Open Source Law, Policy and Practice

Open Source Law, Policy
and Practice

Second Edition

Edited by
AMANDA BROCK

OXFORD

UNIVERSITY PRESS

OXFORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© The several contributors 2022
The moral rights of the authors have been asserted

First Edition published in 2013
Second Edition published in 2022

Impression: 1

Some rights reserved. No part of this publication may be reproduced, stored in
aretrieval system, or transmitted, in any form or by any means, for commercial purposes,
without the prior permission in writing of Oxford University Press, or as expressly
permitted by law, by licence or under terms agreed with the appropriate
reprographics rights organization.

@0

This is an open access publication, available online and distributed under the terms of a
Creative Commons Attribution - Non Commercial - No Derivatives 4.0
International licence (CC BY-NC-ND 4.0), a copy of which is available at

http://creativecommons.org/licenses/by-nc-nd/4.0/.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Public sector information reproduced under Open Government Licence v3.0
(http://www.nationalarchives.gov.uk/doc/open-government-licence/open-government-licence.htm)

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2021946683
ISBN 978-0-19-886234-5
DOI:10.1093/0s0/9780198862345.001.0001

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0O 4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

Oxford University Press would like to thank the following organisations and/or
individuals for granting permission for the use of their logos for the cover of this
book:

All Things Open (‘All Things Open’ logo)

Python Software Foundation (‘Python’ and the Python logos are trademarks or re-
gistered trademarks of the Python Software Foundation, used by Oxford University
Press with permission from the Foundation.)

Docker, Inc. (Docker and the Docker logo are trademarks or registered trademarks
of Docker, Inc. in the United States and/or other countries.)

GNOME Foundation (The GNOME logo and GNOME name are registered
trademarks or trademarks of GNOME Foundation in the United States or other
countries.)

Rust Foundation
Vietsch Foundation (‘Vietsch Foundation’ logo)

Open Source Initiative (The OSI logo trademark is the trademark of Open Source
Initiative)

Percona, LLC (‘Percona’ logo)

Nextcloud GmbH (Nextcloud and the Nextcloud Logo is a registered trademark of
Nextcloud GmbH. in Germany and/or other countries.)

Open Innovation Network LLC (‘Open Innovation Network’ logo)
Tidelift, Inc. (‘Tidelift’ logo)
Canonical Limited (‘Ubuntu’ logo - Canonical Limited, Ubuntu, London)

Weaveworks, Inc. (‘Weaveworks’ logo - (c) 2014-2022 Weaveworks, Inc. All rights
reserved.)

The Linux Foundation (The ‘Kubernetes’ logo is a registered trademark of The
Linux Foundation)

Larry Ewing (‘The Tux’ and “The GIMP’ logos)
OpenUK (‘OpenUK’ logo)

This book has been a labour of love and is dedicated to the boys I love—Ronan, Rhys,
and Dundee—and to the memory of my father, Chick, for whom I spent twenty-five
years being a lawyer.

Contents

Foreword xvii
Keith Bergelt

Abbreviations Xix
Contributors XXV
Table of Cases XXxi
Table of Legislation xXxxvii
Introduction xliii

1 Open Source as Philosophy, Methodology, and Commerce:

Using Law with Attitude 1
Ian Walden
1.1 Introduction 1
1.2 The Legal Treatment of Software 2
1.3 Open Source as Philosophy and Politics 7
1.4 ‘Oper’ What? 21
1.5 Open Source as Development Methodology 30
1.6 Open Source as Commerce 30
1.7 Enforcing Open Source 31
1.8 Open Futures 32
1.9 Concluding Remarks 32
2 Evolving Perspective on Community and Governance 34
Ross Gardler and Stephen R Walli
2.1 Collaboration and Communities 34
2.2 Intellectual Assets to Intellectual Property 35
2.3 Intellectual Property and Industrial Scale 36
2.4 Early Experiments under Copyright 36
2.5 The Start of an Engineering Economic Model 37
2.6 Open Source as a Shared Production Model 39
2.7 Open Source Culture 40
2.8 Licences to Facilitate Collaboration 42
2.9 The Politics and Ethics of Open Source 44
2.10 The Free Software Definition 45
2.11 The Open Source Definition 46
2.12 Open Source Initiative, a Pragmatic Community 47
2.13 Pragmatism versus Ethics 49

2.14 The Apache Software Foundation 50

X CONTENTS

2.15 Governance of Open Source

2.16 People versus Process

2.17 The Benevolent Dictator Governance Model

2.18 The Meritocratic Governance Model

2.19 Implications of Licence Choice and IP Management on
Governance Models

2.20 The Rise of Codes of Conducts

2.21 The Business of Open Source

2.22 Open Source Non-Profits

2.23 Conclusion

PART 1 INTELLECTUAL PROPERTY, CORPORATE,
AND GOVERNANCE

3 Copyright, Contract, and Licensing in Open Source

P McCoy Smith

3.1 Copyright and Software

3.2 Forms of Open Source Licensing

3.3 Software Interaction and Licence Compatibility

3.4 Interpreting Open Source Licences: Contract or

‘Bare Licence™®

3.5 What Makes a Software Licence ‘free’ or ‘open source’?
3.6 Conclusion

4 Contributor Agreements
Jilayne Lovejoy
4.1 Project Licence Agreements
4.2 Types of Inbound Agreements for Open Source Projects
4.3 Employee Contributions
4.4 Practical Advice

5 Copyright Enforcement
Miriam Ballhausen
5.1 Introduction
5.2 What is Copyright Infringement and What Claims
Can Be Made?
5.3 Enforceability of Open Source Licences and Termination
Provisions—How?
5.4 Why is Copyright in Open Source so Consistently
Enforced in Germany?
5.5 Who Can Enforce Copyright in Open Source?
5.6 What Are the Key Arguments and Alleged Infringements?
5.7 New Trends

52
53
54
55

56
58
60
65
67

71

71
83
97

102
107
111

113

113
114
121
123

126

126
128
129
131
132

136
139

CONTENTS Xi

6 Transforming the Supply Chain with Openchain ISO 5230 141
Shane Coughlan
6.1 Overview 141
6.2 Compliance is a Process Challenge that Spans Multiple
Organisations 142
6.3 Because No Single Company Makes a Finished Device,
No Single Company Can Solve Compliance Challenges 142
6.4 The Best Solutions Are Often the Simplest, with the Lowest
Barriers to Entry 142

6.5 OpenChain ISO 5230 is Intended to Make Open Source Licence
Compliance More Predictable, Understandable, and Efficient for

the Software Supply Chain 143
6.6 A Simple Specification that Explains the Key Requirements of a
Quality Compliance Program 143
6.7 A Clear and Free Way to Check Conformance with the
Specification 143
6.8 Reference Material to Support Conformance and with Broader
Questions of Training and Processes 144
6.9 Community and Support 144
6.10 Conclusion 144
6.11 References 144
7 SPDX and Software Bill of Materials ISO/IEC 5962L 2021 145
Kate Stewart
7.1 Why Create a Software Bill of Materials? 145
7.2 What is an SPDX Document? 146
7.3 Listening to the Open Source Community Needs 156
7.4 Tooling and Best Practices to Make it Easy for Developers 161
7.5 Adoption of SPDX Documents 161
7.6 Future Directions 162
8 Corporate Concerns: Audit, Valuation, and Deals 164
Toby Crick
8.1 Introduction 164
8.2 Why Understanding Open Source is Important in the
Corporate Context 166
8.3 Open Source Audit Services 169
8.4 Valuation 172
8.5 Issues Arising on M&A 174
8.6 Investment in Open Source Businesses 178
8.7 Insolvency 180
8.8 IPO 181
9 Trademarks 183
Pamela Chestek

9.1 Introduction 183

xii

CONTENTS

9.2 Trademark Law Basics

9.3 Open Source Projects, Products, and Services

9.4 The Community Role in Open Source Trademarks
9.5 Lawful Use of Others’ Trademarks

9.6 Attempts to Limit Competition with Trademarks
9.7 Conclusion

10 Patents and the Defensive Response

11

12

13

Malcolm Bain and P McCoy Smith

10.1 Patents and Software

10.2 Patents 101: Why Are Patents Relevant to Open Source?
10.3 Patents and Open Source Interactions

10.4 How Open Source Deals with Patents

10.5 Patent Busting and Patent Pools

10.6 Patent Litigations Initiated Against Open Source

10.7 Conclusions

Open Source Software in Standard Setting: The Role of

Intellectual Property Right Regimes

Knut Blind, Mirko Béhm, and Nikolaus Thumm

11.1 Introduction

11.2 Results from the Literature

11.3 Insights from Case Studies and Stakeholder Consultation

11.4 Compatibility of Intellectual Property Regimes in Standards
Development Organisations and Open Source Software

11.5 Conclusion

Export Control

Michael Cheng and Mishi Choudhary

12.1 Introduction

12.2 Export Control Checklist

12.3 Case Study: Application of Export Control Regimes to Open
Source in the US

12.4 Survey of Export Control Regimes

12.5 Recommendations

Open Source Software and Security: Practices, Governance,

History, and Perceptions

Charles-H Schulz

13.1 Open Source and Security: Myths and Reality

13.2 Open Source Security Governance: Vulnerability Discovery,
Patching, and Disclosure Practices

184
198
201
204
208
212

213

213
217
226
235
245
249
252

256

256
258
263

266
270

273

273
274

276

278
281

282

282

286

CONTENTS

PART 2 THE BUSINESS OF OPEN: ECONOMICS,

OPEN SOURCE MODELS, AND USAGE

14 Sustainability and Open Source
Cristian Parrino

14.1
14.2
14.3

14.4
14.5

From Human-Centred Design to Community-Centred Design
The City of Amsterdam Case

The Emissions Problem and the Role and Complexity of
Supply Chains

The Carbon-Negative Data Centre Blue Print

UN Sustainable Development Goals and

Open Data

15 Economics of Open Source
Mirko Bohm

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16

The Economics of Open Source

Introduction: Open Source, Law, Politics, and Economics
Why is Free Software Free?

Software Freedom and Open Collaboration

Differentiate or Collaborate!

Joint Stewardship and Governance

Contributions, Copyright, and Participation
Communities, Contributors, and Merit

Value at the Edge of the Commons

Open Source-Related Products and Service

The Benefits of Open Source in a Business Context
Differentiating in the Eyes of the Consumer

The Role of the Volunteer Community

Competition in the Wider Open Source Community
Compliance, Social and Market Transactions, and Zero Price
Open Source as Community-Provisioned Public Good

16 Business and Revenue Models and Commercial Agreements

Ama
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

nda Brock
Introduction
What is Open Source?
Business Models and Open Source
Commercial or Business Models
Cloud and Open Source in the Last Few Years
Standards and FRAND
Open Source Business Models—Diversity and Success
Measuring Success and the Values of Open Source
Open Source and Commercial Contracts

xiii

291

292
292

293
294

296
298

299
299
301
303
305
307
308
309
312
314
317
319
320
322
324
326

329

329
330
336
343
351
363
364
364
365

Xiv CONTENTS

17 Antitrust, Competition, and Open Source
Carlo Piana
17.1 Introduction
17.2 Abuse of Dominant Position
17.3 Merger Control

18 Foundations and Other Organisations
Karen Sandler
18.1 Governance versus Foundations
18.2 The No-Foundation Solution
18.3 Charities
18.4 Trade Associations
18.5 Aggregating Foundations—Fiscal Sponsors
18.6 Corporate Initiatives
18.7 A Note of Licensing and Foundations
18.8 Co-option, Funding, and Confusion around Corporate Models
18.9 Need for Organisational Diversity

19 The Rise of the Open Source Program Offices (OSPO)
Nithya Ruff

19.1 The Beginning

19.2 Should You Start An Open Source Program Office (OSPO)?

19.3 The Role of an OSPO, Model Options, and Where Should We
Build It?
19.3.1 Drilling down into OSPO’s components

19.4 How Did OSPOs Get Started and the What is the ToDo Group?

19.5 What is the Impact of an OSPO on an Organisation?

19.6 How to Get Started in Creating Your Own OSPO?

19.7 Conclusion and Attributions

20 Cloud Native Development, Containers, and Open Source
Licensing
Richard Fontana
20.1 Overview of Linux Containers
20.2 Containers and the Scope of Copyleft
20.3 Container Images and Source Code Compliance
20.4 Identifying the Licence of a Container
20.5 Containers and Network Services Copyleft
20.6 The Rise of ‘Source-Available’ Licences Targeting Cloud
Service Providers

21 Public Sector and Open Source
Iain G Mitchell KC
21.1 Introduction
21.2 The International Context—The WTO
21.3 The European Procurement Law Context

369

369
370
378

385

386
387
387
390
391
391
392
392
394

395

395
396

398
400
402
403
406
407

408

408
410
416
421
422

424
429
429

430
431

CONTENTS

21.4 Issues in Software Procurement
21.5 The UK

21.6 TheUS

21.7 Conclusion

PART 3 EVERYTHING OPEN

22 Blockchain and Open Source

Mark Radcliffe
22.1 Blockchain Systems
22.2 Protocols and Clients
22.3 Forking
22.4 Code Review
22.5 Bitcoin Client Licence Analysis
22.6 Ethereum Client Licence History
22.7 Ethereum Client Licence Analysis
22.8 Conclusions

23 Open Hardware
Andrew Katz
23.1 Introduction
23.2 What is Hardware?
23.3 A Brief History
23.4 The Open Source Hardware Definition
23.5 Hardware and Reciprocity (Copyleft)—Intellectual Property
23.6 Hardware and Other Forms of Intellectual Property Right
23.7 Specific Open Hardware Licences
23.8 Non-copyleft Hardware Licences
23.9 Open Source Hardware: Development Models
23.10 Conclusion

24 Open Everything
Andrew Katz

24.1 Freedom to Use, Study, Modify, and Share
24.2 Open Governance
24.3 Anti-Lock-In
24.4 Interrelationship Between Opens
24.5 Openness and Intellectual Property Rights
24.6 Definitions of Openness (and Freedom) in Software
24.7 Open Knowledge
24.8 Open Data
24.9 Open Content

24.10 Creative Commons

24.11 Other Documentation Licences

24.12 Open Hardware (and Open Source Hardware)

XV

435
455
461
465

471

473
474
475
477
479
481
484
487

490

490
490
491
493
496
501
503
508
508
511

512

514
516
516
517
518
520
521
522
523
523
525
525

Xvi CONTENTS

24.13
24.14
24.15
24.16
24.17
24.18
24.19

Appendix

Index

Open Data

Open Software Services

Open Politics and Open Government

Open Standards and Open Specifications

Open Innovation

Open Publishing, Open Education, and Open Access
Summary

526
529
531
532
535
536
538

539
557

Foreword
Keith Bergelt, CEO, Open Invention Network

Open Source software is the single-most impactful driver of innovation in the
world today. The fact that it is a social movement supporting the notion of col-
laborative development cross-sector, cross-industry, and among and between
individuals of different nationalities, races, and religions allows it to serve as an en-
during model for innovation. No longer is software being developed in corporate
silos where there is a cap on innovative output. By bringing smart people together
from diverse backgrounds and experiences, elegant and functional code is being
produced that would otherwise not be accessible.

While this model may have initially drawn adherents from primarily Western
Europe and the United States, Japanese and Korean companies and individual
coders began to participate actively in Open Source software projects in the mid-
late 2000s and have been closely followed by Chinese company participants over the
last eight to ten years. In fact, recognition of the inevitability of Open Source has re-
sulted in global participation in Open Source software projects managed by the likes
of the Apache Foundation, Eclipse Foundation, the Linux Foundation, and many
other organisations that have emerged to provide professional project manage-
ment and ensure an efficient path to the release of important code that can be freely
adopted and around which innovative products can be cost-effectively produced.

As Open Source software has evolved and proliferated in information tech-
nology (IT), telecommunications, electronics, mobile communications, com-
puting, transportation, energy, banking, financial services, fintech, big data, the
Internet of Things (IoT), and many other sectors, the need for knowledgeable and
experienced legal counsel has become acute. Copyright, trademark, and patent
attorneys, in parallel with the explosive level of technical collaboration in Open
Source software project communities, have been working in networks such as those
managed and maintained by the Free Software Foundation Europe (European
Legal Network), Linux Foundation (Member Legal Council), and Open Invention
Network (Asian Legal Network) to share best practices and accelerate Open Source
community-wide legal proficiency, and through journals like the Journal of Law
Technology and Society (formerly Free and Open Source Software Law Review).

Open Source software projects such as the Software Project Data Exchange (SPDX)
and OpenChain, both explored in this text, have emerged as ISO-approved stand-
ards to enable content management and process discipline that ensures copyright
compliance as part of comprehensive governance programs. Software compliance
tool companies have also emerged to further support active copyright compliance.

xviii FOREWORD

On the patent front, Open Invention Network manages an ever-growing
3700-strong network of the largest and most significant patent holding com-
panies in the world, committed to cross-licensing each others’ patents that
read on core Linux and adjacent Open Source functionality and, in the process,
forebearing patent infringement litigation. In addition, IBM, Microsoft, and the
Linux Foundation have joined with Open Invention Network to found the Unified
Patents’ Open Source Zone and mitigate patent risk to the broader Open Source
community posed by patent assertion entities.

The recurring theme across the Open Source technical and legal communities is
that of collaboration.

Individuals and organisations come together to yield new novelty and innovate
at unprecedented levels. Lawyers, recognising the need to build a community to
protect and nurture the integrity of the social movement that underlies Open
Source technical development, collaborate to enable copyright compliance and pa-
tent risk mitigation in the core of Linux and Open Source project functionality and
generously share their knowledge.

At the end of the day, Open Source is about opportunity and obligation whereby
manifest across the community is an implicit understanding that the opportunity
to enjoy the benefits of co-opetition through Open Source project participation
requires a concomitant obligation to adhere to a code of legal conduct and set of
social norms.

Abbreviations

ACTA Anti-Counterfeiting Trade Agreement

AGPL GNU Affero General Public Licence

Al artificial intelligence

ATJA America Invents Act

AOSP Android Open Source Project

API application programming interface

ASF Apache Software Foundation

ASP application service provider

AST Allied Security Trust

BD benevolent dictator

BIOS Basic Input/Output System

BIS Bureau of Industry and Security

BOLO Be on the Look Out

BOM Bill of Materials

BSD Berkeley Software Distribution

BSL Business Source Licence

CAD computer-aided design

CAL Cryptographic Autonomy Licence

CcC Creative Commons

CCBY Creative Commons Attribution Licence

CCL Confluent Community Licence

CCo01.0 Creative Commons Universal Public Domain Dedication
CCS Crown Commercial Service

CDDL Common Development and Distribution Licence
CEO Chief Executive Officer

CI/CD Continuous Integration/Continuous Development
CII computer-implemented inventions

CIO Chief Information Officer

CLA contributor licence agreement

CNC computer numerical control

CNCF Cloud Native Computing Foundation

CONTU Commission on New Technological Uses of Copyrighted Works
COSS commercial Open Source software

COTS Commercially available off-the-shelf

CPDA Copyright Designs and Patents Act 1988

CpPP C++

CSIS Center for Strategic and International Studies

CSV comma-separated values

XX ABBREVIATIONS

CTO
DAO
DCO
DD
DFARS
DLT
DMCA
DOAJ
DoD
DPL
DRM
DVD
EAR
ECJU
ECtHR
ECJ
EFF
ENC
ENT
EPC
EPL
EPO
EU
EUPL
FAQs
FARS
FDL
FLA
FLOSS
FMCG
FPGA
FRAND
FSD
FSF
FSFE
FTC
FTP
FUD
GATS
GATT
GCC
GDP
GDPR
GDS
GEA

Chief Technical Officer

Decentralized Autonomous Organization
Developer’s Certificate of Origin
Debian Developers

Defense Federal Acquisition Regulations
Distributed Ledger Technology

Digital Millennium Copyright Act
Directory of Open Access Journals
Department of Defense

Debian Project Leader

Digital Rights Management

digital video disc

Export Administration Regulations
Export Control Joint Unit

European Court of human Rights
European Court of Justice

Electronic Freedom Foundation
Environmental Noise Cancellation
Espace Numérique de Travail

European Patent Convention

Eclipse Public Licence

European Patent Office

European Union

European Public License

frequently asked questions

Federal Acquisition Regulations

Free Documentation Licence

Fiduciary Licence Agreement

Free Libre and Open Source Software
fast-moving consumer goods

field programmable gate array

fair, reasonable, and non-discriminatory
Free Software Definition

Free Software Foundation

Free Software Foundation Europe
Federal Trade Commission

File Transfer Protocol

fear, uncertainty, and doubt

General Agreement on Trade in Services
General Agreement on Tariffs and Trade
GNU C++ Compiler

gross domestic product

General Data Protection Regulation
Government Digital Service

General Export Authorisation

GPA
GPL
HDL
HP
1CO
ICT
IDABC

IEA
IEC
IETF
TIoT
1P
IPO
1P
IPR
IRS
1SO
1T
ITAR
ITC
ITU
JEDEC

KDE
LAMP
LFCF
LGPL
LKM
LoC
LOT
M&A
MNO
MOFCOM
MOST
MPL
NASA
NC
NCSA
ND
NDA
NHS
NIST
NPEs
NTIA

ABBREVIATIONS

Agreement on Government Procurement
General Public Licence

hardware description language

Hewlett Packard

Initial Coin Offering

information and communications technology
Interoperable Delivery of European eGovernment Services to Public
Administrations, Businesses and Citizens
International Energy Agency

International Electrotechnical Commission
International Engineering Task Force

Internet of Things

intellectual property

Initial Public Offering

intellectual property right

Inter Partes Review

Internal Revenue Service

International Organization for Standardization
information technology

International Traffic in Arms Regulations
International Trade Court

International Telecommunication Union

Joint Electron Device Engineering Council Standards Development
Organisation

K Desktop Environment

Linux, Apache, MySQL, PHP

Linux Foundation Climate Finance Foundation
GNU Lesser Public Licence

loadable kernel module

lines of code

Licence on Transfer

mergers and acquisitions

Mobile Network Operator

Ministry of Commerce (China)

Ministry of Science and Technology (China)
Mozilla Public Licence

National Aeronautics and Space Administration
Creative Commons Non-commercial

The National Cyber Security Alliance

no derivatives

non-disclosure agreement

National Health Service

National Institute of Standard and Technology
non-practising entities

National Telecommunications and Information Administration

XxXi

XXii ABBREVIATIONS

OASIS Organization for the Advancement of Structured Information Standards
OCI Open Container Initiative

ODH openly designed hardware

ODI Open Data Institute

OECD Organisation for Economic Co-operation and Development
OEM original equipment manufacturer

OFAC Office of Foreign Assets Control

OGEL open general export licence

OIN Open Invention Network

OKF Open Knowledge Foundation

on-prem on premises

(0N} Operating System

OSD Open Source Definition
OSI Open Source Initiative
OSL Open Software License

OSPO Open Source Program Office
OTC Open Source Technology Center
OTT over the top

ou Open University

OWR open when ready

p2P person-to-person

para(s) paragraph(s)

PLoS Public Library of Science

PR public relations

PUBPAT Public Patent Foundation

QAA Quality Assurance Agency

R&D research and development
RAND reasonable and non-discriminatory terms
RCP Rich Client Platform

RDFa Resource Description Framework in Attributes
RF royalty free

RHEL Red Hat Enterprise Linux

RIT Rochester Institute of Technology

RMS Richard M Stallman

ROI return on investment

RPC remote procedure call

RPM RPM Package Manager

SaaS Software as a Service

SBOM software bill of materials
SCO SCO Group

SDO Standards Development Organization
SEC Securities and Exchange Commission
SEP Standard Essential Patent

SME small and medium-size enterprise

SOW Scope of Work

SPDX
SSPL
NY%
TCO
TDF
TEU
TFEU
TPM
TRIPS
UK
UN
UNESCO
UPC
UPC
UsS
usC
USPTO
VC
Ww3C
WIPO
WTO

ABBREVIATIONS

Software Project Data Exchange

Server-Side Public Licence

Satoshi’s Vision

total cost of ownership

The Document Foundation

Treaty on European Union

Treaty on the Functioning of the European Union
technological protection measures

Trade-Related Aspects of Intellectual Property Rights
United Kingdom

United Nations

United Nations Educational, Scientific and Cultural Organization
Unified Patent Court

Unique Production Code

United States

United States Supreme Court

US Patent Office

venture capital

World Wide Web Consortium

World Intellectual Property Organization

World Trade Organization

xxiii

Contributors

Amanda Brock is CEO of OpenUK, the UK organisation for the business of Open
Technology (open source software, open hardware and open data); elected Board Member,
Open Source Initiative; appointed member of the Cabinet Office’s Open Standards Board;
Member of the British Computer Society Inaugural Influence Board; Advisory Board
Member, KDE, Planet Crust, Sustainable Digital Infrastructure Alliance and Mimoto;
Charity Trustee Creative Crieff and GeekZone; and European Representative of the Open
Invention Network. Amanda was awarded the UK Lifetime Achievement Award in the
Women, Influence & Power in Law Awards, 2022, and included in Computer Weekly’s Most
Influential Women and The UK Leaders in Tech long lists in 2021 and 2022. A lawyer of
25 years’ experience, she previously chaired the Open Source and IP Advisory Group of
the United Nations Technology Innovation Labs, sat on the OASIS Open Projects and UK
Government Energy Sector Digitalisation Task Force Advisory Boards and been an ad-
visor to a number of start-ups including Beamery and Everseen. With law degrees from
the University of Glasgow, New York University and Queen Mary and Westfield, University
of London, Amanda was part of the first cohort to study internet law in the UK. She then
spent 25 years practising law and almost 20 of those across companies in a variety of sec-
tors, with a strong technology focus. She was the first lawyer working on the ISP Freeserve
from 1999 and a member of the team which took it to IPO. She joined Canonical early
stage as General Counsel setting up and running the global legal team for 5 years from
2008. A frequent international keynote speaker, Amanda writes regularly for the tech-
nology press, is Editor of Open Source, Law, Policy and Practice, being published by Oxford
University Press in October 2022 with open access sponsored by the Vietsch Foundation.
Listed as one of 20 CEO’s to Watch at https://www.linkedin.com/feed/update/urn:li:activ
ity:6777656310428135424/, https://www.linkedin.com/in/amandabrocktech

Malcolm Bain is an English solicitor and Spanish abogado based in Barcelona, working for
the last twenty years in ICT law and focusing on Open Source and open content projects.
He has advised universities, government, industry, and startups on intellectual property
strategy, management, and licensing, and participated in many conferences and seminars
on the legal aspects of Open Source and open data. He is a member of FSF-Europe and
CATPL, the Catalan association for free software businesses.

Miriam Ballhausen is a partner at Bird & Bird, LLP, specialising in technology, software,
digital media, copyright, data, and data protection law with a particular focus on the collab-
orative development of Open Source software, open data, and open hardware. She served
on the advisory council of the Legal Network of the Free Software Foundation Europe and
has been involved in several Open Source enforcement cases in Germany. In her daily work,
she regularly works with clients on implementing Open Source licence compliance program
and advises them on all issues related to Open Source.

XXVi CONTRIBUTORS

Knut Blind took his Bachelor’s degree at Brock University (Canada), prior to finishing his
Diploma in Economics and later his doctoral degree at Freiburg University. Since 1996, he
joined the Fraunhofer Society. Currently, he is head of ‘Innovation and Regulation’ at the
Fraunhofer Institute for Systems and Innovation Research located in in Karlsruhe, Germany.
In April 2006, he was appointed Professor of Innovation Economics at the Faculty of
Economics and Management at the Technische Universitit Berlin. Between 2008 and 2016,
he held also the endowed chair of standardisation at the Rotterdam School of Management
of the Erasmus University.

Mirko B6éhm is an Open Source software contributor to the KDE Desktop, the Open
Invention Network, the Open Source Initiative, and other projects. He is a visiting lecturer
and researcher on Open Source software at the Technical University of Berlin, a certified
Qt specialist and trainer and a fellow of the Openforum Academy. He leads software engi-
neering projects at Mercedes-Benz where he applies a wide range of experience as an entre-
preneur, corporate manager, software developer, and German Air Force officer. He lives
with his wife, two children, and two cats in Berlin, Germany.

Michael Cheng is a former network engineer, M&A Attorney, and product manager. He
is currently Vice President, Head of Corporate, Mergers & Acquisitions, and Intellectual
Property at Dapper Labs. Prior to this, Michael was a product manager at Facebook/Meta
where he represented the company as the face of its investments in Open Source. He has
previously served on the Linux Foundation Board of Directors (Member), ML Commons
(Treasurer), Confidential Computing Consortium (Board Member), Urban Computing
Foundation (Board Member), OpenChain (Board Member), Open Invention Network
Technical Advisory Committee (Member), and the Magma Foundation (Board Chair).

Pamela S. Chestek is the principal of Chestek Legal in Raleigh, North Carolina. She coun-
sels creative communities on Open Source software, brand, and marketing matters. Prior
to returning to private practice, she held in-house positions at footwear, apparel, and high
technology companies and was an adjunct law professor teaching a course on trademark law
and unfair competition. She is a frequent author of scholarly articles, and her blog, Property,
Intangible, provides analysis of current intellectual property case law. She is admitted to
practice in California, Connecticut, the District of Columbia, Massachusetts, New York, and
North Carolina, and has been certified by the North Carolina Board of Legal Specialization
in Trademark Law.

Mishi Choudhary is a technology lawyer. The Open magazine calls her an emerging legal
guardian of the free and open Internet. She is the Legal Director of the New York-based
Software Freedom Law Center and Partner at Moglen & Associates. She has served as the
primary legal representative of many of the world’s most significant free software developers
and non-profit distributors. She advises technology startups and established businesses
around the world on Open Source software licensing and strategy. In 2010, she founded
SFLC.in. Under her direction, SFLC.in has become the premier non-profit organisation rep-
resenting the rights of Internet users and free software developers in India.

Shane Coughlan is an expert in communication, security, and business development.
His professional accomplishments include building the largest Open Source governance

CONTRIBUTORS XXVii

community in the world through the OpenChain Project, spearheading the licensing team
that elevated Open Invention Network into the largest patent non-aggression community
in history and establishing the first global network for Open Source legal experts. He is a
founder of both the first law journal and the first law book dedicated to Open Source. He
currently leads the OpenChain Project, acts as an advisor to both World Mobile and Asylum
Labs, and is a General Assembly Member of OpenForum Europe.

Toby Crick is a partner in Bristows LLP’s technology group and advises on and negoti-
ates commercial, technology, and outsourcing agreements. He has particular expertise in
working with clients to help them manage and structure complex deals and is recognised for
his work on digital transformation projects and his work with clients to manage Open Source
software in regulated environments. He is a Trustee of the UK’s Society for Computers and
Law and lectures widely on IT, e-commerce, cloud computing, agile software development,
and outsourcing including at ITechLaw, University College London (where he teaches on
Open Source) and Queen Mary University of London.

Richard Fontana is Senior Commercial Counsel at Red Hat. He specialises in legal matters
relating to software development, with a focus on Open Source. He is a former board dir-
ector of the Open Source Initiative. Fontana was previously Senior Director and Associate
General Counsel for Cloud and Open Source at Hewlett-Packard and Counsel at the
Software Freedom Law Center. Earlier in his career he practised intellectual property and
antitrust law. He is a graduate of the University of Michigan Law School (Juris Doctor), Yale
University (Master of Science in Computer Science), and Wesleyan University (Bachelor of
Arts in History).

Ross Gardler has been working on Open Source software for close to twenty-five years,
participating in many projects with a focus on building healthy collaboration environments
that create opportunities for open innovation across multiple fields. He served for a number
of years as the President of the Apache Software Foundation and currently serves on the
Board of Directors for OASIS Open at the intersection of rapid Open Source software in-
novation and stable interoperability through the slower but more precise standards process.
He currently works for Microsoft contributing to the growth of Linux workloads on Azure.

Andrew Katz is a solicitor practising in England and has specialised in open technologies
for over 25 years. He leads the Technology team at Moorcrofts LLP in the Thames Valley and
has advised businesses, governments, non-governmental organisations, and foundations
around the world on open licensing and governance. He is co-author of the CERN Open
Hardware Licence, and is a visiting researcher at Queen Mary University of London and
the University of Skovde. He lectures frequently, and has written numerous papers on open
technologies. He was lead open hardware author on the European Commission’s 2021 Paper
on the Impact of Open Source Software and Hardware on the EU Economy. He has written
and released software under the GPL.

Jilayne Lovejoy is a US lawyer and community leader who has held various community and
in-house roles related to Open Source. She co-leads the Software Package Data Exchange®
(SPDX) legal team, helps maintain the SPDX License List, and co-authored the FINOS Open
Source License Compliance Handbook, an open-licensed human and machine-readable

Xxviii CONTRIBUTORS

handbook for licence compliance. Currently, she is product counsel at Red Hat working on
a variety of issues. Prior roles include legal counsel at Canonical and principal Open Source
counsel at Arm, where she drove improved processes related to Open Source, including
forming and chairing the Arm Open Source Office.

P McCoy Smith is the Founding Attorney at Lex Pan Law LLC, a full-service technology
and intellectual property law firm, and Opsequio LLC, an Open Source consultancy, both
in Portland, Oregon, USA. He spent 20 years at a Fortune 50 multinational technology
company as an intellectual property attorney, where he ran Open Source legal policies.
He spent eight years in private practice, as a patent litigator and prosecutor, in a New York
City-based law firm, and three years as a patent examiner at the US Patent & Trademark
Office. He has an honours engineering degree (Colorado State University), a graduate lib-
eral arts degree (Johns Hopkins University), and a law degree (University of Virginia). He
also taught the US patent bar exam, and is on the editorial board of the Journal of Open Law,
Technology & Society. He is licensed to practice law in Oregon, California, and New York,
and to prosecute patent and trademark applications in the US and Canadian Patent &
Trademark Offices.

Tain G Mitchell KC is a member of the Scottish and English Bars, ranked in Chambers
Directory and the Legal 500 for Commercial Litigation, Intellectual Property and
Information Technology law. He is Chair of the Scottish Society for Computers and Law, the
UK expert on the IT Committee of the CCBE, and past Chair of its Surveillance Working
Group. He is a member of the IT Panel of the Bar Council of England & Wales. the legal
panel of Open UK and an Honorary Lecturer in IT Law at Miinster University. He is a joint
editor of the Journal of Open Law, Technology and Society.

Cristian Parrino is a tech turned social entrepreneur and sustainability advisor. He is
OpenUK’s Chief Sustainability Officer where he focuses on the intersection of open tech-
nology and societal value. He is also the CEO of childhood cancer charity, the Azaylia
Foundation, and a Board Trustee at citizen science charity, Earthwatch Europe, and youth
climate action charity, InterClimate Network, where he also co-leads on the Youth Action
Against Climate Change All-Party Parliamentary Group. Previously, he was the co-founder
and CEO of sustainable behaviour change startup Greengame, and the Vice President of
Mobile and Online Services at Canonical.

Carlo Piana is a qualified lawyer in Italy and an Open Source software advocate. Former
General Counsel to the Free Software Foundation Europe, which he represented along with
the Samba Team in cornerstone antitrust cases to ensure freedom of interoperability in the
PCand Internet market. In the 2022 he was elected to the Board of the Open Source Initiative
and became a member of the Steering Committee of the Eclipse Oniro Working Group. He
acted in the first reported GPL enforcement case in Italy. He is a founding member of Array,
aboutique IT law firm, and a partner of OpenChain.

Mark Radcliffe is a senior partner who practises in DLA Piper’s Silicon Valley office and
is Co-Chair of its Blockchain and Digital Assets practice. He has been advising on Open
Source matters for over twenty years, with projects ranging from the development of the
dual licensing model to the open sourcing of the Sun Microsystems’ Solaris operating

CONTRIBUTORS XXiX

system. He serves as outside general counsel of the Open Source Initiative and Apache
Software Foundation on a pro bono basis. He is applying this experience to blockchain
and non-fungible token issues. He has written and spoken extensively on Open Source
legal issues.

Nithya A Ruff is the Head of the Amazon Open Source Program Office. She drives Open
Source culture and coordination inside of Amazon and engagement with external commu-
nities. Prior to Amazon, she started and grew Comcast and Western Digital’s Open Source
Program Offices. Nithya has been director-at-large on the Linux Foundation Board for the
past five years and in 2019 was elected Chair of the influential Linux Foundation Board. She
works actively to advance the mission of the Linux Foundation around building sustainable
ecosystems that are built on open collaboration. She is a passionate advocate and a speaker
for opening doors to new and diverse people in technology and often speaks and writes on
this topic. She graduated with an MS in Computer Science from NDSU and an MBA from
the University of Rochester, Simon Business School and is an aspiring corporate board dir-
ector and governance enthusiast.

Karen Sandler is an attorney and executive director of the Software Freedom Conservancy
(SFC), a non-profit organisation focused on ethical technology. She is known as a ‘cy-
borg lawyer’ for her advocacy for software freedom as a life-or-death issue. She co-
organises Outreachy, an internship program for those facing under-representation,
systemic bias, or discrimination in tech. She is a Lecturer-in-Law at Columbia Law
School. Prior to SFC, Karen was executive director of the GNOME Foundation.
Before that, she was general counsel of the Software Freedom Law Center.
She received her JD from Columbia Law School where she was a James Kent Scholar, and her
engineering degree from the Cooper Union.

Charles-H Schulz is a French technologist, free software and open standards advocate.
As a long-time contributor to the OpenOffice.org project, he helped grow its community
from a few, mostly European communities to over 100 communities and teams of various
sizes. He also contributed to the development and adoption of the OpenDocument Format
standard through the company he co-founded, Ars Aperta. A former director of the OASIS
Consortium, he has engaged in various digital public policy debates at the European level.
He is a founding member and one of the former directors of the Document Foundation,
home of the LibreOffice project. He has been working in governmental cybersecurity for
several years and is one of the current board members of the Open Information Security
Foundation, and Chief Strategy Officer of Vates, the main developer of the XCP-ng
hypervisor.

Kate Stewart works with the safety, security, and licence compliance communities to ad-
vance the adoption of best practices into embedded Open Source projects. She was one
of the founders of SPDX and is currently the specification coordinator. Since joining
the Linux Foundation, she has launched the ELISA and Zephyr Projects, as well as sup-
porting other embedded projects. With over thirty years of experience in the software in-
dustry, she has held a variety of roles in software development, architecture, and product
management, primarily in the tooling and embedded ecosystem working with inter-
national teams.

XXX CONTRIBUTORS

Dr Nikolaus Thumm is Senior Scientific Advisor with the ETH Board in Zurich, Switzerland,
and Associate with Technical University Berlin. Prior to this, he worked for the European
Commission where he was responsible to set up a work program on standardisation,
standard essential patents, licensing, and Open Source. Until 2013, he was Chief Economist
of the European Patent Office. Before this, he worked as Senior Economic Counsellor for the
Swiss Intellectual Property Office. He was chairman of the United Nations’ Advisory Group
on the Protection and Implementation of Intellectual Property Rights for Investment, a
private-public partnership group. Nikolaus lead numerous international research activ-
ities and holds many publications in the field of standardisation, patenting, and intellectual
property protection.

Dr Ian Walden is Professor of Information and Communications Law and Director of
the Centre for Commercial Law Studies, Queen Mary University of London. His publications
include Media Law and Practice (2009), Free and Open Source Software (2013); Computer
Crimes and Digital Investigations (2nd edn, 2016) and Telecommunications Law and
Regulation (5th edn, 2018). He has been a visiting professor at the universities of Texas,
Melbourne and KU Leuven. He has been involved in law reform projects for the World
Bank, European Commission, Council of Europe, Commonwealth, and UNCTAD, as
well as numerous individual states. Tan was an ‘expert nationaux détaché’ to the European
Commission (1995-96); Board Member and Trustee of the Internet Watch Foundation
(2004-09); on the Executive Board of the UK Council for Child Internet Safety (2010-
12); the Press Complaints Commission (2009-14); a member of the RUSI Independent
Surveillance Review (2014-15); a member of the Code Adjudication Panel at the Phone-
paid Services Authority (2016-21); a member of the European Commission Expert Group
to support the application of the GDPR (2017-21), and a Non-Executive Board Member of
the Jersey Competition Regulatory Authority (2020-present). Ian is a solicitor and Counsel
to Baker McKenzie. Tan leads Queen Mary’s qLegal initiative and is a principal investigator
on the Cloud Legal Project.

Stephen Walli is a principal program manager in the Open Source Ecosystem Team in the
Azure Office of the CTO. He has collaborated on standards and Open Source projects for
more than thirty years. He is a board member to the Eclipse Foundation and chairs the
Eclipse SDV Working Group, and chairs the Confidential Computing Consortium (Linux
Foundation). He is also adjunct faculty at Johns Hopkins, teaching Open Source Software
Engineering, and is developing the Semesters of Code program. He is working group
chair for an IEEE standard on recommended practices for Open Source software project
governance.

Table of Cases

EUROPEAN COURT OF HUMAN RIGHTS

Ashby Donald and others v France, Appl. Nr. 36769/08, ECtHR (5th Sec.),
10January 2013 ... 9

Neij and Sunde Kolmisoppi v Sweden, Appl. Nr. 40397/12, ECtHR (5th Sec.),
19 February 2013o 9

EUROPEAN COURT OF JUSTICE (ALPHABETICAL)

Albany (Case C-67/96) [1999] ECRI-5751 ...\ vuiniitiiiii i 436
Bent Mousten Vestergaard v Spettrup Boligselskab (Case C-59/00)

[2001] ECRI-09505 . ..\ttt 433,440
Bezpednostni softwarovd asociace (Case C-393/09) [2010] ECRI-0000. 4
Commission v CAS Succhi di Frutta SpA (Case C-496/99) [2004] ECR 2004 1-03801. 445
Concordia Bus Finland Oy Ab (Case C-513/99) [2002] ECRI-7251.................. 441
European Commission v The Netherlands (Case C-359/93) [1995] ECRI-15.......... 440

EVN AG and Weinstrom GmbH v Austria (Case C-448/01) [2003] ECRI-14558.... ... 441-42
Fabricom SA v Belgium (Joined Cases C-21/03 and C-34/03) [2005] ECRI-1577 439

Hoffman-La Roche, judgment of the European Court of Justice (Hoffmann-La
Roche & Co. AG v Commission of the European Communities.

Dominant position. Case 85/76 370-71
IT Development SAS v Free Mobile SAS, ECLI:EU:C:2019:1099

(Fifth Chamber, CJEU, 18 December2019) 105-6
ITV Broadcasting Ltd & ors v TVCatchup Ltd (Case C-607/11) 7 March 2013 28-29
Laserdisken ApS v Kulturministeriet (Case C-479/04) [2007] 1l CMLR6............... 26
LOréal SA & Ots v Bellure NV & Ots [2010] ECJ C-487/07 .. oo oo 196
Medipac-Kazantzidis AE v Venizeleio-Pananeio (Case C-6/05) [2007] ECR 1-04557 433
Metronome Musik (Case C-200/96) [1998] ECRI-1953., 26
Microsoft v Commission (Case T-201/04) 374-76
Monty Program AB v Commission (Case T-292/10)............................... 382

Nacional de Empresas de Instrumentacion Cientifica, Médica, Técnica y

Dental (FENIN) v Commission of the European Communities

(Case T-319/9) [2003] 5CMLR L.o e 436
Nacional de Empresas de Instrumentacion Cientifica, Médica, Técnica y

Dental (FENIN) v Commission of the European Communities

(Case C-205/03) [2006] 5CMLR 7. . oot 436

Xxxii TABLE OF CASES

Parking Brixen GmbH v Gemeinde Brixen & Stadtwerke Brixen AG

(Case C-458/03) [2005] ECR 1-08585.+ v v e e e, 433,439
Poucet and Pistre (Joined Cases C-159/91 and C-160/91) [1993] ECRI-637........... 436
SAS Institute Inc. v World Programming Ltd (Case C-406/10)

ECLLEU:C:2012:259,2 May 2012 oot 4,76,229
Sociedad General de Autores y Editores de Espana (SGAE) v Rafael Hotels SL

(Case C-306/05) 7 December 2006; [2007] ECDR2, 28-29
Solvay SA v Honeywell Fluorine Products Europe BV, Case C-616/10

(BCT 12Uy 2012). ..o e e e e e 224-25
Synergestic herbicides/CIBA GEIGY T68/85....... ..., 254
Telaustria Verlags GmbH and Telefonadress GmbH v Telekom Austria AG

(Case C-234/98) [2000] ECR 1=10770. .+« .+ v v e 433, 438-39
UsedSoft GmbH v Oracle International Corp (2012) 3CMLR44o.... 27

EUROPEAN COURT OF JUSTICE (CHRONOLOGICAL)

Case 85/76 Hoffman-La Roche, judgment of the European Court of Justice
(Hoffmann-La Roche & Co. AG v Commission of the European

Communities. Dominant position. il 370-71
Case T-68/85 Synergestic herbicides/CIBAGEIGY........... ..ot 254
Cases C-159/91 and C-160/91 Poucet and Pistre [1993] ECRI-637 436
Case C-359/93 European Commission v The Netherlands [1995] ECRI-15 440
Case C-67/96 Albany [1999] ECRI-5751. cuvintitiit it 436
Case C-200/96 Metronome Musik [1998] ECRI-1953ot 26
Case C-234/98 Telaustria Verlags GmbH and Telefonadress GmbH v

Telekom Austria AG [2000] ECR1-10770 433, 438-39
Case C-496/99 Commission v CAS Succhi di Frutta SpA [2004] ECR 2004 I-03801. 445
Case C-513/99 Concordia Bus Finland Oy Ab [2002] ECRI-7251 441
Case C-59/00 Bent Mousten Vestergaard v Spottrup Boligselskab

[2001] ECRI-09505 . .\ttt ettt e ettt et e e 433,440
Case C-448/01 EVN AG and Weinstrom GmbH v Austria [2003] ECRI-14558.. ... 441-42
Cases C-21/03 and C-34/03 Fabricom SA v Belgium [2005] ECRI-1577.............. 439

Case C-205/03 Nacional de Empresas de Instrumentacién Cientifica, Médica,
Técnica y Dental (FENIN) v Commission of the European Communities

[2006]5 CMLR 7 « . v e 436
Case C-458/03 Parking Brixen GmbH v Gemeinde Brixen & Stadtwerke

Brixen AG [2005] ECR 1-08585.\ttt it 433,439
Case T-201/04 Microsoft v COMMISSION vt vvett i i e aannns 374-76
Case C-479/04 Laserdisken ApS v Kulturministeriet [2007] 1CMLR6 26

Case C-6/05 Medipac-Kazantzidis AE v Venizeleio-Pananeio [2007] ECR 1-04557433
Case C-306/05 Sociedad General de Autores y Editores de Espana (SGAE) v

Rafael Hotels SL 7 December 2006; [2007] ECDR2....................o.... 28-29
Case T-319/9 Nacional de Empresas de Instrumentacién Cientifica, Médica,

Técnica y Dental (FENIN) v Commission of the European Communities

[2003] 5CMLR T ..ottt e e 436
Case C-393/09 Bezpecénostni softwarova asociace [2010] ECRI-0000 4
LOréal SA & Ots v Bellure NV & Ots [2010] ECJ C-487/07 oo vvv i e ieiiiiiiiinnns 196
Case T-292/10 Monty Program AB v Commission oooae. 382

Case C-406/10 SAS Institute Inc. v World Programming Ltd 2 May 2012 4,76,229

TABLE OF CASES Xxxiii

Case C-616/10 Solvay SA v Honeywell Fluorine Products Europe BV

(BCT 12Uy 2012). ..o e e e e 224-25
UsedSoft GmbH v Oracle International Corp (2012) 3CMLR44 27
Case C-607/11 ITV Broadcasting Ltd & ors v TVCatchup Ltd 7 March 2013......... 28-29
IT Development SAS v Free Mobile SAS, ECLI:EU:C:2019:1099

(Fifth Chamber, CJEU, 18 December2019) 105-6

FRANCE
EDU 4 v AFPA, Cour d’Appel de Paris, Pole 5, Chambre 10,1n0:294 104-5
Entre’Ouvert v Orange, Tribunal de grande instance (TGI) of Paris, 3rd chamber,
3rdsection (21June2019).o it 105-6
GERMANY
Anmerkung zu OLG Diisseldorf, U. v. 24.04.2012-1-20 U 176/11 186

Welte v D-Link Deutschland GmbH (2006) LG Frankfurt a.M., 2006-09-06,

CaseNO0.2-6 0 224/006.ttt e e 29
Welte v Sitecom Deutschland GmbH, District Court of Munich, 19 May 2004,
Case 2l O 6123/04. ..ot 104-5
Welte v Skype Technologies S A, District Court of Munich, 12 July 2007,
CaSe 7 O 524507 . i e 104-5
ITALY

Assoli v Ministero del Lavoro (TAR (Regional administrative court) Lazio,
Decision n0 428 0f 23/01/2007 . . . oot vttt et 447

Consorzio Aziende Metano (Coname) v Comune di Cingia de’'Botti C-231/03
[2005] ECRI-07287 . .+« o oo e e e e e e 433

Decision n0. 122 0£ 22/03/2010. . . . o oo e e e e 447

SECAP SpA and Santorso Soc. Cooparl v Comune di Torino C-147/06 and
C-148/06 [2008] ECRI-03565ottt 433
POLAND

Decision of Krajowa Izba Odwolawcza of 13 January 2009 (file no: KIO/UZP 1502/08)... . .. 449
Decision of Krajowa Izba Odwolawcza of 5 August 2009
(file 10: KIO/UZP 961/09) . . .+ e o ve e e e e e e e 449

Judgment of Constitutional Court of 9 March 1988, file no: U 7/87,
OTK1988,n01,p0z 1,14o 448-49

UNITED KINGDOM
Aerotel Ltd v Telco Holdings Ltd [2007] RPC7ooviiiiii i 218

Boosey v Whight, 19001 Ch. 122,81 LTNS265.ooviiiiiiiii e 72-73

XXXiV TABLE OF CASES

Carlill v Carbolic Smoke Ball Company [1892] EWCACivl...................... 504-5
Confetti Records v Warner Music UK Ltd (t/a East West Records) [2003] EWHC 127412-13
Elekta Ltd v Common Services Agency 2011 SLT815............oovinin.... 442,448
Football Association Premier League Ltd and others v QC Leisure and others,

Murphy v Media Protection Services Ltd [2012] 1 CMLR29..................... 26
Halliburton Energy Inc’s Patent [2011] EWHC 2508 (Pat) 218
Macrossan’s Application 2006 [EWCA].ot 218
Navitaire Inc. v Easyjet Airline Co [2004] EWHC 1725 (Ch)oot 75
R (on the application of Chandler) v Secretary of State for Children, Schools and

Families (2010) CMLR 19 o e 434
SAS Inst. Inc. v World Programming Ltd. [2013] EWCACiv1482 79
SAS Institute Inc. v World Programming Ltd [2013] EWHC 69 (Ch) 4
Sidey Ltd v Clackmannanshire Council and Pyramid Joinery and

Construction Ltd [2010] SLT 607.t ouvttt et e 434
Sidey Ltd v Clackmannanshire Council [2012] SLT 334c.covvnen.... 434,438
St Albans City & DC v International Computers Ltd., [1996] 4 AIER481............... 6
Symbian Ltd v Comptroller General of Patents [2008] EWCA Civ 1066. 218

The Mayor and Burgesses of the London Borough of Southwark vIBM UK Ltd
[2011] EWHC 549 (TCC) - v e e e e e e e e 6

UNITED STATES
100 Blacks in Law Enforcement Who Care, Inc. v 100 Blacks Who Care, Inc.,

Opposition N0 91190175,2011 WL 1576733 (TTAB 12 April 2011) 202
American Axle & Manufacturing, Inc. v Neapco Holdings LLC, 939 E3d 1355

(Fed. Cir. 2019) . oottt e e 220
Apple Computer, Inc. v Franklin Computer Corp., 714 F2d 1240 (3d Cir. 1983),

cert. dismd by stip., 464 US 1033 (1984) . ..o .vvnviniiti i 72-73
Apple Inc. v Psystar Corp., 658 E3d 1150, C.A.9 (Cal.), 2011covnuinnn... 26
Autodesk, Inc v Dassault Systemes SolidWorks Corp, 685 E. Supp. 2d 1001,

1009 (N.D. Cal. 2009). . .+« o ettt 209
Baker vSelden, 101 US 99 (1879) . ..ottt ettt e et et e ettt e ettt 76

Barcamerica Int'l1 USA Tr v Tyfield Importers, Inc, 289 E.3d 589, 598 (9th Cir. 2002)196
Bedrock Computer Technologies LLC v Softlayers Technology Inc.,

Case No. 6:09-cv-269 (LED) (E.D. Tex.2009)oiiiiiiiiiiiiiiannnn. 249-50
Bedrock Computer Technologies LLC v Softlayers Technology Inc.,

Case No. 6:09-cv-269 (LED) (E.D. Tex. 15 April 2011)o oveiieenn. .. 249-50
Beltronics USA Inc v Midwest Inventory Distrib, LLC, 562 E.3d 1067,

1072 (10th Cir. 2009) . . .o et et e et e e 199, 200
Bernstein v US Department of State 176 E3d 1132 (9th Cir. 1999) 10
Bilski, In re, 545 F.3d 943 (Fed Cir 2008) (enbanc)cooiiieiiin.. 219-20

Bilski v Kappos, No 08-964, 561 U.S. (2010). e vvtevtii i 219-20

TABLE OF CASES XXXV

Capitol Records LLC v ReDigi Inc., No. 12 Civ. 95 (R]S), 30 March 2013 26-27
Century 21 Real Estate Corp v Lendingtree, Inc, 425 E3d 211, 214 (3d Cir. 2005) 199-200
CLS Bank v Alice Corp 573 US208 (2014)ttt et 220
Comm for Idahos High Desert, Inc v Yost, 92 E3d 814, 819-20 (9th Cir. 1996). 201-2
Compaq Computer Corp v Procom Tech, Inc, 908 E Supp. 1409, 1423

(S.D.TeX. 1995) . oo ettt e e e 209
Diamond v Diehr 450 US 175 (1981) . ..o ittt 219-20
Elasticsearch, Inc v Amazon.com, Inc., No. 3:19-cv-06158 (N.D. Cal.)

(complaint filed 27 September 2019)ottt 183
Eldred v Ashcroft (01-618) 537 US 186 (2003). . . oot vt e it e i 8-9
Eva’s Bridal Ltd v Halanick Enter, Inc, 639 E3d 788 (7th Cir.2011) 196
Feist Publications, Inc., v Rural Telephone Service Co., 499 US 340 [1991] 527
G & C Merriam Co v Syndicate Pub Co,237 US 618,622 (1915)ccovvnunn... 186
Gemmer v Surrey Services for Seniors, Inc., No 10-810, 2010 WL 5129241,

at*20 (E.D.Pa. 13 December2010)ooiiiiiiiii e 202
Google LLC v Oracle America, Inc., Docket No. 18-956, Petition for a Writ

of Certiorari (US 24 January 2019).o.iuiiiii it 76

Google LLC v Oracle Am., Inc., 593 US _, 141 S. Ct. 1183, Docket No. 18-956, (2021) 76
Google LLC v Oracle America, Inc., 593 US _, 141 S. Ct. 1183, Docket No. 18-956,

Opinion of the Courtat 15 (5 April2021)ovvvviie i 77-79, 80
Harper & Row Publishers, Inc. v Nation Enterprises 471 US 539, 558 (1985) 8-9
Haughton Elevator Co v Seeberger, 85 USPQ 80 (Comm’r Pat 1950) 197
Tancu v Luoma, 141 S.Ct. 2845 (US2020) . ..o vt ittt e et e et e e e e e e e e e e e e 250-51
Intel Corp v Advanced Micro Devices, Inc, 756 E Supp. 1292, 1298

(ND. Cal. 1991) it 188
Intel Corp. v Terabyte Int’l, Inc., 6 F.3d 614, 619 (OMCIr 1993) oo 200
Jacobsen v Katzer, No. 06-CV-01905 JSW, 2007 WL 2358628 (N.D.Cal. 17 August 2007) 103-4
Jacobsen v Katzer, 535 F.3d 1373 (Fed. Cir.2008)o oo v v v eieeiiiiiennns 86-87,103-4
Kennedy v Guess, Inc, 806 N.E.2d 776,786 (Ind. 2004).o cvvuvenvnnennen.. 211-12
Kentucky Fried Chicken Corp v Diversified Packaging Corp, 549 F2d 368,

387 (5th Cir. 1977) o oo 196
Liebowitz v Elsevier Sci Ltd, 927 F. Supp. 688,696 (SDNY 1996)covuvnntn. 202-3
LunaTrex, LLC v Cafasso, 674 E. Supp. 2d 1060, 1062 (S.D.Ind. 2009) 202-3
Mayo Collaborative Services v Prometheus Laboratories, Inc 566 US (2012) 219-20
Mazer v Stein, 347 US201 (1954)ottt e 76

MDY Industries v Blizzard Entertainment, 629 F. 3d 928 C.A.9 (Ariz.), 2010 26,31-32
Merck & Co v Mediplan Health Consulting, Inc, 425 E Supp. 2d 402, 413 (SDNY 2006). 205

National Comics Publications, Inc. v Fawcett Publications, Inc. 191 E2d 594,90 USPQ 274.. 17
Neo4j, Inc v PureThink, LLC, 480 ESupp.3d 1071 (N.D. Cal. Aug. 20, 2020). 196-97,206
Neo4j, Inc. v PureThink, LLC, No. 5:18-CV-07182-EJD, 2021 WL 2483778

(N.D.Cal. 18 May 2021) ..ottt ettt et 206

XXXVi TABLE OF CASES

New Kids on the Block v News Am Publ’g, Inc, 971 E2d 302, 308 (9th Cir.1992)......... 205
Nissen Trampoline Co v Am Trampoline Co, 193 E. Supp. 745, 129 USPQ 210

(SD.TOWA 1961) . ottt ettt e e 197
Oracle Am., Inc. v Google LLC, 750 E3d 1339 (Fed. Cir.2014) 76

Oracle America, Inc. v Google, Inc., 872 F. Supp. 2d 974 (N.D. Cal. 2012),
revd and remanded, 750 E3d 1339 (Fed. Cir. 2014), cert. denied,

135S, Ct. 2887 (2015). o ottt e ettt 5,76,410-11
Oracle America, Inc. v Google LLC, 886 F3d 1179 (Fed. Cir.2018) 76
Polaroid Corp v Polarad Elecs Corp, 287 E2d 492,495 (2d Cir. 1961). 194
Sega Enterprises Ltd v Accolade Inc., 977 E2d 1510 (9th Cir. 1992) 80,209
Sebastian Int’] Inc v Longs Drugs Stores Corp, 53 E3d 1073, 1076 (9th Cir. 1995). 199
Shain Inv Co v Cohen, 443 N.E.2d 126, 129 (Mass. App. Ct. 1982) 201-2
SoftMan Products Co., LLC v Adobe Systems, Inc. (2001) 171 ESupp.2d 1075 26-27

Software Freedom Conservancy, Inc. v Vizio, Inc. Case No. 8:21-cv-01943,
Notice of Removal of Action to Federal Court (C. D. Cal. 29 November 2021)

(Vizio federal Case).ottt et ettt ettt e e e e et 106
Sound View Innovations, LLC v. Facebook, Inc. Case No. 1:16-cv-00116-RGA

(D.DeEL.2019) oot 250-51
Sound View Innovations, LLC v Hulu, LLC, Case No. 2:17-cv-04146-JAK-PLA

(CoD.Cal. 2007 o oottt ettt e e e e e e e e 250-51
Sound View Innovations, LLC v Sling TV LLC, Case No. 1:19-cv-03709-CMA-SKC

(D. COL2019) e e e e 250-51

Sound View Innovations, LLC v Hulu LLC, Case: 19-1865 (Fed. Cir. 2 July 2020)... . .. 250-51
St. Denis Parish v Van Straten, Cancellation No 92051378,2011 WL 5014036,

at*4 (TTAB 28 September 2011) ooutiin i 202
State Street Bank & Trust v Signature Financial Services 149 F.3d 1368

(Fed Cir 1998) cert denied; 525 U.S. 1093 (1999) . . .+ oo 219-20
Tiffany (N]) Inc v eBay Inc, 600 E3d 93,102 (2d Cir.2010)ovvueninnnn... 205
UMG Recordings, Inc. v Augusto 628 E3d 1175 (9th Cir. 2011) 26-27
United States v. Arthrex, Inc., 594 U.S._,141S.Ct. 1970 (2021)connn... 250-51
Universal City Studios, Inc. v Corley 273 E3d 429 (2nd Cir.2001) 10
Vernor v Autodesk, Inc., 621 E3d 1102, C.A.9 (Wash).),2010 26-27

Vizio federal case (Software Freedom Conservancy, Inc. v Vizio, Inc.
Case No. 8:21-cv-01943, Notice of Removal of Action to Federal Court

(C.D.Cal. 29 November 2021)) . ..o vu ettt it 106
Vizio state case (Case No. 30-2021-01226723-CU-BC-CJC (Cal. Super. Ct.,

Orange County, filed 19 October 2021))oovtii i 106
Wallace v Free Software Foundation Inc. (case no. 1:05-cv-00618-JDT-TAB) 126-27,372
White-Smith Music Publishing Co. v Apollo Co.,209 US1(1908) 72-73
Wofford v Apple Inc. (2011)(Case No 11-CV-0034 AJB NLS— unreported)............. 6
XimpleWare v Versata, Case No. 3:13cv5160 (N.D. Cal. 2013).oneennn. 249-50

Zino Davidoftf SA v CVS Corp., 571 FE3d 238,243 (2d Cir.2009)o v 200

Table of Legislation

EUROPEAN UNION

Decisions

COMMISSION DECISIONS
Decision C(2008) 764 final of

27 February2008 377
Google Decision C(2018) 4761
final 0f 18.7.2018............. 373-74
paras1038-1046.................. 373
paras1114-1154.................. 373
paras 1398-1399.................. 374
Monti decision, Case COMP/C-3/37.792,
Decision of March 2004 374,377

Oracle/Sun Microsystems, Case
No. COMP/M.5529, Decision

0f21/01/2010 373,380,381-82
EPO BOARD OF APPEAL DECISIONS
Computer program I/IBM

(T1173/97) e 218
Computer program II/IBM

(TO935/97) .o, 218
Hitachi Decision T 03/0258........... 219
Ricoh Decision T 03/0172............ 219
Directives

Directive 71/305 co-ordinating

procedures for the award of

public works contracts........... 432
Directive 77/62 in relation to public

supply contracts 432
Council Directive 91/250/EEC of

14 May 1991 ‘on the legal

protection of computer

programs’ (OJ L122/42,17.5.1991),

codified in 2009, as Directive

09/24/EC (OJ L111/16, 5.5.2009)

(Software Directive). 3-4,5-6,72
Art1(1) oo 4
APE1(2) oo 229
Art4(1)(b). oo 23
Artd(1)(C) .o 26
Artd(2) .o 27

Art5. . 228
AFES(1) oo 16
AFE5(2) oo 16
AFE5(3) e 16
Art6. . o 228
AFEO(1) oo 16
Art6(1)(b)..vvveiii 29
Directives 92/50/EEC (Public Services
Contracts)ooo.... 432-33
Directive 93/36/EEC (Public Supply
Contracts)covvunn. 432-33
Directive 93/37/EEC (Public Works
Contracts) 432-33

Directive 96/9/EC of the European

Parliament and of the Council

on the legal protection of

databases [1996] OJ L77/20. . ..527-28
Directive 01/29/EC ‘on the

harmonisation of certain aspects

of copyright and related rights in

the information society’

(OJ L167/10, 22.6.2001)

(Information Society Directive). .. .23
Art1(2)(@) . oo oo 5-6
Art3 .. 27
Art5. . . 16-17
ATt6(4) oo 5-6

Directive 2002/21/EC of the European
Parliament and the Council of
7 March 2002 on a common
regulatory framework for electronic
communications networks and
services 2002 OJ L108/33 (the
Electronic communications

Directive 2003/98/EC of the European
Parliament and of the Council on
the re-use of public sector
information [2003] OJ L345 as
amended by Directive 2013/37/EU
of the European Parliament and
of the Council [2013]......... 527-28

XXXviii TABLE OF LEGISLATION
Directive 2004/17/EC of the European
Parliament and of the Council
of 31 March 2004 coordinating
the procurement procedures of
entities operating in the water,
energy, transport and postal
services sectors [30 April 2004]
OJ L134/1 (The Utilities
Directive).coooin... 432
Directive 2004/18/EC of the
European Parliament and of the
Council of 31 March 2004 on
the coordination of procedures
for the award of public works
contracts, public supply contracts
and public service contracts
[20 April 2004] OJ L134/114
(The Public Sector Directive),

recast2014......... 432, 434-35,439,

445,446, 451-52
AF1(9) oo 436
AFE23 e 442
ATE53 . 441
ATt67(2) oo 451-52,453

Directive 2004/48 [of the European
Parliament and of the Council

of 29 April 2004 on the

enforcement of intellectual

propertyrights 225
ATE2(1) oo 105

Directive 2006/114/EC of the
European Parliament and of the
Council of 12 December 2006
concerning misleading and
comparative advertising (2006)
(Advertising Directive) 205
Artd ..o 205
Directive 2007/66/EC of the European
Parliament and of the Council
of 11 December 2007 amending
Council Directives 89/665/EEC
and 92/13/EEC with regard to
improving the effectiveness of
review procedures concerning
the award of public contracts
[20 December 2007] OJ L335/31
(The Remedies Directive) 432
Directive 2009/24/EC of the
European Parliament and of the
Council of 23 April 2009 on the
legal protection of computer

programs’ Official Journal of the

European Union, L 111/17,

no. 11 (5May 2009) 75t,75-76
Directive 11/83/EU on consumer

rights (O] L304/64, 22.11.2011)

Recital 19.o 6
Art5(1)(h) ..o 6
Art6(1)(S) oot 6

Directive 2012/28/EU ‘on certain
permitted uses of orphan works’
(0JL299/5,27.10.2012). 17
Directive 2014/23/EU of the
European Parliament and of the
Council of 26 February 2014
on the award of concession
contracts [28th March 2014] OJ
1L94/1 (Concessions Directive)432

Directive 2014/24/EU of the European
Parliament and of the Council of
26th February 2014 and repealing
Directive 2004/18/EC on Public
Procurement [28 March 2014]

OJ L94/65 (Public Procurement

Directive) 432,433
Pt3 . 436-37
Art2(1)(5) . oo 437
Artd. ..o 432
Art7 .o 436-37
Art8. . 436-37
Artl2. .. 436-37
Art15(2) oo 436-37
AFt15(3) oo 436-37

Directive 2014/25/EU of the European
Parliament and of the Council of
26 February 2014 on procurement
by entities operating in the water,
energy, transport and postal
services sectors and repealing
Directive 2004/17/EC [28 March
2014] OJ 1L94/243 (Utilities
(Sectors) Directive). 432,436-37

Directive (EU) 2015/2436 of the
European Parliament and of the
Council of 16 December 2015
to approximate the laws of the
Member States relating to trade
marks (Trademark Directive)
Art4(c). oo 189

REGULATIONS
EC Merger Regulation no. 139/2004 .. .378
Council Regulation (EC) 428/2009
(EU Dual-Use Regulation) (as
amended, including by Council
Regulation (EU) No 1232/2011) ... 279
AnnexIol 279
Regulation (EU) 2016/679 of the
European Parliament and of
the Council on the protection
of natural persons with regard
to the processing of personal
data and on the free movement
of such data (General Data
Protection Regulation) [2016]
OJL119 (GDPR)......... 323-24,528
Art4(l) oo 528
Regulation (EU) 2017/1001 of the
European Parliament and of the
Council of 14 June 2017 on the
European Union trade mark
(EU Trademark Regulation)

ATtOR)D) e 186, 195

ATEI2)(C) e, 186,195

ATE74 . o 192

AMt83(2) oo 191-92
FRANCE

Code des Marchés Publics (Code of
Public Procurement Contracts)

ArtR211-7 ... 446
Art6,IV.. ... ool 450-51
Intellectual Property Code
ArtL121-2.. ... oo, 11
ArtL121-4 ool 11
GERMANY
Civil Code
$s305€etsequ. .o 130
S305. .. 130
S307 oo 130
$309 . 130
Copyright Act
SO 133-34
GWB (Act Against Restraints of
Competition)
SO7(1)e e 445
VGV Vergabeverordnung

(Procurement Order)............ 445

TABLE OF LEGISLATION XXXiX

VOL/A Vergabe-und Vertragsordnung
fiir Leistungen, Teil A (Procurement
Order applicable to services) 445

ITALY

Codice del’TAmministrazione
Digitale’ DIgs no 82/2005

Artdo 447
Art6.1 ..o 447
Art6.2 ..o 447
Art6.4 ... 447
Art5. . o 447
Art68. .. 447
Constitution of Italy (1947)
Art117... 0 448
POLAND
Constitution of Poland (1997)
Art32. .. 448-49
Law of 29 January 2004 on
Public Procurement Dz U
22019,r,poz1843............... 449
Art7 . 449

Law of 11 September 2019 on
Public Procurement Dz U

22019poz2019................. 449
SPAIN

Ley 11/1986 de Patentes.............. 217

Artd. ..o 217-18

UNITED KINGDOM

Primary legislation
Copyright Designs and Patents
Act1988(CDPA) ...t 4
ChIV ..., 11
ST12(2) e 16
SS16-21 ... 75t
SI18(3) et 26
s21(3)@b) .o 23
S20 80
$S50A-50C 80
SST77-89 11
ST7(2) v e 12-13
S 78 12
S87(2) e 11-12
S88 13-14

xl TABLE OF LEGISLATION

SO 11-12
S104 ... 12
S2967ZB 5-6
Data Protection Act2018............. 528
European Union Withdrawal Act 2018
S e 455-56
Freedom of Information Act 2000 526
Freedom of Information (Scotland)
Act2000.o 526
Patents Act 1977 (as amended
1October2014) 217
S20 i 18
§36-2(2) . 229
SO0 .t e 214
Public General Acts 1911
Cldb. o 72-73
Ptl .. 72-73
ST)A) e 72-73
Trade Marks Act 1994
SA5 18
Secondary legislation
Environmental Information
Regulations 2004 526
Export Control Order 2008
Sch2. . 278
Sch3. ... 278,279
Public Contracts Regulations 2015
SI2015/102 .. .o 455

Public Contracts (Scotland)
Regulations 2015 S12015/446. 455
UK Statutory Instruments 1992
No. 3233 The Copyright (Computer
Programs) Regulations 72

UNITED STATES

America Invents Act of September
2011, HR 1246 (112th), now
Public Law 112-29, Statutes at
Large, 125 Stat. 284 through

125 Stat. 341 (2012) 244,245-46
Constitution of the United States (1787)

First Amendment................... 9
Consumers Legal Remedies Act......... 6
Copyright Act1980 72
Copyright Law 17 USC (2010)

SI10L...oooii 89,133-34

SI106. .. e 75t
Digital Millennium Copyright Act

(DMCA)(1998). ...\ vveenn. .. 90-91

Hart-Scott-Rodino Act 1976 378
Patent Act— 35 USC
Artl12. ... 254
Revised Uniform Partnership
Act1997. .. i 201-2

Trademark Act of 1946, as amended,
15 USC (2018) (Lanham Act). 186

§1052(e)(1). v 189
§1125(2) « v 186, 195
ST126(€) « v 190
S1127 . 191-92
STI29. .. 210
US Tax Code
S50Ic3 . 388
US Code (US.C.)
15USCS1125(a) ovvvnvvnvnnnnn.. 186
15 US Code § 2301(1) (1975) 91
17USCS§101.......... 4,23,89,133-34
17USC§102. ..ot 72-73
17U0SCS102(b) ..oovvvenviinn 16
17U0SCS105. ...ttt 16,463-64
17USCS106....coveeeeiiiiaae 75t
17USCS106(2) v, 23
17USCS106Aoiet. 11
17U0SC$§107......... 16-17,78-79, 80
17USCS§109() « v, 26
17USCS117. oo 16
17USCS1201......ocoeinn. e 90-91
17USCS§ 1201(E)(1) ..o veenen.. 29
17USCS§1204. ... 5-6
35USCS101...vveeennnn... 217,220
35USCS103.....vvvnnnnt. 217,220
35USCS 112, ... 220,254
35USCS271(a) oo, 214
35U0S8C§302......oinvin.. 245-46
US Code of Federal
Regulations (CFR)
48 CFR,Chapter1 462
48 CFR, Chapter 1,§2.101 462
48 CFR,Chapter2 462
Visual Artists’ Rights Act 1990 11
Regulations
Defense Federal Acquisition
Regulations (DFARS). 462-63
Export Administration
Regulations (EAR) 276-78
Federal Acquisition Regulations
(FARS) . ..o 462-63

International Traffic in Arms
Regulations (ITAR) 276

INTERNATIONAL
INSTRUMENTS

(alphabetical list)

Aarhus Convention (1998) 526
Agreement on Government Procurement
(GPA)(1979) and (2014) 431,456
Agreement on Trade-Related Aspects
of Intellectual Property Rights

(TRIPS Agreement)
APEO(1) oo 13
AFEO(2) e 16

Agreement on a Unified Patent

Court, UPC/en 34 n. 1

(19 February 2013). .. 217-18,224-25
Berne Convention for the Protection

of Literary and Artistic Works

(9 September 1886; as revised

through 28 September 1979). 11,
13,74, 75t,302,501-2

Art2(3) oo 23
Artébis(a) 11
ATE7(1) oo 16
Art8. . o 75t
Art9 .. 75t
N 1 75t
Art11bis......cooviiiiiinn... 75t
Artllter......ooooiiiiiii .. 75t
Art12. .o 75t
Artld. . ..o 75t

Charter of Fundamental Rights of
the European Union (2007)
Artll...oooooiiiiiiii 9

Convention for the Protection of
Human Rights and Fundamental

Freedoms (1950)
Art10. ... 9
First Protocol, Art1 9
Council of Europe Convention on
Cybercrime (2001)
Art32(@) ... 15-16
European Patent Convention (EPC). .. .217-55
Art52. . 217
Art52(2) v 218-19
Art52(2)(C) e 16
ATt52(3) oo 218-19
Art83 ... 254

TABLE OF LEGISLATION xli

General Agreement on Trade in

Services (GATS) 431
General Agreement on Tariffs and
Trade (GATT).................. 431

Nice Convention Concerning the
International Classification of
Goods and Services For the
Purposes of the Registration
of Marks, 14 June 1957, as last
revised at Geneva, 2 October
1979,550 UNTS45. 190

Paris Convention for the protection of
industrial property of March 20,
1883, as revised at Brussels on
14 December 1900, at Washington
on 2 June 1911, at The Hague on
6 November 1925, at London
on 2 June 1934, at Lisbon on 31
October 1958, and at Stockholm
on 14 July 1967, 828 UNTS 305

(Paris Convention)............... 193
Art6bis. ... 190-91
Art6septies........... ... 193

Protocol Relating to the Madrid

Agreement Concerning the

International Registration of

Marks, adopted at Madrid, 27 June

1989, asamended on 3 October

2006, and on 12 November 2007. ... 191
Treaty on European Union (TEU) 438

Art3(3) oo 431

Treaty on the Functioning of the

European Union (TFEU). 432-34,

438, 465-66
Pt3 ... 431
TitleI ..o 431
Art26... ...l 431
Art27...o o oo 431
Art102.... ... 370-71

TRIPS Agreement see Agreement
on Trade-Related Aspects of
Intellectual Property Rights

WIPO Copyright Treaty (1996)5-6,26

Art2. . 16
Artd ..o 3-4
ALE6(2) oo 26
Art8 . . 27

Introduction

Amanda Brock, Editor

‘Never doubt that a small group of thoughtful, committed citizens can
change the world: indeed, it’s the only thing that ever has’
American Cultural Anthropologist, Margaret Mead

It has been a true privilege to be part of a small group of thoughtful, committed
citizens (which grew to be a big group) over the fourteen years since I first stum-
bled into Open Source by joining Canonical, in February 2008. Open Source is
undoubtedly changing the world through collaboration, and the community gen-
erated from this collaboration is special to me.

I use the word community a lot. If you wonder what I mean by it, I am refer-
ring to the ecosystem of people working and contributing to Open Source software
codebases and their environments. Tolerance and understanding sit at the heart of
community. It is certainly at the heart of our Open Source legal and policy com-
munity and most definitely my Open Source community, a group of people, ever
increasing, who have become an extended family to me, working collaboratively to
ensure the sustainability of our technology ecosystem.

Most of those I asked to contribute agreed to write for this book. None of them
were paid. They have deep expertise and I am humbled to edit their work. I am
extraordinarily grateful.

None of them are your lawyers and none are giving you legal advice. They have
shared the benefit of years of experience and hard work. I hope that you will find
this book helpful, but it cannot be a substitute for you taking legal advice when you
need it. Also, each author has written their individual contributions and none have
reviewed or endorsed the others. End of disclaimer ;-). Please use the book freely
and I hope it helps you to collaborate and build great things.

The first edition, edited by Noam Shentov and Ian Walden, was an inspiration
and has allowed us to expand this edition into a more global text. Their work at
Queen Mary, my alma mater, is greatly appreciated. Thanks to Oxford University
Press for recognising the need for this publication in its first edition.

The excitement of having the Vietsch Foundation fund this book being open ac-
cess is hard for me to express. I could not be more grateful to them and to NLNet’s
Michiel Leenars, for helping me to find that funding. Thank you both. This book
being open access is a gift to anyone who wishes to teach Open Source. Herein lies

xliv INTRODUCTION

your curriculum for the non-coding aspects of Open Source. There is no better
source today. There is no similar text. It is also a gift to communities and businesses
on their journey through Open Source maturation and learning how to curate
their Open Source software.

This book is a one-oft. It would take decades to pull together the experience to
create a similar work. I will not edit a third version alone, as I could never have
foreseen the scale of work involved, and any future versions will be edited with
co-editors only.

Thank you to all of the Open Source projects who have allowed us to use their
logos for the cover. I love that we were able to make this happen.

1
Open Source as Philosophy, Methodology,

and Commerce
Using Law with Attitude
Ian Walden

1.1 Introduction 1 1.4 ‘Open’ What? 21
1.2 The Legal Treatment of Software 2 1.4.1 Modifications 23
1.3 Open Source as Philosophy and 1.4.2 Distribution 26

Politics 7 1.5 Open Source as Development

1.3.1 Freedom of expression 8 Methodology 30

1.3.2 Moral rights 11 1.6 Open Source as Commerce 30

1.3.3 The public domain 15 1.7 Enforcing Open Source 31

1.3.4 Open Source policies 18 1.8 Open Futures 32

1.1 Introduction

Software (in my opinion) is the really clever bit of computing! Software is much,
if not most, of what we know as the information and communications technology
(ICT) industries. Software commonly comprises two written forms: source code
and object code.! Source code is the language in which computer programs are
generally written and which is then compiled into machine-readable object code
for use by the processor, either in a form distinct from the hardware or incorpor-
ated into it, i.e. firmware. There are numerous programing languages structured
at differing levels of abstraction, representing different generations of programing
language. The conversion between source code and object code cannot be easily
inverted, and this acts as an effective control over the use made of object code (for
interpreted languages, the source code can be obfuscated, meaning that although it
still runs, it is more difficult for a human to understand it). As a consequence, ‘trad-
itional’ commoditised proprietary software has been distributed in object code
form, rather than source code, rendering modification of the software difficult.

! Although the popularity of so-called interpreted languages such as Python which is executed dir-
ectly from the source is increasing significantly.

lan Walden, Open Source as Philosophy, Methodology, and Commerce In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © lan Walden 2022. DOI: 10.1093/0s0/9780198862345.003.0001

2 IAN WALDEN

The free and open source software movements (collectively referred to as ‘Open
Source’) subverts this traditional industry model by providing access to the ori-
ginal source code for the user. Such access enables further development of the
software, amending the existing code or writing new lines of code, for personal
or public benefit. The motivations of those that pursue an ‘Open Source’ approach
to software vary considerably, encompassing political, philosophical, and ethical
agendas as much as simple pragmatism. While acknowledging and examining this
spectrum of motives, the editorial stance of the book is one of attempted neutrality
in order to understand and analyse the phenomenon of ‘Open Source’ as a legal
construct.

The central fact of Open Source, the fact that justifies this book, is that
maintaining control over source code relies on the existence and efficacy of intel-
lectual property (IP) laws, particularly copyright law. Copyright law is the primary
statutory tool that achieves the end of openness, although implemented through
private law arrangements at varying points within the software supply chain. This
dependent relationship is itself a cause of concern for some philosophically in fa-
vour of ‘open, with some predicting (or hoping) that the free software movement”
will bring about the end of copyright as a means for protecting software.?

This book examines various policies, legal, and commercial aspects of the Open
Source phenomenon. For our purposes, Open Source is adopted as convenient
shorthand for a collection of diverse users and communities, whose differences can
be as great as their similarities. The common thread is their reliance on, and use of,
law and legal mechanisms to govern the source code they write, use, and distribute.

This chapter has three main objectives. First, to introduce the subject matter,
Open Source, the environment, and many of the themes that are examined and
analysed throughout this book. Second, the relationship between copyright law
and Open Source is scrutinised, mapping areas of common cause and tension, as
well as areas of legal uncertainty, from both a theoretical and practical perspec-
tive. Finally, the chapter is a study of how private law arrangements can be used
to achieve outcomes that diverge from that intended for the applicable public law
regime: using law with attitude.

1.2 The Legal Treatment of Software

Before embarking on an analysis of how Open Source is used by software devel-
opers and communities, it is necessary to consider the legal treatment of software
from a generic perspective, under IP laws and within the wider legal framework.

2 Eben Moglen, ‘Anarchism Triumphant: Free Software and the Death of Copyright’ in N Elkin-
Koren and NW Netanel (eds), The Commodification of Information (Amsterdam: Kluwer Law inter-
national, 2002) 107-31.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 3

Open Source proponents utilise private law mechanisms, i.e. licences (the legal
nature of a licence can vary, as contracts or bare licences, which is examined fur-
ther in Chapter 3)* and contracts, operating within established public law frame-
works such as copyright, patent, and contract law to achieve a particular desired
outcome. For our purposes, ‘public law’ is used differently from the traditional
concept concerning the relationship between a state and its people. Here, it encom-
passes legal regimes that govern relationships between people, both within and be-
tween jurisdictions.* These regimes not only grant legal validity and enforceability
to the private law mechanisms but also directly intervene to influence the use of
these mechanisms, prohibiting certain practices, for example, and making deter-
minations about certain conduct.

Uncertainties about how the public law will treat certain industry practices,
including those of the Open Source community, are highlighted throughout the
book. They include whether software should be treated as a good or a service, what
constitutes a modification, whether usage is governed by contract or bare licence
and whether that mechanism results is a transfer of ownership or a right to use.
These questions are sometimes answered through legislative provision or judicial
interpretation, but rarely without generating further areas of doubt. A private law
instrument may itself be expressed in language that can deliberately or acciden-
tally include terms that go beyond what is recognised or acceptable in public law
but which reside unchallenged and unenforceable, or terms which are interpreted
differently by different people or groups through inference or philosophical bent.>
Collectively, such legal uncertainties can have a negative impact on technical and
commercial innovation and development in the ICT industries. As such, one aim
of the book is to try and address some of the uncertainties that surround Open
Source.

In the early days of computing, software was distributed free with hardware, be-
coming a commodity only when it became liberated from the hardware on which
it operated.® With the emergence of software as a discrete item, an issue arose as
to the most appropriate regime within IP law under which to protect it. The three
leading possibilities were patent law, due to its industrial nature; copyright law, as
a form of expression, or the establishment of some sui generis regime that reflected
the unique features of software.” The law of confidentiality and trade secrets were

3 This chapter uses this term in a non-specific manner.

* This includes regulatory and judicial law-making, as well as international and EU law.

5 See, e.g., M Herman and] Montague, ‘The elephant in the room: Patent value and FOSS, paper
presented at the AIPLA Spring Meeting, San Francisco, CA, April 2011. Available at <https://docplayer.
net/8677141-The-elephant-in-the-room-patent-value-and-open-source-software-michele-herman-
davis-wright-tremaine-llp-and.html> accessed 21 July 2022.

¢ M Schellekens, ‘Free and Open Source Software: An Answer to Commodification?” in L Guibault
and B Hugenholtz (eds), The Future of the Public Domain: Identifying the Commons in Information Law
(Amsterdam: Kluwer Law International, 2006), at 309.

7 See, e.g., the WIPO ‘Model Provisions on the Protection of Computer Software, adopted in 1977.

4 IAN WALDEN

also considered (as discussed later in this chapter). Copyright eventually won the
argument, with computer programs being accepted as a form of ‘literary work}?
although with some jurisdictions adopting a sub-set of sui generis rules to reflect
some of the unique issues raised by software.’

What comprises ‘software’ or ‘computer programs, however, often remains less
clear.!® As noted earlier, software is generally expressed in two forms, source code
and object code, the latter being a ‘translation’” of the former, but both being pro-
tectable subject matter. As with other areas of law, some jurisdictions attempt to de-
fine the concept in law,!! some extend it beyond the source and object code,!? while
others are content to leave it for the courts to interpret on the basis of standard
usage.!? The European Court of Justice (ECJ]) examined the scope of the term in
SAS Institute Inc. v World Programming Ltd.,'* holding that a ‘computer program’
does not extend to the functionality of a program, the programing language, or the
format of data files, although the latter two may be copyrightable works in their
own right (paras 29-46). In not protecting the functionality of a program, the law is
constraining the scope of copyright law, which is supportive of an ‘open’ approach
to the treatment of software as a tool. While the court distinguishes between a pro-
gram and the language in which it is written, the latter often now come in the form
of a program and numerous Open Source programing languages have been devel-
oped, such as Python and Ruby, themselves licensed under Open Source licences.®

As the software industry developed and while uncertainties continued to exist,
software developers tended to rely on trade secrets law and contract as the preferred
mechanisms for protecting their investment. With the clarification and strength-
ening of the copyright regime, from the mid-1980s until recently, the software in-
dustry has relied on copyright law and licences as the primary means for governing
the use of their software assets. Limitations within copyright law, however, have
seen people look to patent law as offering an alternative strategy for protecting and
exploiting their software (see further Chapters 10). These legal mechanisms have
been supplemented by technical controls that enable rights holders to further con-
trol the use of their work.

8 WIPO Copyright Treaty, art 4. See also the Commission Green Paper, Copyright and the Challenge
of Technology, COM(88) 172 final.

¥ For example, Council Directive 91/250/EEC of 14 May 1991 ‘on the legal protection of computer
programs’ (OJ L122/42, 17.5.1991), codified in 2009, as Directive 09/24/EC (OJ L111/16, 5.5.2009),
herein referred to as the ‘Software Directive’

10 Tn this chapter, ‘software’ and ‘computer programs’ or ‘programs’ are used interchangeably.

1 For example, US law, at 17 USC § 101.

12 For example, Software Directive, at art 1(1), includes ‘their preparatory design material’

13 For example, Copyright Designs and Patents Act 1988 (CDPA).

14 Case C-406/10, 2 May 2012. See also Case C-393/09 Bezpecnostni softwarovd asociace [2010]
ECRI-0000, at paras 34-41. See the application of the European Court of Justice (ECJ) decision in SAS
Institute Inc. v World Programming Ltd [2013] EWHC 69 (Ch).

15 Note that compilers, which convert source code into object code, are also program(s) with Open
Source versions, such as Open64.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 5

Legal uncertainties continue to exist for the software industry from the oper-
ation of the copyright regime: some are general to copyright law, such as the scope
of usage exceptions; some from the application of the general rules to the specifics
of software, such as its treatment as a collection, compilation, or database; while
others arise from the sui generis rules, such as the right to decompile and the ap-
plicability of copyright to application programing interfaces (APIs).!®* What com-
prises copying in a software environment has generated challenges for copyright
law particularly in respect of ‘non-literal’ copying. Code may be written using dif-
ferent programing languages, enabling a person effectively to copy the internal
‘structure, sequence and organisation’ of another work and/or its external look
and feel}!” without copying the form of expression. In some cases, such practices
have been held to constitute infringement, while in others, the courts have held
that a merger between idea and expression has taken place, rendering the subject
matter unprotectable.!® Current industry developments may also result in a shift
away from copyright and patent law and back towards reliance on contract and
trade secrets. Cloud computing and Software as a Service (SaaS) becoming the
norm has enabled applications to be accessed via networks, meaning that suppliers
no longer need to give users either the source code or object code for the programs
they use (see further Chapter 9).

The debate also continues to ebb and flow with regard to the patentability of
computer programs, with the US and Europe exhibiting differing attitudes towards
the issue (see further Chapter 5 at section 5.1). As most Open Source licences em-
anate from the US, which has a liberal approach to software patenting, one conse-
quence is that these licences have increasingly had to devote space to addressing
patent rights, to ensure that the ‘open’ objectives continue to be maintained. Many
within the Open Source community exhibit a greater dislike towards patents, than
towards other forms of IP. There have been public campaigns seeking to prevent
or end software patenting, for which parallels do not exist concerning copyright.!®
As such, contentious debates in some areas relating to Open Source, such as stand-
ards, often appear motivated primarily by an objection to patents rather than copy-
right (see further Chapter 11).

Another area of controversy within copyright has been the role of technology
itself as a mechanism for controlling the use and abuse of software. Technological

16 Oracle America, Inc. v. Google, Inc., 872 FESupp.2d 974 (N.D. Cal. 2012), rev'd and remanded, 750
E3d 1339 (Fed. Cir. 2014).

17 C Millard, ‘Copyright in Information Technology and Data’ in C Reed (ed), Computer Law, 7th
edn (Oxford: Oxford University Press, 2011), at 7.5.

18 Millard, ‘Copyright in Information Technology and Data) see note 17. See also Oracle America, Inc.
v Google Inc. (2012) 872 E.Supp.2d 974.

19 Note also that the Pirate Party has campaigned for significant curtailment of the term of copyright,
however, in the case of all material, not just software. This has caused Richard Stallman (founder of the
Free Software Foundation) to argue against this policy as it relates to software, for which he is in favour
of either maintaining longer terms for free software, or establishing a sui generis right, in order to en-
sure that GPL-style copyleft continues to work.

6 IAN WALDEN

protection measures (TPM), from ‘dongles’ to bit-encryption, together with
Digital Rights Management (DRM) techniques, emerged with the growth of the
software industry as a potentially powerful tool in the armoury of rights holders
trying to stem burgeoning, industrial-scale infringement. In the 1996 World
Intellectual Property Organization (WIPO) Treaty, such techniques were granted
legal recognition and protection under international copyright law,2° appearing
in national laws often in the form of criminal prohibitions.?! Proponents of Open
Source, particularly within the free software movement, have been highly critical
of TPM/DRM technologies and their use to constraint end-users, especially where
the controls extend beyond that granted to rightsholders under copyright law.?2
In Europe, such concerns were successfully raised with policy-makers, who pro-
ceeded to place TPM under legal controls designed to limit their abuse.?®> While the
provisions have been heavily criticised for being narrowly drawn, overly complex
to apply, and favourable to rights holders, they do represent some form of victory
for Open Source proponents.

Distinct from the governance of software through IP laws, software is devel-
oped, supplied to users, bought and sold as an asset, and comprises part of almost
all modern commercial activity. These activities are generally governed through
contractual agreement between the various parties, whether business, consumers,
or public administrations, either distinct from, or incorporating, any IP licence
terms. While such agreements are primarily established by one or other party or
negotiated, certain mandatory rules of national law will shape these agreements
and, indeed, generate their own uncertainties. As with the initial doubt over which
IP regime should apply to software, there has been an ongoing debate, in both
Europe and the US, about how software supply contracts should be characterised,
as a sale of goods or services or both, or some sui generis category, and the implica-
tions this determination has for the rights and remedies of the user and the obliga-
tions of the supplier.>* European consumer protection rules, for example, impose
an obligation to supply any available information about interoperability between
software and ‘digital content, which includes computer programs.?®

20" Arts 11 and 12 respectively.

2l For example, in the US, 17 USC § 1204 and in the UK, CDPA, s 296ZB.

22 For example, <http://www.defectivebydesign.org/> accessed 21 July 2022.

2 For example, Directive 01/29/EC ‘on the harmonisation of certain aspects of copyright and re-
lated rights in the information society’ (O] L167/10, 22.6.2001), herein referred to as the ‘Information
Society Directive; at art 6(4). While the Information Society Directive, at art 1(2)(a), does not amend or
affect the provisions under the Software Directive, the TPM provisions would appear to be applicable to
software.

24 For the UK, see, e.g., St Albans City & DC v International Computers Ltd., [1996] 4 All ER 481
and The Mayor and Burgesses of the London Borough of Southwark v IBM UK Ltd [2011] EWHC 549
(TCC). For the US, see Wofford v Apple Inc. (2011)(Case No 11-CV-0034 AJB NLS—unreported),
where the judge held that software was not a tangible good or service for the purposes of California’s
Consumers Legal Remedies Act. See generally the American Law Institute’s Principles of the Law of
Software Contracts, 2009.

%5 Directive 11/83/EU on consumer rights (O] 1L304/64,22.11.2011), at recital 19 and arts 5(1)(h) and
6(1)(s).

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 7
1.3 Open Source as Philosophy and Politics

While this book examines how public and private law is used by Open Source com-
munities and others, such as governments, it is obviously necessary to begin by
understanding why the law is being used in this way: what is the end being sought
by the means? Inevitably, the whys fall along a broad spectrum, some pursuing and
supporting Open Source on the basis of deeply held philosophical beliefs about
how information and knowledge should be treated in society, while others are
more pragmatic, viewing Open Source as a means of creating better software or
reducing costs for users (see further Chapter 2).

If ‘Open Source’ were simply a development methodology, it would not engender
the types of rhetoric which has been deployed by the proprietary software commu-
nity?® and vice versa.?” Even amongst Open Source proponents, the philosophical
underpinnings are viewed as starkly different, Richard Stallman controversially
and possibly incorrectly noting: ‘Open source is a development methodology; free
software is a social movement.?® Open Source has also been described as ‘a kind of
recursive philanthropy’? because of the manner in which participant developers
devote time and energy writing code that they donate to the project community.
Copyleft licences often act in practice to require contributions to be made available
to the community that created the original Open Source software.*® This can be
seen as a legal limitation on a developer’s ability to depart from such philanthropy,
i.e. to change his mind

One recent development in the Open Source field is the issuance of Public
Source modules that are deliberately not made subject to any licence.’! One mo-
tive behind such behaviour is a philosophical rejection of the bureaucratic govern-
ance structures required to make copyright law support Open Source objectives.

26 For example, in 2001, Steve Ballmer, CEO of Microsoft, described Linux as ‘a cancer that attaches
itself in an intellectual property sense to everything it touches’

%7 For example, Richard Stallman: ‘Writing non-free software is not an ethically legitimate activity,
so if people who do this run into trouble, that’s good!’ available at <http://lists.kde.org/?l=kde-licens
ing&m=89249041326259&w=2> accessed 21 July 2022.

28 Richard Stallman, ‘Why open source misses the point of free software, available at <http://www.
gnu.org/philosophy/open-source-misses-the-point.html> accessed 21 July 2022.

2 George Finney, “The Evolution of GPLv3 and Contributor Agreements in Open Source Software’
(2009) 14 Journal of Technology Law and Policy 79-105.

30 Technically, copyleft licences (such as the GPL family) will ensure that, on distribution of software,
its source is made available to the recipient under the same licence. The distribution (and hence the right
to receive the source) may occur privately. None of the major copyleft licences mandates contributions
back to the community (including all of the GPL family, which is partially why GPLv3 is so complex to
ensure the right of private distribution is maintained). Nonetheless, any private recipient of GPL code
can make the source code (and hence those contributions) available to the community; if they so wish.
Further common development practices (such as the use of publicly accessible Git-based instances such
as Github and Gitlab also mean that contribution back to the community happens as a matter of course,
unless they fork the project).

31 Simon Phipps, ‘GitHub needs to take Open Source seriously, Info World, 30 November 2012, available at
<http://www.infoworld.com/d/Open Source-software/github-needs-take-Open Source-seriously-208046>
accessed 21 July 2022.

8 IAN WALDEN

As noted by one commentator: ‘younger devs today are about POSS—Post open
source software. f** the license and governance. More likely this reflects an issue
with GitHub, the dominant repository, not requiring licences and a lack of under-
standing. GitHub has recently sought to rectify this shortfalling with a notice
making clear that no licence means code is not Open Source.>?

As discussed later in this chapter with respect to the public domain, copyright
law cannot be ignored that easily!

Whilst such views may be representative of only a small minority of the devel-
oper community, they may also reflect the entry of the ‘born digital’ generation into
the software industry, many of whom have grown up in an ostensibly copyright-
free environment, where everything and anything is available from somewhere.

It is beyond the scope of this chapter to analyse the differing shades of belief
and motivation that drive those involved in the free and open source movements.
However, given the dependency on IP laws, particularly copyright, the following
sections consider some philosophical dimensions of copyright law of relevance to
the Open Source community, including in the promotion of freedom of expres-
sion, in the protection of the paternity and integrity of works, as well as the rela-
tionship with the public domain. The last sub-section shifts from the philosophical
to the political and examines how Open Source has become incorporated by gov-
ernments into public policy initiatives in pursuit of a range of objectives.

1.3.1 Freedom of expression

One of the most quoted slogans of the free software movement is ‘free’ as in ‘free
speech;, not as in ‘free beer’® To achieve this free speech, copyright law is used to
facilitate reuse new expression through modification and prevent exclusivity. The
term ‘copyleft’ was chosen to denote that the objective of copyright was being de-
liberately turned on its head: ‘the inverse of “right”’3* Copyright is therefore situ-
ated as being antithetical to free speech. This perspective is shared by those that
view the statutory defences to copyright, such as fair use and fair dealing, as mech-
anisms for reconciling free speech with copyright.*®

Yet this has not always been, indeed is not now, the only way of viewing the re-
lationship between copyright and free speech. As noted by the US Supreme Court,
as recently as 1985: ‘it should not be forgotten that the Framers intended copy-
right itself to be the engine of free expression. By establishing a marketable right
to the use of one’s expression, copyright supplies the economic incentive to create

32
33
34
35

See <https://github.com/readme/guides/open-source-licensing> at tl;dr accessed 21 July 2022.
<http://www.gnu.org/philosophy/free-sw.html> accessed 21 July 2022.

‘What is copyleft?’ at <http://www.gnu.org/copyleft/> accessed 21 July 2022.

See, e.g., Patrick Masiyakurima, “The Free Speech Benefits of Fair Dealing Defences’ in P Torremans
(ed), Intellectual Property and Human Rights (Amsterdam: Kluwer Law International, 2008) 235-56.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 9

and disseminate ideas’*® Here copyright is seen as being supportive of free speech
through the granting of exclusive economic rights. Those rights obviously also ex-
clude certain types of speech, but, so the reasoning goes, as long as the totality of
copyright as an ‘incentive to create’ is greater that the effect of the constraint, the
net outcome is beneficial and copyright law can rightly claim to be a tool of free
speech.’” Alternatively, it has been argued that the purpose of copyright should
not be seen as a spur to creativity and a societal distributive mechanism but rather
as a means to ‘affirm the inherent dignity of the author as a speaking being), where
acts of infringement are viewed as compelled speech and defences as enabling the
communicative acts of others.>® Whichever perspective you adopt, this ‘paradox’
between copyright as both an enemy and friend of free speech has been the subject
of ongoing debate.®

Itis also widely accepted that there has been a shift over recent decades in favour
of copyright as constraint. With the emergence of information-based economies,
copyright has become central to the protection of economic value in intangible
information assets. As copyright’s economic importance grew, so did calls for
the regime to be extended and strengthened. Greater prevalence, coupled with
enhanced rights and more effective and dissuasive sanctions, has resulted in nu-
merous examples of copyright being used to chill speech, whether political, art-
istic, or commercial .’

Free speech or freedom of expression is a human right expressly recognised in
most legal systems. In some jurisdictions, particularly the US, free speech is ac-
corded pre-eminent status compared with other rights, such as privacy.!! In
Europe, freedom of expression is granted equal status with other rights, including
the right of property, which includes IP#? As with copyright, freedom of expression
is not absolute, it is limited in scope, and is generally weighed in the balance against
other protected rights and values.*?

36 Harper & Row Publishers, Inc. v Nation Enterprises 471 US 539, 558 (1985). While in Eldred v
Ashcroft (01-618) 537 US 186 (2003), the Supreme Court noted that ‘copyright’s purpose is to promote
the creation and publication of free expression’ (at 219).

37 For a positive view of this trade-off, see RA Cass and KN Hylton, Laws of Creation (Cambridge,
MA: Harvard University Press, 2013). For a negative perspective, see M Boldrin and DK Levine, Against
Intellectual Property (Cambridge: Cambridge University Press, 2008).

3 A Drassinower, ‘Copyright Infringement as Compelled Speech’ in Lever (ed), New Frontiers in the
Philosophy of Intellectual Property (Cambridge: Cambridge University Press, 2012) 203-24.

3 See NW Netanel, Copyright’s Paradox (Oxford: Oxford University Press, 2008) and] Griffithsand U
Suthersanen (eds), Copyright and Free Speech: Comparative and International Analyses (Oxford: Oxford
University Press, 2005).

40 Netanel, Copyright’s Paradox, see note 39, 6.

41 US Constitution, First Amendment, ‘Freedom of Religion, Press and Expression’

42 Convention for the Protection of Human Rights and Fundamental Freedoms (1950), art 10 and art
1 of the First Protocol. See also the Charter of Fundamental Rights of the European Union (2007), arts
11and 17.

43 See, in particular, Ashby Donald and others v France, Appl. Nr. 36769/08, ECtHR (5th Sec.), 10
January 2013, and Neij and Sunde Kolmisoppi v Sweden, Appl. Nr. 40397/12, ECtHR (5th Sec.), 19
February 2013.

10 IAN WALDEN

Source code represents a protected form of expression under both free speech
and copyright regimes. While aligned with literary works under copyright law, its
treatment as a form of expression under a human rights analysis varies consider-
ably, depending on the specific circumstance. Equating source code with speech
has resulted in judicial scrutiny when attempts have been made to constrain the
distribution of source code. During the 1990s, governments sought to restrain the
export of cryptographic software under export control rules; treating such code as
‘dual use, having both civil and military application.** Export rules (see Chapter
12) have long existed, but in relation to physical items rather than intangible infor-
mation. In trying to update these rules for a digital era, they inevitably came into
conflict with free expression rights. In Bernstein v US Department of State,*® the
US Court of Appeals held that the source code of encryption software was expres-
sive speech for the purposes of the First Amendment and that the existing rules,
as a form of prior restraint, violated the protection granted under it. Conversely,
in Universal City Studios, Inc. v Corley,*® an injunction prohibiting website owners
from posting source code enabling the decryption of movies, or providing links to
such code, was considered a permissible constraint on speech.

Where copyright and freedom of expression critically differ as legal regimes,
however, is in the role of private law mechanisms in the delineation and enforce-
ment of the respective rights and obligations of the parties. Contract and licence
are tools of copyright not of freedom of expression, and it is this feature that
renders copyright such a powerful tool, both in the hands of proprietary rights
holders and, now, for those promoting and protecting Open Source, the ‘com-
mons, and ‘free culture’*” While private law is generally viewed as forming a lower
stratum of any legal system, private law engages persons directly in a manner that
the ‘higher’ levels, from the constitution to statutory provision, often fail to do.
People are forced, metaphorically rather than literally, to ‘agree’ to contractual
conditions and a licensee must have notice of the licence terms. Notice and con-
sent are both public law requirements of validity and enforceability for private
law arrangements, but they are also methods for obtaining individual engagement
with the rights and interests of others, even if it is not always supportive. Indeed,
it can be said that it is the private law tools of copyright law which enable the
Open Source community to reassert copyright’s historic role as an ‘engine of free
expression.

4 For example, Wassenaar Arrangement on export controls for conventional arms and dual-
use goods and technologies, ‘List of dual-use goods and technologies’ (December 2019), available at
<https://www.wassenaar.org/> accessed 21 July 2022.

4176 E3d 1132 (9th Cir. 1999).

16 273 £3d 429 (2nd Cir. 2001).

47 See James Boyle, The Public Domain: Enclosing the Commons of the Mind (New Haven, CT: Yale
University Press, 2008) and L Lessig, Free Culture (London: Penguin, 2004).

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 11
1.3.2 Moral rights

To the extent that support for Open Source is driven by moral and ethical concerns,
the moral rights regime within copyright law deserves consideration. As Vélimaki
has noted: ‘One way to look at open source is to see it promoting the original ideals
of authors’ inalienable rights to control the integrity and paternity of their personal
creations’*® This section considers the affinity between moral rights and an Open
Source approach.

While copyright is primarily about economic rights, the Berne Convention also
grants authors certain moral rights in respect of their works; commonly referred to
as the right of paternity or attribution and the right of integrity:

Independently of the author’s economic rights, and even after the transfer of the
said rights, the author shall have the right to claim authorship of the work and to
object to any distortion, mutilation or other modification of, or other derogatory

action in relation to, the said work, which would be prejudicial to his honor or

reputation.®’

Moral rights reflect a belief, originating in Continental European countries,
that an author of a work has interests in the work that ‘transcend the ordinary mo-
tives of commercial gain’*® While recognised in the Berne Convention, the treat-
ment of moral rights varies significantly between jurisdictions.’’ Common law
countries generally elaborate the least comprehensive regimes, with US copyright

law adopting the narrowest statutory conception.>? By contrast, in civil law coun-

tries moral rights are often more extensive than those provided for in Berne.>®

Moral rights exist independently of the economic rights granted under copyright
and are inalienable, generally not capable of being assigned to another,* although
they can usually be waived.>® This independent existence enables a divergence to
appear between the interests of the creator and the owner of a copyright work. Such
divergence has the potential to create problems for governance in an Open Source

8 M Vilimiki, The Rise of Open Source Licensing (Helsinki: Turre Publishing, 2005).

49 Berne Convention for the Protection of Literary and Artistic Works (1886), at art 6bis(a). Inserted
in 1928. Transposed into UK law by Chapter IV of the Copyright Designs and Patents Act 1988,
ss77-89.

50 MT Sundara Rajan, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”?’
(2004) 12(1) International Journal of Law and Information Technology 32-54.

51 See Elizabeth Adeney, The Moral Rights of Authors and Performers: An International and
Comparative Analysis (Oxford: Oxford University Press, 2006).

5217 USC § 106A ‘Rights of certain authors to attribution and integrity} inserted by the Visual
Artists’ Rights Act 1990.

53 For example, the French Intellectual Property Code recognises a right of disclosure (art L 121-2,
‘droit de divulgation’) and a right of display (art L 121-4, ‘droit de repentir ou de retrait’).

** For example, CDPA 1988, s 94.

%5 CDPA 1988, s 87(2) ‘by instrument in writing signed; although contract or estoppel may operate in
respect of informal waivers (s 87(4)). Waiver is not always permissible, e.g. France.

12 IAN WALDEN

software project were certain collaborating creators to try to assert their moral
rights against the entity owning the copyright and exercising control through an
Open Source licence.

The paternity right is bolstered in many copyright systems through the eviden-
tial presumption that the named author is the copyright holder;>® although the
right of paternity must be asserted by the author, in other words brought to the
attention of others, through some means.”” Open Source licences are clearly sup-
portive of the paternity right, especially in respect of acts of redistribution, gener-
ally requiring that any copyright notices be retained, either in copies of the source
code, the original package, or the related documentation.

With respect to modifications, the interrelationship between moral rights and
Open Source is more complex. Indeed, it has been argued that Open Source could
be seen as sundering the traditional link between the integrity of a work and its au-
thor, which historically justified the moral rights doctrine.®® The integrity right is
restricted in scope to modifications and other actions which are ‘prejudicial’ to the
author’s honour or reputation. Non-prejudicial modifications, such as a derivative
work or an ‘adaptation, do not constitute an infringement of the right to integrity,
although the right of paternity continues to exist.”® In common law systems, the
evidential burden in an infringement action will generally lie with the claimant
(i.e. the author) to demonstrate to the satisfaction of a court that prejudice results
from the modification to his work.®® In civil law systems, the courts are more likely
to defer to the subjective view of the claimant author as to the work’s derogatory
treatment.®! Derogatory treatment could relate to the content of the work itself,
i.e. rewritten code, or the context within which the code is placed, for example in-
corporation within a disreputable application, such as a virus. The former would
rarely give rise to a claim, since rewritten code which is poor quality, potentially
damaging the reputation of the original author, is unlikely to be taken up by the
community, the collaborative peer-review nature of Open Source communities
operating as the control mechanism. While actions based on contextual harm
could be constrained by the non-discriminatory rights of use granted with the
work, this would also raise the possibility of disproportionate interference in the
right of free expression, which is a central element of the Open Source movement.
As such, the integrity right is more akin to defamation, which is seen both as an as-
pect of a person’s right to privacy as well as an exception to the right to freedom of

% CDPA 1988,5104.

57 CDPA 1988, s 78.

8 Severine Dusollier, ‘Open Source and Copyleft: Authorship Reconsidered?” (2002-2003) 26
Columbia Journal of Law & the Arts 281-96, at 294.

59 CDPA 1988, 77(2).

60 See, e.g., Confetti Records v Warner Music UK Ltd (t/a East West Records) [2003] EWHC 1274, at
paras 149-157.

6! Tan Eagles and Louise Longdin, ‘Technological Creativity and Moral Rights: A Comparative
Perspective’ (2004) 12(2) International Journal of Law and Information Technology 209, at 234.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 13

expression,®? rather than a mechanism to ‘govern modifications’ akin to the control
paradigm of copyright.®3

The relationship between moral rights and software varies between jurisdic-
tions. Most make no distinction, others tailor the rights with respect to software,%
while under English law, computer programs are specifically exempt from the
moral rights regime.®® Such an exemption is not manifest in the Berne Convention
or other international copyright instruments and has not been followed in other
jurisdictions.®® One suggested reason for exempting computer programs from the
moral rights regime is the dependency of ‘programers being able to build on pre-
existing programs’®’” Protecting integrity, in particular, is therefore seen as a po-
tential obstacle to technical progress and development. This argument, however,
would seem equally applicable to all forms of right that enable control over the
use of information. Another reason given is based on the view that moral rights
are not appropriate for technological or functional works, as opposed to ‘artistic
creations’ or expressive works.%® Such an argument would seem to deny the indi-
viduality that can be expressed through programing or the existence of a distinct
culture that recognises and celebrates ‘elegant’ programing techniques and solu-
tions.® A third argument has been summarised by the European Commission as
follows: ‘serious doubts exist as to the suitability of their [moral rights] application
to works frequently produced collectively, having a technical, industrial, or com-
mercial character and subject to successive modifications.”® As well as expressing
reservations about technical/functional works, the key feature of concern is the
collective nature of the creative process and the extent of modifications to a work
that takes place, common characteristics of Open Source communities (although
also features of closed and proprietary development systems). How could a right of
attribution and integrity operate effectively within such an environment?

On collective attribution, the problem would seem no different in nature from
that applicable to ‘joint authorship’ under copyright law and, indeed, some moral

62 See H Fenwick and G Phillipson, Media Freedom under the Human Rights Act (Oxford: Oxford
University Press, 2006), at 1068-70.

3 G Vetter, “The Collaborative Integrity of Open Source Software’ (2004) 2 Utah Law Review 563—
700, at 663.

¢4 For example, France, IPC, art L 121-7.

65 France, IPC, ss 79(2)(a) and 81(2).

% The Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS Agreement) ex-
pressly states that the moral rights specified under the Berne Convention do not bestow rights or obliga-
tions under TRIPS (at art 9(1)).

7 Sundara, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”? see note 50,
47. See also Vetter, see note 63, at 565, who states that a right of integrity ‘would be counterproductive to
the sequential and successive processes used to develop software’ (663).

% Sundara, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”? see note 50,
at 49 and Vetter, see note 63, at 663.

 For one description of this culture, see P Himanen, The Hacker Ethic and the Spirit of the
Information Age (London: Vintage, 2001).

70 Commission Communication, Green Paper ‘on copyright and the challenge of technology,
COM(88) 172 final, 7 June 1988.

14 IAN WALDEN

right provisions already address such issues.”! Alternatively, while the rights them-
selves may not be assignable, the right to enforce can be delegated to some other
entity,”? which would create greater certainty for both the community and the
users of the code.

On successive modifications, a clear threshold of what constitutes ‘derogatory
treatment’ would be likely to prevent any excessive assertions of a right to integrity.
Indeed, similar to the patent retaliation provisions in Open Source licences (see
turther Chapter 5), any person wishing to assert his right to integrity would first
have to ensure that he is not exposed to any similar such claim from any source
code which he modified in the course of producing his contribution, which may
itself be a significant threshold issue. Alternatively, the concept of integrity could
be recast, shifting the locus of protection from individual modifications to the col-
lective output of the community, integrity being infringed where the ‘open’ nature
of the code is undermined through technical or legal means.

The Open Source Initiative (OSI) is the custodian of the Open Source Definition
(OSD) which refers to source code integrity in the following terms:

4. Integrity of The Author’s Source Code

The license may restrict Source Code from being distributed in modified form
only if the license allows the distribution of ‘patch files’ with the source code for
the purpose of modifying the program at build time. The license must explicitly
permit distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the ori-

ginal software.”

The rationale refers both to the right of users to transparency about whose code
they are using as well as the author’s right to protect their reputation. The right of
attribution is not directly referenced, although the OSI content is itself licensed
under the Creative Commons Attribution licence. However, user transparency can
be seen as the flip side of the right of paternity; viewing the right as an obliga-
tion and retention of attribution notices is a common characteristic of licences ap-
proved by the OSI as meeting the OSD.

Creative Commons licences, which are not designed for code, refer to moral
rights, noting that they are not affected by the licence.” By contrast, the European
Union Public Licence requires the licensor to waive his moral rights, but only ‘in
order to make effective the licence of the economic rights’ provided for under
the licence.”> The Open Database Licence requires the licensor to waive all moral

71 For example, CDPA 1988, s 88.

72 Eagles and Longdin, ‘Technological Creativity and Moral Rights: A Comparative Perspective, see
note 61, at 216.

73 <http://opensource.org/osd-annotated> accessed 21 July 2022.

74 <http://creativecommons.org/licenses/by-nc-sa/3.0/> accessed 21 July 2022.

7> EUPL, v.1.1 (2007), at Clause 2.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 15

rights ‘to the fullest extent possible’ or agree not to assert such rights. If neither op-
tion is permitted by law, the licence cryptically states that ‘the author may retain
their moral rights over certain aspects of the Database, without specifying what
such aspects may be.”® The GNU General Public License (GPL) makes no reference
to moral rights, which reflects its US origins.

It has been argued that moral-type rights should be recast for a digital age, ra-
ther than abandoned or avoided.”” Others have suggested that a distinction could
be made between the application of moral rights to object code and source code,
especially when the former generates an audiovisual work.”® Were moral rights to
be reinvigorated as a category of IP, what impact would it have on the Open Source
community? The answer, as with most legal questions, is it depends! As Ginsburg
notes, should moral rights in a digital age ‘be achieved by conveying more informa-
tion about the copy, or by controlling the copy itself?’”® As noted earlier, the attri-
bution right would seem perfectly aligned with the philosophy of the Open Source
movement, subject only to the need to facilitate collective attribution which is gen-
erally implemented in the code headers. It is with respect to modifications that our
historic conception of moral rights may require recasting to reflect the phenomena
of Open Source.

1.3.3 The public domain

The philosophy of the Open Source community is to make source code widely and
freely available for use. As such, it begs the question: why not place the source code
in the public domain, rather than using the tools of copyright law to achieve the
same ends?

The concept of ‘public domain’ information has a specific meaning within IP
law distinct from the state of the information being publicly available.?’ In at least
one context, the term ‘Open Source” has been used in law as a synonym for publicly
available data, rather than software-related data.®! A ‘public domain’ work is not
subject to any IP rights; it is an alternative state in which information may be. The
literature sometimes confuses these two states. Schellekens, for example, notes that
software in its pre-commodification state ‘belonged to the public domain, which
incorrectly equates free, as in speech or beer, with free as in without IP protec-
tion.®? While Boldrin and Levine describes the Open Source movement as having

76 ODbLVv.1.0, at Clause 5.

77 See, e.g., Jane Ginsburg, ‘Have Moral Rights Come of (Digital) Age in the United States’ (2001) 9(1)
Cardoza Arts & Entertainment Law Journal 9-19, 9.

78 For example, Vetter, see note 63.

79 Ginsburg, ‘Have Moral Rights Come of (Digital) Age In the United States) see note 77, at 17.

80" See L Guibault and B Hugenholtz, The Future of the Public Domain: Identifying the Commons in
Information Law (Amsterdam: Kluwer Law International, 2006).

81" Council of Europe Convention on Cybercrime (2001), at art 32(a).

82 Schellekens, ‘Free and Open Source Software: An Answer to Commodification?; see note 6, at 309.

16 IAN WALDEN
‘relinquished its intellectual monopoly’3® which implies an abandonment of IP
laws rather than their subversion.

There are various reasons why something may not be subject to IP laws. First,
the IP laws that pertain to a particular work can expire. So, for example, copyright
subsists in a literary work for between fifty and seventy years following the death of
the author.3 Differing time periods exist for different forms of IP and in different
jurisdictions, with perpetual protection being possible.®

Second, certain types of information are not considered protectable subject
matter, therefore, a particular IP regime may not apply. Under European patent
law, for example, ‘programs for computers’ are not considered inventions (see fur-
ther Chapter 5, at section 5.1).3¢ While under US copyright law, works of the US
government are not protectable.®” Copyright also protects forms of expression,
rather than the underlying ideas and principles that generate that expression. As
such, ideas fall outside international® and national® copyright regimes and access
to such ideas may require specific statutory protection, as provided for in respect of
computer software under European Union (EU) law.”

Public domain must also be distinguished from exceptions that are carved into
IP regimes. With the latter, the right subsists in the information, but the right
holder is prevented from exercising that right against a particular use made of that
information. In the case of software, for example, European law recognises various
exceptions that permit a lawful user to use the software for error correction or
back-up purposes.®! Specific provision is also made for a lawful user to obtain pro-
tected information i.e. ‘necessary to achieve the interoperability of an independ-
ently created computer program with other programs,”? which was designed to
stimulate competition in the software market.

Use exceptions may be drafted broadly, such as the US concept of ‘fair use,”

or
narrowly list-specific usage scenarios or purposes, as provided for under EU law.>
Copyright exceptions are a topic of ongoing political debate in many jurisdictions,

83 Boldrin and Levine, Against Intellectual Property, see note 37, at 17.

84 The Berne Convention provides for fifty years (art 7(1)), while UK law provides for seventy years
(CDPA 1988, s 12(2)).

85 That is confidential information, as long as it remains secret; trademarks, provided the registration
is maintained and it does not lose its distinct characteristics; and database right, where a substantial
change or investment is made to the contents.

86 European Patent Convention, art 52(2)(c).

8717 USC$ 105.

8 For example, TRIPS Agreement, art 9(2); Copyright Treaty, art 2.

89 For example, 17 USC §102(b): ‘In no case does copyright protection for an original work of author-
ship extend to any idea, procedure, process, system, method of operation, concept, principle, or dis-
covery, regardless of the form in which it is described, explained, illustrated, or embodied in such work’

9 Software Directive, at art 5(3).

91 Software Directive, atart 5(1) and (2). See similarly 17 USC § 117.

Software Directive, at art 6(1).
917 USCS$ 107.
Information Society Directive, see note 23, at art 5.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 17

revolving around what constitutes the right balance between the competing public
interests and rights of control and access. These arguments are, in part, about what
constitutes the proper scope of the public domain, although taking place firmly
within the paradigm of copyright control.

Finally, public domain works should also be distinguished from so-called or-
phan works, where it is impossible to identify the copyright owner, but which
are still subject to copyright and therefore constrained from being freely used.”
Within the software industry there is another variation of the orphan work, so-
called abandonware. Here the software remains protected by copyright but the
owner is no longer interested in the code, providing no support or other related
input, and not interested in policing or enforcing against violations of his copy-
right.?® Reasons for abandonment vary, but can obviously include the owner going
out of business.

The initial question, why not place source code in the public domain, generates
two further questions. First, does the applicable IP regime enable a rights holder to
place protected subject matter in the public domain; in other words can they shed
the source code of its protective legal coating? Second, if source code can be placed
in the public domain, what implications does this change of status have in terms of
the ceding a person’s ability to control subsequent users of the code?

In respect of the first issue, the problem is noted in the Creative Commons CCO
Public Domain Dedication: ‘many legal systems effectively prohibit any attempt by
these owners to surrender rights automatically conferred by law, particularly moral
rights, even when the author wishing to do so is well informed and resolute about
doing so and contributing their work to the public domain’ US copyright law rec-
ognises the concept of abandonment, which can be argued as a defence to a claim
of infringement. It requires a defendant to show that the copyright owner intends
to surrender his rights in the work and has overtly acted in a manner evidencing
such intention.”” Whilst this may prove a substantial hurdle in the case of orphan
works, such intent could be easily manifest in an Open Source context through
appropriate notices dedicating the work to the public. No similar doctrine of aban-
donment clearly exists under English law of copyright.®® While in European civil
law jurisdictions, the doctrine appears to be generally unacceptable.®

%5 See Directive 2012/28/EU ‘on certain permitted uses of orphan works’ (O] L299/5, 27.10.2012).

% See Dennis Khong, ‘Orphan Works, Abandonware and the Missing Mark for Copyrighted Goods’
(2006) 15 International Journal of Law and Information Technology 54-89, at 54.

97 National Comics Publications, Inc. v Fawcett Publications, Inc. 191 F.2d 594, 90 USPQ 274. See M
W Turetsky, Applying Copyright Abandonment in the Digital Age’ (2010) 19 Duke Law & Technology
Review 22.

%8 Philip Johnson, ‘“Dedicating” Copyright to the Public Domain’ (2008) 71 Modern Law Review
587-610. Also Copinger and Skone James on Copyright (London: Sweet & Maxwell, 2012), at 6-88.

%0 Emily Hudson and Robert Burrell, Abandonment, Copyright and Orphaned Works: What Does
It Mean to Take the Proprietary Nature of Intellectual Property Rights Seriously?’ (2011) 35 Melbourne
University Law Review 971-1004.

18 IAN WALDEN

The difficulties in abandoning copyright is in stark contrast to the treatment of
other IP rights, especially the registered rights, patents, and trade mark,!% as well
as moral rights discussed earlier. As well as a statutory recognition of surrender,
patent rights are also vulnerable to community practices, such as defensive pub-
lication, which can undermine the secrecy required when applying for the patent
(see further Chapter 10).

An alternative would be for the copyright owner to grant a licence to the world,
without any restriction on use. Such a licence remains revocable at the copyright
holders will, however, except where constrained by estoppel.!%! The ability to re-
voke would enable a community to respond in the event that their source code was
being used in an unacceptable manner, although the related complexity and legal
uncertainty would represent a significant threshold to the taking of such action.

With regard to the second issue, placing source code in the public domain would
enable a user to incorporate the code within another work, thereby essentially re-
privatising the code, to the extent that it could not be used except on the terms
granted by the new copyright owner. As such, public domain equates to a loss of
control, undermining the objectives of the Open Source movement.

1.3.4 Open Source policies

A sometimes intensely political area of computing, it is inevitable that Open Source
has come to the attention of politicians and policy-makers. Historically, politi-
cians in the US and Europe have been highly supportive of IP laws and the need
to strengthen existing rules to reflect the shift to service-based, information-led
economies in a rapidly evolving digital environment.

At the same time, however, governments have become increasingly attracted by
Open Source for various reasons. First, as users of ICTs, the public sector has often
experienced significant disappointments with the deployment of ICTs designed
to achieve more efficient and cheaper government. Some have seized upon Open
Source as a means of addressing these past failures, based on assertions about its
technical superiority and its cost advantages. Second, there is a general desire to
stimulate innovation within national economies and Open Source is viewed as
contributing to that objective. Third, the dominance of certain market players,
particularly from the US, has raised concerns about the competitive position of
domestic software industries, which may be bolstered by the adoption of Open

100 patents Act 1977, s 29 and Trade Marks Act 1994, s 45.

101 Johnson, ‘“Dedicating” Copyright to the Public Domain, see note 98, at 607. Additionally, more
esoteric mechanisms may potentially be used, such as the copyright holder executing a deed poll, or en-
tering into a contract with another party under which a licence is granted to ‘everyone’ as a class of third
party beneficiary.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 19

Source.!2 Finally, the trend towards more open government, in terms of transpar-
ency, such as freedom of information legislation, has chimed with the concept of
Open Source and its ‘transparency of process’1%®

International organisations have embraced Open Source. The United Nations
Educational, Scientific and Cultural Organization (UNESCO) has noted that Open
Source can play a significant role in ensuring attainment of the UN’s Millennium
Development Goals.!% In terms of national, regional, or local government policies
towards Open Source, the Center for Strategic and International Studies (CSIS)
carried out surveys of published policies between 2002 and 2010, which it groups

into four categories:'%

o Research and development (R&D) -related initiatives, such as encouraging
the formation of Open Source development communities;

o Awareness and advisory initiatives, where Open Source is brought to the at-

tention of communities of users, again usually the public sector!%

o Granting preferential treatment for Open Source; and
« Mandating the use of Open Source by public administrations.

The latter two policy categories are variants that directly increase the adoption of
Open Source within the public sector. Over the period, adoption was the most
prevalent policy approach, a finding confirmed in another survey of European
initiatives.!%”

In general, preferential treatment has targeted the procurement of Open Source-
related ICTs (‘inbound preference’), ranging from favourable treatment in pro-
curement processes to direct financial subsidy where Open Source is adopted.!% In
some jurisdictions, Open Source has also been adopted as the preferred approach
for the dissemination of public sector developed code (‘outbound preference’).
In 2007, for example, the European Commission approved the ‘European Union
Public Licence’ for the purpose of distributing its own software under a private

law arrangement that corresponded with the requirements of European law.!%

102 See Hal Varian and Carl Shapiro, Linux Adoption in the Public Sector: An Economic Analysis
(mimeo, Berkeley, CA: University of Berkeley, 2003).

103 OSI Mission Statement: <http://opensource.org/about> accessed 21 July 2022.

104 <https://en.unesco.org/freeandopensourcesoftware> accessed 21 July 2022.

105 See the March 2010 version: <http://csis.org/files/publication/100416_Open_Source_Policies.
pdf>.In 2010, some 364 Open Source initiatives were identified from public sources.

106 See, e.g., the European Commission’s ‘Joinup’ initiative: <http:/joinup.ec.europa.eu/> accessed
21 July 2022.

107 Stefano Comino, Fabio Manenti, and Alessandro Rossi, ‘On the Role of Public Policies Supporting
Free/Open Source Software’ in K. St Amant and B. Still (eds), Handbook of Research on Open Source
Software (IGI Global, 2007) 412-27.

108 Comino, Manenti, and Rossi, ‘On the Role of Public Policies Supporting Free/Open Source
Software, see note 107.

109 See <https://joinup.ec.europa.eu/collection/eupl/introduction-eupl-licence> accessed 21 July
2022.

20 IAN WALDEN

However, as with R&D initiatives, promoting the use of particular licence terms for
‘publicly’ developed or funded software may itself generate controversy, particu-
larly when choosing the use of copyleft rather than more permissive Open Source
licences.!1?

Various tools may be used by governments to facilitate Open Source, espe-
cially public procurement procedures and an ‘open’ standards policy (see further
Chapters 21). The former is a demand-side competition measure, given the pur-
chasing power of the public sector. The latter can improve supply-side competi-
tion, by facilitating interoperability between devices, software, and data. While
Open Source does not equate with ‘free} as in no payment or charge, payment is-
sues do arise in the area of standards and patents (see Chapter 16), where there
is an ongoing and very topical debate about whether existing royalty-bearing or
mandated royalty-free (RF) fair, reasonable, and non-discriminatory (FRAND) li-
censing arrangements discriminate against either the proprietary or Open Source
community, resulting in a market failure that justifies government intervention.!!!

It has been noted that one element in the adoption of pro-Open Source national
policies has been anti-Americanism. The CSIS suggests that trends in Open Source
policies may reflect market developments in the proprietary software market. So,
for example, the launch of Windows Vista in 2006-07 and the resultant criticism
and negative press coincided with a rise in the number of published policies.!!?
However, companies like Microsoft have been seen to have undertaken a shift from
their anti-Open Source stance of a decade ago to being amongst the biggest con-
tributors to Open Source today. This can at least partly be attributed to the rise
of Kubernetes and interoperable Cloud Native Software which underpins cloud
computing and the platform economy alongside the vast increase in Open Source
adoption facilitated by GitHub and other repositories.

In terms of implementation, R&D and advisory policy initiatives generally arise
through decision-making within public administrations, which is likely to reduce
the political capital required for their approval. By contrast, adoption initiatives,
particularly through mandation, will often require, or take, a more ‘legal’ route,
through legislative or regulatory measures. Indeed, proposals for mandation are
usually instigated within national or local legislatures, which increase the possi-
bility of political and legal challenge. The CSIS survey indicates that the failure rate
is considerably greatly for adoption initiatives, with mandation measures experi-
encing more failures than approvals.!!3

110 See Lawrence Lessig, ‘Open Source Baselines: Compare to What?’ in R W Hahn (ed), Government
Policy Toward Open Source Software (Washington, DC: Brookings Institution Press, 2002) 50-68, at 64
et seq.

11 See, e.g., M Vilimiki and V Oksanen, ‘Patents on Compatibility Standards and Open Source—Do
Patent Law Exceptions and Royalty-Free Requirements Make Sense?” (2005) 2(3) SCRIPTed 397-406,
at 397.

112 CSIS, see note 105.

13 SIS, see note 105.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 21

Pro-Open Source policies have inevitably generated controversy and a re-
sponse from the software and wider ICT industries, generally pitching the pro-
prietary rights holders against the Open Source community. Concerns have also
been raised by academic commentators that such policies can represent ‘indus-
trial policy by stealth’!!* To a degree, the issues are analogous to debates in other
sectors, especially the utility industries, about the best means of achieving open
and competitive markets: does establishing a ‘level playing field’ require some form
of preferential or discriminatory treatment when overcoming certain entrenched
market structures?

1.4 ‘Open’ What?

While the previous sections identified some of the philosophical and political
dimensions that underpin debates about Open Source, they do not provide a
complete description of what ‘open’ means in terms of its distinguishing charac-
teristics. At an abstract level, ‘open’ can be defined positively in terms of the free-
doms users are granted to use, modify, and share something; as specified most
clearly in the ‘four freedoms’ of the Free Software Foundation (FSF) (see fur-
ther Chapter 2).1'> Alternatively, ‘open’ can utilise more negative connotations,
through requirements designed to prevent certain behaviours and attempts to
exert control, examples of which can be found in the OSI’s OSD.!!¢ ‘Open’ often
equates to accessibility and transparency. Source code should be made accessible
for examination and scrutiny by others to enable the ideas and principles that
comprise its design and functionality to be discerned and peer reviewed, without
necessarily involving any further ‘use’ in the form of interaction. Although ‘free’
and ‘open’ are seen as denoting difference in an Open Source context, since cost
is often an element in determining whether something is accessible, ‘free’ as in
‘free beer’ often comprises an aspect of what it means to be ‘open’ ‘Open’ can also
imply freedom of choice and conduct, facilitating adoption, take-up, and use, as
much as rejection and the utilisation of alternatives. Universality is also a con-
notation of ‘open, which links to issues of standardisation and interoperability,
critical issues for the software industry and examined elsewhere in the book (see
Chapter 11).

The Open Source movement relies upon licences, copyright and patent law
to enable the use of source code by others, specifically its modification and re-
distribution. While ‘use’ is obviously a catch-all term, as well as a synonym for

114 Josh Lerner and Mark Schankerman, The Co-Mingled Code (Boston, MA: MIT Press, 2010) at 197.

115 <http://www.gnu.org/philosophy/free-sw.html> accessed 21 July 2022.

116 For example, prohibitions on discrimination against persons, groups, or fields of endeavour. See
<http://opensource.org/osd-annotated> accessed 21 July 2022.

22 IAN WALDEN

copying in a digital environment, the focus on acts of modification and re-
distribution are key to the control expressed in licences. A licensor is usually
concerned with how a licensee uses the code in two circumstances: where the
licensee redistributes the code, or where it is modified and then redistributed.
The licensor will want to govern the conduct of users downstream from the li-
censee as much as licensee himself, liberating or restraining depending on your
perspective!

Each of these forms of conduct, use modification and redistribution, can raise
concerns for the original creators. As in many areas of law, uncertainties and
disagreements can exist about the precise meaning of terms used in statutory
copyright regimes, both at a national level and from their interaction in a multi-
jurisdictional environment. Language is imbued with cultural and historical
meanings that find expression through law and legal interpretation. Private law
mechanisms can therefore be a tool to address such uncertainties, either building
on the existing framework, filling the gaps, or creating an alternative language. The
free software movement, particularly through the GPL, has embraced the latter ap-
proach, using terms and defining concepts that are deliberately disassociated from
those commonly found within copyright law:

Over the years, we learned that some jurisdictions used this same word in their
own copyright laws, but gave it different meanings. We invented these new terms
to make our intent as clear as possible no matter where the license is interpreted.
They are not used in any copyright law in the world, and we provide their defin-

itions directly in the license.'!”

This attempt to liberate Open Source from national and copyright law prejudices,
whilst deliberately remaining firmly within the jurisdiction of these public law re-
gimes, obviously generates its own challenges and uncertainties for developers and
users, as evidenced by the ongoing, sometimes fiercely argued, debates within the
Open Source community.

The following sections briefly examine the concepts of modification and redis-
tribution within copyright law and some of the implications and debates within the
Open Source community surrounding each concept. Although substantially har-
monised, national copyright laws retain enough particularities and peculiarities to
render coverage of all jurisdictions impossible. As such, the analysis focuses on US,
UK, and EU copyright law.

117 “Why did you invent the new terms “propagate” and “convey” in GPLv3?’ in ‘Frequently asked
questions about the GNU licenses’ at <http://www.gnu.org/licenses/gpl-faq.html#WhyPropagateAn
dConvey> accessed 21 July 2022.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 23
1.4.1 Modifications

Modifying source code is an exclusive right granted a right holder.!'® What consti-
tutes modification however is much less obvious, varying in terminology and scope
between jurisdictions. The act of modifying source code will also generally involve
an act of reproduction, which begs the question whether these purportedly distinct
rights are effectively inseparable. However, it is widely assumed or accepted that
the distinction has important implications, not least by the Open Source commu-
nity.!"® It is therefore necessary to examine the concept in an Open Source context.

As most Open Source licences originate in the US, we start with the term ‘de-
rivative work’, which is widely used and is statutorily defined as:

a work based upon one or more preexisting works, such as a translation, musical
arrangement, dramatization, fictionalization, motion picture version, sound re-
cording, art reproduction, abridgment, condensation, or any other form in which
a work may be recast, transformed, or adapted. A work consisting of editorial re-
visions, annotations, elaborations, or other modifications which, as a whole, rep-
resent an original work of authorship, is a ‘derivative work’ 2

This is an elaborated version of the definition used in the Berne Convention.'?!
Under English law, the restricted conduct is the making of an ‘adaptation, with the
term being given a specific meaning in respect of a computer program, as ‘an ar-
rangement or altered version of the program or a translation of it,!?? which origin-
ates in EU law.!?*> However, adaptation is more narrowly conceived than the US
concept, which generates its own uncertainty when transplanting US-originating
licences into an English law context.

A derivative work is granted a new and distinct copyright under US law, al-
though to be derivative, the new work must substantially copy the original and
must involve more than a minimal contribution to the original.'?* A derivative
work should also be distinguished from an original work that derives only its ideas
from another work. To create a derivative work requires consent from the original
owner, which is granted under an Open Source licence, subject to conditions such

118 For example, 17 USC § 106(2) and Software Directive at art 4(1)(b). Note that this right is not har-
monised in the EU for other types of work (see Information Society Directive, see note 23).

119 See generally Lothar Determann, ‘Dangerous Liaisons—Software Combinations as Derivative
Works? Distribution, Installation, and Execution of Linked Programs under Copyright Law, and the
GPL (2006) 21(4) Berkeley Technology Law Journal 1421-98, at 1421.

120 17 USC§ 101.

121 Art 2(3): “Translations, adaptations, arrangements of music and other alterations of a literary or
artistic work shall be protected as original works without prejudice to the copyright in the original work’

122 CDPA 1988, s 21(3)(ab). At (4) translation ‘includes a version of the program in which it is con-
verted into or out of a computer language or code or into a different computer language or code’

123 Software Directive, at art 4(1)(b).

124 Melville Nimmer and David Nimmer, Nimmer on Copyright (US: Matthew Bender) at § 3.01 and
§3.03[A].

24 1AN WALDEN

as paternity notices or contribution back. However, some licence schemes permit
copyright owners to refuse by default to allow derivative works to be created.! If
the licence conditions are breached, the consent is withdrawn and the owner of the
derivative work can no longer distribute the whole work but could (theoretically)
continue to distribute his contribution. As such, a derivative can be seen as residing
somewhere between a joint work, where the work is viewed as an undivided whole
(see further at section 1.5 of this chapter), and a collective work, where ownership
in the parts are distinct from ownership in the whole.

In a software development context, the focus is on the nature of the interaction
between the component source code written by the various contributors. Is the
contributed code ‘based upon’ an existing work? If it is, then is the contributed
code sufficiently substantial and original to create a derivative work? If it is not,
then is the contributed code sufficiently original to constitute an original work in
its own right, which can then be assembled with other such works to form a com-
pilation or collective work?

One central and highly charged debate within the Open Source community, and
beyond, concerns the concept of ‘linking’ and the legal consequences when Open
Source code interacts with proprietary code through usage. Linking is a normal
feature of programing and usually refers to the interaction between a program and
so-called library code, which provides reusable functions for multiple and inde-
pendent programs.!?® Broadly speaking, the nature of the interaction between two
linked components may either be static or dynamic, according to the decision of
the program designer, the former being generally viewed as an interaction that cre-
ates a derivative work while the latter is not.

The term ‘linking’ is often used in Open Source literature as shorthand for the
multitude of different ways in which distinct pieces of code can interact, inter-
operate, or ‘couple’ with other code; other methods include remote procedure
call (RPC), system calls, and plug-ins.'?” Such interaction matters because where
two or more pieces of code are licensed under different terms (whether propri-
etary or open source) and the resultant work would be considered ‘derivative’ or
similar under copyright law, then uncertainty is generated both about the licence
applicable to the resultant work and whether the modification constitutes an in-
fringement of a licence applicable to any part of the contributing code. Within the
Open Source community, not all modifications are possible, because of licence
incompatibilities, which can prevent two Open Source pieces of code being com-
bined to create a third (see further Chapters 3 and 4). Where a contributing licence
is ‘copyleft’ in nature, such as GPLv2, then the resultant work may have to be made

125 For example, Creative Commons ‘Attribution-NoDerivs 3.0 unported.

126 See <http://en.wikipedia.org/wiki/Library_(computing)> accessed 21 July 2022.

127 See the Free Software Foundation Europe, ‘Working Paper on the legal implication of certain
forms of Software Interactions (a.k.a linking)} available online at <http://www.ifosslr.org/public/Link
ingDocument.odt> accessed 21 July 2022.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 25

subject to that same licence, or the terms of the contributing licence will have been
breached and will terminate. As such, one result of copyleft licensing is that the op-
eration of copyright law, whether through its application or uncertainties about its
application, has led to the use of software development techniques designed specit-
ically to minimise the risk of any interaction triggering a legal consequence.

Indeed, hardware controls have also been developed and deployed specific-
ally to constrain the effective operation of copyleft licences. TiVo, the producer of
digital video recorders, utilised Linux and GNU software within their device, but
designed the system to use digital signatures such that modified versions of the
source code would not run on the device as the digital signatures would not match.
The validity of this approach generated significant controversy within the Open
Source community, with some, particularly the FSF, viewing such “TiVoisation’
as unacceptable,'?8 while others, such as Linus Torvalds, viewed it as a legitimate
business practice.!?

As with much in law, the answer to these uncertainties will depend on a range
of factors, specifically the technical nature of the interaction taking place, the
person causing the modification to occur, the jurisdiction in which such modifi-
cation takes place, and the applicable licence. First, all computer code is designed
to interact at some level with something else, whether other code, hardware, or
otherwise. As such, ‘mere’ interaction or interoperation between codes is not suffi-
cient to render the outcome either a work or a derivative work. Works may interact
but remain distinct and separable, each its own copyrighted work. The works may
be used together and be redistributed as a package, but remain distinct within a
collective or composite work,!** also referred to as ‘mere aggregation’'*! Second,
the end-user receiving the composite work may create a derivative work for his
own purposes, without further redistribution. As such, the end-user’s conduct may
differ from the intermediary distributor because the conditions of the licence are
only triggered by an act of modification and redistribution. Third, the copyright
law of the jurisdiction in which the interaction takes place may interpret what con-
stitutes a derivative work differently from its neighbouring jurisdictions, whether
more narrowly or broadly. Finally, while the wording of any applicable licence
may not survive judicial review under either a copyright or contractual analysis,
a licensee is generally advised to give due consideration to such wording, which
may differ in important respects from the governing legal framework, particu-
larly when adopting a broad interpretation of what constitutes modification. The
GPLv2, for example, governs not only derived works, but works that ‘in whole or in

128 See <http://www.gnu.org/licenses/gpl-faq.html#Tivoization> and GNU GPL v3, at 6, paras 4-5.

129 See <https://groups.google.com/forum/?fromgroups#!topic/fa.linux.kernel/ LSNRD_ONKIk>.

130 For example, Berne, see note 49, at art 2(5).

131 See the GPL FAQs, at <http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#MereAggr
egation> accessed 21 July 2022. See also the GPL v3, at 5.

26 IAN WALDEN

part contains’'* the licensed code, which would appear to include collective works
where the distinct copyrighted works may interact only in a minimal way.

1.4.2 Distribution

Under the WIPO Copyright Treaty (1996), distribution is recognised an exclusive
right of an author: ‘Authors of literary and artistic works shall enjoy the exclusive
right of authorizing the making available to the public of the original and copies of
their works through sale or other transfer of ownership!** Under EU law, the dis-
tribution of computer programs to the public is one of the exclusive rights granted
to the right holder.!3

While an act of distribution extends both to the original work and copies, it is
generally only engaged where copying is involved. Under traditional copyright
principles, where a copy of a work is redistributed, without a further copy being
made, then the copyright owner is constrained from prohibiting such conduct
under the doctrine of ‘first sale’!*®
historic rationale for this doctrine is that the copyright owner should be remuner-
ated for the copy but not for any further economic value derived from its further
sale down a chain of consumers.!3” While the doctrine refers to ‘sale) it is in fact

or ‘exhaustion® of the distribution right. The

applicable to other situations where the copy is passed on to others, whether for
remuneration or otherwise.!*® In the European Union, the doctrine is also used a
tool to promote the single market and prevent market partitioning,'*® which fun-
damentally distinguishes its application from that in the US.

In the US, the exhaustion doctrine has been held not to apply to pure ‘digital
works’” both by the courts and the relevant authorities.!** In addition, the courts
have specifically held in relation to software licences that where the copyright
holder clearly indicates that the user is a licensee, restricts the user’s right to transfer
the licence, and restricts the use made of the software, the first sale doctrine is not

132 GNU GPLv2 (1991), at 2(b).

133 Arto(1).

134 For example, Software Directive, at art 4(1)(c).

135 17 USC§ 109(a).

136 Copyright Treaty, art 6(2).

137 Under EU law, such remuneration should also be that which is ‘appropriate, rather than the
‘highest possible remuneration’; see Football Association Premier League Ltd and others v QC Leisure
and others, Murphy v Media Protection Services Ltd [2012] 1 CMLR 29, at paras 108-109.

138 For example, in the UK, the CDPA 1988, s 18(3), refers to a loan.

139 For example, Case C-200/96 Metronome Musik [1998] ECR 1-1953, para 14. This principle
is limited to distribution within the EEA and does not apply internationally (see Laserdisken ApS v
Kulturministeriet, Case C-479/04, [2007] 1 CMLR 6, at para 24).

140 See Capitol Records LLC v ReDigi Inc., No. 12 Civ. 95 (R]S), 30 March 2013; also US Copyright
Office, DMCA Section 104 Report (August 2001), at 97 et seq.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 27

applicable.!*! The doctrine could apply to a software transaction, however, were
the circumstances such that a licensor/licensee relationship was not successfully
established, but title in the software was held to have transferred instead.'*? In the
absence of evidence of an agreement or conduct indicating acceptance by the user,
such so-called shrink-wrap, ‘label; or unilateral licences may not be considered en-
forceable, which equates to the question of whether Open Source licences are con-
sidered contracts or not (see further at Chapter 3).

Under EU law, the exhaustion doctrine is expressly extended to computer

143 although until recently its application was widely seen as being re-

programs,
stricted to the distribution of tangible copies. This limitation was recently re-
jected by the ECJ in UsedSoft GmbH v Oracle International Corp (2012).14* Here,
Oracle made client-server software available for downloading from a website free
of charge, but subject to a usage licence. Oracle offered group licences that per-
mitted up to twenty-five users, while if a licensee had more users, it would have
to obtain another twenty-five-user licence. UsedSoft obtained these group user li-
cences from Oracle’s customers and offered any unused user permissions for sale
to others, which Oracle considered to be an infringing act. The Court held that
where a copy of the program was transferred to a user, whether through a tangible
medium such as a DVD or made available for downloading from a website, to-
gether with a licence granting a right to use the program for an unlimited period,
then that constituted a ‘first sale’ for the purpose of the exhaustion doctrine (para
49).1%> Quoting approvingly the Advocate General’s opinion, to distinguish a con-
tract as being either a licence, to which the exhaustion doctrine does not apply, or
a sale, to which it does, would be to undermine the purpose of the provision itself
(para 49). Previously, it had been widely believed that making software available
for download was an act of ‘communication to the public, which is a different ex-
clusive right granted the right holder and one to which the doctrine of exhaustion
does not apply.'® However, the Court held that the transfer of ownership or ‘sale’
that resulted from the downloading of a copy and the granting of a licence to use
rendered the conduct within the scope of the distribution right (para 52).

One implication of this decision is likely to be to encourage licensors to alter
their distribution model, shifting away from a ‘sale’ business model towards a
‘rental” subscription model, which also reflects an industry trend towards Saa$S

M1 Vernor v Autodesk, Inc., 621 F.3d 1102, C.A.9 (Wash).), 2010. See also Apple Inc. v Psystar Corp.,
658 F3d 1150, C.A.9 (Cal.), 2011 and MDY Industries v Blizzard Entertainment, 629 F. 3d 928 C.A.9
(Ariz.), 2010.

12 UMG Recordings, Inc. v Augusto 628 E3d 1175 (9th Cir. 2011), which involved the distribution on
digital content on physical CDs. See also SoftMan Products Co., LLC v Adobe Systems, Inc. (2001) 171
ESupp.2d 1075.

143 Software Directive, art 4(2).

144 3 CMLR 44.

145 Oracle’s licence stated that it was ‘non-transferable, but this was effectively ignored by the Court.

146 See Copyright Treaty, art 8 and Information Society Directive, see note 23, art 3.

28 IAN WALDEN

and cloud computing (see further Chapter 9). For the Open Source community,
however, cloud itself can be seen as an alternative mechanism for restricting the
freedom of users to modify the software they use and depend on, controlling rather
than liberating.

Under Open Source licences, redistribution is not simply about copying the
actual code but also about the conditions under which the recipient receives the
code, either requiring the original rights to be matched throughout the distribu-
tion chain (‘copyleft’) or enabling the substitution of different rights for subsequent
users, which may be more restrictive. The term ‘viral’ has been used to describe the
manner in which certain Open Source licences operate, also referred to as ‘copy-
left, by imposing obligations down the software distribution chain.!*” While all
commercial agreements attempt, to some degree, to ensure that obligations are ap-
propriately reflected either upstream or downstream, the description of copyleft
licences as ‘reciprocal’ (sometimes ‘viral, although the Open Source community
tends to avoid the term ‘viral’ owning to its derogatory connotations) arises from
the self-executing nature of the licence, relying on copyright law rather than con-
tract. Other examples of ‘viral’ laws are some export control regimes, which apply
to specific applications such as encryption modules within devices, but can operate
such as to make the whole product subject to, or ‘infected’ by, the control regime.

While the right to ‘distribute’ is commonly used within copyright regimes, con-
cerns about jurisdictional differences about its scope has seen the FSF deploy the
term ‘convey’ in the GPL, defined as follows: ‘a work means any kind of propaga-
tion that enables other parties to make or receive copies. Mere interaction with a
user through a computer network, with no transfer of a copy, is not conveying’ 48
The second part of this definition is important in the context of cloud computing
and is examined elsewhere (see Chapter 9).

Under international, regional, and national copyright rules, the concept of dis-
tribution is qualified by the phrase ‘to the public, which suggests the possibility of
non-public offerings of copies of a work. Understanding where the boundary exists
between the two can obviously be important in the context of Open Source devel-
opment. The actual numbers of persons in receipt of a work, while a factor for con-
sideration, is likely to be less determinative than the manner in which the copies of
the work were made available; ‘what counts is the general opportunity given to the
public’'*® The ECJ, in Sociedad General de Autores y Editores de Espana (SGAE) v
Rafael Hotels SL,'° has noted in respect of the right to communicate a work to the

47 For example, Andrés Guadamuz Gonzalez, ‘Viral Contracts or Unenforceable Documents?
Contractual Validity of Copyleft Licences’ (2004) 26(8) European Intellectual Property Review 331-9.

148 GNU GPLv3 (2007), at 0.

149 Sam Ricketson and Jane Ginsburg, International Copyright and Neighbouring Rights (Oxford:
Oxford University Press, 2006), at 11.91.

150" Case C-306/05, 7 December 2006; [2007] ECDR 2. See also Case C-607/11, ITV Broadcasting Ltd
& ors v TVCatchup Ltd, 7 March 2013.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 29

public, that ‘it is sufficient that the work is made available to the public in such a
way that the persons forming that public may access it’ (para 42). This has potential
implications for the governance of Open Source projects, since the more restrictive
the conditions of participation are made, the stronger the argument that the distri-
bution of code among participants does not constitute an exercise of the exclusive
right in respect of the code, which could trigger certain consequences under the
applicable licence. Conversely, restrictive membership runs counter to the open
collaborative model that underpins Open Source.

The ‘to the public’ qualification is absent from the concept of ‘conveying’ used
in the GPL v3, which raises the question whether certain forms of distribution,
whilst not a breach of copyright law per se, may result in a breach of a licence? In a
development context, for example, code may be distributed to participants within
a community or forum, which extends beyond a single organisation, or demo code
may be given to certain selected customers for the purpose of testing under a non-
disclosure agreement (NDA). The restricted nature of the distribution would not
appear to be ‘to the public; yet it could give rise to a technical breach of the GPL
because an ‘other’ party has received a copy. The GPL v3 does provide that convey-
ance may be to ‘others’ but only where it is carried out ‘exclusively on your behalf,
under your direction and control;'>! which recognises the non-public nature of
the distribution. However, it also states that such conveyance is only permitted for
the ‘purpose of having them make modifications exclusively for you, or provide
you with facilities for running those works, which would suggest an employer/
employee, principal/agent, or customer/supplier-like relationship between the
parties, but would not necessarily cover either the community distribution or the
‘testing’ scenario (see also Chapter 9, for its application in a cloud context).

As distribution of the source code and any accompanying text is the central be-
havioural obligation placed on users, disputes have inevitably arisen about whether
this obligation has been properly met, particularly in the context of retail prod-
ucts.'>2 The code may be distributed on some associated media distributed with the
product, or may be offered to the end-user, often in the form of a web-based down-
load. In either case, but often in the latter, uncertainties can arise as to whether the
availability or offer of the code is made sufficiently transparent to the end-user to
meet the licence requirements. Such issues are analogous to other requirements in
law concerning notice, such as the contractual incorporation of terms, and avail-
ability, such as the decompilation obligation.!> Retail products often generate par-
ticular issues where marketing, design. and brand concerns are to the fore.

151 GNU GPLv3 (2007), at 2.

152 For example, Welte v D-Link Deutschland GmbH (2006) LG Frankfurt a.M., 2006-09-06, Case No.
2-6 O 224/06.

153 Software Directive, art 6(1)(b), which restricts the decompilation right where the necessary infor-
mation has been made ‘readily available. Similar wording is used in the US, at 17 USC § 1201(f)(1).

30 IAN WALDEN

As with modifications, by focusing on the concept of distribution as the trigger
for certain legal consequences, whether desirable or otherwise, attention inevit-
ably converges on the meaning of the term, with, as in much of law, plenty of scope
for argument and debate. The traditional venue for interpretation is the courts, al-
though there is scant directly applicable guidance available to date. The licensor
is left with the option of trying to draft appropriate and sufficiently precise pro-
visions to address any uncertainties; a complex task in such a rapidly developing
environment.

1.5 Open Source as Development Methodology

Software development or engineering has evolved considerably since the early
days of computing, as processing capacity and programing languages have en-
abled ever more sophisticated systems to be developed. Greater sophistication of
the end product, the source code, has also required more formalised development
processes, in order to address the needs of users adequately, reflect those needs
in feature design, and test and verify the resultant product. Concomitant to these
developments, we have seen the industry try to professionalise itself, establishing
qualifications and standards which programers can obtain and meet. Various
standards and development methodologies have been promulgated to capture
the various stages of software lifecycle and, thereby, improve the quality of source
code,'™ such as the ‘Waterfall’ model, Spiral, and Agile. The latter is seen as the
most widely adopted methodology with the Open Source community (see further
Chapter 7).

Open Source communities can also be seen as a development methodology in
their own right, as noted by the OSI:

Open source is a development method for software that harnesses the power of
distributed peer review and transparency of process. The promise of open source
is better quality, higher reliability, more flexibility, lower cost, and an end to

predatory vendor lock-in.!>

1.6 Open Source as Commerce

One recurrent theme has been to acknowledge the philosophical and political
ideas that underpin the Open Source movement whilst at the same time treating

154 For example, ISO/IEC 12207: 2008 Systems and software engineering—Software life cycle processes.
155 OSI Mission statement: <http://opensource.org/about> accessed 21 July 2022.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 31

Open Source apolitically, i.e. as a reality that organisations need to be aware of, to
act appropriately towards, and consider as an alternative means of doing business.

Awareness is obvious, yet organisations, as much as individuals, exhibit a ten-
dency to turn a blind eye to those things which are not well understood or seem
difficult. In the author’s experience, while the existence, development and deploy-
ment of Open Source is widely known and understood, there is a considerable lack
of knowledge and uncertainty about the legal implications of using Open Source
and its good governance.

Acting appropriately, once aware, requires consideration of how Open Source
may impact the organisation both internally and externally, with regard to sup-
pliers, partners, and customers. Internal considerations include regulating
employee contributions to projects and use of Open Source, while external is-
sues include auditing for Open Source in due diligence procedures (see further
Chapter 8). A key objective of most organisations is to manage their risk and to
protect their assets collectively known as curation.

There is a variety of ways in which Open Source can be used to generate eco-
nomic value, through so-called hybrid strategies.!>® The range of possible business
models reflects the complexity of the ICT ecosystem (see further consideration in
Chapter 16).

1.7 Enforcing Open Source

As discussed throughout this book, the Open Source community relies on copy-
right law and contract law, and to a greater or lesser extent patent and trade mark
law, to govern the conduct of users of their code. As such, user non-compliance
with either the terms of a licence or the underlying statutory obligations, gives rise
to the possibility of enforcement action being taken against code users, as licen-
sees or otherwise. Indeed, enforcement, or the realistic threat and risk of it, must
be seen as an essential component of any effective legal regime, whether based in
private or public law, although fear of enforcement may not be the primary reason
why laws are respected.’>’

IP laws provide a range of civil and criminal remedies against infringers, ex-
plored more fully across the IP Chapters of this book, with different remedies
depending on the characterisation of the breach as either being copyright or

156 See R van Wendel de Joode, H de Bruijn, and M van Eeten, ‘Living Apart Together: Hybrid
Business Strategies on the Edge of the Commons’ in Protecting the Virtual Commons (The Hague: Asser
Press, 2003) 93-107.

157 See further Chris Reed, Making Laws for Cyberspace (Oxford: Oxford University Press, 2012).

32 IAN WALDEN

contractual in nature,'*® which generates another layer of uncertainty for the en-
forcement of Open Source licences. !>

Enforcement actions may also arise under other complementary legal regimes,
such as consumer protection laws designed to prevent the defrauding of end-users.
One example is so-called subscription traps, where sites offer Open Source soft-
ware for prohibitive and hidden fees, which have been the subject of criminal pro-
ceedings in Germany.!®

As well as actions by Open Source rights holders against code users, disputes
also arise between rights holders and other rights holders, whether Open Source or
proprietary. Given the risks and costs associated with enforcement actions, poten-
tial defendants will commonly adopt a range of strategic IP management measures
intended to mitigate such risks, from technical ‘design-a-rounds’ to the defensive
acquisition of IP rights (see further Chapter 6, at section 6.9).

1.8 Open Futures

This chapter has identified numerous features of Open Source-related conduct
which generate legal uncertainties, uncertainties that can operate to the detri-
ment of both proponents and users of Open Source software. These include the
language used in most Open Source licences taken from US copyright law, which
can differ in important respects when transplanted into other jurisdictions. Some
Open Source licences contain terms which have been drafted to address specific
concerns and needs of certain communities, but which may be unfamiliar to many
users of the code released under that licence, and which may also be untested be-
fore the courts. The collaborative working structures in Open Source communities
are also unfamiliar to many and are therefore often ignored or managed poorly, as
well as generating complexities for the application of the law.

Certain developments may also weaken the influence of current Open Source
licence arrangements over time, particularly those pursuing a copyleft philosophy.
In terms of markets, the shift to cloud computing means that software distribution
is becoming less important in a SaaS environment, except in the context of oper-
ation of the physical access device itself. Evolving copyright law, driven as much
through judicial decision-making as legislative reform, may increasingly con-
strain the application of copyright law to software, reducing its efficacy as a control

158 In the US, see MDY Industries v Blizzard Entertainment, 629 F.3d 928 CA9 (Ariz.), 2010, where the
court held that a contractual breach did not have the necessary ‘nexus between the condition and the
licensor’s exclusive rights of copyright’

159 See Robert Gomulkiewicz, ‘Enforcement of Open Source Licenses: The MDY Trio's Inconvenient
Complications’ (2011) 14 Yale Journal of Law and Technology 107-37.

160 LG Hamburg, Judgment of 21 March 2012, Az 608 KL 8/11, available at <http://openjur.de/u/432
081.html> accessed 21 July 2022.

OPEN SOURCE AS PHILOSOPHY, METHODOLOGY, AND COMMERCE 33

regime. While from a technical perspective, the use of increasingly sophisticated
techniques designed to limit the interaction of software components subject to di-
vergent licensing arrangements may reduce the viral impact of copyleft licences.

Asnoted at the start, this chapter has tried to avoid making normative statements
about Open Source. Those that promote defend and use Open Source may pursue
particular philosophical, ethical, or political aims, which are noted and respected.
Instead, the focus has been on how public law regimes, particularly copyright law,
interacts with Open Source software to facilitate and constrain the aims of Open
Source proponents and the use of private law arrangements to achieve specified
outcomes, outcomes that can be designed to subvert the public law settlement. All
the evidence shows Open Source development and usage increasing substantially.
This is likely to result in greater judicial consideration of how the language and law
of Open Source operates, hopefully reducing some areas of uncertainty. What is
more unpredictable, however, is whether governments and legislators will address
the rise of Open Source redesigning areas of public law to reflect the critical role
and unique features of software in society and the economy.

2

Evolving Perspective on Community

and Governance

Ross Gardler and Stephen R Walli

2.1 Collaboration and Communities 34
2.2 Intellectual Assets to Intellectual

Property 35
2.3 Intellectual Property and
Industrial Scale 36
2.4 Early Experiments under
Copyright 36
2.5 The Start of an Engineering
Economic Model 37
2.6 Open Source Software as a Shared
Production Model 39
2.7 Open Source Culture 40
2.8 Licences to Facilitate
Collaboration 42
2.9 The Politics and Ethics of
Open Source 44
2.10 The Free Software Definition 45
2.11 The Open Source Definition 46

2.12

2.13
2.14

2.15
2.16
2.17

2.18

2.19

2.20

2.21

2.22
2.23

Open Source Initiative, a
Pragmatic Community

Pragmatism versus Ethics

The Apache Software
Foundation

Governance of Open Source
People versus Process

The Benevolent Dictator
Governance Model

The Meritocratic Governance
Model

Implications of Licence Choice
and IP Management on
Governance Models

The Rise of Codes of Conducts
The Business of Open Source
Open Source Non-Profits
Conclusion

47
49

50
52
53

54

55

56
58
60

65
67

2.1 Collaboration and Communities

‘We've known how community works, since you had a campfire and I wanted to sit
beside it.! This is a simple truism about humans, the societies we build, and their
success. We have collaborated on software since we started writing software, and
this collaboration goes all the way back to the early work on programable com-
puters by von Neumann’s team at Princeton University. Writing good software
is hard work. All the investments that have been made in computer programing

and software engineering in the past seventy years have essentially been about

! Stephen Walli, ‘What does an adult look like in your community, speaking at the Community
Leadership Summit, July 2014. www.communityleadershipsummit.com

Ross Gardler and Stephen R Walli, Evolving Perspective on Community and Governance In: Open Source Law,
Policy and Practice. Edited by: Amanda Brock, Oxford University Press. © Ross Gardler and Stephen R Walli 2022.

DOI: 10.1093/0s0/9780198862345.003.0002

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 35

writing more and better software in fewer lines of ‘code. Developers collaborating
in communities, the idea behind Open Source, may well be the best software reuse
strategy society has invented.

To come to that idea, we need to consider a little bit of history around software
sharing, the nature of copyright and licences, and how these communities form,
organise, and govern themselves. Then we can understand better the engineering
economics and business implications.

2.2 Intellectual Assets to Intellectual Property

The creation of complex software requires intellectually challenging effort. There
was a time through the 1950s, 1960s, and 1970s, however, when software was often
created by computer manufacturers and bundled with computers. The cost of the
computer itself far outstripped the human cost of developing software for it.

Conferences, now the heart of this sector, began to be organised by computer
manufacturers in this period, were opportunities to share software practices, ideas,
and the software itself. The IBM conference, started in the 1950s, was in fact called
SHARE. DECUS was the user society that sprang up around Digital Equipment
Corporation computers. As AT&T Bell Labs began to share tapes of the early UNIX
operating system, USENIX emerged as the conference where people began to share
software tools and practices based on it.

In 1980, everything changed. Copyright was applied by the US Congress to
computer software. Copyright is the legal mechanism historically used to protect
the author of code and is discussed in detail in Chapter 3.

It costs money to bring an author’s creation to the masses, and copyright law
gave distributors the legal framework to protect their investment. Once applied to
software, however, what had been intellectual assets that could be freely shared in a
community of like-minded users transformed to IP protected assets in a protected
distribution system.

In the forty years since copyright was first applied to software, the cost of the
computing hardware has plummeted, while the cost and complexity of computer
software has increased exponentially. Computer hardware, programing languages,
and operating system interfaces have standardised through this period (as both
de facto technologies and through rigorous de jure processes). The creation of the
Internet and World Wide Web through standards of hardware, software interfaces,
and protocols removed friction from the digital distribution pipeline. Software was
no longer printed to media and shipped. Instead, it was distributed and updated
digitally, over the airways, and increasingly for free. These trends together have
enabled a rich and vibrant computer software industry, separated from the com-
puting hardware, to grow and thrive.

36 ROSS GARDLER AND STEPHEN R WALLI
2.3 Intellectual Property and Industrial Scale

Creating a computer program to solve a problem is an intellectual pursuit. If we
write a program for ourselves to solve a problem, it requires knowledge in both
how to solve the problem algorithmically and the knowledge to express the solu-
tion in code so that hardware can execute it. But if we create a computer program
that we share with a small group of ten friends, there is additional work required to
ensure we can package and deliver the software to them. If that number of friends
was to grow to 100, considerably more work is needed to ‘maintain’ the software
package. As with all engineering endeavours, as one scales the number of users of
an artifact, one requires more disciplined practices and processes to manage the
work efficiently in order to create, package, distribute, and support it at scale.

Software companies became extremely efficient at these engineering-at-scale
practices over the years. Through the 1980s and 1990s and into the new Millennium,
the software industry grew, selling software protected with its value generated by
copyright. Whether the price was considered a licence royalty, a support contract,
or evolved into an ongoing subscription is somewhat irrelevant. What matters is
the value of the revenue generated. During this period a large number of busi-
nesses and governments created enormous volumes of bespoke software in IT de-
partments. There were many problems that can’t necessarily be solved ‘out of the
box’ by a piece of bought software. The ‘build versus buy’ analysis used is familiar to
every software company product manager and corporate I'T manager.

2.4 Early Experiments under Copyright

This dichotomy (bought versus bespoke software solutions) was the world into
which open source software and free software landed and thrived. Although
the application of copyright to computer software means a licence is required
to grant permission and define the terms of that permission or use of the
software’s copyright, the idea of sharing and collaborating on code continued.
Just as software companies created commercial or proprietary licensing agree-
ments to define the terms of use for their customers, developers who wanted
to continue to share and collaborate also needed to create licences to allow
third parties to use and collaborate on their work/code due to the application
of copyright to code.

Several licensing experiments began in the 1980s and 1990s to enable such
collaboration:

o Project Athena at MIT was a collaborative experiment between DEC, HP,
and IBM, researchers, and others, leading to the X11 Windowing System and
Kerberos. It was the start of the MIT/X11 licensing experiment.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 37

o The early articulation of Free Software ethics began in the early 1980s and led
to the ideas of copyleft, a user’s rights with respect to software, and the GNU
Public License. (We will discuss more about software freedom and ethics later
in this chapter.)

o The Berkeley Software Distribution (BSD) begun in the Computer Science
Research Group at University of California at Berkeley led to the BSD license
variants that began to show up in other collaborative projects like the early
Apache web server project.

o The Perl language licensed under the Artistic License was the basis of an enor-
mous community of developers and systems administrators sharing and col-
laborating on the language and tools written in it.

The industry would not think about these early-stage licences as classes of ‘Open
Source licences’ until the end of the 1990s, but for eighteen years as a consequence
of the need for licences under the copyright regime, developers and companies
continued to share software through licences, as they experimented. They not only
experimented with sharing the code itself but with licences that enabled such col-
laboration around code, just as they had shared for the previous thirty years before
1980 and the application of copyright to code.

2.5 The Start of an Engineering Economic Model

The last piece of the puzzle to understand before going deeper into the discussion
of community and governance is an economic one. Even today, people still ques-
tion Open Source software at a high level as an idea. They do so because it is freely
distributed by developers at zero cost. There is no apparent economic model when
viewed in this simplistic way.

An easy way to provide a perspective is to consider a company consuming Open
Source licensed projects into the company’s software solutions. Every IT manager
and software product manager is familiar with the build-versus-buy analysis as dis-
cussed as a method of acquiring software as a solution to a problem.

With liberally licensed and collaboratively developed software projects, there is,
however, a third choice: borrow and share.

An example to set-up the thinking on this:

o In a small startup in the late 1990s,? the engineering team needed control of
their compiler environment building kernel level software on Windows NT

2 Anauthor (Walli) was VP, R&D of Software Systems, building the UNIX front end on Windows NT
1995-1999. This is a direct example of the costs and decisions around the GCC compiler suite made to
improve the product. Much of the product was developed out of liberally licensed, collaboratively de-
veloped software projects that would not be called ‘open source’ for a couple more years.

38 ROSS GARDLER AND STEPHEN R WALLI

across three architectures (IA-32, DEC Alpha, MIPS). The Microsoft com-
pilers were insufficient. Buying the Intel compiler would not solve for the
other two computing architectures. The build-versus-buy decision did not
meet the startup company’s needs.

o The GCC compiler suite provided an answer. This collaborative project
was mature and vibrant and ran across the three computing architectures
required.

o For approximately US$100,000 investment in hiring a compiler engineer, the
company captured US$10 million in value from the GCC project® in the first
year across all three computing architectures.

« Now, however, the startup was living on a modified fork from the main GCC
project. This meant they were cut off from easy access to bug fixes, new per-
formance improvements, and new functionality.

o The startup spent an additional US$40,000 on compiler contractors who were
maintainers in the GCC projects and had their startup changes re-integrated
upstream into the GCC project head revision.

o This meant that with the next release from the GCC project, the startup would
be able to directly use the release at minimal integration cost because their
changes were already present in the main GCC project, as well as gaining ac-
cess to all the new work in community.

o Integration costs for new GCC releases into their product going forward were
then in the order of US$10,000 per major release. The new value built into
GCC over those eighteen months by the broad GCC community was on the
order of an additional US$5 million. This is three orders of magnitude of value
capture over the eighteen months.

Borrow and share enables additional analysis beyond build versus buy.

It is not enough just to borrow. Software is surprisingly dynamic with a steady
flow of changes and bug fixes happening, especially in a vibrant community set-
ting. Sharing back any changes required to use the software, adding these to the
borrowed software, and giving these to the community or project that created the
original software borrowed ensures easier engineering access to the new and fixed
functionality on a go-forward basis.

It is easy to see why you would use such existing components if they were avail-
able to borrow freely and were of sufficient quality. However, the question remains
as to why one might create such a component project in the first place? Why create
this and do the additional work to build and manage a community around a freely

3 Using a COmparative COst MOdel (COCOMO) calculation on the project size of approximately
750,000 lines-of-code (LoC) in 1997. While every software developer can articulate the problems with
LoC as a strict measure of software value, it makes for an interesting relative measure over time, and can
be compared to direct salary and contracting costs.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 39

available component. For those answers one needs to look to innovation model re-
search from Eric von Hippel starting back in the 1980s.

Von Hippel first studied the sailboarding community. While there were a
number of manufacturers, ‘Windsurfer’ being the dominant brand name, none
of these companies was spending heavily on research and development for new
sail-boarding technologies. There was still a vibrant community of sailboard
‘hackers’ across the community who were cutting, drilling, gluing, and otherwise
experimenting with boards, booms, masts, and sails. The companies were happy to
stand back and to watch and learn, without necessarily making costly mistakes in
bringing to market experiments that did not work or did not capture the commu-
nity imagination. The sailboard aficionados on the cutting edge were not interested
in building companies. They were happy to share their innovations and ideas and
to be sponsored, to be the coaches, consultants, and trainers, and to live on the cut-
ting edge.

The further von Hippel investigated this, the more he discovered these innov-
ation models applied in other areas, eventually doing research in the software do-
main, and directly in the Open Source domain. While one can look to this research
for support for the innovation model, one has to remember that commercialisation
of software only evolved after the application of copyright and that the original
model utilised by the software development community before copyright came
along was one of collaboration and sharing.

2.6 Open Source as a Shared Production Model

Open Source is a number of things and one of these is a software licensing, produc-
tion, and distribution model. As a licensing and distribution mechanism it pro-
vides software under terms that allow users selfishly to do as they please with code
otherwise protected by copyright. However, as we have seen, it is to that selfish
user’s advantage to contribute any changes they make back to the project that ori-
ginally created and distributed the code.

As a means of production, the Open Source model minimises the cost of pro-
duction through efficient collaboration, amortising the cost of creation across all
participants. The Open Source development model allows individuals to bring
their specialist and valuable knowledge and share it with others who may be
equally skilled. In return for their contributions they receive improved software.
The economic justification for contributing is easy to see because a small contri-
bution (relative to the entire project) is rewarded by a more complete solution on a
freely available basis.

Open Source allows individuals and organisations that potentially compete in
the marketplace to collaborate seamlessly on software components and systems
that, once created, are easily shared, avoiding duplication of efforts and investment

40 ROSS GARDLER AND STEPHEN R WALLI

and potentially building better outputs through diverse collaboration. The unre-
stricted distribution of such software results in a larger ecosystem of users which
in turn increases the number of potential collaborators on a go-forward basis and
thus facilitates a further reduction in the cost of production.

The effectiveness of this model of production can be seen in many Open
Source projects. Consider, for example, the Apache Hadoop project. This is an
implementation of Google’s Map Reduce algorithm. Hadoop contains signifi-
cant contributions from many companies that operate in overlapping markets.
Participants include large software companies such as Microsoft, Facebook,
Twitter, and LinkedIn as well as small and medium-size enterprises (SMEs), uni-
versities, and government organisations. There are even some individuals in-
volved. All contribute on equal terms, regardless of their size, to the production
and maintenance of the Hadoop software. Most contribute in order to reduce the
costs and increase the quality of software that forms a core part of their unique
business models; a few contribute for more personal reasons, such as professional
development.

For this model of production to work it is necessary for each participant to
realise more value than they contribute. Participants must also feel that their future
is protected and that their contributions cannot be abused by other collaborators
now or in the future. It is the combination of a community-based development
model, backed by modern Internet-based collaboration tools, and an Open Source
licence that ensures such collaborations are possible. Of course, they must also set
up structures which allow for collaboration within the realms of the antitrust and
competition regimes.

2.7 Open Source Culture

When reading about Open Source one will often find reference to ‘free sofware
or open software community’. This implies a single coherent community that ral-
lies around the Open Source banner and all it represents. However, there is no
such community, just as there is no ‘proprietary community’ There are, instead,
a number of distinct communities who rally around specific software projects, li-
censing models, and development models to address specific needs. These com-
munities do not form a part of a larger coordinated and coherent ‘Open Source
community, although they may be related in one or more ways with other sub-
communities. There are therefore a number of distinct clusters of communities that
for a variety of reasons gather in a single place. The following paragraphs examine
some of the common reasons for such clustering.

4 <http://hadoop.apache.org/> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 41

Clustering can simplify the management of common factors across projects. For
example, IP and project infrastructure facilities might be provided by and held in
a central body. There are multiple places where such gatherings occur, for example
the .NET Foundation® provides an IP shelter while GitHub and GitLab® provide
technical infrastructure. This kind of colocation does not, under normal circum-
stances, lead to the creation of a single unified community across projects.

Projects may also gather together in order to share community management
expertise. An example of such a community can be seen in the Apache Software
Foundation (ASF) The ASF has a governance model in which it is not possible to
buy influence. The only currency of value to the ASF is merit in recognition of
productive engagement. This provides a neutral space in which people can openly
collaborate. In such clusters cross-project collaboration is more likely but it is a by-
product of standardisation on governance models and IP management rather than
a requirement of the community structure. The ASF famously operates according
to the Apache Way, people before code, exemplifying the importance of the human
community.

Other community structures can be developed to enforce cross-project collab-
oration. This is useful when a number of organisations choose to collaborate on a
specific set of common shared software projects. In order to enforce a certain level
of commitment to these projects, partners may choose a model in which strategic
influence is a reward for adhering to the rules of participation. Those rules may or
may not involve an element of directly productive contributions to software code.
Such an environment is designed to be less neutral than a pure community model
but they still cannot be controlled by a single participant. An example of such an
organisation is the OpenlInfra Foundation’ in which two-thirds of the Board of
Director seats are essentially ‘paid for’ while the final third are representatives of
the active community regardless of their financial contributions. In these kinds of
clusters collaboration levels across projects are high since there is a very tight focus
and clear strategy for the products being produced from project components.

In busting the myth of ‘the Open Source community’ we need to understand
that the primary driver for collaboration is to benefit from the outputs of the in-
dividual community project rather than to rally behind a generic Open Source
banner. In these cases Open Source is nothing more than a means of production,
however there is one final type of community that is usually referred to as the free
software community.

The free software community feels that open source and its focus on methods
of production are less important. Members of this community prefer the term
‘free software, rather than ‘open source software, as they are concerned with the

5 <https://dotnetfoundation.org/> accessed 21 July 2022.
6 <http://github.com> accessed 21 July 2022.
7 <http://www.openstack.org> accessed 21 July 2022.

42 ROSS GARDLER AND STEPHEN R WALLI

provision and protection of software that respects the users’ freedom to run, copy,
distribute, study, change, and improve the software. The free software community
coalesces around the Free Software Foundation (ESF) (see Case Study: The Free
Software Foundation) which provides a legal home for free software but it also de-
livers appropriate support for advocates of the ethical considerations that drive free
software supporters.

These ethical considerations are important but are often seen as overstated by
more pragmatic open source participants. We will discuss this in more detail in
the next section. Having established the importance of this ethical position we
will continue to use the term ‘Open Source’ to mean software that is licensed in
such a way that it is considered to be both open source software and free software.
Where we wish to make a distinction between the legal protection of IP in soft-
ware and the ethical considerations of software freedom we will use the term ‘free
software’

It can be seen that while there is no single ‘Open Source community’ there are a
great many sub-communities. These communities are linked by one or more of the
following characteristics:

o A sharing of alegal structure for IP management

« Sharing of project infrastructure (website, version control, mailing lists, etc.)
o Adoption of an agreed collaborative software development model

» Requirement for a neutral space for collaboration

o A sharing of common needs that can be solved with software outputs

o Enforced collaboration on shared software components

o An ethical belief that all software should be free (as in free speech)

o Collaborative raising of support whether in funding or resource

2.8 Licences to Facilitate Collaboration

A common factor across all of these communities is the adoption of an Open
Source licence for their collaborative outputs. Experimentation with copyright law
has created the concept of copyleft and a range of licences that protect the IP cre-
ated by each participant whilst allowing for unrestricted distribution of the code.
Today there are many different Open Source licences to choose from and this is
discussed in depth in Chapter 3.

Which licence is chosen by a given project will have significant impact on the
kind of community, and thus the kind of production model, that a project adopts
and plays a surprisingly significant role in community development. As we have
seen, earlier licences began around individual experiments in collaboration, but as
more people and companies became involved, the licences could be seen to fit into
broad categories and the benefits of standardisation became clear.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 43

One group of licences, commonly known as reciprocal or ‘copyleft, legally en-
force the publication of changes to code, that is, derivative works which incorp-
orate the original code. These licences may impact some business models, such
as the creation of closed, proprietary derivatives from the open code but at the
same time ensure that no third party can abuse the open development model by
simply consuming the projects outputs without publishing their changes (see fur-
ther Chapter 3). In developing copyleft as a concept Richard Stallman, its creator,
played a pun on copyright and protected users from themselves and any desire they
might have not to give back.

At the opposite end of the licensing spectrum are permissive licences. These
allow the adoption of any business model, including the creation of closed,
proprietary derivatives from the openly provided shared code (see further
Chapter 3). These licences rely on economic and community pressure to encourage
contribution back to the project. Permissively licensed projects therefore require a
well-defined community governance model.

In theory, the idea that all these community projects being shared through copy-
right licences means that the various projects can share their outputs and con-
tribute to one another’s code across the defined communities. Unfortunately, it is
not quite as simple as this. Due to the incompatibility of some licences designed
to prevent non-free derivatives of free software, such reuse is not always possible.
In summary, permissively licensed code can be reused in code using a reciprocal
(copyleft) licence but the reverse is not always true and this is also explored in more
detail in Chapter 3. This situation is further complicated when we introduce the
concept of ‘partial’ or ‘weak’ copyleft. Partial copyleft licences are ones that only
demand reciprocal sharing of modifications to the free software but also permit
embedding of this code in proprietary products. In some cases, partial copyleft
free software can be included in permissively licensed open source software. It is
out of scope for this chapter to go into detail about open source licence compati-
bility, and this is covered in Chapter 3. It is important to acknowledge the existence
of this concern at this point, since licence choice clearly influences how and when
communities can share their code and, to an extent, the nature of the communities
themselves.

When sharing across projects is facilitated through the use of compatible li-
cences we see immediate benefits in the code production cycle.® By sharing re-
sources in the production of non-differentiating code, companies are able to reduce
the cost and increase the quality of outputs. By ‘non-differentiating software’ we
mean software that does not mark the participants as unique in the marketplace,

8 Dirk Riehle, “The Economic Motivation of Open Source Software: Stakeholder Perspectives’ (April
2007) 40(4) IEEE Computer 25-32 , available from <http://dirkriehle.com/computer-science/research/
2007/computer-2007-article.html> accessed 21 July 2022.

44 ROSS GARDLER AND STEPHEN R WALLI

whether they provide software, services, or some other output produced through
software use.

Regardless of licence choice not all Open Source software communities are
open, collaborative communities. The licence guarantees that everyone has certain
rights with respect to the use of the software code, but it says nothing about the de-
velopment model adopted. In some cases the owners of the software may choose to
maintain a development model in which only a very limited number of people are
able to participate in the software development decision-making process. This may
influence potential users’ decisions to use the software or not, which in turn affects
the likelihood of third parties contributing to the production of the software.

A combination of the development model adopted and the licence chosen for
the software will influence the kind of community one can expect to find around a
particular Open Source software project. This, in turn, influences the kind of rev-
enue creation or cost-saving opportunities available to companies that are pro-
ducing or consuming project components and which is explored more fully in
Chapters 15 and 16 where we explore the economics and commercial models. We
will return to these points later in this chapter, but first we will dig deeper into the
political and ethical considerations that influence the decisions behind community
structure and licence choice.

2.9 The Politics and Ethics of Open Source

So far, we have examined Open Source software in its role as a production tech-
nique in which an IP licensing model defines how the project outputs are shared
outwardly and openly. We have indicated that this is only a part of the story and
that there are also important political and ethical considerations to be taken into
account. The term ‘free software’ may be used to refer to some of these issues.
However, the term ‘open source’ does not necessarily exclude the same arguments
since all open source software is also free software.

The term ‘free software’ was adopted by the FSF and pre-dates the term open
source software. For some, it is the preferred term and they do not wish to associate
themselves with the term ‘open source’ because it has become ‘associated with a
different approach, a different philosophy, different values, and even a different cri-
terion for which licences are acceptable.?

Free software must not be confused with ‘freeware, which is software that can be
acquired at no cost but for which source code is not available. Freeware provides
none of the benefits of code-sharing that we see in free software. That is, whilst
the cost of the software is zero it is not possible to adapt the software to suit one’s

9 <http://www.gnu.org/philosophy/free-software-for-freedom.html> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 45

specific needs. In addition, the lack of source code makes it impossible for users of
that code to share their experience and thus reduce the cost of further development
and software maintenance.

While freeware focuses on the lack of licence fee, free software is considered
to be more of a social movement that adopts a specific IP licensing methodology,
whereas open source is more of a software development movement using a broadly
similar IP licensing model. For the free software movement non-free software is
a social problem while for the open source movement it is a suboptimal solution.
Whilst the two groups disagree on some basic principles, they do agree, in the
main, on the practical recommendations they make. This section describes the dif-
ferences between the two movements’ basic principles.

It should also not be confused with Public Source or Shareware, which whilst
having the source code publicly available lacks an approved licence granting one
rights to use the code in a free or open source manner and is proprietary.

2.10 The Free Software Definition

The term ‘free software’ refers to software that respects users’ freedom and commu-
nity. Everyone has the freedom to run, copy, distribute, study, change, and improve
the software. These freedoms ensure that users (collectively or individually) are
able, if they so desire, to control the program and what it does for them. The FSF
argues that when users are unable to control the program then the program con-
trols them. As a result such ‘non-free’ software is sometimes seen as ‘an instrument
of unjust power’!? Free software is therefore a matter of liberty, not price: ‘free’ as in
‘free speech), not as in ‘free beer’!!

In order to establish whether or not software is free software, the FSF has defined
four essential freedoms. To be free software the terms under which it is distributed
and used must provide all four freedoms. These are:

o The freedom to run the program as you wish, for any purpose (freedom 0).

o The freedom to study how the program works, and change it so it does your

computing as you wish (freedom 1).

The freedom to redistribute copies so you can help others (freedom 2).

o The freedom to distribute copies of your modified versions to others
(freedom 3).

It is important to note that there is nothing in these four freedoms that would in-
dicate that free software is non-commercial. In fact, the four freedoms ensure that

10" <http://www.gnu.org/philosophy/free-sw.html> accessed 21 July 2022.
1 <http://www.gnu.org/philosophy/free-sw.html> accessed 21 July 2022.

46 ROSS GARDLER AND STEPHEN R WALLI

commercial use, development, and distribution are possible. Another important
clarification is that the freedom to modify the software does not imply that third
parties must accept your modifications. The value of any changes in the software
is a subjective matter and the four freedoms do not seek to provide any guidance
on the acceptance or otherwise of modifications. They only seek to ensure a users’
right to make and redistribute modifications.

A free software licence may require a change of name and branding for a product
that has been modified, as its trademark may not be available for use on modified
software (see Chapter 9), but as long as these requirements are not onerous they are
not considered to be a restriction on a users’ right to modify (see further Chapter
24). This provision is to enable third parties to build value in their version of the
software and thus generate revenue streams that will pay for further development
of the software.

2.11 The Open Source Definition

We have seen that the four freedoms of free software focus on a perceived social
need for software to be free. We have also seen that whilst the open source move-
ment sees non-free software as suboptimal, its more pragmatic position serves to
de-emphasise the ethical requirement for software freedom whilst recognising the
importance of collaboration. Finally, we have seen that whilst the free software and
open source software movements differ in motivation, they agree on most of the
practical recommendations.

The equivalent of the FSF for the open source movement is the Open Source
Initiative (OSI). The OSI provides the Open Source Definition (OSD)!? which de-
fines the ten considerations that an open source licence must address. These are:

1. Free Redistribution
There can be no restrictions that prevent the software being distributed ei-
ther alone or aggregated with other software. This includes no requirement
for royalties or fees. However, as with free software, this does not mean that
open source is non-commercial.

2. Source Code
Software distributions must include source code in a form that is usable by a
typical programer.

3. Derived Works
The licence must allow derived works that can be distributed under the
same terms as the original software. Note, this requirement does not extend

12 <http://opensource.org/docs/osd> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 47

to other software distributed alongside open source software, only to de-
rivatives of the open source software itself.

4. Integrity of the Author’s Source Code
If there is any restriction on the distribution of modified source code then
it must allow distribution of ‘patch’ files to allow programers to reapply
any modifications made. No restrictions on the distribution of binaries
built from modified source, beyond requiring different branding, are
allowed.

5. No Discrimination Against Persons or Groups
The licence must be identical for all persons and groups.

6. No Discrimination Against Fields of Endeavour
The licence must be identical for all types of use.

7. Distribution of Licence
The rights assigned in the licence must apply to everyone who receives a copy
of the program.

8. Licence Must Not be Specific to a Product
The licence cannot depend on the software being distributed in a specific form
or as part of a specific product.

9. Licence Must Not Restrict Other Software
The licence must not affect other software distributed alongside the licensed
software.

10. Licence Must Be Technology Neutral

No provision of the licence may depend upon a specific technology or style of
interface.

A careful comparison of the OSD and the Four Freedoms will show that they are
compatible. Any software that is open source is also free, and vice versa. As we dis-
cussed earlier, the main difference between the two movements is philosophical
and that the free software movement is driven by social need while the open source
movement is driven by pragmatism. These different motivating factors lead to a pos-
sible division on the type of user that is best served by each model but which in cur-
rent times is largely irrelevant.

2.12 The Open Source Initiative, a Pragmatic Community

The OSI is a non-profit corporation that was formed in 1998 to educate about and
advocate for the benefits of open source software. It also seeks to build bridges
among different constituencies in the open source community. The OSI defines
open source as ‘a development method for software that harnesses the power of
distributed peer review and transparency of process. The promise of open source

48 ROSS GARDLER AND STEPHEN R WALLI

is better quality, higher reliability, more flexibility, lower cost, and an end to preda-
tory vendor lock-in’!?

The OSI chose the term ‘open source’ rather than ‘free software’ as it felt that the
latter term had come to be associated with a philosophically and politically focused
group. The OSI sought to focus more on pragmatism and the business case for the
collaborative development of software. While the motivation for their advocacy
was quite different to that of the FSF, the end result is largely the same practical be-
haviour: the development of free and open source software.

The OSI acts as a form of standards body, maintaining the OSD and a trade-
mark that creates a nexus of trust around which developers, users, corporations,
and governments can organise open source cooperation. In order to use the OSI
trademark, software must be released under one of the licences that the OSI have
reviewed and approved as being in conformity with the OSD.

The OSI’s mission to define the conditions under which participants can openly
collaborate on free and open source software is more difficult than the more tightly
bounded mission of the FSF to build only free software or the ASF’s mission to
build only permissively licensed software (see ASF case study, section 2.14). The
OSI seeks to be pragmatic and business-case driven, but it is hard to imagine a situ-
ation in which all-comers will converge on a single position.

The difficulty of reaching unanimous consensus across all parties led to the
strange situation in which a foundation created to promote collaboration is itself
a closed organisation. The OSI bylaws!* do not allow a membership to be formed
and thus all authority is vested in the Board of Directors. The Board consists of
between five and twenty-one individuals, each of whom is elected by the ex-
isting Board of Directors. There are currently (2022) nine members of the Board
of Directors. This arrangement allowed the OSI to complete the difficult task of
defining the OSD and the associated licence approval process. However, this ap-
proach has limited the foundation’s ability to have a significant impact beyond this
initial work.

In 2008 an attempt was made to reform governance of the organisation. The OSI
board invited fifty individuals to join a ‘Chartered Members’ group, forty-two of
whom agreed. However, this group conducted its business on a private mailing list
and its membership was never made public. The group made no visible progress on
reformation of the OSL

In 2012 an initiative was undertaken to transition towards a membership based
governance structure. A free Affiliate Membership program has been introduced
for ‘government-recognised non-profit charitable and not-for-profit industry as-
sociations and academic institutions. Individuals can also join as ‘Individual
Members” a small fee. A third phase was planned in which corporate members

13" <http://opensource.org/> accessed 21 July 2022.
14" <http://opensource.org/bylaws> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 49

would be invited to join, but has not (as of 2022) been implemented. At the time of
writing (late 2022), none of these membership types provide any formal influence
over the foundation as defined by the bylaws.

It is important to note that because the foundation does not generate outputs
that contribute directly to the products and services provided by most commercial
free and open source software companies, it has found it difficult to generate sig-
nificant contributions in the form of volunteer energy. The OSI seeks to be more
effective with the greater financial resources membership will make available. For
example, the current Board of Directors expects the need for ‘dedicated, long-term
advocacy and organising’ to require the provision of resource such as permanent
staff and/or fellowship positions organising.'®

2.13 Pragmatism versus Ethics

For the open source movement, the focus is on providing the maximum flexibility
for producers of software. That is producers are free to do anything they want, in-
cluding produce non-free software that incorporates open source software. The
free software movement, on the other hand, seeks to protect the end-users’ free-
doms by ensuring all software supports the four freedoms.

Where producers choose to produce only free and open source software, users
retain the four freedoms. However, where producers choose to include open
source software in proprietary (non-free) software, those freedoms are, at least in
part, lost.

The open source movement accepts that some producers of software will con-
tinue to produce proprietary software. This movement therefore seeks to ensure
that all software producers can collaborate on open source software regardless of
their chosen product licence strategy. Since a significant portion of the software
industry is built on the capability of software producers to create false scarcity
through the use of restrictive licensing models, this situation might be seen as a
necessary compromise.

Despite the willingness of the open source movement to accept this compromise
position it would be unreasonable to suggest that this compromise is a necessity.
Ten years ago the author of this chapter for the first edition described the predom-
inant model for software as being a proprietary controlled one. As a consequence
of digital transformation, developer adoption and open source software now being
found in up to 90 per cent of code bases, and up to 70 per cent of code!® in 2022,
this can be seen to be shifting. The pragmatism of the open source movement

15 <http://opensource.org/members> accessed 21 July 2022.
16 Tidelift 2020, <https://tidelift.com/subscription/2020-managed-open-source-survey> accessed
21 July 2022.

50 ROSS GARDLER AND STEPHEN R WALLI

allows software producers to choose the point at which to draw the line between
open source software and proprietary software.

It is this ability to define one’s own boundaries that enhances the flexibility
for the software producer when engaging with open source software projects.
However, without the legal requirement of a reciprocal or copyleft licence to ensure
project derivatives are also free software, the driver for development collaboration
is less obvious. What is to prevent software producers benefiting from the open
software without contributing to its development?

Whilst there is no financial cost attached to the unrestricted sharing and distri-
bution of open source software there are costs to community partners that choose
to not share their work in return. For example, a user of open source software may
build a product that is in direct competition with other users of that software and
this competition could be damaging to the business of those users that choose to
collaborate openly. However, in this situation the non-collaborating partner will
bear the full costs of maintenance of the software within their systems while the
collaborating partners will share their costs. For successtul re-users of open code,
the costs associated with this maintenance will increase over time as the user con-
tinues to diverge from the publicly shared code. Consequently, over time, the eco-
nomic pressures to collaborate increase.

Supporters of the more pragmatic open source movement point to these eco-
nomic drivers for collaboration as evidence that, over time, more and more soft-
ware will become a part of the open source project. Supporters of the free software
movement acknowledge this but insist that the process should be accelerated by
ensuring all distributed software (as opposed to modified software for personal
use) must be made available under a free software licence.

2.14 The Apache Software Foundation

The ASF is a hugely influential organisation. It houses some of the most important
Open Source software projects and has a long history of producing successful soft-
ware. It is an example of an organisation that uses permissive licences to maximise
the options for reuse, while a community-focused development model seeks to en-
sure that all participants have an equal influence on the project’s strategy.

In this discussion we will see that this success is because the original creators
worked hard to define a method of production that was as inclusive as possible.
Unlike, for example, the FSF, the ASF focuses on the means of software production
rather than the legal protection of software freedom. To many this is a suboptimal
approach, but the model has been proven successful and repeatable in well over
356 Apache Projects Directory.

In February 1995 a small group of eight people created the Apache Group. These
people had been independently maintaining the previously aborted, but public

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 51

domain, NCSA web server. They had been sharing ideas and notes and decided
that it was best to provide a level of legal protection and provide a limited amount
of structure around their collaboration. The result was the Apache License V1.0,
a permissive licence that allowed third parties to use the code in any way they de-
sired. The organisational structure was informal but provided a means for coordin-
ated decision-making within the group.

By 1999 the group had grown to twenty-one members and a multinational
company wanted to use their software in a mainstream product. However, this
company’s lawyers were concerned about the lack of legal structure behind the
licence. The solution was to create a US-based public charity (501(c)(3), in the
parlance of the US Internal Revenue Codes). The mission of the foundation is to
‘provide support for the Apache community of Open Source software projects. The
Apache projects are characterised by a collaborative, consensus-based develop-
ment process, an open and pragmatic software license, and a desire to create high
quality software that leads the way in its field” Perhaps more important than the
mission is the tagline the ASF uses: ‘not simply a group of projects sharing a server,
we are a community of developers and users’!”

This emphasis on the ‘community of developers and users’ is present in the
bylaws of the ASF and the licence used. The ASF operates with one simple goal: to
ensure that a community of project developers can do what they do best—produce
software for the benefit of all. The ASF exists only to provide the social, legal, and
technical infrastructure to facilitate those developers.

The ASF places a very heavy emphasis on the social aspects of collaboration.
All Apache projects adopt a development model that is often called the ‘Apache
Way'. This is a transparent, open, and meritocratic governance model that defines
a small set of rules that all Apache projects observe. These rules ensure appropriate
management of IP rights and community engagement. Those familiar with Apache
projects will recognise that there is often more emphasis placed on community de-
velopment than any other aspect of project management. This is possible because,
for example, much of the legal overhead of managing an Apache project has been
reduced by using a standard licence across all projects which significantly reduces
the overhead in addressing legal issues in individual projects.

An important aspect of this community focus is a constant drive to ensure that
all community members are seen as equal. For this reason the ASF does not pay
for software development. All contributors to an Apache project are considered
volunteers within the project. This means that there are no management struc-
tures within the projects and no individual’s opinion is regarded as more important
than any other. This is supported by a clearly defined meritocratic and consensus-
based decision-making process that is surprisingly efficient in its application. This

17" <http://www.apache.org/> accessed 21 July 2022.

52 ROSS GARDLER AND STEPHEN R WALLI

equality among volunteers is extremely important to the ASF and is fiercely pro-
tected. It is this equality that allows anyone, regardless of the resources available
to them, to contribute in a meaningful way whilst still being protected against the
most serious potential abuses of their time.

The ASF uses economics to ensure contributions are made back to the
Foundation wherever it is strategically appropriate to do so. That is, if a user of
ASF software chooses to modify Apache code without contributing back they are
introducing a maintenance overhead that other participants do not have. This
means that competitors can enter the market and benefit from lower development
and maintenance costs by actively engaging with the community. In many cases
this reduction in costs can make them more competitive in the marketplace.

Traditionally Apache projects have focused on infrastructure components
which are more easily reused in derivative products. However, in 2011 the founda-
tion created its first significant end-user project in the form of Apache OpenOffice.
This suite of productivity tools is intended to be installed and used as a single
multifunction product. The success of this end-user product at the ASF is testa-
ment to the Apache model of software development working beyond infrastruc-
ture projects.

The ASF created a structure that has successfully and repeatedly produced Open
Source that is used to deliver immense value to modern business. Its software is
used in large Internet commerce sites, social networks, space-faring vehicles
and control centres, government agencies, universities, schools, banks, and even
children’s toys. It is hard to imagine any computer that doesn’t have Apache soft-
ware embedded within it somewhere. All this is achieved through the provision of
a genuinely neutral collaboration space, enabled by an Open Source licence, and a
model of meritocratic, bottom-up decision-making that is both efficient and fair to
all participants.

2.15 Governance of Open Source

The OSI describes open source as ‘a development method for software that har-
nesses the power of distributed peer review and transparency of process. Note that
this definition does not reference licences. Nobody will deny that Open Source li-
cences are vital. Once copyright was applied to computer software, conformance
with the four freedoms and/or the OSI’s OSD can only happen with the application
of an appropriate and approved licences. However, there is more to Open Source
than a licence.

To realise the full potential of Open Source (or its subset open source) as a devel-
opment methodology we also need to consider ‘governance models, that is how a
project is managed. A clear governance model ensures that all contributors under-
stand how to engage, what is expected of them, and what protections are provided

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 53

for their status as a contributor. That is, it defines the rules of engagement and
decision-making.

Open Source licences provide the legal framework within which parties collab-
orate. A governance model provides the social framework for that collaboration.
A combination of Open Source licence and a transparent governance are what
makes Open Source successful. So what is a good governance model?

2.16 People versus Process

An Open Source governance model need not be, indeed should not be, a com-
plex document that attempts to cover every possible circumstance. The governance
evolves over time to be the collection of documentation that enables the commu-
nity to get work done as members come and go. It may start with a few processes
and evolve as the project evolves. It captures the processes in such a way as to
transmit the culture to new members. It prevents a project from becoming stuck
because the institutional knowledge resides in a few members’ heads. It is guidance
documentation covering the most common community processes, nothing more.
Examples of such processes may include:

» How to file a good bug.

o How to suggest a new feature.

» How to propose a patch or pull request.

« How are features for a new release of the software project decided.
« How are new releases of the software project built.

The governance should recognise that written rules can be both empowering and
constraining. Rules make a process predictable and repeatable, but they can also
make a community resistant to change or even blind to the need for change. The
goal is to create an environment in which people feel comfortable engaging with
the project on a long-term basis. The governance should hopefully account for its
own evolution.

In reality, most software developers just want to be able to get work done in an ef-
ficient way. This is especially true in a community-led Open Source project. A good
governance model is therefore about enabling flexibility, empowering individuals
to lead on specific activities, and preventing (occasionally resolving) conflict.

However, this in turn can present a problem. Many people find working in a self-
directed, bottom-up, collaborative environment challenging. This is where lead-
ership comes in. In an Open Source project leadership is not about directing but
instead is about getting results and empowering others.

A common concern about community-led Open Source projects is that they will
quickly descend into anarchy because they adopt a bottom-up, leaderless approach

54 ROSS GARDLER AND STEPHEN R WALLI

to coordination. Finding the right balance between bottom-up anarchy and top-
down leadership is hard. This is where the governance model applies. It provides
the social scaffolding for collaboration. It empowers individuals who just want to
get things done and it provides mechanisms by which community deadlocks can
be broken.

An Open Source licence is only a small part of this governance model. As we
discussed earlier, some licences legally enforce a sharing of code modifications.
Others depend upon economic and social pressures. Choosing the right licence
and the right style of project governance is critical to the success of an Open Source
project. It is important to understand some of the choices a project must make
about its social governance.

Sections 2.17 and 2.18 outline two examples of common governance models in
communities. These two approaches appear to be diametrically opposed. The first
is the benevolent dictator model, where a single individual has absolute authority.
The second is the meritocratic model, where valuable contributions are rewarded
with collective leadership authority. Once you understand both of these ‘extremes’
you'll see that, in practice, they are not as dissimilar as they first seem.

2.17 The Benevolent Dictator Governance Model

A benevolent dictator (BD) is an individual who has complete control over the
decision-making process in an Open Source project. Linus Torvalds'® is perhaps
the most well-known benevolent dictator. Being a BD is not an easy job. It re-
quires diplomacy and community building skills, in-depth technical knowledge
of all aspects of the project, and exceptional levels of commitment and dedication.
However, as Linus’ Linux Kernel'?

The BD model relies heavily on the fact that an Open Source licence allows
anyone to take the code and spin up their own project or fork. This means that
although the leader has full control over their project, they must still work to en-
sure that community needs are met. Failure to do so will result in a splintering of
the community as objectors set up their own projects based on the same code and

project illustrates, it can be very effective.

the community walk off with their code base. A BD who wishes to create a vibrant
community project must therefore seek to ensure each decision is both understood
and supported by as many community members as possible. Consequently, diplo-
macy, mediation, and clarity are just three of the softer skills that a BD needs.
Although BDs are usually highly skilled from a technical perspective, they are
unlikely to be the best person to make every technical decision. A good BD recog-
nises this and seeks to enable the community to collectively make decisions under

18 <http://en.wikipedia.org/wiki/Linus_Torvalds> accessed 21 July 2022.
9 <http://www.kernel.org/> accessed 21 July 2022.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 55

the guidance of the most skilled members. When the community is unable to reach
consensus, the BD will intervene by making what they believe to be the most ap-
propriate decision. In this way a BD seeks to prevent the project from becoming
paralysed by indecision.

It is therefore the BD’s job to resolve disputes within the community and to
ensure that the project is able to progress in a coordinated way. In turn, it is the
community’s job to guide the decisions of the BD through active engagement and
contribution. Consequently, the BD model can scale because in the majority of
cases, the BD is not needed to allow the community to progress.

Typically, the BD is self-appointed. They will usually be the originator of the
project or their appointed successor. In many ways, the role of the BD is less about
dictatorship and more about leadership and diplomacy. The key is to ensure that, as
the project expands, the right people (those who concur with the BD’s vision) are
recognised as community leaders. A BD who does not have or does not maintain a
following within a project will quickly find the project has forked and themselves
usurped.

2.18 The Meritocratic Governance Model

In centralised models of governance, the gating of contributions through a single
individual becomes a bottleneck. A meritocracy recognises this and provides a de-
fined mechanism by which individuals can earn direct influence over the project.
This process is quite different to approaches within which employment status, ex-
perience, or financial contributions might earn ‘power’. In the meritocratic model,
anyone contributing in any positive way earns equal authority. This process of
empowering those who contribute scales very well. Furthermore, it minimises fric-
tion because it recognises power and influence as scarce resources. Newcomers are
seen as volunteers that want to help, rather than people that want to grab a share of
that scarce resource. A true meritocracy lacks artificial filters for contributions that
are commonly found in other models. An example of such artificial filters is the
ability to buy influence with cash rather than technical contribution. This lack of
artificial filter ensures the broadest possible range of contributors who are aligned
to a common goal. When managed well this process creates an environment in
which everyone, regardless of their relationships outside a project, can collaborate.
However, because there is no defined leader there needs to be a clear set of rules
by which the community operates. Failure to provide clear rules of engagement
usually results in a model that looks more like a top-down leadership model than a
bottom-up community model.

A meritocracy is typically leaderless; that is, whoever is best equipped to lead
in any specific situation will be the leader for that situation only. People lead
through action, not authority; they don’t have any more authority than any other

56 ROSS GARDLER AND STEPHEN R WALLI

participant. This often causes newcomers to meritocracy to assume that a project
will inevitably grind to a halt since it will be unable to make decisions. In a healthy
meritocracy it is possible for those with less experience to drive a given objective
forwards through action, but since all work is in the open, those with more ex-
perience (but less time) will provide feedback. Where that feedback is seen as ap-
propriate it will be recognised as meritorious and included in the final outputs.
Fortunately, in software development, the vast majority of decisions are easily re-
versible. So long as missteps are identified early, they can be reversed with min-
imal negative impact. Consequently, most decisions in a software project are made
through a process called ‘lazy consensus’ where the community lazily assumes that
anyone with sufficient merit to take action is going to do so with good intentions.
The community reviews all actions quickly and, if necessary, raise, discuss, and
act upon any objections. In the unlikely event that consensus cannot be reached, a
conflict resolution process is enacted.

Potentially controversial actions may be brought to the community’s atten-
tion for feedback and approval prior to work being carried out. This can reduce
the number of ‘roll-backs’ necessary since consensus is sought before work com-
mences. Since those with merit have already demonstrated a sensitivity to when
this is necessary there need not be hard rules in place to manage this, all that is
needed is full transparency on all actions and their motivation.

2.19 Implications of Licence Choice and IP Management
on Governance Models

The BD presents an organisationally simple model that can work extremely well,
but only if the right leader can be found. The meritocratic model, on the other
hand, does not depend on the availability of a single individual to act as project
leader; however, it brings with it a more complex social structure that requires
more engaged governance processes.

A potential downside of the benevolent dictator model is that it requires the
community to trust a single individual completely, both today and in an undefined
future. For many people, this dependence on a central figure puts the project at
risk since individual circumstances change, as do employers’ objectives. In a mer-
itocratic model, contributors need not put their trust in a single individual but
they must, at the very least, actively monitor the community to ensure it remains
aligned to their own goals. The use of an Open Source licence, which allows any
community member to fork’ the project and make it their own, goes some way
towards protecting the community. However, the choice of licence and the treat-
ment of contributed IP can have a significant effect on a community’s confidence
in this model.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 57

As an example of this interplay between licence choice, IP management, and
project governance, consider the fact that a reciprocal licence coupled with copy-
right assignment of all contributions centralises legal control. The concern here
is that it is not difficult to acquire full control of the Open Source project. This is
especially true when a BD can exercise complete control over the project. With
full control of both the legal and community aspects of the project it would be
possible to act in ways counter to the community’s interests. At its extreme this
would mean the copyright holder can make all future development work propri-
etary while third-party contributors would still be bound by the original reciprocal
Open Source licence. Thus there can be significant potential benefit to the ‘owner’
of a centralised, copyleft project.

In order to minimise the risk, one could seek to manage copyright in third-party
contributions differently. For example, rather than centralising ownership in an
organisation that can be acquired, one could use a suitable non-profit vehicle. This
can ensure the safe-keeping of all contributions for the community because, for
example, it would not be possible to purchase the assets of the non-profit copy-
right owner. Alternatively, one could avoid centralising copyright in the first place.
This is achieved by only requiring contributors to grant a licence to reuse contribu-
tions in Open Source software, as opposed to assigning copyright to a centralised
owner. In this instance re-licensing of the code would require the permission of all
contributors.

It is also possible to minimise the impact of a community leader closing future
developments by using a permissive licence rather than a reciprocal one. This does
not prevent the creation of proprietary derivatives, but it does mean that all com-
munity members have equal rights to do so. However, in this instance we have
moved the problem from being a legal one to becoming a social one. As we have
seen in earlier sections, this tension between the pragmatic and ethical case for
open source versus free software requires some careful consideration.

The matrix following presents an overview of the kinds of project that are cre-
ated by various combinations of licence and copyright ownership. It should be
noted that there is a third licence type, known as ‘partial copyleft’ which is not dis-
played in this model. A common partial copyleft licence is the GNU Lesser Public
License (LGPL). This licence requires any derivatives of the code to be released
under the LGPL, that is it is reciprocal. However, unlike a full copyleft licence such
as the General Public License (GPL), LGPL code can be included in unmodified
form in proprietary products. We have not included discussion of this licence type
here in order to simplify this chapter. We feel justified in this decision since the FSF

does not recommend the use of partial copyleft licences in most circumstances?

20 <http://www.gnu.org/philosophy/why-not-lgpL.html> accessed 21 July 2022.

58 ROSS GARDLER AND STEPHEN R WALLI

(despite the fact that the FSF is the author of the LGPL). Licensing is discussed in
depth at Chapter 3 and contribution at Chapter 4.

Copyright Ownership Model

Centralised

Distributed

Licence type | Reciprocal

Economic Community

Alllicensees have the same rights under a re-
ciprocal licence and thus the status of copyright
owner has no special bearing. All licensees are
free to share modifications or to withhold them.

Copyleft

Owned community Enforced community
Under a reciprocal Under a reciprocal li-
licence all licensees cence all licensees have
have the same rights. the same rights. All

All modifications af- modifications made by
fected by the licence licensees must be made
must be made available | available under the
under the same licence. | same licence. Where
However, the centralisa- | copyright in each con-
tion of copyright means | tribution is owned by
that the copyright individual contribu-
holder isnotboundby | tors no single entity is
this same requirement | entitled to withhold
and may choose to issue | modifications affected
modificationsundera | by the licence.

different licence.

It is outside the scope of this chapter to explore the many interactions between
licence choice and project governance. Our intention here is to simply high-
light the interrelationships between the two by providing a few illustrative ex-

amples. As you continue to read this book you will come to identify many more

cross-dependencies between the legal and social models of Open Source software

development.

2.20 The Rise of Codes of Conducts

There is a governance trend in the past decade that is on the rise and ubiquitous,

and that is for Open Source projects to have a code of conduct or respect. This

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 59

most likely comes about as several industry trends are reflected in Open Source
communities.

Over the past couple of decades, we have seen a rise in companies having such
codes of conducts. They are sometimes dressed up as standards of business con-
duct or business ethics. They are sometimes based around a theme such as ‘trust’
or ‘integrity. Good ones always set expectations for how the relationship with the
company as an employee, customer, or partner should be viewed.

Over several decades, a recognition and a growing number of studies across a
collection of industries have demonstrated that diverse teams build better value
for companies’ long term and have measurable impact on the bottom line. While
some of the early studies may have been focused narrowly on gender, more recent
studies have demonstrated such bottom-line impact from diverse teams in more
nuanced ways. The software development profession is one such male-dominated
profession and therefore the earlier period of software collaboration was equally
imbalanced.

As these communities were online communities, communications were typic-
ally email distribution lists, online forums, and chatrooms. Without a company
responsible directly for such communications channels, and with many channels
allowing for the complete anonymity of the participants, some conversations could
degenerate, becoming aggressive to the point of toxicity. Even in situations where
participants were well known to one another, there are many documented inci-
dents where conversational styles could be direct or blunt to the point of rudeness.
Such bad behaviour can have a lasting effect on a project. One documented case
showed that while the worst participants were finally driven from the community,
the general participation in the community overall had dropped by 20 per cent and
never recovered.?!

Conferences supporting Open Source licensed projects became some of the first
places to support a code of conduct as organisers worked to encourage more di-
verse participation in the conference itself. That model seems to have carried into
the projects themselves. Some of the older projects recognised the need for more
diverse participation from contributors and by extension their maintainers as they
worked to refresh the original group that was approaching retirement age. Modern
well-run projects now typically support a code of conduct. Non-profits supporting
projects generally encourage their projects to have such a code of conduct.

A generally acknowledged well-written code of conduct is the Contributor
Covenant. Started in 2014, a group has been maintaining the document and re-
leasing new versions.?* It generally reflects new developments in a broad collection

21 D Berholz, ‘Assholes are Ruining Your Project) available at <https://redmonk.com/tv/2012/04/06/
assholes-are-ruining-your-project-donnie-berkholz-redmonk/> accessed 21 July 2022.
22 <https://www.contributor-covenant.org/> accessed 21 July 2022.

60 ROSS GARDLER AND STEPHEN R WALLI

of Open Source project communities and is run as an Open Source project in itself
(using a Creative Commons licence as it is document based).

As more projects adopt such codes of conduct, best practices are also growing.
One interesting case in 2018 demonstrated in a large community with a code of
conduct that they didn’t have a policy for what to do when there was a reported
code of conduct violation. The principle organisers in that project immediately
spent a few days adding such a policy to respond quickly and decisively to the situ-
ation in front of them.

2.21 The Business of Open Source

We have considered the models of collaborative community building and liber-
ally licensed sharing with respect to Open Source project communities and gov-
ernance. A detailed consideration of these in a commercial context is made in
Chapter 16. There are two models for utilisation of Open Source software at a
high level: a company can consume project components and Open Source, and a
company can produce project components and Open Source. It is easy to see how
a company with a broad software portfolio could do both and many companies
move from being consumers to producers or contributors over time as is discussed
further in Chapter 19.

We have already seen the easy economics behind consuming such projects in
the GCC example earlier in the chapter using our borrow-and-share concept. It is
a source of rapid value capture and defrays engineering development and main-
tenance costs over time for the component. It is also a direct source of innovation.
Perhaps the best example of such value capture is Red Hat Inc. and the Red Hat
Enterprise Linux product, as well as their own Fedora community distribution
project. They invest modestly in the Linux kernel community?® but reap enor-
mous value.

An easy modern example of a vibrant community evolving around a project
with companies pulling the project component into company products and serv-
ices for customers, is the Kubernetes project. This Open Source project was started
by Google, and Google invested to build a vibrant, diverse community around
the project. The projects IP is held neutrally in a non-profit, the Cloud Native
Computing Foundation (CNCEF), giving other partners and members confidence
that the ownership and management of the message is a level playing field. Many
companies then pull from the Kubernetes project components to build and offer
their own Kubernetes-based orchestration services, plumbing in their own net-
work and storage drivers, management portals, and billing services. CNCF and

23 2017 State of Linux Kernel Development, <https://go.pardot.com/1/6342/2017-10-24/3xr3f2/
6342/188781/Publication_LinuxKernelReport_2017.pdf> accessed 21 July 2022, p 14.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 61

Kubernetes are amongst the greatest success stories of Open Source and underpin
much of cloud computing today.

The products around Kubernetes have a valuation today in the trillions of US
dollars and investment in the tens of billions of dollars based on the CNCF cloud
landscape. In the way that Linux sits at the core of a large proportion of today’s
server market, so Kubernetes sits at the core of much of the cloud infrastructure,
creating not only a community but also an ecosystem.

This distinction between project and product is key. When he was CEO for
MySQL Inc., Mérten Mickos offered the observation:

The community has time and no money; customers have money and no time.?
Community projects are not customer products. A company working with open
source component projects needs to know when it is engaging community mem-
bers, and when its talking to customers. These are distinct conversations with dif-
ferent goals and metrics for success.

4

When a company or public body produces its own open source components
to share, one needs to do so thoughtfully. At a high level, a software company, one
selling solutions to customers largely based on building software, builds software
of three types:

o Context: Software tools used to build customer-facing products.

o Complement value add: Software that supports core products and services,
creating a richer customer experience, and making the products and services
sticky.

« Core value proposition: The software at the heart of the company’s solution to
customers, sometimes called a single vendor product.

Investing in building a modest community around ‘Context’ projects provides easy,
modest returns. A good example is Netflix and the Spinnaker CI/CD (Continuous
Integration/Continuous Development) pipeline project. There is nothing about
Spinnaker that is core to the delivery of streaming video to all of its customers’ de-
vices. It is enabling software. Sharing it and others use of it creates a validation of
the toolset and approach to the problem through wider use; innovation capture as
others stress-test the Spinnaker project in new environments and contribute back;
and recruiting benefits both as culture advertisement and as screening and self-
selection for the problem space. There is little risk or liability management needed
that can’t be absorbed by the company and so the value of building a community is
plain to see.

A good example of a ‘Complement’ project is the Microsoft Azure CLI. It is an
Open Source project from Microsoft that provides a command-line interface to

u Keynote at the Open Source Business Conference, 2006, San Francisco.

62 ROSS GARDLER AND STEPHEN R WALLI

Azure cloud services instead of the main Azure management portal. Investing
in building community allows for deep partner engagement and customer co-
creation, where partners and customers commit with Microsoft to the core tech-
nologies. You can see this in other larger-scale projects from companies: Microsoft
with VS Code and .NET Core, and Red Hat with OpenShift.

The investment made by the parent company in building community needs to
be long-term and should be scaled up to meet expected returns and anchored on
core products and services. Individual developers may not buy software in today’s
world, but operational deployment in production data centres depends upon de-
pendable, supported products being used.

Open sourcing by publishing software under an OSI License (and possibly
building community) around a company’s core value to customers requires deep
practice in Open Source and experience to be able to separate the ‘software’ that
makes up the customer solution from the customers’ perceived value of the so-
lution. Red Hat did this exceptionally well over a thirty-year period. After ten
years, Red Hat pivoted from competing to be the best Linux distribution (distro)
using Red Hat Linux, to becoming cheap-UNIX-on-Intel-servers in the data
centre with Red Hat Enterprise Linux (RHEL) reacting to the shift in the market-
place and the move to cloud or platform as opposed to on premises (or on-prem),
as their customers began scaling up their data centres. There was no confusion
around Linux being a liberally licensed project and the value of RHEL to paying
customers in this new environment.

Likewise, Red Hat carefully managed its trademarks and brands. It chose the
route of distinct enterprise and community brands to ensure that customers clearly
understood what was delivered as a commercial product as opposed to the com-
munity version. Using the company brand on a community project instead of a
customer product may confuse customers and community members further, al-
though some companies creating Open Source work with a single brand across
both and deal with a difficult trademark dance and associated brand value issues,
as discussed in Chapter 9 on trademarks and Chapter 16 on business models.

A quotation from Theodore Levitt captures the challenge best: ‘People don't
want to buy a quarter-inch drill. They want a quarter-inch hole!” Ensuring that
you understand the problem you solve for your customers and can explain it in
terms other than the software itself means that you might be able to have healthy
Open Source project components in the heart of your core value proposition to
customers.

Managing healthy project communities created in a company can be a chal-
lenge. Context projects easily fit into an engineering department. Complement
projects need product alignment. Core projects are the company’s bread-and-
butter. Companies often make the mistake with Complement and Core projects
in believing that there will be a conversion ratio of some kind from community
project member to paid product customer.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 63

This confusion may arise from a misunderstanding of Geoffrey Moore’s chasm
metaphor.2’> His model proposed that there is a gap between the cutting-edge first
customers for a product and the more risk-averse early majority on the bell curve
of technology adoption, and he proposed ways to cross this ‘chasm’ There has been
a collection of companies attempting to attract early adopters by publishing the
core of their solution as an Open Source project.

The problem with early project adopters is they are not customers. They are
giving the company valuable time (but per Mickos, ‘have no money’). They are
validating the project technology without valuing the customer-facing solution.
Indeed, early adopting, sophisticated community members may be happy to solve
their problems using their time but never get close to becoming customers. There
is also the risk that they further confuse a company’s actual customers and part-
ners. Trying to sell to these community members only serves to infuriate them. Of
course, some early customers may appear in the project community to validate the
technology (as project) and may solve their problem, then be interested in buying
the product, but if a software company doesn’t know how to create the different
on-ramps to separate community from customers, it will create headaches for
everyone.

Open Source projects that sit on company core-value propositions fre-
quently have awkward community dynamics. All the discussions of commu-
nity building and governance earlier in the chapter assumed honest intent to
build a community of equal participants, even when organised around a ben-
evolent dictatorship. A company with a core-value project can have difficulty
separating its views of product features and value from project functionality.
These companies have primary ownership of the assets and they need to drive
business.

o If the company is trying to run the project around the basic functionality but
sell ‘enterprise’ features (sometimes referred to as an Open Core business
model), they often run into potential partners and sophisticated end-users
trying to contribute the enterprise features into the project rather than be-
coming full partners or paying customers.

o Partners want relationships based on co-investment, co-marketing, and
co-selling. They generally are not interested in simply contributing to the
OSlI-licensed project to the primary benefit of the company holding the
project.

» Competitors and potential partners can use the OSI-licensed project outright
to support their customers without engaging in any partner relationship of
mutual growth and benefit with the project originator.

%5 G Moore, Crossing the Chasm, 3rd edn (New York, NY: Harper Business, 1995).

64 ROSS GARDLER AND STEPHEN R WALLI

« Competitors and potential partners can further begin differentiating with
their own features in their own products and services depending on the
licensing.

o Venture Capital (VC) funders whose core interest is return on revenue may
also drive the company further down these roads in respect of Complement
and Core products and issues such as the community reaction and forking as
aresponse to this, as was seen in early 2021 with Elastic, become an inevitable
consequence of these.

If the project-owning company attempts to curtail the community discussion too
harshly, and there is no real community engagement in the project, then the com-
pany risks their message to customers that the solution provides the customer the
benefits of an open code base and open innovation as opposed to Open Source, in a
shared source or public source way.

If the company has invested in building a vibrant community, it may upset the
very community members that are its strongest advocates and if it pushes them too
far, the company risks a fork in its community members or product. There have
been few occasions in the past twenty-five years where a community around a pro-
ject has been stressed to the point of fracture, but it happens if the conditions are
right?® and the 2021 Elastic situation was one such example.

The tensions created in some businesses trying to use Open Source projects as
their core offering have led in recent years to the companies having to re-licence
the software under non-OSI licences, and led their investors to call in frustration
for a re-evaluation of the OSD which has been met by the OSI with a very firm ‘no,
based on the need for continued certainty in this space.

A third way using shared source or public source are lesser-known alternatives
to Open Source which do not, due to their nature, have an Open Source licence
but a proprietary licence for the code and also are unlikely to build community
or receive the benefits that it brings. Although there has been some drive to create
movements and traction around these concepts over several years and again in
2021 following on from Elastic’s move to the proprietary SSPL licence, no real trac-
tion has ever occurred, and this is probably due to the lack of developer commu-
nity engagement that these alternatives have, and it seems very unlikely that these
will really gain traction.

Companies creating Open Source project components in context and comple-
ment spaces are powerful tools for engineering, partner, and customer co-creation.
Companies publishing the core of their value proposition as an Open Source
project need careful messaging and planning, as is discussed in some detail in
Chapter 16.

26 Memorable examples of community forks include: GCC vs EGCS, OpenOffice vs LibreOffice,
Jenkins vs Hudson, Compiere vs Adempiere, ownCloud vs Nextcloud.

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 65

All of this really boils down to the simple view that Open Source projects are
powerful tools to capture value and innovation, and community engagement is a
great way to protect and grow that investment, but at the end of the day, a software
company still needs to run the business. This can be seen in the simple compari-
sons in public company filings.

Whilst Red Hat reported a gross profit margin of 84.91 per cent in 2019;
Microsoft, a leading provider of proprietary solutions, reported gross profit mar-
gins of 64.4 per cent as on 30 June 2022. Apple, a leading supplier of hardware
supported by proprietary software, reported 43.31 per cent as on 30 June 2022, and
Google, a software-based service provider, reported 56.75 per cent margins as on
30 June 2022.%” All of these companies use and contribute to Open Source soft-
ware. But only one of them can be considered an Open Source software business
in the sense that all their products are available under an Open Source software li-
cence: Red Hat. So, whilst Open Source as a central concept in a business plan must
be carefully thought through, it is clearly not without merit.

2.22 Open Source Non-Profits

We have discussed a number of non-profits through this chapter. These organisa-
tions have provided valuable structure to the work of successful Open Source pro-
ject communities, and have enabled a great deal of success for subsequent uses of
the project components in businesses. We have met each of them from a historical
perspective and each was an experiment conducted at the time to address a par-
ticular challenge. It is important to take a look at them now collectively as they are
becoming more common, and understanding their structure and use will hope-
tully create better outcomes.

Successful Open Source project communities do the work to build on-ramps
to attract users, developers (many of whom will selfishly experiment rather than
contribute to the open source community), and hopefully encourage developers to
become contributors. Contributions are the life blood of successful projects.

There comes a time, however, when the project reaches a point in its growth
where companies want to become users and contributors to the project, and a
company’s risk management profile is often higher than casual participants in an
Open Source licensed project. At the same time, as a project grows, so does the li-
ability of the project maintainers. These two constraints limit a project’s ability to
grow. Non-profit corporate legal structures can alleviate both problems.

27 All gross margin statistics from <http://ycharts.com> accessed 21 July 2022.

66 ROSS GARDLER AND STEPHEN R WALLI

o The corporate framework removes personal liability from maintainers and IP
holders.

o Itorganises IP management around the copyright and trademarks in a neutral
and improved manner.

Solving for these two problems enables companies with higher risk management
needs to consume project components into customer-facing products and con-
tribute back to those projects. This then expands the user and contributor pool and
by extension (hopefully) the maintainer pool. In extending the contributor pool, it
can do so with full-time employees, depending on the nature of the project and its
use in products.

This doesn't create a market but it enables broader use and enables more parti-
cipants in a project community. The non-profit creates safety around the code base
which allows a market to form. In market design terms, a non-profit can make the
market bigger and safer.

Non-profit organisations hold the bank account, can sign contracts (for con-
ferences, etc), can provide standardised infrastructure services, and can also pro-
vide messaging and educational services. From a market design perspective, it
allows information to flow freely to all project participants (users/contributors/
maintainers).

A class of non-profits have been structured as member organisations over the
past twenty years, and this allows companies to invest collectively in supporting
Open Source licensed projects with services for growth, and providing a common
messaging platform, while providing anti-trust protection to the members. These
are explored in more detail in Chapter 18.

All of this sounds like a great boost to Open Source projects but there are con-
siderations to be managed:

o Work needs to be done. In the same way that a project is only as successful as
the participants willing to work on it, so to with non-profit organisations.

o Creating the legal framework and basic accounting services costs money.
A group of funders who care needs to invest to create and maintain the
non-profit.

o Growth depends on healthy projects. Non-profits can’t make unhealthy com-
munity cultures healthy. Indeed, non-profits amplify the existing culture.

o If a company-owned Open Source project is brought into a non-profit struc-
ture and there is already tension in how the community is managed with
respect to project and product, the non-profit can’t solve for the culture
mismatch

Indeed, you can end up with a collection of struggling projects around a message.
Non-profit members often create a set of messages around the projects within the

EVOLVING PERSPECTIVE ON COMMUNITY AND GOVERNANCE 67

organisation. This messaging platform is important in and of itself and can become
the centre of gravity for the non-profit rather than supporting the proprietary pro-
jects themselves.

Non-profits are important organisations in the Open Source jigsaw puzzle. But
itis important to understand their uses and limitations and these are discussed fur-
ther at Chapter 18.

2.23 Conclusion

Collaboration of the type we find in Open Source software is not a new concept.
We have been building collaboration for individual and group benefit for at least
as long as we have been defending our territory. Proprietary software teams may
choose to collaborate beyond their organisational borders but here, sharing is the
exception rather than the rule.

Open Source software communities and business teams, on the other hand,
make sharing the default position. They rely upon the fact that the reproduc-
tion of completed software components does not consume a scarce resource.
Furthermore, company participants in Open Source communities recognise that
because large portions of their products can be standardised and thus shared with
collaborators at minimal cost, there is an opportunity to reduce the initial cost of
production and ongoing costs of maintenance for their businesses.

Fundamental to the success of this model of software production is the adoption
of an Open Source licence. It is the licence that protects each participant from ex-
ploitation. The licence seeks to ensure that all contributors remain on equal terms.
For this to work one needs to consider carefully both the licence chosen and the
processes adopted to allow the software to be released under this licence. Chapter 3
will explore, in detail, the role of Open Source licences.

PART 1

INTELLECTUAL PROPERTY,
CORPORATE, AND GOVERNANCE

3
Copyright, Contract, and Licensing in

Open Source
P McCoy Smith
3.1 Copyright and Software 71 3.3.2 Specific compatibility
3.1.1 The history of software and issues 98
copyright 71 3.4 Interpreting Open Source
3.1.2 The author’s rights in software Licences: Contract or
copyright 74 ‘Bare Licence’? 102
3.1.3 Exceptions to the author’s rights 3.4.1 Open Source licences as
in software copyright 75 bare licences 103
3.1.4 Derivative works in software 3.4.2 Open Source licences
copyright 81 as contracts 105
3.2 Forms of Open Source Licensing 83 3.5 What Makes a Software Licence
3.2.1 Permissive licensing 84 free’ or ‘open source’? 107
3.2.2 Copyleftlicensing 87 3.5.1 Free software licences 107
3.3 Software Interaction and Licence 3.5.2 Open source software
Compatibility 97 licences 108
3.3.1 Thelinking question 97 3.6 Conclusion 111

3.1 Copyright and Software
3.1.1 The history of software and copyright

Although the history of manmade computing devices reaches into antiquity,' it
was not until the development, beginning in the 1950s, of high-level programing
languages for authoring and editing computer instructions,? together with existing
systems for transcribing and loading those instructions into a computing device,

! Jo Marchant, ‘Decoding the Antikythera Mechanism, the First Computer’ Smithsonian Magazine
(February 2015) <https://www.smithsonianmag.com/history/decoding-antikythera-mechanism-first-
computer-180953979/> accessed 11 November 2019.

2 FORTRAN (a portmanteau of ‘formula translation’), first used in 1954, is generally considered to be
the first high-level programing language, and remained the dominant programing language for scientific
and mathematical computing well into the late twentieth century. See ‘Fortran, Techopedia, <https://
www.techopedia.com/definition/24111/fortran> accessed 21 December 2016. In fact, several important
benchmarks for measuring and comparing performance in supercomputing use FORTRAN, given its
frequent use in highly complex scientific and mathematical calculations. See SPEC CPU®2017 Floating
Point <http://www.spec.org/cpu2017/Docs/#benchmarks> accessed 13 April 2022.

P McCoy Smith, Copyright, Contract, and Licensing in Open Source In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © P McCoy Smith 2022. DOI: 10.1093/0s0/9780198862345.003.0003

72 P MCCOY SMITH

that software began to resemble those things—such as literary or other artistic
works—for which Intellectual Property (IP) rights had previously been extended.
The ability to author, adapt, reproduce, and systematically load programing in-
structions into a computing device using a combination of a writable medium,
and a high-level programing language—understandable to a multitude of human
programers and (after compilation) computing machines—first began to cause
computer scientists, lawyers, and legislators to contemplate forms of IP protection
that might be used for programs created using a combination of these mechanisms.

In the 1960s, the potential for using copyright as a mechanism for securing ex-
clusive rights to computer code started to emerge, and test cases were attempted
in the US to establish the application of copyright to software.® Thereafter, the
Commission on New Technological Uses of Copyrighted Works (CONTU) was
established in the US in order to study what, if any, IP protection might be appro-
priate for ‘new’ technologies like software.*

CONTU’s eventual report, issued in 1978, recommended that copyright protec-
tion should be available for computer programs composed of ‘a set of statements or
instructions to be used directly or indirectly in a computer in order to bring about a
certain result’’ This recommendation was not without dissent,® as some committee
members felt that computer software was primarily or exclusively functional and
therefore not an appropriate target for copyright protection, but instead should
only be protectable by patent. The US Congress amended the US Copyright Act in
1980 to specify that computer software was within its scope.

The change made in US copyright law to reflect the recognition that software fell
within its ambit were later included in law in the UK’ and the EU® to give similar
recognition.

Modern computing devices are typically configured using, and have data
input in, information in a format often referred to as ‘binaries’ or ‘executables,’
instantiated as a lengthy string of ‘1’ and ‘0’ values. In the early days of the ap-
plication of copyright to software, there remained the question of whether that

3 See George D Carey, ‘Copyright Registration and Computer Programs’ (1964) 11 Bulletin of the
Copyright Society of the United States of America 362, at 363; General Atomic Division of General
Dynamics, ‘Gaze-2, A One-Dimensional, Multigroup, Neutron Diffusion Theory Code for the IBM-
7090’, US Copyright Registration No. A607663 (registered 1 January 1963) (a FORTRAN program, con-
sidered to be the first registered copyright on software in the US).

4 National Commission on New Technology Uses of Copyrighted Works, ‘Final Report™ (31 July
1978) (CONTU Report).

° CONTU Report, see note 4, Ch. 3.

¢ CONTU Report, see note 4, Ch. 3, Concurrence of Commissioner Nimmer (arguing that only cer-
tain types of computer programs should be afforded copyright protection) and Dissent of Commissioner
Hersey (arguing that copyright protections should not be afforded to computer programs at all).

7 See UK Statutory Instruments 1992 No. 3233 The Copyright (Computer Programs) Regulations.

8 See Council Directive on the Legal Protection of Computer Programs, 34 O] EUR. Comm. Mr.
(No. L 122) 42 (1991).

° See Encyclopaedia Britannica, ‘Binary Code’ (19 January 2020) <https://www.britannica.com/
technology/binary-code> accessed 10 February 2020; PC Magazine Encyclopedia, ‘Executable Code’
<https://www.pcmag.com/encyclopedia/term/executable-code> accessed 10 February 2020.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 73

form of software was eligible for copyright protection, given the seemingly pure
tunctionality of the way that code was used and its general incomprehensibility in
that format to even skilled programers. A similar issue had confronted courts in
both the US and the UK in the early twentieth century, in cases involving ‘piano
rolls’!? In both countries, the courts determined that this format was not an in-
fringement of the copyright in the underlying musical composition: [T]o play
an instrument from a sheet of music which appears to the eye is one thing; to play
an instrument with a perforated sheet which itself forms part of the mechanism
which produces the music is quite another thing)!! and “These perforated rolls
are parts of a machine which, when duly applied and properly operated in con-
nection with the mechanism to which they are adapted, produce musical tones
in harmonious combination. But we cannot think that they are copies within the
meaning of the copyright act!? Although these decisions would—if still applic-
able today—provide a sound basis for denying copyright rights to (or at least,
disallowing infringement claims by source code authors against) executable code
created using copyrightable source code, subsequent legislative developments re-
versed the outcome of those decisions.!? The piano roll decisions, and subsequent
legislative changes to reverse them and later to bring computer software within
the purview of copyright, were influential —if not dispositive—on the question
of whether executable code fell within the protection of copyright when chal-
lenges to that proposition were made in the early 1980s.!* As a result, it is without
question that a programer’s copyright rights subsist in any instantiation of their
authored code—from the form in which the author originally wrote it (in most
cases, source code), to any subsequent human or machine translation of it into
any intermediate or final format (e.g. object code or executables/binaries), that is
understandable by a computing device and upon which it may act, as long as the
work otherwise falls within the boundaries of copyright and outside of any excep-
tions thereto.

10" A piano roll was a long roll of paper with punched holes which, when fed into a specially adapted
piano (called a ‘player piano’) would convert the information on that roll into played music. See
Encyclopaedia Britannica, ‘Player Piano’ (9 September 2019) <https://www.britannica.com/art/player-
piano> accessed 10 February 2020.

1 Boosey v Whight, 1900 1 Ch. 122, 81 LTNS 265.

12 White-Smith Music Publishing Co. v Apollo Co., 209 US 1 (1908).

13 See Kal Raustiala and Christopher Jon Sprigman, ‘Scales of justice: How a terrible Supreme Court
decision about player pianos made the cover song what it is today’ Slate (12 May 2014) <https://slate.
com/technology/2014/05/white-smith-music-case-a-terrible-1908-supreme-court-decision-on-pla
yer-pianos.html> accessed 13 April 2022; UK Public General Acts 1911 c. 46, Part I, Section 1(2)(d)
(‘in the case of a literary, dramatic, or musical work, to make any record, perforated roll, ... or other
contriavance by means of which the work may be mechanically performed or delivered’); 17 USC § 102
(2018) (‘Copyright protection subsists ... in original works of authorship fixed in any tangible medium
of expression, now known or later developed, from which they can be perceived, reproduced, or other-
wise communicated, either directly or with the aid of a machine or device?).

4 See Apple Computer, Inc. v Franklin Computer Corp., 714 F2d 1240 (3d Cir. 1983), cert. dismd by
stip., 464 US 1033 (1984).

74 P MCCOY SMITH
3.1.2 The author’s rights in software copyright

Copyright defines a set of legal rights which are granted—via national law, but
in most jurisdictions consistent with the Berne Convention for the Protection of
Literary and Artistic Works!®>—to the authors of a work eligible for protection.
As discussed earlier, although the question of whether software fell within the
copyright protection regime was not resolved at the time that computer software
was reaching a state where it began to resemble a work of authorship, legislation,
treaties, and to a certain extent national court decisions, have firmly established
that copyright protects such works, in any form they take.!®

Copyright gives exclusive rights to the author to have dominion over certain
activities of others when those activities involve the works to which the author has
received copyright protection. A recitation of verbs articulates the actions of others
over which the copyright holder may either grant permission to do (via licence), or
prevent from doing (via enforcement actions) (see Table 3.1).

National laws articulate these rights using slightly different terminology, al-
though doing so generally in conformance with the Berne Convention framework;
because many of the Open Source licences in common use were first drafted in the
US, they often use the terminology from US copyright law (together with, or as an
alternative to, the Berne Convention formulation). For this reason, any particular
Open Source licence may have a degree of ambiguity as to whether all relevant
copyright rights are conveyed, expressly or by implication; as shown in Table 3.1
above, there is a potential concordance of, inter alia, the verbs used in US copyright
law with the verbs used in other national law or international treaties.

Open Source licences all express their permissions using at least some of these
verbs,'” and virtually all attach certain conditions (even if fairly minimal and easy
to satisfy, as with permissive licences) to those permissions so as to keep the li-
censed code Open Source, or at least allow users to understand the code is based
upon Open Source code, and possibly to seek out and receive the corresponding
source upon which the code is based.

15 Berne Convention for the Protection of Literary and Artistic Works (9 September 1886; as revised
through 28 September 1979).

16 Tt is notable that the Berne Convention does not specify that software falls within its ambit. See
Geoffrey S Kercsmar, ‘Computer Software & Copyright Law: The Growth of Intellectual Property Rights
in Germany’ (1 May 1997) 15(3) Penn State International Law Review article 7, at 567. Subsequent
treaties, however, have established that Berne Convention compliance does include providing copy-
right protection to software. See Michael Lehmann, “TRIPS, the Berne Convention, and Legal Hybrids’
(December 1994) 94(8) Columbia Law Review 2621, at 2625.

17 Note that many of the older licences may not use the term ‘copyright’ when authorising activities.
Nevertheless, using verbs that come from national laws, or international treaties, governing copyright,
would generally be interpreted to confer copyright rights. The extent to which leaving out some of the
copyright verbs from a licence permission should be interpreted as a reservation of that right by the au-
thor, or instead the non-recited verbs should be understood by implication also to be granted, is an un-
resolved issue with some Open Source licences. See, e.g., Andrew Sinclair, ‘Licence Profile: BSD’ (2015)
1(1) Journal of Open Law, Technology & Society 1, at 3.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 75

Table 3.1 Potential Concordance of Copyright Verbs in Various Treaties and
National Laws

Berne UK Copyright Act® EU Copyright US Copyright
Convention?® Directive® La
Translating Adapting Translating Preparing
Derivative Works
Reproducing Copying Reproducing Reproducing
Performing Performing Performing
Broadcasting Showing, Playing, Distributing Distributing,
Communicating Displaying
Reciting
Communicating Issuing copies Distributing Distributing
Adapting Adapting Adapting, Preparing
Altering Derivative Works
Arranging Arranging Preparing

Derivative Works

aSee Berne Convention, see note 15, arts 8, 9, 11, 11bis, 11ter, 12, 14.
bSee UK Copyright, Designs and Patents Act 1988, §§ 16-21.

¢ See Directive 2009/24/EC of the European Parliament and of the Council of 23 April 2009 on the legal
protection of computer programs (Codified version) (2009).

dSee 17 USC §106 (2010).

3.1.3 Exceptions to the author’s rights in software copyright

3.1.3.1 Non-copyrightability

Although the copyrightability of software, in both source and binary form, has
been well-established worldwide since at least 1993,!8 there has always been a ten-
sion in providing copyright protection to software given that software is composed
of a substantial amount of material that is highly functional.!® The European Union
has made clear in its own software directive that:

[O]nly the expression of a computer program is protected ... ideas and prin-
ciples which underlie any element of a program, including those which underlie
its interfaces, are not protected by copyright under this Directive. In accordance
with this principle of copyright, to the extent that logic, algorithms and program-
ming languages comprise ideas and principles, those ideas and principles are not

18 See Lehmann, “TRIPS, the Berne Convention, and Legal Hybrids, note 16, at 2625.
Y Navitaire Inc. v Easyjet Airline Co [2004] EWHC 1725 (Ch).

76 P MCCOY SMITH

protected under this Directive. In accordance with the legislation and case-law of
the Member States and the international copyright conventions, the expression of
those ideas and principles is to be protected by copyright.?°

The US has a similar concept, the so-called idea/expression dichotomy, established
via along line of court decisions.?!

Navigating the distinction between that in software which is not copyrightable
(and thus available for non-authors to use without adhering to the conditions of
any particular licence), and that which is, is not an insubstantial task. The European
Court of Justice (EC]) addressed this issue in 2012 SAS Institute case,?? stating ‘the
ideas and principles which underlie any element of a computer program, including
those which underlie its interfaces, are not protected by copyright'?® A similar
issue in the US was the subject of a long-standing and significantly publicised legal
dispute, eventually resolved by the Supreme Court of the US.2* That dispute in-
volved an allegation by Oracle that Google copied certain application programing
interfaces (APIs), and possibly other information,?> from Oracles Java programs
without the benefit of a licence from Oracle. Google was successful at the trial court
level in arguing that everything they copied was non-copyrightable,?® while Oracle
was successful at the intermediate appeal court level in arguing that some of what
was copied was copyrightable.?” Subsequently, the case was sent to the trial court,
where a jury determined that Google’s copying fell within the fair use’ exceptions
to US copyright law.?® That determination was also overturned by the intermediate
appeal court.?’ Thus, the US Supreme Court was presented with two questions:
(i) were the interfaces copied by Google copyrightable at all, and (ii) if they were
copyrightable, was Google’s copying nevertheless permissible as ‘fair use’ under US
copyright law?3°

20 ‘Directive 2009/24/EC of the European Parliament and of the Council of 23 April 2009 on the
legal protection of computer programs’ Official Journal of the European Union, L 111/17, no. 11 (5
May 2009).

21 See Baker v Selden, 101 US 99 (1879); Mazer v Stein, 347 US 201 (1954).

22 See SAS Institute Inc. v World Programming Ltd, ECLLEU:C:2012:259 (2 May 2012).

23 SAS Institute, see note 26, at 31.

24 See Google LLC v Oracle Am., Inc., 593 US _, 141 S. Ct. 1183, Docket No. 18-956, (2021).

%5 Part of the dispute between Google and Oracle, and part of the reason why the trial court and inter-
mediate appeal court rendered differing decisions on copyrightability, relates to whether what Google
copied was necessary to interface with Java, or not. See Oracle America, Inc. v Google LLC, 886 F.3d 1179
(Fed. Cir. 2018) (analysis of the necessity of 11,500 lines of copied code to allow interoperability).

26 Oracle Am., Inc. v Google LLC, 872 F. Supp. 2d 974 (N.D. Cal. 2012).

%7 Oracle Am., Inc. v Google LLC, 750 F.3d 1339 (Fed. Cir. 2014).

28 David Goldman, ‘Jury sides with Google in billion dollar Oracle suit, CNN Business (26 May
2016) <https://money.cnn.com/2016/05/26/technology/google-oracle/index.html> accessed 6
April 2021.

2 Oracle America, Inc. v Google LLC, 886 F.3d 1179 at 106 (Fed. Cir. 2018).

30 Google LLC v Oracle America, Inc., Docket No. 18-956, Petition for a Writ of Certiorari (US 24
January 2019).

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 77

Unlike the ECJ in the SAS Institute decision, the US Supreme Court in Google
v Oracle avoided squarely addressing the issue of the copyrightability of software
interfaces:

Given the rapidly changing technological, economic, and business-related cir-
cumstances, we believe we should not answer more than is necessary to resolve
the parties’ dispute. We shall assume, but purely for argument’s sake, that the en-
tire [Oracle] Java API falls within the definition of that which can be copyrighted.
We shall ask instead whether Google’s use of part of that API was ‘fair use.3!

Analysing the question of whether Google’s reproduction of certain interfaces®
from Oracle’s Java SE program was fair use, the US Supreme Court ultimately de-
cided that Google’s reproduction fell within the ‘fair use’ provisions of US copy-
right law.3®> Although the decision is complex, and goes through a detailed analysis
of all the statutory fair use factors, perhaps the two most important aspects of the
decision analysing whether the use of software interfaces are subject to copyright
claims by the authors of those interfaces related to the questions of ‘transforma-
tive use’ and the manner in which future courts may decide fair use questions in
software copyright disputes. On the question of ‘transformative use, the Court in
Google v Oracle stated:

Here, Googles use of the [Oracle] Java API seeks to create new products. ... To the
extent that Google used parts of the [Oracle] Java API to create a new platform
that could be readily used by programmers, its use was consistent with the cre-
ative ‘progress’ that is the basic constitutional objective of copyright itself.3*

Thus, it could well be that, under the Google v Oracle fair use test, most reproduc-
tions of software interfaces in the US in order to create new, interoperable but non-
competitive software will be found to be not subject to the copyright claims of the
authors of those interfaces, because such uses will be determined to be ‘transforma-
tive’ If so, the outcome in the US on software interfaces may not be much different
than the outcome in the EU under the SAS Institute decision. Future decisions in

31 Google LLC v Oracle America, Inc., 593 US___, 141 S. Ct. 1183, Docket No. 18-956, Opinion of the
Courtat 15 (5 April 2021). The dissenting opinion in that decision criticised the majority’s failure to ad-
dress the copyrightability question. Google LLC v Oracle America, Inc., see note 34, Dissenting Opinion
at1-2.

32 Although the Google v Oracle decision often refers to Java APIs’ and ‘interfaces;, the discussion fo-
cuses exclusively on Google’s reproduction of the method, class, and package structures used in certain
parts of Java most useful in smartphones for programers familiar with the schema in Java. Google LLC
v Oracle America, Inc., 593 US , 141 S. Ct. 1183, Docket No. 18-956, Opinion of the Court at 26 (5
April 2021).

3 Google LLCv Oracle America, Inc., 593 US
Courtat 1 (5 April 2021).

34 Google LLC v Oracle America, Inc., see note 37, at 25.

, 141 S. Ct. 1183, Docket No. 18-956, Opinion of the

78 P MCCOY SMITH

the US applying the fair use analysis to different software interface scenarios may
clarify if this is indeed the case.?®

The Google v Oracle decision also clarified an important point on ‘fair use’ ana-
lyses in copyright disputes:

‘In this case, the ultimate “fair use” question primarily involves legal work. “Fair
use” was originally a concept fashioned by judges ... Our cases still provide legal
interpretation of the fair use provision. And those interpretations provide general

guidance for future cases’®

This finding is an important procedural point in US law as it may result in early
hearings in software copyright disputes to resolve the ‘primarily legal’ question of
fair use. Early hearings on the legal question of patent claim interpretation have now
become a regular part of patent litigation practice in the US.>” Such procedures, if
adopted in the future, could have curtailed the nearly eleven-year litigation history of
the Google v Oracle dispute. Nevertheless, unless there are future developments in the
US on the question of software copyrights in general, or software copyright interfaces
in particular, there will be greater ambiguity about the use of such interfaces, and the
effort required to resolve them, in the US than there currently is in the EU.

The question of what parts of software are subject to copyright protections and
which are free for anyone to use without fear of a claim of copyright infringement or
licence violation is an important issue when analysing the effect of Open Source li-
cences on downstream recipients. This is particularly the case with copyleft licences,
as the downstream recipient may not need to follow the licence’s requirement to use
the same licence, if they are using only material for which either copyright protec-
tion does not extend, or for which the right of ‘fair use’ or ‘fair dealing’ (or equiva-
lents) applies. In the EU, the SAS Institute case provides some concrete guidance on
this question; the courts in the US have not resolved this issue as conclusively, as the
US Supreme Court’s decision in Google v Oracle left the question to a case-by-case,
legal analysis somewhat dependent upon underlying facts. As a result, distributors

3 An early, and thoughtful, analysis of this question—written after the SAS Institute decision but
almost a decade before the ultimate decision in Google v Oracle—may be found at Walter van Holst,
‘Less May Be More: Copyleft, -Right and the Case Law on APIs on Both Sides of the Atlantic’ (2005)
5(1) Journal of Open Law, Technology & Society at 5 <https://jolts.world/index.php/jolts/article/view/
72/143> accessed 6 April 2021. In that analysis, the author concludes that * [w]hen taking the most re-
cent jurisprudence on software APIs [i.e., SAS Institute] into account, one can argue that the LGPL is not
really the Lesser GPL, but that the GPL is based on a by now outdated understanding of software copy-
right and effectively becomes equal to the LGPL. Von Holst, ‘Less May Be More, at 13. This conclusion
may also follow if the Google v Oracle decision is ultimately determined to be very near to the outcome
in SAS Institute.

3 Google LLC v Oracle America, Inc., 593 US ___, 141 S. Ct. 1183, Docket No. 18-956, Opinion of the
Courtat 19 (5 April 2021).

37 Edward Brunet, ‘Markman Hearings, Summary Judgment, and Judicial Discretion’ (2005) 9(1)
Lewis ¢ Clark Law Review 93, at 95-96.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 79

and recipients of code under Open Source licences may be forced to analyse the
question of whether the use of software interfaces require adherence to the Open
Source licence terms depending on whether the use is within, or without, the US. If
the use is in the US, a detailed factual analysis of the circumstances in which soft-
ware interfaces are reproduced, under the fair use tests under US copyright law,
may be required—at least until such time as future court decisions provide greater
guidance on when reproduction of software interfaces is not ‘fair use’*

3.1.3.2 Functional dictation and merger doctrine

Authored material that would otherwise be copyrightable expression has
nevertheless been found not to be subject to copyright protection when the ex-
pression is directed to an idea that is incapable of being expressed, as a practical
matter, in more than one or a small number of ways. In the UK, this concept has
been established under the rationale ‘that if expression is dictated by technical
function then the criterion of originality [required for copyright protection]
is not satisfied’*? In the US, this concept is designated the ‘merger doctrine’—
that the copyrightable expression in a work of authorship has ‘merged’ with the
non-copyrightable idea being expressed, when that idea is incapable of being ex-
pressed, as a practical matter, in more than one or a small number of ways.*!
Although in many ways non-copyrightability and functional dictation/merger
doctrine cover similar territory and rely on related statutory bases and case law,
the latter doctrine does admit of the possibility of arguing that—even though
there may be multiple ways of expressing certain ideas, facts, systems, or pro-
cesses through code—to the extent that those multiple ways are unduly con-
straining on the ability of other authors to capture those ideas, facts, systems,
or processes without running afoul of a different author’s copyrights, protection
under copyright should not be afforded.

3 17USC$ 107.

3 Although the newness of the Google v Oracle decision has meant there is limited commentary
on its potential import on software development practices in the US, at least one commenter has in-
dicated that reproduction of code for interoperability may be found to be fair use given recent court
decisions, including Google v Oracle, emphasising transformative uses of copyrighted materials as being
more often than not fair. ‘Google’s Supreme Court win could actually benefit the little guy’ MarketPlace
(6 April 2021) <https://www.marketplace.org/shows/marketplace-tech/googles-supreme-court-win-
could-actually-benefit-the-little-guy-oracle-java/> accessed 6 April 2021.

40 See SAS Inst. Inc. v World Programming Ltd. [2013] EWCA Civ 1482, [31]-[33], available at
<http://www.bailii.org/ew/cases/EWCA/Civ/2013/1482.html> accessed 13 April 2022.

41" See Pamela Samuelson, ‘Reconceptualizing Copyright’s Merger Doctrine’ (2017) 63 Journal of the
Copyright Office Society of the United States of America 417-70, available at <https://papers.ssrn.com/
sol3/Delivery.cfm/SSRN_ID2763903_code1160955.pdf?abstractid=2763903&mirid=1&type=2>.
Professor Samuelson argues that merger doctrine in the US is not just limited to preventing ‘ideas’ from
being captured and restricted as copyrightable expression, but that instead there are other dichotomies
that the merger doctrine also covers, including ‘fact/expression, ‘process/expression, ‘system/expres-
sion, Samuelson, ‘Reconceptualizing Copyright's Merger Doctrine’ at 417-70. Each of these dichoto-
mies represent a possible limitation on the ability to claim copyright protection on certain aspects of
computer software.

80 P MCCOY SMITH

3.1.3.3 ‘Fair dealing’ and ‘fair use’

The law in both the UK and the US allows for certain ‘fair’ exercises of the exclu-
sive rights of a copyright holder without subjecting those exercises to infringement
liability. In the UK, this exception to the holder’s rights is called ‘fair dealing’;** in
the US, the exception is called ‘fair use’** Despite the similarities in the names, the
effect—particularly in the area of software—can be quite different. In the US, ‘“fair
use’ has been the foundation of a number of defences to claims of copyright in-
fringement for software,** and in fact fair use was the basis upon which the Oracle v
Google dispute was decided by the Supreme Court of the US.*° Fair use as a defence
to a claim of copyright infringement in the US is defined in statute and is analysed
using a multifactored factual analysis not specific to the use that is being made; a
court must analyse:

o the purpose and character of the use, including whether such use is of a com-
mercial nature or is for non-profit educational purposes;

o the nature of the copyrighted work;

o the amount and substantiality of the portion used in relation to the copy-
righted work as a whole; and

o the effect of the use upon the potential market for or value of the copyrighted
work. 1

In contrast, fair dealing in the UK is much more specific to the type of use being
made, and specifically excludes many uses of computer software from its ambit.*
Instead of relying upon fair dealing to address certain ‘fair’ uses of computer soft-
ware, the UK Copyright Act sets forth, in sections separate from the defined uses
under fair dealing, specific acts relative to computer software which are explicitly
excluded from infringement:*3

« making any back up copy;

« converting it into a higher-level language;

o decompiling it to obtain the information necessary to create an independent
program which can be operated with the program so decompiled, or with an-
other program;

42 UK Copyright Act, see note 18, §§ 29.

43 17USC$ 107 (1992).

4 See, e.g., Sega Enterprises Ltd v Accolade Inc., 977 F2d 1510 (9th Cir. 1992).

4 Google LLC v Oracle Am., Inc., 593 US ___, Docket No. 18-956, Opinion of the Court at 1 (5
April 2021).

46 17USC$ 107 (1992).

47 UK Copyright Act, see note 18, § 29 (excluding converting a computer program to a higher-level
language, copying incidental to such a conversion, and observing, studying or testing the functioning of
a computer program in order to determine the ideas and principles which underlie any element of the
program).

48 UK Copyright Act, see note 18, §§ 50A-50C.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 81

« observing, studying, or testing the functioning of the program in order to de-
termine the ideas and principles which underlie any element of the program;
o copying it or adapting it for the purpose of correcting errors in it.

In summary, US law admits of perhaps a broader range of acts concerning software
that might be considered ‘fair’ and outside of the threat of infringement claims, but
in order to establish that such use is ‘fair, the accused infringer is subject to a de-
tailed factual analysis amenable to differing interpretations. In the UK, in contrast,
the activities considered ‘fair’ are much more narrowly circumscribed, but are po-
tentially much easier to establish factually.

3.1.4 Derivative works in software copyright

3.1.4.1 Abrief summary of computer software architecture
and interactions

The many ways in which a particular piece of software can be configured to interact
with other pieces of software is far beyond the scope of this chapter, and is suffi-
ciently malleable with new developments in technology, that it would be virtually
impossible to discuss all the different ways such interactions can occur, and the li-
censing and copyright implications that result. Nevertheless, the process of writing
source code, converting that source code into executable code, delivering that exe-
cutable code to a target computing device, and executing that executable code on
that target device, often fall into certain general techniques that it is of use to de-
scribe them in brief to discuss common use cases that frequently raise questions
with regard to the effect of certain Open Source licences. Figure 3.1 represents a
common software build scenario.

One or more modules A and B are written in source code by human programers.
A software tool called a compiler is used to both convert the source modules into a
format called object code, and (possibly) to intermingle parts of A and B together
into a unitary object module AB. There may also be standard libraries or other
pre-existing code modules which the object module AB is designed to make use of.

These libraries can be used by the compiled code AB in one of two ways—via a
static link or a dynamic link. In a static link, the object code AB is input into a tool
called a linker, together with object code of the library SL, to form a unitary binary
ABSL, all of which is distributed to a user to be executed or run on their com-
puting machine. In a dynamic link, the object code AB is distributed to the user
under the assumption or expectation that the library which the object code AB is
designed to use is already installed on the user’s computing machine or will be sep-
arately obtained by the user. The combination of AB and the library DL is not made
until ‘run-time), in other words the two are combined together in the computing
machine’s memory upon execution of the object file AB.

82 P MCCOY SMITH

Module Module Static Library
Source Code A Source Code B Source Code SL
3 ¥ v
Compiler Compilation Step Compiler

Object Code Object Code
AB SL
v v
Linker Linking Step
!
Executable Code
ABSL

Distribution/Loading Step

v A

Dynamic Library Executable Code Executable Code
DL AB ABSL

v
Execution Step | Operating System OS |‘—l

| Loadable Kernel Module LKM |

Figure 3.1 Common Software Build Scenarios

There is an additional piece of software that may be used for which free and open
source licensing issues are implicated. A loadable kernel module (often abbrevi-
ated as LKM) is a piece of code (in most cases, drivers written to allow the kernel
of the operating system—which manages the computing machine’s resources—to
make use of certain components within the computing machine) that is dynam-
ically loaded into the operating system kernel at execution, rather than integrated
into the kernel itself.

The concepts outlined above may be of importance to understand when
interpreting the impact of certain free and open source licensing, particularly the
copyleft licences which purport to apply their terms to programs which may be
combined or linked, as discussed in more detail in section 3.2.2 later in this chapter.

3.1.4.2 Derivative works and Open Source

A number of Open Source licences use the term ‘derivate works’ to define the
scope of certain activities related to the modification, adaptation, or translation
of the licensed code.® As discussed earlier in section 3.1.2, ‘derivative works’ is

49 See, inter alia, GPLv2, § 0.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 83

a concept from US copyright law which encompasses things like modification,
translation, adaptation, and arranging in international copyright treaties or non-
US national laws, but it does not have universal meaning that is consistent across
national laws,*® or even within courts in the US.>! The boundaries of what is or is
not a derivative work, or is equivalent or corelated in non-US law, is also circum-
scribed by the exceptions to copyright protection and enforceability set forth in
section 3.1.3 earlier in this chapter. Because of this, any interpretation of the rights
granted under an Open Source licence, or the obligations attached to that grant,
will be subject to potential ambiguity to the extent it references derivative works
without further clarifying what types of derivative works are governed by the terms
of the licence. More detail on how that ambiguity works in practice can be found in
section 3.2.2 later in this chapter.

3.2 Forms of Open Source Licensing

As discussed in more detail in Chapter 1, Open Source licensing is—at its heart—a
philosophical movement which seeks to upend or reverse the more conventional
‘proprietary’ model where the rights required to make productive use of some
useful thing are granted restrictively, and in most cases without any rights to study,
learn, and adapt the underlying architecture or design of that thing. In order to put
into practice this philosophy, there must be legal rights granted, and those rights
need to be granted in a way that is consistent with that philosophy. One of the most
important forms of legal rights used to achieve this aim is copyright—specifically,
the copyright in both the source and executable forms of software discussed in
more detail in section 3.1.2 earlier in this chapter.

In the late 1980s,> two alternative ways of achieving the overall aims of the free
and open source philosophy were (roughly) simultaneously created: permissive li-
censing and copyleft licensing. Each of these models have numerous variants, and
at least copyleft has two generally recognised sub-variants—‘strong’ copyleft and
‘weak’ copyleft, but both models share certain common characteristics and in cer-
tain cases can be used in a complementary way. Practitioners are nevertheless cau-
tioned that there are also significant incompatibility issues between some of these

50 Till Jaeger, ‘Enforcement of the GNU GPL in Germany and Europe’ (2010) 1 Journal of Intellectual
Property, Information Technology and E-Commerce Law 34, at 36.

5l Omar Johnny, Marc Miller, and Mark Webbink, ‘Copyright in Open Source Software—
Understanding the Boundaries’ (2010) 2(1) Journal of Open Law, Technology ¢ Society 13, at 24.

52 The earliest examples of licences satisfying both the Free Software Definition and the Open Source
Definition, the MIT licence, the BSD licence, and the GPL licence, date—at their earliest instantiation—
from 1987, 1988, and 1989, respectively. See Gordon Haff, “The Mysterious History of the MIT License’
opensource.org (26 April 2019), <https://opensource.com/article/19/4/history-mit-license> accessed
19 January 2020; Richard Stallman, ‘New General Public License’ (February 1989) <https://groups.goo
gle.com/forum/#!msg/gnu.announce/moJjj_64PeQ/8xL1xkVK]Jb8]> accessed 9 March 2020.

84 P MCCOY SMITH

licences, and understanding when and where particular licences can be used in a
complementary way, and where such licences create unresolvable conflicts, is very
much dependent upon the text of the particular licences used, the state of copy-
right law in the particular jurisdiction where the licence might be enforced, a good
understanding of the particular programing paradigm being used, and how that
programing paradigm maps to the licence texts at issue and copyright law in the
particular jurisdiction in question.

Most free and open source licences allow the user to make ‘private’ use of the
software—meaning that anything the user does without allowing access to others
imposes no legal obligations on that user.”* It is when the user seeks to allow others
access to that software—typically by distributing the software, or a modified ver-
sion of the software—that the licence imposes legal obligations on that user. Many
of those obligations are similar amongst all licences, whilst others differ in standard
ways that allow categorisation and subcategorisation between licences. Those cat-
egorisations and sub-categorisations are discussed in more depth in the following
sections.

3.2.1 Permissive licensing

3.2.1.1 The BSD and MIT licences

The BSD>* and MIT>* licences are the oldest free and open source licences still in use
to this day. Both are quite similar in the way that they are structured and the obliga-
tions that they impose upon the recipient, although there are some subtle differences
that might cause an author to choose one over the other, or for a court or arbiter to
determine that they have different legal effect. Both licences grant broad licences, at
least under copyright. Both oblige preservation of copyright notices for those who
exercise the licence grants. Both oblige that a copy of the licence text be provided for
any exercise of the licence grants. Both disclaim liability on behalf of the authors.

53 The Free Software Foundation’s so-called Freedom Zero— “The freedom to run the program as you
wish, for any purpose’—generally contemplates this concept. See Free Software Foundation, ‘What is
Free Software? The Free Software Definition” <https://www.gnu.org/philosophy/free-sw.html.en> ac-
cessed 29 February 2020. As noted later in the chapter, certain Open Source licences test this concept.

% There is no single ‘BSD’ licence; there are numerous variants, generally differentiated by the
number of clauses they contain. Thus, 4-Clause BSD <https://spdx.org/licenses/BSD-4-Clause.html>,
3-Clause BSD <https://spdx.org/licenses/BSD-3-Clause.html>, 2-Clause BSD <https://spdx.org/licen
ses/BSD-2-Clause.html>, 1-Clause BSD <https://spdx.org/licenses/BSD-1-Clause.html>, and 0-Clause
BSD <https://spdx.org/licenses/0BSD.html> accessed 21 July 2022. The 4-Clause BSD contains an ‘ad-
vertising clause’ which is generally considered to create compliance issues, and is thus generally dis-
favoured. See Sinclair, ‘Licence Profile: BSD; see note 21, at 4-5.

5 There is also some dispute as to whether there is more than one ‘MIT’ licence. See GNU Operating
System, ‘Various licenses and comments about them), <https://www.gnu.org/licenses/license-list.
html#Expat> accessed 10 March 2020. The version approved by the Open Source Initiative is gener-
ally considered the canonical version, and is the version discussed later in the chapter. See <https://
opensource.org/licenses/MIT>.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 85

The effect of both licences is to allow recipients to exercise the author’s copyright
rights, without imposing any obligations on the recipients to use the same licence
for any further downstream distribution.’® They are thus permissive in the way
in which they allow alternative licensing models to be exercised by recipients—
including, restrictive, ‘proprietary’ licensing, and copyleft licensing.

One distinction between the two licences is that the MIT license expresses its
grant using a non-statutory term (‘deal in’), and then recites US statutory verbs
as non-limiting examples: ‘[p]ermission is ... granted ... to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, ... and/or sell copies’ (emphasis added), whereas the
BSD license uses fewer verbs, and uses them directly in the grant: ‘[r]edistribution
and use ..., with or without modification, are permitted’ (emphasis added). Another
distinction is that the MIT license explicitly allows sublicensing, whereas the BSD
license, if it does so, does so indirectly—using the term ‘redistribution’ The extent
to which these distinctions are meaningful has yet to be adjudicated, and the two li-
cences are generally considered to be relatively interchangeable in the permissions
they give and the obligations they impose on those permissions.

3.2.1.2 The Apache licence

In 2000, the ASF published an alternative form of a permissive licence; that li-
cence is now on its second—and by far most commonly used—iteration, the
Apache Software License 2.0 (the Apache 2.0). The Apache 2.0 license, drafted
more than a decade after the BSD and MIT licenses came into being, was designed
to address some perceived ambiguities or missing features in those two licences,
in particular a more robust set of definitions of the licence grants themselves®”
(and the parties to whom they extend) express granting of patent rights (with
the inclusion of a patent ‘defensive suspension’ clause to revoke patent rights to
those entities taking assertive patent actions against the licensed software) and
other features designed to make the licence terms more consistent with generally

5 There is a fairly small minority of users of these licences who have argued that the requirement
to provide a copy of the licence obliges the recipient to use that licence, thus rendering these licences
copyleft. See Anonymous Coward, “Theo de Raadt on Relicensing BSD Code, OpenBSD Journal (13
September 2007) <http://undeadly.org/cgi?action=article&sid=20070913014315> accessed 13 April
2022. The general consensus is, however, to the contrary and re-licensing under different terms—
including restrictive proprietary licences and copyleft licences—is a common practice with permis-
sively licensed software.

7 Of particular interest is the manner in which the Apache 2.0 licence defines the scope of modifi-
cations/derivative works that are subject to the Apache 2.0 licence terms. The Definition section of the
Apache 2.0 licence states that ‘[f]or the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof . Given the overall permissive nature of the licence, this clarification of the
scope of the grant may be in practice relatively insubstantial, although it could be an important dis-
tinction in some architectural scenarios given that avoiding the application of the Apache 2.0 licence to
certain works may be useful because of the incompatibility of the Apache 2.0 licence with certain of the
GNU family of licences. See section 3.3.2.3 later in this chapter.

86 P MCCOY SMITH

accepted licence drafting standards. Nevertheless, the overall effect of the copy-
right licence grants in the Apache 2.0 licence are intended to be the same as those
of the BSD and MIT licenses discussed earlier, requiring preservation of copy-
right notices and providing a copy of the licence with the code, but otherwise
permissively allowing the recipient of the code to use terms of its own choosing,
including proprietary licensing, or copyleft licensing, when that recipient exer-
cises the granted copyright licences. As discussed in more detail in section 3.3.2.3,
there are certain caveats to the overall permissive nature of the Apache 2.0 li-
cence: the GNU family of licences. The Free Software Foundation (FSF) has stated
that the Apache 2.0 license is incompatible with GPLv2;°® although the ASF dis-
agrees with this assessment, it nevertheless states that with regard to use of GPLv2,
‘you should always try to obey the constraints expressed by the copyright holder
when redistributing their work’>® This incompatibility introduces certain com-
plications in architecting software stacks that may include Apache 2.0 and GPLv2
code (in particular, the Linux kernel of the GNU/Linux operating system, which
is licensed under GPLv2), and could very well be the reason why the more recent,
and more carefully drafted, Apache 2.0 license has not supplanted the continued
popularity of the BSD and MIT licenses as de facto choice when selecting a per-
missive licence.

3.2.1.3 Other permissive licences

There are a large number of permissive licence variants currently listed as either
approved by the Open Source Initiative (OSI) or determined to be free software
licences by the FSE. The vast majority of these licences are variants of the BSD
(which itself has numerous variants) or MIT licenses, and a handful of Apache 2.0
variants as well, and thus would generally operate in a manner similar to those li-
cences. Nevertheless, when confronted by these numerous variants, it is advisable
to read their terms carefully as some variants may introduce additional complica-
tions or incompatibilities.®® Two other permissive licences that have some degree
of popularity and which practitioners may encounter and thus need to familiarise
themselves with are: the Academic Free License® and the Artistic License.®? The

8 SeeFSFLicence Comments, seenote 59, <https://www.gnu.org/licenses/license-list. html#apache2>
accessed 21 July 2022. Note that by the logic used in the FSF’'s commentary on the Apache 2.0 licence,
Apache 2.0 is likely also to be incompatible with the Affero GPLv1.0 and 2.0 licences, and partially in-
compatible with the Lesser GPLv2.1 licence.

" Apache Software Foundation, ‘GPL Compatibility’ <https://www.apache.org/licenslicences/GPL-
compatibility.html> accessed 10 March 2020.

0 For example, licences with so-called advertising clauses may be incompatible with many other
Open Source licences. See GNU Operating System, “The BSD License Problem’ <https://www.gnu.org/
licenses/bsd.html> accessed 10 March 2020.

61 Open Source Initiative, ‘Academic Free Licence (“AFL’) v. 3.0’ <https://opensource.org/licenses/
AFL-3.0> accessed 10 March 2020.

2 Open Source Initiative, ‘Artistic Licence v. 2.0’ <https://opensource.org/licenses/ Artistic-2.0> ac-
cessed 10 March 2020.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 87

Academic Free License is designed to be somewhat similar in operation to the
Apache 2.0 license in that it has more robust drafting and has specific reference
to patent rights; it is also notable in that its author has explicitly stated that that
licence is designed to operate as a contract,®> thus explicitly settling the ‘bare li-
cence versus contract’ debate—discussed in section 3.4 later in this chapter—for
that licence. The Artistic Licence is notable in that it was the subject of one of the
first, and still one of the leading, cases in the US examining the operation of Open
Source licensing.® That decision, at a minimum, demonstrates that although per-
missive licences are designed to be easy to comply with and to allow flexibility to
the recipient in modifying and combining code while also being able to choose its
own licence, failure to comply with even the simplest licence conditions in a per-
missive licence can result in enforcement action and could be found to be a viola-
tion of the author’s copyright rights.®

3.2.2 Copyleft licensing

The second broad category of Open Source software license types are the copyleft®
licences. In all but one very important way, copyleft licences are designed to op-
erate in a way similar to the permissive licences—a broad grant of copyright rights
(and in virtually every copyleft licence, at least an attempt to do the same with pa-
tent rights), a requirement to preserve copyright notices, and a requirement to pro-
vide a copy of the licence with the code. The important distinction is that copyleft
licences require certain exercises of the author’s copyright rights to be licensed
under identical terms. Thus, copyleft licences put limitations on the recipient’s
ability to use other licensing models (e.g. proprietary, or permissive, or even a dif-
ferent copyleft licence) for their own downstream activities. Copyleft licences are
often broken into two subcategories: ‘strong’ copyleft and ‘weak’ copyleft. ‘Strong’
copyleft licences, in general, are designed to have fewer exclusions®” to the require-
ment to use the same licence when exercising the author’s copyright rights, whereas

63 Lawrence Rosen, ‘Open Source Licensing: Software Freedom and Intellectual Property Law’
(Prentice Hall: Upper Saddle River, NJ, 2005) at 181.

4 Jacobsen v Katzer, 535 F.3d 1373 (Fed. Cir. 2008).

5 Jacobsen v Katzer, note 64, at 1382.

% ‘Copyleft’ is a coined term intended to be a pun on ‘copyright, contrasting the highly permissive
terms of that family of licences with the generally perceived highly restrictive nature of copyright pro-
tection and copyright licensing in the software industry. An additional pun for copyleft, ‘all rights re-
versed, is a play on the now-obsolete notification that used to often accompany copyrighted works, ‘all
rights reserved.

67" Although strong copyleft licences are generally designed to require the use of the same licence
when the recipient exercises the author’s copyright rights, even the strongest of copyleft licences
(GPLv2, GPLv3, AGPLv1, and AGPLv3) all allow the recipient to engage in some form of private modi-
fication of the code without triggering the obligations of those licences. See, e.g., GPLv3 § 0 (definition
of ‘propagate’).

88 P MCCOY SMITH

‘weak’ copyleft licences are designed specifically to articulate circumstances where
an exercise of the author’s copyright rights is permitted while allowing for alterna-
tive licensing (again, be it permissive, or proprietary, or a different copyleft licence)
of code resulting from that exercise. The strong copyleft licences typically require
that derivative works (or some other formulation intended to capture that concept
under both the law of the US and other jurisdictions) cannot be distributed under
any other licence.

3.2.2.1 The GNU family of licences

Copyleft licensing was pioneered by—and the term ‘copyleft’ was indeed coined
by—the FSE. The FSF maintains a family of copyleft licences—all under the ‘GNU’%®
moniker—all intended to allow different forms of copyleft to be used, depending
on the degree of copyleft obligation to be imposed on the user. This family of li-
cences can generally be divided into the ‘strong copyleft —GPLv2, GPLv3,
AGPLv1 and AGPLv3—and ‘weak copyleft —LGPLv2.1 and LGPLv3.0—variants.

3.2.2.1.1 The GNU General Public Licence (GPL)
3.2.2.1.1.1 GPLv2 The GNU General Public License, version 2 (‘GPLv2’) is a
strong copyleft licence first published by the FSF in 1991. It grants the right to
exercise enumerated copyright rights (copy, distribute, and modify the software),
under the condition that the resulting software is again distributed® under the
identical conditions of GPLv2. As with other Open Source licences, GPLv2 re-
quires including the GPLv2 licence text, providing the source code for any dis-
tributed executables, and making reference to the disclaimer of warranty. GPLv2
states that failure to follow the licence terms results in the revocation of the li-
cence, although third parties (such as downstream recipients) are unaffected by
such failure. The obligation to grant access to the source code in case of distri-
bution of executable copies requires providing ‘Complete Corresponding Source
Code, defined as ‘all the source code for all modules it contains, plus any asso-
ciated interface definition files, plus the scripts used to control compilation and
installation of the executable’”®

GPLv2, by its own terms, extends the obligations to a ‘work based on the
Program;, defined as ‘any derivative work under copyright law; that is to say, a work
containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language’”! However, GPLv2 also states that ‘mere

% ‘GNU’is a recursive acronym for ‘GNU’s not UNIX; an express acknowledgement that the FSF was
attempting to create—using the GNU family of licences—a computer operating system intended to be
an alternative to the then-ubiquitous UNIX operating system.

It is notable that the licence obligations in GPLv2 are attached upon ‘distribution’ of code covered
by that licence; the licence itself makes clear that merely running the program can be done without need
to follow the licence obligations. See GPLv2, § 0.

70 GPLv2, § 3. This detailed definition is intended to prevent source distributions which are not amen-
able to modification and compilation because of scripts or tools not otherwise available to distributees.

71 GPLv2,$ 0.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 89

aggregation of another work not based on the Program with the Program ... on a
volume of a storage or distribution medium does not bring the other work under
the scope of this License.”> GPLv2 further states that when sections of the new work

are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you dis-
tribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permis-
sions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.”?

GPLv2 states that the licence is designed ‘to exercise the right to control the distri-
bution of derivative or collective works based on the Program’;’* thus any analysis
of whether GPLv2 would apply to a particular use and distribution of code under
that licence would need to consider the question of whether a derivative work or
collective work has been created.””

As may be clear from the earlier discussion, determining what particular exer-
cises of copyright rights under GPLv2 obligate the licensor to follow the terms of
that licence is not explicitly clear; this issue is made even more thorny by the fact
that which does, and does not, fall outside of the realm of ‘derivative works’ under
US Copyright law (from whence the term ‘derivative works’ in the licence comes)
for software is not well-defined and in fact subject to a number of different tests.”®

GPLv2’s obligations purport to apply to any derivative or collective works; any-
thing that is outside the definition of a derivative or collective work should not be
affected by the licence’s obligations. According to the FSF—stewards of GPLv2—a
work that links to code licensed under GPLv2 (statically or dynamically) forms
part of the modified work and it must be treated accordingly.”” This assertion is a
matter of some controversy, and many commentators believe that although static
linking arguably does require the linked program to be licensed under GPLv2, dy-
namic linking should not.”®

72 GPLv2,§ 2.

73 GPLv2,§ 2.

74 GPLv2,§ 2.

75 “Collective works’ are a concept under US Copyright Law, 17 USC § 101, defined as ‘a work ... in
which a number of contributions, constituting separate and independent works in themselves, are as-
sembled into a collective whole’ GPLv2 does not make clear the distinction between covered ‘collective
works and uncovered ‘mere aggregations.

76 See section 3.1.4.2 of this chapter.

77 See Free Software Foundation, ‘Frequently Asked Questions About the GNU Licenses’ <https://
www.gnu.org/licenses/gpl-faq.en.html#GPLStaticVsDynamic> accessed 29 February 2020.

78 See, e.g., Malcolm Bain, ‘Software Interactions and the GNU General Public License’ (2010) 2(2)
Journal of Open Law, Technology & Society 165, at 177.

90 P MCCOY SMITH

In the end, the GPLv2 licence in part depends on the degree of current ambi-
guity around the scope of derivative works (or, in other jurisdictions, the acts of
adapting/arranging/translating of copyrighted works). As more decisions are
rendered interpreting the scope of copyright in software—such as, for example,
1”—or the specific
provisions of ‘work based on the Program’ under GPLv2, more clarity may be pro-
vided as to how broadly that licence applies to other programs that may work with
or around GPLv2 licensed code.

whether certain interfaces in software are copyrightable at al

3.2.2.1.1.2 GPLv3 In 2007, the FSF published the GNU General Public License,
version 3.0 (GPLv3).8 GPLv3 was intended to modernise GPLv2 in several ways
considered to be important to the FSE, including: (i) ‘internationalising’ the lan-
guage to make it less US law-centric; (ii) adding clearer and more specific condi-
tions and obligations around patent rights; and (iii) addressing certain behaviours
considered to be antithetical to software freedom, but which it was believed were
not addressed adequately in GPLv2.%!

Many of the same rights and obligations that existed in GPLv2 were preserved in
GPLv3, albeit with slightly updated language; thus, much of the discussion of GPLv2
in section 3.2.2.1.1 earlier in this chapter would apply equally to GPLv3.82 GPLv3
does explicitly state that it intends to capture, under the obligation to provide source
code, ‘dynamically linked subprograms that the work is specifically designed to re-
quire;33 thus making explicit in the licence text that which was only referenced in a
FSF FAQ for GPLv2—that dynamic linking was considered by the FSF to require
the program so linked to be licensed under GPLv3. As discussed earlier in section
3.2.2.1.1 with reference to GPLv2, whether dynamic linking would—under copy-
right law—require the linked program to be licensed according to the terms of the
program to which it is linked is a matter of some dispute that is currently unresolved.

GPLv3 also attempts to address concerns raised by the passage of the Digital
Millennium Copyright Act (DMCA)® in the US in 1998—an Act not in effect

79 See Section 3.1.3.1 above.

80 GNU Operating System, ‘GNU General Public License’ <https://www.gnu.org/licenses/gpl-
3.0.html> accessed 29 June 2007.

81" See Free Software Foundation, ‘GPLv3 First Discussion Draft Rationale’ (16 January 2006), <http://
gplv3.fsf.org/gpl-rationale-2006-01-16.pdf> accessed 13 April 2022.

82 One change between GPLv2 and GPLv3 that may be merely a wording clarification to capture
international norms is that the licence obligations in GPLv3 are triggered upon ‘conveyance, a defined
term which includes an embedded defined term, ‘propagation, which term includes, but is not limited
to, distribution. See GPLv3, § 0. The definition of ‘propagation’ in GPLv3 references both direct and
secondary liability under copyright law, and thus attempts to capture acts that would only be infringing
on licensor’s rights upon acts by third parties. The legal effect of this definitional change is as-yet un-
determined, although it likely is an attempt—together with the definition of ‘Corresponding Source’ in
§ 1—to cover dynamic linking.

83 GPLv3,§ 1.

8 17USC§ 1201 (1999).

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 91

at the time of publication of GPLv2 in 1991. GPLv3 provides that no work cov-
ered by the licence may be deemed part of an effective technological protection
measure under any applicable law;®* since ‘technological protection measures’ is
a term from the DMCA, this provision is aimed squarely at that law and any re-
lated laws outside the US, attempting to allow copyright holders a right of action
against those circumventing various technical means designed to prevent access to
the copyrighted works, such as Digital Rights Management (DRM). Given all the
other obligations of GPLv3 to provide Complete Corresponding Source, as well
as to license under the terms of GPLv3, it is difficult to foresee scenarios where a
technological protection measure could be built into GPLv3 code to adequately
invoke the DMCA or related laws. Nevertheless, the drafters of GPLv3 were suffi-
ciently concerned that users might attempt to do so that they made explicit that it
was prohibited by that licence.

GPLv3 also includes a requirement intended to prevent certain hardware manu-
facturers from using GPLv3 code on their devices but including technical mech-
anisms in that hardware—such as installation keys—to prevent the hardware
user from modifying, installing, and running the GPLv3 code on that device. The
‘Installation Information’®® section of GPLv3 is complex and admits of several ex-
ceptions whereby a hardware maker would not be required to comply. Perhaps the
most important exception is that it only applies to a certain subsegment of hard-
ware devices, so-called User Products. The definition of a ‘User Product’ for which
‘Installation Information’ must be provided under GPLv3 is derived from a defin-
ition in consumer protection laws in the US;® the interpretive law surrounding
that consumer protection law—and possibly corresponding consumer protection
laws outside the US—is likely to guide a court in understanding the sorts of devices
to which that provision applies. For such products, encryption keys, hardware
checksums, or other technical information needed to install and operate modi-
fied GPLv3 software on such products would need to be provided as ‘Complete

Corresponding Source’3®

3.2.2.1.2 The GNU Lesser General Public Licence (LGPL)

The FSF realised that in certain circumstances, it would not be pragmatic to license
all code under a ‘strong’ copyleft licence like one of the GPL licences. For example,
certain libraries might be of greater use, and enjoy greater adoption, if they did not
impose copyleft requirements on any program making use of that library. As a result,

85 GPLv3,§ 3.

86 GPLv3,§ 6.

87 15US Code § 2301(1) (1975).

88 For a detailed explanation of how the ‘Installation Information’ requirement of GPLv3 works and
how it relates—if at all—to requirements in GPLv2, see P McCoy Smith, ‘“Installation Information”,
GPLv2 and GPLv3: What is it and what must you provide?’ (27 September 2021) Linux Foundation
Open Source Summit <https://www.youtube.com/watch?v=6W3LBIkOpDM&t=2s> accessed 8
June 2022.

92 P MCCOY SMITH

the FSF created a licence—initially named the ‘Library General Public License’ but
later changed to be called the TGPL—designed to be a ‘weak’ copyleft version of
GPL. Like GPL, there exist two common versions in current use—LGPLv2.1, and
LGPLv3. The text of LGPLv2.1 corresponds, with notable exceptions, to the text of
GPLv2, whereas the text of LGPLv3 corresponds, again with notable exceptions, to
GPLv3. As such, much of the discussion above with regard to GPLv2 and GPLv3
would apply to their counterpart LGPL versions.

The first exception—found in both LGPLv2.1 and LGPLv3—states that an appli-
cation may make use of the following header file elements of code licensed under
LGPL without the requirements of LGPL applying to that application: ‘numerical
parameters, data structure layouts and accessors, or small macros, inline functions
and templates (ten or fewer lines in length)’® This first exception recognises that
there may be a need for some limited use to be made of parts of those header files
in order for an application to interoperate (or to be statically linked) with the LGPL
code, but that such uses should not force the application itself to be subject to the
obligations of LGPL. This exception thus provides a form of a defined de minimus
or fair use/fair dealing exception to the copyleft obligations of LGPL.

The second exception—also found in both LGPLv2.1 and LGPLv3—allows
the creation of ‘Combined Works’ (a work ‘produced by combining or linking’ an
application with the LGPL code, which Combined Work may be licensed under
‘terms of your choice, i.e., any licence terms, not just LGPL).” The only limitation
on this exception is that the ‘terms of your choice’ do not ‘effectively ... restrict
modification of the portions of the Library contained in the Combined Work and
reverse engineering for debugging such modifications, together with requiring
the source code for the LGPL portion of the Combined Work, and a notification
that LGPL applies to that portion. This second exception recognises that many li-
braries, or other commonly-referenced software components, will need to be com-
bined together—such as by linking—and to oblige the entire combined work to be
licensed under LGPL would decrease the use of such libraries. Thus, the second
exception is designed to allow any licence choice (copyleft, permissive, or even pro-
prietary), as long as the recipient of the combined work has the ability to modify
and recombine the LGPL code, and to do effective debugging of the modified and
recombined code. This particular exception has never been tested in court, and
the FSF’s own frequently asked questions (FAQs) do not explain in detail how one
would need to present a non-LGPL licensed combined work to a licensee, but at a
minimum, would require providing the source code for the LGPL part of that com-
bined work under LGPL, and at least ensuring that any facilities in the combined
work—such as symbols used by symbolic debugging tools—are not removed from
the object code of the application to which the LGPL part is linked.

8 LGPLv2.1,§ 5; LGPLv3, § 3.
%0 LGPLv2.1,$ 6; LGPLv3, § 4.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 93

3.2.2.1.3 The GNU Affero General Public Licence (AGPL)

The GNU Affero General Public Licence (AGPL) is the third licence in the GPL family
of licences maintained by the FSE Its intent is to close the ASP (application service
provider) loophole’ in GPL: namely, that because GPLs obligations only apply to code
that is either distributed (GPLv2) or conveyed (GPLv3), entities offering Software as
a Service (‘SaaS’) under either GPLv2 or GPLv3, such that the software is accessed
by third parties—but only over a network such that the code is never distributed to
them—are not obliged to supply source code to those third parties. AGPL closes this
‘loopholé’ by adding an additional condition triggering an obligation to provide source:

if you modify the Program, your modified version must prominently offer all
users interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding Source
of your version by providing access to the Corresponding Source from a network
server at no charge, through some standard or customary means of facilitating

copying of software.”!

The AGPL exists in two versions: AGPLv1,”> which contains terms similar to
GPLv2 (but for the additional condition recited earlier) and AGPLv3, which con-
tains terms similar to GPLv3 (but for the additional condition recited earlier).
A more detailed description of AGPL and its effect on cloud computing and SaaS
can be found in Chapter 17.

3.2.2.1.4 Other copyleft licences: MPL and EPL
Although there are but a few other Open Source licences that attempt to create a strong
copyleft effect, there are two very prominent other Open Source licences that create
a weak copyleft effect: The Mozilla Public License (MPL)%* and the Eclipse Public
License (EPL).%* Both of these licences are an effort—similar to the effort made with
the Apache 2.0 license—to address some perceived ambiguities or missing features in
LGPL, as well as to provide a clearer and more easy-to-use definition of the circum-
stances when non-copyleft code can make use of code licensed under those licences.
The MPL exists in two versions—MPLv1.1%> and MPLv2.0.® Both are weak
copyleft licences written by the Mozilla Foundation, with version 2.0 being an

1 GNU Operating System, ‘GNU Affero General Public License, Version 3§ 13, <https://www.gnu.
org/licenses/agpl-3.0.en.html> accessed 19 November 2007.

92 Software Package Data Exchange (SPDX), ‘Affero General Public License v1.0 only’ <https://spdx.
org/licenses/ AGPL-1.0-only.html> accessed 11 March 2020.

3 Mozilla Foundation, ‘Mozilla Public License’ <https://www.mozilla.org/en-US/MPL/> accessed
11 March 2020.

4 Eclipse Foundation, ‘Eclipse Public License—v 2.0” <https://www.eclipse.org/legal/epl-2.0/> ac-
cessed 11March 2020.

%5 Mozilla Foundation, ‘Mozilla Public License Version 1.1” <https://www.mozilla.org/en-US/MPL/
1.1/> accessed 11 March 2020 (MPLv1.0).

% Mozilla Foundation, ‘Mozilla Public License Version 2.0° <https://www.mozilla.org/en-US/MPL/
2.0/>accessed 11 March 2020 (MPLv2.0).

94 P MCCOY SMITH

updated version having improved terminology. Like the Apache 2.0 license
versus the MIT and BSD licenses, MPL attempts to improve upon issues in
LGPL—for example, by addressing patent rights via an express patent grant, in-
cluding defensive termination conditions for that grant, and by having more ro-
bust definitions and terms. The MPL licences are also an attempt to make a much
clearer, and easier to understand and use in practice, distinction between code
that must be copyleft and code that need not be. This distinction is set forth in the
definitions of ‘Modifications’ to the ‘Covered Software’ provided under MPL:%’

““Modifications” means any of the following: any file in Source Code Form that
results from an addition to, deletion from, or modification of the contents of
Covered Software; or any new file in Source Code Form that contains any Covered
Software! MPL also make clear that putting together such files into a ‘Larger
Work’ does not subject the entire result to the MPL: ““
that combines Covered Software with other material, in a separate file or files, that

Larger Work” means a work

is not Covered Software.”® ... You may create and distribute a Larger Work under
terms of Your choice, provided that You also comply with the requirements of this

Licence for the Covered Software’*®

Although the file-based distinction between that which must be MPL and
that which need not is likely to be much easier to navigate than the exceptions
to copyleft in LGPL, there is one potential ambiguity that bears a cautious ap-
proach: when creating a new file, designed to not be subject to MPL but intended
to work with it, MPL states that ‘Covered Software’ is defined as ‘Source Code
Form to which the initial Contributor has attached the notice in Exhibit A, the
Executable Form of such Source Code Form, and Modifications of such Source
Code Form, in each case including portions thereof’!%° Note the degree of recur-
sion between the definition of ‘Covered Code’ and ‘Modifications, where each
includes reference to the other. A file that is separate from Covered Code, but
which may need to reproduce elements (such as interfaces) in order to work with
that Covered Code, could be argued to thus fall within the obligation to license
that file only under MPL and to produce source code for that file. The Mozilla
Foundation attempts to clarify this issue in its FAQs:

Q11: ... If T use MPL-licensed code in my proprietary application, will I have to
give all the source code away?

No. The license requires that Modifications (as defined in Section 1.10 of the
license) must be licensed under the MPL and made available to anyone to whom
you distribute the Source Code. However, new files containing no MPL-licensed

%7 MPLv2.0, § 1.10.
% MPLv2.0,§ 1.7.
% MPLv2.0, § 3.3.
100 MPLv2.0, § 1.4.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 95

code are not Modifications, and therefore do not need to be distributed under the
terms of the MPL, even if you create a Larger Work This allows, for example,
programs using MPL-licensed code to be statically linked to and distributed as part
of a larger proprietary piece of software, which would not generally be possible under

the terms of stronger copyleft licenses.!

Given the statement about static linking in the MPL FAQs, it is certainly also the
case that dynamic linking of these files would not cause the MPL to attach to the
file so linked. The extent the FAQs would be dispositive on the issue of linking of
MPL and non-MPL files has yet to be determined, although the fact that the li-
cence steward, the Mozilla Foundation, accepts this distinction is likely to be found
highly persuasive.

The EPL also exists in two versions—EPLv1.0'%2 and EPLv2.0.!% Both are weak
copyleft licences written by the Eclipse Foundation, with version 2.0 being an up-
dated version having improved terminology. Like MPL, EPL attempts to improve
upon issues in LGPLv2.1: patent rights, patent defensive termination, and more ro-
bust definitions and terms. EPLv2.0 has a slight advantage over MPLv2.0 in that it
removes from the terms of the licence the ambiguity around including interfacing
code in order to allow non-EPL-licensed code to interoperate with EPL-licensed
code:!0

‘Modified Works™ shall mean any work in Source Code or other form that re-
sults from an addition to, deletion from, or modification of the contents of the
Program, including, for purposes of clarity any new file in Source Code form that
contains any contents of the Program. Modified Works shall not include works that
contain only declarations, interfaces, types, classes, structures, or files of the Program
solely in each case in order to link to, bind by name, or subclass the Program or
Modified Works thereof.'%

101 Mozilla Foundation, ‘MPL 2.0 FAQ’ <https://www.mozilla.org/en-US/MPL/2.0/FAQ/> accessed
2 March 2020 (emphasis added).

102 Eclipse Foundation, ‘Eclipse Public License—v 1.0’ <https://www.eclipse.org/legal/epl-v10.htmI>
accessed 11 March 2020.

103 Eclipse Foundation, ‘Eclipse Public License—v 2.0’ <https://www.eclipse.org/legal/epl-2.0/> ac-
cessed 11 March 2020 (EPLv2).

104 The ambiguity present in MPLv2.0 also existed in EPLv1.0, which defined a ‘Contribution’ not
covered by the licence as ‘additions to the Program which: (i) are separate modules of software distrib-
uted in conjunction with the Program under their own licence agreement, and (ii) are not derivative
works of the Program’ (emphasis added). The reference back to the idea of derivative works begged
the question of whether the use of interfacing code that might legally result in the creation of a deriva-
tive work would curtail the exception and make EPLv1.0 closer to a strong copyleft licence. See Katie
Osborne, ‘License Profile: The Eclipse Public License’ (2015) 1(1) Journal of Open Law, Technology ¢
Society 1, at 6 <https://jolts.world/index.php/jolts/article/view/73/211>.

105 EPLv2.0, § 1 (emphasis added).

96 P MCCOY SMITH

In this way, EPLv2.0 makes much clearer the distinction between EPL and non-
EPL files and acknowledges that in order for such files to work together there may
need to be reproduction of certain interfacing code from the EPL files. The defin-
ition of ‘Modified Works’ in EPLv2.0 thus acknowledges that such reproduction
does not spread the licence to that file.

3.2.2.1.5 ‘Weak copyleft’ exception practice
In certain circumstances, authors have chosen to license their code under a strong
copyleft licence but have attempted to provide a particular weak copyleft effect to
enable certain uses of the code without imposing strong copyleft requirements on
that code. Two of the most notable examples of this is the so-called sys call ex-
ception that is used with the Linux kernel (part of the GNU/Linux operating
system) and the ‘runtime’ exception used with the GNU C++ Compiler (GCC).
In each case, a version of GPL is used for the base code licence, but the authors
have included a notice (usually included immediately above the licence text, orin a
‘README file appended to the source code) to spell out that for certain uses, GPL
would not apply.

The Linux kernel, licensed under GPLv2, includes the following exception
(often called the ‘sys call’ or ‘system call’ exception), authored by the original au-
thor of that kernel, Linus Torvalds:

NOTE! This copyright does *not* cover user programs that use kernel services
by normal system calls—this is merely considered normal use of the kernel, and
does *not* fall under the heading of ‘derived work’ Also note that the GPL below
is copyrighted by the Free Software Foundation, but the instance of code that it re-

fers to (the Linux kernel) is copyrighted by me and others who actually wrote it.'%

In this way, the authors of the Linux kernel attempt to weaken some of the effect of
GPLv2 against their authored code by making clear that as authors, and therefore
granters of the licence, certain uses that other code might make of facilities in the
kernel, even if in the law of a relevant jurisdiction might be considered a deriva-
tive work subject to the requirements of GPLv2, are not considered so by those
authors. In this way, for this particular code, GPLv2 is turned into a weak copyleft
licence, but not using the definitions of exceptions to the licence that are used in,
inter alia, LGPL.

The GCC also uses an exception to specify that certain uses of the code from that
tool—licensed under GPLv3—do not spread the licence attached to that code.!?”

106 <https://github.com/torvalds/linux/blob/master/LICENSES/exceptions/Linux-syscall-note> ac-
cessed 13 April 2022.

107 GNU Operating System, ‘GCC Runtime Library Exception version 3.1” (31 March 2009) <https://
www.gnu.org/licenses/gcc-exception-3.1.en.html> accessed 13 April 2022.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 97

The wording of the exception itself is somewhat complex, but the intent of the ex-
ception is described before the text of that exception:

When you use GCC to compile a program, GCC may combine portions of certain
GCC header files and runtime libraries with the compiled program. The purpose
of this Exception is to allow compilation of non-GPL (including proprietary)
programs to use, in this way, the header files and runtime libraries covered by this

Exception.!1%

The purpose of this exception is to prevent mere use of the tool to compile code
from causing the resulting compiled code to be GPL—thus limiting the use of the
tool itself to only GPLv3 licensed programs.'%”

There are numerous other examples of software licensed under an Open Source
licence where the authors have granted some form of exception where certain uses
of their code are not obliged to comply with all or part of the terms of that licence;
itis good practice, when confronted with situations where a proposed use of Open
Source licensed software might result in a less than desirable licensing outcome (ei-
ther a licence conflict, or the requirement to use a licence that may be undesirable
in a particular usage case) to examine the source code repository to see if an author
exception has been granted.

3.3 Software Interaction and Licence Compatibility
3.3.1 Thelinking question

As described in section 3.1.4.1, linking—either statically, before run-time, or dy-
namically, during run-time—is a relatively common programing technique to
allow two or more software programs or modules to operate together or to be com-
bined. There haslongbeen a debate about the effect of linking on programs licensed
using Open Source licences—particularly copyleft licences.!!? Some licences, like
Apache, attempt to make clear that irrespective of whether the law in a particular
jurisdiction would find a particular type of link to create a derivative work, cer-
tain forms of linking do not cause the licence to apply to the result. In that case, it
is relatively safe to assume that such an exception would be found controlling on
the question of applicability of the licence. Other licences, like GPLv3, attempt to
make clear that certain types of linking should be considered to create a derivative

108 ‘GCC Runtime Library Exception version 3.1’ see note 111.

109 GNU Operating System, ‘GCC Runtime Library Exception Rationale and FAQ’ <https://www.
gnu.org/licenses/gcc-exception-3.1-faq.html> accessed 11 March 2020.

10 Bain, ‘Software Interactions and the GNU General Public License, see note 83, at 177.

98 P MCCOY SMITH

work (or at least, to be governed by the terms of the licence) and therefore cause the
licence to apply to the result. Whether the courts in a particular jurisdiction would
find such a statement of intent applicable is an as-yet unresolved issue.

There is also an important issue concerning the particular jurisdiction in
which the linking question is confronted. The term ‘derivative work” has a statu-
tory meaning under US law, although it is subject to different interpretive tests at
the present, as discussed in more detail in section 3.1.4.2 earlier in this chapter. In
other jurisdictions such as those in the UK and EU, the analysis is not even that
clear-cut, due to the lack of definition of the term.

3.3.1.1 Other interaction issues: technical impediments

The Linux kernel, licensed under GPLv2 only, instituted—in around 2002—a
technical impediment intended to discourage the loading of LKMs at run-time
which were not licensed under GPLv2 or a GPLv2 compatible licence.!!! This
technical impediment issues an error message (‘Kernel is Tainted for following
reasons: Proprietary module was loaded’) when such a non-GPLv2 compatibly li-
censed LKM is loaded by the kernel.!!? In general, the community of Linux kernel
developers and maintainers believe that run-time LKMs that are ‘proprietary’ (typ-
ically closed source, but this impediment would also display a message for LKMs
licensed under a non-GPLv2-compatible licence) should not be allowed, and
this technical impediment was intended to discourage the creation or use of such
LKMs.!!3 There have been efforts to circumvent this technical impediment in order
to allow the loading of proprietary LKMs without the display of the warning mes-
sage, although the reaction by the kernel maintainer community to such efforts is
decidedly negative if not hostile.!'* Avoiding such impediments to allow proprietary
LKMs to load may also potentially run afoul of laws—like the DMCA in the US—
intended to prevent circumvention of technological impediments by way of DRM.

3.3.2 Specific compatibility issues

Navigating which of the many Open Source licences are compatible with one an-
other, and under what technical conditions and in which legal jurisdictions, is a
highly complex issue. The answer will depend at least in part on how two or more
pieces of software interact with one another, the extent to which interfaces or other

1 Linux Kernel Mailing List (LKML), “The tainted message’ (26 April 2002), <http://lkml.iu.edu/
hypermail/linux/kernel/0204.3/0428.html> accessed 13 April 2022.

12 Linux Kernel, “The Linux kernel user’s and administrator’s guide: Tainted kernels, <https://www.
kernel.org/doc/html/latest/admin-guide/tainted-kernels.html> accessed 11 March 2020.

13 Linux.com, “Tainted love: proprietary drivers and the Linux kernel’ (28 April 2004), <https://
www.linux.com/news/tainted-love-proprietary-drivers-and-linux-kernel/> accessed 13 April 2022.

114 TKML, ‘Linuxant/Conexant HSF/HCF modem drivers unlocked’ (29 October 2004) <http://
lkml.iu.edu/hypermail/linux/kernel/0410.3/2190.html> accessed 13 April 2022.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 99

code may need to be reproduced to facilitate that interaction, the specific wording
of the licences involved, and whether there are any exceptions granted by the au-
thors that might contemplate and except out from general licence conditions cer-
tain types of interactions. The discussion which follows attempts to summarise
these compatibility issues, but practitioners are cautioned that there are many dif-
ferent factors that need to be considered, and the law on, inter alia, copyrightability,
functional dictation/merger doctrine, and fair dealing/fair use continue to evolve,
and cases still being considered as of publication may significantly impact ques-
tions related to compatibility.

Table 3.2 is a graphical representation intended to summarise how the licences
discussed earlier are, are not, or may possibly be, compatible. A single-headed
arrow represents ‘one way’ compatibility—that is the licence at the start of the
arrow is compatible with the licence at the end of the arrow, but not vice versa;
and a double-headed arrow represents ‘two way’ compatibility, that is the licences
are compatible in either direction. A solid line means compatibility in all circum-
stances, a dashed line means compatibility in certain circumstances, and a dotted
line means there is an unresolved debate about whether compatibility exists. An X’
means there is no compatibility in either direction. Note that this chart does not
take into account that there may be some degree of compatibility in certain specific

Table 3.2 Compatibility between Certain Open Source Licences

GPLv2
GPLv3 X GPLv3
AGPLy3 X —% AGPLv3

LGPIv2.1 — 4 ___ 4 X LGPLv2.1
LGPLv30 X — 4 X <= LgPLvao

Mozilla 4 4 4 4 4 Mozilla

Eclipse X X X < —4 <4 — <« — Ecdlipse

BSD 4 4 4 4 4 4 4 BsD

MIT 4 4 4 4 4 4 4 2 vt
Apache —_4__4___4__»% 4 4 4 4 2
2.0

X = Two-way incompatibility
= One-way compatibility (in direction of arrow)
-4 One-way partial compatibility (in direction of arrow)

= Two-way compatibility

<4~ — =Two-way partial compatibility

100 P MCCOY SMITH

circumstances as a result of author exceptions, as discussed in section 3.2.2.1.5
earlier, or licence statements that allow the user to receive the code under later ver-
sions of the licence, as discussed in section 3.3.2.1 which follows.

3.3.2.1 ‘Strong’ copyleft licences

Those licences which are generally referred to as having ‘strong’ copyleft provi-
sions have the hallmark of imposing their terms on any downstream exercise of
the right to make modifications (or in the case of the US, create ‘derivative works’).
Because of this, attempting to interoperate ‘strong’ copyleft licensed code with
code that has any terms that might conflict with the terms in the ‘strong’ copy-
left licence, presents potential compatibility problems that puts the interoperating
code at risk of violating the ‘strong’ copyleft licence’s terms (as well as the terms for
the interoperating code). In this way, the strong copyleft licences (GPLv2, GPLv3,
AGPL) are generally incompatible with one another. There are a few exceptions to
this general rule. First, there has been a practice for a number of authors of code li-
censed under GPLv2 to include a statement that the code is licensed under ‘GPLv2
or any later version’!!® Code licensed under this form of a GPLv2 licence notice
is compatible with GPLv3; otherwise, code licensed under GPLv2 only (which
is the case with the Linux kernel)!!® is incompatible with GPLv3, LGPLv3, and
AGPLv3.!'77 Second, the newer versions of the GNU family of licences were de-
signed to allow a certain degree of one-way compatibility with one another; thus,
LGPLv3 may be combined with GPLv3 as long as the resulting combination is li-
censed GPLv3;!® similarly, AGPLv3 includes a provision that allows combinations
with GPLv3, as long as the resulting combination is licensed GPLv3.!!® Third,
LGPLv2.1 includes a section stating that “You may opt to apply the terms of the or-
dinary GNU General Public License instead of this License to a given copy’ of code
licensed under LGPLv2.1;!2° thus LGPLv2.1 is one-way compatible with GPLv2
and GPLv3.

3.3.2.2 ‘Weak’ copyleft licences

The weak copyleft licences tend to have limited compatibility. A weak copyleft li-
cence typically stipulates that derivative content must be licensed under that same
licence, but admits of articulated exceptions to that general rule.

15 <https://spdx.org/licenses/GPL-2.0-or-later.html> accessed 13 April 2022.

116 Kernel.org, ‘Working with the kernel development community: Linux kernel licensing rules’
<https://www.kernel.org/doc/html/latest/process/license-rules.html> accessed 11 March 2020.

117" Free Software Foundation, ‘Frequently Asked Questions about the GNU Licenses’ <https://www.
gnu.org/licenses/gpl-faq.en.html#AllCompatibility> accessed 3 March 2020 (the chart does not ad-
dress AGPLv3, but by the logic of GPLv3 incompatibility, AGPLv3 would be equally incompatible).

118 ESE, ‘Frequently Asked Questions about the GNU Licenses’ see note 121.

119 AGPLv3, § 13.

120 TGPLv2.1,§ 3.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 101

The MPL includes provisions, Sections 1.12 and 3.3, designed to allow combin-
ations with the GNU family of licences, such that combinations of the two would
be governed by the terms of the GNU-family licence. Thus, MPL is one-way com-
patible with GPLv2.1, GPLv3, LGPLv2.1, LGPLv3, and AGPLv3.!2! With regard
to the EPL, depending on which version of MPL and EPL, and the way in which
code under MPL and EPL are designed to interoperate, there is the potential for
the licences to be compatible; this is primarily an issue of whether the code is main-
tained in separate files, as discussed in more detail in section 3.2.2.1.4 earlier in this
chapter.

The EPL, in contrast, does not include a provision designed to allow compati-
bility with the GNU family of licences; thus the EPL is incompatible with all of
GPLv2.1, GPLv3, and AGPLv3.!22 With respect to LGPLv2.1 and LGPLv3, it is pos-
sible to construct an interaction between code under EPL and one of the LGPL
licences, aslong as doing so falls within the exceptions in both licences discussed in
more detailed in sections 3.2.2.1.2 and 3.2.2.1.4 earlier.

Finally, LGPLv2.1 would normally be considered incompatible with LGPLv3,
for many of the same reasons that GPLv2 is considered incompatible with GPLv3.
However, LGPLv2.1 includes a provision that allows re-licensing of LGPLv2.1 code
under GPLv2 or any later version of that licence.'? LGPLv3 includes a similar pro-
vision.!?* Thus, LGPLv2.1 and LGPLv3 can be made compatible, but the result
would be licensing under GPLv3.1%

3.3.2.3 MIT and BSD

Few complications arise with respect to compatibility between and with the per-
missive licences; indeed, it is a feature of these licences to provide broad compati-
bility. Copying and linking (which would appear to fall within the broad grant of
rights in these licences) are broadly permitted by MIT and BSD, with only minimal
requirements. Thus, as shown in Table 3.2, both of these licences are one-way com-
patible with all the Open Source licences discussed above, and are two-way com-
patible with each other and with Apache.

3.3.2.4 Apache
The Apache License also has a goal of being highly permissive and broadly compat-
ible, in the same way as MIT and BSD. In most instances, as shown in Table 2 above,

121 Free Software Foundation, ‘Various licenses and comments about them’ <https://www.gnu.org/
licenses/license-list. html#MPL-2.0> accessed 11 March 2020.

122 Free Software Foundation, ‘Various licenses and comments about them’ <https://www.gnu.org/
licenses/license-list. html#EPL> accessed 11 March 2020.

123 LGPLv2.1,§ 3.

124 LGPLv3, § 2b.

125 Free Software Foundation, ‘Frequently Asked Questions about the GNU licenses” <https://www.
gnu.org/licenses/gpl-faq.en.html#AllCompatibility> accessed 11 March 2020.

102 P MCCOY SMITH

the Apache License achieves that goal—being one-way compatible with most of
the licences discussed above, and two-way compatible with MIT and BSD.

The Apache License does present a complication with regard to the GNU family
of licences. The FSF has stated that the Apache 2.0 license is incompatible with
GPLv2.126Although the ASF disagrees with this assessment, it nevertheless states
that with regard to use of GPLv2, ‘you should always try to obey the constraints
expressed by the copyright holder when redistributing their work’!?” This incom-
patibility introduces certain complications in architecting software stacks that may
include Apache 2.0 and GPLv2 code (in particular, the Linux kernel of the GNU/
Linux operating system, which is licensed under GPLv2 only), and could very well
be the reason why the more recent, and more carefully drafted, Apache 2.0 license
has not supplanted the continued popularity of the BSD and MIT licences as de
facto choice when selecting a permissive licence. Note that this incompatibility
does not exist for the later generations of the GNU family of licences—GPLv3,
LGPLv3, and AGPLv3—as it was an express goal during the process of updating
those licences to allow them to be Apache License one-way compatible.!?® Thus,
as reflected in Table 3.2, the Apache License is arguably one-way compatible with
GPLv2, partially one-way compatible with LGPLv2.1, and fully one-way compat-
ible with GPLv3, LGPLv3, and AGPLv3.

3.4 Interpreting Open Source Licences:
Contract or ‘Bare Licence’?

Although a discussion of specific enforcement cases and issues are described and
analysed in detail in Chapter 5, there has been a long-standing debate amongst
Open Source licence drafters, users, and potential enforcers over the question of
whether such licences operate as ‘bare licences, or should be interpreted and en-
forced as contracts. This question can be thought of—until very recently—as sig-
nificantly academic, and much of the debate has been in academic circles but is
nonetheless important when a particular author is (i) choosing a licence for their
work, or (ii) considering enforcing that licence against another person or entity
which they believe to be failing to comply with its terms. Although there is as yet
no definitive answer to this debate—and in fact, the answer may be dependent
upon the particular licence being enforced, and possibly the jurisdiction in which

126 See FSF Licence Comments, see note 59, <https://www.gnu.org/licenses/license-list. html#apac
he2>. Note that by the logic used in the FSF’s commentary on the Apache 2.0 licence, Apache 2.0 would
likely be also incompatible with the Affero GPLv1.0 licence, and partially incompatible with the Lesser
GPLv2.1 licence.

127" Apache Software Foundation, ‘GPL compatibility’ <https://www.apache.org/licenses/GPL-
compatibility. html> accessed 10 March 2020.

128 Brett Smith, ‘A Quick Guide to GPLv3’ <https://www.gnu.org/licenses/quick-guide-gplv3.html>
accessed 11 March 2020.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 103

enforcement is contemplated—the trend in adjudication would appear to be sup-
portive of the bare licence theory of licence interpretation and enforcement, or
indeed possibly that either theory could be pursued by an author of software li-
censed under an Open Source licence, in the event they desire to engage in licence
enforcement.

3.4.1 Open Source licences as bare licences

It has long been the position of the FSF that the licences over which it exercises
stewardship operate as ‘bare licences.!?” Under this theory, the author grants a uni-
lateral permission, under the IP rights either expressly enumerated in the licence
text, or impliedly granted as a result of the structure and text of the licence and con-
ditions under which it was granted, to engage in activities the author would other-
wise have exclusive rights to practice.

Thinking of Open Source licences—or at least those licences that do not expli-
citly present themselves as contracts between the author(s) and licensee(s)—as
mere unilateral permission from the author to each particular user, provides some
potentially advantageous benefits to the author(s). First, the necessity to worry
about the fundamental requirements for establishing the existence of a contract—

130_peed not

offer, acceptance, consideration, intent, certainty, and completeness
be established in order to pursue a violator, nor may privity of contract with the
particular violator need be established. Second, given the numerous variations in
rules governing contract law (which, for example, are analysed state-by-state in
the US), viewing an Open Source licence as merely a permission under certain IP
rights which—if not followed—result in a claim for violation of those rights, may
allow the application of more uniform law, and provide more flexibility and ease in
pursuing remedies, than pursuing relief under contract.!®!

The trend of enforcement and judicial interpretation of Open Source software
licences suggests that the bare licence theory of Open Source licence interpretation
and enforcement is valid, and may be preferable to those authors wishing to exer-
cise their right of enforcement against accused licence violators.

The Jacobsen v Katzer'3? case in the US led the way—at least in common law
jurisdictions—in validating the bare licence theory of Open Source software

129 See Eben Moglen and Richard Stallman, “Transcript of Opening Session of the First International
GPLv3 Conference, 16 January 2006 <http://www.ifso.ie/documents/gplv3-launch-2006-01-16.html>
accessed 16 January 2020. Eben Moglen, ‘Enforcing the GNU GPL (10 September 2001), <https://www.
gnu.org/philosophy/enforcing-gpl.html> accessed 28 February 2020.

130 Catharine MacMillan and Richard Stone, ‘Elements of the law of contract’ (2012) University of
London International Programmes, <https://www.dphu.org/uploads/attachements/books/books_407
1_0.pdf> accessed 13 April 2022.

131 See GPLv3 Transcript, note 28.

132 Jacobsen v Katzer, 535 F.3d 1373 (Fed. Cir. 2008).

104 P MCCOY SMITH

licensing. The Jacobsen case involved enforcement of the terms of the Artistic

Licence,!33

a permissive licence that includes obligations to include attribution
notices and to identify modifications made. The defendant used code licensed by
the plaintiff under the Artistic License, but failed to provide attribution or identify
modifications. According to the District Court in Jacobsen, defendant’s violation
of the requirements of the Artistic License constituted a breach of contract, rather
than use of the plaintiff’s copyrights outside of the conditions of the licence and
thus copyright infringement.!3* The Court of Appeals for the Federal Circuit over-
ruled the District Court’s ruling, holding that the requirements of Artistic License
were not independent contractual covenants but merely conditions attached to
the copyright grant. Because the defendant’s actions had gone beyond the scope of
the licence—by failing to comply with the fairly minimal conditions of the Artistic
License—an action for copyright infringement could be brought by the author, and
remedies for copyright infringement could be sought.!3

Given the similarity in the grants and conditions between the Artistic License
and the BSD and MIT Licenses, it would seem likely that at least those licences
would also be interpreted to operate as bare licences, at least in the US, under the
reasoning of the Jacobsen v Katzer decision. As noted earlier, the FSF—stewards of
the GNU family of licences—has long advocated that those licences are also bare
licences and not contracts, and commentators have acknowledged that that may
be a viable interpretation of those licences.!*¢ Although there is no clear UK case
regarding the bare licence versus contract issue concerning Open Source licensing,
some commentators believe the rationale of Jacbosen v Katzer would equally apply
there.13”

Civil law jurisdictions also appear to generally accept the bare licence theory as
at least one way to interpret Open Source licences.!3® A recent decision of the ECJ,
upon appeal of a decision emanating from France, seems to bear out the theory

133 Tronically, given that this case is perhaps the most consequential decisions interpreting the obli-
gations of an Open Source licence, it involves one of the least popular Open Source licences. See Ben
Balter, ‘Open Source License Usage of GitHub.com’ The GitHub Blog (9 March 2015), <https://github.
blog/2015-03-09-open-source-license-usage-on-github-com/> accessed 3 February 2021 (showing the
Artistic Licence as the seventh most used of sixteen open source licences on GitHub).

134 Jacobsen v Katzer, No. 06-CV-01905 JSW, 2007 WL 2358628 (N.D.Cal. 17 August 2007).

135 Jacobsen v Katzer, 535 F.3d 1373 at 1381-3 (Fed. Cir. 2008).

136 Mark Henley, ‘Jacobsen v Katzer and Kamind Associates—An English Legal Perspective’ (2009)
1(1) Journal of Open Law, Technology and Society 41, at 43 (2009); Noah Shemtov, ‘FOSS License: Bare
License or Contract, presentation available at <https://web.ua.es/es/contratos-id/documentos/itipupd
ate2011/shemtov.pdf> accessed 12 March 2020.

137 Shemtov, ‘FOSS License: Bare License or Contract), see note 140.

138 German cases include Welte v Sitecom Deutschland GmbH, District Court of Munich, 19 May
2004, case 21 O 6123/04; Welte v Skype Technologies S A, District Court of Munich, 12 July 2007, case 7
05245/07. A French case, EDU 4 v AFPA, Cour d’Appel de Paris, Pole 5, Chambre 10, no: 294, discusses
GPL although not in detail. See Martin von Willebrand, ‘Case Law Report: A Look at EDU 4 v. AFPA,
also Known as the “Paris GPL case”’ (2009) 1(2) Journal of Open Law, Technology and Society 123, at
123-26.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 105

that a copyright licence violation can indeed be pursued whether or not there may
be a contractual basis for a claim against the licence violator:

According to Article 2(1) of Directive 2004/48 [of the European Parliament
and of the Council of 29 April 2004 on the enforcement of intellectual property
rights], that directive applies to ‘any infringement of intellectual property rights’
It is apparent from the wording of that provision, in particular from the adjective
‘any, that that directive must be interpreted as also covering infringements re-
sulting from the breach of a contractual clause relating to the exploitation of an

intellectual property right, including that of an author of a computer program.'®

3.4.2 Open Source licences as contracts

There is a relatively robust line of argument that Open Source licences—or at least
a selected subset of Open Source licences—operate as valid contracts between the
authors of the licensed code and the recipients of that code.!%® Others have argued
to the contrary:

A contract ... is an exchange of obligations, either of promises for promises, or
of promises of future performance, for present performance, or payment. The
idea that ‘licenses’ to use patents or copyrights must be contracts is an artefact of
twentieth-century practice, in which licensors offered an exchange of promises
with users: “We will give you a copy of our copyrighted work, in essence, ‘if you
pay us and promise to enter into certain obligations concerning the work’!4!

As discussed earlier, several of the more commonly-used Open Source licences are
likely to be evaluated as bare licences—if the author chose to present that theory to
a judicial tribunal—although the interpretive decisions validating that theory do
not preclude an author from also pursuing a claim for breach of contract.

At least one court has interpreted GPLv2 under a contractual analysis and
has rejected the application of a ‘bare licence” theory for enforcement of that li-
cence. In the French court decision in Entre’Ouvert v Orange,'4? the court—in

139 IT Development SAS v Free Mobile SAS, ECLLEU:C:2019:1099 (Fifth Chamber, CJEU, 18
December 2019). Compare that decision to the outcome in Entre’Overt v Orange, Tribunal de grande
instance (TGI) of Paris, 3rd chamber, 3rd section (21 June 2019), discussed in section 3.4.2 below.

140 See Robert W Gomulkiewicz, ‘How Copyleft Uses License Rights to Succeed in the Open Source
Software Revolution and the Implications for Article 2B’ (1999) 36 Houston Law Review 179, at 194;
Rosen, ‘Open Source Licensing) see note 67, at 57-66.

141 Eben Moglen, quoted in Pamela Jones, “The GPLisa License, Nota Contract’ lwn.net (3 December
2003) <https://lwn.net/Articles/61292/> accessed 2 March 2020.

12 Entre’Ouvert v Orange, Tribunal de grande instance (TGI) of Paris, 3rd chamber, 3rd section (21
June 2019) <https://www.legalis.net/jurisprudences/tgi-de-paris-3eme-ch-3eme-section-jugement-
du-21-juin-2019/> accessed 8 June 2022.

106 P MCCOY SMITH

interpreting a claim of failure to follow the requirements of GPLv2—stated that
because Entre’Ouvert was seeking compensation for damage caused by Orange’s
failure to perform obligations in GPLv2—specifically providing source code—the
defendant was not operating outside of the GPLv2 license and as a result the only
claim Entre’Ouvert could pursue was under French contract law, for a contractual
breach of the requirements of GPLv2.!*} This decision would appear to be conflict
with the ECJ’s interpretation of French law in IT Development SAS v Free Mobile
SAS,1* despite the Entre’Ouvert decision being issued previously, but which was
not cited in the IT Development decision. The extent to which this conflict will be
resolved, and its effect on potential enforcement actions in France, have not yet
been clearly established.

In 2021, a lawsuit was filed in the US with the intent of definitively establishing
notonlya contract theory for the GPL family oflicences, but also to open up the pos-
sibility that recipients of Open Source—rather than just authors of Open Source—
could enforce the terms of those licences. In Software Freedom Conservancy, Inc.
v Vizio, Inc.,'*> a lawsuit was filed—in the state courts of California—to enforce
GPLv2 based on allegations that ‘complete corresponding source’ had not been
provided to purchasers of products sold by Vizio containing GPLv2 binaries.!46
The Software Freedom Conservancy, as one of the purchasers, asserted it was a
third-party beneficiary of the contractual right in GPLv2 to receive source code,
and therefore had the right to sue to enforce that licence.!#” In response, Vizio at-
tempted to have that lawsuit ‘removed’ (transferred) from state court to US federal
court, arguing that any violation of GPLv2 may only be pursued as a claim of copy-
right infringement, which are heard exclusively in US federal courts.* The fed-
eral court decided that violations of the obligation to provide source under GPLv2
could be pursued as a matter of contract law, and therefore US state courts could
decide such claims under state contract law.'*° Thus, at least in the US, the potential
for pursuing GPL violation claims as copyright infringements, in US federal courts,
and as contract breaches, in US state courts, may be a possibility—depending on
the eventual outcome of the Vizio litigation.

At least some Open Source licences intentionally present themselves as con-
tracts as well as licences.!>® At a minimum, the most popular Open Source licences

43 Entre’Ouvert v Orange, note 146.

144 IT Development SAS v Free Mobile SAS, ECL:EU:C:2019:1099 (Fifth Chamber, CJEU).

145 Case No. 30-2021-01226723-CU-BC-CJC (Cal. Super. Ct., Orange County, filed 19 October
2021) (Vizio state case).

16 Vizio state case, note 149, Complaint at paras 48-77.

7 Vizio state case, note 149, Complaint at paras 87-126.

18 Software Freedom Conservancy, Inc. v Vizio, Inc. Case No. 8:21-cv-01943, Notice of Removal of
Action to Federal Court (C. D. Cal. 29 November 2021) (Vizio federal case).

9 Vizio federal case, note 152, Order Granting Plaintiff’s Motion for Remand (C. D. Cal. 13
May 2022).

150 Rosen, ‘Open Source Licensing) see note 67, at 59 (discussing the Academic Free License and the
Open Software License).

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 107

do not explicitly preclude an interpretation that they could be enforced as bare li-
cences, but only as contracts. Given the weight of both enforcement theories, and
judicial decisions to date, it seems clear that the contract theory could remain a
minority theory of Open Source software licensing interpretation, and is unlikely
to a majority theory of license enforcement absent a significant decision calling
into question the application of the bare licence theory to particular licences or in
particular jurisdictions.

3.5 What Makes a Software Licence ‘free’ or ‘open source’?

Although this volume refers to ‘free and open source licences collectively as open
source, that use does not necessarily represent a unitary concept. ‘Free and open
source’ licensing actually represent two different, but significantly coextensive,
classes of licences: ‘free’ software licences, and ‘open source’ software licences.

3.5.1 Free software licences

The class of ‘free’ software licences is typically recognised as those licences that
meet the Free Software Definition (FSD),'®! as maintained by the FSE, and that
have been validated by the FSF and added to their list of free software licences.!>
The FSD is a four-part test against which licences are measured to determine if they
promote the FSF’s concept of ‘software freedom’:

o The freedom to run the program as you wish, for any purpose (freedom 0).

o The freedom to study how the program works, and change it so it does your
computing as you wish (freedom 1). Access to the source code is a precondi-
tion for this.

o The freedom to redistribute copies so you can help others (freedom 2).

o The freedom to distribute copies of your modified versions to others (freedom
3). By doing this you can give the whole community a chance to benefit from
your changes. Access to the source code is a precondition for this.!>?

The FSF’s ‘four freedoms’ are the minimum standards necessary for a particular
software licence to be considered a ‘free software’ licence; as the FSF states:

151 GNU Operating System, ‘What is free software? The Free Software Definition’ <https://www.gnu.
org/philosophy/free-sw.html.en> accessed 4 February 2021.

152 GNU Operating System, ‘Various licenses and comments about them: software licenses” <https://
www.gnu.org/licenses/license-list. html#SoftwareLicenses> accessed 4 February 2021.

153 ESD, see note 146.

108 P MCCOY SMITH

[Clriteria such as those stated in this free software definition require careful
thought for their interpretation. To decide whether a specific software license
qualifies as a free software license, we judge it based on these criteria to determine
whether it fits their spirit as well as the precise words. If a license includes uncon-
scionable restrictions, we reject it, even if we did not anticipate the issue in these
criteria. Sometimes a license requirement raises an issue that calls for extensive
thought, including discussions with a lawyer, before we can decide if the require-
ment is acceptable. When we reach a conclusion about a new issue, we often up-
date these criteria to make it easier to see why certain licenses do or don’t qualify.!>*

The FSF maintains an extensive list of software licences that it has determined,
based on the criteria discussed earlier, meet its standards in order to qualify as
a ‘free software’ licence, as well as a list of licences which it has determined are
‘non-free’ because they fail these criteria.!>> The ‘free software’ licences are subdiv-
ided in two categories: ‘free software’ licence that are ‘GPL-compatible’ and those
that are ‘GPL-incompatible’!®® The measure of GPL compatibility is determined
by evaluating whether the licence in question is one-way compatible with GPL.1>’
GPL compatibility is an important criterion for the FSF, as the FSF promotes the
GPL as the optimal licence for software freedom. !>

There is no formal process for validating that a licence is a free software’ licence
and therefore to add a licence to the FSF’s list of ‘free software’ licence; licences may
be submitted via email to the FSE, but there is no formal review process or timeline
specified by the FSF for making such decisions or adding licences to its lists.!*

3.5.2 Open source software licences

The class of ‘open source’ software licences is recognised as those licences that meet
the Open Source Definition (OSD), as maintained by the OSI, and that have been
validated by an approval process run by the OSI. The OSD is a ten-part test against
which licences are measured to determine if are ‘open source’:

1. Free Redistribution
The license shall not restrict any party from selling or giving away the soft-
ware as a component of an aggregate software distribution containing

154 FSD, see note 146.

155 ESF Software License List, see note 147.

156 FSF Software License List, see note 147.

157 GNU Project, ‘What does it mean to say a license is “compatible with the GPL?”” <https://www.
gnu.org/licenses/gpl-faq.html#WhatDoesCompatMean> accessed 5 February 2021.

158 GNU Project, ‘Why you shouldn’t use the Lesser GPL for your next library’ <https://www.gnu.
org/licenses/why-not-lgpl.html> accessed 5 February 2021.

159 ESF Software License List, see note 147.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 109

programs from several different sources. The license shall not require a roy-
alty or other fee for such sale.

2. Source Code
The program must include source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is
not distributed with source code, there must be a well-publicized means
of obtaining the source code for no more than a reasonable reproduction
cost, preferably downloading via the Internet without charge. The source
code must be the preferred form in which a programmer would modify the
program. Deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works
The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original
software.

4. Integrity of The Author’s Source Code
... The license must explicitly permit distribution of software built from
modified source code....

5. No Discrimination Against Persons or Groups
The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a
specific field of endeavor.....

7. Distribution of License
The rights attached to the program must apply to all to whom the program
is redistributed without the need for execution of an additional license by
those parties.

8. License Must Not Be Specific to a Product
The rights attached to the program must not depend on the program’s being
part of a particular software distribution. ...

9. License Must Not Restrict Other Software
The license must not place restrictions on other software that is distributed
along with the licensed software. ...

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology
or style of interface.!%

The OSI maintains an extensive list of software licences that it has determined,
based on the criteria discussed earlier, meet its standards in order to qualify as an

160 Open Source Initiative, “The Open Source Definition” <https://opensource.org/osd> accessed 5
February 2021.

110 P MCCOY SMITH

‘open source’ licence.!®! The list is sorted into one sub categorisation, established
by the OSI, so as to identify licences that are ‘are popular, widely used, or have
strong communities; as well as other subcategories of licences that do not meet that
test.!®2 The ‘popular, widely used, or have strong communities’ licences as identi-
fied by the OSI are:

o Apache License 2.0

o BSD 3-Clause and BSD 2-Clause Licenses

o All versions of GPL

o Allversions of LGPL

o MIT License

o Mozilla Public License 2.0

o Common Development and Distribution License (CDDL)
o Eclipse Public License version 2.0

Unlike the ‘free software’ licence list maintained by the FSE, the OSI has a formal,
documented process for submitting, evaluating, and approving licences to add
to the list of ‘open source’ licences.!® Licence submitters are requested to pro-
vide the following information concerning the licence for which they request OSI
approval:

o Rationale: Clearly state rationale for a new license

« Distinguish: Compare to and contrast with the most similar OSI-approved
license(s)

o Legal review: Describe any legal review the license has been through, and pro-
vide results of any legal analysis if available

« Proliferation category: Recommend which license proliferation category is
appropriate!®4

The process itself is administered using a mailing list through which OSI members
may submit comments, criticisms, or suggested changes regarding submitted li-
cences, after which the OSI board conducts a vote as to whether a submitted licence
should be added to the OSI ‘open source’ licence list, or other alternative actions
are taken:

161 Open Source Initiative, ‘{Open Source] Licenses by Name™ <https://opensource.org/licenses/
alphabetical> accessed 5 February 2021.

162 Open Source Initiative, {Open Source] Licenses by Category” <https://opensource.org/licenses>
accessed 5 February 2021.

163 Open Source Initiative, “The License Review Process’ <https://opensource.org/approval> ac-
cessed 5 February 2021.

164 OS] License Review Process, see note 158.

COPYRIGHT, CONTRACT, AND LICENSING IN OPEN SOURCE 111

o Defer for another 30-day discussion cycle, if community discussion of con-
formance of the license to the OSD remains active.

o Approve if, after taking into consideration community discussion, the OSI
determines that the license conforms to the OSD and guarantees software
freedom. A license may be approved on the condition that a change be made,
but in general a license requiring changes will have to be resubmitted.

« Reject if (a) the OSI determines that the license cannot practically be rem-
edied to adequately guarantee software freedom, or (b) there is sufficient
consensus emerging from community discussion that the license should be
rejected for substantive reasons, or (c) the license is problematic for non-
substantive reasons (for example, it is poorly drafted or significantly duplica-
tive of one or more existing OSI-approved licenses).

« Withhold approval, if (a) the OSI determines that approval would require re-
working the license and (b) the license submitter appears willing and able to

revise the license constructively.!6>

Although the OSI licence review process is open and relatively transparent, it has
not been without controversy in some circumstances, and submitters have with-
drawn licences from approval that they maintain are conformant with the OSD but
which have encountered opposition during the approval process.!%

3.6 Conclusion

Although the applicability of copyright to software—in any form that it may take—
is by now well-established, and despite the over thirty-year history of Open Source
licensing, there remain many unresolved questions about how software copyright
should be analysed legally, or how certain aspects of Open Source software licences
would be found to operate, if put to the test via court or other challenges.

Chapter 5 addresses the enforcement cases that have been pursued, and this
chapter gives an overview of that which is—at the present—known about the oper-
ation of Open Source licences alone, or together with other licences.

Practitioners attempting to give advice on complex questions of licence inter-
pretation in view of particular software programing and architectural scenarios
should be cautious to appreciate that many questions remain unanswered, and
the views expressed by many commentators can diverge, sometime quite radic-
ally. In addition, the answer to certain thorny questions about, for example, under

165 OSI License Review Process, see note 158.

166 Elliot Horowitz, ‘Approval: Server Side Public License, Version 2 (SSPL v2)’ (9 March 2019) <http://
lists.opensource.org/pipermail/license-review_lists.opensource.org/2019-March/003989.html> accessed
5 February 2021.

112 P MCCOY SMITH

what conditions a copyleft licence imposes its obligations on other software may
be highly dependent upon the exact wording of that licence, the general state of
copyright law interpretation both internationally, and nationally in the particular
jurisdiction in which the software is being used, and the extent to which a deciding
or interpreting body views the terms of that licence as the mere grant of enumer-
ated copyright rights subject to certain conditions, or a reciprocal licence between
the authors of the copyleft licensed code and the authors of the other software code.
There are a handful of decided cases, in both the US and EU, which give some gen-
eral guidance about how these issues might be resolved, but there is much room
for additional decisions which could very well upend the way that Open Source
licences are interpreted, and used in practice, today.

=

Contributor Agreements

Jilayne Lovejoy
4.1 Project Licence Agreements 113 4.2.3 Contributor Licence
4.2 Types of Inbound Agreements for Agreements 117
Open Source Projects 114 4.2.4 Copyright assignment 120
4.2.1 Inbound = outbound 114 4.3 Employee Contributions 121
4.2.2 Developer’s Certificate 4.4 Practical Advice 123
of Origin 116 4.4.1 Bestapproach? 123

4.1 Project Licence Agreements

From a legal perspective, regardless of how the project is organised or governed,
there are two licences or agreements for every Open Source project.

‘Inbound’ refers to the licence or agreement under which contributions are
made to the Open Source project.

‘Outbound’ refers to the licence under which end-users use the Open Source
project.

As used here, the terms inbound and outbound are relative to the Open Source
project.

There may be other licences for other content related to the project like docu-
mentation or data, but for our purposes here, we are discussing the licences or
agreements as related to the code.

Chapter 3 considered outbound Open Source licences in detail and further
chapters will discuss details regarding compliance and other aspects of those li-
cences. These outbound licences for Open Source projects are, ostensibly, what
makes the software free and open.

However, if there is more than one person or entity working on an Open Source
project, then there must be some legal understanding as to the inbound agreement
governing contributions to the project. Recall that code can be assumed to have
copyright and that restricts the use of a work (code) unless explicit permission is
given, which amounts to a licence to use the code whether in writing or not. No use
can be made without a licence or a transfer of the right of the creator. Thus, in order
for the open collaborative model to work, the copyrightable code contributions

Jilayne Lovejoy, Contributor Agreements In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Jilayne Lovejoy 2022. DOI: 10.1093/050/9780198862345.003.0004

114 JILAYNE LOVEJOY

made to the project must be accompanied by a licence or some other transfer of
rights. Without this the project would not be able to use those contributions.

A successful Open Source project will have contributors who must have clarity
as to what the project can do (or not do) with their contributions. Likewise, con-
tributors to a project should have clarity as to what rights they are giving the project.

Choosing an inbound licence, is more than a legal exercise. The Open Source
movement was born from developers and engineers, not lawyers. Successful Open
Source software projects approach licensing decisions within the larger context of
the values, perspectives, and common practices of their community.

4.2 Types of Inbound Agreements for Open Source Projects
4.2.1 Inbound = outbound

‘Inbound=outbound’ refers to when contributions are accepted by the project
under the same licence as the project’s outbound licence. The contributor grants a
licence to the project and each recipient of their contribution to the project under
the same terms and conditions as the licence which users receive the project.

Copyright ownership remains with each contributor as this is a licence not an
assignment. This distinction is often confused and sometimes the document titled,
‘contributor licence agreement’ (CLA), may be used on documents which are in
fact assignments and vice versa. On that basis, it is important to inspect the actual
document terms closely. A licence means that the contributor retains the owner-
ship of the code and has the ability to do as they wish with the same code outside of
the project, including licensing the same contribution code to someone else under
a different licence.

Using the same licence for inbound and outbound provides a clean and equal
set of rights coming into the project and going out, removing the need to ana-
lyse differences between inbound and outbound rights for discrepancies or
inconsistencies.

Although there are no reliable statistics on inbound licensing to Open Source
projects currently available, inbound = outbound is considered by far the most
widely used and was the default for early Open Source projects. The model was
so ubiquitous that the need for it to be named did not arise and the term ‘in-
bound = outbound” was not coined until around 2010, when Richard Fontana,
legal counsel at Red Hat, began using it in presentations and articles.!

Around that time in Open Source’s history Contributor Licence Agreements
(CLA) became more widely used, usually by well-known foundations or cor-
porations and the Open Source community suddenly discovered a need to

! <https://ref.fedorapeople.org/fontana-linuxcon.html> accessed 13 April 2022.

CONTRIBUTOR AGREEMENTS 115

distinguish the newer approach (i.e., CLAs) from what had been the norm (in-
bound=outbound).

If a specific inbound licence is not identified, the general assumption is that con-
tributions are made under the project’s outbound licence for that contribution at
the time it was made, but for a number of reasons it is better to be explicit.

Inbound = outbound is easiest for both projects and contributors. It is likely
that most contributors will already be familiar with the outbound licence (espe-
cially if it is an Open Source Initiative (OSI) approved licence) and thus, under-
stand the rights they are giving to the project without the need to consult a lawyer.
This is especially helpful for individual developers who may not have access to a
lawyer. It also makes the approval process easier for contributions from developers
or entities with lawyers who need to review the inbound licence terms for contri-
butions to Open Source projects made on behalf of the entity.

There is little to no administrative work beyond including a copy of the licence
and indicating it applies for both inbound and outbound code. Unlike a contributor
agreement or assignment, the inbound = outbound model does not require the
project to have a single person or entity with which to execute the agreement and
hold the intellectual property rights.

Many developers and advocates prefer the inbound = outbound licensing model
due to the egalitarian nature of the arrangement via symmetrical rights for con-
tributors and users. Federated copyright ownership across contributors generally
means that there is no potential single point of failure in a centralised accumula-
tion of copyright licences or ownership, as with other models discussed later in
the chapter. Copyright ownership being distributed among the contributors means
the project must adhere to the wishes of each of the contributors in terms of major
changes. For example, the only way the project could change the outbound licence
across all code is to get every contributor’s permission to do so.

Whilst there are differences in joint copyright enforcement in different jurisdic-
tions, only copyright holders in the code have the legal ‘standing’ to enforce their
rights against an infringing third party. Licence enforcement in this environment
is not left to a single legal entity.

Detractors of inbound = outbound equally argue the difficulty in changing a
project licence as a downside of this model but this must be weighed against the
value of equality and fairness in contributions.

The LLVM project which uses inbound = outbound, undertook a licence change
which included creating a foundation in order to have an entity that could imple-
ment the legal agreement to instantiate the agreement to the change of licence with
all the contributors.? Their revised developer policy acknowledges the challenge of
this task and states the rationale as follows:

2 <https://foundation.llvm.org/docs/relicensing/> accessed 13 April 2022.

116 JILAYNE LOVEJOY

changing the LLVM license requires tracking down the contributors to LLVM
and getting them to agree that a license change is acceptable for their contribu-
tions. We feel that a high burden for relicensing is good for the project, because
contributors do not have to fear that their code will be used in a way with which
they disagree.’

Similarly, VLC also undertook a similar re-licensing effort citing, in addition to
other factors, author’s rights under French law.*

The licence can be changed under the inbound = outbound model but inevitably
requires more work which may be a deterrent to licence change and which many
developers view as a good thing.

4.2.2 Developer’ Certificate of Origin

Unlike the other inbound agreements discussed in this chapter, the Developer’s
Certificate of Origin (DCO) is neither a licence nor an assignment. It has no ex-
press language granting rights from the contributor to the project. In fact, the DCO
refers to submitting the contribution ‘under the Open Source licence indicated in
the file)® For this reason, the DCO is a compliment to the inbound = outbound
licence model and is generally not compatible with a contributor licence or assign-
ment agreement.

The DCO is a statement affirming the contributor owns or has proper rights to
contribute the code to the project. It also includes (as of v1.1, created in 2005) an
acknowledgement that the contribution is a public record and any personal infor-
mation required for sign-off will be maintained and redistributed as consistent
with the Open Source project and licence.® Each contributor indicates agreement
to the DCO by ‘signing off” with their name and email address in each commit
message.

The DCO was originally created for the Linux kernel in 2004 in response to the
SCO lawsuits. The SCO Group brought a series of lawsuits against Linux vendors
and users in 2003-2004 claiming copyright infringement, among other claims, of
certain copyrighted code from UNIX that was contributed to Linux. The details in
terms of the copyright ownership, legal proceedings, and various lawsuits are quite
lengthy, highly contested, and spanned a decade or more.

One impact was an analysis of where specific code came from in the Linux
kernel. Current-day tracking of contributed code did not exist at this point. The

3 <https://llvm.org/docs/DeveloperPolicy.html#copyright> accessed 30 June 2022.
4 <https://lwn.net/Articles/525718/> accessed 13 April 2022.
5 <https://developercertificate.org/> accessed 13 April 2022.
¢ <https://lwn.net/Articles/139916/> accessed 13 April 2022.

CONTRIBUTOR AGREEMENTS 117

Linux kernel community sought to connect contributors to copyrighted contribu-
tions and also to communicate to Linux developers that they had some responsi-
bility regarding where their contributed code came from.

The use of a CLA for the Linux kernel was discussed and rejected due to its ad-
ministrative burden and potential interference with the values of freedom and in-
dividualism. The ideas underpinning the DCO was personal accountability and
keeping the representation and sign-oft within the source control system. This
could then be used to track all contributions made by a specific person.

4.2.2.1 Why useit?

Open Source software developers largely like the developer-friendly DCO; agree-
ment with the DCO is effected via a Git command.” It has since been adopted by
many Open Source projects beyond Linux and is just about as low-friction as in-
bound = outbound but provides more assurance to the project owner by way of the
representation each contributor makes as to the provenance of their contributions.

4.2.3 Contributor Licence Agreements

Some projects use a different licence for incoming contributions from their out-
bound licence referred to as a CLA. At the most basic level, a CLA is an inbound
licence under which an Open Source project receives contributions. The distinc-
tion from inbound = outbound is that with a CLA, the inbound licence terms are
not the same as the outbound licence. The grants under a CLA may vary from the
outbound licence grant, but the inbound licence must be as broad or broader than
the outbound.

As a CLA is a licence, copyright ownership remains with the author. Developer
communities frequently misunderstand this and CLAs are frequently discussed as
if they are assignments, a fact not made better by the confusion of these terms in
some inbound documentation.

Unless explicitly agreed otherwise in the CLA, standing to enforce copyright in-
fringement does not transfer to the project owner but remains with each copyright
author/contributor.

Thelicence grant in a CLA usually has minimal or no conditions, which gives the
project owner greater flexibility in the outbound licence of the project or a change
to that. A broad grant to the project with no conditions means the project owner
can licence the code out under different or multiple licences or change the out-
bound licence without needing the permission of other contributors. For example,
Elasticsearch and Kibana changed the project outbound license from Apache-2.0,

7 <https://git-scm.com/docs/git-commit#Documentation/git-commit.txt--s> accessed 13 April 2022.

118 JILAYNE LOVEJOY

an OSI-approved licence, to a choice of two more restrictive, non-Open Source
licences in 2021 to the distastes of many contributors who had contributed their
code to the Open Source projects.®

That being said, CLAs may also include obligations upon the project owner,
such as requiring the outbound licence to be Open Source or articulating a licence
change process. This may alleviate developer concerns that projects will later swap
an Open Source project to a proprietary licence.

In order to effect a CLA where all contributors grant a licence to the project,
there must be a central legal entity at the recipient project to execute the legal
agreement and to hold the licence grants. This might be an individual, a non-profit
entity (whether charitable or trade organisation) or a corporation. In contrast to
the decentralised and egalitarian nature inbound = outbound, use of a CLA gener-
ally means a centralised entity holds greater rights and power over the project than
its contributors.

CLAs first appeared in the early or mid-2000s at a point of more formal cor-
porate involvement in Open Source software projects and movement.

In the early 2010s after much community discussion a trend of turning away
from the use of CLAs evolved, as noted by several high-profile projects public
announcements.’

Today’s focus in this area relates to automating the signature, sometimes at the
expense of a real discussion as to the purpose or efficacy of the CLA for the given
project.

The most well-known, often copied, and perhaps the earliest CLA is from the
ASF. As a result of its not-for-profit status and goal of maintaining Open Source
software, certain aspects of its CLAs are not appropriate in the context of a cor-
porate project owner.

Nevertheless, many corporations have used the Apache CLA, usually with
changes ranging from minor to more extensive modifications. Such changes create
a certain amount of overhead for contributors and their lawyers reviewing some-
thing that looks similar, but requiring a careful look to spot the differences.

Unlike Open Source licences generally, there is not a large, developed body of
‘standard’ CLAs. Although you may hear people refer to ‘CLA as if it is a consistent,
defined term, it is important to remember that CLAs are specific to the project and
vary in terms. One must be careful when making assumptions about how CLAs
work or what specific grants they require from contributors.

Several projects have created a standardised approach as an effort to reduce
overall friction in the use of CLAs. Project Harmony began in 2010 led by Canonical
with the intention of creating a suit of standard contribution agreements and

8 <https://www.elastic.co/pricing/faq/licensing> accessed 13 April 2022.
9 <https://www.infoworld.com/article/2608020/red-hat--joyent--and-others-break-down-licens
ing-barriers.html> accessed 13 April 2022.

CONTRIBUTOR AGREEMENTS 119

includes an online ‘agreement selector’ that helps build a CLA or a copyright as-
signment agreement based on answers.'? Canonical adopted a CLA from this suite.

ContributorAgreements.org also has a similar build-an-agreement interface.!!
This also includes the Fiduciary Licence Agreement (FLA), a project sponsored
by the Free Software Foundation (FSF) Europe which aims to create an agreement
whereby copyright is concentrated in one entity and that entity is obligated to en-
sure the software remains free and open.!?

These projects were collaborative efforts among Open Source legal experts. If a
CLA must be used, these projects provide a good starting point by way of a com-
munity process with world-leading experts, that resulted in vetted drafting.

4.2.3.1 Why useit?

CLAs are sometimes preferred by company lawyers as they meet the company’s
standard documentation and as the project owner, it allows them to more easily
use a different outbound licence.

CLAs need to be drafted and implemented in a way to allow this goal. In order
for the project owner to ensure the ability to change or use a different outbound li-
cence, a CLA must be obtained from every contributor who has contributed code
to the project that surpasses the threshold of copyright-ability. However, to avoid
any question, a project may adopt a policy of requiring a signed CLA for every con-
tribution, no matter how insignificant.

A common business case for use of a CLA in order to use different outbound
licences is for projects run by a company where the code is offered under both an
Open Source (usually a copyleft licence) and proprietary licence, often referred to
as ‘dual licensing’ In this case, using a CLA also allows the option of fully closing
the code and ceasing to offer later versions under an Open Source licence.

Some Open Source projects may want to retain the ability to provide code under
different Open Source licences or contribute the same code to other Open Source
projects. For example, if the project code was to be used under either Apache-2 .0
or GPL-2.0 (due to these licences being deemed incompatible by the FSF), contri-
butions under a CLA could allow such disjunctive outbound licensing. Of course,
this result could also be achieved via inbound = outbound by accepting contribu-
tions under both licences.

As noted earlier, this power to differ the outbound licence comes at the cost of
egalitarian nature of inbound = outbound projects, an important constituent of the
collaborative model for many.

10" <http://www.harmonyagreements.org/index.html> accessed 13 April 2022; <https://en.wikipe
dia.org/wiki/Project_Harmony_(FOSS_group)> accessed 13 April 2022.

1" <http://contributoragreements.org/> accessed 13 April 2022.

12 <https://fsfe.org/news/2017/news-20171013-01.en.html> accessed 13 April 2022.

120 JILAYNE LOVEJOY

Some developers simply refuse to contribute to CLA based projects for this
reason; others may not bother with the hassle of signing something. There is
no doubt that the use of a CLA carries an administrative cost. Where an entity
is contributing by way of its employee representatives, tracking who is a current
employee and authorised to contribute under the entity’s CLA also needs to be
taken into account and this also requires ensuring that CLAs are in the correct
contributor’s name.

4.2.4 Copyright assignment

A copyright assignment is not a licence. It is the full transfer of all transferable
rights in copyright in the code such that the contributor relinquishes copyright
ownership. Because full copyright ownership is transferred from the contributor to
the project owner, the contributor can no longer exercise any of the rights associ-
ated with copyright ownership, such as copying, creating derivative works, further
assignment, enforcing their copyright, etc. Rights like moral rights (the right to be
identified as author of the code) which cannot be waived or assigned in some coun-
tries may not transfer.

Copyright assignment agreements often include a broad licence grant-back to
the contributor, giving the contributors all rights other than ownership thus al-
lowing the contributor to otherwise use the code. In many cases they may also li-
cence the code as they choose. The contributor essentially becomes a licensee of
the work they originally created and then contributed to the project, instead of
its owner.

These agreements may also include a specific patent grant that follows the copy-
right in the contributions. Because copyright ownership is transferred, this also
means that the right to enforce the licence lies with the project owner to which the
copyright was assigned.

Assignment agreements may contain other contractual terms such as represen-
tations by the contributor or a promise by the project owner to use a certain out-
bound licence and so require scrutiny, particularly if not industry standard.

A full assignment can only be made from the originator of the code once. That
is, if a contributor assigns code to one project, they cannot later assign it to another
project, thus potentially limiting the ability for the same code to be contributed to
multiple projects. While this possibility is remote due to the rare use of assignment
agreements, it is perhaps an unanticipated hindrance that should still be considered.

Similar to a CLA, there needs to be alegal entity with which to execute the assign-
ment agreement and to which the intellectual property (IP) rights are transferred.
Again, this could be an individual person, a non-profit entity, or a corporation. In
most jurisdictions, assignments must be executed in writing and in some have the
added complexity of requiring to be ‘delivered as a deed’

CONTRIBUTOR AGREEMENTS 121

Perhaps the most well-known use of an assignment agreement is for the GNU
projects maintained by the FSE Despite being a non-profit charity with a mission
for supporting free software, the assignment agreement has caused much conster-
nation among developers over the years.!* FSF’s stated rationale for using rests on
ESF’s ability to register the copyright work in the US more easily and to enforce the
licence.!* Given the reception to the FSF’s assignment agreement over the years,
most other projects have steered away from this option.

4.2.4.1 Why useit?

An assignment agreement provides ultimate control for the project owner.
Assuming the agreement does not place obligations on the project owner, the pro-
ject owner can use any outbound licence, register the copyright in the US, and en-
force the copyright in the contributions as if it wrote the code itself.

Assignment agreements require the highest level of legal review and the highest
burden on contributors. To an even greater extent than CLAs, there is limited
standardised body of agreements or accepted text, although Project Harmony did
create one.

Copyright assignments from each contributor to the project creates the greatest
asymmetry in terms of rights. If developers are uncomfortable with CLAs, assign-
ments are cause for even more heartburn.

Some companies or projects that used assignment agreements in the past have
dropped them over time. Due to the friction assignments cause in a collaborative
environment, Open Source counsel with experience will generally advise against
their use but for the rarest of cases.®

4.3 Employee Contributions

Some lawyers like CLAs because they assume that an employee contributing on
behalf of their employer will check with their legal department and get proper ap-
proval before agreeing to the CLA and contributing to the project. The rationale
here is that employee contributors may not be authorised signatories for their em-
ployer and only authorised signatories can bind a legal entity. Thus, using a legal
agreement (in the form of a CLA or assignment) that requires a signature will
trigger legal review and the signature process within the contributing corporation.
This then ensures that the proper authority was obtained for whatever IP rights
were granted to the Open Source project via the contributor agreement.

13 See <https://lwn.net/Articles/414523/> and <https://lwn.net/Articles/529522/> as examples, both
accessed 13 April 2022.

14 <https://www.fsf.org/bulletin/2014/spring/copyright-assignment-at-the-fsf> accessed 13 April
2022.

15 For this reason, the next section mentions only CLAs.

122 JILAYNE LOVEJOY

From the perspective of the project owner, the concern here is that an employee
contributing without the proper permission of their employer could result in that
employer later trying to assert that it did not grant the rights associated with the li-
cence for the Open Source project, potentially via an infringement suit.

For these reasons, a CLA (or assignment agreement) gives comfort over in-
bound = outbound where no formal signature is required for inbound contribu-
tions. Proponents of using CLAs for the purpose of obtaining proper authority
for the reasons stated earlier put themselves in a bind; this view, taken completely,
would mean only contributing to and consuming Open Source software that also
uses a CLA. Such a position is untenable in today’s software reality.

The rise of automation for signing CLAs confuses the goal of strict authority
as it places the signature in the hands of the contributor by including in the CLA
a representation that the employee/contributor has authority to sign, author-
isation to bind their employer legally, or both as required by the nature of the
relationship.

Such clauses put the onus back on the contributor to contribute only what they
have the rights to. This is essentially the same as using the DCO. Similarly, if there
is a later issue, the project has recourse against the employee/contributor, not the
employer.

While this position regarding authority to bind an entity may hold technical
legal merit, it ignores history and the practical reality of Open Source project gov-
ernance and community norms.

In thirty years of the vast majority of Open Source projects using inbound = out-
bound, there have been precious few instances of an employer objecting after the
fact to contributions made by employees resulting in a challenge for the project.
Obtaining proper permission and an authorised signature assumes employers have
a process to follow and employees follow it.

In reality, this may not be the case and employees may sign legal agreements,
perhaps unwittingly, in order to make contributions and move on. While those
employees may not have formal signing authority, they probably have enough ap-
parent authority to create a binding agreement.

The proliferation of the inbound = outbound model has been a huge part of the
success of Open Source software in allowing a low-friction path to collaboration.
To call that into doubt based on an academic legal analysis ignores the broader
picture and defies industry practice since the inception of Open Source software.
Using a legal process (i.e. the process for obtaining an authorised signature) as the
gatekeeper for Open Source contributions is neither practical nor good practice;
lawyers need to work hard to train their developers and engineers about Open
Source best practices, not assume that some rigid internal legal approval process
will save them.

As corporate Open Source involvement has increased, it has become more
common for companies to put in place appropriate internal processes for approval

CONTRIBUTOR AGREEMENTS 123

to contribute to Open Source projects via programs to manage, strategize, and pro-
mote their Open Source involvement.!® Everyone can agree that this is the right
approach and it is considered further at Chapter 21.

4.4 Practical Advice
4.4.1 Bestapproach?

The best approach for the legal agreement governing your Open Source project
ultimately depends on the goals of the project. For the vast majority of projects,
inbound = outbound works just fine. Any inbound agreement that introduces fric-
tion to the collaborative project should be chosen for a solid reason only and im-
plemented in such a way that is consistent with the intended goal of its use.

When weighing the pros and cons of each approach for a given project, con-
siderations beyond the legal technicalities must be included. Community con-
siderations must weigh in, such as how the legal arrangement will be viewed by
potential contributors to the project, common practices for the given community,
long-term uses for the code, and so forth. Successful Open Source projects are not
merely defined as code that lots of people use but as communities set up to foster
collaboration. One of the most common entry points to an Open Source project
community occurs when someone wants to contribute code. Thus, how contribu-
tions are handled is a first impression with a lasting impact.

Ideally, whatever the licensing model for a given Open Source project, there
should be clarity as to what and why it is such, and be implemented in a way as to
realise its goals.

When the licensing of an Open Source project is unclear, incomplete, or missing
in any way, it wastes time and can ultimately hinder or prevent use or contribu-
tions. Clear and upfront information as to the licence(s) that apply(ies) to the pro-
ject not only gives newcomers easy access to information, but also signals that this
is an Open Source project.

In particular, using machine-readable standards for communicating this infor-
mation (where possible) helps downstream users leverage automation of software
management in Open Source licence compliance.

As discussed in more detail in subsequent chapters, advancements continue to
be made in terms of providing outbound licence information or identifying such
information with automated tooling, usually related to the goal of Open Source
licence compliance. However, progress on getting projects to identify the inbound

16 See, for example, programs to facilitate such activities: <https://www.openchainproject.org/> and
<https://todogroup.org/> both accessed 13 April 2022.

124 JILAYNE LOVEJOY

licence more clearly for their project lags behind. Following are practical tips for
communicating the licence information for Open Source projects, both inbound

and outbound.

(1) Identify the outbound licence

(a)

(b)

1.3.

Licence file: Place the complete text of the licence in its own file at the
top-level directory or an appropriately named subdirectory if there is
more than one licence text.

File-level licence notice: Place the SPDX-License-Identifier tag for
the outbound licence in every file at or near the top of the file in a
comment. The SPDX-License-Identifier syntax may consist of a single
SPDX-Licence-Identifier or an SPDX Licence Expression to represent
a single licence or a compound set of licences (respectively) that apply
to that file. For more information on the use of SPDX identifiers, see
<https://spdx.org/ids> or <https://spdx.org/ids-how> accessed 13
April 2022.

Identify the outbound licence in your README and project website (if
applicable). Include a concise statement as to the outbound licence in
your README, preferably in a section called ‘licence’ and link to your
LICENCE file. The same statement can be used on your project web-
site, if you have one.

2. Identify the inbound licence

(a)

(b)

(0)

Include a copy of the inbound licence. If your project uses a different
licence or agreement than the outbound licence, such as a CLA or as-
signment agreement, include a full copy of the text of that agreement at
the top-level directory.

Identify the inbound licence in your README and project website (if
applicable). Include a concise statement as to the inbound licence in
your README, preferably in a section called ‘licence” and link to the
relevant file. The same statement can be used on your project website, if
you have one.

Contributing file. Place a file at the top-level directory called
CONTRIBUTING, and include the inbound licence information with
a link to the agreement. This file can also include information about
how to contribute to your project, coding standards, etc.

Examples of licence-related README statements, which would also include links
in the appropriate places:

“This software is provided under the BSD 3-Clause licence. Contributions to
the project are accepted under the same licence”

CONTRIBUTOR AGREEMENTS 125

“This software is provided under the BSD 3-Clause licence. Contributions to
this project are accepted under the same licence with developer sign-oft
under the Developer’s Certificate of Origin as described in Contributing”

“This software is provided under the BSD 3-Clause licence. Before you con-
tribute, you will need to sign the Contributor Licence Agreement.”

5
Copyright Enforcement

Miriam Belhausen
5.1 Introduction 126 5.5 Who Can Enforce Copyright
5.2 What is Copyright Infringement in Open Source? . 132
and What Claims Can Be Made? 128 5.5.1 Ownership OfC(’Pleg.ht 132
5.2.1 Copyright protection of 5.5.2 Enforcement of copyright 134
software 128 5.6 What Are the Key Arguments
5.2.2 Open Source licensing 128 and Alleged Infringements? 136
5.3 Enforceability of Open Source 5.6.1 Obligation to provide the
Licences and Termination source code 136
Provisions— How? 129 5.6.2 Obligation to provide the
. C licence text 138
5.4 Whyis Copyrlght in Open 5.7 New Trends 139
Source so Consistently 571 C itment 139
f d in Germany? 131 S ure commitmen
Enforce Y 5.7.2 OpenChain 140

5.1 Introduction

The enforcement of rights in Open Source began with the odd case being brought,
but these enforcement efforts have constantly increased since the mid-2000s.!
This is especially true for Germany, where for the last decade there has been a high
double-digit number of cases per year.? An outline of the cases and court decisions,
which enable strategic and disruptive enforcement around Open Source licensing,
the protected usage of code, and the copyright in that code is set out below (for

! An overview over the existing case law globally is available in Heather Meeker, Open Source for
Business, 2nd edn (Kindle Direct Publishing Platform, 2017) Chapter 19; an overview especially over
German case law is available from the ‘Institut fiir Rechtsfragen der Freien und Open Source Software’
(in English: Institute for Legal Issues of Open Source) under <<https://ifross.github.io/ifrOSS/Cases.
Additionally, there were further cases, such as Wallace v Free Software Foundation, where the US District
Court for the Southern District of Indiana dismissed a claim based on antitrust violations of the FSF;
see <https://cyberlaw.stanford.edu/packets003771.shtml> accessed 14 April 2022, or several cases against
several companies based on copyright in BusyBox, or by Artifex Software, Inc. based on copyright in
MuPDE However, the main purpose of the chapter is to highlight decisions and aspects which are not only
relevant under specific circumstances but lay the groundwork for enforcing copyright in Open Source.

2 This is a conservative estimate based on available file numbers, however, most of these cases are set-
tled out of court.

Miriam Ballhausen, Copyright Enforcement In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Miriam Ballhausen 2022. DOI: 10.1093/0s0/9780198862345.003.0005

COPYRIGHT ENFORCEMENT 127

summaries of other Open Source-related court decisions, please see Chapter 3, es-
pecially under sections 3.1 and 3.4.1).

Most of these cases follow the same pattern. They are initiated through a cease
and desist letter sent by the copyright owner to a company (cases against individ-
uals are less common) using their Open Source-licensed code and who is perceived
to be infringing that code’s Open Source licence, requesting that the licensee refrain
from using the specific Open Source code unless the applicable licence is complied
with. The cease and desist letter will also set a short deadline for the licensee to sign
a declaration that they will cease and desist from the perceived infringing behav-
iour and notifies the licensee/user of the copyright holder’ intent to pursue their
claims against the infringing behaviour in court, unless the declaration is signed.

With that in mind, Open Source-related copyright enforcement (like many
areas of copyright enforcement) has become highly standardised to a point where
often largely identical cease and desist letters are sent to various recipients.® This
has an impact of commoditising the process and reducing costs, making these en-
forcement actions much more accessible to individual developers and community-
driven projects.

Against this background, this chapter will focus on the ‘What?, ‘How?}, ‘Why?,
and ‘Who?’, as well as the key arguments in relation to the enforcement of copy-
right in Open Source:

(1) What an enforceable copyright infringement is.

(2) How can copyright in Open Source be enforced?

(3) Why are copyright in Open Source so consistently enforced in Germany?

(4) Who can enforce copyright in Open Source?

(5) What are the key arguments, alleged infringements, and court decisions on
licence compliance?

Each of these questions can be answered and discussed extensively for every
legal system and especially with regard to specific procedural aspects of German
law. Respective overviews and discussions are regularly available in law jour-
nals and law reports.* This chapter is intended to answer these questions more
broadly and especially to provide an overview over what to consider when fa-
cing or considering bringing an Open Source-related copyright enforcement
action.

3 This occasionally even includes copy-pasting the allegations and the file number.

* See, e.g., Marcus von Welser, ‘Opposing the Monetization of Linux: McHardy v. Geniatech &
Addressing Copyright “Trolling” in Germany’ (2018) 10(1) Journal of Open Law, Technology & Society
9-20, available at <https://jolts.world/index.php/jolts/article/view/128>, or Till Jaeger, ‘Praktische
Umsetzung von Lizenzbedingungen der GNU General Public Licence (GPL) und Grenzen ihrer
Durchsetzbarkeit’ (2019) Computer & Recht 765-9, which includes detailed discussions on the calcula-
tion of contractual penalties based on declarations to cease and desist under German law.

128 MIRIAM BELHAUSEN

5.2 What is Copyright Infringement and What
Claims Can Be Made?

For copyright in Open Source to be enforceable, the following aspects need to be
considered. Software in general and Open Source in particular need to be pro-
tected by copyright law (see section 5.2.1) in favour of the copyright holder (see
section 5.5). This copyright needs to be generally enforceable (see section 5.2.3),
even though rights of use to the Open Source are broadly granted by the copyright
owner under any Open Source licence (see section 5.2.2).

5.2.1 Copyright protection of software

Software—usually referred to as ‘computer programs® in the respective legal
texts—is widely protected as literary work (i.e. the same as books or this chapter for
example) under applicable copyright law, provided that the software embodies an
author’s original creation.

Such copyright protection has been assumed for application programing interfaces
(APIs) by the US Court of Appeals for the Federal Circuit in 2014. This decision is part
of recently resolved legal dispute between Oracle America, Inc. (Oracle) and Google,
Inc. (Google), in which Oracle claimed copyright and patent protection for several
APIs, which are part of the Java technology. The technology had originally been
owned by Sun Microsystems, which was purchased by Oracle. The APIs were included
in earlier versions of the Android operating system. While the copyrightability of APIs
was (re-)considered by the US Supreme Court, the Court was considered whether
Google’s use of the APIs constitutes fair use, which had been argued by Google, but
rejected by the lower instance court. The detail of are discussed in Chapter 3.

All rights of use to the software (e.g. the right to distribute, the right to modifica-
tion) initially lie with the software developer.® Third parties (i.e. anyone who is not
the software developer) may only use the software, if and to the extent rights of use
are granted (licensed) to them.

5.2.2 Open Source licensing

Rights of use to software are granted through licences. Such rights may be granted
in various ways, including as simple/single right of use with others having the same

° In line with the Model Provisions made available by the World Intellectual Property Organization
(WIPO) a computer program is ‘a set of instructions capable, when incorporated in a machine-readable
medium, of causing a machine having information-processing capabilities to indicate, perform or
achieve a particular result’; Model Provisions available at http://www.wipo.int/mdocsarchives/ AGCP_
NGO_IV_77/AGCP_NGO_IV_8_E.pdf> accessed 14 April 2022.

¢ Exceptions to this rule may apply depending on the applicable copyright law (e.g. in case of em-
ployment relationships the rights of use may lie with the employer).

COPYRIGHT ENFORCEMENT 129

rights, or exclusively so that the licensee is the only one who may lawfully exercise
a particular right or as a sole licence where the licensee is granted a simple/single
licence, but is in a similar position to the exclusive licensee, because apart from the
licensee only the licensor may continue to use the software.

A licence may be territorially restricted (e.g. for the European Union (EU) only)
or granted worldwide; it may be restricted in time (e.g. for a year, as happens with
hardcover books, before they become available as paperback) or it may be perpetu-
ally granted, it may be RF or paid, and may be incumbered by a field of use restric-
tion or granted for varying types of use, for example for the reproduction in whole
or in part, for the translation, adaptation, arrangement, or other modification, for
the distribution of the computer program or for making it publicly available, or li-
cences may be granted to cover all of these types of use.

These licensing options always exist irrespective of whether software is licensed
on a proprietary basis or as Open Source and ‘but all OSI-approved licenses are
perpetual’

All Open Source licences make use of these options in a particular way so that
rights of use are granted to the farthest extent possible to ensure that every licensee
has, as described in the Free Software Foundation’s (FSF) Four Freedoms:

(1) The freedom to run the program as desired, for any purpose.

(2) The freedom to study how the program works, and change it so it does com-
puting as desired.

(3) The freedom to redistribute copies.

(4) The freedom to distribute copies of modified versions, thus giving the whole
community a chance to benefit from changes made.”

and in the OSD as explained in Chapter 3.

5.3 Enforceability of Open Source Licences and Termination
Provisions—How?

At the outset of the enforcement of copyright in Open Source, the broad grant
of rights and freedoms in the licences was regularly used to argue that the copy-
right holder waived all their rights of use, which initially exist (see section 5.2.1),
when licensing software under an Open Source licence. This argument was put to
a test by Sitecom, who had been sued by Harald Welte for the infringement of his

7 These criteria, referred to as the four freedoms, were defined by the Free Software Foundation to
determine, if licence terms qualify as free; see ‘What is free software;, available at <https://www.gnu.org/
philosophy/free-sw.en.html> accessed 14 April 2022. They are similar to the ten criteria that were later
identified by the OSD to qualify software as being licensed as Open Source software; see “The Open
Source Definition, available at <https://opensource.org/osd> accessed 14 April 2022.

130 MIRIAM BELHAUSEN

copyright in netfilter/iptables, which is part of the Linux kernel. The court ruled in
favour of the enforceability of Open Source licences and held that:

one cannot perceive the conditions of the GPL ... as containing a waiver of copy-
right and related legal rights. To the contrary, the users ... rely on the concept
of copyright and the copyright law in order to protect and secure their under-
standing of how software must be developed and distributed going forward.®

This argument was confirmed and applied also by Welte./.Versatel, where the
Regional Court of Berlin also clarified that licensing software under the GPLv2.0
does not mean that rights to this software are waived.’

In Welte./.Sitecom, the Regional Court in Munich further clarified that the en-
forceability of Open Source licences and especially the obligations they define,
is not excluded by the (especially strict) German laws on general terms and con-
ditions.!? These laws define both formal!! and content requirements, especially
prohibiting specific terms.!? In addition to these specific provisions, German law
generally prohibits all provisions, which are ‘unreasonably disadvantageous’ for
the party, to whom the general terms and conditions are proposed.'® In case of
Open Source licences, this is the licensee.

In light of these requirements, all Open Source licences include terms, which
are invalid under German law and would therefore generally not be enforceable.
However, in Welte./.Sitecom, the court concluded that this was not the case for the
termination of rights in (e.g. in Section 4 GPLv2.0). Despite Sitecom’s argument,
the court held that the termination was not unreasonably disadvantageous for the
licensee and was therefore valid and enforceable. As it only applied in cases where
the licensee did not comply with the licence’s requirements, the termination’s nega-
tive effects did not unreasonably disadvantage the licensee. In any event, the court
held, the licensee could not ‘cherry pick] claiming that the Open Source licence
was validly granting rights of use but invalid with regard to the obligations it put
forward and the conditions under which the rights of use were granted. Given the
tight connection between the grant of rights and the requirements, the court held,

8 District Court of Munich, decision dating from 19 May 2004, file number 21 O 6123/04—Sitecom./
.Welte, available at <https://www.ifross.org/Fremdartikel/judgment_dc_munich_gpl.pdf > (in English)
and <https://www.ifross.org/Fremdartikel/urteil_lg_muenchen_gpl.pdf> (in German), both accessed
14 April 2022.

® Regional Court of Berlin, decision dating from 21 February 2006, file number 16 O 134/06—
Welte./.Versatel, available at <https://www.telemedicus.info/urteile/Urheberrecht/Open-Source/556-
LG-Berlin-Az-16-0-13406-Verstoss-gegen-GPL-WLAN-Router.html> (in German).

10" The relevant provisions are included in sections 305 et seq. of the German Civil Code. An English
translation is available here: <https://www.gesetze-im-internet.de/englisch_bgb/>.

1 Section 305 German Civil Code, for example, defines how terms and conditions need to be made
available to even become part of a contractual agreement.

12 Section 309 German Civil Code, for example, excludes limitations of liability to a large extent.

13 The respective provision can be found in Section 307 German Civil Code.

COPYRIGHT ENFORCEMENT 131

any argument in favour of the licence obligations being invalid would need to be
applied to the Open Source licence as a whole and would include the grant of rights
as well, thus leaving the defendant entirely without a licence and therefore even
more certainly in breach of copyright.

5.4 Why is Copyright in Open Source so Consistently
Enforced in Germany?

As s clear from Open Source cases across the globe, copyright in Open Source can
be enforced under many jurisdictions worldwide. Nonetheless and as mentioned
on the outset of this chapter, Germany sees a disproportionately high number of
enforcement cases which regularly involve organisations that are non-compliant in
other jurisdictions, not only in Germany.

This begs the question of why copyright in Open Source is so consistently en-
forced in Germany.

The main reason for this territorially focused enforcement lies in the proced-
ural laws which are favourable to claimants for several reasons. Most importantly,
copyright can be enforced in preliminary proceedings, serving the purpose of pro-
tecting the right holder'* in cases where an infringement of the rights is either im-
minent or already happening. In these cases, the right holder can file for a cease
and desist order once he has requested the infringer to cease and desist from (fur-
ther) infringements by means of a cease and desist letter. This cease and desist letter
needs to demand that the infringer signs a declaration to cease and desist with
penalty provision. If the infringer does not comply with the right holder’s demand
to sign a declaration to cease and desist, such an order can be filed for. The cease
and desist order may then be passed within days and often without the infringer
being involved. To ensure a fair hearing, the infringer may later object to the court
order, however until a date for an oral hearing is set, the infringer needs to abide by
the court order and will normally not be able to continue to distribute the affected
products.

As these orders are passed in such speedy proceedings and given the lowered
burden of proof for the claimant, cease and desist orders are only valid for six
months, after which they expire. This time period, or rather the risk of being or-
dered to cease and desist from the distribution of products for such a period of
time and its impact on the user’s products and potential impact on the supply
chain, often suffices to put enough pressure on the defendant to react to any copy-
right owner’s claim to cease and desist from an infringement of Open Source li-
cences in Germany.

14 These options are not only available to copyright owners but for all other right holders as well, pro-
vided that there is a need for preliminary and immediate protection to avoid further infringements.

132 MIRIAM BELHAUSEN

Where the copyright owner’s key focus is on ensuring that an organisation
complies with Open Source licence terms, such preliminary proceedings are an
effective tool. However, where proceedings are used to obtain as much money as
possible out of a court settlement or declaration to cease and desist as possible, thus
allowing the copyright owner to trigger penalty payments at will, there is a high
risk that the enforcement may become formalistic and that a copyright owner may
suggest very detailed licence interpretation, which may both be impractical and
harmful for the Open Source community at large. To safeguard against this, the
Software Freedom Conservancy,!® the FSE!° and the Netfilter project,'”
tions which hold code on behalf of developers, whose work is detailed further in
Chapter 18, and whose code is often the subject of enforcement actions relating to
Open Source, defined principles of community-oriented General Public License
(GPL) enforcement, aiming to ensure that any enforcement action taking by in-
dividual Open Source copyright owners is consistent in ensuring compliance and

organisa-

that it is not centred on generating payments.

5.5 Who Can Enforce Copyright in Open Source?

The third key question relates to who can drive the enforcement. The answer to this
question has implications from a material and a procedural law perspective.

5.5.1 Ownership of copyright

As a general rule, the copyright is owned by the author of the code, that is the indi-
vidual developer, unless:

(1) The code was developed as work for hire, so that the employer is considered
the author even if an employee actually created the work;

(2) the copyright was assigned; or

(3) the (commercial) copyright was (exclusively) attributed or licensed to a
third party.

Whether any, some, or all of these exceptions are relevant depends on the respective
jurisdiction and the applicable copyright law.

15 See “The Principles of Community-Oriented GPL Enforcement, available at <https://sfconserva
ncy.org/copyleft-compliance/principles.html> accessed 14 April 2022.

16 See “The Principles of Community-Oriented GPL Enforcement, available at <https://www.fsf.org/
licensing/enforcement-principles> accessed 14 April 2022.

17" See “The statement of netfilter project on GPL enforcement, available at <https://www.netfilter.
org/files/statement.pdf> accessed 14 April 2022.

COPYRIGHT ENFORCEMENT 133

With regard to Open Source projects, all of the concepts, which are roughly out-
lined earlier, may be relevant. There may be an individual developer licensing an en-
tire piece of code under an Open Source licence. Code may also have been developed
by employees of a company and/or developers engaged to create code as a work for
hire. Subsequently, the code may have been licensed as Open Source by the employing
or hiring entity, respectively the assignee. However, Open Source projects generally
follow a collaborative approach and receive contributions from various developers.
The set-up of this collaboration has a bearing on the copyright ownership and, more
precisely, on who may drive enforcement around copyright.

Very roughly outlined, Open Source projects fall into the following three categories,
where the following are likely to apply:

(1) If separate pieces of code or individual programs are brought together in one
project, the developers of each separate piece of code or each individual pro-
gram are likely to be individual and separate owners of copyright in their com-
pound work.

(2) If codeis developed jointly by several developers, these developers may jointly
hold the copyright to the developed code, provided they intend to create a joint
program, defined a common task to which each of them contributes, their de-
velopment followed a joint idea, and cannot be commercialised individually
across the individual contributions.

(3) Thirdly, contributions within Open Source projects may build on, expand,
and amend the pre-existing code. In this case, both the pre-existing code,
the contribution (provided it surpasses the threshold for copyright protec-
tion), and the work formed by the pre-existing code and the contribution
are individually protected by copyright. For the third category the jurisdic-
tion and applicable law are likely to have a bearing on the copyright owner-
ship in the work created from the pre-existing code and the contribution(s).
Depending on the jurisdiction and applicable law, the work created from
pre-existing code and the contribution(s) may, for example, qualify as adap-
tation (e.g. under Section 9 German Copyright Act) or as collective work
(e.g. under the US Copyright Act 17 USC § 101). The qualification as adap-
tation or collective work in turn determines the copyright ownership in
the work and ultimately in the Open Source project as a whole. In case of
an adaptation, the copyright in the adaptation are owned by the creator of
the adaptation, who is of course dependent on a licence covering the adap-
tation from the owners of the copyright in the pre-existing works. If the
work created from the pre-existing code and the contribution(s) qualifies
as collective work, as is assumed for the Linux kernel under US law,® the

18 See Linus Torvald’s statement available at: <https://ipfs.io/ipfs/QmdA5WkDNALetBn4iFeSepH
jdLGJdxPBwZyY47ir1bZGAK/comp/linux/collective_work_copyright.html> accessed 14 April 2022.

134 MIRIAM BELHAUSEN

copyright in the collective work are owned by the collector, that is the cre-
ator of the collective work, who is arguably the initiator of the Open Source
project.

Many Open Source projects, especially those which are sufficiently complex, will
include a mix of the three types of collaborations and thus copyright ownership,'®
but the differentiation between them must be kept in mind as it impacts who may
drive the enforcement. Although there are some exceptions under some copyright
laws, as a general rule the enforcement may be driven by the copyright owner only.
Accordingly, in case of individual ownership of copyright, the individual owner
may drive the enforcement. In case of joint ownership, though, enforcement may
require a joint action from all copyright owners or at least demand claims to be
filed so that performance is due to all joint copyright owners. In the third scenario,
the enforcement may generally be driven by each individual developer for their in-
dividual contribution and provided it surpasses the creativity threshold. This is the
case with the enforcement actions in Germany, although courts have occasionally
rejected claims, because the copyrightability of the individual contribution had not
been sufficiently demonstrated.?’ Furthermore, depending on the type of collab-
oration and the set-up of the project, the author of the code may transfer or assign
their rights to the project. In case of such transfer and assignment, the copyright
enforcement may only be driven by the project as such or, depending on the setup
at hand, by the recipient of the rights.

5.5.2 Enforcement of copyright

From a procedural perspective, the key questions particularly relate to the copy-
right owner’s standing in court. To have standing, meaning the ability to enforce
copyright in court, the claimant needs to be able to prove ownership of copyright in
the Open Source (project) whose licence they claim is infringed.

In Hellwig./.VMWare, the Higher Regional Court in Hamburg laid out what
this requires with regard to Open Source, demanding the claimant to prove the
following:

(1) The claimant needs to prove that he holds rights to the Open Source, for which
the licence has been (supposedly) infringed. In case of contributions to an
Open Source project, this requires the claimant to demonstrate precisely

19 Till Jaeger and Axel Metzger, Open Source Software, 5th edn (Nordlingen: C.H. Beck) para 203.
20 Higher Regional Court Hamburg, decision dating from 28 February 2019, file number 5 U 146/
16—Hellwig./.VMWare.

COPYRIGHT ENFORCEMENT 135

which contributions he made and which parts of the entire Open Source
project’s code these contributions relate to.

(2) Secondly, the claimant needs to show that these contributions (alone) are a
copyrightable work under applicable copyright law. This usually requires in-
formation on and proof of the specific functionality of the code within the
Open Source project, whereas proving that the Open Source project as such
surpasses the threshold was found to be insufficient. An argument to the
contrary, the court held, could not be based on the German Federal Court
of Justice’s ‘Fash 2000° decision, according to which ‘complex’ software was
assumed to meet the requirements of copyrightable software under the
German copyright act, unless proven otherwise. According to the Higher
Regional Court of Hamburg, this assumption applies only in cases where
the contribution itself constitutes complex software. Where that is not the
case, the full burden of proving the contribution as such is copyrightable lies
with the claimant.

(3) Thirdly, to have standing, the claimant needs to prove that his contributions,
which surpass the threshold of copyrightable work, were used by the defendant
in their products.?!

In Hellwig./.VMWare, the Higher Regional Court in Hamburg held that this re-
quires the claimant to show specifically which of his contributions to the original
Open Source project the defendant is using in their products. Merely providing
the entire code the defendant is using and information on contributions to the ori-
ginal Open Source project does not suffice, as it cannot be inferred from them that
parts of the claimant’s code which are separately protectable under (copyright) law
were used by the defendant. The same, the court held, applies regarding header
files in which the claimant is named as the header files alone do not prove that the
defendant uses contributions made by the claimant or that these contributions sur-
pass the threshold of copyrightable works.?

In its decision dating from 20 November 2017, the Regional Court in Hamburg??
found the claimant’s argument that extracted strings were matched to verify that
a component was included in the defendant’s products to be sufficient.?* The de-
fendant, on the other hand, was required to clarify and prove which components

21 Higher Regional Court Hamburg, decision dating from 28 February 2019, file number 5 U 146/
16—Hellwig./.VMWare.

22 Higher Regional Court Hamburg, decision dating from 28 February 2019, file number 5 U 146/
16—Hellwig./.VMWare.

23 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.

24 The claimant had additionally argued that copyrightable contributions of his were mandatory for
the product to be network-compatible and therefore had to be included in the defendants products.
The appeal against the Regional Court of Hamburg’s decision is currently lies with the Higher Regional
Court of Hamburg, file number 5 U 231/17.

136 MIRIAM BELHAUSEN

were included in the product? if he wanted to argue that the claimant’s component
were not included. Merely challenging that the components to which the claimant
held copyright were included in the defendant’s product was not sufficient, the
court held. Given that the relevant software was a key component of the products
the defendant was selling, the court argued that he would have been easily able
to clarify which components it consisted of and thus to demonstrate if, contrary
to the claimant’s position, the claimant’s component was in fact not included. The
argument that the defendant would have had to engage external expertise to make
such determination®® was dismissed.

5.6 What Are the Key Arguments and Alleged Infringements?

As Germany has seen so many cases revolving around the enforcement of copy-
right in Open Source, German courts have ruled on several aspects of many key li-
cence requirements, especially on the interpretation of (i) the obligation to provide
the complete corresponding source code and (ii) the obligation to accompany the
product with the licence text.

At the outset, the courts’ position had always been that the burden of proof for
the infringement lies with the claimant. In a more recent case, the Higher Regional
Court in Hamburg held, though, that the defendant must prove his right to use the
Open Source?” and thus to present facts and evidence of his compliance with the
respective licences’ obligations.

5.6.1 Obligation to provide the source code

5.6.1.1 Complete corresponding source code

Under all Open Source licences, a key factor in compliance with the obligation to
provide the source code is for the source code to be ‘complete corresponding’. This
requirement was first interpreted by the Regional Court in Hamburg in 2013,%
which ruled that for the source code to be complete corresponding, the following
must be met:

- The compilation date of the firmware in the product may not be earlier than
the date in the source code that is provided along with the firmware;

25 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.
In the case at hand the defendant was only selling products he had imported.

27 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.
8 Regional Court of Hamburg, decision dating from 14 June 2013, file number 308 O 10/13.

)

COPYRIGHT ENFORCEMENT 137

- Theversion numbers of the components in the firmware in the product need to
match the version numbers of the respective components in the source code.

In 2017, the Regional Court in Hamburg further clarified that the scripts to control
compilation and installation (as defined by the GPLv2.0) need to be included for
the source code to be complete corresponding.?’

5.6.1.2 Written offer

In the latter case, the court in Hamburg then further ruled on the requirements a
written offer needs to meet.>

The claimant had used the following written offer, which the court found to be

incompliant with the GPLv2.0’s requirements.

This product contains Free Software which is licensed under the GNU General
Public License. After you purchase this product, you may procure, modify or dis-
tribute the source code of the GPL/LGPL software that is used in this product.

If you contact our Support Center, we will provide you with a CD-ROM of the
source code that is used, charging only the actual expensed involved. However,
please be Side that we cannot provide guarantee with the source code, and there is
also no technical support for the source code from us.

The court based its finding mainly on the offer’s restriction, that the source code
could only be requested ‘after you purchase this product. This, the court ruled, cre-
ated the impression that only customers could request a copy of the source code,
while the GPLv2.0 required the offer to be made to any third party.

A clarification that the offer was valid for at least three years was not found to
be necessary, though. The court argued that the GPLv2.0’s wording requiring the
licensee to ‘accompany ... [the binary code] with a written offer, valid for at least
three years, was ambiguous and thus needed to be interpreted to the licensor’s
(claimant’s) disadvantage.®! The provision, the court ruled, could be interpreted to
require the licensor only to uphold the written offer for at least three years, while
it did not necessarily require the licensor to specify the duration of validity in the
written offer itself.

Finally, the court ruled that the written offer is only formally made if the text
is immediately accessible, easily identifiable, and constantly available with the
binaries.*?

29 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.

30 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.

31 The court arrived at this conclusion based on the German law on general terms and conditions,
especially Section 305¢ para 2 BGB, according to which any ambiguous provision must be interpreted
to the disadvantage of the party who is proposing the general terms and conditions.

32 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.

138 MIRIAM BELHAUSEN

5.6.1.3 Offering the source code for download
The court then applied this test to cases where the firmware was offered online
for download. In this case, the Regional Court in Hamburg ruled, it would gener-
ally suffice if the written offer or the source code itself was available via link only,
provided that the average user can easily determine that the source code is avail-
able via the link. For that, the actual download option cannot be further than two
clicks away from the site where the firmware is made available, and the references
must be clearly marked and placed in close proximity to the firmware. Making the
source code available on a separate page, which is used to provide download op-
tions for the source code of various products, was held to be insufficient, unless
there was a direct link from the firmware download to the complete corresponding
source code.®

In any event, providing the source code for download only suffices to comply
with the obligations if the firmware is also (only) offered for download. For firm-
ware which is distributed as part of a product, the source code needs to be with
the product. Referencing a download option in the product’s manual, for example,
does not suffice.>*

5.6.2 Obligation to provide the licence text

The obligation to provide the licence text was first interpreted by German courts in
Welte./.Skype, where the Regional Court in Munich held that merely referencing
the GPLv2.0 did not suffice because it required the user to research the terms of the
licence. Therefore a (full) copy of the licence text had to be made available with the
product, respectively the firmware it contains.*®

The licence text needs to be available in full. This, the court held in 2017, in-
cludes the preamble and the provisions under ‘How to Apply These Terms to Your
New Programs), because section 2 GPLv2.0 required the licensor to provide a ‘copy
of this Licence] not ‘a copy of these Terms and Conditions’ As indicated by the sub-
heading ‘End of Terms and Conditions, the preamble, and the actual licence terms
form the “Terms and Conditions, which jointly with the instructions on applica-
tion form the ‘Licence’®
The Regional Court in Hamburg further clarified the requirements, especially in

cases where the firmware was offered for download. They held that either the full

33 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.

3 LG Miinchen I, Urteil vom 12.07.2007—7 O 5245/07.

3 Regional Court of Munich I, decision dating from 12 July 2007, file number 7 O 5245/07—Welte./
.Skype, available at: <https://www.telemedicus.info/urteil/lg-muenchen-lizenzverletzung-der-gpl/>
(in German) accessed 21 July 2022.

3 The court further concluded that the failure to include the instructions at the end of the licence
also meant that the obligation to provide the disclaimer was not complied with.

COPYRIGHT ENFORCEMENT 139

licence text needs to be available directly on the website from where the firmware
can be downloaded, or this full licence text needs to provide a direct link to it from
the download page. The link was only found to suffice if the full licence text was im-
mediately accessible, easily identifiable, and constantly available, meaning that the
average user needs to be able to access the licence information via the link, which
therefore needs to be in close proximity to where the firmware can be downloaded.
To achieve sufficient clarity, the link needs to be clearly marked as a reference to the
licence. However, it was found to be sufficient if the link referenced a manual, as

users expect manuals to include the licence terms as well.?”

5.7 New Trends

More recently, Open Source users and the Open Source community at large have
started to challenge the claims they are repeatedly facing more aggressively. There
are two key trends that have been developing over the last years. The GPL cooper-
ation commitment and the OpenChain project.

5.7.1 Cure commitment

Under section 4 GPLv2.0 the licensor’s rights are terminated with immediate effect
in a case of incompliance. In contrast, section 8 paragraph 3 GPLv3.0 allows for a
grace period of thirty days to come into compliance in case of a first-time notifi-
cation of a licence violation.*® The licence is not terminated, if the violation is re-
solved within thirty days following notification of non-compliance.

The GPL cooperation commitment aims to achieve the same for Open Source
licensed under the terms of the GPLv2.0. It is closely connected to the Linux Kernel
Enforcement Statement, by which the GPLv3.0’s cure provisions were adopted for
the Linux kernel by many but not all contributors.* They acknowledge the right of
every contributor to enforce their rights individually but stated that they wanted to
ensure that any such enforcement was conducted in the communities” best interest
and therefore allowed for a grace period of thirty days to come into compliance. If
observed, any enforcement actions are intended to be inadmissible.

37 Regional Court of Hamburg, decision dating from 20 November 2017, file number 308 O 343/15.

38 Section 8 para 3 GPLv3.0 reads: ‘Moreover, your licence from a particular copyright holder is re-
instated permanently if the copyright holder notifies you of the violation by some reasonable means,
this is the first time you have received notice of violation of this Licence (for any work) from that copy-
right holder, and you cure the violation prior to 30 days after your receipt of the notice’

3 <https://www.kernel.org/doc/html/v4.16/process/kernel-enforcement-statement.html> accessed
14 April 2022.

140 MIRIAM BELHAUSEN

In light of the Regional Court of Halle’s decision on the GPLv3.0’s cure provi-
sion,*? neither the cure commitment nor the enforcement statement are likely to
effectively exclude enforcement actions, even in case of a first-time violation that is
cured within thirty days. The licensor has a reasonable interest in effective preven-
tion of future infringements, which under German law requires a declaration to
cease and desist including a penalty provision. Accordingly, even if the cure com-
mitment and the enforcement statement are globally adopted, enforcement are
likely to continue as before in Germany.

5.7.2 OpenChain

In contrast to the cure commitment and enforcement statement, the OpenChain
project discussed in detail in Chapter 6 takes a more global approach, aiming to
make compliance with applicable Open Source licences simpler and more con-
sistent and thus establishing trust in the Open Source from which software so-
lutions are built. As the OpenChain specification defines key requirements of a
high-quality Open Source compliance program, mere conformance with this
specification does not exclude incompliance of a single software deliverable and
will therefore not prevent cease and desist claims. However, the ability to dem-
onstrate compliance with the project’s specification may be effectively used by the
licensee to meet the burden of proof obligations as defined by the Regional Court
in Hamburg (see introduction to section 5.5).

40 Regional Court of Halle, decision dating from 27 July 2015, file number 4 O 133/15.

6

Transforming the Supply Chain with
Openchain ISO 5230

Shane Coughlan
6.1 Overview 141 6.6 A Simple Specification that
6.2 Compliance is a Process Explains the Key Requirements
Challenge that Spans Multiple of a Quality Compliance
Organisations 142 Program 143
6.3 Because No Single Company 6.7 A Clear and Free Way to
Makes a Finished Device, No Check Conformance with the
Single Company Can Solve Specification 143
Compliance Challenges 142 6.8 Reference Material to Support
6.4 The Best Solutions Are Often Conformance and with Broader
the Simplest, with the Lowest Questions of Training and
Barriers to Entry 142 Processes 144
6.5 OpenChain ISO 5230 is Intended 6.9 Community and Support 144
to Make Open Source Licence 6.10 Conclusion 144
Compliance More Predictable, 6.11 References 144
Understandable, and Efficient for
the Software Supply Chain 143

6.1 Overview

OpenChain ISO 5230 increases Open Source compliance in the supply chain. This
issue, which may be incorrectly characterised as solely a legal concern or as low pri-
ority from a business perspective, is inherently tied to ensuring that Open Source
is as useful as possible with as little friction as possible. In a nutshell, because Open
Source is about the use of third-party code, compliance is the nexus of where
equality of access, safety of use, and reduction of risk can be found. OpenChain
ISO 5230 is built to increase trust between organisations to accomplish this.

Today many companies understand Open Source and act as major supporters of
Open Source development. However, addressing Open Source licence compliance
in a systematic, industry-wide manner has proven to be a somewhat elusive chal-
lenge. The global IT market has not yet seen a significant reduction in the number
of Open Source compliance issues discoverable in areas like consumer electronics
over the last decade.

Shane Coughlan, Transforming the Supply Chain with Openchain ISO 5230 In: Open Source Law, Policy and Practice.
Edited by: Amanda Brock, Oxford University Press. © Shane Coughlan 2022.
DOI: 10.1093/0s0/9780198862345.003.0006

142 SHANE COUGHLAN

The majority of compliance issues originate in the midst of sharing multiple
hardware and software components between numerous entities. The global supply
chain is long, and the participants are simultaneously intertwined and disparate.
It is perfectly possible to have companies making hardware, companies making
software, and companies doing both collaborating around a relatively small com-
ponent. The results in terms of products are often outstanding but the challenge of
keeping track of everything is substantial.

6.2 Compliance is a Process Challenge that Spans
Multiple Organisations

Open Source presents a specific challenge in the global supply chain. This is not
because Open Source is inherently complex but rather due to the varying degrees
of exposure and domain knowledge that companies possess. By way of example,
a company developing a small component that requires a device driver may have
staff entirely unfamiliar with Open Source. One mistake, one misunderstanding,
and one component deployed in dozens of devices can present an issue. Most com-
pliance challenges arise from mistakes. Few, if any, originate with intent.
Ultimately solving Open Source compliance challenges involves solving Open
Source compliance in the supply chain. This is no small task: there are thousands of com-
panies across dozens of national borders using numerous languages in play. The solution
lies beyond the realm of inter-company negotiation. To address Open Source compli-
ance challenges, the global supply chain must align behind certain shared approaches.

6.3 Because No Single Company Makes a Finished Device, No
Single Company Can Solve Compliance Challenges

Awareness of this fact and the provision of a practical solution are two different
matters. It takes time for ideas and suggested approaches to percolate and mature.
It took input from lawyers and managers and developers and political scientists. It
took, in short, a while for the ingenuity of the human community to bounce ideas
back and forth until a simple, clear approach could be found.

6.4 The Best Solutions Are Often the Simplest, with the
Lowest Barriers to Entry

The OpenChain Project formally launched in October 2016 and is hosted by the
Linux Foundation. It originated in discussions that occurred three years earlier
and continued at an increasing pace until a formal project was born. The basic
idea was simple: identify key recommended processes for effective Open Source

TRANSFORMING THE SUPPLY CHAIN WITH OPENCHAIN ISO 5230 143

management. The goal was equally clear: reduce bottlenecks and risk when using
third-party code to make Open Source licence compliance simple and consistent
across the supply chain. The key intention was to pull things together in a manner
that balanced comprehensiveness, broad applicability, and real-world usability.

6.5 OpenChain ISO 5230 is Intended to Make Open Source
Licence Compliance More Predictable, Understandable, and
Efficient for the Software Supply Chain

The OpenChain Project is building and disseminating an industry standard for li-
cence compliance. It is designed to be the foundation for Open Source compliance
in the supply chain. Engagement and adoption are simple, free, and supported by a
vibrant community backed by leading multinationals across multiple sectors.

There are three interconnected parts to the OpenChain Project. A Specification
that defines the core requirements of a quality compliance program. A Conformance
method that helps organisations display adherence to these requirements.
A Curriculum to provide basic Open Source processes and best practices.

6.6 A Simple Specification that Explains the Key
Requirements of a Quality Compliance Program

The core of the OpenChain Project is the Specification. This identifies a series of
processes designed to help organisations of any size address Open Source com-
pliance issues effectively. The main goal of organisations using the OpenChain
ISO 5230 Specification is to become conformant. This means that their organisa-
tion must meet the requirements of a certain version of the OpenChain ISO 5230
Specification. A conformant organisation can advertise this fact on its website and
promotional material, helping to ensure that potential suppliers and customers
understand and can trust its approach to Open Source compliance.

6.7 A Clear and Free Way to Check Conformance
with the Specification

OpenChain ISO 5230 Conformance can be checked via a free online self-certification
questionnaire provided by the OpenChain Project. This is the quickest, easiest, and most
effective way to check and confirm adherence to the OpenChain ISO 5230 Specification.
There is also a manual conformance document available for organisations whose pro-
cess requires a paper review or disallows web-based submissions. Both the online
and the manual conformance can be completed at a pace decided by the conforming
organisation, and both methods remain private until a submission is completed.

144 SHANE COUGHLAN

6.8 Reference Material to Support Conformance and
with Broader Questions of Training and Processes

OpenChain Project provides extensive reference material to help organisations
meet certain aspects of the OpenChain ISO 5230 Specification. These provide a
generic, refined, and clear example of an Open Source compliance process or sup-
port documents that can either be used directly or incorporated into existing com-
pany materials. OpenChain Project reference material is available with very few
restrictions to ensure organisations can use it in as many ways as possible. To ac-
complish this, it is licensed as Creative Commons—Zero (CC-0), effectively public
domain, so remixing or sharing the material freely for any purpose is possible.

6.9 Community and Support

The OpenChain Project provides what is believed to be a compelling approach
to making Open Source compliance more consistent and more effective across
multiple market segments. However, good ideas need implementation, and in
the context of Open Source this inevitably hinges on the creation of a supporting
community. The OpenChain Project at the time of writing has twenty Platinum
Members that support its development and adoption, and a growing global com-
munity containing hundreds of companies.

At its core, the OpenChain Project is about providing a simple, clear method of
building trust between organisations that rely on each other to share code and create
products. Any organisation that is OpenChain ISO 5230 conformant is aligning behind
key requirements that their peers agree are required in a quality compliance program.
This is about confirming overarching processes and policies, while allowing the specifics
of each process and policy to be crafted by each organisation to suit its specific needs.

6.10 Conclusion

The OpenChain ISO 5230 Specification is ready for adoption by any organisation
that creates, uses or distributes free and Open Source code. The online conform-
ance is free of charge, the mailing list and Work Team calls are open to everyone.
Arguably, this is the first time a single, unifying approach to addressing the chal-
lenge of Open Source open compliance in the supply chain exists.

6.11 References

« OpenChain Project: <https://www.openchainproject.org/> accessed 14 April 2022.

7
SPDX and Software Bill of Materials
ISO/IEC 59621 2021

Kate Stewart

7.1 Why Create a Software Bill of 7.3.2 Clarifyinglicensing and
Materials? 145 metadata information in

7.2 Whatis an SPDX Document? 146 source code 159
7.2.1 Overviewofan SPDX document 147 7.4 Tooling and Best Practices to

7.3 Listening to the Open Source Make it Easy for Developers 161
Community Needs 156 7.5 Adoption of SPDX Documents 161
7.3.1 SPDX License List 156 7.6 Future Directions 162

7.1 Why Create a Software Bill of Materials?

When the Software Package Data Exchange® (SPDX) project! was started in 2010,
it was with a simple goal of being able to share summary information about a soft-
ware package between the creator and consumer. At that time, to comply with the
licences in Open Source, you had to find them in the source code. This resulted in
hours of ‘grep’'ing’ or working with commercial source scanning tools, and once
you had the details, you didn’t have a good way of sharing them. After comparing
notes and recognising there was a group of managers, lawyers, and developers frus-
trated by the same problem, we started a grassroots effort to standardise the infor-
mation that we wanted to share and it became hosted at the Linux Foundation. We
needed to be able to capture the known information about Open Source software
as well as proprietary software, as products are created from both.

Over the years, more use cases were identified that we wanted to share informa-
tion about, and so additional capabilities were added to the SPDX specification.?
We recognised early on that we wanted to be able to tell if the information wed re-
corded about a package was stale, so we added the ability to record a cryptographic
hash of the object being described. We wanted to know if the information was
complete—had files been removed or added—so a verification code was included.

! <https://spdx.dev> accessed 22 June 2022.
2 <https://spdx.github.io/spdx-spec/> accessed 22 June 2022.

Kate Stewart, SPDX and Software Bill of Materials In: Open Source Law, Policy and Practice. Edited by: Amanda Brock,
Oxford University Press. © Kate Stewart 2022. DOI: 10.1093/0s0/9780198862345.003.0007

146 KATE STEWART

We saw the need to record an arbitrary level of software components, so the defin-
ition of package was extended to encompass ‘any group of elements’ (which proved
very useful for recording information about containers and all their layers). Being
able to understand if there are vulnerabilities associated with a package is another
use case that has been recognised in the last five years as an important reason to
have available an accurate summary of software being used on a system. Once an
accurate software bill of materials (SBOM) is made available with products, it sim-
plifies the effort. An SPDX document is able to represent an SBOM?.

7.2 Whatis an SPDX Document?

The SPDX specification defines a common language for communicating the com-
ponents, relationships between components, licenses, security information, and
copyrights associated with software. An SBOM needs to be precise and unam-
biguous in order accurately to identify the code being used in products and enable
identification of any security vulnerabilities associated with that code. An accurate
manifest contained in an SBOM also enables product creators to identify the li-
cense obligations. When we have a common language to communicate these con-
cepts, information can be effectively shared, and it does not need to be regenerated
at each step in the supply chain.

By providing a common syntax and vocabulary for organisations and communities
to share this SBOM data, compliance can be automated, and this improved transpar-
ency facilitates vulnerability identification and remediation. Prior to the instigation of
this standard SBOM within SPDX and its adoption industry, the need to meet an array
of customer requirements to summarise the software metadata and licensing placed
a huge barrier to entry and a burden on suppliers of Open Source software packages.

Before any concept is added to the SPDX specification it has to be added to
the SPDX data model. Each SPDX bill of materials document is based on a full
data model implementation and identifier syntax. This permits exchange be-
tween data output formats and formal validation of the correctness of the SPDX
document. The project started off with two recognised file types, tag:value
(.spdx) and Resource Description Framework in Attributes (RDFa). Over
time, support to translate into spreadsheets was added. In the SPDX specifi-
cation 2.2 release, the additional output file formats of JSON, YAML, and XML
have been added to the formats supported in the 2.1 release (RDFa, tag:value,
spreadsheet). Further information on the SPDX data model can be found in
Annex C of the SPDX Specification, version 2.2,* and on the SPDX web site.”

3 <https://ntia.gov/report/2021/minimum-elements-software-bill-materials-sbom> accessed 22
June 2022.

4 <https://spdx.github.io/spdx-spec/RDF-object-model-and-identifier-syntax/> accessed 22 June 2022.

5 <https://spdx.org/rdf/terms/> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 147

Converting between multiple file types is made possible by having that underlying
SPDX data model to guide the mappings.

7.2.1 Overview of an SPDX document

The SPDX specification describes the necessary sections and fields to produce a
valid SPDX document. This grassroots effort has had participation over the years
from a wide variety of software developers, systems and tool vendors, foundations,
and the legal community, all committed to creating a common language for prod-
ucts, components, and software packages to be able to exchange SBOM data effi-
ciently and effectively.

Each SPDX document can be composed from the following (see Figure 7.1):

- Document Creation Information: One instance is required for each SPDX
document produced. It provides the necessary information for forward and
backward compatibility for processing tools (version numbers, license for
data, authors, etc.)

- Package Information: A package in an SPDX document can be used to describe
a product, container, component, packaged upstream project sources, con-
tents of a tarball, etc. It is just a way of grouping together items that share some
common context. It is not necessary to have a package wrapping a set of files.

SPDX v2.2 Document may contain:

Document Creation Information

Package Information

)

Snippet Information

Other Licensing Information

Relationships

C)

Annotations

v

Figure 7.1 SPDX Document Overview

148

The

KATE STEWART

File Information: A file’s important meta information, including its name,
checksum licences, and copyright, is summarised here.

Snippet Information: Snippets can optionally be used when a file is known to
have some content that has been included from another original source. They
are useful for denoting when part of a file may have been originally created
under another licence.

Other Licensing Information: The SPDX License List® does not represent all
possible licences that can be found in files (such as uncommon or non-source-
available licences), so this section provides a way to summarise other licences
that may be present in software being described.

Relationships: Most of the different ways that SPDX documents, packages,
files, and snippets can be related to each other can be described with these
relationships.

Annotations: Annotations are usually created when someone reviews
the SPDX document and wants to pass on information from their review.
However, if the SPDX document author wants to store extra information that
doesn’t fit into the other categories, this mechanism can be used.

only section that is mandatory in the SBOM, is the ‘Document Creation

Information’ section for each document, all the rest are optional (see Figure 7.2).

The creator can choose which sections (and subset of the fields in each section) that

describe the software and metadata information to be shared.

o
S
<
<
g
g
i
=
=
o
S
£
<
2
-
O
-
g
=
g
]
9
3
(=]

X 1.0 | 2.1 SPDX Version which version of SPDX?
X 1.0 |22 Data License data in document: CC0-1.0
X 2.0 | 2.3 SPDX Identifier id of the document itself
X 2.0 | 2.4 Document Name
X 2.0 | 2.5SPDX Document Namespace URI
2.0 | 2.6 External Document Reference
1.2 | 2.7 License List Version when document created.
how was the file created?
X 1.0 | 2.8 Creator « Manual review (who, when)
« Tool (id, version, when)
X 1.0 | 2.9 Created when?
1.0 | 2.10 Creator Comment Comments on creator?
1.1 2.11 Document Comment comments on this document?

Figure 7.2 Document Creation Information

7.2.1.1 Document Creation Information

There must be a ‘Document Creation Information’ section for each SPDX docu-
ment. In it, seven of the fields are required to be filled out. The version of the SPDX
specification used to generate the document is the first field, as it provides the key

¢ <https://spdx.org/licenses/> accessed 14 April 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 149

to understand which fields are in each document. Each SPDX document is re-
quired to be under the CC0-1.0 licence,” and this is denoted by the ‘Data License’
field. Other mandatory elements in this section are the self-identification of the
document and the ‘Document Namespace), as well as who created the document
and when.

Each field has a specific grammar associated with it and rules for parsing. Details
of each field, rationale for the field, and parsing guidance can be found in the
Document Creation Information section of the specification.’

An example of this section expressed as tag:value is:

SPDXVersion: SPDX-2.2

DataLicense: CC0-1.0

SPDXID: SPDXRef-DOCUMENT

DocumentName: SPDX document for Time version 1.7

DocumentNamespace:http://spdx.org/documents/d3e9fef0-00a0-4b39-
bb28-££3dc75c7200

LicenseListVersion: 2.5

Creator: Tool: Source Auditor Open Source Console

Creator: Organisation: Source Auditor Inc.

Created: 2018-09-26T11:44:517%

7.2.1.2 Package Information

If there is a grouping of elements (commonly files, but could be grouping of
packages, etc.) to be described, then a package section should be created (see Figure
7.3). This section can be used to represent a product, a container, an upstream
project source repository, or even an archive, basically any distributable compo-
nent. If there are no files associated with this package in the document, then ‘Files
Analyzed’ should be set to false to indicate this. By using the ‘External Reference’
field, the package can be linked to security information as well as to public reposi-
tories, in addition to any ‘Package Download Location’ provided.

There are three mandatory fields associated with describing licensing of the
package. The ‘Concluded License’ is filled in by the creator after looking at ‘All
License Information from Package’ and ‘Declared License’ information. As an ex-
ample, the Zephyr project sources’ are primarily Apache-2.0 but include some files
under BSD-3-Clause. So a binary built from the Zephyr project source code would
have a ‘Concluded License’ of Apache-2.0 AND BSD-3-Clause, the ‘Declared
License’ would probably be Apache-2.0" based on the contents of the LICENSE
file,'° and ‘All License Information from Package’ would include lines for both

7 <https://spdx.org/licenses/CCO-1.0.html> accessed 22 June 2022.

8 <https://spdx.github.io/spdx-spec/document-creation-information/> accessed 22 June 2022.
9 <https://github.com/zephyrproject-rtos/zephyr> accessed 22 June 2022.

10" <https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE> accessed 22 June 2022.

150 KATE STEWART

Mandatory Added Field Name Comment
X 1.0 | 3.1 Package Name formal name by originator
X 2.0 | 3.2 Package SPDX Identifier unique ID
1.0 | 3.3 Package Version
1.0 [3.4 Package File Name actual file name for package

1.0 [3.5 Package supplier
1.0 | 3.6 Package Originator

X 1.0 [3.7 Package Download Location download URL

2.1 [3.8 Files Analyzed files associated with package?
X 1.0 |3.9 Package Verification Code special algorithm

1.0 [3.10 Package Checksum

1.2 [3.11 Package Home Page project homepage

1.0 |3.12 Source Information

X 1.0 [3.13 Concluded License

X 1.0 |3.14 All Licenses Information from Package
X 1.0 |3.15 Declared License

1.0 [3.16 Comments on License

X 1.0 |3.17 Copyright Text any copyrights declared?
1.0 [3.18 Package Summary Description
1.0 | 3.11 Package Detailed Description
2.0 |3.12 Package Comment

2.1 | 3.13 External Reference

2.1 | 3.14 External Reference Comment

0
2
z
2
i

&
=
8

]
g
=1

&
|
£
=]

g
=

=

E
2

g
=

g

gn
9
I

&

Figure 7.3 Package Information

Apache-2.0 and for BSD-3-Clause. For all licensing fields, if the SPDX docu-
ment creator does not know (or does not wish to state) the applicable licence, the
NOASSERTION term can be used.

Details of each field, rationale for the field, and parsing guidance can be found at
the website in the footnote.!!

An example of a package expressed as tag:value is:

PackageName: GNU Time

SPDXID: SPDXRef-1

PackageVersion: 1.7

PackageFileName: time-1.7.tar.gz

PackageSupplier: Organisation: GNU

PackageOriginator: Organisation: GNU

PackageDownloadLocation: https://ftp.gnu.org/gnu/time/
PackageVerificationCode: dd5cfObl7bfef4284c6c22471b277de7beac407¢c
PackageChecksum: SHAl: dde0c28c7426960736933£3e763320680356cc6a
PackageLicenseConcluded: GPL-2.0+

PackageLicenseInfoFromFiles: GPL-2.0+

PackageLicenseInfoFromFiles: MIT

11 <https://spdx.github.io/spdx-spec/package-information/> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 151

PackageLicenseInfoFromFiles: GPL-2.0

PackageLicenseDeclared: GPL-2.0+

PackageCopyrightText: <text>Copyright (C) 1990, 91, 92, 93, 96 Free
Software Foundation, Inc.</texts>

PackageSummary: <text>The “time’ command runs another program,
then displays information about the resources used by that pro-
gram, collected by the system while the program was running.
</texts>

PackageDescription: <text>The “time’ command runs another program,
then displays information about the resources used by that pro-
gram, collected by the system while the program was running. You
can select which information is reported and the format in which
it is shown, or have “time’ save the information in a file in-

stead of displaying it on the screen.</texts>

7.2.1.3 File Information
Each individual file to be summarised must have a name and a checksum associ-
ated with it (see Figure 7.4).

If there is any ‘License Information in File] then it should be documented either
by an ID from the SPDX License List or via a ‘LicenseRef-’ for licences not on the
list (see ‘Other-Licensing-Information’ section). In some cases, the information
found in the file may not be the ‘Concluded License’ for that file, and so a second
mandatory field is expected. If there is any copyright notice in the file it should also
be included.

In the above table, some fields are marked as deprecated and should not be used,

however they were present in prior versions of this section.

Mandatory Added Field Name Comment

Figure 7.4 File Information

X 1.0 |4.1 File Name what is name of file
X 2.0 [4.2 File SPDX Identifier unique ID
1.0 [4.3 File Type source, binary, ...
X 1.0 |4.4 File Checksum SHA1, MD5, SHA256
g X 1.0 |4.5 Concluded License by SPDX document creator
e X 1.0 [4.6 License Information in File detected by scanning file
E 1.0 |4.7 Comments on License
% X 1.0 |4.8 Copyright Text
E 1.0 [4.9 Artifact of Project Name deprecated
= 1.0 |4.10 Artifact of Project Homepage deprecated
1.0 |4.11 Artifact of Project URL deprecated
1.1 [4.12 File Comment
1.2 |4.13 File Notice if Notice found in file
1.2 |4.14 File Contributor if Contributor info in file
1.2 |4.15 File Dependencies deprecated

152 KATE STEWART

Details of each field, rationale for the field, and parsing guidance can be found in
the website in the footnote.!2
An example of a file expressed as tag:value is:

FileName: ./time.c

SPDXID: SPDXRef-4

FileType: SOURCE

FileChecksum: SHAl: 712d7f£9dfde674283596ae2088550e3ff23aelba
LicenseConcluded: GPL-2.0+

LicenseInfoInFile: NOASSERTION

FileCopyrightText: <text>Copyright Free Software Foundation, Inc</texts>

7.2.1.4 Snippet Information

Each instance of ‘Snippet Information” needs to be associated with a specific ‘File
Information” section in an SPDX document via the File’s ‘SPDX Identifier’ (see
Figure 7.5). The ‘Snippet Byte Range’ field is used to identify the part of the file
being described. The ‘Snippet Concluded License’ and any ‘Snippet Copyright
Text’ are also required to be documented when a snippet section is used, though
they can be filled in with NOASSERTION as with packages and files.

Mandatory Added Field Name Comment
X 2.1 | 5.1 Snippet SPDX identifier unique ID
E X 2.1 | 5.2 Snippet from File SPDX Identifier unique ID
s X 2.1 | 5.3 Snippet Byte Range number:number
g 2.1 | 5.4 Snippet Line Range number:number
E X 2.1 | 5.5 Snippet Concluded License By SPDX document creator
2 2.1 | 5.6 License Information in Snippet detected by scanning file
g 2.1 | 5.7 Snippet Comments on License
& X 2.1 | 5.8 Snippet Copyright Text
2.1 | 5.9 Snippet Comments
2.1 | 5.10 Snippet Name for convenience

Figure 7.5 Snippet Information

Details of each field, rationale for the field, and parsing guidance can be found at
website noted in the footnote.!?
An example of a snippet expressed as tag:value is:

SnippetSPDXID: SPDXRef-5
SnippetFromFileSPDXID: SPDXRef-2
SnippetByteRange: 889:9002
SnippetLineRange: 24:245
SnippetLicenseConcluded: Apache-2.0

12 <https://spdx.github.io/spdx-spec/file-information/> accessed 22 June 2022.
13 <https://spdx.github.io/spdx-spec/snippet-information/> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 153

LicenseInfoInSnippet: BSD-2-Clause-FreeBSD

SnippetCopyrightText: <text>Copyright 2001-2016 The Apache Software
Foundation</text>

SnippetComment: <text> This snippet should have a related package
with an external referenced, however, the maven-plugin only sup-
ports external references for the main package </texts

SnippetName: Apache Commons Math v. 3.6.1

7.2.1.5 Other Licensing Information
One instance of ‘Other Licensing Information” should be created for every unique
license or licensing information reference detected in the files or packages de-
scribed in the document that does NOT match one of the licenses on the SPDX
License List (see Figure 7.6).14

Each found license documented must have a ‘License Identifier’ assigned to the

Mandatory Added Field Name Comment
£ X 1.0 | 6.1 License Identifier LicenseRef-uniquelD
g E X 1.0 | 6.2 Extracted Text text found during scans
.3 E 1.1 | 6.3 License Name formal name
= 5 1.1 6.4 License Cross Reference text found during scans
Q< . .
g K] 1.1 | 6.5 License Comment unique ID

* OPTIONAL NOTES: « Provides a way to identify licenses not on the SPDX License List « SPDX aims for ~90% coverage with short
forms license identifiers - NOT exhaustive. « Although there are a lot of licenses “in the wild,” a smaller number covers most project

Figure 7.6 Other Licensing Information

verbatim ‘Extracted Text’ found. The ‘License Identifier’ is required to start with the
prefix ‘LicenseRef-’ to help identify it in the rest of the document. In some cases,
the extracted license may have a formal name in other contexts, and the ‘License
Name’ is an optional field to permit recording this if known.

Details of each field, rationale for the field, and parsing guidance can be found at
the website noted in the footnote.!

An example of an extracted licence expressed as tag:value is:

LicenseID: LicenseRef-FaustProprietary

ExtractedText: <text>FAUST, INC. PROPRIETARY LICENSE:

FAUST, INC. grants you a non-exclusive right to use, modify, and
distribute the file provided that (a) you distribute all copies and/
or modifications of this file, whether in source or binary form,
under the same license, and (b) you hereby irrevocably transfer and

assign the ownership of your soul to Faust, Inc. In the event the

14 <https://spdx.org/licenses/> accessed 22 June 2022.
15 <https://spdx.github.io/spdx-spec/other-licensing-information-detected/> accessed 22 June
2022.

154 KATE STEWART

fair market value of your soul is less than $100 US, you agree to
compensate Faust, Inc. for the difference.Copyright (C) 2016 Faust
Inc. All, and I mean ALL, rights are reserved.</texts>

LicenseName: Faust (really) Proprietary License

LicenseComment: <text>This license was extracted from the file

InsufficientKarmaException</texts>

7.2.1.6 Relationships
This field can be used to provide information about the relationship between two
SPDX specification elements. For example, you can represent a relationship be-
tween Snippets, Files, Packages, or SPDX documents.

The relationships between two elements that are supported are:

o DESCRIBES, DESCRIBED_BY

o CONTAINS, CONTAINED_BY

o GENERATES, GENERATED_FROM

o ANCESTOR_OF, DESCENDANT_OF

o VARIANT_OF COPY_OF

o DISTRIBUTION_ARTIFACT, PATCH_FOR, PATCH_APPLIED

o FILE_ADDED, FILE_DELETED, FILE_ MODIFIED

« EXPANDED_FROM_ARCHIVE

o DYNAMIC_LINK, STATIC_LINK

o DATA_FILE_OE TEST_CASE_OEBUILD_TOOL_OF DOCUMENTATION_OF
o« OPTIONAL_COMPONENT_OF METAFILE_OF, PACKAGE_OF
« AMENDS

o PREREQUISITE_FOR, HAS_PREREQUISITE

« OTHER

This set of relationships was determined by examining common use cases in the
supply chain. Others can be added if a use case can be shown not to be able to be rep-
resented with the current set by opening a new issue against the SPDX specification.!
A detailed description and examples of each relationship can be found at the
website noted in the footnote.!”
A Relationship would follow a file or package section, and may have a comment
associated with it:

Relationship: SPDXRef-2 PREREQUISITE FOR SPDXRef-1
RelationshipComment: <text>The package foo.tgz i1s a prerequisite

for building the executable bar.</text>

16 <https://github.com/spdx/spdx-spec/issues> accessed 22 June 2022.
17" <https://spdx.github.io/spdx-spec/relationships-between-SPDX-elements/> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 155

Mandatory Added Field Name Comment
X 20 8.1 Annotator the person, company, or tool

which provided the annotation

%
£
=
s X 2.0 [8.2 Annotation Date
S X 2.0 | 8.3 Annotation Type reviewer or other
g X 2.0 [8.4 SPDX Identifier Reference unique ID
X 2.0 |8.5 Annotation Comment free form information

Figure 7.7 Annotations

7.2.1.7 Annotations

This section permits a person, organisation, or tool to add comments about elem-
ents in an SPDX document (see Figure 7.7). Comments can be made on snippets,
files, packages, or the entire document. Annotations are usually created when
someone reviews the file, but if an author wants to store extra information about
one of the elements during creation, this can be used as well. If an annotation is to
be made, all the sections need to be filled out. More details on the fields and values
can be found at the website in the footnote.!

An example annotation could look like:

Annotator: Person: John Smith

AnnotationDate: 2018-01-29T18:30:22%Z

AnnotationType: REVIEW SPDXREF: SPDXRef-5

AnnotationComment: <text>Copyright on snippet should be Copyright
2010-2012 CS Systemes d’'Information</text>

7.2.1.8 Specification evolution

If there is a use case you're not sure how to represent with the specification, you
are encouraged to contact the volunteers at spdx-tech@lists.spdx.org and ask
about it, or if you prefer, open an issue in the spdx-specification github repo.'® If
a community member can’t figure out a solution, the use case will be added to the
topics for the specification team to address in future revisions. As illustrated by the
publishing history, this is a living specification, and continues to evolve to suit the
needs of the users.

Publishing History

+ 2011/08—SPDX 1.0—handles packages

o 2012/08—SPDX 1.1—fixed flaw in package verification algorithm

o 2013/10—SPDX 1.2—improved interaction with License List, additional
fields for documenting project info

18 <https://spdx.github.io/spdx-spec/annotations/> accessed 22 June 2022.
19 <https://github.com/spdx/spdx-spec/issues> accessed 22 June 2022.

156 KATE STEWART

o 2015/05—SPDX 2.0—added ability to handle multiple packages, relation-
ships between packages and files, annotations

e 2016/11—SPDX 2.1—added snippets, support for external references
(CPEs, etc.)

« 2019/06—SPDX 2.1.1—move specification source to github repo to facilitate
wider transparency and tracking

« 2020/05—SPDX 2.2—added SPDX Lite profile, additional support for ex-
ternal references (PURL, SWHid, etc.), and support for different file formats
(.json, .yaml, .xml)

o 2020/07—SPDX 2.2.1—same fields as SPDX 2.2 but reformatted for ISO
submission

o 2020/10—Specification submitted to ISO for balloting

« 2021/03—Balloting concludes, SPDX specification is Approved’

 2021/08—SPDX specification is published as ISO/IEC 5962:20212°

o 2022/04—SPDX 2.2.2 published including typo fixes and clarifications

7.3 Listening to the Open Source Community Needs

The SPDX project?! was created by developers, supply chain, security, and legal
professionals collaborating with each other. This interdisciplinary team has been
incrementally refining the SPDX specification (currently at version 2.2.2) and the
list of recognised licenses (currently at version 3.17) over time, as the community
is asked how to share specific information and licenses. If there is a use case you're
not sure how to represent with the specification, you are encouraged to contact the
volunteers and ask about it or open an issue against the specification.?? If someone
can’t figure out a solution, the use case will be added to the topics for the specifica-
tion team to address.

7.3.1 SPDX License List

The SPDX License List? is a list of commonly found licenses and exceptions used
in Free and Open Source software and other collaborative projects, including
software, documentation, hardware, data, etc. The purpose of the list is to enable
easy and efficient identification of licences and exceptions and to be able to store

20 <https://www.iso.org/standard/81870.html> accessed 22 June 2022.
2l <https://spdx.dev/> accessed 22 June 2022.

22 <https://spdx.github.io/spdx-spec/> accessed 22 June 2022.

23 <https://spdx.org/licenses/> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 157

Version: 3.9 2020-05-15

Note: You can sort by each column by clicking on the column header. By default, the table sorts by the Identifier column.

Identifier FSF/Free/Libre? OSI Approved? Text
BSD Zero Clause License 0BSD Y License Text
Attribution Assurance License AAL Y License Text
Abstyles License Abstyles License Text
[Adobe Systems d Source Code License Adobe-2006 License Text
Adobe Glyph List License Adobe-Glyph License Text
[Amazon Digital Services License ADSL License Text
Academic Free License v1.1 AFL-1.1 Y Y License Text
[Academic Free License v1.2 AFL-12] Y Y License Text

Figure 7.8 SPDX Licence List Table

references in SPDX documents, in source files, or elsewhere. Use of these standard
licence identifiers streamlines licence identification across the supply chain while
reducing redundant work. They are recognised by an increasing number of up-
stream Open Source projects, companies, organisations, governments, and tool
vendors.

The SPDX License List includes a standardised short identifier, full name,
vetted licence text including matching guidelines markup as appropriate, and a
canonical permanent URL for each licence and exception. When you go to the
SPDX License List website, you'll see the SPDX License List table as illustrated in
Figure 7.8

The first thing to note is the SPDX License List version number. It is im-
portant to keep in mind that this is a living list and gets updated approximately
every three months. If you don’t see a licence you are commonly encountering
in Open Source code, please feel free to send a request for proposing a li-
cense or an exception to be added to the SPDX License List as directed on the
webpage.?*

The SPDX License List can also be programatically accessed as well so that the
license text and matching guidelines can be used by your organisation’s tools. The
recommended way to get programatic access to the latest version of the License
List is through the License List data project on GitHub,® rather than scraping
the website. The repository there contains various generated data formats for the
SPDX License List, including JSON, RDFa/HTML, RDF NT, RDF turtle, RDF/
XML, and HTML, as well as a simple text version. More details on how to ac-
cess the SPDX License List programatically can be found at the website in the
footnote.26

24 <https://github.com/spdx/license-list-XML/blob/master/ CONTRIBUTING.md> accessed 22
June 2022.

25 <https://github.com/spdx/license-list-data> accessed 22 June 2022.

26 <https://github.com/spdx/license-list-data/blob/master/accessingLicenses.md> accessed 22
June 2022.

158 KATE STEWART
In the SPDX License List table shown in Figure 7.8, you’ll see the columns for:

o Full Name of the licence.

o Identifier for the licence. This ‘short identifier’ also gets referred to as the
SPDX license ID in some places.

o FSF Free/Libre? If the licence is considered free by the Free Software
Foundation (FSF), this field will indicate Y’, otherwise it is left blank

o Is OSI Approved? If the licence is approved by the Open Source Initiative , this
field will indicate Y’, otherwise it is left blank

o Alink to License Text of the license. The full text of the licence is provided as
well as any standard headers associated with a licence.

If you click on the column headers it will sort the SPDX License List table by those
fields.

By clicking on the ‘Full Name’ or the ‘License Text’ you'll also be taken to a ca-
nonical permanent URL for that license that provides more information about the
license. The permanent URL can be found by appending the short identifier and
‘htm!’ to the ‘https://spdx.org/licenses/” prefix. An example of the GPL-2.0-only
license page is reproduced later in this chapter.

& (¢] ‘ @ Secure | https://spdx.org/licenses/GPL-2.0-only.html

Home » Licenses

GNU General Public License v2.0 only

Full name

GNU General Public License v2.0 only

Short identifier
GPL-2.0-only
Other web pages for this license

« http://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
« http://www.opensource.org/licenses/GPL-2.0

Notes

This license was released: June 1991 This refers to when this GPL 2.0 only is being used (as opposed to GPLv2 or later).

Text

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

SPDX AND SOFTWARE BILL OF MATERIALS 159

7.3.2 Clarifying licensing and metadata information
in source code

Accurately identifying the licence for Open Source software is important for
licence compliance. However, determining the licence can sometimes be diffi-
cult due to a lack of information or ambiguous information. Even when there is
some licensing information present, a lack of consistent ways of expressing the
licence can make automating the task of licence detection very difficult, thus re-
quiring significant amounts of manual human effort. There are some commer-
cial tools applying machine learning to this problem to reduce the false positives
and train the licence scanners, but a better solution is to fix the problem at the
upstream source.

The SPDX project liked the simplicity of this approach introduced by the U-
Boot project in 2013,%” and formally adopted the syntax for embedding ‘SPDX
License Identifier’ tags into the project and documented the syntax in SPDX speci-
fication from version 2.1 onwards.?

The SPDX License Identifier syntax used with short identifiers from the SPDX
License List (referred to as SPDX License IDs) can be used to indicate relevant
licence information at any level, from package to the source code file level. The
‘SPDX License Identifier’ phrase and a license expression?® formed of SPDX
Licence IDs in a single-line comment form a precise, concise, and language-
neutral way to document the licensing that is simple to machine process. This
leads to source code that is easier to read, which appeals to developers, as well as
enabling the licensing information to be trivially searchable via grep and to travel
with the source code.

To use SPDX License IDs in your project’s source code, just add a single line in
the following format, tailored to your license(s) and the comment style for that file’s
language. For example:

// SPDX-License-Identifier: MIT
/* SPDX-License-Identifier: MIT OR Apache-2.0 */
SPDX-License-Identifier: GPL-2.0-or-later

27 <https://git.denx.de/?p=u-boot.git;a=commit;h=eca3aeb352c964bdb28b8e191d6326370245¢
03f> accessed 22 June 2022.

28 <https://spdx.github.io/spdx-spec/using-SPDX-short-identifiers-in-source-files/> accessed June
2022.

2 <https://spdx.dev/ids> accessed 14 April 2022.

160 KATE STEWART

To learn more about how to use SPDX License IDs with your source code,
please see the documentation in the SPDX project,® and David Wheeler’s
tutorial.?!

The use of these short identifiers to identify the licences has been adopted by
other upstream Open Source projects and repositories, including GitHub in its li-
cences’ application programing interface (API).?? In addition to U-boot, Linux is
transitioning to use the SPDX License IDs, and newer projects like Zephyr and
Hyperledger Fabric have adopted them right from the start as a best practice.>
Indeed, to achieve the Core Infrastructure Initiative’s gold badge, each file in the
source code must have a licence, and the recommended way is to use an SPDX
License ID.3*

The project MUST include a license statement in each
source file. This MAY be done by including the fol-
lowing inside a comment near the beginning of each
file: SPDX-License-Identifier: [SPDX license expres-
sion for project].

When SPDX License IDs are used, gathering license information across your pro-
ject files can start to become as easy as running ‘grep’ If a source file gets reused in a
different package, the licence information travels with the source, reducing the risk
of licence identification errors, and making licence compliance in the recipient pro-
ject easier. By using SPDX License IDs in licence expressions, the meaning of licence
combinations is understood more accurately. Stating ‘this file is MPL/MIT’ is am-
biguous and leaves recipients unclear about their compliance requirements. Stating
‘MPL-2.0 AND MIT’ or ‘MPL-2.0 OR MIT" specifies precisely whether the licensee
must comply with both licence, or either licence, when redistributing the file.

As illustrated by the transition underway in the Linux kernel,® SPDX License
IDs can be adopted gradually. You can start by adding SPDX License IDs to new
files without changing anything already present in your codebase.

30 <https://spdx.dev/ids-how> accessed 22 June 2022.

31 <https://github.com/david-a-wheeler/spdx-tutorial> accessed 22 June 2022.

32 <https://developer.github.com/v3/licenses/> accessed 22 June 2022.

3 <https://spdx.dev/ids-where> accessed 22 June 2022.

3% <https://github.com/coreinfrastructure/best-practices-badge/blob/master/doc/other.md#basics-1>
accessed 22 June 2022.

3 <https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/proc
ess/license-rules.rst> accessed 22 June 2022.

Eoo 0 =

SPDX AND SOFTWARE BILL OF MATERIALS 161

7.4 Tooling and Best Practices to Make it
Easy for Developers

In 2017, the Free Software Foundation Europe (FSFE) created a project called
REUSE.software®® that provided guidance for Open Source projects on how to
apply the SPDX License Identifiers into projects. The REUSE.software guidelines
were followed for adding SPDX License Identifiers into the Linux kernel later that
year.?” In addition to the guidelines propose by the REUSE.software project, there
is also a linter tool that can generate an SBOM automatically, if the guidelines are
followed.*8

The SPDX project also maintains a set of Java-,* Python-,*° and Go-*! based
tools to help with validation of SPDX documents and conversion between the sup-
ported file types. These libraries are available for other tool creators to use, and can
simplify the creation and consumption of SPDX documents with their software. As
with the Specification and License List, suggestions for improvement to the SPDX
tools are also appreciated.

7.5 Adoption of SPDX Documents

The use of SPDX as a recognised SBOM format has been slowly improving over
the last six years. A key factor was the introduction of the open source scan-
ning tool FOSSology*? being able to output SPDX documents in 2016, and then
adding the capability to consume them in 2019. Before then, the only scanning
tools able to work with the format were proprietary. Other Open Source tools
have since become available to help with specific workflows, and this is acceler-
ating adoption.

Another key factor was the growing adoption of the OpenChain Specification
that calls for the ability to create a Bill of Material (BOM) for the software in its
conformance criteria.** Following on from OpenChain becoming an ISO standard

36 <https://reuse.software/> accessed 22 June 2022.

37 <https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/proc
ess/license-rules.rst> accessed 22 June 2022.

38 <https://github.com/fsfe/reuse-tool> accessed 22 June 2022.

3 <https://github.com/spdx/tools/> accessed 22 June 2022.

40 <https://github.com/spdx/tools-python> accessed 22 June 2022.

41 <https://github.com/spdx/tools-golang> accessed 22 June 2022.

42 <https://www.fossology.org/> accessed 22 June 2022.

43 <https://wikilinuxfoundation.org/_media/openchain/openchainspec-2.0.pdf> accessed 22
June 2022.

S B E 3

162 KATE STEWART

(ISO/IEC 5230:2020), as discussed in Chapter 6, procurement departments in the
supply chain will be more likely to expect to see an SBOM with delivery of soft-
ware and producing this will be simpler. The SPDX specification became an inter-
national standard (ISO/IEC 59621.2021) in 2021.

In June 2018, the National Telecommunications and Information
Administration (NTIA) engaged stakeholders across multiple industries to dis-
cuss software transparency and determine what a minimum viable SBOM is, and
what file formats could support this information. SPDX was recognised as a valid
standard to support SBOMs in the wrap up of the 2019 Phase 1 work.** Phase 2
used SPDX to share data between medical device manufacturers and health de-
livery organisations.

Over the recent years, there has been a growing awareness in the industry that
there is a need to improve the transparency of the software running on systems.
In November 2020, the EU put out the ENISA report, ‘Guidelines for Securing
the Internet of Things, which calls out as a best practice to provide a SBOM for
Internet of Things (IoT) devices.*> On 12 May 2021, the US Biden Administration
issued a Cybersecurity executive order, calling for a best practices in Enhancing
Software Supply Chain Security (Section 4) to ‘providing a purchaser a Software
Bill of Materials (SBOM) for each product directly or by publishing it on a public
website’ (Section 4(e)(vii)).4°

7.6 Future Directions

There are several use cases the SPDX community is considering how best to rep-
resent as it works towards the next version of the specification. From the NTIA
SBOM framing working group efforts,*” as well as the OpenChain Japan team ef-
forts in creating the SPDX Lite profile,*® it became clear that having a minimal base
set of fields to just represent the manifest and relationships was needed. The SPDX
community is working to refactor the specification into a basic set of fields (called

4 <https://www.ntia.gov/SBOM> accessed 22 June2022.

45 <https://www.enisa.europa.eu/publications/guidelines-for-securing-the-internet-of-things> ac-
cessed 14 April 2022.

46 <https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-
cybersecurity> accessed 22 June 2022.

47 <https://www.ntia.gov/SBOM> accessed 22 June 2022.

8 <https://spdx.github.io/spdx-spec/SPDX-Lite/> accessed 22 June 2022.

SPDX AND SOFTWARE BILL OF MATERIALS 163

core) with optional profiles, to handle specific domain information like licensing,
security, pedigree, provenance, and usage. If you have use cases in these areas, and
want to participate in the discussion, please open an issue on GitHub,* or send
mail to spdx-tech@lists.spdx.org.

4 <https://github.com/spdx/spdx-spec/issues> accessed 22 June 2022.

8

Corporate Concerns

Audit, Valuation, and Deals

Toby Crick
8.1 Introduction 164 8.4.2 How can a business reliant on
8.1.1 Open Source and corporate something distributed for free be
culture 164 given a value? 172
8.1.2 Widespread use of 8.5 Issues Arising on M&A 174
Open Source 165 8.5.1 M&A process 174
8.1.3 Managing the use of Open 8.5.2 Importance of Open Source 175
Source in the enterprise 165 8.6 Investment in O S
. pen Source
8.2 Why Understanding Open Source Businesses 178
is Important in the Corporate 8.6.1 Similarities and differences to
Context 166 M&A process 178
8.2.1 Good practice 166 8.6.2 The investment lifecycle 179
8.2.2 Keyrisks 166 8.6.3 Debtand equity 179
8.3 Open Source Audit Services 169 8.6.4 Risks and controversies 179
8.3.1 The context within which 8.7 Insolvency 180
Open Source audits 8.7.1 What happens to Open Source
take place 169 assets on insolvency? 180
8.3.2 Purpose of Open Source audit 170 8.7.2 ‘Going open’ 181
8.3.3 Audit process 170 8.8 IPO 181
8.4 Valuation 172 8.8.1 Issues with Open Source
8.4.1 How technology assets can that arise on a listing 181
contribute to the valuation of a 8.8.2 Valuation 182
business 172 8.8.3 Where to list? 182

8.1 Introduction

8.1.1 Open Source and corporate culture

Not so long ago there was a view amongst Chief Information Officers (CIOs),
investors, and board-level executives that Open Source software (let alone free
and open innovation) was an anathema to the key metrics they were measured

against: maintaining value within the corporation with a view to maximising
revenue and profitability and ultimately only considering shareholder or in-

vestor value.

Toby Crick, Corporate Concerns In: Open Source Law, Policy and Practice. Edited by: Amanda Brock, Oxford University Press.
© Toby Crick 2022. DOI: 10.1093/0s0/9780198862345.003.0008

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 165

Even as they adopted Linux-based servers and admired the business models of
companies such as Red Hat, the prevailing view was that Open Source was for hob-
byists and activists, not for ‘proper’ corporations.

8.1.2 Widespread use of Open Source

It is safe to say that this point of view is now entirely out of date. Once in a while an
investor or advisor may flag a concern about Open Source but the undoubted bene-
fits Open Source can bring to an enterprise in terms of time to market, reduced
software development cost, and improved code quality is now widely understood.
Indeed, the use of Open Source by enterprises in their own code development and
in the third-party products they licence to use to operate their businesses is now
standard practice.

As further discussed in Chapter 19 this process of use to contribution, has no
doubt been helped by the wider adoption of permissive licence models (such as
MIT or Apache) as discussed in Chapter 2, and means that today, the use of Open
Source is seen as less likely to put at risk future monetisation opportunities and
may in some cases be the heart of a monetisation opportunity.

One cannot imagine today a Chief Executive Officer (CEO), CIO, or investor
mandating that ‘no Open Source shall be used in this company’. Instead, they, and
technology investors in particular, would be more likely to have significant con-
cerns about an over-reliance on proprietary code than they would over the well-
managed use of Open Source or a company that was not aware of its dependence
on Open Source software.

8.1.3 Managing the use of Open Source in the enterprise

Of course, just like any other activity involving technology and software, the use
of Open Source is not without risk. What is surprising is that now that the use of
Open Source is standard across the corporate world, the use of sensible risk man-
agement protocols in relation to such use is not also standard. This is particularly
surprising given the exponential growth of tools and processes aimed at risk man-
agement being made available to users and developers of Open Source. Examples
of governance and risk support tools like the ISO standard Open Chain discussed
in Chapter 6 abound and are part of the Open Source community’s journey to
standardised good practice.

It is clear that there is an expectation today that enterprises will utilise such
tools and processes and will need to demonstrate such use to investors and regu-
lators alike that they have an adequate Open Source policy and processes in place

166 TOBY CRICK

to manage governance and risk of their use of and, if appropriate, contribution to,
Open Source software.
This chapter:

o looks at code audits and the good practices around managing and logging the
enterprise’s code base across proprietary third-party tools, third-party Open
Source tools, and its own internally produced code (see section 8.3 later in this
chapter) that an enterprise can deploy;

« then considers how Open Source can add value to a business or even become a
valuable business in and of itself (see section 8.4);

« sets out how the process of mergers and acquisitions (M&A), investment,
and ultimately an Initial Public Offering (IPO) should be adapted where a
key asset of a target business (whether used internally or to create revenue) is
Open Source; and

« investment around Open Source.

8.2 Why Understanding Open Source is Important in the
Corporate Context

8.2.1 Good practice

As noted earlier and throughout this book, the ease of use and low initial cost of
Open Source means that its use is now very widespread and Open Source projects
have an advantage of their packages and products being able to scale quickly and
without lengthy procurement processes. However, even though Open Source is
‘freely’ available and is generally also cost-free, there are significant issues that can
impact on its commercial and legal attractiveness.

It is essential that these issues are understood and managed. There is a wide
body of work describing best practice and a huge and growing ecosystem of service
providers and consultants whose business it is to help enterprises manage their use
of Open Source in a risk-appropriate manner.

8.2.2 Keyrisks
The risks associated with the use of Open Source are briefly considered here.
8.2.2.1 Copyleft and ‘viral impact’ of Open Source
As discussed in detail in Chapters 2 and 3, some Open Source is licensed for use

on terms that require any onward distribution of such software (even in other
products) to be licensed on the same terms through the mechanism of copyleft

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 167

or reciprocal licences. Enterprises must be aware of this and ensure that they do
not bundle copyleft code in with their commercial products in a way that could
cause a viral impact, however technologists are more than familiar with the ways
in which to manage this risk and that the solution to avoiding ‘viral infection’ (a
term loathed by the Open Source development communities) is to manage linking
by ensuring it is dynamic not static and to use other technological solutions such
as RCP! in order to avoid the derivative work issue which causes such a risk. This
requires suitable internal processes and flags in the use of code under such licences
and is a great example of a technical solution to a legal problem.

As fully discussed in Chapter 3, the compatibility of this code with other Open
Source software also needs to be considered.

8.2.2.2 Lack of IP infringement claim protection

Open Source licences do not include any IP warranty or indemnity protection in
relation to IP infringement claims and indeed the well written ones specifically
disclaim any implied liabilities. This is due to their free, no-cost nature.> When
compared to proprietary software, where the licensor in theory knows the gen-
esis of the software and can be reasonably confident of no copyright infringement
(and to a lesser extent, patent infringement), we see the proprietary companies of-
fering higher levels of indemnity around copyright. However, in recent years their
willingness to take on liability for patent risk has significantly reduced, somewhat
levelling the playing field. Of course, the indemnity from a proprietary vendor
is provided in return for a licence fee or royalty and this is part of a calculation
around the cost of software. The cost of insurance for such liability may be an alter-
native to the licensing fee.

Whilst single product Open Source companies and aggregators like Red Hat
may offer some level of protection with subscription, upstream licensors of Open
Source are unlikely to provide any such comfort.

This means licensees/users of Open Source are potentially exposed to third-
party IP infringement claims with no recourse against the upstream licensors (who
may be an individual uploading code via GitHub or a large corporation). However,
the value of a corporate indemnity from a proprietary vendor is as good as the
vendor or their insurer. In this respect use of insurance for Open Source is a way
to level the playing field if this is a particular concern to a user or licensor of Open
Source software.

! A Rich Client Platform (RCP) is a computer program allowing the creation of Java applications in a
portable and reusable manner.

2 If, however, Open Source is provided by a commercial supplier with add on subscription or services
(e.g. from a vendor like Red Hat or Tidelift), then a level of indemnity may be provided as part of this
service, similar to the indemnities provided by proprietary software providers. Even here such indem-
nity protection is unlikely to include IP infringement claims.

168 TOBY CRICK

The financial and reputational impact of being found liable in, or even just
having to defend, an IP infringement claim will be disruptive for a business. When
coupled with the potential loss of the right to use a business-critical program or
Open Source which underpins a significant revenue stream, it is crucial that this
risk is considered when managing or investing in an enterprise that uses Open
Source and good practices such as the use of Open Chain are followed to alle-
viate risk.

While the risk of an IP infringement claim exists, the actual risk of such a claim
is, in practice, low.

8.2.2.3 Lack of performance warranties or support and maintenance

If an enterprise downloads Open Source from the web it will have a right to use,
modify, etc. in accordance with the licence, but without a paid relationship with
a provider, the enterprise will have no liability protection around the quality or
fitness for purpose of the Open Source. While in practice the risk of an IP infringe-
ment claim is low, the risk of an issue arising with code or the way the code inter-
operates with other systems used by the enterprise is much more real and requires
internal skills in integrating the code in an appropriate way and in assessing the
suitability of the code. Open Source software ecosystems have been quick to build
and are extensive around certain code like Linux and Kubernetes but an enter-
prise will need to have knowledge of such ecosystems and the skills to use them to
benefit from the risk mitigation they offer.

8.2.2.4 Scalability and robustness

In a similar vein, if an enterprise opts to download and use Open Source, it be-
comes responsible for ensuring that the code is robust and reliable and its use can
scale up to meet enterprise level requirements and any requirements in the service
levels of contracts with its own customers.

8.2.2.5 Security vulnerabilities

All software is at risk of being hacked and of security breaches as is more fully dis-
cussed at Chapter 13. Open Source systems are potentially more at risk because
their code is free and open but at the same time may be better protected and fixes
may be easier (and cheaper) to apply. Their open nature does indeed mean that
anyone can look at it and improve it but also anyone can look at it, find vulnerabil-
ities, and exploit them.

Given the fact that (unless you sign up to obtain the same from a specialist
vendor) there is no software vendor pushing out security patches to users and ra-
ther the user is dependent on the ecosystem of maintainers for a project, a well-led
IT department will monitor and manage its Open Source estate for vulnerabilities.
Part of this process will include considering maintenance and management of se-
curity vulnerabilities in an Open Source project in its choice of enterprise usage of

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 169

Open Source and its assessment of individual packages it chooses to bring into its
business, and its ongoing assessment for vulnerabilities. At a fundamental level for
all software, not just Open Source software, a well-run IT department will ensure
that if a patch is made available (e.g. for Open Source, on GitHub) it is applied.

This has been reflected in a number of recent moves to improve maintenance
of critical Open Source projects by organisations like the Linux Foundation and
in commercial models offering single vendor aggregation and packaging of Open
Source software by companies like Tidelift.

Of course, security is also identified as a reason to move from simply being a
user of Open Source to being a participant in key projects contributing and gaining
the ability to help shape the development of the product features.

8.2.2.6 Summary

An understanding of the commercial risks of using Open Source is often the
starting point of an organisation’s engagement with Open Source and is the reason
that initial engagement with Open Source may come from the legal department. As
we will see, there are a range of steps a well-advised enterprise can take to manage
these risks and in building its policies and practices and if it evolves in its Open
Source journey to building an Open Source Program Office and these are more
fully covered in Chapter 19.

8.3 Open Source Audit Services
8.3.1 The context within which Open Source audits take place

Best practice is, of course, to ensure that all code used in an enterprise is logged and
managed as it is created, licensed in from a software vendor, or downloaded from
an Open Source repository.* However, many (possibly most) organisations do not
do this and even those that do need to test their own logs against ‘reality’ to ensure
what they have logged is indeed what they use.

This is crucial in the context of managing the security of an enterprise’s sys-
tems but takes on particular importance when an enterprise is being acquired,
going through an Initial Public Offering (IPO) or is about to receive significant
investment.

3 Itis alleged that hackers got into ‘Panama Papers’ law firm Mossack Fonseca’s systems via its Open
Source website and client portals. The alleged issue was not that those systems had vulnerabilities but
that Mossack Fonseca had not updated the systems to fix known security vulnerabilities: <https://
www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal/> accessed 14
April 2022.

* Clearly, enterprises whose business is the creation and licensing of Open Source code are much
more likely to maintain an up-to-date code base than those that simply use software to enable their en-
terprise to operate.

170 TOBY CRICK

In such circumstances even an enterprise with an incredibly well-managed
code base is likely to need to undertake a software audit to demonstrate this and to
supply a contractual commitment to its investors or as part of its disclosure docu-
mentation®. For most enterprises—particularly those with perhaps less robust
systems—a code audit may well start from scratch with little or anything to go onin
terms of existing code logs.

8.3.2 Purpose of Open Source audit

While one aim of an Open Source audit will be to verify that the enterprise’s own
records are up to date and correct, generally speaking the aim of the audit is to:

o identify the Open Source used by the enterprise;

o identify the licence terms applicable to the code used;

o identify how the Open Source is used and interactions with other packages
(e.g. is it only used internally or is packaged up into solutions sold, or other-
wise made available to customers, by the enterprise);

« identify whether and to what extent matters such as security patching and
other support and maintenance activities are undertaken in relation to the
Open Source code used by the enterprise;

o identify any code licensed out by the enterprise on Open Source terms (and if
so0, which terms are applied).

Enterprises seeking investment, IPO, or sale would be well advised to carry out
internal audits before beginning an investment round, IPO, or sale process as then
they will be prepared for the inevitable investigation an investor or acquirer may
undertake. Ultimately, the aim of an audit is to assess risk and consider how well-
managed the enterprise’s Open Source estate is.

8.3.3 Audit process
There are two main approaches to audit.

8.3.3.1 Automated audit

As the title implies, this is a process whereby the enterprise’s code base is ex-
posed to a software tool that ‘crawls’ over it and compares the code line by line to
an inventory of Open Source the tool provider maintains. There are a number of

° ‘Disclosure’ is the process, often undertaken in an M&A transaction, whereby a target shares infor-
mation about itself and its assets with a potential purchaser; see section 8.5.1 later in this chapter.

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 171

commercial providers, the most well-known being Flexera and Black Duck. Other
services, including free, Open Source-based ones such as Open Sourceology, are
available.

Typically the automated service is used as part of a regular update and review
process undertaken within an enterprise. In the context of a major piece of M&A
or an investment—particularly into a technology or software business—the auto-
mated tools would be supplemented by a human-led expert audit.

It is worth noting that an audit tool can only ever be as good as its code base, in
other words the code base that it is run against.

8.3.3.2 Expertaudit

This is a human process, where experts review the enterprise’s use of software and
its logs and other records. This typically also involves interviews with developers
and other members of the IT department.

Expert audits would also need to involve an automated ‘code crawling’ audit.
The expert audit team then use the output of that automated audit to inform their
report and focus their further investigations and enquiries. Unlike where an in-
ternal IT team or a mainstream advisor or deal team member from an investor or
acquirer reviews an automated audit report, the expert audit team would generally
be better able to spot issues in an automated report or make further enquiries ra-
ther than just rely on the first output of the automated report.

The expert auditors can also form a view on the wider health of the way in
which an enterprise manages its code and the related risks. Often the first thing
they will want to see is the internal policies and Open Source logs (i.e. as ref-
erenced in section 8.2.3 earlier in this chapter). In the context of M&A and in-
vestments, a good report from an auditor can be a key piece of due diligence
for the target company while a bad report can be of crucial importance to the
incoming owners/investors. At worst, a poor audit report can prevent a deal from
happening but more often it reveals issues that the target must address in order
for the sale to proceed.

Finally, it is worth noting in the context of expert audits that whilst there is still
a place for this the increasing scale of the number of packages used, sometimes in
their thousands, has reduced the possibility of a manual, line-by-line code review
and fix by audit teams.

8.3.3.3 Prosand cons
In simple terms, the automated reviews are good insofar as they go. They change
over time and different tools have different strengths and weaknesses, but collect-
ively none are perfect and the tools cannot in and of themselves show how robust
or well run an enterprise’s technology is.

They have to be interpreted and for regular internal audits that is probably fine.
The enterprise’s team can use the output to inform their investments and strategies.

172 TOBY CRICK

However, for a major investment (either preparing for one or undertaking one),
investing in a full expert audit probably does make sense.

Of course, the major downside of an expert audit is cost. They are expensive and,
for a simple business with either little reliance on Open Source outside the enter-
prise or little use of Open Source, they may not be needed.

A well-managed Open Source policy and processes being in place in an organ-
isation in advance of this clearly significantly reduces the burden of this process.
It is also worth noting that where issues arise in an audit, in the main the fixes are
technical, not legal, and begin by considering the removal of any unused code that
has been flagged as an issue that may not be used, swapping problem code and then
building technical fixes or workarounds.

8.4 Valuation

8.4.1 How technology assets can contribute to the valuation
of a business

Generally a business is worth what someone is willing to pay for it based on cash
flows, profitability, etc., but sometimes just the ‘technology assets’ of a business give
rise to its valuation. In other words, an investor or acquirer of an enterprise may
consider that the target’s products have such potential either to enhance the value
of the investor or acquirer’s other technologies or, marketed or ‘monetised’ differ-
ently, could achieve a value on their own such that it is worth investing in them.

8.4.2 How can a business reliant on something distributed
for free be given a value?

If an enterprise uses a suite of third-party Open Source components to run its op-
erations ultra-efficiently but does not derive revenue from making its tools avail-
able to third parties, then clearly the value of its technology to it (and any future
group it may be acquired by) relates to its ability to drive value from the business,
not from the software itself. In such instances, investors will be seeking to ensure
that the Open Source estate is used lawfully and prudently but they will not have
the same focus on identifying whether the Open Source in itself can deliver value to
the business (and them, as investors).

8.4.2.1 Valuation where Open Source is core to the business’s revenue and
growth prospects

Where the creation and distribution of Open Source is core to a business then how

it is valued becomes a key issue that any investor (or entity seeking investment)

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 173

must consider. As discussed in Chapters 2, 15, and 16, the answer to the question
posed in the heading above is that there are a range of ways to identify revenue
streams that a business that has Open Source at its core can take advantage of.

When it comes to assessing value in the context of an investment round, an M&A
deal, or an IPQ, interested parties need to consider the business’ Open Source as-
sets, its knowledge, skills, and knowhow related to the use and exploitation of those
assets, and—and this is fundamental—the viability of its business model.

A valuation is based on the return an investor (or buyer) expects to get from its
investment. Assuming that a business has secured and managed its Open Source
assets and knowhow, then the key to valuation becomes what the existing manage-
ment or the management of a business looking to acquire an Open Source-based
business thinks it can generate.

Here, care is needed. There have been a number of examples of hugely successful
IPOs or trade sales of Open Source businesses (notably Github’s sale to Microsoft
and RedHat’s to IBM), but in other cases businesses backed by private equity in-
vestors seeking a rapid scale up in revenue and, above all, profitability have given
rise to issues of underperformance (at least in relation to the expectations investors
had of the business) and licence changes.

When assessing the value of an Open Source-based business, its ability to grow
revenues and maintain long-term profitability should be carefully assessed. The
metrics traditionally applied to proprietary technology businesses may not work
and may be more attuned to an Open Core-type model (see Chapter 16).°

Clearly the more well established an Open Source business’s commercial of-
fering is, the easier it is to ascribe a value to it. Even here though, care is needed
as the ability of a business to grow revenue or to turn healthy revenues that are
also matched by high costs (e.g. in investing in and maintaining a code base) must
be considered by an investor or acquirer. There is of course also a question of
whether there is a need to update the approach to valuation of Open Source-based
businesses.

8.4.3 How ill-managed Open Source assets can undermine
the valuation of a business for IPO, acquisition, and investment

In this context it is worth considering the counterfactual: where poor use of Open
Source can undermine a valuation. Consider, for example, a situation where a com-
pany is licensing a product on a proprietary basis but has, in fact, packaged up
and compiled a range of truly copyleft Open Source components and, either due to

¢ The concept of open core is akin to freemium type offerings in the AppStore or GooglePlay whereby
a core product is made available on Open Source terms but additional functionality is licensed, and paid
for, on a proprietary software model.

174 TOBY CRICK

ignorance or as blatant fraud, failed to declare this when it on-licences them to its
customers.

Potentially that company’s entire revenue stream was earned by breaching the
terms of the copyleft licences it was party to in creating its own code’s core compo-
nents. In such situations investors or acquirers may either walk away from the deal,
revalue the deal, or require the sellers to invest substantial sums in reworking their
code and put sale proceeds at risk should their original mistake in wrongly com-
mercialising copyleft code come to light.

8.5 Issues Arising on M&A

There are two main situations where Open Source will need to be considered in an
M&A context. The most obvious is where the target is a technology business (i.e.
generates revenue and profits from the development and sale or licensing of soft-
ware or other technology). However, since all businesses use technology and most
in a digital world both license software in and generate their own for internal use,
in all but the most non-technology deals, how any business uses Open Source will
still need to be considered in an M&A context.

8.5.1 M&A process

While the role of this chapter (let alone this book) is not to set out in detail how
M&A transactions (or investments or IPOs) work, in order to consider how to
manage Open Source issues in the M&A context it is probably worth a quick sum-
mary of the M&A deal process.

Typically, a company will either put itself up for sale or be approached by a poten-
tial acquirer. In the latter case the parties then tend to agree an outline of a proposed
deal or Heads of Terms before the buyer engages in process of investigation known as
Due Diligence. In the former case the seller may provide initial due diligence infor-
mation to potential bidders before moving to Heads of Terms and full Due Diligence
with an agreed bidder moving to contract. There are of course many different per-
mutations (before you even consider contested public company takeovers), but this
process of agreeing an outline deal and then carrying out investigations to make sure
the deal is worth the money is the standard approach established over decades.

In parallel to the diligence process the parties will negotiate a substantive sale
and purchase agreement or contract. This will, amongst other things, set out a
series of Warranties (effectively promises) from the seller about the health and well-
being of its business. Alongside these warranties the seller will make Disclosures
effectively stating that whilst, for example, it warrants that all of its systems and

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 175

procedures comply with whatever standard the buyer wants, in certain respects it
has fallen short.

How strong the warranties provided are and how broad the disclosures are be-
comes a key area of negotiation between the parties. This is due to the fact that
ultimately, if the deal closes and the buyer discovers that all is not well with its
newly acquired business, it will rely on the warranties to seek recompense from
the seller (i.e. the former owners of the company) and the seller will seek to avoid
those claims by stating it made full disclosures and that the buyer ‘knew what it was
getting’

It is worth noting that under English law, warranties, indemnities, and con-
ditions have very established meanings and consequences set out by decades of
case law and the actual meanings of these and consequences of their inclusion
can be somewhat different for the US and the UK (and different again in other
jurisdictions), yet the inclusion of these and their high-level purpose is the same
in most markets and jurisdictions, albeit local law principles must be applied
on top.

In England, a breach of a warranty will allow the recipient to claim damages
and a breach of a condition may allow for the contract to be set aside. English
judges reserve the right to decide whether something is a warranty or condition,
regardless of what it is described as in a contract. Generally in M&A deals, the
contract makes clear which is intended to be which and where remedies are only
financial or can lead to the complete reversal of the transaction (the latter being
very rare).

In many cases warranties will be backed by indemnities, which are statements
of what a party’s liability will be and what for, or a promise that if something either
happens or does not happen an amount will be paid. The word indemnity has no
magic meaning and the value of an indemnity will depend on what it actually says
and commits the party granting it to.

8.5.2 Importance of Open Source

As noted earlier, how important Open Source is to an M&A deal depends on
the business—if the business sells software or services based on it, then under-
standing the code base is crucial; if the business is a tech-enabled business then
understanding its code base is also crucial; but if it is a normal digital business that
might use some Open Source in the back office or infrastructure, then it may be
less so.

At each stage of the deal—Heads of Terms, Due Diligence, in the sale and pur-
chase agreement’s Warranties and the linked Disclosures—Open Source will need
to be considered.

176 TOBY CRICK

8.5.2.1 Issues related to Open Source

8.5.2.1.1 Head of terms

In any technology-related M&A deal the Heads of Terms should recognise the ex-
istence of Open Source and call out the level of its importance to the business being
acquired. How much detail the Heads of Terms go into will depend on the business
and the Open Source it uses but typically you would expect the Heads of Terms to
state that there will be a process to verify the importance of Open Source and what
Open Source there is.

At this stage both parties should consider if there will be an Open Source audit
and if it is possible to obtain the results before full diligence starts in order to avoid
nasty surprises (and unnecessary costs down the line). Where a company that is
reliant on Open Source puts itself up for sale it would be common for it to have
undertaken internal audits prior to starting the sale process in order to ensure that
its code base is ‘clean’ and its procedures (even if this involves some reverse engi-
neering) are in line with good practice.

It is typically prudent to identify early if the Open Source used by the target in-
cludes true copyleft material and in particular whether it is being distributed as
part of the target’s activities and if so, what impact that has on deal. The impact may
be that there is no deal, hence the importance for a company seeking to sell itself to
carry out internal audits before starting a sale process.

8.5.2.1.2 Due diligence

During the due diligence process the buyer will seek to gain as much informa-
tion as it can on areas it sees as particularly risky. Where the target relies on Open
Source the key questions to ask are to see a list of all Open Source components, to
seek confirmation (either by automated or full expert audit) that such list is com-
plete, and to see the target’s Open Source use and management policies, and to gain
an understanding of how well such policies are observed. Where the seller/target is
a software company, it might share the output of its own software audit but a pur-
chaser might want to appoint a third-party auditor to undertake an automated or
possibly automated plus expert audit.

At section 8.3.1 earlier the importance of code logs is discussed; it goes without
saying that if the diligence process reveals that an enterprise’s code logs are up to
date and correct this will be a big diligence ‘win” and give confidence to an investor
or acquirer. Conversely if it shows the logs are wrong or out of date this will indi-
cate a culture of poor housekeeping and undermanaged risk control procedures
and may lead to the deal unravelling, the price dropping, or the warranties being
tightened up considerably.

Where the deal involves competitors then the target may well want to limit
how much information it shares (and of course if competition law/anti-trust is-
sues may arise, both parties will have to be careful as to how much information
is shared). This is where a third-party audit can be helpful. The third party can

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 177

identify key risks and issues but not share any details of code or product strategies
with the buyer.

8.5.2.1.3 Warranties
Where an audit has been undertaken there is likely to be a requirement for a war-
ranty around that audit. It can only ever be as wide as the provider of the audit,
whose contract terms are likely to take little liability for the accuracy. An audit war-
ranty will generally refer to the audit being undertaken by the agreed provider and
state that identified issues have been rectified and be accompanied by a disclosure
of the final signed off audit document or alink to the code base, depending on scale.
It would now be unusual for a buyer to seek a warranty in an agreement stating
that the target did not use Open Source.
However, it remains common to see warranties that:

o There are ‘no copyleft components used in materials distributed to
customers—here the seller may try and ensure that it has an exception where
they are distributed in a way that does not put its core product at risk of also
being deemed copyleft, and this may be a simple technical structuring issue;

o there is ‘no Open Source other than as disclosed’ used in the business—
here the seller may want to try and apply a materiality threshold or link to
an audit report and this should be qualified by reference to the audit pro-
vider; and

o any Open Source materials licensed to third parties are licensed ‘in full com-
pliance with the terms of the Open Source licences granted to the seller’ and
‘all licence requirements are complied with in relation to the distribution of
Open Source software’—while a seemingly simple commitment, many busi-
nesses struggle to commit to this warranty fully. A business’ ability to stand
behind this warranty will require a business to have in place sensible policies
and compliance procedures to manage the process of licence compliance in
relation to the utilisation of the code (e.g. by ensuring attribution in headers
and making source code available). Again, a technical requirement or solution
emphasising the need for the legal people working on such warranties to work
closely with the technical team in ensuring compliance with the warranties
offered is key to a business’s ability to sign up to this type of warranty in a sale
and purchase (or investment) agreement.

8.5.2.1.4 Disclaimer of warranties

In software licences, it has increasingly become market practice for the licensor
to disclaim any IP or performance warranties (and exclude from third-party IP
infringement indemnities) any issues related to third-party Open Source com-
ponents. Instead the licence will state that such components are provided ‘as is’
and/or oblige a customer to take responsibility for downloading the Open Source

178 TOBY CRICK

components required to make a solution work on its own account. This is con-
sidered further in Chapters 3 and 16.

It should be clearly understood that this type of disclaimer is much harder to ob-
tain in an M&A context. If, for example, the target distributes Open Source-based
products, both the vendor and buyer will need to undertake careful diligence and
a detailed negotiation and disclosure process to understand and allocate the risks
that using Open Source—particularly undocumented use of Open Source—may
give rise to, and businesses with a significant reliance on Open Source software
may need to work to ensure that their counterparties understand the inappropri-
ateness of wide-ranging warranties and why there is a need for warranty disclaimer
from their acquirers and investors.

8.5.2.1.5 Disclosures

The process of disclosure is the seller’s opportunity to avoid liability for breach of
warranty by formally disclosing any breaches it is aware of. This is where the dili-
gence the parties have undertaken comes into its own.

Where the seller is selling a software business (or a software-rich business that
is active in other sectors), it would be prudent to undertake an audit in order to be
aware of its Open Source risks and to disclose against them. Of course, complying
with good Open Source housekeeping principles around governance and compli-
ance at an earlier stage will reduce the burden on this when an actual transaction
is underway.

A common approach is to disclose issues but to undertake to address them (e.g.
by ripping and replacing code that has been wrongly used) before completion of
the deal.

Where the target uses Open Source but does not commercially exploit Open
Source by distributing products containing Open Source components, the dis-
closures are likely to be much more wide ranging (and the related warranties less
onerous) than where Open Source is core to the business which is the subject of the
acquisition or investment.

8.6 Investmentin Open Source Businesses
8.6.1 Similarities and differences to M&A process

While in an M&A transaction the owner of the underlying company will change
(sometimes along with its senior management), in an investment transaction the
existing owners and the management are likely to remain with the business.

For the purposes of this chapter the legal and structural differences between the
two types of transaction do not require detailed analysis but a key difference is that

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 179

there tends to be a less rigorous process of warranty and disclosure and instead
there is much more focus on diligence.

8.6.2 The investment lifecycle

Technology businesses typically seek investment as they grow. A startup is likely to
have a fast and loose approach to the use of code and a lack of budget to undertake
detailed audits and maintain robust risk protocols but as a startup moves to scale
up its operations and seek serious investment it will need to start the process of re-
viewing and managing its Open Source estate.

Here early investors can provide assistance (clearly it is in their interest to get
things right early so as to protect their investment when, in due course, further in-
vestment comes in) by helping the startup to put in place good practice processes
and procedures.

Then as subsequent rounds of investment come into the business, the processes
and procedures used to manage its code base can scale up.

8.6.3 Debt and equity

It is worth noting that many investments come as a mix of equity investment (con-
tributing capital to the business in exchange for shares) and debt (lending money
to the business possibly with a view to turning that into equity later).

If the business’s main asset is its Open Source code base, the investor should
think long and hard about the security it has over such an asset. If the Open Source
has been published to the world, then should the business become insolvent, taking
ownership of the business’s assets may be of limited value as its main asset may be
freely available for anyone to use.

8.6.4 Risks and controversies

As discussed at section 8.4.2 earlier, where private equity (or other investors
seeking a rapid return from an investment in an Open Source-based business)
consider making an investment, extreme care needs to be taken to understand the
Open Source products, the customer/user base, and the viability of any commer-
cialisation model that it is proposed the business adopt or scale up.

Sometimes, moves to commercialise a well-established (and royalty-free)
Open Source product whether by making it ‘Open Core’ discussed more fully in
Chapter 16, something users effectively have to pay to use updated versions of or

180 TOBY CRICK

pay for additional service offerings to make them fully usable, can attract contro-
versy and even backlash from users.

In other instances, the hopes and expectations of management or investors
around their ability to commercialise their core Open Source offering prove un-
founded as the market (or users) find ways to work around the commercial of-
fering but still access the Open Source code.

It is common for investors to seek assurances from a target’s management as to
the viability of a business plan so the care here is double edged. Incumbent man-
agement/owners and their advisors should consider how strong they really think
their future prospects are as, of course, should anyone seeking to invest.

8.7 Insolvency
8.7.1 What happens to Open Source assets on insolvency?

There is a common misconception that Open Source is not owned. This is wrong,
someone (or a corporation, a collective, or a foundation) owns any copyright work
and Open Source is, at some level, about the licensing of the copyright arising in
software code, as is fully explained in Chapters 2 and 3.

As we have seen, there is value in owning Open Source but often the ability to
monetise Open Source comes from expertise in how it works and how to improve
and enhance it rather than in owning the actual code (which of course has been
distributed freely to the world).

In the event an entity that owns a suite of Open Source becomes insolvent,
those tasked with seeking to salvage value from the assets of the insolvent busi-
ness (referred to here as the ‘insolvency practitioner’) will not be able sud-
denly to make the codebase proprietary. If the software has been distributed
‘to the world’ on a free and open basis then that code will remain out there, free
and open.

Instead the insolvency practitioner may seek to find value in the knowhow re-
maining inside the enterprise, but since much of that is likely to be in the minds of
the employees who created it there is a risk of no value remaining in an insolvent
Open Source business.

If the owner of some Open Source is wound up without any sale of its assets,
then while its code may still exist, there will no longer be a legal owner of that code.
On a practical level this may not matter as the code will still be used, enhanced, and
changed, but legally following a chain of title may become futile.

It is also possible to pick up existing licensed Open Source code from an in-
solvent company and to fork the project.

CORPORATE CONCERNS: AUDIT, VALUATION, AND DEALS 181
8.7.2 ‘Going open’

Where a business has a proprietary code base but is looking at insolvency, the board
may decide to make its code base open so that the individuals associated with the
company can then move on and use their knowhow to operate the software (which
would, by this point, be Open Source).

Such an approach is not without risk and, depending on the exact facts and the
insolvency law applicable in the jurisdiction in which the company is based, the in-
solvency practitioner may be able to set aside any such attempt.

A similar approach can be applied with less risk to code that was already opened
by an organisation.

8.8 IPO
8.8.1 Issues with Open Source that arise on a listing

As with M&A and investment, an IPO (i.e. an initial public offering or listing
of shares on a stock exchange) sees a company seek to transfer its ownership.
The difference with an IPO is that instead of a buyer or trade investor under-
taking robust due diligence and agreeing a bespoke M&A or investment agree-
ment, the company and its advisors are under a duty to disclose to the stock
exchange (and thus potential buyers of shares) all material facts about the
business. Once the IPO takes place, unlike with an M&A deal sale and pur-
chase agreement or an investment deal’s terms, shareholders will have limited
contractual rights against the company or those who sold shares when it went
public.

Prior to a listing, a company issues a document—or prospectus—describing
what it does, how it manages itself, and what it sees as its future prospects.

For some businesses that merely use Open Source, the only reference they may
make to Open Source in their prospectus is to state they manage their IT systems in
a prudent manner (albeit they will need to ensure they do if they make such a state-
ment), but where a key asset of the business is Open Source much fuller descrip-
tions of the policies relating to the creation and use of Open Source will be required
and the business will need to show how it will manage its Open Source assets to
deliver value to shareholders.

When preparing a prospectus, the company’s management and its advisors must
satisty themselves that the statements they are making as to the way Open Source
is managed and maintained and the potential future value of its Open Source assets
(or related revenue streams).

182 TOBY CRICK
8.8.2 Valuation

Where an IPO is of a well-established Open Source business with strong revenues,
it is likely that the prospectus can point to this and make the case that the business
is correctly valued. As noted earlier however, where the IPO is seeking investment
based on the prospects of commercialisation (or increasing commercialisation) of
an Open Source or Open Core product then management of and advisors to the
business looking to list will need to be very careful in their assessment of the prom-
ises they are making to IPO investors.

8.8.3 Where to list?

Any business contemplating an IPO will engage investment banking-type advisors
who will consider which stock exchange has the most advantageous rules for the
nature of the activities the business undertakes, investors who understand the in-
dustry the business operates in, and that, ultimately, can deliver the best price for
the shares.

9

Trademarks
Pamela Chestek
9.1 Introduction 183 9.4 The Community Role in Open
9.2 Trademark Law Basics 184 Source Trademarks 201
9.2.1 Definition and function 184 9.4.1 Ownership models 201
9.2.2 Territoriality 187 9.4.2 Enforcement 203
9.2.3 Distinctiveness 187 9.5 Lawful Use of Others’ Trademarks 204
9.2.4 Registration 189 9.5.1 Non-confusing use 204
9.2.5 Ownership and licensing 192 9.5.2 ‘Forking’ 204
9.2.6 Enforcement of trademark 9.5.3 Referential use 205
rights 193 9.5.4 Trademark licences in Open
9.2.7 Abandonment and Source licences 206
genericism 196 9.5.5 Trade dress 207
9.3 Open Source Projects, 9.5.6 Trademark guidelines
Products, and Services 198 and policies 208
9.3.1 Licensed redistribution 198 9.6 Attempts to Limit Competition
9.3.2 Distribution of unmodified with Trademarks 208
software by others without a 9.6.1 Functional use of trademarks 209
trademark licence 199 9.6.2 Trademarks and ‘further
9.3.3 Distribution of modified software restrictions’ 210
without a trademark licence 199 9.6.3 Requiring display of trademarks 210
9.3.4 Ancillary goods and services 201 9.7 Conclusion 212

9.1 Introduction

Trademarks play a significant role in the Open Source ecosystem - while copy-
rights and patents are freely shared in Open Source licensing, trademarks are not.
A project’s reputation is at stake if it allows malicious software, software of poor
quality, or software that does not function as expected, to be distributed under the
same name.! Open Source projects can, and therefore generally do, exercise their
exclusive rights under trademark law.

! For example, Elasticsearch filed a trademark infringement lawsuit against Amazon, Elasticsearch,
Inc v Amazon.com, Inc., No. 3:19-cv-06158 (N.D. Cal.) (complaint filed 27 September 2019). In it,
Elasticsearch alleged that the Amazon products ‘Amazon Elasticsearch Service’ and ‘Open Distro
for Elasticsearch, which are based on, but not identical to, Elasticsearch’s Open Source products, in-
fringed Elasticsearch’s trademark rights. Amazon ultimately renamed its version of Elasticsearch to

‘Amazon OpenSearch Service’. ‘Amazon Elasticsearch Service is now Amazon OpenSearch Service and
Supports OpenSearch 1.0° AWS News Blog (September 2021) <https://aws.amazon.com/blogs/aws/ama

Pamela Chestek, TrademarksIn: Open Source Law, Policy and Practice. Edited by: Amanda Brock, Oxford University Press.
© Pamela Chestek 2022. DOI: 10.1093/050/9780198862345.003.0009

184 PAMELA CHESTEK

The same trademark law applies in the Open Source world as across all other
industries. The challenge lies in working in a field that has a practice of freely
sharing and owes some of its existence to community contribution and collab-
orative creation. The trademark practitioner trained in traditional industries may
have to rethink their approach to issues. Traditional practices in trademark law are
sometimes more maximalist than may be necessary and Open Source trademark
counsel should be willing to examine their own beliefs and knowledge of trade-
mark law to ensure that their advice is best suited to the project’s ideals.

Some trademark doctrines are also more important in the software field, and
Open Source software more specifically, than for other types of goods and services.
Trademark fair use, naked licensing, the functionality doctrine, and ownership law
are all particularly relevant in the Open Source software field.

Section 9.2 of the chapter covers the basics of trademark law. Section 9.3 pro-
vides background on the types of goods and services one typically finds associ-
ated with Open Source projects; section 9.4 discusses an aspect of trademark law
that is fairly unique to Open Source, the role of community engagement; section
9.5 discusses theories for the lawful use of another’s trademark; and section 9.6
closes with a discussion of various ways a trademark owner might try to undo the
Open Source licence using trademark law as the vehicle since copyright is largely
unavailable.

Because Open Source is international, the chapter attempts to describe trade-
mark law normalised across jurisdictions, largely the US, the UK, and EU. The au-
thor is admitted to practise in the US, so the chapter tends towards a US viewpoint.
The reader should consider the information here as advisory only and research the
specifics of any country’s laws before taking action.

9.2 Trademark Law Basics
9.2.1 Definition and function

A trademark is a word, phrase, symbol, design, or characteristic that identifies and
distinguishes the source of the goods or services of one party from those of others.
Trademarks and service marks can include colours, scents, and sounds.? The term

zon-elasticsearch-service-is-now-amazon-opensearch-service-and-supports-opensearch-10/> ac-
cessed 14 April 2022. The parties thereafter settled their lawsuit. ‘Elastic and Amazon Reach Agreement
on Trademark Infringement Lawsuit’ Elastic Blog (16 February 2022) <https://www.elastic.co/blog/elas
tic-and-amazon-reach-agreement-on-trademark-infringement-lawsuit> accessed 14 April 2022 (‘Now
the only Elasticsearch service on AWS and the AWS Marketplace is Elastic Cloud.).

2 See, e.g., US Reg No 2901090 <http://tsdr.uspto.gov/#caseNumber=76408109&caseType=SERIAL
_NO&searchType = statusSearch> accessed 30 November 2019, for ‘the color chocolate brown, which
is the approximate equivalent of Pantone Matching System 462C, as applied to the entire surface of

TRADEMARKS 185

‘service mark’ is used for services and ‘trademark’ is used for goods, although the
words ‘trademark’ and ‘mark’ are also frequently used to encompass both goods
and services. The terms ‘trademark’ and ‘mark’ will be used interchangeably in this
chapter for both trademarks and service marks. “Trade dress’ is a term used for the
‘get up’ or dress of a product, meaning the packaging for the product, the configur-
ation of the product itself, or the décor or environment in which services are per-
formed, such as the interior design of a chain restaurant.

The concept of ‘brand’ is similar to ‘trademark’ A ‘brand’ is a marketing term
used to describe the entire engagement of a consumer with a product or business.
The ‘trademark’ is a vessel for the brand identity, the tangible manifestation that the
consumer associates with the product or business.

A trademark is not simply the word or symbol standing alone, but the word or
symbol as used in association with particular goods or services. This is what allows
the same word ‘Delta’ to be used as a trademark for an airline,? for faucets,* and for
a dental insurance plan.’

A trademark identifies a single, unique source. However, the consumer does not
have to be able to identify the source by name. The quality of being a trademark, ra-
ther than simply a word, means that consumers recognise that the word or symbol
indicates that the goods or services originate from one particular entity, differenti-
ated from others of like kind in the market.

Trademarks are often described as having ‘goodwill’ ‘Business goodwill’ in a
larger sense is the value created by the likelihood that a consumer will be a repeat
user of the same product or service. This can be because of a favourable or long-
term use of a location (such as a gas station on an easily accessible corner which
builds repeat loyalty), a product available nowhere else (such as one protected by
a patent), or a positive experience with employees. “Trademark goodwill’ is specit-
ically the customer’s willingness to acquire (or avoid) a product or service because
the customer has a quality association with the trademark, such as wanting to re-
purchase a product because it has known attributes, to have the cachet of owning

vehicles and uniforms’ owned by United Parcel Service of America, Inc.; US Reg No 5467089 <http://
tsdr.uspto.gov/#caseNumber=87335817&caseType=SERIAL_NO&searchType = statusSearch> ac-
cessed 30 November 2019, for ‘a scent of a sweet, slightly musky, vanilla fragrance, with slight over-
tones of cherry, combined with the smell of a salted, wheat-based dough, i.e. Play-Doh®, owned by
Hasbro, Inc.; US Reg No 1395550 <http://tsdr.uspto.gov/#caseNumber=73553567&caseType=SERIAL
_NO&searchType=statusSearch> accessed 30 November 2019, for ‘a lion roaring’ owned by Metro-
Goldwyn-Mayer Lion Corp., audio file at <http://tsdr.uspto.gov/documentviewer?caseld=sn73553
567&docId=SPE20160602144513#docIndex=11&page=1> accessed 30 November 2019.

3 US Reg No 924004 <http://tsdr.uspto.gov/#caseNumber=72017621&caseType=SERIAL_NO&sea
rchType=statusSearch> accessed 3 December 2019.

4 US Reg No 668880 <http://tsdr.uspto.gov/#caseNumber=72030385&case Type=SERIAL_NO&sea
rchType=statusSearch> accessed 3 December 2019.

> US Reg No 1665228 <http:/tsdr.uspto.gov/#caseNumber=74084185&caseType=SERIAL_
NO&searchType=statusSearch> accessed 3 December 2019.

186 PAMELA CHESTEK

a branded product, or because the consumer sees the mark on a new type of goods
and trusts the trademark owner to purvey goods of equal quality in this new field.

Although a trademark always identifies a single source, the way a trademark is
used may indicate different types of relationships with that source. A trademark
may indicate the source of manufacture, ‘I made this’; that the trademark owner
controls the quality of the goods and services but did not make them, such asin a
franchisor-franchise relationship; that the trademark owner has endorsed or ap-
proved the third-party’s goods and services, such as licensed sports team apparel
and promotional items; or that the trademark owner is simply advertising, such
as venue naming rights. The consumer will understand these different relation-
ships based on where the trademark is placed, whether other trademarks are also
used, wording that may clarify the relationship, and the consumer’s common sense
and familiarity with how businesses operate. It will be a trademark infringement to
suggest to consumers that any of these relationships exist if they are not true.®

These relationships are all commonly found in the Open Source context. The use
of a mark as an indicator of ‘manufacturing’ or source will be use of the mark on
the software that is available from the canonical or ‘blessed’ repository. An example
of its use as an indicator of quality might be use by those distributors authorised
by the particular project, such as ‘Linux’ branded distributions; an example of the
endorsement relationship might be event sponsorship; and an example of the ad-
vertising relationship might be the use of the mark on promotional goods such as
stickers and socks.

Where a product is copyrightable content, such as software, the work’s title may
function only as the name of the work, not as a source identifier, or it may also
function as a source identifier. ‘Harry Potter’ is a trademark for books, movies, and
all sorts of related goods, but “The Sun Also Rises’ is not. There is also a policy
interest in ensuring that trademark rights do not interfere with the publication of
a work by others after the copyright has expired.” This interest in reproducing for-
merly copyrighted works, however, has to be balanced against the interest in pro-
tecting the public from confusion, so even where the title owner cannot show the
title functions as a trademark, the law may nevertheless prevent deceptive use.?

© See, e.g., US Trademark Act of 1946, as amended, 15 USC § 1125(a) (2018) (hereafter Lanham
Act), stating that it is an infringement for a person to use any word, term, name, symbol, or device
(design) where it is likely to cause confusion as to affiliation, connection, association, origin, spon-
sorship, or approval of goods, services, or commercial activities; Regulation (EU) 2017/1001 of the
European Parliament and of the Council of 14 June 2017 on the European Union trade mark (hereafter
EU Trademark Regulation) art 9(2)(b) —(c), giving the trademark proprietor the exclusive right to pre-
vent third parties from using a trademark if there exists a likelihood of confusion, including a likelihood
of association, or where a sign takes unfair advantage of, or is detrimental to, the distinctive character or
the repute of the EU trade mark.

7 G & C Merriam Co v Syndicate Pub Co, 237 US 618, 622 (1915) (‘(U]pon the termination of [the
copyright on the work] there passes to the public the right to use the generic name by which the publica-
tion has been known during the existence of the exclusive right conferred by the copyright’).

8 Anmerkung zu OLG Diisseldorf, U. v. 24.04.2012-1-20 U 176/11 <http://germanitlaw.com/wp-
content/uploads/2012/05/Higher-Regional-Court-Duesseldorf-final.pdf> accessed 17 January 2020

TRADEMARKS 187

A common misunderstanding is that the name of an Open Source project
cannot function as a trademark because the licence for the work permits the cre-
ation of a number of different versions of the work, all with different qualities and
characteristics, and therefore the trademark function is not satisfied. This is not
accurate, as will be discussed in more detail in section 9.3.

9.2.2 Territoriality

Trademarks are territorial. Virtually every country in the world has a trademark
registration system and laws regarding the infringement of trademarks. There
are some registration systems that cross borders; for example, the single Benelux
trademark register is for Belgium, the Netherlands, and Luxembourg. The EU
Trademark is a registration enforceable in all the member countries of the EU,
overlaying and in addition to each country’s national registration system.’ This is
similar to the US, where there are state registration systems as well as a national
registration system.

Because each country has its own trademark laws, whether a word or symbol
can function as a trademark, whether a trademark can be registered, whether there
is a likelihood of confusion between any two given marks, and whether one might
have enforceable rights in an unregistered trademark, may be answered differently
in each country.

9.2.3 Distinctiveness

The concept of ‘distinctiveness’ is a term of art that is fundamental to trademarks—
the difference between something that is just a word or an attractive design and a
trademark is whether the word or symbol is ‘distinctive, that is the consumer rec-
ognises it as indicating a single source.

The concept is further broken down into ‘inherent distinctiveness’ and ‘acquired
distinctiveness, also known as ‘secondary meaning. A word, symbol, or design
will be inherently distinctive if, because of its nature, a consumer will immediately

(English translation; holding that defendant could use the ‘Enigma’ work title for software modified for
its hardware platform and configuration as long as the use did not violate generally accepted practices
of trademark and commerce, which in the case of Open Source meant that the essential functions of
the defendant’s version of the software are identical, plug-ins and/or extensions of third parties remain
compatible, and the defendant abides by the conditions of the GPL licence).

° As a consequence of ‘Brexit, trademarks that were registered in the EU as of 31 December 2020
were ‘cloned’ in the UK trademark registry, so that the owner now has registrations in both jurisdic-
tions. Pending applications were not cloned and the owners have to apply anew to register the trade-
marks in the UK.

188 PAMELA CHESTEK

recognise it as a trademark. Where a word, symbol, or design is not inherently dis-
tinctive, in some cases it can acquire distinctiveness, meaning that although the
consumer might not have immediately grasped that the word or symbol is being
used as a trademark, over time through exposure they will have learned to asso-
ciate the word or symbol with a particular product or service, or family of products
or services. A mark that is not distinctive cannot be successfully registered.

Trademark law has developed rules for when a word or symbol will be con-
sidered inherently distinctive and when they can never be considered inherently
distinctive, or might never acquire distinctiveness. It is conceptualised as a spec-
trum. On one end, a made-up or ‘coined’ word will be considered inherently dis-
tinctive, immediately entitled to protection as a trademark. Because they have no
other meaning, we recognise immediately that they are trademarks. The same is
true of ‘arbitrary’ trademarks, which are dictionary words but used in a way that
has no relationship to the product or service, such as CAMEL for cigarettes.

The US has another concept for describing a category of inherent distinctive-
ness, which is ‘suggestive. A ‘suggestive’ mark is one that suggests the nature of a
product or service or one of its attributes without actually describing the product
or service, such as AIRBUS for airplanes.

On the other end of the spectrum, a word that is ‘generic, meaning that it is
a common name for the product or service, can never function as a trademark,
even if consumers associate the word with only one product (such as a category-
creating product, like in-line skates). This will happen where the trademark is used
as the category name for the goods or services rather than a brand identifier.!
Trademarks for software in general are susceptible to becoming genericised be-
cause any particular software product may have unique attributes not shared by
other programs, so consumers use the trademark to refer to the software with those
particular characteristics. When there are thereafter new market entrants making
similar software with similar attributes, consumers may nevertheless refer to the
new entrant’s goods using the same term that was meant to be a trademark (see
section 9.2.7 for the loss of rights due to genericism).

In addition to generic terms, words, symbols, or designs that are ‘functional’
will not be protected as a trademark. Functionality is generally at issue when a
product’s shape is claimed as a trademark, such as uniquely shaped fan blades. If
the fan blades are uniquely shaped because they provide a functional benefit, such
as moving air more efficiently, then they will not also be protected as a trademark.

10" An example of a term that a court concluded was a generic term rather than a trademark is 386’
for a computer chip. Intel Corp v Advanced Micro Devices, Inc, 756 F. Supp. 1292, 1298 (N.D. Cal. 1991).
This is also a territorial distinction; ‘hoover” is generic in the UK but a registered trademark in the US,
US Reg No 5181636 <https://tsdr.uspto.gov/#caseNumber=87172024&caseType=SERIAL_NO&sea
rchType=statusSearch> accessed 27 February 2021. ‘Aspirin’ is generic in the US but a trademark regis-
tered in Germany since 1899, German Reg No 36433 <https://register.dpma.de/DPMAregister/marke/
register/36433/DE> accessed 27 February 2021.

TRADEMARKS 189

Moving back along the spectrum towards inherent distinctiveness, words that
are ‘merely descriptive’!! do not immediately function as trademarks but may
over time acquire distinctiveness and function as a trademark, and be registrable
as such, after they have acquired it. A word will be considered ‘merely descrip-
tive’ when it states an attribute, feature, end result, or use of the product or service
bearing the mark. Examples of merely descriptive terms that acquired distinctive-
ness are LYFT for computer software for coordinating transportation services!?
and STEELCASE for metal office furniture.!® Similarly, geographically descriptive
terms, surnames, and laudatory terms like ‘best’ or ‘premium’ are not inherently
distinctive but sometimes can be shown to be functioning as trademarks with ap-
propriate proof.

9.2.4 Registration

In the ideal world, a new name will have been ‘cleared’ before the project started
using it, in other words various relevant sources, including trademark registers,
were searched to determine whether anyone else has already registered the same
or similar mark for the same or similar services and whether the new user might
be inadvertently infringing another’s already existing registered or unregistered
trademark rights. But probably most Open Source projects will have adopted
a name without much thought given to whether others might be using a similar
name for a similar product or project. Nevertheless, even though if the project
mark is already in use, it may still be useful to have searches performed before re-
gistering to learn what obstacles might present themselves during the registration
process. Some countries examine trademark applications on ‘relative’ grounds;
that is, whether there is a trademark already registered that the new application will
be too similar to. Many trademark owners also have trademark ‘watches’ which are
services that report on the filing or publication'* of trademark applications similar
to their watched mark. The application process itself is therefore likely to bring the

I Lanham Act, see note 6, § 1052(e)(1). The equivalent under EU law is trademarks that ‘consist
exclusively of signs or indications which may serve, in trade, to designate the kind, quality, quantity,
intended purpose, value, geographical origin, or the time of production of the goods or of rendering of
the service, or other characteristics of the goods or services. Directive (EU) 2015/2436 of the European
Parliament and of the Council of 16 December 2015 to approximate the laws of the Member States re-
lating to trade marks (hereafter Trademark Directive) art 4(c).

2.US Reg No 4686618 <http://tsdr.uspto.gov/#caseNumber=85743120&caseType=SERIAL_
NO&searchType=statusSearch> accessed 1 December 2019.

13 US Reg No 534526, http://tsdr.uspto.gov/#caseNumber=534526&caseSearchType=US_APPL
ICATION&caseType=DEFAULT &searchType=statusSearch accessed 12 January 2020.

4 In virtually every country the trademark registration process includes a step called ‘publication;
which is publishing the application or registration specifically for the purpose of giving notice to third
parties so they have the opportunity to oppose the applications or registrations that they believe are
problematic.

190 PAMELA CHESTEK

project’s trademark to the attention of owners of similar trademarks, which should
be taken into account before registering.

In addition to relative grounds, trademarks are also examined, and some-
times refused registration, on ‘absolute’ grounds, which include descriptiveness,
genericism, and a number of other statutory bars.!> A trademark counsel will be
able to identify the possible bases for refusal and aid in determining the best pro-
cedural approach for registration.

9.2.4.1 Trademarks and service marks

A trademark registration identifies the mark and the goods and services for which
registration is granted. The mark can be a word per se, a word in stylised form,
a logo, a sound, a colour, trade dress, and so forth. Most countries divide goods
and services into ‘classes’ using a classification system described in an international
treaty. !

For Open Source, common core classes are 9 (electrical and scientific appar-
atus goods including software), 38 (telecommunications services), 41 (education
services), and 42 (computer and scientific services), but others may also be rele-
vant depending on the function of the software, such as security in Class 45. The
relevant classes may change over time as more related goods and services become
available. Promotional goods may be included in many classes; for example, Class
16 includes stickers, Class 21 includes glassware, and Class 25 is for apparel.

In almost all countries, one can register a trademark before the use of the mark
has started. However, in the US, as a general rule the trademark must be used be-
fore the registration will be granted.!” One can file an application on an ‘intent to
use’ basis to hold a place in line, but the registration will not be granted until the
owner has submitted proof of use to the US trademark office. But even in those
countries that do not require proof of use before registration, one can cancel a
trademark after a statutory period of time, generally three or five years, on the basis
that the proprietor is not using the mark.

The legal significance of a registration differs from country to country. The
owner of the senior rights will always prevail over the owner of junior rights, but
whether or not the mark is registered will also affect who will prevail in a con-
flict. There are two main legal premises: (i) trademark rights accrue through use,
with registration serving as government recognition of the existing rights; and (ii)
trademark rights are granted through registration. However, the division described

15 There are a variety of issues raised around the world, such as deception, geographic
misdescriptiveness, that the word is surname, and a prohibition on registering flags and coats of arms.

16 Nice Convention Concerning the International Classification of Goods and Services For the
Purposes of the Registration of Marks, 14 June 1957, as last revised at Geneva, 2 October 1979, 550
UNTS 45.

17" By international treaty, the foreign owner of a trademark registered in their own country can ob-
tain a registration in the US without having used the mark in the US first, although the owner must still
have an intent to use the mark in the US. Lanham Act, see note 6, § 1126(e).

TRADEMARKS 191

is more simplistic than the laws any country has enacted and a country’s trademark
system is likely to be a blend of both concepts. For example, in the US an unregis-
tered trademark is as readily enforceable as a registered trademark, except that the
owner will have to prove the validity of the mark in court rather than before the
US Patent and Trademark Office. In the UK, one can prevent infringement of an
unregistered trademark if the wrongdoing rises to the level of ‘passing oft’, which
is a false representation that causes confusion or deception and is more difficult to
prove than infringement of an unregistered trademark in the US. In the EU, one
can rely on prior unregistered rights to oppose or cancel the registration of a junior
user but cannot sue for infringement unless the mark is considered a ‘well-known’
mark.!8 In yet other countries, unregistered rights are of no value at all, unless the
mark is well-known. Although it is often not feasible to register every trademark
in every country, registration should be the preference rather than hoping that un-
registered rights will be adequate.

The Madrid Protocol is an international treaty!® for the management of
International Registrations. Despite the name, an International Registration is not
an independently enforceable trademark registration. Instead, the Madrid system
is a unified application system. One has a ‘basic’ application or registration in one’s
home country. This basic application or registration is used as a basis for filing an
International Application, claiming the same mark and description of goods and
services as the basic application. At the time the applicant files the International
Application, the applicant also requests ‘extensions of protection’ or ‘designates’
member countries of its choosing out of the 100+ countries that are members of
the Madrid Protocol. Each country thereafter examines the designation under its
local legal standards and, if allowed, the designation is enforceable as if it was a
registration filed originally in that country.

9.2.4.2 Certification and collective marks

Certification and collective marks are special types of trademarks recognised in
some countries. A certification mark is where one certifies the goods or services ofa
third party. A certification mark cannot be used to certify one’s own goods.?° A cer-
tification mark is therefore used for the case where a third party is ensuring that
others’ goods and services meet a standard, such as the ‘Underwriters Laboratory’

18 “Well-known’ marks are given special treatment by treaty. Paris Convention for the protection of
industrial property of March 20, 1883, as revised at Brussels on 14 December 1900, at Washington on 2
June 1911, at The Hague on 6 November 1925, at London on 2 June 1934, at Lisbon on 31 October 1958,
and at Stockholm on 14 July 1967, 828 UNTS 305 (hereafter the Paris Convention) art 6bis.

19 Protocol Relating to the Madrid Agreement Concerning the International Registration of Marks,
adopted at Madrid, 27 June 1989, as amended on 3 October 2006, and on 12 November 2007 <https://
wipolex.wipo.int/en/text/283484> accessed 18 January 2020.

20 Lanham Act, see note 6, § 1127; EU Trademark Regulation, see note 6, art 83(2).

192 PAMELA CHESTEK

seal used on electrical equipment.?! The use restriction mean that a certification
mark cannot be used by an Open Source project as a way to provide assurances that
third party hosts have authentic software,?” but a certification mark can be useful
to an organisation like the Open Source Hardware Association, which certifies that
goods comply with the Open Hardware Definition.?®

Collective marks are owned by an organisation whose members can use the
mark to indicate their membership in the organisation and to identify their own
goods and services as coming from a member of the organisation,?* such as the
mark UNICODE used to indicate membership in an association of those who use
a computer encoding system utilising 16 bits.2> An Open Source project could own
a collective mark and allow its members to indicate they are members of the pro-
ject. However, a collective mark would be of low value for uses relating to software
goods, since the collective mark indicates only the bona fides of the producer, not
that the goods that each produce are uniform.

It is particularly prudent for the Open Source project to register its trademark.
Because of the collaborative way that Open Source products are created, there may
be many individuals who have a sense of ownership over the software and the pro-
ject as a whole and there may also be authorised forks or permitted variations of a
product. The application process may assist the project in guiding thinking around
the question of appropriate ownership and permitted third-party usage.

The freedom for all to make copies of the software and distribute it also lends it-
selfto a claim that the trademark is a generic term that cannot be owned, or that the
trademark has lost its source-identifying meaning because it can be used by many
(see section 9.2.7). Registration will be a barrier to challenges of this type.

9.2.5 Ownership and licensing

In the US, as a use-based country, the basic premise is that a trademark is owned
by the entity that controls the quality of goods or services with which the mark is
used. If the application is not filed by the person or entity who actually controls the
quality of the goods or services, the application or registration will be invalid.2

21 US Reg No 782589, <http://tsdr.uspto.gov/#caseNumber=72185169&caseType=SERIAL_
NO&searchType=statusSearch> accessed 19 January 2020, EU Appln No 017277311, <https://euipo.
europa.eu/eSearch/#details/trademarks/017277311> accessed 19 January 2020.

22 This is simply a licensed use.

2 US Reg No 5479050 <http://tsdr.uspto.gov/#caseNumber=874738898&caseType=SERIAL_
NO&searchType=statusSearch> accessed 19 January 2020.

24 Lanham Act, see note 6, § 1127; EU Trademark Regulation, see note 6, art 74.

25 US Reg No 1981995 <http://tsdr.uspto.gov/#caseNumber=74575181&caseType=SERIAL_
NO&searchType=statusSearch> accessed 17 January 2020.

26 For further information on ownership of Open Source trademarks, see Pamela S Chestek, ‘Who
Owns the Project Name?’ (2013) 5(2) International Free and Open Source Software Law Review 105.

TRADEMARKS 193

It can sometimes be difficult to tell who is controlling the quality of the goods
and services. Take, for example, a distributor that selects pre-existing products for
private labelling. The manufacturer exercises control through its manufacturing
process, but the distributor exercises control through its selection of the manufac-
turer. They may end up in a conflict over who the true mark owner is.?’

In countries or regions where rights are primarily based on registration, such
as the EU, the owner of the mark will be the one to whom the registration was
granted, although there may be other defences that invalidate the registration, such
as bad faith or fraud. For example, if an opportunist registers a trademark used by
another, intending to sue the true owner for infringement or extract payment once
the true owner tries to file their own application, the registration may be vulnerable
to cancellation for bad faith.?

A trademark licence grants permission to use a trademark. They can be ex-
pressed in an oral or written agreement or a licence may be implied in conduct.
A trademark owner can be both a manufacturer in its own right and licence others
to manufacture, for example, to increase capacity. The trademark owner can li-
cence others to create goods or services for convenience, such as outsourcing con-
ference organisation, or because it does not have the facilities or expertise, such as
the manufacture of promotional goods.

Use of an Open Source trademark by a third party will be lawful for one of two
reasons: the person using the mark is a licensee (see section 9.5.4 explaining that
Open Source licences themselves do not grant a trademark licence) or the use is a
non-infringing one that trademark law cannot prevent, such as referential use (see
section 9.5.3).

It is important for Open Source projects to decide which words, logos, or marks
they will register and to establish appropriate guidelines for where use is permis-
sible, particularly where there may be community contribution and use, such as a
user group (see section 9.5.6).

9.2.6 Enforcement of trademark rights

Trademark rights are not an absolute right to use a particular word in any context
or even within the specific context of the relevant goods and services. One may
only prevent another’s use of the trademark where the use will cause a very specific
type of harm, either a ‘likelihood of confusion’ or ‘dilution.

7 Tt is so common that the Paris Convention states specifically that if a representative or agent regis-
ters a proprietor’s mark in a different country, the proprietor can oppose or cancel the registration or
seek the transfer. Paris Convention (n18) art 6 septies.

28 Several Provisions for Regulating Application for Trade Mark Registration arts 34, <http://www.
sipo.gov.cn/zfgg/1143015.htm> accessed 18 January 2020.

194 PAMELA CHESTEK

9.2.6.1 Likelihood of confusion

The fundamental purpose of trademark law is to prevent a ‘likelihood of confu-
sion’ between the goods or services produced by one entity and those of another,
and it will be a trademark infringement where a likelihood of confusion has not
been avoided. However, there are as many different legal standards for ‘likelihood
of confusion’ as there are judicial systems.

Nevertheless, the basic inquiry will always consider the degree of similarity of
the two trademarks and the degree of similarity of the goods and services. Asarule
of thumb, the more similar the marks are the less similar the goods or services will
have to be for consumers to be confused, and the more similar the goods and serv-
ices are the less similar the marks will have to be.

In the US, all the different courts of appeal have different legal tests, but the con-
clusion is not likely to differ between courts. One typical formulation considers:

o the strength of the mark

o the degree of similarity between the two marks

o the proximity of the products or services

o thelikelihood that the prior owner will bridge the gap

« actual confusion

o whether the defendant acted in bad faith

« the quality of the defendant’s product

o the degree of care exercised by the consumer in the transaction
« other relevant variables®

To elaborate on some of the factors, the ‘strength’ of the mark refers both to in-
herent distinctiveness and acquired distinctiveness (see section 9.2.3). The role of
strength in a likelihood of confusion analysis is that consumers are less likely to
confuse marks that have a significant degree of descriptiveness or ubiquity, even
if the mark has acquired distinctiveness and is therefore functioning as a mark.
For example, the word ‘Enterprise’ is commonly used for a version of a software
program optimised for a large-scale corporate user. Because of consumers’ famil-
iarity with the term and its common use, they have acclimated to seeing the same
word used by different companies and therefore are less likely to believe that two
software programs sharing only the common word ‘enterprise’ are from the same
source.®

‘Proximity of the goods’ means how similar the parties’ goods and services are
to each other, and ‘bridging the gap’ means the likelihood that the two parties’

2 Polaroid Corp v Polarad Elecs Corp, 287 F.2d 492, 495 (2d Cir. 1961).

30 For example, MYSQL ENTERPRISE (EU Reg No 005708532), PUPPET ENTERPRISE (EU Reg
No 013258901), and HEWLETT PACKARD ENTERPRISE (EU Reg No 013906185) are all registered
in the EU for goods or services related to databases.

TRADEMARKS 195

goods and services might move closer together. Lumber and storage sheds are
not particularly similar, but a lumberyard might ‘bridge the gap’ by selling pre-
manufactured sheds.

Legal intervention is available upon proof of a likelihood of confusion in order
to prevent harm to consumers. Actual confusion, such as misdirected complaints
or goods returned to the wrong party, is compelling evidence that the harm is in-
deed occurring. Actual confusion is therefore evidence that the legal wrong, likeli-
hood of confusion, is occurring.

Bad faith is considered on the theory that if one is trying to create confusion,
one is likely to succeed in doing so. Thus good faith is not generally relevant, only
bad faith.

Some transactions are done hastily, such as the purchase of a small food item.
Consumers spend a great deal of time investigating other transactions, such as pur-
chasing a vehicle. The less care spent on the transaction, the more likely it is a con-
sumer will be confused.

In the EU, trademark infringement is either per se, without requiring further
proof of likelihood of confusion—in the case of ‘double identity, meaning that the
marks are the same and the goods and services are the same*!—or upon proof of
likelihood of confusion, where the accused trademark is identical with, or similar
to, the EU trade mark and is used in relation to goods or services which are iden-
tical with, or similar to, the goods or services for which the EU trade mark is
registered.>

However, trademark infringement is not simply confusion as to origin of a
product or service. As discussed in section 9.2.1, use of a trademark may indicate
different kinds of relationships, such as approval or endorsement. Confusion about

any of these types of relationships will also be a trademark infringement.*

9.2.6.2 Dilution

Trademark ‘dilution’ refers to use of a mark by a third party in a way that will tend to
weaken the uniqueness of the owner’s mark. A trademark is associated with goods
and services, allowing coexisting uses where the goods and services are sufficiently
distant that consumers will not be confused (see section 9.2.1, giving examples of
coexisting use of the same words for different goods and services). However, there
is a theory that a third-party’s use of a mark strongly associated with a different en-
tity can nevertheless harm the original user even in the absence of confusion. One
harm is in the form of ‘blurring), where, instead of one unique source association,

31 EU Trademark Regulation, see note 6, art 9(2)(b).

32 EU Trademark Regulation, see note 6, art 9(2)(c).

3 Lanham Act, see note 6, § 1125(a) (including confusion as to the affiliation, connection, or associ-
ation of one person with another, or confusion as to the origin, sponsorship, or approval of goods, serv-
ices, or commercial activities); EU Trademark Regulation, see note 6, art 9(2)(c) (stating that likelihood
of confusion includes the likelihood of association).

196 PAMELA CHESTEK

the consumer now makes two, albeit non-confusing, associations. An example
would be GOOGLE used for sunglasses—the consumer is aware that Google does
not manufacture sunglasses, but now associates the word ‘Google’ with two things,
search engines and sunglasses.

Another type of harm is ‘tarnishment, which is where the junior user’s product
is unsavoury, unflattering, or offensive and that negative association is visited on
the senior user also, to its detriment. Another category sometimes categorised as
dilution is ‘free riding, where another takes unfair advantage of a consumer’s posi-
tive association with a trademark for their own gain, such as using too much of a
mark in comparative advertising.>

9.2.7 Abandonment and genericism

There are a number of ways that trademarks can be invalidated, but two are most
relevant in the field of Open Source software: abandonment, more particularly a
type of involuntary abandonment called naked licensing; and loss of trademark
significance, more particularly where a once distinctive term becomes the generic
word for the goods or services.

9.2.7.1 Naked licensing

‘Naked licensing} a concept fairly specific to US law, is where the licensor makes no
effort to control the quality of the goods or services of its licensee. Some courts take
a harsh view of the practice, punishing a licensor because of the possibility that un-
controlled licensees will produce goods of varying quality, in theory harming con-
sumers. In its most harsh implementation, no proof that the goods have varied or
that there was any harm to a consumer is required.* The principle has been applied
even in cases where there is only one uncontrolled licensee.>® Other courts apply a
less draconian standard, requiring that the uncontrolled licensing have actually re-
sulted in a loss of trademark significance before a mark is forfeited through naked
licensing.’”

The risk of a naked licence challenge is of concern to Open Source projects be-
cause the Open Source licence allows anyone not only to reproduce the software
but also modify it. Different distributors’ versions may differ from the canonical
source, including in potentially significant ways. If the Open Source project allows

34 D’Oréal SA ¢ Ots v Bellure NV & Ots [2010] ECJ C-487/07.

35 Barcamerica Int’'l USA Tr v Tyfield Importers, Inc, 289 F.3d 589, 598 (9th Cir. 2002) (‘The point is
that customers are entitled to assume that the nature and quality of goods and services sold under the
mark at all licensed outlets will be consistent and predictable’).

36 Eva’s Bridal Ltd v Halanick Enter, Inc, 639 F.3d 788 (7th Cir. 2011).

37 Kentucky Fried Chicken Corp v Diversified Packaging Corp, 549 F.2d 368, 387 (5th Cir. 1977).

TRADEMARKS 197

any and all modifications of the software to be branded with the project trade-
mark, it risks a successful challenge that the trademark is invalid due to naked li-
censing (see section 9.5.6 discussing including licences in trademark guidelines).
There is a trial court decision rejecting a claim of naked licensing premised solely
on the theory that software was available under a General Public License (GPL)
and a GNU Affero General Public License (AGPL),* but an Open Source trade-
mark owner must still ensure that it does not grant trademark licences for unfet-
tered use and adequately exercises control over the uses pursuant to the licences it
does grant.

9.2.7.2 Loss of trademark significance through genericism

A trademark will not function as a trademark if instead the word or design is ‘gen-
eric. A generic term is one that that identifies products and services generally,
not specific to any particular source. A term originally coined as a trademark can
evolve into the generic term for the category, such as ‘escalator’ and ‘trampoliné]
both of which were registered trademarks in the US but later invalidated because
they had become generic terms.*

Because it is a question of consumer perception, a trademark owner may not
be able to prevent genericide of its own mark. Consumers may assign meaning no
matter what kind of effort the trademark owner employs to prevent it. However, a
trademark owner that actively encourages generic use is likely to succeed in losing
its trademark rights. While all trademark owners want their brand to ‘own the cat-
egory, encouraging consumers to treat the brand as synonymous with the category
will teach consumers that the term is the generic term for the entire category, not
an indicator for one particular source for the type of good.

Software in general may be at a higher risk than other kinds of goods for
genericide because software products tend to have unique characteristics or func-
tionality, so there may not be an apt or known common name that adequately de-
scribes the software. If the trademark owner is not on guard, the trademark is then
used as that category name for all new entrants into the field. The trademark owner
therefore needs to ensure that it is doing what it can to differentiate the mark from
the category for the consumer’s benefit. Xerox Corporation periodically runs ad-
vertising campaigns reminding consumers that the correct term for reproducing
document is ‘photocopying; not Xeroxing’ and Velcro BVBA runs the same type of
campaign for ‘hook and loop fastener’.

38 After stating that the GPL and AGPL licences do not incorporate a trademark licence, con-
cluding: ‘Defendants have not identified any case, and the Court is not aware of any, in which a trade-
mark owner was found to have engaged in naked licensing where no trademark license existed” Neo4,
Inc v PureThink, LLC, 480 E.Supp.3d 1071, 1078 (N.D. Cal. 2020).

3 Haughton Elevator Co v Seeberger, 85 USPQ 80 (Comm'r Pat 1950); Nissen Trampoline Co v Am
Trampoline Co, 193 E. Supp. 745, 129 USPQ 210 (S.D. Iowa 1961).

198 PAMELA CHESTEK
9.3 Open Source Projects, Products, and Services

Open Source projects produce a product, software, but Open Source projects will
have goods and services that extend far beyond that. Open Source projects typic-
ally create documentation and often provide support services through support-
dedicated live chat channels. Projects may provide training, such as local meetups
or conferences. They will often create, or allow the creation of, promotional goods
like apparel, stickers, mugs, and pens. The Open Source project will be able to
register, and assert rights in, its trademark for the software itself and for these add-
itional goods and services.

Beyond that, and perhaps uniquely different from other kinds of businesses, the
Open Source project is also a community of contributors. The Open Source pro-
ject often consists of a group of individuals who are working in a communal way
towards a common goal. In addition to producing software, the project may do
work dedicated to the enrichment and development of the interests of the commu-
nity or the improvement of society. It may be a public interest charity performing
charitable services, like fundraising to provide financial support to underprivil-
eged members.

The Open Source project will be the producer of the goods and services itself,
such as software, documentation, and support services, but it is also likely to be
the licensor of the trademark. Typical licensing relationships in Open Source
are permissions given by the Open Source project to fans, local groups, or spon-
sors to create promotional goods or for the outsourcing of event organising.
A licence might be granted to one who is going to represent the software pro-
ject at a booth at a conference, allowing a person to indicate they represent the
software project when they have no official relationship with the project. As
the trademark owner, the Open Source project has the right to determine in
exactly what ways others may use its trademark and in what ways they cannot.
However, because of the potential loss of rights through naked licensing (see
section 9.2.7.1 on naked licensing), the Open Source project is well-advised to
ensure that the scope and requirements of the licences are clear and met by its
licensees (see section 9.5.6 on using trademark guidelines to grant trademark li-
cences). At the same time Open Source projects must balance giving their com-
munities enough rights to maintain engagement and recognise the contribution
from those communities.

9.3.1 Licensed redistribution
The Open Source licence permits the reproduction and modification of the soft-

ware by third parties. For purposes of legal analysis, this can be analogised to a
trademark licensor engaging another to manufacture goods on its behalf.

TRADEMARKS 199

Where the trademark owner enlists others to manufacture or offer services,
the actual manufacturer or service provider is a trademark licensee and the trade-
mark owner-licensor will dictate to a greater or lesser degree what characteristics
the goods or services will have; for example, materials, dimensions, tolerances,
manufacturing processes, and quality control checks (if the licensor does not dic-
tate to some degree the quality of the goods, or at least inspect them, the licence
is a naked licence as discussed in section 9.2.7.1). If the manufacturer-licensee
meets the standards set by the trademark owner-licensor, the manufacturer will
be allowed to use the trademark on the goods. If the goods are substandard but the
manufacturer nevertheless uses the mark on the goods, the goods will be infringing
(see section 9.5.6 for discussion of standards that an Open Source project will want
to consider in developing its trademark licence).

9.3.2 Distribution of unmodified software by others without a
trademark licence

Trademark exhaustion or exhaustion of rights, also known as the ‘first sale’ doc-
trine, allows a third party to use a trademark to resell a product, but this doctrine
extends only to stocking, displaying, and reselling an existing, tangible product.®
In the EU, this may mean that where goods or services are made available in a
member state, that exhausts rights across all states under the concept of free move-
ment of goods and services upon which the EU is based.

As applied to Open Source, while there is a copyright licence that allows for the
lawful creation of copies, if exhaustion is to apply to the trademark use, one may
use the trademark for only those copies distributed in the exact form of the soft-
ware as provided by the project owner; that is, for executable code only in execut-
able form and for source code only in source code form.*!

9.3.3 Distribution of modified software without a
trademark licence

Although the Open Source licence allows anyone to reproduce the software, those
reproducing it are not entitled to represent that modified software is the same as
the original, as using the same trademark for the modified software would do. The

40 Sebastian Int’l Inc v Longs Drugs Stores Corp, 53 F.3d 1073, 1076 (9th Cir. 1995); Beltronics USA
Inc v Midwest Inventory Distrib, LLC, 562 E3d 1067, 1072 (10th Cir. 2009) (hereafter Beltronics);
Trademark Directive, see note 12, art 15.

41 The Slackware project is an example of this standard. Slackware, ‘Slackware Trademark Policy’
<http://www.slackware.com/trademark/trademark.php> accessed 16 December 2019 (‘In order to be
called “Slackware’, the distribution may not be altered from the way it appears on the central FTP site’).

200 PAMELA CHESTEK

exhaustion doctrine also does not extend to use of the mark for a different product
altogether; for example, executable code created by a third party from project
source code.

Where the product, in this case code, is not identical to what has been distrib-
uted by the trademark owner, the question of whether it can be distributed under
the same mark in the absence of a licence then becomes whether there are material
differences between the original goods and what the defendant is distributing.*? If
there is no material difference, the product will not be considered infringing. The
situation has not been addressed in the unique context of Open Source, but ma-
teriality does often come up in two situations: parallel imports, also known as ‘grey
market’ goods, and cases where goods have been repaired or remanufactured.

Typically, parallel imports are thought of as foreign-manufactured goods sold
in a different country without the consent of the trademark holder, but the legal
theory also applies to domestic goods. There will be material differences, and
therefore a trademark infringement, when the trademark owner’s quality con-
trol measures have been thwarted, such as by removing a manufacturer’s Unique
Production Code (UPC) when the manufacturer used it for quality control pur-
poses.*> Applying this to the Open Source context, if a digital signature is used for
the quality control of Open Source software product, much like a UPC, distributing
code without the correct signature is likely to be considered a material alteration.*!
Thus, an Open Source project is well within its rights to prevent use of the trade-
mark for anything but its own signed files but may elect to tolerate some changes.
The Mozilla trademark policy reflects the former position*> and the Document
Foundation the latter.%® It will be helpful to users for the Open Source project to
state its position publicly in its trademark guidelines.

42 Beltronics, see note 40, 1072.

43 Zino Davidoff SA v CVS Corp., 571 E3d 238, 243 (2d Cir. 2009).

44 Zino Davidoff SA v CVS Corp. (finding that UPC codes on perfume boxes were an adequate
quality control measure). Similarly, a product can be repaired or reconditioned and resold under the
original trademark, but only so long as the reconditioning or repair is not so extensive that it would be
amisnomer to call the article by its original name. Intel Corp. v Terabyte Int’l, Inc., 6 F.3d 614, 619 (9th
Cir. 1993).

45 The Mozilla Foundation, ‘Distribution Policy for Mozilla Software’ <https://www.mozilla.org/en-
US/foundation/trademarks/distribution-policy/> accessed 8 December 2019, states ‘if you make any
changes to Firefox or other Mozilla software, you may not redistribute that product using any Mozilla
trademark without Mozilla’s prior written consent and, typically, a distribution agreement with Mozilla

4 See, e.g., The Document Foundation (TDF) trademark policy, which allows others to use the
LibreOffice trademark on software in substantially unmodified form where ‘substantially unmodified’
means ‘built from the source code provided by TDE, possibly with minor modifications including but
not limited to: the enabling or disabling of certain features by default, translations into other languages,
changes required for compatibility with a particular operating system distribution, the inclusion of bug-
fix patches, or the bundling of additional fonts, templates, artwork and extensions). The Document
Foundation, ‘Policies & TradeMark Policy’ (2017) <https://wiki.documentfoundation.org/TDF/Polic
ies/Trademark_Policy> accessed 17 January 2020.

TRADEMARKS 201
9.3.4 Ancillary goods and services

An Open Source project may have as wide a range of goods and services as any
commercial business. The project may sponsor conferences. The project may
create formal training program and a substantial set of documentation. These are
all goods and services for which registration can and probably should be sought.
Where they are provided by a third party, it is a licensing relationship and the pro-
ject should undertake appropriate steps to ensure that the third-party provider is a
controlled licensee.

Projects will also have promotional goods. These will most likely be licensed
goods. For these types of goods, the quality control required may be no more than
the selection of an appropriate vendor for the goods.*’

9.4 The Community Role in Open Source Trademarks
9.4.1 Ownership models

Trademarks must have owners, but ownership in Open Source projects may not be
clear because of the various development models (see further Chapter 2). It may be
that, when a project starts, one individual is the main decision-maker—they have
written the bulk of the code, picked the name, and set up the source code reposi-
tory and website. In this situation the owner of the trademark would fairly clearly
be the individual.

It may be instead that the ownership of the mark vests in more than one person;
for example, where two or more individuals collaborate equally to create the pro-
ject. This, in theory, could be problematic if the two owners acted independently,
because it may mean that the trademark is not functioning as a mark, that is as a
sole source identifier.*® Nevertheless, where the individuals are contributing to the
same code base the risk is minimal since there is only one product.

Where individuals are acting in concert, they may, in fact, be deemed a common
law partnership or unincorporated voluntary association. Neither type of legal

47 Restatement (Third) of Unfair Competition § 33, cmt. ¢ (1995) (‘The expectations of consumers
depend in part on the character of the licensee’s use. If a licensee uses the trademark of a beer or soft
drink manufacturer on clothing or glassware, for example, prospective purchasers may be unlikely to
assume that the owner of the trademark has more than perfunctory involvement in the production or
quality of the licensee’s goods even if the manner of use clearly indicates sponsorship by the trademark
owner. On the other hand, if the licensee’s use is on goods similar or identical to those produced by the
trademark owner, purchasers may be likely to assume that the goods are actually manufactured by the
owner of the mark. Greater control by the licensor may then be necessary to safeguard the interests of
consumers who may purchase the goods on the basis of the licensor’s reputation for quality’).

8] Thomas McCarthy, McCarthy on Trademarks and Unfair Competition, 5th edn (Eagen,
MN: Thomson Reuters, March 2021 update) § 16.40 (March 2021 update) (disfavouring joint
ownership).

202 PAMELA CHESTEK

entity requires any filing or formal act to come into existence;* instead, they will
exist because the law imposes legal structure on concerted acts.

Informal legal organisations are not uncommon. Courts have had to deal with
trademark disputes with many kinds of volunteer organisations, like church
groups, charities, and clubs. The typical scenario is that a group of individuals will
come together to work on a common project or interest, have a falling out, and
each then claim to own the name®’—a scenario that can easily arise with an Open
Source project.®!

With Open Source projects, however, because there generally is some thought
about project governance and perhaps documentation of it, the project may be
better off than other types of organisations when a court is trying to identify the
owner. A ‘benevolent dictator’ model may mean that the so-called dictator owns
the trademark because the person is the ultimate decision-maker about the fin-
ished product.>? A meritocracy model may indicate that it is a partnership or vol-
untary association that owns the mark.

But there is risk in leaving the question of who owns the mark for a court to sort
out. If ownership is challenged in a schism, an adjudicator may indeed find that the
project (whether it is an individual, partnership, or unincorporated association)
is the owner of the project trademark and prohibit the challenger from using the

49 See Revised Uniform Partnership Act 1997 (stating that a partnership has been formed where
there is ‘the association of two or more persons to carry on as co-owners a business for profit forms a
partnership, whether or not the persons intend to form a partnership’); Comm for Idaho’s High Desert,
Inc v Yost, 92 F3d 814, 819-20 (9th Cir. 1996) (noting that under federal law, an ‘unincorporated asso-
ciation’ is ‘a voluntary group of persons, without a charter, formed by mutual consent for the purpose of
promoting a common objective’). It may also be a ‘joint venture, Shain Inv Co v Cohen, 443 N.E.2d 126,
129 (Mass. App. Ct. 1982) (describing a joint venture as ‘a partnership of a sort or, at least, it has many of
its characteristics. It differs, however, from a partnership in that it is ordinarily, although not necessarily,
limited to a single enterprise, whereas a partnership is usually formed for the transaction of a general
business.’).

0 See, e.g., Gemmer v Surrey Services for Seniors, Inc., No 10-810, 2010 WL 5129241, at *20 (E.D.
Pa. 13 December 2010) (senior centre, not the volunteer who thought of the name for and organised a
charitable event, owned the trademark for the event); St. Denis Parish v Van Straten, Cancellation No
92051378,2011 WL 5014036, at *4 (TTAB 28 September 2011) (same); 100 Blacks in Law Enforcement
Who Care, Inc. v 100 Blacks Who Care, Inc., Opposition No 91190175, 2011 WL 1576733, at *4 (TTAB
12 April 2011) (deciding which of two factions of an organisation was the owner of the trademark).

51 For example, Tim Fox created the Virt.x project while at Vmware. When he departed Vmware
for Red Hat, Vmware demanded he turn over the Vert.x Github project, the Vert.x Google Group,
the domain vertx.io, and the Vert.x blog. Google Groups, ‘An Important Announcement to the Virt.x
Community’ (2013) <https://groups.google.com/forum/#!msg/vertx/gnpGSxX7PzI/BGhj2PqScY8]>
accessed 19 January 2020. Ultimately everyone agreed to move the project to an independent owner,
the Eclipse Foundation. Google Groups, ‘Community: Please Make Any Objections Known!” (2013)
<https://groups.google.com/d/msg/vertx/ WIuY5M6RIuM/gAvWitxSegUJ> accessed 19 January 2020.

2 The Linux operating system is an example of a benevolent dictator model: one individual,
Linus Torvalds, ultimately decides what is included in the Linux kernel. Linux Kernel Newbies,
‘KernelDevViewpoint’ (2013) <http://kernelnewbies.org/KernelDevViewpoint> accessed 29
December 2019 (describing how patches ultimately are added to the Linux kernel, with Linus Torvalds
deciding what to merge). He also owns the US trademark registration, US Reg No 1916230 <http://tsdr.
uspto.gov/#caseNumber=74560867&caseType=SERIAL_NO&searchType=statusSearch> accessed 19
January 2020.

TRADEMARKS 203

mark. If an Open Source project was unlucky, though, after a falling out it may
find that there is a stalemate and no-one will be allowed to use the name from then
onwards.>

It is therefore best to remove as much ambiguity as possible about who owns the
trademark. In practical terms, this means that the project should publicly state who
owns the mark, make it clear who may act on behalf of the trademark owner, and
allow only the owner to enter into agreements regarding the marks. For example,
trademark guidelines should name the owner and provide contact information for
how to reach someone with authority to permit use of the mark.>

9.4.2 Enforcement

The legal bases for enforcement of trademark rights are the same for Open Source
marks as they are for any other trademarks. What is different is the social environ-
ment in which trademark enforcement takes place. Because the Open Source ethos
is one of sharing, the accused party may believe that their use of the name is either
authorised by the software licence or should be tolerated in the spirit of sharing.
Some Open Source participants take a position that no intellectual property rights
should be enforced, including trademark rights. A community member may con-
tact an infringer directly on behalf of the project, an action that is consistent with
the project’s practice of openness and transparency, but that may put the legal case
in a weaker position.

The communal nature of the field and the multiple stakeholders in a project may
also create some unexpected effects in conflicts with non-Open Source parties.
When an Open Source trademark is attacked, the project community, as well as the
Open Source community at large, is likely to rise to defend the trademark.>® The
Open Source project also may not be willing to agree with terms typically found
in settlement agreements, such as confidentiality of payments or agreeing not to
speak publicly about the case.

53 See, e.g., LunaTrex, LLC v Cafasso, 674 F. Supp. 2d 1060, 1062 (S.D. Ind. 2009); Liebowitz v Elsevier
Sci Ltd, 927 E. Supp. 688, 696 (SDNY 1996).

 See, e.g., Gnome Foundation, ‘Legal and Trademarks <https://www.gnome.org/foundation/
legal-and-trademarks/> accessed 29 December 2019 (stating: ‘One of the functions that the GNOME
Foundation provides is to act as the legal owner for such GNOME project assets as the GNOME name
and the GNOME foot. We must protect these trademarks in order to keep them. Therefore, we have
some guidelines for their use and a standard agreement for user groups. These cover many common
situations; if you need permission to use the GNOME trademarks in other ways or have other ques-
tions, please contact licensing@gnome.org’).

% The GNOME Foundation was able to raise over US$100,000 when Groupon tried to adopt
GNOME as a trademark for a point-of-sale system, after which Groupon abandoned its trademark ap-
plications. Wayback Machine capture of GNOME Foundation, “Thank you for helping the GNOME
Foundation defend the GNOME trademark!” <https://web.archive.org/web/20141114123747/http://
gnome.org:80/groupon/> accessed 20 December 2019.

204 PAMELA CHESTEK
9.5 Lawful Use of Others’ Trademarks

Absent a contract, a trademark owner cannot stop lawful uses of its trademarks by
third parties. This section describes the ways that a third party may lawfully use
a project’s trademark. There are, however, no bright lines. Legal issues in trade-
mark law are generally fact-intensive, with a minor change in the factual situation
making the difference between an infringing use and a non-infringing use and the
ultimate legal conclusion in the hands of the courts.

9.5.1 Non-confusing use

Simplistically, a non-confusing, non-diluting use is not actionable. Section 9.2.6.1
describes how trademark infringement takes into account the similarity of the
marks, the similarity of the goods and services, the parties’ trade channels, and
the strength of the trademarks, and other factors. Where the marks are sufficiently
different, or the goods and services are sufficiently different, the relevant audience
will not make an association between the two and no legal wrong has occurred.
This is the reason that FORD can be used by both a car company®® and a modelling
agency.”’

9.5.2 ‘Forking’

The term forking’ has two meanings. The term fork’ is sometimes used to mean a
branch created in a version control system. However, the term fork’ was originally
used to describe when a developer would elect to exercise their rights under the
licence to copy and use the software but wanted to take the software in a different
direction. The developer therefore created a new project that started with the same
code but thereafter diverged. LibreOffice is a fork of OpenOffice, MariaDB a fork
of MySQL, Jenkins a fork of Hudson, and EGCS a fork of GCC, which later was re-
named back to GCC.

When the software diverges, it will be confusing for the two projects to share the
same name, or names that are highly similar. It also may be that the original project
is unhappy with the fork and is not willing to entertain the use of a mark too similar
to the original.®® Whether there is likelihood of confusion will be assessed in the

% FORD, EU Reg No 004670618 <https://euipo.europa.eu/eSearch/#details/trademarks/004670
618> accessed 19 January 2020.

7 FORD MODELS, EU Reg No 005188412 https://euipo.europa.eu/eSearch/#details/trademarks/
005188412 accessed 19 January 2020.

8 See, e.g., Hudson Labs, ‘Hudson’s Future’ (2011) https://web.archive.org/web/20110112133740/
http://www.hudson-labs.org/content/hudsons-future> accessed 19 January 2020 (because the current

TRADEMARKS 205

same way that it will be for goods not sharing their origin, with the additional fact
that the similarity of the goods is a given.

The second kind of fork is where the name of the project will also be copied over
when a branch is created in a version control system. Arguably, the project making
the code available implied a trademark licence by using a version control system
that will force, at least initially, the use of the same name. This use may be justified
as a referential use, as discussed in section 9.5.3. Nevertheless, once the software is
modified this situation will most likely be analysed in the same way discussed in
section 9.3.3.

9.5.3 Referential use

The need to use another’s mark occurs frequently in the software industry as a
whole because it is often necessary to include information about the compatibility
of software. Users must be told that the application software is compatible with
specific operating systems or what dependencies are required.

The doctrine of referential or nominative fair use allows a defendant to use a
plaintiff’s trademark to identify the plaintiff’s goods as long as there is no likelihood
of confusion about the source of the defendant’s product or the mark-holder’s rela-
tionship with the defendant.>® For the defence to apply, the trademark use must be
in reference to the original product, not the copyist’s.®’ The requirement that like-
lihood of confusion will not occur will generally mean that the referred-to mark is
not used more than absolutely necessary to convey the needed information. Under
this standard, it will rarely be the case that the use of a logo can be justified as re-
quired for the purpose of conveying the requisite information; generally the word
alone will do.

In the US, the situation is addressed by interpreting trademark law doctrine. The
EU approaches this situation through the Directive concerning misleading and
comparative advertising.®! The Directive lists a number of conditions that must be
met for another’s mark to be used in advertising, including that the use not create
confusion, that it not take unfair advantage of the referred-to mark, and that it ob-

jectively compares the goods or services.®?

owner would not agree to a transfer of the name ‘Hudson; the fork chose the name Jenkins which
‘evokes the same sort of English butler feel’).

5 Tiffany (NJ) Inc v eBay Inc, 600 F.3d 93, 102 (2d Cir. 2010), quoting Merck & Co v Mediplan Health
Consulting, Inc, 425 F. Supp. 2d 402, 413 (SDNY 2006).

% New Kids on the Block v News Am Publg, Inc, 971 F2d 302, 308 (9" Cir.1992); Century 21 Real
Estate Corp v Lendingtree, Inc, 425 F.3d 211, 214 (3d Cir. 2005).

¢! Directive 2006/114/EC of the European Parliament and of the Council of 12 December 2006 con-
cerning misleading and comparative advertising (2006) (hereafter Advertising Directive).

62 Advertising Directive, see note 61, art 4.

206 PAMELA CHESTEK

However, a person who offers modified software, or builds a new executable
file from source code and labels it with the trademark is not using that trademark
nominatively to describe the original project’s executable code goods. Rather, it is
using the mark as the name for its own newly created version of the product.®® The

use for new goods that are the developer’s own creation will not be a referential,

nominative fair use.%*

9.5.4 Trademark licences in Open Source licences

As a general rule, the Open Source licence does not include, either expressly or
impliedly, a trademark licence.%> The author is aware of only one Open Source
Initiative-approved licence that imposes a duty to use a trademark.%® To the con-

trary, a number of licences state expressly that no trademark licence is granted in

the Open Source licence.®’

The Apache License version 2.0 is sometimes described as having a trademark
licence. It refers to trademarks in two places: “‘You must retain, in the Source form
of any Derivative Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work’ and “This License does not
grant permission to use the trade names, trademarks, service marks, or product
names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE

6 See, e.g., OpenJDK, ‘OpenJDK Trademark Notice Version 1.1’ (2008) <http://openjdk.java.net/
legal/openjdk-trademark-notice.html> (“The Name may also be used in connection with descriptions
of the Software that constitute “fair use,” such as “derived from the OpenJDK code base” or “based on
the OpenJDK source code’).

%4 See Neo4j, Inc. v PureThink, LLC, No. 5:18-CV-07182-EJD, 2021 WL 2483778 (N.D. Cal. 18
May 2021) (holding that modifying Open Source Neo4j software, but calling the modified version
‘Government Packages for Neo4j and ‘Neo4j Enterprise’ was not a nominative fair use but an infringing
use of the trademark for the defendant’s own product).

% For a discussion about why the Open Source Definition and the Free Software Definition do not
address trademark rights, see Pamela S Chestek, “The Uneasy Role of Trade Marks in Free and Open
Source Software: You Can Share My Code, But You Can’t Share My Brand’ (2012) 7 Journal of Intellectual
Property Law and Practice 126, 129-30. There is also a US decision stating expressly ‘[tlhe GPL and
AGPL are copyright licenses, not trademark licenses. Neo4j, Inc v PureThink, LLC, 480 F.Supp.3d 1071,
1077 (N.D. Cal. Aug. 20, 2020).

 ‘Common Public Attribution License Version 1.0’ <https://spdx.org/licenses/CPAL-1.0.html>
accessed 19 January 2020. The author could not find any software licensed under this licence. In the
Debian Project’s opinion, the licence is not an Open Source licence because of the attribution require-
ment. Debian Project, DFSGLicenses’ <https://wiki.debian.org/DFSGLicenses#Licenses_that_are_D
FSG-incompatible> accessed 8 December 2019.

7 See, e.g., ‘Academic Free License version 3.0" § 4 <https://spdx.org/licenses/AFL-3.0.html> ac-
cessed 19 January 2020; ‘Attribution Assurance License’ § 3 <https://spdx.org/licenses/ AAL.html> ac-
cessed 19 January 2020; ‘Microsoft Public License’ § 3(A) <https://spdx.org/licenses/archive/archived_
11_v2.4/MS-PL.html> accessed 19 January 2020; ‘Mozilla Public License version 2.0’ § 2.1(a) <https://
www.mozilla.org/en-US/MPL/2.0/> accessed 19 January 2020.

% The Apache Software Foundation, ‘Apache License, Version 2.0 <https://www.apache.org/>licen
ses/LICENSE-2.0> accessed 18 January 2020.

TRADEMARKS 207

file’ The first sentence is a requirement that one keep trademark notices but does
not require that a trademark be used as the product name. The latter sentence is
best understood as an acknowledgment that others may use the Apache trademark
referentially (see section 9.5.3), a right that is implicit in all the other Open Source
licences.

At one point the Mozilla project used a technical approach to prevent the use
of its mark for modified software. It had a ‘branding switch; asking that those who
modified the software build a version using a switch that would remove the of-
ficial branding.® As another example, the Fedora Project offers a set of ‘generic
logos’ that can be used to replace the Fedora trademarks without breaking any of
the functionality of the software if a user is not willing to comply with the Fedora
trademark restrictions.”

Some Open Source projects, as advocates of free culture, have granted copyright
licences for their logos.”! This, however, is not a grant of a trademark licence: al-
though another may use the design as a graphic design, the project can still enforce
its trademark rights against a use of the logo for similar goods and services. There
is some risk, however, that a court might decide that the express copyright licence
can be construed as granting a licence for all uses, including trademark-infringing
ones. Projects may want to consider whether the policy choice of granting a copy-
right licence for a trademark is worth the risk of third-party use of their mark in a
way that might create confusion.

9.5.5 Trade dress

In the context of software, ‘trade dress; also called ‘get up, will be the appearance or
‘look and feel’ of a graphical interface for the product. When copying Open Source
that has graphical elements, the reuse of the software will necessarily reproduce the
look and feel of the origin software. If, however, a project wants to retain exclusivity
ofitslook and feel, as with trademarks it may have to contend with defences that the
trade dress was impliedly licensed or that the trade dress is functional (see section
9.6.1) and therefore the downstream user’s use is lawful. A project can likely avoid
the problem altogether by segregating its trade dress into easily removed folders’?
or not making the design elements available in publicly accessible source code.

¢ Debian Project, ‘Debian Bug report logs—#354622, Uses Mozilla Firefox trademark without per-
mission’ (2006) <https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=354622;msg=20> accessed 19
January 2020.

70 Fedora Project, ‘generic-logos’ <https://pagure.io/generic-logos/tree/master> accessed 19 January
2020. The generic logos are licensed under GPL and LGPL licences.

71" See Debian Project, ‘Debian Logos™ <https://www.debian.org/logos/> accessed 8 December 2019
(granting a licence to the official logo under the GNU GPL version 3 or alternatively the Creative
Commons Attribution ShareAlike 3.0 Unported License).

72 See note 80.

208 PAMELA CHESTEK
9.5.6 Trademark guidelines and policies

It is common in the software industry for software companies to publish guidelines
on how others may use their trademark. For proprietary companies, trademark
guidelines are often just instructions on how the trademark owner would like third
parties to use their mark, with guidance on matters such as where to place the °
symbol and not to use the mark a noun. However, because Open Source software
includes the right to reproduce the software, and because Open Source software
projects will often want to allow third parties at least some use the mark, trademark
guidelines for Open Source projects become more critical.

The Open Source project trademark guidelines will provide information to the
user about what the project considers a lawful use of the mark, in particular guid-
ance to redistributors and modifiers about when the mark may be used for repro-
duced software and when it may not be (see section 9.3.3 on use of the mark on
modified software). Although it may ultimately be a legal question, downstream
users of the software will know the project’s view and that they may use the trade-
mark in ways described by the trademark owner without any risk.

Unlike proprietary software trademark guidelines, the Open Source trademark
guidelines may also grant licences (see section 9.3.1 on licensing Open Source
trademarks). For example, the ANDROID mark can only be used for ‘Android-
compatible’ devices,”® which are devices that meet Google’s well-defined, testable
standard for compatibility.”* If the trademark guidelines provide a sufficiently de-
tailed description of the quality of the goods and services with which the mark
can be used, a naked licensing defence may be avoided (see section 9.2.7.1). For
example, standards for promotional goods might consist of approved vendors or
manufacturing standards for the goods, for example ‘100% heavyweight cotton’
A licence allowing a local meet-up group to use the trademark might include
parameters on cost to attend and limits on the subject matter of the meetings.”

9.6 Attempts to Limit Competition with Trademarks

Some have tried to find a way to use trademarks to monetise Open Source directly
or indirectly when the most common mechanism for revenue generation, the grant
of a copyright licence in exchange for payment, is unavailable. They may consider

73 Android Developers, ‘Brand Guidelines’ <https://developer.android.com/distribute/marketing-
tools/brand-guidelines> accessed 29 December 2019 (stating that the ‘Android’ name and the Android
logo are not part of the assets available through the Android Open Source Project).

74 Android Source, ‘Android 10 Compatibility Definition” <https://source.android.com/compatibil
ity/android-cdd.html> accessed 20 December 2019.

7> Model Trademark Guidelines is a set of model guidelines designed for Open Source projects.
‘Model Trademark Guidelines’ <http://modeltrademarkguidelines.org/index.php/Home:_Model_
Trademark_Guidelines> accessed 15 January 2020.

TRADEMARKS 209

instead the licensing of another proprietary right, the trademark, for a revenue
stream or they may want to force the use of the project trademark for purposes of
advertising. The strategies described in the following subsections are not likely to
succeed.

9.6.1 Functional use of trademarks

One concept is that placing the trademark in the source code, such that the software
will be non-functional if the trademark is removed, and then selling a licence to the
trademark, can be used to generate revenue. The trademark may be used in file names
or commands, or it can be an image file that breaks the build if not present.

These efforts are likely to fail under the trademark functionality doctrine.
One cannot infringe a trademark if the trademark is ‘functional’ A product fea-
ture is functional if it is essential to the use or purpose of the article or if it af-
fects the cost or quality of the article.”® In Sega Enterprises Ltd. v Accolade, Inc.,””
Accolade produced game cartridges that were compatible with the Sega gaming
console. Game cartridges produced by Sega used what Sega called its ‘trademark
security system. A game cartridge contained an initialisation code, four bytes of
data consisting of the letters ‘S-E-G-A; that prompted a screen display of the Sega
trademark. Sega testified that it had used the trademark this way deliberately so
that Sega would have a claim for trademark infringement against counterfeiters.
Accolade reproduced the initialisation code so that its cartridges would play on
the Sega console, prompting a display of the trademark even though the cartridge
was not an authentic Sega cartridge. When Sega sued Accolade for both copyright
and trademark infringement, the court held that Sega had used its trademark in a
functional way and Accolade’s use of the initialisation code was not a trademark
infringement.”®

One might also run into GPL compliance problems if trademarks are used in
a way that interferes with the operation of the software. According to Richard
Stallman,” if it is easy to find and remove the trademarks, restrictions on the re-use

76 Inwood Labs, Inc v Ives Labs, Inc, 456 US 844, 851 (1982).

77977 F.2d 1510, 1531 (9th Cir. 1992), as amended (6 January 1993).

78 See also Compaq Computer Corp v Procom Tech, Inc, 908 E. Supp. 1409, 1423 (S.D. Tex. 1995) (re-
quired presence of company name in partition before values would be written was a functional use of a
trademark). In a similar vein, Autodesk disavowed any claim that the file extension .dwg could function
as a trademark because it was functional, although it could be a trademark when used as a logo. ‘Put
differently, anyone in the world is free to use “.dwg” as a file extension as far as Autodesk is concerned’
Autodesk, Inc v Dassault Systemes SolidWorks Corp, 685 F. Supp. 2d 1001, 1009 (N.D. Cal. 2009).

79 Richard Stallman is the founder and past president of the Free Software Foundation. Free Software
Foundation, ‘Richard M. Stallman Resigns’ (2019) <https://www.fsf.org/news/richard-m-stallman-resi
gns>accessed 15 December 2019.

210 PAMELA CHESTEK

of trademarks is not inconsistent with the GPLv2.%° Conversely, if it is difficult to
remove them, the restrictions on use of trademarks may be considered inconsistent
with the GPL family of licences.

9.6.2 Trademarks and ‘further restrictions’

Some have suggested that Section 7 of the GNU GPLv3 permits requiring use of a
trademark. This is not correct.

In general, one cannot add more restrictions to the GPLv3.8! Section 7 of
GPLv3, however, permits a defined set of supplemental terms, one of which is a
term ‘Requiring preservation of specified reasonable legal notices or author attri-
butions in that material or in the Appropriate Legal Notices displayed by works
containing it'> However, a trademark is neither a ‘legal notice’ nor ‘author attri-
bution. A trademark is not a legal notice because there is no requirement that a
product have a trademark.33 The ‘attribution’ to an author is the name of the creator
of copyrightable content,® not the name of the company vending the goods. The
GPLv3 also refers specifically to trademarks in a different subsection of Section 7,%
demonstrating that the drafters knew the difference between trademarks, legal no-
tices, and attributions.

9.6.3 Requiring display of trademarks

It is not uncommon for an Open Source licensor to believe that it can gain an advan-
tage, atleast reputational, by requiring the use of its trademark for its software. There
was a point where ‘badgeware’ licences were popular,® with this typical language:

80 Richard Stallman, ‘[Savannah-hackers] Re: Issue of Trademark Logo Images in Source
Distribution’ (2004) <http://lists.gnu.org/archive/html/savannah-hackers/2004-11/msg00508.html>
accessed 15 January 2020 (It is no problem if the program contains trademarked images and names,
provided the trademark usage and requirements don’t make it difficult in practice to change the pro-
gram and publish a modified version. In other words, it has to be easy to find and remove the trade-
marks, if and when the trademark conditions require this’).

81 GPLv3§ 10.

82 GPLv3§ 7(b).

85 In contrast, trademark marking through use of the encircled R symbol or a trademark legend,
Lanham Act, see note 6, § 1129, is likely to be considered a trademark notice. However, these are ancil-
lary to trademarks, not the trademark itself. And no marking will be required if the trademark is not
present.

84 Black’s Law Dictionary, 11th edn (Eagen, MN: Thomason Reuters, 2019) (defining ‘attribution
right’ as ‘a person’s right to be credited as a work’s author, to have one’s name appear in connection with
awork, or to forbid the use of one’s name in connection with a work that the person did not create’)

85 GPLv3 § 7(e).

86 At one point, twenty Open Source software companies were reported to be using this licensing
language. Rick Moen, ‘When is an Open Source License Open Source?’ (2007) <https://web.archive.
org/web/20161220023005/http://www.linuxgazette.net/141/misc/lg/when_is_an_open_source_lice

TRADEMARKS 211

This License does not grant any rights to use the trademarks ‘SugarCRM’ and
the ‘SugarCRM’ logos even if such marks are included in the Original Code or
Modifications.

However, in addition to the other notice obligations, all copies of the Covered
Code in Executable and Source Code form distributed must, as a form of attribu-
tion of the original author, include on each user interface screen (i) the ‘Powered
by SugarCRM’ logo%

This licence, and the practice of requiring use of the trademark more generally, is
inadvisable for several reasons.

In thelicence, ‘Covered Code’ is defined as both the original code and any modi-
fications of it, where modifications include additions, deletions, and new files.®8 No
matter how much the downstream user has changed the code, it will be considered
‘Covered Code, with the resulting requirement that the origin code’s trademark
be displayed. Since the licensor has no control over their modifications, the trade-
marKk is at risk of being invalidated as a naked licence (see section 9.2.7.1).

And rather than burnishing the Open Source licensor’s reputation, it is equally
possible that it will harm the licensor’s reputation. Changes made downstream may
break the software, or the code may be changed for malicious reasons. For example,
the Mozilla Firefox browser, distributed at no cost, was used in a ‘subscription trap’
scheme to charge for the software.®” The trademark owner who requires the use

nse_open_source.html> accessed 19 January 2020 (‘SugarCRM started the trend, and the other dozen-
odd firms (Socialtext, Alfresco, Zimbra, Qlusters, Jitterbit, Scalix, MuleSource, Dimdim, Agnitas
AG, Openbravo, Emu Software, Terracotta, Cognizo Technologies, ValueCard, KnowledgeTree,
OpenCountry, 1BizCom, MedSphere, vTiger) literally copied their so-called “MPL-style” license, with
minor variations.).

87 ‘SugarCRM Public License v1.1.3* <https://spdx.org/licenses/SugarCRM-1.1.3.html> accessed
12 December. The licence continues: ‘In addition, the “Powered by SugarCRM” logo must be visible
to all users and be located at the very bottom center of each user interface screen. Notwithstanding
the above, the dimensions of the ‘Powered By SugarCRM’ logo must be at least 106 x 23 pixels. When
users click on the “Powered by SugarCRM” logo it must direct them back to http://www.sugarforge.
org....

Also, the disclaimer that there is no licence granted to the trademark, yet requiring that the trade-
mark be used, is irreconcilably inconsistent. Frequently software trademark guidelines include a state-
ment that one may use a trademark as long as there is no suggestion of affiliation or endorsement. See,
e.g., Wordpress Foundation, ‘WordPress Foundation Trademark Policy’ <http://wordpressfoundation.
org/trademark-policy/> accessed 19 January 2020 (‘All other WordPress-related businesses or projects
can use the WordPress name and logo to refer to and explain their services, but they cannot use them
as part of a product, project, service, domain, or company name and they cannot use them in any way
that suggests an affiliation with or endorsement by the WordPress Foundation or the WordPress Open
Source project.’). Perhaps a party’s claim that no licence is granted while simultaneously requiring use
of the trademark is an inartful effort to convey that using the logo is not meant to suggest that there is
any affiliation or endorsement by the party of the subsequent distribution.

8 ‘SugarCRM Public License v1.1.3’ see note 87.

89 Michael Kerrisk, LWN.net ‘Mozilla’s Trademark Enforcement Experience’ (2013) <https://lwn.
net/Articles/546678/> accessed 19 January 2020.

212 PAMELA CHESTEK

of its trademark will suffer reputational harm from the substandard software or
fraudulent use and may risk creating liability itself for the bad acts of others.*

9.7 Conclusion

Trademarks are the only proprietary right that can be fully exercised by Open
Source projects. The law treats Open Source trademarks no differently than any
other trademark, but the Open Source field has special considerations, both the
particular ethos of the parties and the specific doctrines that commonly arise, that
the trademark solicitor should consider when engaging in trademark work.

90 Kennedy v Guess, Inc, 806 N.E.2d 776, 786 (Ind. 2004) (holding that trademark licensors may have
liability for personal injury claims for products they have licensed).

10
Patents and the Defensive Response

Malcolm Bain and P McCoy Smith

10.1 Patents and Software 213 10.4.1 Patent clauses in Open
10.2 Patents 101: Why Are Patents Source licences 235
Relevant to Open Source? 217 10.4.2 First-generation Open
10.2.1 InEurope 217 Source licences 235
10.2.2 Inthe US 219 10.4.3 Second-generation Open
10.2.3 Differences with §0urce licence.s o 237
copyright 222 10.4.4 ‘Patent defensive suspension

224 clauses 240
10.4.5 Open Source software as
prior art, peer to patent, and

10.2.4 Patent remedies

10.3 Patents and Open
Source Interactions 226

defensive publication 243
1031 Eli]:‘l]zg?;?; gld 10.5 Patent Busting and Patent
pen
Source 226 Pools 245
10.3.2 Frictions with the patent 10.6 Patent Litigations Initiated
regime: differences Against Open Source 249
in concept 227 10.7 Conclusions 252
10.3.3 Patent frictions in practice 229 10.7.1 Ifyou can’t beat them...
10.4 How Open Source Deals should you join them? 252
with Patents 235 10.7.2 Patent reform 253

10.1 Patents and Software

As discussed in more detail in Chapter 3, the foundation of Open Source licensing
is copyright, and in the beginning, consideration of patent rights and patent li-
cences was not paramount. The BSD license,! one of the first Open Source licences
created (circa 1988), states its licence grant as follows:

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

... Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

! There are several different variants of the BSD licence; this text is reproduced from the ‘BSD 3-
clause license’—the most commonly used BSD variant—as found on the Open Source Initiative’s web-
site. <https://opensource.org/licenses/BSD-3-Clause> accessed 12 August 2020.

Malcolm Bain and P McCoy Smith, Patents and the Defensive Response In: Open Source Law, Policy and
Practice. Edited by: Amanda Brock, Oxford University Press. © Malcolm Bain and P McCoy Smith 2022.
DOI: 10.1093/0s0/9780198862345.003.0010

214 MALCOLM BAIN AND P MCCOY SMITH

... Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution....

No express mention is made of patents in this grant, although at least one verb—
‘use”—that is an exclusive right of a patent holder is recited.’ Similarly, the MIT
License, another early Open Source licence created around the same time as the
BSD License, states its grant as follows:

Permission is hereby granted, free of charge, ... to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so

Thus, the MIT License? uses at least two of the verbs—‘use” and ‘sell'—that are
exclusive rights of a patent holder. At least one commentator has argued that
MIT’s open ended grant ‘to deal in the Software without restriction, followed
by exemplary verbs from copyright and patent rights, confers a complete patent
licence.”

Nevertheless, concerns have long been raised about the scope of patent rights
that might be conferred—or might be withheld—in the early Open Source li-
cences. More recent Open Source licences approved by the Open Source Initiative
(OSI)—for example the GNU General Public License version 3 (GPLv3 2007) and
the Mozilla Public Licence version 2 (MPLv2 2012)—deal quite extensively with
patents. For example, relevant portions of the MPLv2° read:

2.1. Grants
Each Contributor hereby grants You a world-wide, RE, non-exclusive license:...
under Patent Claims of such Contributor to make, use, sell, offer for sale, have

2 For example, UK Patents Act 1977 § 60; 35 USC § 271(a).

3 Despite the fact that the general licence grant of the BSD licence is more than thirty years old,
there continues to be a debate as to whether any patent rights are conferred by a licensor that chooses
to use that licence with their software. Compare David Kappos and Miling Harrington, “The Truth
About OSS-FRAND: By All Indications, Compatible Models in Standards Settings’ (2019) 20(2)
Columbia University Science and Technology Law Review 240-50 with Van Lindberg, ‘OSS and
FRAND: Complementary Models for Innovation and Development’ (2019) 20(2) Columbia University
Science and Technology Law Review 251-70.

* Open Source Initiative, ‘MIT License’ <https://opensource.org/licenses/MIT> accessed 18
August 2020.

5 Scott Peterson, ‘Why so little love for the patent grant in the MIT License?” Opensource.com
(23 March 2018) <https://opensource.com/article/18/3/patent-grant-mit-license> accessed 19
March 2021.

® Open Source Initiative, ‘Mozilla Public License’ <http://opensource.org/licenses/MPL-2.0> ac-
cessed 12 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 215

made, import, and otherwise transfer either its Contributions or its Contributor
Version.

2.3 Limitations on Grant Scope

... [N]o patent license is granted by a Contributor ... for any code that a
Contributor has removed from Covered Software; or for infringements caused
by: (i) Your and any other third party’s modifications of Covered Software, or (ii)
the combination of its Contributions with other software (except as part of its
Contributor Version); or under Patent Claims infringed by Covered Software in
the absence of its Contributions.

5.2. If You initiate litigation against any entity by asserting a patent infringe-
ment claim (excluding declaratory judgment actions, counter-claims, and cross-
claims) alleging that a Contributor Version directly or indirectly infringes any
patent, then the rights granted to You by any and all Contributors for the Covered
Software under Section 2.1 of this License shall terminate.

The GNU General Public License was perhaps the first Open Source License to
discuss patent rights in any detail; the second version of the GNU General Public
License (version 2, in 1991), indicated that software patents were considered a risk
for free software. Version 2 of that license, GPLv2, warned of patent threats in its pre-
amble: ‘[A]ny free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licences, in effect making the program proprietary.... GPLv2 includes pro-
visions purporting to deal with patents, in a clause referred to by the Free Software
Foundation (FSF)—the GPLs authors—as the ‘Liberty or Death clause’ [T]he
clause that says if somebody uses a patent or something else to effectively make a
program non-free then it cannot be distributed at all” ‘[P]atents not only do not
assist in the production of innovative software, they can potentially destroy the free
software production system, which is the world’s most important source of software
innovation.® While over the years Open Source licences themselves have become
more sophisticated with regard to patents—at least to the extent that they make ex-
plicit that those that contribute code under an Open Source licence do not reserve
the right to assert their patents against those making use of their contributions—
there is only so much licences can do to guard against the threat of patent assertions,
as a licence only binds those that make use of the rights granted under that licence.
Although the threat of patent assertions made against Open Source by patent

7 FSFE, ‘Transcript of Richard Stallman at the 2nd international GPLv3 conference; 21st April 2006’
<fsfe.org/campaigns/gplv3/fisl-rms-transcript.en.html> accessed 12 August 2020.

8 Eben Moglen, ‘Free software matters: Patently controversial’ Moglen Law (2001) <http://moglen.
law.columbia.edu/publications/lu-16.html> accessed 12 August 2020.

216 MALCOLM BAIN AND P MCCOY SMITH

holders who are not participants (via contributions, or via exercising licence grants)
has been recognised since at least the release of GPLv2 in 1991, it has only been
more recently that initiatives involving the Open Source community have been set
up to fend off the threat of the use of patents to limit the creation and use of free soft-
ware. One example is the Open Invention Network,’ a patent pool for providing pa-
tent non-assertion commitments to the GNU/Linux operating system ecosystem.

What seems paradoxical is that patents and free software appear to share the
same basic objective: to promote development and innovation through trans-
parency and disclosure. It is on the basis of disclosing and sharing knowledge (in
patent applications) or through access to source code (in Open Source) that new
inventions or innovations may be made over existing technology, whether in an
incremental manner or by ‘intuitive’ leaps. Even the legal technique established for
promoting inventions via the patent system—that is granting exclusive rights that
may be exercised by the inventor to control the exploitation of the invention by
others—should not have been a problem: a similar legal framework of exclusive
rights in the area of copyright has been used by the free software community from
the start as the very basis for granting and ensuring software freedoms.!?

However, there are significant friction areas between the two models or ap-
proaches to innovation; particularly the fact that patents provide for exclusive con-
trol over all and any implementations of a patented idea—as that idea is defined in
a granted patent claim—and not just an expression of that idea as with copyright,
which gives rise to problems and potential legal risks for free software. The purpose
of this chapter is to explore these issues, to understand how the Open Source com-
munity tries to deal with patents with the aim of ensuring software freedoms, and
concludes by commenting on proposals that have been made to remedy the situ-
ation and mitigate the risks.

Therefore, in this chapter we first look at why patents are relevant to Open
Source—briefly, the question of software patentability and the differences with
copyright, and then, taking into account the free software development and li-
censing models, we consider what the impacts are for Open Source: the inter-
relations and frictions areas between free software licensing models and patents.
Next, how patents are dealt with by the community from a structural point of
view—particularly patent-related licensing provisions in free software licences—is
reviewed. A discussion of the litigation environment, specifically as it relates to pa-
tent assertions against Open Source, is discussed. Finally, how the risks posed by
patents—or the way patents are wielded—to the Open Source community may be
mitigated, if not removed entirely, are summarised.

 Open Invention Network <http://www.openinventionnetwork.com> accessed 9 March 2021.

19 Richard Stallman, “The Free Software Definition’ in Free Software, Free Society: The Selected Essays
of Richard M. Stallman, 2nd edn (Boston, MA: GNU Press, Free Software Foundation, 2002-10) 43-6,
available at <http://www.gnu.org/philosophy/fsfs/rms-essays.pdf> accessed 23 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 217
10.2 Patents 101: Why Are Patents Relevant to Open Source?

Patents are exclusionary rights'! granted to inventors over an invention, conveying
to the patent holder rights to exclude anyone else from exploiting the invention as
claimed in the patent in the specific territory for which the patent is granted, for a
limited period. In return, the patent holder is obligated to provide a full disclosure
of the invention to the public. Patents are granted on application to territorial pa-
tent offices (e.g., the UK Intellectual Property Office), after examination for patent-
ability, as well as other eligibility criteria, under the applicable rules.

10.2.1 In Europe

Within Europe, patents are regulated on a regional basis by the European Patent
Convention (EPC), which creates a European patent with potential effects in the
territories of the signatories to the Convention, and on national bases by the cor-
responding national patent laws, for example the UK Patents Act 1977, or the
Spanish Ley 11/1986 de Patentes. In this chapter we will mainly comment on the
EPC provisions with respect to software, though it is important to note that it is
the national courts applying the law of the member states who ultimately decide
on patent validity or infringement, though they tend to follow the European Patent
Office (EPO) practice and Board of Appeal decisions.

The state of patenting for software has long been controversial, and there are
many arguments as to whether software does or should constitute patentable sub-
ject matter. Patents are granted for inventions in all fields of technology that are
new, involve an inventive step,'? and are capable of industrial application.!* The
EPC does not define what is an ‘invention’ It does, however, provide a negative
limitation, giving examples of what are not to be regarded as inventions. Relevant
for the purposes of Open Source is the specific exclusion, under Article 52(2)(c)
EPC, of ‘programs for computers.

However, this exclusion is then limited by Article 52.3, which provides that
these items are excluded ‘only to the extent to which a European patent applica-
tion relates to such subject matter or activities as such’ It is these last two words, ‘as
such; that have caused an ongoing and acrimonious debate about software patent-
ability under the EPC, and also under the European national legislations, many of
which provide a translation or approximation of this double exclusion/limitation

! Patents are not ‘exclusive’ rights, i.e. a positive and exclusive right to do something, but rather a
negative right to exclude others from implementing the claims granted in the patent document.

12 In the US, this concept is referred to as ‘non-obviousness’ See 35 USC § 103.

13 EPC, Article 52. In the US, a related—but not completely analogous—requirement is "usefulness.
See35USC§ 101.

218 MALCOLM BAIN AND P MCCOY SMITH

with regard to software,'* and which ultimately is the benchmark against which the
validity of the European patent is measured.'

It is not the purpose of this chapter to review the situation of software pat-
entability within Europe, as we aim to focus on the interaction between soft-
ware patents—however well or justifiably granted—and Open Source.!® Suffice
to say that the EPO has long been granting patents over what have been named
‘computer-implemented inventions’ (CII), on the basis that they are granting pa-
tents over inventions that have technical character and a technical effect that goes
beyond the normal interaction of the software with the computer, although iron-
ically ‘technical’ is not defined in the EPC.!” European national courts (with some
reticence, it was once thought, in England and Wales, but that has proven not to
be s0) are upholding those grants.!® What is more, in the light of the debate about
software patentability, the Enlarged Board of the EPO rejected the EPO President’s
request to undertake a full review of the situation, at the instigation of the English
High Court, considering that the ‘case law’ created by the EPO Boards of Appeal is
sufficiently clear.!

Indeed, if the Boards continue to follow the precepts of T 1173/97 IBM it fol-
lows that a claim to a computer implemented method or a computer program
on a computer-readable storage medium will never fall within the exclusion of
claimed subject-matter under Articles 52(2) and (3) EPC, just as a claim to a pic-
ture on a cup will also never fall under this exclusion. However, this does not
mean that the list of subject-matters in Article 52(2) EPC (including in particular
‘programs for computers’) has no effect on such claims. An elaborate system for

4 For example, Spanish Patent Act 11/1986, art 4.

15 The proposed Unified Patent Court, approved by the European Council of Ministers and European
Parliament, does not exclude software patents per se, but does have limits to enforcing such patents
consistent with European Parliament directives allowing for reverse compilation and interoperability.
Agreement on a Unified Patent Court, UPC/en 34 n. 1 (19 February 2013).

16 There are a significant number of thoughtful papers written on this subject. See Noam Shemtov,
‘Software Patents and Open Source Models in Europe: Does the FOSS Community Need to Worry
About Current Attitudes at the EPO?’ (2010) 2(2) Journal of Open Learning, Technology ¢ Society
(JOLTS) 151-64; Avi Freeman, ‘Patentable Subject Matter: The View From Europe’ (2011) 3(1) Journal
of Open Learning, Technology ¢ Society 59-80; Colleen Chien, ‘From Arms Race to Marketplace: The
Complex Patent Ecosystem and Its Implications for the Patent System’ (2010) 62 Hastings Law Journal
297-356; Mark Lemley, ‘Software Patents and the Return of Functional Claiming’ 2013 Wisconsin
Law Review 905-64, available at <http://ssrn.com/abstract=2117302 or <http://dx.doi.org/10.2139/
ssrn.2117302> accessed 21 July 2022.

17 EPO Board of Appeal Decisions: Computer program I/IBM (T1173/97) and Computer program
II/IBM (T 0935/97). See EPO, Guidelines for Examination in the European Patent Office, G-I 3.6
(2019), available at <https://www.epo.org/law-practice/legal-texts/html/guidelines/e/g_ii_3_6.htm>
accessed 24 August 2020.

18 For example, Aerotel Ltd v Telco Holdings Ltd [2007] RPC 7; Macrossan’s Application 2006 [EWCA],
followed by Symbian Ltd v Comptroller General of Patents [2008] EWCA Civ 1066; Halliburton Energy
Inc’s Patent [2011] EWHC 2508 (Pat).

19 Enlarged Board of Appeal Opinion G3/08. For commentary, see Freeman, ‘Patentable Subject
Matter: The View From Europe) note 16.

PATENTS AND THE DEFENSIVE RESPONSE 219

taking that effect into account in the assessment of whether there is an inventive
step has been developed, as laid out in T 154/04, Duns. While it is not the task
of the Enlarged Board in this Opinion to judge whether this system is correct,
since none of the questions put relate directly to its use, it is evident from its fre-
quent use in decisions of the Boards of Appeal that the list of ‘non-inventions’ in
Article 52(2) EPC can play a very important role in determining whether claimed
subject-matter is inventive ... It would appear that the case law, as summarised
in T 154/04, has created a practicable system for delimiting the innovations for
which a patent may be granted.

In practice, as stated on various occasions by examiners of the EPO, while they
consider software-based inventions with technical effect as patentable subject
matter, many software patent applications are being rejected on the basis of lack
of novelty (the second hurdle, considering ‘patentable subject matter’ as the first)
or lack of inventive step (the third hurdle).?! In particular, mere computer- or
software-based automation of constraints imposed by non-technical aspects—
specifically those that are excluded by the EPC—notably mental acts, games, busi-
ness methods, or methods for presenting information, are allegedly not being
granted patent protection.??

10.2.2 Inthe US

In the US, for many years the leading decisions in the debate on software patent-
ability were the US Supreme Court’s decision in Diamond v Diehr* and subse-
quently State Street Bank & Trust v Signature Financial Services** where the Court
of Appeals for the Federal Circuit held that a computerised algorithm for man-
aging an investment fund structure constituted patentable subject matter which
should be evaluated under the usual US tests of usefulness, novelty, and non-
obviousness.?> Subsequently, in In re Bilski, the Federal Circuit seemed to have

20 See, e.g., EPO presentation by Eugenio Archontopoulos, ‘Spot the Differences, A Computer-
implemented Invention or a Software Patent?” (6th Annual Conference of the EPIP Association,
Brussels, 2011) <https://www.researchgate.net/publication/230818897_Spot_the_difference_a_compu
ter-implemented_invention_or_a_software_patent> accessed 16 June 2022.;

2l In particular, features making no contribution to the technical character cannot support the pres-
ence of inventive step (Comvik (T0641/00) and Duns Licensing (T0154/04)). Also, Hanon ‘What makes
an Invention—How patent applications are examined at the European Patent Office] see note 20, and
Archontopoulos, ‘Spot the Differences, A Computer-implemented Invention or a Software Patent?’ see
note 20.

22 Ricoh Decision T 03/0172; Hitachi Decision T 03/0258.

23 450 US 175 (1981).

24 149 E.3d 1368 (Fed Cir 1998) cert denied; 525 U.S. 1093 (1999).

25 See Christopher Ogden, ‘Patentability of Algorithms after State Street Bank: The Death of the
Physicality Requirement’ (2000) 10(82) Journal of Patent and Trademark Office Society 491-513.

220 MALCOLM BAIN AND P MCCOY SMITH

begun to apply a more strict approach towards software patentability:?° it found
that a patent on a method of hedging financial risk in commodity trading claimed
‘neither a new machine nor a transformation of matter, and thus was too abstract
and non-patentable subject matter. However, the US Supreme Court then miti-
gated this analysis, to a certain extent, holding that the ‘machine-or-transformation
test” is not the only test for determining the patent eligibility of a process (but ra-
ther ‘a useful and important clue ... an investigative tool, for determining whether
some claimed inventions are processes under §101°).2” And in Mayo Collaborative
Services v Prometheus Laboratories, Inc,”® the US Supreme Court reaffirmed the
judicially created exception that makes ‘laws of nature, natural phenomena, and
abstract ideas’ ineligible for patenting, leading some to believe that there was an
opening of the judicial ‘door’ to making the argument that software code is merely
a series of mathematical algorithms and, as such, a description of abstract laws of
nature.

The US Supreme Court’s later decision in CLS Bank v Alice Corp® buttressed
the importance of the non-software decision in Mayo, on software-related pat-
entability determinations. Much like Bilski, Alice related to implementation of a
business method: in Alice, a software-implemented system for managing escrow
debt. In finding that particular invention patent-ineligible, the US Supreme Court
stated that a two-step ‘Mayo framework’ should be used in evaluating patent eligi-
bility questions: the first step is to determine whether the challenged patent claim
contains an ‘abstract idea, such as an algorithm, method of computation, or other
general principle; if it does, then the second step is to determine whether the chal-
lenged patent adds to the abstract idea an ‘additional feature’ that embodies an ‘in-
ventive concept’ 3 If so, the challenged claim is patent-eligible.’!

26 In re Bilski 545 F.3d 943 (Fed Cir 2008) (en banc). For comment, see, e.g., Dennis Crouch, ‘In re
Bilski: Patentable Process Must Either (1) Be Tied to a particular machine or (2) Transform a Particular
Article’ PatentlyO (30 October 2008) <http://www.patentlyo.com/patent/2008/10/in-re-bilski.html>>
accessed 19 March 2021.

27 Bilski v Kappos, No 08-964, 561 U.S. (2010). Comment by Crouch, ‘In re Bilski, see note 26.

28 Mayo Collaborative Services v Prometheus Laboratories, Inc 566 US (2012). Decision available at
<http://www.supremecourt.gov/opinions/11pdf/10-1150.pdf> accessed 19 March 2021.

29 573 US 208 (2014).

30 The addition of the ‘inventive concept’ test to patent eligibility determinations under Alice has
been widely criticised as improperly conflating the non-obviousness requirement of 35 USC § 103 with
the general patent eligibility requirements of 35 USC § 101. See Paxton Lewis, “The Conflation of Patent
Eligibility and Obviousness: Alice’s Substitution of Section 103’ (2017) 1 Utah OnLaw: The Utah Law
Review Supplement Article 1, 13-32..

31 The Bilski-Mayo-Alice triumvirate of US Supreme Court eligibility cases may not have entirely
settled the question of how to evaluate whether a patent is directed to merely an ‘abstract idea’ and
thus patent-ineligible. The Court of Appeals for the Federal Circuit’s decision in American Axle
& Manufacturing, Inc. v Neapco Holdings LLC, 939 F.3d 1355 (Fed. Cir. 2019) has been argued to
import yet another statutory requirement—enablement under 35 USC § 112—into the ‘abstract
idea’ analysis. David Taylor, ‘Opinion Summary—American Axle & Manufacturing, Inc. v. Neapco
Holdings LLC’ Federal Circuit Blog (31 July 2020) <https://fedcircuitblog.com/2020/07/31/opin

PATENTS AND THE DEFENSIVE RESPONSE 221

Despite continued questions about the manner in which to evaluate the eligi-
bility for patenting of software in the US, the number of ‘software patents’ being
granted does not appear to have slowed down. This has also led to questions not
only about whether many of the ‘software patents’ granted in the US—particularly
those in the period between the State Street and Bilski & Alice decisions—are weak,
if not trivial, and might ultimately fail upon a challenge as to eligibility under the
current, or to be outlined in the future, test. In the interim, commentators have
remarked upon the creation of patent ‘thickets’ of overlapping and poor-quality
patents, which close down innovation and may make it difficult to operate in the
software sector.??

So, allin all, current industry practice, the pressure from large software industry
companies and other non-industry players such as non-practising entities, com-
bined with the lack of resources and time for reviewing patents at the patent offices
and the lack of access to relevant prior art in the field,* together mean that software
patents have been and are still being granted over software implemented processes
and methods on both sides of the Atlantic as well as in Japan, another key juris-
diction. Specific examples include security algorithms for encryption, audiovisual
data codification and decodification (‘codecs’), online data back-up, graphical user

interface features, ‘one-click’ online shopping systems, frames for displaying infor-

mation on computer interfaces, and the list goes on.>*

ion-summary-american-axle-manufacturing-inc-v-neapco-holdings-llc/> accessed 28 August
2020. There seems to be some likelihood that the contours of the test for determining patent eli-
gibility for claims argued to be directed to ‘abstract ideas’ have yet to be fully defined in the US,
and there was thought to be a reasonably likelihood that the US Supreme Court might take up the
American Axle case to further clarify patent eligibility—which might include clarifying patent eli-
gibility for software in the US. Eileen McDermott, ‘Solicitor General Tells SCOTUS CAFC Got it
Wrong in American Axle, Recommends Granting’ IP Watchdog (24 May 2022) https://www.ipw
atchdog.com/2022/05/24/solicitor-general-tells-scotus-cafc-got-wrong-american-axle-recomme
nds-granting/id=149248/> accessed 14 June 2022 (noting that the Solicitor General of the US—the
office which offers the US Government’s position on cases before the Supreme Court of the US—had
requested that that court reexamine patent eligibility through that case). Much to the surprise of
many who felt that the American Axle case was an ideal vehicle for further clarifying (or possibly
changing) the patent-eligibility standards in the US, the US Supreme Court ultimately declined to
review that decision. See Blake Brittain, ‘U.S. Supreme Court rejects American Axle case on patent
eligibility, Yahoo! News (30 June 2022) <https://news.yahoo.com/u-supreme-court-rejects-ameri
can-171958332.html> accessed 30 June 2022.

32 Rosa Ballardini, “The Software Patent Thicket: A Matter of Disclosure’ (2009) 6(2) SCRIPTed
<https://script-ed.org/wp-content/uploads/2016/07/6-2-Ballardini.pdf> accessed 19 March 2021,
DOI: 10.2966/scrip.060209.207.

3 Software patenting has a long history, dating back to at least the late 1960s. Gene Quinn, ‘The
History of Software Patents in the US’ IP Watchdog (30 November 2014) <https://www.ipwatchdog.
com/2014/11/30/the-history-of-software-patents-in-the-united-states/> accessed 19 March 2021.
Nevertheless, for quite some period, there was little ‘prior art’ previously published in a meaningful
manner —particularly in patent office databases—for disclosure against subsequent patenting.

3 An interesting series of software patents can be found at the End Soft Patents wiki, ‘Example soft-
ware patents’ <http://en.swpat.org/wiki/Example_software_patents> accessed 19 March 2021.

222 MALCOLM BAIN AND P MCCOY SMITH
10.2.3 Differences with copyright

When a patent is granted on a software-based invention or CII, it doesn’t just grant
exclusionary rights over the exploitation of a specific implementation of that in-
vention, but any implementation of the invention that meets all the elements of
any claim in that patent—it protects the functional features of the ‘invention, the
underlying methodologies, in any manner or form of expression. This is in contrast
with copyright protection, which only protects the expression embodied in either
the source or binary code of the software.

This means that while copyright protection is generally weaker than patent pro-
tection, it is more specific, referring only to the concrete expression of the code
developed by the programer. This has the advantages of providing legal certainty
with regard to what exactly is prohibited or restricted by copyright, particularly
verbatim copying,® and what is permitted—alternative or clean room develop-
ment of similar functions, incremental development of additional functionalities,
or complementary development of other programs using software interfaces and
interoperability characteristics. Being more specific and restricted to expression,
copyright enables a much broader range of alternative implementations and im-
provements of a same idea or function, through different algorithms, coding lan-
guages, or architectures.

There is a crucial distinction between the way patent and copyright concepts
respond to the challenge free software poses. Copyright law is primarily intended
to cover expressions, not ideas. So, if in a particular instance software copyright
inhibits progress in making better, more reliable, or more effective software, the
inhibition can be overcome: it is always possible for programers, with sufficient
guidance and appropriate measures to prevent copying, to sit down and rewrite
from scratch whatever program needs to be available in a freely modifiable version.
This may be time-consuming, but it cannot be forbidden. Patent law, in contrast,
prohibits anyone from practising the claimed subject matter of the patent without
licence. It does not matter how you came by the idea the patent discloses, even if
you invented it for yourself in complete ignorance of the patent and any prior art it
references: without a licence you cannot implement, in any way, the claimed sub-
ject matter of what may be quite general claims.3® This enables patent holders po-
tentially to restrict competition by other developers wishing to implement similar
functionalities in their own programs using completely different code expressions.
Patents can also seem vaguer or less definite, particularly in the way software pa-
tents have been drafted in the time before the Bilski, Mayo, and Alice decisions in

% To a major extent, although there are always questions about non-verbatim copying and derivative
works which the courts deal with on a fairly regular basis.

3 Eben Moglen, ‘Free Software Matters: The Patent Problem’ Moglen Law (9 October 2000) <http://
moglen.law.columbia.edu/publications/lu-05.html> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE 223

the US. It is often quite difficult to determine exactly if the implementation of a
software process may infringe an existing patent, as there is no way to ‘clean roomy’
develop code to avoid a patent. This creates significant legal uncertainty.

The law on software patents, unlike software copyright in jurisdictions like the
European Union (EU), provides no exemption for interfaces. As an interface is a
set of definitions or specification of a method or process (for using the program or
data), it is particularly prone to being ‘patentable’ So not only is there the potential
for patents foreclosing specific computer-based processes but also there may be
patents over software interfaces that may be required to connect with and use soft-
ware processes.

Another significant difference between copyright and patents (relevant for
Open Source) is the characteristics and structures of creation and ownership of
rights: copyright in a software program belongs originally to its creator (or the
company where the creator works), who has invested time and effort in devel-
oping the code, and the rights may be licensed or assigned, usually to someone who
wishes to use or further develop the program. Thus, copyright rights are generally
held by parties interested in exploiting the software. A patent is first owned by its
inventor, who may or may not be a software developer. As there is not necessarily
any ‘software development’ involved in inventing a process that may be embodied
by software, the patent rights may be held by any party, who may or may not be
interested in implementing the patented process or method, and in some cases
may be held by a party interested in controlling or precluding the use by others of
the patented process or method.

This situation is illustrated by what have been now called ‘non-practising
entities’ (NPEs) (often pejoratively described as ‘patent trolls’).>” These are persons
or companies that do not have any particular interest themselves in exploiting the
software that implements the patented processes, but only in asserting the patent
rights against participants in the software industry interested in the invention, as
a mechanism to extract royalty or other payments. NPEs also are less susceptible
to external pressures that would otherwise forestall their use of patents to inhibit
software use and deployment—because they have no business other than to assert
patents, counter-assertions or business pressures are generally ineffective. While
assertions of this sort are a legitimate function of patent rights, this creates a signifi-
cant imbalance in the software sector and can constitute a major block on innov-
ation.*® This is not to say that there are not ‘copyright trolls, monetising copyrights

37 Wikipedia, ‘Patent troll’ <http://en.wikipedia.org/wiki/Patent_troll> accessed 19 March 2021.

38 PFor commentary, see James Bessen, Michael Meurer, and Jennifer Ford, “The Private and Social
Costs of Patent Trolls’ (19 September 2011) Boston University School of Law, Law and Economics
Research Paper No. 11-45 <http://ssrn.com/abstract=1930272> or <http://dx.doi.org/10.2139/
ssrn.1930272>.

224 MALCOLM BAIN AND P MCCOY SMITH

through litigation.* We will comment further on this later, when looking at the
interactions and frictions between Open Source and patents.

10.2.4 Patent remedies

The remedies available to patent holders in the case of infringement are important
to understand the potential effect of patents against Open Source. National courts
in Europe are competent to hear infringement cases and determine remedies of
both the national equivalents of European patents and patents issued directly by
their national offices. However, except for very limited circumstances, the national
court’s decision will only apply in its territory, and if the infringement occurs in
several states, then proceedings would have to be brought independently in each
country.?® This is likely to change when the Unified Patent Court (UPC)*! comes
to fruition. The UPC will be a specialised patent court with exclusive jurisdiction
for litigation relating to European patents and European patents with unitary ef-
fect (unitary patents). In practice, absent a UPC, Germany seems to be one of the
favourite states to start infringement proceedings, as those proceedings are rela-
tively cheaper and faster there (many decisions are made under the fast injunction

3 In the early 2000s, SCO was accused of being a ‘copyright troll’ against UNIX and Linux. David
Kravets, ‘Copyright troll loses high-stakes Unix battle’ Wired (31 March 2010) <https://www.wired.
com/2010/03/unix-copyrights/#ixzz0yUsnFxzG> accessed 28 August 2020. More recently, an indi-
vidual named Patrick McHardy has been accused of being a ‘copyright troll” as the result of GPL viola-
tion lawsuits filed in Germany. Ieva Giedrimaite, ‘Copyright trolling: Abusive litigation based on a GPL
compliance’ The IP Kitten (24 February 2019) <https://ipkitten.blogspot.com/2019/02/copyright-troll
ing-abusive-litigation.html> accessed 28 August 2020.

0 Tt is possible to bring action against the defendant in its jurisdiction of residence and the local
courts may in this case handle infringements across the relevant EU territories based on the origin of
infringement with the defendant in its residential jurisdiction. There is also a practice in Dutch courts of
granting cross-border injunctions in patent cases, although the circumstances under which can be done
are likely limited to summary proceedings. Renaud Dupont, ‘Cross-border injunctions are back in the
Netherlands’ Lexology (27 September 2011) <https://www.lexology.com/library/detail.aspx?g=2b5e8
efl-bf5a-46fd-8499-61f766c83424> accessed 29 August 2020. See also Solvay SA v Honeywell Fluorine
Products Europe BV, Case C-616/10 (ECJ 12 July 2012).

4 The Agreement on the UPC was endorsed by EU ministers in the Competitiveness Council on
10 December 2012 and by the European Parliament on 11 December 2012; because of Brexit and an
adverse ruling from the German Federal Constitutional Court, the Unified Patent Court was for some
time believed not to have achieve sufficient ratification to commence, and many predicted that it would
not be instituted. James Nurton, ‘German decision puts Unified Patent Court agreement in jeopardy’
IP Watchdog (20 March 2020) <https://www.ipwatchdog.com/2020/03/20/german-decision-puts-unif
ied-patent-court-agreement-jeopardy/id=120013/> accessed 29 August 2020. However, Germany
eventually ratified the UPC, setting the UPC up to commence operation in 2022 or 2023—although
there still remain questions as to whether the UK is required to ratify and participate in the UPC.
Christoph Criitzen, Benjamin Beck, and Maximilian Kiicking, ‘Germany Ratifies EU Unified Patent
Court (UPC) Agreement, but Prospects for the UPC Remain Uncertain, Mayer Brown blog (18 August
2021) <https://www.mayerbrown.com/en/perspectives-events/publications/2021/08/ger-germany-
ratifies-eu-unified-patent-court-agreement> accessed 14 June 2022.

PATENTS AND THE DEFENSIVE RESPONSE 225

procedure), something that has been seen in the case of the Apple v Samsung pro-
ceedings relating to Samsung’s ‘Galaxy’ tablet.*?

Remedies have been broadly harmonised across the EU through Directive
2004/48/EC of the European Parliament and of the Council of 29 April 2004 on
the enforcement of intellectual property (IP) rights.** Remedies include both pre-
cautionary measures, such as preliminary injunctions and seizure, as well as per-
manent orders and monetary damages.

As the patent holder’s main goal is to stop the infringing party’s actions, it will
mainly aim for preliminary and then permanent injunctions to cease the manu-
facture, distribution, commercialisation, and use of the infringing product. In
addition, at the preliminary stage the patentee may request an order to seize or pro-
duce for audit products, tools (including computer equipment), production plants,
books of account, invoices, and advertising materials, the latter in order to collect
documentary evidence of the infringement and its extent; and a blocking order to
stop imports at the national borders. In the extreme, a patentee may also request
freezing the allegedly infringing party’s bank accounts. Thereafter, when infringe-
ment is finally determined, the rights holder can request a declaration of the val-
idity of the patent and the destruction of the infringing items.

If infringement is found, damages may be applied for to compensate for the
infringing activities, either as accounts for profits made, monetary compensation
for lost profit of the patent holder, or the fees the patentee would have charged for
granting a licence (probably the preferred method, as proving lost profits or trying
to work out the infringer’s illegitimate profit made on the basis of the patented
item, can be difficult).

We will see in the following section how difficult it is to apply these concepts in
the Open Source software context. Not only is identifying infringers of a CII im-
plemented in Open Source potentially unknown or difficult to identify or locate
(assuming that the Open Source project is the ‘person’ infringing a third party’s pa-
tent), but also it can be extraordinarily difficult to prevent distribution of intangible
goods (that may infringe on patent rights) on the Internet.**

This is not the case when the software is embedded in hardware devices, such as
smart phones, set-top boxes, or routers, where the patent holder may pursue any
member of the supply chain (in particular the retailer and the importer) to obtain
the injunctive relief and subsequent claim for damages. This is probably one of the

2 See Chris Foresman, ‘Apple stops Samsung, wins EU-wide injunction against Galaxy’ ArsTecnica (9
August 2011) <http://arstechnica.com/apple/2011/08/samsung-facing-eu-wide-injunction-against-galaxy-
tab-101> accessed 14 June 2022. Germany is a preferred venue, see comment by Kevin O’Brien, ‘German
Courts at Epicenter of Global Patent Battles Among Tech Rivals’ New York Times (8 April 2012) available at
<http://www.nytimes.com/2012/04/09/technology/09iht-patent09.html> accessed 19 March 2021.

4 Official Journal of the European Union L157 of 30 April 2004.

4 See, e.g., how OpenSuSE community deals with audiovisual codecs encumbered by pa-
tents: OpenSuSE wiki, ‘Restricted formats’ <https://en.opensuse.org/Restricted_formats> accessed 19
March 2021.

226 MALCOLM BAIN AND P MCCOY SMITH

reasons patent litigation has been so popular in the mobile device industry, as there
are specific goods or devices to identify for remedial action.

Thus, there are a series of reasons why patents are relevant to software, in par-
ticular their very existence with respect to software implemented inventions, their
nature and scope, and their differences with copyright, many of which, as we will
see next, enter into conflict with the principles and reality of Open Source.

10.3 Patents and Open Source Interactions

To understand the interactions between Open Source software and patents, we
must briefly review the nature and characteristics of Open Source and its devel-
opment process. As we will then see in this section, these are not particularly well-
suited to the patent system (as legislated and practised), leading to a variety of areas
and types of friction. In the next section of this chapter, we will look at how the
Open Source community tries to deal with these frictions, both in the licensing
regimes and in practice.

10.3.1 Development and Innovation in Open Source

Open Source is software that is distributed under an Open Source licence. These
licences are broad, RF licences that allow all persons to use, copy, modify, and dis-
tribute the original code and its derivative works.** Thus Open Source is character-
ised by the granting to others of the ability to exploit the software, with access to its
source code as a requirement to be able to enjoy those rights.

Any Open Source licence is in fact a practical expression of the ideals and ob-
jectives of the software creators, using copyright rights (and in some cases, patent
rights) to allow and enforce openness and freedom with respect to the software
code and the knowledge contained therein. Open Source licensing increases public
accessibility to this knowledge. Under copyleft licences,*® a sub-group of Open
Source licences, this knowledge and these freedoms to exploit and innovate are
guaranteed for all third parties through obligations to maintain the free software li-
censing terms in downstream distributions of the product and its derivative works.

In practice, this usually leads to a decentralised software development model,
the ‘bazaar), as Eric Raymond has called it,*” whereby developers from all parts
of the world may participate in and contribute to an Open Source project. These

45 Stallman, ‘“The Free Software Definition, note 10. See also Open Source Initiative, ‘Open Source
Definition’ available at <https://opensource.org/osd> accessed 19 March 2021.

46 Stallman, “The Free Software Definition, note 10.

47 Eric Raymond, ‘The Cathedral and the Bazaar’ (2000) <http://www.catb.org/~esr/writings/cathed
ral-bazaar/cathedral-bazaar> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE 227

participants form what has generically been called the ‘community’ of the project,
and these communities together form the ‘Open Source community’ or move-
ment as a whole. These communities are extremely heterogeneous, including indi-
vidual programers and users, institutions, companies, and public bodies, and can
be formed by one or two persons, or a significant number of participants such as
the Open Document or GNU/Linux communities.*® The community participants,
acting usually remotely over the web, maintain, develop, and correct the project
software according to a roadmap that may or may not be an agreed ‘master’ docu-
ment. In some communities, such as the Mozilla, Ubuntu, or Alfresco projects,
the project may be led or structured by a foundation or corporate entity, which
guides development and may exploit the software (or services based on the soft-
ware) commercially.

Innovation in these communities is varied, either incremental—developers
building on previous contributions made by themselves or other participants, or
complementary—developing new functionalities and modules through standard
and open interfaces. However, in all circumstances, innovation is based on the
principles of freedom and openness: taking advantage of broad rights to copy,
share, and improve the code, along with open access to the source and interoper-
ability information of the project code.*’

The certainty provided by the standardised copyright licensing terms estab-
lished by the project Open Source licence provides reliability and trust among the
participants, increasing network effects and providing a strong basis for further
innovation.”® In transaction cost analysis terms, this lowers the informational and
transactional cost of licensing, as the terms are standard and transparent to all par-
ties, so there is no information asymmetry and no need to negotiate terms’ °!

10.3.2 Frictions with the patent regime: differences in concept

This form of innovation through sharing, however, runs counter to the justification
for patent protection, which is based on the historical and theoretical foundation

8 See, e.g., Linux Foundation Annual Report 2020, estimating 890,000 contributors, including
44,000 ‘core developers. Linux Foundation, ‘Annual Report 2020° (2020) <https://www.linuxfoundat
ion.org/wp-content/uploads/2020-Linux-Foundation-Annual-Report_120520.pdf> accessed 19
March 2021.

4 Chris diBona, ‘Introduction’ in Chris DiBona, Sam Ockman, and Mark Stone (eds), Open
Sources: Voices from the Open Source Revolution (Sebastopol, CA: O’Reilly Media, 1999) 1-18.

50 Notwithstanding the difficulties of interpreting certain licences in certain conditions, for ex-
ample, the copyleft scope of the GPL. However, the most vibrant Open Source community, the Linux
Community, uses the GPLv2 as its legal foundation, showing that this is not an impediment to innov-
ation and sharing.

51 Jason Schultz and Jennifer Urban, ‘Protecting Open Innovation: The Defensive Patent License as
a New Approach to Patent Threats, Transaction Costs, and Tactical Disarmament’ (2012) 26 Harvard
Journal of Law and Technology 1, 15.

228 MALCOLM BAIN AND P MCCOY SMITH

of IP rights regimes, that of providing economic incentives to creativity and in-
novation through the artificial creation of exclusivity,*? although this exclusivity
does eventually end and the patent subject matter enters the public domain, upon
expiration of a patent’s term. Yochai Benkler, among others, has clearly argued that
in the information society, as exemplified by free software production models, this
justification is not necessarily correct, as there are (many) other incentives to in-

novation, including curiosity, need, benefits to reputation, the simple desire to

share knowledge, or stimulating demand for a related product or service.*?

Patents also offer the risk of over protection: going back to the historical debate
of how to protect and incentivise the creation of software, there were arguments
against the broad protection granted by patent rights over ‘any’ implementation
of a particular process, its functionalities, its interoperability, and the impossi-
bility of carrying out reverse engineering, as being too wide and hindering com-
petition and innovation in this sector.>* Recognising this, the copyright legal
regime for software—at least in the EU—provides express exclusions for inter-
operability and reverse engineering to study the principles and ideas behind
a software program, for example to be able to reproduce in a new manner its
functionalities.>

This is particularly important for Open Source, one of whose main areas of de-
velopment is the reverse engineering of proprietary software formats and function-
alities, to create and distribute under Open Source licence terms both programs
with similar features and software that is interoperable with proprietary formats
(e.g., OpenOffice.org/LibreOffice or SAMBA).5

52 See, e.g., Paul David ‘Intellectual Property Institutions and the Panda’s Thumb: Patents, Copyright,
and Trade Secrets in Economic Theory and History’ in Mitchel Wallerstein, Mary Mogee, and Robin
Schoen (eds), Global Dimensions of Intellectual Property Rights in Science and Technology (National
Academy Press: Washington, DC, 1993) 19-62; or Gillian Hadfield, “The Economics of Copyright’
(Columbia University Press: New York, 1992) 38 Copyright Law Symposium 1-46; reviewed in Christian
Handke, “The Economics of Copyright and Digitisation: A Report on the Literature and the Need for
Further Research’ (London: World Economic Press, 2010). For counter arguments, see Michele Boldrin
and David Levine, Against Intellectual Monopoly (Cambridge: Cambridge University Press, 2008) esp.
ch 7, ‘Defenses of Intellectual Monopoly’.

%% Yochai Benkler, The Wealth of Networks: How Social Production Transforms Markets and Freedom
(New Haven, CT: Yale Press, 2006) at 63. Collaborative development models are also described in
various articles in DiBona et al. (eds), Open Sources: Voices from the Open Source Revolution, see note
49; and, e.g., Chris DiBona, ‘Open Source and Proprietary Software Development in Chris DiBona,
Danese Cooper, and Mark Stone (eds), Open Sources 2.0: The Continuing Evolution (Sebastopol,
CA: O'Reilly Media, 2006) 21-36.

5% See debates of WIPO, Advisory Group of Governmental Experts on the Protection of Computer
Programs, Copyright (WIPO’s monthly bulletin) March 1971, 5-40; and WIPO Group of Experts on the
Legal Protection of Computer Software, Draft Treaty for the Protection of Computer Software (Geneva,
13-17 June 1983).

55 See WIPO Model Provisions for the Protection of Software 1983 and, e.g., EC Software Directive,
arts. 5and 6.

% Libre Office: <http://www.libreoffice.org> and Samba: <http://www.samba.org> accessed 19
March 2021.

PATENTS AND THE DEFENSIVE RESPONSE 229

In SAS Institute v Worldwide Programming,>” the European Court of Justice
(EC]J) reviewed the question of the protection by copyright of software functional-
ities, in the context of innovation and technical progress, concluding that:

[o]n the basis of those considerations, it must be stated that, with regard to the
elements of a computer program which are the subject of Questions 1 to 5, nei-
ther the functionality of a computer program nor the programming language and
the format of data files used in a computer program in order to exploit certain of
its functions constitute a form of expression of that program for the purposes of
Article 1(2) of Directive 91/250.

As the Advocate General states in point 57 of his Opinion, to accept that
the functionality of a computer program can be protected by copyright would
amount to making it possible to monopolise ideas, to the detriment of techno-
logical progress and industrial development.>

However, what is granted by the copyright regime (reverse engineering and inter-
operability), can be taken away by the patent regime. And although the copyright
and patent regimes should ideally be complementary and non-exclusionary, an
outcome in which one regime gives a right that the other regime takes away seems
illogical taking into account that the objectives of the two regimes, to incentivise
and reward creativity and innovation, are basically the same.

10.3.3 Patent frictions in practice

Not just on a theoretical basis but also in practice, there are a significant number of
friction areas between the legal regime for patents, and Open Source and its pro-
duction and distribution models.

First, as regards obtaining patents—if the Open Source community did ever
want to patent inventive processes of a project—in environments where innov-
ation is incremental and distributed throughout a community, it may be difficult if
not impossible to determine who would qualify as an inventor. And who ultimately
should be the beneficiary and rights holder of the patent rights resulting from com-
munity development? There is often no such figure or entity to hold them, other
than all the individuals who contributed to the conception of the invention itself.>

57" SAS Institute Inc v World Programming Ltd, C-406/10.

8 ECJ decision C-406/10, paras. 39, 40.

%9 Joint ownership of a patent by a collection of developers can introduce complexities (or simplici-
ties), depending on the jurisdiction in which the patent is granted. For example, in the US, all named
inventors would have the right to exploit (use for their own purposes) the patent, including licensing
it to others—including under an Open Source licence—without having to account (i.e. pay) any of the
other inventors. This is not the case in other countries, including the UK (where consent is required
from other inventors for an inventor to grant licences). See Raymond Millien, “The Default Law of Joint

230 MALCOLM BAIN AND P MCCOY SMITH

Second, from a risk analysis point of view, the risk of infringing copyright in
software is far lower than the risk of infringing a patent. Copyright infringement
can be avoided by implementing good development practices and (if need be) cre-
ating new and independent versions of copyrighted software. With regard to Open
Source licensed code, it is in fact quite difficult to infringe copyright, as most ex-
clusive copyright rights in the original code that you may be working on or with,
are granted. Conversely, a patent over a software process can stop anyone from
making, using, or selling the patented invention, even if there is no copying of the
inventor’s original software (if any). This means that it may be impossible to avoid
infringing a patent regardless of how much care is taken, particularly essential pa-
tents on standards. In the early 2000s, there was at least one published assertion
that the GNU/Linux operating system might infringe some 280 software patents,®
although there was substantial debate about the meaning of that assertion.®! What’s
more, the source code availability of Open Source allows a patent-based plaintift
to evaluate infringement easily, while a reverse-engineered patent infringement
evaluation of binary code would be more difficult. ‘Software patents are dangerous
to software developers because they impose monopolies on software ideas. It is
not feasible or safe to develop nontrivial software if you must thread a maze of pa-
tents’®2 Moreover, it is argued that this situation is worse for Open Source than for
proprietary projects.®> As we have commented, Open Source is often developed
by many people—volunteers—in ‘open’ communities. These communities rarely
have any company or institution providing (legal or financial) support, and thus
the individual developers might be more vulnerable to litigation. They certainly
don’t have the financial resources to cover the cost of dealing with patent issues,
which can cost thousands if not millions of Euros. However, a counter-argument
is that these individuals are not worth pursuing by patent holders, which may be
one of the reasons that to date there are few if any patent-based cases against non-
commercial Open Source projects.®*

However, the counter to this is that any corporate end-users could be viewed
as vulnerable to attack. While copyright focuses on the potentially infringing

IP Ownership’ IP Watchdog (18 February 2016) <https://www.ipwatchdog.com/2016/02/18/the-defa
ult-law-of-joint-ip-ownership/id=66154/> accessed 19 March 2021; UK Patents Act 1977 (as amended)
§36-2(a) (1 October 2014).

€0 See Daniel Lyons, ‘Linux Scare Tactics’ Forbes Magazine (8 February 2004) <http://www.forbes.
com/2004/08/02/cz_dl_0802linux.html> accessed 19 March 2021; and Open Source Risk Management
Position Paper—Mitigating Patent Risks (2 August 2004).

61 Steven Vaughn-Nichols, ‘Author of Linux Patent Study Says Ballmer Got It Wrong’ EWeek (19
November 2004) <https://www.eweek.com/servers/author-of-linux-patent-study-says-ballmer-got-it-
wrong> accessed 29 August 2020.

©2 Richard Stallman, ‘Europe’s ‘Unitary Patent’ Could Mean Unlimited Software Patents’ <http://
www.gnu.org/philosophy/europes-unitary-patent.html> accessed 19 March 2021.

% Jason Morgan, ‘Chaining Open Source Software: The Case Against Software Patents’ (1999)
<https://groups.csail. mit.edu/mac/projects/Ipf/Patents/chaining-oss.html> accessed 19 March 2021.

64 For more detail about patent litigation against Open Source, see section 10.6 later in this chapter.

PATENTS AND THE DEFENSIVE RESPONSE 231

copying, transformation, and distribution of software (thus acts carried out by per-
sons in the software industry), any person who also uses software that infringes a
patent is liable and can have monetary damages and an injunction awarded against
them, regardless of whether they were aware of the patent or had any intent to in-
fringe it, and regardless of whether they have any technical or other expertise in
dealing with patents. This has a significant impact across industry, raising devel-
opment expenses, and increasing legal risks and insurance premiums. This also
hinders the uptake of the Open Source projects’ output through fear of litigation,
or making it more expensive by encouraging participants to take a royalty-bearing
patent licence.

For a non-commercial Open Source project (and most commercial ones t0o),
taking a patent licence can introduce difficulties. Patent licences and associated
royalties are usually based on usage, and an Open Source project rarely if ever
knows how its software is used, improved, or redistributed. In addition, in the event
of using any Open Source under copyleft licences, in particular GPLv2, the patent
licence would have to contemplate redistribution of the code unencumbered by
any downstream patent restrictions so to enable the code to remain free; the patent
holder would have to be willing to grant wide downstream user rights, something
they are unlikely to be willing to do, absent any numerical data on usage.®

We cannot just buy a patent license, because though free software isn't always free
like free beer, it cannot exist at all unless it is free like free speech: everyone has to
be allowed to take free code from one place and use it in another, or build on it, so
long as she is willing to share and share alike.%

For certain copyleft licences, it can be difficult to achieve compatibility with copy-
left licensing and receive the benefit of a patent licence, even a patent licence
granted on RAND (reasonable and non-discriminatory terms),” although Red
Hat has achieved it through its widely publicised agreement with Firestar. But Red
Hat is in the unique position of having both the financial means and legal resources
to negotiate such a licence.®®

65 See Section 7 of the GPLv2 available at <http://www.gnu.org/licenses/old-licenses/gpl-2.0.html>
accessed 19 March 2021. GPLv3, in contrast, has more limited restrictions upon further distribution in
cases where the distributor has a patent licence allowing such distribution. See Section 11 of the GPLv3
available at <https://www.gnu.org/licenses/gpl-3.0.en.html> accessed 19 March 2021.

% Moglen, ‘Free software matters: Patently controversial, see note 8.

¢7 Discussed at length in Iain Mitchell and Stephen Mason, ‘Compatibility of The Licensing of
Embedded Patents with Open Source Licensing Terms’ (2010) 3(1) Journal of Open Law, Technology
& Society (JOLTS) 25-58 < https://jolts.world/index.php/jolts/article/view/57/100 > accessed 15
June 2022.

% See Red Hat press release, Red Hat Legal Team, ‘Red Hat Puts Patent Issues to Rest’ Red Hat Blog
(11 June 2008) <http://www.redhat.com/about/news/archive/2008/6/red-hat-puts-patent-issue-to-
rest> accessed 19 March 2021.

232 MALCOLM BAIN AND P MCCOY SMITH

Often in cases of (corporate) patent litigation, the parties involved can and often
do come to settlement through cross-licensing and patent peace agreements. These
agreements are non-aggression agreements providing each party royalty-free ac-
cess to a determined part of the other party’s patent portfolio and often to specified
products. This is prevalent in areas such as hardware manufacturing or biotech,
and RF cross-licences are quite common in the computer hardware and software
industry among proprietary companies. However, the nature of Open Source
makes cross-licensing potentially non-viable; first, very few (if any) Open Source
projects have any patents with which to ‘trade’ with a potential patent asserter.
Second, there may not be a particular institution or entity with which to negotiate
such an agreement—with the exception of corporate sponsored developments,
such as Red Hat, which as we have mentioned, can and have negotiated patent li-
cences; in addition, the GNOME Foundation recently negotiated a settlement of
a patent assertion made against some of its Open Source.®’ Third, any potential
legal entanglement due to software patents creates uncertainty and significant fear
within the project community. Few Open Source projects are going to go near any
patented technology or process—if they ever get to know about it—merely due to
the risk of patent litigation and the transaction costs for dealing with the patent
situation.

It has been argued, in the context of patents over standards, that from an eco-
nomic perspective patent licences and royalties may be compatible with Open
Source development models (this is fully discussed in Chapter 12): it is just a
question of implementing an appropriate technological or business process for li-
censing and collecting the dues.”® Indeed, there are Open Source projects such as
Fluendo”! whose very existence and business model lies in dealing with patents
rights over audiovisual codecs, and interested third parties can purchase licences
to these patent rights so as to implement and distribute proprietary patented co-
decs in Open Source multimedia environments. However, above and beyond the
legal incompatibility when using copyleft licences, most non-commercial (and
many commercial) Open Source projects are particularly incompatible with
royalty-bearing technologies, since an essential characteristic of the project is to
share the code easily among community participants (including users), and they
have no visibility or control of downstream users. Requiring even minimal roy-
alties would greatly hinder the freedom of developers to share and distribute the
code they write.

This is reinforced by the sheer number of software-related patents that are ap-
plied for and issued annually (particularly in the United States), as well as the legal

% See section 10.6 later in this chapter.

70 Jay Kesan, “The Fallacy of OSS Discrimination by FRAND Licensing: An Empirical Analysis’ (22
February 2011) Illinois Public Law Research Paper No 10-14.

7 Available at Fluendo <http://www.fluendo.com> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE 233

uncertainty about many of those that are issued (for lack of novelty, inventiveness,
or patentable subject matter, as discussed earlier).”? It would be impossible—if not
counterproductive, as they could then be claimed to be knowingly infringing a
patent, if subsequently litigated—for software developers to read through all the
software patents relevant in their area of expertise (let alone ‘all’ software patents
generally), and subsequently take an informed view on the validity, or not, of those
patents.

Another significant area of concern for the Open Source community is the
accumulation of patents in proprietary software companies. Usually, large com-
panies like IBM use patents defensively. As they know that other companies in
the industry will apply for patents, and then may sue for patent infringement
in order to gain a competitive advantage, a company that wants to defend itself
files for its own patents to use against its competitors. This either creates a mas-
sive patent war, such as that that has occurred in the mobile device industry,”?
or creates a détente or hold-off between the company and its competitors where
each could sue the other in a similar way, so neither one does (and eventually
they enter into cross-licensing agreements such as those mentioned earlier).
However, members of the Open Source community have historically shown
concern with large proprietary corporations asserting patent claims, directly or
through associated patent assertion and licensing entities such as Intellectual
Ventures,”* to acquire a range of software patents that they can potentially use in
the future to attack and try to restrict the development and distribution of Open
Source software.

Finally, and this is linked to the previous point, we must mention NPEs.”> These
entities accumulate patents solely for the purpose of demanding patent royal-
ties from third parties, and do not themselves ‘practise’ or implement their pa-
tents or for that matter conduct any business other than licensing and asserting
their patents. They do not make, use, import, sell, or offer for sale anything that
could be infringing, inoculating them against countersuits. There are a significant
number of these entities, such as Acacia Research Group, or Intellectual Ventures,
holding large portfolios of patents (Intellectual Ventures is alleged to hold over
30,000 existing patents).”® While NPEs typically target their activities against the

72 Ballardini, ‘The Software Patent Thicket, 207, see note 32.

73 Involving Samsung, HTC, Motorola, and Apple, among others. See Don Reisinger, ‘A look back at
the great Apple-Samsung patent war’ EWeek (8 August 2014) <https://www.eweek.com/mobile/a-look-
back-at-the-great-apple-samsung-patent-war/> accessed 19 March 2021.

74 Dennis Crouch, ‘Intellectual Ventures: Revealing Investors’ PatentlyO (18 May 20122) <http://
www.patentlyo.com/patent/2011/05/intellectual-ventures-revealing-investors.html> accessed 19
March 2021.

75 See Brian Yeh, ‘An Overview of the “Patent Trolls” Debate’ (2012) Congressional Research Service,
<https://sgp.fas.org/crs/misc/R42668.pdf> accessed 15 June 2022, for a good overview of this problem.

76 Todd Bishop, ‘Intellectual Ventures sues HP, Dell and others over patents’ Geekwire (12 July 2011)
<http://www.geekwire.com/2011/intellectual-ventures-sues-hp-dell-patents> accessed 19 March 2021.

234 MALCOLM BAIN AND P MCCOY SMITH

products and services of commercial entities, in particular proprietary software
companies with funds to pay for royalties, they have also targeted Open Source,
both Open Source-based commercial entities such as Red Hat, who had to deal,
for example, with Firestar,”” and non-commercial Open Source foundations such
as the GNOME Foundation, who had to deal with Rothschild Patent Imaging
(see section 10.6 later in this chapter). As opposed to litigation against industrial
entities, where (negatively) the threat of patent retaliation or (positively) the offer
of a cross-licence may be made, it is nearly impossible to use such a strategy against
NPEs, leaving only the expensive (prohibitively so, for Open Source communities)
options of paying a royalty or challenging the validity or infringement of the al-
leged patents, or abandoning the allegedly infringing software altogether.

Thus, in the end the patenting regime for software serves to benefit nearly ex-
clusively large (proprietary) software companies with economic resources to apply
for, defend, and litigate software patents, potentially to the detriment of the Open
Source communities who are behind many of the current innovations in informa-
tion and communications technology (ICT), unless efforts are made to assist these
communities with patent threats.

In summary, software patents are expensive to acquire and enforce, and outside
most Open Source projects’ economic capabilities. They are also considered philo-
sophically, culturally, and politically anathema to many Open Source communities
and their members, as a restriction on their innovation. In addition, there is a percep-
tion that many of the patents that represent a potential threat against Open Source
may be of dubious validity, due to lack of novelty or inventiveness—particularly
given the continued development of tests for abstractness in the US. Even when they
appear to be acquired for ‘defensive’ or other altruistic purposes, there has been no
guarantee against someone later ‘weaponising’ them for use in an offensive attack.”®

This has led the Open Source community in many cases to reject the current legal
regime whose uncertainty enables obtaining patent protection (in any form, even the
allegedly ‘highly filtered” protection granted by the EPO) for software, arguing on
the one hand that the whole system is too expensive for Open Source projects and
small software publishers to benefit from (if they wanted to) and, on basis of their
own experience and that of the software industry as a whole, that copyright provides
sufficiently strong protection for software and incentive to innovate and create more.

In a now often quoted memo, Bill Gates said in 1991: ‘If people had understood
how patents would be granted when most of today’s ideas were invented, and had
taken out patents, the industry would be at a complete standstill today.”® On this

77 Floyd Marinescu, ‘Red Hat Sued Over Hibernate 3 ORM Patent Infringement Claim’ Infoq (30
June 2006) <http://www.infoq.com/news/RedHat-Sued-Due-to-Hibernate-3-O> accessed 19 March
2021, settled in 2008.

78 Schultz and Urban, ‘Protecting Open Innovation, see note 51.

79 Bill Gates, ‘Challenges and Strategy Memo (16 May 1991) <http://en.swpat.org/wiki/Bill_Ga
tes_on_software_patents> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE 235

issue Richard Stallman stated in 2004: ‘Software patents are the software project
equivalent of land mines: each design decision carries a risk of stepping on a pa-
tent, which can destroy your project. Because every such patent covers some idea
and the use of that idea, which by giving monopoly on patents inhibits the develop-

ment of software’$°

10.4 How Open Source Deals with Patents

We now turn to see how the community has reacted to and deals with the sev-
eral interactions and friction areas between patents and Open Source, and the per-
ceived patent threat.

The Open Source community’s actions in this respect can be divided into two
types of action: preventive measures, to minimise the impact of software patents
on software freedoms, and reactive measures, taking action to neutralise current
patent threats to free software development.

10.4.1 Patent clauses in Open Source licences

The first and most ‘structural’ preventive measure to deal with software patents is
the incorporation of patent-related terms in Open Source licences. As we noted
in the introduction, an Open Source project’s community norms and guidelines
are reflected in the chosen licence terms: they set out the rules for participation, in
particular for contributing to and using the project software. The community has
leveraged the licences to set out rules regarding patent grants and non-assertion
among participants.

10.4.2 First-generation Open Source licences

The first generation of Open Source licences, particularly the permissive licences
such as the BSD and X11/MIT licences, did not expressly mention patent rights,
though based on the wording of the licences there are arguments that either an
express or at least an implicit licence is granted.®! Some legal writers believe that
implicit patent licences are uncertain and not binding (in particular when there is

80" Richard Stallman, ‘Fighting Software Patents—Singly and Together’ (2004) <http://www.gnu.org/
philosophy/fighting-software-patents.html> accessed 19 March 2021.

81" Van Lindberg, ‘OSS and FRAND, see note 3; Peterson, ‘Why so little love for the patent grant in the
MIT License?’, see note 5.

236 MALCOLM BAIN AND P MCCOY SMITH

no consideration), giving rise to questions regarding their scope or duration, the
impact of combing potentially patented software distributed under these licences
with other programs or hardware, and the creation of derivative works, or that the
licences licence copyright rights only and no patent rights are conveyed.®? This is
not a happy situation with regard to legal certainty for the Open Source commu-
nity, and while these licences are still popular, contributors and users with concern
about potential patent assertions, or who own significant patent portfolios and
wish to have greater certainty about which part of their portfolio is being licensed,
may eschew these licences in favour of more recent versions with explicit patent
provisions.

Where a company did want to use one of these more permissive licences (Google
Ing, in this instance, with regard to WebM VP8 video codec technologies), it added
a patent licence grant and peace terms in an additional clause, tying the patent
grant to its implementation of the patent claims.®® The impact of this is twofold: the
code that Google has distributed is effectively granted under the MIT licence, a
recognised and standard Open Source licence permitting easy use and adoption,
while users of Google’s version of the code are given comfort and protection as re-
gards claims with respect to patents that Google and other contributors may hold
in the codec.3* Enhanced versions of the MIT and BSD licences—the Universal

86

Permissive Licence®® and the ‘BSD+Patent’ licence,®were also created to take the

basic framework of the MIT and BSD licences and add to it an explicit patent grant.

The GPLv2, first published in 1991, included wording directed to patents, with a
stated aim of making GPLd software redistribution incompatible with software pa-
tents rights assertion—either by contributors or licensees of contributors. GPLv2
does not have an express patent grant or non-assertion covenant. While a licence
by the original creator cannot take away patent assertion rights of a third-party
patent holder (rights to restrict distribution and use of a software that embodies
the patent for example against payment of a royalty), what it can do is prevent the
redistribution of the original software at all if such distribution under the terms of
the GPL2 is prevented by patents encumbering the software; hence the name of
Clause 7 of GPLv2, liberty or death™:%”

82 Heather Meeker, The Open Source Alternative (Trenton, NJ: John Wiley and Sons, 2008); Kappos
and Harrington, ‘The Truth About OSS-FRAND; see note 3.

8 Google’s WebM, ‘Additional IP Rights Grant (Patents)’ <http://www.webmproject.org/license/add
itional> accessed 19 March 2019.

84 This of course does not guarantee that ‘all’ potential patent rights in the codec are licensed, as
Google may not hold all those rights.

85 Open Source Initiative, ‘Universal Permissive Licence’ <https://opensource.org/licenses/UPL> ac-
cessed 30 August 2020.

86 Open Source Initiative, ‘BSD+Patent Licence’ <https://opensource.org/licenses/BSDplusPatent>
accessed 29 August 2020.

87 This phraseology is based upon a famous speech in early US history. ‘Give me liberty, or give me
death!” Wikipedia <https://en.wikipedia.org/wiki/Give_me_liberty,_or_give_me_death!> accessed 29
August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 237

If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on
you (whether by court order, agreement or otherwise) that contradict the condi-
tions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this

License would be to refrain entirely from distribution of the Program.38

The GPLv2 also forbids imposing any additional restrictions (such as patent en-
cumbrances) on the rights granted by the licence to the recipients of the software.
If a distributor does so, for example by asserting patent rights, their licence under
the GPL is terminated. This effectively means that a patent holder who distrib-
utes a software program based on GPLv2 code, embodying one or more of its pa-
tents, may no longer assert those patent rights against downstream licensees who
redistribute that program onwards,®® or who incorporate the program in their
own product. What is more, this has the effect that if a GPLv2 licensee does get a
third-party patent licence to exploit the software, then to be able to redistribute it
they must effectively ensure that all downstream licensees are covered. This was
made explicit in GPLv3, published in 2007, and Red Hat achieved this in its
agreement with Firestar (with respect to one of its Open Source programs, called
Hibernate).”!

10.4.3 Second-generation Open Source licences

As Open Source software and the Open Source licensing model gained more popu-
larity into the late 1990s, and as simultaneously it became clearer that software pa-
tents would be found in jurisdictions around the world to satisfy the requirements
of national law, there developed a desire for Open Source licences with clear and

88 GNU Operating System, ‘GNU General Public License, version 2, (1991) <http://www.webmproj
ect.org/license/additional> accessed 19 March 2021.

89 The impediment on patent assertion is based upon the theory that the ‘liberty or death’ provision
of GPLv2 includes an implied patent licence. Richard Stallman, ‘Why Upgrade to GPL Version 3’ Free
Software Foundation (31 May 2007) <http://gplv3.fsf.org/rms-why.html> accessed 29 August 2020. The
extent to which an implied patent licence would be found in GPLv2, and of what scope that licence
would have, is an unresolved issue which led to a more detailed, express, patent licence being included
in GPLv3.

% GNU, ‘GNU General Public License’ <https://www.gnu.org/licenses/gpl-3.0.html> accessed 19
March 2021.

1 Maureen O’'Gara, ‘Red Hat Settles Patent Claims Against It' DZone (11 June 2008) <https://dzone.
com/articles/red-hat-settles-patent-claims-> accessed 19 March 2021.

238 MALCOLM BAIN AND P MCCOY SMITH

express terms around patent rights. One of the first organisations to take on this
issue was Netscape, which was considering freeing its ‘Navigator’ web browser in
1998. That browser was released under the Netscape Public Licence® (later mi-
grated into the Mozilla Public Licence 1.1), which included express patent provi-
sions. Since that time, most newly created and OSI-approved Open Source licences
also include an express patent licence grant of some scope.

The development of patent provisions in second-generation Open Source li-
cences generally addresses two separate, but arguably related, issues. First, they
grant an express patent licence to patent rights that the initial developer, or any
contributor to the project, may have in their contribution. These express patent
licences are in a variety of different forms, and each have differently expressed
language, so determining exactly which patent rights are granted, and by whom,
and for what, requires detailed analysis of the particular licence and the particular
grant. Second, many—but not all—patent provisions in second-generation Open
Source licences provide for defensive patent grant suspension (sometimes referred
to as ‘patent retaliation’), specifying conditions under which the express patent
grant from authors or contributors is terminated or suspended in the event of a
party that has received a licence initiating some form of patent litigation or other
patent assertion with respect to the software.”

The ASF 2.0 License (2004)* provides a patent provision template that can
serve as a model for an appropriate express patent licence grant, as well as a de-
fensive patent grant suspension. The ASF 2.0 licence includes an express patent
licence from each contributor to ‘make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work’. This grant covers the contributor’s contribu-
tion by itself, or when that contribution is combined with the software to which
it is contributed. Similarly, the Mozilla Public License (MPL) 2.0 (2012)% con-
tains an express patent grant covering the present and future patents rights of a
contributor for the ‘making, using, selling, offering for sale, having made, im-
port, or transfer of either [the Contributor’s] Contributions or its Contributor

92 The Mozilla Foundation ’Netscape Public License 1.0’ <https://website-archive.mozilla.org/www.
mozilla.org/mpl/mpl/npl/1.0/> accessed 30 August 2020.

3 The particular scope of the defensive patent grant suspension is important in evaluating whether
alicence containing it may properly be considered an Open Source licence. Facebook, as one example,
created a licence which included a defensive patent grant suspension provision that suspended the ex-
press patent grant in the event of any patent assertion against Facebook, whether or not that asser-
tion related to the software licensed under that grant. This provision was roundly criticised as being
non-reciprocal and was later withdrawn by Facebook. Sarah Gooding, ‘Facebook to Re-license React
after Backlash from Open Source Community’ WordPress Tavern (25 September 2017) <https://wptav
ern.com/facebook-to-re-license-react-after-backlash-from-open-source-community> accessed 30
August 2020.

94 The Apache Software Foundation, ‘Apache License, Version 2.0 <http://www.apache.org/licenses/
LICENSE-2.0.html> accessed 19 March 2021.

% Morzilla Foundation, ‘Mozilla Public License Version 2.0° (MPLv2.0) <http://www.mozilla.org/
MPL/2.0> accessed 19 March 2021.

PATENTS AND THE DEFENSIVE RESPONSE 239

Version,” and excludes deletions from, or modifications made to, the code, or
combinations of the code with other software or devices, or the code in the ab-
sence of the contribution by that particular contributor.®”

GPLv3 (2007) also has an express patent grant; Section 11 provides that ‘[e]ach
contributor grants you [the user] a non-exclusive, worldwide, RF patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version. The ‘contributor version’ is defined as ‘[any copyrightable work licensed]
or a work on which [that copyrightable work] is based” which a copyright holder
authorises use under the GPLv3 licence. ‘Essential patent claims’ in GPLv3 are de-
fined as:

all patent claims owned or controlled by the contributor, whether already ac-
quired or hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version, but do not
include claims that would be infringed only as a consequence of further modifica-
tion of the contributor version. For purposes of this definition, ‘control’ includes
the right to grant patent sublicenses in a manner consistent with the requirements
of this License.

The last point regarding ‘control’ is interesting, as in practice it permitted the flexi-
bility for Red Hat to acquire downstream patent sublicensing rights from Firestar,
so as to ensure valid onward GPL-based licensing of the Firestar patents to which
Red Hat received alicense. GPLv3 also allows alternative mechanism to allow a dis-
tributor of GPLv3 code to receive the benefit of a patent licence yet ensure that the
source code remains available to the public.”® GPLv3 has another patent-related
requirement, drafted in response to a transaction between Microsoft and Novell,”
which was designed to prevent unusually structured business deals believed to be a
‘work around’ to the concept of ‘liberty or death’!%

9% MPLv2.0, see note 95, Section 2.1(b). The ‘Contributor Version’ in this section is defined as
‘the combination of the Contributions of others (if any) used by a Contributor and that particular
Contributor’s Contribution, similar to the way the Apache 2.0 licence covers combinations.

97 MPLv2.0, see note 95, Section 2.3.

%8 “If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of this
License, through a publicly available network server or other readily accessible means, then you
must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself
of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent
with the requirements of this License, to extend the patent license to downstream recipients’ GPLv3,
Section 11.

9 Cath Everett, ‘Inside the Microsoft-Novell deal’ ZDNet (30 April 2007) <https://www.zdnet.com/
article/inside-the-microsoft-novell-deal/> accessed 30 August 2020.

100 This is reinforced by a paragraph in cl. 11 of the GPLv3 that provide for this very situation: If,
pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorising them to use, propagate, modify or convey a specific copy of the covered

240 MALCOLM BAIN AND P MCCOY SMITH

These clauses in each of the above-discussed licences, as well as many other
licences approved by the OSI since 1998, ensure that users of software under
these licences get the specified patent rights from the upstream contributors to
the work. This does not mean that use of the software is free of patent risks, as
third parties may have patent rights over the work and may not have granted the
user any licence, and in many cases, subsequent changes made to the program
after distribution by a patent holder may be unlicensed. Nevertheless, the user is
protected from patent claims by the contributors, who—if the contribution is of
original code—are usually the persons most likely to have any patent rights in that
contribution.

10.4.4 ‘Patent defensive suspension’ clauses

Patent defensive suspension clauses come in several different ‘“flavours),
depending on the scope and conditions for triggering the clause. These provi-
sions are often structured as a condition of the original licence grant—either just
the patent grant, or all grants, including copyrights. Most are structured to pro-
tect the specific software to which a patent holder is licensed; a few against any
suits based on patent rights over any software, not just the licensed software, al-
though these broader provisions are now looked upon as non-reciprocally dis-
criminatory and violative of Open Source Definition 5.!°! The provision may
also revoke patent rights, or all rights granted under the Open Source licence. In
Table 10.1 we will look at four licences, chronologically the MPLv2.0, Apache v2,
EPLv2, and GPLv3.

What do these provisions achieve? On the one hand, as noted, Open Source par-
ticipants using software under these licences have a certain degree of safety from

work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it. The overall aim of this is to ensure a level playing field, and guarantee freedoms
for the whole chain of licensees taking a copy of the code under the GPL. ‘You may not convey a cov-
ered work if you are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your activity of con-
veying the work, and under which the third party grants, to any of the parties who would receive the
covered work from you, a discriminatory patent license (a) in connection with copies of the covered
work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work, unless you entered into that arrange-
ment, or that patent license was granted, prior to 28 March 2007 This provision was specifically aimed
at the Microsoft/Novell transaction.

101 OSD 5 states that an open source licence must have ‘No Discrimination Against Persons or
Groups. Open Source Initiative, “The Open Source Definition’ <https://opensource.org/osd> accessed
30 August 2020. Any provision that takes licences away from entities asserting patents outside of the
particular project to which a licence is granted is believed, by many, to violate this non-discrimination
provision.

PATENTS AND THE DEFENSIVE RESPONSE 241

Table 10.1 Comparison of Defensive Suspension Clauses

Mozilla 2.0: Section 5.2

If You initiate litigation against any entity ~ This clause is of a scope relatively common for

by asserting a patent infringement claim defensive suspension clauses, although it does
(excluding declaratory judgment actions, include a suspension not only of patent licences,
counter-claims, and cross-claims) alleging but other licences as well in the event of a patent
that a Contributor Version directly or assertion against the software. Note that it does
indirectly infringes any patent, then allow such an assertion in the form of a counter
the rights granted to You by any and all claim or cross-claim (a claim that is filed in
Contributors for the Covered Software response to an initial claim against the patent
under [the copyright and patent licence] asserter), which may provide for some litigation
Section ... of this License shall terminate. ~ strategy gaming tactics to retain the benefit of
the licences but still assert patents against the
software.

Apache 2.0: Section 3

If You institute patent litigation against The defensive suspension clause in Apache

any entity (including a cross-claim or 2.0 licence is similar to Mozilla 2.0, although
counterclaim in a lawsuit) alleging that it only revokes potential patent right grants; it
the Work or a Contribution incorporated ~ does not purport to terminate any copyright
within the Work constitutes direct or licence. It also does not exclude cross-claims or

contributory patent infringement, then any counterclaims, like Mozilla 2.0.
patent licenses granted to You under this

License for that Work shall terminate as of

the date such litigation is filed.

Eclipse Public License 2.0: Section 7

If Recipient institutes patent litigation This section is similar to Apache 2.0, in that
against any entity (including a cross-claim it only suspends patent licences, and, like
or counterclaim in a lawsuit) alleging that ~ Apache 2.0, does not exclude cross-claims
the Program itself (excluding combinations or counterclaims, thus preventing potential

of the Program with other software or litigation strategies to preserve the licence grant
hardware) infringes such Recipient’s while still asserting patents. Unlike the Common
patent(s), then such Recipient’s rights Public Licence, a predecessor of Eclipse which
granted under Section 2(b) [the patent has been deprecated, it does not attempt to
licence Section] shall terminate as of the suspend patent licences for assertions against
date such litigation is filed. other software.

GPLv3: Section 10

You may not impose any further restrictions GPLv3 maintains similar ‘liberty or death’
on the exercise of the rights granted or provisions as its version 2, commented on in
affirmed under this License. For example, the introduction (now called ‘No Surrender
you may not impose a license fee, royalty, or of Others” Freedom’ clause), and includes this
other charge for exercise of rights granted ~ patent peace clause. Breach of this undertaking
under this License, and you may not initiate (not to initiate patent-based litigation with
litigation (including a cross-claim or respect to the software in question) would
counterclaim in a lawsuit) alleging thatany =~ mean breach of the licence, and revocation of
patent claim is infringed by making, using, all licence rights (both copyright, and patent)
selling, offering for sale, or importing the subject to the reinstatement provisions (e.g. if
Program or any portion of it. the litigation is withdrawn). GPLv3 does not
limit this litigation against ‘developers’ but would
cover litigation against ‘any entity} similar to
the Apache and Eclipse licences commented on
earlier.

242 MALCOLM BAIN AND P MCCOY SMITH

patent-related threats from upstream contributors as a result of the express patent
licence grants, and downstream licensees as a result of the patent defensive sus-
pension provisions; this provides a degree of ‘patent peace’ among community
participants. The more participants involved in the community, particularly large
patent-holding entities, the greater the peace, and all the more so if the licence is
copyleft, and thus maintains the same licensing terms downstream and throughout
the community of users. This contributes to the ideals of the Open Source commu-
nity, of providing safe access to knowledge of Open Source technologies, and de-
rivative works thereof, and freedom to innovate. ‘Licensees and their sublicensees
should not be able to benefit from Open Source while at the same time forcing the
licensor to pay royalties for patents embodied in that very software’!%? However,
the scope of this protection does vary, and it is important (especially for patent-
holding users or contributors to Open Source projects) to understand the scope
of the express or implied patent licence clauses as well as defensive suspension
provisions, and how they interact with their patent portfolios. These clauses may
discourage patent holders from participating in communities, either because the
patent licence grants are too broad—or too indeterminate—or because the defen-
sive suspension provision curtails their ability to assert their own patent portfolio
against entities towards whom they wish to maintain a strong patent position. An
example of this is where a company drafted a modification to the MPL1.1 in order
to protect their portfolio, rather than use the standard version of the licence,!%
or in the case where additional patent provisions have been appended to existing
Open Source licences.!*

In addition, there may be questions of validity of parts of these clauses. First,
with regard to ‘future’ acquired patents and patent rights, and second, with regard
to extending the benefits of the clauses to non-licensees, or extending the obliga-
tions either to future users (holding other patents) of the Open Source technolo-
gies, or future holders of relevant patents (for example, through acquisition), who
may be able to argue they are not party to the original bargain. This may be a ques-
tion of privity of contract, if licences are deemed to be contracts in this respect;
though for licences that are considered to be unilateral authorisations (and not
contracts), the provisions would only be effective against licensees (i.e. users) of the
code, as a condition of the licence grant.

102 Tawrence Rosen, ‘Dealing with Patents in Software Licences’ Linux Journal (1 January 2002)
<http://www.linuxjournal.com/article/5575> accessed 19 March 2021.

103 MXM Public license submission, OSI Review, ‘For approval: MXM Public license’ (8 April
2009) <https://lists.opensource.org/pipermail/license-review_lists.opensource.org/2009-April/000
722.html>, commented on by Glyn Moody ‘Should an Open Source Licence Ever Be Patent-Agnostic?’
Linux Journal (9 April 2009) <https://www.linuxjournal.com/content/should-open-source-licence-
ever-be-patent-agnostic> both accessed 19 March 2021.

104 David Thompson, ‘Reading the Fine Print in Facebook React’s Open Source License’ White Source
(17 May 2017) <https://resources.whitesourcesoftware.com/blog-whitesource/reading-the-fine-print-
in-facebook-react-s-open-source-license> accessed 30 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 243

10.4.5 Open Source as prior art, peer to patent, and
defensive publication

Another way of the dealing with the negative impacts of software patents in a pre-
ventive manner is to help avoid those patents being granted ab initio. Although ef-
forts to get software processes—ClIs—totally excluded (in theory and in practice)
from patentability have largely been unsuccessful in most of the jurisdictions of the
world, there have been other projects that have claimed to try to reduce, during the
patent examination process, poor-quality applications on the basis of lack of con-
formity with the main requirements for patentability: novelty and inventive step.

One criticism of the patent application examination process, in terms of quality,
is that patent examiners rely heavily on databases of issued patents and published
patent application, and occasionally scientific publications, to discover prior art.
This means that a significant amount, if not all, of previously published software and
software-related documentation—both proprietary and Open Source—may not be
taken into account during the prior art search stage of the examination process.!%’

Open Source as Prior Art was a project launched in 2005 as an initiative to en-
able Open Source software repositories to be considered during this prior art search
stage, ‘improving accessibility by patent examiners and others to electronically
published source code and its related documentation as a source of prior art’!%
Unfortunately, software in online repositories is not published in a manner that can
easily be mapped against the way patent applications describe the claimed methods
or processes. To ensure such software is taken into consideration, it needs to be time
stamped, documented, and ideally categorised or described in a manner that can be
searched. While this aim was laudable, in practice it has been found to be particu-
larly difficult and time-consuming, so it seems the project is currently inactive.

In another attempt at improving patent quality, ‘Peer to Patent’ was a project
launched by the US Patent Office (USPTO) together with New York University
Law School, aimed at taking advantage of the software community to supply the
USPTO with information and discussion relevant to assessing the claims of patent
applications during the examination process, opening this process to public par-
ticipation and ‘community reviewing’. The goal of this project was to help third par-
ties identify, submit, and rank prior art that is relevant to a patent application. The
results of the initial phases of this project resulted in several patent applications

being rejected or narrowed as a consequence of peer reviewing.!%”

105 ‘Do USPTO examiners search open-source codebases?” StackExchange (22 September
2012) <https://patents.stackexchange.com/questions/401/do-uspto-examiners-search-open-source-
codebases> accessed 31 August 2020.

196 The Linux Foundation, ‘Open Source as Prior Art (OSAPA)’ <https://wiki.linuxfoundation.org/
osapa/start>accessed 19 March 2021.

107" See results commented on by Andrea Casillas, ‘Peer to Patent Pilot 2 Results’ <http://www.slidesh
are.net/acasillas11/peer-to-patent-pilot-2> accessed 30 August 2020.

244 MALCOLM BAIN AND P MCCOY SMITH

While there have been several criticisms,'% and although the project was even-
tually discontinued, Peer to Patent has been seen as one of the factors leading to
the creation of certain new processes for improving the quality of patents under
the US America Invents Act of September 2011,'% notably the possibility for third
parties to file pre-issuance submissions,'! prior art something similar to the ob-
servations phase of European Patent applications.!!! In addition, the Peer to Patent
project has highlighted the need to take into account all prior art, not just in theory
but also in practice, that is relevant to the patent applications that a patent office
is reviewing: websites, journals, textbooks, software development, user manuals,
and other non-patent databases. Community involvement and online discussion
also helps find this information. This has a positive economic effect, as avoiding ab
initio the granting of poor-quality and/or invalid patents is significantly cheaper
than a re-examination or post-grant review processes, or invalidity procedures be-
fore the courts. Ideally, prior art submitted in this way would gradually reduce the
ability of non-practising entities holding poor-quality patents to threaten Open
Source projects.

As a third leg in the strategy for avoiding ‘bad patents, defensive publication is
coming to be seen as one of the most efficient and effective measures. IBM, for forty
years, produced a publication of inventions, which it developed but did not seek to
patent, as a mechanism for establishing prior art that might prevent others from
later attempting to patent the same or similar technology.!? Linux Defenders,'!
a program for defending the Linux operating system and the Open Source com-
munity as a whole against patent concerns and threats, and which also supported
the Peer to Patent project, was an initiative to support defensive publication, by
directing to a website ‘“Technical Disclosure Commons,'!* designed as a repository
for individuals to make dated publications of technology disclosures for prior art
purposes.

The Technical Disclosure Commons site provides a mechanism for developers
and creators to submit a publication that is date-stamped so as to establish its public
disclosure date for prior art purposes, with the goal that patent examiners and pa-
tent challengers may review and use these disclosures as prior art. The publications
are posted to the IP.com prior art database, which allows patent offices worldwide
to include these publications in their patent searches.

108 Summarised at Wikipedia, ‘Peer-to-Patent Criticisms’ <http://en.wikipedia.org/wiki/Peer-to-Pat
ent#Criticisms> accessed 30 August 2020.

109 HR 1246 (112th), now Public Law 112-29, Statutes at Large, 125 Stat. 284 through 125 Stat. 341 (2012).

110 35 USC 122(e).

1T WIPO has also taken up this idea for PCT applications, WIPO, ‘Patent Cooperation Treaty (PCT)
Working Group’ (14-18 June 2010) <http://193.5.93.80/edocs/mdocs/pct/en/pct_wg_3/pct_wg_3_
6.pdf> accessed 30 August 2020.

112 IBM Technical Disclosure Bulletin'® Wikipedia <https://en.wikipedia.org/wiki/IBM_Techni
cal_Disclosure_Bulletin> accessed 30 August 2020.

13 Linux Defenders: <http://linuxdefenders.org> accessed 30 August 2020.

114 Technical Disclosure Commons <https://www.tdcommons.org/> accessed 30 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 245
10.5 Patent Busting and Patent Pools

The measures described earlier to make available and accessible more prior art
so that those patents that are granted truly meet the tests of novelty and non-
obviousness/inventive step are aimed at preventing the granting of poor-quality
patents, not only in the software sector but in all technology fields. Another ques-
tion for the Open Source community has been: what can be done about existing
poor-quality patents that can be used to threaten the Open Source—and indeed
proprietary software—communities and result in claims for unreasonable patent
royalties or potentially injunctive remedies to stop distribution? This is a question
of ‘problem containment’ and the strongest proposals so far focus on post-grant
patent review, and creating defensive patent pools to protect specific areas of tech-
nology. Notably, these proposals are centred in the US, where the software and
business method patent problem is believed to be most acute.

Asregards patent review, there have been several community initiatives: one was
the Linux Defenders project called ‘Post-Issue Peer to Patent’ which was designed
to solicit prior art contributions from Linux and the broader Open Source com-
munity to permit the invalidation of previously issued patents that were issued in
error because of the patent office’s lack of awareness of relevant prior art. Like many
of the initiatives discussed earlier, this project is no longer operational. Another is
the ‘Patent Busters’ project, launched in 2004 by Electronic Freedom Foundation
(EFF),!'> which organised collaborative community efforts to challenge existing
patents that it had pinpointed as being particularly harmful to innovation. It then
filed challenges to those patents it determined were not properly granted, which
it had done with a certain degree of success.!'® The Patent Busters project does
not appear to have taken any steps to ‘bust’ a patent since approximately 2016. The
Public Patent Foundation (PUBPAT)!!” ran a similar project, with the aim of chal-
lenging through post-grant challenges US patents believed to be invalid. This pro-
ject worked in all areas of technology, not just software,!'® although its activities
have not been updated since 2015.

These actions have been supported in the US by the introduction in 2011 of
post-grant review processes under the America Invents Act (AIA). One part of this
legislation allows third parties to submit ‘post-grant review’ invalidity challenges

115 EFF, ‘Patent Busting Project’ <https://www.eff.org/issues/patent-busting-project> accessed 16
June 2022.

116 EFF at one time listed ten patents that challenged or wished to challenge under this project, with
various degrees of success including complete invalidation (‘busted’), narrowing, or some form of
post-issuance reevaluation being initiated by the USPTO. Wikipedia, ‘Patent Busting Project, <https://
en.wikipedia.org/wiki/Patent_Busting_Project> accessed 16 June 2022.

117 Public Patent Foundation, ‘Undeserved Patents and Unsound Patent Policy Harm the Public’
<http://www.pubpat.org> accessed 31 August 2020.

118 Successes are listed at Public Patent Foundation, ‘Protecting the public domain’ <http://www.pub
pat.org/Protecting.htm> accessed 31 August 2020.

246 MALCOLM BAIN AND P MCCOY SMITH

of a recently granted patent, within nine months of issuance.!'® Grounds for in-
validity include lack of novelty, obviousness, as well as non-compliance with de-
scription, enablement, or patent eligibility rules. Another part of this legislation
allows third parties to submit ‘inter partes review’ invalidity challenges at any time
after 9 months from issuance, but only challenges for lack of novelty or obvious-
ness based on patents or printed publications.!?’ In the past, prior to the AIA, the
only mechanism for patent challenges—the filing of an ex parte or inter partes
re-examination—had to be based upon prior art patents or printed publications.
The challenges represent a potentially cheaper mechanism for contesting the val-
idity of an issued US patent than litigation, although the filing fees alone—over US
$40,000.00—and the length and complexity of the procedures mean that such chal-
lenges can often mean costs in the hundreds of thousands of US dollars.'?!

One other mechanism to address patent threats is the creation of a defensive
patent pool. The Open Invention Network (OIN),!?? controls a patent pool and
has the mandate to defend Open Source—as defined in a Linux System Definition
which began with core Linux but which today includes over 2,000 other Open
Source packages—from patent attacks. It was launched in 2005, by six founding
companies'? and has received investment from four additional large technology
industry participants!? as well as its founders. OIN is free to join and works, at
its simplest, on the basis of a mutual hold harmless, or commitment not to sue,
amongst its 3,500 licensees, each of whom, like its founders, sign up to the same
non-negotiable licence terms.

OIN has so far acquired a large (1,500+) portfolio of patents purchased at a cost
in excess of US $100 million, ‘all available royalty-free to any company, institution
or individual that agrees not to assert its patents against the Linux System. OIN
will therefore buy patents (i) to stop them falling into the hands of non-practising
entities, who might otherwise assert them against Linux-based companies;'?> and
(ii) to provide a portfolio of patents that can be asserted against companies that
attack Linux.'?® In fact, OIN partnered with Allied Security Trust to intercept

119 35 USC 321.

120 35 USC 311.

121 Challenges to patents in the US based on prior art patents or printed publications using ex parte
re-examination continue to be available, 35 USC § 302, and are likely much cheaper, but these proceed-
ings can often be one-sided in favour of the patent holder and therefore generally are only used when
the prior art is particularly strong.

122 OIN <http://www.openinventionnetwork.com> accessed 31 August 2020.

123 1BM, Phillips, NEC, Sony, Novell, and Red Hat.

124 Canonical, TomTom, Google, and Nissan.

125 See, e.g., OIN’s purchase of twenty-two Silicon Graphics patents that Microsoft placed with
Allied Security Trust to sell: Paula Rooney, ‘OIN Outmanuevers Microsoft, Buys Linux Patents’ ZDnet
(9 September 2009) <http://www.zdnet.com/blog/Open Source/oin-outmanuevers-microsoft-buys-
linux-patents/4800> accessed 31 August 2020.

126 See, e.g., OIN's transfer of four patents to Salesforce.com after Salesforce.com was sued for patent
infringement by Microsoft: Florian Mueller, “The OIN gave Salesforce.com four patents to assert against
Microsoft’ Fosspatents (31 May 2011) <http://www.fosspatents.com/2011/05/oin-gave-salesforcecom-
four-patents-to.html> accessed 31 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 247

Microsoft patents that were alleged to read on Open Source functionality and avoid
those patents and associated claim charts from being ‘washed’ through Allied
Security Trust (AST)—where they could have been licensed to AST’s members be-
fore being passed to an NPE to have the claim charts enforced through litigation.!?”

Because all of the patents of all of the members of OIN are in effect licensed RF
to all the other members in relation to the Linux System, that equates to a collective
patent portfolio of over an estimated 350,000 patents and applications pledged not
to be asserted against the Linux System software.

OIN acted successfully to convey patents from its extensive portfolio to
Salesforce.com when it was sued for patent infringement of FAT filesystem patents
by Microsoft. Rather than expose itself to a potential injunction, the counterclaim
by Salesforce of the patents received from OIN precipitated a rapid settlement by
Microsoft.!?8 In addition, in at least one other action that has been made public,
when TomTom was also sued by Microsoft over exFAT filesystem patents the
spectre of OIN’s conveyance of patents to TomTom coupled with TomTom’s own
patents that were used in the actual counterclaim was sufficient to trigger a settle-
ment for a fraction of the original damage claim.!? While there is little statistical
data available regarding patent threats and assertions, the fact that OIN has rou-
tinely provided prior art to companies in the Open Source community at risk of, or
actively in, litigation indicates that OIN’s involvement may serve a useful vehicle to
reduce patent threats in core Linux and the adjacent Open Source software space.

The foregoing NPE interventions notwithstanding, OIN historically was designed
to primarily work to mitigate practising entity patent risk but since Microsoft became
amember of the OIN Community in late 2018,'*° OIN has pivoted to put increasing
focus on mitigating NPE risk. In addition to working with the Open Source tech-
nical community to identify prior art to be shared with Community members who
are at risk or in litigation, OIN has also joined with the Linux Foundation, IBM, and
Microsoft to found and fund the Unified Patents’ Open Source Zone to enable the
mitigation of risk from NPE-owned patents that read on Open Source functionality.

OIN is a defensive entity and not an assertion entity; that is, it has not itself
commenced litigation against companies attacking Open Source using its ex-
isting patent portfolio, although OIN has sold hundreds of patents to companies in

127 Nick Wingfield, ‘Group of Microsoft Rivals Nears Patent Deal in Bid to Protect Linux, Wall Street
Journal (8 September 2009) <https://www.wsj.com/articles/SB125236988735891147> accessed 19
August 2022.

128 Florian Mueller, “The OIN Gave Salesforce.com Four Patents to Assert against Microsoft, FOSS
Patents (31 May 2011) <http://www.fosspatents.com/2011/05/0in-gave-salesforcecom-four-patents-to.
html> accessed 19 August 2022.

129 See comment by Software Freedom Law Center, ‘Settled, But Not Over Yet' (30 March
2009) <http://www.softwarefreedom.org/news/2009/mar/30/settled-not-over-yet> accessed 31
August 2020.

130 Navneet Akash, ‘Microsoft Joins OIN, Makes 60,000 Patents Open-Source, C#Corner (12 October
2018) <https://www.c-sharpcorner.com/news/microsoft-joins-oin-makes-60000-patents-opensource>
accessed 15 June 2022.

248 MALCOLM BAIN AND P MCCOY SMITH

litigation or at risk from operating companies poised to assert patents containing
Open Source-related claims.

In addition to OIN, it has been suggested that an assertion entity (Fair Troll)
acting on behalf of the Open Source community to recoup sums paid in patent
licensing might have attractions.!*! Given that the Open Source community in
general has been vocally anti-software patent, creation of such an entity with com-
munity support seems unlikely.

In March 2013, Google published a proposal to establish and standardise de-
fensive patent pools, with the objective of reducing patent litigation concerns, par-
ticularly by NPEs.!32 One particular part of this proposal that eventually came into
fruition was the proposal of a Licence on Transfer (LOT) regime whereby com-
panies would band together and commit that they would grant one another licences
to their patents, even if those companies did not have in place any existing patent li-
cence arrangements between them, in the event that one of their patents was sold or
otherwise transferred to an entity that might be non-practising. This resulted in the
formation of the LOT Network, in 2014, to achieve exactly this result.!** The net-
work has grown to over 1,000 participants in a relatively short period and, though
the benefits of this network extend only to members and it is not an Open Source-
specific solution in the manner of OIN, companies active in Open Source can gain
protection from NPE risk by joining LOT; large companies pay a modest annual fee
while companies below a certain size receive complimentary membership.

Finally, during the 2000s, various companies made patent pledges in favour of in-
dividuals and groups working on Open Source—unilateral promises not to assert
patents against developers, provided that certain conditions are met. These pledges
are intended to operate as an enforceable covenant not to sue, and equitable estoppel
should preclude the patent holder from bringing suit against those within the safe
harbour defined by the pledge.

Notable patent pledges include Red Hat,'** Nokia,'3*> and IBM.!3® Note also
that many of these pledges may have been expanded by the joining of some of the

131 Florian Mueller, “The DPL and the “Fair Troll” business model: make money fighting patents with

patents’ FOSS Patents (18 May 2010) <http://www.fosspatents.com/2010/05/dpl-and-fair-troll-busin
ess-model-make.html> accessed 31 August 2020.

132 Eric Schulman, ‘Working together to reduce patent litigation’ Google Public Policy Blog (12 March
2013) <http://googlepublicpolicy.blogspot.co.uk/2013/03/working-together-to-reduce-patent.html>
accessed 31 August 2020.

133 ‘How We Protect Members’ LOT Network <https://lotnet.com/how-we-protect-members/> ac-
cessed 31 August 2020.

134 Promise at Red Hat, ‘Statement of Position and Our Promise on Software Patents’ <http://www.
redhat.com/legal/patent_policy.html> accessed 31 August 2020.

135 ‘Nokia announces patent support to the Linux Kernel’ Phys.org (26 May 2005) <https://phys.org/
news/2005-05-nokia-patent-linux-kernel.html> accessed 31 August 2020. This pledge has a number
of different qualifications, including ‘[w]ith respect to new functionality introduced into future Linux
Kernel releases, Nokia reserves the right to declare that the Patent Statement shall not apply’

136 TBM, ‘IBM Pledges 500 U.S. Patents to Open Source in Support of Innovation and Open
Standards’ (11 January 2005) <http://www-03.ibm.com/press/us/en/pressrelease/7473.wss> accessed
31 August 2020.

PATENTS AND THE DEFENSIVE RESPONSE 249

pledging entities to OIN—including Microsoft in October 2018, which has been
followed by an extension of the Linux Definition to add the Microsoft exFAT pa-
tents into the Linux System Definition and OIN’s pool.

One major unresolved issue is whether a pledge binds a new owner of a patent,
an issue of great practical significance given the powerful and accelerating trend
for major patent holders to divest some parts of their patent portfolio to patent
assertion entities. This issue is also being considered in the context of whether
FRAND obligations bind successors in title, as discussed in Chapter 11.

10.6 Patent Litigations Initiated Against Open Source

Although concerns about the impact of patents against Open Source have been raised
for at least thirty years (since GPLv2 identified patents as a concern in its preamble
and the Tiberty or death’ clause) and although numerous measures, as discussed
earlier, have been implemented to address those concerns, actual threats (at least in
the form of patent infringement suits filed against Open Source) have been surpris-
ingly rare and generally resolved in a way favourable to the Open Source model. This
data is somewhat contrary to the general trend of patent infringement litigation fil-
ings, which have shown, in the US, a steady-state of such filings by practicing entities,
and a variable—but gradually increasing—trend of filings by NPEs.!3” Global trends
also seem to indicate an increasing rate of patent infringement suit filings by NPEs.!

Although rare, there have been a few instances of patent infringement liti-
gation filed against software licensed under an Open Source licence. In almost
every instance, these litigations have been filed either ancillary to a separate,
non-patent, dispute,'* and in almost all cases, the patent is asserted against a
for-profit entity that makes Open Source software part of its overall revenue-
producing product profile.!*? In the one case where an actual verdict of patent

137 See RPX Corporation, ‘What 15 Years of U.S. Patent Litigation Data Reveal About the IP Market’
RPX Insights (25 January 2021) <https://insight.rpxcorp.com/news/65081-what-15-years-of-us-pat
ent-litigation-data-reveal-about-the-ip-market> accessed 20 March 2021.

138 See Michael Crichton, Gregory Gramenopoulos, Vincenzo Jandoli, et al., ‘Global Patent
Litigation: Trends, Tools, and Strategies to Enforce Your Patent Rights Globally’ Strafford (2 June 2020)
<http://media.straffordpub.com/products/global-patent-litigation-trends-tools-and-strategies-to-
enforce-your-patent-rights-globally-2020-06-02/presentation.pdf> accessed 20 March 2021.

139 See, e.g., XimpleWare v Versata, Case No. 3:13cv5160 (N.D. Cal. 2013) (a copyright infringe-
ment action for failure to abide by GPLv2) and XimpleWare v Versata, Case No. 5:13cv5161 (N.D. Cal.
2013) (a corresponding patent complaint for patent infringement resulting from the failure to abide by
GPLv2). These two suits, as well as other associated suits, were eventually settled. Sylvia Jakob, ‘Versata
saga settled with prejudice’ ifrOSS News (19 March 2015) <https://www.ifross.org/?q=en/artikel/vers
ata-saga-settled-prejudice-1> accessed 20 March 2021. Details of the terms of settlement are not public.

140 See, e.g., Bedrock Computer Technologies LLC v Softlayers Technology Inc., Case No. 6:09-cv-269
(LED) (E.D. Tex. 2009), which involved a patent infringement claim against Google, and others, for
features in the Linux kernel. Google initially lost the claim and was assessed damages of U §$5,000,000.
Steven Vaughn-Nichols, ‘Idiotic Anti-Linux & Google Patent Decision’ ZDNet (21 April 2011) <https://

250 MALCOLM BAIN AND P MCCOY SMITH

infringement was found, and damages were assessed for that infringement, the
verdict was rendered in summary fashion via a jury (thus not providing a detailed
explanation of how the patent was infringed by the accused Open Source)!4! and
was shortly thereafter settled and dismissed without explanation as to the terms
of the settlement.

One of the earlier patent litigation assertions against Open Source software was
a claim made against Red Hat’s distribution of JBoss’s Hibernate object-relational
mapping tool (licensed under GPLv2) by the patent holder FireStar.!*> No court
decision was rendered in that litigation, but upon settlement, Red Hat did make
a statement assuring the Open Source community that that settlement was fully
conformant with Red Hat’s patent obligations under the ‘liberty or death’ provi-
sions of GPLv2:

The covered products include all software distributed under Red Hat’s brands,
as well as upstream predecessor versions. The settlement also protects derivative
works of, or combination products using, the covered products from any patent
claim based in any respect on the covered products. Essentially, all that have in-
novated to create, or that will innovate with, software distributed under Red Hat
brands are protected, as are Red Hat customers.

‘Red Hat’s settlement satisfies the most stringent patent provisions in FOSS li-
censes, is consistent with the letter and spirit of all versions of the GPL and pro-
vides patent safety for developers, distributors and users of FOSS software, said
Richard Fontana, FOSS Licensing and Patent Counsel at Red Hat.!*3

A more recent patent litigation involving Open Source, which demonstrates the
complex interplay of patent infringement assertions, the various mechanisms for
challenging patents (both administratively and in court, in the United States),
and continued controversy about the legitimacy of the mechanism for admin-
istratively challenging patents using Inter Partes Review (IPR) can be found
in the activities of the patent holder Sound View Innovations (Sound View).
Beginning in 2016, Sound View filed a series of patent infringement lawsuits—in

www.zdnet.com/article/idiotic-anti-linux-google-patent-decision/> accessed 20 March 2021. The
case was eventually settled, with regard to Google, and dismissed, see Order Vacating Verdict and
Dismissing Claims and Counterclaims (18 May 2011) available at <https://docs.justia.com/cases/fede
ral/district-courts/texas/txedce/6:2009cv00269/116887/830> accessed 20 March 2021, although details
of that settlement are not public.

M1 Jury Verdict, Bedrock Computer Technologies LLC v Softlayers Technology Inc., Case No. 6:09-cv-
269 (LED) (E.D. Tex. 15 April 2011) available at <https://docs.justia.com/cases/federal/district-courts/
texas/txedce/6:2009cv00269/116887/746> accessed 20 March 2021.

142 Paula Rooney, ‘FireStar Files Suit Against Red Hat’ CRN (7 July 2006) <https://www.crn.com/
news/applications-0s/190300990/firestar-files-suit-against-red-hat.htm> accessed 20 March 2021.

143 Red Hat, ‘Red Hat Puts Patent Issue to Rest’ Red Hat Press Release (11 June 2008) <https://www.
r