossible to establish a reciprocal open development
model based on patent protection, but these barriers suggest that it is likely to
be more challenging than the equivalent copyright-​based Open Source soft-
ware model.

For example, the secrecy problem may be addressed by having an inner circle
of developers who have signed mutual non-​disclosure agreements (NDAs), and
anyone who comes up with an invention which they feel may be patentable may
apply to join the inner circle, and therefore share his or her invention subject to the
mutual NDAs.

23.6.2  Design rights, database rights, and other intellectual
property rights

Hardware and hardware designs may also be covered by other IP such as design
rights (registered and unregistered), semiconductor topography (mask) rights, and
database rights (for bill of materials, for example). Many Open Source software li-
cences refer specifically to the IP which are most applicable to software (copyright,
and occasionally patent), without mentioning or allowing for these other rights.
For this reason, licences drafted to cover hardware, such as the CERN-​OHL family
and the Solderpad licence, either allow for these additional rights explicitly, or they
are carefully drafted so as not to limit themselves to any specific underlying rights.

In common with Open Source software licences, trademarks, if they are men-
tioned at all, are not freely licensed alongside other IP in open hardware licences.
There may be clauses restricting the use of either the licensor’s or the licence
sponsor’s trademarks to suggest that a modification of a particular design or an art-
icle made to it has been approved by the licensor or the licence sponsor. Trademarks
may be addressed (as sometimes happens in the world of Open Source) through an
orthogonal trademark licence which allows the project trademark and variants of
it to be used only where certain criteria have been met: for example, where an item
meets a particular compatibility standard. The Arduino trademark policy is a good
example of this.33

23.7  Specific Open Hardware Licences

Although licences specifically intended for open hardware exist, many open source
hardware projects are licensed under Open Source software licences (e.g. GPL,

	 33	 <https://​www.ardu​ino.cc/​en/​tradem​ark> accessed 20 April 2022.

504  Andrew Katz

LGPL, BSD, Apache). They are also sometimes licensed under content licences
such as one of the Creative Commons family. However, software and content li-
cences are typically not suited to open hardware, for reasons as diverse as inappro-
priate terminology (e.g. what is the ‘object code’ of an open hardware design?), the
inapplicability of certain types of IP and width of IP that may be applicable as has
been considered earlier.

Accordingly, a number of different licences have been developed for use in
open hardware. The most prominent open hardware licences are the CERN
Open Hardware Licence family,34 the TAPR Open Hardware License,35 and the
Solderpad Hardware License. Other licences such as the Open Compute Project
Hardware Licenses have many characteristics of being an open hardware licence,
but the extent to which they qualify as true open hardware licences is up for de-
bate (e.g. the patent licences granted under the Open Compute Project Hardware
Licences are restricted to implementations of the design as specified by the original
licensor, so from this perspective they are better regarded as standards licences
than open hardware licences).

The TAPR licence was developed by attorney and radio amateur John
Ackermann, who acknowledges many of the difficulties of applying copyleft to
hardware.36 The TAPR licence is intended to be a copyleft licence, and although it
acknowledges copyright in the design documentation, it attempts to cover the im-
pingement issue by acting as a contract and thus contractually binding anyone who
relies on the licence to release modifications to the design under the same licence.37
The contract is formed by presenting an offer which is capable of acceptance by
anyone wishing to make use of the licensed invention, and as such presents itself as
a unilateral contract, capable of acceptance by conduct, without communication of
that acceptance to the licensor.38 Ackermann is aware of the potential problems in
common law jurisdictions which require consideration of contract, for example a
payment, especially where the licensor does not have any rights (such as a patent)
to license in return. He attempts to deal with this not by granting a licence, which

	 34	 <http://​www.ohwr.org/​proje​cts/​cern​ohl/​wiki> accessed 20 April 2022.
	 35	 <http://​www.tapr.org/​ohl.html> accessed 20 April 2022.
	 36	 <http://​www.tapr.org/​Ackermann_​Open_​S​ourc​e_​Ha​rdwa​re_​A​rtic​le_​2​009.pdf> accessed 20
April 2022.
	 37	 A number of mechanisms based on contract have been suggested to make reciprocity work for
hardware. The principle is generally that in order to use design A, the licensee enters into a contract with
the licensor, and then whenever the licensee distributes an article made to design A (or a derivative),
this must be subject to the same licence, which is itself a contract, binding on the next downstream li-
censee, and so on. It has been suggested that this can be used to create, contractually, pseudo-​IP that do
not otherwise exist at law. However, a contract is only effective between the parties to it. If someone re-
ceives the design, or the documentation, for whatever reason, not subject to the contract, then they will
not be a party to the contract, and will not be bound by the pseudo-​IP. If the licence is reliant on real IP,
then someone seeking to exploit the design will have to have some form of licence, and will be in breach
unless they do so, irrespective of whether there is a contract with the rights holder. There is therefore no
necessity for a contractual chain.
	 38	 Carlill v Carbolic Smoke Ball Company [1892] EWCA Civ 1.

OPEN HARDWARE  505

he believes would be failed consideration if there is no underlying IP to license,
but by granting a patent non-​assert, which he claims would be effective as it antici-
pates, for example, that the licensor might acquire a relevant patent in the future.39

The CERN Open Hardware Licences take a slightly different tack. They con-
centrate on the design documentation, and the user’s rights (subject to the con-
ditions applying to the licence) are granted once the user performs any act that
would otherwise impinge on an IP in the design documentation. Version 1.2 of the
licence, provides that amendment of the design documentation is conditional on
the publication of the amendments. However, that obligation is suspended until
such time as an instantiation of the design is made available to the public.40 The
1.x versions of the CERN OHL are reciprocal (copyleft) licences. Version 2 of the
CERN OHL is somewhat different.

It comes in three variants, a permissive variant (which we discuss in the section
to follow), and two reciprocal (or copyleft) variants, in ‘strong’ and ‘weak’ forms
(intended to be broadly similar in effect to the GPL and LGPL respectively). As
with version 1.2 of the CERN OHL, the primary focus is on licensing the under-
lying design documentation. As soon as a licensee modifies, copies, or otherwise
does anything which requires a licence in relation to the documentation, they are
required to irrevocably undertake to make the source publicly available to anyone
to whom they provide an item made to the design (unless the recipient of the item
already has access to the design—​for example, where the licensee gave it to them
personally). The original licensor has the option to add notices to their design
which must be preserved when the design is copied, and those notices can include
a requirement to put a URL on any item made to the design, or on its casing or
packaging, to make it as easy as possible for any recipient of the physical product to
have access to the design.

A key innovation in the CERN OHL is the implementation of ‘Available
Components’. Broadly, the idea is that many designs are likely to consist of a
number of components. For an electronic design, this is likely to include com-
monly available electronic items such resistors, capacitors, and transistors. Where
the components are readily available with appropriate interfacing information
(in the case of an electronic component, this will commonly be supplied as a data
sheet), then there is no need to provide any source for that component. However,
if there are any specialist components (perhaps a component such as an inductor
which has been specially designed for the project) that are not readily available,
then either the source for that component must be supplied under a compatible
licence, or sufficient information must otherwise be provided to enable it to be

	 39	 <http://​www.tapr.org/​Ackermann_​Open_​S​ourc​e_​Ha​rdwa​re_​A​rtic​le_​2​009.pdf> accessed 20 April
2022, and a telephone conversation between John Ackermann and the author.
	 40	 See section 3.3. <https://​ohwr.org/​proj​ect/​cern​ohl/​wikis/​Docume​nts/​CERN-​OHL-​vers​ion-​1.2>
accessed 17 June 2022.

506  Andrew Katz

made. The logic behind this mechanism is to encourage modular thinking and to
avoid the boundary problem. For example, a computer may consist of the com-
ponents: motherboard, a power supply, a case, connectors, memory, disk drives,
etc. Each of those are components, so the computer design can be provided as (at
the top level) a case incorporating a number of components, and then (at the next
level) each of those components can be either available components or they can be
separately licensed under a compatible licence (e.g. a motherboard), and then the
components of that item (e.g. the processor on the motherboard) must itself either
be an available component, or must itself be licensed, and so on. This also makes it
very easy to utilise a part of a design (e.g. the power supply) in another, completely
unrelated design: if it is separately licensed, then there is no need to think hard
about which components of the Notice file need to be retained, for example.

The distinction between the W (weak) and S (strong) versions is quite subtle
and was initially introduced to deal with the rapidly expanding area of open source
silicon.

Briefly, open source chip designs are often released as source code written in a
hardware description language (HDL), such as Verilog. The source code of HDL
looks extremely similar to the source code of a computer program written in a
computer programing language like C. The code describes the interconnection of
components such as logic gates in the design41 as well as more complex compo-
nents. As noted in relation to OpenSPARC earlier, as with a computer program,
other components can be imported into the code as ‘libraries’. These can potentially
be regarded as available components. Under CERN-​OHL-​S, the provision which
allows an available component to be provided without also providing the complete
source for it (i.e. if it is readily available with interfacing information) only applies
to physical components. Accordingly, since these libraries are provided in code
form, they are not physical, and therefore the exemption does not apply. The con-
sequence of this is that a designer cannot combine CERN-​OHL-​S code with other
components to make an HDL code design, unless the complete source for those
other components is also available, and can also be licensed under CERN-​OHL-​S.
This is similar to the effect of the GPL, which intended to be project-​scoped copy-
left. In this case, if you are shipping a silicon chip design in HDL and any of the
components are licensed under CERN-​OHL-​S, then you are required to release all
of the design, including the included components, under CERN-​OHL-​S42.

The reality of silicon chip design is that many of the software tools used to design
chips are proprietary, and contain their own proprietary libraries and so on. As de-
sirable as it is for proponents of hardware freedom to insist that all components on
a chip design are released under a reciprocal (copyleft) licence, in many cases that

	 41	 Hence the term sometimes applied to HDL designs: gateware.
	 42	 There is also a provision which excludes components included ‘as part of the normal distribution
of a tool used to design or Make the Product’. Section 1.7(b)(ii).

OPEN HARDWARE  507

is just not possible where the toolchain consists of proprietary components, and as
a result, a compromise was developed—​the CERN-​OHL-​W.

CERN-​OHL-​W expands the definition of ‘available component’ to include non-​
physical components such as code libraries for silicon chip design. This means that
so long as the library is available, and you have information about how to inter-
face it to the rest of the design, then you do not have to release the code for the
library itself. It is also weaker than the S version in another sense: it is possible
to use W-​licensed designs as libraries themselves without the reciprocal effect ap-
plying to the code in which the library is used. In other words, it is possible to use a
CERN-​OHL-​W licensed non-​physical component in conjunction with a chip de-
sign which is licensed under a completely different (even a proprietary) licence
without all of the code being released under CERN-​OHL-​W. Any changes to the
CERN-​OHL-​W component will have to be made available to the recipient, and
made available under the same licence, but, provided that the rest of the design
integrates with the CERN-​OHL-​W component through its documented interface,
there is no requirement to release the rest of the design under that licence. In that
way, it’s possible to combine CERN-​OHL-​W-​licensed components with compo-
nents licensed under different (even proprietary) licences.

Those familiar with Open Source software licensing will recognise that this is a
similar effect to the one implemented by the LGPL. The distinction is that whereas
the LGPL permits the code licensed under it to be linked to proprietary code, it is
not possible to incorporate proprietary components within an LGPL-​licensed li-
brary, the CERN-​OHL-​W allows both types of combination.

The CERN-​OHL 2.0 family of licences also adopts a number of mechanisms
similar to those found in Open Source licences: there is a patent licence and re-
taliation clause similar to Apache 2.0 and a cure period for breach similar to
GPLv3.43

Although the CERN-​OHL 2.0 family is not primarily designed for use with soft-
ware, it was acknowledged that there may be circumstances in which designers
may want to have the whole of a hardware design, and the software used in it e.g.
in its firmware) licensed under the same licence.44 For this reason the drafters de-
cided to submit the three licences to the OSI for official approval as Open Source
software licences. Approval was granted in January 2021. The three CERN-​OHL v2
licences are the first licences designed primarily for open hardware to be approved
by OSI.

	 43	 See <https://​www.ohwr.org/​cern​ohl> accessed 20 April 2022. for more information.
	 44	 In order to avoid the creation of yet another incompatible commons of software projects licensed
under a new reciprocal/​copyleft licence, CERN recommends that where software is licensed under the
CERN-​OHL-​W or -​S, the licensor should give consideration to dual licensing it under an equivalent
software licence, such as LGPLv3 or GPLv3.

508  Andrew Katz

23.8  Non-​copyleft Hardware Licences

In many cases, it may be more straightforward to use a non-copyleft licence. The
Solderpad Hardware License has been developed, based on Apache 2.0 Open
Source software licence. The changes revolve mainly around terminology (e.g. ex-
panding the definition of ‘source form’ to cover more hardware-​related forms of
documentation), and also the expansion of the types of IP which are covered (data-
base right, for example).45 The current version acts as a ‘wraparound licence’ which
adds additional permissions and definitions to the underlying Apache 2.0 licence.
It also explicitly allows a licensee to regard anything licensed under the Solderpad
licence as licensed under plain Apache 2.0. In this way, even though Solderpad is
not a licence approved by the OSI (it is not a software licence), anything licensed
under it can be regarded as licensed under Apache 2.0 which is an OSI approved
licence. Solderpad is, in effect a dual licence: Solderpad and Apache 2.0, at any
licensee’s option.

Version 2.0 of the CERN-​OHL includes a permissive variant. This removes the
reciprocal requirement of CERN-​OHL and does not require anyone conveying ei-
ther a product made in accordance with a CERN-​OHL-​P-​licensed design, or the
design incorporating the materials themselves, to be licensed under CERN-​OHL-​
P. It does, however, require the retention of any notices. This is similar in effect
to the Apache 2.0 licence, in that it allows free intermingling of code under that
licence, and other licences, and distribution of that code under any other licence
including a proprietary licence, provided that attributions and notices are retained.
As mentioned earlier, CERN-​OHL-​P is an OSI-​approved Open Source licence.

23.9  Open Source Hardware: Development Models

It is generally accepted that one of the drivers to success of Open Source software
is that there are very low barriers to entry for participation in many projects. The
projects are typically hosted on publicly accessible repositories such as GitLab, and
are typically written in languages where the tools—​compilers, development envir-
onments, and debuggers—​are themselves free software. A modest computer, a reli-
able power supply, and an Internet connection are all that is required to participate.
This makes it very easy for individuals to collaborate wherever they are located
in the world, and the nature of software means that it is very easy to develop, test
and launch a software product as all these activities occur within the virtual digital
domain.

	 45	 <http://​solder​pad.org/​licen​ses/​> accessed 20 April 2022.

OPEN HARDWARE  509

The following diagram explains the development cycle:

Simulate

Design

Test Build Productize

Customer

The core cycle is Design > Build > Test > Design.
In the software world, this typically consists of writing the software (Design), com-

piling it (Build), and testing it (Test). This process then loops until the software is ready
for release, in which case it is made available to the public, maybe by placing the exe-
cutable in an install package and publishing it on a website, or loading it into a device
as firmware which is then shipped. In the world of Open Source, there may be no
meaningful productization step, as the software is consistently available as it develops,
and where a project has release cycles, it will also update on a much more frequent ca-
dence than proprietary code. Nonetheless, all these activities will take place in the low-​
cost, low-​barrier to entry into the virtual world (except possibly, in a limited number
of cases, the productization step). This means the development cycle can be very rapid.

The same core cycle applies to hardware, but it is not necessarily the case that all of
it can take place in the low-​friction virtual world. In fact, by definition at the very least,
the productization and distribution steps must take place in the real, physical world, as
may, in practice, other steps.

Increasingly, as a substitute for the build phase, software tools and methodologies
including computer-​aided design (CAD) and finite element analysis simulation tools
can be deployed, enabling much of the development and testing to take place in the vir-
tual world: computers can model things as diverse as earthquake stresses on bridges,
the aerodynamic drag of car bodies, the thermal effect of different sorts of insulation
on buildings, radio frequency emissions and susceptibility of electronic circuit boards,
and the damping effect of suspension components, and therefore the Design > Build >
Test cycle can in some cases be made more efficient, cheaper, and faster by substituting
it with a Design > Simulate > Test cycle, but even so, there are limitations to the effect-
iveness of these tools. Another factor is cost: in contrast to the software arena, where
some of the finest tools (e.g. the Gnu Compiler Collection) are available for zero cost
as Open Source and have become an industry standard, the hardware world lacks an
equivalent richness of Open Source tools, and even where the cycle takes place en-
tirely in the digital world, this may require the use of proprietary tools.

510  Andrew Katz

This is a potential inhibitor to the efficiency of the open development process
as it applies to hardware, and this presupposes that the activities can take place
virtually.

Where the development activities have to take place in the real world (e.g.
building a dump truck), this can introduce significant expense: it may require a
factory, large amounts of energy, expensive capital equipment (lathes, milling ma-
chines, materials handling equipment), expensive raw materials (nuts, bolts, steel
rods, and steel sheet), physical space and environmental requirements (e.g. a sil-
icon chip foundry will have to be very tightly controlled for dust). And each of
these will have to be of a certain and replicable quality. Silicon chips require ultra-​
pure cylinders of silicon, and even fasteners like nuts and bolts have to be of a cer-
tain specification and tensile strength46. This also applies to energy: many activities
will require a reliable electricity supply without brownouts or spikes. Regulation
may be relevant: some activities (making and developing pharmaceuticals and ex-
plosives, for example) are very highly regulated. There are even significant regula-
tions applicable to the food and agricultural sectors. This is all much less likely to be
the case when dealing with pure software.

All of these things add barriers to entry to the process, inhibiting individuals
from entering the cycle, and slowing the cycle itself.

This means that assumptions at the heart of Open Source software and, in par-
ticular, the licensing and development models, do not necessarily map well to
Open Source hardware, and the extent to which they are likely to map effectively
depends very much on how similar the open hardware domain is to software.

As we have seen, hardware description languages are very similar to computer
software languages, and can describe complete microprocessor cores. Almost all
of the cycle can take place entirely in software, and indeed communities have de-
veloped, very similar to Open Source software communities, around different var-
ieties of core (and other associated components). Librecores is one directory of
these components.47 The development of these cores can happen entirely within
the digital domain (including simulation and testing for physical characteristics
such as thermal requirements, electrical load, and radiofrequency emissivity). It is
only at the productisation stage that the core interacts with the physical world, and
even then, in many cases, a digital representation of the core (called a ‘bitstream’)
can be created which can be loaded onto a multi-​purpose silicon chip called an
FPGA. These chips are readily available components, and can cost as little as $5

	 46	 Incidentally, this highlights another difference between hardware and software. Whereas ‘com-
plete corresponding source’ in an Open Source licence such as GPL may require the provision of build
instructions specifying various configuration files, and the use of certain compilers and linkers within
the toolchain, and associated scripts, the extent of similar instructions in hardware may need to be that
much greater. Bolts may need to be fastened to a specified torque, fluid levels may need to be measured
at a specific temperature, and an analogue radio receiver may need to be set up by adjusting trimmers in
a particular sequence.
	 47	 <https://​www.lib​reco​res.org> accessed 20 April 2022.

OPEN HARDWARE  511

each (or even less in bulk).48 This means that the development cycle for cores can
be very rapid, and the cost of production can be low. In addition, there has been
increasing work in the development of open source toolchains, and there now exist
a number of open source toolchains which can simulate and synthesise open hard-
ware components such as cores, written in languages like Verilog.

Accordingly, assumptions which apply to the Open Source software develop-
ment process, and its emergent aspects like community development and business
models can also apply to the development of processor cores.

For something like an open source car, these dynamics are much less likely to
apply, and open source software assumptions are therefore less likely to apply.

23.10  Conclusion

Open source hardware is a relative newcomer in comparison with Open Source
software. As a field it has adopted many assumptions and models from the world of
Open Source software, but its latecomer status gives it the advantage of being able
to learn from what has gone before.

It is yet to be seen whether the reciprocal (copyleft) model will be as successful
in open source hardware as it has been in Open Source software. Its applicability is
less straightforward owing to the breadth of IP which can potentially impinge on
hardware, coupled with the deceased opportunity for each IP to impinge.

It may well be the case that some types of open source hardware (such as cores)
map more closely onto our understanding of the development processes, commu-
nity dynamics, and business models which are applicable to Open Source software
than others.

Open source hardware is a dynamic and interesting field, and is starting to garner
significant investment and involvement from industry, and attention from govern-
ment and policy-​makers. In many ways, it will learn from and develop alongside Open
Source software but there is still space for it to develop its own direction and dynamics.

	 48	 The final product may be the FPGA with the relevant core’s bitstream installed in it or, if the core is
required in much greater volume, a single-​purpose chip—​an ASIC—can be produced using that core.
It is very expensive to manufacture ASICs because it requires preparing semiconductor masks, and set-
ting up costly specialised equipment, but once that has been done, they can be manufactured in bulk
very cheaply.

Andrew Katz, Everything Open In: Open Source Law, Policy and Practice. Edited by: Amanda Brock, Oxford University Press.
© Andrew Katz 2022. DOI: 10.1093/​oso/​9780198862345.003.0024

24
Everything Open

Andrew Katz

	 24.1	� Freedom to Use, Study,
Modify, and Share � 514
24.1.1 � Use-Maximization or

Anti-Closure� 514
	 24.2	� Open Governance � 516
	 24.3	� Anti-​Lock-​In � 516

24.4 � Interrelationship Between
Opens� 517

24.5 � Openness and Intellectual
Property Rights� 518

24.6 � Definitions of Openness
(and Freedom) in Software� 520

24.7  Open Knowledge� 521
	 24.8	� Open Data � 522
	 24.9	� Open Content � 523
	24.10	� Creative Commons � 523
24.11 � Other Documentation

Licences� 525

	24.12	� Open Hardware (and
Open Source Hardware) � 525

	24.13	� Open Data � 526
		 24.13.1	� Data: the legal and

licensing context � 527
	24.14	� Open Software Services � 529
	24.15	� Open Politics and Open

Government � 531
	24.16	� Open Standards and Open

Specifications � 532
24.16.1  Use of open standards� 532

		 24.16.2	� FRAND � 534
		 24.16.3	� Interaction between

Open Source and
open standards� 534

	24.17	� Open Innovation � 535
	24.18	� Open Publishing, Open

Education, and Open Access � 536
	24.19	� Summary � 538

  

Openness abounds. Open Source software,1 is now accompanied by open source
hardware2 (and open hardware),3 open knowledge,4 open content,5 open data,6

	 1	 ‘Open Source Initiative’ Open Source Initiative (1 January 2020) <https://​ope​nsou​rce.org> accessed
14 January 2020.
	 2	 ‘Open Source Hardware Association’ Open Source Hardware Association (17 October 2019) <http://​
www.oshwa.org> accessed 14 January 2020.
	 3	 ‘What is Open Hardware?’ OpenSource.org <https://​ope​nsou​rce.com/​resour​ces/​what-​open-​hardw​
are> accessed 20 January 2020.
	 4	 ‘Open Knowledge Foundation’ Open Knowledge Foundation <https://​okfn.org> accessed 14
January 2020.
	 5	 ‘Defining the ‘Open’ in Open Content and Open Educational Resources’ Open Content <http://​
www.open​cont​ent.org/​def​init​ion/​> accessed 14 January 2020 (hereafter ‘Defining the ‘Open’ in Open
Content’).
	 6	 ‘The Open Definition’ Open Definition <http://​ope​ndef​init​ion.org/​> accessed 14 January 2020.

EVERYTHING OPEN  513

open software services,7 open politics,8 open democracy,9 open government,10
open public services,11 open standards,12 open specifications and formats, open
innovation,13 open education,14 open publishing,15 and open access.16 There is a
clearly a connection between these opens, but trying to determine the common
thread is far from straightforward.

An evident feature of opens is that they are intended to remove restrictions to use
(including modification and reuse) and access. The terminology may be relatively
new, but ‘openness’ describes an old idea17—​of sharing and facilitating reuse18—​
which was often the default in the relevant field, until a point in maturity and scale
was reached where access became restricted through law or other mechanisms. As
a consequence, there was a need to differentiate between that field in its restricted
form and the same field made available to all. For example, the free software move-
ment was formed as a reaction to software providers placing restrictions on the use
of their software and on access to their source code (following a judicial clarifica-
tion of the applicability of copyright to code), in contravention of the then default
hacker culture of sharing and making the software and its source available.

There is no ‘open cuisine’ movement, because intellectual property (IP) has not
significantly impinged on cooking food or following recipes. This may change if IP
rights start to affect these areas such as celebrity chefs seeking to extend the applic-
ability of IP such as copyright or patent to their recipes.

The openness evident in many free software projects goes beyond the ability
to access and reuse the code: it also extends to areas like the governance of the

	 7	 ‘The Open Definition’ Open Definition <http://​ope​ndef​init​ion.org/​> accessed 14 January 2020.
	 8	 The Open Politics Manifesto Open Politics <https://​openp​olit​ics.org.uk/​manife​sto/​> accessed 20
January 2020.
	 9	 ‘openDemocracy’ openDemocracy <http://​www.opende​mocr​acy.net/​> accessed 14 January 2020.
	 10	 ‘About Open Government Partnership’ Open Government Partnership<http://​www.ope​ngov​part​
ners​hip.org/​about/​> accessed 14 January 2020.
	 11	 ‘Open standards for government data and technology’ GOV.UK (12 July 2017) <http://​standa​rds.
data.gov.uk/​challe​nge/​open-​pub​lic-​servi​ces> accessed 14 January 2020 (hereafter ‘Open standards for
government data and technology’).
	 12	 ‘What Are Open Standards?’ OpenSource.com <https://​ope​nsou​rce.com/​resour​ces/​what-​are-​
open-​standa​rds> accessed 20 January 2020.
	 13	 ‘Open Innovation Community’ Open Innovation Community <http://​www.ope​ninn​ovat​ion.net/​>
accessed 14 January 2020.
	 14	 ‘Open education’ Jisc (31 January 2013) <https://​www.jisc.ac.uk/​rd/​proje​cts/​open-​educat​ion>
accessed 14 January 2020, and open educational resources: ‘Open Educational Resources (OER)’
UNESCO (5 June 2019) <http://​www.une​sco.org/​new/​en/​commun​icat​ion-​and-​info​rmat​ion/​acc​ess-​to-​
knowle​dge/​open-​educ​atio​nal-​resour​ces/​> accessed 14 January 2020.
	 15	 Matthew Arnison, ‘Open publishing is the same as free software’ Purple Bark (March 2001)
<http://​www.pur​pleb​ark.net/​maf​few/​cat/​open​pub.html> accessed 14 January 2020.
	 16	 ‘An Introduction to Open Access’ Jisc (17 October 2019) <https://​www.jisc.ac.uk/​gui​des/​an-​intro​
duct​ion-​to-​open-​acc​ess> accessed 20 January 2020.
	 17	 Charlotte Waelde argues that the first English language scholarly journal, Philosophical
Transactions (published in 1665) was, in effect, the first open access journal: Charlotte Waelde, ‘Scholarly
Communications and New Technologies: The Role of Copyright in the Open Access Movement’ in
Lilian Edwards and Charlotte Waelde (ed), Law and the Internet (Oxford: Hart Publishing 2009) 395.
	 18	 As we will see, there are several movements which seek to define the characteristics of their particular
open. These definitions are frequently based on the FSF’s Four Freedoms or the OSI’s openness criteria.

514  Andrew Katz

projects themselves (although, as we discuss in Chapter 2, it is by no means ne-
cessary for an Open Source project to have an open governance model). Thus the
word open has established additional shades of meaning and its usage varies from
field to field. There are, we suggest, four different but related connotations to the
word open: use-freedom, open governance (transparency and open participation),
and anti lock-in.

24.1  Freedom to Use, Study, Modify, and Share

The most accessible definition of open emphasises freedom of use, study, modi-
fication, and sharing. The aim of this freedom is to maximise the availability of
knowledge and data, and potentially to create a ‘commons’ of material (in whatever
form, including code, content, and data) which is available for use by anyone, for
any purpose, with minimal restriction. The restrictions which are considered ac-
ceptable are those (such as copyleft), which are intended to ensure that material
which is released under an open licence remains open and attribution (which al-
lows a requirement that notices such as copyright notices are preserved when any
material is distributed). These freedoms (and the corresponding permitted restric-
tions) are encapsulated in the Open Knowledge Definition, discussed in more de-
tail shortly. We call it use-​freedom. A further connotation of use-freedom is that the
material must be amenable to study (so anyone can see how it functions), develop-
ment, and modification for any reason, including extending functionality or field
of use, and for correcting errors.

24.1.1  Use-Maximization or Anti-​Closure?

Even for proponents of use-​freedom there is a tension between those who want to
maximize sharing and reuse (irrespective of what the recipients might do with the
shared material, and accepting the inclusion of that material into closed products),
and those (who tend to emphasise the concept of freedom) who want to place obs-
tacles in the way of those who would limit sharing and reuse. These goals are not
mutually exclusive and are frequently well aligned, but to understand the dynamics
within (and sometimes between) each of the open fields, it is necessary to appre-
ciate this distinction.

For example, free software advocates promote the GNU General Public Licence
(GPL) family of software licences. By implementing copyleft (see Chapter 3), these
licences attempt to ensure that a program subject to the GPL can only be redis-
tributed by a recipient if the recipient also makes any work based on the program
subject to the same licence, which in turn becomes binding on downstream re-
cipients, requiring them to comply with the GPL when and if they distribute the

EVERYTHING OPEN  515

program or a work based on it. On the one hand, this fights the perceived evil of
‘closure’. On the other, the implementation of copyleft is itself a form of restriction
on sharing and reuse. There are examples of software which has not been adopted
by a business because it is subject to the GPL, and for the business, copyleft is an
unacceptable restriction and may present the business with what it perceives to be
unacceptable risks.

In contrast, the ASF releases its software under a liberal licence which imposes
little restriction on recipients. Those recipients are able to take the software, adapt
it, and redistribute it to third parties (with or without those adaptations), even
under a closed, proprietary licence. The foundation’s aim is to maximise utilisa-
tion and promulgation of the code, even if that means it is capable of becoming
closed.

The Free Software Foundation (FSF) is sometimes associated with an anti-​closure
view; the Open Source Initiative (OSI) with a use-maximization view.19 The subtle
distinction is clear in the world of free and Open Source software, but is less clear
in other areas, where the word open may be used without distinguishing between
the two different (but frequently aligned) concepts. The distinction becomes clearer
when looking at the types of licence which are adopted within the various fields.

Use-maximization also requires that the material in question can be used by as
many people as possible and for as many purposes as possible, without discrim-
ination, either in relation to characteristics of the individual (or organisation)
seeking to use the material, or in relation to the intended use to which the material
may be put.20

The first meaning of open—​use-​freedom—and the distinction between use-
maximization and anti-closure is concerned with the content itself and how it can
be used, modified, and distributed. It is not so much concerned with the process of
how it came to be created and who can be involved in that process, which is where
the next two connotations of open apply.

	 19	 To some degree, these positions are generalisations, as the various organisations have individuals
with differing views within them. Having said that, broadly, the FSF will argue that by ever-​increasing
the pool of GPL software, it will become more difficult for non-​GPL software to be developed (given
that very little software is developed from scratch these days, but is an assemblage of different com-
ponents), and that, accordingly, it will maximise the use of free (GPL) software. The Apache Software
Foundation (and, to an extent, the OSI) will argue that, although proprietary companies may choose
to close Apache (or other permissively licensed) code by releasing it under a restrictive, proprietary
licence, they will ultimately realise that it is better business to keep the code open and contribute to
the code base, as the benefits of participating in the software’s development and support community
will lead to a better business outcome. As such, there is a normative effect for code, even under a non-​
copyleft licence like Apache, to become and remain open. Thus in practice there is significant common-
ality between the two viewpoints.
	 20	 This requirement, contained in both the FSF’s Four Freedoms and the OSD from the OSI, causes
some counterintuitive consequences. For example, both sets of criteria outlaw a licence which only al-
lows non-​commercial use, and a notorious seemingly liberal software licence (JSON) which exhorts the
licensee to use the software for good, not evil, also falls outside both criteria, as discriminating against
those who want to be evil.

516  Andrew Katz

24.2  Open Governance

The word open carries a second connotation, that of transparency in the govern-
ance of a project (in terms of making access to, and records of, the decision-​making
process freely available), and a related third connotation, the ability of individuals
and business to influence and participate in the project on a non-​discriminatory
basis. Both these connotations are linked by a common requirement that the gov-
ernance structure allows accountability. We call these two characteristics transpar-
ency and open participation. They are both features of open governance.

Transparency is often a characteristic of open development. It is a key charac-
teristic of the Open Source development model described by Eric S Raymond in
The Cathedral and the Bazaar. According to Raymond, ‘release early, release often’
(let everyone have access to your development process) because ‘given enough
eyeballs, all bugs are shallow’.21 Open Source software projects are often portrayed
as meritocracies22 in which any contributor has an equal opportunity to have his
or her efforts recognised in each code release, based solely on the merit of their
submissions (see further Chapter 2). A true meritocracy will have a very low bar-
rier for entry and no discrimination both in terms of who can participate and
how the participants’ contributions are judged. These are prerequisites for open
participation.

Open governance may apply to some high-​profile projects, but there are also
projects in which the code development, although ultimately released under an
Open Source licence, is effectively undertaken in a non-​open process, carried out
by a development team structured in a way very similar to the development teams
at any proprietary software company.23 The terms open politics or open government
imply transparency and open participation.

24.3  Anti-​Lock-​In

Finally, there may be an assumption that a user of something open is not locked
in. This means that adoption of the open—​usually a standard, or a specifica-
tion, or specific software or hardware—​does not create barriers to the adoption

	 21	 Eric S Raymond, The Cathedral and the Bazaar (2 August 2002) <http://​www.catb.org/​~esr/​writi​
ngs/​cathed​ral-​baz​aar/​cathed​ral-​baz​aar/​index.html> accessed 14 January 2020. The latter is called
‘Linus’s Law’ in honour of Linus Torvalds, initiator and original author of the Linux kernel.
	 22	 Note that the word ‘meritocracy’ was coined by Michael Young in his book ‘The Rise of the
Meritocracy 1870–​2033’ (London: Thames and Hudson, 1958) and was intended as ‘a satire on the
folly of meritocratic life’ (Ansgar Allen, ‘Michael Young’s The Rise of the Meritocracy: A Philosophical
Critique’ (2011) 59(4) British Journal of Education Studies 367–382).
	 23	 Stirling and Bowman describe the distinction, when related to open hardware, as ODH (openly
designed hardware) and OWR (open when ready). The distinction applies equally to developments
other than hardware. <https://​www.tand​fonl​ine.com/​doi/​full/​10.1080/​14606​925.2020.1859​168> ac-
cessed 20 April 2022.

EVERYTHING OPEN  517

of another solution, or make it more difficult to move away from an existing so-
lution. For example, the adoption of an open standard for a document format
means that the document can be edited, at least in theory, by a number of different
word processors, whereas a proprietary format may only be capable of being read
by a specific supplier’s product. Lock-​in frequently manifests itself as a failure of
interoperability.

This is the connotation which is particularly relevant in the definition of open
software service. A further connotation of this is persistence: for a technology to
avoid lock-​in, its provision must also be persistent (and stable). In other words,
the user must be able to trust that the means of access used at a particular time will
continue to be available for some significant time into the future. The mirror of this
is lock-​out which can also be seen in the implementation of incompatible service
layers within software as a service provision or cloud environments.

24.4  Interrelationship Between Opens

Free software and Open Source software are, more often than not, the same thing,
even though the organisations that are behind them may be perceived to differ in
their aims.24 The development of Open Source (or at least the poster-​child pro-
jects, like the Linux kernel) often involves open development methodologies,
and transparency. Open Source software often complies with Open Standards
(which are explained in some detail later in this chapter). Arguably, any interfaces
implemented in Open Source software are capable of forming a de facto Open
Standard,25 at least potentially, because it is possible to see the code which imple-
ments it, and to reuse or re-​implement the standard in an open form.

Likewise, it is difficult for Open Source code to be used to implement a solution
which still suffers from lock-​in as access to the code means that the functionality
and characteristics of a solution can be fully understood, and either rehosted using
the same code, or re-​implemented using different means. (Lock-​in in this context

	 24	 The differences are often exaggerated: Simon Phipps, past president of the OSI, is fond of saying
that Open Source is essentially a marketing program for Free Software. See Erlang Solutions, ‘20 Years
of Open Source Erlang: OpenErlang Interview with Simon Phipps’ Erlang Solutions (19 October
2018) <https://www.erlang-solutions.com/blog/20-years-of-open-source-erlang-the-openerlang-
interviews/> accessed 14 January 2020.
	 25	 Björn Lundell usefully characterises standards as falling on a plane with two orthogonal axes: one
axis denotes formality (where a formal standard is one defined by an independent standards body such
as the International Organization for Standardization (ISO), and an informal one which would include
a standard defined by a commercial organisation), and the other denotes openness, where a maximally
open standard is one which complies with all the criteria of (in his specific example) the European
Interoperability Framework version 1. See Bjӧrn Lundell, Jonas Gamalielsson, and Andrew Katz, ‘On
Implementation of Open Standards in Software: To What Extent Can ISO Standards be Implemented in
Open Source Software?’ (2015) 13 International Journal of Standardization Research 47.

518  Andrew Katz

is difficult, but not impossible, as we shall see in the context of software as a service,
and particularly the discussion of an open software service later in the chapter).

There may be conflicts between opens. Open standards are useful only to the
extent that they remain stable and consistent. If someone unilaterally ‘improves’
a standard by amending it, so that devices or software built to that standard no
longer interoperate (either at all, or unreliably), then it is no longer of any use as
a standard. To be of use, open standards need to be developed in such a way that
improvements and amendments are coordinated, and standards bodies have a role
here. The pace of development of Open Source code often means that a de facto
standard like this can emerge much more quickly than a standard which has devel-
oped through the standards process. Standards bodies are increasingly recognising
this, providing a fast-​track procedure for de facto standards to be adopted as formal
standards. For example, ISO/​IEC has adopted a fast-​track procedure which can be
used within JTC 1 allowing certain members to submit fully formed de facto stand-
ards into the ISO/​IEC standardisation process. One such example is OpenChain
(ISO/​IEC 5230:2020), discussed further in Chapter 6.

Ideally, the process leading to the formation of the standard itself should be
transparent and allow for non-​discriminatory participation, but the process and
the result are often confused, and to say that it is necessary for both the process and
the result to be open (in two quite different meanings of the word) for a standard to
be open is unhelpful and an oversimplification.

The outcome of a standards process (whether open or otherwise) should be the
creation of a standard which is documented on an open content basis (for which
detail, see shortly) and which anyone can implement without payment of royalties
or other restriction. This is one definition of an open standard.26

Each of the opens we consider in this chapter places slightly different emphasis
on each of these characteristics: use-​freedom, open governance (transparency and
participation), and anti-​lock-​in.

24.5  Openness and Intellectual Property Rights

We have seen that for a field to develop an open movement there has to be a cor-
responding closure, or at least a threat of closure. In the case of content (including
software code), these threats are largely facilitated by the application of IP.

Where no IP (such as preparation of food to a particular recipe) are applicable,
it is more difficult to close the field: a diner in a restaurant who enjoys a particular
aubergine curry is free to try to recreate the recipe at home without the permission
of the chef. Further, if someone watches the chef prepare the dish on television,

	 26	 Lundell, Gamalielsson, and Katz, ‘On Implementation of Open Standards in Software: To What
Extent Can ISO Standards be Implemented in Open Source Software?’, see note 25.

EVERYTHING OPEN  519

they can make notes of the ingredients, quantities, and process, and the viewer is,
again, under no restriction regarding creating a recipe accordingly.27 It follows that
there is no ‘open recipe’ movement, as there are no closed recipes against which it
can rally.28

That is not to say that where there are no IP, there is no possibility of a cor-
responding open movement developing. Lawrence Lessig has famously drawn
a distinction between East Coast code (laws) and West Coast code (physical or
technological constraints).29 Thus, in the absence of laws, it is possible to construct
constraints technologically. A simple example is that manufacturers may deliber-
ately make items which are difficult to fix, with the intention of either ensuring that
only that manufacturer (or its licensees) has the ability to repair and maintain those
items, or that broken items are discarded and a new replacement is purchased.

To repair such items, the owner would ideally have access to blueprints and cir-
cuit diagrams; any device would be easy to open using readily available tools rather
than employing special security fastenings; replacement components of the device
would be readily available and reassembling the device would be possible without
special jigs or adhesives. These are the sorts of freedom which are set out in the
Maker’s Bill of Rights.30

The EU has recently moved to legislate in this direction, by proposing a right to
repair.31 This is aimed mainly at requiring manufacturers to continue to support
devices (including providing electronic updates) and continuing to ensure that
commercial repair businesses continue to have the support they need, rather than
granting direct rights to consumers, but it can be regarded as a step in the right
direction.

	 27	 Although clearly a written recipe would be subject to copyright as a literary work, making the
dish is not infringement of that work (it is interesting to speculate whether a recipe could possibly be
considered analogous to ‘performing’ it like a dance). It may also be the case the dish is associated with
a trademark, registered or unregistered, so selling a condiment you have made as McDonald’s Special
Sauce would invoke a different set of intellectual property rights.
	 28	 There have been a few attempts to release ‘open recipes’. However, it is not clear what those in-
volved are trying to achieve. OpenCola is a recipe for a flavoured sugar syrup intended to be similar to
the base for Coca Cola. Coca Cola may famously keep its recipe confidential, but anyone purchasing a
bottle of Coke is entitled to reverse-​engineer it (a mass spectrometer may help) and publish the results
without restriction. The Coca Cola Corporation is unable to exercise any IP to prevent the purchaser
from making a clone drink, in the way that it would be able to prevent someone from using its name or
its distinctively shaped bottle. Open Cola adopts the GPL as its licence, but since making a drink from a
recipe does not impinge on copyright in the way that compiling a piece of software does, it’s hard to see
how any obligations can be placed on downstream recipients of the cola. Reproducing the recipe (i.e.
making copies of its text) does impinge on copyright, so it’s not so much the cola that is open, than its re-
cipe, in the form of a literary work. See ‘OpenCola Softdrink’ ColaWP (20 February 2001) <http://​www.
col​awp.com/​colas/​400/​col​a467​_​rec​ipe.html> accessed 14 January 2020.
	 29	 Lawrence Lessig, Code Version 2.0 (London: Basic Books 2006) 72 et seq. (<http://​cod​ev2.cc/​
downl​oad+​remix/​Les​sig-​Cod​ev2.pdf>)
	 30	 Phillip Torrone, ‘The Maker’s Bill of Rights’ Make (1 December 2006) <https://​makez​ine.com/​
2006/​12/​01/​the-​mak​ers-​bill-​of-​rig​hts/​> accessed 14 January 2020.
	 31	 <https://​www.europ​arl.eur​opa.eu/​news/​en/​press-​room/​20201​024I​PR90​101/​eu-​consum​ers-​sho​
uld-​enjoy-​a-​right-​to-​rep​air-​and-​enhan​ced-​prod​uct-​saf​ety> accessed 14 January 2020.

520  Andrew Katz

A more subtle application of IP consists in their importance in facilitating copy-
left. The copyleft principle provides that if someone makes use of material available
under a copyleft licence, then that person will be required, under certain circum-
stances,32 to make their amendments, design documents, and/​or source code re-
lating to that material available to downstream recipients under the same licence.
Sometimes known as sharealike or reciprocity, this principle is designed to ensure
that once material is available under an open licence, it, and its derivatives, will
remain available under that licence. Clearly, however, for copyleft to be effective,
there does need to be an IP which would be infringed at the appropriate time, but
for the licensee’s compliance with a condition in the licence.33 If the licensee is able
to do that act in question without impinging on any IP, then there is no requirement
to comply with any licence. This is explored in greater depth later in this chapter.

Notable here is that the evolution of either legal or other constraint is generally
driven by the desire for economic value and return (based on the assumption—​
itself challenged by proponents of openness—​that creating artificial barriers or
monopolies will always lead to a net benefit for the owner of the monopoly, or con-
troller of the constraint).

24.6  Definitions of Openness (and Freedom) in Software

The most venerable criteria for openness, as currently understood, are the Four
Freedoms espoused by the FSF, as discussed in Chapter 3.34

These are concerned with use-​freedom, and cover use-maximization (and, in a
roundabout way, through the words ‘access to the source code is a precondition of
this’ anticipate anti-​closure) but the definition does not cover open governance. As
we have seen, anti lock-​in is an emergent characteristic of Open Source, and the
Open Source development model, although applicable to a number of projects, is
by no means universal (and not automatically emergent).

Accordingly, it is dangerous for other opens to assume that the Four Freedoms
can be transmuted into other areas, and the same connotations of openness
preserved.

For example, the Open Hardware and Design Alliance proposed a set of free-
doms based on the FSF’s Four Freedoms, with a reasonable degree of success.35

	 32	 The circumstances will depend on the licence: for example, the GPL is concerned about distribution.
The AGPL, additionally, is concerned about access to the functionality of the software across a network.
	 33	 There have been attempts to create copyleft obligations through a web of contracts, but the issue
here is that the scheme fails as soon as any one entity acquires the material in question free of a contrac-
tual restriction, which may occur because the entity upstream of them has breached their own contract.
	 34	 ‘What is free software?’ GNU Operating System (30 July 2019) <http://​www.gnu.org/​phi​loso​phy/​
free-​sw.html> accessed 14 January 2020.
	 35	 <http://​web.arch​ive.org/​web/​201​6062​4162​529/​http://​www.oha​nda.org/​> accessed 14 January
2020. OHANDA no longer has a web presence at ohanda.org, and the Wayback Machine last shows a
functioning website at that address on 24 June 2016 (accessed 20 January 2020).

EVERYTHING OPEN  521

Chapter 23 demonstrates that there is an issue with this definition—​concerning
the words ‘complete design’—​but subject to that, the definition overall makes
sense. However, how can the FSF’s definition be meaningfully adopted in a way
that makes it clear what ‘open government’ or ‘open politics’ is?

24.7  Open Knowledge

The Open Knowledge Foundation (OKF)36 is a body that has attempted to estab-
lish a universal definition for the opens. The full open definition is based on the
Open Source Definition (OSD) (which is itself based on the Debian Free Software
Guidelines).37 It summarises its own definition (which it calls the Open Definition)
as follows (current version 2.1): ‘Knowledge is open if anyone is free to access, use,
modify, and share it—​subject, at most, to measures that preserve provenance and
openness.’38 The reference to ‘measures to preserve openness’ is probably best ex-
plained by reference to an earlier version of the Open Definition (version 1.0): ‘A
piece of content or data is open if anyone is free to use, reuse, and redistribute it —​
subject only, at most, to the requirement to attribute and/​or share-​alike.’ It echoes
the idea of share-​alike but goes somewhat further, in that it encompasses additional
restrictions which, for example, limit the ability of the application of digital rights
management to restrict recipients of the material from making practical use of it.39

Interestingly, although the Open Knowledge Definition as a whole is based on
the OSD, the summary above is most closely related to the Four Freedoms and, as
such, it covers use freedom but is not concerned with open governance.

Aware that the open knowledge definition is not all-​encompassing, the OKF
presents another, very specific definition, the Open Software Service Definition: ‘A
service is open if its source code is Free/​Open Source Software and non-​personal
data is open as in the Open Knowledge Definition.’ This cleverly uses the Open
Knowledge Definition to define the scope of the data (excluding personal data)
which the service contains and processes, and also (indirectly) to define the scope
of the software which must be used (Open Source falls within the open knowledge
definition). However, this definition is not ideal, in that it still allows for a software
service which can be subject to lock-​in, as we will discuss.

	 36	 ‘Open Knowledge Foundation’, see note 4.
	 37	 ‘Open Definition’ Open Definition, Version 2.1 <https://​ope​ndef​init​ion.org/​od/​2.1/​en/​> accessed
14 January 2020 (hereafter ‘Open Definition 2.1’).
	 38	 The open knowledge definition is itself published under the Creative Commons Attribution 4.0
International licence, and to comply with that licence in respect of the extracts used, we acknowledge
the copyright of the OKF.
	 39	 This is reinforced by the statement in section 2.2.6 of the definition that ‘[t]‌he license may require
that distributions of the work remain free of any technical measures that would restrict the exercise of
otherwise allowed rights.’ See ‘Open Definition 2.1’, see note 37.

522  Andrew Katz

One of the activities of the OKF is, like the FSF or the OSI, to consider which
licences are approved, such that material released under such a licence can be re-
garded as compliant with the open knowledge definition.

24.8  Open Data

The Open Data Commons40 is a project of the OKF. It seeks, like the Creative
Commons organisation discussed later in the chapter, to facilitate the availability
of content, in this case data contained in one or more databases, as part of a know-
ledge commons. The tools used are a set of licences: the Public Domain Dedication
and Licence, the Attribution Licence, and the Open Database Licence.41 These li-
cences are drafted to take into account the special characteristics of databases, such
as the EU’s sui generis database right, and the practical consequence of a multi-​
source database potentially containing contributions from many thousands of dif-
ferent sources (at which point it becomes impractical to provide attribution for
them all).42

Another organisation, the Open Data Foundation,43 focuses not just on making
data available but on making it useful by seeking to promote global metadata
standards (metadata is data about data), so that information from diverse data-
bases conforming to the standards can be combined in practical and interesting
ways. As such, its activities are intended to help people:

Discover the existence of data
Access the data for research and analysis
Find detailed information describing the data and its production processes
Access the data sources and collection instruments from which and with which

the data was collected, compiled, and aggregated
Effectively communicate with the agencies involved in the production, storage,

distribution of the data
Share knowledge with other users

	 40	 ‘Open Data Commons’ Open Data Commons <http://​open​data​comm​ons.org/​> accessed 14
January 2020.
	 41	 ‘Licenses’ Open Data Commons <http://​open​data​comm​ons.org/​licen​ses/​> accessed 14
January 2020.
	 42	 ‘Licenses FAQ’ Open Data Commons <http://​open​data​comm​ons.org/​faq/​licen​ses/​> accessed
14 January 2020. Richard Poynder, ‘Interview with Jordan Hatcher’ Open and Shut? (18 October
2010) <http://​poyn​der.blogs​pot.co.uk/​2010/​10/​interv​iew-​with-​jor​dan-​hatc​her.html> accessed 14
January 2020. Jordan Hatcher is the principal drafter of the Open Data Commons licences.
	 43	 ‘Open Data Foundation’ Open Data Foundation <http://​www.ope​ndat​afou​ndat​ion.org> accessed
14 January 2020.

EVERYTHING OPEN  523

24.9  Open Content

Open content is another blanket term and is broadly equivalent to ‘open know-
ledge’. At least terminologically, the movement is roughly as old as the OSI (the
terms open source and open content were both coined in 1998). Initially intended to
refer to content licensed under the Open Content Licence, the definition extended
to any content meeting the following criteria:44

Reuse—​the right to reuse the content in its unaltered/​verbatim form (e.g. make
a backup copy of the content)

Revise—​the right to adapt, adjust, modify, or alter the content itself (e.g. trans-
late the content into another language)

Remix—​the right to combine the original or revised content with other content
to create something new (e.g. incorporate the content into a mashup)

Redistribute—​the right to share copies of the original content, your revisions, or
your remixes with others (e.g. give a copy of the content to a friend)

These criteria are very similar to the FSF’s Four Freedoms, so it will come as no sur-
prise that the Open Content Licence45 is modelled on the GNU GPL, in that it is a
copyleft licence. It does restrict the ability to charge for access (and to that extent is
partially non-​commercial).46

24.10  Creative Commons

One of the most prominent organisations in the open content movement has
been Creative Commons. The brainchild of Professor Lawrence Lessig, with co-​
founders Hal Abelson and Eric Eldred, the name Creative Commons draws on the
metaphor of creative activity being what economists call a commons. However,
whereas a physical commons (e.g. fish in the sea, or a piece of common land in a
village) can be exhausted by harvesting or overgrazing, a commons of ideas cannot
be exhausted, as using an idea does not remove it from the commons (in economic
parlance, use of material subject to intellectual property is non-​rivalrous).

Creative Commons is intended to cover a wide range of material, such as literary
works, photography, video and film materials, and other works such as choreog-
raphy, with the intention that as many works as possible are available for reuse.

	 44	 ‘Defining the ‘Open’ in Open Content’, see note 5.
	 45	 <https://​web.arch​ive.org/​web/​199​8120​6111​937/​http://​www.open​cont​ent.org/​opl.shtml> accessed
20 January 2020. The Open Content Licence (and its sister licence, the Open Publication Licence), have
now been deprecated in favour of the Creative Commons licences.
	 46	 Non-​commercial licences cannot be free or Open Source licences because these licences must
permit commercial use. This is explored in greater depth later in the chapter.

524  Andrew Katz

Creative Commons consists of a series of licences, which are currently on
their fourth version. They have been localised for use in a number of jurisdic-
tions worldwide to address differences in copyright and other laws between jur-
isdictions. A content owner choosing to use a Creative Commons licence has a
number of options: BY (attribution), ND (no derivatives), NC (non-​commercial),
SA (share alike). These options can be combined in various combinations. Thus a
licence designated CC-​BY-​NC would allow the user to take the work and exploit it
for non-​commercial purposes (NC), provided that the originator is credited (BY).
Permission is also granted to amend the work. The ND (no derivatives) variant
prevents derivative works from being made. SA (share alike) is a copyleft-​like pro-
vision that requires any re-​distribution of the work or a derivative to be subject to
the same licence.

Creative commons licences have gained wide acceptance: for example, the
whole of Wikipedia is released under CC-​BY-​SA. The use of simple tags to desig-
nate the applicable licence has the benefit of making material that is available under
a specific licence to be easily identified and searched using a search engine such as
Google. Sites such as flickr.com have added functionality to make it easy to identify
material which is available under particular licences.47

Works such as software or hardware are occasionally released under Creative
Commons licences. This is not appropriate, as the licences do not deal effectively
with the distinction between (for software) source code and object code or (for
hardware) the design documents, and the hardware itself, and they do not cover pa-
tents. (If the material relates solely to a design document rather than the hardware
instantiation of the design, then a Creative Commons licence may be appropriate.)

On the other hand, where the material is more analogous to computer soft-
ware (e.g. multi-​track source material for use in a digital-​audio workstation such
as Reason48 or Ableton49), then a licence like the GPL may be more appropriate.
However, this is unusual: it is normally unlikely that an Open Source licence will be
an appropriate choice for material other than software.

Material is sometimes released under ‘a Creative Commons licence’ without fur-
ther qualification: this is unhelpful. Creative Commons is a suite of licences, and
without further information it is not possible to determine which of the suite is
intended.

Despite the open credentials, not all Creative Commons licences comply with
the various free/​open criteria. For example, the non-​commercial (NC) option dis-
criminates against commercial fields of endeavour. (It is also difficult to determine
exactly what ‘non-​commercial’ means; at one extreme it could be taken to limit use

	 47	 ‘Explore /​ Creative Commons’ Flickr <http://​www.fli​ckr.com/​crea​tive​comm​ons/​> accessed 14
January 2020.
	 48	 ‘Reason Studios’ Reason Studios <https://​reason​stud​ios.com> accessed 14 January 2020.
	 49	 ‘Music production with Live and Push’ Ableton <https://​www.able​ton.com/​en/​> accessed 14
January 2020.

EVERYTHING OPEN  525

of material for which direct payment is taken, and at the other, it could be taken to
mean use in any context which involves an organisation which receives money.)50
Likewise, an ND (no derivatives) version of the licence prevents amendments
being made to the content, and also fails to provide use-​freedom.

The NC Creative Commons licence is also the source of a great deal of confu-
sion from those without a detailed understanding of the nuance of licensing and
the OSD. It is not uncommon for even knowledgeable developers and lawyers to
seek and frequently base decisions on a belief that there exists an NC Open Source
licence. This is, of course, not possible, as we have seen, since commercial activity is
a field of use, and restriction of a field of use brings a licence outside the OSD.

Creative Commons has also suggested a mechanism for dedicating works to the
public domain51 called CC0. Because dedication to the public domain is not pos-
sible in many jurisdictions, including England and Wales and in Scotland, CC0
includes a section entitled ‘Public Licence Fallback’ which grants the widest licence
possible should dedication fail.52

24.11  Other Documentation Licences

A number of other open licences are available for documentation, the best known
of which is probably the GNU Free Documentation Licence.53 The FDL is a part
copyleft licence which contains some complex terminology intended to ensure
that software documentation, in particular, remains free but useful and relevant to
the software which it documents.

24.12  Open Hardware (and Open Source Hardware)

There have been several attempts to apply open principles to physical objects.
The step from Open Source to physical hardware seems at first sight to be fairly
straightforward. However, there are several issues which make this more complex.

The term ‘hardware’ covers a wide range of things, from mechanical items like
cars and pillar drills, to electronic items like computer printed circuit boards, to
aesthetic items such as statues or friezes: indeed, it can mean any physical but

	 50	 The terminology used in the most recent versions of the licences, which states that non-​commercial
‘means not primarily intended for or directed towards commercial advantage or monetary compensa-
tion’ does not assist greatly.
	 51	 ‘Our Public Domain Tools’ Creative Commons <http://​crea​tive​comm​ons.org/​publi​cdom​ain/​> ac-
cessed 14 January 2020.
	 52	 ‘CC0 1.0 Universal’ Creative Commons <http://​crea​tive​comm​ons.org/​publi​cdom​ain/​zero/​1.0/​
legalc​ode> accessed 14 January 2020.
	 53	 ‘GNU Free Documentation Licence’ GNU Operating System (3 November 2008) <http://​www.gnu.
org/​copyl​eft/​fdl.html> accessed 14 January 2020.

526  Andrew Katz

non-​solid objects, including liquids like beer or cleaning fluid. Even within the
field of electronics, there is a significant distinction between a printed circuit board
which is clearly a physical object, and individual components such as FPGAs (field
programable gate arrays), the most important characteristic of which is that their
operation is determined by a stream of digital code, which is in many ways akin to
software.

The legal basis for the use, modification, and distribution of content, including
software, is generally better understood than it is for the use, modification, and
distribution of hardware, and the types of IP which apply to hardware are more
diverse (and also tend to vary more significantly from jurisdiction to jurisdiction)
than those which apply to software.

An effective open hardware licence will either limit itself to particular forms of
hardware or will be aware that hardware can come in this wide variety of forms.

There are far fewer open hardware licences than there are Open Source licences
as the field of open hardware is less developed than that of free and open source
software.

These issues are covered more comprehensively in Chapter 23.

24.13  Open Data

Open data is a form of open content and arises in many contexts. Proponents of
open government are keen to see governmental statistics (and their underlying
datasets) being made freely available, and indeed freedom of information legis-
lation is a useful tool to facilitate this.54 In academia, projects such as genetic re-
search and nuclear physics have generated vast amounts of data which, it has been
argued, should be made freely available to facilitate research. There are also specific
initiatives, such as OpenStreetMap, which are intended to facilitate crowdsourcing
geographical data, and open genealogy, covering family history.55

In the US, the government has launched data.gov,56 which is a central reposi-
tory of governmental data. The UK has data.gov.uk.57 The release of governmental
data fulfils two requirements, each characterised by a slightly different connotation
of open. The first is that if data is made freely available for reuse, then the avail-
ability of the data will reduce friction in the rest of the economy, and promote the

	 54	 In the UK, Freedom of Information Act 2000, Freedom of Information (Scotland) Act 2000 and
Environmental Information Regulations 2004. The Aarhus Convention (1998) also provides for public
access to certain information: ‘Public Participation’ UNECE <http://​www.unece.org/​env/​pp/​welc​ome.
html> accessed 14 January 2020.
	 55	 ‘Manifesto: The Right to Culture in the Digital Age’ Open Genealogy Alliance <http://​www.open​
gena​llia​nce.org/​> accessed 14 January 2020.
	 56	 ‘The home of the U.S. Government’s open data’ data.gov <http://​www.data.gov> accessed 14
January 2020.
	 57	 ‘Find open data’ data.gov.uk <http://​data.gov.uk/​> accessed 14 January 2020.

EVERYTHING OPEN  527

development of useful applications for data which will themselves stimulate the
economy and provide a benefit to everyone. The second is more allied with the
concept of open governance and is intended to promote democracy by providing
the transparency necessary to hold government to account. From this perspective,
the availability of the data is more akin to access to information through mechan-
isms such as freedom of information requests.

The rationale behind non-​governmental projects like OpenStreetMap is fo-
cused on the first, use-​and-​access connotation of openness, rather than any form
of transparency.

24.13.1  Data: the legal and licensing context

The US has historically had neither a sui generis database protection right, nor
protection for databases as an extension of copyright.58 Further, in the US, copy-
right protection is not available to works created by the government,59 and such
works are assumed to be in the public domain, the theory being that if tax dollars
have been expended in creating them, they should be free to use by anyone (it has
been assumed that this includes anyone outside the US, but this idea has been chal-
lenged, including on the US government’s own website).60

The situation in the EU, in particular, is very different. The EU possesses a sui
generis database protection right.61 In addition, the EU Directive on the reuse of
public sector information (2003/​98/​EC)62 has as its rationale that copyright works
owned by the government should be exploited by licensing them to commerce for
the highest bidder. So, for example, mapping data which in the US has historically
been available universally as it is in the public domain, is considered public sector
information in the UK, use of which is made available under a restricted licence
through the Ordnance Survey.63 Despite these philosophical issues, much infor-
mation is now made available through the data.gov.uk portal under less restrictive
licensing. The data available through data.gov.uk is available not only as dumps

	 58	 Feist Publications, Inc., v Rural Telephone Service Co., 499 US 340 [1991]. Various copyright pro-
tections may be available at state, as opposed to Federal, level, but these are beyond the scope of this
chapter.
	 59	 US Code, Section 105, Title 17, Chapter 1.
	 60	 US government, ‘U.S. Government Works’ USA.gov (18 July 2019) <https://​www.usa.gov/​gov​
ernm​ent-​works> accessed 14 January 2020.
	 61	 Directive 96/​9/​EC of the European Parliament and of the Council on the legal protection of data-
bases [1996] OJ L77/​20. The EU Database Right has been subsumed into the UK domestic law after
Brexit, although the extent of mutual recognition has been limited: <https://​www.gov.uk/​guida​nce/​sui-​
gene​ris-​datab​ase-​rig​hts-​after-​the-​tra​nsit​ion-​per​iod> accessed 14 January 2020.
	 62	 Directive 2003/​98/​EC of the European Parliament and of the Council on the re-​use of public sector
information [2003] OJ L345 as amended by Directive 2013/​37/​EU of the European Parliament and of
the Council [2013].
	 63	 <https://​www.ord​nanc​esur​vey.co.uk/​busin​ess-​gov​ernm​ent/​licens​ing-​agr​eeme​nts> accessed 20
January 2020.

528  Andrew Katz

of data in various database formats (the simplest being comma-​separated values
(CSV)), but access is also available through an application programing inter-
face (API).

The licence under which much of the data on data.gov.uk is released is the Open
Government Licence, which is a liberal database licence, requiring only attribution.64
It does limit its own scope to personal data (and it is unclear whether the definition
of personal data employed is the fairly restrictive definition contained with the Data
Protection Act 201865 which deals solely with data relating to a living individual, or a
wider interpretation which covers any data relating to any individual, irrespective of
whether the individual is living or dead).66

The US site data.gov does not specify a licence, possibly because of the twin as-
sumptions that (i) data as such is not amenable to IP protection under US law, and (ii)
that governmental data would, in any event, be in the public domain.

Both availability of the data and the ability to reuse it under a liberal licensing
framework are important to advocates of openness, but as services are built on top of
government data portals, the reliability and persistence of the API are also important.
In addition, where people wish to compare data between portals from different juris-
dictions, it becomes increasingly necessary that those portals adhere to standards, so
that to extract equivalent data from different portals it is not necessary to customise
the interface code each time. Thus the additional connotation of anti-​lock-​in—​
persistence—​is critical in this context. To address these issues, the OKF has developed
CKAN, an Open Source data management system67 which is intended to act as a plat-
form to facilitate data transfer, in part by using standardised data catalogues which
facilitate the comparison of data within and between datasets.

There are several different mechanisms to facilitate interoperability between
datasets. One of these is the semantic web project, which aims to provide a way of
categorising data to create what it calls a web of data. In this way, data presented
by different entities from different datasets is provided in a predictable way to fa-
cilitate programatic access to web sites and the data behind them. The Semantic
Web Project68 is led by the World Wide Web Consortium (W3C). The Open
Data Foundation also seeks to facilitate interoperability and combination of data
sources.69

	 64	 ‘Open Government Licence for public sector information’ The National Archives <http://​www.
natio​nala​rchi​ves.gov.uk/​doc/​open%20gov​ernm​ent-​lice​nce/​> accessed 14 January 2020.
	 65	 <http://​www.legi​slat​ion.gov.uk/​ukpga/​2018/​12/​part/​2/​chap​ter/​1/​enac​ted> (accessed 7 January
2020), which was passed in response to Regulation (EU) 2016/​679 of the European Parliament and of
the Council on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data (General Data Protection Regulation) [2016] OJ L119 (GDPR).
	 66	 GDPR, art 4(1).
	 67	 ‘CKAN, the world’s leading Open Source data portal platform’ CKAN <http://​ckan.org/​> accessed
14 January 2020.
	 68	 ‘W3C Semantic Web Activity’ W3C <http://​www.w3.org/​2001/​sw/​> accessed 14 January 2020.
	 69	 ‘Projects’ The Open Data Foundation <http://​www.ope​ndat​afou​ndat​ion.org/​?lvl1=​proje​cts> ac-
cessed 14 January 2020

EVERYTHING OPEN  529

The Open Data Institute (ODI), founded by web inventor Tim Berners-​Lee and
Nigel Shadbolt, also seeks to promote access to government data.70

24.14  Open Software Services

The OKF promotes a definition of Open Software Services.71 The core definition is:
An open software service is one:

1.  Whose data is open as defined by the Open Definition with the exception that
where the data is personal in nature the data need only be made available to the
user (i.e. the owner of that account).
2.  Whose source code is:

1.  Free/​Open Source Software (that is available under a licence in the OSI or
FSF approved list . . .).
2.  Made available to the users of the service.

The Open Definition is a significant part of this definition and goes some way to
extending the definition away from use-​freedom and helping to deal with lock-​in.
However, a better way to look at openness in software services is that they must also
minimise lock-​in (and, ideally, be based on standards which are open, and there-
fore also require open governance) which also leads to lock-​out of competitors.

Lock-​in can impinge in two ways: the interface presented by the API must be
open, in the standards sense of it being fully documented, and available for use
without payment of any royalty.72 Further, we argue that it must also provide ap-
propriate and complete functionality on a non-​discriminatory basis. ‘Appropriate
and complete’ means that that functionality must do everything that the user would
need it to, including facilitating bulk extraction of data (including metadata and,
where necessary, pending transactions) at any time during the lifecycle of the solu-
tion. ‘Non-​discriminatory’ means that each user has access to the full API, and that
the API performs in the same way for each user (so that there are no hidden API

	 70	 ‘About the ODI’ Open Data Institute <http://​www.the​odi.org/​about> accessed 14 January 2020.
	 71	 ‘Open Software Service Definition’ Open Definition (8 October 2008) <http://​ope​ndef​init​ion.org/​
softw​are-​serv​ice/​> accessed 14 January 2020.
	 72	 This does present a problem: there must be some mechanism to enable to the providers of open
software services to charge for their services. One logical way to gauge whether charging is reasonable
or not is to look at the model of the GPL, which does not prohibit or limit charging for software (except
in the specific case of providing a copy of the source code in response to a request), but relies on eco-
nomics to lower the cost of the software to the marginal cost of copying it, on the basis that any licensee
with a copy of the source code is able to copy and distribute it without any fee to the licensor, so com-
petition between licensees will tend to drive the cost of copies down to the marginal cost of copying it.
Likewise, if the software providing the open software service is available on a Open Source basis, then it
would be open to any person with a copy to instantiate their own competing service, which would tend
to drive the cost of providing the service down to the marginal cost.

530  Andrew Katz

calls for privileged users), and that the performance is not dependent on which
user is accessing the API—​a vendor, for example, might seek to lock in one cus-
tomer by only allowing a certain number of API calls per second, preventing bulk
transfer of data.

Transparency is related to the documentation of the API but it requires a further
step: that the mechanisms underlying the provision of the service are also fully
documented, in a form that would enable them to be reproducible (this is similar
to one distinction between open hardware and open source hardware which is dis-
cussed in Chapter 23). Of course, providing the source code of all of the software
providing the service would fulfil this requirement (at least assuming that there is
no non-​software element of the service which is also required to provide the ser-
vice).73 However, even without access to the underlying source code, if the API and
the mechanism for delivery of the service are available, then a competing service
can be provided.

It is relatively easy to imagine a service which fulfils the requirements of the
Open Software Services Definition, but which still fails to be open in any practical
sense because the data which it contains are not capable of being effectively ex-
tracted. It may be because the software does not contain appropriate functionality
to allow the data to be extracted.74

The Open Software Services definition, in its FAQ, does go some way in ad-
dressing these points, by stating: ‘The Open Definition also requires that data
should be accessible in some machine automatable manner (e.g. through a stand-
ardized open API or via download from a standard specified location).’ But this
does not handle a situation where there is discrimination in the access available
through the API. It also incompletely addresses the issue of metadata.

An appropriate definition of an open software service must, therefore, address
the issues of transparency and lock-​in. The user of a service described as open must
be able to transfer to another service with minimal effort:75 the data must, both
theoretically and practically, be portable.

	 73	 It was rumoured that one provider of mobile speech-​to-​text services performed a large proportion
of its work by using human labour offshore, rather than computers. There is no requirement for the
services provided on the back side of an API to be provided by computers.
	 74	 Just because the software is released as Open Source does not mean that the user of the service
will have any ability to change the version used in that instance of the service to rectify problems with
the API’s functionality, although they may be able to create their own instance and modify the code to
deal with those issues. However, the new instance is unlikely to be of any use unless the data accessed
through the original instance is accessible.
	 75	 Rufus Pollock, who happens to be on the board of the OKF, makes a relevant point about lock-​in
as it applies to virtual worlds. Virtual worlds are different from the real world, in that it is relatively
straightforward to up sticks and move from one virtual world to another. In the real world, moving from
one country to another can be enormously disruptive. As complex as it may be to move from World of
Warcraft to Second Life, it’s an order of magnitude easier than moving countries in the physical world.
In the physical world, we need democracy to exercise control over the governance. In the virtual world,
a governor who fails to provide an amenable environment for the subjects will find all those subjects
leaving to a more conducive domain. Governors will, of course, be aware that failing to provide for the

EVERYTHING OPEN  531

Practical portability means that it must also be possible to extract all of the user’s
data, including metadata, from the service in a meaningful, sensible way. There are
two ways in which access to data can be restricted: by law (or by terms of use re-
stricting certain activity in relation to API, such as number of calls per second) and
by code (there is a hard-​coded restriction on the number of API calls per second,
for example). Both of these must be absent for a software service to be properly re-
garded as open.

Therefore, a better definition of an open software service will be one which
takes into account not only anti-​closure and use maximization but also transpar-
ency and, crucially, anti lock-​in. Anti lock-​in also implies that a competing service
vendor must not be locked out of the service layer of a cloud provider’s platform.

24.15  Open Politics and Open Government

Open politics and open government are about transparency and trust or account-
ability. In addition, open politics and government principles require the informa-
tion and data used to make decisions to be made freely available to as wide a group
as possible, and accordingly, use maximising becomes relevant. The mechanism
by which people are able to participate in the democratic process should also be
non-​discriminatory.

The UK government has published a white paper which defines open public
services76 as an important branch of open government. Open public services are
those which display the following characteristics, summarised as:

Choice and control—​Wherever possible the government will increase choice.
Decentralisation—​Power should be decentralised to the lowest appro-

priate level.
Diversity—​Public services should be open to a range of providers...
Fair access—​the government will ensure fair access to public services.
Accountability—​Public services should be accountable to users and taxpayers.

Where information or data are made available under an open government basis, it
is important that they are capable of broad reuse. See section 24.8 for more infor-
mation about how this is typically carried out.

needs of their subjects will cause them to lose subjects. Accordingly, even if they are dictators, they will
still have a normative pressure imposed on them to behave well and keep their subject happy. The same
applies so far as software services are concerned: if it is relatively easy to transfer from one software ser-
vice to another, then the provider of the software service will work that much harder to provide a service
which its users are happy with.

	 76	 ‘Open standards for government data and technology’, see note 11.

532  Andrew Katz

24.16  Open Standards and Open Specifications

Standards exist to promote interoperability (see further Chapter 12). As such they
need to be applied consistently. Any standard which is subject to the ability to
adapt, amend and extend in an uncontrolled or arbitrary fashion rapidly loses this
consistency, and becomes untrustworthy, and ultimately valueless. Accordingly,
the application of the description open to a standard is necessarily subtly different
from its application in other contexts. This does mean that an open standard may
be subject to restrictions that are not necessarily applicable to other opens, in order
to ensure consistency.

There are several different definitions of open standard.
The first version of the European Interoperability Framework contained the fol-

lowing criteria:77

24.16.1  Use of open standards

To attain interoperability in the context of pan-​European eGovernment services,
guidance needs to focus on open standards. The following are the minimal charac-
teristics that a specification and its attendant documents must have in order to be
considered an open standard:

	 •	 The standard is adopted and will be maintained by a not-​for-​profit organisa-
tion, and its ongoing development occurs on the basis of an open decision-​
making procedure available to all interested parties (consensus or majority
decision etc.).

	 •​	 The standard has been published and the standard specification document is
available either freely or at a nominal charge. It must be permissible to all to
copy, distribute and use it for no fee or at a nominal fee.

	 •​	 The intellectual property—​i.e. patents possibly present—​of (parts of) the
standard is made irrevocably available on a RF basis.

	 •​	 There are no constraints on the re-​use of the standard.

This requires use-​freedom not only of the standard itself (bullets 3 and 4), but also
of the documentation comprising the standard (bullet 2). Additionally, open gov-
ernance of the standards creation process is dealt with in bullet 1, as is anti-​lock-​in
(in that the standard cannot be amended without an appropriate decision making

	 77	 European Communities, European Interoperability Framework for Pan-​European eGovernment
Services (1st edn, Brussels: Office for Official Publications of the European Communities 2004)
(available at <https://op.europa.eu/en/publication-detail/-/publication/a4778634-27fa-43b4-
9912-f753c4fdfc3f>) accessed on 21-Sep-22.

EVERYTHING OPEN  533

process open to all interested parties, so any user of the standard is less likely to be
subject to arbitrary and unplanned changes).

One contentious issue which this definition directly addresses is the require-
ment for an open standard to be usable without payment to any holders of IP (in
particular, patent holders). Clearly, if a standard becomes adopted, this is likely to
significantly increase its use.

A patent holder whose patent would necessarily be infringed by implementa-
tion of the standard is potentially in a position to demand significant sums for li-
censing the patent. This sometimes happens when the patent holder is part of the
team establishing the standard in the first place (in which case the patent holder
can either be open about holding the patents from the outset, as was the case with
Sony and Phillips when they established the various CD and CD-​ROM formats, or
the patent holder can keep the existence of the patents or the applications for them
secret).78 It can also happen when an entity is not involved in the standards-​setting
process but begins to assert its patents after the standard has been put into effect.

If a standard is an open standard (under the EIF version 1 definition, for ex-
ample), then a licence to the patents which would be infringed by its implementa-
tion must be available on a RF basis to anyone. It is an open question what happens
if patents are later discovered which impinge on a standard which was previously
understood to be open, either because they belong to a party who participated
in the standards setting process and who concealed the existence of the patents,
or because patents belonging to a third party are subsequently discovered which
impinge on implementations of the standard. It can be assumed that if the patent
holder is unwilling to make licences to the patents irrevocably available on a RF
basis to all implementers of the standard, then the standard can no longer be de-
scribed as ‘open’. However, this can have consequences: what happens, for example,
if a procurement process is already underway which specifies that the items to be
procured must comply with an open standard? What if some items have already
been procured in the belief that the standard is open, the standard then becomes
closed, and further items need to be procured which, to interoperate with the
already-​procured initial items, now need to comply with a standard which is no
longer open?

A further issue is that, even if licences to the patents are available on a royalty-​
free basis, those patents are likely to impose other terms on the licensee, and those
terms may be equally problematic to proponents of openness, and particularly

	 78	 This is known as a ‘patent ambush’. Rambus was alleged to have done this, by participating in set-
ting standards for RAM through the standards-​setting body JEDEC. After the standards were ratified,
it was alleged that Rambus started to demand royalties from entities using the particular technologies
covered by its patents and that Rambus kept details of the patents secret from the standards body and
the other participants, an allegation which Rambus denied. The facts of the case are complex, and im-
pinge on competition law both in the US and the EU. A good summary of the issues from a European
perspective can be found here: <ec.europa.eu/​competition/​publications/​cpn/​2010_​1_​11.pdf> accessed
20 January 2020.

534  Andrew Katz

those who would wish to implement the standard in free or Open Source software,
as we explore shortly.

24.16.2  FRAND

Patent holders may argue that it is a step too far to demand that they make a licence
to their patent available to all implementers of the standard on RF terms. They may
offer to make the patents available under ‘reasonable and non-​discriminatory’
terms (‘RAND’) or ‘fair, reasonable and non-​discriminatory’ terms (‘FRAND’).

RAND and FRAND have been dismissed as being meaningless platitudes
by proponents of openness79 in that the interpretation of what is fair and rea-
sonable is too subjective, and that if royalties are payable then the licences will
necessarily discriminate against Open Source. This is explored more thor-
oughly below.

A further variety of patent licence, FRAND-​Z, adds a requirement that zero roy-
alties are payable, which does render the licence compatible with EIF1 require-
ments but does not address interaction between other aspects of the licence and
certain Open Source licences. This is particularly problematic in relation to the
GPL, as will now be discussed.

24.16.3  Interaction between Open Source and open standards

The GNU GPL family of licences (from GPL version 2 onwards) contains the ‘lib-
erty or death’ clause discussed in Chapter 3 which, although it varies slightly from
one version of the licence to another, provides that if a licensee cannot license the
covered code to a third party so that the third party gets the same rights that the
licensee has, then the licensee may no longer distribute the covered code. This is
intended to prevent a scenario where a licensee obtains a personal licence (to a
patent, for example) which enables it to use the covered code, but any downstream
licensee cannot benefit from that licence, and must approach the patent licensor
for another licence (which the licensor may charge for), to allow the software to
continue to be used. This was seen as an unwarranted restriction on freedom (and
would permit the implementation of a relatively simple mechanism to be em-
ployed allowing a patent licensor to subvert software freedom—​something that the
FSF, with its anti-​closed stance, was unwilling to countenance).

In order to be compliant with the liberty or death clause, any patent licence
which impinges on a GPL program must allow the same patent licence to be made

	 79	 Simon Phipps, ‘Why RAND is bad for Open Source’ Computerworld (20 April 2012)<https://​
www.comput​erwo​rld.com/​arti​cle/​3423​951/​why-​rand-​is-​bad-​for-​Open Source.html> accessed 20
January 2020.

EVERYTHING OPEN  535

available to any downstream recipient of the code. In particular, this means that the
patent licence needs to be sub-​licensable to any downstream recipient of the GPL
code, or that at the very least that a patent licence is available to any downstream re-
cipient of the code. Whilst is it possible that a FRAND licence could be constructed
which complies with the GPL requirement, this is unlikely, as such a licence would
have to be so wide80 that it would be equivalent to a patent surrender (in other
words, giving up the patent entirely).

In practice, FRAND licences are not sub-​licensable. Even if the FRAND licences
are available to downstream recipients, they are likely to be conditioned on the
downstream recipient implementing the standard, and not deviating from it. The
GPL, however, requires that a downstream recipient must be free to modify the
code, even if the modification means that the code deviates from the standard. (This
is an illustration of the conflict between open principles in that use-​maximisation,
in the guise of allowing modifications, conflicts with the anti-​lock-​in principle that
needs standards to be maintained). The original licensee of the GPL code cannot
comply with its obligation to allow downstream recipients to modify the code,81
the liberty or death requirement is not satisfied, and the GPL code cannot therefore
be distributed.82 It has also been argued that the cascade licensing model of GPL it-
self (i.e. that each downstream recipient of GPL code receives a number of licences,
one from each contributor to the code received) is incompatible with the direct li-
censing model that is present in almost all FRAND licensing structures.83

Thus even FRAND-​Z is incompatible with a GPL licensing model, and FRAND
more so.

Open standards are covered more comprehensively in Chapter 12.

24.17  Open Innovation

‘Open innovation’ is a term coined by Henry Chesbrough in his book Open
Innovation: The New Imperative for Creating and Profiting from Technology.84 It

	 80	 It is possible to imagine a FRAND-​Z licensing structure broad enough to be compatible with the
GPL licensing model—​it would have both to allow sub-​licensing, and also to allow implementations
other than those which implement the standard.
	 81	 This right does not have to extend to the right to allow the downstream recipients to modify the
software in such a way that it might infringe a different patent which was not licensed under the original
FRAND licence.
	 82	 A counter-​argument is that the original recipient of the GPL code (assuming it takes the benefit
of the same FRAND licence as are available to downstream recipients) is limited in the same way as
any downstream recipient, and that therefore, since the original recipient has no greater rights than are
granted to any downstream recipient, there is no loss of freedom, and the liberty or death clause does
not impinge.
	 83	 Iain G Mitchell QC, Stephen Mason, instructed by Andrew Katz, ‘Compatibility of the Licensing of
Embedded Patents with Open Source Licensing Terms’ (2011) 3 Journal of Law, Technology and Society,
available at <http://​www.ifos​slr.org/​ifos​slr/​arti​cle/​view/​57/​99> and <https://​www.jolts.world/​index.
php/​jolts/​arti​cle/​view/​57/​99> (both accessed 7 January 2020).
	 84	 Harvard Business School Publishing Corporation, 2003.

536  Andrew Katz

differs from the other opens in that it does not envisage universal access to know-
ledge and the use of innovative IP licensing structures or governance to facilitate
access Instead, and more restrictively, it aims to make organisations more amen-
able to the inventions and innovations from outside the organisation, and to allow
organisations to license their IP to others more freely. This is likely to result in a
wider dissemination of invention and innovation, but only under a traditional net-
work of non-​disclosure agreements and licences. Accordingly, open innovation is
not concerned with the forms of openness considered in this chapter.

24.18  Open Publishing, Open Education, and Open Access

Open publishing and open access mainly concern academic articles, journals, and
publications such as this book and refer to the ability of a researcher to access the
journal or article without payment, and, ideally, to reproduce the relevant text also
without any restriction (including payment).85 There are several competing def-
initions, but possibly the most succinct is that developed by the US Public Library
of Science (PLoS): ‘Free availability and unrestricted use.’ Open access publishing
is not incompatible with traditional ‘consumer-​pays’ publishing, and open ac-
cess journals can still provide high-​quality peer-​reviewed material. Since elec-
tronic publication and distribution is inexpensive and effective, almost all, if not
all, open access journals are available online.86 Many have print versions available
as well. The print versions may be paid for by advertising, sponsorship, an article
processing charge paid for by the author (or the author’s sponsor or affiliated or-
ganisation) or by a charge to the purchaser (the fact that an open access journal
is available at a price in print form does not preclude it from being an open ac-
cess journal, so long as it is possible to obtain a version, usually electronic, without
charge). Someone downloading a copy of an open access journal can, of course,
also print one or more copies of the journal, or use a print on demand service like
Lulu.com to create a physical copy.

The website doaj.org (Directory of Open Access Journals) lists 14,182 journals
qualifying as open access journals87

In practice, many open access journal articles are published under an appro-
priate Creative Commons licence, although other licences, like the free documen-
tation licence, are also employed. The choice of licence is important, and there is
often an assumption that any Creative Commons licence will do. This is incorrect,
and most importantly, the NC (non-​commercial variants) and ND (no derivatives)

	 85	 Waelde, ‘Scholarly Communications and New Technologies’, see note 17.
	 86	 For example, the Journal of Law, Technology and Society (formerly International Free and Open
Source Software Law Review) at <https://​jolts.world>.
	 87	 As at 14 January 2020.

EVERYTHING OPEN  537

are not appropriate. See, for example, the RCUK Guidance88 which stipulates that
a CC-​BY licence should be used, although a CC-​BY-​NC licence is acceptable in
some limited circumstances. CC-​BY-​ND licences are never appropriate for an
open access publication.

Open access is divided into green and gold standards.89 The chief difference is
not in terms of licensing but that the green standard refers simply to the informa-
tion being made available but without a formal mechanism for review. The gold
standard adds a requirement for the information to be peer-reviewed, and is thus
competitive (and seeks to be as authoritative as) academic peer-​reviewed journals
published under the traditional mechanism.90

The main open addressed in open access publishing is use-​freedom.
‘Open education’ has a connotation that is similar, and refers mainly to course-

ware being made available on an open access basis (also referred to as open
courseware).91

However, the meaning may be much broader, and refer to elimination of bar-
riers restricting access to education. A prime example is the Open University92
which opened in the UK in 1971. Open education providers rely heavily on (and
contribute to and create) open courseware, but also provide more traditional serv-
ices provided by open education bodies: tutorials, access to academic staff, exam-
inations, etc. The Open University (OU) requires no academic qualifications for
entry (although qualifications are required to move on to more advanced courses,
which can be obtained within the OU itself, so that a sufficiently dedicated and
able student can enter the OU with no qualifications and leave with a doctorate, or
even post-​doctoral qualification). The OU does charge fees (although grants may
be available to qualifying students).

Other open education institutions operate on a similar basis. Use-maximization
is the goal, although the governance of open-​education institutions may also in-
volve transparency. Open education institutions are often keen to ensure that their
academic qualifications are regarded as equivalent to those from non-​open institu-
tions, and, accordingly, will submit to review by bodies, often governmental, which

	 88	 <https://​www.ukri.org/​wp-​cont​ent/​uplo​ads/​2020/​10/​UKRI-​020​920-​OpenA​cces​sPol​icy.pdf> ac-
cessed 20 January 2020.
	 89	 An Introduction to Open Access’ Jisc (17 October 2019) <https://​www.jisc.ac.uk/​gui​des/​an-​intro​
duct​ion-​to-​open access> accessed 20 January 2020.
	 90	 For example, the Journal of Open Law, Technology and Society (<https://​jolts.world>) (formerly the
International Free and Open Source Software Law Review) is now published under a Creative Commons
Licence, generally CC-​BY. Its licensing model has gone through some iterations (with the intention al-
ways being that its content was to be freely available). Because its academic articles are peer reviewed,
they meet the gold standard of open access (it does carry opinion articles which are less rigorously re-
viewed, and these, despite being licensed on the same basis, meet green open access standard).
	 91	 ‘Open Education Consortium’ Open Education Consortium <http://​www.ocwcon​sort​ium.org/​>
accessed 14 January 2020.
	 92	 ‘The Open University’ The Open University (2020) <http://​www.open.ac.uk/​> accessed 14
January 2020.

538  Andrew Katz

are established to ensure that standards are maintained. An example in the UK is
the Quality Assurance Agency (QAA).93 This also has the effect of reducing lock-​in
by ensuring that students have the ability to move between accredited institutions
throughout their academic lives.

24.19  Summary

An increasing number of fields describe themselves as ‘open’. The term most fre-
quently connotes access to and the ability to reuse data and information, but,
within those connotations, there is a tension between maximising the use of con-
tent, and preventing it from being re-​closed (use maximisation, and anti-​closure).

This is not all. Transparency in governance (including access to and influence of
the decision-​Open-​source software and making process) is frequently connoted
by the term ‘open’, as is a rejection of structures which would allow dominance by a
specific entity or group of entities: ‘lock-​in’.

The four connotations can be described as use-​freedom, transparency, open
participation, and anti lock-​in. An understanding of these four different conno-
tations assists in determining the commonality between the many different open
fields.

	 93	 <https://​www.qaa.ac.uk> accessed 18 February 2021.

Ap
pe

nd
ix

Is
su

e
C

om
m

en
ta

ry
W

ho
 is

 b
es

t p
la

ce
d

to
 b

ea
r r

is
k?

Be
st

 m
ec

ha
ni

sm
 to

 ta
ck

le
 ri

sk

Su
pp

lie
r-

​
cr

ea
te

d
co

de

in
fr

in
ge

s c
op

y-
rig

ht

Th
e r

isk
 o

f d
et

ec
tio

n
of

 in
fr

in
ge

-
m

en
t i

s e
as

ie
r f

or
 [F

/​O
SS

] (
as

 th
e

co
de

 is
 m

or
e r

ea
di

ly
 av

ai
la

bl
e f

or

co
m

pa
ris

on
 p

ur
po

se
s,

es
pe

ci
al

ly
 if

th

e c
od

e i
s G

PL
 an

d
re

-​d
ist

rib
ut

ed
,

bu
t t

he
 ab

ili
ty

 o
f t

he
 cu

st
om

er
 to

m

iti
ga

te
 it

s l
os

s i
s g

re
at

er
, a

s i
t a

ut
o-

m
at

ic
al

ly
 h

as
 ac

ce
ss

 to
 th

e s
ou

rc
e

co
de

, t
o

en
ab

le
 it

 to
 re

-​ e
ng

in
ee

r
in

fr
in

gi
ng

 co
de

 it
se

lf
if

th
e S

up
pl

ie
r

w
ill

 n
ot

 o
r c

an
no

t d
o

so
.

Su
pp

lie
r

In
de

m
ni

ty
/​w

ar
ra

nt
y f

ro
m

 Su
pp

lie
r.

Su
pp

lie
r h

as

rig
ht

 to
 re

w
rit

e i
nf

rin
gi

ng
 co

de
. V

er
sio

n
co

nt
ro

l
sy

st
em

 (V
C

S)
 sh

ar
ed

 re
po

sit
or

y a
nd

 al
lo

w
in

g a
ud

it
rig

ht
s

Pu
bl

ic
ly

-​
av

ai
la

bl
e c

od
e

(i.
e.

co
de

 ac
-

qu
ire

d
fr

om

th
ird

 p
ar

tie
s

un
de

r a
 [F

/​
O

SS
] l

ic
en

ce
,

an
d

in
co

rp
-

or
at

ed
 in

to

th
e s

oft
w

ar
e)

in

fr
in

ge
s

th
ird

 p
ar

ty

co
py

rig
ht

.

O
ne

 ri
sk

 is
 th

at
 th

e p
ub

lic
ly

 av
ai

l-
ab

le
 co

de
 se

le
ct

ed
 is

 in
he

re
nt

ly

in
fr

in
gi

ng
 (i

.e.
 th

er
e i

s a
 p

ro
ve

n-
an

ce
 is

su
e)

, o
r

al
te

rn
at

iv
el

y,
th

e
co

m
po

ne
nt

 is
 av

ai
la

bl
e u

nd
er

 a
[F

/​O
SS

] l
ic

en
ce

, b
ut

 n
ot

 th
e o

ne

at
ta

ch
ed

 to
 it

. N
ot

e t
ha

t “
pu

bl
ic

ly

av
ai

la
bl

e c
od

e”
 w

ill
 in

cl
ud

e p
ub

-
lic

ly
 av

ai
la

bl
e c

od
e t

ha
t h

as
 b

ee
n

am
en

de
d

by
 th

e S
up

pl
ie

r t
o

cr
ea

te

a d
er

iv
at

iv
e w

or
k.

Va
rie

s f
ro

m
 p

ro
je

ct
 to

 p
ro

je
ct

. I
f

th
e C

us
to

m
er

 sp
ec

ifi
es

 u
se

 o
f a

 sp
e-

ci
fic

 co
m

po
ne

nt
, t

he
n

it
sh

ou
ld

 b
e

lia
bl

e f
or

 cl
ai

m
s i

n
re

la
tio

n
to

 th
at

co

m
po

ne
nt

. I
f t

he
 Su

pp
lie

r s
el

ec
ts

th

e c
om

po
ne

nt
s,

th
er

e i
s a

 st
ro

ng
er

ar

gu
m

en
t t

ha
t t

he
 Su

pp
lie

r s
ho

ul
d

be
ar

 so
m

e o
f t

he
 ri

sk
, o

r a
t l

ea
st

 ta
ke

ca

re
 in

 th
e s

el
ec

tio
n

pr
oc

es
s.

W
ar

ra
nt

y o
r i

nd
em

ni
ty

 fr
om

 th
e S

up
pl

ie
r,

to

en
co

ur
ag

e S
up

pl
ie

r t
o

ta
ke

 ca
re

 in
 so

ur
ce

 se
le

c-
tio

n.
 A

 li
st

 o
f a

gr
ee

d
so

ur
ce

s o
f c

od
e m

ay
 g

iv
e t

he

Cu
st

om
er

 co
m

fo
rt

 (e
ve

n
if

th
is

is
by

 n
o

m
ea

ns
 co

n-
cl

us
iv

e)
, a

nd
 m

ay
 en

co
ur

ag
e t

he
 Su

pp
lie

r t
o

ta
ke

fe

w
er

 ri
sk

s i
n

te
rm

s o
f p

ro
ve

na
nc

e.
Fu

rt
he

r,
if

co
de

is

ob
ta

in
ed

 fr
om

 re
co

gn
ise

d
lo

ca
tio

ns
, i

t i
s m

or
e

lik
el

y t
o

be
 h

ea
vi

ly
 re

us
ed

, a
nd

 th
er

ef
or

e t
he

re
 is

,
ar

gu
ab

ly,
 sa

fe
ty

 in
 n

um
be

rs
 (i

.e.
 th

e c
od

e h
as

 b
ee

n
us

ed
 m

an
y t

im
es

 b
ef

or
e a

nd
 th

er
e h

as
n'

t b
ee

n
a

cl
ai

m
 ye

t)
, a

nd
 al

so
 th

e l
ik

el
ih

oo
d

th
at

 if
 it

 is
 fo

un
d

to
 b

e i
nf

rin
gi

ng
, t

he
 co

m
m

un
ity

 w
ill

 ge
ne

ra
te

 a
no

n-
​in

fr
in

gi
ng

 al
te

rn
at

iv
e

(c
on

tin
ue

d)

Is
su

e
C

om
m

en
ta

ry
W

ho
 is

 b
es

t p
la

ce
d

to
 b

ea
r r

is
k?

Be
st

 m
ec

ha
ni

sm
 to

 ta
ck

le
 ri

sk

A
no

th
er

 ri
sk

 is
 th

at
 th

e C
us

to
m

er

(a
s o

pp
os

ed
 to

 th
e S

up
pl

ie
r)

 m
ay

sp

ec
ify

 th
e u

se
 o

f s
pe

ci
fic

 [F
/​O

SS
]

co
m

po
ne

nt
s,

an
d

in
 u

sin
g t

he
se

co

m
po

ne
nt

s f
ac

es
 a

sim
ila

r i
ss

ue

as
 ab

ov
e,

th
ou

gh
 w

ith
 a

di
ffe

re
nt

co

nt
ex

t f
or

 al
lo

ca
tin

g p
ot

en
tia

l
lia

bi
lit

y.

If
th

e S
up

pl
ie

r s
el

ec
ts

 th
e c

om
po

-
ne

nt
s,

th
er

e i
s a

 st
ro

ng
er

 ar
gu

m
en

t
th

at
 th

e S
up

pl
ie

r s
ho

ul
d

be
ar

 so
m

e
of

 th
e r

isk
, o

r a
t l

ea
st

 ta
ke

 ca
re

 in
 th

e
se

le
ct

io
n

pr
oc

es
s.

If
th

e C
us

to
m

er

pe
rf

or
m

s t
hi

s s
el

ec
tio

n,
 th

e o
pp

os
ite

is

tr
ue

.

Cu
st

om
er

 ta
ke

s a
ll

ris
ks

 re
la

tin
g t

o
th

e n
om

in
at

ed

co
de

.

It
is

po
ss

ib
le

 to
 ex

pl
ic

itl
y a

dd
re

ss

th
e r

isk
 o

f p
ub

lic
ly

 av
ai

la
bl

e c
od

e
no

t b
ei

ng
 av

ai
la

bl
e u

nd
er

 th
e l

i-
ce

nc
e a

pp
ar

en
tly

 at
ta

ch
ed

 to
 it

,
an

d
in

st
ea

d
ac

tu
al

ly
 fa

lli
ng

 u
nd

er

a d
iff

er
en

t l
ic

en
ce

 an
d

po
te

nt
ia

lly

in
co

m
pa

tib
le

 li
ce

nc
e.

Th
is

is
sim

ila
r t

o
th

e p
ro

ve
na

nc
e

iss
ue

, i
n

th
at

 th
e C

us
to

m
er

's
us

e/
​

m
od

ifi
ca

tio
n/

​di
st

rib
ut

io
n

of
 th

e
So

ftw
ar

e m
ay

 in
fr

in
ge

 th
ird

 p
ar

ty

rig
ht

s,
bu

t i
n

th
is

ca
se

, i
nf

rin
ge

m
en

t
m

ay
 d

ep
en

d
on

 th
e C

us
to

m
er

's
in

te
nd

ed
 o

ut
-​li

ce
nc

e o
r i

nt
en

de
d

us
e o

f t
he

 S
oft

w
ar

e.
Th

is
w

or
di

ng

co
nt

ai
ns

 an
 o

pt
io

n
w

hi
ch

 li
m

its
 th

e
Su

pp
lie

r's
 o

bl
ig

at
io

ns
 to

 ch
ec

ki
ng

th

at
 th

e c
om

po
ne

nt
s'

at
ta

ch
ed

 li
-

ce
nc

es
 ar

e o
n

an
 ap

pr
ov

ed
 li

st
, b

ut

no
t t

ha
t t

he
y a

re
 co

m
pa

tib
le

 w
ith

an

y i
nt

en
de

d
us

e.

W
ar

ra
nt

y r
el

at
in

g t
o

th
e l

ic
en

ce
s a

tta
ch

ed
 to

pu

bl
ic

ly
-​a

va
ila

bl
e c

od
e c

om
po

ne
nt

s.
O

pt
io

na
l

ex
cl

us
io

n
of

 li
ab

ili
ty

 fo
r l

ic
en

ce
 in

co
m

pa
tib

ili
ty

(C

us
to

m
er

 ta
ke

s r
isk

 o
f i

nc
om

pa
tib

ili
ty

).

Sw
ee

pe
r u

p
w

ar
ra

nt
y d

es
ig

ne
d

to
 en

su
re

 th
at

 co
de

-​s
el

ec
tio

n
fo

r
co

py
rig

ht
s i

s w
ith

in
 th

e a
m

bi
t o

f
th

e S
up

pl
ie

r's
 se

rv
ic

es
.

Su
pp

lie
r

W
ar

ra
nt

y t
ha

t s
ki

ll
an

d
ca

re
 h

as
 b

ee
n

ta
ke

n
in

 co
m

-
po

ne
nt

 se
le

ct
io

n,
 so

 fa
r a

s t
hi

rd
 p

ar
ty

 co
py

rig
ht

s a
re

co

nc
er

ne
d

Pu
bl

ic
ly

 av
ai

la
bl

e c
od

e i
s i

n-
co

m
pa

tib
le

 w
ith

 th
e C

us
to

m
er

's
Sp

ec
ifi

ed
 U

se
 o

r S
pe

ci
fie

d
O

ut
-​ L

ic
en

ce
. B

y r
eq

ui
rin

g t
he

Cu

st
om

er
 to

 sp
ec

ify
 in

 th
is

w
ay

,
ex

pe
ct

at
io

ns
 ar

e m
an

ag
ed

, a
nd

m

in
ds

 ar
e f

oc
us

ed
. N

ot
e t

ha
t

'Sp
ec

ifi
ed

 U
se

' m
ay

 in
cl

ud
e i

n-
te

rn
al

 u
se

 o
nl

y w
ith

 n
o

po
ss

ib
ili

ty

of
 d

ist
rib

ut
io

n
(w

hi
ch

 al
lo

w
s c

od
e

to
 b

e m
in

gl
ed

 fr
ee

ly
),

or
 in

te
rn

al

us
e o

nl
y w

ith
 in

te
ra

ct
io

n
ov

er
 a

ne
tw

or
k

ex
te

rn
al

ly,
 (w

hi
ch

 al
lo

w
s

co
de

 to
 b

e m
in

gl
ed

 fr
ee

ly,
 u

nl
es

s
ne

tw
or

k-
​aw

ar
e l

ic
en

ce
s l

ik
e A

G
PL

or

 O
SL

 ar
e e

m
pl

oy
ed

).

Su
pp

lie
r (

in
 re

la
tio

n
to

 co
de

 an
d

m
od

ul
e a

ss
em

bl
y)

 an
d

Cu
st

om
er

 (i
n

en
su

rin
g t

ha
t t

he
 co

de
 is

 o
nl

y u
se

d
fo

r t
he

 Sp
ec

ifi
ed

 U
se

)

In
fr

in
ge

m
en

t
by

 m
isu

se
 o

f
th

ird
 p

ar
ty

co

de
 b

y t
he

Cu

st
om

er
.

Cu
st

om
er

Is
su

e
C

om
m

en
ta

ry
W

ho
 is

 b
es

t p
la

ce
d

to
 b

ea
r r

is
k?

Be
st

 m
ec

ha
ni

sm
 to

 ta
ck

le
 ri

sk

A
no

th
er

 ri
sk

 is
 th

at
 th

e C
us

to
m

er

(a
s o

pp
os

ed
 to

 th
e S

up
pl

ie
r)

 m
ay

sp

ec
ify

 th
e u

se
 o

f s
pe

ci
fic

 [F
/​O

SS
]

co
m

po
ne

nt
s,

an
d

in
 u

sin
g t

he
se

co

m
po

ne
nt

s f
ac

es
 a

sim
ila

r i
ss

ue

as
 ab

ov
e,

th
ou

gh
 w

ith
 a

di
ffe

re
nt

co

nt
ex

t f
or

 al
lo

ca
tin

g p
ot

en
tia

l
lia

bi
lit

y.

If
th

e S
up

pl
ie

r s
el

ec
ts

 th
e c

om
po

-
ne

nt
s,

th
er

e i
s a

 st
ro

ng
er

 ar
gu

m
en

t
th

at
 th

e S
up

pl
ie

r s
ho

ul
d

be
ar

 so
m

e
of

 th
e r

isk
, o

r a
t l

ea
st

 ta
ke

 ca
re

 in
 th

e
se

le
ct

io
n

pr
oc

es
s.

If
th

e C
us

to
m

er

pe
rf

or
m

s t
hi

s s
el

ec
tio

n,
 th

e o
pp

os
ite

is

tr
ue

.

Cu
st

om
er

 ta
ke

s a
ll

ris
ks

 re
la

tin
g t

o
th

e n
om

in
at

ed

co
de

.

It
is

po
ss

ib
le

 to
 ex

pl
ic

itl
y a

dd
re

ss

th
e r

isk
 o

f p
ub

lic
ly

 av
ai

la
bl

e c
od

e
no

t b
ei

ng
 av

ai
la

bl
e u

nd
er

 th
e l

i-
ce

nc
e a

pp
ar

en
tly

 at
ta

ch
ed

 to
 it

,
an

d
in

st
ea

d
ac

tu
al

ly
 fa

lli
ng

 u
nd

er

a d
iff

er
en

t l
ic

en
ce

 an
d

po
te

nt
ia

lly

in
co

m
pa

tib
le

 li
ce

nc
e.

Th
is

is
sim

ila
r t

o
th

e p
ro

ve
na

nc
e

iss
ue

, i
n

th
at

 th
e C

us
to

m
er

's
us

e/
​

m
od

ifi
ca

tio
n/

​di
st

rib
ut

io
n

of
 th

e
So

ftw
ar

e m
ay

 in
fr

in
ge

 th
ird

 p
ar

ty

rig
ht

s,
bu

t i
n

th
is

ca
se

, i
nf

rin
ge

m
en

t
m

ay
 d

ep
en

d
on

 th
e C

us
to

m
er

's
in

te
nd

ed
 o

ut
-​li

ce
nc

e o
r i

nt
en

de
d

us
e o

f t
he

 S
oft

w
ar

e.
Th

is
w

or
di

ng

co
nt

ai
ns

 an
 o

pt
io

n
w

hi
ch

 li
m

its
 th

e
Su

pp
lie

r's
 o

bl
ig

at
io

ns
 to

 ch
ec

ki
ng

th

at
 th

e c
om

po
ne

nt
s'

at
ta

ch
ed

 li
-

ce
nc

es
 ar

e o
n

an
 ap

pr
ov

ed
 li

st
, b

ut

no
t t

ha
t t

he
y a

re
 co

m
pa

tib
le

 w
ith

an

y i
nt

en
de

d
us

e.

W
ar

ra
nt

y r
el

at
in

g t
o

th
e l

ic
en

ce
s a

tta
ch

ed
 to

pu

bl
ic

ly
-​a

va
ila

bl
e c

od
e c

om
po

ne
nt

s.
O

pt
io

na
l

ex
cl

us
io

n
of

 li
ab

ili
ty

 fo
r l

ic
en

ce
 in

co
m

pa
tib

ili
ty

(C

us
to

m
er

 ta
ke

s r
isk

 o
f i

nc
om

pa
tib

ili
ty

).

Sw
ee

pe
r u

p
w

ar
ra

nt
y d

es
ig

ne
d

to
 en

su
re

 th
at

 co
de

-​s
el

ec
tio

n
fo

r
co

py
rig

ht
s i

s w
ith

in
 th

e a
m

bi
t o

f
th

e S
up

pl
ie

r's
 se

rv
ic

es
.

Su
pp

lie
r

W
ar

ra
nt

y t
ha

t s
ki

ll
an

d
ca

re
 h

as
 b

ee
n

ta
ke

n
in

 co
m

-
po

ne
nt

 se
le

ct
io

n,
 so

 fa
r a

s t
hi

rd
 p

ar
ty

 co
py

rig
ht

s a
re

co

nc
er

ne
d

Pu
bl

ic
ly

 av
ai

la
bl

e c
od

e i
s i

n-
co

m
pa

tib
le

 w
ith

 th
e C

us
to

m
er

's
Sp

ec
ifi

ed
 U

se
 o

r S
pe

ci
fie

d
O

ut
-​ L

ic
en

ce
. B

y r
eq

ui
rin

g t
he

Cu

st
om

er
 to

 sp
ec

ify
 in

 th
is

w
ay

,
ex

pe
ct

at
io

ns
 ar

e m
an

ag
ed

, a
nd

m

in
ds

 ar
e f

oc
us

ed
. N

ot
e t

ha
t

'Sp
ec

ifi
ed

 U
se

' m
ay

 in
cl

ud
e i

n-
te

rn
al

 u
se

 o
nl

y w
ith

 n
o

po
ss

ib
ili

ty

of
 d

ist
rib

ut
io

n
(w

hi
ch

 al
lo

w
s c

od
e

to
 b

e m
in

gl
ed

 fr
ee

ly
),

or
 in

te
rn

al

us
e o

nl
y w

ith
 in

te
ra

ct
io

n
ov

er
 a

ne
tw

or
k

ex
te

rn
al

ly,
 (w

hi
ch

 al
lo

w
s

co
de

 to
 b

e m
in

gl
ed

 fr
ee

ly,
 u

nl
es

s
ne

tw
or

k-
​aw

ar
e l

ic
en

ce
s l

ik
e A

G
PL

or

 O
SL

 ar
e e

m
pl

oy
ed

).

Su
pp

lie
r (

in
 re

la
tio

n
to

 co
de

 an
d

m
od

ul
e a

ss
em

bl
y)

 an
d

Cu
st

om
er

 (i
n

en
su

rin
g t

ha
t t

he
 co

de
 is

 o
nl

y u
se

d
fo

r t
he

 Sp
ec

ifi
ed

 U
se

)

In
fr

in
ge

m
en

t
by

 m
isu

se
 o

f
th

ird
 p

ar
ty

co

de
 b

y t
he

Cu

st
om

er
.

Cu
st

om
er

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
's

ar
gu

m
en

ts
C

om
m

en
ts

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t i

t h
as

 ti
tle

 to
 al

l
Su

pp
lie

r-
​C

re
at

ed
 C

od
e a

nd
 th

at
 it

s d
el

iv
er

y [
as

-
sig

nm
en

t/​l
ic

en
ce

] t
o

th
e C

us
to

m
er

 an
d

us
e i

n
ac

co
rd

an
ce

 w
ith

 th
is

A
gr

ee
m

en
t d

oe
s n

ot
 in

-
fr

in
ge

 th
e [

co
py

rig
ht

] o
f a

ny
 th

ird
 p

ar
ty

.

N
o

go
od

 o
ne

s
Su

pp
lie

r i
s i

n
co

nt
ro

l o
f c

od
e

cr
ea

tio
n,

 an
d

sh
ou

ld
 th

er
e-

fo
re

 b
e l

ia
bl

e f
or

 th
ird

 p
ar

ty

in
fr

in
ge

m
en

ts
. S

up
pl

ie
r

sh
ou

ld
 u

se
 a

co
m

m
on

 so
ur

ce

co
de

 re
po

sit
or

y,
to

 w
hi

ch

Cu
st

om
er

 m
ay

 b
e g

iv
en

ac

ce
ss

.

N
ot

e t
ha

t s
up

pl
ie

r-
​

cr
ea

te
d

co
de

 m
ay

 in
 p

ra
ct

ic
e

am
ou

nt
 to

 am
en

dm
en

ts
 to

ex

ist
in

g p
ub

lic
ly

 av
ai

la
bl

e
co

de
 (a

nd
 cr

ea
te

 a
de

riv
at

iv
e

w
or

k
of

 th
at

 co
de

).
In

 th
at

ca

se
, t

he
 ro

w
 b

el
ow

 (p
ub

-
lic

ly
 av

ai
la

bl
e c

od
e i

nf
rin

ge
s

co
py

rig
ht

) w
ou

ld
 b

e m
or

e
ap

pr
op

ria
te

ly
 ap

pl
y)

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t e

ac
h

co
m

po
ne

nt
 o

f
Pu

bl
ic

ly
 A

va
ila

bl
e C

od
e i

nc
or

po
ra

te
d

in
 th

e
So

ftw
ar

e h
as

 b
ee

n
ac

qu
ire

d
so

le
ly

 fr
om

 th
e

lo
ca

tio
ns

 li
st

ed
 in

 A
pp

en
di

x
[1

]‌ a
nd

 th
at

 th
e

so
ur

ce
 o

f e
ac

h
su

ch
 ac

qu
isi

tio
n

sh
al

l b
e a

c-
cu

ra
te

ly
 d

oc
um

en
te

d
[a

s s
et

 o
ut

 in
 A

pp
en

di
x

[2
]]

. [
Th

e S
up

pl
ie

r f
ur

th
er

 co
nfi

rm
s t

ha
t i

t h
as

co

m
pi

le
d,

 [w
ith

 re
as

on
ab

le
 sk

ill
 an

d
ca

re
],

do
cu

m
en

ta
tio

n
re

qu
ire

d
by

 th
e l

ic
en

ce
[s

] a
p-

pl
ic

ab
le

 to
 th

e P
ub

lic
ly

 A
va

ila
bl

e C
od

e a
nd

w

ill
 p

ro
vi

de
 it

 to
 th

e C
us

to
m

er
 in

 o
rd

er
 to

 en
-

ab
le

 th
e C

us
to

m
er

 to
 co

m
pl

y w
ith

 [t
he

 n
ot

ic
e

an
d

di
sc

la
im

er
] c

on
di

tio
ns

 ap
pl

ic
ab

le
 to

 su
ch

lic

en
ce

[s
]]

Ea
ch

 C
us

to
m

er
 h

as
 a

di
ffe

re
nt

 ap
pe

-
tit

e f
or

 ri
sk

. R
eq

ui
rin

g t
he

 C
us

to
m

er

to
 d

oc
um

en
t h

ow
 it

 re
ga

rd
s t

he

ris
k

of
 ac

ce
ss

in
g c

od
e f

ro
m

 d
if-

fe
re

nt
 lo

ca
tio

ns
, g

iv
es

 th
e S

up
pl

ie
r

m
or

e i
nf

or
m

at
io

n
on

 w
hi

ch
 to

ba

se
 an

 ac
cu

ra
te

 p
ric

e f
or

 th
e j

ob
.

A
lte

rn
at

iv
el

y,
Su

pp
lie

r m
ay

 w
an

t t
o

gi
ve

 th
e C

us
to

m
er

 th
e o

pt
io

n
of

 a
ch

ea
pe

r p
ric

e b
y d

oi
ng

 “q
ui

ck
 an

d
di

rt
y”

 d
ev

el
op

m
en

t b
y s

cr
ap

in
g

co
de

 fr
om

 an
yw

he
re

, w
ith

ou
t p

ro
v-

en
an

ce
 ch

ec
ki

ng
, p

ro
vi

di
ng

 th
at

 th
e

Cu
st

om
er

 ta
ke

s t
he

 ri
sk

. I
n

an
y c

as
e,

Su
pp

lie
r i

s c
on

tr
ac

tin
g t

o
su

pp
ly

 IP
R,

 an
d

sh
ou

ld
 b

ea
r

al
l t

he
 ri

sk
. H

ow
 Su

pp
lie

r
in

te
nd

s t
o

so
ur

ce
 IP

R
sh

ou
ld

no

t b
e C

us
to

m
er

's
iss

ue
.

In
 an

y e
ve

nt
, w

he
re

 th
e

Su
pp

lie
r i

s a
ct

iv
el

y c
ho

os
in

g
th

e c
od

e t
o

us
e,

pr
ov

en
an

ce

ch
ec

ki
ng

 sh
ou

ld
 b

e a
 se

le
c-

tio
n

cr
ite

rio
n.

In
fr

in
ge

m
en

t c
an

 o
cc

ur
 ei

-
th

er
 b

ec
au

se
 th

e i
nf

rin
gi

ng

co
de

 is
 n

ot
 av

ai
la

bl
e u

nd
er

an

y [
F/

​O
SS

] l
ic

en
ce

 (e
.g

. i
t

is
de

riv
ed

 fr
om

 p
ro

pr
ie

ta
ry

co

de
),

or
 b

ec
au

se
 it

 is
 n

ot

av
ai

la
bl

e u
nd

er
 th

e l
ic

en
ce

su

pp
os

ed
ly

 at
ta

ch
ed

 to
 it

(e

.g
. i

t i
s a

va
ila

bl
e u

nd
er

th

e G
PL

, b
ut

 ap
pe

ar
s t

o
be

av

ai
la

bl
e u

nd
er

 th
e B

SD
).

It
m

ay
 al

so
 o

cc
ur

 b
ec

au
se

th
e

co
de

 h
as

 n
ot

 b
ee

n
re

le
as

ed

by
 co

m
pl

yi
ng

 w
ith

 th
e a

p

th
is

cl
au

se
 as

 d
ra

fte
d

co
ul

d
pr

ov
e

un
du

ly
 re

st
ric

tiv
e f

or
 th

e S
up

pl
ie

r.
Th

er
e a

re
 va

st
 am

ou
nt

s o
f q

ua
lit

y
co

de
 av

ai
la

bl
e f

ro
m

 “g
re

y”
 si

te
s.

A
lso

, i
s “

re
as

on
ab

le
 sk

ill
 an

d
ca

re
”

ca
pa

bl
e o

f c
on

sis
te

nt
 in

te
rp

re
ta

tio
n

gi
ve

n
th

e s
ta

te
 o

f t
he

 ar
t?

 K
od

er
s.

co
m

 co
nt

ai
ns

 p
le

nt
y o

f r
ol

l-​y
ou

r
ow

n
lic

en
ce

s,
fo

r e
xa

m
pl

e.
A

lso
,

ju
st

 b
ec

au
se

 so
m

et
hi

ng
 is

 o
n

so
ur

ce
fo

rg
e.n

et
 d

oe
s n

ot
 m

ea
n

th
at

it

is
ne

ce
ss

ar
ily

 o
f a

ny
 b

et
te

r p
ro

ve
n-

an
ce

 th
an

 el
se

w
he

re
.

pr
op

ria
te

 n
ot

ic
es

 in
 th

e
lic

en
ce

s (
e.g

. c
op

yr
ig

ht
 n

o-
tic

es
, d

isc
la

im
er

s)
. Th

es
e a

re

re
as

on
ab

ly
 ea

sy
 to

 co
rr

ec
t.

Th
e C

us
to

m
er

 ac
kn

ow
le

dg
es

, n
ot

w
ith

-
st

an
di

ng
 an

y o
th

er
 p

ro
vi

sio
n

of
 th

is
A

gr
ee

m
en

t,
th

at
 th

e S
up

pl
ie

r s
ha

ll
no

t b
e

re
sp

on
sib

le
 fo

r a
ny

 cl
ai

m
, c

os
t o

r e
xp

en
se

ho

w
so

ev
er

 ar
isi

ng
 fr

om
 th

e S
up

pl
ie

r's
 in

-
co

rp
or

at
io

n,
 u

se
 o

f,
m

od
ifi

ca
tio

n
of

, l
in

ki
ng

to

 th
e C

us
to

m
er

's
Sp

ec
ifi

ed
 C

om
po

ne
nt

s
[a

nd
 th

e C
us

to
m

er
 sh

al
l i

nd
em

ni
fy

 th
e

Su
pp

lie
r f

or
 an

y c
os

t,
cl

ai
m

 o
r e

xp
en

se

ar
isi

ng
 th

er
ef

ro
m

].

Th
e S

up
pl

ie
r's

 ch
oi

ce
 o

f c
om

po
ne

nt

is
re

st
ric

te
d,

 an
d

th
er

ef
or

e i
t s

ho
ul

d
no

t b
e h

el
d

lia
bl

e f
or

 su
ch

 u
se

.

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
's

ar
gu

m
en

ts
C

om
m

en
ts

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t i

t h
as

 ti
tle

 to
 al

l
Su

pp
lie

r-
​C

re
at

ed
 C

od
e a

nd
 th

at
 it

s d
el

iv
er

y [
as

-
sig

nm
en

t/​l
ic

en
ce

] t
o

th
e C

us
to

m
er

 an
d

us
e i

n
ac

co
rd

an
ce

 w
ith

 th
is

A
gr

ee
m

en
t d

oe
s n

ot
 in

-
fr

in
ge

 th
e [

co
py

rig
ht

] o
f a

ny
 th

ird
 p

ar
ty

.

N
o

go
od

 o
ne

s
Su

pp
lie

r i
s i

n
co

nt
ro

l o
f c

od
e

cr
ea

tio
n,

 an
d

sh
ou

ld
 th

er
e-

fo
re

 b
e l

ia
bl

e f
or

 th
ird

 p
ar

ty

in
fr

in
ge

m
en

ts
. S

up
pl

ie
r

sh
ou

ld
 u

se
 a

co
m

m
on

 so
ur

ce

co
de

 re
po

sit
or

y,
to

 w
hi

ch

Cu
st

om
er

 m
ay

 b
e g

iv
en

ac

ce
ss

.

N
ot

e t
ha

t s
up

pl
ie

r-
​

cr
ea

te
d

co
de

 m
ay

 in
 p

ra
ct

ic
e

am
ou

nt
 to

 am
en

dm
en

ts
 to

ex

ist
in

g p
ub

lic
ly

 av
ai

la
bl

e
co

de
 (a

nd
 cr

ea
te

 a
de

riv
at

iv
e

w
or

k
of

 th
at

 co
de

).
In

 th
at

ca

se
, t

he
 ro

w
 b

el
ow

 (p
ub

-
lic

ly
 av

ai
la

bl
e c

od
e i

nf
rin

ge
s

co
py

rig
ht

) w
ou

ld
 b

e m
or

e
ap

pr
op

ria
te

ly
 ap

pl
y)

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t e

ac
h

co
m

po
ne

nt
 o

f
Pu

bl
ic

ly
 A

va
ila

bl
e C

od
e i

nc
or

po
ra

te
d

in
 th

e
So

ftw
ar

e h
as

 b
ee

n
ac

qu
ire

d
so

le
ly

 fr
om

 th
e

lo
ca

tio
ns

 li
st

ed
 in

 A
pp

en
di

x
[1

]‌ a
nd

 th
at

 th
e

so
ur

ce
 o

f e
ac

h
su

ch
 ac

qu
isi

tio
n

sh
al

l b
e a

c-
cu

ra
te

ly
 d

oc
um

en
te

d
[a

s s
et

 o
ut

 in
 A

pp
en

di
x

[2
]]

. [
Th

e S
up

pl
ie

r f
ur

th
er

 co
nfi

rm
s t

ha
t i

t h
as

co

m
pi

le
d,

 [w
ith

 re
as

on
ab

le
 sk

ill
 an

d
ca

re
],

do
cu

m
en

ta
tio

n
re

qu
ire

d
by

 th
e l

ic
en

ce
[s

] a
p-

pl
ic

ab
le

 to
 th

e P
ub

lic
ly

 A
va

ila
bl

e C
od

e a
nd

w

ill
 p

ro
vi

de
 it

 to
 th

e C
us

to
m

er
 in

 o
rd

er
 to

 en
-

ab
le

 th
e C

us
to

m
er

 to
 co

m
pl

y w
ith

 [t
he

 n
ot

ic
e

an
d

di
sc

la
im

er
] c

on
di

tio
ns

 ap
pl

ic
ab

le
 to

 su
ch

lic

en
ce

[s
]]

Ea
ch

 C
us

to
m

er
 h

as
 a

di
ffe

re
nt

 ap
pe

-
tit

e f
or

 ri
sk

. R
eq

ui
rin

g t
he

 C
us

to
m

er

to
 d

oc
um

en
t h

ow
 it

 re
ga

rd
s t

he

ris
k

of
 ac

ce
ss

in
g c

od
e f

ro
m

 d
if-

fe
re

nt
 lo

ca
tio

ns
, g

iv
es

 th
e S

up
pl

ie
r

m
or

e i
nf

or
m

at
io

n
on

 w
hi

ch
 to

ba

se
 an

 ac
cu

ra
te

 p
ric

e f
or

 th
e j

ob
.

A
lte

rn
at

iv
el

y,
Su

pp
lie

r m
ay

 w
an

t t
o

gi
ve

 th
e C

us
to

m
er

 th
e o

pt
io

n
of

 a
ch

ea
pe

r p
ric

e b
y d

oi
ng

 “q
ui

ck
 an

d
di

rt
y”

 d
ev

el
op

m
en

t b
y s

cr
ap

in
g

co
de

 fr
om

 an
yw

he
re

, w
ith

ou
t p

ro
v-

en
an

ce
 ch

ec
ki

ng
, p

ro
vi

di
ng

 th
at

 th
e

Cu
st

om
er

 ta
ke

s t
he

 ri
sk

. I
n

an
y c

as
e,

Su
pp

lie
r i

s c
on

tr
ac

tin
g t

o
su

pp
ly

 IP
R,

 an
d

sh
ou

ld
 b

ea
r

al
l t

he
 ri

sk
. H

ow
 Su

pp
lie

r
in

te
nd

s t
o

so
ur

ce
 IP

R
sh

ou
ld

no

t b
e C

us
to

m
er

's
iss

ue
.

In
 an

y e
ve

nt
, w

he
re

 th
e

Su
pp

lie
r i

s a
ct

iv
el

y c
ho

os
in

g
th

e c
od

e t
o

us
e,

pr
ov

en
an

ce

ch
ec

ki
ng

 sh
ou

ld
 b

e a
 se

le
c-

tio
n

cr
ite

rio
n.

In
fr

in
ge

m
en

t c
an

 o
cc

ur
 ei

-
th

er
 b

ec
au

se
 th

e i
nf

rin
gi

ng

co
de

 is
 n

ot
 av

ai
la

bl
e u

nd
er

an

y [
F/

​O
SS

] l
ic

en
ce

 (e
.g

. i
t

is
de

riv
ed

 fr
om

 p
ro

pr
ie

ta
ry

co

de
),

or
 b

ec
au

se
 it

 is
 n

ot

av
ai

la
bl

e u
nd

er
 th

e l
ic

en
ce

su

pp
os

ed
ly

 at
ta

ch
ed

 to
 it

(e

.g
. i

t i
s a

va
ila

bl
e u

nd
er

th

e G
PL

, b
ut

 ap
pe

ar
s t

o
be

av

ai
la

bl
e u

nd
er

 th
e B

SD
).

It
m

ay
 al

so
 o

cc
ur

 b
ec

au
se

th
e

co
de

 h
as

 n
ot

 b
ee

n
re

le
as

ed

by
 co

m
pl

yi
ng

 w
ith

 th
e a

p

th
is

cl
au

se
 as

 d
ra

fte
d

co
ul

d
pr

ov
e

un
du

ly
 re

st
ric

tiv
e f

or
 th

e S
up

pl
ie

r.
Th

er
e a

re
 va

st
 am

ou
nt

s o
f q

ua
lit

y
co

de
 av

ai
la

bl
e f

ro
m

 “g
re

y”
 si

te
s.

A
lso

, i
s “

re
as

on
ab

le
 sk

ill
 an

d
ca

re
”

ca
pa

bl
e o

f c
on

sis
te

nt
 in

te
rp

re
ta

tio
n

gi
ve

n
th

e s
ta

te
 o

f t
he

 ar
t?

 K
od

er
s.

co
m

 co
nt

ai
ns

 p
le

nt
y o

f r
ol

l-​y
ou

r
ow

n
lic

en
ce

s,
fo

r e
xa

m
pl

e.
A

lso
,

ju
st

 b
ec

au
se

 so
m

et
hi

ng
 is

 o
n

so
ur

ce
fo

rg
e.n

et
 d

oe
s n

ot
 m

ea
n

th
at

it

is
ne

ce
ss

ar
ily

 o
f a

ny
 b

et
te

r p
ro

ve
n-

an
ce

 th
an

 el
se

w
he

re
.

pr
op

ria
te

 n
ot

ic
es

 in
 th

e
lic

en
ce

s (
e.g

. c
op

yr
ig

ht
 n

o-
tic

es
, d

isc
la

im
er

s)
. Th

es
e a

re

re
as

on
ab

ly
 ea

sy
 to

 co
rr

ec
t.

Th
e C

us
to

m
er

 ac
kn

ow
le

dg
es

, n
ot

w
ith

-
st

an
di

ng
 an

y o
th

er
 p

ro
vi

sio
n

of
 th

is
A

gr
ee

m
en

t,
th

at
 th

e S
up

pl
ie

r s
ha

ll
no

t b
e

re
sp

on
sib

le
 fo

r a
ny

 cl
ai

m
, c

os
t o

r e
xp

en
se

ho

w
so

ev
er

 ar
isi

ng
 fr

om
 th

e S
up

pl
ie

r's
 in

-
co

rp
or

at
io

n,
 u

se
 o

f,
m

od
ifi

ca
tio

n
of

, l
in

ki
ng

to

 th
e C

us
to

m
er

's
Sp

ec
ifi

ed
 C

om
po

ne
nt

s
[a

nd
 th

e C
us

to
m

er
 sh

al
l i

nd
em

ni
fy

 th
e

Su
pp

lie
r f

or
 an

y c
os

t,
cl

ai
m

 o
r e

xp
en

se

ar
isi

ng
 th

er
ef

ro
m

].

Th
e S

up
pl

ie
r's

 ch
oi

ce
 o

f c
om

po
ne

nt

is
re

st
ric

te
d,

 an
d

th
er

ef
or

e i
t s

ho
ul

d
no

t b
e h

el
d

lia
bl

e f
or

 su
ch

 u
se

.

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
's

ar
gu

m
en

ts
C

om
m

en
ts

[Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t[,

 so
 fa

r a
s i

t i
s

aw
ar

e,]
 ea

ch
 co

m
po

ne
nt

 o
f P

ub
lic

ly
 A

va
ila

bl
e

C
od

e i
nc

or
po

ra
te

d
in

 th
e S

oft
w

ar
e i

s a
va

ila
bl

e
un

de
r o

ne
 o

f t
he

 li
ce

nc
es

 sp
ec

ifi
ed

 in
 A

pp
en

di
x

[3
]‌ a

nd
 h

as
 d

oc
um

en
te

d
th

e p
ro

ve
na

nc
e o

f
ea

ch
 su

ch
 co

m
po

ne
nt

 [a
s s

et
 o

ut
 in

 A
pp

en
di

x
[1

]]
[Th

e S
up

pl
ie

r d
oe

s n
ot

 w
ar

ra
nt

 th
at

 u
se

,
m

od
ifi

ca
tio

n
or

 d
ist

rib
ut

io
n

by
 th

e C
us

to
m

er
 o

f
th

e S
oft

w
ar

e w
ill

 n
ot

 in
fr

in
ge

 th
e r

ig
ht

s o
f a

ny

th
ird

 p
ar

ty
, a

nd
 n

o
pr

ov
isi

on
 o

f t
hi

s A
gr

ee
m

en
t

or
 im

pl
ie

d
te

rm
 sh

al
l b

e c
on

st
ru

ed
 as

 su
ch

 a
w

ar
ra

nt
y]

.

Th
e S

up
pl

ie
r d

oe
s n

ot
 w

an
t t

o
be

re

sp
on

sib
le

 fo
r e

ns
ur

in
g l

ic
en

ce

co
m

pa
tib

ili
ty

, a
s t

he
 C

us
to

m
er

 w
ill

be

 m
uc

h
be

tte
r p

la
ce

d
to

 d
et

er
m

in
e

w
ha

t i
ts

 in
te

nd
ed

 u
se

 is
. Th

er
ef

or
e,

it'
s m

or
e p

ra
ct

ic
al

 fo
r t

he
 C

us
to

m
er

to

 sp
ec

ify
 a

lis
t o

f c
om

pa
tib

le
 li

-
ce

nc
es

, t
ha

n
ha

vi
ng

 th
e S

up
pl

ie
r d

o
co

m
pa

tib
ili

ty
 ch

ec
ks

.

Th
e C

us
to

m
er

 se
le

ct
s c

od
e

[Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t i

t h
as

 ta
ke

n
re

a-
so

na
bl

e s
ki

ll
an

d
ca

re
 in

 se
le

ct
in

g p
ub

lic
ly

av

ai
la

bl
e c

om
po

ne
nt

s h
av

in
g r

eg
ar

d
to

 th
e n

on
-​

in
fr

in
ge

m
en

t o
f t

hi
rd

 p
ar

ty
 co

py
rig

ht
s [

th
e

Cu
st

om
er

's
Sp

ec
ifi

ed
 U

se
 an

d
th

e C
us

to
m

er
's

Sp
ec

ifi
ed

 O
ut

-​L
ic

en
ce

],
an

d
ha

s d
oc

um
en

te
d

th
e p

ro
ve

na
nc

e a
nd

 li
ce

nc
es

 ap
pl

ic
ab

le
 to

 su
ch

co

m
po

ne
nt

s [
as

 se
t o

ut
 in

 A
pp

en
di

x
[1

]‌ a
nd

[2

] [
w

ith
 re

fe
re

nc
e t

o
Ap

pe
nd

ix
 [3

] w
he

re

ap
pl

ic
ab

le
]]

.]

Th
is

w
ar

ra
nt

y i
s t

oo
 va

gu
e,

at
 le

as
t

w
ith

ou
t q

ua
lifi

ca
tio

n
as

 to
 w

he
th

er

th
e l

ic
en

ce
s w

hi
ch

 ar
e a

tta
ch

ed

to
 th

e c
om

po
ne

nt
s a

re
 co

m
pa

t-
ib

le
 w

ith
 th

e C
us

to
m

er
's

Sp
ec

ifi
ed

U

se
 o

r (
pr

ef
er

ab
ly

) t
he

 C
us

to
m

er
's

Sp
ec

ifi
ed

 O
ut

-​ L
ic

en
ce

.

Th
e S

up
pl

ie
r n

ee
ds

 to
 b

e p
ut

un

de
r a

 p
ra

ct
ic

al
 o

bl
ig

at
io

n
to

m

ak
e c

op
yr

ig
ht

 co
m

pa
tib

ili
ty

/​
aw

ar
en

es
s p

ar
t o

f i
ts

 se
le

ct
io

n
cr

ite
ria

.

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t [

so
 fa

r a
s i

t i
s a

w
ar

e,
bu

t w
ith

ou
t h

av
in

g m
ad

e a
ny

 sp
ec

ifi
c e

nq
ui

ry
]

th
e d

ev
el

op
m

en
t o

f t
he

 S
oft

w
ar

e,
its

 d
el

iv
er

y t
o

th
e C

us
to

m
er

 an
d

th
e C

us
to

m
er

's
m

od
ifi

ca
tio

n,

di
st

rib
ut

io
n

an
d

us
e o

f t
he

 S
oft

w
ar

e w
ith

in
 th

e
Sp

ec
ifi

ed
 U

se
 [o

r r
el

ic
en

sin
g t

o
th

ird
 p

ar
tie

s
w

ith
in

 th
e S

pe
ci

fie
d

O
ut

-​L
ic

en
ce

].
sh

al
l n

ot

in
fr

in
ge

 th
e l

ic
en

ce
s s

et
 o

ut
 in

 A
pp

en
di

x
[3

]‌.
Th

e C
us

to
m

er
 ac

kn
ow

le
dg

es
 th

at
 u

se
 o

f t
he

So

ftw
ar

e o
ut

sid
e t

he
 sc

op
e o

f t
he

 Sp
ec

ifi
ed

 U
se

[a

nd
 an

y d
ist

rib
ut

io
n

of
 th

e S
oft

w
ar

e t
o

a t
hi

rd

pa
rt

y]
 m

ay
 in

fr
in

ge
 th

ird
 p

ar
ty

 ri
gh

ts
.

Th
is

w
ar

ra
nt

y p
la

ce
s t

he
 o

nu
s o

n
th

e S
up

pl
ie

r (
at

 le
as

t w
ith

ou
t t

he

aw
ar

en
es

s q
ua

lifi
ca

tio
n)

 to
 en

su
re

co

m
pa

tib
ili

ty
, w

hi
ch

 ca
n

in
cl

ud
e a

le

ga
l a

na
ly

sis
 o

f d
iff

er
en

t l
ic

en
ce

s.
Th

is
m

ay
 b

e o
ut

sid
e t

he
 sc

op
e o

f
th

e a
bi

lit
y o

f t
he

 Su
pp

lie
r,

or
 th

e
sc

op
e o

f t
he

 se
rv

ic
es

 in
te

nd
ed

 to
 b

e
pr

ov
id

ed
.

Th
e C

us
to

m
er

 h
as

 ta
ke

n
tim

e
to

 sp
ec

ify
 ei

th
er

 th
e l

ic
en

ce
s t

o
be

 u
se

d,
 o

r t
he

 Sp
ec

ifi
ed

 U
se

,
an

d
it

is
up

 to
 th

e S
up

pl
ie

r t
o

en
su

re
 th

at
 th

e S
oft

w
ar

e c
om

-
pl

ie
s w

ith
 th

is
re

qu
ire

m
en

t.

C
od

e w
ith

 in
co

m
pa

tib
le

lic

en
ce

s c
an

 b
e i

nt
er

m
in

-
gl

ed
, i

f t
he

re
 is

 n
o

qu
es

tio
n

of
 it

 b
ei

ng
 d

ist
rib

ut
ed

 (a
nd

,
w

he
re

 re
le

va
nt

 li
ce

nc
es

lik

e A
G

PL
 an

d
O

SL
 ar

e
co

nc
er

ne
d,

 ac
ce

ss
ed

 ex
-

te
rn

al
ly

 o
ve

r a
 n

et
w

or
k)

.
If

th
e C

us
to

m
er

 b
rie

f r
e-

qu
ire

s t
hi

s,
th

en
 it

 is
 se

ns
-

ib
le

 to
 in

cl
ud

e a
 cl

au
se

 in

th
e a

gr
ee

m
en

t s
ta

tin
g t

ha
t

th
e S

up
pl

ie
r i

s a
ct

in
g a

s t
he

ag

en
t o

f t
he

 C
us

to
m

er
 in

au

th
or

in
g t

he
 co

de
, t

o
pr

e-
ve

nt
 th

e d
ist

rib
ut

io
n

of
 co

de

fr
om

 Su
pp

lie
r t

o
Cu

st
om

er

be
in

g a
 d

ist
rib

ut
io

n.
 Th

is
is

pa
rt

ic
ul

ar
ly

 im
po

rt
an

t i
n

ju
ris

di
ct

io
ns

 (l
ik

e t
he

 U
K

)
w

ith
 n

o
w

or
k-

​fo
r-

​hi
re

 d
oc

-
tr

in
e.

It
is

se
ns

ib
le

 al
so

 to

co
ns

id
er

 p
re

se
nt

 tr
an

sf
er

 o
f

fu
tu

re
 ri

gh
ts

. S
ee

 'S
ta

tu
s o

f
Su

pp
lie

r'
be

lo
w.

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
's

ar
gu

m
en

ts
C

om
m

en
ts

[Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t[,

 so
 fa

r a
s i

t i
s

aw
ar

e,]
 ea

ch
 co

m
po

ne
nt

 o
f P

ub
lic

ly
 A

va
ila

bl
e

C
od

e i
nc

or
po

ra
te

d
in

 th
e S

oft
w

ar
e i

s a
va

ila
bl

e
un

de
r o

ne
 o

f t
he

 li
ce

nc
es

 sp
ec

ifi
ed

 in
 A

pp
en

di
x

[3
]‌ a

nd
 h

as
 d

oc
um

en
te

d
th

e p
ro

ve
na

nc
e o

f
ea

ch
 su

ch
 co

m
po

ne
nt

 [a
s s

et
 o

ut
 in

 A
pp

en
di

x
[1

]]
[Th

e S
up

pl
ie

r d
oe

s n
ot

 w
ar

ra
nt

 th
at

 u
se

,
m

od
ifi

ca
tio

n
or

 d
ist

rib
ut

io
n

by
 th

e C
us

to
m

er
 o

f
th

e S
oft

w
ar

e w
ill

 n
ot

 in
fr

in
ge

 th
e r

ig
ht

s o
f a

ny

th
ird

 p
ar

ty
, a

nd
 n

o
pr

ov
isi

on
 o

f t
hi

s A
gr

ee
m

en
t

or
 im

pl
ie

d
te

rm
 sh

al
l b

e c
on

st
ru

ed
 as

 su
ch

 a
w

ar
ra

nt
y]

.

Th
e S

up
pl

ie
r d

oe
s n

ot
 w

an
t t

o
be

re

sp
on

sib
le

 fo
r e

ns
ur

in
g l

ic
en

ce

co
m

pa
tib

ili
ty

, a
s t

he
 C

us
to

m
er

 w
ill

be

 m
uc

h
be

tte
r p

la
ce

d
to

 d
et

er
m

in
e

w
ha

t i
ts

 in
te

nd
ed

 u
se

 is
. Th

er
ef

or
e,

it'
s m

or
e p

ra
ct

ic
al

 fo
r t

he
 C

us
to

m
er

to

 sp
ec

ify
 a

lis
t o

f c
om

pa
tib

le
 li

-
ce

nc
es

, t
ha

n
ha

vi
ng

 th
e S

up
pl

ie
r d

o
co

m
pa

tib
ili

ty
 ch

ec
ks

.

Th
e C

us
to

m
er

 se
le

ct
s c

od
e

[Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t i

t h
as

 ta
ke

n
re

a-
so

na
bl

e s
ki

ll
an

d
ca

re
 in

 se
le

ct
in

g p
ub

lic
ly

av

ai
la

bl
e c

om
po

ne
nt

s h
av

in
g r

eg
ar

d
to

 th
e n

on
-​

in
fr

in
ge

m
en

t o
f t

hi
rd

 p
ar

ty
 co

py
rig

ht
s [

th
e

Cu
st

om
er

's
Sp

ec
ifi

ed
 U

se
 an

d
th

e C
us

to
m

er
's

Sp
ec

ifi
ed

 O
ut

-​L
ic

en
ce

],
an

d
ha

s d
oc

um
en

te
d

th
e p

ro
ve

na
nc

e a
nd

 li
ce

nc
es

 ap
pl

ic
ab

le
 to

 su
ch

co

m
po

ne
nt

s [
as

 se
t o

ut
 in

 A
pp

en
di

x
[1

]‌ a
nd

[2

] [
w

ith
 re

fe
re

nc
e t

o
Ap

pe
nd

ix
 [3

] w
he

re

ap
pl

ic
ab

le
]]

.]

Th
is

w
ar

ra
nt

y i
s t

oo
 va

gu
e,

at
 le

as
t

w
ith

ou
t q

ua
lifi

ca
tio

n
as

 to
 w

he
th

er

th
e l

ic
en

ce
s w

hi
ch

 ar
e a

tta
ch

ed

to
 th

e c
om

po
ne

nt
s a

re
 co

m
pa

t-
ib

le
 w

ith
 th

e C
us

to
m

er
's

Sp
ec

ifi
ed

U

se
 o

r (
pr

ef
er

ab
ly

) t
he

 C
us

to
m

er
's

Sp
ec

ifi
ed

 O
ut

-​ L
ic

en
ce

.

Th
e S

up
pl

ie
r n

ee
ds

 to
 b

e p
ut

un

de
r a

 p
ra

ct
ic

al
 o

bl
ig

at
io

n
to

m

ak
e c

op
yr

ig
ht

 co
m

pa
tib

ili
ty

/​
aw

ar
en

es
s p

ar
t o

f i
ts

 se
le

ct
io

n
cr

ite
ria

.

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t [

so
 fa

r a
s i

t i
s a

w
ar

e,
bu

t w
ith

ou
t h

av
in

g m
ad

e a
ny

 sp
ec

ifi
c e

nq
ui

ry
]

th
e d

ev
el

op
m

en
t o

f t
he

 S
oft

w
ar

e,
its

 d
el

iv
er

y t
o

th
e C

us
to

m
er

 an
d

th
e C

us
to

m
er

's
m

od
ifi

ca
tio

n,

di
st

rib
ut

io
n

an
d

us
e o

f t
he

 S
oft

w
ar

e w
ith

in
 th

e
Sp

ec
ifi

ed
 U

se
 [o

r r
el

ic
en

sin
g t

o
th

ird
 p

ar
tie

s
w

ith
in

 th
e S

pe
ci

fie
d

O
ut

-​L
ic

en
ce

].
sh

al
l n

ot

in
fr

in
ge

 th
e l

ic
en

ce
s s

et
 o

ut
 in

 A
pp

en
di

x
[3

]‌.
Th

e C
us

to
m

er
 ac

kn
ow

le
dg

es
 th

at
 u

se
 o

f t
he

So

ftw
ar

e o
ut

sid
e t

he
 sc

op
e o

f t
he

 Sp
ec

ifi
ed

 U
se

[a

nd
 an

y d
ist

rib
ut

io
n

of
 th

e S
oft

w
ar

e t
o

a t
hi

rd

pa
rt

y]
 m

ay
 in

fr
in

ge
 th

ird
 p

ar
ty

 ri
gh

ts
.

Th
is

w
ar

ra
nt

y p
la

ce
s t

he
 o

nu
s o

n
th

e S
up

pl
ie

r (
at

 le
as

t w
ith

ou
t t

he

aw
ar

en
es

s q
ua

lifi
ca

tio
n)

 to
 en

su
re

co

m
pa

tib
ili

ty
, w

hi
ch

 ca
n

in
cl

ud
e a

le

ga
l a

na
ly

sis
 o

f d
iff

er
en

t l
ic

en
ce

s.
Th

is
m

ay
 b

e o
ut

sid
e t

he
 sc

op
e o

f
th

e a
bi

lit
y o

f t
he

 Su
pp

lie
r,

or
 th

e
sc

op
e o

f t
he

 se
rv

ic
es

 in
te

nd
ed

 to
 b

e
pr

ov
id

ed
.

Th
e C

us
to

m
er

 h
as

 ta
ke

n
tim

e
to

 sp
ec

ify
 ei

th
er

 th
e l

ic
en

ce
s t

o
be

 u
se

d,
 o

r t
he

 Sp
ec

ifi
ed

 U
se

,
an

d
it

is
up

 to
 th

e S
up

pl
ie

r t
o

en
su

re
 th

at
 th

e S
oft

w
ar

e c
om

-
pl

ie
s w

ith
 th

is
re

qu
ire

m
en

t.

C
od

e w
ith

 in
co

m
pa

tib
le

lic

en
ce

s c
an

 b
e i

nt
er

m
in

-
gl

ed
, i

f t
he

re
 is

 n
o

qu
es

tio
n

of
 it

 b
ei

ng
 d

ist
rib

ut
ed

 (a
nd

,
w

he
re

 re
le

va
nt

 li
ce

nc
es

lik

e A
G

PL
 an

d
O

SL
 ar

e
co

nc
er

ne
d,

 ac
ce

ss
ed

 ex
-

te
rn

al
ly

 o
ve

r a
 n

et
w

or
k)

.
If

th
e C

us
to

m
er

 b
rie

f r
e-

qu
ire

s t
hi

s,
th

en
 it

 is
 se

ns
-

ib
le

 to
 in

cl
ud

e a
 cl

au
se

 in

th
e a

gr
ee

m
en

t s
ta

tin
g t

ha
t

th
e S

up
pl

ie
r i

s a
ct

in
g a

s t
he

ag

en
t o

f t
he

 C
us

to
m

er
 in

au

th
or

in
g t

he
 co

de
, t

o
pr

e-
ve

nt
 th

e d
ist

rib
ut

io
n

of
 co

de

fr
om

 Su
pp

lie
r t

o
Cu

st
om

er

be
in

g a
 d

ist
rib

ut
io

n.
 Th

is
is

pa
rt

ic
ul

ar
ly

 im
po

rt
an

t i
n

ju
ris

di
ct

io
ns

 (l
ik

e t
he

 U
K

)
w

ith
 n

o
w

or
k-

​fo
r-

​hi
re

 d
oc

-
tr

in
e.

It
is

se
ns

ib
le

 al
so

 to

co
ns

id
er

 p
re

se
nt

 tr
an

sf
er

 o
f

fu
tu

re
 ri

gh
ts

. S
ee

 'S
ta

tu
s o

f
Su

pp
lie

r'
be

lo
w.

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
's

ar
gu

m
en

ts
C

om
m

en
ts

[Th
e C

us
to

m
er

 is
 re

sp
on

sib
le

 fo
r e

ns
ur

in
g

th

at
 it

s o
w

n
su

bs
eq

ue
nt

 u
se

, m
od

ifi
ca

tio
n

an
d

re
-​d

ist
rib

ut
io

n
of

 th
e s

oft
w

ar
e [

ou
ts

id
e

th
e S

pe
ci

fie
d

U
se

] i
s i

n
ac

co
rd

an
ce

 w
ith

[t

he
 li

ce
nc

es
 se

t o
ut

 in
 A

pp
en

di
x

[3
]‌]

.

Th
e S

up
pl

ie
r i

s d
ev

el
op

in
g f

or
 th

e
Cu

st
om

er
. Th

er
ef

or
e t

he
 Su

pp
lie

r
is

no
t t

o
be

 co
nc

er
ne

d
ab

ou
t o

ut
-​

lic
en

sin
g,

 o
ut

sid
e t

he
 sc

op
e o

f t
he

sp

ec
ifi

ed
 u

se
. Th

is
is

th
e C

us
to

m
er

's
iss

ue
. A

ny
 fu

tu
re

 o
r d

iff
er

en
t u

se
s

w
ou

ld
 b

e s
ub

je
ct

 to
 a

fu
tu

re
 o

r d
if-

fe
re

nt
 ag

re
em

en
t.

Th
e C

us
to

m
er

 m
ay

 w
an

t t
o

di
st

rib
ut

e i
n

th
e f

ut
ur

e,
an

d
m

ay
 w

an
t t

o
ou

t-
​lic

en
se

 to

cu
st

om
er

s e
tc

. A
lso

, p
as

sin
g

ar
ou

nd
 th

e g
ro

up
, o

r t
o

th
e

ac
qu

ire
r o

f t
he

 b
us

in
es

s m
ay

be

 “d
ist

rib
ut

io
n”

 an
d

th
er

ef
or

e
sh

ou
ld

 b
e c

ov
er

ed
.

Bo
ug

ht
-​in

 p
ro

pr
ie

ta
ry

 co
de

in

fr
in

ge
s t

hi
rd

 p
ar

ty
 co

py
rig

ht
A

 th
ird

 p
ar

ty
 p

ro
pr

ie
ta

ry
 li

br
ar

y
m

ay
 h

av
e a

 p
ro

ve
na

nc
e i

ss
ue

 –
​

i.e
. i

t o
bt

ai
ns

 co
de

 w
hi

ch
 th

e
su

pp
lie

r i
s n

ot
 en

tit
le

d
to

 li
ce

ns
e

Th
is

co
de

 m
ay

 it
se

lf
be

 p
ro

pr
i-

et
ar

y,
or

 it
 m

ay
 b

e [
F/

​O
SS

]

Su
pp

lie
r (

th
ro

ug
h

co
n-

tr
ac

tu
al

 re
la

tio
ns

hi
p

w
ith

pr

ov
id

er
 o

f t
he

 p
ro

pr
ie

ta
ry

co

de
) (

un
le

ss
 u

se
 o

f t
ha

t
co

m
po

ne
nt

 is
 n

om
in

at
ed

by

 th
e C

us
to

m
er

 –
​ se

e
ab

ov
e)

In
de

m
ni

ty
/​w

ar
ra

nt
y f

ro
m

Su

pp
lie

r -
​ b

ut
 ca

n
Su

pp
lie

r
ob

ta
in

 a
ba

ck
 to

 b
ac

k
in

-
de

m
ni

ty
 fr

om
 th

e p
ro

vi
de

r
of

 th
at

 co
de

? Th
is

ch
ai

n
m

ay

ne
ed

 to
 ex

te
nd

 al
l t

he
 w

ay
 u

p
to

 th
e u

lti
m

at
e p

ro
vi

de
r.

In
fr

in
ge

m
en

t o
f p

at
en

t i
n

Su
pp

lie
r

C

re
at

ed
 C

od
e

W
he

re
 Su

pp
lie

r h
as

ch

oi
ce

 o
f i

m
pl

em
en

ta
-

tio
n:

 Su
pp

lie
r.

W
he

re
 im

-
pl

em
en

ta
tio

n
is

di
ct

at
ed

by

 C
us

to
m

er
's

re
qu

ire
-

m
en

ts
: C

us
to

m
er

Ri
gh

t t
o

ch
an

ge
 im

pl
em

en
-

ta
tio

n,
 if

 im
pl

em
en

ta
tio

n
is

de
te

rm
in

ed
 b

y S
up

pl
ie

r.
O

th
er

w
ise

, r
isk

 is
 o

n
Cu

st
om

er
. M

ay
 b

e p
os

sib
le

to

 n
eg

ot
ia

te
 ri

sk
 sh

ar
in

g.

M
ay

 b
e p

os
sib

le
 to

 ge
t i

n-
su

ra
nc

e?
 A

ud
it

rig
ht

s?

In
fr

in
ge

m
en

t o
f p

at
en

t i
n

pu
bl

ic
ly

 av
ai

l-
ab

le
 co

de
W

he
re

 Su
pp

lie
r h

as

ch
oi

ce
 o

f i
m

pl
em

en
ta

-
tio

n:
 Su

pp
lie

r.
W

he
re

 im
-

pl
em

en
ta

tio
n

is
di

ct
at

ed

by
 C

us
to

m
er

's
re

qu
ire

-
m

en
ts

: C
us

to
m

er

W
he

re
 im

pl
em

en
-

ta
tio

n
is

di
ct

at
ed

 b
y

Cu
st

om
er

: C
us

to
m

er
 to

be

ar
 ri

sk
. O

th
er

w
ise

, n
e-

go
tia

te
d

on
 a

ca
se

 b
y c

as
e

ba
sis

.
In

fr
in

ge
m

en
t o

f p
at

en
t i

n
bo

ug
ht

-​in
 p

ro
-

pr
ie

ta
ry

 co
de

W
he

re
 Su

pp
lie

r h
as

ch

oi
ce

 o
f i

m
pl

em
en

ta
-

tio
n:

 Su
pp

lie
r.

W
he

re
 im

-
pl

em
en

ta
tio

n
is

di
ct

at
ed

by

 C
us

to
m

er
's

re
qu

ire
-

m
en

ts
: C

us
to

m
er

W
he

re
 im

pl
em

en
-

ta
tio

n
is

di
ct

at
ed

 b
y

Cu
st

om
er

: C
us

to
m

er
 to

be

ar
 ri

sk
. O

th
er

w
ise

, n
e-

go
tia

te
d

on
 a

ca
se

 b
y c

as
e

ba
sis

. C
an

 Su
pp

lie
r o

bt
ai

n
a b

ac
k

to
 b

ac
k

in
de

m
-

ni
ty

 fr
om

 th
e p

ro
pr

ie
ta

ry

Su
pp

lie
r?

Tr
ad

e s
ec

re
ts

Su
pp

lie
r

Tr
ad

em
ar

ks
Cu

st
om

er

G
en

er
al

 In
de

m
ni

ty
 W

or
di

ng
Im

pl
ie

d
te

rm
s,

pr
e-

​co
nt

ra
ct

ua
l r

ep
re

se
nt

at
io

ns
C

on
du

ct
 o

f C
la

im

A
cc

es
s t

o
V

C
S

re
po

sit
or

y

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
’s

ar
gu

m
en

ts
C

om
m

en
ts

Th
e S

up
pl

ie
r [

co
nfi

rm
s t

ha
t t

he
 li

ce
nc

es

un
de

r w
hi

ch
 th

e t
hi

rd
 p

ar
ty

 co
m

po
ne

nt
s

of
 th

e S
oft

w
ar

e a
re

 av
ai

la
bl

e [
ar

e c
on

ta
in

ed

w
ith

in
 th

e l
ist

 se
t o

ut
 in

 A
pp

en
di

x
[3

]‌ a
s

am
en

de
d

fr
om

 ti
m

e t
o

tim
e b

y a
gr

ee
m

en
t

be
tw

ee
n

th
e p

ar
tie

s]
][

w
ill

 n
ot

 b
e b

re
ac

he
d

by
 th

e C
us

to
m

er
's

Sp
ec

ifi
ed

 U
se

][
,p

er
m

it
th

e C
us

to
m

er
 to

 o
ut

-​li
ce

ns
e t

he
 S

oft
w

ar
e

un
de

r t
he

 Sp
ec

ifi
ed

 O
ut

-​ L
ic

en
se

] a
nd

 th
at

so

 fa
r a

s i
t i

s a
w

ar
e [

bu
t n

ot
 h

av
in

g m
ad

e
sp

ec
ifi

c e
nq

ui
ry

] t
he

 d
ev

el
op

m
en

t o
f t

he

So
ftw

ar
e a

nd
 it

s d
el

iv
er

y t
o

th
e C

us
to

m
er

do

 n
ot

 in
fr

in
ge

 su
ch

 li
ce

nc
es

. [
Th

e
Cu

st
om

er
 is

 re
sp

on
sib

le
 fo

r e
ns

ur
in

g t
ha

t
its

 o
w

n
su

bs
eq

ue
nt

 u
se

, m
od

ifi
ca

tio
n

an
d

re
-​d

ist
rib

ut
io

n
of

 th
e s

oft
w

ar
e [

ou
ts

id
e t

he

Sp
ec

ifi
ed

 U
se

] i
s i

n
ac

co
rd

an
ce

 w
ith

 su
ch

lic

en
ce

s.]
[Th

e S
up

pl
ie

r a
gr

ee
s t

o
pr

ov
id

e
re

as
on

ab
le

 as
sis

ta
nc

e t
o

th
e C

us
to

m
er

 in

pa
ss

in
g t

he
 b

en
efi

t o
f a

ny
 w

ar
ra

nt
ie

s a
ss

o-
ci

at
ed

 w
ith

 su
ch

 th
ird

 p
ar

ty
 [p

ro
pr

ie
ta

ry
]

co
m

po
ne

nt
s t

o
th

e C
us

to
m

er
 su

bj
ec

t t
o

th
e

Cu
st

om
er

's
co

nt
in

ue
d

co
m

pl
ia

nc
e w

ith
 th

e
lic

en
ce

s a
pp

lic
ab

le
 to

 su
ch

 co
de

.

Su
pp

lie
r t

o
us

e r
ea

so
na

bl
e s

ki
ll

an
d

ca
re

 in
 se

le
ct

in
g c

od
e,

bu
t s

ho
ul

d
no

t b
e l

ia
bl

e f
or

 th
ird

 p
ar

ty
 in

-
fr

in
ge

m
en

t.
Si

m
ila

r t
o

th
e s

up
pl

y o
f

th
ird

 p
ar

ty
 h

ar
dw

ar
e.

M
ay

 o
ffe

r t
o

pa
ss

 o
n

an
y t

hi
rd

 p
ar

ty
 w

ar
ra

nt
ie

s
av

ai
la

bl
e.

M
ay

 al
so

 b
e s

ub
je

ct
 to

 th
e

Cu
st

om
er

 co
m

pl
yi

ng
 w

ith
 te

rm
s

pa
ss

ed
 th

ro
ug

h
by

 th
e S

up
pl

ie
r.

Su
pp

lie
r i

s c
on

tr
ac

tin
g

to
 su

pp
ly

 IP
R,

 an
d

sh
ou

ld
 b

ea
r a

ll
th

e r
isk

.
H

ow
 Su

pp
lie

r i
nt

en
ds

to

 so
ur

ce
 IP

R
sh

ou
ld

no

t b
e C

us
to

m
er

's
iss

ue
.

Th
e t

hi
rd

 p
ar

ty
 co

de
 m

ay

in
fr

in
ge

 b
ec

au
se

 it
 co

n-
ta

in
s c

op
yl

eft
 co

de
, b

ut
 th

e
so

ur
ce

 is
 n

ot
 m

ad
e a

va
il-

ab
le

. Th
is

m
ay

 ca
us

e t
he

cu

st
om

er
 to

 b
e t

he
 su

bj
ec

t
of

, f
or

 ex
am

pl
e,

a G
PL

 vi
o-

la
tio

ns
 cl

ai
m

, e
ve

n
if

th
e

cu
st

om
er

 w
ish

es
 al

l t
he

 co
de

to

 b
e a

va
ila

bl
e u

nd
er

 th
e

G
PL

, b
ec

au
se

 it
 d

oe
s n

ot

ha
ve

 ac
ce

ss
 to

 th
e s

ou
rc

e.
Th

e c
us

to
m

er
's

re
m

ed
y

m
ay

 th
er

ef
or

e b
e t

o
co

m
pe

l
th

e s
up

pl
ie

r t
o

re
le

as
e t

he

so
ur

ce
 (w

hi
ch

 m
ay

 h
av

e t
o

pa
ss

 th
is

re
qu

ire
m

en
t u

p
th

e
su

pp
ly

 ch
ai

n)
. Th

is
al

so
 su

g-
ge

st
s a

 ci
rc

um
st

an
ce

 w
he

re

th
e c

us
to

m
er

 in
sis

ts
 o

n
th

e
so

ur
ce

 co
de

 b
ei

ng
 p

la
ce

d
in

es

cr
ow

, a
nd

 re
le

as
ed

 if
 th

er
e

is
a t

hi
rd

 p
ar

ty
 G

PL
 vi

ol
a-

tio
ns

 cl
ai

m
.

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t [

so
 fa

r a
s t

he

Su
pp

lie
r i

s a
w

ar
e [

no
t h

av
in

g m
ad

e a
ny

en

qu
ir

y]
] t

he
 u

se
 b

y t
he

 C
us

to
m

er
 o

f t
he

So

ftw
ar

e f
or

 it
s S

pe
ci

fie
d

U
se

 [w
ith

in

[ju
ris

di
ct

io
ns

]]
 w

ill
 n

ot
 in

fr
in

ge
 an

y r
ig

ht

w
hi

ch
 an

y t
hi

rd
 p

ar
ty

 m
ay

 h
ol

d
un

de
r a

ny

va
lid

 p
at

en
t.

It
is

no
t e

co
no

m
ic

al
ly

 fe
as

ib
le

to

 u
nd

er
ta

ke
 a

pa
te

nt
 cl

ea
ra

nc
e

pr
io

r t
o

im
pl

em
en

ta
tio

n.
 If

 th
e

im
pl

em
en

ta
tio

n
is

di
ct

at
ed

 b
y t

he

Cu
st

om
er

's
re

qu
ire

m
en

ts
, t

hi
s

sh
ou

ld
 n

ot
 aff

ec
t l

ia
bi

lit
y.

Th
e e

x-
ist

en
ce

 o
f p

at
en

ts
 in

 th
e C

us
to

m
er

's
fie

ld
 o

f b
us

in
es

s (
pa

rt
ic

ul
ar

ly
 o

f
th

ey
 ar

e b
us

in
es

s-
​m

et
ho

d
pa

te
nt

s)

ar
e p

ar
t o

f t
he

 co
st

 an
d

ris
k

of
 d

oi
ng

bu

sin
es

s i
n

th
at

 se
ct

or
, a

nd
 th

e c
us

-
to

m
er

 sh
ou

ld
 b

e a
w

ar
e o

f,
an

d
ta

ke

th
e r

isk
, a

cc
or

di
ng

ly.

Su
pp

lie
r i

s c
on

tr
ac

tin
g

to
 su

pp
ly

 IP
R,

 an
d

sh
ou

ld
 b

ea
r a

ll
th

e r
isk

.
H

ow
 Su

pp
lie

r i
nt

en
ds

to

 so
ur

ce
 IP

R
sh

ou
ld

no

t b
e C

us
to

m
er

's
iss

ue
.

<n
on

e>
It

is
no

t e
co

no
m

ic
al

ly
 fe

as
ib

le

to
 u

nd
er

ta
ke

 a
pa

te
nt

 cl
ea

ra
nc

e
pr

io
r t

o
im

pl
em

en
ta

tio
n.

 If
 th

e
im

pl
em

en
ta

tio
n

is
di

ct
at

ed
 b

y t
he

Cu

st
om

er
's

re
qu

ire
m

en
ts

, t
hi

s
sh

ou
ld

 n
ot

 aff
ec

t l
ia

bi
lit

y.
If

su
pp

lie
r

ha
s t

o
ac

ce
pt

 so
m

e l
ia

bi
lit

y f
or

 p
a-

te
nt

 in
fr

in
ge

m
en

t,
A

ga
in

 th
er

e i
s

th
e p

ot
en

tia
l t

o
in

su
re

 ag
ai

ns
t t

hi
s

in
 th

e U
K

 at
 a

hi
gh

 p
ric

e a
nd

 th
e

ad
di

tio
na

l c
os

ts
 o

f t
hi

s w
ou

ld
 b

e
pa

ss
ed

 th
ro

ug
h

to
 th

e C
us

to
m

er
.

Su
pp

lie
r i

s c
on

tr
ac

tin
g

to
 su

pp
ly

 IP
R,

 an
d

sh
ou

ld
 b

ea
r a

ll
th

e r
isk

.
H

ow
 Su

pp
lie

r i
nt

en
ds

to

 so
ur

ce
 IP

R
sh

ou
ld

no

t b
e C

us
to

m
er

's
iss

ue
.

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
’s

ar
gu

m
en

ts
C

om
m

en
ts

<n
on

e>
Su

pp
lie

r t
o

us
e r

ea
so

na
bl

e s
ki

ll
an

d
ca

re
 in

 se
le

ct
in

g c
od

e,
bu

t
sh

ou
ld

 n
ot

 b
e l

ia
bl

e f
or

 th
ird

pa

rt
y i

nf
rin

ge
m

en
t.

Si
m

ila
r t

o
th

e s
up

pl
y o

f t
hi

rd
 p

ar
ty

 h
ar

d-
w

ar
e.

M
ay

 o
ffe

r t
o

pa
ss

 o
n

an
y

th
ird

 p
ar

ty
 w

ar
ra

nt
ie

s a
va

ila
bl

e,
or

 to
 as

sis
t a

nd
 ag

ai
n

th
is

m
ay

 b
e

su
bj

ec
t t

o
a p

as
s t

hr
ou

gh
 o

f t
hi

rd

pa
rt

y r
es

tr
ic

tio
ns

.

Su
pp

lie
r i

s c
on

tr
ac

tin
g

to
 su

pp
ly

 IP
R,

 an
d

sh
ou

ld
 b

ea
r a

ll
th

e r
isk

.
H

ow
 Su

pp
lie

r i
nt

en
ds

to

 so
ur

ce
 IP

R
sh

ou
ld

no

t b
e C

us
to

m
er

's
iss

ue
.

Th
e S

up
pl

ie
r w

ar
ra

nt
s t

ha
t,

to
 th

e b
es

t o
f t

he
 Su

pp
lie

r's
 k

no
w

le
dg

e [
bu

t n
ot

 h
av

in
g m

ad
e a

ny
 sp

ec
ifi

c e
nq

ui
ry

],
its

 d
el

iv
er

y [
as

sig
nm

en
t/​

lic
en

ce
] t

o
th

e C
us

to
m

er
 an

d
us

e i
n

ac
co

rd
an

ce
 w

ith
 th

is
A

gr
ee

m
en

t d
oe

s n
ot

 b
re

ac
h

an
y o

bl
ig

at
io

ns
 o

f c
on

fid
en

tia
lit

y t
o

a t
hi

rd
 p

ar
ty

.

Fo
r t

he
 av

oi
da

nc
e o

f d
ou

bt
 n

ot
hi

ng
 in

th

is
A

gr
ee

m
en

t [
ex

ce
pt

 fo
r c

la
us

e [
]]

‌ is

in
te

nd
ed

 to
 g

ra
nt

 an
y l

ic
en

ce
 o

ve
r a

ny

tr
ad

e m
ar

k
of

 th
e S

up
pl

ie
r o

r i
ts

 li
ce

n-
so

rs
. Th

e C
us

to
m

er
 sh

al
l c

om
pl

y w
ith

th

e t
er

m
s o

f t
he

 li
ce

nc
es

 go
ve

rn
in

g a
ll

th
ird

-​p
ar

ty
 co

m
po

ne
nt

s c
om

pr
ise

d
in

th

e S
oft

w
ar

e,
w

hi
ch

 m
ay

 in
cl

ud
e t

er
m

s
re

la
tin

g t
o

tr
ad

e m
ar

ks
.

Th
e C

us
to

m
er

 m
ay

 w
ish

 to
 u

se
 th

e
Su

pp
lie

r's
 tr

ad
e m

ar
k

if
th

e c
od

e i
s

di
st

rib
ut

ed
 (o

r a
cc

es
se

d
re

m
ot

el
y)

.
Th

e p
ar

tie
s m

ay
 re

ly
 o

n
tr

ad
e m

ar
k

la
w

 to
 ta

ck
le

 th
is,

 o
r i

nc
or

po
ra

te

an
 ex

pl
ic

it
lic

en
ce

 p
er

m
itt

in
g t

he

us
e o

f t
he

 tr
ad

e m
ar

k
in

 re
la

tio
n

to

th
e S

up
pl

ie
r's

 co
de

 o
nl

y i
f i

t i
s n

ot

m
od

ifi
ed

 in
 an

y w
ay

.

Th
e S

up
pl

ie
r w

ill
 in

de
m

ni
fy

 an
d

ho
ld

 th
e C

us
to

m
er

 h
ar

m
le

ss
 o

n
de

m
an

d
ag

ai
ns

t a
ny

 cl
ai

m
 o

r l
os

s a
ris

in
g a

s a
 co

ns
eq

ue
nc

e o
f a

 b
re

ac
h

of
 an

y o
f t

he
 [a

bo
ve

 w
ar

ra
nt

ie
s –

​ w
ar

ra
nt

ie
s s

et
 o

ut
 in

 th
is

cl
au

se
].

Ex
ce

pt
 as

 ex
pr

es
sly

 se
t o

ut
 in

 th
is

A
gr

ee
m

en
t,

th
e S

up
pl

ie
r m

ak
es

 n
o

re
pr

es
en

ta
tio

ns
 o

r w
ar

ra
nt

ie
s i

n
re

sp
ec

t o
f o

r i
n

co
nn

ec
tio

n
w

ith

th
e S

oft
w

ar
e o

r i
ts

 u
se

. A
ll

ot
he

r r
ep

re
se

nt
at

io
ns

, w
ar

ra
nt

ie
s,

co
nd

iti
on

s o
r o

th
er

 te
rm

s w
hi

ch
 m

ig
ht

 h
av

e e
ffe

ct
 b

et
w

ee
n

th
e p

ar
tie

s o
r

be
 im

pl
ie

d
or

 in
co

rp
or

at
ed

 in
to

 th
is

A
gr

ee
m

en
t o

r a
ny

 co
lla

te
ra

l c
on

tr
ac

t,
w

he
th

er
 b

y v
irt

ue
 o

f s
ta

tu
te

, c
om

m
on

 la
w

 o
r o

th
er

w
ise

, a
re

he

re
by

 ex
cl

ud
ed

 to
 th

e m
ax

im
um

 ex
te

nt
 p

er
m

itt
ed

 b
y l

aw
, i

nc
lu

di
ng

, w
ith

ou
t l

im
ita

tio
n,

 im
pl

ie
d

co
nd

iti
on

s,
w

ar
ra

nt
ie

s o
r o

th
er

 te
rm

s
as

 to
 sa

tis
fa

ct
or

y q
ua

lit
y,

m
er

ch
an

ta
bi

lit
y,

fit
ne

ss
 fo

r p
ur

po
se

 o
r t

he
 u

se
 o

f r
ea

so
na

bl
e s

ki
ll

an
d

ca
re

.
Th

e C
us

to
m

er
 sh

al
l n

ot
ify

 th
e S

up
pl

ie
r p

ro
m

pt
ly

 (“
a C

la
im

 N
ot

ic
e”

) s
ho

ul
d

it
re

ce
iv

e a
ny

 cl
ai

m
 th

at
 an

y p
or

tio
n

of
 th

e c
od

e d
el

iv
er

ed

un
de

r t
hi

s A
gr

ee
m

en
t i

nf
rin

ge
s t

he
 ri

gh
ts

 o
f a

ny
 th

ird
 p

ar
ty

, o
r w

he
re

 it
 o

th
er

w
ise

 h
as

 re
as

on
 to

 b
el

ie
ve

 th
at

 it
 d

oe
s s

o.
 Th

e S
up

pl
ie

r's

ob
lig

at
io

n
to

 in
de

m
ni

fy
 th

e C
us

to
m

er
 u

nd
er

 [c
la

us
e [

]‌]
 in

 co
nn

ec
tio

n
w

ith
 a

cl
ai

m
 ag

ai
ns

t t
he

 C
us

to
m

er
 b

y a
 th

ird
 p

ar
ty

 is
 su

bj
ec

t
to

: (
a)

 th
e C

us
to

m
er

 p
ro

m
pt

ly
 se

rv
in

g a
 C

la
im

 N
ot

ic
e;

 (b
) t

he
 C

us
to

m
er

 n
ot

 m
ak

in
g a

ny
 ad

m
iss

io
n

as
 to

 li
ab

ili
ty

 o
r c

om
pr

om
isi

ng
 o

r
ag

re
ei

ng
 to

 an
y s

et
tle

m
en

t o
f a

ny
 su

ch
 cl

ai
m

 w
ith

ou
t t

he
 p

rio
r w

rit
te

n
co

ns
en

t o
f t

he
 Su

pp
lie

r[
, w

hi
ch

 co
ns

en
t s

ha
ll

no
t b

e u
nr

ea
so

n-
ab

ly
 w

ith
he

ld
 o

r d
el

ay
ed

];
(c

) a
t t

he
 Su

pp
lie

r's
 w

rit
te

n
re

qu
es

t a
nd

 at
 it

s o
w

n
ex

pe
ns

e,
th

e S
up

pl
ie

r h
av

in
g t

he
 co

nd
uc

t o
f a

nd
 th

e r
ig

ht

to
 se

ttl
e a

ll
ne

go
tia

tio
ns

 an
d

lit
ig

at
io

n
ar

isi
ng

 fr
om

 su
ch

 cl
ai

m
; a

nd
 (d

) a
t t

he
 Su

pp
lie

r’s
 re

qu
es

t a
nd

 ex
pe

ns
e,

th
e C

us
to

m
er

 g
iv

in
g t

he

Su
pp

lie
r a

ll
re

as
on

ab
le

 as
sis

ta
nc

e i
n

co
nn

ec
tio

n
w

ith
 su

ch
 n

eg
ot

ia
tio

ns
 an

d
lit

ig
at

io
n.

 [Th
e C

us
to

m
er

 sh
al

l t
ak

e a
ll

re
as

on
ab

le
 st

ep
s t

o
m

iti
ga

te
 it

s l
os

s a
ris

in
g f

ro
m

 an
y d

ef
au

lt
of

 th
e S

up
pl

ie
r]

Th
e S

up
pl

ie
r u

nd
er

ta
ke

s t
ha

t i
t w

ill
 [d

ur
in

g t
he

 T
er

m
] a

llo
w

 th
e C

us
to

m
er

 [r
ea

d-
​on

ly
] a

cc
es

s t
o

th
e [

V
C

S
Re

po
sit

or
y]

.

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
’s

ar
gu

m
en

ts
C

om
m

en
ts

Re
pl

ac
e o

r R
e-

​w
rit

e

Li
ce

nc
e o

f C
ol

le
ct

iv
e W

or
k

Th
e S

oft
w

ar
e i

s l
ik

el
y t

o
co

ns
ist

 o
f a

 n
um

be
r

of
 co

m
po

ne
nt

s,
an

d
th

e l
ist

 o
f c

om
po

ne
nt

s
its

el
f w

ill
 am

ou
nt

 to
 a

co
lle

ct
iv

e w
or

k.

A
lth

ou
gh

 in
 m

an
y j

ur
isd

ic
tio

ns
, t

he
 co

l-
le

ct
iv

e w
or

k
w

ill
 b

e i
m

pl
ie

d,
 in

 so
m

e j
ur

isd
ic

-
tio

ns
, e

.g
. S

pa
in

, i
t m

ay
 n

ee
d

to
 b

e e
xp

lic
itl

y
gr

an
te

d.
 N

ot
e a

lso
 th

at
 th

e G
PL

 m
ay

 n
ot

 b
e

an
 ap

pr
op

ria
te

 li
ce

nc
e f

or
 a

co
lle

ct
iv

e w
or

k
–​

FD
L,

 o
r c

re
at

iv
e c

om
m

on
s m

ay
 b

e m
or

e
ap

pr
op

ria
te

 as
 th

ey
 d

o
no

t i
nt

ro
du

ce
 so

ur
ce

co

de
 co

m
pl

ic
at

io
ns

.

Li
m

ita
tio

ns
 an

d
ex

cl
us

io
ns

 o
f l

ia
bi

lit
y

St
at

us
 o

f S
up

pl
ie

r
Th

is
ne

ed
s t

o
be

 co
ns

id
er

ed
 ca

re
fu

lly
 in

th

e c
on

te
xt

 o
f e

ac
h

lic
en

ce
. G

en
er

al
ly,

 th
e

Su
pp

lie
r w

ill
 w

an
t t

o
be

 p
ro

vi
di

ng
 se

rv
ic

es
 to

th

e C
us

to
m

er
, r

at
he

r t
ha

n
de

liv
er

ab
le

s.
Th

is
ha

s i
ss

ue
s f

or
 d

ist
rib

ut
io

n,
 ac

qu
ire

d
rig

ht
s

di
re

ct
iv

e,
lia

bi
lit

y.
Fa

ilu
re

 o
f s

oft
w

ar
e t

o
m

ee
t s

pe
-

ci
fic

at
io

n:
 Su

pp
lie

r c
re

at
ed

N
ot

e t
ha

t t
he

 so
ur

ce
 is

 au
to

m
at

ic
al

ly
 av

ai
l-

ab
le

. N
o

ne
ed

 fo
r e

sc
ro

w.
 M

or
e n

at
ur

al
 to

ha

ve
 d

oc
um

en
ta

tio
n

av
ai

la
bl

e.

Su
pp

lie
r

W
ar

ra
nt

y f
ro

m
 Su

pp
lie

r
+​

ab
ili

ty
 to

 re
-​w

rit
e

no
n-

​pe
rf

or
m

in
g c

od
e

Fa
ilu

re
 o

f s
oft

w
ar

e t
o

m
ee

t s
pe

-
ci

fic
at

io
n:

 p
ub

lic
ly

 av
ai

la
bl

e
Su

pp
lie

r,
ge

ne
ra

lly
W

ar
ra

nt
y (

ne
go

ti-
at

ed
) f

ro
m

 Su
pp

lie
r +

​
ab

ili
ty

 to
 re

-​w
rit

e n
on

-​
pe

rf
or

m
in

g c
od

e

Fa
ilu

re
 o

f s
oft

-
w

ar
e t

o
m

ee
t

sp
ec

ifi
ca

-
tio

n:
 p

ro
pr

ie
ta

ry

O
rig

in
al

 su
p-

pl
ie

r -
​ ca

n
su

pp
lie

r p
as

s
on

 w
ar

ra
nt

ie
s

et
c?

Ba
ck

 to
 b

ac
k

w
ar

ra
nt

y
fr

om
 su

pp
lie

r,
or

 m
ec

h-
an

ism
 to

 en
ab

le
 cu

st
om

er

to
 b

en
efi

t f
ro

m
 o

rig
in

al

su
pp

lie
rs

' w
ar

ra
nt

ie
s

(a
ge

nc
y,

th
ird

 p
ar

ty

be
ne

fic
ia

ry
, c

ol
la

te
ra

l
w

ar
ra

nt
y)

Th
e S

up
pl

ie
r m

ay
 at

 an
y t

im
e r

ep
la

ce
 an

y p
ar

t o
f t

he
 co

de
 (“

th
e O

rig
in

al
 P

or
tio

n”
) d

el
iv

er
ed

 u
nd

er
 th

is
A

gr
ee

m
en

t w
he

re
 it

 re
as

on
ab

ly

be
lie

ve
s t

ha
t s

uc
h

co
de

 in
fr

in
ge

s t
he

 ri
gh

ts
 o

f a
ny

 th
ird

 p
ar

ty
 o

r w
he

re
 a

cl
ai

m
 o

f s
uc

h
in

fr
in

ge
m

en
t h

as
 b

ee
n

m
ad

e,
pr

ov
id

ed
 th

at
 su

ch

re
pl

ac
em

en
t c

od
e m

at
er

ia
lly

 co
m

pl
ie

s w
ith

 th
e S

pe
ci

fic
at

io
n.

 Th
e S

up
pl

ie
r s

ha
ll

ce
as

e t
o

be
 li

ab
le

 to
 th

e C
us

to
m

er
 fo

r a
ny

 cl
ai

m
 re

la
tin

g
to

 th
e O

rig
in

al
 P

or
tio

n
to

 th
e e

xt
en

t t
ha

t i
t a

ris
es

 aft
er

 d
el

iv
er

y o
f t

he
 R

ep
la

ce
m

en
t C

od
e,

ex
ce

pt
 w

he
re

 su
ch

 cl
ai

m
s a

pp
ly

 to
 it

em
s a

lre
ad

y
cr

ea
te

d
or

 m
an

uf
ac

tu
re

d
an

d
cu

rr
en

tly
 b

ei
ng

 d
ep

lo
ye

d
to

 m
ar

ke
t.

Th
e S

up
pl

ie
r a

ck
no

w
le

dg
es

 th
at

 th
e c

om
bi

na
tio

n
of

 th
e c

om
po

ne
nt

s w
ith

in
 th

e S
oft

w
ar

e c
on

st
itu

te
s a

 co
lle

ct
iv

e w
or

k.
 Th

e S
up

pl
ie

r
he

re
by

 g
ra

nt
s a

 n
on

-​ e
xc

lu
siv

e l
ic

en
ce

 to
 su

ch
 co

lle
ct

iv
e w

or
k

to
 th

e L
ic

en
se

e [
co

ns
ist

en
t w

ith
 th

e r
es

t o
f t

hi
s A

gr
ee

m
en

t]
[c

on
sis

te
nt

w

ith
 th

e S
pe

ci
fie

d
U

se
]

(c
on

tin
ue

d)

Sa
m

pl
e W

or
di

ng
Su

pp
lie

r's
 A

rg
um

en
ts

C
us

to
m

er
’s

ar
gu

m
en

ts
C

om
m

en
ts

Th
e S

up
pl

ie
r's

 li
ab

ili
ty

 u
nd

er
 o

r i
n

co
nn

ec
tio

n
w

ith
 th

is
A

gr
ee

m
en

t
(w

he
th

er
 in

 co
nt

ra
ct

, t
or

t (
in

cl
ud

in
g

ne
gl

ig
en

ce
) o

r o
th

er
w

ise
) i

s l
im

ite
d

as
 fo

llo
w

s:
(a

) t
he

 Su
pp

lie
r w

ill
 h

av
e

no
 li

ab
ili

ty
 fo

r a
ny

 lo
ss

 o
f p

ro
fit

s,
lo

ss

of
 b

us
in

es
s,

lo
ss

 o
f g

oo
dw

ill
, l

os
s o

f
an

tic
ip

at
ed

 sa
vi

ng
s,

lo
ss

 o
f o

r c
or

ru
p-

tio
n

to
 d

at
a o

r f
or

 an
y i

nd
ire

ct
 o

r c
on

-
se

qu
en

tia
l l

os
s o

r d
am

ag
e;

 an
d

(b
) t

he

m
ax

im
um

 ag
gr

eg
at

e a
m

ou
nt

 o
f a

ny

su
ch

 li
ab

ili
ty

 w
hi

ch
 is

 n
ot

 ex
cl

ud
ed

by

 (a
) s

ha
ll

be
 [

]‌.
N

ot
hi

ng
 in

 th
is

A
gr

ee
m

en
t s

ha
ll

lim
it

th
e S

up
pl

ie
r's

lia

bi
lit

y f
or

 d
ea

th
 o

r p
er

so
na

l i
nj

ur
y

or
 ar

isi
ng

 as
 a

re
su

lt
of

 fr
au

d.

O
n

a r
isk

 an
d

re
w

ar
d

ba
sis

 th
e

Su
pp

lie
r w

ill
 w

ish
 to

 li
m

it
to

 th
e

fe
es

 fo
r t

he
 sp

ec
ifi

c p
ro

je
ct

.

Th
e S

up
pl

ie
r i

s [
an

 in
de

pe
nd

en
t c

on
tr

ac
to

r]
[a

ct
s a

s A
ge

nt
 fo

r t
he

 C
us

to
m

er
 in

 d
ev

el
op

in
g t

he
 S

oft
w

ar
e]

To
 th

e e
xt

en
t t

ha
t a

ny
 Su

pp
lie

r-
​

C
re

at
ed

 C
od

e f
ai

ls
to

 m
ee

t t
he

Sp

ec
ifi

ca
tio

n,
 th

e S
up

pl
ie

r s
ha

ll
du

rin
g t

he
 W

ar
ra

nt
y P

er
io

d
[r

ep
la

ce

su
ch

 Su
pp

lie
r C

re
at

ed
 C

od
e w

ith

co
de

 th
at

 is
 co

m
pl

ia
nt

][
in

se
rt

 SL
A

]

O
ffe

r S
LA

? M
ai

nt
en

an
ce

 ag
re

e-
m

en
t.

W
ar

ra
nt

y p
er

io
d.

 S
ou

rc
e

is
au

to
m

at
ic

al
ly

 av
ai

la
bl

e

W
ar

ra
nt

y t
ha

t S
oft

w
ar

e w
ill

pe

rf
or

m
 to

 sp
ec

ifi
ca

tio
n.

To
 th

e e
xt

en
t t

ha
t a

ny
 P

ub
lic

ly
-​

Av
ai

la
bl

e C
od

e f
ai

ls
to

 m
ee

t t
he

Sp

ec
ifi

ca
tio

n,
 th

e S
up

pl
ie

r s
ha

ll
du

rin
g t

he
 W

ar
ra

nt
y P

er
io

d
[r

ep
la

ce

su
ch

 P
ub

lic
ly

 A
va

ila
bl

e C
od

e w
ith

co

de
 th

at
 is

 co
m

pl
ia

nt
][

in
se

rt
 SL

A
]

Th
e S

up
pl

ie
r s

ho
ul

d
no

t b
e r

e-
sp

on
sib

le
 fo

r t
he

 p
er

fo
rm

an
ce

of

 th
ird

 p
ar

ty
 co

de
.

Th
e C

us
to

m
er

 sh
ou

ld
 n

ot

be
 co

nc
er

ne
d

ab
ou

t h
ow

 th
e

Su
pp

lie
r o

pt
s t

o
se

le
ct

 co
de

.
Fu

rt
he

r,
fo

r P
ub

lic
ly

-​A
va

ila
bl

e
C

od
e,

th
e S

up
pl

ie
r h

as
 ac

ce
ss

to

 th
e s

ou
rc

e,
an

d
ca

n
th

er
e-

fo
re

 tr
ea

t t
ha

t c
od

e a
s s

im
pl

y
a m

or
e-

​ra
pi

dl
y-

​de
ve

lo
pe

d
ve

rs
io

n
of

 it
s o

w
n

co
de

. Th
er

e
is

th
er

ef
or

e n
o

re
as

on
 w

hy
 it

ca

nn
ot

 g
iv

e a
 w

ar
ra

nt
y.

Th
e S

up
pl

ie
r s

ha
ll

ta
ke

 re
as

on
ab

le

st
ep

s t
o

as
sis

t t
he

 C
us

to
m

er
 w

ith
 th

e
en

fo
rc

em
en

t o
f a

ny
 w

ar
ra

nt
ie

s a
pp

lic
-

ab
le

 to
 p

ro
pr

ie
ta

ry
 co

de
, b

ut
 sh

al
l [

ex
-

ce
pt

 to
 th

e e
xt

en
t t

ha
t n

o
re

as
on

ab
le

su

pp
lie

r c
ou

ld
 h

av
e s

pe
ci

fie
d

th
e u

se
 o

f
su

ch
 co

de
] n

ot
 o

th
er

w
ise

 b
e l

ia
bl

e f
or

an

y f
ai

lu
re

 o
f a

ny
 th

ird
 p

ar
ty

 co
de

 to

re
ac

h
Sp

ec
ifi

ca
tio

n.

In
du

st
ry

 st
an

da
rd

 to
 u

se
 th

ird

pa
rt

y c
od

e.
D

ep
en

ds
 o

n
ty

pe
 o

f
co

de
 (O

S/
​da

ta
ba

se
 en

gi
ne

/​li
-

br
ar

y/
​Em

be
dd

ed
 co

m
po

ne
nt

)

So
ftw

ar
e s

ho
ul

d
pe

rf
or

m
 to

sp

ec
ifi

ca
tio

n.

Index

For the benefit of digital users, indexed terms that span two pages (e.g., 52–​53) may, on occasion, appear
on only one of those pages.

abandonment, concept of  17, 196–97
abandonware  17
Abelson, H.  523
abuse of dominant position

Android case  372–74
concept of  370–71
Free Software Foundation case  372
Microsoft case  374–77
predatory pricing  371–74
prohibition of  369–70

Acacia Research Group  233–34
Academic Free Licence (AFL)  86–87
access, Open Source principles and  536–38
accounting  66, 391

carbon  295
Ackermann, J.  504–5
acquisitions see mergers and acquisitions
adaptations  23n.121, 515
Adeney, E.  11n.51
advertising

campaigns  197
clauses  84n.54, 86n.60

advisory groups  430
Affero General Public Licence (AGPL) see GNU

AGPL
AFL see Academic Free Licence
Aghion, P.  305n.10
Agile methodology  30, 365, 366–67, 368
Agnitas AG  210–11n.86
AGPL (Affero General Public Licence) see GNU

AGPL
agreements see contracts; licences
aggregate, definition  413n.24
agricultural sector  510
AI see artificial intelligence
AIRBUS  188
Aiven  344, 362
Akash, N.  248n.136
Alfresco  210–11n.86
Allen, A.  516n.22
Allied Security Trust (AST)  246–47
Allison, J.  375n.22
Amazon  183–84n.1, 362, 461–62

Elasticsearch service  183–84n.1, 355, 358–59,
361

OpenSearch service  183–84n.1, 362
Amsterdam sustainability case study  292–93
Anderson, T.  253n.158
Android Open Source Project (AOSP)  208n.73,

316–17, 372
Android predatory pricing case  372–74
anonymity  59
anti-social behaviour  325
anti-trust law see competition
Apache Kafka  357
Apache License  477–78
Apache License Version 2.0  85–86, 110, 238–39,

269f
Commons Clause  332
compatibility  101–2

Apache Software Foundation (ASF)  41, 48,
50–52, 85–86, 102, 118, 153, 206n.68,
388, 391, 515, 515n.19

APIs see application programming interfaces
Apple  65, 429, 430
application programming interfaces (APIs)  5,

76, 77–78, 128, 160, 296, 317, 411n.16,
428, 527–28, 529–31

application service providers (ASPs)
exception  93

apps  327, 460
AppStore  173n.6

Archontopoulos, E.  219–13nn.20–1
Arduino  492, 503
ArduPilot  390n.6
ARIA system  443
Ariely, D.  325n.42, 325n.44
Armenia  431n.4
Arnison, M.  513n.15
Artifex Software  126n.1
artificial intelligence (AI)  296–97, 352, 356, 454
Artistic Licence  37, 86–87, 103–4
artwork  200n.46, 494
Aruba  431n.4
Asay, M.  333, 353–54, 361–62, 430n.1
ASF see Apache Software Foundation

558  Index

Asian Legal Network  xvii
ASICs  511n.48
Aslett, M.  336, 342, 343, 346
ASPs see application service providers
asset valuation see valuation
Athena Project (MIT)  36
Atom Foundation  350
attribution  11, 13–14, 15, 103–4, 177, 206–7,

210, 211, 303, 334, 366–67, 407, 416, 495,
508, 514, 522, 524, 528

right, definition of  210n.84
audiovisual work  15
audits

(dis)advantages  171–72
automated audits  170–71
corporate context for Open Source

audits  169–70
expert audits  171
purpose of Open Source audits  170

Australia  279, 431n.4
authentication services  374
Autodesk  209n.78
available component, definition  507
AWS Marketplace  183–84n.1, 341, 346, 353–54,

361, 362, 363
Azure cloud services  61–62
 
Bachman, B.  461n.116
badgeware licences  210
Bain, M.  89n.78, 98n.111, 367
bait and switch see business models
ball bearings  500
Ballardini, R.  221n.32, 233n.73
Ballmer, S.  7n.26
Balter, B.  104n.134
Banasevic, N.  374n.20
Bannon, S.  360–61, 362, 426n.69
bare licences

‘Contract or Bare Licence?’ debate  102–7
Open Source licences as bare licences  103–5
Open Source licences as contracts  105–7

Barker, M.  333
Baron, J.  257, 261n.25, 262n.27, 263n.30,

270–71
Basic Input/Output System (BIOS)  499n.26
Bazaar model see Cathedral and The Bazaar, The
BBC (British Broadcasting Corporation)  492
‘Be on the Look Out’ (BOLO)  393–94
Beck, B.  224n.41
Bekkers, R.  259n.11
Belgium  187
Belle, C.  464n.129
Bender, M.  23n.124
Benelux  187

benevolent dictator (BD) model see business
models

Benkler, Y.  227–28, 254n.162, 283, 323n.37,
325n.45

Berholz, D.  59n.21
Berkeley Software Distribution (BSD)  37, 84–87,

93–94, 99, 110, 124–25, 149–50, 153, 213,
214, 235–36, 259, 268, 421–22, 479, 481,
482, 499n.29, 503–4

compatibility  101–2, 104
Berkowitz, M.  227–13nn.50–1
Berkus, J.  425n.59
Berners-Lee, T.  529
Bessen, J.  223n.38, 254n.162, 254n.165
bias  385–86n.1, 430
Biden Ordnance  162
Bierhals, R.  260n.19
Bill of Materials (BOM)  161–62, 350, 365–66,

404, 487, 503
see also SBOM (software bill of materials)

binary code  137, 222, 230
binary form  75, 153–54, 213, 214, 226
Bishop, T.  234n.77
Bitcoin

Bitcoin ABC  479
Bitcoin Whitepaper  476, 479
client licence analysis  479–81
core client  479
SV client see Satoshi’s Vision (SV)

bitstream  510–11
Black Duck analysis  170–71, 472–73, 477–78,

484, 485, 486
Blind, K.  257, 257n.5, 260, 263, 264–65, 265f,

266–67, 268, 269f, 313–14, 323n.35,
324n.39, 326n.46

Blockchain
clients  474–75
code review  477–78
Corda  486–87
Distributed Ledger Technology (DLT)  471–73
EOSIO  486
forking  475–76
importance of  471
layers  473
licence compliance in ‘decentralised’

platforms  488–89
licence selection, approaches to  487–88
‘protocol layer’ software  473, see also Bitcoin;

Ethereum
protocols  474–75
systems  473–74

blogs  400
Bloom, N.  305
Blundell, R.  305n.10

Index  559

Böhm, M.  257, 263, 264–65, 265f, 266–67, 268,
269f, 304n.7, 311n.22, 314n.26, 321n.32,
323n.36, 324n.39, 326n.46, 338

Bolt, J.  305n.8
bottlenecks  142–43
bottom line impacts  59, 340–41, 359–60
Bovis, C.  431n.6
Bowman  516n.23
Bowyer, A.  492
Box (brand)  402–3
Boyle, J.  10n.47
Brasseur, V. M. (sp)  347, 361, 362
breach of contract  103–4, 105
breach of copyright  29, 130–31
breaches of security see cybersecurity; security
Brexit  187n.9, 224n.41, 323–24, 456, 461, 466,

527n.61
Brittain, B.  220–21n.31
Brock, A. C.  252–13nn.155–1
Brockmeir, J.  349
Brunet, E.  78n.37
BSD-style licence see Berkeley Software

Distribution (BSD)
bugs

bug-bounty campaigns  287
bug-hunting programs  286
debugging  92
fixes  38, 314–15
reports  283–84, 313

Buildah  408n.2
burden of proof  131, 136, 140
Bureau of Industry and Security (BIS)  276, 277,

278
Burrell, R.  17n.99
business models  336–51, 364
bait and switch strategy  373
benevolent dictator (BD) model  54–55, 56, 63,

202, 386n.2
business benefits of Open Source  317–19
business of open source  60–65

change from Open Source to proprietary
software  355–56

Chef (company)  357
cloud-based services  457
Cloudera/Hortonworks merger  356–57
Cockroach Labs  357–59
commerce, open source as  30–31
commercialisation  39, 179, 182, 225
Commons Clause  356
community to business, transition from  340–41
Confluent Community Licence (CCL)  357
Confluent Platform  357
dual licensing  119, 317–18, 342, 380, 423,

507n.44

Elasticsearch  359–62
Grafana Labs  362
innovation platforms  351–52
MongoDB  355–56
Open Core  354–63
platform companies  351–54
purely Open Source business model  344–51
Redis Labs  356
Server-Side Public Licence (SSPL)  355–56
source-available licences  424–28
strip mining  354–63
transaction platforms  351–52

business of open source  60–65, 379
Business Source Licence (BSL)  358, 425–26
BusyBox  126n.1
Buterin, V.  476, 482
 
CAD see computer-aided design
CAL see Cryptographic Autonomy Licence
CAMEL  188
Canada  279, 431n.4
Canonical  xliii, 118–19, 247n.130, 304, 330, 344,

345, 353, 367
capitalism  345–46
CapitalOne  403
Caramel  484
carbon dioxide emissions see sustainabilitycartels

see competition law
Casillas, A.  244n.108
Castle, J.  463n.122
Cathedral and the Bazaar, The  226–27, 283, 343,

516
CCL see Confluent Community Licence
CCS see Crown Commercial Service
CD/CD-ROM format  137, 533
Center for Strategic and International Studies

(CSIS)  19
CERN Licence  504, 505–7, 508

Open Hardware Licence (OHL)  492n.9, 503,
505–8

certification marks  191–92
chain of title  180
charities  387–90
Charitywear  334
checksum licences  91, 148, 150, 150f, 151, 151f,

152
Chef (company)  357
Chesbrough, H.  307n.15, 535–36
Chestek, P.  192n.26, 206n.65
Chief Information Officers (CIOs)  164
Chien, C.  218n.16
China

competition, restriction of  280–81
export controls  280–81

560  Index

foundations  350
‘Great Firewall’  323–24
MOFCOM  280, 281
MOST  280
Taipei  431n.4
UK telecoms procurement  437

chip designs, licensing of  506–7
ChromeOS  327
Churchill, W.  305–6
CI/CD see Continuous Integration/Continuous

Development
CII see computer-implemented inventions
CKAN system  528
CLA see contributor licence agreements (CLAs)
clang  327
Classpath  486, 487
cloud computing see business models
Cloud Native Computing Foundation

(CNCF)  60–61
Cloudera

Hortonworks merger  356–57
clustering  40
CNC see computer numerical control
Coase, R. H.  323n.36
Coca Cola  497, 519n.28
Cockroach
Cockroach Labs  357–59, 425–26
code see software
codec technologies  221, 225n.44, 232, 236
codes of conduct  58–60
Cognizo Technologies  210–11n.86
Cohen, J.  254
Coindesk  485, 487–88
collaboration

business models and  337–40
community composition  309
‘community,’ meaning of  385
competition or collaboration?  305–7
culture  40–42
distinctiveness from other organisational

forms  309
economics in relation  303–4
forking see forking
global upstream/downstream

network  313–14
governance  309, 311
key effects of  324
licences to facilitate  42–44
management  311
methodologies  304
modes of Open Source collaboration  325–26
openness of  309
summary of key issues  67

tradition of collaboration and
community  34–35

see also community; contributions; forking;
governance; OpenChain ISO 5230; Open
Source Initiative; open source software
movement

collective marks  191–92
Comcast  402–3
Comino, S.  19n.107, 19n.108, 257
comma-separated values (CSV)  527–28
commerce see business models; companies;

competition; compliance; economics;
OpenChain ISO 5230

commercial contracts
Agile methodology and  365, 366–67, 368
copyleft  366
derivative works  366
GNU GPL  366
indemnities  367
liabiity insurance  367–68
licences distinguished  365–66
Open Source and  365–68
Open Source Definition, inclusion of  366
Open Source licence-specific

requirements  366–67
project governance and  368
representations  367
statement of work (SOW)  368
subscriptions  367–68
warranties  367
waterfall contracts  30, 368

commercial licences  317–18, 342, 358
Commercial Open Source software (COSS)  346

commercially available off-the-shelf
(COTS)  462–63

Commission on New Technological Uses of
Copyrighted Works (CONTU)  72

Common Development and Distribution Licence
(CDDL)  110, 477–78

Common Public Licence (CPL)  241t
Commons Clause  331–32, 334, 356, 425–26
community

community-centred design  292–93
community-focused development model  50
Open Source Community, definition of  311
see also collaboration

companies
audits  169–72
best practice  166
confusion over for-profit/non-profit interests

division  392–94
copyleft and  166–67
corporate culture and Open Source in

relation  164–65

China (cont.)

Index  561

foundations and  391, 392–94
initial public offerings (IPOs)  181–82
insolvency  180–81
investments  178–80
IP infringement claim protection, lack

of  167–68
M&As  174–78
management of Open Source  165–66
Open Source support and warranties, lack

of  168
Open Source usage  165
risks of Open Source usage  166–69
software audits see audits
software scalability and robustness

issues  168
software security issues  168–69
valuation  172–74
‘viral impact’ of open source  166–67
see also open source program offices

Compaq  498–99
COmparative COst MOdel (COCOMO)  38n.3
compatibility see licence compatibility
‘’‘’compensation  105–6, 225, 319, 354, 374–76,

389, 525n.50
competition

anti-competitive behaviour  373
anti-trust law  66, 126n.1, 176–77, 324, 369–70,

373, 374–75, 378, 379, 381–82
collaboration or  305–7
consumers and  319–20
limitation by trade mark usage  208–12
open source program offices and  405
restriction of  280–81
wider Open Source community, in  322–24

competition law
abuse of dominant position
Android case  372–74

concept of  370–71
Free Software Foundation case  372
Microsoft case  374–77
predatory pricing  371–74
prohibition of  369–70

cartels, prohibition of  369–70
merger control see mergers and acquisitions
monopolies, prohibition of  369–70
Open Source and  370
see also antitrust law

competitiveness  272, 321, 324–25, 371, 373,
461n.115, 493

Competitiveness Council (EU)  224n.41
compilations  5, 24, 240n.101, 412n.22, 413n.24,

416n.26
compilers  317, 508, 510n.46

definition  81

compliance
challenges  142
container images and  416–21
copyright  xvii
OpenChain ISO 5230 and  143
Open Source  144
quality compliance program  143, 144
social and market transactions  324–26
software  xvii
specification conformance  143
see also copyright; licences

computer-aided design (CAD)  494, 509
computer-implemented inventions (CII)  218,

222, 225, 243
computer numerical control (CNC)  498
Concordia  441
confidentiality  3–4, 203, 279, 288, 377
Confluent Community Licence (CCL)  357,

425–26
Confluent Platform  357
Consensys  485, 487–88
consultancy see services
consumers

competition and  319–20
‘consumer-pays’ publishing  536
products  315, 316–17
proprietary software  463
protection laws  6, 32, 91

container images
AGPLv3–licensed software  424
content of  408, 409, 421–22
Dockerfiles  421–22
format of  408
GNU GPL code  414–15
licence description and identification  421–22
Open Container Initiative  408
Open Source licence compliance

and  416–21
standardisation of  408

containers
container images see container images
copyleft and  410–15, 422–24
definition of  408
network services copyleft  422–24
overview of  408–10

content licences  503–4, 523
Continuous Integration/Continuous

Development (CI/CD)  61
contracts

acceptance  103, 504–5
assignment, copyright  57, 118–19, 120–21
bare licences vs.  77
breach of  103–4, 105
commercial  365–68

562  Index

consideration
community  123
ethical  41–42, 44
Open Source licences  46–47, 103
Open Source projects  66
principle of  103
law of  3, 31, 103, 105–6
privity of  103, 242
see also bare licences; commercial contracts

Contreras, J.  261n.25, 262n.27, 263n.30,
268n.39

Contribution Agreements  118–19
Developer’s Certificate of Origin (DCO)  116–17

contributions
‘contributor,’ definition of  310
economics and  308–9
forking see forking
participation processes  310–11
sources of  309
types of  310
voluntary participation  311, 320–21

contributor
Contributor Agreements  113–25
Contributor Covenant  59–60
definition of  310

contributor licence agreements (CLAs)  116–17
employee contributions  121–23
reasons for using  119–20

Cooper, D.  228n.53, 335n.9
copies of a work  28–29, 302
copyleft

boundary problem  499–500
competing copylefts problem  501
distinctive features  87–88
EPL  93–96
GPL see GNU GPL
hardware see hardware
intellectual property  496–98
issue  366
MPL  93–96
network services  422–24
non-copyleft hardware licences  508
permissive licensing compared with  87–88
scope of  410–15
strong  87–88, 100
weak  87–88, 93, 96–97, 100–1
reasons for  121

copyright law
assignment  57, 118–19, 120–21
agreements  120–21
author’s rights  74
collective works  23–24, 25–26, 89, 133–34
definition  89
derivative works  81–83, 366

computer software architecture and
interactions, summary of  81–83

definition  89, 98
Open Source licences  82–83

development of law  32–33
distribution, right of  26–30
early usage of  36–37
economics and  301–3, 308–9
enforcement see enforcement
‘exhaustion’ of distribution right  26
‘fair dealing’ and ‘fair use’  80–81
‘first sale,’ doctrine of  26
‘functional dictation’ exception  79
history of software-related copyright  71–73
infringement see copyright offences
‘merger doctrine’ exception  79
non-copyrightability  75–79
openness and  518–20
open source program offices (OSPO)  400–1
ownership  132–34
patents distinguished  222–24
protection of software  128

copyright offences
development of law  32–33
enforcement of rights see enforcement
‘infringement,’ definition of  128–29

copyrightability  75, 76n.25, 77, 79, 98–99, 128,
134

Corda  486–87
Cordera  473
Coughlan, S.  326n.47
courseware  537
Covered Code, definition  93–94
CPL see Common Public License (CPL)
CPP Client  478, 481–84, 485, 487–89
cpp-ethereum (C++ client/aleth)  481, 483
Creative Commons (CC)

acceptance of  524
Creative Commons Licence (CCBY)  14–15,

59–60, 331, 463–64, 482, 523n.45, 524–
25, 536–37, 537n.90

Creative Commons Universal Public Domain
Dedication (CC0 1.0)  17, 148–49, 148f,
482, 525

description of  523–25
licences  59–60, 144, 207n.71, 295, 331, 463–

64, 482, 521n.38, 524, 536–37, 537n.90
moral rights and  14–15
OpenChain ISO 5230  144
Open Data Commons compared  522
open knowledge  521n.38
openness  524–25
openness and  523–25
Public Domain Dedication (CC0)  17, 524–25

Index  563

scope of  523
suitability for Open Source  524
‘tragedy of the commons’  312
value at edge of  312–14

Crichton, M.  251n.144
cross-border interest  433–34, 438–39, 465–66
cross-licensing  xviii, 232, 233
Crouch, D.  220–15nn.26–7, 233n.75
crowdsourcing  526
Crown Commercial Service (CCS)  456, 457
Crützen, C.  224n.41
Cryptographic Autonomy Licence

(CAL)  424–25
cryptography  279
crypto-hackers  476
curation  340
cure commitment  139–40
Cusmano, M. A.  351n.46
customs controls see export controls
CVS see concurrent versioning system
cybersecurity

active vulnerability watch processes  287
balance of confidentiality and

disclosure  288
better governance in Open Source, claim

of  283–85
bug-bounty campaigns  287
commitment to handle and fix

vulnerabilities  287
coordination between projects  287
cyberattacks  283
Heartbleed vulnerability  284–85
historic lack of priority for  282–83
invite-only security mailing lists  286
Log4J  339
management processes  286–87
Open Source governance of  286–88
realistic expectation of  282

 
Dadgar, A.  340
Daffara, C.  364–65
damages (litigation)  175, 225–26, 230–31,

249–50, 480
DAO see Decentralized Autonomous Organization
DApps  473, 489
Darnell, B.  426n.64
Darwin, C.  305
data see open data
data centres

carbon-negative  294–97
database as a service (DBaaS)  358
database rights, hardware and  503
David, P.  228n.52, see Developer’s Certificate of

Origin

de Bruijn, H.  31n.156
De Jong, H.  305n.8
de minimis rule  92, 276, 277, 281
Debian Developers (DDs)  387
Debian Free Software Guidelines  521
Debian Project  206, 207, 387
Debian Project Leader (DPL)  387
debt

equity and  179
investments and  179
technical  397, 405–6
see also escrow

DEC  36, 37–38
decarbonisation  291–92, 294, 295
decentralisation  292, 473, 476, 531
Decentralized Autonomous Organization

(DAO)  475–76
deception  190–91, 190n.15
declaratory judgment actions  215, 241t
decodification  221
decompilation obligation  29
defamation  12–13
Defense Federal Acquisition Regulations

(DFARS)  462–63
Dell  234n.77
Delta  185
democracy  305–6, 526–27, 530–31n.75

e-democracy applications  323
open  512–13

democratisation of code  392–93
demographics
Department of Defense (DoD)  462
deployment  18–19, 31, 62, 223–24, 271, 351, 423
Deshpande, S.  361
design-a-rounds  32
design rights, hardware and  503
Determann, L.  23n.119
development see software development
development cycle  509
devolution of government  444–48, 452
DevOps  340–41, 409
Di Bono, C.  402
dictatorship see business models: benevolent

dictator (BD) model
differentiation see competition
Digital and Technology Playbook (2022)  457
Digital Rights Management (DRM)  5–6, 19,

98, 521
Dimdim  210–11n.86
diplomacy  54, 55
directorships  389
Directory of Open Access Journals

(DOAJ)  536
disclosure of vulnerabilities see cybersecurity

564  Index

discrimination  21n.116, 433, 448–49, 515, 516, 530
anti-discrimination provisions  47, 109,

242n.102, 303, 331, 347, 376, 427, 495
see also non-discrimination principle

disputes  29, 32, 55, 77, 78, 202
distribute, right to  128
Distributed Ledger Technology (DLT)  471–73
distribution  26–30

of software  7n.30, 14, 109, 230–31, 417
of source code  10

DLT see Distributed Ledger Technology (DLT)
Docker project  408
Dockerfiles  421–22
Document Namespace  148–49, 148f
documentation licences  525
donations  391, 392–93
dongles  5–6
dotcom revolution  379
Doughnut Economics  291–92
Dougiamas, M.  349–50
Dowden, O.  459
Drassinower, A.  9n.38
DRM see Digital Rights Management
Drupal  261, 339
due diligence  31, 171, 174, 175, 176–77, 181, 404
Dupont, R.  224n.40
Dusollier, S.  12n.58
Dutta, R.  362
DVDs (digital video discs)  27
dynamic link  81, 89, 90, 95, 154, 478
 
e-cash protocols  476
Eagles, I.  12n.61
ECJ see European Court of Justice
Eclipse Foundation  xvii, 93n.95, 95, 202n.51,

338, 350, 396f, 407
Eclipse Public License (EPL)  93, 95–96

EPLv1.0  95
EPLv2.0  95
‘modified works,’ definition of  95–96

economics
benevolent dictator (BD) model  54–55, 56,

63, 202, 386n.2
business benefits of Open Source  317–19
collaboration and communities  303–4, 309–12
competition and innovation  305–7
compliance costs  324–26
copyright and  301–3, 308–9
Creative Commons and  312
economic potential of Open Source  298–99
economic transformation of Open Source  299
engineering economic model of

governance  37–39
free software and  301–3

global upstream/downstream network  313–14
gross domestic product (GDP), Open Source

contributions to  301
hardware, of  508–11
joint stewardship  307–8
key effects of collaboration  324
law in relation  300
Open Source-related products and service  314–17
politics in relation  300
software as public good  299–301
software availability and  301
software freedom and  303–4
Total Cost of Ownership (TCO)  364–65, 406, 452
transaction costs  324–26
zero price  325
see also competition

Edge, J.  222n.36, 410n.11
education, open  536–38
Edwards, L.  513n.17
EEA see European Economic Area
Eghbal, N.  339, 342
eGovernment  437–38

pan-European services  532
Elastic  64, 183–84n.1, 318, 337, 338, 345–46,

355, 359–62, 426
Elasticsearch  359–62
Electronic Freedom Foundation (EFF)  245
Electronics  xvii, 141, 293, 525–26
Elekta  443–44
email distribution lists  59
emissions see sustainability
employee contributions  121–23
ENC Encryption Request Coordinator  278
enforcement

copyright enforcement in Germany  131–32,
134–39

copyright owners  132–34
copyright protection of software  128
criteria for enforceability  128
enforcing terms of contract  139–40
increase in enforcement activities  126–27
licence text, duty to provide  136–39
licences  128–29
Linux Kernel Enforcement Statement  139–40
new trends  139–40
OpenChain  140
processes of  129–31
reasons for  31
rights of  132–36
source code, duty to provide  136–39
trade marks  193–96, 203

engineering economic model  37–39
ENISA report  162
ENT see Espace Numérique de Travail

Index  565

entrepreneurship  297
environment see sustainability
EOSIO  486
EPL licence see Eclipse Public License (EPL)
‘’EPO see European Patent Office
equity, investments and  179
escrow  220, 496n.15
Espace Numérique de Travail (ENT)  446
Ethereum

client licence analysis  484–87
client licence history  481–84
CPP client  484
Go client  485
Hyperledger Besu Client (Besu Client)  485–86
parity client  484–85

Ethernet  492
ethics

ethical and pragmatic approaches to
governance, balance of  49–50

licences  44–45
Open Source Definition and ethical

licences  334
see also politics

EU see European Union
EUPL see European Public License
European Court of Justice (ECJ)  4, 76, 229, 433
European Economic Area (EEA)  26n.139
European Patent Office (EPO)  217, 219n.21
European Public License (EUPL)  501
European Union (EU)

Android predatory pricing case  372–74
copyright  16
(non-)copyrightability  75–79
distribution right  26–30
export controls  279–80
licences  129
Microsoft RAND case  374–77
open data  527–29
patents  223
Public Licence  14–15, 19–20
public procurement:

applicability  435–36
consolidation of rules  432
contract value threshold  432–35, 466
cross-border interest requirement  433–34,

438–39, 466
current state of  465–66, 467
design contests  434–35
Directives  432
effectively exclusive technical

specifications  441–44
‘equivalent’ products, specification of  450
Fabricom case  439–40
innovation partnerships  434–35

most economically advantageous tender  435
objectively justifiable reasons for selection

criteria  450–53, 467
Open Source, exclusion of  448–50
Open Source, specification of  444–48
policy setting for directives  435–36, 453–55
Regulations  432
selection criterion  434–35
Single Market and  432–33
specification, preparation issues as to  440
specified products  440
tenderer involvement in tender

preparation  439–40
Treaty competences  431
Treaty principles  431–33

exclusive rights  23, 26, 27, 32n.158, 72, 74,
80, 103, 183, 186n.6, 186n.7, 214, 216,
217n.11, 239

executable form  93–94, 199, 416n.27
exFAT patents  247, 248–49
export controls

China’s regime  280–81
conflict of laws  274
‘deemed export,’ definition of  275
entity-based restrictions  275
EU regime  279–80
Export Control Joint Unit (ECJU)  279
‘export,’ definition of  275, 279
Open Source and  273–74
other types of trade regulation  273
publicly available technology, exception

for  275–76
recommendations for Open Source

transactions  281
‘re-export,’ definition of  275
subject matter  274
UK regime  278–79
US case study  276–78

external deployment  423n.49
 
Fabricom  439
Facebook  40, 238n.94, 402–3
‘fair dealing’ and ‘fair use’  80–81
fair, reasonable, and non-discriminatory

licensing (FRAND)
Microsoft RAND case  374–77

Open Source policy and  20
patent pledges and  249

standardisation and  256–57, 258–62, 266–68,
270, 335, 363, 534–35

standards  20, 256–57, 258–62, 266–68, 270,
335, 363, 534–35

see also reasonable and non-discriminatory
licensing (RAND)

566  Index

fair use  8, 128
concept of  16–17, 206
fair dealing and  80–81, 92, 98–99
referential/nominative  205, 206
trademark  184
US copyright law  76–79

fast-moving consumer goods (FMCG)  293
Faust, Inc.  153–54
Fauxpen  332
FDL see Free Documentation Licence
fear, uncertainty, and doubt (FUD)  331, 332–33,

335, 362, 370
Federal Acquisition Regulations (FARS)  462–63
Federal Trade Commission (FTC)  378, 379, 383
Fedora Project  60, 207
fees  32, 46, 225, 245–46, 257, 268, 308–9, 324–

25, 406, 537
Feist, J.  261n.23
Fenwick, H.  13n.62
Fiduciary Licence Agreement (FLA)  120
field programmable gate arrays (FPGAs)  510–

11, 525–26
field of use  129, 514, 525
File Transfer Protocol (FTP)  199n.41, 277, 387
Fink, M.  392
Finney, G.
Finnish companies  379
fintech  xvii
Firefox see Mozilla Firefox
Firestar  231
firmware  1, 136–37, 138–39, 306, 350, 507, 509
fiscal sponsorship  391
fishing  297
FLA see Fiduciary Licence Agreement
Flexera  170–71
Flickr  524
FLOSS (Free Libre and Open Source)  357–58
Fluendo  232
FMCG see fast-moving consumer goods
Fontana, R.  114, 250, 255n.168, 410n.13,

423n.48
for-profit organisations  318
Foresman, C.  225n.42
fork  56

definition of  204, 311
Elasticsearch  183–84n.1, 355, 358–59, 361
Nextcloud  64n.26, 311, 338, 344
Open Search  361

forking
Bitcoin client licence analysis, and  479–81
blockchain and  475, 479–81
business models and  337–40
copyleft and  345–46
cost of  311

‘’Elasticsearch  183–84n.1, 355, 358–59, 361
examples of  311, 338
leadership  338
‘Lifting and Shifting’ code  338
monopolies and  373, 380–82
Nextcloud  64n.26, 311, 338, 344
Open Search  361
potential of  311
risk of  318
trade marks and  204–5

FORTRAN (formula translation)  71n.2, 72n.3
foundations

aggregating foundations  391
Apache Software Foundation  41, 48, 50–52,

85–86, 102, 118, 153, 206n.68, 388, 391,
515, 515n.19

benefits  390
charities  387–90
China  350
corporate alternatives to  391, 392–94
Eclipse Foundation  xvii, 93n.95, 95, 202n.51,

338, 350, 396f, 407
for-profit/non-profit interests division  392–94
Free Software Foundation  5n.19, 21, 42,

84n.53, 85–86, 89n.77, 96, 119, 129n.7,
158, 161, 209n.79, 215–16, 254n.165,
299–300, 303, 338, 372, 373, 412–13, 493,
496n.15, 515

Free Software Foundation Europe  xvii,
161, 254n.165, 338, 373

GNOME Foundation  203n.54, 232, 233–34,
251–52, 253n.160, 350–51, 388

governance and  386
KDE  309, 338
licensing and  392
Linux Foundation  xvii, 142–43, 145, 169, 247,

284, 296–97, 338, 350, 390, 398f, 402–3,
405–6, 407, 460, 486, 499

model of  350–51
Open Data Foundation  522
Open Knowledge Foundation  521–22, 528,

529, 530–31n.75
organisational diversity, need for  392–94
software maintenance  392
tax  388, 392–93
trade associations  390
Ubuntu  226–27, 304, 353
United States  350

Fox, T.  202n.51
FPGAs see field programmable gate arrays
France  11n.55, 104–6, 387, 445, 446, 461
FRAND see fair, reasonable, and non-

discriminatory licensing
fraud  173–74, 193

Index  567

Free Documentation Licence (FDL)  525, 536–37
free of charge  27, 144, 214, 239n.99, 260, 301,

367, 480
free software

economics of  301–3
‘free,’ meaning of  301
Free Software Definition (FSD)  45–46, 107

Free Software Definition (FSD)  45–46, 107
Free Software Foundation (FSF)  5n.19, 21, 42,

84n.53, 85–86, 89n.77, 96, 119, 129n.7,
158, 161, 209n.79, 215–16, 254n.165,
299–300, 303, 338, 372, 373, 412–13, 493,
496n.15, 515

Free Software Foundation Europe (FSFE)  xvii,
161, 254n.165, 338, 373

Free Software Guidelines  521
free software movement  2, 8, 45, 513
free speech  8–10, 42, 45, 231
FreeBSD  153, 499n.29
freedom

definition of  520–21
economics and software  303–4
to ‘use, study, modify, and share’  514

FreeIO  491–92
Freeman, A.  218n.16, 218n.19
freemium strategy  173n.6, 346, 356
free-riding behaviour  320
freeware  44–45
FSD see Free Software Definition
FSF see Free Software Foundation
FSFE see Free Software Foundation Europe (
‘functional dictation’

copyright exception  79
functionality of a program  4, 207, 229, 426–27,

444, 498, 520n.32
future developments  32–33, 57, 78
 
Gaia X Project  344, 454
Gamalielsson, J.  258, 259, 261, 316n.29, 517n.25,

518n.26
game cartridges  209
Gartner Group  406f
gateware  506n.41
G-Cloud procurement system  458
GCC Compiler  37n.2, 38
GDP see Gross Domestic Product
GDS see Government Digital Service
gender  59

equality  291–92, 297
genealogy, open  526
General Data Protection Regulation

(GDPR)  323–24
General Export Authorisation (GEA)  278, 279,

280

General Public Licence (GPL)
code base, opening of  181
code, duty to provide  136–39
‘complete corresponding’ code  136–37
cure cooperation commitment  139–40
download of code, offer of  138
information and knowledge  301–2
LGPL (Lesser General Public Licence)  91–92
‘Lifting and Shifting’ code  338
source code, opening of  181
v2  88–90
v3  90–91
written offer of code  137

general purpose machines  254–55
generic products, trade marks and  197
genericism  188, 190

abandonment and  196–97
trademark significance, loss of  197

genetic research  526
Germany

copyright enforcement  131–32, 134–36
‘get up,’ trade marks and  207
GHG (greenhouse gas) emissions see

sustainability
Giedrimaite, I.  224n.39
Ginsburg, J.  15, 28n.149
GitHub  7–8, 7n.30, 20, 41, 155, 156, 157, 160,

162–63, 167, 168–69, 173, 202, 316–17,
333–34, 343, 391, 459–60, 464, 478, 482,
487–88

Gitlab  7n.30, 41, 316–17, 338, 343, 508
glassware  190, 201n.47
Glennie, Lord  443, 451
Glidden, A.  471n.1
globalisation  271
Gluu  354n.52
Gneezy, U.  325n.42, 325n.44
GNOME Foundation  203n.54, 232, 233–34,

251–52, 253n.160, 350–51, 388
GNU AGPL (Affero General Public Licence)  93
GNU Free Documentation Licence  525
GNU GPL see General Public Licence
Go Client (Geth)  478, 484, 485, 487–89
gold standards  537
Goldman, D.  76n.28
Gomulkiewicz, R. W.  32n.159, 105n.141
Gonzalez, A. G.  28n.147
Gooding, S.  238n.94
goods, software as  192
Google  60–61, 65, 76–80, 128, 195–96, 208, 236,

247n.130, 248, 251n.146, 252–53, 354,
370, 372–74, 402, 524

Google, Android predatory pricing
case  372–74

568  Index

Google Groups  202n.51
“Google Problem”
GooglePlay  173n.6, 374
Kubernetes  304, 339
Map Reduce algorithm  40

governance
assignment  114, 116, 120–21
Biden Ordnance  162
CLA see contributor licence agreements
codes of conduct  58–60
contribution  39, 43, 55, 58
definition of  312
IP management, implications of  56–58
joint stewardship  307–8
key issues, summary of  67
licensing  56–58
meritocratic model  55–56
models  52–53
not-for-profit organisations  65–67
open governance  516, 538
open source, definition of  52
’software bill of materials (SBOM)  145–46,

147, 148, 161–63, 366
supply chain  2, 131, 141–44, 146, 154, 156–57,

159, 162, 225–26, 293–94, 295, 326, 343,
350, 366, 407

transparency  538
see also foundations

government see devolution of government;
politics

government administration see public sector
Government Digital Service (GDS)  456, 459
Gower, A.  351n.46
GPL see GNU GPL
Grafana Labs  362
Gramenopoulos, G.  251n.144
green jobs  292–93, 297
green standards  537
greenhouse gas (GHG) emissions see

sustainability
Griffith, R.  305n.10
Griffiths, J.  9n.39
Gross Domestic Product (GDP)  301, 304, 305,

323–24, 365
see also economics

Guibault, L.  3n.6, 15n.80
Guttman, A.  355
 
hacking  446
Hadfield, G.  228n.52
Hadoop  40, 250–51
Haff, G.  83n.52
Hahn, R. W.  20n.110

Hamano, J.  343
Hanon  219n.21
Hardin, G.  312n.23
hardware

‘available component,’ definition of  507
business models  508–11
CERN Licence  504, 505–7, 508
chip designs  506–7
competing copylefts problem  501
copyleft  496–98, 511
copyleft boundary problem  499–500
database rights  503
definition of  490–91
design rights  503
development cycle  509, 511
economics of  508–11
future of open source hardware  511
growth of open hardware  490, 511
hardware description language (HDL)  506
historical background of open

hardware  491–93
non-copyleft hardware licences  508
open hardware licences  503–8
openness and  525–26
Open Source Hardware Definition  491n.2, 493
patents  501–3
reciprocity and costs of reverse

engineering  498–99
Solderpad Hardware Licence  508
summary of key issues  511
TAPR Licence  504–5

Harrington, M.  214n.3, 236n.83, 258n.8
Harry Potter (trademark)  186
Haruvy, E.  325n.42, 325n.44
Hasbro, Inc.  184–85n.2
Hashicorp  337, 340
Hatcher, J.  522n.42
Heartbleed vulnerability  284–85
Heckmann, D.  446n.61
Heller, M. A.  314n.25
Hellström, P.  374n.20
Hemel, A.  326n.47, 410n.11, 422n.44
Henley, M.  104n.137
Hersey  72n.6
Herzberg, F.  325n.41
Hewlett-Packard (HP)  36, 234n.77, 392
Himanen, P.  13n.69
Hirschman, A. O.  310–11
HKL  441
hobbyists  165, 385
Holochain project  424–25
Hong Kong  431n.4
Horowitz, E.  111n.166
HortonWorks  344, 356

Google (cont.)

Index  569

Hoskinson, C.  482
Huawei  437
Hudson  64n.26, 204–5
Hudson, E.  17n.99
Hugenholtz, B.  3n.6, 15n.80
Husovec, M.  261n.25, 262n.27, 263n.30, 268n.39
Hylton, K. N.  9n.37
Hyperledger  338

Besu  474–75, 478, 484, 485–86, 487–89
Fabric  160
Tech Steering Committee  483

hypervisor technology  408
 
IBM  xviii, 35, 36, 233, 244, 247, 247n.129,

248–49, 252–53
Red Hat merger  173, 349, 379, 381n.33,

382–84
Icebreaker One  296–97
Iceland  431n.4
ICT see Information and Communications

Technology
IDABC see Interoperable Delivery of European

eGovernment Services to Public
Administrations, Businesses and Citizens

IEA see International Energy Agency
IEC see International Electrotechnical

Commission
IETF see International Engineering Task Force
improvements  38, 222, 313, 314–15, 340,

422–23, 518
IMS Health  374
in vitro implementation  376–77, 381n.34
income (generating of)

business models applicable to Open
Source  342–43

certification, trademark-based  349–50
collaboration and communities  337–40
commercial Open Source software (COSS)

model  346
copyleft business model  345–46
data-based business models  343–44
embedded software embedded in devices  350
enterprise Open Source software model  349
financial fiduciary model  350–51
forking and  337–40
foundation model  350–51
generation models, informed choice

of  329–30
hardware business models  508–11
loose Open Core model  348–49
Open Core model  63, 173, 179–80, 275, 343,

346–49
Open Source not a business model  336–37,

342

pureplay business models  344–51
Software as a Service (SaaS) model  351
successful models, measurement of  364–65
tight Open Core model  346–47
total cost of ownership (TCO)

measure  364–65
indemnity  167, 175, 368
individualism  117
industrial property see intellectual property
Information and Communications Technology

(ICT)  1, 234, 257, 299, 300
Information Technology (IT)  xvii, 36, 141, 168–69,

171, 181, 283, 284, 288, 364–65, 378–79, 396f,
401f, 424, 430, 442, 451–52, 458, 459, 461

infringement  128–29
initial developers  238
Initial Coin Offerings (ICOs)  486
Initial Public Offerings (IPOs)

choice of stock exchange  182
Open Source issues  181
valuation  182

injunctions  224n.40, 225
injury claims  212n.90
Inklaar, R.  305n.8
inner source  335–36
innovation

competition and  305–7
definition  305
open innovation  535–36
platforms  351–52

insolvency
opening of code base  181
Open Source assets and  180

insurance  167, 185, 230–31, 367–68
integrity

of author’s source code  14, 47, 109
of works  8, 12–13

Intel  37–38, 62, 402, 442, 450
intellectual property (IP)

governance  56–58
industrial scale and  34
intellectual assets as  34
rights  15–16, 18, 32, 51, 71–72, 103, 120, 121,

225, 227–28, 257, 259–60, 262–63, 267,
270, 303, 323, 324–25, 381n.33, 504–5,
513, 535–36

see also copyright
Intellectual Ventures  233–34
Inter Partes Review (IPR)  245–46, 250–51
interaction between licences see compatibility of

licences
Internal Revenue Service (IRS)  388, 392–94
International Electrotechnical Commission

(IEC)  156, 161–62, 262, 518

570  Index

International Energy Agency (IEA)  294
International Engineering Task Force

(IETF)  261
International Organization for Standardization

(ISO)  262, 366, 517n.25
International Telecommunication Union (ITU)  262
international trade see export controls
International Trade Commission (ITC)  252
International Traffic in Arms Regulations

(ITAR)  276
Internet of Things (IoT)  xvii, 162, 294, 350, 454
internships  385–86n.1
interoperability  6, 16, 20, 21, 76n.25, 79n.39,

218n.15, 222, 227, 228, 229, 254–55, 264–
66, 265f, 271, 304, 311, 317, 375, 429, 443,
448n.77, 451–52, 453, 456, 467, 516–17,
517n.25, 528, 532

Interoperable Delivery of European
eGovernment Services to Public
Administrations, Businesses and Citizens
(IDABC)  437–38, 445

Interstis Partenaires  444
Interwork Alliance  472
inventiveness  232–33, 234, 255, 502
investments

debt and equity  179
initial public offerings (IPOs)  181–82
investment lifecycle  179
M&As compared  178–79
risks  179–80

IP see intellectual propertyIPOs see initial public
offerings (IPOs)

IPR see intellectual property (IP): rights; Inter
Partes Review

Ireland  460
IRS see Internal Revenue Service
ISO see International Organization for

Standardization
ISO 5230 see OpenChain ISO 5230
Israel  431n.4
IT see Information Technology
Italy  445, 447, 448, 450
ITAR see International Traffic in Arms

Regulations
ITC see International Trade Commission
Ittycheria, D.  356
ITU see International Telecommunication Union
Iversen, E.  260n.19
 
Jacks, J.  346
Jacob, A.  346–49, 357n.59
Jaeger, T.  83n.50, 127n.4, 134n.19
Jakob, S.  251n.145
Jakobs, K.  257n.5

Jandoli, V.  251n.144
Japan  162–63, 221, 279, 431n.4

Japanese companies  xvii
Java  76, 77, 128, 161, 167n.1, 263–64, 378–79,

411, 478, 482, 485
JavaScript  213, 250–51
JBoss  250
Jenkins (company)  64n.26, 204
JetStack  333
Jitterbit  210–11n.86
Johnny, O.  83n.51
Johnson, B.  437n.35
Johnson, P.  17n.98, 18n.101
Joint Electron Device Engineering Council

Standards Development Organisation
(JEDEC)  533n.78

Jones, P.  105n.142
journalism, non-profit  393–94
JQuery  250–51
JSON  146–47, 157, 515n.20
jurisdiction  133–34, 221, 224–25, 274–75, 502,

526
 
K Desktop Environment (KDE)  309, 338
Kappos, D.  214n.3, 236n.83, 258n.8
Karlitsheck, F.  338, 345–46, 348
Katz, A.  316n.29, 367, 492n.10, 497n.21,

517n.25, 518n.26, 535n.83
Kaufman, J. R.  416n.29, 424n.54
Kerberos  36
Kercsmar, G. S.  74n.16
Kerrisk, M.  211n.89
Kesan, J.  232n.71
Khan, F.  485, 488–89
Khong, D.  17n.96
Kibana  117–18, 360, 426
Kimball, S.  426n.64
Koenig, J.  342
Kolassa, C.  309n.17
Korea  431n.4

Korean companies  xvii
Kravets, D.  224n.39
Kroah-Hartman, G.  420n.37
Kubernetes  20, 60–61, 168, 304, 322–23, 327,

338, 339, 409
Kücking, M.  224n.41
Kwan, C.  252n.154
 
LAMP (Linux, Apache, MySQL, PHP) Stack  379
Leenars, M.  xliii–xliv
legal notices, trade marks distinguished  210
legal treatment of software  2–6, 32–33
Lehmann, M.  74n.16, 75n.18
Lemley, M.  218n.16, 254

Index  571

Lemmer-Webber, C.  425n.55
Lendecke, V.  375n.22
Lerner, J.  21n.114, 254n.162, 260n.18, 310n.19
Lesser General Public Licence (LGPL) see GNU

LGPL
Lessig, L.  10n.47, 20n.110, 299n.1, 519, 523
Levine, D. K.  9n.37, 15–16, 228n.52, 254n.165,
Levine, J. R.  411n.17
Levitt, T.  62
Lewis, P.  220n.30
Li, J.  259–60
‘liberty or death’ clause  215–16, 236, 237n.90,

239, 241t, 249, 250, 251–52, 534–35
LibreOffice  64n.26, 200n.46, 204, 228, 311, 323, 380
licence compatibility  43

Apache 2.0  102
BSD Licence  101
factors  98–99
linking  97–98
MIT Licence  101
‘one way’ compatibility  99–100
software interaction and  97–102
strong copyleft licences  100
technical impediments  98
‘two way’ compatibility  99–100
weak copyleft licences  100–1

licences
Academic Free Licence  86–87
Apache 2.0  85–86
Artistic Licence  86–87
bare licences see bare licences
best practice for choice of licence  123–25
BSD Licence  84–85
CLAs see contributor licence agreements
compatibility see compatibility of licences
compliance see compliance; OpenChain ISO

5230; Software Package Data Exchange
(SPDX),

compliance costs  324–26
compliance in ‘decentralised’

platforms  488–89
copyleft  87–97
Creative Commons see Creative Commons
derivative permissive licensing  86–87
derivative works  82–83
Developer’s Certificate of Origin

(DCO)  116–17
distinction between free licences and open

source licences  107–11
dynamic linking  89, 90, 95, 478
enforcement  128–29
ethical licensing  334
ethics of  44–45
forms of  83–97

foundations and  392
free software licences  107–8
governance  56–58
hardware see hardware
‘inbound’ licences or agreements  113–14, 124
‘inbound=outbound’  114–16
interaction see compatibility of licences
licence text, duty to provide  136–39
licensed redistribution  198–99
linking of see compatibility of licences
MIT Licences  84–85
naked licensing  196–97
openness and  518–20
open source licences, adoption of  67
open source licences, features of  67
open source program offices (OSPO)  400–1
‘outbound’ licences or agreements  113, 124
permissive licensing  84–87
politics of  44–45
project licence agreements  113–14
service contracts distinguished  365–66
source-available licences  424–28
static linking  81
stewards see steward
summary of key issues  111–12
trade marks  192–93
see also bare licences; compatibility of licences;

copyleft; copyright
Liechtenstein  279, 431n.4
lines of code (LoC)  2, 38n.3, 365
LinkedIn  40
linkers  510n.46
linter tools  161
Linux

containers see container images; containers
Kernel Enforcement Statement  139–40
Linux Foundation  xvii, 142–43, 145, 169, 247,

284, 296–97, 338, 350, 390, 398f, 402–3,
405–6, 407, 460, 486, 499

Linux Foundation Climate Finance
Foundation (LFCF)  296–97

Linux Kernel Mailing List (LKML)  98n.112,
100n.115

Linux Kernel Newbies  202n.52
operating system  85–86, 96, 102, 202n.52,

215–16, 230, 244, 395, 408
listing see initial public offerings
literary works  3–4, 10, 16, 128, 496, 519–13nn.27–

8, 523
LLVM project  115–16
loadable kernel modules (LKMs)  82, 82f, 98
lock-in  30, 47–48, 320, 345, 373, 443, 451–52,

467, 517–18, 521, 529–30, 537–38
anti-  513–14, 516–22, 528, 531, 532–33, 535, 538

572  Index

logos  193, 207, 211
Longdin, L.  12n.61, 14n.72
loopholes  93, 422–23, 424–25
Lorenz, M.  372n.4
Lulu.com  536
lumber  194–95
Lundell, B.  258, 259, 261, 305n.10, 316n.29,

517n.25, 518n.26
LYFT  188
Lyons, D.  230n.60
 
M&As see mergers and acquisitions
machine translation  72–73
machine-readable standards  1, 123, 128n.5, 417
MacMillan, C.  103n.131
macro-economic perspective  301, 327
Maddison project database  305
Madrid system  191
maintenance (of software)

ASF  52
bugs  283–84, 325, 502, 516
business models and  339–40
collaboration and communities  40, 336,

339–40
costs  50, 60, 67, 168–69
debt, technical  405–6
embedded software embedded in devices  350
foundation model  392
freeware  44–45
improvements in  169
lack of  168
Open Source audits and  170
positive differentiation by provision of  320
proactive  260–61
public sector  444
reactive  235
security  282, 283, 284, 288
Software as a Service (SaaS) model  351
support  438

malicious software  183
malware  283
Manenti, F.  19n.107, 19n.108, 257
manufacturing  186, 193, 199, 208, 232, 305, 396f, 500
Maracke, C.  257n.4, 266
Marchant, J.  71n.1
MariaDB  204, 358, 380
Marinescu, F.  234n.78
mashups  523
Masiyakurima, P.  8n.35
Mason, S.  231n.67, 535n.83
mathematical computing  71n.2, 219–20
Mattis, P.  358, 426n.64
Mausner, B.  325n.41
Maven Central  410

Mayo framework  220
McCarthy, T.  201n.48
McCoy Smith, P.  92n.89
McDermott, E.  220–21n.31
McDonald’s, Inc.  519n.27
McGovern, N.  251–52
McHardy, P.  224n.39, 420n.37
Mead, M.  xliii
Meeker, H.  126n.1, 236n.83, 331–32, 416n.29
mergers and acquisitions (M&As)

audit warranties  177
disclaimer of warranties  177–78
disclosure of warranty breaches  178
due diligence  176–77
Heads of Terms  176
IBM/Red Hat case  382–84
importance of Open Source  175–78
investments compared  178–79
merger control, concept of  369–70, 378
Oracle/Sun Microsystems case  378–82
Open Source situations  174
process  174–75

meritocracy  55–56, 202, 516
metadata  146, 148, 159–60, 522, 529–30, 531
Metcalfe’s law  501
Metro-Goldwyn-Mayer Lion Corp.  184–85n.2
Metzger, A.  134n.19
Meurer, M.  223n.38, 254n.162, 254n.165
Mickos, M.  61, 63
microcontrollers  492
microprocessors  442, 492–93, 499, 510–11
microservices  409, 415
Microsoft  xviii, 7n.26, 20, 37–38, 40, 61–62, 65,

246–47, 248–49, 450
Github acquisition  173
Microsoft RAND case  370, 371, 374–77
Novell transaction  239–40
Office  378–80, 429–30, 440

middleware  382, 383
military  10, 276, 278–79, 281, 282–83
Millard, C.  5nn.17–18
Miller, M.  83n.51
Millien, R.  229–30n.59
milling machines  498, 510
MIPS  37–38
MIT Licence  84–85, 101
Mitchell, I. G.  231n.67, 535n.83
Mitchell, L.  362
MNOs see Mobile Network Operators
Mobile Network Operators (MNOs)  335, 363
modifications  95

definition  93–94
‘modified version’, definition  411n.18
‘modified works’, definition  96

Index  573

Moen, R.  210–11n.86
Mogee, M.  228n.52
Moglen, E.  2n.2, 105n.140, 105n.142, 215n.8,

222n.36, 231n.66, 381n.33, 418n.34
Moldova  431n.4
monetary damages  225, 230–31
monetisation  165, 342, 351–52
Mongo DB  339, 345–46, 353–54, 355–56, 362,

426, 427
monopolies see abuse of dominant position
Montague, J.  3n.5
Montenegro  431n.4
Monti, M.  374
Moodle  349–50
Moody, G.  242n.104
Moore, G.  63
moral rights  11–15, 17–18, 120
Morgan, J.  230
Mossack Fonseca  169n.3
motherboards  505–6
Motorola  233n.74
Mozilla Firefox  200n.45, 211–12
Mozilla Foundation  93–94, 95, 200n.45,

238n.93, 239n.96
Mozilla Public Licence (MPL)  93–95

MPL v1.1  93–94
MPL v2.0  93–94
weak copyleft effect  93

MPL see Mozilla Public Licence
Mueller, F.  248n.132, 248n.134, 249n.137
multi-licensing approach  317–18
multinationals  143, 357
multi-party systems  471
MuPDF  126n.1
Murthy, A.  358
music  23, 23n.121, 72–73, 302, 346
mutilation of works  11
MXM Public license  242n.104
MySQL  61, 194, 204, 314–15, 370, 379–82
 
Nagle, F.  324n.40
Nakamoto, S.  476, 479
naked licensing  184, 196–97, 198, 199, 208, 211
naming rights  186
NASA (National Aeronautics and Space

Administration)  463–64
National Cyber Security Alliance (NCSA)  50–51
National Institute of Standard and Technology

(NIST)  474, 475
nationalism, economic  273
nationality  434
NCSA see National Cyber Security Alliance
NDAs see non-disclosure agreements
NEC (company)  247n.129, 252–53

Netanel, N. W.  2n.2, 9nn.39–40
Netfilter project  129–30, 132, 420n.37
Netflix  61
Netherlands  187, 224n.40, 431n.4, 440

Netherlands, Amsterdam sustainability case
study  292–93

Netscape Public Licence  237–38
Nextcloud  64n.26, 311, 338, 344
NGOs see non-governmental organisations
NHS (National Health Service)  442–43,

451–52
NHSX COVID-19 app  459–60

Nimmer, D.  23n.124
Nimmer, M.  23n.124, 72n.6
Nissan  247n.130
NLNet  xliii–xliv
no derivatives (ND)  524–25, 536–37
NOASSERTION  149–50, 152
Nokia  248–49
non-commercial purposes (NC)  331, 524
non-compliance  31, 139, 245–46, 375n.23, 377,

420n.37
non-copyleft  93, 392, 409, 424–25, 508
non-disclosure agreements (NDAs)  29, 502,

503, 535–36
non-discrimination principle  242n.102, 433,

434, 441
non-free software  7n.27, 45, 46, 49, 496n.15
non-governmental organisations

(NGOs)  296–97
Non-Practising Entities (NPEs)  221, 223–24,

244, 246–47
non-software  220, 530
non-transferable licences  27n.145
Nortel  335
Norway  279, 431n.4
not-for-profit organisations  65–67

charities  48–49, 121
entities  118, 120
journalism  393–94
members  66–67

Novell  239, 247n.129, 374–75
nuclear power  276
Nurton, J.  224n.41
 
O’Brien, K.  225n.42
O’Gara, M.  238n.92
O’Grady, S.  425n.58, 425n.61, 428n.72
OAI see OpenAirInterface
OASIS see Organization for the Advancement of

Structured Information Standards
OCI see Open Container Initiative
Ockman, S.  227n.49
ODH see openly designed hardware

574  Index

OECD see Organisation for Economic
Co-operation and Development

OEM see original equipment manufacturer
OFAC see Office of Foreign Assets Control
Office of Foreign Assets Control (OFAC)  276
Ogden, C.  219n.25
OGELs see open general export licences
OGGCamp  491–92
OHANDA  520
OIN see Open Invention Network
OKF see Open Knowledge Foundation
Oksanen, V.  20n.111
online shopping  221
open access  xliii–xliv, 227, 283, 284, 285, 300,

360, 512–13, 536–38
Open BSV Licence  480, 481
Open Container Initiative (OCI)  408, 420, 421–22
open content  523
Open Core  354–63

business model see income (generating of)
open data

legal and licensing context  527–29
Open Data Commons  522
Open Data Foundation  522
Open Data Institute (ODI)  529
Open Knowledge Foundation  521–22, 528,

529, 530–31n.75
openness and  526–29

open education  536–38
institutions  537–38

open general export licences (OGELs)  278
open governance  516, 538
open government  531
open innovation  535–36
Open Innovation Community  513n.13
Open Invention Network (OIN)  xvii, 215–16,

246–48, 252, 269, 335
Open JS Foundation  398f
open knowledge  512–13, 521–22

open content and  523
definition  521–22

Open Knowledge Foundation (OKF)  521–22,
528, 529, 530–31n.75

open politics  512–13, 516, 521, 531
Open Software License (OSL)  107n.151, 501
open software service

definition  517, 529, 530, 531
Open Source

anti-closure as goal of  514–15
anti-lock-in  516–22
business models and see income
communities see collaboration; community
community-provisioned public good  326–28
connotations of openness  538

culture of collaboration and
community  40–42

definition of openness  520–21
definition of Open Source  330–31
FRAND, see fair, reasonable, and non-

discriminatory licensing
freedom to use, study, modify, and share  514
future developments  32–33
interrelationship between ‘opens’  516–22
not a business model  336–37, 342
openness and intellectual property

rights  518–20
openness, ubiquity of  512–13, 538
open politics  531
open publishing  536–38
‘opens,’ common characteristics of  512–14
Open Source as community-provisioned

public goods  326–28
Open Source as Prior Art (OSAPA)  243
open specifications  532–35
open standards  532–35
philosophy and politics  7–21
services, provision of see services
use maximisation as goal of  514–15
see also collaboration and communities;

contributions; governance; Open Source
Initiative; services; volunteers

‘Open Source community’ definition of  311
Open Source culture  40–42
Open Source Definition (OSD)  64, 366

commercial contracts  366
commercial Open Source software

(COSS)  346
Creative Commons  331–32
ethical licensing  334
FRAND  335
free software  303
Free Software Definition (FSD) compared  47
GNU GPL  412n.22
licence conformity with  111, 129, 240n.101,

331, 366, 412n.22, 425
maintenance of  48
‘open,’ meaning of  21
Open Source governance and  52
revision of  64, 334
Server Side Public Licence (SSPL)  331–32,

355, 426
source code integrity  14
ten points  46–47, 108–9
tight Open Core  347

Open Source Hardware (OSHW)
Association  191–92
definition  491–92, 491n.2, 493–501, 530
development models  508–11

Index  575

Open Hardware and  525–26
Statement of Principles  493
see also hardware
Open Source Initiative (OSI)  14, 46, 86–87, 115,

158, 206, 214, 281, 303, 331, 388n.4, 407,
424–25, 480, 491, 515

Elasticsearch  183–84n.1, 355, 358–59, 361
pragmatic approach to governance  47–49
pragmatic and ethical approaches, balance

of  49–50
Open Source Program Offices (OSPO)

beginnings of  402–3
benefits of  407
cataloguing of Open Source usage  404
collaboration role  400, 404–5
communication role  400
company culture role  400
compliance role  400–1
components of  400–2
contribution of  400
creation of  406–7
historical rise of Open Source  395–96
innovation role of  405
location within organisation  398–402
model options for  398–402
organisational impacts of  403–6
reasons for starting  396–98
role of  398–402
software usage policies and practices

development role  400
TODO Group  402–3
total cost of ownership (TCO) measurement

role  406
value measurement role of  405–6

‘’‘’Open Source software see software
Open Source Technology Center (OTC)  402
Open Source Underdogs podcast  330, 354n.52,

358
Open Sourceology  170–71
Open Technology model  292–93, 294, 295
Open University (OU)  537
open when ready (OWR)  516n.23
OpenAirInterface (OAI)  267–68, 269f
Openbravo  210–11n.86
OpenChain  xvii, 139, 140, 161–63, 421, 518
OpenChain ISO 5230

benefits of  143
community  144
compliance challenge for individual

companies  142
compliance challenge for supply chains  142
compliance check  143
components of  143
ease of entry  142–43

overview  141–42
reference material  144
simplicity  142–43
specification  143
summary of key issues  144
support  144

OpenChain Japan  162–63
OpenCola  497, 519n.28
OpenCollective  391
OpenCountry  210–11n.86
openDemocracy  513n.9
OpenGraphics project  491–92
OpenJDK  206n.63, 486
openly designed hardware (ODH)  516n.23
OpenOffice  52, 64n.26, 204, 228, 311, 378–80
OpenSearch see Amazon: Opensearch service
OpenShift  61–62
OpenSPARC  492–93, 506
OpenSSL  284
OpenStack Foundation  41, 322–23, 390, 391,

393–94
OpenStreetMap  526, 527
OpenSuSE  225n.44
OpenUK  294–97, 333, 460–40
OSHW (Open Source Hardware) see hardware
OSI see Open Source Initiative
OSL see Open Software License
OSPO see Open Source Program Offices
Organisation for Economic Co-operation and

Development (OECD)  430
Organization for the Advancement of Structured

Information Standards (OASIS)  258,
260–61, 262, 267, 350

original equipment manufacturer (OEM)  373
orphan works  17
Osborne, K.  95n.105
OTTs (over the tops)  335, 363
Outreachy  385–86n.1
outsourcing  193, 198
OwnCloud  311, 338
OWR see open when ready
 
‘package’, definition  145–46
packaging software  169, 184–85, 295, 408, 505
paintings  302
Panama Papers  169n.3
pandemic see COVID-19 pandemic
Pantheon project  485–86, 487–88
Pantone Matching System  184–85n.2
Pareto Principle of Software  306
Parity Client  478, 484–85, 487–89
parity of arms  369
parsing guidance  149, 150, 152, 153
patent ambush  533n.78

576  Index

‘Patent Busters’ project  245
patent busting  245–49
patent peace  232, 240–42, 241t
patent trolls  223–24, 253n.158
patents

assertion entities (Fair Trolls)  248–49
avoidance of ‘bad patents’  243–44
conceptual differences with Open

Source  227–29
conceptual difficulties with Open

Source  229–35
copyright distinguished  222–24
defensive publication, and  244
European regulation of  217–19

fair, reasonable, and non-discriminatory
licensing (FRAND)

Microsoft RAND case  374–77
Open Source policy and  20
patent pledges and  249
first-generation Open Source licences,

and  235–37
hardware  501–3
infringement litigations  249–52
Open Invention Network (OIN), and  246–48
openness and  518–20
Open Source as Prior Art project, and  243
Open Source development and innovation,

and  226–27
Open Source interactions  226–35
Open Source responses to difficulties  235–44
‘Patent Busters’ project  245
patent clauses in Open Source licences  235
‘patent defensive suspension’ clauses  240–42
patent pledges  248–49
patent pooling  246–49
Peer to Patent project, and  243–44
post-grant patent review  245–49
‘Post-Issue Peer to Patent’ project  245
reasons for using  252–53
reform of  253–55
relevance for Open Source  217–26
remedies  224–26
second-generation Open Source licences,

and  237–40
software and  213–16
summary of key issues  252–55
Technical Disclosure Commons site, and  244
US regulation of  219–21

paternity right  8, 11, 12–13, 14, 23–24
patronage  342
paywalls  344
PDF  263–64
pecuniary interest  437n.36
pedigree  162–63

Peer to Patent project  243–44
peer review  12–13, 21, 30, 47–48, 52, 243, 536,

537
Pegasys  478, 485–86, 487–89
penalties  127n.4, 281
Pentheroudakis, C.  257
Percona, LLC  344
Perens, B.  355, 491
Perl  37, 269f
permissive licences  43, 50–51, 57, 60, 74, 83–84,

85–88, 101, 102, 103–4, 165, 235–36, 345,
361, 392, 478, 479, 481, 483, 484, 486,
487–89, 515n.19

‘personal data’, definition  528
Peterson, S.  214n.5, 236n.82, 419n.35, 420,

421n.38, 422n.46
pharmaceuticals  510
philanthropy  7
Philipp, A.  226n.47
Philips (company)  247n.129, 252–53, 533
Phillipson, G.  13n.62
philosophy of open source software

movement  7–21
Phipps, S.  7n.31, 255n.167, 258, 259, 266,

517n.24, 534n.79
photocopying  197
photography  523
PHP see LAMP
PhPLists  344
physics  526
Piana, C.  367, 447n.67, 448
piano rolls  72–73
Pirate Party  5n.19, 496n.15
platform companies

cloud computing  351–54
innovation platforms  351–52
Open Source and  352–54
success factors  351
transaction platforms  351–52

Play-Doh  184–85n.2
podcasts  330, 339, 340–41, 358, 400
Podman  408n.2
Poland  448–49
Pollock, R.  530–31n.75
politics

economics in relation  300
licences  44–45
open government  531
open see open politics
open source software movement  7–21
see also ethics

pollution  291–93, 295, 297
Popper, K. R.  328n.50
post-grant review  244, 245–46

Index  577

‘Post-Issue Peer to Patent’ project  245
post Open Source software (POSS)  7–8
Poynder, R.  522n.42
prejudice  12–13, 22, 23n.121, 251n.145,

370–71n.2
printing  374

3D  498
privacy rights  9, 12–13, 344
privity of contract  103, 242
productization  509
profitability  164, 172, 173
Proof of Stake  494
‘propagation’, definition  87n.67, 90n.83
proportionality  433, 434
proprietary software  1, 7, 20, 49–50, 57, 64, 65,

67, 145, 167, 173n.6, 208, 228, 233–34,
245, 283, 284, 285, 315–16, 318, 319, 320,
330, 331, 332–33, 343, 348–49, 350, 360,
364–65, 367, 405–6, 414–15, 430, 444–45,
447, 448, 449–50, 451, 457, 458, 462, 463,
466, 496n.15, 520

pseudocodes  254
public contracts  433, 436–37, 446, 448, 452, 455

definition  437n.36
public domain  334–35

Public Domain Dedication  17, 524–25
public good  298, 302–3, 307, 316, 323, 324, 340,

387, 389, 392–93
community provisions  326–28
software as  299–301

Public Patent Foundation (PUBPAT)
public procurement

EU law see European Union (EU)
UK law see United Kingdom (UK)
US law see United States (US)
‘’’public sector
EU procurement law see European Union

(EU): public procurement
interoperability requirement  467
level playing field for Open Source, role in

creation of  429–30, 467
public procurement and Open Source in

relation  465–67
World Trade Organization and  430–31, 466

Public Source  45, 64, 332
publishing, open  512–13, 536–38
purely Open Source business model  344–51
PURL  156
PyPI  410n.14
Python  1n.1, 4, 161, 410n.14, 411, 482
 
Qlusters  210–11n.86
Qt  314–15, 479
Quality Assurance Agency (QAA)  537–38

Quinn, G.  221n.33
Quorum  474–75
 
Radcliffe, M.  411n.17
radio  509, 510n.46
Rajan, S.  11n.50
RAM standards  533n.78
Rambus  533n.78
Rancher  344, 345
RAND (reasonable and non-discriminatory

conditions) see reasonable and non-
discriminatory conditions

Rauchs, M.  471n.1
Raustiala, K.  73n.13
Ravicher, D.  413n.23
Raworth, K.  291–92
Raymond, E.  226–27, 283, 343, 516
RCP see Rich Client Platform
RCUK Guidance  536–37
RDF

NT  157
turtle  157

RDFa see Resource Description Framework in
Attributes

re-distribution see distribution
reasonable and non-discriminatory conditions

(RAND)  231, 374–77, 534
see also fair, reasonable, and non-

discriminatory licensing (FRAND)
reasonableness  442
reciprocity

hardware and  496–98, 504n.37
principle of  298–99, 325, 520
reverse engineering, costs of  498–99

recycling  295
Red Hat  60, 61–62, 65, 114, 165, 167, 202n.51,

231–32, 233–34, 237, 239, 247n.129,
248–50, 251–53, 253n.160, 316–17, 327,
339–40, 349, 357, 359, 367–68, 420

IBM merger  382–84
Red Hat Enterprise Linux (RHEL)  60, 62, 349

Redis Labs  337, 425–26
Commons Clause and  356
Source Available Licence  356, 425–26

Reed, C.  5n.17, 31n.157
remote procedure call (RPC)  24–25
renewable energy  294, 295
research and development (R&D)  39, 272, 306,

339
Resource Description Framework in Attributes

(RDFa)  146–47, 157, 261
return on investment (ROI)  345–46, 398, 398f
revenue see income
reverse-engineering technique  498–99

578  Index

Rich Client Platform (RCP)
definition  167n.1

Ricketson, S.  28n.149
Riehle, D.  43n.8, 309n.17, 314n.27, 410n.13
Riemer, P.  309n.17
RISC-V  492–93
risk

investment  179–80
Open Source usage  166–69

RMS system  443
see also Stallman, R. S.

roaming charges  335
Rochester Institute of Technology (RIT)  403
Rock Star Consortium  335
Rooney, P.  248n.131, 251n.148
Rosen, L.  87n.63, 105n.141, 107n.151, 242n.103
Rossi, A.  19n.107, 19n.108
Rothschild Patent Imaging (RPI)  233–34,

251–52
Round Robin Consensus  474
royalties  46, 231, 232, 233–34, 240–42, 245, 260,

335, 341, 363, 376, 377, 518, 533n.78, 534
royalty free (RF)  20, 129, 179–80, 214–15, 226,

232, 237, 239, 246–47, 258, 264, 336, 532,
533, 534

RPC see remote procedure call
RPI see Rothschild Patent Imaging
RPM Package Manager (RPM)  420
RPX Corporation  250n.143
Rubini, L.  374n.20
Russia  334
Russo, C.  476n.12
Rutter, D.  486–87
 
sailboarding  39
Samba  228, 370, 374–77
Samsung  233n.74

Galaxy  224–25
Samuelson, P.  79n.41
Sanchez-Graells, A.  431n.6
sanctions  9, 273, 274, 275, 276, 279
Santa Clara Law School  254
Satoshi’s Vision (SV)  478, 479, 480–81, 488–89
SBOM (software bill of materials)  145–46, 147,

148, 161–63, 366
see also Software Package Data Exchange

(SPDX)
Scalix  210–11n.86
ScanCode  422
Schankerman, M.  21n.114
Schellekens, M.  3n.6, 15–16
Schmidt, M.  309n.17
Schoen, R.  228n.52
Schulman, E.  249n.138

Schultz, J.  227n.51, 234n.79, 253n.159
Schumpeter, J. A.  305
Schwarz, M.  354n.52
SCO Group  116
Scotland  442, 451–52, 455, 460, 525
SDGs see Sustainable Development Goals
Second Life  530–31n.75
secrecy  18, 372n.6, 376, 503
Securities and Exchange Commission (SEC)  486
security see Biden Ordnance; cybersecurity;

Software Package Data Exchange (SPDX)
Sega  209
self-identification  148–49, 328
self-interest  299, 328, 430
self-perpetuating boards  388, 389
Semantic Web Project  528
semantics of communication  413
semiconductor masks  511n.48
Serrano, J.  492
Server-Side Public Licence (SSPL)  64, 118,

318, 331–32, 345, 355–56, 360–61, 362,
426–27

service contracts see commercial contracts
services

ancillary  201
audit  169–72
cloud providers  424–28
copyleft and  422–24
Creative Commons and  529–31
economics and  314–17
goods/services distinction applied to OS

products  314–17
Open Software Services, definition of  529–31
pure support business model  344–45
service contracts and licences

distinguished  365–66
see also technical support

SFC see Software Freedom Conservancy
SFLC see Software Freedom Law Center
Shadbolt, N.  529
Shapiro, C.  18–19, 302n.2, 323n.34
share-alike, concept of  521
share listings see initial public offerings
shareholders  181, 387
Shareware  45
Shemtov, N.  104–72nn.137–7
Shentov, N.  xliii
Shotwell  251–52
Shuttleworth, M.  330, 336, 341, 353, 364
Siewicz, K.  449–50, 451
SiFive  492–93
Sijbrandij, S.  338
Silicon Valley  292, 379
Silicon Valley (TV show)  393n.10

Index  579

silos, corporate  xvii, 295, 404–5
Sinclair, A.  74n.17, 84n.54
Singapore  431n.4
Skopeo projects  408n.2
Skype  138
Slack  345
Slackware  199n.41
small and medium-size enterprises (SMEs)  40,

324–25
smart contracts  276, 475–76
smartphones  77n.32
SMEs see small and medium-size enterprises
Smith, B.  103n.129
Snippet Byte Range  152, 152f
snippet information  147f, 148, 152–53, 152f
Snyderman, B. B.  325n.41
social consequences see public good
Socialtext  210–11n.86
software  511

audits see audits
bill of materials (SBOM) see Software Package

Data Exchange (SPDX)
change from Open Source to proprietary

software  118, 318, 355–56, 359–62
Creative Commons  331–34
derivative works  81–83
development see software development
development methodology  30
‘free,’ meaning of  301
‘get up’  207
historical rise of Open Source  395–96
inner source  335–36
legal treatment of  2–6, 32–33
level playing field for Open Source, creation

of  429–30
licence management see licences
licences see licences
maintenance see maintenance
Open Source Definition (OSD)  46–47, 52
Open Source and proprietary software

distinguished  331–36
‘project,’ meaning of  385
public domain  334–35
public good, as  299–301
public source or shared source?  331–34
Software as a Service (SaaS)  5, 93, 342, 351, 353,

354, 355, 359, 364, 424, 427, 430, 465, 517–18
standards see standards
summary of architecture and

interactions  81–82
‘trade dress’  207
valuation  172–74
see also free software; open source program

offices; open source software; source code

Software Freedom Conservancy (SFC)  106, 132,
385–86n.1, 388, 391

Software Freedom Law Center (SFLC)  248n.135
Software Package Data Exchange (SPDX)

adoption of  161–62
Annotations section  155
best practice information  161
Document Creation Information

section  148–49
feedback on further development  156–60
File Information section  151–52
future directions  162–63
license compliance information identifier

tags  159–60
License List  156–58
Other Licensing Information section  153–54
Package Information section  149–51
parts of  146–56
Publishing History section  155–56
reasons for  145–46
Relationship Specification Elements

section  154
Snippet Information section  152–53

Software Project Data Exchange (SPDX) see
Software Package Data Exchange (SPDX)

Solaris OS  378–80
Solderpad Hardware Licence  508
Sony  247n.129, 252–53, 533
source-available licences  424–28
source code see General Public Licence (GPL)
‘source form’, definition  508
sovereignty, digital  323–24

Digital Sovereignty for Europe (2020)  444
SPDX see Software Package Data Exchange
speech-to-text services  530n.73
Spiral  30
SPIRE Ltats  278
sponsorship  186, 186n.6, 195n.33, 201n.47, 353,

390n.5, 391, 400, 536
sports  186
Spotify  346
spreadsheets  146–47
Sprigman, J.  73n.13
SSPL see Server-Side Public Licence
Stallman, R. S.  5n.19, 7, 43, 83n.52, 103n.130,

209–10, 210n.80, 215n.7, 216n.10,
226n.45, 226n.46, 230n.62, 234–35,
237n.90, 254n.163, 254n.166, 299–300,
303, 496n.15, 497n.21, 498n.23

see also RMS system
Standard Essential Patents (SEPs)  256, 258, 266,

268, 335, 363
standardisation  21, 41, 42, 256–59, 260, 261–62,

263, 264–66, 268–69, 270, 271, 408, 518

580  Index

standards
FRAND see fair, reasonable, and non-

discriminatory licensing
interaction between ‘open source’ and

‘open’  534–35
open  532–35

Standards Development Organization
(SDO)  257, 258, 259–71

StarDivision GmbH  378–79
StarOffice  378–79
start-up businesses  321, 346
statement of work (SOW)  368
static link  81, 89, 95, 154
steering bodies  308–9
steward

corporate  383
licence  95, 370, 380–81, 382, 426

stewardship  103, 340, 389, 391
joint  307–8, 310–11, 323

Stirling  516n.23
stock exchange listing see initial public

offerings
Stone, M.  227n.49, 228n.53
Stone, R.  103n.131
strip mining  354–63, 425
sublicensing  85, 239
subscriptions  367–68
SugarCRM  211
sui generis  3–4, 5, 6, 522, 527–28
Summerwill, B.  483
Sun (brand)  402–3
Sun Microsystems  128, 370, 374–75, 492–93
Oracle merger  378–82
supercomputers  395, 454
supply chain  2, 131, 146, 154, 156–57, 159, 162,

225–26, 293–94, 295, 326, 343, 350, 366, 407
Biden Ordnance  162
greenhouse gas (GHG) emissions see

sustainability
Open Chain  141–44
security  146, 162
software bill of materials (SBOM)  145–46,

147, 148, 161–63, 366
see also OpenChain ISO 5230; Software

Package Data Exchange (SPDX)
support  144

see also technical support
Survey of Export Control Regimes  278–81
Sustainable Development Goals (SDGs)  291,

295–96, 323–24, 337
sustainability

Amsterdam case study  292–93
carbon-negative data centres  294–97
challenge of  291
supply chain emissions  293–94

Sustainable Development Goals (SDGs)  291
systemic transformation to  291–92
transition from human-centred design to

community-centred design  292
Suthersanen, U.  9n.39
SWHid  156
Switzerland  279, 387, 431n.4, 482
Synopsys, Inc.  472–73, 477–78, 479, 487
sys call (‘system call’ exception)  96
 
takeovers  174, 379
TAPR Open Hardware Licence  504–5
Taylor, D.  220
taxation  350, 388, 392–93, 527

see also value added tax (VAT)
Tech Crunch  361
Technical Disclosure Commons site  244
technical support

audits and  170
costs  50, 52, 60, 67, 339
embedded software  350
lack of  168
positive differentiation by provision of  320
pure support business model  344–45
risk management and  168–69
Software as a Service (SaaS) model  351
see also services

technology
assets valuation  172
export control exception for publicly available

technology  275–76
Telcos  335
telecommunications services  xvii, 162, 190, 264,

267, 270, 437
tenders see European Union (EU): public

procurement
Terracotta  210–11n.86
Teterin, M.  479, 481
The Document Foundation (TDF)  200, 388
Thompson, D.  243n.105
Thumm, N.  257, 262, 263n.29, 263n.30, 264n.31,

264n.32, 265f, 266n.35, 266–58nn.36–7,
267n.38, 269f, 314n.26

Tidelift  49n.16, 167n.2, 169, 185n.3, 339–40,
349, 367–68

Tirol, J.  260n.18, 310n.19
TiVo  25
TODO Group  402–3
TomTom  247, 247n.130
Torremans, P.  8n.35
Torrone, P.  519n.30
Torvalds, Linus
total cost of ownership (TCO)  364–65, 405–6,

452
Toyota  252–53

Index  581

trade associations  390
trade marks

abandonment of  196
ancillary goods and services  201
‘blurring’ of  195–96
certification marks  191–92
collective marks  191–92
competition limiting by use of  208–12
definition of  184–87
‘dilution’ of  193–96
display of, requirement for  210–12
distinctiveness, concept of  187–89
distribution of modified software without

trademark licence  199–200
distribution of unmodified software by others

without trademark licence  199
Elasticsearch  183–84n.1, 355, 358–59, 361
enforcement of rights  193–96, 203
exhaustion of rights  199
‘first sale’ doctrine  199
forking and  204–5
functional use of  209–10
function of  184–87
further restrictions, and  210
genericism and  197
‘get up’ and  207
guidelines for  208
invalidation of  196
lawful use of others’ trademarks  204–8
legal notices distinguished  210
licensed redistribution  198–99
licensing of  192–93
naked licensing  196–97
non-confusing use  204–8
non-diluting use  204–8
openness and  518–20
open source licences, in  206–7
Open Source and  183–84
Open Source community’s role in  201–3
Open Source projects, products, and

services  198–201
ownership of  192–93, 201–3
policies for  208
promotional goods  201
referential use of  205–6
registration of  189–92
service marks and  190–91
significance, loss of  197
suitability for Open Source  212
‘tarnishment’ of  196
territoriality  187
third party suppliers  201

‘trade dress’ and  207
trade regulation, see export controls
trade secrets  3–5, 375–77

tragedy of the commons  340
transaction platforms  351–52
Trepte, P.  431n.6
Tridgell, A.  375n.22, 377n.25
trolls

copyright  223–24
patent  223–24, 253n.158

Turetsky, W.  17n.97
Turnbull, M.  437n.35
tutorials  537
Twitter  40, 402–3
 
U-boot  160
Ubuntu  226–27, 304, 353
Uganda  334
Ukraine  431n.4

Protestware  334
underdogs see Open Source Underdogs podcast
underperformance  173
underrepresentation  385–86n.1
undertakings  367, 369–70, 370–71n.2, 441–42,

446
Underwriters Laboratory  191–92
unfair advantage  186n.6, 196, 205
unfair competition  369
Unicode  192

Licence for Data Files and Software  484–85
Unified Patent Court (UPC)  218n.15, 224–25
Unique Production Code (UPC)  200
United Kingdom (UK)

EU, departure from see Brexit
export control regime  278–81
public procurement:

advisory groups’ business plan  457
current state of  466, 467
devolved governments  460
future strength of EU Open Source  467
future strength of UK Open Source  461,

467
G-Cloud procurement system  458
Government ICT Strategy  457–58
Government Transformation Strategy

2017– 2020  458
legal framework  455–56
Local Digital Declaration  459
Open Source strategy  457
Open Standards Principles policy

document  458
OpenUK  294–97, 333, 460–61
organisational structure  456–57
policy context  456–60
policy development  457–59
Procurement Policy Note 8/11:

Procurement of open Source IT  458
recent developments  459–60

582  Index

Scotland  460
Technology Code of Practice  459
World Trade Organization and  466, 467

see also Scotland
United Nations (UN)  296, 323–24, 337

General Assembly (UNGA)  291
see also Sustainable Development Goals

(SDGs)
United Nations Educational, Scientific and

Cultural Organization (UNESCO)  19
United States (US)

(non-)copyrightability  75–79
Creative Commons  463–64
‘exhaustion’ of distribution right  26
export controls case study  276–78
‘fair use’ copyright exception  80–81
foundations  350
‘merger doctrine’ copyright exception  79
naked licensing  196–97
open data  527
patents, regulatory regime  219–21
Peer to Patent project  243–44
post-grant patent review  245–49
public procurement:

comprehensiveness of policies  462
current state of  466
federal government  462–64
future strength of US Open Source  465
size of government sector  461–62
state governments  464–65

strip mining  354–55
trade associations  390
trade marks  196–97
United Parcel Service of America,

Inc.  184–85n.2
United States Patent Office (USPTO)  243,

246n.120, 253n.158
United States Supreme Court (USC)  8–9,

73n.13, 76–77, 79n.39, 80, 128, 219–20
UNIX  35, 37n.2, 62, 88n.68, 116, 224n.39,

379n.28, 413, 440, 450, 499n.29
unreasonably disadvantageous  130–31
UPC see Unified Patent Court; Unique

Production Code
Updegrove, A.  259n.11, 260n.21
Urban, J.  227n.51, 234n.79, 253n.158
use, right to  3, 27, 45, 85, 136, 153–54, 168,

186n.7, 193, 211, 214, 302–3, 480
UsedSoft  27
USENIX  35
User Product, definition  91
user-space packages  213, 410, 411, 414–15

Välimäki, M.  11, 20n.111
valuation

adverse effect of badly-managed Open Source
assets  173–74

IPOs  182
Open Source components of business  172
Open Source is core to business revenue and

growth prospects  172–73
‘technology assets’  172

value-added tax (VAT)  443n.50
see also taxation

ValueCard  210–11n.86
van der Laan, W.  479
van Eeten, M.  31n.156
van Holst, W.  78n.35
Van Lindberg  214n.3, 236n.82, 410n.15
van Wendel de Joode, R.  12n.56
Van Zanden, J. L.  305n.8
Vanhaverbeke, W.  307n.15
Varian (company)  442–43
Varian, H.  19n.102, 302n.2, 323n.34
Vaughn-Nichols, S.  230n.61, 251n.146
Velcro BVBA  197
vendors

aggregation  169
lock-in  30, 47–48, 320, 345, 443, 467
model  316, 320
product  61, 325
pushing  168–69

versioning of software see concurrent versioning
system (CVS)

Verilog  506, 510–11
video technologies  25, 61, 236, 523
Vietsch Foundation  xliii–xliv
VIM text editor  334
viral

definition  28
‘impact’ of Open Source  32–33, 166–67

virtualisation  408
virus protection see cybersecurity
VLC  116
VMWare  202n.51
volunteers

role of  320–21
voluntary participation  311

von Hippel, E.  38–39, 254n.162
von Neumann  34–35
von Welser, M.  127n.4
von Willebrand, M.  105n.139
voting status  387
vTiger  210–11n.86
Vue  404
vulnerabilities see cybersecurity

United Kingdom (UK) (cont.)

Index  583

Waelde, C.  513n.17, 536n.85
waivers  11n.55, 130
Wakabayashi, D.  355n.53
Walden, I.  xliii
Wallace, D.  372
Wallerstein, M.  228n.52
Walli, S. R.  34n.1, 37n.2
Wang, H.  322n.33
Wang, T.  322n.33

warranties  175, 176, 480
disclaimers  177–78
disclosure of breaches  175, 178
exclusion of  167, 367
indemnities  175, 367
lack of  168
M&As  177

Wardley, S.  353
wars, operating system  363
Wassenaar Arrangement  10n.44
waste  292–93, 295–96, 297

e-waste  294
waterfall contract
‘Waterfall’ model  30, 368
Watters, J.  341
Webbink, M.  83n.51
Weber, S.  313n.24, 318n.31
West, J.  307
WhatsApp  351, 363
Wheeler, D.  160
White Rabbit Project  492
Wikipedia  337, 524
wikis  306
Wilcke, J.  485
Williams, S.  344
Windows OS  374, 392n.9, 444, 499n.26

NT  37–38
Vista  20

Windsurfer  39
Wingfield, N.  248n.133
women  297
Wood, G.  482, 483–85
WordPress Foundation  211n.87
WordPress Open Source project  211n.87
World Bank

Open Data for Sustainable Development
report  296

World Economic Forum (WEF)  293–94
World Intellectual Property Organization

(WIPO)  5–6, 26, 128n.5, 228n.54,
244n.113

World of Warcraft  530–31n.75
World Trade Organization (WTO)  430–31,

456, 466
World Wide Web Consortium

(W3C)  258, 528
wraparound licences  508
Wright, C.  479
wrongdoing  190–91
Wuthering Bytes tech festival  492n.5
 
Xerox Corporation  197
Xeroxing  197
 
YAML  146–47, 156
Yeh, B.  233n.76
Yocto  313
Yoffe, D. B.  351n.46
Yorba Foundation  393n.11
Young, M.  516n.22
Yu, Y.  322n.33
 
Zedlewski, C.  356
Zephyr projects  149–50, 160
Zimbra  210–11n.86

